

Lecture Notes in Computer Science 4497
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

S. Barry Cooper Benedikt Löwe
Andrea Sorbi (Eds.)

Computation and Logic
in the Real World

Third Conference on Computability in Europe, CiE 2007
Siena, Italy, June 18-23, 2007
Proceedings

13

Volume Editors

S. Barry Cooper
University of Leeds
Dept. of Pure Mathematics
Leeds LS2 9JT, UK
E-mail: pmt6sbc@maths.leeds.ac.uk

Benedikt Löwe
Universiteit van Amsterdam
Institue for Logic, Language and Computation (ILLC)
Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
E-mail: bloewe@science.uva.nl

Andrea Sorbi
University of Siena
Dipartimento di Scienze Matematiche ed Informatiche “R. Magari”
53100 Siena, Italy
E-mail: sorbi@unisi.it

Library of Congress Control Number: 2007928471

CR Subject Classification (1998): F.1, F.2.1-2, F.4.1, G.1.0, I.2.6, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-73000-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73000-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12075188 06/3180 5 4 3 2 1 0

Preface

CiE 2007: Computation and Logic in the Real World
Siena, Italy, June 18–23, 2007

Computability in Europe (CiE) is an informal network of European scientists
working on computability theory, including its foundations, technical develop-
ment, and applications. Among the aims of the network is to advance our the-
oretical understanding of what can and cannot be computed, by any means
of computation. Its scientific vision is broad: computations may be performed
with discrete or continuous data by all kinds of algorithms, programs, and ma-
chines. Computations may be made by experimenting with any sort of physical
system obeying the laws of a physical theory such as Newtonian mechanics,
quantum theory, or relativity. Computations may be very general, depending
upon the foundations of set theory; or very specific, using the combinatorics of
finite structures. CiE also works on subjects intimately related to computation,
especially theories of data and information, and methods for formal reasoning
about computations. The sources of new ideas and methods include practical
developments in areas such as neural networks, quantum computation, natural
computation, molecular computation, computational learning. Applications are
everywhere, especially, in algebra, analysis and geometry, or data types and pro-
gramming. Within CiE there is general recognition of the underlying relevance
of computability to physics and a broad range of other sciences, providing as it
does a basic analysis of the causal structure of dynamical systems.

This volume, Computation and Logic in the Real World, is the proceedings
of the third in a series of conferences of CiE that was held at the Dipartimento
di Scienze Matematiche e Informatiche “Roberto Magari,” University of Siena,
June 18–23, 2007.

The first two meetings of CiE were at the University of Amsterdam, in 2005,
and at the University of Wales Swansea in 2006. Their proceedings, edited in
2005 by S. Barry Cooper, Benedikt Löwe and Leen Torenvliet, and in 2006 by
Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and John V. Tucker, were
published as Springer Lecture Notes in Computer Science, Volumes 3526 and
3988, respectively. As the editors noted in last year’s proceedings, CiE and its

VI Preface

conferences have changed our perceptions of computability and its interface with
other areas of knowledge. The large number of mathematicians and computer
scientists attending those conference had their view of computability theory
enlarged and transformed: they discovered that its foundations were deeper and
more mysterious, its technical development more vigorous, its applications wider
and more challenging than they had known. The Siena meeting promised to
extend and enrich that process.

The annual CiE conference, based on the Computability in Europe network,
has become a major event, and is the largest international meeting focused on
computability theoretic issues. The series is coordinated by the CiE Conference
Series Steering Committee:

Paola Bonizzoni (Milan)
Barry Cooper (Leeds)
Benedikt Löwe (Amsterdam, Chair)
Elvira Mayordomo (Zaragoza)
Dag Normann (Oslo)
Andrea Sorbi (Siena)
Peter van Emde Boas (Amsterdam).

We will reconvene in 2008 in Athens, 2009 in Heidelberg, and 2010 in Lisbon.

Structure and Programme of the Conference

The conference was based on invited tutorials and lectures, and a set of special
sessions on a range of subjects; there were also many contributed papers and
informal presentations. This volume contains 36 of the invited lectures and 29.9%
of the submitted contributed papers, all of which have been refereed. There
will be a number of post-proceedings publications, including special issues of
Theoretical Computer Science, Theory of Computing Systems, Annals of Pure
and Applied Logic, and Journal of Logic and Computation.

Tutorials

Pieter Adriaans (Amsterdam), Learning as Data Compression
Yaakov Benenson (Cambridge, Massachusetts), Biological Computing

Invited Plenary Talks

Anne Condon (Vancouver), Computational Challenges in Prediction and Design
of Nucleic Acid Structure

Stephen Cook (Toronto), Low Level Reverse Mathematics
Yuri Ershov (Novosibirsk), HF-Computability
Sophie Laplante (Paris), Using Kolmogorov Complexity to Define Individual

Security of Cryptographic Systems
Wolfgang Maass (Graz), Liquid Computing

Preface VII

Anil Nerode (Cornell), Logic and Control
Piergiorgio Odifreddi (Turin), Conference Introductory Lecture
Roger Penrose (Oxford), A talk on Aspects of Physics and Mathematics
Michael Rathjen (Leeds), Theories and Ordinals in Proof Theory
Dana Scott (Pittsburgh), Two Categories for Computability (Lecture sponsored

by the European Association for Computer Science Logic.)
Robert I. Soare (Chicago), Computability and Incomputability
Philip Welch (Bristol), Turing Unbound: Transfinite Computation

Special Sessions

Doing Without Turing Machines: Constructivism and Formal
Topology, organised by Giovanni Sambin and Dieter Spreen

Givanni Sambin (Padova) Doing Without Turing Machines: Constructivism and
Formal Topology

Andrej Bauer (Ljubljana), RZ: A Tool for Bringing Constructive and
Computable Mathematics Closer to Programming Practice

Douglas Bridges (Canterbury, NZ), Apartness on Lattices
Thierry Coquand (Göteborg), A Constructive Version of Riesz Representation

Theorem
Maria Emilia Maietti (Padova), Constructive Foundation for Mathematics as a

Two Level Theory: An Example

Approaches to Computational Learning, organised by Marco Gori and
Franco Montagna

John Case (Newark, Delaware), Resource Restricted Computability Theoretic
Learning: Illustrative Topics and Problems

Klaus Meer (Odense), Some Aspects of a Complexity Theory for Continuous
Time Systems

Frank Stephan (Singapore), Input-Dependence in Function-Learning
Osamu Watanabe (Tokyo), Finding Most Likely Solutions

Real Computation, organised by Vasco Brattka and Pietro Di Gianantonio
Pieter Collins (Amsterdam), Effective Computation for Nonlinear Systems
Abbas Edalat (London), A Continuous Derivative for Real-Valued Functions
Hajime Ishihara (Tokyo), Unique Existence and Computability in Constructive

Reverse Mathematics
Robert Rettinger (Hagen), Computable Riemann Surfaces
Martin Ziegler (Paderborn), Real Hypercomputation

Computability and Mathematical Structure, organised by Serikzhan
Badaev and Marat Arslanov
Vasco Brattka (Cape Town), Computable Compactness
Barbara F. Csima (Waterloo), Properties of the Settling-Time Reducibility

Ordering

VIII Preface

Sergey S. Goncharov (Novosibirsk), Computable Numberings Relative to
Hierarchies

Jǐŕı Wiedermann (Prague), Complexity Issues in Amorphous Computing
Chi Tat Chong (Singapore), Maximal Antichains in the Turing Degrees

Complexity of Algorithms and Proofs, organised by Elvira Mayordomo
and Jan Johannsen
Eric Allender (Piscataway, New Jersey), Reachability Problems: An Update
Jörg Flum (Freiburg), Parameterized Complexity and Logic
Michal Koucký (Prague), Circuit Complexity of Regular Languages
Neil Thapen (Prague), The Polynomial and Linear Hierarchies in Weak Theories

of Bounded Arithmetic
Heribert Vollmer (Hannover), Computational Complexity of Constraint

Satisfaction

Logic and New Paradigms of Computability, organised by Paola Bonizzoni
and Olivier Bournez
Felix Costa (Lisbon), The New Promise of Analog Computation
Natasha Jonoska (Tampa, Florida), Computing by Self-Assembly
Giancarlo Mauri (Milan), Membrane Systems and Their Applications to Systems

Biology
Grzegorz Rozenberg (Leiden), Biochemical Reactions as Computations
Damien Woods (Cork), (with Turlough Neary) The Complexity of Small

Universal Turing Machines

Computational Foundations of Physics and Biology, organised by
Guglielmo Tamburrini and Christopher Timpson
James Ladyman (Bristol), Physics and Computation: The Status of Landauer’s

Principle
Itamar Pitowsky (Jerusalem), From Logic to Physics: How the Meaning of

Computation Changed Over Time
Grzegorz Rozenberg (Leiden), Natural Computing: A Natural and Timely Trend

for Natural Sciences and Science of Computation
Christopher Timpson (Leeds), What’s the Lesson of Quantum Computing?
Giuseppe Trautteur (Naples), Does the Cell Compute?

Women in Computability Workshop, organised by Paola Bonizzoni and
Elvira Mayordomo

A new initiative at CiE 2007 was the adding of the Women in Computabil-
ity workshop to the programme. Women in computer science and mathematics
face particular challenges in pursuing and maintaining academic and scientific
careers. The Women in Computability workshop brought together women in
computing and mathematical research to present and exchange their academic
and scientific experiences with young researchers. The speakers were:

Preface IX

Anne Condon (British Columbia)
Natasha Jonoska (Tampa, Florida)
Carmen Leccardi (Milan)
Andrea Cerroni (Milan)

Organisation and Acknowledgements

The CiE 2007 conference was organised by the logicians at Siena: Andrea Sorbi,
Thomas Kent, Franco Montagna, Tommaso Flaminio, Luca Spada, Andrew
Lewis, Maria Libera Affatato and Guido Gherardi; and with the help of Leeds
computability theorists: S Barry Cooper, Charles Harris and George Barmpalias;
and Benedikt Löwe (Amsterdam). The CiE CS Steering Committee also played
an essential role.

The Programme Committee was chaired by Andrea Sorbi and Barry Cooper
and consisted of:

Manindra Agrawal (Kanpur)
Marat M. Arslanov (Kazan)
Giorgio Ausiello (Rome)
Andrej Bauer (Ljubljana)
Arnold Beckmann (Swansea)
Ulrich Berger (Swansea)
Paola Bonizzoni (Milan)
Andrea Cantini (Florence)
S. Barry Cooper (Leeds, Co-chair)
Laura Crosilla (Leeds)
Josep Diaz (Barcelona)
Costas Dimitracopoulos (Athens)
Fernando Ferreira (Lisbon)
Sergei S. Goncharov (Novosibirsk)
Peter Grünwald (Amsterdam)
David Harel (Jerusalem)
Andrew Hodges (Oxford)

Julia Kempe (Paris)
Giuseppe Longo (Paris)
Benedikt Löwe (Amsterdam)
Johann A. Makowsky (Haifa)
Elvira Mayordomo Cámara (Zaragoza)
Wolfgang Merkle (Heidelberg)
Franco Montagna (Siena)
Dag Normann (Oslo)
Thanases C. Pheidas (Iraklion, Crete)
Grzegorz Rozenberg (Leiden)
Giovanni Sambin (Padova)
Helmut Schwichtenberg (Munich)
Wilfried Sieg (Pittsburgh)
Andrea Sorbi (Siena, Co-chair)
Ivan N. Soskov (Sofia)
Peter van Emde Boas (Amsterdam)

We are delighted to acknowledge and thank the following for their essen-
tial financial support: the Department of Mathematics and Computer Science
“Roberto Magari” at Siena; the Fondazione del Monte dei Paschi di Siena; the
Istituto Nazionale di Alta Matematica: Gruppo Nazionale per le Strutture Alge-
briche, Geometriche e le loro Applicazioni (INDAM-GNSAGA); the University of
Siena; the Associazione Italiana di Logica e sue Applicazioni (AILA); the Associ-
ation for Symbolic Logic (ASL); the European Association for Computer Science
Logic (EACSL). We would also like to thanks our sponsors: the European As-
sociation for Theoretical Computer Science (EATCS); the Association of Logic,
Language and Information (FoLLI); the Committee on the Status of Women in

X Preface

Computing Research (CRA-W). We are pleased to thank our colleagues on the
Organising Committee for their many contributions and our research students
for practical help at the conference. Special thanks are due to Thomas Kent,
Tommaso Flaminio, Luca Spada, Andy Lewis, and Franco Montagna for their
precious collaboration, and the Congress Service of the University of Siena for
the administrative aspects of the conference.

The high scientific quality of the conference was possible through the con-
scientious work of the Programme Committee, the Special Session organisers,
and the referees. We are grateful to all members of the Programme Committee
for their efficient evaluations and extensive debates, which established the final
programme. We also thank the following referees:

Klaus Aehlig
Pilar Albert
Klaus Ambos-Spies
Andrea Asperti
Lúıs Antunes
Albert Atserias
George Barmpalias
Freiric Barral
Sebastian Bauer
Almut Beige
Josef Berger
Luca Bernardinello
Daniela Besozzi
Laurent Bienvenu
Christian Blum
Markus Bläser
Thomas Bolander
Roberto Bonato
Lars Borner
Abraham P. Bos
Malte Braack
Vasco Brattka
Andries E. Brouwer
Joshua

Buresh-Oppenheim
Nadia Busi
Cristian S. Calude
Riccardo Camerlo
John Case
Orestes Cerdeira
Yijia Chen
Luca Chiarabini
Jose Félix Costa

Ronald Cramer
Paola D’Aquino
Ugo Dal Lago
Victor Dalmau
Tijmen Daniëls
Anuj Dawar
Barnaby Dawson
Ronald de Wolf
José del Campo
Karim Djemame
David Doty
Rod Downey
Martin Escardo
Antonio Fernandes
Claudio Ferretti
Eric Filiol
Eldar Fischer
Daniel Garca
Parmenides Garcia

Cornejo
William Gasarch
Ricard Gavaldà
Giangiacomo Gerla
Eugene Goldberg
Massimiliano Goldwurm
Johan Granström
Phil Grant
Dima Grigoriev
Barbara Hammer
Tero Harju
Montserrat Hermo
Peter Hertling
Thomas Hildebrandt

John Hitchcock
Pascal Hitzler
Steffen Hölldobler
Mathieu Hoyrup
Simon Huber
Jim Hurford
Carl Jockusch
Jan Johannsen
Michael Kaminski
Vladimir Kanovei
Basil Karadais
Vassilios Karakostas
Iztok Kavkler
Thomas Kent
Hans Kleine Büning
Sven Kosub
Bogomil Kovachev
Evangelos Kranakis
S. N. Krishna
Oleg Kudinov
Petr Kurka
Eyal Kushilevitz
Akhlesh Lakhtakia
Jérôme Lang
Hans Leiss
Stephane Lengrand
Alberto Leporati
Andy Lewis
Maria Lopez-Valdes
Michele Loreti
Alejandro Maass
Vincenzo Manca
Edwin Mares

Preface XI

Luciano Margara
Maurice Margenstern
Simone Martini
Ralph Matthes
Andrea Maurino
Klaus Meer
Nenad Mihailovic
Russell Miller
Pierluigi Minari
Nikola Mitrovic
Tal Mor
Philippe Moser
Mioara Mugu-Schachter
Thomas Müller
Nguyen Hoang Nga
Ray Nickson
Karl-Heinz Niggl
Martin Otto
Jiannis Pachos
Aris Pagourtzis
Dimitrii Palchunov
Francesco Paoli

Dirk Pattinson
George Paun
Andrea Pietracaprina
Sergey Podzorov
Chris Pollett
Pavel Pudlak
Diana Ratiu
Jan Reimann
Paul Ruet
Markus Sauerman
Stefan Schimanski
Wolfgang Schönfeld
Jeremy Seligman
Peter Selinger
Mariya Soskova
Bas Spitters
Frank Stephan
Mario Szegedy
Wouter Teepe
Balder ten Cate
Sebastiaan Terwijn
Christof Teuscher

Neil Thapen
Klaus Thomsen
Christopher Timpson
Michael Tiomkin
Edmondo Trentin
Trifon Trifonov
José Triviño-Rodriguez
Reut Tsarfaty
John Tucker
Sara Uckelman
Christian Urban
Tullio Vardanega
Sergey Verlan
Thomas Vidick
Heribert Vollmer
Rebecca Weber
Philip Welch
Guohua Wu
Reem Yassawi
Martin Ziegler
Jeffery Zucker
Dragisa Zunic

We thank Andrej Voronkov for his Easy Chair system which facilitated the
work of the Programme Committee and the editors considerably.

Finally, we wish to thank once again Thomas Kent of the Organising
Committee, for typesetting this volume virtually by himself.

April 2007 Andrea Sorbi
S. Barry Cooper

Benedikt Löwe

Table of Contents

Shifting and Lifting of Cellular Automata . 1
Luigi Acerbi, Alberto Dennunzio, and Enrico Formenti

Learning as Data Compression . 11
Pieter Adriaans

Reachability Problems: An Update . 25
Eric Allender

RZ: A Tool for Bringing Constructive and Computable Mathematics
Closer to Programming Practice . 28

Andrej Bauer and Christopher A. Stone

Producer/Consumer in Membrane Systems and Petri Nets 43
Francesco Bernardini, Marian Gheorghe, Maurice Margenstern, and
Sergey Verlan

A Minimal Pair in the Quotient Structure M/NCup. 53
Rongfang Bie and Guohua Wu

Constructive Dimension and Weak Truth-Table Degrees 63
Laurent Bienvenu, David Doty, and Frank Stephan

A Classification of Viruses Through Recursion Theorems 73
Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion

Borel Complexity of Topological Operations on Computable Metric
Spaces . 83

Vasco Brattka and Guido Gherardi

Colocatedness and Lebesgue Integrability . 98
Douglas S. Bridges

Computing with Genetic Gates . 105
Nadia Busi and Claudio Zandron

Resource Restricted Computability Theoretic Learning: Illustrative
Topics and Problems . 115

John Case

Characterizing Programming Systems Allowing Program
Self-reference . 125

John Case and Samuel E. Moelius III

XIV Table of Contents

K-Trivial Closed Sets and Continuous Functions . 135
George Barmpalias, Douglas Cenzer, Jeffrey B. Remmel, and
Rebecca Weber

Pseudojump Operators and Π0
1 Classes . 146

Douglas Cenzer, Geoffrey LaForte, and Guohua Wu

Sofic Trace Subshift of a Cellular Automaton . 152
Julien Cervelle, Enrico Formenti, and Pierre Guillon

Thin Maximal Antichains in the Turing Degrees . 162
Chi Tat Chong and Liang Yu

Effective Computation for Nonlinear Systems . 169
Pieter Collins

On Rules and Parameter Free Systems in Bounded Arithmetic 179
Andres Cordòn-Franco, Alejandro Fernández-Margarit, and
Francisco Felix Lara-Mart́ın

The New Promise of Analog Computation . 189
José Félix Costa, Bruno Loff, and Jerzy Mycka

Comparing C.E. Sets Based on Their Settling Times 196
Barbara F. Csima

Time-Complexity Semantics for Feasible Affine Recursions 205
Norman Danner and James S. Royer

Algebraic Model of an Arithmetic Unit for TTE-Computable
Normalized Rational Numbers . 218

Gregorio de Miguel Casado, Juan Manuel Garćıa Chamizo, and
Maŕıa Teresa Signes Pont

Feasible Depth . 228
David Doty and Philippe Moser

Abstract Geometrical Computation and the Linear Blum, Shub and
Smale Model . 238

Jérôme Durand-Lose

A Continuous Derivative for Real-Valued Functions 248
Abbas Edalat

Refocusing Generalised Normalisation . 258
José Esṕırito Santo

The Complexity Ecology of Parameters: An Illustration Using Bounded
Max Leaf Number . 268

Michael Fellows and Frances Rosamond

Table of Contents XV

Parameterized Complexity and Logic . 278
Jörg Flum

Index Sets of Computable Structures with Decidable Theories 290
Ekaterina B. Fokina

Minimal Representations for Majority Games . 297
Josep Freixas, Xavier Molinero, and Salvador Roura

Linear Transformations in Boolean Complexity Theory 307
Joel Friedman

Exact Pair Theorem for the ω-Enumeration Degrees 316
Hristo Ganchev

Operational Semantics for Positive Relevant Logics Without
Distribution . 325

Ying Gao and Jingde Cheng

Multi-valued Logics, Effectiveness and Domains . 336
Giangiacomo Gerla

Internal Computability . 348
Guido Gherardi

Post’s Problem for Ordinal Register Machines . 358
Joel D. Hamkins and Russell G. Miller

Unique Existence and Computability in Constructive Reverse
Mathematics . 368

Hajime Ishihara

Input-Dependence in Function-Learning . 378
Sanjay Jain, Eric Martin, and Frank Stephan

Some Notes on Degree Spectra of the Structures . 389
Iskander Kalimullin

Confluence of Cut-Elimination Procedures for the Intuitionistic Sequent
Calculus . 398

Kentaro Kikuchi

The Polynomial and Linear Hierarchies in V 0 . 408
Leszek Aleksander Ko�lodziejczyk and Neil Thapen

The Uniformity Principle for Σ-Definability with Applications to
Computable Analysis . 416

Margarita Korovina and Oleg Kudinov

Circuit Complexity of Regular Languages . 426
Michal Koucký

XVI Table of Contents

Definability in the Homomorphic Quasiorder of Finite Labeled
Forests . 436

Oleg V. Kudinov and Victor L. Selivanov

Physics and Computation: The Status of Landauer’s Principle 446
James Ladyman

Strict Self-assembly of Discrete Sierpinski Triangles 455
James I. Lathrop, Jack H. Lutz, and Scott M. Summers

Binary Trees and (Maximal) Order Types . 465
Gyesik Lee

A Weakly 2-Random Set That Is Not Generalized Low 474
Andrew Lewis, Antonio Montalbán, and André Nies

Speed-Up Theorems in Type-2 Computation . 478
Chung-Chih Li

The Complexity of Quickly ORM-Decidable Sets . 488
Joel D. Hamkins, David Linetsky, and Russell Miller

On Accepting Networks of Splicing Processors of Size 3 497
Remco Loos

Liquid Computing . 507
Wolfgang Maass

Quotients over Minimal Type Theory . 517
Maria Emilia Maietti

Hairpin Completion Versus Hairpin Reduction . 532
Florin Manea and Victor Mitrana

Hierarchies in Fragments of Monadic Strict NP . 542
Barnaby Martin and Florent Madelaine

Membrane Systems and Their Application to Systems Biology 551
Giancarlo Mauri

Some Aspects of a Complexity Theory for Continuous Time Systems . . . 554
Marco Gori and Klaus Meer

Enumerations and Torsion Free Abelian Groups . 566
Alexander G. Melnikov

Locally Computable Structures . 575
Russell G. Miller

Logic and Control . 585
Anil Nerode

Table of Contents XVII

Nash Stability in Additively Separable Hedonic Games Is NP-Hard 598
Martin Olsen

Comparing Notions of Computational Entropy . 606
Alexandre Pinto

From Logic to Physics: How the Meaning of Computation Changed over
Time . 621

Itamar Pitowsky

Theories and Ordinals: Ordinal Analysis . 632
Michael Rathjen

Computable Riemann Surfaces . 638
Robert Rettinger

Rank Lower Bounds for the Sherali-Adams Operator 648
Mark Rhodes

Infinite Computations and a Hierarchy in Δ3 . 660
Branislav Rovan and L’uboš Steskal

Natural Computing: A Natural and Timely Trend for Natural Sciences
and Science of Computation . 670

Grzegorz Rozenberg

Biochemical Reactions as Computations . 672
Andrzej Ehrenfeucht and Grzegorz Rozenberg

Doing Without Turing Machines: Constructivism and Formal
Topology . 674

Giovanni Sambin

Problems as Solutions . 676
Peter Schuster

A Useful Undecidable Theory . 685
Victor L. Selivanov

On the Computational Power of Flip-Flop Proteins on Membranes 695
Shankara Narayanan Krishna

Computability and Incomputability . 705
Robert I. Soare

A Jump Inversion Theorem for the Degree Spectra 716
Alexandra A. Soskova

Cupping Δ0
2 Enumeration Degrees to 0′

e . 727
Mariya Ivanova Soskova and Guohua Wu

XVIII Table of Contents

What Is the Lesson of Quantum Computing? . 739
Christopher G. Timpson

Does the Cell Compute? . 742
Giuseppe Trautteur

Computational Complexity of Constraint Satisfaction 748
Heribert Vollmer

Finding Most Likely Solutions . 758
Osamu Watanabe and Mikael Onsjö

Turing Unbound: Transfinite Computation . 768
Philip D. Welch

Computability in Amorphous Structures . 781
Jǐŕı Wiedermann and Lukáš Petr̊u

The Complexity of Small Universal Turing Machines 791
Damien Woods and Turlough Neary

Approximating Generalized Multicut on Trees . 799
Peng Zhang

(Short) Survey of Real Hypercomputation . 809
Martin Ziegler

Author Index . 825

Erratum . E1

Shifting and Lifting of Cellular Automata�

Luigi Acerbi1, Alberto Dennunzio1, and Enrico Formenti2,��

1 Università degli Studi di Milano–Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione,

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
dennunzio@disco.unimib.it, luigi.acerbi@gmail.com

2 Université de Nice-Sophia Antipolis
Laboratoire I3S,

2000 Route des Colles, 06903 Sophia Antipolis, France
enrico.formenti@unice.fr

Abstract. We consider the family of all the Cellular Automata (CA)
sharing the same local rule but have different memory. This family con-
tains also all the CA with memory m ≤ 0 (one-sided CA) which can act
both on AZ and on AN. We study several set theoretical and topological
properties for these classes. In particular we investigate if the properties
of a given CA are preserved when we consider the CA obtained by chang-
ing the memory of the original one (shifting operation). Furthermore we
focus our attention to the one-sided CA acting on AZ starting from the
one-sided CA acting on AN and having the same local rule (lifting op-
eration). As a particular consequence of these investigations, we prove
that the long-standing conjecture [Surjectivity ⇒ Density of the Peri-
odic Orbits (DPO)] is equivalent to the conjecture [Topological Mixing
⇒ DPO].

Keywords: discrete time dynamical systems, cellular automata, topo-
logical dynamics, deterministic chaos.

1 Introduction and Motivations

Cellular automata (CA) are a simple formal model for complex systems. Their
are used in many scientific fields ranging from biology to chemistry or from
physics to computer science.

A CA is made of an infinite set of finite automata distributed over a regular
lattice L. All finite automata are identical. Each automaton assumes a state,
chosen from a finite set A, called the set of states or the alphabet. A configuration
is a snapshot of all states of the automata i.e. a function from L to A. In the
present paper, L = Z or L = N.
� This work has been supported by the Interlink/MIUR project “Cellular Automata:

Topological Properties, Chaos and Associated Formal Languages”, by the ANR
Blanc “Projet Sycomore” and by the PRIN/MIUR project “Formal Languages and
Automata: Mathematical and Applicative Aspects”.

�� Corresponding author.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 1–10, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 L. Acerbi, A. Dennunzio, and E. Formenti

A local rule updates the state of an automaton on the basis of its current state
and the ones of a fixed set of neighboring automata which are individuated by
the neighborhood frame N = {−m, −m + 1, . . . , −m + d}, where m ∈ Z, d ∈ N,
and r = max{m, d − m} are the memory, the diameter, and the radius of the
CA, respectively. Formally, the local rule is a function f : Ad+1 → A.

All the automata of the lattice are updated synchronously. In other words,
the local rule f induces a global rule Fm : AZ → AZ describing the evolution of
the whole system from time t to t + 1:

∀x ∈ AZ, ∀i ∈ Z, Fm(x)i = f(xi−m, . . . , xi−m+d) .

The shift map σ is one among the simplest examples of CA and it is induced
by the rule f : A → A, defined as ∀a ∈ A, f(a) = a, with m = −1, d = 0.
Remark that σ can also be induced by the rule f : A2 → A defined as ∀a, b ∈
A, f(a, b) = b with m = 0, d = 1. We prefer to use the former representation
since it minimizes the neighborhood size.

For any CA on AZ, the structure
〈
AZ, Fm

〉
is a (discrete time) dynamical

system. From now on, for the sake of simplicity, we identify a CA with the
dynamical system induced by itself or even with its global rule Fm.

The local rule of a CA can be convenient represented by a look-up table. Any-
way, the look-up table does not uniquely define the CA. Indeed, for each value
of m we have a different CA. It is therefore natural to wonder what dynamical
properties are conserved by the CA obtained by changing the value of m but
keeping the same look-up table for the local rule. This paper tries to answer this
question.

Remark that the solution to the problem is absolutely not trivial. For in-
stance, a periodic Coven automaton is a CA defined by the following local rule
(A = {0, 1}, m = 0 and d ∈ N): f(a0, a1, . . . , ad) = a0 ⊕

∏d
k=1(ak ⊕ wk ⊕ 1),

where ⊕ is the usual xor operation and w = w1w2 . . . wd ∈ {0, 1}d is a periodic
word1. Despite of the fact that for aperiodic Coven automata almost everything
is known [2], very little is known about the periodic case even for the simplest
example i.e. when w = 11. Call A this last automaton and F0 its global rule. Tak-
ing the same look-up table as A but m = −1, we obtain the elementary CA rule
called ECA120. Most of the dynamical properties of ECA120 are well-known
(see [7], for instance). More formally, one can write that ECA120 = σ ◦ F0. For
this reason we say that ECA120 is a shifted version of F0.

In [13], Sablik studies the behavior of the shift operation over look-up tables
w.r.t. the equicontinuity property and gives precise bounds for conservation and
non-conservation. In this paper, we focus on the periodic behavior. We show
that the proof of an old-standing conjecture about denseness of periodic orbits
(DPO) can be reduced to the study of the class of topologically mixing CA i.e. a
very small class with very special dynamical behavior. Maybe this would simplify
the task of proving the conjecture. The result is obtained as a by-product of our

1 A word w ∈ {0, 1}d is periodic if there exists 1 ≤ p ≤ d − 1 such that wi = wi+p for
1 ≤ i ≤ d − p. A word is aperiodic if it is not periodic.

Shifting and Lifting of Cellular Automata 3

results about the conservation of other interesting properties like surjectivity,
left (or right) closingness etc.

Any CA with memory m ≤ 0 is well defined both on AZ and on AN. In the AN

we prefer to use the slightly different notation Φm in order to avoid confusion
with the AZ case. The mapping Φm : AN �→ AN acts on any configuration x ∈ AN

as follows
∀i ∈ N, Φm(x)i = f(xi−m, . . . , xi−m+d) .

Along the same line of thoughts as before, one can wonder which properties are
conserved when passing from AN to AZ using the same local rule (with memory
m ≤ 0). The opposite case, i.e., when passing from AZ to AN is trivial.

In [3], Blanchard and Maass show a deep combinatorial characterization of
expansive CA on AN. These results were successively extended by Boyle and
Fiebig [5]. Unfortunately, both the constructions are not of help for the AZ case.

In this paper we show that most of the interesting properties are conserved
when passing from AN to AZ. If the same holds for DPO is still an open question.

2 Topology and Dynamical Properties

In order to study the dynamical properties of CA, AZ is usually equipped with
the Thychonoff metric d defined as follows

∀x, y ∈ AZ, d(x, y) = 2−n, where n = min {i ≥ 0 : xi
= yi or x−i
= y−i} .

Then AZ is a compact, totally disconnected and perfect topological space. For
any pair i, j ∈ Z, with i ≤ j, we denote by x[i,j] the word xi · · · xj ∈ Aj−i+1,
i.e., the portion of the configuration x ∈ AZ inside the integer interval [i, j] =
{k ∈ Z : i ≤ k ≤ j}. A cylinder of block u ∈ Ak and position i ∈ Z is the set
Ci(u) = {x ∈ AZ : x[i,i+k−1] = u}. Cylinders are clopen sets w.r.t. the Thyconoff
metric.

Given a CA Fm, a configuration x ∈ AZ is a periodic point of Fm if there exists
an integer p > 0 such that F p

m(x) = x. The minimum p for which F p
m(x) = x

holds is called period of x. If the set of all periodic points of Fm is dense in
AZ, we say that the CA has the denseness of periodic orbits (DPO). A CA Fm

has the joint denseness of periodic orbits (JDPO) if it has a dense set of points
which are periodic both for Fm and σ.

The study of the chaotic behavior of CA (and more in general of discrete
dynamical systems) is interesting and it captured the attention of researchers
in the last twenty years. Although there is not a universally accepted definition
of chaos, the notion introduced by Devaney is the most popular one [9]. It is
characterized by three properties: sensitivity to the initial conditions, DPO and
transitivity.

Recall that a CA Fm is sensitive to the initial conditions (or simply sensi-
tive) if there exists a constant ε > 0 such that for any configuration x ∈ AZ

and any δ > 0 there is a configuration y ∈ AZ such that d(y, x) < δ and
d(Fn

m(y), Fn
m(x)) > ε for some n ∈ N. A CA Fm is (topologically) transitive if for

4 L. Acerbi, A. Dennunzio, and E. Formenti

any pair of non-empty open sets U, V ⊆ AZ there exists an integer n ∈ N such
that Fn

m(U) ∩ V
= ∅. All the transitive CA are sensitive [8]. A CA is (topologi-
cally) mixing if for any pair of non-empty open sets U, V ⊆ AZ there exists an
integer n ∈ N such that for any t ≥ n we have F t

m(U) ∩ V
= ∅. Trivially, any
mixing CA is also transitive.

Let Fm be a CA. A configuration x ∈ AZ is an equicontinuous point for Fm

if ∀ε > 0 there exists δ > 0 such that for all y ∈ AZ, d(y, x) < δ implies that
∀n ∈ N, d(Fn

m(y), Fn
m(x)) < ε. A CA is said to be equicontinuous if the set E

of all its equicontinuous points is the whole AZ, while it is said to be almost
equicontinuous if E is residual (i.e., E can be obtained by a infinite intersection
of dense open subsets). In [11], Kůrka proved that a CA is almost equicontinuous
iff it is non-sensitive iff it admits a blocking word2.

All the above definitions can be easily adapted to work on AN.

3 Shifting

Let
〈
AZ, Fm

〉
be a CA. For a fixed h ∈ Z, we consider the CA

〈
AZ, Fm+h

〉
.

Since Fm+h = σh ◦Fm, we say that the CA
〈
AZ, Fm+h

〉
is obtained by a shifting

operation which move the memory of the originally given CA from m to m + h.
In this section we study which properties are preserved by the shifting operation.

A CA
〈
AZ, Fm

〉
is surjective (resp., injective) if Fm is surjective (resp., injec-

tive). It is right (resp., left) closing iff Fm(x)
= Fm(y) for any pair x, y ∈ AZ

of distinct left (resp., right) asymptotic configurations, i.e., x(−∞,n] = y(−∞,n]

(resp., x[n,∞) = y[n,∞)) for some n ∈ Z, where z(−∞,n] (resp., z[n,∞)) denotes the
portion of a configuration z inside the infinite integer interval (−∞, n] (resp.,
[n, ∞)). A CA is said to be closing if it is either left or right closing. Recall that
a closing CA has JDPO [6] and that a CA is open iff it is both left and right
closing [6].

Proposition 1. Let
〈
AZ, Fm

〉
be a CA. For any h ∈ Z,

〈
AZ, Fm+h

〉
is surjective

(resp., injective, right-closing, left-closing, has JDPO) iff
〈
AZ, Fm

〉
is surjective

(resp., injective, right-closing, left-closing, has JDPO).

Proof. All the statements follow immediately from the definition of Fm+h. ��

The following theorem establishes the behavior of the shift operation w.r.t. sensi-
tivity, equicontinuity and almost equicontinuity. Its proof is essentially contained
in [13].

Theorem 1. For any CA
〈
AZ, Fm

〉
one and only one of the following state-

ments holds:

S0: the CA
〈
AZ, Fm+h

〉
is nilpotent3 (and then equicontinuous) for any h ∈ Z;

2 A word u ∈ Ak is s-blocking (s ≤ k) for a CA Fm if there exists an offset j ∈ [0, k−s]
such that for any x, y ∈ C0(u) and any n ∈ N, Fm(x)[j,j+s−1] = Fm(y)[j,j+s−1] .

3 A CA Fm is nilpotent if there is a symbol a ∈ A and an integer n > 0 such that for
any configuration x ∈ AZ we have F n

m(x) = (a)∞ (infinite concatenation of a with
itself).

Shifting and Lifting of Cellular Automata 5

S1: there exists an integer h̄ with h̄ + m ∈ [−d, d] such that the CA
〈
AZ, Fm+h

〉

is equicontinuous for h = h̄ and it is sensitive for any h
= h̄;
S2: there is a finite interval I ⊂ Z, with I + m ⊆ [−d, d], such that the CA〈

AZ, Fm+h

〉
is strictly almost equicontinuous but not equicontinuous iff h ∈ I

(and then it is sensitive for any other h ∈ Z \ I);
S3: the CA

〈
AZ, Fm+h

〉
is sensitive (ever-sensitivity) for any h ∈ Z.

In the case of surjective CA, Theorem 1 can be restated as follows.

Theorem 2. For any surjective CA
〈
AZ, Fm

〉
one and only one of the following

statements holds:

S′
1: there exists an integer h′, with h′ + m ∈ [−d, d], such that the CA Fm+h is

equicontinuous for h = h′ and it is mixing for h
= h′;
S′

2: there exists an integer h′, with h′ + m ∈ [−d, d], such that the CA Fm+h is
strictly almost equicontinuous but not equicontinuous for h = h′ and it is
mixing for h
= h′;

S′
3: there is at most a finite set I ⊂ Z, with I + m ⊆ [−d, d], such that if h ∈ I

then the CA Fm+h is sensitive but not mixing, while it is mixing if h ∈ Z\I.

Proof. By Theorem 1, it is enough to prove that if a surjective CA Fm is almost
equicontinuous then for any h
= 0 the CA Fm+h is mixing. We give the proof
for h > 0, the other case is similar. Let u ∈ Ak and v ∈ Aq be two arbitrary
blocks and let w ∈ As be a r-blocking word with offset j where r is the radius
of the CA. The word wvw is a l-blocking (l = s + q + r) with offset j and
the configuration y = (wv)∞ is periodic for Fm (see, for instance, the proof of
Theorem 5.24 in [12]). Let p > 0 be the period of y. Then for any configuration
x ∈ C0(wvw) and any n ∈ N we have that F p+n

m (x)[j,j+l−1] = Fn
m(x)[j,j+l−1], in

particular F p
m(x)[s,s+q−1] = x[s,s+q−1] = v. Let t0 > 0 be a multiple of p such

that ht0 − s ≥ k and ht0 − s + (p − 1)(h − r) ≥ k. For any integer t ≥ t0, let
us consider a configuration z ∈ C0(u) ∩ Cht−s+a(h−r)(v′) where a = t mod p
and v′ ∈ f−a(wvw) is an a-preimage block of wvw. In this way we are sure that
F t

m+h(z) ∈ C0(v) and thus the CA Fm+h is mixing. ��

We recall that a CA Fm is positively expansive if there exists a constant ε > 0
such that for any pair of distinct configurations x, y we have d(Fn

m(y), Fn
m(x)) ≥ ε

for some n ∈ N. The next proposition assures that (positively) expansive CA are
in class S′

3, in particular they are ever-sensitive.

Proposition 2. If
〈
AZ, Fm

〉
is a positively expansive CA, then for any h ∈ Z

the CA
〈
AZ, Fm+h

〉
is sensitive.

Proof. For h = 0 the thesis immediately follows by perfectness of AZ. We give
the proof for h > 0, the case h < 0 is similar. Let q = max {r, h, s}+1, where r is
the radius of Fm and s ∈ N is an integer such that 1

2s is less than the expansivity
constant of the given CA. We show that

〈
AZ, Fm+h

〉
is sensitive with sensitivity

constant ε = 1
2q . Chosen an arbitrary k ∈ N and a configuration x ∈ AZ, consider

a configuration y ∈ AZ such that y(−∞,k] = x(−∞,k] with yk+1
= xk+1. By the

6 L. Acerbi, A. Dennunzio, and E. Formenti

expansivity of Fm, the sequence {jn}n∈N = min {i ∈ Z : Fn
m(y)i
= Fn

m(x)i} is
well-defined and for any n ∈ N we have jn+1 − jn ≥ −r. We now prove the
existence of an integer t ∈ N such that F t

m(y)[−q+ht,q+ht]
= F t
m(x)[−q+ht,q+ht]

(equivalent to d(F t
m+h(y), F t

m+h(x)) ≥ ε). By contradiction, assume that no
integer satisfies this condition. Thus, for any t ∈ N, we have jt /∈ [−q+ht, q+ht].
If for all t ∈ N, jt > q + ht we obtain a contradiction since the original CA is
positively expansive. Otherwise, there is an integer t ∈ N, such that jt < −q+ht
and jt−1 > q+h(t−1). In this way, we have jt − jt−1 < −2q+h < −r, obtaining
again a contradiction. ��

The following is a long-standing conjecture in CA theory which dates back at
least to [4].

Conjecture 1. Any Surjective CA has DPO.

By Proposition 1, we have that the shift operation conserves surjectivity. There-
fore, Conjecture 1 leads naturally to the following.

Conjecture 2. For any CA
〈
AZ, Fm

〉
and any h ∈ Z,

〈
AZ, Fm+h

〉
has DPO iff〈

AZ, Fm

〉
has DPO.

Recall that surjective almost equicontinuous CA have JDPO [4] and that closing
CA have JDPO [6]. By Proposition 1, JDPO is preserved by the shifting opera-
tion, so all the CA in the classes S′

1 and S′
2 have JDPO. We conjecture that the

same holds for (non closing) CA in S′
3:

Conjecture 3. A CA has DPO if it has JDPO.

We want show the equivalence between Conjectures 2 and 3 but before we need
the following notion. A CA

〈
AZ, Fm

〉
is strictly right (resp., strictly left) if m < 0

(resp., d − m < 0).

Proposition 3. A surjective strictly right (or strictly left) CA is mixing.

Proof. We give the proof for a strictly right CA, the case of strictly left CA is
similar. Consider a strictly right CA with memory m and diameter d. For any
u, v ∈ A� and i, j ∈ Z, consider the two cylinders Ci(u) and Cj(v). Fix t ∈ N

such that i − (d − m)t + |u| < j. Let x ∈ Ci(u). The value of x in [i, i + |u|]
depends only on the value of F−t

m (x) in [i − mt, i − (d − m)t + |u| − 1]. Therefore
build y ∈ AZ such that ∀k ∈ Z, yk = vk−j+1 if j ≤ k ≤ j + |v| and yk = xk,
otherwise. Then F t

m(y) ∈ Ci(u) and y ∈ Cj(v). ��

Proposition 4 (Theorem 3.2 in [7]). Let
〈
AZ, Fm

〉
be a strictly right CA.

Any periodic configuration for the CA is also periodic for σ.

The following corollary is a trivial consequence of the previous proposition.

Corollary 1. Consider a strictly right CA. If it has DPO then it has JDPO
too.

Shifting and Lifting of Cellular Automata 7

Proposition 5. The following statements are equivalent:

1. for any h ∈ Z,
〈
AZ, Fm+h

〉
has DPO iff

〈
AZ, Fm

〉
has DPO (Conjecture 2).

2. if
〈
AZ, Fm

〉
has DPO, then it also has JDPO (Conjecture 3).

Proof. (1 ⇒ 2). Let
〈
AZ, Fm

〉
be a CA with DPO. There exists an integer h such

that the
〈
AZ, Fm+h

〉
is a strictly right CA. Then, by the hypothesis, it has DPO.

Corollary 1 and Proposition 1 assure that
〈
AZ, Fm

〉
has JDPO. (2 ⇒ 1). By the

hypothesis, a CA
〈
AZ, Fm

〉
has DPO iff it has JDPO. Proposition 1 concludes

the proof. ��

As a by-product of our investigations we have the following result.

Theorem 3. In the CA settings, the following statements are equivalent

1. surjectivity implies DPO;
2. surjectivity implies JDPO;
3. for strictly right CA, topological mixing implies DPO.

Proof. (1. ⇔ 3.) It is obvious that 1. implies 3. For the opposite implication
assume that 3 is true. Let

〈
AZ, Fm

〉
be a surjective CA. There exists an integer

h such that
〈
AZ, Fm+h

〉
is strictly right. By Propositions 1 and 3,

〈
AZ, Fm+h

〉

is a surjective and topologically mixing CA. Then, by the hypothesis, it has
DPO. Corollary 1 assures that it also has JDPO. Using Proposition 1 again we
conclude the proof. The proof for (1. ⇔ 2.) can be obtained in a similar way. ��

Theorem 3 tells that in order to prove Conjecture 1 one can focus on mixing
strictly right CA. Remark that all known examples of topologically mixing CA
have DPO. We want to present a result which furthermore support the common
feeling that Conjecture 1 is true. First, we need a technical lemma.

Lemma 1. Any configuration of a CA (on AN or AZ) which is σ-periodic of
period p has a CA image which is σ-periodic with period p′ that divides p.

Proof. Consider a CA Fm on AZ. Let x be a periodic configuration of σ with
period p. By the definition of CA, Fm(x) is still a periodic configuration of period
q for σ but, in general, q ≤ p. If q = p then we are done. Otherwise, let m be
the largest integer such that mq < p. By the Hedlund’s theorem we have

Fm ◦ σp(x) = σp ◦ Fm(x) . (1)

Compose both members of (1) with σ−mq. The left-hand side gives σ−mq ◦ Fm ◦
σp(x) = σ−mq ◦Fm(x) = Fm(σ−mq(x)) = Fm(x) since x (resp., F (x)) is periodic
of period p (resp., q) for σ. The right-hand side gives simply σp−mq(Fm(x)).
And hence (1) can be rewritten as F (x) = σp−mq(Fm(x)) which implies that
p − mq = q since q is the period of F (x) according to σ. We conclude that
p = (m + 1)q. ��

Proposition 6. Any surjective CA (both on AZ and on AN) has an infinite set
of points which are jointly periodic for the CA and σ.

8 L. Acerbi, A. Dennunzio, and E. Formenti

Proof. Consider a CA Fm on AZ. By Lemma 1, given a σ-periodic configuration x
of period p, Fm(x) is periodic for σ with period p′ which divides p. Let Πn be the
set of periodic points of σ of period n. Hence, if p is a prime number and x ∈ Πp

we have that Fm(x) belongs either to Πp or to Π1. By a result of Hedlund [10],
we know that for surjective CA, each configuration has a finite number of pre-
images. In particular, each Πp has a finite number of pre-images by Fm. Hence,
if p is a big enough prime number we have that Fm(Πp)∩Πp
= ∅. This concludes
the proof since for any prime number p′ > p we must have Fm(Πp) ⊆ Πp. ��

4 Lifting

For a fixed local rule f , consider the two one-sided CA
〈
AZ, Fm

〉
and

〈
AN, Φm

〉

on AZ and AN, respectively. They share the same local rule f and the same
memory m ≤ 0. In this section we study the properties that are conserved when
passing from AZ to AN and vice-versa.

Consider the projection P : AZ → AN defined as follows: ∀x ∈ AZ, ∀i ∈
N, P (x)i = xi. Then, P is a continuous, open, and surjective function. More-
over, Φm ◦P = P ◦Fm. Therefore, the CA

〈
AN, Φm

〉
is a factor of

〈
AZ, Fm

〉
. For

these reasons, we also say that the CA on AZ is obtained by a lifting (up) opera-
tion from the CA on AN (having the same rule and memory). As an immediate
consequence of the fact that Φm ◦ P = P ◦ Fm, the CA on AN inherits from the
CA on AZ several properties such as surjectivity, left closingness, openess, DPO,
transitivity, mixing.

The following proposition shows that the injectivity property is lifted down
only under special conditions. Proposition 8 proves that the opposite case (lift
up) is verified without further hypothesis.

Proposition 7. Let
〈
AZ, Fm

〉
be an injective one-sided CA. The CA

〈
AZ, Φm

〉

is injective if and only if m = 0 and the left Welch index L(f) = 14.

Proof. If Φm is injective (and then also surjective) we necessarily have m = 0.
By contradiction, if L(f) ≥ 2 there exist blocks u, w, w′, v, with w
= w′, such
that f(wu) = f(w′u) = v. So Φ0(x) = Φ0(y) for two suitable right-asymptotic
configurations x, y obtained by extending to the right the words wu and w′u,
respectively. Conversely let us assume that L(f) = 1 and m = 0. If, by contra-
diction, Φ0 is not injective then there exist two distinct configurations x, y ∈ AN

having the same image z ∈ AN. By surjectivity, we have two cases to trait. In
the first one, x and y are right asymptotic. So there is a block with two distinct
right extensions which collapse by f in the same word, contrary to the fact that
L(f) = 1. In the second one, for any i large enough we have x[i,i+d−1]
= y[i,i+d−1].
By a result in [10], L(f) = 1 implies that f is leftmost permutive5. Thus we
4 The left Welch index L(f) is an un upper bound for the number of the left possible

extensions of a block u which collapse by f in the same word. For a formal definition,
see for instance [10]).

5 A rule f : Ad+1 → A is leftmost permutive iff for any u ∈ Ad, b ∈ A there exists
a ∈ A such that f(au) = b.

Shifting and Lifting of Cellular Automata 9

are able to build two distinct configurations x′, y′ ∈ AZ, with x = P (x′) and
y = P (y′), such that F0(x′) = F0(y′), contrary to the hypothesis. ��

Proposition 8. If
〈
AN, Φm

〉
is an injective (resp., surjective) CA, then the lifted

CA
〈
AZ, Fm

〉
is injective (resp., surjective).

Proof. Assume that Fm is not injective. There exist two configurations x, y ∈ AZ,
with xi
= yi for some i ≥ 0, such that Fm(x) = Fm(y). Therefore x′ = P (x) and
y′ = P (y) are two different configurations in AN such that Φm(x′) = Φm(y′).

By a theorem of Hedlund [10], we have that a CA is surjective (on AN or on
AZ) iff for any u ∈ A+, |f−1(u)| = Ad. ��

The following result can be obtained immediately from the definitions.

Proposition 9. Left-closingness is conserved by the lifting up operation.

The following results is obtained immediately from the fact that a word is block-
ing for a CA on AN iff it is blocking for its lifted CA.

Proposition 10. A CA
〈
AN, Φm

〉
is equicontinous (resp., almost equicontin-

uous) (resp., sensitive) iff the CA
〈
AN, Fm

〉
is equicontinous (resp., almost

equicontinous) (resp., sensitive).

Positive expansivity is not preserved by the lifting operation since, by Proposi-
tion 11, there are no positively expansive one-sided CA on AZ.

Proposition 11. No one-sided CA
〈
AZ, Fm

〉
is positively expansive.

Proof. For the sake of argument let us assume that the CA
〈
AZ, Fm

〉
be a

positively expansive one-sided CA with expansivity constant ε > 0. Let k be an
integer such that 1

2k < ε and let x, y ∈ AZ be two different configurations with
x[−k,∞) = y[−k,∞). We have that for any t ∈ N, d(F t

m(x), F t
m(y)) < ε. ��

Proposition 12. If
〈
AN, Φm

〉
is mixing (resp., transitive), then its lifted CA〈

AZ, Fm

〉
is mixing (resp., transitive).

Proof. We prove the thesis for a topologically mixing CA. By Proposition 3, it is
sufficient to consider the case m = 0. Let u ∈ A2k+1, v ∈ A2h+1 be two arbitrary
blocks. There exist a sequence of one-sided configurations x(n) ∈ Cl−k(u) and a
time t0 ∈ N such that for any t ≥ t0, Φt

0(x
(t−t0)) ∈ Cl−h(v) where l = max{h, k}.

Let z(n) ∈ AZ be a sequence of two-sided configurations such that z
(n)
[−k,∞) = x(n).

We have that for any t ≥ t0, F t
0(z(t−t0)) ∈ C−h(v). ��

The lifting (up) of DPO remains an open problem even if on the basis of the
results of Section 3 we conjecture that it holds.

5 Conclusions and Future Works

In this paper we studied the behavior of two operations on the rule space of CA,
namely, the shifting and lifting operations. These investigations helped to shape

10 L. Acerbi, A. Dennunzio, and E. Formenti

out a new scenario for the old- standing conjecture about the equivalence between
surjectivity and DPO for CA: the study can be restricted to topologically mixing
strictly right CA. This enhances a former idea of Blanchard [1]. The work can be
continued along several directions: transitivity and stronger variants, languages
generated by the involved CA, and attractors. Moreover a generalization of the
obtained results and of the forthcoming studies can be considered in terms of
directional dynamics introduced in [13]. The authors are currently investigating
these subjects.

References

[1] Blanchard, F.: Dense periodic points in cellular automata, http://www.math.
iupui.edu/∼mmisiure/open/

[2] Blanchard, F., Maass, A.: Dynamical behavior of Coven’s aperiodic cellular au-
tomata. Theoretical Computer Science 163, 291–302 (1996)

[3] Blanchard, F., Maass, A.: Dynamical properties of expansive one-sided cellular
automata, Israel Journal of Mathematics 99 pp. 149–174 (1997)

[4] Blanchard, F., Tisseur, P.: Some properties of cellular automata with equiconti-
nuity points. Ann. Inst. Henri Poincaré, Probabilité et Statistiques 36, 569–582
(2000)

[5] Boyle, M., Fiebig, D., Fiebig, U.: A dimension group for local homeomorphisms
and endomorphisms of onesided shifts of finite type. Journal f ur die Reine und
Angewandte Mathematik 487, 27–59 (1997)

[6] Boyle, M., Kitchens, B.: Periodic points for cellular automata. Indag. Math. 10,
483–493 (1999)

[7] Cattaneo, G., Finelli, M., Margara, L.: Investigating topological chaos by ele-
mentary cellular automata dynamics. Theoretical Computer Science 244, 219–241
(2000)

[8] Codenotti, B., Margara, L.: Transitive cellular automata are sensitive. American
Mathematical Monthly 103, 58–62 (1996)

[9] Devaney, R.L.: An introduction to chaotic dynamical systems, 2nd edn. Addison-
Wesley, London (1989)

[10] Hedlund, G.A.: Endomorphism and automorphism of the shift dynamical system.
Mathematical System Theory 3, 320–375 (1969)

[11] Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergod.
Th. & Dynam. Sys. 17, 417–433 (1997)

[12] Kůrka, P.: Topological symbolic dynamics, Volume 11 of Cours Spécialisés, Société
Mathématique de France (2004)

[13] Sablik, M.: Directional dynamics for cellular automata. a sensitivity to the initial
conditions approach. Preprint (2006)

http://www.math.iupui.edu/~mmisiure/open/
http://www.math.iupui.edu/~mmisiure/open/

Learning as Data Compression�

Pieter Adriaans

Department of Computer Science
University of Amsterdam,

Kruislaan 419,
1098VA Amsterdam,

The Netherlands
pietera@science.uva.nl

Abstract. In this paper I describe the general principles of learning
as data compression. I introduce two-part code optimization and ana-
lyze the theoretical background in terms of Kolmogorov complexity. The
good news is that the optimal compression theoretically represents the
optimal interpretation of the data, the bad news is that such an optimal
compression cannot be computed and that an increase in compression
not necessarily implies a better theory. I discuss the application of these
insights to DFA induction.

Keywords: learning as compression, MDL, two-part code optimization,
randomness deficiency, DFA induction.

1 Learning as Compression

Since the beginning of science in antiquity, the idea that the complexity of the
world can be explained in terms of some simple first principles has fascinated
researchers. In modern methodology of science this notion is studied under vari-
ous guises: Occams razor [7], the minimal description length (MDL) principle [8],
two-part-code optimization [11], learning as data compression [21] etc. Although
there has been some debate about this principle with fierce opponents [7] and
strong defenders [21], until recently the view of learning as data compression
did not seem to have much practical value. Lots of learning algorithms in fact
perform some kind of data compression, but this was not a guiding principle
of their design [9; 20]. Two developments in the last five years have changed
this perspective quite fundamentally : 1) a better understanding of the mathe-
matics behind compression, specifically Kolmogorovs structure function [11; 10]
and 2) the application of existing implementations of compression algorithms to
approximate the ideal (and uncomputable) Kolmogorov complexity as pioneered
by Cilibrasi and Vitanyi [5; 6]. At this moment we have not only a much better

� This project is supported by a BSIK grant from the Dutch Ministry of Education,
Culture and Science (OC&W) and is part of the ICT innovation program of the
Ministry of Economic Affairs (EZ).

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 11–24, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

12 P. Adriaans

understanding of the theoretical issues behind data compression, but there is
also a wealth of interesting and successful applications. Due to limited space in
this paper I will restrict myself to a description of the general principles and a
study of the application of MDL to DFA induction [1; 4]. In the tutorial itself I
will also describe a number of other applications (e.g. Normalized Compression
Distance) [5] and I will touch on some philosophical issues: the relation between
data compression, thermodynamics and human cognition [2].

Take a cup of coffee and pour some cream in it (See Figure 1). Take a pic-
ture of it with your digital camera. In the beginning the cream will be just an
uninteresting blob. Stir slowly and make pictures of various stages that have
nice patterns. Continue until the cream has dissolved and your cup has an even
brown color. Drink the coffee, then look at the file size of the different pictures.
If your camera uses an adequate compression algorithm you will find that the
file size has increased up to a certain point and then decreases. The compres-
sion algorithm of your camera reflects the complexity of the data set until the
moment that the complexity has reached a global equilibrium and is beyond its
resolution. In this experiment we have a system that evolves in time, the cup of
coffee, and a data set of observations, the pictures. The crux of this experiment
is that the size of the individual pictures somehow reflects the ‘interestingness’
of the system. In the beginning there is a lot of order in the system. This is not
very interesting. In the end there is an equilibrium that also has little cognitive
appeal.

In general science, in the study of human cognition and even in art we seem to
have an interest in systems that have a complexity in the ‘sweet spot’ between
order and chaos, between boredom and noise. The ‘interestingness’ of these data
sets is somehow related to compressibility. It will prove useful to describe these
compressions in terms of a so-called two-part-code: a description of a general
class of sets, the model code and an element or a set of elements of this set, the
data-to-model-code [11; 10].

Let me give some examples:

– Symmetry. This is one of the most fundamental ordering principles in na-
ture. Most living creatures have symmetry: plants, trees, predator, prey. If
a data set has symmetry it means that we only have to describe half of
it (the data-to-model-code) plus some information about the nature of the
symmetry of constant length (the model-code). In the limit such a data set
can be compressed to at least half its size. In terms of generating languages
symmetry is context free: a symmetric data set can be produced by a sim-
ple memoryless central process. Discovering symmetry in a data set can be
seen as a very simple learning problem. It can easily be discovered in linear
time.

– Repetition. In order to describe a repeating pattern I only have to give
a description of the generating pattern (the data-to-model-code) and some
information about the way the pattern repeats itself (the model-code). Rep-
etition is more complex than symmetry in the sense that it presupposes a
generating process with a memory: in terms of languages repetition is context

Learning as Data Compression 13

Fig. 1. Facticity scores for mixing black and white paint. The facticity of a data x
is the product of the normalized entropy K(x)/U(x) and the normalized randomness
deficiency (U(x) − K(x))/U(x). Configuration 4 has the best balance between order
and chaos and thus would be the most ‘interesting’ one. The scores have been cal-
culated using JPEG, followed by RAR compression. Maximal entropy U(x) has been
approximated by adding 400 % noise to the images. The standard entropy K(x) is
approximated by the file size after compression.

sensitive. Finding repeating patterns in a data set is also a basic learning
problem that can be solved in time n logn [3].

– Grammar. A corpus of a language could be described in terms of the gram-
mar G (the model-code) of the language and a set of indexes corresponding
to an enumeration of the sentences in the corpus (the data-to-model-code). If
the size of the corpus is large enough in relation to the size of the grammar
G then this description in terms of two will be shorter than an extensional
description of the sentences in the corpus. Finding this description is a well
studied learning problem. If the language is regular then the task of approxi-
mating the smallest DFA consistent with a set of sentences is NP-hard [14; 4].

– Program.V We could ask ourselves, given a certain data set: what would
be the shortest program generating this data set in a certain programming

14 P. Adriaans

language, or, even more general, we could try to find the shortest combi-
nation of a Turing machinenoindent Ti (the model-code) and a program P
(the data-to-model-code). In a sense this would be, from a computational
point of view, the ultimate compression possible and the Turing machine Ti

would be the ultimate ‘explanation’ of the data set. Needless to say that
because of the Halting problem there is no algorithm that will construct this
ultimate compression for us. The problem is undecidable. Still, conditional
to the programming language we choose, the notion of the shortest pro-
gram generating a certain data set is well defined. Kolmogorov complexity
studies these optimal compressions from the perspective of universal Turing
machines [10].

Here I have described four classes of learning problems (varying from very
easy, via NP-hard, to undecidable) as compression problems where the task
is to find a two-part code compression for a data set. Apparently there is a
deep connection between data compression and learning. In this tutorial I will
also describe the theory behind these phenomena and explain how they can be
used to develop algorithms to analyze data sets and understand the way they
work.

2 MDL as Two-Part Code Optimization

It is important to note that two part code optimization is a specific application of
MDL. The majority of work on MDL is closer in spirit to the statistical than to
the Kolmogorov complexity world. Rather than two-part codes, one uses general
universal codes for individual sequences; two-part codes are only a special case.
We give the traditional formulation of MDL [9; 8]:

Definition 1. The Minimum Description Length principle: The best the-
ory to explain a set of data is the one which minimizes the sum of

– the length, in bits, of the description of the theory and
– the length, in bits, of the data when encoded with the help of the theory

Let M ∈ M be a model in a class of models M, and let D be a data set. The
prior probability of a hypothesis or model M is P (M). Probability of the data
D is P (D). Posterior probability of the model given the data is:

P (M |D) =
P (M)P (D|M)

P (D)

The following derivation [9] illustrates the well known equivalence between MDL
and the selection of the Maximum A posteriori hypothesis in the context of Shan-
non’s information theory. Selecting the Maximum A Posteriori hypothesis
(MAP):

Learning as Data Compression 15

MMAP ≡ argmaxM∈M P (M |D)

= argmaxM∈M (P (M)P (D|M))/P (D)

(since D is constant)

≡ argmaxM∈M (P (M)P (D|M))

≡ argmaxM∈M log P (M) + log P (D|M)

≡ argminM∈M − log P (M) − log P (D|M)

where according to Shannon − log P (M) is the length of the optimal model-code
in bits and − logP (D|M) is the length of the optimal data-to-mode-code in bits.
This implies that the model that is chosen with Bayes’ rule is equal to the model
that MDL would select:

MMAP ≡ MMDL

The formula argminM∈M− logP (M)− logP (D|M) indicates that a model that
generates an optimal data compression (i.e. the shortest code) is also the best
model. This is true even if M does not contain the original intended model as
was proved by [11]. It also suggests that compression algorithms can be used
to approximate an optimal solution in terms of successive steps of incremental
compression of the data set D. This is not true as was shown by [1]. Yet this
illicit use of the principle of MDL is common practice.

In order to understand these results better we must answer two questions 1)
What do we mean by the length of optimal or shortest code and 2) what is
an independent measure of the quality of a model M given a data set D? The
respective answers to these questions are prefix-free Kolomogorov complexity and
randomness deficiency.

2.1 Kolmogorov Complexity

Let x, y, z ∈ N , where N denotes the natural numbers and we identify N and
{0, 1}∗ according to the correspondence

(0, ε), (1, 0), (2, 1), (3, 00), (4, 01), . . .

Here ε denotes the empty word. The length |x| of x is the number of bits in the
binary string x, not to be confused with the cardinality |S| of a finite set S. For
example, |010| = 3 and |ε| = 0, while |{0, 1}n| = 2n and |∅| = 0. The emphasis is
on binary sequences only for convenience; observations in any alphabet can be
encoded in a ‘theory neutral’ way. Below we will use the natural numbers and
the binary strings interchangeably. In the rest of the paper we will interpret the
set of models M in the following way:

Definition 2. Given the correspondence between natural numbers and binary
strings, M consists of an enumeration of all possible self-delimiting programs
for a preselected arbitrary universal Turing machine U . Let x be an arbitrary bit

16 P. Adriaans

string. The shortest program that produces x on U is x∗ = argminM∈M(U(M) =
x) and the Kolmogorov complexity of x is K(x) = |x∗|. The conditional Kol-
mogorov complexity of a string x given a string y is K(x|y), this can be inter-
preted as the length of a program for x given input y. A string is defined to be
random if K(x) ≥ |x|.

This makes M one of the most general model classes with a number of very
desirable properties: it is universal since all possible programs are enumerated,
because the programs are self-delimiting we can concatenate programs at will,
in order to create complex objects out of simple ones we can define an a-priori
complexity and probability for binary strings. There are also some less desirable
properties: K(x) cannot be computed (but it can be approximated) and K(x)
is asymptotic, i.e. since it is defined relative to an arbitrary Turing machine U
it makes less sense for objects of a size that is close to the size of the definition
of U . Details can be checked in [10]. We have:

argminM∈M − log P (M) − log P (D|M) =

argminM∈MK(M) + K(D|M) = MMDL (1)

Under this interpretation of M, the length of the optimal code for an object is
equivalent to its Kolmogorov complexity.

In this paper I will often use the notions of typicality and incompressibility
of elements of a set, e.g. in those cases where I state that the vast majority of
elements of a set have a certain quality. This might at first sight sound a bit
inaccurate. To show that this notion actually has an exact definition I give the
following theorem due to Li and Vitányi [10] pg. 109):

Theorem 1. Let c be a positive integer. For each fixed y, every finite set A of
cardinality m has at least m(1 − 2−c) + 1 elements x with C(x|y) ≥ log m − c.

Proof: The number of programs of length less than log m − c is

log m−c−1∑

i=0

2i = 2logm−c − 1

Hence, there are at least m − m2−c + 1 elements in A that have no program of
length less than log m − c.

This shows that in the limit the number of elements of a set that have low
Kolmogorov complexity is a vanishing fraction. In the limit a typical element of
a set is a random element. In general the vast majority of elements of a set is
not compressible. One of the problems with Kolmogorov complexity is that it
specifies the length of a program but tells us nothing about the time complexity
of the computation involved. Therefore Kolmogorov complexity can not be used
directly to prove lower bounds for the time complexity of problems.

Learning as Data Compression 17

2.2 Randomness Deficiency

It is important to note that objects that are non-random are very rare. To make
this more specific: in the limit the density of compressible strings x in the set
{0, 1}≤k for which we have K(x) < |x| is zero [10]. The overwhelming majority
of strings is random. In different words: an element is typical for a data set if
and only if it is random in this data set. In yet different words: if it has maximal
entropy in the data set. This insight allows us to formulate a theory independent
measure for the quality of models: randomness deficiency.

We start by giving some estimates for upper-bounds of conditional complexity.
Let x ∈ M be a string in a finite model M then

K(x|M) ≤ log |M | + O(1) (2)

i.e. if we know the set M then we only have to specify an index of size log |M |
to identify x in M . Consequently:

K(x) ≤ K(M) + log |M | + O(1) (3)

The factor O(1) is needed for additional information to reconstruct x from M and
the index. Its importance is thus limited for larger data sets. These definitions
motivate the famous Kolmogorov structure function:

hx(α) = min
S

{log |S| : x ∈ S, K(S) ≤ α} (4)

Here α limits the complexity of the model class S that we construct in order to
‘explain’ an object x that is identified by an index in S. Let D ⊆ M be a subset
of a finite model M . We specify d = |D| and m = |M |. Now we have:

K(D|M, d) ≤ log
(

m

d

)
+ O(1) (5)

Here the term
(
m
d

)
specifies the size of the class of possible selections of d elements

out of a set of m elements. The term log
(
m
d

)
gives the length of an index for this

set. If we know M and d then this index allows us to reconstruct D.
A crucial insight is that the inequalities 2 and 5 become ‘close’ to equalities

when respectively x and D are typical for M , i.e. when they are random in M .
This typicality can be interpreted as a measure for the goodness of fit of the
model M . A model M for a data set D is optimal if D is random in M , i.e. the
randomness deficiency of D in M is minimal. The following definitions formulate
this intuition. The randomness deficiency of D in M is defined by:

δ(D|M, d) = log
(

m

d

)
− K(D|M, d), (6)

for D ⊆ M , and ∞ otherwise. If the randomness deficiency is close to 0, then
there are no simple special properties that single D out from the majority of
data samples to be drawn from M .

18 P. Adriaans

The minimal randomness deficiency function is

βx(α) = βD(α) = min
M

{δ(D|M) : M ⊇ D, K(M) ≤ α}, (7)

If the randomness deficiency is minimal then the data set is typical for the
theory and with high probability future data sets will share the same character-
istics, i.e. minimal randomness deficiency is also a good measure for the future
performance of models. For a formal proof of this intuition, see [11].

We now turn our attention to incremental compression. Equation 1 gives
the length of the optimal two-part-code. The length of the two-part-code of an
intermediate model Mi is given by:

Λ(Mi, d) = log
(

mi

d

)
+ K(Mi) ≥ K(D) − O(1) (8)

This equation suggests that the optimal solution for a learning problem can be
approximated using an incremental compression approach. This is indeed what
a lot of learning algorithms seem to be doing: find a lossy compression of the
data set finding regularities. This holds for such diverse approaches as near-
est neighbor search, decision tree induction, induction of association rules and
neural networks. There is a caveat however; [1] have shown that the randomness
deficiency not necessarily decreases with the length of the MDL code, i.e. shorter
code does not always give smaller randomness deficiency, e.g. a better theory.
This leads to the following observations [1]:

– The optimal compression of a data set in terms of model and a data-to-model
code always gives the best model approximation “irrespective of whether the
‘true’ model is in the model class considered or not” [11]1.

– This optimal compression cannot be computed.
– Shorter code does not necessarily mean a better model.

These observations show that the naive use of the MDL principle is quite risky.

3 A Case Study: MDL and DFA Induction

In the domain of machine learning pure applications of MDL are rare, mainly
because of the difficulties one encounters trying to define an adequate model
code and data-to-model code. The field of grammar induction studies a whole
class of algorithms that aims at constructing a grammar by means of incremen-
tal compression of the data set represented as a digraph. This digraph can be
seen as the maximal theory equivalent with the data set. Every word in the data
1 This is true only in this specific computational framework of reference. In a proba-

bilistic context, both for Bayesian and MDL inference, the assumption that the true
model is in the model class considered can sometimes be crucial - this also explains
why in Vapnik-Chervonenkis type approaches, complexity is penalized much more
heavily than in MDL [12]).

Learning as Data Compression 19

set is represented as a path in the digraph with the symbols either on the edges
or on the nodes. The learning process takes the form of a guided incremental
compression of the data set by means of merging or clustering of the nodes in the
graph. None of these algorithms explicitly makes an explicit estimate of the MDL
code. Instead they use heuristics to guide the model reduction. After a certain
time a proposal for a grammar can be constructed from the current state of the
compressed graph. Examples of such algorithms are SP [23; 22], EMILE [15; 16],
ABL [18], ADIOS [19] and a number of DFA induction algorithms, specifically
evidence driven state merging (EDSM), [17; 24]. In this paragraph we present
a sound theoretical basis to analyze the performance and idiosyncrasies of DFA
induction in an MDL context [4]. We will follow the presentation in [20]. The
general methodology for applying two-part-code optimization to a certain learn-
ing problem is:

– Design an approximation of the optimal model code. Such a model code
should reflect structural changes in the model complexity in an adequate
way and should at the same time be computationally feasible. In this case
we will use a simple count on the nodes and edges.

– Design an approximation of the optimal data-model-code with the same
desiderata, for details see below.

– Select a compression algorithm that is computationally feasible and heuris-
tically adequate. We will use standard evidence driven state merging with
MDL as optimization criterion.

– Define a start state for the learning process. This will be the so-called Max-
imal Canonical Automaton, the graph that exactly generates the data set
from one start state.

– Define an adequate stop condition for the compression process. In this case
we will simply limit the computation time.

Fig. 2. Compressing a DFA (model) by means of state merging, given some set of
positive examples S+

20 P. Adriaans

Fig. 3. Two DFA generating S+. L1 is the shortest model, but L2 generates the shortest
MDL code.

We start with some relevant observations. We will restrict ourselves to lan-
guages in {0.1}∗. The class of DFA is equivalent to the class of regular languages.
We call the set of positive examples D+ and the set of negative examples D−.
The complement of a regular language is a regular language. Consequently the
task of finding an optimal model given D+ is symmetric to the task of finding
an optimal model given D−. The task of finding the minimum DFA consistent
with a set of positive and negative examples is decidable. We can enumerate all
DFA’s according to their size and test them on the data set. Yet this minimum
DFA cannot be approximated within polynomial time [14].

The task of finding the smallest DFA consistent with a set of positive examples
is trivial. This is the universal DFA. Yet the universal DFA will in most cases
have a poor generalization error. MDL is a possible candidate for a solution here.
Suppose that we have a finite positive data set representing an infinite regular
language. The task is then to find a DFA with minimum expected generalization
error over the set of infinite regular languages consistent with D+. MDL in
theory identifies such a DFA.

Definition 3. A partition π of a set X is a set of nonempty subsets of X such
that every element x in X is in exactly one of these subsets. B(s, π) ⊆ X indi-
cates the subset of the partition π of which x is an element.

Definition 4. Let A = (Q, Σ, δ, q0, F) be a DFA. The quotient automaton A/π
= (Q′, Σ, δ′, B(q0, π), F ′) derived from A on the basis of a partition π of Q is
defined as follows:

Learning as Data Compression 21

– Q′ = Q/π = {B(q, π)|q ∈ Q},
– F ′ = {B ∈ Q′|B ∩ F �= ∅},
– δ′ : (Q′ × Σ) → 2Q′

: ∀B, B′ ∈ Q′, ∀a ∈ Σ, B′ ∈ δ′(B, a) iff ∃q, q′ ∈ Q, q ∈
B, q′ ∈ B′ and q′ ∈ δ(q, a).

We say that the states in Q that belong to the same block B are merged.

We give without proof:

Lemma 1. If an automaton A/π is derived from an automaton A by means of
a partition π then L(A) ⊆ L(A/π).

The relevance of these definitions for grammar induction lies in the fact that
we can increase or decrease the generality of the automaton and the associated
language inclusion hierarchies by means of splitting and merging states. We now
develop an adequate data to model code based on the idea that a positive data
sample has an entropy in each node of the DFA.

Definition 5. Let A be a DFA. An index set for A is a set that associates a
unique natural number with each string that is accepted by A. The index set
relative to certain data set D ⊆ L(A) is ID = {i|i ∈ N, L(A)(i) ∈ D}. The
initial segment associated with an index set D and L(A) is the set I≤D = {i|i ∈
N, ∃j ∈ ID : j ≥ i}, i.e. the set of all natural numbers that are smaller than or
equal to an index in ID. The maximal entropy of ID in I≤D is log

(|I≤D |
|ID|

)
, where

|I≤D| is a measure for the total number of sentences in the language up to the
sentence in D with the highest index and |ID| is the size of D.

The notion of an initial segment is introduced to make the argument work for
infinite languages. We have K(D|A) ≤ K(ID) + O(1) ≤ log

(|I≤D |
|ID |

)
+ O(1).

Suppose that f is an accepting state of a DFA A, with index set I and that
D ⊆ L(A).

Definition 6. The maximal state entropy of f given D is I≤D,f = log
(|I≤D,f |

|ID,f |
)
,

where I≤D,f and ID,f identify those indexes that are associated with strings that
are accepted in f .

These theoretical definitions can be used to define a nearly optimal data-to-
model code.

Suppose A is a DFA suggested as an explanation for a data set D. A has
i accepting states and j non-accepting states. Since we use both positive and
negative examples A must be functionally complete (i.e. have an outgoing arrow
for each element of the lexicon from each state). Suppose l is the maximal length
of a string in the data set D. D+ is the set of positive examples, D− the set
of negative examples, d+ is the number of positive examples, d− the number
of negative examples. There are 2l+1 − 1 binary strings with length ≤ l. Call
this set N , then n+ is the number of strings accepted by A and n− is the number

22 P. Adriaans

of strings not accepted by A. A partitions N in two sets: N+ and N−. N+ is
partitioned in i subsets by the i accepting states of A and N− is partitioned in j
subsets by the j non-accepting states of A. The correct data-to-model code has
size:

log(
∏

i

(
n+

i

d+
i

)
×

∏

j

(
n−

j

d−j

)
) =

∑

i

(log
(

n+
i

d+
i

)
) +

∑

j

(log
(

n−
j

d−j

)
) (9)

One can read this as follows. The formula specifies an index for the data set
D given the data set N . There are i pieces of code for the positive states, and
j pieces of code for the negative states. If there are states that do not generate
elements for D then their contribution to the length of the code is 0. When
applying this formula to DFA induction one must estimate the values using
the Stirling formula or an integral over log n!2. Remember that from an MDL
perspective we are only interested in the length of the index, not its specific
value. The beautiful thing is that this index can always be used: for positive
examples, for complete examples and even for only negative examples.

We have tried this MDL approach on the problem set of the Abbadingo DFA
inference competition [17]. We were able to solve problems 1, 2, A, B, C, D,
and R. In comparison, standard EDSM can solve all these problems, and also
problems 3, 4, 6, and S. So, indeed, it seems that MDL is not a very reliable
guide for the compression of a DFA. At least, EDSM is better.

4 Conclusion

I have described the general principles behind two-part code optimization. I
have studied MDL in terms of two-part code optimization and randomness de-
ficiency for DFA induction. In this framework we noted that 1) Shorter code
does not necessarily lead to better theories, e.g. the randomness deficiency does
not decrease monotonically with the MDL code, 2) contrary to what is sug-
gested by the results of [13] there is no fundamental difference between positive
and negative data from an MDL perspective, 3) MDL is extremely sensitive to
the correct calculation of code length. Using these ideas we have implemented
a MDL variant of the EDSM algorithm [17]. The results show that although
MDL works well as a global optimization criterion, it falls short of the perfor-
mance of algorithms that evaluate local features of the problem space. MDL
can be described as a global strategy for featureless learning. In the tutorial
I will describe recent developments like normalized compression distance
(NCD) and also present some philosophical reflection on the data compression
and thermodynamics.

2 The formula log
(

n
k

)
can be approximated by: log

(
n
k

)
≈

∫ n

n−k
logx dx −

∫ k

1 logx dx,
which is easy to compute. Already for k = 65 the error is less than 1% and rapidly
decreasing.

Learning as Data Compression 23

Bibliography

[1] Adriaans, P., Vitányi, P.: The Power and Perils of MDL, IEEE Trans. Inform. Th.
(submitted)

[2] Adriaans, P.W.: The philosophy of learning, Handbook of the philosophy of infor-
mation. In: Adriaans, P.W., van Benthem, J. (eds.) Handbook of the philosophy
of science, Series edited by Gabbay, D. M., Thagard, P., Woods, J. (to appear)

[3] Adriaans, P.W.: Learning Deterministic DEC Grammars Is Learning Rational
Numbers. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E.
(eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 320–326. Springer, Heidelberg
(2006)

[4] Adriaans, P.W.: Using MDL for Grammar Induction, in Grammatical Inference:
Algorithms and Applications. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino,
T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 293–306. Springer,
Heidelberg (2006)

[5] Cilibrasi, R., Vitányi, P.: Clustering by compression, IEEE Trans. Infomat. Th.,
Submitted. See http://arxiv.org/abs/cs.CV/0312044

[6] Cilibrasi, R., Vitányi, P.M.B.: Automatic Meaning Discovery Using Google (2004),
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0412098

[7] Domingos, P.: The Role of Occam’s Razor in Knowledge Discovery. Data. Mining
and Knowledge Discovery 3(4), 409–425 (1999)

[8] Barron, A., Rissanen, J., Yu, B.: The minimum description length principle in
coding and modeling. IEEE Trans. Information Theory 44(6), 2743–2760 (1998)

[9] Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
[10] Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Ap-

plications, 2nd edn. Springer, New York (1997)
[11] Vereshchagin, N.K., Vitányi, P.M.B.: Kolmogorov’s structure functions and model

selection. IEEE Trans. Information Theory 50(12), 3265–3290 (2004)
[12] Grünwald, P.D., Langford, J.: Suboptimal behavior of Bayes and MDL in classi-

fication under misspecification. Machine Learning (2007)
[13] Gold, E.: Mark, Language Identification in the Limit. Information and Con-

trol 10(5), 447–474 (1967)
[14] Pitt, L., Warmuth, M.K.: The Minimum Consistent DFA Problem Cannot be

Approximated within any Polynomial. Journal of the ACM 40(1), 95–142 (1993)
[15] Adriaans, P., Vervoort, M.: The EMILE 4.1 grammar induction toolbox. In: Adri-

aans, P., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484,
pp. 293–295. Springer, Heidelberg (2002)

[16] Vervoort, M.: Games, walks and Grammars, Thesis University of Amsterdam
(2000)

[17] Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo One DFA
learning competition and a new evidence-driven state merging algorithm. In: Adri-
aans, P., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484,
pp. 1–12. Springer, Heidelberg (2002)

[18] van Zaanen, M., Adriaans, P.: Alignment-Based Learning versus EMILE: A Com-
parison. In: Proceedings of the Belgian-Dutch Conference on Artificial Intelligence
(BNAIC), pp. 315–322. Amsterdam, the Netherlands (2001)

[19] Solan, Z., Horn, D., Ruppin, E., Edelman, S.: Unsupervised learning of natural
languages. PNAS 102(33), 11629–11634 (2005)

[20] Curnéjols, A., Miclet, L.: Apprentissage artificiel, concepts et algorithmes, Eyrolles
(2003)

http://arxiv.org/abs/cs.CV/0312044
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0412098

24 P. Adriaans

[21] Gerard Wolff, J.: Unifying Computing And Cognition, The SP Theory and its
Applications, CognitionResearch.org.uk (2006)

[22] Wolff, J.G.: Computing As Compression: An Overview of the SP Theory and
System. New Generation Comput. 13(2), 187–214 (1995)

[23] Wolff, J.G.: Information Compression by Multiple Alignment, Unification and
Search as a Unifying Principle in Computing and Cognition. Journal of Artificial
Intelligence Research 19(3), 193–230 (2003)

[24] Proceedings of the Workshop and tutorial de la Higuera, D., Oncina, J., Adriaans,
P., van Zaanen, M.: Learning Context-Free Grammars. In: Lavrač, N., Gamberger,
D., Todorvski, L., Blockeel, H. (eds.) ECML 2003 and PKDD 2003. LNCS, vols.
2837 and 2838. Springer, Heidelberg (2003)

Reachability Problems: An Update

Eric Allender

Department of Computer Science, Rutgers University, Piscataway, NJ 08855
allender@cs.rutgers.edu

Abstract. There has been a great deal of progress in the fifteen years that have
elapsed since Wigderson published his survey on the complexity of the graph con-
nectivity problem [Wig92]. Most significantly, Reingold solved the longstanding
question of the complexity of the s-t connectivity problem in undirected graphs,
showing that this is complete for logspace (L) [Rei05].

This survey talk will focus on some of the remaining open questions dealing
with graph reachability problems. Particular attention will be paid to these topics:

– Reachability in planar directed graphs (and more generally, in graphs of low
genus) [ADR05, BTV07].

– Reachability in different classes of grid graphs [ABC+06].
– Reachability in mangroves [AL98].

The problem of finding a path from one vertex to another in a graph is the first prob-
lem that was identified as being complete for a natural subclass of P; it was shown to
be complete for nondeterministic logspace (NL) by Jones [Jon75]. Restricted versions
of this problem were subsequently shown to be complete for other natural complexity
classes such as NC1 and L. More than three decades have passed since the publica-
tion of Jones’ work, and for most of that time, the outstanding open problem about
graph reachability centered on the complexity of the reachability problem in undirected
graphs. This problem was finally resolved by Reingold [Rei05], who showed that it is
complete for L.

There are several other natural graph reachability problems whose complexity re-
mains uncharacterized. The purpose of this lecture is to present some open questions
about graph reachability problems, and to survey some recent progress toward under-
standing these problems.

We make use of reachability problems in order to understand familiar subclasses
of NL, such as L (deterministic logspace), AC0 (the class of problems solvable by
constant-depth polynomial-size circuits of unbounded fan-in AND and OR gates), TC0

(the class of problems solvable by constant-depth threshold circuits of polynomial size),
and NC1 (the class of problems solvable by Boolean formulae of polynomial size).
Two other complexity classes turn out to play important roles in our study of reach-
ability problems: UL and RUL. UL (unambiguous logspace) is the class of problems
solvable by NL machines with the property that, on every input, they have at most
one accepting computation path [AJ93]. Although this seems to be a severe limita-
tion, there is evidence that NL = UL [RA00, ARZ99]. RUL (“Reach” unambigu-
ous logspace) was introduced in [BJLR91] by imposing a more restrictive condition

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 25–27, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

26 E. Allender

on UL machines; no configuration can be reached by two distinct computation paths
on any input (even on rejecting computation paths). Thus on a RUL machine, the
subgraph of reachable configurations always forms a directed tree rooted at the start
configuration.

AC0 ⊆ TC0 ⊆ NC1 ⊆ L ⊆ RUL ⊆ UL ⊆ NL.

All of these classes are known to be closed under complement, except UL. All of these
classes except UL also contain sets that are complete under AC0 reductions; this is triv-
ial except for the case of RUL [Lan97]. UL does contain a set that is complete under
nonuniform AC0 reductions [RA00].

Planarity is one of the most important and most frequently studied graph-theoretic
restrictions, but only very recently has there started to be any evidence that the pla-
nar case might be easier than the unrestricted reachability problem. Reachability in
planar digraphs is now known to be solvable in UL [BTV07]. Planar reachability is
logspace-equivalent to the restricted problem of reachability in grid graphs, as well
as to the more general problem of determining reachability for graphs embedded on
a torus (i.e., genus 1 graphs) [ADR05]. Interestingly, nothing is known about graphs
of genus 2; it is possible that computing reachability for genus 2 graphs is hard
for NL.

No deterministic algorithm for planar reachability has been found that uses less than
log2 n space (although a logspace algorithm was presented in [ABC+06] for the special
case of planar acyclic digraphs having a single source). One class of digraphs where a
better deterministic algorithm has been found is the class of mangroves. A graph is a
mangrove if, for every vertex v, both the subgraph of vertices reachable from v and
the subgraph of vertices that reach v are trees. (Equivalently, for every pair of vertices
(u, v), there is at most one path from u to v.) A deterministic algorithm for reachability
on mangroves was presented in [AL98] that uses space log2 n/ log log n, and the same
paper builds on this to show RUL ⊆ DSPACE(log2 n/ log log n).

Because grid graph reachability is logspace-equivalent to planar reachability, it suf-
fices to concentrate on grid graphs in trying to find a better algorithm for planar reach-
ability. It is interesting to note, however, that whereas planar reachability is hard for
L under AC0 reductions, this is not known to hold for grid graph reachability. A de-
tailed study of grid graph reachability was undertaken in [ABC+06]. There, it was
shown that many restricted versions of grid graph reachability (such as the undirected
case, the outdegree one case, and the case where both indegree and outdegree are
exactly one) are equivalent under AC0 reductions, thus giving rise to a natural clus-
ter of problems intermediate between L and NC1 (i.e., known to be hard for NC1

and lying in L but not known to be hard for L). A very restricted grid graph
reachability problem was also shown to be complete for TC0 under AC0-Turing
reductions.

Acknowledgments

The research of the author is supported in part by NSF Grant CCF-0514155.

Reachability Problems: An Update 27

References

[ABC+06] Allender, E., Mix Barrington, D., Chakraborty, T., Datta, S., Roy, S.: Grid graph
reachability problems. In: IEEE Conference on Computational Complexity, pp.
299–313 (2006)

[ADR05] Allender, E., Datta, S., Roy, S.: The directed planar reachability problem. In: Proc.
25th annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FST&TCS). LNCS, vol. 1373, pp. 238–249. Springer, Heidel-
berg (2005)

[AJ93] Àlvarez, C., Jenner, B.: A very hard log-space counting class. Theoretical Com-
puter Science 107, 3–30 (1993)

[AL98] Allender, E., Lange, K.-J.: RUSPACE(log n) is contained in
DSPACE(log2 n/ log log n). Theory of Computing Systems 31, 539–550
(1998)

[ARZ99] Allender, E., Reinhardt, K., Zhou, S.: Isolation, matching, and counting: Uniform
and nonuniform upper bounds. Journal of Computer and System Sciences 59(2),
164–181 (1999)

[BJLR91] Buntrock, G., Jenner, B., Lange, K.-J., Rossmanith, P.: Unambiguity and fewness
for logarithmic space. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp. 168–
179. Springer, Heidelberg (1991)

[BTV07] Bourke, C., Tewari, R., Vinodchandran, N.V.: Directed planar reachability is in
unambiguous logspace. In: IEEE Conference on Computational Complexity (to
appear 2007)

[Jon75] Jones, N.D.: Space bounded reducibility among combinatorial problems. Journal
of Computer and System Sciences 11, 68–85 (1975)

[Lan97] Lange, K.-J.: An unambiguous class possessing a complete set. In: 14th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS). LNCS,
vol. 1200, pp. 339–350. Springer, Heidelberg (1997)

[RA00] Reinhardt, K., Allender, E.: Making nondeterminism unambiguous. SIAM Journal
of Computing 29, 1118–1131 (2000)

[Rei05] Reingold, O.: Undirected st-connectivity in log-space. In: Proceedings 37th Sym-
posium on Foundations of Computer Science, pp. 376–385. IEEE Computer Soci-
ety Press, Washington, DC, USA (2005)

[Wig92] Wigderson, A.: The complexity of graph connectivity. In: Havel, I.M., Koubek,
V. (eds.) Symposium on Mathematical Foundations of Computer Science. LNCS,
vol. 629, pp. 112–132. Springer, Heidelberg (1992)

RZ: A Tool for Bringing

Constructive and Computable Mathematics
Closer to Programming Practice

Andrej Bauer1 and Christopher A. Stone2

1 Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
Andrej.Bauer@fmf.uni-lj.si

2 Computer Science Department, Harvey Mudd College, USA
stone@cs.hmc.edu

Abstract. Realizability theory can produce interfaces for the data
structure corresponding to a mathematical theory. Our tool, called RZ,
serves as a bridge between constructive mathematics and programming
by translating specifications in constructive logic into annotated inter-
face code in Objective Caml. The system supports a rich input language
allowing descriptions of complex mathematical structures. RZ does not
extract code from proofs, but allows any implementation method, from
handwritten code to code extracted from proofs by other tools.

1 Introduction

Given a description of a mathematical structure (constants, functions, relations,
and axioms), what should a computer implementation look like?

For simple cases, like groups, the answer is obvious. But for more interesting
structures, especially those arising in mathematical analysis, the answer is less
clear. How do we implement the real numbers (a Cauchy-complete Archimedean
ordered field)? Or choose the operations for a compact metric space or a space
of smooth functions? Significant research goes into finding satisfactory represen-
tations [1,2,3,4], and implementations of exact real arithmetic [5,6] show that
the theory can be put into practice quite successfully.

Realizability theory can be used to produce a description of the data structure
(a code interface) directly corresponding to a mathematical specification. But
few programmers — even those with strong backgrounds in mathematics and
classical logic — are familiar with constructive logic or realizability.

We have therefore implemented a system, called RZ, to serve as a bridge
between the logical world and the programming world.1 RZ translates speci-
fications in constructive logic into standard interface code in a programming
language (currently Objective Caml [7], but other languages could be used).

The constructive part of the original specification turns into interface code,
listing types and values to be implemented. The rest becomes assertions about
1 RZ is publicly available for download at http://math.andrej.com/rz/, together

with an extended version of this paper.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 28–42, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://math.andrej.com/rz/

RZ: Bringing Computable Mathematics Closer to Programming Practice 29

these types and values. The assertions have no computational content, so their
constructive and classical meanings agree, and they can be understood by pro-
grammers and mathematicians accustomed to classical logic.

RZ was designed as a lightweight system supporting a rich input language. Al-
though transforming complete proofs into complete code is possible [8], we have
not implemented this. Other good systems, including Coq [9] and Minlog [10],
can extract programs from proofs. But they work best managing the entire task,
from specification to code generation. In contrast, interfaces generated by RZ
can be implemented in any fashion as long as the assertions are satisfied. Code
can be written by hand, using imperative, concurrent, and other language fea-
tures rather than a “purely functional” subset. Or, the output can serve as a
basis for theorem-proving and code extraction using another system.

An earlier description of RZ work appears in [11]; since then, the input syntax
and underlying implementation has been significantly revised and improved, and
the support for dependent types and hoisting is completely new.

2 Typed Realizability

RZ is based on typed realizability by John Longley [12]. This variant of realizabil-
ity corresponds most directly to programmers’ intuition about implementations.

We approach typed realizability and its relationship to real-world program-
ming by way of example. Suppose we are asked to design a data structure for
the set G of all finite simple directed graphs with vertices labeled by distinct
integers. A common representation is a pair of lists (�V , �A), where �V is the list
of vertex labels and �A is the adjacency list representing the arrows by pairing
the labels of each source and target. Thus we define the datatype of graphs as2

type graph = int list ∗ (int ∗ int) list

However, this is not a complete description of the representation, as there would
be representation invariants and conditions not expressed by the type, e.g., the
order in which vertices and arrows are listed is not important, each vertex and
arrow must be listed exactly once, and the source and target of each arrow must
appear in the list of vertices.

Thus, to implement the mathematical set G, we must not only decide on
the underlying datatype graph, but also determine what values of that type
represent which elements of G. As we shall see next, this can be expressed either
using a realizability relation or a partial equivalence relation (per).

2.1 Modest Sets and Pers

We now define typed realizability as it applies to OCaml. Other general-purpose
programming languages could be used instead.
2 We use OCaml notation in which t list classifies finite lists of elements of type t,

and t1 ∗ t2 classifies pairs containing a value of type t1 and a value of type t2.

30 A. Bauer and C.A. Stone

Let Type be the collection of all (non-parametric) OCaml types. To each type
t ∈ Type we assign the set [[t]] of values of type t that behave functionally in the
sense of Longley [13]. Such values are represented by terminating expressions
that do not throw exceptions or return different results on different invocations.
They may use exceptions, store, and other computational effects, provided they
appear functional from the outside; a useful example using computational effects
is presented in Section 7.4. A functional value of function type may diverge as
soon as it is applied. The collection Type with the assignment of functional values
[[t]] to each t ∈ Type forms a typed partial combinatory algebra (TPCA).

Going back to our example, we see that an implementation of directed graphs
G specifies a datatype |G| = graph together with a realizability relation �G
between G and [[graph]]. The meaning of (�V , �A) �G G is “OCaml value (�V , �A)
represents/realizes/implements graph G”. Generalizing from this, we define a
modest set to be a triple A = (〈A〉, |A|, �A) where 〈A〉 is the underlying set,
|A| ∈ Type is the underlying type, and �A is a realizability relation between [[|A|]]
and 〈A〉, satisfying (1) totality: for every x ∈ 〈A〉 there is v ∈ [[|A|]] such that
v �A x, and (2) modesty: if u �A x and u �A y then x = y. The support of
A is the set ‖A‖ = {v ∈ [[|A|]] | ∃x∈ 〈A〉 . v �A x} of those values that realize
something. We define the relation ≈A on [[|A|]] by

u ≈A v ⇐⇒ ∃ x∈ 〈A〉 . (u �A x ∧ v �A x) .

From totality and modesty of �A it follows that ≈A is a per, i.e., symmetric
and transitive. Observe that ‖A‖ = {v ∈ [[|A|]] | v ≈A v}, whence ≈A restricted
to ‖A‖ is an equivalence relation. In fact, we may recover a modest set up to
isomorphism from |A| and ≈A by taking 〈A〉 to be the set of equivalence classes
of ≈A, and v �A x to mean v ∈ x.

The two views of implementations, as modest sets (〈A〉, |A|, �A), and as pers
(|A|, ≈A), are equivalent.3 We concentrate on the view of modest sets as pers.
They are more convenient to use in RZ because they refer only to types and
values, as opposed to arbitrary sets. Nevertheless, it is useful to understand how
modest sets and pers arise from natural programming practice.

Pers form a category whose objects are pairs A = (|A|, ≈A) where |A| ∈ Type
and ≈A is a per on [[|A|]]. A morphism A → B is represented by a function
v ∈ [[|A| → |B|]] such that, for all u, u′ ∈ ‖A‖, u ≈A u′ =⇒ v u ≈B v u′.
Two such functions v and v′ represent the same morphism if, for all u, u′ ∈ ‖A‖,
u ≈A u′ implies v u ≈B v′ u′.

The category of pers has a very rich structure, namely that of a regular locally
cartesian closed category [14]. This suffices for the interpretation of first-order
logic and (extensional) dependent types [15].

Not all pers are decidable, i.e., there may be no algorithm for deciding when
two values are equivalent. Examples include implementations of semigroups with
an undecidable word problem [16] and implementations of computable real num-
bers (which might be realized by infinite Cauchy sequences).
3 And there is a third view, as a partial surjection δA : ⊆[[|A|]] � 〈A〉, with δA(v) = x

when v �A x. This is how realizability is presented in Type Two Effectivity [1].

RZ: Bringing Computable Mathematics Closer to Programming Practice 31

Underlying types of realizers:

|�| = unit |⊥| = unit
x = y	= unit	φ ∧ ψ	=	φ	×	ψ				
φ ⇒ ψ	=	φ	→	ψ		φ ∨ ψ	= ‘or0 of	φ0	+ ‘or1 of	φ1
∀x:A. φ	=	A	→	φ		∃x:A. φ	=	A	×	φ

Realizers:

() � �
() � x = y iff x = y
(t1, t2) � φ ∧ ψ iff t1 � φ and t2 � ψ
t � φ ⇒ ψ iff for all u ∈ |φ|, if u � φ then t u � ψ
‘or0 t � φ ∨ ψ iff t � φ
‘or1 t � φ ∨ ψ iff t � ψ
t � ∀x:A. φ(x) iff for all u ∈ |A|, if u �A x then t u � φ(x)
(t1, t2) � ∃x:A. φ(x) iff t1 �A x and t2 � φ(x)

Fig. 1. Realizability interpretation of logic (outline)

2.2 Interpretation of Logic

In the realizability interpretation of logic, each formula φ is assigned a set of real-
izers, which can be thought of as computations that witness the validity of φ. The
situation is somewhat similar, but not equivalent, to the propositions-as-types
translation of logic into type theory, where proofs of a proposition correspond to
terms of the corresponding type. More precisely, to each formula φ we assign an
underlying type |φ| of realizers, but unlike the propositions-as-types translation,
not all terms of type |φ| are necessarily valid realizers for φ, and some terms
that are realizers may not correspond to any proofs, for example, if they denote
partial functions or use computational effects.

It is customary to write t � φ when t ∈ [[|φ|]] is a realizer for φ. The underlying
types and the realizability relation � are defined inductively on the structure
of φ; an outline is shown in Figure 1. We say that a formula φ is valid if it has
at least one realizer.

In classical mathematics, a predicate on a set X may be viewed as a subset
of X or a (possibly non-computable) function X → bool, where bool = {⊥, �}
is the set of truth values. Accordingly, since in realizability propositions are
witnessed by realizers, a predicate φ on a per A = (|A|, ≈A) is a (possibly non-
computable) function φ : [[|A|]] × [[|φ|]] → bool that is strict (if φ(u, v) then
u ∈ ‖A‖) and extensional (if φ(u1, v) and u1 ≈A u2 then φ(u2, v)).

Suppose we have implemented the real numbers R as a per R = (real, ≈R),
and consider ∀a:R. ∀b:R. ∃x:R. x3 + ax + b = 0. By computing according to
Figure 1, we see that a realizer for this proposition is a value r of type real →
real → real × unit such that, if t realizes a ∈ R and u realizes b ∈ R, then
r t u = (v, w) with v realizing a real number x such that x3 + ax + b = 0, and w
is trivial. (This can be “thinned” to a realizer of type real → real → real that
does not bother to compute w.) In essence, the realizer r computes a root of the

32 A. Bauer and C.A. Stone

cubic equation. Note that r is not extensional, i.e., different realizers t and u for
the same a and b may result in different roots. To put this in another way, r
realizes a multi-valued function4 rather than a per morphism. It is well known
in computable mathematics that certain operations, such as equation solving,
are only computable if we allow them to be multi-valued. They arise naturally
in RZ as translations of ∀∃ statements.

Some propositions, such as equality and negation, have “irrelevant” realizers
free of computational content. Sometimes only a part of a realizer is compu-
tationally irrelevant. Propositions that are free of computational content are
characterized as the ¬¬-stable propositions. A proposition φ is said to be ¬¬-
stable, or just stable for short, when ¬¬φ ⇒ φ is valid. On input, one can specify
whether abstract predicates have computational content. On output, extracted
realizers go through a thinning phase, which removes irrelevant realizers.

Many structures are naturally viewed as families of sets, or sets depending on
parameters, or dependent types as they are called in type theory. For example, the
n-dimensional Euclidean space R

n depends on the dimension n ∈ N, the Banach
space C([a, b]) of uniformly continuous real functions on the closed interval [a, b]
depends on a, b ∈ R such that a < b, etc. In general, a family of sets {Ai}i∈I is
an assignment of a set Ai to each i ∈ I from an index set I.

In the category of pers the appropriate notion is that of a uniform family.
A uniform family of pers {Ai}i∈I indexed by a per I is given by an underlying
type |A| and a family of pers (≈Ai)i∈[[|I|]] that is strict (if u ≈Ai v then i ∈ ‖I‖)
and extensional (if u ≈Ai v and i ≈I j then u ≈Aj v).

We can also form the sum Σi∈IAi or product Πi∈IAi of a uniform family,
allowing an interpretation of (extensional) dependent type theory.

3 Specifications as Signatures with Assertions

In programming we distinguish between implementation and specification of a
structure. In OCaml these two notions are expressed with modules and module
types, respectively. A module defines types and values, while a module type
simply lists the types, type definitions, and values provided by a module. For a
complete specification, a module type must also be annotated with assertions
which specify the required properties of declared types and values.

The output of RZ consists of module specifications, module types plus as-
sertions about their components. More specifically, a typical specification may
contain value declarations, type declarations and definitions, module declara-
tions, specification definitions, proposition declarations, and assertions. RZ only
outputs assertions that are free of computational content, and do not require
knowledge of constructive mathematics to be understood.

A special construct is the obligation assurex:τ, p in e which means “in term
e, let x be any element of [[τ]] that satisfies p”. An obligation is equivalent to
a combination of Hilbert’s indefinite description operator and a local definition,
4 The multi-valued nature of the realizer comes from the fact that it computes any

one of many values, not that it computes all of the many values.

RZ: Bringing Computable Mathematics Closer to Programming Practice 33

letx=(εx:τ. p) in e, where εx:τ. p means “any x ∈ [[τ]] such that p”. The alter-
native form assurep in e stands for assure :unit, p in e.

Obligations arise from the fact that well-formedness of the input language
is undecidable; see Section 4. In such cases the system computes a realizability
translation, but also produces obligations. The programmer must replace each
obligation with a value satisfying the obligation. If such values do not exist, the
specification is unimplementable.

4 The Input Language

The input to RZ consists of one or more theories. A RZ theory is a generalized
logical signature with associated axioms, similar to a Coq module signature.
Theories describe models, or implementations.

The simplest theory Θ is a list of theory elements thy θ1 . . . θn end. A theory
element may specify that a certain set, set element, proposition or predicate, or
model must exist (using the Parameter keyword). It may also provide a definition
of a set, term, proposition, predicate, or theory (using the Definition keyword).
Finally, a theory element can be a named axiom (using the Axiom keyword).

We allow model parameters in theories; typical examples in mathematics in-
clude the theory of a vector space parameterized by a field of scalars.

A theory of a parameterized implementation [m:Θ1]→Θ2 describes a uniform
family of models (i.e., a single implementation; a functor in OCaml) that maps
every model m satisfying Θ1 to a model of Θ2. In contrast, a theory λm:Θ1. Θ2

maps models to theories; if T is such a theory, then T (M1) and T (M2) are
theories whose implementations might be completely unrelated.

Propositions and predicates appearing in theories may use full first-order con-
structive logic, not just the negative fragment.

The language of sets is rich, going well beyond the type systems of typical
programming languages. In addition to any base sets postulated in a theory, one
can construct dependent cartesian products and dependent function spaces. We
also supports disjoint unions (with labeled tags), quotient spaces (a set modulo
a stable equivalence relation), subsets (elements of a set satisfying a predicate).
RZ even permits explicit references to sets of realizers.

The term language includes introduction and elimination constructs for the
set level. For product sets we have tuples and projections (π1 e, π2 e, . . .), and
for function spaces we have lambda abstractions and application. One can inject
a term into a tagged union, or do case analyses on the members of a union. We
can produce an equivalence class or pick a representative from a equivalence class
(as long as what we do with it does not depend on the choice of representative).
We can produce a set of realizers or choose a representative from a given set
of realizers (as long as what we do with it does not depend on the choice of
representative). We can inject a term into a subset (if it satisfies the appropriate
predicate), or project an element out of a subset. Finally, the term language also
allows local definitions of term variables, and definite descriptions (as long as
there is a unique element satisfying the predicate in question).

34 A. Bauer and C.A. Stone

From the previous paragraph, it is clear that checking the well-formedness of
terms is not decidable. RZ checks what it can, but does not attempt serious the-
orem proving. Uncheckable constraints remain as obligations in the final output,
and should be verified by other means before the output can be used.

5 Translation

5.1 Translation of Sets and Terms

A set declaration Parameter s : Set is translated to

type s
predicate (≈s) : s → s → bool
assertion symmetric_s : ∀ x:s, y:s, x ≈s y → y ≈s x
assertion transitive_s : ∀ x:s, y:s, z:s, x ≈s y ∧ y ≈s z → x ≈s z
predicate ‖s‖ : s → bool
assertion support_def_s : ∀ x:s, x : ‖s‖ ↔ x ≈s x

This says that the programmer should define a type s and a per ≈s on [[s]].
Here ≈s is not an OCaml value of type s → s → bool, but an abstract relation
on the set [[s]] × [[s]]. The relation may be uncomputable.

The translation of the declaration of a dependent set Parameter t : s → Set
uses uniform families (Section 2.2). The underlying type t is non-dependent, but
the per ≈t receives an additional parameter x : [[s]].

A value declaration Parameter x : s is translated to

val x : s
assertion x_support : x : ‖s‖

which requires the definition of a value x of type s which is in the support of s.
A value definition Definition x := e where e is an expression denoting an

element of s is translated to

val x : s
assertion x_def : x ≈s e

The assertion does not force x to be defined as e, only to be equivalent to it with
respect to ≈s. This is useful, as often the easiest way to define a value is not the
most efficient way to compute it.

Constructions of sets in the input language are translated to corresponding
constructions of modest sets. We comment on those that are least familiar.

Subsets. Given a predicate φ on a per A, the sub-per {x : A | φ} has underlying
type |A| × |φ| where (u1, v1) ≈{x:A|φ} (u2, v2) when u1 ≈A u2, v1 � φ(u1) and
v2 � φ(u2). The point is that a realizer for an element of {x : A | φ} carries
information about why the element belongs to the subset.

A type coercion e : t can convert an element of the subset s = {x : t | φ(x)} to
an element of t. At the level of realizers this is achieved by the first projection,
which keeps a realizer for the element but forgets the one for φ(e). The opposite

RZ: Bringing Computable Mathematics Closer to Programming Practice 35

type coercion e′ : s takes an e′ ∈ t and converts it to an element of the subset.
This is only well-formed when φ(e′) is valid. Then, if u �t e′ and v � φ(e′), a
realizer for e′ : s is (u, v). However, since RZ cannot in general know a v which
validates φ(e′), it emits the pair (u, (assure v:|φ|, φ u v in v)).

Quotients. Even though we may form quotients of pers by arbitrary equivalence
relations, only quotients by ¬¬-stable relations behave as expected.5 A stable
equivalence relation on a per A is the same thing as a partial equivalence rela-
tion ρ on |A| which satisfies ρ(x, y) =⇒ x ≈A y. Then the quotient A/ρ is the
per with |A/ρ| = |A| and x ≈A/ρ y ⇐⇒ ρ(x, y).

Luckily, it seems that many equivalence relations occurring in computable
mathematics are stable, or can be made stable. For example, the coincidence
relation on Cauchy sequences is expressed by a ∀∃∀ formula, but if we consider
rapid Cauchy sequences (those sequences a satisfying ∀ i ∈ N . |ai+1 − ai| ≤ 2−i),
it becomes a (negative) ∀ formula. It is interesting that most practical implemen-
tations of real numbers follow this line of reasoning and represent real numbers
in a way that avoids annotating every sequence with its rate of convergence.

Translation of an equivalence class [e]ρ is quite simple, since a realizer for e
also realizes its equivalence class [e]ρ. The elimination term let [x]ρ =ξ in e,
means “let x be any element of ρ-equivalence class ξ in e”. It is only well-formed
when e does not depend on the choice of x, but this is something RZ cannot
check. Therefore, if u realizes ξ, RZ uses u as a realizer for x and emits an
obligation saying that the choice of a realizer for x does not affect e.

The underlying set of realizers. Another construction on a per A is the under-
lying per of realizers rz A, defined by |rz A| = |A| and u ≈rz A vu ∈ ‖A‖∧ ⇐⇒
u = v, where by u = v we mean observational equality of values u and v. An
element r ∈ rz A realizes a unique element rz r ∈ A. The elimination term
let rz x = e1 in e2, which means “let x be any realizer for e1 in e2”, is only
well-formed if e2 does not depend on the choice of x. This is an uncheckable
condition, hence RZ emits a suitable obligation in the output, and uses for x the
same realizer as for e1.

The construction rz A validates the Presentation Axiom (see Section 7.3).
In the input language it gives us access to realizers, which is useful because
many constructions in computable mathematics, such as those in Type Two
Effectivity [1], are explicitly expressed in terms of realizers.

5.2 Translation of Propositions

The driving force behind the translation of logic is a theorem [17, 4.4.10] that
says that under the realizability interpretation every formula φ is equivalent to
one that says, informally speaking, “there exists u ∈ |φ|, such that u realizes φ”.

5 The trouble is that from equality of equivalence classes [x]ρ = [y]ρ we may conclude
only ¬¬ρ(x, y) rather than the expected ρ(x, y).

36 A. Bauer and C.A. Stone

Furthermore, the formula “u realizes φ” is computationally trivial. The trans-
lation of a predicate φ then consists of its underlying type |φ| and the relation
u � φ, expressed as a negative formula.

Thus an axiom Axiom A : φ in the input is translated to

val u : |φ|
assertion A : u � φ

which requires the programmer to validate φ by providing a realizer for it. When
φ is a compound statement RZ computes the meaning as described in Figure 1.

In RZ we avoid the explicit realizer notation u � φ in order to make the output
easier to read. A basic predicate declaration Parameter p : s→Prop is translated
to a type declaration type ty p and a predicate declaration predicate p : s →
ty p → bool together with assertions that p is strict and extensional.

6 Implementation

The RZ implementation consists of several sequential passes.
After the initial parsing, a type reconstruction phase checks that the input

is well-typed, and if successful produces an annotated result with all variables
explicitly tagged with types. The type checking phase uses a system of dependent
types, with limited subtyping (implicit coercions) for sum types and subset types.

Next the realizability translation is performed as described in Section 5, pro-
ducing interface code. The flexibility of the full input language (e.g., n-ary sum
types and dependent product types) makes the translation code fairly involved,
and so it is performed in a “naive” fashion whenever possible. The immediate
result of the translation is not easily readable.

Thus, up to four more passes simplify the output before it is displayed to
the user. A thinning pass removes all references to trivial realizers produced
by stable formulas. An optimization pass applies an ad-hoc collection of basic
logical and term simplifications in order to make the output more readable. Some
redundancy may remain, but in practice the optimization pass helps significantly.

Finally, the user can specify two optional steps occur. RZ can perform a
phase-splitting pass [18]. This is an experimental implementation of an transfor-
mation that can replace a functor (a relatively heavyweight language construct)
by parameterized types and/or polymorphic values.

The other optional transformation is a hoisting pass which moves obligations
in the output to top-level positions. Obligations appear in the output inside
assertions, at the point where an uncheckable property was needed. Moving these
obligations to the top-level make it easier to see exactly what one is obliged
to verify, and can sometimes make them easier to read, at the cost of losing
information about why the obligation was required at all.

7 Examples

In this section we look at several examples which demonstrate various points
of RZ. Unfortunately, serious examples from computable mathematics take too

RZ: Bringing Computable Mathematics Closer to Programming Practice 37

much space6 and will have to be presented separately. The main theme is that
constructively reasonable axioms yield computationally reasonable operations.

7.1 Decidable Sets

A set S is said to be decidable when, for all x, y ∈ S, x = y or ¬(x = y). In
classical mathematics all sets are decidable, but RZ requires an axiom

Parameter s : Set.
Axiom eq: ∀ x y : s, x = y ∨ ¬ (x = y).

to produce a realizer for equality

val eq : s → s → [‘or0 | ‘or1]
assertion eq : ∀ (x:‖s‖, y:‖s‖), (match eq x y with

‘or0 ⇒ x ≈s y
| ‘or1 ⇒ ¬ (x ≈s y))

We read this as follows: eq is a function which takes arguments x and y of type s
and returns ‘or0 or ‘or1. If it returns ‘or0, then x≈s y, and if it returns ‘or1,
then ¬(x≈s y). In other words eq is a decision procedure.

7.2 Inductive Types

To demonstrate the use of dependent types we show how RZ handles general in-
ductive types, also known as W-types or general trees [19]. Recall that a W-type
is a set of well-founded trees, where the branching types of trees are described by
a family of sets B = {T (x)}x∈S. Each node in a tree has a branching type x ∈ S,
which determines that the successors of the node are labeled by the elements
of T (x). Figure 2 shows an RZ axiomatization of W-types. The theory Branching
describes that a branching type consists of a set s and a set t depending on s.
The theory W is parameterized by a branching type B. It specifies a set w of
well-founded trees and a tree-forming operation tree with a dependent type
Πx∈B.s(B.t(x) → w) → w. The inductive nature of w is expressed with the ax-
iom induction, which states that for every property M.p, if M.p is an inductive
property then every tree satisfies it. A property is said to be inductive if a tree
tree x f satisfies it whenever all its successors satisfy it.

In the translation dependencies at the level of types and terms disappear.
A branching type is determined by a pair of non-dependent types s and t but
the per ≈t depends on [[s]]. The theory W turns into a signature for a functor
receiving a branching type B and returning a type w, and an operation tree
of type B.s → (B.t → w) → w. One can use phase-splitting to translate axiom
induction into a specification of a polymorphic function

induction : (B.s → (B.t → w) → (B.t → α) → α) → w → α,

6 The most basic structure in analysis (the real numbers) alone requires several oper-
ations and a dozen or more axioms.

38 A. Bauer and C.A. Stone

Definition Branching :=
thy

Parameter s : Set. (* branching types *)
Parameter t : s -> Set. (* branch labels *)

end.

Parameter W : [B : Branching] →
thy

Parameter w : Set.
Parameter tree : [x : B.s] → (B.t x → w) → w.
Axiom induction:

∀ M : thy Parameter p : w → Prop. end,
(∀ x : B.s, ∀ f : B.t x → w,

((∀ y : B.t x, M.p (f y)) → M.p (tree x f))) →
∀ t : w, M.p t.

end.

Fig. 2. General inductive types

which is a form of recursion on well-founded trees. Instead of explaining
induction, we show a surprisingly simple, hand-written implementation of W-
types in OCaml. The reader may enjoy figuring out how it works:

module W (B : Branching) = struct
type w = Tree of B.s * (B.t -> w)
let tree x y = Tree (x, y)
let rec induction f (Tree (x, g)) =
f x g (fun y -> induction f (g y))

end

7.3 Axiom of Choice

RZ can help explain why a generally accepted axiom is not constructively valid.
Consider the Axiom of Choice:

Parameter a b : Set.
Parameter r : a → b → Prop.
Axiom ac: (∀ x : a, ∃ y : b, r x y) →

(∃ c : a → b, ∀ x : a, r x (c x)).

The relevant part of the output is

val ac : (a → b * ty_r) → (a → b) * (a → ty_r)
assertion ac :

∀ f:a → b * ty_r,
(∀ (x:‖a‖), let (p,q) = f x in p : ‖b‖ ∧ r x p q) →
let (g,h) = ac f in

g : ‖a → b‖ ∧ (∀ (x:‖a‖), r x (g x) (h x))

This requires a function ac which accepts a function f and computes a pair of
functions (g, h). The input function f takes an x:‖a‖ and returns a pair (p, q)

RZ: Bringing Computable Mathematics Closer to Programming Practice 39

such that q realizes the fact that r x p holds. The output functions g and h
taking x:‖a‖ as input must be such that h x realizes r x (g x). Crucially, the
requirement g:‖a → b‖ says that g must be extensional, i.e., map equivalent
realizers to equivalent realizers. We could define h as the first component of f,
but we cannot hope to implement g in general because the second component
of f is not assumed to be extensional.

The Intensional Axiom of Choice allows the choice function to depend on the
realizers:

Axiom iac: (∀ x : a, ∃ y : b, r x y) →
(∃ c : rz a → b, ∀ x : rz a, r (rz x) (c x)).

Now the output is

val iac : (a → b * ty_r) → (a → b) * (a → ty_r)
assertion iac :

∀ f:a → b * ty_r,
(∀ (x:‖a‖), let (p,q) = f x in p : ‖b‖ ∧ r x p q) →
let (g,h) = iac f in

(∀ x:a, x : ‖a‖ → g x : ‖b‖) ∧ (∀ (x:‖a‖), r x (g x) (h x))

This is exactly the same as before except the troublesome requirement was weak-
ened to ∀x:a. (x:‖a‖ → g x:‖b‖). We can implement iac in OCaml as

let iac f = (fun x -> fst (f x)), (fun x -> snd (f x))

The Intensional Axiom of Choice is in fact just an instance of the usual Axiom
of Choice applied to rz A and B. Combined with the fact that rz A covers A,
this establishes the validity of Presentation Axiom [20], which states that every
set is an image of one satisfying the axiom of choice.

7.4 Modulus of Continuity

As a last example we show how certain constructive principles require the use
of computational effects. To keep the example short, we presume that we are
already given the set of natural numbers nat with the usual structure.

A type 2 functional is a map f : (nat → nat) → nat. It is said to be continuous
if the output of f(a) depends only on an initial segment of the sequence a. We
can express the (non-classical) axiom that all type 2 functionals are continuous
in RZ as follows:

Axiom continuity: ∀ f : (nat → nat) → nat, ∀ a : nat → nat,
∃ k, ∀ b : nat → nat, (∀ m, m ≤ k → a m = b m) → f a = f b.

The axiom says that for any f and a there exists k ∈ nat such that f(b) = f(a)
when sequences a and b agree on the first k terms. It translate to:

val continuity : ((nat → nat) → nat) → (nat → nat) → nat
assertion continuity :

∀ (f:‖(nat → nat) → nat‖, a:‖nat → nat‖),
let p = continuity f a in p : ‖nat‖ ∧
(∀ (b:‖nat → nat‖),

(∀ (m:‖nat‖), m ≤ p → a m ≈nat b m) → f a ≈nat f b)

40 A. Bauer and C.A. Stone

i.e., that continuity f a is a number p such that f(a) = f(b) whenever a and b
agree on the first p terms. In other words, continuity is a modulus of continuity
functional. It cannot be implemented in a purely functional language,7 but with
the use of store we can implement it in OCaml as

let continuity f a = let p = ref 0 in
let a’ n = (p := max !p n; a n) in

f a’ ; !p

To compute a modulus for f at a, the program creates a function a′ which is just
like a except that it stores in p the largest argument at which it has been called.
Then f a′ is computed, its value is discarded, and the value of p is returned. The
program works because f is assumed to be extensional and must therefore not
distinguish between extensionally equal sequences a and a′.

8 Related Work

8.1 Coq and Other Tools

Coq provides complete support for theorem-proving and creating trusted code.
Often one writes code in Coq’s functional language, states and proves theorems
that the code behaves correctly, and has Coq extract correct code. In such cases
RZ is complementary; it can suggest the appropriate division between code and
theorems. We hope RZ will soon be able to produce output in Coq’s input syntax.

Komagata and Schmidt [8] describe a system that uses a realizability in a
way similar to RZ. Like Coq, it extracts code from proofs. An interesting imple-
mentation difference is that the algorithm they use (attributed to John Hatcliff)
does thinning as it goes along, rather than making a separate pass as RZ does.
Unlike RZ, their system needs full formal proofs as input; it checks the proofs,
and generates executable code. RZ also handles a much richer input language
(function, subset, quotient, and dependent types; quantification over theories;
parameterized theories; etc.) that goes well beyond simple predicate logic over
integers and lists.

The idea of annotating ML signatures with assertions is not new (e.g., [22]).

8.2 Other Models of Computability

Many formulations of computable mathematics are based on realizability mod-
els [14], even though they were not initially developed, (nor are they usually
presented) within the framework of realizability: Recursive Mathematics [23] is
based on the original realizability by Turing machines [24]; Type Two Effectiv-
ity [1] on function realizability [25] and relative function realizability [26], while
topological and domain representations [27,28] are based on realizability over the
graph model Pω [29]. A common feature is that they use models of computation
which are well suited for the theoretical studies of computability.
7 There are models of λ-calculus which validate the choice principle AC2,0, but this

contradicts the existence of a modulus of continuity functional, see [21, 9.6.10].

RZ: Bringing Computable Mathematics Closer to Programming Practice 41

Approaches based on simple programming languages with datatypes for real
numbers [30,31] and topological algebras [2], and machines augmented with (suit-
ably chosen subsets of) real numbers [32,33,34] are motivated by issues ranging
from theoretical concerns about computability/complexity to practical questions
in computational geometry. RZ attempts to improve practicality by using a real-
world language, and by providing an input language rich enough for descriptions
of mathematical structures going well beyond the real numbers.

Finally, we hope that RZ and, hopefully, its forthcoming applications, give
plenty of evidence for the practical value of Constructive Mathematics [35].

References

1. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)
2. Tucker, J., Zucker, J.I.: Computable functions and semicomputable sets on many-

sorted algebras. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of
Logic in Computer Science, vol. 5, Clarendon Press, Oxford (1998)

3. Blanck, J.: Domain representability of metric spaces. Annals of Pure. and Applied
Logic 83, 225–247 (1997)

4. Edalat, A., Lieutier, A.: Domain of differentiable functions. In: Blanck, J., Brattka,
V., Hertling, P., Weihrauch, K. (eds.) Computability and Complexity in Analysis
CCA2000 Workshop, Swansea, Wales, September 17–19, 2000 (2000)

5. Müller, N.: The iRRAM: Exact arithmetic in C++. In: Blanck, J., Brattka, V.,
Hertling, P., Weihrauch, K. (eds.) Computability and Complexity in Analysis pp.
319–350 CCA2000 Workshop, Swansea, Wales, September 17–19, 2000 (2000)

6. Lambov, B.: RealLib: an efficient implementation of exact real arithmetic. In:
Grubba, T., Hertling, P., Tsuiki, H., Weihrauch, K. (eds.) Computability and
Complexity in Analysis Proccedings, Second International Conference, CCA 2005,
Kyoto, Japan, August 25–29, 2005 pp. 169–175 (2005)

7. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml
system, documentation and user’s manual - release 3.08. Technical report, INRIA
(July 2004)

8. Komagata, Y., Schmidt, D.A.: Implementation of intuitionistic type theory and
realizability theory. Technical Report TR-CS-95-4, Kansas State University (1995)

9. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004)

10. Benl, H., Berger, U., Schwichtenberg, H., Seisenberger, M., Zuber, W.: Proof the-
ory at work: Program development in the Minlog system. In: Bibel, W., Schmidt,
P.H. (eds.) Automated Deduction: A Basis for Applications, Systems and Imple-
mentation Techniques, vol. II, Kluwer Academic Publishers, Dordrecht (1998)

11. Bauer, A., Stone, C.A.: Specifications via realizability. In: Proceedings of the Work-
shop on the Constructive Logic for Automated Software Engineering (CLASE 2005)
volume 153 of Electronic Notes in Theoretical Computer Science, pp. 77–92 (2006)

12. Longley, J.: Matching typed and untyped realizability. Electr. Notes Theor. Com-
put. Sci. 23(1) (1999)

13. Longley, J.: When is a functional program not a functional program? In: Interna-
tional Conference on Functional Programming, pp. 1–7 (1999)

14. Bauer, A.: The Realizability Approach to Computable Analysis and Topology. PhD
thesis, Carnegie Mellon University (2000)

42 A. Bauer and C.A. Stone

15. Jacobs, B.: Categorical Logic and Type Theory. Elsevier, Amsterdam (1999)
16. Post, E.: Recursive unsolvability of a problem of Thue. The Journal of Symbolic

Logic 12, 1–11 (1947)
17. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, An Introduction.

In: Studies in Logic and the Foundations of Mathematics, vol. 1(121). North-
Holland, Amsterdam (1988)

18. Harper, R., Mitchell, J.C., Moggi, E.: Higher-order Modules and the Phase Distinc-
tion. In: Proceedings of the 17th ACM Symposium on Principles of Programming
Languages (POPL ’90), pp. 341–354 (1990)

19. Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s Type
Theory. Oxford University Press, Oxford (1990)

20. Barwise, J.: Admissible Sets and Structures. Springer, Heidelberg (1975)
21. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, An Introduction.

In: Studies in Logic and the Foundations of Mathematics, vol. 2(123), North-
Holland, Amsterdam (1988)

22. Kahrs, S., Sannella, D., Tarlecki, A.: The definition of Extended ML: A gentle
introduction. Theoretical Computer Science 173(2), 445–484 (1997)

23. Ershov, Y.L., Goncharov, S.S., Nerode, A., Remmel, J.B. (eds.): Handbook of
Recursive Mathematics. Elsevier, Amsterdam (1998)

24. Kleene, S.C.: On the interpretation of intuitionistic number theory. Journal of
Symbolic Logic 10, 109–124 (1945)

25. Kleene, S.C., Vesley, R.E.: The Foundations of Intuitionistic Mathematics, espe-
cially in relation to recursive functions. North-Holland Publishing Company, Am-
sterdam (1965)

26. Birkedal, L.: Developing Theories of Types and Computability. PhD thesis, School
of Computer Science, Carnegie Mellon University (December 1999)

27. Blanck, J.: Computability on topological spaces by effective domain represen-
tations. PhD thesis, Uppsala University, Department of Mathematics, Uppsala,
Sweden (1997)

28. Bauer, A., Birkedal, L., Scott, D.S.: Equilogical spaces. Theoretical Computer Sci-
ence 1(315), 35–59 (2004)

29. Scott, D.S.: Data types as lattices. SIAM Journal of Computing 5(3), 522–587
(1976)

30. Escardó, M.H.: PCF extended with real numbers. PhD thesis, Department of Com-
puter Science, University of Edinburgh (December 1997)

31. Marcial-Romero, J.R., Escard M.H., ó.: Semantics of a sequential language for exact
real-number computation. In: Proceedings of the 19th Annual IEEE Symposium
on Logic in Computer Science, pp. 426–435 (July 2004)

32. Borodin, A., Monro, J.I.: The computational complexity of algebraic and numeric
problems. Elsevier computer science library: Theory of computation series, vol. 1.
American Elsevier, New York, London, Amsterdam (1975)

33. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer, New York (1998)

34. Yap, C.K.: Theory of real computation according to EGC (2006) To appear in
LNCS Volume based on the Dagstuhl Seminar Reliable Implementation of Real
Number Algorithms: Theory and Practice, (Jan 8-13, 2006)

35. Bishop, E., Bridges, D.: Constructive Analysis. Grundlehren der math. Wis-
senschaften, vol. 279. Springer, Heidelberg (1985)

Producer/Consumer in Membrane Systems and

Petri Nets

Francesco Bernardini1, Marian Gheorghe2, Maurice Margenstern3,
and Sergey Verlan4

1 LIACS, Universiteit Leiden
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

bernardi@liacs.nl
2 Department of Computer Science, The University of Sheffield

Regent Court, Portobello Street, Sheffield S1 4DP, UK
M.Gheorghe@dcs.shef.ac.uk

3 Université Paul Verlaine - Metz, UFR MIM, LITA, EA 3097
Ile du Saulcy, 57045 Metz Cédex, France

margens@univ-metz.fr
4 LACL, Département Informatique, Université Paris XII

61 av. Général de Gaulle, 94010 Créteil, France
verlan@univ-paris12.fr

Abstract. The paper investigates different relationships between mem-
brane systems and Petri nets by focusing on modelling variants of the
producer/consumer paradigm. Two models of producer/consumer sys-
tems based on membrane systems are described, and it is shown how to
translate these models into equivalent Petri nets with a corresponding
semantics. It is then observed a direct correspondence between the Petri
nets representation of the proposed models and standard solutions based
on Petri nets already present in the literature.

1 Introduction

Membrane computing is an emerging branch of natural computing which deals
with distributed and parallel computing devices of a bio-inspired type, which are
called membrane systems, or P systems (see [8] and also [2] for a comprehensive
bibliography of membrane systems). Membrane systems are computing devices
which abstract from the structure and functioning of living cells (cell-like P sys-
tems) and are characterised by a tree-like structure. Other classes of membrane
systems, called tissue P systems, abstract from the organisation of cells in tissues
of multicellular organisms and are characterised by a graph-like structure.

Here we investigate relationships between membrane systems and Petri nets
by following the work previously done in [5,7,6] where appropriate constructions
are devised to translate membrane systems into Petri nets so to preserve certain
structural properties. Specifically, for certain classes of membrane systems, such
constructions associate to every P system an equivalent Petri net such that:
there is a one-to-one correspondence between configurations of the P system

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 43–52, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

44 F. Bernardini et al.

and markings of the equivalent Petri net, and the P system transits from one
configuration to another one iff, in the equivalent Petri net, the marking corre-
sponding to the latter configuration is reachable from the marking corresponding
to the first one. Given this construction, the focus of [7,6] is then on defining a
formal framework for describing the behaviour of P systems in terms of causal-
ity/concurrency and for reasoning about reachability, conflicts and soundness
of these systems by starting from their translation into place-transitions nets
(PT-nets, for short), a specific class of Petri nets. The PT-net representation of
a membrane system is therefore used to define the semantics of these systems
in terms of sequences of events which consume some resources (i.e., tokens in-
side the places) in order to produce some new ones (process semantics). This
construction, which is standard asynchronous PT-net, is extended in [6,7] to
PT-nets operating in a maximally parallel way and to PT-nets with localities
operating in a locally-maximal parallel way. PT-nets with localities are a class
of PT-nets introduced in [7] where each transition belongs to certain location,
in a way that resembles the distribution of the rules over the various regions
of a membrane system. For such PT-nets, locally-maximal parallelism means
that, in each step, for an arbitrary set of localities, a maximal number of tran-
sitions belonging to those localities fire. As well as this, the paper [6] discusses
about how to represent in terms of PT-nets other features of membrane systems
such as rule creation, promoters/inhibitors, membrane dissolution and variable
membrane permeability.

In this paper, we start with membrane systems and we consider the problem
of modelling two producer/consumer systems: a system consisting of a producer
and a consumer which synchronise through a buffer of capacity one item, and a
parallel version of this system where the producer and the consumer have direct
access to two separate buffers, both of them having capacity equal to one. For
the former system, a model is devised that is based on cell-like P systems with
generalised boundary rules, whereas, for the system with two buffers, we use
networks of cells which extend boundary rules to pairs of interacting cells. Then,
as done in [7,6], we show how to translate our models of membrane systems
into equivalent Petri nets with a corresponding semantics. The application of
this construction to the two aforementioned producer/consumer systems returns
Petri nets representations which are “essentially” the same as the standard Petri
nets solutions illustrated in [9].

2 Membrane Systems

The reader is supposed to be familiar with the notation commonly used in mem-
brane computing (e.g., see [8]). We recall that a multiset over a given alphabet
V is represented as a string x ∈ V ∗ where the order of the symbols does not
matter and, for every a ∈ V , the multiplicity of a in x is denoted by |x|a. We
also recall that a membrane structure is defined as being a string of pairs of
matching square brackets, which are called membranes. In particular, the most

Producer/Consumer in Membrane Systems and Petri Nets 45

external membrane is called skin membrane, whereas a membrane that does not
enclose (i.e., contain) any other membrane is called elementary.

Thus, a P system is formally defined as follows.

Definition 1. A P system is a construct Π = (V, μ, w1, w2, . . . , wm, R) where:

1. V is a finite alphabet;
2. μ is a membrane structure consisting of m membranes that are labelled in

a one-to-one manner by 1, . . . , m;
3. wi ∈ V ∗, for each 1 ≤ i ≤ m is a multiset of objects associated with the

region i delimited by membrane i;
4. R is a finite set of generalised boundary rules of the form u [i v] → u′ [i v′]

with u, v, u′, v′ ∈ V ∗ and 1 ≤ i ≤ m.

A P system consists of a set of m hierarchically nested membranes that identify
m distinct regions (the membrane structure μ), where each region i has got
assigned a multiset of objects wi. In each region i, we can use the rules in R of
the form u [i v] → u′ [i v′] to simultaneously replace a multiset u placed outside
region i and a multiset v placed inside region i with a multiset u′ and a multiset
v′ respectively.

The computational power of boundary rules was originally investigated in [3],
whereas a discussion about modelling aspects of the present generalisation is
reported in [4].

A configuration of a P system Π is any tuple (w′
0, w

′
1, . . . , w

′
m) where, for all

1 ≤ i ≤ m, w′
i is a multiset associated to region i, and w′

0 is a multiset of objects
present outside the most external membrane. The initial configuration of Π is
the tuple (λ, w1, . . . , wm). A P system transits from one configuration to another
by applying its rules according to a certain strategy. Specifically, by following
[7,6], we consider four different strategies: sequential application (in each step,
only one rule is applied), free parallelism (in each step, an arbitrary number of
rules is applied in parallel), maximal parallelism(in each step, in each membrane,
a maximal number of rules is applied), locally-maximal application (in each step,
for an arbitrary number of membranes, a maximal number of rules is applied).

Here we introduce a more general model of membrane systems which allow
us to capture the essential features of most variants of cell-like P systems and
tissue P systems.

Definition 2. A network of cells (a NC for short) is a construct:

Γ = (V, w1, w2, . . . , wn, R)

where: V is a finite alphabet; wi ∈ V ∗, for all 1 ≤ i ≤ n, is the multiset
initially associated to cell i; R is a finite set of interaction rules of the forms
(u, i → u′, k; v, j → v′, l) or (u, i → u′, k) with u, v, u′, v′ ∈ V ∗, 1 ≤ i, j, k, l ≤ n.

A network of cells consists of n cells, numbered from 1 to n, that contain multisets
of objects over V , initially cell i contains multiset wi. Cells can interact with
each other by means of the rules in R. An interaction rule of the form (u, i →

46 F. Bernardini et al.

u′, k; v, j → v′, l) specifies that an occurrence of multiset u and an occurrence
of multiset v can be respectively consumed in cell i and in cell j at the same
time by producing a multiset u′ inside cell k and an occurrence of multiset v′

inside cell l. Similarly, a rule (u, i → u′, k) specifies that a multiset u inside cell
i can be “replaced” by a multiset u′ inside cell k. Thus, in a NC, interactions
are not limited to occur between the inside and the outside of a membrane
but they can occur between any two cells in the system. In particular, these
cells may be (but they are not necessarily) organised in a graph-like structure
as in tissue P system. Moreover, it is clear that P systems of Definition 1 and
other variants of membranes systems already considered in the literature (e.g., P
systems with symport/antiport [8], generalised communicating P systems [10])
represent just particular cases of NC’s, hence NC’s are Turing complete. Amongst
the classes listed above, generalised communicating P systems [10] are the closest
to NC’s by their way of synchronising cells and their contents; however, this is a
communicative model where objects involved in the rules cannot be transformed,
but they are jut moved from a cell to another one.

A configuration of a NC Γ is any tuple (w′
1, . . . , w

′
n) where, for all 1 ≤ i ≤ m,

wi is a multiset associated to cell i; the initial configuration of Γ is the tuple
(w1, . . . , wn). Yet again, we can have different types of behaviours for a NC by
considering different strategies for the application of the rules: sequential appli-
cation, free parallelism, maximal parallelism, and locally-maximal application.

3 Producer/Consumer Systems

We consider the problem of modelling two producer/consumer systems: a system
consisting of a producer and a consumer which synchronise through a buffer of
capacity one item, and a parallel version of this system where the producer and
the consumer have direct access to two separate buffers, both of them having
capacity equal to one. Specifically, the producer has two states: “ready to pro-
duce” and “ready to deliver”; the consumer has two states, “ready to remove”
and “ready to consume”; the buffer has two states: “filled” and “empty”. In state
“ready to produce”, the producer executes the operation “produce” and moves
to state “ready to deliver”; in state “ready to deliver”, if the buffer is “empty”,
the producer executes the operation “deliver”, which fills the buffer, and moves
back to state “ready to produce”. Similarly, in state “ready to remove”, if the
buffer is “filled”, the consumer executes the operation “remove”, which empties
the buffer, and moves to state “ready to consume”; in state “ready to consume”,
the consumer executes the operation “consume” and moves back to state “ready
to remove”. In the parallel version, the producer, when in state “ready to deliver”
can decide to execute either “deliver to buffer 1” or “deliver to buffer 2”.

In order to model the aforementioned producer/consumer systems with only
one buffer, we consider a P system PC with 3 membranes labelled in a one-to-
one manner with values in {1, 2, 3}: membrane 1 and membrane 2 are elementary
membranes, whereas membrane 3 is a non-elementary membrane containing both
membrane 1 and membrane 2. Membrane 1 represents the producer, membrane 2

Producer/Consumer in Membrane Systems and Petri Nets 47

represents the consumer, whereas membrane 3 represents the buffer. Membrane
1 stores an object which specifies the state of the producer; this can be either
P (“ready to produce”) or D (“ready to deliver”). Similarly, membrane 2 stores
an object which specifies the state of the consumer; this can be either R (“ready
to remove”) or C (“ready to consume”). Membrane 3 instead stores an object
representing the state of the buffer, being either F (“filled”) or E (“empty”).
The initial configuration is the tuple (P, R, E). The desired behaviour is then
implemented by considering the following rules:

1. [1 P → [1 D,
2. E [1 D → F [1P ,
3. F [2 R → E [2 C,
4. [2 C → [2 R.

Thus, rule 1 represents the action “produce” which makes the producer transit
from state P (“ready to produce”) to state D (“ready to deliver”). The buffer
can then be filled by applying rule 2 which is applicable only when membrane 3
contains object E (i.e., the buffer is empty) and membrane 1 contains an object
D (i.e., the producer is in state “ready to deliver”). Similarly, rules 3 and 4
are associated to membrane 2 (the consumer) and they represent the action
“remove” and “consume” respectively. Notice that, if maximal parallelism is
considered, P system PC is deterministic, whereas, for all the other strategies,
P system PC behaves in a non-deterministic way.

Then, in order to model the producer/consumer system with two parallel
buffers, we consider a NC NPB consisting of 4 cells, cell 1 ≡ “the producer”,
cell 2 ≡ “the consumer”, cell 3 ≡ “buffer 1” and cell 4 ≡ “buffer 2”. Cell 1, as
well as cell 2, can directly interact both with cell 3 and with cell 4 but there
is no direct interaction between cell 1 and cell 4. As in the previous P system
model, cell 1 always stores either an object P (“ready to produce”) or an ob-
ject D (“ready to deliver”); cell 2 always stores either an object R (“ready to
remove”) or an object C (“ready to consume”); cell 3 always stores either an
object F (“filled”) or an object E (“empty”); the same applies to cell 4. The
initial configuration is given by the tuple (P, R, E, E). In order to implement the
desired behaviour, we instead give the following rules:

1. (P, 1 → D, 1),
2. (D, 1 → P, 1; E, 3 → F, 3),
3. (D, 1 → P, 1; E, 4 → F, 4),
4. (R, 2 → C, 2; F, 3 → E, 3),
5. (R, 2 → C, 2; F, 4 → E, 4),
6. (C, 2 → R, 2).

Thus, when an object D is present inside cell 1, we can non-deterministically
apply either rule 2 or rule 3, if cell 3 and cell 4 both contain an object E. Then,
depending on the content of these two cells, we can non-deterministically apply

48 F. Bernardini et al.

either rule 4 or rule 5. However, rule 2 can never be applied in parallel with rule 3
because cell 1 never contains more than one object D. Also, rule 4 can never
be applied in parallel with rule 5 because cell 2 never contains more than one
object R. Notice that, in this case, we have a non deterministic behaviour even
if we consider maximal parallelism.

4 Petri Net Representation

We recall the notion of PT-nets with localities from [6].

Definition 3. A PT-net with localities is a construct N = (P, T, W, M0, L)
where: P is a finite set of places, T is a finite set of transitions, with P ∩T = ∅,
W : (P × T) ∪ (T × P) → N is the weight function, M0 is a multiset over P
called the initial marking, and L is a location mapping.

PT-nets are usually represented by diagrams where places are draw as circles,
transitions are drawn as squares annotated with their location, and a directed arc
(x, y) is added between x and y if W (x, y) ≥ 1. These arcs are then annotated
with their weight if this is 2 or more. Moreover, when localities are not used
(i.e., all transitions are associated to the same location), the location mapping
is omitted from the definition.

Given a PT-net N , the pre- and post-multiset of a transition t are respec-
tively the multiset preN (t) and the multiset postN (t) such that, for all p ∈ P ,
|p|preN (t) = W (p, t) and |p|postN (t) = W (t, p). A configuration of N , which is
called a marking, is any multiset over P ; in particular, for every p ∈ P , |p|M rep-
resents the number of tokens present inside place p. A transition t is enabled at
a marking M if the multiset preN (t) is contained in the multiset M . An enabled
transition t at marking M can fire and produce a new marking M ′ such that
M ′ = M − preN (t) + postN (t) (i.e., for every place p ∈ P , the firing transition t
consumes |p|preN (t) tokens and produces |p|postN (t) tokens). As shown in [6], the
notion of enabled transition can then be extended to a multiset of transitions to
allow several occurrences of different transitions to fire in parallel at the same
time. In particular, a transition t is said to be enabled with multiplicity m ≥ 0
at a marking M if, M contains at most m ≥ 0 copies of the multiset |p|preN (t).
Thus, the following semantics are identified in [6]: sequential semantics (in each
step, only one occurrence of an enabled transition fires); freely-parallel semantics
(in each step, an arbitrary number of occurrences of enabled transitions fire);
maximally-parallel semantics; locally-maximally-parallel semantics (an arbitrary
number of localities is chosen and, for each one of this locality, a maximal number
of occurrences of enabled transitions fire). In this latter semantics, transitions
associated to the same locality are seen as belonging to some “independent”
sub-unit and locally the net operates in a maximally parallel manner, although
globally not all localities have necessarily to operate in parallel at the same time.

For the basic model of membrane system, it is then shown in [7,6] how to
transform a P system into an equivalent PT-net with localities. Here we extend
this construction to the class of P systems and the class of networks of cells
introduced in Section 2.

Producer/Consumer in Membrane Systems and Petri Nets 49

Specifically, let Π = (V, μ, w1, w2, . . . , wm, R) be a P system and, for all 0 ≤
i ≤ m, let hi : V ∗ → {(a, i) | a ∈ V }∗ be such that hi(a) = (a, i), for all a ∈ V ,
and hi(uv) = hi(u)hi(v), for all u, v ∈ V ∗. Moreover, let us suppose the rules in R
to be labelled in a one-to-one manner with values in {1, 2, . . . , s}, for some s ≥ 0.
Let V ′ = {(a, i) | a ∈ V, 0 ≤ i ≤ m} and let R′ be a set of multiset rewriting rules
such that t : hj(u)hi(v) → hj(u′)hi(v′) ∈ R′ iff, t : u [i v] → u′ [i v′] ∈ R, and
j is the membrane which directly contains membrane j, or j = 0 if i is the skin
membrane. The PT-net corresponding to Π is the PT-net N (Π) = (P, T, W, M0)
where: P = V ′, T = {1, 2, . . . , s}, and, for all b ∈ V ′ and 1 ≤ t ≤ s, W (b, t) = n
if t : u → v ∈ R′ and |b|u = n, for all b ∈ V ′ and 1 ≤ t ≤ s, W (t, a) = n if
t : u → v ∈ R′ and |b|v = n, and M0 = h1(w1)h2(w2) . . . hm(wm).

Let Γ = (V, w1, w2, . . . , wn, R) be a NC and for all 1 ≤ i ≤ n, let hi :
V ∗ → {(a, i) | a ∈ V }∗ be as above. Moreover, let us suppose the rules in R to
be labelled in a one-to-one manner with values in {1, 2, . . . , s}, for some s ≥ 0.
Then, let V ′ = {(a, i) | a ∈ V, 1 ≤ i ≤ n} and let R′ be a set of multiset rewriting
rules such that t : hi(u)hj(v) → hk(u′)hl(v′) ∈ R′ (or t : hi(u) → hk(u′) ∈ R′)
iff, t : (u, i → u′, k; v, j → v′, l) ∈ R (or t : (u, i → u′, k; v, j → v′, l) ∈ R). The
PT-net corresponding to Γ is the PT-net N ′(Γ) = (P, T, W, M0) where: P = V ′,
T = {1, 2, . . . , s}, and, for all b ∈ V ′ and 1 ≤ t ≤ s, W (b, t) = k if t : u → v ∈ R′

and |b|u = k, for all b ∈ V ′ and 1 ≤ t ≤ s, W (t, a) = n if t : u → v ∈ R′ and
|b|v = k, and M0 = h1(w1)h2(w2) . . . hn(wn).

Thus, as observed in [7,6], we have that, for a sequential semantics, a freely-
parallel semantics and a maximally-parallel semantics, every P system Π behaves
the same as the PT-net N (Π)) and every NC Γ behaves the same as the PT-net
N ′(Γ)). For a P system Π , “behaves the same” means that Π transits from a
configuration (w′

0, w
′
1, . . . , w

′
m) to a configuration (w′′

0 , w′′
1 , . . . , w′′

m) if and only if,
in the PT-net N ((Pi)), the marking h0(w′′

0)h1(w′′
1) . . . hm(w′′

m) is obtained from
the marking h0(w′

0)h1(w′
1) . . . hm(w′

m). The same applies to a NC Γ . If we instead
consider a locally-maximally-parallel semantics, then Π behaves the same as the
PT-net N (Π)) when localities are introduced in such a way that every transition
corresponding to a rule u [i v] → u′ [i v′] ∈ R is assigned to locality i. This is
not the case for a NC Γ , for a locally-maximally-parallel semantics, we cannot
directly transform a NC Γ into an equivalent PT-net with localities because an
interaction rule (u, i → u′, k; v, j → v′, l) is symmetric and, in a sense, it belongs
both to cell i and cell j (i.e., it is dynamically assigned either to cell i or to cell
j or to both).

Now, let us consider the two producer/consumer systems of Section 3. PT-net
models of these two systems are given in [9] and they are reported in Figure 1
and Figure 2.

For such PT-nets, we have that: if we construct PT-net N (PC), with PC
being the P system of Section 3, then N (PC) is the same as the PT-net of
Figure 1 except for the names of places and transitions (i.e., they identify two
isomorphic graphs); a similar consideration holds for PT-net N ′(NPB), with
NPB being the network of cells of Section 3, with respect to the PT-net of
Figure 2. In other words, we observe a “direct” correspondence between the

50 F. Bernardini et al.

B

A

F

E

H

G

p d r c

Fig. 1. PT-net model of a producer/consumer system

G

d1

d2

B

A

F1

F2

E1

E2

r1

r2

H

c

p

Fig. 2. PT-net model of a producer/consumer system with two parallel buffers

membrane systems representation and the Petri nets representation: every rule
in the membrane system model corresponds to a transition in the Petri net
models, and every object that appears inside the membrane system corresponds
to a token that appears inside a certain place in the PT-net.

On the other hand, if we start with the PT-net of Figure 1 (or with the PT-
net of Figure 2), we can obtain different “interpretations” in terms of membrane
systems. For instance, we can consider a one-membrane P system containing all
the rules corresponding to all the transitions of the PT-net without any distinc-
tion between producer, consumer and buffer. Alternatively, we can see the four
transitions in the PT-net of Figure 1 as four rules involving interactions between
four distinct cells where the passage token between places corresponds to objects
which are exchanged between these membranes. In other words, for a locally-
maximally-parallel semantics, in order to obtain the same type of behaviour,
we have to consider different membrane structures according to the particular
choice of location mapping.

Producer/Consumer in Membrane Systems and Petri Nets 51

5 Discussion

In this paper we have introduced the notion of network of cells as a model of
membrane systems suitable to capture the essential features of most variants of
cell-like P systems and tissue P systems. Specifically, for the case of cell-like P
systems, network of cells corresponds to P systems with generalised boundary
rules (Definition 1). We have then illustrated two models of producer/consumer
systems based on these variants of membrane systems.

Next, as done in [7,6], we have shown how to translate our membrane system
models into equivalent Petri nets with a corresponding semantics. In particular,
for the two models of producer/consumer systems, we have observed that the
solutions based on membrane systems proposed here are “essentially” equivalent
to the standard Petri nets representations described in [9]. In turn, this allows
us to transfer to the membrane system models the structural properties which
are formally proved in [9] and are thoroughly managed through a plethora of
tools [1] for the corresponding classes of Petri nets.

However, we want to remark some differences between membrane systems and
Petri nets, and between their relative modelling approaches. In membrane sys-
tems, one naturally reasons about components (e.g., producer, consumer, buffer)
and these are usually seen as being separate membranes (or cells). Also, one nat-
urally distinguishes between operations affecting the inner state of a membrane
and the operations involving interactions between different membranes. More-
over, in membrane systems, the inner state of a membrane can be given by an
arbitrarily large multiset; this allows us to combine cooperation at the level of
objects with interaction between different cells. Petri nets, with their graphical
notation, are centred around the idea of resources which have to be acquired
(tokens inside places) before certain actions can be taken; this facilitates the
reasoning about properties like causality (the execution of certain actions de-
pends on the execution of some others), concurrency (certain group of action
can always be executed in parallel), and conflicts (certain actions compete with
some others for the usage of certain resources); in membrane systems, these
structural properties instead remains somehow hidden in the formalism used for
representing the rules. Finally, we notice that the concept of localities in PT-
nets do not necessarily corresponds to the concept of cells (or membranes) in
membrane systems. Localities are mainly used to identify groups of transitions
which locally may be executed in a maximally parallel way; from a membrane
systems point of view, transitions in the same groups may correspond to inter-
actions involving many different cells. In fact in the PT-net model, transitions
represent both transformations occurring inside the cell and interactions with
other cells, hence the locality of a transition may not correspond to the concept
of “a transformation taking place locally in a certain cell”.

Acknowledgements

Marian Gheorghe and Francesco Bernardini are supported by the British Council
research contract PN 05.014/2006. Maurice Margenstern and Sergey Verlan are

52 F. Bernardini et al.

funded by the Égide programme Alliance 0881UG. Francesco Bernardini is also
supported by NWO, Organisation for Scientific Research of The Netherlands,
project 635.100.006 “VIEWS”.

References

1. Petri Nets World - Petri Nets Tools Database: http://www.informatik.
uni-hamburg.de/TGI/PetriNets/tools/quick.html

2. The P Systems Web Page: http://psystems.disco.unimib.it
3. Bernardini, F., Manca, V.: P systems with boundary rules. In: Păun, G., Rozen-

berg, G., Salomaa, A., Zandron, C. (eds.) WMC-CdeA 02, LNCS, vol. 2597, pp.
107–118. Springer, Heidelberg (2003)

4. Bernardini, F., Romero-Campero, F., Gheorghe, M., Pérez-Jiménez, M.: A Mod-
elling Approach Based on P Systems with Bounded Parallelism. In: Hoogeboom,
H., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361,
pp. 49–65. Springer, Heidelberg (2007)

5. Dal Zilio, S., Formenti, E.: On the Dynamics of PB Systems: A Petri Net View. In:
Mart́ın-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2003, LNCS, vol. 2933, pp. 153–167. Springer, Heidelberg (2004)

6. Kleijn, J., Koutny, M.: Synchrony and Asynchrony in Membrane Systems. In:
Hoogeboom, H., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS,
vol. 4361, pp. 66–85. Springer, Heidelberg (2007)

7. Kleijn, J., Koutny, M., Rozenberg, G.: Towards a Petri Net Semantics for Mem-
brane Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2005. LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2006)

8. Păun, Gh.: Membrane Computing. An Introduction, Springer, Heidelberg (2002)
9. Reisig, W.: Elements of Distributed Algorithms. Modelling and Analysis with Petri

Nets, Springer, Heidelberg (1998)
10. Verlan, S., Bernardini, F., Gheorghe, M., Margenstern, M.: Generalized Commu-

nicating P Systems. (Submitted 2007)

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html
http://psystems.disco.unimib.it

A Minimal Pair in the Quotient Structure M/NCup

Rongfang Bie1,� and Guohua Wu2,��

1 School of Information Science and Technology
Beijing Normal University

Beijing 100875, People’s Republic of China
rfbie@bnu.edu.cn

2 Division of Mathematical Sciences
School of Physical and Mathematical Sciences

Nanyang Technological University
Singapore 639798, Republic of Singapore

guohua@ntu.edu.sg

Abstract. In this paper, we prove the existence of a minimal pair of c.e. degrees
a and b such that both of them are cuppable, and no incomplete c.e. degree can
cup both of them to 0′. As a consequence, [a] and [b] form a minimal pair in
M/NCup, the quotient structure of the cappable degrees modulo noncuppable
degrees. We also prove that the dual of Lempp’s conjecture is true.

Keywords: Computably enumerable degrees, quotient structure, minimal pairs.

1 Introduction

Friedberg (1956) and Muchnik (1957) proved independently that there are two incom-
parable c.e. degrees. This answers Post’s question positively. Improving this, Sacks
[13,14] showed that every nonzero c.e. degree a is the joint of two incomparable c.e.
degrees and that the computably enumerable degrees are dense. After seeing this, in
1965, Shoenfield conjectured that for any finite partial orderings P ⊆ Q, with the least
element 0 and the greatest element 1, any embedding of P into R (the set of all c.e.
degrees) can be extended to an embedding of Q into R. Shoenfield also listed two
consequences of this conjecture:

C1. There are no incomparable c.e. degrees a,b such that a ∩ b (the infimum of a,b)
exists;

C2. For any c.e. degrees 0 < c < a, there is a c.e. degree b < a such that b ∪ c = a.

C1 is refuted by the existence of minimal pairs (Lachlan [7], Yates [20], indepen-
dently). Therefore, Shoenfield’s conjecture cannot be true. Here we say that two
nonzero c.e. degrees a, b form a minimal pair if a, b have infimum 0.

Say that a degree a is cappable if a is 0 or a half of a minimal pair. A degree is non-
cappable if it is not cappable. The dual notion of the cappable degrees is the cuppable

� Bie is supported by NNSF Grant No. 19931020, No. 10001006 and No. 60273015 of China.
�� Correspondence author. Wu is partially supported by a a start-up grant No. M48110008 and a

research grant No. RG58/06 from NTU.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 53–62, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

54 R. Bie and G. Wu

degrees. That is, a c.e. degree c is cuppable if there is an incomplete c.e. degree b such
that c ∪ b = 0′. C2 implies that all the nonzero c.e. degrees are cuppable, which turns
out to be wrong, because Yates and Cooper (see [3]) proved the existence of a nonzero
c.e. degree cupping no incomplete c.e. degree to 0′. In [1], Ambos-Spies, Jockusch,
Shore and Soare proved that a c.e. degree is noncappable if and only if it can be cupped
to 0′ via a low c.e. degree. An immediate consequence of this is that all the noncuppable
degrees are cappable, and hence each c.e. degree is either cappable or cuppable, which
was first proved by Harrington.

Note that all the cappable degrees and all the noncuppable degrees form ideals in R,
M and NCup respectively. It becomes interesting to study the corresponding quotient
structures: R/M , R/NCup. Schwarz provided in [15] several structural properties of
R/M . Particularly, Schwarz pointed out that Sacks splitting is true in R/M , but there
is no minimal pair in this structure. Sui and Zhang proved in [19] that C2 listed above is
true in R/M . Lempp asked in [17] whether the Shoenfield conjecture holds in R/M .
This problem was solved by Yi in [22] who claims that Shoenfield conjecture is also
not true in R/M .

Both R/M and R/NCup have the least and the greatest elements. In R/NCup, the
least element is the set of all noncuppable degrees, and the greatest element contains
only one element, 0′. It is also easy to see that in R/NCup, every nonzero element is
cuppable to the greatest element. In [10], Li, Wu and Yang proved that there is a minimal
pair in R/NCup, and hence Shoenfield conjecture does not hold in R/NCup neither.
Recently, in [11], Li, Wu and Yang prove that the diamond lattice can be embedded into
R/NCup preserving 0 and 1. The construction involves several new features.

Theorem 1. There are two c.e. degrees a and b such that a∪b = 0′ (hence [a]∪ [b] =
[0′]), and [a]∩[b] = [0], where [a], [b], [0], [0′] are the equivalence classes of a,b,0,0′

in the quotient structure R/NCup.

There are several fundamental questions left open, like whether Sacks splitting is true
in R/NCup (it is true in R/M , as proved in [15]) or whether C2 is true in R/NCup.

Since NCup is also an ideal of M , and M is a upper semi-lattice, we ask what
the quotient structure M/NCup looks like. It has a least element, but it seems that
there is no greatest element in this structure. If a is a c.e. degree, from now on, we
use [a] to denote the equivalence class in M/NCup containing a. Thus, [0] is the set
of all noncuppable degrees. In this paper, we first prove that there is a minimal pair in
M/NCup.

Theorem 2. There are two cuppable c.e. degrees a and b such that a and b form a
minimal pair in the c.e. degrees and [a], [b] form a minimal pair in M/NCup.

Thus, Shoenfield Conjecture is not true in M/NCup. The following is the crucial step
to prove Theorem 2.

Theorem 3. There are two cuppable degrees a and b such that a and b form a minimal
pair and that no incomplete c.e. degree can cup both a and b to 0′.

The strategy to ensure that no incomplete c.e. degree can cup both a and b to 0′ is
different from the one provided in [10]. We will outline the proof of Theorem 3 in
Section 2.

A Minimal Pair in the Quotient Structure M/N Cup 55

We prove now that a and b degrees provided in Theorem 3 are exactly the ones we
want in Theorem 2. Since a and b are both cuppable and cappable, [a], [b] are nonzero
elements in M/NCup. To prove that [a] ∩ [b] = [0], suppose for a contradiction that
there is a c.e. degree c such that [0] < [c] ≤ [a], [b]. Then c is cuppable, and we assume
that c ∪ w = 0′ with w < 0′. Since [c] ≤ [a], [b], there are noncuppable degrees m1,
m2 such that c ≤ a ∪ m1, c ≤ b ∪ m2, and hence, a ∪ m1 ∪ m2 ∪ w = 0′,
b ∪ m1 ∪ m2 ∪ w = 0′. Let v = m1 ∪ m2 ∪ w. Then v cups both a and b to 0′.
According to Theorem 3, v = m1 ∪ m2 ∪ w is complete. Since both m1,m2 are
noncuppable, w = 0′. A contradiction. This completes the proof of Theorem 2.

The existence of noncappable degrees was first proved by Yates in [21], and this ex-
istence enables us to prove that any nonzero c.e. degree c bounds a cappable degree.
To see this, we consider two cases. If c itself is cappable, then we are done since cap-
pable degrees are downwards closed. Otherwise, let a be any cappable degree. Since
c is assumed to be noncappable, there is a nonzero c.e. degree b below both a and c,
and hence b is cappable. An almost the same argument proves that any nonzero non-
cappable degree bounds a minimal pair. Hence, Lachlan’s nonbounding degrees are all
cappable.

Li and Wang (see Li [9]) proved that it is impossible to take the nonuniformity in
the previous argument away. The nature behind this nonuniformity is that the direct
permitting method and the minimal pair construction are not consistent. In 1996, Lempp
raised the following conjecture:

Conjecture 1. (Lempp, see Slaman [17]) For any c.e. degrees a,b with a �≤ b, there
is a cappable degree c ≤ a such that c �≤ b.

Li refuted Lempp’s conjecture in [9] by constructing c.e. degrees a,b with a �≤ b such
that any cappable degree below a is also below b.

Unlike the cappable degrees, not every nonzero c.e. degree bounds noncuppable de-
grees and such degrees are called plus-cupping degrees1. However, it is true that above
any incomplete c.e. degree, there is an incomplete cuppable degree. We can prove this
as follows: let c be a given incomplete c.e. degree. The case when c itself is cuppable
is trivial. If c is noncuppable, then let a be any incomplete cuppable degree, then a ∪ c
is also incomplete and cuppable. We will provide a uniform construction in Theorem 4.

In [5], Downey and Lempp considered the dual notion of the plus-cupping degrees,
the plus-capping degrees and proved that no plus-capping degrees exist. In this paper,
we prove that the dual of Lempp conjecture is true.

Theorem 4. For any incomplete c.e. degrees a,b with a �≥ b, there is an incomplete
cuppable degree c > a such that c �≥ b.

The proof of Theorem 4 employs Sacks coding strategy, Sacks preservation strategy,
and splitting 0′ into c and e. While we will make c > a, we will not require that e is
above a (Harrington’s nonsplitting theorem says that we cannot do this), which leaves

1 Harrington’s original notion of plus-cupping degrees is even stronger: a is plus-cupping, in the
sense of Harrington, if for any c.e. degrees b, c, if 0 < b ≤ a ≤ c, there is a c.e. degree e
below c cupping b to c. The notion given in this paper was given by Fejer and Soare in [6].

56 R. Bie and G. Wu

enough space for us to combine the splitting strategy with the Sacks coding strategy.
We will outline the proof of Theorem 4 in Section 3.

Our notation and terminology are standard and generally follow Cooper [4] and
Soare [18].

2 Proof of Theorem 3

In this section, we give the outline of the proof of Theorem 3. We will construct in-
complete c.e. sets A, B, C, D, E, F and p.c. functionals Γ , Δ to satisfy the following
requirements:

G : K = Γ A,C ;
H : K = ΔB,D;
Pe : E �= ΦC

e ;
Qe : E �= ΦD

e ;
Re : ΦA

e = ΦB
e = f is total ⇒ f is computable;

Se : ΦA,W
e = ΨB,W

e = K ⊕ F ⇒ W ≥T K;

where e ∈ ω, {(Φe, Ψe, We) : e ∈ ω} is an effective enumeration of triples (Φ, Ψ, W),
Φ, Ψ p.c. functionals, W a c.e. set. K is a fixed creative set.

It is easy to see that the P , Q-requirements ensure that C and D are incomplete, thus,
by the G, H-requirements, both A and B are cuppable. The R-requirements ensure that
A and B form a minimal pair, and the S-requirements ensure that no incomplete c.e.
set can cup both A and B to K . Therefore, A and B are exactly the sets Theorem 3
requires.

2.1 The G and H-Strategies

The G and H-strategies will be dedicated to the construction of the functionals Γ , Δ
respectively, which will reduce K to A ⊕ C and B ⊕ D. As the constructions of Δ and
Γ are the same, we only describe the construction of Γ , which will be defined such that
for any x, Γ A,C(x) is defined and equals to K(x).

Let {Ks}s∈ω be a recursive enumeration of K . Γ will be defined by stages as fol-
lows: at stage s,

1. If there are xs such that Γ A,C(x)[s] ↓�= Ks(x), then let k be the least such x,
enumerate γ(k) into C, and let Γ A,C(x) be undefined for all x ≥ k.

2. Otherwise, let k be the least number x such that Γ A,C(x)[s] is not defined, then
define Γ A,C(k)[s] = Ks(k) with γ(k)[s] a fresh number.

The G-strategy (and H-strategy) has the highest priority, in the sense that at any
time, a number x enters K will require us to put a number ≤ γ(x) (≤ δ(x)) into C (D
respectively) immediately, and no other strategies can stop, or even delay, such actions.

We note that the G-strategy itself never enumerates any element into C. In the con-
struction, from time to time, we need to enumerate certain γ-markers into A to lift the
γ-uses, in order to prevent the P -strategies from being injured by the G-strategy.

A Minimal Pair in the Quotient Structure M/N Cup 57

Returning to the construction of Γ , we will ensure that the corresponding γ-use
function to have the following basic properties:

1. For any k, s, if Γ A,C(k)[s] is defined, then γ(k)[s] �∈ As ∪ Cs;
2. For any x, y, if x < y, and γ(y)[s] is defined, then γ(x) is also defined at this stage,

and γ(x)[s] < γ(y)[s];
3. Whenever we define γ(k), we define it as a fresh number, the least number bigger

than any number being used so far;
4. Γ A,C(x) is undefined at stage s iff at this stage, there is an y ≤ x such that γ(y) is

enumerated into A or C.

If Γ is constructed as total, the (1) – (4) above will ensure that Γ A,C = K and G is
satisfied.

2.2 The P and Q-Strategies

All the P and Q-strategies will ensure that C and D are not complete. Again, since the
Q-strategies are the same as the P -strategies, we only describe how the P -strategies are
satisfied.

A single P -strategy, Pe say, will be devoted to find an x such that C(x) �= ΦE
e (x). It is

a variant of the Friedberg-Muchnik strategy, modified to cooperate with the G-strategy
(later in the S-strategies, we will see how to modify a P -strategy to work consistently
with the S-strategies). Recall that the G-strategy always enumerates the γ-markers into
C, but it may happen that a P -strategy wants to preserve a computation ΦC

e (x), but
the G-strategy wants to put a small number into C or A to code K . If we enumerate
such a number into C, this enumeration can change the computation ΦC

e (x). With this
in mind, when a P -strategy wants to preserve a computation ΦC

e (x), we enumerate a
small number into A first, to lift up the γ-uses, to make sure that the computation ΦC

e (x)
will not be changed by the G-strategy. A P -strategy works as follows:

1. Choose k, as a fresh number. Whenever a number n ≤ k enters K , go to 2.
2. Appoint a witness, x > k say as a fresh number.
3. Wait for a stage s at which ΦC

e (x)[s] ↓= 0.
4. Enumerate γ(k)[s] into A and x into E, and stop.

By x > k, the enumeration of γ(k)[s] into A lifts all γ(n), (n ≥ k), to big numbers
and so, if after stage s, no n ≤ k enters K , then since every γ(n) with n ≥ k is defined
as big numbers after stage s, ΦC

e (x) is protected from the enumeration of the G-strategy.
Therefore,

ΦC
e (x) = ΦC

e (x)[s] = 0 �= 1 = Es+1(x) = E(x).

Pe is satisfied.
Now consider the case when some n ≤ k enters K , at stage s′ > s say. Then at

this stage, γ(n)[s′], which may be less than ϕe(x)[s], is enumerated into C, according
to the G-strategy. This enumeration can change the computation ΦC

e (x). If so, we go
to 2 by choosing another witness for Pe, since ΦC

e (x) may converge later to 1, and
we cannot obtain a disagreement between E and ΦC

e at x. Such a process can happen
at most k many times, and after the last time, when ΦC

e (x′) converges to 0 again, we

58 R. Bie and G. Wu

enumerate γ(k)[s] and x′ into C, and the computation of ΦC
e (x′) can never be injured

by the G-strategy afterwords, and Pe is satisfied forever.
As usual, we call the parameter k above the “killing point” of this P -strategy. When

a number ≤ k enters K , then we reset this strategy by invalidating all of the parameters
we have defined, except k. As discussed above, since k is fixed, this strategy can be
reset at most k + 1 many times.

2.3 The R-Strategies

There is no conflict between the G, H-strategies (coding K into A⊕C and B ⊕D) and
the R-strategies since in general, we only put the γ, δ-markers into C and D to rectify
Γ and Δ, and we only put numbers into A or B when a P strategy or Q-strategy acts.
This is consistent with the minimal pair construction.

2.4 The S-Strategies

In the following, we describe how to make the P , Q-strategies work consistently with
the G, H and the S-strategies. First, an S-strategy will construct a p.c. function Θ such
that if ΦA,W

e = ΨB,W
e = K ⊕ F is true, then ΘW will be totally defined and compute

K correct.
Let α be an Se strategy. First we define the length agreement function as follows:

Definition 1. (1) �(α, s) = max{x : for all y < x, ΦA,W
e (y)[s] = ΨB,W

e (y)[s] =
Ks ⊕ Fs(y)}; (2) m(α, s) = max{0, �(α, t) : t < s and t is an α-stage}.

Say that s is α-expansionary if s = 0 or �(α, s) > m(α, s) and s is an α-stage. Θ is
defined at the α-expansionary stages. That is, for a particular n, if ΘW (n) is not defined
at stage s, and �(α, s) > 2n, then we define ΘW (n)[s] = Ks(n) with use θs(n) = s.
After ΘW (n) is defined, only W ’s changes below ϕe(n)[s] or ψe(n)[s] can redefine
ΘW (n) with a new use.

The trouble is that we can enumerate numbers into A and B, by P and Q-strategies,
respectively, and can lift the uses ϕe(n) and ψe(n) to bigger numbers (bigger than s).
Now W may change below these new uses (but above s), and at the next α-expansionary
stage, we can see that n enters K , and both ΦA,W

e (2n) and ΨB,W
e (2n) converge and

equal to K(n) = 1. However, since W has not change below s, ΘW (n) is kept defined
as 0. Thus ΘW is wrong at n, and we should avoid such a scenario.

We apply a strategy of constructing the noncuppable degrees to get around of this
problem. That is, before we enumerate a number into A or B, we first enumerate ap-
propriate numbers into F to force W to change on small numbers, so that the trouble
situation we described above will never happen. In the construction of noncuppable
degrees, we need to satisfy the following requirements:

ΦA,W = K ⊕ F ⇒ ∃Γ (Γ A = K).

To be consistent with this kind of the requirements, when a P -strategy chooses x as an
attacker, at stage s0 say, to make A not computable, it also chooses z, and at the next
expansionary stage (we measure the length of agreement between ΦA,W and K ⊕ F

A Minimal Pair in the Quotient Structure M/N Cup 59

at each stage, and we say a stage is expansionary, if the length of agreement is bigger
than previous ones and also bigger than 2z + 1), we allow the definition of Γ to be
extended. Now suppose we want to put a number x into A, what we do first is to put
z into F , and wait for the next expansionary stage, which will provides W -changes on
numbers small enough to undefine all Γ (m) defined after stage s0. We only put x into
A after W has such changes, that is, after we say the next expansionary stage.

In our argument, we will do almost the same thing. Let β be a P -strategy (for
Q-strategies, the same, except that we will put δ(k) into B), and suppose that β ⊃
αn ⊇ αn−1 ⊇ · · · α1 ⊇ α0, where αn, αn−1, · · · , α1, α0 are the S-strategy with
priority higher than β. Then, β first defines its “killing point” k and then its attackers
x0, x1, · · · , xk, and an auxiliary number z0, z1, · · · , zk. Suppose β does this at stage s0.
Now, for each i ≤ n, we say that a stage s is αi-expansionary if the length of agreement

between Φ
A,Wαi
αi , Ψ

B,Wαi
αi and K ⊕F is greater than 2zj +1 for each j with 0 ≤ j ≤ k.

When β finds that ΦC
β (xk) converges to 0 for the first time, at stage s1 say, then β

puts xk into E, γ(k) into A immediately, to lift γ(k) to a big number, and puts zk into
F , and for each i, wait for the next αi-expansionary stage. β itself is satisfied, unless
β is reset because of changes of K below k (if so, we wait for such a stage s1 again,
but with xk and zk replaced with xk−1 and zk−1 respectively). Now consider those αi-
strategies. Fix i, and assume that s2 is the next αi-expansionary stage. Then between
stages s1 and s2, no small numbers are enumerated into B, and hence we must have a
change of the corresponding Wαi on some small numbers. It means that between stages
s1 and s2, all of the Θαi defined by αi after stage s0 are undefined, and therefore, Θ
can be redefined correctly. βs action is consistent with these αi strategies.

This completes the basic ideas of proof of Theorem 3. We can now implement the
whole construction by a tree argument.

3 Proof of Theorem 4

Given c.e. sets A, B with A �≥T B, we will construct c.e. sets C and E, and a partial
computable functional Γ , to satisfy the following requirements:

G : K = Γ C,E;
Pe : C �= ΦE

e ;
Qe : C �= ΦA

e ;
Re : B �= ΦA,C

e ;

where e ∈ ω, {Φe : e ∈ ω} is an effective enumeration of p.c. functionals Φ, and K is
a fixed creative set.

Note that the G and P -strategies ensure that C and hence A ⊕ C is cuppable, while
the Q-strategies ensure that A ⊕ C is strictly above A, and the R-strategies ensure that
A ⊕ C is incomplete.

We have seen in Section 2 how to make the P , Q-strategies consistent with the G,
H-strategies respectively.

3.1 The Q-Strategies

All the Q-strategies ensure that C is not reducible to A, and a single Q-strategy is
exactly the Sacks coding strategy. That is, a single Q-strategy will run (infinitely) many

60 R. Bie and G. Wu

cycles, i, each of which will choose a witness xi, with the purpose of making C(xi) �=
ΦA

e (xi), and all these cycles will define a p.c. functional Δ to threaten the assumption
that A is incomplete. If a cycle i fails to make C(xi) �= ΦA

e (xi), then this cycle will
code K(i) into A via Δ. A cycle i works as follows:

1. Choose xi as a fresh number.
2. Wait for a stage s such that ΦA

e (xi)[s] converges to 0.
3. Define ΔA(i)[s] = Ks(i) with use δ(i) = ϕe(i)[s]. If A changes below δ(i) before

5, then go back to 2.
4. Start cycle i + 1 and wait for K(i) to change.
5. Enumerate xi into C.
6. Wait for A to change below δ(i).
7. Define ΔA(i) = K(i) = 1 with use δ(i) = −1 and start cycle i + 1. In this case,

the A-changes will undefine ΔA(j) for each j ≥ i.

If cycle i waits at 2 forever, then ΦA
e (xi) does not converge to 0 and hence C(xi) =

0 �= ΦA
e (xi) and Qe is satisfied. In this case, cycle does not care whether ΔA(i) is defined,

since this cycle can satisfy the Qe requirement directly, in stead of relying on ΔA.
If cycle i waits at 6 forever, then ΦA

e (xi) does converge to 0, C(xi) = 1 �= 0 =
ΦA

e (xi) and hence Qe is again satisfied. In this case, cycle i does not care whether
ΔA(i) computes K(i) correctly neither.

If cycle i waits at 4 forever or 7 happens, then ΔA(i) is defined and equals to K(i).
In these two cases, cycle i cannot satisfy Qe, but succeed in defining ΔA(i) = K(i).

Without loss of generality, suppose that no cycle waits at 2 or 6 forever. If every
cycle eventually waits at 4 or 7 permanently, then for each i, ΔA(i) is defined and
equals to K(i), and hence K = ΔA, and A is complete. A contradiction. Therefore,
there are cycles going from 4 back to 2 infinitely often, which makes ΔA(i) undefined.
However, in this case, ΦA

e (xi) diverges, which shows that ΦA
e (xi) �= C(xi), and Qe is

satisfied again.

3.2 The R-Strategies

All the R-strategies will ensure that B is not reducible to A ⊕ C. From this we can see
that A ⊕ C is incomplete, and hence, the Q and the R strategies will ensure that A ⊕ C
is strictly between A and K .

A single Q-strategy is simply the Sacks preservation strategy, which also runs (in-
finitely) many cycles, to define a partial function Θ to threaten B �≤T A. Fix i. Cycle i
works as follows:

1. Wait for a stage s such that ΦA,C
e (i)[s] ↓= Bs(i).

2. Put a restraint on C to prevent small numbers being enumerated into C, to preserve
the computation ΦA,C

e (i). Define ΘA(i)[s] = Bs(i) with use δs(i) = ϕe,s(i). Start
cycle i + 1.

3. Wait for A to change below ϕe,s(i) or B to change at i.
4. If A changes first, then go back to 1. In this case, ΘA(i) is undefined, and all cycles

after i are canceled.

A Minimal Pair in the Quotient Structure M/N Cup 61

5. If B changes at i first, then we get a temporary disagreement between ΦA,C
e (i) and

B(i). Again, wait for A to change below ϕe,s(i).
5a. If A never changes, then we will have ΦA,C

e (i) = 0 �= 1 = B(i), and Re is
satisfied.

5b. Otherwise, go back to 1. In this case, the A-changes also undefine ΘA(j) for
all j ≥ i.

If cycle i goes back from 4 or 5b to 1 infinitely often, then ΘA(i) is not defined.
However, in this case, ΦA,C

e (i) diverges and hence, ΦA,C
e (i) �= B(i). If cycle i waits at

1 or 5a forever, then ΦA,C
e (i) �= Bs(i) is again true. In any case, Re is satisfied. If cycle

i waits at 3 forever from some stage on, then ΘA(i) is defined and equals to B(i).
Because B �≤T A, it cannot be true that every cycle would wait at 3 forever. Suppose

i is the least such cycle. Then as discussed above, Re is satisfied since ΦA,C
e (i) �= B(i).

This completes the description of the basic strategies to prove Theorem 4. The whole
construction can proceed on a priority tree.

References

1. Ambos-Spies, K., Jockusch Jr., C.G., Shore, R.A., Soare, R.I.: An algebraic decomposition
of the recursively enumerable degrees and the coincidence of several degree classes with the
promptly simple degrees. Trans. Amer. Math. Soc. 281, 109–128 (1984)

2. Cooper, S.B.: Minimal pairs and high recursively enumerable degrees. J. Symbolic Logic 39,
655–660 (1974)

3. Cooper, S.B.: On a theorem of C. E. M. Yates. Handwritten notes (1974)
4. Cooper, S.B.: Computability Theory, Chapman & Hall/CRC Mathematics, Boca Raton, FL,

New York, London (2004)
5. Downey, R., Lempp, S.: There is no plus-capping degree. Arch. Math. Logic 33, 109–119

(1994)
6. Fejer, P.A., Soare, R.I.: The plus-cupping theorem for the recursively enumerable degrees.

In: Logic Year 1979–80: University of Connecticut, pp. 49–62 (1981)
7. Lachlan, A.H.: Lower bounds for pairs of recursively enumerable degrees. Proc. London

Math. Soc. 16, 537–569 (1966)
8. Lachlan, A.H.: Bounding minimal pairs. J. Symb. Logic 44, 626–642 (1979)
9. Li, A.: On a conjecture of Lempp. Arch. Math. Logic 39, 281–309 (2000)

10. Li, A., Wu, G., Yang, Y.: On the quotient structure of computably enumerable degrees mod-
ulo the noncuppable ideal. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS,
vol. 3959, pp. 731–736. Springer, Heidelberg (2006)

11. Li, A., Wu, G., Yang, Y.: Embed the diamond lattice into R/NCup preserving 0 and 1. In
preparation

12. Miller, D.: High recursively enumerable degrees and the anticupping property. In: Logic Year
1979–80: University of Connecticut, pp. 230–245 (1981)

13. Sacks, G.E.: On the degrees less than 0́. Ann. of Math. 77, 211–231 (1963)
14. Sacks, G.E.: The recursively enumerable degrees are dense. Ann. of Math. 80, 300–312

(1964)
15. Schwarz, S.: The quotient semilattice of the recursively enumerable degrees modulo the cap-

pable degrees. Trans. Amer. Math. Soc. 283, 315–328 (1984)
16. Shoenfield, J.R.: Applications of model theory to degrees of unsolvability. In: Addison, J.W.,

Henkin, L., Tarski, A. (eds.) The Theory of Models, Proceedings of the 1963 International
Symposium at Berkeley, Studies in Logic and the Foundations of Mathematics, pp. 359–363.
Holland Publishing, Amsterdam (1965)

62 R. Bie and G. Wu

17. Slaman, T.: Questions in recursion theory. In: Cooper, S.B., Slaman, T.A., Wainer, S.S. (eds.)
Computability, enumerability, unsolvability. Directions in recursion theory. London Mathe-
matical Society Lecture Note Series, vol. 224, pp. 333–347. Cambridge University Press,
Cambridge (1996)

18. Soare, R.I.: Recursively Enumerable Sets and Degrees. Perspective in Mathematical Logic,
Springer-Verlag, Berlin, Heidelberg, New York

19. Sui, Y., Zhang, Z.: The cupping theorem in R/ M. J. Symbolic Logic 64, 643–650 (1999)
20. Yates, C.E.M.: A minimal pair of recursively enumerable degrees. J. Symbolic Logic 31,

159–168 (1966)
21. Yates, C.E.M.: On the degrees of index sets. Trans. Amer. Math. Soc. 121, 309–328 (1966)
22. Yi, X.: Extension of embeddings on the recursively enumerable degrees modulo the cap-

pable degrees. In: Computability, enumerability, unsolvability, Directions in recursion theory
(eds. Cooper, Slaman, Wainer), London Mathematical Society Lecture Note Series 224, pp.
313–331

Constructive Dimension and

Weak Truth-Table Degrees

Laurent Bienvenu1, David Doty2, and Frank Stephan3,�

1 Laboratoire d’Informatique Fondamentale de Marseille, Université de Provence,
39 rue Joliot-Curie, 13453 Marseille Cedex 13, France

laurent.bienvenu@lif.univ-mrs.fr
2 Department of Computer Science, Iowa State University, Ames, IA 50011, USA

ddoty@iastate.edu
3 School of Computing and Department of Mathematics, National University of

Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
fstephan@comp.nus.edu.sng

Abstract. This paper examines the constructive Hausdorff and packing
dimensions of weak truth-table degrees. The main result is that every
infinite sequence S with constructive Hausdorff dimension dimH(S) and
constructive packing dimension dimP(S) is weak truth-table equivalent
to a sequence R with dimH(R) ≥ dimH(S)/dimP(S) − ε, for arbitrary
ε > 0. Furthermore, if dimP(S) > 0, then dimP(R) ≥ 1−ε. The reduction
thus serves as a randomness extractor that increases the algorithmic
randomness of S, as measured by constructive dimension.

A number of applications of this result shed new light on the con-
structive dimensions of wtt degrees (and, by extension, Turing degrees).
A lower bound of dimH(S)/dimP(S) is shown to hold for the wtt degree
of any sequence S. A new proof is given of a previously-known zero-
one law for the constructive packing dimension of wtt degrees. It is also
shown that, for any regular sequence S (that is, dimH(S) = dimP(S))
such that dimH(S) > 0, the wtt degree of S has constructive Hausdorff
and packing dimension equal to 1.

Finally, it is shown that no single Turing reduction can be a universal
constructive Hausdorff dimension extractor.

Keywords: constructive dimension, weak truth-table, extractor, degree,
randomness.

1 Introduction

Hausdorff [5] initiated the study of dimension as a general framework to define
the size of subsets of metric spaces. Recently this framework had been effec-
tivized; Lutz [9] gives an overview of this historical development. Furthermore,
Lutz [8, Section 6] reviews early results that anticipated the effectivization of
Hausdorff dimension. Constructive Hausdorff dimension was defined by Lutz
[8] to study effective dimension at the level of computability theory. Intuitively,
� Corresponding author.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 63–72, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

64 L. Bienvenu, D. Doty, and F. Stephan

given an infinite binary sequence S – interpreted as a language or decision prob-
lem – the constructive Hausdorff dimension dimH(S) of S is a real number in the
interval [0,1] indicating the density of algorithmic randomness of the sequence.
The constructive Hausdorff dimension of a class C of sequences is the supremum
of the dimensions of individual sequences in C. For many classes C of interest
in computability theory, the problem of determining the constructive Hausdorff
dimension of C remains open.

Reimann [14] investigated in particular whether there are degrees of frac-
tional constructive Hausdorff dimension. Stated in terms of individual sequences,
Reimann asked which reducibilities (such as Turing, many-one, weak truth-table,
etc.) are capable of increasing the constructive Hausdorff dimension of a se-
quence. We call such a reduction a dimension extractor, since its purpose bears
a resemblance to that of the randomness extractors of computational complexity
[18], which are algorithms that turn a source of weak randomness (a probabilis-
tic source with low entropy) into a source of strong randomness (a source with
high entropy). Viewing a sequence with positive, but still fractional, constructive
Hausdorff dimension as a weak source of randomness, Reimann essentially asked
whether such randomness can be extracted via a reduction to create a sequence
with dimension closer to 1. If such extraction is not possible for some sequence S,
this indicates that the degree of S under the reduction has fractional dimension.

A number of negative results for dimension extractors are known. Reimann
and Terwijn [14, Theorem 3.10] proved that there are many-one and bounded
truth-table degrees with constructive Hausdorff dimension strictly between 0
and 1. Later Reimann and Slaman [15] extended this result to truth-table de-
grees. Stephan [20] showed that there is a relativized world in which there exists
a wtt degree of constructive Hausdorff dimension between 1

4 and 1
2 . Further-

more, Nies and Reimann [11] obtained a non-relativized variant of this result
and constructed, for each rational α between 0 and 1, a wtt degree of construc-
tive Hausdorff dimension α.

Doty [3] attempted positive results and considered the interaction between
constructive Hausdorff dimension and constructive packing dimension [1], a dual
quantity that is a constructive effectivization of classical packing dimension
[21,22], another widely-studied fractal dimension. The constructive packing di-
mension dimP(S) of a sequence S always obeys

0 ≤ dimH(S) ≤ dimP(S) ≤ 1,

with each inequality tight in the strong sense that there are sequences S in which
dimH(S) and dimP(S) may take on any values obeying the stated constraint.
Doty showed that every sequence S with dimH(S) > 0 is Turing equivalent to
a sequence R with dimP(R) ≥ 1 − ε, for arbitrary ε > 0. This implies that the
constructive packing dimension of the Turing degree of any sequence S with
dimH(S) > 0 is equal to 1. Unfortunately, since dimH(R) ≤ dimP(R), this Tur-
ing reduction constitutes a weaker example of a dimension extractor than that
sought by Reimann and it tells us nothing of the constructive dimensions of
arbitrary Turing degrees.

Constructive Dimension and Weak Truth-Table Degrees 65

We obtain in the current paper stronger positive results for constructive di-
mension extractors. Our main result, in section 2, is that, given any infinite
sequence S and ε > 0, there exists R ≡wtt S such that dimH(R) ≥ dimH(S)

dimP(S) − ε

and, if dimP(S) > 0, then dimP(R) ≥ 1 − ε. This has immediate consequences
for the dimensions of weak truth-table degrees:

– Given any sequence S, dimH(degwtt(S)) ≥ dimH(S)
dimP(S) .

– If dimP(S) > 0, then dimP(degwtt(S)) = 1, implying that every wtt degree
has constructive packing dimension 0 or 1.

– Given any regular sequence S such that dimH(S) > 0, dimH(degwtt(S)) = 1,
where a sequence S is regular if it satisfies dimH(S) = dimP(S).

In section 3, we use Theorem 2.1 to show that, for every α > 0, there is no
universal Turing reduction that is guaranteed to extract dimension from all
sequences of dimension at least α.

Before going into the details of the results, we introduce the concepts and
notations formally.

Notation. We refer the reader to the textbooks of Li and Vitányi [6] for an
introduction to Kolmogorov complexity and algorithmic information theory and
of Odifreddi [13] and Soare [19] for an introduction to computability theory.
Although we follow mainly the notation in these books, we nevertheless want to
remind the reader on the following definitions, either for the readers’ convenience
or because we had to choose between several common ways of denoting the
corresponding mathematical objects.

All logarithms are base 2. N denotes the set {0, 1, 2, 3, . . .} of the natural num-
bers including 0. {0, 1}∗ denotes the set of all finite, binary strings. For all x ∈
{0, 1}∗, |x| denotes the length of x. λ denotes the empty string. C = {0, 1}∞ de-
notes the Cantor space, the set of all infinite, binary sequences. For x ∈ {0, 1}∗
and y ∈ {0, 1}∗ ∪C, xy denotes the concatenation of x and y, x � y denotes that
x is a prefix of y (that is, there exists u ∈ {0, 1}∗∪C such that xu = y) and x � y
denotes that x � y and x �= y. For S ∈ {0, 1}∗∪C and i, j ∈ N, S[i] denotes the ith

bit of S, with S[0] being the leftmost bit, S[i . . j] denotes the substring consisting
of the ith through jth bits of S (inclusive), with S[i . . j] = λ if i > j.

Reductions and Compression. Let M be a Turing machine and S ∈ C. We say M
computes S if M on input n ∈ N (written M(n)), outputs the string S[0 . . n−1].
We define an oracle Turing machine to be a Turing machine M that can make
constant-time queries to an oracle sequence and we let OTM denote the set of
all oracle Turing machines. For R ∈ C, we say M operates with oracle R if,
whenever M makes a query to index n ∈ N, the bit R[n] is returned. We write
MR to denote the oracle Turing machine M with oracle R.

Let S, R ∈ C and M ∈ OTM. We say S is Turing reducible to R via M and
we write S ≤T R via M , if MR computes S (that is, if MR(n) = S[0 . . n−1]
for all n ∈ N). In this case, write R = M(S). We say S is Turing reducible to R
and we write S ≤T R, if there exists M ∈ OTM such that S ≤T R via M . We

66 L. Bienvenu, D. Doty, and F. Stephan

say S is Turing equivalent to R, and we write S ≡T R, if S ≤T R and R ≤T S.
The Turing lower span of S is spanT(S) = { R ∈ C | R ≤T S } and the Turing
degree of S is degT(S) = { R ∈ C | R ≡T S }.

Let S, R ∈ C and M ∈ OTM such that S ≤T R via M . Let the notion
#(MR, S[0 . . n−1]) denote the query usage of MR on S[0 . . n−1], the number
of bits of R queried by M when computing the string S[0 . . n−1].1 We say S
is weak truth-table (wtt) reducible to R via M and we write S ≤wtt R via M , if
S ≤T R via M and there is a computable function q : N → N such that, for all
n ∈ N, #(MR, S[0 . . n−1]) ≤ q(n). Define S ≤wtt R, S ≡wtt R, spanwtt(S) and
degwtt(S) analogously to their counterparts for Turing reductions. Define

ρ−M (S, R) = lim inf
n→∞

#(MR, S[0 . . n−1])
n

,

ρ+
M (S, R) = lim sup

n→∞
#(MR, S[0 . . n−1])

n
.

Viewing R as a compressed version of S, ρ−M (S, R) and ρ+
M (S, R) are respectively

the best- and worst-case compression ratios as M decompresses R into S. Note
that 0 ≤ ρ−M (S, R) ≤ ρ+

M (S, R) ≤ ∞.

The following lemma is useful when one wants to compose two reductions:

Lemma 1.1. [2] Let S, S′, S′′ ∈ C and M1, M2 ∈ OTM such that S′ ≤T S via
M1 and S′′ ≤T S′ via M2. There exists M ∈ OTM such that S′′ ≤T S via M and:

ρ+
M (S′′, S) ≤ ρ+

M2
(S′′, S′)ρ+

M1
(S′, S).

ρ−M (S′′, S) ≤ ρ−M2
(S′′, S′)ρ+

M1
(S′, S).

ρ−M (S′′, S) ≤ ρ+
M2

(S′′, S′)ρ−M1
(S′, S).

(The last bound is not explicitly stated in [2], but it holds for the same reason
as the second one).

For S ∈ C, the lower and upper Turing compression ratios of S are respectively
defined as

ρ−(S) = min
R∈C

M∈OTM

{
ρ−M (S, R)

∣∣ S ≤T R via M
}

,

ρ+(S) = min
R∈C

M∈OTM

{
ρ+

M (S, R)
∣
∣ S ≤T R via M

}
.

Doty [2] showed that the above minima exist. Note that 0 ≤ ρ−(S) ≤ ρ+(S) ≤ 1.

Constructive Dimension. Lutz [8] gives an introduction to the theory of construc-
tive dimension. We use Mayordomo’s characterization [10] of the constructive

1 If we instead define #(MR, S[0 . . n−1]) to be the index of the rightmost bit of R
queried by M when computing S[0 . . n−1], all results of the present paper still hold.

Constructive Dimension and Weak Truth-Table Degrees 67

dimensions of sequences. For all S ∈ C, the constructive Hausdorff dimension
and the constructive packing dimension of S are respectively defined as

dimH(S) = lim inf
n→∞

C(S[0 . . n−1])
n

and dimP(S) = lim sup
n→∞

C(S[0 . . n−1])
n

,

where C(w) denotes the Kolmogorov complexity of w ∈ {0, 1}∗ (see [6]). If
dimH(S) = dimP(S), we say S is a regular sequence. Doty [2] showed that,
for all S ∈ C, ρ−(S) = dimH(S) and ρ+(S) = dimP(S).

For all X ⊆ C, the constructive Hausdorff dimension and the constructive
packing dimension of X are respectively defined as

dimH(X) = sup
S∈X

dimH(S) and dimP(X) = sup
S∈X

dimP(S).

2 Constructive Dimension Extractors

Nies and Reimann [11] showed that wtt reductions cannot always extract con-
structive dimension.

Theorem 2.1 (Nies and Reimann [11]). For every rational number α with
0 < α < 1, there exists a sequence S ∈ C such that, for all wtt reductions M ,
dimH(M(S)) ≤ dimH(S) = α.

Ryabko [16,17] discovered the next theorem.

Theorem 2.2 (Ryabko [16,17]). For all S ∈ C and δ > 0, there exists R ∈ C
and Nd ∈ OTM such that

1. S ≤T R via Nd and R ≤T S.
2. ρ−Nd

(S, R) ≤ dimH(S) + δ.

The following theorem was shown in [2].

Theorem 2.3 (Doty [2]). There is an oracle Turing machine Md such that,
for all S ∈ C, there exists R ∈ C such that

1. S ≤wtt R via Md.
2. ρ−Md

(S, R) = dimH(S).
3. ρ+

Md
(S, R) = dimP(S).

The following theorem, which is similar to Ryabko’s Theorem 2.2, shows that
the decoding machine Md of Theorem 2.3 can also be reversed if the compression
requirements are weakened.

Theorem 2.4. Let Md be the oracle Turing machine from Theorem 2.3. For all
δ > 0, there is an oracle Turing machine Me such that, for all S ∈ C, there is
a sequence R′ ∈ C such that

1. S ≤wtt R′ via Md and R′ ≤wtt S via Me.
2. ρ+

Md
(S, R′) ≤ dimP(S) + δ.

68 L. Bienvenu, D. Doty, and F. Stephan

Proof. Let S ∈ C and choose R for S as in Theorem 2.3. Let δ > 0 and let
D ∈ (dimP(S), dimP(S) + δ) be rational. By Theorem 2.3, there exists n0 ∈ N

such that, for all n ≥ n0, #(MR
d , S[0 . . n−1]) < Dn.

Me will make use of the oracle Turing machine Md. The proof of Theorem 2.3
in [2] shows that Md has the following useful properties. First, write S =
s1s2s3 . . . and R = r1r2r3 . . ., where each si, ri ∈ {0, 1}∗ are blocks such that
|si| = i and |ri| ≤ |si| + o(|si|).

– Md computes S from R in stages, where it outputs the block si on the ith

stage.
– Assuming that Md has already computed s1 . . . si, Md uses only the block

ri+1 and the prefix s1 . . . si to compute si+1.

Because of these properties, we can use Md to search for a sequence R′ that
satisfies requirements 1 and 2 in the statement of Theorem 2.4. By Theorem 2.3,
R satisfies these requirements, so such an R′ will exist. By the above two prop-
erties of Md, if we find a string r′ = r′1 . . . r′i that satisfies requirements 1 and
2 (in the sense described below), we will always be able to find an extension
r′′ = r′i+1 . . . r′j (for some j > i) such that r′r′′ continues to satisfy the require-
ments. It will not matter if r′ �� R, since Md does not use the portion of R coming
before block ri+1 to compute si+1. In other words, to reverse the computation
of MR′

d and compute R′ from S, we don’t need to find the R from Theorem 2.3;
we need only to find an R′ that is “close enough”.

Define the oracle Turing machine Me with oracle S ∈ C as follows. Let i ∈ N

and assume inductively that the prefix r′ = r′1 . . . r′i � R′ has been computed,
so that, letting |s1 . . . si| = n,

(a) M r′

d (n) outputs S[0 . . n−1],
(b) for all k with n0 ≤ k ≤ n, #(M r′

d , S[0 . . k−1]) ≤ Dk.

Let N be the smallest integer greater than 2n such that S[0 . .N −1] = s1 . . . si′ ,
for some i′ ∈ N. MS

e searches all strings r′′ ∈ {0, 1}N until it finds one that
satisfies

(a) M r′r′′

d (N) outputs S[0 . .N −1],
(b) for all k with n0 ≤ k ≤ N , #(M r′r′′

d , S[0 . . k−1]) ≤ Dk.

MS
e then outputs r′′ and saves it for the computation of the next extension of R′.

By the existence of R from Theorem 2.3 and a simple induction on the stages of
computation that Me performs and the fact that N is asymptotically larger than
n, MS

e will always be able to find such an r′′. Therefore, in the output sequence
R′, for all but finitely many N , requirement (b) will be satisfied. Therefore the
sequence R′ will satisfy the two requirements of Theorem 2.4.

Finally, for any n, Me(n) makes no more than 22n queries to S and therefore
Me computes a wtt reduction. �

The following theorem is the main result of this paper. It states that constructive
packing dimension can be almost optimally extracted from a sequence of positive

Constructive Dimension and Weak Truth-Table Degrees 69

packing dimension, while at the same time, constructive Hausdorff dimension is
partially extracted from this sequence, if it has positive Hausdorff dimension
and packing dimension less than 1. The machine Me from Theorem 2.4 serves
as the extractor. Intuitively, this works because Me compresses the sequence
S into the sequence R. Since R is a compressed representation of S, R must
itself be more incompressible than S. However, because dimension measures the
compressibility of a sequence, this means that the constructive dimensions R are
greater than those of S.

Theorem 2.5. For all ε > 0 and S ∈ C such that dimP(S) > 0, there exists
R ≡wtt S such that dimP(R) ≥ 1 − ε and dimH(R) ≥ dimH(S)

dimP(S) − ε.

Proof. Let ε > 0 and S ∈ C such that dimP(S) > 0. Let δ > 0 and R′, Md be
as in Theorem 2.4. Let R′′ ∈ C and M ∈ OTM such that R′ ≤T R′′ via M ,
ρ−M (R′, R′′) = dimH(R′) and ρ+

M (R′, R′′) = dimP(R′) (the existence of M and
R′′ is asserted by Theorem 2.3). By Lemma 1.1, we have

ρ+(S) ≤ ρ+
Md

(S, R′)ρ+
M (R′, R′′),

which, by construction of R′ and R′′ implies ρ+(S) ≤ (dimP(S) + δ) dimP(R′).
Since ρ+(S) = dimP(S),

dimP(R′) ≥ dimP(S)
dimP(S) + δ

.

Moreover (by Lemma 1.1 again), ρ−(S) ≤ ρ+
Md

(S, R′)ρ−M (R′, R′′), which, by
construction of R′ and R′′, implies ρ−(S) ≤ (dimP(S) + δ) dimH(R′). Since
ρ−(S) = dimH(S),

dimH(R′) ≥ dimH(S)
dimP(S) + δ

.

Taking δ small enough, we get by the above inequalities: dimP(R) ≥ 1 − ε and
dimH(R) ≥ dimH(S)

dimP(S) − ε. �

Theorem 2.5 has a number of applications, stated in the following corollaries,
which shed light on the constructive dimensions of sequences, spans and degrees.

Corollary 2.6. Let S ∈C and assume that dimH(S) > 0. Then dimH(degT(S)),
dimH(degwtt(S)), dimH(spanT(S)) and dimH(spanwtt(S)) are all at least dimH(S)

dimP(S) .

We obtain a zero-one law for the constructive packing dimension of Turing and
weak truth-table lower spans and degrees.

Corollary 2.7. For all S ∈C, the dimensions dimP(degT(S)), dimP(spanT(S)),
dimP(degwtt(S)) and dimP(spanwtt(S)) are each either 0 or 1.

Therefore Theorem 2.1, establishing the existence of wtt degrees of fractional
constructive Hausdorff dimension, does not extend to constructive packing di-
mension. Because of Theorem 2.1, we must settle for more conditional results
for constructive Hausdorff dimension. We focus attention on regular sequences.

70 L. Bienvenu, D. Doty, and F. Stephan

Corollary 2.8. For all ε > 0 and all regular S ∈ C such that dimH(S) > 0,
there exists R ≡wtt S such that dimH(R) ≥ 1 − ε.

Corollary 2.9. For all regular S ∈ C such that dimH(S) > 0,

dimH(spanwtt(S)) = dimH(degwtt(S)) = dimH(spanT(S)) =
dimH(degT(S)) = dimP(spanwtt(S)) = dimP(degwtt(S)) =
dimP(spanT(S)) = dimP(degT(S)) = 1.

It remains open whether every Turing lower span or degree of positive construc-
tive Hausdorff dimension contains a regular sequence of positive constructive
Hausdorff dimension. If so, this would imply a zero-one law for constructive
Hausdorff dimension similar to Corollary 2.7.

We note that the zero-one law for the constructive packing dimension of
Turing and wtt lower spans and degrees also follows from the following theo-
rem due to Fortnow, Hitchcock, Pavan, Vinodchandran and Wang [4], giving
a polynomial-time extractor for constructive packing dimension. For R, S ∈ C,
write R ≤p

T S if R ≤T S via an OTM that, on input n, runs in time polynomial
in n, and similarly for ≡p

T.

Theorem 2.10 ([4]). For all ε > 0 and all S ∈ C such that dimP(S) > 0, there
exists R ≡p

T S such that dimP(R) ≥ 1 − ε.

In fact, Theorem 2.10 holds for any resource-bounded packing dimension [7]
defined by Turing machines allowed at least polynomial space, which includes
constructive packing dimension as a special case, thus proving a spectrum of
zero-one packing dimension laws for various dimensions above polynomial space
and degrees and lower spans that are at least polynomial-time computable.

3 Nonexistence of Universal Extractors

The wtt reduction in the proof of Theorem 2.5 is uniform in the sense that, for
all ε > 0, there is a single wtt reduction M , universal for ε and all sequences S,
such that dimH(M(S)) ≥ dimH(S)/dimP(S) − ε.

While it remains open whether Turing reductions can extract constructive
Hausdorff dimension, we can show that there is no universal Turing reduction
that is guaranteed to increase – to a fixed amount – the dimension of all sequences
of sufficiently large dimension.

Theorem 3.1. For every Turing reduction M and all reals α, β with 0 < α <
β < 1, there exists S ∈ C with dimH(S) ≥ α such that M(S) does not exist or
dimH(M(S)) < β.

Proof. For this proof, it will be convenient to say that R ≤T S via M if MS(n)
outputs R[n], rather than R[0 . . n−1], bearing in mind that both definitions of
a Turing reduction are equivalent.

Suppose for the sake of contradiction that there exist reals α, β with 0 < α <
β < 1 and a Turing reduction M such that, for all S ∈ C satisfying dimH(S) ≥ α,

Constructive Dimension and Weak Truth-Table Degrees 71

then dimH(R) ≥ β, where R = M(S). Fix rationals α′, γ such that α < α′ <
γ < β. We will convert M into a truth-table reduction N (a reduction that halts
on all oracles, which is also a wtt reduction) that guarantees the slightly weaker
condition that if dimH(S) > α′, then dimH(N(S)) ≥ β. Then for any S ∈ C
such that dimH(S) = γ > α′, it follows that dimH(N(S)) ≥ β > γ = dimH(S),
which contradicts Theorem 2.1.

On input n ∈ N and with oracle sequence S, NS(n) simulates MS(n). In
parallel, for all integers m > n, N searches for a program of length at most
α′m computing S[0 . .m−1]. If N finds such a program before the simulation of
MS(n) terminates, then N outputs 0. If instead the simulation of MS(n) halts
before such a short program is found, then N outputs R[n], the output bit of
MS(n).

If dimH(S) < α′, then for infinitely many m ∈ N, C(S[0 . .m−1]) ≤ α′m.
Therefore NS halts, although the output sequence N(S) may contain a lot of
0’s, which is acceptable because we do not care what N outputs if dimH(S) < α′.

If dimH(S) ≥ α′, then MS is guaranteed to halt and to compute R such that
dimH(R) ≥ β. Therefore NS halts. If dimH(S) = α′, then once again, we do
not care what N outputs. If dimH(S) > α′, then only finitely many m satisfy
C(S[0 . .m−1]) ≤ α′m. Therefore the parallel search for short programs will
never succeed once N begins checking only prefixes of S of sufficiently large
length. This means that from that point on, N will simulate M exactly, comput-
ing a sequence R′ that is a finite variation of R. Since dimension is unchanged
under finite variations, dimH(R′) = dimH(R) ≥ β. �

Theorem 3.1 tells us that, contrary to the proofs of Theorems 2.4 and 2.5, any
extractor construction for Turing reductions must make use of some property of
the sequence beyond a simple bound on its dimension.

Acknowledgments. We thank Joe Miller for assistance with the proof of The-
orem 2.4, as well as John Hitchcock, Jan Reimann and André Nies for their in-
sightful comments. We also thank the American Institute of Mathematics which
generously invited us to the Workshop on Effective Randomness; this paper is a
result of a workgroup discussing open questions during this workshop. Besides
the American Institute of Mathematics, we would also like to thank the organiz-
ers Denis Hirschfeldt and Joe Miller of the workshop as well as the participants
who discussed this research topic with us.

References

1. Athreya, K., Hitchcock, J., Lutz, J.H., Mayordomo, E.: Effective strong dimension,
algorithmic information and computational complexity. SIAM Journal on Comput-
ing (To appear)

2. Doty, D.: Every sequence is decompressible from a random one. In: Beckmann,
A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 153–
162. Springer, Heidelberg (2006)

72 L. Bienvenu, D. Doty, and F. Stephan

3. Doty, D.: Dimension extractors and optimal decompression. Theory of Computing
Systems. Special issue of selected papers from Computability in Europe 2006 (to
appear)

4. Fortnow, L., Hitchcock, J.M., Pavan Aduri, N., Vinodchandran, V., Wang,
F.: Extracting Kolmogorov complexity with applications to dimension zero-one
laws. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006.
LNCS, vol. 4051, pp. 335–345. Springer, Heidelberg (2006)

5. Hausdorff, F.: Dimension und äusseres Mass. Mathematische Annalen 79, 157–179
(1919)

6. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Ap-
plications, 2nd edn. Springer, Heidelberg (1997)

7. Lutz, J.H.: Dimension in complexity classes. SIAM Journal on Computing 32,
1236–1259 (2003)

8. Lutz, J.H.: The dimensions of individual strings and sequences. Information and
Computation 187, 49–79 (2003)

9. Lutz, J.H.: Effective fractal dimensions (invited lecture at the International Con-
ference on Computability and Complexity in Analysis, Cincinnati, OH, August
28-30, 2003). Mathematical Logic Quarterly 51, 62–72 (2005)

10. Mayordomo, E.: A Kolmogorov complexity characterization of constructive Haus-
dorff dimension. Information Processing Letters 84(1), 1–3 (2002)

11. Nies, A., Reimann, J.: A lower cone in the wtt degrees of non-integral effective di-
mension. In: Proceedings of IMS workshop on Computational Prospects of Infinity,
Singapore. Earlier version appeared as Technical Report 63, Workgroup Mathemat-
ical Logic and Theoretical Computer Science, University of Heidelberg (To appear)
(2005)

12. Nies, A., Stephan, F., Terwijn, S.A.: Randomness, relativization and Turing de-
grees. The. Journal of Symbolic Logic 70, 515–535 (2005)

13. Odifreddi, P.: Classical recursion theory, volume 125 of Studies in Logic and the
Foundations of Mathematics. North-Holland (1989)

14. Reimann, J.: Computability and fractal dimension. Doctoral thesis, Heidelberg
(2005)

15. Reimann, J., Slaman, T.: Randomness, Entropy and Reducibility. Manuscript
(2005)

16. Ryabko, B.Y.: Coding of combinatorial sources and Hausdorff dimension. Soviet
Mathematics Doklady 30, 219–222 (1984)

17. Ryabko, B.Y.: Noiseless coding of combinatorial sources. Problems of Information
Transmission 22, 170–179 (1986)

18. Shaltiel, R.: Recent developments in explicit constructions of extractors. Bulletin
of the EATCS 77, 67–95 (2002)

19. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)
20. Stephan, F.: Hausdorff-dimension and weak truth-table reducibility. Technical Re-

port TR52/05, School of Computing, National University of Singapore (2005)
21. Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geomet-

rically finite Kleinian groups. Acta. Mathematica 153, 259–277 (1984)
22. Tricot, C.: Two definitions of fractional dimension. Mathematical Proceedings of

the Cambridge Philosophical Society 91, 57–74 (1982)

A Classification of Viruses Through Recursion

Theorems

Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion

Nancy-Université - Loria - INPL - Ecole Nationale Supérieure des Mines de Nancy
B.P. 239, 54506 Vandœuvre-lès-Nancy Cédex, France

Guillaume.Bonfante@loria.fr
Matthieu.Kaczmarek@loria.fr
Jean-Yves.Marion@loria.fr

Abstract. We study computer virology from an abstract point of view.
Viruses and worms are self-replicating programs, whose constructions are
essentially based on Kleene’s second recursion theorem. We show that
we can classify viruses as solutions of fixed point equations which are
obtained from different versions of Kleene’s second recursion theorem.
This lead us to consider four classes of viruses which various polymor-
phic features. We propose to use virus distribution in order to deal with
mutations.

Topics covered. Computability theoretic aspects of programs, com-
puter virology.

Keywords: Computer viruses, polymorphism, propagation, recursion
theorem, iteration theorem.

1 Theoretical Computer Virology

An important information security breach is computer virus infections. Follow-
ing Filiol’s book [9], we do think that theoretical studies should help to design
new defenses against computer viruses. The objective of this paper is to pursue
a theoretical study of computer viruses initiated in [4]. Since viruses are essen-
tially self-replicating programs, we see that virus programming methods are an
attempt to answer to von Neumann’s question [20].

Can an automaton be constructed, i.e., assembled and built from appro-
priately “raw material”, by an other automaton? [. . .] Can the construc-
tion of automata by automata progress from simpler types to increasingly
complicated types?

Abstract computer virology was initiated in the 80’s by the seminal works of
Cohen and Adleman [7]. The latter coined the term virus. Cohen defined viruses
with respect to Turing Machines [8]. Later [1], Adleman took a more abstract
point of view in order to have a definition independent from any particular
computational model. Then, only a few theoretical studies followed those seminal
works. Chess and White refined the mutation model of Cohen in [6]. Zuo and

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 73–82, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

74 G. Bonfante, M. Kaczmarek, and J.-Y. Marion

Zhou formalized polymorphism from Adleman’s work [21] and they analyzed the
time complexity of viruses [22].

Recently, we tried [3,4] to formalize inside computability the notion of viruses.
This formalization captures previous definitions that we have mentioned above.
We also characterized two kinds of viruses, blueprint and smith viruses, and we
proved constructively their existence. This work proposes to go further, introduc-
ing a notion of distribution to take into account polymorphism or metamorphism.
We define four kinds of viruses:

1. A blueprint virus is a virus, which reproduces by just duplicating its code.
2. An evolving blueprint virus is a virus, which can mutate when it duplicates by

modifying its code. Evolving blueprint viruses are generated by a disbution
engine.

3. A smith virus is a blueprint virus which can use its propagation function
directly to reproduce.

4. Lastly, we present Smith distribution. A virus generating by a Smith distri-
bution can mutate its code like evolving blueprint viruses, but also mutate
its propagation function.

We show that each category is closely linked to a corresponding form of the
recursion theorem, given a rational taxonomy of viruses. So recursion theorems
play a key role in constructions of viruses, which is worth to mention. Indeed,
and despite the works [10,11], recursion theorems are used essentially to prove
“negative” results such as the constructions of undecidable or inseparable sets,
see [17] for a general reference, or such as Blum’s speed-up theorem [2].

Lastly, we switch to a simple programming language named WHILE+ to illus-
trate the fact that our constructions lives in the programming world. Actually,
we follow the ideas of the experimentation of the iteration theorem and of the re-
cursion theorem, which are developed in [10,11] by Jones et al. and very recently
by Moss in [15].

2 A Virus Definition

2.1 The WHILE+ Language

The domain of computation D is the set of binary trees generated from an atom
nil and a pairing mechanism 〈 , 〉. The syntax of WHILE+ is given by the following
grammar from a set of variables V:

Expressions: E → V | cons(E1, E2) | hd(E) | tl(E) |
execn(E0, E1, . . . , En) | specn(E0, E1 . . . , En) with n ≥ 1

Commands: C → V := E | C1; C2 | while(E){C} | if(E){C1}else{C2}

A WHILE+ program p is defined as follows p(V1, . . . , Vn){C; return E; }. A pro-
gram p computes a function �p� from D

n to D.

A Classification of Viruses Through Recursion Theorems 75

We suppose that we are given a concrete syntax of WHILE+, that is an encoding
of programs by binary trees of D. From now on, when the context is clear, we
do not make any distinction between a program and its concrete syntax. And
we make no distinction between programs and data.

For convenience, we have a built-in self-interpreter execn of WHILE+ programs
which satisfies:

�execn�(p, x1, . . . xn) = �p�(x1, . . . xn)

In the above equation, the notation p means the concrete syntax of the programp.
We also use a built-in specializer specn which satisfies:

��specm�(p, x1, . . . xm)�(xm+1, . . . , xn) = �p�(x1, . . . xn)

We may omit the subscpript n which indicates the number of arguments of an
interpreter or a specializer.

The use of an interpreter and of a specializer is justified by Jones who showed
in [12] that programs with these constructions can be simulated up to a linear
constant time by programs without them.

If f and g designate the same function, we write f ≈ g. A function f is semi-
computable if there is a program p such that �p� ≈ f , moreover, if f is total, we
say that f is computable.

2.2 A Computer Virus Representation

We propose the following scenario in order to represent viruses. When a program
p is executed within an environment x, the evaluation of �p�(x), if it halts, is a
new environment. This process may be then repeated by replacing x by the new
computed environment. The entry x is thought of as a finite sequence 〈x1, . . . , xn〉
which represents files and accessible parameters.

Typically, a program copy which duplicates a file satisfies �copy�(p, x) =
〈p,p, x〉. The original environment is 〈p, x〉. After the evaluation of copy, we
have the environment 〈p,p, x〉 in which p is copied.

Next consider an example of parasitic virus. Parasitic viruses insert them-
selves into existing files. When an infected host is executed, first the virus in-
fects a new host, then it gives the control back to the original host. For more
details we refer to the virus writing manual of Ludwig [14]. A parasistic virus
is a program v which works on an environment 〈p,q, x〉. The infected form
of p is B(v,p) where B is a propagation function which specifies how a virus
contaminates a file. Here, the propagation function B can be for example a
program code concatenation function. So, we have a first “generic” equation:
�v�(p, 〈q, x〉) = �B(v,p)�(〈q, x〉). Following the description of a parasitic virus,
v computes the infected form B(v,q) and then executes p. This means that the
following equation also holds: �v�(q, x) = �p�(B(v,q), x). A parasistic virus is
defined by the two above equations.

76 G. Bonfante, M. Kaczmarek, and J.-Y. Marion

More generally, the construction of viruses lies in the resolution of fixed point
equations such as the ones above in which v and B are unknowns. The existence
of solutions of such systems is provided by Kleene’s recursion theorem. From
this observation and following [4], we propose the following virus representation:

Definition 1 (Computer Virus). Let B be a computable function. A virus
w.r.t B is a program v such that ∀p, x : �v�(p, x) = �B(v,p)�(x). Then, B is
named a propagation function for the virus v.

This definition includes the ones of Adleman and Cohen, and it handles more
propagation and duplication features than the other models [4]. However, it is
worth to notice that the existence of a virus v w.r.t a given propagation function
B is constructive. This is a key difference since it allows to build viruses by
applying fixed point constructions given by proofs of recursion theorems.

A motivation behind the choice of WHILE+ programming language is the fact
that there is no self-referential operator, like $0 in bash, which returns a copy
of the program concrete syntax. Indeed, we present below virus construction
without this feature. This shows that even if there is no self-referential operator,
there are still viruses. Now, viruses should be more efficient if such operators are
present. Of course, a seminal paper on this subject is [19].

3 Blueprint Duplication

3.1 Blueprint Distribution Engine

From [4], a blueprint virus for a function g is a program v which computes g
using its own code v and its environment p, x. The function g can be seen as
the virus specification function. A blueprint virus for a function g is a program
v which satisfies

{
v is a virus w.r.t some propagation function
∀p, x : �v�(p, x) = g(v,p, x)

(1)

Note that a blueprint virus does not use any code of its propagation function,
unlike smith viruses that we shall see shortly. The solutions of this system are
provided by Kleene’s recursion theorem.

Theorem 2 (Kleene’s Recursion Theorem [13]). Let f be a semi-comput-
able function. There is a program e such that �e�(x) = f(e, x).

Definition 3 (Distribution engine). A distribution engine is a program dv
such that for every virus specification program g, �dv�(g) is a virus w.r.t a fixed
and given a propagation function B.

Theorem 4. There is a distribution engine dv such that for any program g,
�dv�(g) is a blueprint virus for �g�.

A Classification of Viruses Through Recursion Theorems 77

Proof. We use a construction for the recursion theorem due to Smullyan [18].
It provides a fixpoint which can be directly used as a distribution engine. We
define dv thanks to the concrete syntax of dg as follows:

dg (z,u,y,x){
r := exec(z,spec(u,z,u),y,x);
return r;

}

dv (g){
r := spec(dg,g,dg);
return r;

}

We observe that ��dv�(g)�(p, x) = �g�(�dv�(g),p, x). Moreover, �dv�(g) is clear-
ly a virus w.r.t to the propagation function �spec�. �	

We consider a typical example of blueprint duplication which looks like the real
life virus ILoveYou. This program arrives as an e-mail attachment. Opening
the attachment triggers the attack. The infection first scans the memory for
passwords and sends them back to the attacker, then the virus self-duplicates
sending itself at every address of the local address book.

To represent this scenario we need to deal with mailing processes. A mail
m = 〈@, y〉 is an association of an address @ and data y. Then, we consider that
the environment contains a mailbox mb = 〈m1, . . . , mn〉 which is a sequence of
mails. To send a mail m, we add it to the mailbox, that is mb := cons(m, mb).
We suppose that an external process deals with mailing.

In the following, x denotes the local file structure, and @bk = 〈@1, . . . , @n〉
denotes the local address book, a sequence of addresses. We finally introduce a
WHILE+ program find which searches its input for passwords and which returns
them as its evaluation. The virus behavior for the scenario of ILoveYou is given
by the following program.

g (v,mb,〈@bk, x〉) {
pass := exec(find,x);
mb := cons(cons(‘‘badguy@dom.com’’,pass),mb);
y := @bk;
while (y) {
mb := cons(cons(hd(y),v),mb);
y := tl(y);

}
return mb;

}

From the virus specification programg, we generate the blueprint virus �dv�(g).

3.2 Distributions of Evolving Blueprint Viruses

An evolving blueprint virus is a virus, which can mutate but the propagation
function remains the same. Here, we describe a distribution engine for which the
specification of a virus can use the code of its own distribution engine. Thus,

78 G. Bonfante, M. Kaczmarek, and J.-Y. Marion

we can generate evolved copies of a virus. Formally, given a virus specification
function g, a distribution of evolving blueprint viruses is a program dv satisfying:

{
dv is a distribution engine
∀i,p, x : ��dv�(i)�(p, x) = g(dv, i,p, x)

(2)

The existence of blueprint distributions corresponds to a stronger form of the
recursion theorem, which was first proved by Case [5].

Theorem 5 (Explicit recursion [4]). Let f be a semi-computable function.
There exists a computable function e such that ∀x, y : �e(x)�(y) = f(e, x, y)
where e computes e.

Definition 6 (Distribution engine builder). A builder of distribution engine
is a program cv such that for every virus specification program g, �cv�(g) is a
distribution engine.

Theorem 7. There is a builder of distribution engine cv such that for any pro-
gram g, �cv�(g) is a distribution of evolving blueprint viruses for some fixed
propagation function B.

Proof. We define

edg (z,t,i,y,x) {
e := spec(spec3,t,z,t);
return exec(z,e,i,y,x);

}

cv (g){
r := spec(spec3,edg,g,edg);
return r;

}

We observe that for any i, ���cv�(g)�(i)�(p, x) = g(�cv�(g), i,p, x). Moreover,
��cv�(g)�(i) is a virus w.r.t �spec�. �	

To illustrate Theorem 7, we come back to the scenario of the virus ILoveYou,
and we add to it mutation abilities. We introduce a WHILE+ program poly which
is a polymorphic engine. This program takes a program p and a key i, and it
rewrites p according to i, conserving the semantics of p. That is, poly satisfies
�poly�(p, i) is one-one on i and ��poly�(p, i)� ≈ �p�.

We build a virus which self-duplicates sending mutated forms of itself. With
the notations of the Sect. 3.1, we consider a behavior described by the following
WHILE+ program.

g (dv,i,mb,〈@bk, x〉) {
pass := exec(find,x);
mb := cons(cons(‘‘badguy@dom.com’’,pass),mb);
next key := cons(nil,i)
virus := exec(dv,next key);
mutation := exec(poly,virus,i);
y := @bk;
while (y) {

A Classification of Viruses Through Recursion Theorems 79

mb := cons(cons(hd(y),mutation),mb);
y := tl(y);

}
return mb;

}

We apply Theorem 7 to transform this program into a code of the correspond-
ing distribution engine. So, ��cv�(g)�(i) is a copy indexed by i of the evolving
blueprint virus specified by g.

4 Smith Reproduction

4.1 Smith Viruses

We define a smith virus as two programs v,B which is defined w.r.t a virus
specification function g according to the following system.

{
v is a virus w.r.t �B�

∀p, x : �v�(p, x) = g(B,v,p, x)

The class of smith viruses is obtained by the double recursion theorem due to
Smullyan [16] as a solution to the above equations.

Theorem 8 (Double Recursion Theorem [16]). Let f1 and f2 be two semi-
computable functions. There are two programs e1 and e2 such that

�e1�(x) = f1(e1, e2, x) �e2�(x) = f2(e1, e2, x)

We extend the previous definition of engine distribution to propagation engine
as follows.

Definition 9 (Virus Distribution). A virus distribution is a pair (dv,dB)
of programs such that for every virus specification g, �dv�(g) is a virus w.r.t
��dB�(g)�. As previously, dv is named a distribution engine and dB is named
a propagation engine.

Theorem 10. There is a virus distribution (dv,dB) such that for any program
g, �dv�(g), �dB�(g) is a smith virus for �g�.

Proof. We define the following programs with a double fixed point.

dg1 (z1,z2,y1,y2,y,x) {
e1 := spec(y1,z1,z2,y1,y2);
e2 := spec(y2,z1,z2,y1,y2);
return exec(z1,e1,e2,y,x);

}

dg2 (z1,z2,y1,y2,y,x) {
e1 := spec(y1,z1,z2,y1,y2);
e2 := spec(y2,z1,z2,y1,y2);
return exec(z2,e1,e2,y,x);

}

and

80 G. Bonfante, M. Kaczmarek, and J.-Y. Marion

pispec (g,B,v,y,p) {
r := spec(g,B,v,p);
return r;

}

Then, let dv and dB be the following programs.

dv (g){
r := spec(pispec,g);
return spec(dg2,r,g,dg1,dg2);

}

dB (g){
r := spec(pispec,g);
return spec(dg1,r,g,dg1,dg2);

}

We observe that for any program g

��dv�(g)�(p, x) = ���dB�(g)�(�dv�(g),p)�(x) = g(�dB�(g), �dv�(g),p, x) �	

We present how to build the parasitic virus of Sect. 2. The virus specification
function g of the virus is the following.

g (B,v,p,〈q, x〉) {
infected form := exec(B,v,p);
return exec(p,infected form,x);

}

First, it infects a new host q with the virus v using the propagation procedure
B. Then, it executes the original host p. This corresponds to the behavior of a
parasitic virus. We obtain a smith virus using the builder of Theorem 10.

4.2 Smith Distributions

Smith distributions generate viruses which are able to mutate their code and
their propagation mechanism. A smith distribution (dv,dB) w.r.t the virus spec-
ification program g satisfies

{
(dv,dB) is a virus distribution
∀i,p, x : ��dv�(i)�(p, x) = g(dB,dv, i,p, x)

The class of Smith distributions is defined as the solutions of this double
recursion theorem.

Theorem 11 (Double explicit Recursion). Let f1 and f2 be two semi-
computable functions. There are two computable functions e1 and e2 such that
for all x and y

�e1(x)�(y) = f1(e1, e2, x, y) �e2(x)�(y) = f2(e1, e2, x, y)

where e1 and e2 respectively compute e1 and e2.

A Classification of Viruses Through Recursion Theorems 81

Definition 12 (Distribution builder). A Distribution builder is a pair of pro-
grams cv, cB such that for every virus specification program g, (�cv�(g), �cB�(g))
is a virus distribution.

Theorem 13. There is a distribution builder (cv, cB) such that for any program
g, (�cv�(g), �cB�(g)) is a smith distribution for �g�.

Proof. We define the following programs:

edg1 (z1,z2,t1,t2,i,y,x) {
e1 := spec(spec5,t1,z1,z2,t1,t2);
e2 := spec(spec5,t2,z1,z2,t1,t2);
return exec(z1,e1,e2,i,y,x);

}

edg2 (z1,z2,t1,t2,i,y,x) {
e1 := spec(spec5,t1,z1,z2,t1,t2);
e2 := spec(spec5,t2,z1,z2,t1,t2);
return exec(z2,e1,e2,i,y,x);

}
and

pispec′ (g,db,dv,i,y,p) {
r := spec(g,db,dv,i,p);
return r;

}

Let cv and cB be the following programs.

cv (g){
r := spec(pispec′,g)
return spec(spec5,edg2,r,g,edg1,edg2);

}

cB (g){
r := spec(pispec′,g)
return spec(spec5,edg1,r,g,edg1,edg2);

}

We observe that for any program g

���cv�(g)�(i)�(p, x) = ����cB�(g)�(i)�(��cv�(g)�(i),p)�(x)
= g(�cB�(g), �cv�(g), i,p, x) �	

We enhance the virus of Sect. 4.1, adding some polymorphic abilities. Any virus
of generation i infects a new host q with a virus of next generation using the
propagation procedure of generation i. Then it gives the control back to the
original host p. This behavior is illustrated by the following program.

g (db,dv,i,p,〈q, x〉) {
B := exec(db,i);
v := exec(dv,cons(i,nil));
mutation := exec(poly,v,i);
infected form := exec(B,mutation,q);
return exec(p,infected form,x);

}

Then, we obtain the smith distribution by the builder of Theorem 13.

82 G. Bonfante, M. Kaczmarek, and J.-Y. Marion

References

1. Adleman, L.: An abstract theory of computer viruses. In: Vulkov, L.G., Waśniewski,
J., Yalamov, P. (eds.) NAA 2000. LNCS, vol. 403, Springer, Heidelberg (1988)

2. Blum, M.: A machine-independent theory of the complexity of recursive functions.
Journal of the Association for Computing Machinery 14(2), 322–336 (1967)

3. Bonfante, G., Kaczmarek, M., Marion, J.-Y.: Toward an abstract computer virol-
ogy. In: ICTAC, LNCS, vol. 3722, pp. 579–593 (2005)

4. Bonfante, G., Kaczmarek, M., Marion, J.-Y.: On abstract computer virology from
a recursion-theoretic perspective. Journal in Computer Virology, 1(3-4) (2006)

5. Case, J.: Periodicity in generations of automata. Theory of Computing Sys-
tems 8(1), 15–32 (1974)

6. Chess, D., White, S.: An undetectable computer virus. Proceedings of the 2000
Virus Bulletin Conference (VB2000) (2000)

7. Cohen, F.: Computer Viruses. PhD thesis, University of Southern California (Jan-
uary 1986)

8. Cohen, F.: On the implications of computer viruses and methods of defense. Com-
puters and Security 7, 167–184 (1988)

9. Filiol, E.: Computer Viruses: from Theory to Applications. Springer, Heidelberg
(2005)

10. Hansen, T., Nikolajsen, T., Träff, J., Jones, N.: Experiments with implementations
of two theoretical constructions. In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at
Botik 1989. LNCS, vol. 363, pp. 119–133. Springer, Heidelberg (1989)

11. Jones, N.: Computer implementation and applications of kleene’s S-m-n and recur-
sive theorems. In: Moschovakis, Y.N. (ed.) Lecture Notes in Mathematics, Logic
From Computer Science, pp. 243–263. Springer, Heidelberg (1991)

12. Jones, N.: Constant Time Factors Do Matter. MIT Press, Cambridge, MA, USA
(1997)

13. Kleene, S.: Introduction to Metamathematics. Van Nostrand (1952)
14. Ludwig, M.: The Giant Black Book of Computer Viruses. American Eagle Publi-

cations (1998)
15. Moss, L.: Recursion theorems and self-replication via text register machine pro-

grams. In: EATCS bulletin (2006)
16. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw

Hill, New York (1967)
17. Smullyan, R.: Recursion Theory for Metamathematics. Oxford University Press,

Oxford (1993)
18. Smullyan, R.: Diagonalization and Self-Reference. Oxford University Press, Oxford

(1994)
19. Thompson, K.: Reflections on trusting trust. Communications of the Association

for Computing Machinery 27(8), 761–763 (1984)
20. von Neumann, J.: Theory of Self-Reproducing Automata (edited and completed

by A.W.Burks). University of Illinois Press, Urbana, Illinois (1966)
21. Zuo, Z., Zhou, M.: Some further theoretical results about computer viruses. The

Computer Journal 47(6), 627–633 (2004)
22. Zuo, Z., Zhu, Q.-x., Zhou, M.-t.: On the time complexity of computer viruses. IEEE

Transactions on information theory 51(8), 2962–2966 (2005)

Borel Complexity of Topological Operations

on Computable Metric Spaces

Vasco Brattka1,� and Guido Gherardi2

1 Laboratory of Foundational Aspects of Computer Science
Department of Mathematics & Applied Mathematics

University of Cape Town, Rondebosch 7701, South Africa
Vasco.Brattka@uct.ac.za

2 Dipartimento di Scienze Matematiche é
Informatiche Roberto Magari

University of Siena, Italy
gherardi3@unisi.it

Abstract. We study the Borel complexity of topological operations on
closed subsets of computable metric spaces. The investigated operations
include set theoretic operations as union and intersection, but also typ-
ical topological operations such as the closure of the complement, the
closure of the interior, the boundary and the derivative of a set. These
operations are studied with respect to different computability structures
on the hyperspace of closed subsets. These structures include positive
or negative information on the represented closed subsets. Topologically,
they correspond to the lower or upper Fell topology, respectively, and
the induced computability concepts generalize the classical notions of
r.e. or co-r.e. subsets, respectively. The operations are classified with re-
spect to effective measurability in the Borel hierarchy and it turns out
that most operations can be located in the first three levels of the hier-
archy, or they are not even Borel measurable at all. In some cases the
effective Borel measurability depends on further properties of the un-
derlying metric spaces, such as effective local compactness and effective
local connectedness.

Keywords: Computable analysis, effective descriptive set theory, Borel
measurability, hyperspace topologies.

1 Introduction

In this paper we study the Borel complexity of set theoretic and topological
operations such as

– Union: ∪ : A(X) × A(X) → A(X), (A, B) �→ A ∪ B,
– Intersection: ∩ : A(X) × A(X) → A(X), (A, B) �→ A ∩ B,
– Complement: c : A(X) → A(X), A �→ Ac,

� This work has been partially supported by the National Research Foundation (NRF)
Grant FA2005033000027 on “Computable Analysis and Quantum Computing”.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 83–97, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

84 V. Brattka and G. Gherardi

– Interior: i : A(X) → A(X), A �→ A◦,
– Boundary: ∂ : A(X) → A(X), A �→ ∂A,
– Derivative: d : A(X) → A(X), A �→ A′.

In those cases where the operations do not necessarily map to closed sets, we have
to take additional closures (so strictly speaking the operations should be called
“closure of the complement” and so on). These operations are typically defined
on the hyperspace A(X) of closed subsets A ⊆ X of some computable metric
space X . We represent A(X) with respect to positive, negative or full information
and the question is in which sense these operations are computable or relatively
computable. The corresponding representations are denoted by ψ+, ψ− and ψ
and the induced notions of computability are generalizations of the classical
concepts of r.e., co-r.e. and recursive sets. We assume familiarity with basic
notions of the representation based approach to computable analysis, as it is
presented in [1]. The above mentioned representations are discussed in [2].

In many cases it turns out that the above mentioned operations are not com-
putable and not even continuous. In such a situation it is desirable to classify the
degree of non-computability of these operations. The most appropriate way to
classify this degree is a classification with respect to the Borel hierarchy. While
a continuous function is characterized by the property that preimages of open
sets are open, Σ0

k–measurable functions are functions such that preimages of
open sets are Σ0

k–sets in the Borel hierarchy. This hierarchy starts with the class
of open sets Σ0

1 and proceeds with the class of Fσ–sets, which are countable
unions of closed sets. Correspondingly, Σ0

k+1–sets are countable unions of com-
plements of Σ0

k–sets in general. These classes and measurability are studied in
descriptive set theory as presented in [3,4]. We will also use effective versions of
these concepts as introduced in [5] and concepts such as Σ0

k–computability and
Σ0

k–completeness are precisely defined in [5].
Measurability questions of set theoretic and topological operations are sub-

ject to studies for a long time. In Chapter I §18 of [6] union, intersection and
difference of lower and upper semi-continuous maps are discussed. These results
correspond to some of our results on union and intersection of closed subsets.
In Chapter IV §43 of [7] the boundary and derivative operation are discussed
as Σ0

3–continuous maps that are not Σ0
2–continuous. In [8,9,10] Christensen has

discussed and partially characterized the Borel measurability of some of these
operations. In [11] computability properties of some of these operations has been
discussed (restricted to compact subsets of Euclidean space) and finally in [12]
the Borel complexity of these operations for closed subsets of Euclidean space
has been characterized with respect to some representations. In this paper we
attempt to collect these results and to characterize the Borel complexity of these
operations more precisely and in a more comprehensive way for the general case
of computable metric spaces X .

We close the introduction with a brief survey on the following sections of
this paper. In Section 2 we present some basic concepts from the representation
approach to computable analysis and we state a version of the Representation
Theorem for Borel measurable functions that shows that a function is Borel

Borel Complexity of Topological Operations on Computable Metric Spaces 85

measurable if and only if it has a Borel measurable realizer. For all undefined
concepts from computable analysis we refer the reader to [1]. In Section 3 we
briefly review some definitions and results on representations of closed subsets
of metric spaces as introduced in [2]. In particular, we present the lattice of
such representations with respect to computable (and continuous) reducibility.
Further results and proofs can be found in [2]. In Section 4 we study the afore-
mentioned lattice of representations from the somewhat coarser point of view of
Borel reducibility. It turns out that most of the considered representations in-
duce the Effros Borel structure and altogether, all the considered representations
fall in at most three different equivalence classes. We also consider the special
case of effectively locally compact metric spaces X where the number of classes
is even smaller. In Section 5 we introduce some notions for computable metric
spaces that guarantee that these spaces are rich enough in order to allow certain
completeness and hardness results. Mainly proper and perfect spaces will satisfy
all our requirements. The following sections are devoted to different operations.
In Section 6 we study intersection and union in detail, while Section 7 is de-
voted to operations that involve complement, closure and interior. In Section 8
we study the boundary operation and the derivative and for the boundary the
further aspect of effective local connectedness becomes relevant. This extended
abstract version of the paper does not contain any proofs.

2 Borel Representation Theorem

Throughout this paper we will use the representation approach to computable
analysis as it has been presented in [13,1]. The basic idea is that the Baire space
N

N is used to represent objects of other spaces X . Formally, a representation is
a surjective map δ :⊆ N

N → X , where the inclusion symbol indicates that the
map is potentially partial. In this situation (X, δ) will be called a represented
space. For represented spaces concepts from topology, computability theory and
descriptive set theory can be transferred from Baire space to the represented
spaces via realizers.

Definition 1 (Realizer). Let (X, δX) and (Y, δY) be represented spaces. We
say that a function F :⊆ N

N → N
N is a realizer for f :⊆ X → Y or realizes f ,

if δY F (p) = fδX(p) holds for all p ∈ dom(fδX).

Using the concept of a realizer, we transfer all sorts of properties of F to f . For
instance, we will say that f is continuous with respect to (δX , δY), if it has a con-
tinuous realizer. Analogously, we will transfer properties such as computability,
Σ0

k–measurability, Σ0
k–computability (as defined in [5]) and Borel measurability

from F to f with respect to (δX , δY). This will not lead to any confusion as long
as we are dealing with admissible representations.

A representation δ of a topological space X is called admissible, if it is max-
imal among all continuous representations δ′ of X , that is if δ′ ≤t δ holds for
all continuous δ′. Here δ′ ≤t δ means that δ′ is continuously reducible to δ, i.e.
that the identity id : X → X is continuous with respect to (δ′, δ). By ≡t we

86 V. Brattka and G. Gherardi

denote the induced equivalence relation and we write ≤B and ≤ if continuity
is replaced by Borel measurability and computability, respectively. The corre-
sponding equivalence relations are denoted by ≡B and ≡. We also write ≤2 for
the case that there is a Σ0

2–computable reduction. However, the latter is a slight
misusage of the symbols, as ≤2 is not transitive and hence not a preorder.

If X, Y are second-countable T0–spaces with admissible representations δX

and δY , then it follows by the Representation Theorem of Kreitz and Weihrauch
that a function f is continuous with respect to (δX , δY) if and only if it is
continuous in the ordinary topological sense [14,13,1]. By an extension of this
theorem due to Schröder, the same holds even for larger classes of spaces, as long
as one replaces ordinary continuity by sequential continuity [15]. For computable
metric spaces and total maps f the Representation Theorem has been extended
to Σ0

k–measurability in [5]. Here we will formulate yet another simple extension
of this theorem to the class of Borel measurable maps f .

Theorem 1 (Borel Representation Theorem). Let X, Y be second count-
able T0–spaces with admissible representations δX , δY . Then a map f :⊆ X → Y
is Borel measurable if and only if it is Borel measurable with respect to (δX , δY).

In case of total maps on computable metric spaces, the Representation Theorem
in [5] shows that even the level of measurability in the Borel hierarchy is pre-
served by realizers. That is Σ0

k–measurability is equivalent to Σ0
k–measurability

with respect to (δX , δY) in that situation.

3 Representations of Closed Subsets

In this section we briefly recall the definitions of some representations of closed
subsets of metric spaces as they have been introduced in [2] (but we use a slightly
different notation in order to be as compatible to other references as possible).

In case that X is a separable metric space, we can consider the set A(X) of
closed subsets of X as a second countable T0–space in various ways. We assume
that X is equipped with some fixed numbering α of a dense subset of X and we
assume that k denotes the rational number enumerated by k ∈ N (i.e. we assume
that k �→ k is some standard numbering of Q). Then by I〈i,j〉 := B(α(i), j) and
Î〈i,j〉 := B(α(i), j) we denote some standard numberings of rational open balls
and rational closed balls of X . Here B(x, ε) := {y ∈ X : d(x, y) < ε} and
B(x, ε) := {y ∈ X : d(x, y) ≤ ε} and 〈i, j〉 ∈ N := 1

2 (i + j)(i + j + 1) + j
denotes the value of the Cantor pairing function applied to (i, j). We recall that
a separable metric space (X, d) with a numbering α of a dense subset is called
computable metric space, if d ◦ (α ×α) is a computable double sequence of reals.
For technical simplicity we always assume that computable metric spaces are
non-empty. For a computable metric space the following formal properties are
recursively enumerable (r.e.):

(1) (Inclusion) I〈i1,j1〉 ≺ I〈i2,j2〉 : ⇐⇒ d(α(i1), α(i2)) + j1 < j2,
(2) (Disjointness) I〈i1,j1〉 �� I〈i2,j2〉 : ⇐⇒ d(α(i1), α(i2)) > j1 + j2.

Borel Complexity of Topological Operations on Computable Metric Spaces 87

Strictly speaking, these properties are not properties of the respective balls In,
but of their numbers n. However, for many spaces, such as Banach spaces, this
makes no difference. For these spaces the formal properties are equivalent to
their material counterparts: In1 ≺ In2 ⇐⇒ În1 � In2 ⇐⇒ În1 ⊆ In2 and
similarly In1 �� In2 ⇐⇒ In1 ∩ In2 = ∅. The following definition now provides
two standard ways to equip the space A(X) with representations.

Definition 2 (Standard representations of closed sets). Let X be a com-
putable metric space. Let us consider the following two sequences of sets in A(X):

(1) I+
n := {A ∈ A(X) : A ∩ In �= ∅},

(2) I>
n := {A ∈ A(X) : A ∩ În = ∅}.

Then (I+
n)n∈N and (I>

n)n∈N are subbases of topologies on A(X) and the induced
standard representations are denoted by ψ+ and ψ>. The join of both represen-
tations is denoted by ψ= := ψ+ ∧ ψ>.

The representation ψ+ uses positive information in order to represent closed
subsets, as ψ+(p) = A if and only if p is a list of all rational open balls In that
intersect A and any such ball includes a positive information on A. Similarly,
ψ> uses negative information in order to represent closed subsets, as ψ>(p) = A

if and only if p is a list of all rational closed balls În that do not intersect A and
any such ball includes a piece of negative information on A. The representation
ψ= includes both types of information.

One can show that ψ+ is admissible with respect to the lower Fell topology that
is induced by the subbase consisting of the sets U+ := {A ∈ A(X) : A ∩ U �= ∅}
where U ranges over all open sets U ⊆ X (see Propositions 4.4.4(2) and 4.4.7
in [15]).

Now we recall definitions of representations of closed subsets via their distance
functions dA : M → R, where R := R ∪ {−∞, ∞} is the set of extended real
numbers. For non-empty closed subsets A ⊆ M we define dA(x) := d(x, A) :=
inf{d(x, a) | a ∈ A} and for technical reasons we let d∅ : M → R, x �→ ∞. We
recall that for any computable metric space X there is a Cauchy representation
δX that represents points in X by rapidly converging sequences in the dense
subset given by α.

Definition 3 (Representations of closed sets by distance functions). Let
(X, d) be a computable metric space with Cauchy representation δ. We define
representations ψdist

+ , ψdist
− , ψdist of A(X) by

(1) ψdist
+ (p) = A : ⇐⇒ [δ → ρ>](p) = dA,

(2) ψdist
− (p) = A : ⇐⇒ [δ → ρ<](p) = dA,

(3) ψdist(p) = A : ⇐⇒ [δ → ρ](p) = dA,

for all p ∈ N
N and A ∈ A(X).

Here [δ → δ′] denotes the canonical function space representation of the space
of (δ, δ′)–continuous functions [1] and ρ>, ρ< and ρ denote certain standard

88 V. Brattka and G. Gherardi

representations of R, which roughly speaking represent real numbers by upper,
lower rational bounds and rational intervals, respectively [16,1]. The correspond-
ing representations of R are denoted by ρ>, ρ<, ρ, respectively. It is clear that
ψdist ≡ ψdist

+ ∧ ψdist
− . The following equivalence has been proved in [2].

Proposition 1. ψ+ ≡ ψdist
+ for any computable metric space X.

We recall some further definitions of representations of closed subsets. For the
Sierpiński representation we use the characteristic function

cfA : X → R, x �→
{

0 if x ∈ A
1 otherwise ,

defined for any set A ⊆ X .

Definition 4 (Further representations of closed sets). Let X be a com-
putable metric space with Cauchy representation δX . We define representations
ψ−, ψfiber, ψSierpiński, ψrange of A(X) by

(1) ψ−(p) = X \
⋃

n+1∈range(p) In,
(2) ψfiber(p) = A : ⇐⇒ [δX → ρ](p) = f : X → R and f−1{0} = A,
(3) ψSierpiński(p) = A ⇐⇒ [δX → ρ<](p) = cfA,
(4) ψrange(p) = A : ⇐⇒ ((∃n ∈ N)(∃q ∈ N

N)p = 0n1q and [δN → δX](q) =
f and range(f) = A) or (p = 0ω and A = ∅),

for any p ∈ N
N and A ∈ A(X).

Here δN is supposed to be some standard representation of the natural numbers.
The first three representations can be considered as representations by negative
information. The representation ψ− represents a closed set by exhausting its
complement by rational open balls. The representation ψfiber represents closed
sets via zero sets of real-valued functions and ψSierpiński represents closed sets via
their characteristic function. Finally, ψrange represents closed sets by sequences
that are dense in the set and hence it is a representation by positive information.
We obtain a representation with respect to full information by ψ := ψ+ ∧ ψ−.
The following equivalences have been proved in [2] (see Theorems 3.8 and 3.10).

Proposition 2. ψ− ≡ ψfiber ≡ ψSierpiński holds for any computable metric space
X and if X, additionally, is complete then ψ+ ≡ ψrange.

In case of Euclidean space the first three representations are even equivalent to
ψ> and ψdist

− . However, in the general case the equivalence class of ψ− seems
to be the most natural one. One can show that ψ− is admissible with respect
to the upper Fell topology that is induced by the subbase consisting of the sets
K− := {A ∈ A(X) : A ∩ K = ∅} where K ranges over all compact sets K ⊆ X
(see Propositions 4.4.1 and 4.4.3 in [15]).

Figure 1 contains a survey on the introduced representations of closed subsets
and besides the representations it also mentions the names that are used for the
induced computable subsets. Any arrow in the diagram stands for a computable

Borel Complexity of Topological Operations on Computable Metric Spaces 89

reduction and no arrow can be reversed in general nor can any additional ar-
rows be added (up to transitivity). These results have been provided in [2,17].
The arrows do also indicate the logical relations between the given notions of
computability for subsets.

ψdist

located

ψ
recursive

ψdist
−

lower semi-located

ψ− ≡ ψfiber ≡ ψSierpiński

co-r.e.

ψrange

effectively separable

��

�

�
ψ=

strongly recursive
ψ>

strongly co-r.e.

��

ψ+ ≡ ψdist
+

r.e.=upper semi-located
�

�

�

����

Fig. 1. Representations and notions of computability for closed subsets

The three vertical layers of the diagram correspond to positive, full and neg-
ative information on sets (from left to right). In the special situation of the
Euclidean space (or, more general, of spaces that satisfy the effective covering
property and that have compact closed balls) the three horizontal layers of the
diagram collapse to a single layer [2]. Some special conditions might simplify the
lattice of representations. We will say that a metric d is isolated, if all points in
range(d) \ {0} ⊆ R are isolated (with respect to the Euclidean topology). For
instance the standard metrics for Cantor space {0, 1}N and Baire space N

N are
isolated. We will say that a metric space (X, d) has nice closed balls, if any ball
În is either compact or the entire space. In these cases we obtain the following
result (see Theorem 3.9(2) in [2]).

Proposition 3. If (X, d) is a computable metric space with nice closed balls or
with isolated d, then ψdist

− ≡ ψ> and ψdist ≡ ψ=.

We close this section with a result that will be applied in later sections. It shows
that computability properties of closed subsets are preserved by embeddings in
some sense. We will say that ι : X ↪→ Y is a computable embedding if ι is injective
and ι as well as its partial inverse ι−1 :⊆ Y → X are computable.

Theorem 2 (Embedding Theorem). Let X, Y be computable metric spaces
and let ι : X ↪→ Y be a computable embedding and let range(ι) be co-r.e. closed
in Y . Then the map J : A(X) → A(Y), A �→ ι(A) is computable and admits
a partial computable right inverse, both with respect to (ψ, ψ). The same holds
true with “continuous” in place of “computable” and “closed” in place of “co-r.e.
closed”.

4 The Borel Lattice of Representations

In this section we want to study the lattice of Borel structures that is induced
by our representations. For this purpose we have to equip the set A(X) of closed

90 V. Brattka and G. Gherardi

subsets of a separable metric space X with a Borel structure. In general, if Y
is a topological space, then we denote by B(Y) the class of Borel subsets of Y ,
which is the smallest σ–algebra generated by the open sets in Y .

If X is a metric space, then we equip the set A(X) of closed subsets of X with
the Effros Borel structure B(A(X)), which is the Borel structure induced by the
lower Fell topology. In fact, for separable metric spaces X this is the same Borel
structure induced by the Fell topology, as the following lemma shows. The Fell
topology is the join of the lower and upper Fell topology (i.e. a subbase consists
of the union of the respective subbases).

Lemma 1. If X is a separable metric space, then the Effros Borel structure
B(A(X)) is identical to the Borel structure induced by the Fell topology on A(X).

It is known that the upper Fell topology induces a different Borel structure in
general. It is known that for a metric space X the Fell topology on A(X) is
metrizable if and only if X is hemicompact [18]. However, even if A(X) is not
metrizable, there might be some Polish topology on A(X) that generates the
same Borel sets B(A(X)). Borel structures B(Y) for which there exists a Polish
topology on Y that generates the same Borel structure are called standard. In
fact, it is known that for separable metrizable X the Borel space B(A(X)) is
standard if and and only if X is the union of a Polish space and a Kσ–space [19].
In particular, B(A(X)) is standard if X is a Polish space (see [20] and Theorem
12.6 in [3]). In fact, if X is a Polish space then one can assume without loss of
generality that the topology of X is induced by a totally bounded metric d and
the Hausdorff metric associated with this metric defines a Polish topology on
A(X) that induces the Effros Borel structure B(A(X)) (see [20,8]).

The next observation is that we can translate upper bounds into lower bounds
with a Σ0

2–computable function and vice versa. That implies that our represen-
tations using lower or upper approximations of the distance function can be
translated into each other with a Σ0

2–computable function.

Proposition 4. Let X be a computable metric space. Then ψdist
+ ≤2 ψdist,

ψdist
− ≤2 ψdist and consequently ψ> ≤2 ψ=, ψ+ ≤2 ψ and ψ+ ≤2 ψ−.

One should keep in mind that the relation “≤2” is not transitive and the corre-
sponding relation “≡2” is not an equivalence relation. However, if δ1 ≤ δ2 and
δ2 ≤2 δ3 and δ3 ≤ δ4, then δ1 ≤2 δ4. In particular, the results above imply
ψdist

+ ≡2 ψdist ≡2 ψdist
− and ψdist

+ ≡2 ψdist
− . Now we obtain the following result

that shows that in general there are at most three different Borel structures
induced by our hyperspace representations.

Corollary 1. Let X be a computable Polish space. Then we obtain the following
three Borel equivalence classes of hyperspace representations:

(1) ψ+ ≡ ψdist
+ ≡ ψrange ≡B ψ ≡B ψdist ≡B ψdist

− ,
(2) ψ= ≡B ψ>,
(3) ψ−.

Borel Complexity of Topological Operations on Computable Metric Spaces 91

We will see in the next section that for some spaces the three Borel equivalence
classes mentioned in this result are actually distinct. In general, if δ ≤B δ′ holds
for two representations of X , one can conclude that B(X, δ′) ⊆ B(X, δ), where
B(X, δ′) and B(X, δ) are the Borel structures induced by the final topologies of
the representations δ′ and δ, respectively. In particular, the equivalence ψ+ ≡B ψ
can be seen as an effective version of Lemma 1. Those representations that are
listed under (1) in the corollary above have final topologies that all induce the
Effros Borel structure, while those listed under (2) and (3) induce two further
Borel structures in general.

We close this section with a result that shows that in the special situation
of effectively locally compact spaces, we can obtain further Borel reductions. In
order to formulate this we first define effective local compactness. Therefore, we
consider the set K(X) of non-empty compact subsets of X as computable metric
space equipped with the Hausdorff metric (for details see [1] or [2]). Classically, a
separable metric space is locally compact, if it has a base consisting of relatively
compact sets. We formulate an effective version of this characterization.

Definition 5 (Effectively locally compact). Let X be a computable metric
space. Then X is said to be effectively locally compact, if there is a computable
function f : N → N such that (If(n))n∈N is a basis of X and (Îf(n))n∈N is a
computable sequence in the computable metric space K(X).

It is clear that in an effectively locally compact metric space for any x ∈ X
we can find some n ∈ N such that In is a relatively compact neighbourhood
of x and such that a name of În ∈ K(X) can be computed. Effectively locally
compact metric spaces X satisfy an effective covering property in the sense that
the set

{
〈k, 〈n0, ..., ni〉〉 ∈ N : Îf(k) ⊆

⋃i
j=0 Inj

}
is r.e. Cantor space {0, 1}N and

Euclidean space R
n are examples of effectively locally compact spaces.

Proposition 5. If X is an effectively locally compact computable metric space,
then ψ− ≤2 ψ+ and ψ− ≤2 ψ.

As a non-effective corollary we obtain the following.

Corollary 2. If X is a locally compact separable metric space, then the Effros
Borel structure B(A(X)) is identical to the Borel structure induced by the upper
Fell topology on A(X).

5 Perfect and Proper Spaces

For completeness and hardness results that we want to state, it is helpful to
have some notions that expresses that a metric space is non-trivial in some
sense. Among others, we will use the following concept.

Definition 6 (Richness). A computable metric space X is called rich, if the
Cantor space {0, 1}N can be computably embedded into X, i.e. if there is a com-
putable injective map ι : {0, 1}N ↪→ X.

92 V. Brattka and G. Gherardi

Whenever there is a computable injective ι : {0, 1}N ↪→ X , then the partial
inverse ι−1 :⊆ X → {0, 1}N is automatically computable (see Corollary 6.3 in
[21]). Thus, ι is a computable embedding and as {0, 1}N is recursive compact,
range(ι) = ι({0, 1}N) is recursive compact too and, in particular, co-r.e. closed
in X . Thus, one can apply the Embedding Theorem 2 to ι. This allows to treat
Cantor space as a representative for rich spaces, as far as computability results
for closed subsets are concerned that are about operations which are preserved
by the embedding (such as intersection). Many typical spaces such as Euclidean
space R

n are rich. The following result shows that a large class of spaces is rich.
We recall that a metric space is called perfect, if it does not contain any isolated
points.

Proposition 6. Any non-empty perfect computable Polish space X is rich.

The construction required for this proof can be considered as an effective Can-
tor scheme (see Theorem 6.2 in [3]). In particular, any non-trivial computable
Banach space is rich. Sometimes the only property of a perfect space that is
required is captured by the following observation that is based on the previous
construction.

Proposition 7. Let X be a non-empty perfect computable Polish space. Then
there exist computable functions g, h : N → N such that ∅ �= Îg(i) ⊆ Ih(i) for all

i, the Ih(i) are pairwise disjoint and
⋃∞

i=0 Îg(i) is co-r.e. closed.

It is not clear whether the set
⋃∞

i=0 Îg(i) is also recursive closed. In general, the
balls In are r.e. closed and the balls În are co-r.e. closed. We will say that a metric
space X is proper, if closed balls are closures of open balls, i.e. if B(x, ε) = B(x, ε)
for any x ∈ X and ε > 0. That is, for proper spaces (In)n∈N is a ψ–computable
sequence and in this situation the set in the previous proposition is clearly also
r.e. closed.

Corollary 3. Let X be a non-empty perfect and proper computable Polish space.
Then there exist computable functions g, h : N → N such that ∅ �= Ig(i) ⊆ Ih(i)

for all i, the Ih(i) are pairwise disjoint and
⋃∞

i=0 Ig(i) is recursive closed.

The condition of this corollary is satisfied, for instance, for all non-empty com-
putable Banach spaces. For simplicity we will formulate all our hardness and
completeness results either for perfect or for perfect and proper Polish spaces
and we will not attempt to generalize these conditions as far as possible. We
also recall that all computable metric spaces are considered as non-empty and
we will not mention this condition explicitly in the following. We will say that a
function f :⊆ X → Y is Σ0

2–hard with respect to certain representations, if the
function

C : N
N → N

N, C(p)(n) =
{

0 if (∃k) p(k) = n + 1
1 if (∀k) p(k) �= n + 1

can be computably reduced to any realizer F of f with respect to the same
representations, i.e. if there are computable functions A :⊆ N × N → N and

Borel Complexity of Topological Operations on Computable Metric Spaces 93

B :⊆ N → N such that C(p) = A(p, FB(p)) for all p ∈ N
N. The function C

translates enumerations of sets into their characteristic functions. Analogously,
we say that f is Σ0

3–hard, if the function

C2 : N
N → N

N, C2(p)(n) =
{

0 if (∃m)(∀k) p〈n, m, k〉 �= 0
1 if (∀m)(∃k) p〈n, m, k〉 = 0

can be reduced to any realizer F of f . If f is Σ0
2–hard and Σ0

2–computable, then
it is called Σ0

2–complete. Analogously, we define the concept of Σ0
3–completeness.

See [5] for a motivation of these definitions (among other things, the functions C
and C2 are complete in their respective classes with respect to the reducibility
mentioned above).

6 Intersection and Union

In this section we will continue to study the Borel complexity of basic set theo-
retic operations as union and intersection. From now on we will concentrate on
the representations ψ+, ψ−, ψ that are the most important ones from the point
of view of applications.

Theorem 3 (Intersection). Let X be a computable metric space. Then inter-
section ∩ : A(X) × A(X) → A(X), (A, B) �→ A ∩ B is

(1) computable with respect to (ψ−, ψ−, ψ−),
(2) Σ0

2–computable with respect to (ψ+, ψ+, ψ−),
(3) Σ0

2–computable w.r.t. (ψ−, ψ−, ψ), if X is effectively locally compact,
(4) Σ0

3–computable w.r.t. (ψ+, ψ+, ψ), if X is effectively locally compact,
(5) Σ0

3–hard with respect to (ψ+, ψ+, ψ+), if X is complete and perfect,
(6) Σ0

2–hard with respect to (ψ, ψ, ψ+), if X is complete and perfect,
(7) not Borel measurable w.r.t. (ψ, ψ, ψ+), if X is complete but not Kσ.

We mention that all our computability, completeness and hardness results
have non-uniform implications. By the Invariance Theorem 8.3 in [5] any Σ0

k–
computable function f : X → Y maps computable inputs x to Δ0

k–computable
outputs f(x) with respect to the arithmetical hierarchy. If f is Σ0

k+1–hard, then
there exists a computable input x that is mapped to an output f(x) that is
not Δ0

k–computable with respect to the arithmetical hierarchy. Being Δ0
k+1–

computable is the same as being computable in the k–th jump ∅(k). We obtain
the following corollary of the previous theorem (we just formulate a selection of
consequences).

Corollary 4. Let X be a computable and perfect Polish space. Then there exist
recursive closed sets A, B ⊆ X such that A ∩ B is not r.e. closed and there exist
r.e. closed sets A, B ⊆ X such that A ∩ B is not even r.e. closed in the halting
problem ∅′. The intersection of r.e. closed sets is always co-r.e. closed in the
halting problem ∅′ and the intersection of co-r.e. closed sets is always co-r.e.
closed.

94 V. Brattka and G. Gherardi

Compared to intersection, union is a very well-behaved operation. It turns out
to be computable with respect to any of the considered representations.

Theorem 4 (Union). Let X be a computable metric space. Then union ∪ :
A(X) × A(X) → A(X), (A, B) �→ A ∪ B is computable with respect to (δ, δ, δ)
for any choice of δ among ψ+, ψdist

+ , ψrange, ψ, ψdist, ψ−, ψdist
− and ψ>, ψ=.

7 Complement, Interior and Closure

In this section we study the operators that map closed sets to the closure of their
complement and to the closure of their interior, respectively.

Theorem 5 (Closure of the complement). Let (X, d) be a computable met-
ric space. Then the closure of the complement c : A(X) → A(X), A �→ Ac is

(1) computable with respect to (ψ−, ψ+),
(2) Σ0

2–computable with respect to (ψ+, ψ+) and (ψ−, ψ),
(3) Σ0

2–complete with respect to (ψ+, ψ+), if X is complete and perfect,
(4) Σ0

2–complete with respect to (ψ, ψ−), if X is complete, perfect and proper.

As A◦ = Ac c, we can interpret the closure of the complement operation also as
interior operation on closed sets or, dually, as closure operation on open sets.
We formulate a number of non-uniform consequences of the previous result.

Corollary 5. Let X be a computable, perfect and proper Polish space. Then
there exists a recursive closed A ⊆ X such that Ac is not co-r.e. closed, but
Ac is always co-r.e. closed in the halting problem ∅′. There exists a r.e. closed
A ⊆ X such that Ac is not r.e. closed, but Ac is always r.e. closed in the halting
problem ∅′.

Now we discuss the closure of the interior operator.

Theorem 6 (Closure of the interior). Let X be a computable metric space.
Then the closure of the interior i : A(X) → A(X), A �→ A◦ is

(1) Σ0
2–computable with respect to (ψ−, ψ+),

(2) Σ0
3–computable with respect to (ψ+, ψ+) and (ψ−, ψ),

(3) Σ0
3–complete with respect to (ψ+, ψ+), if X is complete and perfect,

(4) Σ0
3–complete with respect to (ψ, ψ−), if X is complete, perfect and proper,

(5) Σ0
2–complete with respect to (ψ, ψ+), if X is complete, perfect and proper.

One could assume that further iterations of the operation c allow to climb up
the Borel hierarchy. However, as ccc = c, this is not possible. We mention some
non-uniform consequences of the previous theorem.

Corollary 6. Let X be a computable, perfect and proper Polish space. Then
there exists a recursive closed A ⊆ X such that A◦ is not r.e. closed, but A◦
is always r.e. closed in the halting problem ∅′. There exists a recursive closed
A ⊆ X such that A◦ is not even co-r.e. closed in the halting problem ∅′, but A◦
is always co-r.e. closed in ∅′′.

Borel Complexity of Topological Operations on Computable Metric Spaces 95

8 Boundary and Derivative

In this section we mainly want to study computability properties of the boundary
operation and the derived set operation (i.e. the derivative). It turns out that
for the boundary operation another underlying topological property of the space
is helpful. We use the following notion of effective local connectedness (that is
equivalent to the one in [21]). We use the representation ϑ of open subset, defined
by ϑ(p) := X \ ψ−(p).

Definition 7 (Effective local connectedness). A computable metric space
X is called effectively locally connected if there is a sequence (Uk,n)〈k,n〉∈N of
open connected sets that is computable with respect to ϑ and such that for any
fixed n ∈ N the set {Uk,n : k ∈ N} contains neigbourhoods of any x ∈ In and
Uk,n ⊆ In for all k ∈ N.

We recall that a point x ∈ X is called a boundary point of a set A ⊆ X if any
neigbourhood of x contains a point of A and a point of X \ A. By ∂A we denote
the boundary of A, i.e. the set of boundary points of A. Here and in the following
we exploit that ∂A = A ∩ Ac. It is clear that the boundary of a set is always
closed. Now we are prepared to formulate the following result on the boundary
operator.

Theorem 7 (Boundary). Let X be a computable metric space. Then the
boundary ∂ : A(X) → A(X), A �→ ∂A is

(1) computable with respect to (ψ, ψ+), if X is effectively locally connected,
(2) Σ0

2–computable with respect to (ψ+, ψ+) and (ψ, ψ), if X is effectively locally
connected,

(3) Σ0
2–computable with respect to (ψ−, ψ−),

(4) Σ0
3–computable with respect to (ψ−, ψ), if X is effectively locally compact,

(5) Σ0
2–computable with respect to (ψ−, ψ), if X is effectively locally connected

and effectively locally compact,
(6) Σ0

2–complete with respect to (ψ, ψ−), if X is complete, perfect and proper,
(7) Σ0

3–complete with respect to (ψ, ψ+), if X = {0, 1}N,
(8) not Borel measurable with respect to (ψ, ψ+), if X = N

N.

By iteration of the boundary operator nothing new can be obtained as ∂∂A = ∂A
for closed A ⊆ X . We recall that a point x ∈ X in a topological space X is called
an accumulation point of a subset A ⊆ X if any only if any neigbourhood of X
contains a point of A other than x. By A′ we denote the derived set of A, which
is the set of accumulation points of A. It is clear that the derived set of a set A
is always closed. Now we can formulate our result on the derivative.

Theorem 8 (Derivative). Let X be a computable metric space. Then the
derivative d : A(X) → A(X), A �→ A′ is

(1) Σ0
2–computable with respect to (ψ+, ψ−),

(2) Σ0
3–computable with respect to (ψ+, ψ) and (ψ−, ψ−), if X is effectively

locally compact,

96 V. Brattka and G. Gherardi

(3) Σ0
2–complete with respect to (ψ, ψ−), if X is complete and perfect,

(4) Σ0
3–hard with respect to (ψ−, ψ−), if X is complete and perfect,

(5) Σ0
3–hard with respect to (ψ, ψ+), if X is complete and perfect,

(6) not Borel measurable with respect to (ψ, ψ+), if X is complete but not Kσ.

We formulate a typical non-uniform corollary.

Corollary 7. Let X be a computable and perfect Polish space. Then there exists
a recursive closed A ⊆ X such that A′ is not r.e. closed in the halting problem
∅′, but any such A′ is co-r.e. closed in the halting problem ∅′.

Further results regarding the derivative and its iteration can be found in [22,23].
In particular, it is proved that dk is not Σ0

2k–measurable with respect to (ψ, ψ)
on Cantor space {0, 1}N (restricted to compact sets). It is an interesting question
whether we could establish a corresponding completeness result.

9 Conclusions

The table in Figure 2 shows degrees of computability of topological operations
f : A(X)i → A(X) with i ∈ {1, 2} with respect to (ψi, ψ) and some common
spaces X . The columns indicate the space X under consideration and the rows
indicate which operation is treated. Any number k ∈ N in the table indicates
Σ0

k–computability, typically even Σ0
k–completeness and ∞ stands for operations

which are not even Borel measurable.

N {0, 1}N
N

N [0, 1] [0, 1]N R
n

R
N �2 C[0, 1]

A ∪ B 1 1 1 1 1 1 1 1 1
A ∩ B 1 2 ∞ 2 2 2 ∞ ∞ ∞

Ac 1 2 2 2 2 2 2 2 2

A◦ 1 3 3 3 3 3 3 3 3
∂A 1 3 ∞ 2 2 2 2 2 2
A′ 1 3 ∞ 3 3 3 ∞ ∞ ∞

Fig. 2. Degrees of computability with respect to ψ

References

1. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)
2. Brattka, V., Presser, G.: Computability on subsets of metric spaces. Theoretical

Computer Science 305, 43–76 (2003)
3. Kechris, A.S.: Classical Descriptive Set Theory. Volume 156 of Graduate Texts in

Mathematics. Springer, Heidelberg (1995)
4. Moschovakis, Y.N.: Descriptive Set Theory. Volume 100 of Studies in Logic and

the Foundations of Mathematics. North-Holland, Amsterdam (1980)
5. Brattka, V.: Effective Borel measurability and reducibility of functions. Mathemat-

ical Logic Quarterly 51, 19–44 (2005)

Borel Complexity of Topological Operations on Computable Metric Spaces 97

6. Kuratowski, K.: Topology, vol. 1. Academic Press, London (1966)
7. Kuratowski, K.: Topology, vol. 2. Academic Press, London (1968)
8. Christensen, J.P.R.: On some properties of Effros Borel structure on spaces of

closed subsets. Mathematische Annalen 195, 17–23 (1971)
9. Christensen, J.P.R.: Necessary and sufficient conditions for the measurability of

certain sets of closed subsets. Mathematische Annalen 200, 189–193 (1973)
10. Christensen, J.P.R.: Topology and Borel Structure. North-Holland, Amsterdam

(1974)
11. Brattka, V.: Computable invariance. Theoretical Computer Science 210, 3–20

(1999)
12. Gherardi, G.: Effective Borel degrees of some topological functions. Mathematical

Logic Quarterly 52, 625–642 (2006)
13. Weihrauch, K.: Computability. Volume 9 of EATCS Monographs on Theoretical

Computer Science. Springer, Heidelberg (1987)
14. Kreitz, C., Weihrauch, K.: Theory of representations. Theoretical Computer Sci-

ence 38, 35–53 (1985)
15. Schröder, M.: Extended admissibility. Theoretical Computer Science 284, 519–538

(2002)
16. Brattka, V., Weihrauch, K.: Computability on subsets of Euclidean space I: Closed

and compact subsets. Theoretical Computer Science 219, 65–93 (1999)
17. Brattka, V.: Random numbers and an incomplete immune recursive set. In: Wid-

mayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 8–13. Springer, Heidelberg (2002)

18. Holá, L., Pelant, J., Zsilinszky, L.: Developable hyperspaces are metrizable. Applied
General Topology 4, 351–360 (2003)

19. Raymond, J.S.: La structure borélienne d’Effros est-elle standard? Fundamenta
Mathematicae 100, 201–210 (1978)

20. Effros, E.G.: Convergence of closed subsets in a topological space. Proceedings of
the American Mathematical Society 16, 929–931 (1965)

21. Brattka, V.: Plottable real number functions. In: Daumas, M., et al. (eds.) RNC’5
Real Numbers and Computers, INRIA, Institut National de Recherche en Infor-
matique et en Automatique 13–30 Lyon, September 3–5, 2003 (2003)

22. Cenzer, D., Mauldin, R.D.: On the Borel class of the derived set operator. Bull.
Soc. Math. France 110, 357–380 (1982)

23. Cenzer, D., Mauldin, R.D.: On the Borel class of the derived set operator: II. Bull.
Soc. Math. France 111, 367–372 (1983)

24. Kuratowski, K.: Some remarks on the relation of classical set-valued mappings to
the Baire classification. Colloquium Mathematicum 42, 273–277 (1979)

Colocatedness and Lebesgue Integrability

Douglas S. Bridges

Department of Mathematics & Statistics
University of Canterbury, Private Bag 4800

Christchurch, New Zealand
d.bridges@math.canterbury.ac.nz

Abstract. With reference to Mandelkern’s characterisation of colocated
subsets of the line in constructive analysis, we introduce the notion of
“strongly colocated set” and find conditions under which such a set is
Lebesgue integrable.

The work of this paper is motivated by the question, “When is an open set S ⊂
R Lebesgue measurable?” Classically, the answer to this question is “always”;
but in constructive mathematics—mathematics with intuitionistic logic and an
appropriate set theoretic foundation such as that in [1] — we may not be able to
prove S Lebesgue measurable even if it is expressed as a disjoint union of open
intervals.

We assume that the reader has access to an account of constructive measure
theory such as that in Chapter 6 of [4]; for background in constructive analysis,
see [3,4,6] or the more recent [5].

A subset S of R is said to be

– fixative if we can decide whether it is empty or inhabited;1

– located if
ρ(x, S) = inf {|x − s| : s ∈ S}

exists for each x ∈ R;
– colocated if there exists a located subset T of R such that

S = R − T = {x ∈ R : ρ(x, T) > 0} .

Mandelkern [7] established the following characterisation of colocated subsets
of R.

Theorem 1. The union of a sequence (In)n�1 of pairwise-disjoint, fixative open
intervals in R is colocated if and only if there exists a strictly increasing sequence
(nk)k�1 of positive integers such that for all positive integers n and k, if In

intersects (−k, k) and |In| > k−1, then n � nk.

1 A set S is inhabited if we can construct a point in it. Such a construction tells us
more than merely that it is impossible for S to be empty.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 98–104, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Colocatedness and Lebesgue Integrability 99

Let S =
⋃

n�1 In be a countable union of pairwise-disjoint, fixative open
intervals. Strengthening the condition in Mandelkern’s theorem, we say that S
is strongly colocated if there exists a strictly increasing sequence (nk)k�1 of
positive integers satisfying the following condition:

(*) For each k ∈ N
+ (the set of positive integers), if F is a finite subset

of N
+ such that

∑
n∈F |In| > k−1 and In meets (−k, k) for each n ∈ F,

then there exists n ∈ F such that n � nk.

If S is strongly colocated, then, by Theorem 1, it is colocated.

Proposition 1. Let S =
⋃

n�1 In, where (In)n�1 is a sequence of pairwise-
disjoint, fixative open intervals, and suppose that S is colocated. Let (Jn)n�1

also be a sequence of pairwise-disjoint, fixative open intervals whose union is S.
Then there exists a strictly increasing sequence (pk)k�1 of positive integers such
that for each k ∈ N

+, if F is a finite subset of N
+ such that

∑
n∈F |Jn| > k−1

and Jn meets (−k, k) for each n ∈ F, then there exists n ∈ F such that n � pk.

Proof. There exists a strictly increasing sequence (nk)k�1 of positive integers
with the property (*). We may assume that In1 is inhabited. First note that if
Jn is inhabited, then there exists a unique m such that Jn = Im. To see this, let
x, x′ ∈ Jn, and pick m, m′ such that x ∈ Im and x′ ∈ Im′ . Suppose that m �= m′.
Then without loss of generality we may assume that x < x′. Since Im ∩Im′ = ∅,
the right endpoint of Im must lie between x and x′ and hence in Jn; but this is
absurd, since that endpoint cannot belong to S. Hence m = m′ and Jn ⊂ Im.
Interchanging the roles of Jn and Im, we see also that Im ⊂ Jn and hence that
Jn = Im.

We now define the desired strictly increasing sequence (pk)k�1 of positive
integers recursively. We first set

p1 = max {m : ∃n�n1(Jm = In)} .

Having computed pk, we set

pk+1 = max
{
1 + pk, max

{
m : ∃n�nk+1 (Jm = In)

}}
.

Let F be a finite subset of N
+ such that

∑
n∈F |Jn| > k−1 and Jn meets (−k, k)

for each n ∈ F. For such n, since Jn meets (−k, k) and is therefore inhabited,
there exists a unique mn such that Jn = Imn . Thus

∑
n∈F |Imn | > k−1 and

Imn meets (−k, k) for each n ∈ F. It follows that there exists n ∈ F such that
mn � nk; since Jn = Imn , we have n � pk.

Theorem 2. Let S =
⋃

n�1 In be a countable union of pairwise-disjoint, fixative
open intervals. Then the following conditions are equivalent.

(i) S is strongly colocated.
(ii) The series

∑∞
n=1 |In ∩ (−N, N)| converges in R for each positive integer N.

100 D.S. Bridges

Proof. Assuming (i), let (nk)k�1 be as in the definition of strongly colocated, and
let N be a positive integer. Let 0 � α < β, and choose a positive integer

k > max
{

N,
2

β − α

}
.

Consider any finite subset F of N
+ ∩ (nk, ∞), and let 0 < ε < 1. A tedious

elementary argument by cases shows that for each n, either In ∩ (−N, N) is
inhabited or else In ∩ (−N + ε, N − ε) = ∅; so we can write N

+ ∩ (nk, ∞) as a
union of subsets P, Q such that

� if n ∈ P, then In intersects (−N, N) ;
� if n ∈ Q, then In ∩ (−N + ε, N − ε) = ∅.

We lose no generality by assuming that both P and Q are inhabited. By the
choice of nk, we have

∑
n∈F∩P |In| � k−1 and therefore

∑

n∈F∩P

|In ∩ (−N, N)| � k−1.

On the other hand, if n ∈ F ∩ Q, then |In ∩ (−N, N)| � 2ε. So
∑

n∈F∩Q

|In ∩ (−N, N)| � 2 |F ∩ Q| ε � 2 |F | ε.

Hence ∑

n∈F

|In ∩ (−N, N)| � k−1 + 2 |F | ε.

Since ε is arbitrary, we see that
∑

n∈F |In ∩ (−N, N)| � k−1 for every finite
subset F of N

+ ∩ (nk, ∞).
Either

∑nk

n=1 |In ∩ (−N, N)| > α or
∑nk

n=1 |In ∩ (−N, N)| < β − k−1. In the
latter case, for each m > nk we have

m∑

n=1

|In ∩ (−N, N)| =
nk∑

n=1

|In ∩ (−N, N)| +
m∑

n=nk+1

|In ∩ (−N, N)| < β,

by the first part of the proof. Since α, β are arbitrary, it follows from the con-
structive least-upper-bound principle ([5], Theorem 2.1.18) that

∞∑

n=1

|In ∩ (−N, N)| = sup
m�1

m∑

n=1

|In ∩ (−N, N)|

exists in R.
Now suppose, conversely, that (ii) holds. Then there exists a strictly increasing

sequence (νk)k�1 of positive integers such that

∞∑

j=νk+1

|Ij ∩ (−k − 1, k + 1)| < k−1 (k � 1) .

Colocatedness and Lebesgue Integrability 101

Given a finite subset F of N
+ ∩ (νk+1, ∞), suppose that

∑
n∈F |In| > k−1 and

that In intersects (−k, k) for each n ∈ F. Since

μ

(
⋃

n∈F

(In ∩ (−k − 1, k + 1))

)

=
∑

n∈F

|In ∩ (−k − 1, k + 1)|

�
∞∑

n=νk+1

|In ∩ (−k − 1, k + 1)|

< k−1 <
∑

n∈F

|In| ,

there exist ν ∈ F and a point x ∈ Iν such that x /∈ Iν ∩ (−k − 1, k + 1) ; then
|x| � k + 1. Since Iν intersects (−k, k) and is an interval, it follows that either
(−k − 1, −k) ⊂ Iν or else (k, k + 1) ⊂ Iν ; whence

∑

n∈F

|In ∩ (−k − 2, k + 2)| � |Iν ∩ (−k − 1, k + 1)| � 1 > (k + 1)−1
,

which is absurd as F ⊂ (νk+1, ∞). We conclude that if F is a finite set of positive
integers such that

∑
n∈F |In| > k−1 and In intersects (−k, k) for each n ∈ F,

then there exists n ∈ F with n � νk+1. To complete the proof that S is strongly
colocated, we need only take nk = νk+1.

Theorem 3. Let S =
⋃

n�1 In be a countable union of pairwise-disjoint, fixative
open intervals that is strongly colocated. Then S is Lebesgue integrable if and
only if

∑∞
n=1 |In| converges, in which case the series converges to the Lebesgue

measure of S.

Proof. Assume first that S is Lebesgue integrable. Given ε > 0, we can find a
positive integer N such that μ (S − [−N, N]) < ε. By Theorem 2, there exists κ
such that

∑∞
n=κ+1 |In ∩ [−N, N]| < ε. For every k � κ we have

μ(S) = μ(S − [−N, N]) + μ (S ∩ [−N, N])

< ε +
∞∑

n=1

|In ∩ [−N, N]|

� ε +
k∑

n=1

|In| +
∞∑

n=k+1

|In ∩ [−N, N]|

<
k∑

n=1

|In| + 2ε

and therefore μ(S) −
∑k

n=1 |In| < 2ε. Since ε > 0 is arbitrary, we conclude that∑∞
n=1 |In| converges to μ(S).
If, conversely,

∑∞
n=1 |In| converges, then S is Lebesgue integrable, by (3.10)

on page 235 of [4].

102 D.S. Bridges

The following recursive counterexample shows that we cannot prove construc-
tively that the union of any sequence of pairwise-disjoint, fixative open intervals
is Lebesgue measurable. Assuming the Church–Markov–Turing thesis, we can
construct a Specker sequence in [0, 1] : that is, a strictly increasing sequence
(rn)n�1 in [0, 1] that is eventually bounded away from each real number. (For
more information about Specker sequences see [8] or Chapter 3 of [6].) Suppose
that the set

S =
⋃

n�1

(rn, rn+1) ,

a countable union of pairwise-disjoint, inhabited open subintervals of (0, 1) , is
Lebesgue integrable. By Theorem (6.7) on page 257 of [4], for each ε > 0 there
exists a compact subset K of S such that μ(S − K) < ε. Let ξ = sup K ∈ [0, 1] .
By the Specker property of the sequence (rn)n�1 , there exist δ > 0 and a positive
integer ν1 such that |ξ − rn| > δ for all n � ν1. Pick η ∈ K ⊂ S such that
η > ξ − δ. There exists a unique ν2 such that η ∈ (rν2 , rν2+1) . Either rν2+1 > ξ
or rν2+1 < ξ + δ. In the first case, rn > ξ for all n � ν2. In the second case, since
ξ − δ < η < rν2+1 < ξ + δ, we must have ν2 +1 < ν1; whence rν1 > rν2+1 > ξ − δ
and therefore rn > rν1 > ξ +δ for all n � ν1. Thus, setting N = max {ν1, ν2} , in
either case we have rn > ξ + δ, and therefore (rn, rn+1) ∈ S − K, for all n � N.
It follows that

n∑

k=N

|Ik| = μ

(
n⋃

k=N

Ik

)

� μ(S − K) < ε (n � N) .

Since ε > 0 is arbitrary, the series
∑∞

k=1 |Ik| converges. But for n � 2,

rn = r1 +
n∑

k=2

(rk − rk−1) = r1 +
n∑

k=2

|Ik|

→ r1 +
∞∑

k=1

|Ik| − |I1| as n → ∞,

so the Specker sequence (rn)n�1 converges. This contradicts the defining prop-
erty of a Specker sequence. Hence S is not Lebesgue integrable.

We next show that this set S is not colocated. Supposing that S = −T, where
T is located, we prove that supn�1 rn exists. In view of the constructive least-
upper-bound principle ([5], Theorem 2.1.18), it will suffice to prove that for each
x ∈ R,

∀n�1 (rn < x) ∨ ∃n (rn > x) . (1)
To that end, we compute δ > 0 and a positive integer N such that |x − rn| > δ
for all n � N. If ρ(x, T) > 0, then there exists ν such that x ∈ (rν , rν+1) and
therefore rν+1 > x. We may therefore assume that ρ(x, T) < δ. Pick t ∈ T with
|x − t| < δ. Since either rN > x or rN < x− δ, we may further assume the latter.
If there exists n > N such that rn > x and therefore rn > x + δ, then

t ∈ (x − δ, x + δ) ⊂
n−1⋃

k=N

(rk, rk+1)

Colocatedness and Lebesgue Integrability 103

and t �= y for all y ∈
n−1⋃

k=N

(rk, rk+1) ; whence t = rk for some k � N, which

is impossible by our choice of δ. Hence rn � x, and therefore rn < x − δ,
for all n � N. By testing r1, . . . , rN−1, we can now complete the proof of (1).
Hence limn→∞ rn = supn�1 rn exists, which contradicts the Specker property of
(rn)n�1 .

It follows immediately that S cannot be strongly colocated. We can reach this
conclusion by a different route as follows. Suppose that S is strongly colocated.
Then by Proposition 1, there exists a strictly increasing sequence (nk)k�1 of
positive integers with the property (*). For each positive integer k, since every
In meets (−k, k) , we have

∑m
n=nk+1 |In| � k−1 whenever m > nk. Hence the

series
∑∞

n=1 |In| converges. It follows from Proposition (3.10) in Chapter 6 of [4]
that S is Lebesgue integrable, which contradicts the work of the second-to-last
paragraph.

These recursive considerations lead us to the question:

If a union of pairwise-disjoint, fixative open intervals is both colocated
and integrable, is it strongly colocated?

Here is a first step towards an affirmative answer.

Proposition 2. Let S be the colocated union of a sequence (In)n�1 of pairwise-
disjoint, fixative open intervals. If S is integrable, then |In| → 0 as n → ∞.

Proof. Choose (nk)k�1 as in Mandelkern’s theorem. Given ε > 0, choose an
integer N > 2 such that μ (S − [−N + 1, N − 1]) < ε. Write N

+ as a union of
subsets P, Q such that

– if n ∈ P, then In intersects (−N, N) ;
– if n ∈ Q, then In ∩

[
−N + 1

2 , N − 1
2

]
= ∅.

Let k be any positive integer > max
{

1
ε , N

}
, and consider any n > nk. If n ∈ Q,

then
In ⊂ S − [−N + 1, N − 1] ,

so |In| < ε. If n ∈ P and |In| > 1/k, then as In ∩ (−k, k) ⊃ In ∩ (−N, N) , we
have n � nk, a contradiction; so |In| � 1/k < ε. It follows that |In| < ε for all
n > nk.

We can strengthen the conclusion of Proposition 2 to the strong colocatedness
of S provided we accept the following weak Heine–Borel property (a variant of
which is discussed in [2]).

HBi: For each compact K ⊂ R, if (In)n�1 is a sequence of pairwise-

disjoint inhabited open intervals, and K ⊂
⋃

n�1

In, then there exists N

such that K ⊂
N⋃

n=1

In.

104 D.S. Bridges

Theorem 4. HBi � Every colocated, integrable union of a sequence of pairwise-
disjoint, fixative open intervals is strongly colocated.

Proof. Let S be a colocated integrable set, and, using Mandelkern’s theorem,
write S as the union of a sequence (In)n�1 of pairwise-disjoint, fixative open
intervals. Without loss of generality, we may assume that each In is inhabited.
By Theorem 2, in order to establish our desired result, it is enough to prove that
the series

∑∞
n=1 |In| , whose partial sums are bounded by μ(S), converges. Given

ε > 0, we have either μ(S) < ε, in which case
∑k

n=j+1 |In| < ε whenever k > j;
or else μ(S) > 0. In the latter case, using Theorem (6.7) on page 257 of [4], we
can find a strongly integrable compact set K ⊂ S such that μ(S −K) < ε. Then
K ⊂

⋃
n�1 In, so we can apply HBi to obtain a positive integer N such that

K ⊂
⋃N

n=1 In. It follows that for k > j > N,

k∑

n=j+1

|In| � μ(S − K) < ε.

Hence in either case we have
∑k

n=j+1 |In| < ε for all sufficiently large j and k.

Since ε > 0 is arbitrary, we conclude that the partial sums of
∑∞

n=1 |In| form a
Cauchy sequence, and therefore that the series converges in R.

Acknowledgement. The author thanks Ayan Mahalanobis for reminding him
of Mandelkern’s work and thereby leading him to the ideas of this paper. Hannes
Diener suggested to me the proof that the set S in the recursive example is not
colocated.

References

1. Aczel, P., Rathjen, M.: Notes on Constructive Set Theory, Report No. 40, Institut
Mittag-Leffler, Royal Swedish Academy of Sciences (2001)

2. Berger, J., Bridges, D.S., Mahalanobis, A.: The anti-Specker property, a Heine–Borel
property, and uniform continuity, preprint, University of Canterbury (January 2007)

3. Bishop, E.A.: Foundations of Constructive Analysis, McGraw-Hill, New York (1967)
4. Bishop, E.A., Bridges, D.S.: Constructive Analysis. Springer, Heidelberg (1985)
5. Bridges, D.S., Vı̂ţă, L.S.: Techniques of Constructive Analysis, Universitext.

Springer, New York (2006)
6. Bridges, D.S., Richman, F.: Varieties of Constructive Mathematics. London Math.

Soc. Lecture Notes, vol. 97. Cambridge Univ. Press, Cambridge (1987)
7. Mandelkern, M.: Located sets on the line. Pacific J. Math 95(2), 401–409 (1981)
8. Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. J. Symb. Logic 14,

145–158 (1949)

Computing with Genetic Gates

Nadia Busi1 and Claudio Zandron2

1 Dipartimento di Scienze dell’Informazione, Università di Bologna,
Mura A. Zamboni 7, I-40127 Bologna, Italy

busi@cs.unibo.it
2 Dipartimento di Informatica, Sistemistica e Comunicazione,

Università di Milano-Bicocca,
via Bicocca degli Arcimboldi 8, I-20126, Milano, Italy

zandron@disco.unimib.it

Abstract. We introduce Genetic Systems, a formalism inspired by
genetic regulatory networks and suitable for modeling the interactions
between the genes and the proteins, acting as regulatory products.

The generation of new objects, representing proteins, is driven by
genetic gates: a new object is produced when all the activator objects are
available in the system, and no inhibitor object is available. Activators
are not consumed by the application of such an evolution rule. Objects
disappear because of degradation: each object is equipped with a lifetime,
and the object decays when such a lifetime expires.

We investigate the computational expressiveness of Genetic Systems:
we show that they are Turing equivalent by providing an encoding of
Random Access Machines in Genetic Systems.

1 Introduction

Most biological processes are regulated by networks of interactions between reg-
ulatory products and genes. To investigate the dynamical properties of these
genetic regulatory networks, various formal approaches, ranging from discrete to
stochastic and to continuous models, have been proposed (see [3] for a review).

The goal of this paper is to investigate the ability of genetic networks to act
as a computational device. To this aim, we introduce Genetic Systems, a simple
discrete formalism for the modeling of genetic networks.

The basic ingredients of the model are genetic gates, that are rules modeling
the behaviour of genes, and objects, representing proteins. Proteins both regulate
the activity of a gene – by activating or inhibiting transcription – and represent
the product of the activity of a gene.

A genetic gate is essentially a contextual rewriting rule consisting of three
components: the set of activators, the set of inhibitors and the transcription
product. A genetic gate is activated if the activator objects are present in the
system, and all inhibitor objects are absent. The result of the application of a
genetic gate rule is the production of a new object. It is worthwhile to note that
the application of such a rule does not remove the activator objects from the
system.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 105–114, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

106 N. Busi and C. Zandron

In biological systems, proteins can disappear in (at least) two ways (see,
e.g., [1]): a protein can either decay because its lifetime is elapsed, or be neu-
tralized by a repressor protein.

To model the decaying process, we equip objects with a lifetime, which is
decremented at each computational step. When the lifetime of an object becomes
equal to zero, the object disappears. In our model we represent both decaying and
persistent objects: while the lifetime of a decaying object is a natural number,
persistent objects are equipped with an infinite lifetime.

The behaviour of repressor proteins is modeled through repressor rules, consist-
ing of two components: the repressor object and the object to be destroyed. The
rule is activated when both objects are present in the system. When the rule is ap-
plied, the object to be destroyed disappears, while the repressor is not removed.

We investigate the computational power of Genetic Systems by presenting an
encoding of Random Access Machines (RAMs) [9], a well-known, deterministic
Turing equivalent formalism. The encoding we provide turns out to be deter-
ministic (i.e., in each state of the system, at most one computational step can
be performed). As a consequence, the encoding enjoys the following property:
a RAM terminates if and only if its encoding terminates (this means that no
additional divergent or failed computations are added in the encoding).

The paper is organized as follows. In Section 2 we provide some basic defini-
tions that will be used throughout the paper. The syntax and the semantics of
Genetic Systems is presented in Section 3, and in Section 4 we show that Genetic
Systems are Turing equivalent, by providing an encoding of RAMs. Section 5
reports some conclusive remarks.

2 Basic Definitions

In this section we provide some basic definitions that will be used throughout
the paper. With IN we denote the set of natural numbers, whereas IN∞ denotes
IN ∪ {∞}. We start with the definition of multisets and multiset operations.

Definition 1. Given a set S, a finite multiset over S is a function m : S → IN
such that the set dom(m) = {s ∈ S | m(s) �= 0} is finite. The multiplicity of an
element s in m is given by the natural number m(s). The set of all finite multisets
over S is denoted by Mfin(S); variables m, m′, . . . range over Mfin(S). A multiset
m such that dom(m) = ∅ is called empty. The empty multiset is denoted by ∅.

Given the multiset m and m′, we write m ⊆ m′ if m(s) ≤ m′(s) for all s ∈ S
while ⊕ denotes their multiset union: m ⊕ m′(s) = m(s) + m′(s). The operator
\ denotes multiset difference: (m \ m′)(s) = if m(s) ≥ m′(s) then m(s) − m′(s)
else 0.

The set of parts of a set S is defined as P(S) = {X | X ⊆ S}.
Given a set X ⊆ S, with abuse of notation we use X to denote also the

multiset

mX(s) =
{

1 if s ∈ X
0 otherwise

We provide some basic definitions on strings, cartesian products and relations.

Computing with Genetic Gates 107

Definition 2. A string over S is a finite (possibly empty) sequence of elements
in S. Given a string u = x1 . . . xn, the length of u is the number of occurrences
of elements contained in u and is defined as follows: |u| = n. The empty string
is denoted by λ.

With S∗ we denote the set of strings over S, and u, v, w, . . . range over S.
Given n ≥ 0, with Sn we denote the set of strings of length n over S. Given a
string u = x1 . . . xn, the multiset corresponding to u is defined as follows: for all
s ∈ S, mu(s) = |{i | xi = s ∧ 1 ≤ i ≤ n}|. With abuse of notation, we use u to
denote also mu

1.

Definition 3. With S × T we denote the cartesian product of sets S and T ,
with ×nS, n ≥ 1, we denote the cartesian product of n copies of set S and with
×n

i=1Si we denote the cartesian product of sets S1, . . . , Sn, i.e., S1 × . . . × Sn.

Given a binary relation R over a set S, with Rn we denote the composition of n
instances of R, with R+ we denote the transitive closure of R, and with R∗ we
denote the reflexive and transitive closure of R.

3 Genetic Systems

In this section, we present the definition of Genetic Systems (G Systems for
short) and the definitions which we need to describe their functioning. To this
aim, given a set X , we define RX = P(X) × P(X) × (X × IN∞).

Definition 4. A Genetic System with timed degradation is a tuple

G = (V, GR, RR, w0)

where

1. V is a finite alphabet whose elements are called objects;
2. GR is a finite multiset2 over RV of genetic gates over V ; these gates are of

the forms uact, ¬uinh :→ (b, t) where uact∩uinh = ∅. uact ⊆ V is the positive
regulation (activation)3, uinh ⊆ V is the negative regulation (inhibition),
b ∈ V is the transcription of the gate4 and t ∈ IN∞ is the duration of object
b;

3. RR is a finite set5 of repressor rules of the form (rep : b →) where rep, b ∈ V
and rep �= b;

1 In some cases we denote a multiset by one of its corresponding strings, because this
permits to define functions on multisets in a more insightful way.

2 Here we use multisets of rules, instead of sets, because each rule can be used at most
once in each computational step.

3 We consider sets of activators, meaning that a genetic gate is never activated by
more than one instance of the same protein.

4 Usually the expression of a genetic gate consists of a single protein.
5 We use sets rules, instead of multisets, because each repressor rule denotes a chemical

law; hence, a repressor rule can be applied for an unbounded number of times in
each computational step.

108 N. Busi and C. Zandron

4. w0 is a string over V ×IN∞, representing the multiset of objects contained in
the system at the beginning of the computation. The objects are of the form
(a, t), where a is a symbol of the alphabet V and t > 0 represents the decay
time of that object.

We say that a gate is unary if |uact ⊕ uinh| = 1. The multiset represented by w0

constitutes the initial state of the system. A transition between states is governed
by an application of the transcription rules (specified by the genetic gates) and
of the repressor rules.

The gate uact, ¬uinh :→ (b, t) can be activated if the current state of the
system contains enough free activators and no free inhibitors. If the gate is
activated, the regulation objects (activators) in the set uact are bound to such a
gate, and they cannot be used for activating any other gate in the same maximal
parallelism evolution step.

In other words, the gate uact, ¬uinh :→ (b, t) in a state formed by a multiset
of (not yet bound) objects w can be activated if uact is contained in w and no
object in uinh appears in w; if the gate performs the transcription, then a new
object (b, t) is produced. Note that the objects in uact and uinh are not consumed
by the transcription operation, but will be released at the end of the operation
and (if they do not disappear because of the decay process) they can be used in
the next evolution step. Each object starts with a decay number, which specifies
the number of steps after which this object disappears. The decay number is
decreased after each parallel step; when it reaches the value zero, the object
disappears. If the decay number of an object is equal to ∞, then the object is
persistent and it never disappears.

The repressor rule (rep : b →) is activated when both the repressor rep and the
object b are present, and the repressor rep destroys the object b. The parentheses
surrounding the repressor rule are omitted when the notation is not ambiguous.

We adopt the following notation for gates. The activation and inhibition sets
are denoted by one of the corresponding strings, i,e, a, b, ¬c :→ (c, 5) denotes
the gate {a, b}, ¬{c} :→ (c, 5). If either the activation or the inhibition is empty
then we omit the corresponding set, i.e., a :→ (b, 3) is a shorthand for the gate
{a}, ¬∅ :→ (b, 3). The nullary gate ∅, ¬∅ :→ (b, 2) is written as :→ (b, 2).

3.1 Partial Configurations, Reaction Relation and Maximal
Parallelism Step

Having defined Genetic Systems, we are ready to describe their functioning. A
transition between two states of the system is governed by an application of the
transcription rules (specified by the genetic gates) and of the repressor rules.
Different semantics can be adopted, depending on the number of rules that are
applied in each computational step, and on the way in which the set of rules
to be applied is chosen. We adopt the so-called maximal parallelism semantics:
all the rules that can be applied simultaneously, must be applied in the same
computational step.

We give now the definitions for partial configuration, configuration, reaction
relation, and heating and decaying function.

Computing with Genetic Gates 109

Definition 5. Let G = (V, GR, RR, w0) be a Genetic System. A partial config-
uration of G is a tuple (w, R, w̄, R̄) ∈ Mfin(V ×IN∞)×Mfin(RV)×Mfin(V ×
IN∞) × Mfin(RV).

The set of partial configurations of G is denoted by ConfG. We use γ, γ′, γ1,
. . . to range over ConfG.

The multiset w contains the active objects, whereas w̄ is the multiset of the
frozen (already used) objects; R represents the active gates, while R̄ represents
the frozen (already used) gates.

A configuration is a partial configuration containing no frozen objects; config-
urations represent the states reached after the execution of a maximal parallelism
computation step.

Definition 6. Let G = (V, GR, RR, w0) be a Genetic System.
A configuration of G is a partial configuration (w, R, w̄, R̄) satisfying the

following: w̄ = ∅ and R̄ = ∅.
The initial configuration of G is the configuration (w0, GR, ∅, ∅).

The activation of a genetic gate is formalized by the notion of reaction relation.
In order to give a formal definition we need the function obj : (V ×IN∞)∗ → V ∗,
defined as follows. Assume that (a, t) ∈ (V × (IN∞)) and w ⊆ (V × (IN∞))∗.
Then, obj(λ) = λ and obj((a, t)w) = a obj(w).

We also need to define a function DecrTime which is used to decrement the
decay time of objects, destroying the objects which reached their time limit.

Definition 7. The function DecrT ime : (V × IN∞)∗ → (V × IN∞)∗ is defined
as follows:

DecrT ime(λ) = λ, and

DecrT ime((a, t)w) =
{

(a, t − 1)DecrT ime(w) if t > 1
DecrT ime(w) if t = 1

We are now ready to give the notion of reaction relation.

Definition 8. Let G = (V, GR, RR, w0) be a Genetic System.
The reaction relation �→ over ConfG × ConfG is defined as follows:
(w, R, w̄, R̄) �→ (w′, R′, w̄′, R̄′) iff one of the following holds:

– there exist uact, ¬uinh :→ (b, t) ∈ R and wact ⊆ w such that
• uinh ∩ dom(obj(w)) = ∅
• obj(wact) = muact

6

• w′ = w \ wact

• w̄′ = w̄ ⊕ {(b, t)} ⊕ DecrT ime(wact)
• R′ = R \ (uact, ¬uinh :→ (b, t))
• R̄′ = R̄ ⊕ (uact, ¬uinh :→ (b, t))

6 We recall that muact is the multiset containing exactly one occurrence of each object
in the set uact. Hence, the operator = is intended here to be the equality operator
on multisets.

110 N. Busi and C. Zandron

– there exists rep : b → ∈ RR such that
• there exist trep, tb ∈ IN∞ such that {(rep, trep), (b, tb)} ⊆ w
• w′ = w \ {(rep, trep), (b, tb)}
• w̄′ = w ⊕ DecrT ime((rep, trep))
• R̄ = R

The function heat&decay – used in the definition of a maximal parallelism com-
putational step –permits to make the frozen objects and rules active again, and
decrements the decaying time of the objects that have not been used in any rule
in of the last maximal parallelism step.

Definition 9. The function heat&decay : ConfG → ConfG is then defined as
follows:

heat&decay(w, R, w̄, R̄) = (DecrT ime(w)) ⊕ w̄), R ⊕ R̄, ∅, ∅)

Now we are ready to define the maximal parallelism computational step �⇒:

Definition 10. Let G = (V, GR, RR, w0) be a Genetic System.
The maximal parallelism computational step �⇒ over (nonpartial) configura-

tions of G is defined as follows: γ1 �⇒ γ2 iff one of the following holds:

– there exists a partial configuration γ′ s.t. γ1 �→+ γ′, γ′ ��→ and
γ2 = heat&decay(γ′)7, or

– γ1 = (w, R, ∅, ∅), γ1 ��→, there exists (a, t) ∈ w s.t. t �= ∞ and γ2 =
(DecrT ime(w), R, ∅, ∅).

We say that a configuration γ is terminated if no maximal parallelism step can
be performed, i.e., γ ��⇒.

Note that a computational step can be either a maximal set of rules, or the
passing of one time unit, in case the system is deadlocked (i.e., no rule can be
applied).

We also need computational steps of the second kind, because it may happen
that the computation restarts after some object – acting as inhibitor for some
rule – decays. Consider, e.g., the system with a negative gate ¬b :→ (a, 3) and
a positive gate a :→ (a, 3), reaching a configuration containing only the object
(b, 2); the system can perform no move, but, after 2 time units have elapsed,
an object (a, 3) is produced and, by the positive gate, the system will never
terminate.

4 Expressiveness of Genetic Systems

In this section we show that Genetic Systems are Turing powerful. It’s easy to
see that Genetic systems can be simulated by a Turing complete formalism. In
this section we show how to model Random Access Machines (RAMs) [9], a well
known Turing powerful formalism, in Genetic Systems. We start recalling the
definition of RAMs.
7 With γ ��→ we denote the fact that there exist no γ′ such that γ �→ γ′.

Computing with Genetic Gates 111

4.1 Random Access Machines

RAMs are a computational model based on finite programs acting on a finite
set of registers. More precisely, a RAM R is composed of the registers r1, . . . , rn,
that can hold arbitrary large natural numbers, and by a sequence of indexed
instructions (1 : I1), . . . , (m : Im). In [5] it is shown that the following two
instructions are sufficient to model every recursive function:

– (i : Succ(rj)): adds 1 to the contents of register rj and goes to the next
instruction;

– (i : DecJump(rj , s)): if the contents of the register rj is not zero, then
decreases it by 1 and goes to the next instruction, otherwise jumps to the
instruction s.

The computation starts from the first instruction and it continues by executing
the other instructions in sequence, unless a jump instruction is encountered.
The execution stops when an instruction number higher than the length of the
program is reached.

A state of a RAM is modelled by (i, c1, . . . , cn), where i is the program counter
indicating the next instruction to be executed, and c1, . . . , cn are the current
contents of the registers r1, . . . , rn, respectively. The notation (i, c1, . . . , cn) →R

(i′, c′1, . . . , c
′
n) is used to denote that the state of the RAM R changes from

(i, c1, . . . , cn) to (i′, c′1, . . . , c
′
n), as a consequence of the execution of the i-th

instruction.
A state (i, c1, . . . , cn) is terminated if the program counter i is strictly greater

than the number of instructions m. We say that a RAM R terminates if its
computation reaches a terminated state. The output of the RAM is the contents
of register r1 in the terminated state of the RAM (if such a state exists).

4.2 Encoding RAMs in Genetic Systems

In this section we show how to model RAMs in Genetic Systems. The basic idea
consists in representing the contents of registers by sets of copies of persistent
objects. More precisely, the fact that register ri contains value ci is represented
by the presence of ci copies of object (ri, ∞) in the state of the system.

The fact that the program counter contains the value i (i.e., the next instruc-
tion to be executed is the ith) is represented by the presence of object pi. At
the beginning of the computation, the program counter is represented by the
decaying object (p1, 1). In general, just before starting the execution of the ith
instruction, the system contains the object (pi, 1).

The instructions could be encoded by genetic gates. Basically, the encoding
of a successor instruction i : Succ(rj) produces a new instance of a persistent
object (rj , ∞), as well as the new program counter (pi+1, 1). The encoding of
a decrement or jump instruction i : DecJump(rj , s) may have two different
behaviours. One gate checks (by negative regulation) if no object rj occurs in
the system: if this is the case, then the program counter (ps, 1) is produced.
Another gate checks (by positive regulation) if there exists an object rj in the

112 N. Busi and C. Zandron

system: if this is the case, then a repressor for object rj is produced to model
the decrement of the register; the repressor decays just after destroying rj , and
the program counter (pi+1, 1) is produced.

When providing a RAM encoding, we need to specify how to extract the
output of the system. As the output of the RAM is the contents of register
r1 in the terminated state of the RAM, we decided to take as output of the
RAM encoding the number of occurrences of object (r1, ∞) in a terminated
configuration of the system.

We provide a deterministic RAM encoding which satisfies the following con-
dition: the RAM terminates with output k if and only if the RAM encoding
terminates in a state containing exactly k occurrences of object (r1

1 , ∞).
For the sake of brevity, we consider RAMs that satisfy the following constraint:

if the RAM has m instructions, then all the jumps to addresses higher than m
are jumps to the address m+1. This constraint is not restrictive, as for any RAM
not satisfying the constraint above it is possible to contruct an equivalent RAM
(i.e., a RAM computing the same function) which satisfies it. Given a RAM with
m instructions, the first constraint can be easily satisfied by replacing each jump
to an address higher than m by a jump to the address m + 1.

If the ith instruction is (i : Succ(rj)), then the following sequence of rules is
executed8. On the left we report the genetic gate that performs a transcription,
while on the right we report the set of nonpersistent objects currently contained
in the system.

(pi, 1)
step 1 : pi :→ (inci

1, 2)
(inci

1, 2)
step 2 : inci

1, ¬inci
2 :→ (inci

2, 2)
(inci

1, 1), (inci
2, 2)

step 3 : inci
1, inci

2 :→ (r1
j , ∞)

(inci
2, 1)

step 4 : ¬inci
1, inci

2 :→ (pi+1, 1)
(pi+1, 1)

The main difficulties in the design of the encoding are concerned with the
following facts. As the activators of a genetic gate are not removed from the
state by the transcription operator, we must ensure that some operations (such
as the production of object (rj , ∞)) are executed exactly once. We make use
of decaying objects to ensure that there exists a single time unit where such
an operation can be performed. The other difficulty is due to the fact that the
activation of a genetic gate produces a single object. As we need to produce
both the object (rj , ∞) and the new program counter, we make use of auxiliary
decaying objects. Note that each of the gates reported above can be activated
only if at least one of the objects in the set {pi, inci

1, inci
2} is contained in the

current state; as we will see in the following, one of the objects in the above set is

8 Here we recall that before starting the execution of the ith instruction, the system
contains the object (pi, 1).

Computing with Genetic Gates 113

present in the system if and only if we are executing the ith instruction; moreover,
no one of these objects will be used as activator or inhibitor in the gates used
to encode the other instructions. Note also that, when starting from a system
containing only (pi, 1) as nonpersistent object, the only possible execution is the
one reported above.

If the i-th instruction is (i : DecJump(rj , s)) and the contents of rj is zero,
then the following rule is executed:

(pi, 1)
step 1 : pi, ¬rj :→ (ps, 1)

(ps, 1)

On the other hand, if the contents of rj is not zero, then the following sequence
of rules is executed:

(pi, 1)
step 1 : pi, rj :→ (deci

1, 2)
(deci

1, 2)
step 2 : deci

1, ¬deci
2 :→ (deci

2, 2)
(deci

1, 1), (deci
2, 2)

step 3 : deci
1, deci

2 → (reprj, 1)
(deci

2, 1), (reprj, 1)
step 4 : reprj : rj →

¬deci
1, deci

2 :→ (pi+1, 1)
(pi+1, 1)

If the decrement of rj is performed, the following operations need to be done:
a repressor for object (rj , ∞) is created, such a repressor removes an instance of
(rj , ∞) and the program counter corresponding to the next instruction is created.
We ensure that exactly a single instance of (rj , ∞) is removed by producing a
nonpersistent repressor with timelife of a single unit. Note that in step 4 two
rules (a repressor rule and a genetic gate) are executed simultaneously in the
same step.

5 Conclusions

We investigate the computational expressiveness of Genetic Systems, a formal-
ism modeling the interactions occurring between genes and regulatory products.
A study of the expressiveness of rewriting rules inspired by genetic networks
have been carried out by the authors in [2], in the context of Membrane Sys-
tems [6]. The result presented in [2] is incomparable with the result presented
in this paper, because the semantics of the rules are different (in this paper, the
modeling of repressors is more faithful to the biological reality, and a more ab-
stract semantics for genetic gates is used), and because the result in [2] crucially
depends on the use of membranes, permitting to localize to a specific compart-
ment the objects and the rules, and of rules modeling the movement of objects
across membranes. As we already said in the Introduction, several models for

114 N. Busi and C. Zandron

genetic regulatory networks have been proposed to investigate the behaviour of
genes; however, to the best of our knowledge, their computational power has
never been investigated. While both approaches are inspired by DNA, Genetic
Systems turn out to be different from DNA computing (see, e.g., [7] for a survey),
where the basic ingredients are strings, representing DNA strands, that evolve
through the splicing operation.

In the present paper, several ingredients are used to achieve Turing equiva-
lence: maximal parallelism semantics, the use of both persistent and decaying
objects, repressor rules, positive and negative regulation. It is worthwhile to
wonder if all these ingredients are really needed to get Turing equivalence. We
conjecture the following results. If we move to interleaving semantics (that is, a
single rule is applied in each computational step) Genetic Systems are Turing
equivalent: this can be proved by providing a variant of the RAM presented in
this paper. Genetic Systems with interleaving semantics, genetic gates, repres-
sor rules, and persistent objects only (i.e., the lifetime of each object is ∞) are
not Turing equivalent; the idea is to provide a reduction of Genetic Systems to
Safe Petri Nets [8], that preserves the terminating behaviour. Genetic Systems
with either interleaving or maximal parallelism semantics, repressor rules, both
persistent and decaying objects, and genetic gates with positive regulation (i.e.,
no inhibition) are not Turing equivalent; this can be proved by resorting to the
theory of Well-Structured Transition Systems [4].

References

1. Blossey, R., Cardelli, L., Phillips, A.: A Compositional Approach to the Stochastic
Dynamics of Gene Networks. In: Priami, C., Cardelli, L., Emmott, S. (eds.) Trans-
actions on Computational Systems Biology IV. LNCS (LNBI), vol. 3939, Springer,
Heidelberg (2006)

2. Busi, N., Zandron, C.: Computing with Genetic Gates, Proteins and Membranes. In:
Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS,
vol. 4361, Springer, Heidelberg (2006)

3. De Jong, H.: Modeling and Simulation of Genetic Regulatory Systems: A Literature
Review. Journal of Computatonal Biology 9, 67–103 (2002)

4. Finkel, A., Schnoebelen, Ph.: Well-Structured Transition Systems Everywhere! In:
Theoretical Computer Science, vol. 256, pp. 63–92. Elsevier, North-Holland, Ams-
terdam (2001)

5. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Englewood
Cliffs (1967)

6. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
7. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. New computing paradigm.

Springer, Heidelberg (1998)
8. Reisig, W.: Petri nets: An Introduction. In: EATCS Monographs in Computer Sci-

ence. Springer, Heidelberg (1985)
9. Shepherdson, J.C., Sturgis, J.E.: Computability of recursive functions. Journal of

the ACM 10, 217–255 (1963)

Resource Restricted

Computability Theoretic Learning:
Illustrative Topics and Problems

John Case�

Department of Computer and Information Sciences
University of Delaware

Newark, DE 19716-2586 U.S.A.
case@cis.udel.edu

Abstract. Computability theoretic learning theory (machine inductive
inference) typically involves learning programs for languages or functions
from a stream of complete data about them and, importantly, allows
mind changes as to conjectured programs. This theory takes into ac-
count algorithmicity but typically does not take into account feasibility
of computational resources. This paper provides some example results
and problems for three ways this theory can be constrained by compu-
tational feasibility. Considered are: the learner has memory limitations,
the learned programs are desired to be optimal, and there are feasibil-
ity constraints on obtaining each output program and on the number of
mind changes.

1 Introduction and Motivation

Let N = the set of non-negative integers. Computability theoretic (a.k.a recursion
theoretic) learning [28,36] typically involves a scenario as depicted in (1) just
below.

Data d0, d1, d2, . . .
In−→ M

Out−→ Programs p0, p1, p2, (1)

In (1), d0, d1, d2, . . . can be, for example, the elements of a (formal) language
L ⊆ N or the successive values of a function f : N → N; M is a machine; and, for
its successful learning, later pi’s ≈ compute the L or f . We will consider different
criteria of successful learning of L or f by M . Ex-style criteria require that all
but finitely many of the pi’s are the same and do a good job of computing the L
or f . Bc-style criteria are more relaxed and powerful [4,12,15] and do not require
almost all pi’s be the same.

In the present paper we survey some illustrative, top down, computational
resource restrictions on essentially the paradigm of (1). In some sections we
work instead with simple variants of (1).

In Section 2 below, d0, d1, d2, . . . are the elements of a language and the pi’s are
usually type-0 grammars [26] (equivalently, r.e. or c.e. indices [39]) for languages.

� Work supported in part by NSF Grant Number CCR-0208616 at UD.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 115–124, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

116 J. Case

In Section 2 we consider restrictions on the ability of machines M to remember
prior data and conjectures. The motivation, in addition to space-complexity
theoretic, is from cognitive science. We will provide some open problems too.
Much of the material of Section 2 is from [8,13].

In Section 3 below, the di’s are successive values of functions f in some
complexity theoretically interesting subrecursive classes and the pi’s can be
programs in some associated subrecursive programming systems [40]. A not-
necessarily-realized desire is that successful later programs pi are not too far from
optimally efficient.1 We provide some examples (from [10]) showing how com-
putational complexity of those later pi’s, which are successful at computing the
f ’s, is affected by the size of the subrecursive class to be learned.

The paradigm of (1) is sometimes called learning in the limit, and the M in (1)
can be thought of as computing an appropriately typed, limiting functional.
One speaks of M ’s transitions from outputting pi to outputting pi+1 as mind
changes.2 Restrictions on the number of such mind changes have been extensively
studied in the literature, beginning with [5,15]. [21] first considered counting
down mind changes from notations for possibly transfinite constructive ordinals
and proved results to the effect that counting down from bigger constructive
ordinals gave more learning power. See also [1,29].3 In (1), the time to calculate
each pi may be infeasible, and the total time to reach the successful pi’s may not
be algorithmic [17]. In Section 4 below, we present some previously unpublished
very preliminary work on top down, feasible variants of (1), and we indicate
problems we hope will be worked out in the future [14]. The rough idea, explained
in more detail in Section 4 below, is that: 1. one restricts the M of (1) to iterating
a type-2 feasible functional in the sense of [27,30,35], and 2. one counts down,
with another type-2 feasible functional, the allowed mind changes from feasible
notations for constructive ordinals.4

2 Memory-Limited and U-Shaped Language Learning

Informally, U-shaped learning is as follows. For B a task to learn a desired
behavior, U-shaped learning occurs when, while learning B, a learner learns B,
then the learner unlearns B, and, finally, the the learner relearns B. U-shaped
learning has been empirically observed by cognitive psychologists in various areas
of child development. Examples include understanding of various (Piaget-like)

1 This will be for cases, unlike in Blum Speed-Up Theorems [36], where there are
optimally efficient programs.

2 Learning in the limit is essential, for example, for the iterated forward difference
method for fitting polynomials to data [25], where the number of mind changes
required depends on the degree of the polynomial generating the data.

3 Outside computability theoretic learning, [2] characterizes explicitly Ershov Hierar-
chy levels [20,19] by constructive ordinal notation count down.

4 For example, algorithmic counting down mind-changes from any notation w for the
smallest infinite ordinal ω is equivalent to declaring if and when a first mind change
is made and then declaring the finite number of further mind changes allowed.

Resource Restricted Computability Theoretic Learning 117

conservation principles [42], e.g., the interaction between object tracking and
object permanence, and verb regularization [34,37,42,43]. Here is an example of
the latter. In English, a child first uses spoke, the correct past tense form of the
verb speak. Then the child incorrectly uses speaked. Lastly, the child returns to
using spoke.

One main question of the present section: is U-shaped learning necessary for
full learning power? I.e., are there classes of tasks learnable only by returning
to abandoned, correct behavior?

For example, [3,7] answered formalized versions of the previous question for
computability theoretic learning without memory limitations. The answer de-
pends interestingly on the criteria of successful learning: roughly, for criteria of
power strictly between Ex and Bc-styles [9] (and also for Bc-style), U-shaped
learning is necessary for full learning power. Humans have memory limitations,
both for previously seen data and, to some extent, for previously made conjec-
tures. In the present section we discuss the necessity of U-shaped learning of
grammars for whole formal languages and in models with such memory restric-
tions. First, though, we discuss in detail the cases without memory limitations.

A sequence T of natural numbers and #’s is a text for a language L ⊆ N ⇔def

L = {T (i) | T (i) �= #}. The # represents a pause. The only text for the empty
language is an infinite sequence of #’s. The present section employs a variant
of (1) where di is T (i) with T a text for a language, and the pi’s are either
r.e. indices or they are ?’s. ?’s signal that M has no program to conjecture.

In the rest of the present section we restrict our attention to Ex-style criteria
of success.
Formally: a learner M TxtEx-learns a class of languages L ⇔def, for all L ∈ L,
on all texts T for L, M eventually stabilizes to outputting a single program
successfully generating L.

For a language class learning criterion, C-learning, such as TxtEx-learning
just defined and variants defined below, we write C to stand for the collection
of all languages classes L such that some machine M C-learns each L ∈ L.

A learner M is Non-U-Shaped (abbreviated: NU) on a class L that M TxtEx-
learns ⇔def, on any text for any language L in L, M never outputs a sequence
. . . , p, . . . , q, . . . , r, . . ., where p, r accept/generate L, but q doesn’t.

Next we discuss three types of memory limited language learning models from
the prior literature [11,22,33,44].
Iterative Learning: M It-learns a class of languages L ⇔def M TxtEx-learns
L but M has access only to its own just previous conjecture (if any) and to its
current text datum.

m-Feedback Learning is like It-learning, but, while the learner has access to
its just previous conjecture and to the current text datum, it can also make m
simultaneous recall queries, i.e., queries as to whether up to m items of its choice
have already been seen in input data thus far.

n-Bounded Example Memory Learning is also like It-learning, but, while the
learner has access to its just previous conjecture and to the current text datum,
it remembers up to n previously seen data items that it chooses to remember.

118 J. Case

For m, n > 0, m-Feedback and n-Bounded Example Learning are incompara-
ble, but separately make strict learning hierarchies increasing in m, n [11].

N.B. For the cases of m, n > 0, it is completely open as to whether U-shapes
are necessary for full power of m-Feedback and n-Bounded Example Learning!

Results about the necessity of U-shapes for It-learning and for more severely
restricted variants of the other models just above have been obtained and some
are discussed below. For It-learning, U-shapes are not needed:

Theorem 1 ([13]). NUIt = It.5

Memoryless Feedback Learners are restricted versions of Feedback Learners
above: for m > 0, an MLFm-learner has no memory of previous conjectures
but has access to its current text datum and can make m > 0 simultaneous
recall queries — queries as to whether up to m items of its choice have already
been been seen in input data. The MLFm learning criteria form a hierarchy
increasing in m: MLFm ⊂ MLFm+1 [8].

Theorem 2 ([8]). U-shaped learning is necessary for each level of this hierar-
chy: for m > 0, NUMLFm ⊂ MLFm.

Bounded Memory States Learners [32] are restricted variants of Bounded Ex-
ample Learners above: for c > 1, a BMSc-Learner does not remember any
previous conjectures, has access to current text datum, and can store any one of
c different values it chooses in its memory. This latter corresponds exactly to re-
membering log2(c) bits. The BMSc learning criteria form a hierarchy increasing
in c > 1: BMSc ⊂ BMSc+1 [32].

Theorem 3 ([8]). U-shaped learning is not needed for 2-Bounded Memory
States Learners: NUBMS2 = BMS2.

Open Questions: is U-shaped learning necessary for BMSc-learning with c > 2?
Humans remember some bits, remember some prior data, can recall whether
they’ve seen some data, and, likely, store their just prior conjecture. Is U-shaped
learning necessary for such combinations?

3 Complexity of Learned Programs

Results in the present section are selected from many in [10], and we employ (1)
in the case that di is f(i), where f ∈ F ⊆ R0,1, the class of all (total) computable
functions : N → {0, 1}.

Suppose a ∈ N∪{∗}. a is for anomaly count. When a = ∗, a stands for finitely
many.

F ∈ Exa ⇔def (∃M)(∀f ∈ F)
[M fed f(0), f(1), . . . , outputs p0, p1, . . . ∧ (∃t)[pt = pt+1 = · · · ∧ pt computes f
— except at up to a inputs]].
5 As per our convention above, It, respectively NUIt, stands for the collection of all

languages classes L such that some machine M It-learns, respectively NUIt-learns,
each L ∈ L.

Resource Restricted Computability Theoretic Learning 119

F ∈ Bca ⇔def (∃M)(∀f ∈ F)
[M fed f(0), f(1), . . . , outputs p0, p1, . . . ∧ (∃t)[pt, pt+1, . . . each computes f —
except at up to a inputs]].

Turing machines herein are multi-tape.
For k ≥ 1, Pk =def the class of all {0, 1}-valued functions computable by

Turing Machines in O(nk) time, where n is the length of the input expressed in
dyadic notation.6 P =def

⋃
Pk.

Let slow be any fixed slow growing unbounded function ∈ P1, e.g., ≤ an
inverse of Ackermann’s function as from [16, Section 21.4]. Qk =def the class
of all {0, 1}-valued functions computable in O(nk · log(n) · slow(n)) time. Pk ⊂
Qk ⊂ Pk+1. The first proper inclusion is essentially from [24,26] and appears to
be best known.

P ∈ Ex0. Pk ∈ Ex0 too (where each output conjecture runs in k-degree
polytime).

CF , the class of all characteristic functions of the context free languages [26],
∈ Ex0 [23].

From [15] (with various credits to Bārzdiņš, the Blums, Steel, and Harrington):
Ex0 ⊂ Ex1 ⊂ Ex2 ⊂ · · · ⊂ Ex∗ ⊂ Bc0 ⊂ Bc1 ⊂ · · · ⊂ Bc∗, and R0,1 ∈ Bc∗.

We introduce some basic, useful notation.
(∀∞x) means for all but finitely many x ∈ N.
U =def {f ∈ R0,1 | (∀∞x)[f(x) = 1]} (⊂ P1). U is an example of a class of

particularly easy functions.
ϕTM

p =def the partial computable function : N → N computed by Turing
machine program (number) p.

ΦTM
p (x) =def the runtime of Turing machine program (number) p on input x,

if p halts on x, and undefined, otherwise.
ΦWS

p (x) =def the work space used by Turing machine program (number) p on
input x, if p halts on x, and undefined, otherwise.

Clearly, U ⊂ REG, the class all characteristic functions of regular
languages [26].

f [n] =def the sequence f(0), . . . , f(n − 1).
M(f [n]) =def M ’s output based only on f [n].
Of course, since finite automata do not employ a work tape, ∃M witnessing

REG ∈ Ex0 such that (∀n, x)[ΦTM
M(f [n])(x) = |x| + 1 ∧ ΦWS

M(f [n])(x) = 0].
A result of [41] is strengthened by

Theorem 4 ([10]). Suppose k ≥ 1 and that M witnesses either Qk ∈ Ex∗ or
Qk ∈ Bc0 (special case: M witnesses Qk ∈ Ex0).
Then: (∃f ∈ U)(∀k-degree polynomials p)
(∀∞n)(∀∞x)[ΦTM

M(f [n])(x) > p(|x|)].

If we increase the generality of a machine M to handle Qk instead of merely Pk,
this forces the run-times of M ’s successful outputs on some easy f ∈ U worse
6 The dyadic representation of an input natural number x =def the x-th finite string

over {0, 1} in lexicographical order, where the counting of strings starts with zero
[40]. Hence, unlike with binary representation, lead zeros matter.

120 J. Case

than any k-degree polynomial bound, i.e., to be suboptimal. But, for learning
only Pk, this need not happen. Hence, we see, in Theorem 4, ones adding slightly
to the generality of a learner M produces final, successful programs with a
complexity deficiency. Another complexity deficiency in final programs caused
by learning too much is provided by the following

Theorem 5 ([10]). Suppose M Ex∗-learns CF and k, n ≥ 1(special case: M
witnesses CF ∈ Ex0). Then there is an easy f , an f ∈ U , such that, if p is M ’s
final program on f , for some distinct x0, . . . , xn−1, program p uses more than k
workspace squares on each of inputs x0, . . . , xn−1.

In [10] there are further such complexity deficiencies in final programs caused
by learning too much, again where the deficiencies are on easy functions. As-
suming NP separates from P (with NP also treated as a class of {0, 1}-valued
characteristic functions of sets ⊆ N), then one gets a complexity deficiency in
final programs caused by learning NP instead of P . There is a similar result in
[10] for BQP, a quantum version of polynomial-time [6], in place of NP — as-
suming BQP separates from P . In these results the complexity deficient learned
programs have unnecessary non-determinism or quantum parallelism.

4 Feasible Iteration of Feasible Learning Functionals

The material of this section not credited to someone else is from [14].
One-shot Ex-style procedures output at most a single (hopefully correct)

conjectured program [28]. Feasible deterministic one-shot function learning can
be modeled by the polytime multi-tape Oracle Turing machines (OTMs) as
used in [27] (see also [30,35]). We call the corresponding functionals basic feasible
functionals. These polytime OTMs have a query tape and a reply tape. To query
an oracle f , an OTM writes the dyadic representation of an x ∈ N on the query
tape and enters its query state. The query tape is then erased, and the dyadic
representation of f(x) appears on the reply tape. The cost model is the same as
for non-oracle Turing machines, except for the additional cost of a query to the
oracle. This is handled with the length-cost model, where the cost of a query is
max(|f(x)|, 1), where |f(x)| is the length of the string on the reply tape.7 The
next three definitions provide the formal details re the polytime constraint on
basic feasible functionals.

Definition 1 ([30]). The length of f : N → N is the function |f | : N → N such
that |f | = λn.max({|f(x)| | |x| ≤ n}).

Definition 2 ([30]). A second-order polynomial over type-1 variables g0, ..., gm

and type-0 variables y0, ..., yn is an expression of one of the following five forms:

7 N.B. For the present section, then, the general paradigm (1) from Section 1 above
is modified to allow the machine M to query input functions f for their values —
instead of M ’s merely passively receiving the successive values of such f ’s.

Resource Restricted Computability Theoretic Learning 121

a
yi

q1 + q2

q1 · q2

gj(q1)

where a ∈ N, i ≤ n, j ≤ m, and q1 and q2 are second-order polynomials over −→g
and −→y .

Definition 3 ([30]). Suppose k ≥ 1 and l ≥ 0. Then F : (N → N)k ×N
l → N is

a basic feasible functional if and only if there is an OTM M and a second-order
polynomial q, such that, for each input (f1, ..., fk, x1, ..., xl),

(1) M outputs F (f1, ..., fk, x1, ..., xl), and
(2) M runs within q(|f1|, ..., |fk|, |x1|, ..., |xl|) time steps.

In the context of learning in the limit, we are interested in how to define fea-
sible for limiting-computable type-2 functionals. This is discussed below, but,
first, is presented some background material on notations for constructive
ordinals.

Ordinals are representations of well-orderings. The constructive ordinals are
just those that have a program, called a notation, which specifies how to build
them (lay them out end to end, so to speak) [39]. Let O be Kleene’s system of
notations for each constructive ordinal [39], importantly, with the accompanying
<o relation on O. We omit details but refer the reader to the excellent [39].

Everyone knows how to use (notations for) finite ordinals for counting down.
As indicated in Section 1 above, we have in mind iterating basic feasible learn-

ing functionals with feasible counting down of iterations from feasible notations
for constructive ordinals, We want to see worked out the details of this model of
feasible for Ex learning. We believe we have a correct formalization of the con-
cept of feasible notations and feasible counting down. From space limitations,
below we present very simple examples only.

Here is a promised very simple example. It is based on a system of notations
we call Oω. Oω provides notations for all and only the finite ordinals and ω, the
first infinite ordinal. This restricted system especially reduces the complexity of
computing notations. Oω =def N. For u ∈ Oω, if u is even, u is a notation for
the (finite) ordinal u/2. Otherwise, u is a notation for the (infinite) ordinal ω.
For even x, y ∈ Oω , x < y ⇒ x <Oω y, and for any even x and odd y, x <Oω y.
No other pairs of numbers satisfy the <Oω relation. For x ∈ N, x is defined as
the notation for the finite ordinal x, and, in this system, x = 2x.

Next we present one of many ways to define feasibly iterated feasible learning.
We are interested to investigate more ways and are currently pursuing this. For
t ∈ N, 0t is (by definition) the string of 0’s of length t. It is common in complexity
theory to call 0t a tally. We write ε for 0t when t = 0.

Below ϕ is acceptable [39] and has a linear time implementation of S-m-n [40].

122 J. Case

Definition 4. Suppose u ∈ Oω. A set of functions S is Itru-feasibly learnable
if and only if there exist basic feasible functionals H : (N → N) × N → N and
F : (N → N) × N → N such that for all f ∈ S, there exists k ∈ N such that,

(1) F(f, ε) ≤Oω u,
(2) F(f, 0t+1) <Oω F(f, 0t), for all t < k,
(3) F(f, 0k) = 0(= 0), and
(4) ϕH(f,0k) = f .

Definition 5. S ranges over classes of computable functions.
ItruBffEx= {S|S is Itru-feasibly learnable}.

When an F from above counts down from a notation in Oω for ω, it is allowed to
jump to a notation for any finite ordinal. Let S0 be the example set of functions
f such that f has the following properties:
(a) f(0) > 1,
(b) f(1) > 1,
(c) f(x) = 1, for exactly one x, where 1 < x ≤ 2|f(0)| + |f(1)|,
(d) f(x) = 0, everywhere else. We have the following

Theorem 6. S0 ∈ (ItrwBffex - ItrnBffex), where w is any notation in Oω for
the ordinal ω, and n is the notation in Oω for a finite ordinal n ∈ N.

The particular scheme of feasibly iterating basic feasible learning functionals in
Definitions 4 and 5 above requires the count-down function to bottom out at
0 = 0, so one can tell when the iterations are done (and can suppress all the
programs output but the last). We were initially surprised that, even for a scheme
like this, we get a learning hierarchy result like in the just above theorem. We can
prove that, for finite ordinals n ∈ N, the ItrnBffex hierarchy collapses. As noted
above, we are interested in the investigation of more ways for feasibly iterating
basic feasible learning functionals. We’d like variant results where one cannot
suppress all the output programs but the last. Here is another feasible notation
system, this one for Oω2 , where, for the lineartime computable pairing function
< ., . > from [40], the notation for ω2 is 0, and that for ordinals ω × a + b < ω2

is 1+ < a, b > — with <Oω2 defined in the obvious way. We can prove hierarchy
results similar to the above for this system.

It is interesting to question the feasible learnability of the example class above,
S0 ∈ ItrwBffex. Of course, the counting down and the ordinal notations were all
feasible as well as was the basic feasible functional H . Nevertheless, we can prove
that, for Ex-learning of S0, the total learning time of infinitely many f ∈ S0 is
inherently exponential in |f(0)| — while being polynomial in |f(1)|. However,
S0 is analyzable in terms of parameterized complexity [18]. For parameter k > 1,
let Sk

0 = (S0 ∩ {f | f(0) ≤ k}). Then each Sk
0 is infinite and feasibly learnable.

We would like to see this sort of phenomenon more generally analyzed and
understood — including in more sophisticated settings.

We would also like to see studied probabilistic variants of feasibly iterated
feasible learners — this toward producing practical generalizations of Valiant’s
PAC learning [31] and Reischuk and Zeugmann’s [38] stochastically finite learn-
ing. These latter involve, probabilistic, one-shot learners.

Resource Restricted Computability Theoretic Learning 123

References

1. Ambainis, A., Case, J., Jain, S., Suraj, M.: Parsimony hierarchies for inductive
inference. Journal of Symbolic Logic 69, 287–328 (2004)

2. Ash, C., Knight, J.: Recursive structures and Eshov’s hierarchy. Mathematical
Logic Quarterly 42, 461–468 (1996)

3. Baliga, G., Case, J., Merkle, W., Stephan, F., Wiehagen, W.: When unlearning
helps, Journal submission (2007)

4. Bārzdiņš, J.: Two theorems on the limiting synthesis of functions. Theory of Algo-
rithms and Programs, Latvian State University, Riga. 210, 82–88 (1974)

5. Bārzdiņš, J., Freivalds, R.: Prediction and limiting synthesis of recursively enu-
merable classes of functions. Latvijas Valsts Univ. Zinatn. Raksti 210, 101–111
(1974)

6. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM Journal on Com-
puting 26, 1411–1473 (1997)

7. Carlucci, L., Case, J., Jain, S., Stephan, F.: Non U-shaped vacillatory and team
learning. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI),
vol. 3734, pp. 241–255. Springer, Heidelberg (2005)

8. Carlucci, L., Case, J., Jain, S., Stephan, F.: Memory-limited U-shaped learn-
ing. In: Lugosi, G., Simon, H. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp.
244–258. Springer, Heidelberg (2006)

9. Case, J.: The power of vacillation in language learning. SIAM Journal on Comput-
ing 28(6), 1941–1969 (1999)

10. Case, J., Chen, K., Jain, S., Merkle, W., Royer, J.: Generality’s price: Inescapable
deficiencies in machine-learned programs. Annals of Pure. and Applied Logic 139,
303–326 (2006)

11. Case, J., Jain, S., Lange, S., Zeugmann, T.: Incremental concept learning for
bounded data mining. Information and Computation 152, 74–110 (1999)

12. Case, J., Lynes, C.: Machine inductive inference and language identification. In:
Nielsen, M., Schmidt, E.M. (eds.) Automata, Languages, and Programming. LNCS,
vol. 140, pp. 107–115. Springer, Heidelberg (1982)

13. Case, J., Moelius, S.: U-shaped, iterative, and iterative-with-counter learning, Sub-
mitted (2007)

14. Case, J., Paddock, T., Kötzing, T.: Feasible iteration of feasible learning function-
als, Work in progress (2007)

15. Case, J., Smith, C.: Comparison of identification criteria for machine inductive
inference. Theoretical Computer Science 25, 193–220 (1983)

16. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd
edn. MIT Press, Cambridge, MA (2001)

17. Daley, R., Smith, C.: On the complexity of inductive inference. Information and
Control 69, 12–40 (1986)

18. Downey, R., Fellows, M.: Parameterized Complexity. In: Monographs in Computer
Science, Springer, Heidelberg (1998)

19. Ershov, Y.: A hierarchy of sets, I. Algebra i Logika, 7(1):47–74, 1968. In Russian
(English translation in Algebra and Logic, 7:25–43 1968) (1968)

20. Ershov, Y.: A hierarchy of sets II. Algebra and Logic 7, 212–232 (1968)
21. Freivalds, R., Smith, C.: On the role of procrastination in machine learning. Infor-

mation and Computation 107(2), 237–271 (1993)
22. Fulk, M., Jain, S., Osherson, D.: Open problems in Systems That Learn. Journal

of Computer and System Sciences 49(3), 589–604 (1994)

124 J. Case

23. Gold, E.: Language identification in the limit. Information and Control 10, 447–474
(1967)

24. Hartmanis, J., Stearns, R.: On the computational complexity of algorithms. Trans-
actions of the American Mathematical Society 117, 285–306 (1965)

25. Hildebrand, F.: Introduction to Numerical Analysis. McGraw-Hill, New York
(1956)

26. Hopcroft, J., Ullman, J.: Introduction to Automata Theory Languages and Com-
putation. Addison-Wesley Publishing Company, London, UK (1979)

27. Irwin, R., Kapron, B., Royer, J.: On characterizations of the basic feasible func-
tional, Part I. Journal of Functional Programming 11, 117–153 (2001)

28. Jain, S., Osherson, D., Royer, J., Sharma, A.: Systems that Learn: An Introduction
to Learning Theory, 2nd edn. MIT Press, Cambridge, MA (1999)

29. Jain, S., Sharma, A.: Elementary formal systems, intrinsic complexity, and pro-
crastination. Information and Computation 132, 65–84 (1997)

30. Kapron, B., Cook, S.: A new characterization of type 2 feasibility. SIAM Journal
on Computing 25, 117–132 (1996)

31. Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge, MA (1994)

32. Kinber, E., Stephan, F.: Language learning from texts: Mind changes, limited mem-
ory and monotonicity. Information and Computation 123, 224–241 (1995)

33. Lange, S., Zeugmann, T.: Incremental learning from positive data. Journal of Com-
puter and System Sciences 53, 88–103 (1996)

34. Marcus, G., Pinker, S., Ullman, M., Hollander, M., Rosen, T.J., Xu, F.: Overregu-
larization in Language Acquisition. In: Monographs of the Society for Research in
Child Development (Includes commentary by H. Clahsen), vol. 57(4), University
of Chicago Press, Chicago (1992)

35. Mehlhorn, K.: Polynomial and abstract subrecursive classes. Journal of Computer
and System Sciences 12, 147–178 (1976)

36. Odifreddi, P.: Classical Recursion Theory, volume II. Elsivier, Amsterdam (1999)
37. Plunkett, K., Marchman, V.: U-shaped learning and frequency effects in a multi-

layered perceptron: implications for child language acquisition. Cognition 86(1),
43–102 (1991)

38. Reischuk, R., Zeugmann, T.: An average-case optimal one-variable pattern lan-
guage learner. Journal of Computer and System Sciences (Special Issue for
COLT’98) 60(2), 302–335 (2000)

39. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw
Hill, New York, 1967. Reprinted, MIT Press (1987)

40. Royer, J., Case, J.: Subrecursive Programming Systems: Complexity and Suc-
cinctness. Research monograph in: Progress in Theoretical Computer Science.
Birkhäuser Boston (1994)

41. Sipser, M.: Private communication (1978)
42. Strauss, S., Stavy, R. (eds.): U-Shaped Behavioral Growth. Academic Press, NY

(1982)
43. Taatgen, N., Anderson, J.: Why do children learn to say broke? A model of learning

the past tense without feedback. Cognition 86(2), 123–155 (2002)
44. Wiehagen, R.: Limes-erkennung rekursiver funktionen durch spezielle strategien.

Electronische Informationverarbeitung und Kybernetik 12, 93–99 (1976)

Characterizing Programming Systems Allowing

Program Self-reference�

John Case and Samuel E. Moelius III

Department of Computer & Information Sciences
University of Delaware

103 Smith Hall
Newark, DE 19716

{case,moelius}@cis.udel.edu

Abstract. The interest is in characterizing insightfully the power of pro-
gram self-reference in effective programming systems (epses), the compu-
tability-theoretic analogs of programming languages. In an eps in which
the constructive form of Kleene’s Recursion Theorem (KRT) holds,
it is possible to construct, algorithmically, from an arbitrary algorith-
mic task, a self-referential program that, in a sense, creates a self-copy
and then performs that task on the self-copy. In an eps in which the
not-necessarily-constructive form of Kleene’s Recursion Theorem (krt)
holds, such self-referential programs exist, but cannot, in general, be
found algorithmically.

In an earlier effort, Royer proved that there is no collection of recursive
denotational control structures whose implementability characterizes the
epses in which KRT holds. One main result herein, proven by a finite
injury priority argument, is that the epses in which krt holds are, sim-
ilarly, not characterized by the implementability of some collection of
recursive denotational control structures.

On the positive side, however, a characterization of such epses of a
rather different sort is shown herein. Though, perhaps not the insightful
characterization sought after, this surprising result reveals that a hidden
and inherent constructivity is always present in krt.

Know thyself.
– Greek proverb

Keywords: Computability Theory, Programming Language Semantics,
Self-Reference.

1 Introduction

The first author has, for some time, been interested in the difficult problem of
understanding and insightfully characterizing the power of program or machine
self-reference (synonym: program self-reflection).1 Initial mathematical attempts

� This paper received support from NSF Grant CCR-0208616.
1 This paper does not address linguistic self-reference, e.g., in arithmetic [16].

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 125–134, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

126 J. Case and S.E. Moelius III

on this subject [10,11,14] were based on conceptualizing the constructive form
of Kleene’s Recursion Theorem (KRT) (Property 2 below) in terms of an asso-
ciated non-denotational control structure [14] (synonym: connotational control
structure [14]). Beginning with the next subsection, we explain what we mean
by program self-reference and self-knowledge, what KRT has to do with these,
and how we model control structures. Then, we briefly highlight some relevant
results from the prior literature. Finally, we summarize and relevantly interpret
the main results of the present paper — which results are the recent progress on
the still difficult problem mentioned at the beginning of this paragraph.

1.1 Kleene’s Recursion Theorems

Let N be the set of natural numbers, {0, 1, 2, . . .}. Let 〈·, ·〉 : N × N → N be
any fixed, 1-1, onto, computable mapping [13]. The function 〈·, ·〉 enables us to
restrict our attention to one-argument partial functions and still handle, with
coding by 〈·, ·〉, multiple argument cases.

For all one-argument partial functions ψ and all p ∈ N, ψp
def= ψ(〈p, ·〉). A

one-argument partial computable function ψ is an effective programming system
(eps) def⇔ for every one-argument partial computable function α, there exists
p, such that ψp = α [12,13,9,10,11,14].2 Informally, one can think of ψ as a
programming language (e.g., C++, Java, Haskell) and of p as a program within
that language. In this sense, ψp is the partial computable function coded by
ψ-program p. Thus, for all p, x ∈ N, ψ(〈p, x〉) is the (coded) output on input
(coded by) x of the program (coded by) p in that language.

For the remainder of the present subsection (1.1), let ψ be any fixed eps.
The following property (Property 1) is the not-necessarily-constructive form of
Kleene’s Recursion Theorem for the ψ-system.3

Property 1 (krt for eps ψ). (∀p)(∃e)(∀x)[ψe(x) = ψp(〈e, x〉)].

One way to interpret Property 1 is as follows. ψ-program p represents an arbi-
trary preassigned, algorithmic task to perform with a self-copy; e represents a
ψ-program that

1. creates a copy of itself, external to itself, and, then,
2. runs the preassigned task p on the pair consisting of this self-copy and e’s

input x.

The ‘e’ on the right-hand side of the equation in Property 1 is the self-copy
of the original ‘e’ on the left-hand side of this equation. Thus, in an important
sense, e is a program that creates complete (low level) self-knowledge. The way in
2 In much of the literature on epses, e.g., [12,7,8], they are called numberings since,

in such systems, programs are conveniently named by numbers. In learning theory
contexts, e.g., [6,18,5], they are also referred to as hypothesis spaces.

3 Rogers [13] popularized a fixed-point variant of Property 1: for all computable
f : N → N, there exists e such that ψe = ψf(e). His variant should not be con-
fused with Property 1. Riccardi [10] explored their interconnections.

Characterizing Programming Systems Allowing Program Self-reference 127

which e uses this self-knowledge is according to how the preassigned task p says
to.4 Infinite regression is not needed since e projects its self-copy externally to
itself [4]. We say above that this self-knowledge is complete since it is e’s syntactic
code-script, wiring/flow diagram, etc. For higher level knowledge about, say, e’s
behavioral propensities, e.g., ψ-program e runs in polynomial time, p can run a
safe theorem prover on e perchance to prove such things about e, but e having
access to e itself is more basic and fundamental than e merely having access to
facts such as that it runs in polynomial time.

Self-knowledgeable programs have long been known to be an elegant theo-
retical tool in computability theory. Such programs can, when relevant, provide
succinct solutions to problems “that would otherwise require extensive, complex
treatment” [13] (see also [15]). Self-knowledge can also serve as a useful game-
theoretic aid to strategy [4], e.g., in the game played between a robot and its
environment [1,3].

Of course, Property 1 asserts that, given p, there merely exists an e satisfying
the equation in Property 1 for p. It is another problem to find such an e algo-
rithmically from p. Here, then, is Property 2, the constructive form of Kleene’s
Recursion Theorem for the ψ-system, which makes this stronger assertion.

Property 2 (KRT for eps ψ). There exists computable r : N → N such that
(∀p, x)

[
ψr(p)(x) = ψp

(
〈r(p), x〉

)]
.

In Property 2, r(p) plays the role of e in Property 1. Since r is computable, r(p)
can be found algorithmically from p.

1.2 Control Structures

From a programming languages standpoint, the r in Property 2 represents an in-
stance (or implementation) of a control structure [10,11,14,8,5]. In the context of
epses, an instance of a control structure provides a means of forming a composite
program from given constituent programs and/or data. For comparison, an in-
stance in an eps ψ of the control structure if-then-else is (by definition [10,11])
a computable function f : N → N such that, for all a, b, c, and x,

ψf(〈a,b,c〉)(x) =

⎧
⎨

⎩

ψb(x), if ψa(x) converges5 and ψa(x) > 0;
ψc(x), if ψa(x) converges and ψa(x) = 0;
divergent, otherwise.

(1)

An instance such as f above of if-then-else combines three ψ-programs, a, b,
and c (and no data) to form a fourth (composite) ψ-program f(〈a, b, c〉).
4 We care, of course, that krt provides not only self-knowledgeable programs, but

also, self-knowledgeable programs that can use that knowledge in any preassigned
algorithmic way. Usable, as opposed to empty, self-knowledge is what we care about.

5 For all one-argument partial functions ψ and x ∈ N, ψ(x) converges iff there exists
y ∈ N such that ψ(x) = y; ψ(x) diverges iff there is no y ∈ N such that ψ(x) = y.
If ψ is partial computable, and x is such that ψ(x) diverges, then one can imagine
that a program associated with ψ goes into an infinite loop on input x.

128 J. Case and S.E. Moelius III

if-then-else is an example of a nonrecursive denotational control structure
(synonym: nonrecursive extensional control structure). A nonrecursive denota-
tional control structure is one for which the I/O behavior of a composite program
may depend only upon the I/O behavior of the constituent programs and upon
the data (see (a) of Definition 1 below). So, for example, the I/O behavior of
such a composite program cannot depend upon the number of symbols in, or
the run-time complexity of, a constituent program.

A recursive denotational control structure (synonym: recursive extensional
control structure) is like a nonrecursive denotational control structure where the
I/O behavior of a composite program may depend, additionally, upon the I/O
behavior of the composite program itself (see (b) of Definition 1 below). Consider
the following example, chosen for illustrative purposes. Let an effective instance
in an eps ψ of recursive unbounded minimization be a computable function
f : N → N such that, for all a, b, and x,

ψf(〈a,b〉)(x) =

⎧
⎨

⎩

ψb(x), if ψa(x) converges and ψa(x) > 0;
ψf(〈a,b〉)(x + 1), if ψa(x) converges and ψa(x) = 0;
divergent, otherwise.

(2)

Note the use of ψf(〈a,b〉) in the second if-clause in (2). This use of ψf(〈a,b〉) is what
makes recursive unbounded minimization a recursive denotational control
structure.

For many recursive denotational control structures, there is wiggle room in
how they may be implemented. For recursive unbounded minimization,
this wiggle room manifests itself in the extreme diversity of the functions f that
satisfy (2). For example, suppose that f1 : N → N is computable and that, for
all a, b, and x,

ψf1(〈a,b〉)(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψb(z), where z is least such that z ≥ x,
(∀y ∈ {x, ..., z})[ψa(y) converges],
(∀y ∈ {x, ..., z − 1})[ψa(y) = 0],
and ψa(z) > 0, if such a z exists;

divergent, otherwise.

(3)

Then, f = f1 is a solution of (2).
Next, suppose that a0 is a ψ-program such that, for all x, ψa0(x) converges and

ψa0(x) = 0. Note that when a = a0 in (2), (2) merely insists that ψf(〈a,b〉)(0) =
ψf(〈a,b〉)(1) = ..., for any b. Thus, if f2 : N → N is computable and, for all a, b,
and x,

ψf2(〈a,b〉)(x) =
{

5, if a = a0;
ψf1(〈a,b〉)(x), otherwise; (4)

then, f = f2 is also a solution of (2). (In (4), the number 5 was chosen arbitrarily.)6

6 Readers familiar with denotational semantics may recognize that f1 provides a mini-
mal fixed-point solution of (2); whereas, f2 provides anon-minimal fixed-point solution
of (2) [14,17].

Characterizing Programming Systems Allowing Program Self-reference 129

Of course, a composite program produced by a recursive denotational control
structure may choose to ignore its own behavior. In this sense, recursive de-
notational control structures are a generalization of nonrecursive denotational
control structures.

KRT, when viewed as a control structure, is not denotational in any sense.7

So, a problem that the first author posed to Royer was to find a collection of
denotational control structures whose implementability characterizes the epses
in which KRT holds. The thinking was that denotational control structures are
easier to understand , and such a collection would be a decomposition of KRT
into more easily understood components. Royer proved that no such characteri-
zation exists, even if one allows the collection to contain recursive denotational
control structures [14].

1.3 Summary of Results

krt is the focus in the present paper as it ostensibly involves pure self-reference
without the required constructivity of KRT. So, a question we had is whether
Royer’s negative result mentioned above still holds if one replaces KRT by
krt, i.e., whether there exists a collection of (possibly) recursive denotational
control structures whose implementability characterizes the epses in which krt
holds. One of our main results, Corollary 1 in Section 3, says that no such
characterization exists. The proof is by a finite injury priority argument.8

In Section 3, we also consider a relatively constructive variant of krt. Suppose
ξ is an eps and that ψ is partial computable, but not-necessarily an eps. We
say that ξ-KRT holds in ψ

def⇔ there exists computable r : N → N such that
(∀p, x)

[
ψr(p)(x) = ξp

(
〈r(p), x〉

)]
. Here, r(p) is a self-knowledgeable ψ-program,

where the preassigned task for r(p) to employ on its self-copy is ξ-program p.
Theorem 2, our other main result, says: ψ is an eps in which krt holds ⇔

(∃ eps ξ)[ξ-KRT holds in ψ]. This implies that, if, for some eps ξ, ξ-KRT holds
in merely partial computable ψ, then both ψ is an eps and krt holds in ψ. It
also surprisingly implies that, if krt holds in an eps ψ, then it holds with some
degree of constructivity — constructivity with respect to some eps ξ.

Section 2 just below provides notation and preliminaries.
Due to space constraints, many of the details of the proofs in Section 3 have

been omitted.

2 Notation and Preliminaries

Computability-theoretic concepts not explained below are treated in [13]. N de-
notes the set of natural numbers. 2N and 2N + 1 denote the sets of even and
odd natural numbers, respectively. Lowercase Roman letters, with or without
decorations, range over elements of N unless stated otherwise.

7 Such control structures are called connotational [14].
8 Rogers [13] explains priority arguments.

130 J. Case and S.E. Moelius III

The pairing function 〈·, ·〉 was introduced in Section 1. For all x, 〈x〉 def= x. For
all x1, ..., xn, where n > 2, 〈x1, ..., xn〉 def=

〈
x1, 〈x2, ..., xn〉

〉
.

P denotes the collection of all one-argument partial functions. α, ξ, Ξ, σ, ψ,
and Ψ , with or without decorations, range over elements of P . We use Church’s
lambda-notation [13] to name partial functions, including total functions and
predicates, as is standard in many programming languages. For example, λx
(x + 1) denotes the one-argument (total) function that maps a natural number
to its successor.

For all α and x, α(x)↓ denotes that α(x) converges; α(x)↑ denotes that
α(x) diverges. We use ↑ in expressions to indicate divergence. For example,
λx ↑ denotes the everywhere divergent partial computable function. For all α,
dom(α) def= {x : α(x)↓} and rng(α) def= {y : (∃x)[α(x) = y]}. We identify a partial
function with its graph, e.g., we identify α with the set {(x, y) : α(x) = y}. As
noted in the introduction, for all ψ and p, ψp

def= ψp(〈p, ·〉).
F0, F1, ... denotes a fixed, canonical enumeration of all one-argument finite

functions [13,9].
ϕ denotes a fixed, acceptable eps.9 Φ denotes a fixed Blum complexity measure

for ϕ [2].10 For all p and t, ϕt
p and W t

p are as follows.

ϕt
p

def= {(x, y) : x ≤ t ∧ Φp(x) ≤ t ∧ ϕp(x) = y}. (5)

W t
p

def= dom(ϕt
p). (6)

Γ and Θ, with or without decorations, range over mappings of type N
m×Pn →

P , where m + n > 0.
For all Γ : N

m × Pn → P , where m + n > 0, Γ is a computable operator11 def⇔
there exists p such that, for all x1, ..., xm, α1, ..., αn, y, and z,

Γ (x1, ..., xm, α1, ..., αn)(y) = z
⇔

(∃i1, ..., in, t)
[
(∀j ∈ {1, ..., n})[Fij ⊆ αj]
∧ 〈x1, ..., xm, i1, ..., in, y, z〉 ∈ W t

p

]
.

(7)

Intuitively, Γ is a computable operator iff there exists an algorithm for listing
the graph of the partial function Γ (x1, ..., xm, α1, ..., αn) from x1, ..., xm and the
graphs of the partial functions α1, ..., αn — independently of the enumeration
order chosen for each of α1, ..., αn. C ranges over collections of computable oper-
ators. For all computable operators Γ : N

m ×Pn → P , where m+n > 0, and for

9 An eps ψ is acceptable def⇔ (∀ epses ξ)(∃ computable t : N → N)(∀p)[ψt(p) = ξp]
[12,13,9,10,11,14]. Thus, the acceptable epses are exactly those epses into which
every eps can be compiled. Any eps corresponding to a real-world, general purpose
programming language (e.g., C++, Java, Haskell) is acceptable.

10 For any partial computable function, e.g., an eps, many such measures exist.
11 Rogers [13] calls the computable operators, recursive operators. We have chosen to

use the former term so that we may reserve the term recursive for something that
refers to itself .

Characterizing Programming Systems Allowing Program Self-reference 131

all t, Γ t : N
m × Pn → P is the computable operator such that, for all x1, ..., xm,

α1, ..., αn, y, and z,

Γ t(x1, ..., xm, α1, ..., αn)(y) = z
⇔

(∃i1, ..., in)
[
(∀j ∈ {1, ..., n})[Fij ⊆ αj]
∧ 〈x1, ..., xm, i1, ..., in, y, z〉 ∈ W t

p

]
,

(8)

where p is any fixed ϕ-program as in (7) above for Γ . Clearly, for all computable
operators Γ : N

m ×Pn → P , where m+n > 0, there exists an algorithm for find-
ing j from t, x1, ..., xm, and i1, ..., in, such that Fj = Γ t(x1, ..., xm, Fi1 , ..., Fin).

Definition 1. For all epses ψ, and all f : N → N, (a) and (b) below.

(a) For all computable operators Γ : N
m × Pn → P , where m + n > 0, f is

an effective instance in ψ of the nonrecursive denotational control structure
determined by Γ ⇔ f is computable and, for all x1, ..., xm+n,

ψf(〈x1,...,xm+n〉) = Γ (x1, ..., xm, ψxm+1 , ..., ψxm+n). (9)

(b) For all computable operators Θ : N
m × Pn+1 → P , where m + n > 0, f

is an effective instance in ψ of the recursive denotational control structure
determined by Θ ⇔ f is computable and, for all x1, ..., xm+n,

ψf(〈x1,...,xm+n〉) = Θ(x1, ..., xm, ψxm+1 , ..., ψxm+n , ψf(〈x1,...,xm+n〉)). (10)

3 Results

Royer [14] proved that there is no collection of recursive denotational control
structures whose implementability characterizes the epses in which KRT holds.
Corollary 1, below, proves the analogous result for krt. Thus, even the pure self-
reference embodied by krt cannot be decomposed into recursive denotational
control structures.12 Our proof is by a finite injury priority argument.

Definition 2. For all computable operators Θ : N
m×Pn+1 → P , where m+n >

0, Θ is recursively denotationally omnipresent ⇔ for all epses ψ, there exists an
effective instance in ψ of the recursive denotational control structure determined
by Θ.

Theorem 1. Suppose that computable operator Θ : N
m × Pn+1 → P , where

m + n > 0, is not recursively denotationally omnipresent. Then, there exists an
eps ψ such that (a) and (b) below.

(a) krt holds in ψ.
(b) There is no effective instance in ψ of the recursive denotational control struc-

ture determined by Θ.

Proof (Sketch). We give here the construction. We omit the proof of its correct-
ness. Let Θ be as stated. Since Θ is not recursively denotationally omnipresent,
there exists an eps ξ such that there is no effective instance in ξ of the recursive
denotational control structure determined by Θ.
12 N.B. Our result does not subsume Royer’s.

132 J. Case and S.E. Moelius III

ψ is constructed via a finite injury priority argument. The requirements, in
order of decreasing priority, are: S, R0, R1, ..., where, for all q, Rq and S are as
follows.

Rq ⇔ (∃a)[ψa = ϕq(〈a, ·〉)].
S ⇔ (∀ computable g : N → N)(∃x1, ..., xm+n)

[ψg(〈x1,...,xm+n〉) �= Θ(x1, ..., xm, ψxm+1 , ..., ψxm+n , ψg(〈x1,...,xm+n〉))].

The satisfaction of Rq, for all q, ensures that ψ is an eps in which krt holds. The
satisfaction of S ensures that there is no effective instance in ψ of the recursive
denotational control structure determined by Θ.

ψ is constructed in stages. For all a and t, ψt
a denotes ψa at the beginning of

stage t. For all a, ψ0
a = λx ↑. For all a, t, and x, ψt+1

a (x) = ψt
a(x) unless stated

otherwise.
In conjunction with ψ, a partial computable σ and a limit-computable d are

constructed. σ and d are used to help satisfy the S requirement. For all t, σt and
dt denote σ and d, respectively, at the beginning of stage t. For all a, σ0 and d0

are as follows.

σ0(a) =
{

(a − 1) ÷ 2, if a ∈ 2N + 1;
↑, otherwise. (11)

d0(a) = 0. (12)

For all t and a, σt+1(a) = σt(a) unless stated otherwise. Similarly, for all t
and a, dt+1(a) = dt(a) unless stated otherwise. The following will be clear, by
construction.

(∀t)[dom(σt) ∩ 2N is finite]. (13)

λt, a [σt(a)↓] is a computable predicate. (14)

Let r be such that, for all t and q,

rt(q) =
{

2〈q, i〉, where i is least such that σt(2〈q, i〉)↑
and (∀p < q)[2〈q, i〉 > rt(p)]. (15)

r is used to help satisfy the R requirements. It can be shown, by a straight-
forward induction, that, if (13) holds as claimed, then, for all t, rt is total and
monotonically increasing. Furthermore, if (14) holds as claimed, then λt, q rt(q)
is computable. Clearly, by (15), if t, q, and i are such that rt(q) = 2〈q, i〉, then
σt(2〈q, i〉)↑. It follows that, for all t, dom(σt) ∩ rng(rt) = ∅.

For all q and t, it can be seen that Rq is injured in stage t whenever rt+1(q) �=
rt(q). There are two ways that this can occur. The first is when [(σt ◦ rt)(q)↑ ∧
(σt+1◦rt)(q)↓], equivalently, (σ◦rt)(q) becomes defined in stage t+1. The second
is when, for some p < q, [rt(p) < rt(q) ∧ rt+1(p) ≥ rt(q)]. In this latter case,
Rq is injured as a result of a cascading effect . Clearly, either condition causes
rt+1(q) �= rt(q).

Let Ξ be a Blum complexity measure for ξ. For all p and t, let

ξt
p = {(x, y) : x ≤ t ∧ Ξp(x) ≤ t ∧ ξp(x) = y}. (16)

Construct ψ, σ, and d by executing successive stages t = 0, 1, ... as follows.

Characterizing Programming Systems Allowing Program Self-reference 133

Stage t = 〈a, i〉.
Case σt(a)↓. Let p = σt(a) and, for all x ≤ t + 1 such that [ψt

a(x)↑ ∧
ξt
p(x)↓], set ψt+1

a (x) = ξt
p(x).

Case a ∈ rng(rt). Perform steps (1) and (2) below.
(1) Let s = dt(a) and determine whether conditions (a) and (b) below

are satisfied.
(a) ψt

a(s)↓.
(b) For all 〈x1, ..., xm+n〉 < s and b such that ψt

a(〈x1, ..., xm+n〉) = b,
(i) and (ii) below.

(i) ψs
b ⊆ Θt(x1, ..., xm, ψt

xm+1
, ..., ψt

xm+n
, ψt

b).
(ii) Θs(x1, ..., xm, ψs

xm+1
, ..., ψs

xm+n
, ψs

b) ⊆ ψt
b.

If conditions (a) and (b) are satisfied, then perform substeps (∗) and
(∗∗) below.
(∗) Let c = ψt

a(s). If [c > a ∧ σt(c)↑], then find any p such that
ψt

c ⊆ ξp and set σt+1(c) = p.
(∗∗) Set dt+1(a) = s + 1.

(2) Let q be be such that rt(q) = a and, for all x ≤ t + 1 such that
[ψt

a(x)↑ ∧ ϕt
q(〈a, x〉)↓], set ψt+1

a (x) = ϕt
q(〈a, x〉).

End of construction of ψ, σ, and d. ≈ (Theorem 1)

Corollary 1. There is no collection of computable operators C such that (a)
and (b) below.

(a) For each Θ ∈ C, Θ has type N
m × Pn+1 → P , for some m and n, where

m + n > 0.13
(b) For all epses ψ, krt holds in ψ ⇔ (∀Θ ∈ C)[there exists an effective instance

in ψ of the recursive denotational control structure determined by Θ].

Theorem 2, below, is our other main result. It reveals that a hidden and inherent
constructivity is always present in krt.

Definition 3. For all epses ξ and partial computable ψ, ξ-KRT holds in ψ ⇔
(∃ computable r : N → N)(∀p, x)

[
ψr(p)(x) = ξp

(
〈r(p), x〉

)]
.

Theorem 2. For all partial computable ψ, ψ is an eps in which krt holds ⇔
(∃ eps ξ)[ξ-KRT holds in ψ].

Proof (Sketch).
(⇒) Let ψ be as stated. Let ξ be such that, for all a, b, x1, and x2,

ξ〈a,b〉(〈x1, x2〉) =
{

ψa(x2), if x1 = a;
ψb(〈x1, x2〉), otherwise. (17)

Clearly, ξ is partial computable. Thus, to show that ξ is an eps, it suffices to
show that, for all b, there exists a such that ξ〈a,b〉 = ψb. Let ψ-program b be
fixed. By krt in ψ, there exists a such that, for all x, ψa(x) = ψb(〈a, x〉). For all
x1 and x2, consider the following cases.
13 (a) ensures that each Θ ∈ C determines a recursive denotational control structure

(see (b) of Definition 1).

134 J. Case and S.E. Moelius III

Case x1 = a. Then,

ξ〈a,b〉(〈a, x2〉) = ψa(x2) {by (17)}
= ψb(〈a, x2〉) {by the choice of a}.

Case x1 �= a. Then, by (17), ξ〈a,b〉(〈x1, x2〉) = ψb(〈x1, x2〉).
Furthermore, it can be shown that λ〈a, b〉 a witnesses ξ-KRT in ψ (details
omitted).
(⇐) Omitted. ≈ (Theorem 2)

References

1. Adami, C.: What do robots dream of? Science 314, 1093–1094 (2006)
2. Blum, M.: A machine independent theory of the complexity of recursive functions.

Journal of the ACM 14, 322–336 (1967)
3. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-

modeling. Science 314, 1118–1121 (2006)
4. Case, J.: Infinitary self-reference in learning theory. Journal of Experimental and

Theoretical Artificial Intelligence 6, 3–16 (1994)
5. Case, J., Jain, S., Suraj, M.: Control structures in hypothesis spaces: The influence

on learning. Theoretical Computer Science 270(1-2), 287–308 (2002)
6. Freivalds, R., Kinber, E., Wiehagen, R.: Inductive inference and computable one-

one numberings. Zeitschrift für Mathematische Logik und Grundlagen der Mathe-
matik 28, 463–479 (1982)

7. Goncharov, S., Sorbi, A.: Generalized computable numberings and non-trivial
Rogers semilattices. Algebra and Logic 36, 359–369 (1997)

8. Jain, S., Nessel, J.: Some independence results for control structures in complete
numberings. Journal of Symbolic Logic 66(1), 357–382 (2001)

9. Machtey, M., Young, P.: An Introduction to the General Theory of Algorithms.
North Holland, New York (1978)

10. Riccardi, G.: The Independence of Control Structures in Abstract Programming
Systems. PhD thesis, SUNY Buffalo (1980)

11. Riccardi, G.: The independence of control structures in abstract programming
systems. Journal of Computer and System Sciences 22, 107–143 (1981)

12. Rogers, H.: Gödel numberings of partial recursive functions. Journal of Symbolic
Logic 23, 331–341 (1958)

13. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw
Hill, New York, 1967. Reprinted, MIT Press (1987)

14. Royer, J.: A Connotational Theory of Program Structure. LNCS, vol. 273. Springer,
Heidelberg (1987)

15. Royer, J., Case, J.: Subrecursive Programming Systems: Complexity and Suc-
cinctness. Research monograph in Progress in Theoretical Computer Science.
Birkhäuser Boston (1994)

16. Smorynski, C.: Fifty years of self-reference in arithmetic. Notre Dame Journal of
Formal Logic 22(4), 357–374 (1981)

17. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
Foundations of Computing Series. MIT Press, Cambridge (1993)

18. Zeugmann, T., Lange, S.: A guided tour across the boundaries of learning recursive
languages. In: Jantke, K.P., Lange, S. (eds.) Algorithmic Learning for Knowledge-
Based Systems. LNCS (LNAI), vol. 961, pp. 190–258. Springer, Heidelberg (1995)

K-Trivial Closed Sets and Continuous Functions

George Barmpalias1, Douglas Cenzer2,�, Jeffrey B. Remmel3,
and Rebecca Weber4

1 School of Mathematics, University of Leeds,
Leeds LS2 9JT, England

georgeb@maths.leeds.ac.uk
2 Department of Mathematics, University of Florida,

P.O. Box 118105, Gainesville, Florida 32611
cenzer@math.ufl.edu

3 Department of Mathematics, University of California, San Diego
La Jolla, CA 92093-0112

jremmel@ucsd.edu
4 Department of Mathematics, Dartmouth College,

Hanover, NH 03755-3551
rweber@math.dartmouth.edu

Abstract. We investigate the notion of K-triviality for closed sets and
continuous functions. Every K-trivial closed set contains a K-trivial real.
There exists a K-trivial Π0

1 class with no computable elements. For any
K-trivial degree d, there is a K-trivial continuous function of degree d.1

Keywords: Computability, Randomness, Π0
1 Classes.

1 Introduction

The study of algorithmic randomness has been an active area of research in
recent years. The basic problem is to quantify the randomness of a single real
number. Here we think of a real r ∈ [0, 1] as an infinite sequence of 0’s and 1’s,
i.e as an element in 2N. There are three basic approaches to algorithmic ran-
domness: the measure theoretic, the compressibility and the betting approaches.
All three approaches have been shown to yield the same notion of (algorithmic)
randomness. Here we will only use notions from the compressibility approach,
incorporating a number of non-trivial results in this area. For background and
history of algorithmic randomness we refer to [11,10,13].

Prefix-free (Chaitin) complexity for reals is defined as follows. Let M be a
prefix-free function with domain ⊂ {0, 1}∗. For any finite string τ , let KM (τ) =
min{|σ| : M(σ) = τ}. There is a universal prefix-free function U such that, for
any prefix-free M , there is a constant c such that for all τ

KU (τ) ≤ KM (τ) + c.

� Corresponding author.
1 This research was partially supported by NSF grants DMS 0532644 and 0554841.

Remmel was also partially supported by NSF grant DMS 0400507.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 135–145, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

136 G. Barmpalias et al.

We let K(σ) = KU (σ). Then x is said to be random if there is a constant c such
that K(x�n) ≥ n − c for all n. This means a real x is random exactly when its
initial segments are not compressible.

In a series of recent papers [1,2,3,4], P. Brodhead, S. Dashti and the authors
have defined the notion of (algorithmic) randomness for closed sets and continu-
ous functions on 2N. Some definitions are needed. For a finite string σ ∈ {0, 1}n,
let |σ| = n. For two strings σ, τ , say that τ extends σ and write σ ≺ τ if |σ| ≤ |τ |
and σ(i) = τ(i) for i < |σ|. For x ∈ 2N, σ ≺ x means that σ(i) = x(i) for
i < |σ|. Let σ�τ denote the concatenation of σ and τ and let σ�i denote σ�(i)
for i = 0, 1. Let x�n = (x(0), . . . , x(n − 1)). Two reals x and y may be coded
together into z = x ⊕ y, where z(2n) = x(n) and z(2n + 1) = y(n) for all n. For
a finite string σ, let I(σ) denote {x ∈ 2N : σ ≺ x}. We shall call I(σ) the interval
determined by σ. Each such interval is a clopen set and the clopen sets are just
finite unions of intervals. Now a nonempty closed set P may be identified with
a tree TP ⊆ {0, 1}∗ where TP = {σ : P ∩ I(σ) �= ∅}. Note that TP has no dead
ends. That is, if σ ∈ TP , then either σ�0 ∈ TP or σ�1 ∈ TP . For an arbitrary
tree T ⊆ {0, 1}∗, let [T] denote the set of infinite paths through T . For a detailed
development of Π0

1 classes, see [5].
We define a measure μ∗ on the space C of closed subsets of 2N as follows.

Given a closed set Q ⊆ 2N, let T = TQ be the tree without dead ends such that
Q = [T]. Let σ0, σ1, . . . enumerate the elements of T in order, first by length
and then lexicographically. We then define the code x = xQ = xT by recursion
such that for each n, x(n) = 2 if both σn

�0 and σn
�1 are in T , x(n) = 1 if

σn
�0 /∈ T and σn

�1 ∈ T , and x(n) = 0 if σn
�0 ∈ T and σn

�1 /∈ T . We then
define μ∗ by setting

μ∗(X) = μ({xQ : Q ∈ X}) (1)

for any X ⊆ C and μ is the standard measure on {0, 1, 2}N. Informally this means
that given σ ∈ TQ, there is probability 1

3 that both σ�0 ∈ TQ and σ�1 ∈ TQ

and, for i = 0, 1, there is probability 1
3 that only σ�i ∈ TQ. In particular, this

means that Q∩I(σ) �= ∅ implies that for i = 0, 1, Q∩I(σ�i) �= ∅ with probability
2
3 . Brodhead, Cenzer, and Dashti [2] defined a a closed set Q ⊆ 22N

to be (Martin-
Löf) random if xQ is (Martin-Löf) random. Note that the equal probability of
1
3 for the three cases of branching allows the application of Schnorr’s theorem
that Martin-Löf randomness is equivalent to prefix-free Kolmogorov randomness.
Then in [2,3], the following results are proved. Every random closed set is perfect
and contains no computable elements (in fact, it contains no n-c.e. elements).
Every random closed set has measure 0 and has box dimension log2

4
3 .

A continuous function F : 2N → 2N may be represented by a function f :
{0, 1}∗ → {0, 1}∗ such that the following hold, for all σ ∈ {0, 1}∗.
– |f(σ)| ≤ |σ|.
– σ1 ≺ σ2 implies f(σ1) ≺ f(σ2).
– For every n, there exists m such that for all σ ∈ {0, 1}m, |f(σ)| ≥ n.
– For all x ∈ 2N, F (x) =

⋃
n f(x�n).

We define the space F of representing functions f : {0, 1}∗ → {0, 1}∗ to be those
which satisfy clauses (1) and (2) above. There is a one-to-one correspondence

K-Trivial Closed Sets and Continuous Functions 137

between F and {0, 1, 2}N defined as follows. Enumerate {0, 1}∗ in order, first by
length and then lexicographically, as σ0, σ1, Thus σ0 = ∅, σ1 = (0), σ2 =
(1), σ3 = (00), Then r ∈ {0, 1, 2}N corresponds to the function fr : {0, 1}∗ →
{0, 1}∗ defined by declaring that fr(∅) = ∅ and that, for any σn with |σn| ≥ 1,

fr(σn) =

{
fr(σk), if r(n) = 2;
fr(σk)�i, if r(n) = i < 2.

where k is such that σn = σk
�j for some j. Every continuous function F has

a representative f as described above, and, in fact, it has infinitely many repre-
sentatives. We define a measure μ∗∗ on F induced by the standard probability
measure on {0, 1, 2}N. Brodhead, Cenzer, and Remmel [4] defined an (Martin-
Löf) random continuous function on 2N which has a representation in F which
is Martin-Löf random. The following results are proved in [1,4]. Random Δ0

2

continuous functions exist, but no computable function can be random and no
random function can map a computable real to a computable real. The image
of a random continuous function is always a perfect set and hence uncountable.
For any y ∈ 2N, there exists a random continuous function F with y in the image
of F . Thus the image of a random continuous function need not be a random
closed set. The set of zeroes of a random continuous function is a random closed
set (if nonempty).

There has been a considerable amount of work on studying reals whose com-
plexity is “low” or trivial from the point of view of randomness. Chaitin defined a
real x to be K-trivial if K(x�n) ≤ K(1n)+O(1). We recall that there are noncom-
putable c.e. sets which are K-trivial and that the K-trivial reals are downward
closed under Turing reducibility. The latter is a highly non-trivial result of Nies
[15] who also showed that the K-trivial reals form a Σ0

3-definable ideal in the
Turing degrees. In particular, this means that if α and β are K-trivial, then the
join α ⊕ β is also K-trivial.

The main goal of this paper is to study K-triviality for closed subsets of 2N

and for continuous functions on 2N. We define a closed set Q to be K-trivial if
the code xQ is K-trivial and we define a continuous function F : 2N → 2N to be
K-trivial if it has a representing function f ∈ F which is K-trivial.

2 K-Trivial Closed Sets

Since every K-trivial real is Δ0
2, we have that every K-trivial closed set is a

strong Π0
2 class. Note also that the canonical code of a Π0

1 class has c.e. degree
and that there are K-trivial reals with non-c.e. degree. Hence there are K-trivial
closed sets which are not Π0

1 classes.
Analogous to the existence of c.e. K-trivial reals, we will construct several

examples of K-trivial Π0
1 classes. Note that a Π0

1 class P is said to be decidable
if the canonical tree TP is computable, which is if and only if the canonical code
for P is computable. Thus we want to construct K-trivial Π0

1 classes which are
not decidable. The degree of a closed set Q is the degree of the tree TQ and also
the degree of the canonical code for TQ.

138 G. Barmpalias et al.

We begin with those non-decidable Π0
1 classes with the simplest structure,

that is, countable classes with a unique limit path. Our first construction relies
on the following notion. If A = {a0 < a1 < · · · } is an infinite set, then A
is said to be retraceable if there is a partial computable function φ such that
φ(an+1) = an for all n. The initial subsets of A are A together with the finite
sets {a0, . . . , an−1} for each n. Dekker and Myhill [9] showed that every c.e.
degree contains a retraceable Π0

1 set A. Cenzer, Downey, Jockusch and Shore [6]
showed that a Π0

1 set A is retraceable if and only if the family I(A) of initial
subsets is a Π0

1 class. Clearly I(A) has unique limit element A.

Theorem 1. For any noncomputable K-trivial c.e. degree d, there exists a
K-trivial Π0

1 class P of degree d such that P has a unique, noncomputable limit
element.

Proof. Let A be a retraceable Π0
1 set of degree d. Then A is K-trivial and

noncomputable and is the unique limit element of the Π0
1 class P = I(A) as

shown above. It remains to show that the tree TP has the same degree as A.
Certainly TP ≤T A, since

σ ∈ TP ⇐⇒ (∀i < |σ|)[σ(i) = 1 → (i ∈ A & (∀j < i)(j ∈ A → σ(j) = 1))].

On the other hand, A ≤T TP since

a ∈ A ⇐⇒ (∃σ ∈ {0, 1}a+1)(σ ∈ TP & σ(a) = 1). ��

We next construct a K-trivial class having only computable members.

Theorem 2. For any K-trivial c.e. degree d, there exists a K-trivial Π0
1 class

of degree d with unique limit path 0ω and all elements computable.

Proof. Let B be a co-c.e. set of degree d and let Q = {0ω} ∪ {{n} : n ∈ B}.
Clearly Q has all elements computable and unique limit element 0ω. It is easy
to check that TQ ≡T B. ��

Next we wish to obtain a Π0
1 class with no computable members (a special Π0

1

class) such that the code for the class is K-trivial. To do so we rely heavily on
the fact that K-triviality is closed under Turing equivalence. Note first that since
the K-trivials form an ideal in the Turing degrees, the separating class for two
K-trivial sets A, B will be K-trivial, as the set of its extendible nodes (and hence
its code) is Turing-equivalent to A⊕ B. It remains to show there are recursively
inseparable K-trivial sets. The following proof due to Steve Simpson.

Theorem 3. There is a K-trivial Π0
1 class with no computable members.

Proof. Let B be a noncomputable c.e. K-trivial set. Split B into disjoint noncom-
putable c.e. A1, A2 as in the Friedberg splitting theorem. Ohashi [17] observed
that the proof of the Friedberg splitting theorem in fact gives that A1, A2 are
recursively inseparable. By the downward closure of K-triviality, they are also
K-trivial. Let S be their separating class. Then by the discussion above, S is a
special K-trivial Π0

1 class. ��

K-Trivial Closed Sets and Continuous Functions 139

Now a separating class always has measure zero. Next we construct K-trivial
classes of arbitrarily large positive measure yet still containing no computable
members. The proof makes use of the well-established cost function method from
the area of algorithmic randomness, first used in Kucera-Terwijn [14] and later
made explicit, e.g. in Downey-Hirschfeldt-Nies-Stephan [12].

Theorem 4. There is a K-trivial Π0
1 class (of arbitrarily large measure) with

no computable paths (thus perfect).

Proof. There is a well established framework for constructing K-trivial reals in
the Cantor space 2ω in terms of cost functions. A good presentation of this can
be found in Nies [16]. It is clear that the same method applies to the space 3ω.
Let K be the prefix-free complexity and

cost(x, t) =
∑

x<w≤t

2−Kt(w).

It is well known that limx supt cost(x, t) = 0. In order to construct a K-trivial
Π0

1 class P it suffices to give a monotone approximation (Pt) to P (in the sense
that Pt ⊇ Pt+1) such that if ct is the code for Pt and xs is the least number such
that cs−1(x) �= cs(x) then ∑

s>0

cost(xs, s) ≤ 1. (2)

Indeed in [16] it is shown that c is K-trivial iff it has a Δ0
2 approximation (ct)

which satisfies (2). To make sure that there are no computable paths through P
it suffices to satisfy the following requirements:

Re : Φe is total ⇒ Φe �∈ P

where (Φe) is an effective enumeration of all Turing functionals with binary
values. The strategy for Re is to modify the code c at some stage so that the
tree represented by c no longer extends some initial segment of Φe. This is done
by switching a 2 in c to a 0 or 1 according to which has the desired effect. First
note that each ct will consist of all 2’s except for a finite initial segment, so we
will find a suitable digit to switch. Second note that when we change a position
in c from 2 to something else (0 or 1), we can effectively adjust the tail of c (the
digits after the modified digit) so that the code describes the tree that we get
if we cut that branch from the branching node corresponding to the 2 above.
This means that if we let Re act on c in the way described above, we get an
approximation to P which is co-c.e. (so P is a Π0

1 class).
The last consideration is that Re cannot change digit n at stage s unless

cost(n, s) < 2−(e+1). This will make c K-trivial. Let N
[e] be the e-th column

of N, i.e. the set of numbers of the form 〈e, t〉 for some t ∈ N where 〈., .〉 is a
computable bijection from N × N to N. The symbol � denotes restriction of the
object that precedes it to the numbers < x. For example Φe � x ↓ means that
Φe is defined at all arguments < x. All parameters in the construction are in
formation and only have current values which correspond to the current stage.

140 G. Barmpalias et al.

Construction. At stage s look for the least e < s such that Re has not acted
and there is a positive x ∈ N

[e] with the property that

– Φe � x ↓ and is on Ps

– cost(k(x, s), s) < 2−(e+1), where k(x, s) is the position of node Φe � (x − 1)
in the code cs of Ps.

If there is no such e go to the next stage. Otherwise note that since Re has not
acted and x ∈ N

[e], no strategy has chopped any branch from node Φe � (x − 1)
and so the latter is branching. Now switch k(x, s) from 2 to 1−Φe(x−1) (so that
Φe � x �∈ P) and let larger positions describe the tree that we get by chopping
that branch. Go to the next stage.

For the verification, the comments before the description of Re explain why
the approximation (ct) defined in the construction corresponds to a co-c.e. ap-
proximation of P , so that P is a Π0

1 class. Each Re is satisfied by the standard
cost-function argument: there is some x0 such that for all x > x0 and all s,
cost(x, s) < 2−(e+1) (by the properties of cost). Finally c is K-trivial since the
approximation (ct) given in the construction satisfies (2) (that each Re acts at
most once and contributes cost at most 2−(e+1)). Finally note that by choosing
the witnesses x sufficiently large we can make sure that P has measure arbitrar-
ily close to 1. ��

Theorem 5. If P is a K-trivial Π0
1 class then the leftmost path is a K-trivial

real.

Proof. The leftmost path is computable from the (code of the) Π0
1 class P

and since K-triviality is downward closed under Turing reductions it must be
K-trivial. ��

By Nies’ top low2 theorem (see [11]), there is a low2 c.e. degree above all
K-trivial degrees. By Theorem 5, this means that the sets computed by it form
a basis for the K-trivial Π0

1 classes (while no incomplete c.e. degree has this
property with respect to all Π0

1 classes). The following theorem shows that such
a c.e. degree cannot be low. Note however that there are low PA degrees, i.e.
low degrees such that the sets computed by them form a basis for all Π0

1 classes.
The corresponding problem for K-trivial reals—whether there is a low degree
bounding all K-trivials—is a major open problem.

Theorem 6. If A is c.e. and low then there is a K-trivial Π0
1 class which con-

tains no A-computable paths. In other words, there is no c.e. low set A such that
the sets computed by A form a basis for the K-trivial Π0

1 classes.

Proof. This is similar to the proof that for every c.e. low A there is a K-trivial
B such that B �≤T A (in the same way that the proof of Theorem 4 is similar to
the construction of a non-computable K-trivial set). If the reader is not familiar
with that construction, (s)he might like to have a look at it [16]. We wish to
follow the construction of Theorem 4 only now we need to satisfy the following
more demanding requirements:

Re : ΦA
e is total ⇒ ΦA

e �∈ P.

K-Trivial Closed Sets and Continuous Functions 141

In general it is impossible to satisfy these requirements but if we know that A
is low we can use the following trick (due to Robinson) to succeed. During the
construction we will ask ∅′ a Σ0

1(A) question (for the sake of Re). Note that
since A is low, ∅′ can answer such questions. At each stage we will only have an
approximation to ∅′ and so we will get a correct answer possibly after a finite
number of false answers. Requirement Re will use witnesses (in the sense of the
proof of Theorem 4) from N

[e]. We will ask the following:

Is there a stage s and a witness x such that
– ΦA

e � x[s] ↓ with correct A-use and ΦA
e � x[s] ∈ Ps

– cost(k(x, s), s) < 2−(ne+e+3)

where ne is the number of times that some branch of P has been pruned
(i.e. some digit of c has been changed) for the sake of Re?

First notice that the above question refers to the partial computable sequences
(Ps), (ne[s]) which are defined during the very construction. By the recursion
theorem we can ask such questions and approximate the right answers: given any
partial computable sequence (P ′

s) of Π0
1 classes and uniformly partial computable

sequences (n′
e[s]), we will effectively define a construction in which the questions

refer to the given parameters. All of these constructions will define a sequence
(Ps) of Π0

1 classes which monotonically converges to a K-trivial Π0
1 class P which

however does not necessarily satisfy the other requirements; also each will define
a uniformly partial computable sequence (ne[s]). The (double) recursion theorem
will give a construction in which the questions asked actually refer to (Ps) and
(ne[s]). Such a construction will succeed in satisfying all requirements. Let g(e, s)
be a computable function approximating the true answer to the questions above,
when these are set to refer to the given parameters (P ′

s), (n′
e[s]).

Construction. For stage s and each e < s such that there is an unused x ∈ N
[e]

satisfying ΦA
e � x[s] ∈ Ps and cost(k(x, s), s) < 2−(ne[s]+e+3) (where ne[s] is as

above) do the following. Wait for a stage t ≥ s such that g(e, t) = 1 or the
computation ΦA

e � x[s] has been spoiled. In the first case switch k(x, s) from 2 to
1− Φe(x− 1) (so that Φe � x �∈ P) and let larger positions describe the tree that
we get by chopping that branch (say that x has been used); proceed to stage
s+1. In the latter case do nothing and test the next value of e. If the above has
run over all e < s and we are still at stage s, go to stage s + 1.

For the verification, note that if x is unused at some stage, then currently
all nodes of the xth level of P are branching. So each construction defines a
(possibly finite) monotone sequence of clopen sets Ps (and so a Π0

1 class P as
a limit). Also, for every values of the input (P ′

s), (n′
e[s]) the resulting class P is

K-trivial as the condition (2) from the proof of Theorem 4 holds (at any stage at
most one requirement acts and the cost of that action is small by construction).
By the double recursion theorem there is a construction such that

ne[s] = n′
e[s] ∧ Ps = P ′

s

for all s, e; i.e. the input and output as (double) partial computable sequences are
the same. This construction must be total (in the sense that it passes through all

142 G. Barmpalias et al.

stages) since every search halts (for example if ΦA
e � x[s] ∈ Ps, cost(k(x, s), s) <

2−(ne[s]+e+3) and the computation is true then g(e) has to settle at 1 as it
guesses correctly). Finally suppose that Re is not satisfied. This means that the
answer to the e-question is a negative one. So g(e) would settle to 0 (since it
approximates the correct answer to the e-question) and Re would act finitely
often. But then the cost requirement (in particular ne) would remain constant
and (by the properties of cost) for some large enough x, s the computation
ΦA

e [s] � x will be correct and ΦA
e � x[s] ∈ Ps, cost(k(x, s), s) < 2−(ne[s]+e+3)

which is a contradiction. ��

3 K-Trivial Continuous Functions

In [4], the notion of randomness was extended to continuous functions on 2N.
Thus it will be natural to consider K-trivial continuous functions. It was shown
in [4] that a random continuous function maps any computable real to a random
real. It follows immediately from the closure under join of K-trivial degrees that
a K-trivial continuous function maps any computable real to a K-trivial real. It
was shown in [4] that the set of zeroes of a random continuous function is either
empty or random. It follows by downward closure of the K-trivial degrees that
the set of zeroes of a K-trivial continuous function is either empty or K-trivial.

We consider a continuous functions F : 2N → 2N always in terms of one its
representing functions f : 2<N → 2<N, or, equivalently, in terms of the code of
one of its representing functions. Note that by slowing the convergence of the
function on finite strings, we may code information into the code of the function.
Hence the codes of a given function on Cantor space are always closed upwards
in the Turing degrees, so the K-degree of a function should be the K-degree of
the canonical code, that which converges as rapidly as possible. However, the
canonical code of a function F may be computed from any code, so it follows
from the downward closure of K-triviality that F is K-trivial if and only if the
canonical code is K-trivial.

Theorem 7. For any K-trivial degree d, there is a continuous function F :
2N → 2N with canonical code of degree d. Moreover, if d is c.e., F may be
chosen to have left-c.e. canonical code.

Proof. Let A = {a1, a2, . . .} be a set of degree d. We define F monotonically
increasing such that F (0ω) = 0ω and F (1ω) = χA, the characteristic function of
A. We work via f : 2<N → 2<N. To begin, let f(0) = 0(a1+1) and f(1) = 0a11.
Now suppose we have defined f(σ) = τ for |σ| = n−1, and that an −an−1 = m.
Then let f(σ0) = τ0m and f(σ1) = τ0m−11. It is clear that f ≡T A, so f is of
degree d. Furthermore, if d is a c.e. degree and A is chosen c.e., the code given
by f will be left-c.e., as shown by an analysis of the construction.

The code for f may be thought of as composed of blocks of length 2n for
n ≥ 1, in order of increasing size, corresponding to different levels of the tree. At
level n, if n− 1 /∈ A, the block will be all zeros. If n− 1 ∈ A and |A � n| = k, the
block will consist of 2k subblocks of 2n−k bits each, beginning with a subblock

K-Trivial Closed Sets and Continuous Functions 143

of all zeros and alternating to end with a subblock of all 1s. Thus the structure
of the nth block is determined entirely by whether n − 1 is in A, and if so, how
many values < n − 1 are also in A.

Given an enumeration of A as As, s ∈ ω, we may define an approximation
to the function F with corresponding canonical code Cs. We show that as s
increases, a bit of Cs holding a one may only change to zero if a preceding bit
changes from zero to one; this shows that Cs is an increasing approximation.
As the enumeration As is computable by assumption, the canonical code of F
is then left-c.e. Without loss of generality we consider a single level of the tree,
n, and a single stage, s. If the corresponding block of Cs−1 is all zeros, this level
causes no trouble at stage s: either it remains all zeros or half of its zeros change
to ones. If the nth block of Cs−1 is half zeros and half ones, then enumeration
into A at stage s may cause the subblocks to multiply and rearrange. However,
this only occurs when some k < n − 1 enters As, causing the corresponding
earlier level to change from all zeros to half zeros and half ones. ��

4 Medvedev Degrees of K-Trivial Classes

The degrees of difficulty of K-trivial closed sets should be of interest. Simp-
son [18], Cenzer and Hinman [7] and others have developed the subject of the
Medvedev (or strong) degrees of Π0

1 classes. Here P ≤M Q means that there is
a computable function mapping Q into P . The Medvedev degrees form a lat-
tice where the meet operation is the disjoint union and the join is the product,
P ⊗ Q = {α ⊕ β | α ∈ P and β ∈ Q}. There is a least degree 0M consisting of
the classes with a computable member and a highest degree 1M which can be
viewed as a universal Π0

1 class. A related structure are the Muchnik (or weak)
degrees, where P is weakly reducible to Q if for every β ∈ Q there exists α ∈ P
such that α ≤T β.

One general problem is where the K-trivial Π0
1 classes fit into the Medvedev

(or Muchnik) degrees of the Π0
1 classes. We have only a few results so far.

Since the K-trivial reals form an ideal in the Turing degrees, it follows that the
family of Π0

1 classes which contain a K-trivial real form an ideal in the lattice
of Medvedev degrees (and also in the lattice of Muchnik degrees). The following
proposition says that the K-trivial Π0

1 classes are closed under the meet and the
join operation in the Medvedev degrees.

Proposition 1. The K-trivial Π0
1 classes are closed under disjoint unions and

under products.

Proof. The degree of the code of the disjoint union of two Π0
1 classes is the join

of the degrees of the codes of these Π0
1 classes. The same holds for products and

since K-triviality is invariant in the Turing degrees and closed under join (in the
Turing degrees) the proposition follows. ��

Note however that K-triviality (for Π0
1 classes) is not closed under Medvedev

equivalence. For example the least Medvedev degree contains Π0
1 classes with

144 G. Barmpalias et al.

computable leftmost path but with a canonical code which computes the halt-
ing problem. Hence we could call a Medvedev degree K-trivial if it contains a
K-trivial class. Since there is no c.e. complete K-trivial real and any Medvedev
complete Π0

1 class is also c.e. complete, it follows that no K-trivial Π0
1 class is

Medvedev complete. A relevant question is whether there a top Medvedev degree
among the K-trivials, or even a maximal one.

Theorem 8. There is no maximal K-trivial Medvedev or Muchnik degree.

Proof. Given any K-trivial Π0
1 class Q it suffices to construct a K-trivial Π0

1

class P which is not weakly reducible to Q. Indeed, in that case P ⊗ Q would
be K-trivial strongly above Q and not weakly below Q. We argue as follows. By
the Low Basis Theorem, Q contains a member α of low Turing degree. Now by
Theorem 6, there is a K-trivial Π0

1 class P with no path computed by α. This
means that P is not weakly reducible to Q. ��

The above proof also shows that there is no Π0
1 class P which has low canonical

code and is weakly above all K-trivial Π0
1 classes.

References

1. Barmpalias, G., Brodhead, P., Cenzer, D., Remmel, J.B., Weber, R.: Algorithmic
Randomness of Continuous Functions (in preparation)

2. Brodhead, P., Cenzer, D., Dashti, S.: Random closed sets. In: Beckmann,
A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 55–64.
Springer, Heidelberg (2006)

3. Barmpalias, G., Brodhead, P., Cenzer, D., Dashti, S., Weber, R.: Algorithmic ran-
domness of closed sets, J. Logic and Computation (to appear)

4. Brodhead, P., Cenzer, D., Remmel, J.B.: Random continuous functions (Infor-
mation Berichte, FernUniversität (2006). In: Cenzer, D., Dillhage, R., Grubb,
T., Weihrauch, K. (eds.) CCA 2006. Third International Conference on Com-
putability and Complexity in Analysis. Electronic Notes in Computer Science, pp.
79–89. Springe, Heidelberg (2006)

5. Cenzer, D.: Π0
1 Classes, ASL Lecture Notes in Logic (to appear)

6. Cenzer, D., Downey, R., Jockusch, C.G., Shore, R.: Countable thin Π0
1 classes.

Ann. Pure Appl. Logic 59, 79–139 (1993)
7. Cenzer, D., Hinman, P.G.: Density of the Medvedev lattice of Π0

1 classes. Archive
for Math. Logic 42, 583–600 (2003)

8. Cenzer, D., Remmel, J. B.: Π0
1 classes, In: Ersov, Y., Goncharov, S., Marek,

V., Nerode, A., Remmel, J. (eds.): Handbook of Recursive Mathematics, Vol. 2:
Recursive Algebra, Analysis and Combinatorics, Elsevier Studies in Logic and the
Foundations of Mathematics, Vol. 139 pp. 623–821 (1998)

9. Dekker, J., Myhill, J.: Retraceable sets. Canad. J. Math. 10, 357–373 (1985)
10. Downey, R.: Five Lectures on Algorithmic Randomness. In: Chong, C.T. (ed.)

Computational Prospects of Infinity Proc. 2005 Singapore meeting (to appear 2005)
11. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity, in prepa-

ration. Current draft available at http://www.mcs.vuw.ac.nz/∼downey/.
12. Downey, R., Hirschfeldt, D., Nies, A., Stephan, F.: Trivial reals. In: Proc. 7th and

8th Asian Logic Conference, pp. 101–131. World Scientific Press, Singapore (2003)

http://www.mcs.vuw.ac.nz/~ downey/

K-Trivial Closed Sets and Continuous Functions 145

13. Downey, R.: Some computability-theoretic aspects of reals and randomness. In:
Cholak, P. (ed.) The Notre Dame Lectures ASL Lecture Notes in Logic (2005)

14. Kučera, A., Terwijn, S.: Lowness for the class of random sets. Journal of Symbolic
Logic 64, 1396–1402 (1999)

15. Nies, A.: Lowness properties and randomness. Advances in Mathematics 197,
274–305 (2005)

16. Nies, A.: Computability and Randomness, in preparation. Current draft available
at http://www.cs.auckland.ac.nz/∼nies.

17. Ohashi, K.: A stronger form of a theorem of Friedberg. Notre Dame J. Formal
Logic 5, 10–12 (1964)

18. Simpson, S.G.: Mass problems and randomness. Bull. Symbolic Logic 11, 1–27
(2005)

http://www.cs.auckland.ac.nz/~ nies

Pseudojump Operators and Π0
1 Classes

Douglas Cenzer1,�, Geoffrey LaForte2, and Guohua Wu3,��

1 Department of Mathematics, University of Florida
P.O. Box 118105, Gainesville, Florida 32611, USA

cenzer@math.ufl.edu
2 Department of Computer Science, University of West Florida

Pensacola, Florida 32514, USA
glaforte@coginst.uwf.edu

3 School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore 639798

guohua@ntu.edu.sg

Abstract. For a pseudojump operator V X and a Π0
1 class P , we con-

sider properties of the set {V X : X ∈ P}. We show that there always
exists X ∈ P with V X ≤T 0′ and that if P is Medvedev complete,
then there exists X ∈ P with V X ≡T 0′. We examine the consequences
when V X is Turing incomparable with V Y for X �= Y in P and when
W X

e = W Y
e for all X, Y ∈ P . Finally, we give a characterization of the

jump in terms of Π0
1 classes.

Keywords: Computability, Π0
1 Classes.

Pseudojump operators have been of great interest in computability theory and
were explicitly introduced by Jockusch and Soare in [7]. If φX

e is the eth partial
computable functional with oracle X , then WX

e = {n : φX
e (n) ↓} and the eth

pseudojump operator Je maps X to X ⊕ WX
e . In particular, the jump operator

J(X) = X ′ = {e : φX
e (e) ↓} is also a pseudojump operator. We will often denote

a pseudojump operator by V and let V X denote the pseudojump of X . Friedberg
[3] constructed a noncomputable c.e. set A such that A′ ≡T 0′. The fundamental
theorem for pseudojumps, from [7], states that for any index e, there exists a
noncomputable c.e. set A such that Je(A) ≡T 0′. This generalizes the result of
Friedberg that A′ ≡T 0′ for some noncomputable c.e. set A. On the other hand,
if V X is obtained from the construction of a lowX set, then (V A)′ = A′, so that
if V A ≡T 0′, then A′ = 0′′. In each of these examples, X <T V X for all X . We
will say that a pseudojump operator V is strongly nontrivial if X <T V X for
all X . In the recent paper [2], it was shown that for any pseudojump operator
V with A <T V A for all c.e. sets A, there exist Turing incomparable c.e. sets A
and B such that V A ≡T V B ≡T 0′.
� Research was partially supported by National Science Foundation grants DMS

0532644 and 0554841. Corresponding author.
�� Wu is partially supported by start-up grant No. M48110008 and research grant No.

RG58/06 from NTU.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 146–151, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Pseudojump Operators and Π0
1 Classes 147

The study of pseudojump operators is a natural extension of the study of c.e.
sets and degrees, which are fundamental in computability theory. Another natu-
ral extension is the study of effectively closed sets (Π0

1 classes), which are sets of
reals and play an important role in many areas of computable mathematics. The
degrees of members of Π0

1 classes is of great interest here. For example, every
Π0

1 class Q ⊆ 2N has a member of c.e. degree, but there exist Π0
1 classes with

no computable member. A survey of results on Π0
1 classes may be found in [1].

In this paper, we consider the interaction between pseudojump operators and
Π0

1 classses, in particular how pseudojump operators act on Π0
1 classes. Recent

work of Simpson [8] on the Medvedev degrees of Π0
1 classes has characterized the

complete degrees in several ways. The main result is that if V is a pseudojump
operator and P is a Medvedev complete Π0

1 class, then there exists X ∈ P with
V X ≡T 0′. (It follows that there exist infinitely many such X ∈ P .)

We also give a new characterization of the jump in terms of Π0
1 classes and

consider for a Π0
1 class Q, properties of the set {V X : X ∈ Q}. That is, we

examine the consequences of having WX
e = WY

e for all X ∈ Q and of having
WX

e Turing incomparable with WY
e for all X �= Y in Q.

It is easy to find a nonempty Π0
1 class P and a pseudojump operator V such

that V X �=T 0′ for any X ∈ P . For example, if P contains only computable
elements and V X is lowX , then X ′ ≡ 0′ for all X ∈ P . Our intuition is that if
P is complicated enough, then it should have a member with V X ≡T 0′.

For Π0
1 classes with no computable members, we still might not have a c. e.

member or even a member of c.e. degree with V X ≡T 0′. We can find examples of
such special Π0

1 classes with no members X of c. e. degree such that V X ≡T 0′.
Jockusch [4] constructed a Π0

1 class P with no c. e. members at all. Jockusch
and Soare [5] constructed a Π0

1 class Q such that for any c. e. degree b and any
X ∈ P , if X ≤T b, then b = 0′. Thus if X has c. e. degree and X ∈ Q, then
X ≡T 0′, so that if V X ≤T 0′, then V X ≡T X , so that V fails to be strongly
non-trivial. Recall that the Low Basis Theorem of Jockusch and Soare [6] shows
that any nonempty Π0

1 class P ⊆ 2N must contain a member of low degree. The
previous result implies that this member need not have c.e. degree.

Since V X ≤T X ′ for any set X and any pseudojump operator V , the following
is an immediate corollary of the low basis theorem. We sketch a proof in prepa-
ration for the main theorem. Let K denote the Halting Problem {e : φe(e) ↓}.

Proposition 1. For any pseudojump operator V and any nonempty Π0
1 class

P , there exists X ∈ P with V X ≤T K.

Proof. This is an easy modification of the Low Basis Theorem [6]. Let P = [T]
and fix e such that V X = WX

e = {m : φX
e (m) ↓}. For each a, define the

computable tree
Ua = {σ ∈ {0, 1}∗ : φσ

e (a) ↑}.

Then [Ua] = {X : φX
e (a) ↑}. Now define a sequence of Π0

1 trees {Sn : n < ω} as
follows. Let S0 = T and for each n, define

Sn+1 =

{
Sn ∩ Un, if Sn ∩ Un is infinite,
Sn, otherwise.

148 D. Cenzer, G. LaForte, and G. Wu

Now let S = ∩nSn and Q = [S] = ∩n[Sn]. By assumption, P is nonempty so
that T is infinite and it follows from the construction, by induction, that each
Sn is infinite. Thus Q is nonempty.

The construction is computable in K and therefore {n : Sn ∩ Un is infinite}
is computable in K. Now for X ∈ [Sn+1], it is clear that if Sn ∩ Un is infinite,
then n /∈ V X . On the other hand, if Sn ∩ Un is finite, then [Sn] ∩ [Un] = ∅, so
that for X ∈ [Sn], n ∈ V X . This gives a definition of V X using K. Note that for
any X, Y ∈ Q, we have V X = V Y . �

We now turn to the main result. Let Q be the computable Boolean algebra
of clopen sets in {0, 1}N. A clopen set is simply a finite union of intervals. A
Π0

1 class P is said to be productive if there is a computable splitting function
g : N → B such that, for any e, if Pe ∩ P is nonempty, then both Pe ∩ P ∩ g(e)
and Pe ∩ P − g(e) are nonempty. Simpson showed that a Π0

1 class is productive
if and only if it is Medvedev complete. The Medvedev complete classes are the
most difficult in the sense that if Q is Medvedev complete and P is any Π0

1 class,
then there exists a computable map Φ mapping Q into P .

Theorem 1. Let V be a pseudojump operator V and let P be a Medvedev com-
plete Π0

1 class. Then there exists X ∈ P with V X ≡T K.

Proof. Let P = Pc = [T] be Medvedev complete and let g be a splitting function
for P . We now give a modification of the proof of Proposition 1 above. The idea
is that the Halting Problem K will be coded into V X via a function f : N → Q,
computable in V X , such that

X ∈ f(n) ⇐⇒ n ∈ K.

Fix e such that V X = WX
e and let Ua be defined as above. Now define

the sequences {Rn : n < ω} and {Qn : n < ω} of Π0
1 classes as follows. Let

R0 = P = Pc and let

Rn =

{
Qn ∩ [Un], if Qn ∩ [Un] is nonempty,

Qn, otherwise.

Let Rn = Pr(n). By the construction, Rn is a nonempty subset of P , so that
Rn ∩ g(r(n)) and Rn − g(r(n)) are both nonempty subsets of P . Then define

Qn+1 =

{
Rn ∩ g(r(n)), if n ∈ K,

Rn − g(r(n)), otherwise.

As before, let Q = ∩nQn. It follows by induction that each tree each Qn is
nonempty and hence Q is nonempty. Once again, the construction is computable
in K and it follows as in the proof of Proposition 1 that, for X ∈ Q, V X ≤T K
and that, for any X ∈ Q,

(∗) V X = {n : Qn ∩ [Un] is nonempty}.

Pseudojump Operators and Π0
1 Classes 149

On the other hand, suppose that X ∈ Q and we use V X as an oracle. Note
that X ≤T V X so that we can also use X in our computation from V X . Then we
can recursively compute the function r(n) as follows. Informally, we can compute
Rn using V X and then we can compute Qn+1 using X .

More formally, we may define functions r and q, computable from V X , so that
Rn = Pr(n) and Qn = Pq(n). That is, Q0 = P , so q(0) = c. Given q(n), we have

Pr(n) =

{
Pq(n) ∩ [Un], if n ∈ V X ,

Pq(n), otherwise.

Then we have

Pq(n+1) =

{
Pr(n) ∩ g(r(n)), if X ∈ g(r(n)),
Pr(n) − g(r(n), otherwise.

It follows that the functions q(n) and r(n) are computable from V X . Finally
K ≤T V X since

n ∈ K ⇐⇒ X ∈ g(r(n)).

Note that in fact V X ≡T K for all X ∈ Q.
To obtain infinitely many X with V X ≡T K, note that for any σ such that

P ∩ I(σ) �= ∅, P ∩ I(σ) is also Medvedev complete. This is because the splitting
function for P is easily adapted to a splitting function for P ∩ I(σ). This means
that for every σ such that P ∩ I(σ) �= ∅, there exists X ∈ I(σ) with V X ≡T K.
Thus there are infinitely many such X ∈P. �

Although the class Q constructed in the theorem is not a Π0
1 class, it is a strong

Π0
2 class with the property that {V X : X ∈ Q} is a singleton and this unique

V X is ≤T K. It seems natural to consider the question of a Π0
1 class P where

V X is unique for X ∈ P . A classical result is that if P = {X} itself is a singleton,
then X is computable. By our definition, V X = V Y implies that X = Y , so we
consider just WX

e .

Proposition 2. Let P be a Π0
1 class and suppose that WX

e = WY
e = WP for

all X, Y ∈ P .

(a) The unique WX
e for X ∈ P is a c.e. set.

(b) If X ≤T WX
e for all X, then X ≤T WP , so that P is countable and therefore

has a computable member.
(c) Suppose that X ≤T WX

e for all X and further that WR
e <T K for any

recursive R. Then WP <T K.

Proof. Fix a computable tree T such that P = [T].

(a) Claim: a ∈ V X ⇐⇒ (∃n)[(∀σ ∈ {0, 1}n ∩ T → a ∈ V σ).

Suppose first that a ∈ V X for all X ∈ P . Then by compactness, there exists
m such that a ∈ V X�m for all X ∈ P . Let S = {σ ∈ {0, 1}m : P ∩ I(σ) �= ∅} =

150 D. Cenzer, G. LaForte, and G. Wu

{X�m : X ∈ P}. For σ ∈ {0, 1}m − S, T contains only finitely many extensions
of σ. Thus we can find n > m such that τ�m ∈ S for all τ ∈ {0, 1}n ∩ T . This n
satisfies the formula above.

Next suppose that n exists as in the formula. Then for every X ∈ P , a ∈ V X�n

and therefore a ∈ V X .
(b) There can be only countably many X ≤T WP , so it follows from (a) that

P is countable and hence P has a computable member.
(c) Finally, let R be a computable member of P which exists by (b). Then for

any X ∈ P , V X = V R <T K. �

For the other extreme, suppose that V X is Turing incomparable with V Y for
all X �= Y in P . It was also shown in [6] that there exist Π0

1 classes containing
continuum many elements, with each pair Turing incomparable. This will serve
as an example with V X = X .

Of course if V X = X ′, then any Π0
1 class Q must contain X with V X = K and

therefore if nontrivial, Q must contain distinct X, Y with V X ≡T K ≡T V Y .

Proposition 3. Let WX denote either WX
e or X ⊕ WX

e and suppose that P is
an infinite Π0

1 class such that WX and WY are Turing incomparable for any
X, Y ∈ P . Then there is no X ∈ P such that K ≤T WX .

Proof. Suppose by way of contradiction that K ≤T WX for some X ∈ P . Since
P is infinite, there is some Y ∈ P with Y �= X . Let n be the least such that
X(n) �= Y (n) and let Q = P ∩ I(Y �n + 1). By Proposition 1, there exists Z ∈ Q
with WZ ≤T K ≤T V X . �

Finally, we observe that Π0
1 classes may be used to define the jump and also

pseudojumps.

Proposition 4. For any set X, {e : X ∈ Pe} ≡T X ′.

Proof. Let WX = {e : X ∈ Pe}. Then WX ≤T X ′ since

e ∈ WX ⇐⇒ (∀n)X�n /∈ We.

For the completeness, use the s-m-n theorem to define a computable function f
such that

Pf(e) = {X : φX
e (e) ↑}.

Then
e ∈ X ′ ⇐⇒ f(e) /∈ WX

gives a reduction of X ′ to WX . �

One can define a pseudojump using Π0
1 classes as follows. Let πi(P) be the

projection of P onto the ith coordinate, where πi(X) = Y means that X =
〈X1, X2, . . .〉 and Y = Xi.

Pseudojump Operators and Π0
1 Classes 151

Then let
V X

e = {i : X ∈ πi(Pe)}.

It can be seen that V X
e ≡T X ′ when Pe is a particular Medvedev complete class,

such that πi(P) runs over all Π0
1 classes. It is an interesting question whether

every pseudojump can be expressed in this form.

References

1. Cenzer, D., Remmel, J.B.: Π0
1 classes in mathematics, In: Ershov, Y., Goncharov,

S., Nerode, A., Remmel, J. (eds.) Handbook of Recursive Mathematics, Part Two,
Elsevier Studies in Logic. vol. 139 pp. 623-821. (1998)

2. Coles, R., Downey, R., Jockusch, C., LaForte, G.: Completing pseudojump opera-
tors. Ann. Pure and Appl. Logic 136, 297–333 (2005)

3. Friedberg, R.M.: A criterion for completeness of degrees of unsolvability. J. Symbolic
Logic 22, 159–160 (1957)

4. Jockusch, C.G.: Π0
1 classes and boolean combinations of recursively enumerable sets.

J. Symbolic Logic 39, 95–96 (1974)
5. Jockusch, C.G., Soare, R.: Degrees of members of Π0

1 classes. Pacific J. Math 40,
605–616 (1972)

6. Jockusch, C., Soare, R.: Π0
1 classes and degrees of theories. Trans. Amer. Math.

Soc 173, 35–56 (1972)
7. Jockusch, C., Shore, R.: Pseudojump operators I: the r.e. case. Trans. Amer. Math.

Soc 275, 599–609 (1983)
8. Simpson, S.: Mass problems and randomness. Bull. Symbolic Logic 11, 1–27 (2005)
9. Soare, R.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)

Sofic Trace Subshift of a Cellular Automaton�

Julien Cervelle1, Enrico Formenti2,��, and Pierre Guillon1

1 Institut Gaspard Monge, Université de Marne la Vallée
77454 Marne la Vallée Cedex 2, France

{julien.cervelle,pierre.guillon}@univ-mlv.fr
2 Laboratoire I3S, Université de Nice-Sophia Antipolis

2000 Route des Lucioles, 06903 Sophia Antipolis, France
enrico.formenti@unice.fr

Abstract. The trace subshift of a cellular automaton is the subshift of
all possible columns that may appear in a space-time diagram. In this
paper we study conditions for a sofic subshift to be the trace of a cellular
automaton.

Keywords: discrete-time dynamical systems, cellular automata, sym-
bolic dynamics, sofic systems, formal languages.

1 Introduction

Cellular automata are well-known formal models for complex systems. They are
used in a huge variety of different scientific fields including mathematics, physics
and computer science.

A cellular automaton (CA) consists in an infinite number of identical cells
arranged on a regular lattice indexed by Z. Each cell is a finite automaton which
state takes value in a finite set A. All cells evolve synchronously according to
their own state and those of their neighbors.

The study and classification of the evolutions of cellular automata is one of the
standing open problems in the field [1,2,3,4,5,6]. Indeed, the simple definition of
CA contrasts the wide variety of their evolutions. An interesting idea is to classify
these behaviors according to some notion of complexity. Of course, the word
“complexity” means different things to different researchers. For this reason,
in literature one finds classifications according to topological entropy, measure
theory, dimension theory, attractors, algorithmic complexity, etc.

In this paper we follow a formal languages approach. Each CA is associated
with a language. The idea is that the more complex is the language, the more
complex is the automaton.

The associated language is defined as follows (see Section 2 for more precise
definitions). Each CA can be seen as a discrete dynamical system (AZ, F), where

� This work has been supported by the Interlink/MIUR project “Cellular Automata:
Topological Properties, Chaos and Associated Formal Languages”, by the ANR
Blanc “Projet Sycomore”.

�� Corresponding author.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 152–161, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Sofic Trace Subshift of a Cellular Automaton 153

F is the global function. Let β = β1, β2, . . . , βk a finite partition of AZ. Then an
orbit of initial condition x, OF (x) = (x, F (x), . . . , Fn(x), . . .) can be associated
with the infinite word w such that ∀n ∈ N, wn = i if Fn(x) ∈ βi. Then, w is
the β-trace of F with initial condition x. The β-trace set Σ of F is the set of
β-traces with all possible initial conditions. Remark that when AZ is endowed
with the Cantor topology (see Section 2), Σ is a closed shift-stable set i.e. a
subshift. The language L(Σ) of factors occurring in configurations of Σ is the
language associated with (AZ, F).

In [7], Kůrka classified factor subshifts of CA according to their language
complexity. He devised three classes: bounded periodic; regular but not bounded
periodic; not regular. In this paper we address a somewhat complementary ques-
tion, namely, given a subshift Σ of a certain language complexity we wonder if
it can be the trace of a CA.

Motivations come both from classical symbolic dynamics but also from
physics. Indeed, when observing natural phenomena due to physical constraints,
one can keep trace only of a finite number of measurements. This set of measure-
ments, usually, takes into account only a minor part of the parameters ruling
the phenomenon under investigation. Hence, to some extent, what is observed is
the “trace” of the phenomenon left on the “instruments” rather than the overall
phenomenon.

It is a very important issue (Galilean principle) to find a formal model which
can reproduce the observed trace. Restating this reasoning in our context: given
a subshift Σ, one wonders which discrete dynamical system can produce it. In
particular, one can ask if there exists a CA having Σ as a trace.

Giving a complete answer to this question seems very hard. In this paper we
give some sufficient conditions for a regular language to be traceable. The proof
is constructive. We believe that the construction of the CA is of some interest
in its own.

Because of the lack of space some of the proofs are omitted. They can be
found in [8].

2 Definitions

Let N
∗ = N \ {0}. For i, j ∈ N with i ≤ j, [i, j] denotes the set of integers

between i and j. For any function F from AZ into itself, Fn denotes the n-fold
composition of F with itself. A set S ⊂ AZ is F -stable if F (S) ⊂ S.

Languages. Let A be a finite alphabet with at least two letters. A word is a finite
sequence of letters w = w0 . . . w|w|−1 ∈ A∗. Its reverse w̄ is w|w|−1 . . . w0 and its
rotation γ(w) is w1 . . . w|w|−1w0. A factor of a word w = w0 . . . w|w|−1 ∈ A∗

is a word w[i,j] = wi . . . wj , for 0 ≤ i ≤ j < |w|. We note w[i,j] � w.
The empty word is denoted by ε. Given two languages C, D ⊂ A∗, CD

denotes their concatenation, C + D their union, C∗ =
⋃

n∈N

Cn, and Cω =
{

z ∈ AN
∣
∣ ∀j ∈ N, ∃k ≥ j, z[0,k−1] ∈ C∗ }

. When no confusion is possible, given
a word w, we also denote w the language {w}.

154 J. Cervelle, E. Formenti, and P. Guillon

Configurations. A configuration is a biinfinite sequence of letters x ∈ AZ. The set
AZ of configurations is the phase space. The definition of factor can be naturally
extended to configurations: for x ∈ AZ and i ≤ j, x[i,j] = xi . . . xj � x. If u ∈ A∗,
then uω is the infinite word consisting in periodic repetitions of u, and ωuω is
the configuration consisting in periodic repetitions of u.

Topology. We endow the phase space with the Cantor topology. A base for open
sets is given by cylinders. For j, k ∈ N and a finite set W of words of length j, we
will note [W]k the cylinder

{
w ∈ AZ

∣
∣w[k,k+j−1] ∈ W

}
. [W]Ck is the complement

of the cylinder [W]k.

Cellular automata. A (one-dimensional) cellular automaton is a parallel syn-
chronous computation model consisting in cells distributed over a regular lattice
Z. Each cell has a state in the finite alphabet A, which evolves depending on
the state of their neighbors according to a local rule f : Ad → A, where m ∈ Z

and d ∈ N
∗ are the anchor and the diameter of the CA, respectively. The global

function of the CA is F : AZ → AZ such that F (x)i = f(x[i−m,i−m+d]) for
every x ∈ AZ and i ∈ Z. The space-time diagram of initial configuration x ∈ AZ

is the sequence of the configurations of the orbit (F j(x))j∈N. Usually they are
graphically represented by a two-dimensional diagram like in Figure 1.

The shift map σ : AZ → AZ is a particular CA global function defined by
σ(x)i = xi+1 for every x ∈ AZ and i ∈ Z. According to the Hedlund theorem [9],
the global functions of CA are exactly the continuous self-maps of AZ commuting
with the shift map.

Any local rule f of a CA can be extended naturally to an application on words
f(w) = (f(w[i,i+d−1]))0≤i≤|w|−d, for all w ∈ A∗Ad.

Dynamical systems. A dynamical system is a couple (X, F) where X is a set
called the phase space, and F : X → X is a continuous self-map. (Y, F) is a
subsystem of (X, F) if Y is a closed F -stable subset of X . A set Y is F -stable if
F (Y) ⊂ Y .

Morphisms. A morphism of the dynamical system (X, F) into the dynamical
system (Y, G) is a continuous map φ : X → Y such that φ ◦ F = G ◦ φ. A
conjugacy (resp. a factorization) is a bijective (resp. surjective) morphism; in
that case we say that (Y, G) is conjugate to (resp. a factor of) (X, F) (we expect
the reader not to confuse between the use of the word “factor” in the dynamical
system context and the language theory one).

Subshifts. The onesided shift, also noted σ is the self-map of AN such that
σ(z)i = zi+1, for every z ∈ AN and i ∈ N. A onesided subshift (or sim-
ply a subshift) Σ ⊂ AN is a σ-stable closed set of infinite words. The lan-
guage of Σ is L(Σ) = {w ∈ A∗| ∃z ∈ Σ, w � z }, and characterizes Σ, since
Σ =

{
z ∈ AN

∣
∣∀w � z, w ∈ L(Σ)

}
. The alphabet of the subshift Σ is the set

{a ∈ A| ∃z ∈ Σ, az ∈ Σ } i.e. the set of letters that appear in infinite words be-
longing to Σ. A subshift Σ is transitive if for every words u, v ∈ L(Σ), there

Sofic Trace Subshift of a Cellular Automaton 155

exists w ∈ A∗ such that uwv ∈ L(Σ). A subshift can also be charac-
terized by a language F ⊂ A∗ of forbidden words, i.e. such that Σ ={

z ∈ AN
∣
∣ ∀u ∈ F , x
� z

}
. A subshift is of finite type (SFT for short) if it has a

finite language of forbidden words. It is a k-SFT (for k ∈ N) if it has a finite
set of forbidden words of length k. A subshift Σ is sofic if L(Σ) is a regular
language. The following characterization of sofic subshifts will be very useful in
the sequel. For more about subshifts, see for instance [10].

Theorem 1 (Weiss [11]). A subshift is sofic if and only if it is a factor of a
SFT.

Hedlund’s theorem can be extended as follows.

Theorem 2 (Hedlund [9]). A function φ is a morphism of a subshift (X, σ)
on alphabet A into a subshift (Y, σ) on alphabet B if and only if there is a radius
r ∈ N and a local rule f : Ar+1 → B such that ∀j ∈ N, ∀x ∈ X, φ(x)j =
f(xj . . . xj+r) (we say φ is an r-block map).

3 Traces

In this section we define the main notion introduced in the paper, namely, the
trace of a CA and the traceability of a subshift. Moreover, we give a simple
necessary condition for a subshift being traceable.

T (x)F

0

F(x)
x

F (x)2

Fig. 1. The trace seen on the space-time diagram

Definition 1 (Trace). Given a CA F , the trace applications are defined for
k ∈ Z by T k

F (x) = (F j(x))j∈N. In other words, T k
F (x) is the kth column of the

space-time diagram of initial configuration x (see Figure 1). We note TF = T 0
F .

We say that TF (x) is the trace of F with initial condition x.

The study of trace applications can be reduced to the study of TF , because of
shift-invariance of CA.

It can be noticed that this notion of trace corresponds to the β-trace as
defined in the introduction, with β = { [a]| a ∈ A } being the partition of AZ into
cylinders of width 1.

Definition 2 (Traceability). The trace subshift of a CA F is τ(F) = TF (AZ).
It is a factor subshift of (AZ, F), since TF is continuous and commutes with σ.
A subshift Σ is traceable if there exists a CA F for which Σ = τ(F).

156 J. Cervelle, E. Formenti, and P. Guillon

We begin with a condition for the traceability of a subshift. Proposition 2 proves
that it is necessary.

Definition 3 (T0 subshift). A subshift is T0 if it includes a 2-SFT with the
same alphabet.

Proposition 1. A subshift is T0 if and only if there exists a map φ : A → A
such that for every letter a ∈ A, (φj(a))j∈N ∈ Σ.

Proof. If ∀a ∈ A, (φj(a))j∈N ∈ Γ , then
{

(φj(a))j∈N

∣
∣ a ∈ A

}
is a 2-SFT of al-

phabet A and set of forbidden words
⋃

a∈A a(A \ {φ(a)}). Conversely, consider
a 2-SFT Γ of alphabet A. Define φ(a) = b such that ab ∈ L(Γ). Since Γ is a
2-SFT, we have that ∀a ∈ A, (φj(a))j∈N ∈ Γ . ��

Example 1. Consider the following subshifts :

– Σ = (1 + ε)(01)ω; it is finite T0 (with φ(0) = 1 and φ(1) = 0);
– Σ = 0ω + 0∗1ω; it is infinite T0 (with φ(0) = φ(1) = 1);
– Σ = (01 + 1 + ε)(001)ω; it is finite but not T0.

Proposition 2. The trace subshift of a CA is T0.

Proof. Consider a CA F . For any a ∈ A, define φ(a) as F (ωaω)0. Then
(φj(a))j∈N = TF (ωaω) ∈ τ(F). By Proposition 1, τ(F) is T0. ��

Theorem 3. Any 2-SFT is traceable.

Proof. Consider a 2-SFT Σ and let A be its alphabet. For each a ∈ A, define
φ(a) = b such that ab ∈ L(Σ). Consider the CA of anchor 0, diameter 2 and
local rule f defined by f(x0, x1) = x1 if x0x1 ∈ L(Σ), and φ(x0) otherwise. If
x ∈ AZ, then the definition of the rule gives that every factor of length 2 of its
trace is in L(Σ). Conversely, if z ∈ Σ, then we can see by induction that Σ is
the trace of F with initial condition x as soon as x[0,+∞) = z. ��

4 k-Traceability

In order to establish finer results we first need a weaker condition for traceability,
namely k-traceability. A subshift of alphabet A is k-traceable if it is the set of
columns of a CA on the alphabet Ak. The difference between a CA tracing a
subshift of alphabet A and one tracing a subshift of alphabet Ak is that the rule
of the latter can use the knowledge of the position of a letter of A in a word over
Ak. This results in a much simpler construction.

Notation. If Σ is a subshift on an alphabet B ⊂ Ak, and q ∈ [0, k − 1], then the
qth projection is defined as

πq :
BN → AN

(zj)j∈N → ((zj)q)j∈N

.

We also note π(Σ) =
⋃

0≤q<k πq(Σ), which is a subshift on A.
In this section we will limit our study to onesided CA, i.e. with anchor 0.

Sofic Trace Subshift of a Cellular Automaton 157

Definition 4 (k-traceability). Given a CA F on the alphabet B ⊂ Ak, the k-
trace subshift is defined by

◦
τ (F) =

⋃

0≤q<k

{
((F j(x)0)q)j∈N

∣∣x ∈ BZ
}

= π(τ(F)).

A subshift is k-traceable if it is the k-trace of a onesided CA on the alphabet
B ⊂ Ak.

Similarly to what done in the previous section we give a necessary condition for
being k-traceable.

Definition 5 (T1 subshift). A subshift Σ on the alphabet A is T1 if there
exists k ∈ N

∗ and a 2-SFT Γ ⊂ (Ak)N, such that π0(Γ) = π(Γ) = Σ (in
particular, Σ is a factor of Γ).

Theorem 4. A T1 subshift is k-traceable for some k ∈ N
∗.

Proof. By Theorem 3, the corresponding Γ ⊂ (Ak)N is the trace of a CA F on
some alphabet B ⊂ Ak. Hence,

◦
τ (F) = π(τ(F)) = π(Γ) = Σ. ��

Example 2. Consider the subshift Σ = (01 + 1 + ε)(001)ω. It is T1 (define the
2-SFT Γ = (uvw)ω on the alphabet B = {u, v, w} ⊂ A3, where u = 001, v = 010
and w = 100). It is thus 3-traceable, but not traceable since it is not T0.

Theorem 5. Any SFT is T1.

Proof. Let Σ be a k-SFT for some k ∈ N
∗. Γ =

{
(z[j,j+k−1])j∈N

∣
∣ z ∈ Σ

}

is a 2-SFT, and π(Γ) =
⋃

0≤q<k {(zj+q)j∈N| z ∈ Σ } =
⋃

0≤q<k σq(Σ) =
Σ = π0(Γ). ��
This result allows us to prove the next proposition, which is a less restrictive
condition for being T1.

Proposition 3. A subshift Σ is T1 if and only if it is a factor of a SFT Γ on
alphabet Ak for some k ∈ N

∗ such that π(Γ) ⊂ Σ.

Now we extend the results on k-traceability to sofic subshifts (with some addi-
tional properties).

Definition 6 (T2 subshift). A subshift is T2 if it is sofic and includes an
infinite transitive subshift.

Theorem 6. Any T2 subshift is T1.

The proof of Theorem 6 is given using the following lemmas.

Lemma 1. A sofic transitive subshift on alphabet A is infinite if and only if for
all n ≥ 2, it includes a subshift Bω with B ⊂ Ak, |B| ≥ n and some k ∈ N

∗.

Lemma 2. If Σ is a factor subshift of a SFT Γ on alphabet B such that Bω ⊂
Σ, then Σ is T1.

Proof (of Theorem 6). Let Σ a T2 subshift. From Theorem 1, it is a factor of
a SFT Γ . Thanks to Lemma 1, there is an arbitrarily large set of words B on
A such that Bω ⊂ Σ, so we can assume without loss of generality that Γ is
a subshift on such an alphabet B ⊂ Ak for some k ∈ N

∗. From Lemma 2, we
conclude that Σ is T1. ��

158 J. Cervelle, E. Formenti, and P. Guillon

5 From k-Trace to Trace

In the previous section, we gave a sufficient condition for a particular subshift
Σ to be k-traced by a CA G on an alphabet B ⊂ Ak. In this section, we show
how to simulate G with another CA, on alphabet A, in such way that its trace
is Σ. This can be done if we add a further condition to our subshift.

Definition 7 (T3 subshift). A subshift Σ is T3 if there is a map φ : A → A
such that for every letter a ∈ A, (φj(a))j∈N ∈ Σ (it is T0) and there is a word
w ∈ A∗ \ φ(A)∗ such that wω ∈ Σ.

Example 3. Consider the following subshifts.

– Σ = (1 + ε)(01)ω is not T3.
– Σ′ = 0ω + 0∗1ω is T3 (with φ(0) = φ(1) = 1 and w = 0).

Theorem 7. Any T3 k-traceable subshift (for some k ∈ N
∗) is traceable.

This section presents a sketch of the proof of Theorem 7. Remark that it is
well known that a CA on any alphabet can be simulated by a CA on any other
alphabet (with at least two letters), provided that its diameter is wide enough.
In particular, any CA on B ⊂ Ak can be simulated by a CA on A. Each cell
can see its neighborhood as words of Ak and evolve accordingly. The problem
is that all cells must have the same local rule, so they have to find from the
neighborhood which column of the Ak simulation they are representing. This is
usually done using a special border word to delimit the words of Ak.

In this section, Σ denotes a T3 subshift on alphabet which is k-traceable by
a onesided CA G. Let φ and w be as in Definition 7. Assume G has diameter 2
(the construction can easily be generalized) and local rule g : B2 → B.

In order to achieve the simulation, we first define border words to delimit Ak

cells. We have two execution modes: a simulation mode will simulate properly
the execution of the CA on alphabet B, and a default mode will be applied if
the neighborhood contains invalid information. This adds some issues: default
evolution must be in Σ; border evolution must also evolve according to Σ; and
we have to ensure that when a mode is applied to a cell, the same mode keeps
being applied there in the following generations, since a change of mode would
produce an invalid trace. These problems will be solved in the three following
subsections.

5.1 Borders

In order to make our simulations, we need to delimit computation zones. This
is obtained by using some special words called borders and defined as follows:

Υ =
{

a|w|vvak+3|w|
∣
∣
∣ a ∈ φ(A), v ∈ Oγ(w)

}
⊂ Al,

where Oγ(w) = {γq(w)| 0 ≤ q < |w| }, and l = k + 6 |w|.
Borders have the property that they cannot have a too wide overlap.

Sofic Trace Subshift of a Cellular Automaton 159

Border evolution. The border words of Υ must have an evolution in Σ. The
following rule (of diameter 1) respects that condition:

ΔΥ :
Υ → Υ

a|w|vvak+3|w| → φ(a)|w|γ(v)γ(v)φ(a)k+3|w| .

Macrocells. We will decompose our configurations into macrocells. A macrocell
is the concatenation of a border word and a valid word of B. We can simulate
the local rule g by a macroevolution rule (local rule on macrocells of BΥ ⊂ Ah,
where h = k + l = 2k + 6 |w|, and of diameter 2):

Δ :
(BΥ)2 → BΥ
(u, v) → g(u[0,k−1], v[0,k−1])ΔΥ (u[k,h−1])

.

5.2 Default Mode

Our CA will work as follows. Valid zones (with macrocells), which evolve accord-
ing to the macroevolution rule Δ so that they remain valid zones. Invalid zones
run a microdefault mode so that they remain invalid zones. Nevertheless, fron-
tiers between the zones must not move. In the frontiers, a macrodefault mode is
applied in order for a macrocell to have the opportunity to evolve without tak-
ing into account its neighbors; that way, each cell will keep the same execution
mode.

Macrodefault mode. To do so, we extend the macroevolution to a function on
ΘAh, where Θ = BΥAh \

⋃

0<i<h

AiBΥAh−i because it does not take into account

overlapping macrocells. This is crucial in order to define a local rule. If the central
macrocell has a neighbor macrocell in Θ, we apply a simulation step of the CA.
Otherwise, we evolve as a macrodefault mode (simulation from a monochromatic
configuration):

Δ :
ΘAh → BΥ

u →
∣
∣
∣∣
g(u[0,k−1], u[h,h+k−1])ΔΥ (u[k,h−1]) if u ∈ BΥΘ
g(u[0,k−1], u[0,k−1])ΔΥ (u[k,h−1]) otherwise

.

Microdefault mode. The function φ (corresponding to the fact Σ is T0) allows
to define a microdefault mode for a neighborhood that does not contain any
macrocell. We are now able to transform the function Δ into a local rule on A.
Indeed, we can define, for anchor m = h − 1 and diameter d = 3h − 1:

f :
Ad → A

w →
∣
∣∣
∣
Δ(u)i if w ∈ Am−iuAi, where u ∈ ΘAh, i ∈ [0, h − 1]
φ(w0) otherwise

since such an integer i, and such a word u would be unique (from the construction
of Θ). This local rule is such that f(AmuAm) = Δ(u) for every u ∈ ΘAh, which

160 J. Cervelle, E. Formenti, and P. Guillon

is what we wanted: it can simulate in one step the behavior of our CA on B. Let
F be the corresponding global rule.

The following lemma guarantees that no column changes its evolution mode.

Lemma 3. The preimage of cylinder [BΥ] is cylinder [Θ]. Moreover, cylinder
[Θ] and its complementary [Θ]C are F -stable (in particular, we cannot create a
border).

A configuration which is a valid encoding of some y ∈ BZ (simulation mode),
then its trace is some projection of the trace of y. Otherwise, microdefault and
microdefault mode also produce a trace which is in Σ. This concludes the proof
of Theorem 7.

6 Examples

Example 4 (Finite untraceable T1 subshift). No CA traces subshift Σ =
{0ω, (01)ω, (10)ω}, even though it is T1.

Example 5 (T1, T3, non-SFT, non-T2 subshift). The subshift Σ = (0∗1+1∗)0ω

is neither a SFT nor T2, but it is T1 and T3. Hence, by Theorems 4 and 7 it is
traceable.

Example 6 (Traceable non-T3 subshift). Let f be the local rule of anchor 3 and
diameter 7 such that f(u−3000111) = 1, f(000111u3) = 0, f(u−3001011) = 0,
f(001011u3) = 1, and f(u) = u0 otherwise. The trace subshift of the correspond-
ing CA is τ(F) = {0ω, (10)ω, (01)ω, 1ω}. In this case, τ(F) is finite but not T3.

Example 7 (Traceable non-sofic subshift). Let F be the CA on alphabet A =
{b, r, l, w} (the white, the right, the left and the wall particles, respectively)
defined by the following local rule f of anchor 1 and diameter 3:

x−1x0x1 rl? ?rl r?l ?w? ?rw wl? r?? ??l ???
f(x−1x0x1) w w w w l r r l b

where ? stands for any letter in A and the first applicable rule is used (left to
right). Then, τ(F) is not sofic.

7 Putting Things Together

In this paper, we have given sufficient conditions for a subshift to be the trace
of a CA. The following summarizes all these results:

Theorem 8. Any T3+T1, T3 SFT, or T3+T2 subshift is traceable.

The present result follows other works on the structure that the trace of a CA
can have. Here, we take the problem the other way around: we construct a CA
that traces a particular kind of subshifts. Though we do not have a necessary and

Sofic Trace Subshift of a Cellular Automaton 161

sufficient condition for traceability, Conditions T0, T1, T2 and T3 are a first step
toward a better understanding of what makes a sofic subshift traceable or not.

Moreover, we expect our construction to be generalizable to weaker conditions.
Nevertheless, the non-sofic case is still obscure. The general feeling is that it needs
a completely different approach.

In [7], it is proved that every factor subshift of a CA F is a factor of some
β-trace, where β is a partition of AZ, and every β-trace is a factor of some column
factor (i.e. a subshift

{
(F j(x)[0,q−1])j∈N

∣
∣ x ∈ AZ

}
, for some q ∈ N). Hence we

can wonder now whether this kind of result can be generalized, in particular to
the canonical factor

{
(F j(x)[0,d−1])j∈N

∣∣ x ∈ AZ
}

of the CA.

References

1. Gilman, R.H.: Classes of linear automata. Erg. Th. & Dyn. Sys. 7, 105–118 (1988)
2. Hurley, M.: Attractors in cellular automata. Erg. Th. & Dyn. Sys. 10, 131–140

(1990)
3. Dubacq, J.C., Durand, B., Formenti, E.: Kolmogorov complexity and cellular au-

tomata classification. Th. Comp. Sci. 259(1–2), 271–285 (2001)
4. Durand, B., Formenti, E., Varouchas, G.: On undecidability of equicontinuity clas-

sification for cellular automata. In: Morvan, M., Rémila, E., (eds.) DMCS’03. Vol-
ume AB of DMTCS Proc. Disc. Math. and Th. Comp. Sci. pp. 117–128 (2003)

5. Culik, K., Yu, S.: Undecidability of cellular automata classification schemes. Comp.
Sys. 2, 177–190 (1988)

6. Braga, G., Cattaneo, G., Flocchini, P., Vogliotti, C.Q.: Pattern growth in elemen-
tary cellular automata. Th. Comp. Sci. 145(1–2), 1–26 (1995)

7. Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Erg. Th.
& Dyn. Sys. 17, 417–433 (1997)

8. Formenti, E., Cervelle, J., Guillon, P.: Sofic trace of a cellular automaton. Technical
report, Institut Gaspard Monge (march 2007), http://hal.archives-ouvertes.
fr/hal-00135811

9. Hedlund, G.A.: Endomorphism and automorphism of the shift dynamical system.
Math. Sys. Theory 3, 320–375 (1969)

10. Marcus, B., Lind, D.: An introduction to symbolic dynamics and coding. Cam-
bridge University Press, Cambridge (1995)

11. Weiss, B.: Subshifts of finite type and sofic systems. Monatshefte für Mathe-
matik 77(5), 462–474 (1973)

http://hal.archives-ouvertes.fr/hal-00135811
http://hal.archives-ouvertes.fr/hal-00135811

Thin Maximal Antichains in the Turing Degrees�

Chi Tat Chong1 and Liang Yu2

1 Department of Mathematics, Faculty of Science, National University of Singapore,
Lower Kent Ridge Road, Singapore 117543

chongct@math.nus.eud.sg
2 Institute of Mathematical Sciences, Nanjing University, Nanjing, Jiangsu Province

210093, P.R. of China
yuliang.nju@gmail.com

Abstract. We study existence problems of maximal antichains in the
Turing degrees. In particular, we give a characterization of the existence
of thin Π1

1 maximal antichains in the Turing degrees in terms of (rela-
tively) constructible reals. A corollary of our main result gives a negative
solution to a question of Jockusch under the assumption that every real
is constructible.

1 Introduction

Let 〈D, ≤〉 denote the structure of the Turing degrees. If A ⊂ D, then it is
an antichain if x �≤ y and y �≤ x for any distinct x, y ∈ A. A is maximal if
it is not properly contained in an antichain. By contrast, A is a chain if all
of its elements are pairwise Turing comparable. A is a maximal chain if it is
not properly contained in any chain. In [3] we studied the existence problem of
maximal chains in D under various set-theoretic assumptions. In this paper we
turn our attention to existence problems of maximal antichains in D. Since there
are 2ℵ0 many minimal degrees, we have immediately the following proposition.

Proposition 1 (Folklore). (ZFC) Every maximal antichain has size 2ℵ0 .

In parallel with Turing degrees, we say that A ⊂ 2ω is an antichain if its elements
are pairwise Turing incomparable. We define the related notions similarly. Our
interest here are twofold: (i) In view of Proposition 1.1, is there an analytically
definable (say Π1

1) maximal antichain? (ii) Does every maximal antichain A ⊂ 2ω

contain a perfect subset? Theorem 2.5 (ii) says that under ZFC, the existence
of a thin Π1

1 maximal antichain of Turing degrees is equivalent to the assertion
that 2ω = (2ω)L[x] for some real x. Comparing the consistency strength of the
existence of a thin Π1

1 maximal antichain in the Turing degrees with that of a
Π1

1 maximal chain, where a large cardinal axiom is needed for it to be refuted
(see [3])), one sees that the former is a much weaker statement.

� The research of the authors was respectively supported in part by NUS grant WBS
146-000-054-123, and NSF of China No. 10471060 and No. 10420130638.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 162–168, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Thin Maximal Antichains in the Turing Degrees 163

In §3, we apply the results of §2 to study a measure-theoretic problem on the
Turing degrees, and provide a negative answer to a question raised by Jockusch.

The following notations are adopted: x, y, z etc. denote elements of 2ω, while
the collection of paths of a perfect tree T is denoted by [T].

2 Thin Maximal Antichains

Firstly, it is a consequence of ZFC that there does exist a thin maximal antichain
in the Turing degrees:

Proposition 2. (ZFC)There exists a thin maximal antichain.

Proof. Fix an enumeration {[Tα]}α<2ℵ0 of perfect sets whose Turing degrees form
an antichain, and fix an enumeration of all reals {xα}α<2ℵ0 . We construct a thin
set A = {z0

α|α < 2ℵ0} ∪ {z1
α|α < 2ℵ0} whose Turing degrees form a maximal

antichain, by induction on α < 2ℵ0 , so that both A − [Tα] and [Tα] − A are
nonempty.:

At step α, check whether {xα} ∪ {zi
β|β < α ∧ i ≤ 1} is an antichain. If the

answer is yes, then check whether the Turing degrees of {xα} ∪ {zi
β|β < α ∧ i ≤

1} ∪ [Tα] form an antichain. There are two cases to consider:

(i) If they form an antichain, select a real y ≡T xα but y �= xα. Obviously
y �∈ Tα. Define z0

α = y. Then select another real y0 �∈ [Tα] so that there is a
real y1 ∈ [Tα] with y0 ≡T y1. Define z1

α = y0.
(ii) Otherwise, define z0

α = z1
α = xα.

If the Turing degrees of {xα} ∪ {zi
β|β < α ∧ i ≤ 1} do not form an antichain,

check whether {zi
β|β < α ∧ i ≤ 1} ∪ [Tα] is an antichain.

(iii) If the answer is yes, select a real x ∈ [Tα] − {zi
β|β < α ∧ i ≤ 1}. Then select

a real y ≡T xα but y �= xα. Define z0
α = z1

α = y.
(iv) Otherwise, define z0

α = z1
α to be any real forming an antichain with {zi

β|β <
α ∧ i ≤ 1}.

The set A = {zi
α|α < 2ℵ0 ∧ i ≤ 1} is an antichain by construction. We

claim that it is maximal. Otherwise, there is a real xα whose Turing degree is
incomparable with those of all the reals in A. Let α0 be the least ordinal α for
which xα has this property. Then according to (i) and (ii) at step α0, either xα0

or some real y of the same degree is chosen to be zi
α0

for some (or all) i ≤ 1,
which is a contradiction. Furthermore, for each α, both A − [Tα] and [Tα] − A
are nonempty since A ∪ [Tα] is not an antichain. Thus A is a maximal antichain
that is thin.

How complicated must a thin maximal antichain be? Since every maximal an-
tichain of reals has size 2ℵ0 , it cannot be Σ1

1 (else it would contain a perfect
subset). We show it is consistent with ZF that there exists a Π1

1 thin maximal
antichain. The idea of the proof is similar to that used in constructing a Π1

1

maximal chain presented in [3]. But the technique required to derive the result
is quite different.

164 C.T. Chong and L. Yu

Lemma 1. (ZF) Let X ∪ {x0} be a countable antichain in the Turing degrees.
Let x1 be a real. Then there is a z such that

1. z′′ ≥T x1;
2. {z} ∪ X is an antichain;
3. z ≥T x0.

Proof. Let X = {yi}i∈ω. We construct a real z so that the following requirements
are satisfied:

Ne,i : Φz⊕x0
e is total =⇒ Φz⊕x0

e �= yi.

Then {z ⊕ x0} ∪ X is an antichain. We also need to make (z ⊕ x0)′′ ≥T x1.
We construct a sequence of finite strings σ0 ≺ σ1 ≺ ... so that z =

⋃
n σn.

Construction:
At step 0, define σ0 = ∅.
At step n + 1 = 〈e, i〉.

Substep 1: (Satisfying Ne,i). Consider the following statement:

(∃τ � σn)(∀τ0 � τ)(∀τ1 � τ)(∀m)(Φτ0⊕x0(m) ↓ ∧Φτ1⊕x0(m) ↓ =⇒
Φτ0⊕x0(m) = Φτ1⊕x0(m)).

If the statement is true, then find the least τ (in a recursive well ordering of
strings) and define σ0

n+1 = τ . Then for every real z � σ0
n+1, Φz⊕x0

e is total
implies Φz⊕x0

e ≤T x0. Thus Φz⊕x0
e �= yi since X ∪{x0} is an antichain. If the

statement is not true, find the least τ0 � σn for which there exists (a least)
τ1 � σn such that Φτ0⊕x0(m) ↓�= Φτ1⊕x0(m) ↓ for some m. Define σ0

n+1 = τk

for the k < 2 where Φτk⊕x0(m) �= yi(m).
Substep 2: (Coding x1). Define σn+1 = (σ0

n+1)
�(x1(n)).

Finally, define z =
⋃

n σn. This finishes the construction.

Since x0 �≤T yi for all i, z ⊕ x0 �≤T yi for all i. By the construction above,
z ⊕ x0 �≥T yi for all i, so X ∪ {z ⊕ x0} is an antichain.

To see that (z ⊕ x0)′′ ≥T x1, we look at the statement considered in Substep
1. The statement is decidable by x′′

0 . If the statement is true, then we can x′′
0 -

recursively find the τ . Then τ = σ0
n+1. Otherwise, we can x′′

0 -recursively find
both τ0 and τ1. Then we use z to decide which one is the σ0

n+1. Thus x1(n) = 0
if and only if z(|σ0

n+1| + 1) = 0. Moreover, σn+1 = z � (|σ0
n+1| + 1). So the

sequence {σn}n can be computed from z⊕x′′
0 . Hence (z⊕x0)′′ ≥T z⊕x′′

0 ≥T x1.

Corollary 1. (ZF+DC) Let X ∪ {x0} be a countable antichain in the Turing
degrees. Then there is a real x1 so that for all real y ≥T x1 there is a real z such
that

1. z′′ ≡T y;
2. {z} ∪ X is an antichain;
3. z ≥T x0.

Thin Maximal Antichains in the Turing Degrees 165

Proof. Fix an enumeration {yi}i∈ω of X . Then the set

B = {y|(∃z)(z′′ = y ∧ X ∪ {z} is an antichain ∧ z ≥T x0)}

is a Borel set. Moreover, by Lemma 1, for each real x, there is a real y ∈ B
so that y ≥T x. By Borel determinacy [8], there exists a real x1 so that for all
x ≥T x1, there is a real y ∈ B so that y ≡T x.

The proof of the following theorem depends heavily on the results of Boolos and
Putnam [2]. Call a set E ⊆ ω × ω an arithmetical copy of a structure (S, ∈) if
there is a 1-1 function f : S → ω so that for all x, y ∈ S, x ∈ y if and only if
(f(x), f(y)) ∈ E. In ([2]) it is proved that if (Lα+1 \ Lα) ∩ 2ω �= ∅ then there is
an arithmetical copy Eα ∈ Lα+1 of (Lα, ∈) so that any x ∈ (Lα+1 \ Lα) ∩ 2ω

is arithmetical in Eα (i.e. Eα is a master code for α in the sense of Jensen [6]).
Moreover, each z ∈ Lα ∩2ω is one-one reducible to Eα. Hence Eα may be viewed
as a real. Note that for each constructibly countable β, there is an α > β such
that (Lα+1 \ Lα) ∩ 2ω �= ∅. For a given ordinal α and X ⊆ α × ω, we denote by
X [β] the real {n ∈ ω|(β, n) ∈ X}. We may regard X as a sequence of reals of
length α.

Lemma 2. Assume V = L. There exists a Π1
1 thin maximal antichain in the

Turing degrees.

Proof. A set A of reals is Π1
1 if and only if there is a Σ0-formula ϕ such that

y ∈ A ⇔ (∃x ∈ Lωy
1
[y])(Lωy

1
[y] |= ϕ(x, y)),

where ωy
1 is the least ordinal α > ω such that Lα[y] is admissible (see [1] and

[10]).
Our proof combines Corollary 1 and the argument in [3] which is based on [5].
Assuming V = L, we define a function F on ω1 ×

⋃
α<ω1

P(α × ω) as follows:
For each α < ω1 and antichain X ⊆ α × ω with α < ω1, we define F (α, X)

to be the real z such that there exists a lexicographically least triple (β, E, e0)
(where the ordering on the second coordinate is <L) satisfying the following
properties:

1. There is a 1-1 function h ∈ Lβ which maps ω onto α, a real x0 ∈ Lβ so that
{x0} ∪ {X [h(n)]|n ∈ ω} is an antichain and (Lβ+1 \ Lβ) ∩ 2ω �= ∅;

2. E ∈ Lβ+1 is an arithmetical copy of (Lβ, ∈) as described above,
3. z ≥T x0 and {z} ∪ {X [h(n)]|n ∈ ω} is an antichain. Furthermore,
4. z′′ ≡T E and
5. z = ΦE

e0
.

We show that F (α, X) is defined if X is an antichain.
Fix (α, X) where X is an antichain. Since V = L, there is a γ > α such that

there is a real x0 ∈ Lγ with {x0} ∪ X forming an antichain. Choose a real x1

for X ∪ {x0} as guaranteed by Corollary 1. Since V = L, there is a β > γ so
that x1 ∈ Lβ, (Lβ+1 \ Lβ) ∩ 2ω �= ∅ and there is a function hα mapping ω onto

166 C.T. Chong and L. Yu

α. By the discursion above, there is an arithmetical copy E ⊆ ω × ω in Lβ+1

so that E ≥T x1. By Corollary 1, there is a real z ≥T x0 so that z′′ ≡T E
and {z} ∪ {X [hα(n)]|n ∈ ω} is an antichain. Obviously, Lβ+1 ∈ Lωz

1
[z]. By the

absoluteness of <L, it is easy to see that F is a well-defined function.
Moreover, one can verify using the absoluteness of <L that there is a Σ0

formula ϕ(α, X, z, y) such that F (α, X) = z if and only if L
ω

(X,z)
1

[X, z] |=
(∃y)ϕ(α, X, z, y), with a function h ∈ L

ω
(X,z)
1

[X, z] mapping ω onto α.
Thus we can perform transfinite induction on α to construct a maximal an-

tichain of Turing degrees. But care has to be exercised here since in general sets
constructed this way are Σ1 over Lω1 , i.e. Σ1

2 and not necessarily Π1
1 .

Define G(α) = z if and only if α < ωz
1 and there is a function f : α + 1 → 2ω

with f ∈ Lωz
1
[z] so that for all β ≤ α, f(β) = F (β, {(γ, n)|n ∈ f(γ) ∧ γ < β})

and f(α) = z. Since Lωz
1
[z] is admissible, {f(γ)|γ ≤ α} ∈ Lωz

1
[z]. So G(α) = z if

and only if there is a function f : α + 1 → 2ω with f ∈ Lωz
1
[z] such that

Lωz
1
[z] |= ((∀β ≤ α)(∃y)ϕ(β, {(γ, n)|n ∈ f(γ) ∧ γ < β}, y, f(β))) ∧ f(α) = z.

Since Lωz
1
[z] is admissible, G is Σ1-definable. In other words, G(α) = z if and

only if there is a function f : α + 1 → 2ω with f ∈ Lωz
1
[z] such that

Lωz
1
[z] |=

((∃s)(∀β ≤ α)(∃y ∈ s)ϕ(β, {(γ, n)|n ∈ f(γ) ∧ γ < β}, y, f(β))) ∧ f(α)=z.

Define the range of G to be T . Then z ∈ T if and only if there exists an
ordinal α < ωy

1 and a function f : α + 1 → 2ω with f ∈ Lωz
1
[z] such that

Lωz
1
[z] |=

((∃s)(∀β ≤ α)(∃y ∈ s)ϕ(β, {(γ, n)|n ∈ f(γ) ∧ γ < β}, y, f(β))) ∧ f(α)=z.

So T is Π1
1 .

All that remains is to show that G is a well-defined total function on ω1. This can
be done using the same argument as that for showing the recursion theorem over
admissible structures (see Barwise [1]). The only difficult part is to argue, as was
done earlier, that the function f defined above exists. We leave this to the reader.

We show that G is a maximal antichain. Suppose not, then there is a <L-least
real x0 �∈ G so that {x0} ∪ G is an antichain. Since V = L, x0 ∈ Lγ for some
γ < ω1. Then, by the construction above, there must be some real y ∈ G so that
y ≥T x0, a contradiction.

To see that G is thin, it suffices to show that z ∈ Lωz
1

if z is in the range of F . By
(2),E ∈ Lβ+1 andβ+1 < ωE

1 . SoE ∈ LωE
1
. By (4),ωE

1 = ωz
1 and z ∈ Lβ+2 ⊆ LωE

1
.

So z ∈ Lωz
1
. By a result of Mansfield-Solovay [7], G is a thin set.

Theorem 1. (ZFC)

(i) There is a thin Π1
1 maximal antichain of Turing degrees if and only if

(2ω)L = 2ω.
(ii) There is a thin Π1

1 maximal antichain of Turing degrees if and only if
(2ω)L[x] = 2ω for some real x.

Thin Maximal Antichains in the Turing Degrees 167

Proof.
(i) Suppose A is a thin Π1

1 maximal antichain. Then, by Solovay’s result [11],
A ⊂ L. Now let x be a real. By a theorem of Cooper [4], there is a real y of
minimal degree such that x ≤T y′. Since A is a maximal antichain, there is
a real z ∈ A with z ≥T y. So x ≤T z′. Hence x ∈ L.
Conversely, suppose (2ω)L = 2ω. Fix a Π1

1 set G as in Lemma 2. Since the
statement “G is an antichain in the Turing degrees” is Π1

2 and

L |= “G is an antichain in the Turing degrees”,

G is an antichain in the Turing degrees by absoluteness. Fix a real x. Since
(2ω)L = 2ω, x ∈ L. The statement T (x) :“there exists y ∈ G so that y is
Turing comparable with x” is Σ1

2(x) and L |= T (x). It follows that T (x) is
true. Thus G is a maximal antichain.

(ii) Relativize the proof of (i).

It follows that to construct a model in which there is no thin Π1
1 maximal

antichain of Turing degrees, one just needs to refute CH in the model. It is
natural to ask whether there is a model of ZFC +CH with no thin Π1

1 maximal
antichain of Turing degrees. The answer is yes: Apply iterated Cohen forcing with
finite support of length (ω1)L, i.e. conditions of the form ((<ω, 2)α, <: α < ω1)
over L to obtain a generic set G. Notice that this notion of forcing satisfies the
(set-theoretic) countable chain condition (c.c.c), and so preserves all cardinals.
Now L[G] |= ZFC + CH . If there is a real x ∈ L[G] so that (2ω)L[x] = 2ω, then
x ∈ L[Gα] for some α < ω1 where Gα is the generic set obtained from iterated
forcing up to α. Then for any real y ∈ L[G] − L[Gα], y is not constructible in x.
It follows from Theorem 1 that there is no thin Π1

1 maximal antichain of Turing
degrees in L[G].

3 Applications to the Measure Theory of Turing Degrees

In [12], Yu investigated measure theoretic aspects of the Turing degrees. In this
section, we continue the investigation by applying the results in the previous
section to study some problems in this area.

Given a set A of reals, we define U(A) = {y|∃x(x ∈ A ∧ x ≤T y)}. We have
the following proposition.

Proposition 3. If A is a Π1
1 thin set, then μ(U(A)) = 0.

Proof. Fix a ZFC model M. If A is Π1
1 , then U(A) is Π1

1 and so measurable. By a
result of Sacks [9], the set C = {n ∈ ω|μ(U(A)) > 2−n} is Π1

1 . Since A is a thin Π1
1

set, A ⊂ L. Extend M to a generic N by any notion of forcing that collapses (ω1)L

to ω. Then A is still thin by absoluteness since the statement “A is a thin set” is
Π1

2 . In the generic extension N, A is countable since A is a subset of constructible
reals. So U(A) is a null set in N. I.e. “∀n(n �∈ C)” is true in N. Since the statement
“∀n(n �∈ C)” is Σ1

1 , it is true in M. Thus μ(U(A)) = 0 in M.

168 C.T. Chong and L. Yu

Together with Theorem 1, we have the following corollary.

Corollary 2. Assume (2ω)L = 2ω. There is a maximal antichain A in the Tur-
ing degrees such that μ(A) = μ(U(A)) = 0.

We say that a set X ⊂ 2ω is a quasi-antichain in the Turing degrees if there is
an antichain X ⊂ D so that X = {x|x is of x ∧ x ∈ X}.

Yu [12] showed that there is a nonmeasurable quasi-antichain in the Turing
degrees and no quasi-antichain has positive measure. In response to Yu’s results,
Jockusch [12] asked the following question:

Question 1 (Jockusch). Is every maximal quasi-antichain in the Turing degrees
nonmeasurable?

We answer this question in the negative under the assumption that every real is
constructible:

Corollary 3. Assume (2ω)L = 2ω. There is a null maximal quasi-antichain in
the Turing degrees.

Proof. By Corollary 2, there is a maximal antichain A so that μ(U(A)) = 0.
Then B = {y|∃x(x ∈ A ∧ x ≡T y)} ⊆ U(A) is a null maximal quasi-antichain.

References

1. Barwise, J.: Admissible sets and structures. Springer, Heidelberg (1975)
2. Boolos, G., Putnam, H.: Degrees of unsolvability of constructible sets of integers.

J. Symbolic Logic 33, 497–513 (1968)
3. Chong, C.T., Yu, L.: Maximal chains in the turing degrees. J. Symbolic Logic (To

appear)
4. Cooper, S.B.: Minimal degrees and the jump operator. J. Symbolic Logic 38, 249–

271 (1973)
5. van Engelen, F., Miller, A.W., Steel, J.: Rigid Borel sets and better quasi-order

theory. In: Logic and combinatorics (Arcata, Calif, 1985), volume 65 of Contemp.
Math, pp. 199–222. Amer. Math. Soc, Providence, RI (1987)

6. Jensen, R.B.: The fine structure of the constructible hierarchy. Ann. Math. Logic,
4:229–308; erratum, ibid. 4 (1972), 443 (1972)

7. Mansfield, R.: Perfect subsets of definable sets of real numbers. Pacific J. Math. 35,
451–457 (1970)

8. Martin, D.A.: Borel determinacy. Ann. of Math (2) 102(2), 363–371 (1975)
9. Sacks, G.E.: Measure-theoretic uniformity in recursion theory and set theory.

Trans. Amer. Math. Soc. 142, 381–420 (1969)
10. Sacks, G.E.: Higher recursion theory. In: Perspectives in Mathematical Logic,

Springer, Heidelberg (1990)
11. Solovay, R.M.: On the cardinality of Σ1

2 sets of reals. In: Foundations of Mathemat-
ics (Symposium Commemorating Kurt Gödel, Columbus, Ohio, 1966), pp. 58–73.
Springer, New York (1969)

12. Yu, L.: Measure theory aspects of locally countable orderings. J. Symbolic
Logic 71(3), 958–968 (2006)

Effective Computation for Nonlinear Systems

Pieter Collins�

Centrum voor Wiskunde en Informatica,
Postbus 94079,

1090 GB Amsterdam,
The Netherlands

Pieter.Collins@cwi.nl

Abstract. Nonlinear dynamical and control systems are an important
source of applications for theories of computation over the the real num-
bers, since these systems are usually to complicated to study analytically,
but may be extremely sensitive to numerical error. Further, computer-
assisted proofs and verification problems require a rigorous treatment of
numerical errors. In this paper we will describe how to provide a seman-
tics for effective computations on sets and maps and show how these
operations have been implemented in the tool Ariadne for the analysis,
design and verification of nonlinear and hybrid systems.

Keywords: computable analysis, nonlinear systems, Ariadne.

1 Introduction

A simple but important problem in nonlinear systems theory is that of safety
verification. Given an autonomous system, xn+1 = f(xn) or ẋ = f(x), we wish
to determine whether the evolution of the system starting in an initial set X0

remains in some safe set S. To solve such a problem we need a method which
can rigorously compute the image of a set or integrate a differential equation
over a set of points. Further, we want our algorithm to be efficient enough to
be practically useful, and optimal, in the sense that if it is theoretically possible
to decide safety, then the algorithm returns the correct answer. For hybrid sys-
tems (see [1]), which combine continuous-time and discrete-time evolution, the
problem is even more challenging.

There has been much work recently on computable analysis [2,3], which pro-
vides a theory of computation on objects from geometry and analysis such as sets
and maps, and is essential equivalent to approaches based on Scott domains [4].
This theory can be applied to discuss the computability of the reachable set [5],
which plays a crucial role in safety verification.

There are many algorithms for rigorously integrating differential equations,
dating back to work of Moore [6] from the early days of interval analysis, and.

Many tools have been developed which are capable of computing or approx-
imating reachable sets. The package GAIO [7] may be used to compute the
� This work was partially supported by the Nederlandse Wetenschappelijk Organisatie

(NWO) through VIDI project number 639.032.408.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 169–178, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

170 P. Collins

image of a set, but does not provide a rigorous method for integrating differ-
ential equations. The Lohner method for rigorous integration is available in the
CAPD Library [8], and higher-order Taylor methods are implemented in VN-
ODE [9]. Other tools are available for reachability analysis of hybrid systems,
but only Checkmate [10] can handle nonlinear dynamics. However, there is still
a need for a general-purpose open-source tool which can solve a wide variety of
problems in nonlinear dynamic systems.

The goal of the computational framework Ariadne [11] is to provide a syntax,
semantics and implementation of fundamental operations from geometry and
analysis, guided by formal computability theory. In this paper, we describe how
the numerical kernel of Ariadne, written in C++, implements computation
with sets and maps, in a way which can be efficiently implemented and is powerful
enough to solve the safety verification problem.

2 Reachability and Safety Computation

Consider a discrete-time system with state-space X described by the continuous
map f : X → X , a set of initial states X0 and a set of safe states S. The safety
verification problem is decide whether every orbit of f starting in X0 remains in
S. We can express the safety verification problem in terms of the reachable set as:

reach(f, X0) ⊂ S, where reach(f, X0) :=
⋃∞

n=0 fn(X0).

To even consider how to solve this problem, we first need to have a descrip-
tion of the sets S and X0 and the map f . Since the set of continuous functions
on R

n has continuum cardinality, we cannot represent all functions exactly. In-
stead, following Weihrauch [2], we describe elements of an infinite set Y by
a representation δ :⊂ Σω → Y , which encodes y ∈ Y by a sequences over
some alphabet Σ. To be useful, we must be able to obtain approximations to
y from a initial part of some p ∈ δ−1(y). Given representations δ0, . . . , δk of
sets Y0, . . . , Yk, we say a function f : Y1 × · · · × Yk → Y0 is computable if
there is a Turing-computable function M :⊂ Σω × · · · × Σω → Σω such that
δ0(M(p1, . . . , pk)) = f(δ1(p1), . . . , δk(pk)).

If (Y, τ) is a topological space with countable sub-base σ labelled by a partial
surjective function ν :⊂ Σ∗ → σ, then the standard representation δ of (Y, τ, σ, ν)
is defined by

δ(〈w1, w2, . . .〉) = y ⇐⇒ {ν(wi) | i ∈ N} = {J ∈ σ | y ∈ J}.

Informally, we say that δ encodes a list of all J ∈ σ such that y ∈ J .
In this paper, we fix a state space X (such as R

n) with countable base β. As
well as the set of points of X , the open sets O, closed sets A, compact sets K,
and continuous self-maps C of X all have natural topologies giving rise to the
following standard representations:

– The representation ρ of X encodes {J ∈ β | x ∈ J}.
– The lower representation θ< of O encodes {I ∈ β | I ⊂ U}.

Effective Computation for Nonlinear Systems 171

– The lower representation ψ< of A encodes {J ∈ β | J ∩ A
= ∅}.
– The upper representation ψ> of A encodes {I ∈ β | I ∩ A = ∅}.
– The upper representation κ> of K encodes {(J1, . . . , Jk)∈β∗ |C ⊂

⋃k
i=1Ji}.

– The compact-open representation δ of C encodes {(I, J) ∈ β × β | I ⊂
f−1(J)}.

In [5], we show that the optimal κ>-semicomputable over-approximation to
reach(f, X0) is the chain-reachable set

chainreach(f, X0) :=
⋂{

C ∈ K | X0 ∪ f(C) ⊂ C◦},

which may be much larger than the reachable set. This means that it is impossible
to prove safety (using only the approximate information about f , X0 and S given
by the standard representations) if chainreach(f, X0)
⊂ S, even if reach(f, X0) ⊂
S. Similarly, it is only possible to disprove safety if reach(f, X0)
⊂ S. Hence the
best possible solution to the safety verification problem (in an approximative
setting) is an algorithm which computes:

verify(f, X0, S) :=

⎧
⎪⎨

⎪⎩

 if chainreach(f, X0) ⊂ S;
⊥ if reach(f, X0)
⊂ S;
↑ otherwise.

3 Representations as Interfaces

The elements of a countable (i.e. discrete) set such as the integers or rational
numbers may be described exactly by finite data, and correspond to concrete
types. It is straightforward to implement types Integer and Rational which
implement integer and rational numbers, such that arithmetic and comparison
operators are computable.

The elements of an uncountable set such as the real numbers cannot be de-
scribed by a finite amount of data. However, we shall see that they can be ade-
quately described by abstract interfaces with properties reflecting the standard
representation.

Throughout the paper, we use typeface x to denote data types and x to denote
the corresponding mathematical object.

3.1 The Standard Representation of Points

Recall that we can describe an element of a Hausdorff space with countable
base β using the standard representation, which encodes a point x by listing its
basic open neighbourhoods. We could describe the standard representation by
a method neighbourhood taking an integer argument and returning an element
of β implemented by a BasicSet class:

virtual BasicSet Point::neighbourhood(Integer i);

172 P. Collins

In practice, it is more useful to be able to determine whether x lies in some
element I of β. Unfortunately, the standard representation ρ merely yields a
semi-decision algorithm for the predicate x ∈ I. If x
∈ I, we can indeed deduce
that x
∈ I , since there exists J ∈ β such that x ∈ J and I ∩J = ∅. But if x ∈ ∂I,
then no such J exists, so we are unable to show x
∈ I. Hence, any implementation
of a method bool Point::in(BasicSet) using only approximate information
about x will fail to terminate on x.in(I) if x ∈ ∂I.

In order to obtain a function which always terminates, we give a precision
argument p, and return an “indeterminate” value if we cannot decide x ∈ I or
x
∈ I to precision p. We therefore have a method
virtual tribool Point::in(BasicSet I, Integer p);

where tribool is the enumerated type {true,false,indeterminate}.
We now give conditions under which the in method specifies a point in X

uniquely. For consistency, we clearly require,

(C) If x.in(I,p)==true and x.in(J,r)==false, then I
⊂ J .

Define η = {J ∈ β | ∃p ∈ N s.t. x.in(J,p)==true}. Then η must satisfy the
following intersection, refinement and approximation properties:

(I) I1, I2 ∈ η =⇒ I1 ∩ I2
= ∅.
(R) I ∈ η and I ⊂ J1 ∪ · · · ∪ Jk =⇒ ∃ i ∈ {1, . . . , k} such that Ji ∈ η.
(A) J ∈ η =⇒ ∃I ∈ η such that I ⊂ J .

Further, if η is any set satisfying these properties, then there exists x such that
η = {J ∈ β | x ∈ J}.

To simplify code using the in method, we can assume that the method is
implemented such that the following precision and monotonicity properties are
satisfied:

(P) If r>p and x.in(I,p)!=indeterminate, then x.in(I,r)==x.in(I,p).
(M) If I ⊂J , then x.in(I,p)=⇒ x.in(J,p), and !x.in(J,p)=⇒ !x.in(I,p).

3.2 Representations of Sets

A closed set is uniquely specified by the basic open sets it intersects, or by the
basic closed sets it is disjoint from. These specifications give rise to the lower
and upper representations ψ< and ψ>, respectively. Since it cannot be true that
both A ∩ I
= ∅ and A ∩ I = ∅, we can specify an interface for closed sets by the
single method
virtual tribool ClosedSet::disjoint(BasicSet I, Integer p);

where p is the precision argument. Using the method disjoint, we can compute

α< = {I ∈ β | ∃ p ∈ N s.t. A.disjoint(I,p)==false},

α> = {I ∈ β | ∃ p ∈ N s.t. A.disjoint(I,p)==true}.

To ensure that disjoint gives consistent results, we require the following con-
dition on α< and α>.

Effective Computation for Nonlinear Systems 173

(DC) If I ∈ α< and Ji ∈ α> for i = 1, . . . , k, then I
⊂
⋃k

i=1 J i.

Given α< and α>, we can recover sets A< and A> by:

A< = {x | ∃(Ji)i∈N with Ji ∈ α< s.t. Ji+1 ⊂ Ji and
⋂

i∈N
Ji = {x}}.

A> = X \ U>, where U> = {x | ∃I ∈ α> s.t. x ∈ I}.

For α<, we impose the following monotonicity, refinement and approximation
properties:

(DM<) If I ⊂ J and I ∈ α<, then J ∈ α<.
(DR<) If I ⊂

⋃k
i=1 Ji and I ∈ α<, then there exists i such that Ji ∈ α<.

(DA<) If J ∈ α<, then there exists I ⊂ J such that I ∈ α<.

The condition DM< ensures that the set A< is closed, and the stronger condition
DR< ensures that every basic set I ∈ α< contains a point in A<.

In order that A> is a closed set, we require:

(DA>) If I ∈ α>, then there exists J ⊃ I such that J ∈ α>.

To simplify algorithms using the disjoint method, we usually require either:

(DM>) If I ⊂ J and J ∈ α>, then I ∈ α>.
(DR>) If I ⊂

⋃k
i=1 J i and Ji ∈ α> for all i, then I ∈ α>.

In order that α< and α> yield equal closed sets, we require:

(DE) For all J ∈ β, there exists I ⊂ J such that I ∈ α< ∪ α>.

The following result gives conditions under which the disjoint method contains
equivalent information to the standard representations of closed sets.

Theorem 1

1. If (DR<,DA<), then A< is closed and α< = {J ∈ β | A< ∩ J
= ∅}.
2. If (DA>) then A> is closed; if also (DR>) then α> = {I ∈ β | A>∩I = ∅}.
3. If (DC,DR<,DA<,DA>,DE), then A< = A>.

The proof is omitted.
Since an open set is the complement of a closed set, we immediately obtain

an interface for open sets:

virtual tribool OpenSet::superset(BasicSet,Integer);

The superset method defines a set U< =
⋃

{I | ∃ p s.t. U.superset(I)}. Given
properties analogous to those for the disjoint method, we can prove that the
superset interface is equivalent to the standard representation of open sets O.

Since a compact set is just a bounded closed set, we can specify a compact
set using the disjoint method, together with the method

virtual BasicSet CompactSet::BoundingBox();

which yields a basic set I ⊃ C.

174 P. Collins

3.3 Representations of Continuous Functions

Continuous functions can be described by the interface

virtual BasicSet Map::apply(BasicSet);

An object f of class Map represents a continuous function f if the following
consistency and refinement conditions hold:

(FC) f(I) ⊂ f.apply(I),
(FR) if J � f(x), then there exists I such that x ∈ I and f.apply(I) ⊂ J .

It is also useful in practise to impose the monotonicity property:

(FM) if I ⊂ J , then f.apply(I) ⊂ f.apply(J), and

A differentiable function can be specified by giving the Jacobian derivative ex-
plicitly as a matrix of interval values

virtual Matrix<Interval> C1Map::jacobian(BasicSet);

4 Implementation in Ariadne

4.1 Numerical Types

Ariadne supports various types which can be used to represent real numbers,
namely Float64, MPFloat, Rational and ComputableReal. These types are clas-
sified in terms of the way they handle arithmetic and approximation.

The ComputableReal type supports arbitrary arithmetical, algebraic and
transcendental functions, which return exact results. The Rational type only
supports arithmetic, but this is also exact. The floating-point types Float64
and MPFloat do not support exact arithmetic, since in general, arithmetical
operations cannot be computed exactly for these types. Instead, floating-point
types support interval arithmetic and functions, which return an object of type
Interval<Float> which must contain all possible results which could be
obtained.

The precision of a floating point type is the number of bits/bytes used to
store the number. The type Float64 is a fixed-precision type with 64 bits, and
the type MPFloat is a multiple-precision type. The precision of an object of type
MPFloat is set when the object is constructed, and is only changed on explicit
set precision function call. The precision may be given explicitly, but it is
usually more convenient to allow the precision to be determined implicitly by
the precision of the arguments (and of the result, if the object is a temporary
intermediate in a computation), and by a default precision. To avoid accidental
truncation, it is an error to assign a number to an MPFloat object of lower
precision, though assignment to Interval<MPFloat> objects is allowed.

The memory for an MPFloat is allocated on the heap, which may be slow, but
once the object is created, no memory management is required, so computation
is reasonably fast.

Effective Computation for Nonlinear Systems 175

The fixed-precision types are useful for problems where speed of execution is
paramount. The multiple-precision type can be used if the fixed-precision types
do not give sufficient accuracy, which may be the case if the problem depends
sensitively on initial data or is not robust to perturbations. Rational numbers
are useful when exact arithmetical results are required or efficiency is not an
issue, and computable real numbers are useful for problem specification.

Currently, the type Float64 is implemented using the IEEE double floating-
point numbers, the MPFloat type using mpfr t from the MPFR library [12], the
Rational using mpq t from the GMP library [13], and the ComputableReal type
using the iRRAM package [14].

4.2 Linear Algebra

Linear algebra is important when working with derivatives of maps, and with
polyhedral sets. In Ariadne, we provide Vector, Matrix and Tensor classes,
which can be used with rational numbers, floating-point numbers and intervals,
and also robust linear programming solvers for testing geometric predicates.

4.3 Geometric Calculus

The geometric calculus used by Ariadne is based around elementary basic set
types. A denotable set is a finite union of basic sets (of a given type), and can
be stored using a finite amount of data. Arbitrary sets are either described by
the interfaces given in Section 3.2, or by approximations in terms of denotable
sets. Operations on sets can be built on the fundamental geometric predicates
of disjointness and subset, and the operations of union, intersection, subdivision
and approximation.

To simplify the interface, we do not use an explicit precision argument in
Ariadne. Instead, the precision of an operation acting on sets represented us-
ing floating-point types is determined by the precision used for the arguments
and the default precision. Basic sets with interval coefficients are returned by op-
erations which require arithmetic on sets represented using floating-point types.
Operations using sets based on rational numbers are computed exactly.

The simplest type of basic set for Euclidean space are the rational or dyadic
hypercubes of the form [a1, b1]× [a2, b2]×· · ·× [an, bn]. In Ariadne, hypercubes
are represented by the template Cuboid<R>, where R is the numerical type used
to represent the ai and bi. This may be a Float type, an Interval<Float> or
a Rational. The core interface is given below:

class Cuboid<R> {
Integer dimension();
R lower bound(Integer);
R upper bound(Integer);

Integer precision();
};

176 P. Collins

Besides cuboids, Ariadne provides basic set classes

Zonotope: {x ∈ R
n | x = c + Ge where c ∈ R

n, G ∈ R
n×k and e ∈ [−1, 1]k}.

Polytope: {x ∈ R
n | x = V s where V ∈ R

n×k, s ∈ R
k
+ and

∑k
i=1 si = 1}.

Polyhedron: {x ∈ R
n | Ax ≤ b where A ∈ R

k×n and b ∈ R
k}.

The Zonotope class is useful to support higher-order integration of vector fields
and iteration of maps. The Polytope and Polyhedron classes are general classes
which are useful for computing geometric predicates; additionally, Polyhedron
class may be useful for specifying input sets. Any polyhedral set can be converted
to a Polytope or Polyhedron, although in most cases the conversion cannot be
done exactly using floating-point arithmetic. Parallelotope, Simplex, Sphere
and Ellipsoid classes are also provided. The basic set classes support the binary
predicates given below.

tribool contains(Cuboid<R1>, Point<R2>);
tribool disjoint(Cuboid<R1>, Cuboid<R2>);
tribool subset(Cuboid<R1>, Cuboid<R2>);

These predicates return indeterminate if the result is not robust with re-
spect to changes in the parameters. Basic set types also support the Cuboid
bounding box(), subdivide and over approximation functions. Other binary
operations are provided where natural, such as minkowski sum, convex hull,
open intersection and closed intersection.

A denotable set is a set which is described exactly as a finite union of basic
sets, and typically represents an approximation to some other set. Denotable sets
support the fundamental geometric operations, iteration through their elements
and the union function.

Ariadne currently supports classes ListSet<BasicSet>, GridCellListSet,
GridMaskSet and PartitionTreeSet. A ListSet is an arbitrary finite union of
basic sets. The other types are partition sets, since they are based on a topological
partition of the state space. The GridMaskSet class is easy to work with and is an
efficient way of storing unstructured sets. The GridCellListSet class is useful to
represent approximations to basic sets. The PartitionTreeSet class is a highly
efficient way of storing structured sets with dynamically-varying resolution.

We say a denotable set is an under-approximation to a set S if
⋃k

i=1Ii ⊂ S, and
an over-approximation if

⋃k
i=1Ii ⊃ S. A list set

⋃k
i=1 Ji is a lower-approximation

to S if Ji ∩S
= ∅ for all i. Approximations on partition sets can be specified
by giving a Grid or other Partition, or by directly adjoining elements of an
existing partition set:

void PartitionSet::adjoin over approximation(Set);

General sets can be specified by how they interact with Cuboid basic sets, as
given by the methods disjoint, superset, subset and bounding box. Using
superset we can compute under approximations, using disjoint we can com-
pute lower-approximations, and using disjoint and subset or bounding box,
we can compute over-approximations.

Effective Computation for Nonlinear Systems 177

4.4 Computing the Image of Sets

One of the most important tasks in Ariadne is to compute the image of a set
under a continuous function. Using just the apply method of the Map interface
described in Section 3.3, we can compute images and preimages of general sets:

CompactSet image(Map, CompactSet);
ClosedSet lower image(Map, ClosedSet);
OpenSet lower preimage(Map, OpenSet);

The image of a closed, but not compact set, and the preimage of an open set are
only lower-semicomputable, in the sense that we can only effectively compute
convergent lower-approximations to result. The image of a compact set can be
computed to arbitrary accuracy.

Although the apply method is in principle sufficient to compute set images
and preimages, convergence to a good approximation tends to be slow due to
the “wrapping effect” of interval arithmetic. It is therefore preferable to use
higher-order algorithms if derivatives of the function are available. Since the
class of zonotopes is closed under affine maps, we can use zonotopes to compute
first-order approximations to the image of a set.

Zonotope<Interval<R>> apply(C1Map<R>, Zonotope<R>);

The return type is an interval set to avoid expensive approximation operations.
The image of a rational zonotope under an affine map can be computed exactly.
If higher-order derivatives are available, even more accurate Taylor methods can
be used.

4.5 The Verification Algorithm

We can now sketch an algorithm to solve the safety problem.
To attempt to verify chainreach(f, X0) ⊂ S for some bounded open set S, we

compute an over-approximation X̂0 to X0 and an under-approximation S̃ of S
on a grid G using the over approximate and under approximate functions. We
then discretise f by computing an over-approximation f̂(I) to f(I) for every grid
cell I using the apply(Map,Zonotope) and over approximate(Zonotope,Grid)

functions. Finally, we can compute the reachable set X̂0 under f̂ combinatorially.
It is straightforward to show that if reach(f̂ , X̂0) ⊂ S̃ then chainreach(f, X0) ⊂
S, and that the converse holds if the grid G is sufficiently fine.

To attempt to verify reach(f, X0)
⊂ S, we find a basic set I and a natural
number n such that X0∩I
= ∅ and fn(I)∩S = ∅. We can use the apply function
to compute an over-approximation În to fn(I), and the disjoint method to
show X0 ∩ I
= ∅ and S ∩ În = ∅.

In practice, over-approximations to fn(X0) are adaptively computed on-the-
fly, and counterexamples from the discretised safety verification algorithm are
used to guide safety falsification.

178 P. Collins

5 Concluding Remarks

In this paper, we have outlined a scheme for rigorous computation on sets and
maps based on the theory of computable analysis and standard representation
of topological space. This scheme is being used as the interface for the imple-
mentation in C++ of the numerical kernel of the tool Ariadne for reachability
analysis and verification of nonlinear and hybrid dynamical and control systems.
The operations required by the interface have a natural syntax and have efficient
implementations, some which are based on well-studied general algorithms such
as the simplex algorithm or integration algorithms.

Ongoing work includes improving the efficiency of the existing algorithms in
Ariadne, providing more advanced capabilities for applying maps and integra-
tion vector fields based on higher-order Taylor methods, providing interfaces to
external packages, and extending the interface to cover more advanced problems.

References

1. van der Schaft, A., Schumacher, H.: An introduction to hybrid dynamical systems.
Lecture notes in control and information sciences, vol. 251. Springer, London (2000)

2. Weihrauch, K.: Computable analysis - An introduction. In: Texts in Theoretical
Computer Science, Springer, Heidelberg (2000)

3. Brattka, V., Presser, G.: Computability on subsets of metric spaces. Theoretical
Comp. Sci. 305, 43–76 (2003)

4. Stoltenberg-Hansen, V., Lindström, I., Griffor, E.R.: Mathematical Theory of Do-
mains. Cambridge University Press, Cambridge (1994)

5. Collins, P.: Continuity and computability of reachable sets. Theor. Comput.
Sci. 341, 162–195 (2005)

6. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J (1966)
7. Dellnitz, M., Froyland, G., Junge, O.: The algorithms behind GAIO-set oriented

numerical methods for dynamical systems. In: Ergodic theory, analysis, and effi-
cient simulation of dynamical systems, pp. 145–174. Springer, Heidelberg (2001)

8. Mrozek, M., et al.: CAPD Library (2007), http://capd.wsb-nlu.edu.pl/
9. Nedialkov, N.S.: VNODE-LP: A validated solver for initial value problems in

ordinary differential equations. Technical report, McMaster University (2006) CAS-
06-06-NN.

10. Izaias Silva, B., Keith Richeson, B.K., Chutinan, A.: Modeling and verification of
hybrid dynamical system using CheckMate. In: Proceedings of the International
Conference on Automation of Mixed Processes. pp. 189–194 (2000)

11. Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-
Vincentelli, A.L.: Ariadne: a framework for reachability analysis of hybrid au-
tomata. In: Proceedings of the International Syposium on Mathematical Theory
of Networks and Systems (2006)

12. Hanrot, G., et al.: The MPFR library (2000), http://www.mpfr.org/
13. Granlund, T., et al.: The GMP library (2005), http://swox.com/gmp/
14. Müller, N., et al.: iRRAM (2006), http://www.informatik.uni-trier.de/iRRAM/

http://capd.wsb-nlu.edu.pl/
http://www.mpfr.org/
http://swox.com/gmp/
http://www.informatik.uni-trier.de/iRRAM/

On Rules and Parameter Free Systems in

Bounded Arithmetic

Andres Cordòn-Franco, Alejandro Fernández-Margarit,
and Francisco Felix Lara-Mart́ın�

Facultad de Matemáticas. Universidad de Sevilla
C/ Tarfia, s/n, 41012 Sevilla, Spain

{acordon,afmargarit,fflara}@us.es

Abstract. We present model–theoretic techniques to obtain conserva-
tion results for first order bounded arithmetic theories, based on a hier-
archical version of the well known notion of an existentially closed model.

Keywords: Bounded Arithmetic, conservation results, parameter free
schemes.

1 Introduction

Bounded arithmetic theories are formal systems tailored to capture computa-
tional complexity classes. The foundational work in this area is [3], where S.
Buss introduced the families of theories Si

2 and T i
2 (i ≥ 0) and showed that they

can be considered as formal counterparts of the Polynomial Time Hierarchy PH .
Since then a variety of related systems have been introduced in order to deal
with other complexity classes. Among the fundamental results on these systems
two groups can be isolated: (a) characterizations of their computational strength,
mainly, by determining their Σb

i –definable functions ; and (b) relationship among
different axiomatizations, especially, conservation results.

Here we present model–theoretic methods to obtain both kinds of results for
restricted versions of Buss’s theories Si

2, T i
2 as well as for the Σb

i –replacement
scheme BBΣb

i . Systems Si
2 and T i

2 are axiomatized over a certain base theory by
axiom schemes expressing (respectively) the polynomial and the usual induction
principles restricted to Σb

i –formulas. We shall weaken these theories in two ways:
(1) by formalizing the corresponding induction or replacement principle as an
inference rule instead of an axiom scheme, or (2) by restricting the induction
schemes to parameter free formulas. In the first case we drop the axiom scheme
and consider the closure of the base theory under first order logic and nested
applications of the corresponding inference rule. In the second case we still deal
with an axiom scheme but now it is restricted to formulas with no other free
variables than the induction variable. While the effects of these restrictions have
been extensively investigated for fragments of Peano Arithmetic, it is not the
� Partially supported by grants MTM2005-08658 of MEC and TIC-137 of Junta de

Andalućıa, Spain. Part of this work was done while the first author was visiting the
Mathematical Institute of the Academy of Sciences of the Czech Republic in 2004.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 179–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

180 A. Cordón-Franco, A. Fernández-Margarit, and F.F. Lara-Mart́ın

case of Bounded Arithmetic. To our best knowledge, parameter free systems
have only been systematically studied by S. Bloch in the second part of his
thesis [2]. On the other hand, systems described by inference rules in the sense
above seldom appear in an explicit manner in the literature. A recent exception
is J. Johannsen and C. Pollett’s work [7], where the authors study the Δb

1–bit–
comprehension rule in connection with the complexity class TC0 of functions
computable by uniform threshold circuit families of polynomial size and constant
depth. Moreover, both in [2] and in [7] the analysis of those systems has been
carried out by means of proof–theoretic methods.

In this paper we shall develop a model–theoretic approach to the investigation
of these restricted systems. To this end, the key ingredient is the notion of
an ∃Π̂b

i –maximal model, a hierarchical version of the well known notion of an
existentially closed model. These models allow us to clarify the relationships
between the considered theories and their restricted versions in a particularly
simple way. Namely, if T denotes Si

2, T i
2 or BBΣb

i and T R (resp. T−) denotes
its inference rule (resp. parameter free) version, then (see Thm. 1 and Prop. 3)

– every ∃Π̂b
i –maximal model of T R is a model of T , and

– every theory extending T− is closed under the corresponding inference rule
and, so, every ∃Π̂b

i –maximal model of T−is a model of T .

From these facts we shall derive our main results (see Theorems 3 and 4): (1)
Si

2, T i
2 and BBΣb

i are ∀Σb
i –conservative over their inference rule versions; and

(2) Si
2, T i

2 are ∃∀Σb
i –conservative over their parameter free versions. As far as we

know, these results are new, and the ∃∀Σb
i –conservation results for parameter

free systems improve previous ∀Σb
i –conservation obtained in [2].

Finally, in Sect. 4 we apply the results obtained for Σb
1–replacement to the

analysis of the Δb
1–bit–comprehension rule Δb

1–BCR. This rule was introduced in
[7] to capture the complexity class TC0 and is the final refinement of a series of
theories introduced in [5,6,7] in the quest for natural theories for TC0. In [7] it is
proved that TC0 coincides with the Σb

1-definable functions of the system Δb
1–CR

given by the closure under Δb
1–BCR of a certain base theory; and that the Σb

0–
replacement scheme BBΣb

0 is ∀Σb
1–conservative over Δb

1–CR. Here, we prove
that TC0 also coincides with the Σ̂b

1–definable functions of the (apparently)
weaker system Δ̂b

1–CR and reformulate this system in terms of Σb
i –replacement

rule, obtaining as a corollary a new proof of the conservation result in [7]. Our
analysis is of independent interest in view of the open problems on Δb

1–BCR
posed in [7]; however, it also supports Johannsen–Pollett’s claim on Δb

1–CR
as a minimal natural theory for TC0 and makes more transparent the close
relationship between Δb

1–bit–comprehension and Σb
1–replacement.

2 Fragments of Bounded Arithmetic

In what follows we state some definitions and results on Bounded Arithmetic
that will be used through this paper (see [3,8] for more information). The first
order language of Bounded Arithmetic L2 comprises the usual language of Peano

On Rules and Parameter Free Systems in Bounded Arithmetic 181

Arithmetic {0, S, +, ·, ≤} together with five new function symbols: �x
2 �, |x|, #,

MSP and −•; where �x
2 � is x divided by 2 rounded down, |x| is the length of x in

binary notation, x#y is 2|x|·|y|, MSP (x, i) is � x
2i �, and x −• y is the subtraction

function. As usual, we also write x + 1 and 2|x| for Sx and 1#x, respectively.
Bounded formulas of L2 are classified in a hierarchy of sets Σb

i and Πb
i by

counting the alternations of bounded quantifiers (∃x ≤ t, ∀x ≤ t), ignoring
sharply bounded quantifiers (∃x ≤ |t|, ∀x ≤ |t|).

The induction axiom for ϕ(x), Iϕ, is the formula

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(Sx)) → ∀xϕ(x)

The length induction axiom for ϕ(x), LINDϕ, and the double length induc-
tion axiom for ϕ(x), LLINDϕ, are obtained replacing the consequent of Iϕ by
∀xϕ(|x|) and ∀xϕ(||x||), respectively. The polynomial induction axiom for ϕ(x),
PINDϕ, is the formula

ϕ(0) ∧ ∀x (ϕ(�x

2
�) → ϕ(x)) → ∀xϕ(x)

In all cases, ϕ(x) may contain other free variables, which are called parameters.
On a par with these induction axioms, we consider induction inference rules.
The induction rule for ϕ(x), IR, is

ϕ(0) , ∀x (ϕ(x) → ϕ(Sx))
∀xϕ(x)

Similarly, PINDR, LINDR and LLINDR are defined.
BASIC denotes a finite set of open (quantifier–free) axioms specifying the

interpretations of the nonlogical symbols of L2. Following [7,10], our base theory
will be LIOpen = BASIC + {LINDϕ : ϕ is open}. As shown there, LIOpen
allows for simple definitions of tuple–encoding and sequence–encoding functions.
First, observe that there are L2–terms Bit(x, i) and LSP (x, i) returning the
value of the bit in the 2i position of the binary representation of x, and the
number consisting of the low i bits of x, respectively. The code of a sequence
{b0, b1, . . . , b|s|} with all its elements less than or equal to some a is the number
w < 4(a#2s) whose binary representation consists of a 1 followed by the binary
representations of the elements bi concatenated, each padded with zeroes to
length |a| (we shall write bd(a, s) for the bounding term 4(a#2s)). Thus, the L2–
term βa(w, i) := MSP (LSP (w, Si · |a|), i · |a|) returns the i–th element of such a
sequence. As for tuple–encoding, pairs are coded as 〈x, y〉 := (B+y)·2B+(B+x),
where B = 2|max(x,y)|. Then there is an open formula ispair(u) defining the range
of the function 〈x, y〉; and there are terms (u)0, (u)1 returning the left and right
coordinates from a coded pair (see [10] for details). Interestingly, the encoding
and decoding functions are all L2–terms so can be used in an L2–formula without
altering its quantifier complexity.

The theories we shall deal with are defined as follows. Let Γ be a set of
formulas and let E denote one of the schemes: I, PIND, LIND, LLIND. First,

182 A. Cordón-Franco, A. Fernández-Margarit, and F.F. Lara-Mart́ın

the theory EΓ is LIOpen + {Eϕ : ϕ ∈ Γ}. Second, the fragment T + Γ–ER
is the closure of T under first order logic and nested applications of the E–rule
restricted to formulas in Γ , where T is an arbitrary L2–theory extending LIOpen.
Finally, EΓ− is LIOpen + {Eϕ : ϕ(x) ∈ Γ−}, where ϕ(x) ∈ Γ− means that x
is the only free variable occurring in ϕ.

With this terminology, the three classic families of Bounded Arithmetic the-
ories T i

2, Si
2 and Ri

2 correspond to IΣb
i , PINDΣb

i and LLINDΣb
i , respectively.

Let us remark, however, that L2 differs from the language of Buss’s original
theories Si

2 and T i
2, which does not include the MSP and −• symbols. In addi-

tion, Buss’s theories are axiomatized over BASIC instead of over LIOpen. But
these facts are inessential for sufficiently strong theories since both additional
functions are Σb

1–definable in Buss’s S1
2 , and this last theory implies LIOpen.

Bounded formulas of L2 are also classified in a hierarchy of sets strict Σb
i (=

Σ̂b
i) and strict Πb

i (= Π̂b
i), where no sharply bounded quantifier is allowed to

precede a quantifier that is not sharply bounded. Each Σb
i (resp. Πb

i) formula
is equivalent to a Σ̂b

i (resp. Π̂b
i) formula and the Π̂b

i−1–replacement scheme
BBΠ̂b

i−1 is a natural theory which proves that equivalence. The replacement or
bounded collection axiom for a formula ϕ(x, y) and a term t(x), BBϕ, is

∀x ≤ |s| ∃y ≤ t(x)ϕ(x, y) →
∃w < bd(t∗(|s|), s)∀x ≤ |s| (βt∗(|s|)(w, x) ≤ t(x) ∧ ϕ(x, βt∗(|s|))),

where t∗ denotes an L2–term canonically associated to t so that, provably in
LIOpen, t∗ is monotonic and t ≤ t∗ (see [7,10] for details).

BBΓ is LIOpen + {BBϕ : ϕ ∈ Γ}. Similarly, the inference rule versions
T + Γ–BBR are defined. In [10] it is shown that every Σb

i formula is provably
equivalent in BBΠ̂b

i−1 to a Σ̂b
i –formula, and that PINDΣ̂b

i implies BBΠ̂b
i−1

(i ≥ 1). As a consequence, the author obtains the equivalences T i
2 ≡ IΣ̂b

i and
Si

2 ≡ PINDΣ̂b
i ≡ LINDΣ̂b

i . Finally, reasoning as in the proof of result 3.2 in [5],
it is easy to show that BBΣ̂b

i+1 ≡ BBΠ̂b
i , and T + Σ̂b

i+1–BBR ≡ T + Π̂b
i –BBR.

3 On ∃Π̂b
i –Maximal Models and Conservation Results

In this section we present our methods for proving conservation results. To illus-
trate these methods, we prove that Si

2, T i
2 and BBΣb

i are ∀Σb
i –conservative over

their inference rule versions; and we use these results to show that Si
2 and T i

2 are
∃∀Σb

i –conservative over their parameter free versions. The main idea involves
a basic model–theoretic argument: we show that each (countable) model of the
weak theory has a Σ̂b

i –elementary extension to a model of the strong theory (B
is a Γ–elementary extension of A, A ≺Γ B, if A ⊆ B and, for all ϕ(�x) ∈ Γ
and �a ∈ A, it holds that A |= ϕ(�a) ⇐⇒ B |= ϕ(�a)). The key ingredient for this
construction is the notion of an ∃Π̂b

i –maximal model for a theory T .

Definition 1. Let A be a model of T . We say that A is ∃Π̂b
i –maximal for T if,

for each B |= T , it holds that A ≺Σ̂b
i

B =⇒ A ≺∃Π̂b
i

B.

On Rules and Parameter Free Systems in Bounded Arithmetic 183

This notion is a suitably modified version of the general concept of an existen-
tially closed model. The use of similar notions to prove conservation results for
arithmetic systems was presented in a general setting in J. Avigad’s [1] (our
work is inspired by the methods in that paper). First of all, observe that ∃Π̂b

i –
maximal models do exist. The proof is an easy modification of the standard
iterative argument to construct existentially closed models.

Proposition 1. Suppose T is ∀∃Π̂b
i –axiomatizable and A is a countable model

of T . Then there is B |= T such that A ≺Σ̂b
i

B and B is ∃Π̂b
i –maximal for T .

Next, we prove the main property of these models of interest to us: each ∃Π̂b
i –

maximal model for T + Σ̂b
i –ER also satisfies the corresponding scheme EΣ̂b

i . We
first need the following result (the proof is a standard compactness argument).

Proposition 2. Let A be ∃Π̂b
i –maximal for T , �a ∈ A and ϕ(�x,�v) ∈ Σ̂b

i and let
Π̂b

i –Diag(A) denote the set of all the Π̂b
i -formulas (with parameters in A) valid

in A. The following conditions are equivalent.

1. A |= ∀�x ϕ(�x,�a).
2. There is θ(�a,�b) in Π̂b

i –Diag(A) satisfying T + θ(�a,�b) � ∀�x ϕ(�x,�a).

Theorem 1. Let E denote one of the following schemes: BB, I, PIND, LIND,
LLIND. If A is ∃Π̂b

i –maximal for T + Σ̂b
i –ER, then A |= EΣ̂b

i .

Proof. (Collection scheme): Assume A is ∃Π̂b
i –maximal for T + Σ̂b

i –BBR and
A |= ∀x ≤ |s| ∃y ≤ t ϕ(x, y, a), where ϕ(x, y, v) ∈ Σ̂b

i , a ∈ A and s, t are L2–
terms (for notational simplicity we omit the possible parameters in t, s). By
Proposition 2 there are b ∈ A and θ(v, u) in Π̂b

i such that A |= θ(a, b), and
(T +Σ̂b

i –BBR)+θ(a, b) � ∀x ≤ |s| ∃y ≤ t ϕ(x, y, a). So, T +Σ̂b
i –BBR � θ(v, u) →

∀x ≤ |s| ∃y ≤ t ϕ(x, y, v). Define δ(x, y, v, u) to be ¬θ(v, u) ∨ ϕ(x, y, v). Clearly,
δ is Σ̂b

i and T + Σ̂b
i –BBR proves the antecedent of the bounded collection axiom

for δ(x, y). Applying Σ̂b
i –BBR in A and taking v = a and u = b, we get

A |= ∃w < bd(t∗(|s|), s)∀x ≤ |s| (βt∗(|s|)(w, x) ≤ t ∧ δ(x, βt∗(|s|)(w, x), a, b))

Since A |= θ(a, b), A |= δ(x, y, a, b) → ϕ(x, y, a) and hence the consequent of the
bounded collection axiom for δ(x, y, a) is true in A.
(Induction schemes): We only write the proof for the usual induction scheme I,
the remaining cases being analogous. Assume A is ∃Π̂b

i –maximal for T + Σ̂b
i –IR.

To prove that A |= IΣ̂b
i , assume A |= ϕ(0, a) ∧ ∀x (ϕ(x, a) → ϕ(x + 1, a)),

where ϕ(x, v) ∈ Σ̂b
i and a ∈ A. We must show A |= ∀xϕ(x, a). Put ϕ(x, v) as

∃y ≤ t(x, v)ϕ0(x, y, v), where ϕ0(x, y, v) ∈ Π̂b
i−1 and t(x, v) is a term. By prenex

operations, the antecedent of the induction axiom for ϕ can be reexpressed as

∀x∀y [ϕ(0, a) ∧ (¬(y ≤ t(x, a)) ∨ ¬ϕ0(x, y, a) ∨ ϕ(x + 1, a))]

Let us denote by ψ(x, y, a) the Σ̂b
i –formula in brackets [] above. Since A is ∃Π̂b

i –
maximal for T + Σ̂b

i –IR and A |= ∀x, y ψ(x, y, a), by Proposition 2 it follows that

184 A. Cordón-Franco, A. Fernández-Margarit, and F.F. Lara-Mart́ın

there are b ∈ A and θ(v, u) ∈ Π̂b
i satisfying A |= θ(a, b), and (T + Σ̂b

i –IR) +
θ(a, b) � ∀x, y ψ(x, y, a). Hence,

T + Σ̂b
i –IR � θ(v, u) → (ϕ(0, v) ∧ ∀x (ϕ(x, v) → ϕ(x + 1, v)))

Now define δ(x, v, u) to be the Σ̂b
i –formula ¬θ(v, u)∨ϕ(x, v). Clearly, T +Σ̂b

i –IR
proves the antecedent of the induction axiom for δ(x, v, u). By applying Σ̂b

i –IR,
we get A |= ∀x, v, u δ(x, v, u). In particular, A |= ∀x (¬θ(a, b) ∨ ϕ(x, a)), and
hence A |= ∀xϕ(x, a) since θ(a, b) is true in A. �

Combining Proposition 1 and Theorem 1, we can derive our ∀Σb
i –conservation

results. The proof is in two steps. First, we prove this conservation result only
for ∀Σ̂b

i –formulas. Second, we show how to extend it to general ∀Σb
i –formulas.

Theorem 2. Let E denote one of the following schemes: BB, I, PIND, LIND,
LLIND and let T be a ∀∃Π̂b

i –axiomatizable theory. Then T + EΣ̂b
i is ∀Σ̂b

i –
conservative over T + Σ̂b

i –ER.

Proof. By contradiction, assume T + EΣ̂b
i � ϕ but T + Σ̂b

i –ER �� ϕ, where
ϕ ∈ ∀Σ̂b

i . Let A be a countable model of (T + Σ̂b
i –ER) + ¬ϕ. Since T is

∀∃Π̂b
i –axiomatizable, so is T + Σ̂b

i –ER (for E = BB, recall that Σ̂b
i –BBR and

Π̂b
i−1–BBR are equivalent rules). By Proposition 1 there is B |= T + Σ̂b

i –ER
such that A ≺Σ̂b

i
B and B is ∃Π̂b

i –maximal for T + Σ̂b
i –ER. From Theorem 1 it

follows that B |= EΣ̂b
i . Hence, B |= T + EΣ̂b

i + ¬ϕ, which is a contradiction. �

Since T i
2 and Si

2 are ∀Σ̂b
i+1–axiomatizable, a first application of Theorem 2 is the

following strengthening of the well known facts that Si+1
2 implies T i

2 and Ri+1
2

implies Si
2, and of theorem 68 in [10] stating that BBΣ̂b

i+1 implies Si
2.

Corollary 1

1. LIOpen + Σ̂b
i+1–LINDR implies T i

2.
2. Both LIOpen + Σ̂b

i+1–LLINDR and LIOpen + Σ̂b
i+1–BBR imply Si

2.

To extend previous conservation result to ∀Σb
i –formulas, we need the following

lemma (the proof is by induction on the complexity of Σb
i –formulas).

Lemma 1. (i ≥ 1) Let ϕ(�v) ∈ Σb
i . There exists ϕ̂(�v) ∈ Σ̂b

i such that:
(1) BBΠ̂b

i−1 � ϕ(�v) ↔ ϕ̂(�v), and (2) BBΠ̂b
i−2 � ϕ̂(�v) → ϕ(�v).

(For i = 1, BBΠ̂b−1 denotes LIOpen.)

Theorem 3. Let E denote one of the following schemes: BB, I, PIND, LIND.
Then, LIOpen + Σ̂b

i –ER axiomatizes the ∀Σb
i –consequences of EΣb

i .

Proof. Assume EΣb
i � ∀�v ϕ(�v), where ϕ ∈ Σb

i . Let ϕ̂(�v) ∈ Σ̂b
i as in Lemma 1.

Since Si
2 implies BBΠb

i−1 (see [3]), EΣb
i implies BBΠb

i−1 and LIOpen+ Σ̂b
i –ER

implies BBΠb
i−2 by Corollary 1. Hence, EΣb

i � ∀�v ϕ̂(�v) and LIOpen+ Σ̂b
i –ER �

ϕ̂(�v) → ϕ(�v). So, this last theory proves ∀�v ϕ(�v) by Theorem 2. �

On Rules and Parameter Free Systems in Bounded Arithmetic 185

In what follows we deal with parameter free versions of T i
2 and Si

2. Notice that
there are two natural candidates for their parameter free counterparts: restricting
the axiom scheme to parameter free Σb

i –formulas, or to strict parameter free Σb
i

formulas. Since we are interested in conservation results over these theories, we
choose the weakest ones to make the results stronger. That is, we fix T i,−

2 ≡
IΣ̂b,−

i and Si,−
2 ≡ PINDΣ̂b,−

i . We derive the conservation theorems from our
previous work on inference rules. The key observation is the following:

Proposition 3

1. If T implies T i,−
2 then T is closed under Σ̂b

i –IR.
2. (i ≥ 1) If T implies PINDΣb,−

1 + Si,−
2 then T is closed under Σ̂b

i –PINDR.

Proof. (1): Assume T proves ϕ(0, v) ∧ ∀x (ϕ(x, v) → ϕ(x + 1, v)), where ϕ(x, v)
is Σ̂b

i . We must show T � ∀v ∀xϕ(x, v). The idea is to codify the parameter v
and the induction variable x in a single variable u using the pairing function and
to apply IΣ̂b,−

i . To this end, define θ(u) to be the following Σ̂b
i –formula:

(ispair(u) ∧ (u)0 < (u)1 ∧ ispair((u)1)) → ϕ((u)0, (u)1,1)

Trivially, T � θ(0) since ¬ ispair(0). Let us see that T � ∀u (θ(u) → θ(u + 1)).
Reasoning in T , we assume θ(u) and (ispair(u′) ∧ (u′)0 < (u′)1 ∧ ispair((u′)1),
where u′ = u + 1. We must show ϕ((u′)0, (u′)1,1).

Case 1: (u′)0 = 0. Then ϕ(0, (u′)1,1) since T � ∀v ϕ(0, v).
Case 2: (u′)0 > 0. Since (u′)0 < (u′)1, max((u′)0 − 1, (u′)1) = (u′)1 and hence
by the definition of the pairing function u codifies the pair 〈(u′)0 − 1, (u′)1〉
(that is, (u)0 = (u′)0 − 1 and (u)1 = (u′)1). Consequently, from θ(u) it follows
ϕ((u′)0 − 1, (u′)1,1) and hence ϕ((u′)0, (u′)1,1) since T � ϕ(x, v) → ϕ(x + 1, v).

From the induction axiom for θ(u) (available in T since it contains IΣ̂b,−
i) it

follows that T � ∀u θ(u). To show T � ∀v∀xϕ(x, v), observe that ϕ(x, v) can be
inferred from θ(〈x, 〈x, v〉〉).
(2): The proof is similar to that of 1 but now we need to define a new tuple–
encoding function compatible with the PIND axioms: roughly speaking, if u
codifies the pair (x,�v) and x > 0, then �u

2 � must codify the pair (�x
2 �, �v). In [2]

Bloch proposed the following encoding function satisfying that property:

[x, v, z] = u ≡
{

|v| < z2 ≤ |u| < (z + 1)2 ∧
u = Concat(v + 2min(z2,|u|), x + 2|x|)

where Concat(x, y) = x · 2|y|−
•1 + y −• 2|y|−

•1. In words, we pad v to length z2

and concatenate the result with x (notice that the Concat function operates
on bit–strings rather than on binary numbers, that is, Concat(1x, 1y) = 1xy).
Observe that the encoding function [x, v, z] itself is not total, but it is total for
all z sufficiently large. Namely, as shown in [2], PINDΣb,−

1 proves:

(a) |x| ≤ 2z ∧ |v| < z2 → ∃!u ([x, v, z] = u),
(b) u > 0 → ∃!x, v, z ≤ u ([x, v, z] = u), and
(c) u = [x, v, z] ∧ x > 0 → �u

2 � = [�x
2 �, v, z]

186 A. Cordón-Franco, A. Fernández-Margarit, and F.F. Lara-Mart́ın

Equipped with this encoding function, we can infer the PIND axiom for the
Σ̂b

i –formula ϕ(x, v) from the PIND axiom for the (parameter free) Σ̂b
i –formula

θ(u) ≡ u > 0 → ∃x, v, z ≤ u ([x, v, z] = u ∧ ϕ(x, v)). �

Observe that from the previous result and Theorem 2 it immediately follows
that T i+1,−

2 implies T i
2 and that PINDΣb,−

1 + Si+1,−
2 implies Si

2.

Theorem 4

1. T i
2 is ∃∀Σb

i –conservative over T i,−
2 .

2. (i ≥ 1) Si
2 is ∃∀Σb

i –conservative over PINDΣb,−
1 + Si,−

2 .

Proof. Using Lemma 1 as in Theorem 3, it suffices to show ∃∀Σ̂b
i –conservation.

We only write the proof of 1. Assume ϕ is an ∃∀Σ̂b
i –sentence such that T i

2 � ϕ

but T i,−
2 �� ϕ. Then T = T i,−

2 + ¬ϕ is consistent and ∀∃Π̂b
i –axiomatizable. Let

A be an ∃Π̂b
i –maximal model for T . By Proposition 3, T is closed under Σ̂b

i –IR.
Hence, A |= T +T i

2 by Theorem 1. So, A |= T i
2 +¬ϕ, which is a contradiction. �

As for parameter free BBΣb
i , we can prove that BBΣb

i is ∃∀Σb
i –conservative

over UBBΣ̂b
i as in Theorem 4 (UBBϕ is obtained quantifying universally the

parameters of ϕ(x, y) in both the antecedent and the consequent of BBϕ).

4 On Replacement and Bit–Comprehension Rules

In this section we shall study an inference rule closely tied to Σb
1–replacement:

Δb
1–bit–comprehension rule. This rule was defined in [7] as follows:

Δb
1–BCR :

ϕ(x) ↔ ψ(x)
∃y < 2|u| ∀x < |u| (Bit(y, x) = 1 ↔ ϕ(x))

where ϕ(x) ∈ Σb
1 and ψ(x) ∈ Πb

1 . In [7], it is proved that BBΣb
0 (denoted there by

C0
2) is a ∀Σb

1–conservative extension of Δb
1–CR (the theory LIOpen+Δb

1–BCR).
So, in view of Theorem 3, it is natural to investigate the relationship between
Δb

1–BCR and Σ̂b
1–BBR. In this section, we consider the apparently weaker rule

for strict formulas Δ̂b
1–BCR and show that LIOpen + Δ̂b

1–BCR (denoted in
what follows by Δ̂b

1–CR) is equivalent to LIOpen + Σ̂b
1–BBR, see Theorem 5. In

fact, over LIOpen, the four rules Σb
1–BBR, Σ̂b

1–BBR, Δb
1–BCR and Δ̂b

1–BCR are
equivalent and, by Theorem 3, provide axiomatizations of the ∀Σb

1–consequences
of BBΣb

1. Moreover, in [9], answering a question posed in [7], it is shown that
Δb

1–CR is finitely axiomatizable; so, a finite number of nested applications of
any of the rules above axiomatizes the ∀Σb

1–consequences of BBΣb
1. However,

Problem 1. Is LIOpen+Σ̂b
1–BBR equivalent to [LIOpen; Σ̂b

1–BBR], the closure
of LIOpen under first order logic and unnested applications of Σ̂b

1–BBR?

Our work suggests a positive answer to Problem 1 since this is the case for the
analogous problem for collection rule in the usual language of Peano Arithmetic.

Now we prove that LIOpen + Σ̂b
1–BBR and Δ̂b

1–CR are equivalent. Our work
also provides a new proof of Johannsen–Pollett’s conservation theorem.

On Rules and Parameter Free Systems in Bounded Arithmetic 187

Firstly, observe that it can be easily shown that LIOpen + Σ̂b
1–BBR is closed

under Δ̂b
1-BCR. On the other hand, since C0

2 coincides with BBΣb
0, by Theorem

2, C0
2 is ∀Σ̂b

1 conservative over LIOpen+Σ̂b
1–BBR. So, in order to simultaneously

get the equivalence of LIOpen + Σ̂b
1–BBR and Δ̂b

1–CR, and Johannsen–Pollett’s
theorem, it suffices to prove that Δ̂b

1–CR is closed under Σ̂b
1–BBR. Next two

lemmas are the key ingredients of the proof. The first one provides a weak form
of replacement available in Δ̂b

1–CR (the proof is straightforward and we omit
it). The second one is a selection (or witnessing) principle for Δ̂b

1–CR.

Lemma 2. Let ϕ(x, y) ∈ Σ̂b
1 such that Δ̂b

1–CR � ∀x ≤ |s| ∃!y ≤ t ϕ(x, y). Then

Δ̂b
1–CR � ∃w < bd(t∗(|s|), s)∀x ≤ |s| (βt∗(|s|)(w, x) ≤ t ∧ ϕ(x, βt∗(|s|)(w, x)))

Lemma 3. Let ϕ(x, y) ∈ Σ̂b
1 such that Δ̂b

1–CR � ∀x∃y ≤ t ϕ(x, y), then there
exists ψ(x, y) ∈ Σ̂b

1 such that Δ̂b
1–CR proves

(1) ∀x∃!y ≤ t ψ(x, y), and (2) ∀x∀y (ψ(x, y) → ϕ(x, y))

Proof. (Sketch) The proof we present here leans upon an analysis of the class of
Σ̂b

1–definable functions Δ̂b
1–CR. We refine corollary 1 in [7] and prove that TC0

is the class of Σ̂b
1–definable functions of Δ̂b

1–CR. The basic result is a machine–
independent characterization of TC0 given by Clote and Takeuti in [4]:

Let BF be the set of basic functions {o, s0, s1, #, ×, | · |}∪{Πn
i : 1 ≤ i ≤ n},

where o(x) = 0, s0(s) = 2x, s1(x) = 2x + 1, |x| = �log2(x + 1)�, x#y = 2|x|·|y|,
× denotes the usual product and Πn

i (x1, . . . , xn) = xi.
Given g : ωn → ω and h0, h1 : ωn+1 → {0, 1}, a function f is defined by

concatenation recursion on notation (CRN) from g, h0 and h1 if

f(0, �x) = g(�x)
f(2n, �x) = 2 · f(n, �x) + h0(n, �x), provided n �= 0

f(2n + 1, �x) = 2 · f(n, �x) + h1(n, �x)

Clote and Takeuti proved that TC0 is the smallest class of functions containing
BF and closed under composition and CRN. In order to show that every function
in TC0 is Σ̂b

1–definable in Δ̂b
1–CR, we show a stronger technical result:

For each function f ∈ TC0 there exist a formula ψ(�x, y, z1, . . . , zn) ∈ Σb
0

and terms t(x), t1(x, y), t2(x, y, z1), . . . , tn(x, y, z1, . . . , zn−1) such that the Σ̂b
1–

formula ∃z1 ≤ t1 . . . ∃zn ≤ tn ψ(x, y, �z) defines f in the standard model and

LIOpen + Δ̂b
1–BCR � ∀�x∃!y ≤ t ∃!z1 ≤ t1 . . .∃!zn ≤ tn ψ(x, y, �z)

The proof proceeds by induction, using Clote–Takeuti’s characterization of
TC0. The claim obviously holds for the basic functions and for f defined by
composition from functions verifying the claim. So it suffices to prove the result
for functions defined by CRN and this can be done as in theorem 4 in [7].

It is not difficult to verify that, if f ∈ TC0 is defined by CRN from g, h0 and h1

then the proof of the previous technical result provide Σ̂b
1–formulas defining the

functions involved and such that the relations stated by the recursion equations
of CRN can be proved in Δ̂b

1–CR. Bearing this fact in mind, we can introduce
a universally axiomatized and conservative extension of Δ̂b

1–CR, denoted by

188 A. Cordón-Franco, A. Fernández-Margarit, and F.F. Lara-Mart́ın

CRNA. This universal theory can be defined in such a way that the functions in
TC0 are defined by terms of CRNA. In this way we can prove that every function
Σ̂b

1–definable in Δ̂b
1–CR is in TC0 by a typical application of Herbrand’s theorem.

The whole argument is very similar to the Herbrand analyses of Si
2 developed

by W. Sieg in [11].
Finally, we derive Lemma 3 from Herbrand’s theorem applied to CRNA. ��

Theorem 5. The theories Δ̂b
1–CR and LIOpen + Σb

1–BBR are equivalent and
axiomatize the class of the ∀Σb

1–consequences of C0
2 .

Proof. Observe that C0
2 extends LIOpen + Σb

1–BBR, which in turn extends
Δ̂b

1–CR; so, since LIOpen + Σb
1–BBR is ∀Σb

1–axiomatized, it suffices to prove
that C0

2 is ∀Σb
1–conservative over Δ̂b

1–CR. Finally, by Theorem 3 it is enough to
show that Δ̂b

1–CR is closed under Σ̂b
1–BBR. Let us work in Δ̂b

1–CR.
Let ϕ(x, y) ∈ Σ̂b

1 and t, s be terms such that ∀x ≤ |s| ∃y ≤ t ϕ(x, y). Define
θ(x, y) ∈ Σ̂b

1 to be (x > |s| ∧ y = 0) ∨ (x ≤ |s| ∧ ϕ(x, y)). Then ∀x∃y ≤ t θ(x, y)
and, by Lemma 3, there is ψ(x, y) ∈ Σ̂b

1 such that (1) ∀x∃!y ≤ t ψ(x, y), and (2)
∀x∀y (ψ(x, y) → θ(x, y)). By (1) and Lemma 2, it holds that

∃w < bd(t∗(|s|), s)∀x ≤ |s| (βt∗(|s|)(w, x) ≤ t ∧ ψ(x, βt∗(|s|)(w, x)))

Hence, ∃w < bd(t∗(|s|), s)∀x ≤ |s| (βt∗(|s|)(w, x) ≤ t ∧ ϕ(x, βt∗(|s|)(w, x))), since,
by (2) and the definition of θ, we have x ≤ |s| ∧ ψ(x, y) → ϕ(x, y). ��
Corollary 2. (Johannsen–Pollett) C0

2 is ∀Σb
1–conservative over Δb

1–CR.

References

1. Avigad, J.: Saturated models of universal theories. Annals of Pure and Applied
Logic 118, 219–234 (2002)

2. Bloch, S.: Divide and Conquer in Parallel Complexity and Proof Theory, Ph. D.
Thesis. University of California, San Diego (1992)

3. Buss, S.: Bounded Arithmetic. Bibliopolis, Napoli (1986)
4. Clote, P., Takeuti, G.: First order bounded artihmetic and small boolean circuit

complexity classes. In: Clote, P., Remmel, J (eds.) Feasible Mathematics II, pp.
154–218. Birkhäuser, Boston (1995)

5. Johannsen, J.: A Bounded Arithmetic Theory for Constant Depth Threshold Cir-
cuits. In: Gödel’96. Lecture Notes in Logic, vol. 6, pp. 224–234. Springer, Heidelberg
(1996)

6. Johannsen, J., Pollett, C.: On Proofs About Threshold Circuits and Counting
Hierarchies. In: Proc. 13th IEEE Symposium on Logic in Computer Science (1998)

7. Johannsen, J., Pollett, C.: On the Δb
1–Bit–Comprehension Rule. Logic Collo-

quium’98. Lecture Notes in Logic, ASL 13, 262–279 (2000)
8. Kraj́ıček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory.

Cambridge University Press, Cambridge (1995)
9. Nguyen, P., Cook, S.: Theories for TC0 and other small complexity classes. Logical

Methods in Computer Science 2, 1–40 (2006)
10. Pollett, C.: Structure and Definability in General Bounded Arithmetic Theories.

Annals of Pure and Applied Logic 100, 189–245 (1999)
11. Sieg, W.: Herbrand Analyses. Archive for Mathematical Logic 30, 409–441 (1991)

The New Promise of Analog Computation

José Félix Costa1,2,�, Bruno Loff2, and Jerzy Mycka3

1 Department of Mathematics, Instituto Superior Técnico
Universidade Técnica de Lisboa

Lisboa, Portugal
fgc@math.ist.utl.pt

2 Centro de Matemática e Aplicações Fundamentais do Complexo Interdisciplinar
Universidade de Lisboa

Lisbon, Portugal
bruno.loff@gmail.com

3 Institute of Mathematics,
University of Maria Curie-Sk�lodowska

Lublin, Poland
Jerzy.Mycka@umcs.lublin.pl

Abstract. We show that, using our more or less established framework
of inductive definition of real-valued functions (work started by Cristo-
pher Moore in [9]) together with ideas and concepts of standard com-
putability we can prove theorems of Analysis. Then we will consider our
ideas as a bridging tool between the standard Theory of Computability
(and Complexity) on one side and Mathematical Analysis on the other,
making real recursive functions a possible branch of Descriptive Set The-
ory. What follows is an Extended Abstract directed to a large audience of
CiE 2007, Special Session on Logic and New Paradigms of Computabil-
ity. (Proofs of statements can be found in a detailed long paper at the
address http://fgc.math.ist.utl.pt/papers/hierarchy.pdf.)

1 Statement of the Conjecture and Its Solution

Consider a class of real-valued functions closed under the operations of composi-
tion, of finding the solution to a first order differential equation and the taking of
an infinite limit. Thinking briefly about the last two operations, one may observe
that they seem to be related. For instance,

exp(x) = lim
y→∞ (1 +

x

y
)y,

and also
exp(0) = 1, ∂y exp(y) = exp(y).

The number π can be expressed by a differential equation that gives arctan,
since π = 4 arctan(1), and we also know, e.g., that

π = lim
y→∞

24y+1y!4

(2y + 1)(2y)!2
.

� Corresponding author.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 189–195, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

190 J.F. Costa, B. Loff, and J. Mycka

Many other examples may lead us to wonder if this property is universal, i.e.,
if we can replace the taking of an infinite limit of a function f by the solution of
a first order differential equation involving functions no more complex than f .
We may also wonder if there is a limit of definability in Analysis, e.g., to know
if via limits we can always define new functions or else if all functions can be
defined using an upper bound in the number of limit taking.

We will use the toolbox of computability theory to show that while we can
always express the solution of a first order differential equation through infinite
limits, we cannot always do the opposite.

2 The Model of Recursive Real-Valued Functions

In a sequence of papers, starting with Cristopher Moore’s seminal paper [9],
we have established a robust framework to think about a theory of definability
of real-valued functions. This theory covers a large spectrum of functions from
classes of recursive functions extended to the real numbers to the characteristic
functions of predicates of the Analytic Hierarchy.

An in-depth overview of the achievements of this theory can be studied in
our reference papers [4,11,12,14,8,15] together with a most recent one by Bruno
Loff (see [7]) submitted to this Conference, and [2,3] for other, no less relevant
contributions (and the new trend represented by several recent papers by Olivier
Bournez, Manuel Campagnolo, Daniel Graça and Emmanuel Hainry).

In the original paper by Cristopher Moore, the key idea we acknowledge nowa-
days (among all motivations that such a paper provided) is the replacement of
the standard recurrence scheme for recursive functions by the so-called differ-
ential recursion scheme. In its simplest form (removing the vector formulation)
this scheme reads as follows: the (n + 1)-ary function h is defined from a n-ary
function f and a (n + 2)-ary function g

h(x1, . . . , xn, 0) = f(x1, . . . , xn),

∂yh(x1, . . . , xn, y) = g(x1, . . . , xn, y, h(x1, . . . , xn, y)),

as the solution of this first-order differential equation, if some conditions hold,
where x1, ..., xn are the parameters, y is the recurrence variable, and the last
variable of g stands for the transport variable.

In 2004, we introduced in [12] the limit scheme as a replacement for classical
minimalization: the n-ary function h is defined from a (n+1)-ary function f via
infinite limit taking

h(x1, . . . , xn) = lim
y→∞ f(x1, . . . , xn, y).

The definition of Real Recursive Functions runs now semi-formally as follows:

Definition 2.1. The class of Real Recursive Functions, REC(R) for short, is
the smallest class of real-valued functions which contains some constants (−1, 0
and 1 suffice) and the standard projections and which is closed under composi-
tion, differential recursion and the taking of infinite limits.

The New Promise of Analog Computation 191

By now, many readers know the nice starting examples which enchant our eyes
due to their simplicity, such as

h(x, 0) = x, ∂yh(x, y) = 1,

having the function of addition λxy. x + y as solution, or

h(x, 0) = 0, ∂yh(x, y) = x,

which gives λxy. x × y, and

h(0) = 1, ∂yh(y) = h(y),

resulting in the exponential.
Another class of interesting examples uses infinite limits:

δ(x) = lim
y→∞(

1
x2 + 1

)y

which is Kronecker’s δ function over the reals, or

sgn(x) = lim
y→∞

arctan(xy)
π
2

which is the signal function, or

Θ(x) =
δ(x) + sgn(x) + 1

2
,

the Heaviside function defined by composition.
A real recursive number in our framework is the value of real recursive function

on a basic constant like 0. Notice that the class of real recursive functions is
countable infinite, thus the set of real recursive numbers is also countable. It
turns out that a number y = h(x), where x is a previously defined real recursive
number and h some real recursive function, is also real recursive. E.g., Neper’s
e is given by exp(1) and π is given by 4 arctan(1). Numbers can be thought of
as entire computable structures, indivisible entities [9], or computable by digits
(as in the classical way), using continued fractions.

Let us add at this point that theory of real recursive functions is intended
to be more analytic in its form than the well-known approach of computable
analysis. However, on some levels these theories coincide (see [1]).

We tried to show that our framework is versatile: from a careful and not so
complex definition of the (countable) set of recursive functions over the reals we
show by means of the toolbox of Analysis that: (a) Laplace transform can be
used to quickly obtain useful real recursive functions and to measure their rate
of growth, (b) the embedding of Turing machines into continuous time recursive
functions is trivial (take a look at the newest definition in [15]), (c) a (limit)
hierarchy of real recursive functions exist to classify hardness of functions.

The fact that the set of real recursive functions is countable gives us a possibil-
ity to consider decidability questions for these functions. For example it has been

192 J.F. Costa, B. Loff, and J. Mycka

proved in [14] that for a real recursive function the problem of its domain is un-
decidable and the identity of two real recursive functions cannot be determined
by any real recursive function.

Let us stop here to study a bit further the mentioned hierarchy of real recursive
functions. If η(f) counts the smallest rank of the limit operator — the number
of nested limits — in every description of a function f , then we can define the
following hierarchy of sets:

Hi = {f : η(f) ≤ i}.

In [12] we established the results that follow.

Proposition 2.1. The functions +, ×, −, exp, sin, cos, log (inter alia) are in
H0, Kronecker’s δ function, the function sgn, and Heaviside’s θ function (inter
alia) are in H1. Euler’s Γ function and Riemann’s ζ function are in H1.

We can add separation results such as:

Proposition 2.2. H0 �= H1 (since Euler’s Γ function and Riemann’s ζ function
are in H1 and not in H0.

About this η-hierarchy (of limits), we may add further topics. We showed in [12]
that we can embed the entire arithmetical hierarchy within the limit hierarchy
up to some finite level (up to a finite number of limit operations), where the
analytic hierarchy starts. The use of limits gives rise to uncomputable functions,
e.g., at some level we get the halting problem solved.

This means, inter alia, that strong uncompressible numbers like Chaitin’s
halting probability are found in very precise levels of the limit hierarchy.

Proposition 2.3. The classical halting problem is decidable in some level (H3)
of the η-hierarchy. Chaitin’s Ω is a real recursive constant. The Arithmetical
Hierarchy is confined to a finite level of the η-hierarchy (H6, where the Analytical
Hierarchy starts).

We can prove that the (Hi)i∈N does not collapse (the full proof can be found in
the submitted paper [8]) and contains the whole Arithmetical Hierarchy and the
whole Analytical Hierarchy. In fact, Bruno Loff proved in [7] the following most
interesting characterization (interesting both for real recursive functions, and for
the analytical hierarchy — the later becoming defined without quantifiers and
in a single inductive step):

Proposition 2.4. Real recursive functions are those functions f such that the
predicate expression y = f(x) is in Δ1

ω.

To these previous aspects, we should add the impact of a further one: (d) in
the basis of the limit hierarchy we can still find a set of functions over the
real numbers indeed computable by physical means, theoretically by Claude
Shannon’s General Purpose Analog Computer and practically by the Differential

The New Promise of Analog Computation 193

Analyzer of Vannevar Bush (see [5]). Hence, in H0 we have truly computable
functions in the physical sense (and also in the sense of computable analysis). Is
the GPAC the ultimate limit of analog computability? Nobody really knows, but
we can add that Rubel improved the GPAC in the 90’s building up the conceptual
Extended Analog Computer, in a such a way that some limits become physically
realizable.

3 Proof Methods

In the full version of this paper we prove that if we have a first order differential
equation that gives us some function, we can always find an infinite limit that
describes the same function, using a numerical approximation which asymptot-
ically behaves in the intended manner. Nonetheless, given a function expressed
by an infinite limit, we cannot always find a first order differential equation that
results in the same function, because if we could, the η-hierarchy would collapse.

We finish our extended abstract by describing how such a statement can be
proved. First, we show that

Proposition 3.1. There is no universal real recursive function, i.e., there is
no real recursive binary scalar function Ψ such that, for all n ∈ N, x ∈ R,
Ψ(n, x) = φn(x), where φ0, φ1, φ2, ... denotes an enumeration of all real recur-
sive functions: φn is the function given by a description coded by n.

Furthermore, there is no universal real recursive function ψ which verifies
ψ(n, x) = φn(x) if n codes for a description with the smallest possible rank of
the limit operators for the described function.

Finally, we prove that

Proposition 3.2. There is a universal real recursive function for each level
of the η-hierarchy, i.e., for every level Hn of the η-hierarchy, there is a real
recursive binary function Ψn such that whenever the number of nested limits in
a description e is less than n, we have Ψn(e, x) = φe(x).

These statements taken together prove that the η-hierarchy does not collapse.
The function Ψn is most probably not in Hn, but it suffices to show that it exists
in a higher level of the η-hierarchy.

We conclude that there is no real recursive universal Ψ function, nor even a
restriction of Ψ to low-rank codes, but that there are real recursive universal Ψn

functions for every level of the η-hierarchy. This assures that while we cannot
have real recursive characteristics for the problems of domain and identity for
every function, we can still have them for every function up to any level of the
η-hierarchy. Based on these two statements we prove the main theorem:

Theorem 3.1. There is no limit to inductive definability of real-valued func-
tions by composition, solving first-order differential equations and infinite limit
taking.

194 J.F. Costa, B. Loff, and J. Mycka

This result makes us feel that our framework can be considered a branch of
Descriptive Set Theory. For the purpose we recall some words of Yiannis N.
Moschovakis (see [10]): Lebesgue defined the collection of analytically represen-
table functions as the smallest set which contains all constants and projections
and which is closed under sums, products and the taking of limits. [...] Today we
recognize Lebesgue [1905] [see [6]] as a classical work in the theory of definabil-
ity. It introduced and studied systematically several natural notions of definable
functions and sets and it established the first important hierarchy theorems and
structure results for collections of definable objects. So do we! How close is real
recursive function theory to Descriptive Set Theory? We do not know, and the
answer to this question is an open problem in our research program.

What about connections between Mathematical Analysis and Theory of Com-
putability (and Complexity)) in the other direction? We believe that our most
general framework, with infinite limits ([12,15,8]), has enough ingredients to al-
low a good translation of classical computability and classical computational
complexity problems into Analysis. We do believe that such translations might
be a solution to open problems described in analytic terms: we are much involved
in the definition of analog classes P and NP , and to find one good analytic
representation of the P �= NP conjecture (see [13]).

Acknowledgements. We would like to thank Fernando Ferreira for having
compelled us a bit further towards Descriptive Set Theory. Although the title
mentions analog computation, our theory is much more about recursive func-
tions over the reals. This change of view is due to Martin Davis who has been
systematically disturbed by our proposals: to him we have much to thank.

References

1. Bournez, O., Campagnolo, M., Graça, D., Hainry, E.: The general purpose analog
computer and computable analysis are two equivalent paradigms of analog com-
putation. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959,
pp. 631–643. Springer, Heidelberg (2006)

2. Bournez, O., Hainry, E.: Real recursive functions and real extensions of recursive
functions. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 116–127.
Springer, Heidelberg (2004)

3. Bournez, O., Hainry, E.: Elementarily computable functions over the real numbers
and R-sub-recursive functions. Theoretical Computer Science 348(2–3), 130–147
(2005)

4. Campagnolo, M., Moore, C., Costa, J.F.: An analog characterization of the Grze-
gorczyk hierarchy. Journal of Complexity 18(4), 977–1000 (2002)

5. Graça, D., Costa, J.F.: Analog computers and recursive functions over the reals.
Journal of Complexity 19(5), 644–664 (2003)

6. Lebesgue, H.: Sur les fonctions représentables analytiquement. J. de Math. 1,
139–216 (1905)

7. Loff, B.: A functional characterisation of the analytical hierarchy, (submitted 2007)
8. Loff, B., Costa, J.F., Mycka, J.: Computability on reals, infinite limits and differ-

ential equations, (accepted for publication 2006)

The New Promise of Analog Computation 195

9. Moore, C.: Recursion theory on the reals and continuous-time computation. The-
oretical Computer Science 162(1), 23–44 (1996)

10. Moschovakis, Y.N.: Descriptive set theory. North–Holland, Amsterdam (1980)
11. Mycka, J.: μ-recursion and infinite limits. Theoretical Computer Science 302,

123–133 (2003)
12. Mycka, J., Costa, J.F.: Real recursive functions and their hierarchy. Journal of

Complexity 20(6), 835–857 (2004)
13. Mycka, J., Costa, J.F.: The P �= NP conjecture in the context of real and complex

analysis. Journal of Complexity 22(2), 287–303 (2006)
14. Mycka, J., Costa, J.F.: Undecidability over continuous-time. In: Logic Journal of

the IGPL, vol. 14(5), pp. 649–658. Oxford University Press, Oxford (2006)
15. Mycka, J., Costa, J.F.: A new conceptual framework for analog computation. The-

oretical Computer Science, Accepted for publication (2007)

Comparing C.E. Sets Based on Their Settling

Times

Barbara F. Csima�

Department of Pure Mathematics
University of Waterloo

Waterloo, ON, Canada N2L 3G1
csima@math.uwaterloo.ca

www.math.uwaterloo.ca/∼csima

Abstract. To each computable enumerable (c.e.) set A with a particu-
lar enumeration {As}s∈ω, there is associated a settling function mA(x),
where mA(x) is the last stage when a number less than or equal to x
was enumerated into A. In [7], R.W. Robinson classified the complex-
ity of c.e. sets into two groups of complexity based on whether or not
the settling function was dominant. An extension of this idea to a more
refined ordering of c.e. sets was first introduced by Nabutovsky and Wein-
berger in [6] and Soare [9], for application to differential geometry. There
they defined one c.e. set A to settling time dominate another c.e. set B
(B >st A) if for every computable function f , for all but finitely many
x, mB(x) > f(mA(x)). In [4] Csima and Soare introduced a stronger
ordering, where B >sst A if for all computable f and g, for almost
all x, mB(x) > f(mA(g(x))). We give a survey of the known results
about these orderings, make some observations, and outline the open
questions.

1 Introduction

An integral part of a computably enumerable (c.e.) set is it’s enumeration. Obvi-
ously, a c.e. set has more than one enumeration, so when attempting to compare
c.e. sets based on their settling times, it might be more correct to compare par-
ticular enumerations of the sets. It turns out that the notions introduced by
Robinson, Nabutovsky, Weinberger and Soare, are all enumeration independent,
so it is possible to compare c.e. sets, not just particular enumerations.

For Computability Theory, we follow the notation of Soare’s Recursively Enu-
merable Sets and Degrees [8] and new notation from Soare’s Computability The-
ory and Applications [10], which we also define. See also Cooper’s Computability
Theory [1] for a modern treatment of the subject.

We let {We,s}e,s∈ω be any standard enumeration of the c.e. sets. We write
“∀∞x” for “for all but finitely many x”.

We first recall the definition of a dominant function.
� Partially supported by Canadian NSERC Discovery Grant 312501.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 196–204, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.math.uwaterloo.ca/~ csima

Comparing C.E. Sets Based on Their Settling Times 197

Definition 1. A function g is said to be dominant if for every computable func-
tion f , (∀∞x)[g(x) > f(x)].

We also recall Martin’s characterization of high sets in terms of dominant
functions.

Theorem 1 (Martin [5]). A set A is high (A′ ≡T ∅′′) if and only if there
exists an A-computable dominant function.

We now give the definition of the settling function associated to an enumeration
of a c.e. set.

Definition 2. For every computably enumerable (c.e.) set We and associated
enumeration {We,s}s∈ω,we define the settling (or modulus) function: me(x) =
(μs)[We,s��x = We �� x] where A ��x = {y ≤ x | y ∈ A}.

In [7], Robinson sorted c.e. sets into two groups depending on whether or not
their settling functions were dominant.

Definition 3. For every c.e. set We, we say that We is dominant if its settling
function is; that is if

(∀ computable f)(∀∞x)[me(x) > f(x)]

Robinson referred to dominant sets as “high” and non-dominant sets as “low”;
we will avoid this terminology due to the obvious confusion it would cause with
the currently prevalent meaning of these words. Robinson showed that if a set
has one enumeration that is dominant, then all are dominant, so the definition
is independent of the enumeration chosen.

For use in an application to differential geometry, Nabutovsky and Weinberger
[6] and Soare [9] introduced the following ordering on c.e. sets based on their
settling times.

Definition 4. For c.e. sets A and B, we say A settling time dominates B and
write A >st B iff (∃Wi = A) (∃Wj = B)

(∀ computable f)(∀∞)[mi(x) > f(mj(x))]. (1)

Andre Nies showed that this is equivalent to (∀Wi = A)(∀Wj = B) [(1) holds].
We denote the structure of the c.e. sets with the relation <st as Est.

Nabutovsky and Weinberger wanted a descending sequence in Est to use in the
construction of various manifolds that gave information on the geometry of Rie-
mannian metrics modulo diffeomorphisms. Soare constructed such a sequence as
described in [9]. See Soare [9], Csima and Soare [4], and Weinberger [11], for gen-
eral background information on the ordering and its applications to differential
geometry.

Though not designed for that purpose, the ordering <st gives a natural ex-
tension of the idea of domination to an ordering on c.e. sets. Indeed, we make
the following observation.

198 B.F. Csima

Observation 2. For a c.e. set A, the following are equivalent:

(i) A is dominant.
(ii) There exists an infinite computable set C such that A >st C.

(iii) A >st C for every computable set C.

Proof. Clearly (iii) ⇒ (ii).
For (i) ⇒ (iii), suppose A is a dominant c.e. set, and that C is any com-

putable set. Then mC is computable, so for any computable function f , f ◦ mC

is computable. Thus since A is dominant, (∀∞x)[mA(x) > f(mC(x))], and so
A >st C.

For (ii) ⇒ (i), suppose that A settling time dominates an infinite computable
set C. Since C is infinite and computable, then it has an enumeration such
that mC is computable and such that mC(x) ≥ x for almost every x. Let
f be any computable function. Let f∗ be a non-decreasing computable func-
tion such that f∗(x) ≥ f(x) for all x. Then since A >st C, and since f∗ is
computable, (∀∞x)[mA(x) ≥ f∗(mC(x))]. Since f∗ is non-decreasing and since
(∀∞x)[mC(x) ≥ x], we have (∀∞x)[mA(x) ≥ f∗(mC(x)) ≥ f∗(x) ≥ f(x)]. Since
f was arbitrary, this shows that A is dominant.

Along similar lines, Csima and Soare observed the following.

Observation 3 (Csima, Soare [4]). If A >st B and B is infinite then A is
dominant.

Just as Turing reducibility refines the dichotomy of computable/non-computable
to an order on the non-computable sets, <st gives an order on the dominant sets.

However, <st is not the only obvious choice for extending the idea of domina-
tion. In [4] and [3], the following strong settling time domination was introduced.

Definition 5. For c.e. sets A and B we say A strongly settling time dominates
B, A >sst B, if for all computable functions f and g, for almost every x,

mA(x) > f(mB(g(x))).

The associated strict partial ordering on c.e. sets is denoted by Esst.

The original motivation for this came as follows. To help simplify proofs in
differential geometry, Nabutovsky and Weinberger asked whether there exits a
sequence {Ai}i∈ω of c.e. sets such that

(∀ computable f)(∀n)(∀∞x)[mAi(x) > f(mAi+1(nx))]

This question was answered in my thesis [2] as follows.

Definition 6. Let g be a computable function. For c.e. sets A and B we say
A >g−st B if for all computable functions f , for almost every x,

mA(x) > f(mB(g(x))).

Comparing C.E. Sets Based on Their Settling Times 199

Theorem 4. For any computable g, there exists a sequence {Ai} of c.e. sets
such that

Ai >g−st Ai+1

This answered the question of Nabutovsky and Weinberger using g(x) = x2.
However, this also raised the question of whether there are sets A and B such

that A >g−st B for all computable g. That is, whether there exist A and B such
that A >sst B.

Observation 5. For a c.e. set A, the following are equivalent:

(i) A is dominant.
(ii) There exists an infinite computable set C such that A >sst C.

(iii) A >sst C for every computable set C.

Proof. Clearly (iii)⇒(ii).
For (ii)⇒(i), if A >sst C for some infinite computable set C, then A >st C,

so by Observation 2, A is dominant.
For (i)⇒(iii), suppose A is a dominant c.e. set, and that C is any computable

set. Then mC is computable, so for any computable functions f and g, f ◦mC ◦g
is computable. Thus since A is dominant, (∀∞x)[mA(x) > f(mC(g(x)))], and so
A >sst C.

Thus, relative to computable sets, the orderings <st and <sst behave the same
way. However, the two orderings <st and <sst are distinct on the dominant sets;
that is, <st is a proper refinement of <sst.

2 Dominant Sets

We now summarize Robinson’s results on dominant c.e. sets.

Observation 6 (Robinson [7]). A dominant set must be high.

Indeed, a c.e. set A is dominant if it’s settling function mA dominates every
computable function. By Martin’s characterization [5], a set is high if and only
if it can compute a dominant function. Since A can certainly compute mA, and
since mA is dominant, A is high.

Robinson further showed that every high c.e. degree contains a dominant set.

Theorem 7 (Robinson [7]). Every high c.e. Turing degree contains a domi-
nant c.e. set.

Robinson showed this by again using Martin’s characterization of high sets in
terms of dominant functions.

On the other hand, a high c.e. set need not be dominant. Indeed, Robinson
showed the following.

Theorem 8 (Robinson [7]). Every c.e. degree contains a non-dominant set.

200 B.F. Csima

Corollary 1 (Robinson [7]). The dichotomy of the c.e. sets into dominant
and non-dominant does not respect Turing reducibility.

On the other hand, Robinson showed that wtt-reducibility is respected.

Theorem 9 (Robinson [7]). If A is dominant and A <wtt B then B is
dominant.

3 Settling Time Reducibility

As we saw earlier, if A is a c.e. set that settling time dominates an infinite c.e. set,
then A must be dominant. So when comparing sets using the <st reducibility,
all sets except those on the bottom will be dominant (and hence high).

The <st ordering works by comparing initial segments of the sets to one
another, as we can see by the following theorems. We first introduce/recall some
notation.

Definition 7

(i) A set A is bounded Turing reducible to a set B (A ≤bT B) if A ≤T B
and there is a computable function h(x) and a Turing reduction A = ΦB

e

with use function u(x) ≤ h(x). This is commonly written A <wtt B, but we
introduce this notation with an eye towards part (ii) of the definition.

(ii) A set A is identity bounded Turing reducible to B (A ≤ibT B) if A ≤bT B
with h(x) = x, namely A = ΦB

e with use function u(x) ≤ x for all x.

Theorem 10 (Csima, Soare [4]). The <st ordering is well defined on ibT-
degrees. Indeed, let A, B, and C be c.e. sets with enumerations {As}s∈ω,{Bs}s∈ω,
and {Cs}s∈ω, respectively. If A <st B and B ≤ibT C then A <st C. If A ≤ibT B
and B <st C then A <st C.

On the other hand, the <st ordering is not well-defined on bT-degrees (wtt-
degrees). Indeed, it does not even preserve computable isomorphism.

Theorem 11 (Csima, Shore [3]). The order <st is not well defined on
1-degrees. Indeed, there exist c.e. sets A and B such that A ≡1 B but A >st B.

Certainly if A >st B then A ≥T B. From the above, we see it is possible for
A and B to have the same Turing degree. Csima and Soare showed that it is
possible to have a sequence of c.e. sets descending strictly in both the Turing
degrees and in Est.

Theorem 12 (Csima, Soare [4]). There exists a sequence {An}n∈ω of c.e.
sets such that An >T An+1 and An >st An+1 for all n.

When <st was first introduced, it was for the application to differential geome-
try, which only required a descending sequence as above. However, the natural
question arose as to what kind of partial orders can be embedded into Est.

Theorem 13 (Csima, Shore [3]). Any countable partial ordering can be
embedded into Est.

Comparing C.E. Sets Based on Their Settling Times 201

Notice that Est is a strict partial ordering. Indeed, for any c.e. set A, A �>st A.
The largest equivalence relation on Est (or any strict partial order) that respects
the given ordering and gives a reflexive partial ordering as a quotient is given by
A ≡st B ⇔ {C | C >st A} = {C | C >st B} & {C | C <st A} = {C | C <st B}.
One could instead of Est then reasonably study its quotient E∗

st by this equivalence
relation with the natural partial ordering ≤. Note that the above theorem shows
that every countable partial ordering can be embedded in E∗

st as well, since a
given partial order P can be modified by adding on extra elements to produce
a partial order P ′ such that any embedding of P ′ into Est will restrict to one of
P into E∗

st.

Theorem 14 (Csima, Shore [3]). There exists a maximal set in Est. That is,
there exists an A such that for all e, We ≯st A.

As for minimal sets, certainly any set that is not high would be minimal. If we
consider the computable sets to be the simplest, then we can ask for the existence
of a non-trivial minimal set in the sense that A >st C for any computable set
C, but there exist no B with A >st B >st C.

Theorem 15 (Csima, Shore [3]). There exists a non-trivial minimal set in
Est. Indeed, there exists a c.e. set A such that A >st C for every computable C,
and if We is noncomputable then A ≯st We.

Also, in [3], it is shown that infs and sups need not exist in Est.

Theorem 16 (Csima, Shore [3]). There are c.e. sets A and B such that A
and B have no infimum in the <st ordering, indeed, such A and B can be found
with A �≡st B. There are c.e. sets C and D such that C and D have no supremum
in the <st ordering, indeed, such C and D can be found with C �≡st D.

The above theorem is proved by embedding a particular finite partial ordering
into Est with an added property that two of the sets have a gap between them.
That is, the two sets A and C are such that A >st C, but there is no c.e. set H
with A >st H >st C. The strategy for constructing two sets with a gap between
them is similar to that of constructing a minimal set.

4 Strong Settling Time Reducibility

Clearly if A >sst B, then A >st B, so that <sst is a collapsing of <st. Hence sets
in this ordering are still all high (except for the ones on the bottom).

Unlike <st, the ordering <sst is well defined on bT-degrees (wtt-degrees). This
difference also shows that the two orderings are distinct.

Theorem 17 (Csima, Shore, [3]). The <sst ordering is well defined on bT-
degrees. In fact, it respects bT-reducibility in the sense that if A ≤bT B <sst C
or A <sst B ≤bT C then A <sst C.

202 B.F. Csima

The proof of this is essentially the same as the proof that <st is well defined on
ibT-degrees, but the extra strength of <sst allows arbitrary computable functions
to be absorbed, rather than just the identity function.

On the other hand, <sst is not well defined on Turing degrees.

Theorem 18. The <sst ordering is not well defined on Turing degrees. Indeed,
if A >sst B and B is infinite, then there exists a c.e. set C ≡T A such that
C �>sst B.

Proof. In [4], this same theorem is shown with <st in place of <sst. But, if A �>st

B, then certainly A �>sst B. It can also be seen as an immediate consequence of
Corollary 1 and Observation 2.

In as far as embedding of partial orderings, Csima and Shore have the follow-
ing partial result, which amounts to showing that certain linear orders can be
embedded into Esst.

Theorem 19 (Csima, Shore [3]). Let P be a computable partial ordering
on N with no infinite ascending sequence. There exists a computable sequence
{An}n∈N of c.e. sets such that if m <P n then Am <sst An.

Since we have shown the existence of maximal and minimal sets for Est, we get
the following for free in Esst.

Theorem 20. There exists a maximal set in Esst.

Proof. By Theorem 14, there exists a c.e. set A such that for all e, We �>st A.
But then certainly for all e, We �>sst A.

Theorem 21. There exists a non-trivial minimal set in Esst. That is, there ex-
ists a c.e. set A such that A >sst C for any computable C, but for all We, if
A >sst We then We �>sst C.

Proof. By Theorem 15, there exists a c.e. set A such that for all computable C,
A >st C, and for all e, if We is non-computable, then A �>st We. Now if A >st C
for all computable C, then A is dominant, and so A >sst C for all computable
C, by Observations 2 and 5. And if A �>st We for all e, then certainly A �>sst We

for all e. So the non-trivial minimal set in Est is still non-trivial and minimal
in Esst.

5 Questions

It was shown that any countable partial order can be embedded into Est.

Question 1. Can this be done while simultaneously embedding into the Turing
degrees?

In Theorem 19, Csima and Shore embed certain linear orders into Esst.

Comparing C.E. Sets Based on Their Settling Times 203

Question 2. Can arbitrary countable partial orders be embedded into Esst?

The techniques of Theorem 19 can probably more quickly be adapted to answer
the following easier question in the affirmative.

Question 3. Can every finite partial order be embedded into Esst?

We have seen that infs and sups need not exist in Est.

Question 4. Must infs and sups exist in Esst?

To prove that infs and sups do not exist in Esst, the argument for showing there
is a minimal set was lifted to a more complicated setting. The way the existence
of a non-trivial minimal set in Esst was shown was to observe that the non-trivial
minimal set in Est was still non-trivial in Esst. This was because <st and <sst

behave the same relative to the computable sets; though of course this is not
true in general. So it is unclear whether the gap argument can go through in
the Esst setting. The following is probably true, and would be a good first step
towards showing infs and sups do not exist in Esst.

Question 5. Do there exist non-computable A and B such that A >sst B and
such that there exist no C with A >sst C >sst B?

Certainly it cannot be true that given any high sets such that A <T B then
A <st B, since Robinson already showed this must fail. However, Robinson did
show that every high c.e. degree contains a dominant set, so the following may
be possible:

Question 6. If a < b are high c.e. degrees, must there exist c.e. sets A ∈ a and
B ∈ b such that A <st B? A <sst B?

Question 7. More generally, given any partial order of high degrees, can there be
realized a partial order of c.e. sets with the same relationship under <st (<sst)
in exactly those high degrees?

References

1. Cooper, S.B.: Computability Theory. Chapman & Hall/CRC, Boca Raton, FL
(2004)

2. Csima, B.F.: Applications of Computability Theory to Prime Models and Differ-
ential Geometry, Ph.D. thesis, The University of Chicago (2003)

3. Csima, B.F., Shore, R.A.: The Settling-Time Reducibility Ordering. Journal of
Symbolic Logic 71(4), 1394–1410 (2006)

4. Csima, B.F., Soare, R.I.: Computability Results Used in Differential Geometry,
Journal of Symbolic Logic (To appear)

5. Martin, D.A.: Classes of recursively enumerable sets and degrees of unsolvability.
Z. Math. Logik Grundlagen Math. 12, 295–310 (1966)

6. Nabutovsky, A., Weinberger, S.: The Fractal Nature of Riem/Diff I. Geometrica
Dedicata 101, 1–54 (2003)

204 B.F. Csima

7. Robinson, R.W.: A dichotomy of the recursively enumerable sets. Z. Math. Logik
Grundlag. Math. 14, 339–356 (1968)

8. Soare, R.I.: Recursively Enumerable Sets and Degrees: A Study of Computable
Functions and Computably Generated Sets, Springer, Heidelberg (1987)

9. Soare, R.I.: Computability theory and differential geometry. Bull. Symb. Logic 10,
457–486 (2004)

10. Soare, R.I.: Computability Theory and Applications, Springer-Verlag, Heidelberg
(To appear)

11. Weinberger, S.: Computers, rigidity and moduli. The large scale fractal geometry
of Reimannian moduli space (M.B. Porter Lectures). Princeton UNiversity Press,
Princeton NJ (2005)

Time-Complexity Semantics for Feasible Affine

Recursions

Norman Danner1 and James S. Royer2

1 Department of Mathematics and Computer Science, Wesleyan University,
Middletown, CT 06459, USA

ndanner@wesleyan.edu
2 Department of Electrical Engineering and Computer Science, Syracuse University,

Syracuse, NY 13210, USA
royer@ecs.syr.edu

Abstract. The authors’ ATR programming formalism is a version of
call-by-value PCF under a complexity-theoretically motivated type sys-
tem. ATR programs run in type-2 polynomial-time and all standard type-
2 basic feasible functionals are ATR-definable (ATR types are confined
to levels 0, 1, and 2). A limitation of the original version of ATR is
that the only directly expressible recursions are tail-recursions. Here we
extend ATR so that a broad range of affine recursions are directly express-
ible. In particular, the revised ATR can fairly naturally express the clas-
sic insertion- and selection-sort algorithms, thus overcoming a sticking
point of most prior implicit-complexity-based formalisms. The paper’s
main work is in extending and simplifying the original time-complexity
semantics for ATR to develop a set of tools for extracting and solving the
higher-type recurrences arising from feasible affine recursions.

1 Two Algorithms in Search of a Type-System

As Hofmann [9] has noted, a problem with implicit characterizations of complex-
ity classes is that they often fail to capture many natural algorithms—usually
because the complexity-theoretic types used to control primitive recursion im-
pose draconian restrictions on programming. Here is an example. In Bellantoni
and Cook’s [3] and Leivant’s [11] well-known characterizations of the polynom-
ial-time computable functions, a recursively-computed value is prohibited from
driving another recursion. But, for instance, the recursion clause of insertion-sort
has the form ins sort(cons(a, l)) = insert(a, ins sort(l)), where insert is defined by
recursion on its second argument; selection-sort presents analogous problems.

Hofmann [9, 8] addresses this problem by noting that the output of a non-size-
increasing program (such as ins sort) should be permitted to drive another re-
cursion, as it cannot cause the sort of complexity blow-up the B-C-L restrictions
guard against. To incorporate such recursions, Hofmann defines a higher-order
language with typical first-order types and a special type ♦ through which func-
tions defined recursively must “pay” for any use of size-increasing constructors,
in effect guaranteeing that there is no size increase. Through this scheme Hof-
mann is able to implement many natural algorithms while still ensuring that any

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 205–217, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

206 N. Danner and J.S. Royer

typable program is non-size-increasing polynomial-time computable (Aehlig and
Schwichtenberg [1] sketch an extension that captures all of polynomial-time).

Our earlier paper [5, 6], hereafter referred to as ATS, takes a different approach
to constructing a usable programming language with guaranteed resource usage.
We introduce a type-2 programming formalism called ATR (for Affine Tail Re-
cursion, which we rechristen in this paper as Affine Tiered Recursion) based on
PCF. ATR’s type system is motivated by the tiering and safe/normal notions of
[11] and [3] and serves to control the size of objects. Instead of restricting to prim-
itive recursion, ATR has an operator for recursive definitions; affine types and
explicit clocking on the operator serve to control time. We give a denotational
semantics to ATR types and terms in which the size restrictions play a key part.
This allows us, for example, to give an ATR definition of a primitive-recursion-
on-notation combinator (with appropriate types and without explicit bounding
terms) that preserves feasibility. We also give a time-complexity semantics and
use it to prove that each type-2 ATR program has a (second-order) polynomial
run-time.1 Finally, we show that the standard type-2 basic feasible functionals
(an extension of polynomial-time computability to type-2) of Mehlhorn [12] and
Cook and Urquhart [4] are ATR definable. Moreover, our underlying model of
computation (and complexity) is just a standard abstract machine that imple-
ments call-by-value PCF. However, ATR is still somewhat limited as its only base
type is binary words and the only recursions allowed are tail-recursions.

What is new in this paper. In this paper we extend ATR to encompass a broad
class of feasible affine recursions. We demonstrate these extensions by giving
fairly direct and natural versions of insertion- and selection-sorts on lists. As
additional evidence of ATR’s support for programming we do not add lists as
a base type, but instead show how to implement them over ATR’s base type of
binary words.

The technical core of this paper is a simplification and generalization of the
time-complexity semantics of ATS. We construct a straightforward framework in
which recursion schemes in ATR lead to time-complexity recurrences that must
be solved to show that these schemes preserve feasibility. This gives a route
to follow when adding new forms of recursion to ATR. We follow this route to
show that the recursions used to implement lists and insertion-sort are (second-
order) polynomial-time bounded. We also discuss how to extend these results
to handle the recursions present in selection-sort. Thus along with significantly
extending our existing system to the point where many standard algorithms can
be naturally expressed, we also provide a set of basic tools for further extensions.

2 Programming in ATR

The ATR formalism. An ATR base type has the form NL, where labels L are
elements of the set (�♦)∗

⋃
♦(�♦)∗ (our use of ♦ is not directly related to

1 These kinds of results may also have applications in the type of static analysis for
time-complexity that Frederiksen and Jones [7] investigate.

Time-Complexity Semantics for Feasible Affine Recursions 207

s, t ::= V | K | O | (λV.s) | (st)

| (ca s) | (d s) | (ta s) | (if s then t0 else t1) | (down s t) | (crec K(λrf.t))

Fig. 1. ATR expressions. V is a set of variable symbols and O a set of oracle symbols.

Hofmann’s). The labels are ordered by ε ≤ ♦ ≤ �♦ ≤ ♦�♦ ≤ · · · We define
a subtype relation on the base types by NL ≤: NL′ if L ≤ L′ and extend it to
function types in the standard way. Roughly, we can think of type-Nε values as
basic string inputs, type-N♦ values as the result of polynomial-time computations
over Nε-values, type-N�♦-values as the result applying an oracle (a type-1 input)
to N♦-values, type-N♦�♦ values as the result of polynomial-time computations
over N�♦-values, etc. NL is called an oracular (respectively, computational) type
when L ∈ (�♦)∗ (respectively, ♦(�♦)∗). We let b (possibly decorated) range over
base types. Function types are formed as usual from the base types.

The base datatype is K = {0,1}∗, and the ATR terms are defined in Figure 1.
The term forming operations correspond to adding and deleting a left-most bit
(c0, c1, and d), testing whether a word begins with a 0 or a 1 (t0 and t1),
and a conditional. The intended interpretation of down s t is s if |s| ≤ |t| and ε
otherwise. The recursion operator is crec, standing for clocked recursion.

The typing rules are given in Figure 2. Type contexts are split (after Bar-
ber and Plotkin’s DILL [2]) into intuitionistic and affine zones. Variables in the
former correspond to the usual → introduction and elimination rules and vari-
ables in the latter are intended to be recursively defined; variables that occur
in the affine zone are said to occur affinely in the term. The crec-I rule serves
as both introduction and elimination rule for the implicit � types (in the rule
b = b1, . . . , bk and v :b stands for v1 :b1, . . . , vk :bk). We use λr as the abstraction
operator for variables introduced from the affine zone of the type context to fur-
ther distinguish them from “ordinary” variables. The side-conditions on crec-I
are that f occurs in cons-tail position2 in t and if bi ≤: b1 then bi is oracular
(including i = 0). The constraint on the types allows us to prove a polynomial
size-bound on the growth of the arguments to f , which in turn allows us to
prove such bounds on all terms. The typing rules enforce a “one-use” restriction
on affine variables by disallowing their occurrence as a free variable in both ar-
guments of down, the argument of an application, the test of a conditional, or
anywhere in a crec-term.

The intuition behind the shifts-to relation ∝ between types is as follows.
Suppose f :Nε→N♦. We think of f as being a function that does some polynomial-
time computation to its input. If we have an input x of type N�♦ then recalling
the intuition behind the base types, we should be able to assign the type N♦�♦
to f(x). The shifts-to relation allows us to shift input types in this way, with

2 Informally, f occurs in cons-tail position in t if in the parse-tree of t a path from
the root to a complete application of f passes through only conditional branches
(not tests), c0, c1, and the left-argument of down; tail len(f, t) is defined to be the
maximum number of ca operations not below any down node in any such path.

208 N. Danner and J.S. Royer

Zero-I
Γ ;Δ � ε : Nε

Const-I
Γ ; Δ � K : N♦

Int-Id-I
Γ, v : σ; Δ � v : σ

Aff-Id-I
Γ ;Δ, v : σ � v : σ

Γ ; Δ � s : σ
Shift (σ ∝ τ)

Γ ; Δ � s : τ

Γ ; Δ � s : σ
Subsumption (σ ≤: τ)

Γ ; Δ � s : τ

Γ ; Δ � s : N♦dca-I
Γ ; Δ � (ca s) : N♦d

Γ ; Δ � s : NL
d-I

Γ ; Δ � d s : NL

Γ ; Δ � s : NL
ta-I

Γ ; Δ � ta s : NL

Γ ; Δ0 � s : NL0 Γ ; Δ1 � t : NL1down-I
Γ ; Δ0, Δ1 � (down st) : NL1

Γ ; � s : NL Γ ; Δ0 � t0 : NL′ Γ ; Δ1 � t1 : NL′
if-I

Γ ; Δ0 ∪ Δ1 � (if s then t0 else t1) : NL′

; � K : N♦ Γ, v : b; f : b → b0 � t : b0
crec-I

Γ ; � crec a (λrf.λv.t) : b → b0

Γ, v : σ; Δ � t : τ
→-I

Γ ;Δ � (λv.t) : σ → τ

Γ ; Δ � s : σ → τ Γ ; � t : σ
→-E

Γ ;Δ � (st) : τ

Fig. 2. ATR typing. The changes from ATS are as follows: (1) ATS imposed no con-
straint on b0 in (crec-I);(2) ATS restricted (crec-I) to tail-recursion; and (3) ATS
restricted (d-I) and (ta-I) to computational types.

a corresponding shift in output type. As a concrete example, the judgment f :
Nε → N♦, x : Nε; � f(fx) : N♦�♦ is derivable using Subsumption to coerce the
type of f(x) to N�♦ and Shift to shift the type of the outer application of f .
The definition of ∝ must take into account multiple arguments and level-2 types
and hence is somewhat involved. Since we do not need it for the typings in this
paper, we direct the reader to ATS for the full definition.

Motivated by the approach of Jones [10], we define the cost of evaluation to be
the size of a call-by-value evaluation derivation. This is essentially equivalent to
the abstract machine-based cost model of ATS, but the derivation-based model
helps avoid considerable bookkeeping clutter. Values are string constants, ora-
cles, or abstractions. Environments map term variables to values or to closures
over crec terms. A closure tρ consists of a term t and an environment ρ. The
evaluation relation has the form tρ ↓ zθ where tρ and zθ are closures and z is
a value. The derivation rules for the evaluation are mostly straightforward and
mimic the action of the abstract machine of ATS ; for example, we have

ρ(x) ↓ zθ

xρ ↓ zθ

tρ ↓ (0z)θ
(d t)ρ ↓ zθ

sρ ↓ wζ tρ ↓ zθ |w| ≤ |z|
(down st)ρ ↓ wζ

.

The evaluation rule for crec terms is

(crec a(λrf.λv.t))ρ ↓ (λv.if |a| < |v1| then t else ε)ρ[f �→ crec(0a)(λrf.λv.t)]

which shows how unwinding the recursion increments the clock by one step. The
cost of most inference rules is 1, except the down s t inference rules have cost

Time-Complexity Semantics for Feasible Affine Recursions 209

val nil = ε : Nε

val cons : Nε → N♦ → N♦ =
fn w l ⇒ letrec enc : Nε → N♦ → N♦ =

fn b x ⇒ if x then if t0(x) then c1(c0(enc b (d x)))
else c1(c1(enc b (d x)))

else c0(l)
in enc w w end

val head : Nε → Nε =
fn l ⇒ letrec dec : Nε → N♦ → N♦ =

fn b x ⇒ if t1(x) then
if t0(d x) then c0(dec b (d(d(x)))) else c1(dec b (d(d(x))))

else ε
in down (dec l l)(l) end

val tail : Nε → Nε =
fn l ⇒ letrec tail ’ : Nε → Nε → Nε =

fn b x ⇒ if t1(x) then tail ’ b d(d(x)) else d(x)
in tail ’ l l end

Fig. 3. The basic list operations in ATR

2|z| + 1 where tρ ↓ zθ and environment and oracle evaluation have length-cost
(so, e.g., the cost of the environment rule shown above is max(|z|, 1) when z is
of base type, 1 otherwise).

Implementing lists and sorting. We implement lists of binary words via concate-
nated self-delimiting strings. Specifically, we code the word w = b0 . . . bk−1 as
s(w) = 1b01b1 . . . 1bk−10 and the list 〈w0, . . . , wk−1〉 as s(w0) ⊕ · · · ⊕ s(wk−1),
where ⊕ is the concatenation operation. Code for the basic list operations is
given in Figure 3.3 Note that the cons, head, and tail programs all use cons-
tail recursion. Insertion-sort is expressed in essentially its standard form, as in
Figure 4. This implementation requires another form of recursion, in which the
complete application of the recursively-defined function appears in an argument
to some operator. In the later part of Section 3 we show how this recursion in
an argument can be incorporated into ATR. Selection-sort requires yet another
form of recursion (a generalization of cons-tail recursion); we discuss how to
incorporate it into ATR in Section 4.

Our head and ins sort programs use the down operator to coerce the type N♦
to Nε. Roughly, down is used in places where our type-system is not clever
enough to prove that the result of a recursion is of size no larger than one of
the recursion’s initial arguments; the burden of supplying these proofs is shifted
off to the correctness argument for the recursion. A cleverer type system (say,
3 In these code samples, letrec f=s in t end abbreviates t[f �→ crec ε(λrf.s)] and we

use the ML notation fn x ⇒ . . . for λ-abstraction.

210 N. Danner and J.S. Royer

val insert : Nε → Nε → N♦ =
fn w l ⇒ letrec ins : Nε → Nε → N♦ =

fn b l ’ ⇒ if l’ then
if leq w head(l ’) then cons w l ’
else cons (head l ’) (ins b (tail l ’))

else cons w nil
in ins l l end

val ins sort : Nε → N♦ =
fn l ⇒ letrec isort : Nε → Nε → N♦ =

fn b l ’ = if l ’ then insert (head l ’) (down (isort b (tail l ’)) l ’) else ε
in isort l l end

Fig. 4. Insertion-sort in ATR

along the lines of Hofmann’s [8]) could obviate many of these down’s, but at
the price of more complex syntax (i.e., typing), semantics (of values and of
time-complexities), and, perhaps, pragmatics (i.e., programming). Our use of
down gives us a more primitive (and intensional) system than found in pure
implicit complexity,4 but it also gives us a less cluttered setting to work out the
basics of complexity-theoretic compositional semantics—the focus of the rest of
the paper. Also, in practice the proofs that the uses of down forces into the
correctness argument are for the most part obvious, and thus not a large burden
on the programmer.

3 Soundness Theorems

In this section we rework the Soundness Theorem of ATS to set up the frame-
work for such theorems, and then use the framework to handle the recursions
used to implement insertion-sort (we discuss selection-sort in Section 4). Because
of space considerations, we just sketch the main points here and leave detailed
proofs to the full paper. The key technical notion is that of bounding a closure tρ
by a time-complexity, which provides upper bounds on the cost of evaluating tρ
to a value zθ as well as the potential cost of using zθ. The potential of a base-type
closure is just its (denotation’s) length, whereas the potential of a function f
is a function that maps potentials p to the time complexity of evaluating f on
arguments of potential p. The bounding relation gives a time-complexity seman-
tics for ATR-terms; a soundness theorem asserts the existence of a bounding
time-complexity for every ATR term. In this paper, our soundness theorems also
assert that the bounding time-complexities are safe, which in particular implies
type-2 polynomial size and cost bounds for the closure. We thereby encapsulate
the Soundness, polynomial-size-boundedness, and polynomial-time-boundedness
theorems of ATS (the value semantics for the meaning of ATR terms and corre-
sponding soundness theorem are unchanged).
4 Leivant’s recursion under a high-tier bound [11, §3.1] implements a similar idea.

Time-Complexity Semantics for Feasible Affine Recursions 211

Soundness for tail-recursion. We start by defining cost, potential, and time-
complexity types, all of which are elements of the simple product type structure
over the time-complexity base types {T} ∪ {TL | L is a label} (we sometimes
conflate the syntactic types with their intended meaning, which is the standard
set-theoretic semantics when all base types are interpreted as unary numerals).
The subtype relation on base types is defined by TL ≤: TL′ if L ≤ L′ and TL ≤: T
for all L, and extended to product and function types in the standard way. The
only cost type is T, and for each ATR-type σ we define the potential type 〈〈σ〉〉
and time-complexity type ‖σ‖ by 〈〈NL〉〉 = TL, 〈〈σ→τ〉〉 = 〈〈σ〉〉→‖τ‖, and ‖τ‖ =
T × 〈〈τ〉〉. Write cost(·) and pot(·) for the left- and right-projections on ‖τ‖. We
introduce time-complexity variables, a new syntactic category, and define a time-
complexity context to be a finite map from t.c. variables to cost and potential
types. For a t.c. context Σ, Σ-Env is the set of Σ environments, defined in the
usual way. We extend ‖ · ‖ to ATR-type contexts by introducing t.c. variables xc

and xp for each ATR-variable x and setting ‖Γ‖ = ∪(x:σ)∈Γ {xc : T, xp : 〈〈σ〉〉}. A
time-complexity denotation of t.c. type γ w.r.t. a t.c. environment Σ is a function
X : Σ-Env → γ. The projections cost and pot extend to t.c. denotations in the
obvious way.

Definition

1. Suppose tρ is a closure and zθ a value, both of type τ ; χ a time-complexity
of type ‖τ‖; and q a potential of type 〈〈τ〉〉. Define the bounding relations
tρ �τ χ and zθ �τ

pot q as follows:5
(a) tρ �τ χ if cost(tρ) ≤ cost(χ) and if tρ ↓ zθ, then zθ �τ

pot pot(χ).
(b) zθ �b

pot q if |z| ≤ q.
(c) (λv.t)θ �σ→τ

pot q if for all values zη, if zη �σ
pot p, then tθ[v �→ zη] �τ q(p).

(d) Oθ �σ→τ
pot q if for all values zη, if zη �σ

pot p, then (O(zη))[] �τ q(p).
2. For ρ ∈ Γ -Env and � ∈ ‖Γ‖-Env, we write ρ � � if for all v ∈ Dom ρ we

have that vρ � (�(vc), �(vp)).
3. For an ATR-term Γ ; Δ � t:τ and a time-complexity denotation X of type ‖τ‖

w.r.t. ‖Γ ; Δ‖, we say t � X if for all ρ ∈ (Γ ; Δ)-Env and � ∈ ‖Γ ; Δ‖-Env
such that ρ � � we have that tρ � X�.

We define second-order polynomial expressions of tally, potential, and time-
complexity types using the operations +, ∗, and ∨ (binary maximum); the typing
rules are given in Figure 5. Of course, a polynomial Σ � p : γ corresponds to a
t.c. denotation of type γ w.r.t. Σ in the obvious way. We shall frequently write
pp for pot(p).

Definition. Let γ be a potential type, b a time-complexity base type, p a
potential polynomial, and suppose Σ � p : γ.

1. p is b-strict w.r.t. Σ when tail (γ) ≤: b and every unshadowed6 free-variable
occurrence in p has a type with tail <: b.

5 We will drop the superscript when it is clear from context.
6 Roughly, a free-variable occurrence is shadowed if it is in a subterm that does not

contribute to the size of the term; see ATS for details.

212 N. Danner and J.S. Royer

Σ � ε : Tε Σ � 0n : T♦ Σ, x : γ � x : γ

Σ � p : γ
(γ ∝ γ′)

Σ � p : γ′
Σ � p : γ

(γ ≤: γ′)
Σ � p : γ′

Σ � p : T♦k Σ � q : T♦k

Σ � p • q : T♦k

Σ � p : γ Σ � q : γ

Σ � p ∨ q : γ

Σ, x : σ � p : τ

Σ � λx.p : σ → τ

Σ � p : σ → τ Σ � q : σ

Σ � pq : τ

Fig. 5. Typing rules for time-complexity polynomials. • is + or ∗, γ is a t.c. base type.

2. p is b-chary w.r.t. Σ when γ = b and p = p1 ∨ · · · ∨ pm with m ≥ 0 where
pi = (vq1 . . . qk) with each qi b-strict.

3. p is b-safe w.r.t. Σ if:
(a) γ is a base type and p = q �b r where q is b-strict and r is b-chary,

�b = ∨ if b is oracular, and �b = + if b is computational.
(b) γ = σ → (T × τ) and pot(pv) is b-safe w.r.t. Σ, v : σ.

4. A t.c. polynomial Σ � q : T × γ is b-safe if pot(q) is.
5. A t.c. denotation X of type γ w.r.t. Σ is b-safe if X is bounded by a b-safe

t.c. polynomial Σ � p : γ.

The Soundness Theorem of ATS asserts that every tail-recursive term is bounded
by a t.c. denotation for which the cost component is bounded by a type-2 poly-
nomial in the lengths of t’s free variables. In the next subsection, we extend this
to cons-tail recursion and prove that the bounding t.c. denotation is in fact safe.
In particular, we also have that the potential of t’s denotation is bounded by a
safe polynomial. At base type, this latter statement corresponds to the “poly-
max” bounds that can be computed for Bellantoni-Cook and Leivant-style tiered
functions (e.g., [3, Lemma 4.1]).

Soundness for cons-tail-recursion. For the remainder of this subsection t is a
term such that f is in cons-tail position in t and for which we have a typing Γ, v :
b; f :b→ b � t : b. We write Γv for for the type context Γ, v :b. Define the terms
C� = crec(0�a)(λrf.λv.t) and T� = if |0�a| < |v1| then t else ε (we write 0�a for
0 . . .0a with � 0’s, remembering that this is a string constant), and for any
environment ρ, set ρ� = ρ[f �→ C�]. The main difficulty in proving soundness is
constructing a bounding t.c. denotation for crec terms. A key component in the
construction is the Affine Decomposition Theorem in Section 14 of ATS, which
describes how to compute the time-complexity of a term in which f occurs
affinely and in tail position. To state it, we need some definitions.

Definition. Let X and Y be t.c. denotations of type ‖σ → τ‖ and ‖σ‖,
respectively.

1. For a potential p : TL, val p = (1 ∨ p, p); if p is of higher type, then val p =
(1, p). For a t.c. environment � and ATR variable v we write �[v �→ χ] for
�[vc, vp �→ cost(χ), pot(χ)].

Time-Complexity Semantics for Feasible Affine Recursions 213

2. If Y is w.r.t. ‖Γ, v : σ′‖, then λλ�v.Y =df λλ�(1, λλvp.Y (�[v �→ val vp])) is a t.c.
denotation of type ‖σ′ → σ‖ w.r.t. ‖Γ‖ (we use λλx. · · · to denote the map
x �→ · · ·).

3. X �Y =df λλ�(cost(X�)+ cost(Y �)+ cost(χ)+1, pot(χ)) is a t.c. denotation
of type ‖τ‖, where χ = pot(X�)(pot(Y �)) (we write λλ�. . . . for � �→ . . .).

4. dally(�, X) = λλ�(� + cost(X�), pot(X�)) and for ‖σ‖ = T × TL, pad(�, Y) =
λλ�(cost(Y �), � + pot(Y �)).

5. For ‖σ‖ = T × TL and Z also a t.c. denotation of type ‖σ‖, (Z � Y)� =
(cost(Z�) + cost(Y �), pot(Z�) ∨ pot(Y �)).

Theorem 1 (Decomposition Theorem). Suppose t � X and Yi is such that
if ft1 . . . tk is a complete application of f in t, then ti � Yi. Then

t � λλ�
(
X�ε � pad

(
tail len(f, t), �f � Y1�ε � · · · � Yk�ε

))

where �ε = �[f �→ λλ�v.(1, 0)] and tail len(f, t) is defined in Footnote 2.

Intuitively, the cost of “getting to” the recursive call is covered by X�ε, and
the cost of the call itself by �f � Y1�ε � · · · � Yk�ε, taking into account any ca

operations after the call (this is an over-estimate if no recursive call is made).
The potential (size in this case, since t is of base type) is either independent of
any complete application of f or is equal to the size of such an application, again
taking into account later ca operations.

Definition. A decomposition function for t is a function d(�‖Γv‖-Env, χ‖γ‖):‖b‖
such that t � λλ�.d(�ε, �f) (recall that f is the affinely-restricted variable in t).

Recalling the evaluation rule for crec and the definition of �, we see that we
must understand how the closure T0ρ1 is evaluated for appropriate ρ. It is easy
to see that in such an evaluation, the only sub-evaluations of closures over terms
of the form Tm are evaluations of closures of the form Tmρm+1[v �→ zθ] for some
closures ziθi. For the closure T0ρ1 we say that the clock is bounded by K if in
every such sub-evaluation we have that |z1| < K.

For a decomposition function d define Φd,K(n) : ‖Γv‖-Env → ‖b‖ by

Φd,K(0) = λλ�.(2K + 1, 0)

Φd,K(n + 1) = λλ�. dally
(
2K + 1, d

(
�ε, dally

(
2, (λλ�v.Φd,K(n))�

))
∨

(
1, 0

))

We will use Φd,K to bound T�.

Theorem 2 (Recomposition Lemma). Suppose d is a decomposition function
for t, ρ ∈ Γv-Env, � ∈ ‖Γv‖-Env, ρ � �, and. that in the evaluation of T0ρ1 the
clock is bounded by K. Then T0ρ1 � Φd,K(K − |a|)(�[vi �→ val(�vip)]).

The Recomposition Lemma tells us that Φd,K(n) gives us a bound on the time-
complexity of our recursion scheme. What we must do now is to “solve” the
recurrence used to define Φ and show that it is polynomially-bounded.

214 N. Danner and J.S. Royer

Theorem 3 (Bounding Lemma). Suppose that in Theorem 1 we can assume
that X and each Yi are bounded by t.c. polynomials p and pi, respectively.
Assume further that p is 〈〈b〉〉-safe and pi is 〈〈bi〉〉-safe w.r.t. ‖Γv‖. Then there is
a 〈〈b〉〉-safe polynomial ‖Γv‖, K : 〈〈b1〉〉, n : 〈〈b1〉〉 � ϕ(K, n) : ‖b‖ such that for all
K and n, Φd,K(n) ≤ ϕ(K, n).

Proof. Let d be the decomposition function for t given in Theorem 1. Using the
definition of d we can find a 〈〈b〉〉-safe polynomial ‖Γv‖, K : 〈〈b1〉〉 � (P0(K), P1) :
‖b‖ and a recursive upper bound on Φd,K(n)�:

Φd,K(0)� ≤ (2K + 1, 0)
Φd,K(n + 1)� ≤ (P0(K), P1)� � pad(�, Φd,K(n)�[vi �→ val (pip�)])

where � = tail len(f, t). An easy proof by induction shows that Φd,K(n) ≤
(nP0(K)ξn−1+2K+1, n�+P1ξ

n−1) for n ≥ 1, where ξ0 = id and (vic, vip)ξn+1 =
val(pipξ

n). Since � �= 0 implies b1 <: b, n� + P1ξ
n−1 is bounded by a 〈〈b〉〉-

safe polynomial provided that P1ξ
n−1 is 〈〈b〉〉-safe. Since P1 is 〈〈b〉〉-safe and

type-correct substitution of safe polynomials into a safe polynomial yields a
safe polynomial (shown in Section 8 of ATS), to prove the theorem it suf-
fices to show that pipξ

n is a 〈〈bi〉〉-safe polynomial for each i. The proof of
this is essentially the proofs of the One-step and n-step lemmas of Section 10
in ATS (it is here that we use the remaining constraints on the types in the crec
typing rule).

Proposition 4 (Termination Lemma). Assume the hypotheses of Theorem 3
hold and that ρ � �. Then in the evaluation of T0ρ1 the clock is bounded by
p1pξ

1�, where ξ1 is defined as in the proof of Theorem 3.

Proof. This follows from the details of the proof of Theorem 3.

Theorem 5 (Soundness Theorem). For every ATR term Γ ; Δ � t : τ there is
a tail(‖τ‖)-safe t.c. denotation X of type ‖τ‖ w.r.t. ‖Γ ; Δ‖ such that t � X .

Proof. The proof is by induction on terms; for non-crec terms it is essentially as
in ATS. For Γ ; � crec a(λrf.λv.t) : b → b, suppose ρ̃ ∈ Γ -Env, �̃ ∈ ‖Γ‖-Env,
ρ � �. Use the Bounding, Termination and Recomposition Lemmas to show
that (λv.T0)ρ̃1 � (λλ�v.ϕ(p1pξ

1, p1pξ
1 − |a|))�̃, where p1, ϕ, and ξn are as

in the proof of the Bounding Lemma. We conclude that crec a (λrf.λv.t) �
dally(1, λλ�v.ϕ(p1pξ

1, p1pξ
1 − |a|)). Since this last time-complexity is a 〈〈b〉〉-safe

polynomial, the claim is proved.

Corollary 6. If ; � t : τ , then t is computable in type-2 polynomial time.

Soundness for recursion in an argument. We now address the recursions used
in insertion-sort, in which the recursive use of the function occurs inside an
argument to a previously-defined function. What we are really after here is
structural (primitive) recursion for defined datatypes (such as our defined lists).
First we adapt our →-E rule to allow affine variables to appear in arguments to

Time-Complexity Semantics for Feasible Affine Recursions 215

applications. We still require some restrictions in order to ensure a one-use prop-
erty; the following is more than sufficient for our needs:

Γ ; Δ0 � s : σ → τ Γ ; Δ1 � t : σ

Γ ; Δ0 ∪ Δ1 � st : τ

where at most one of Δ0 and Δ1 are non-empty, and if level σ > 0, then Δ1 = ∅.
Thus an affine variable f may only occur in t if t is of base type, and may not
occur simultaneously in s and t. In particular, it is safe for β-reduction to copy a
completed f -computation, but not an incomplete one. To simplify notation for
the recursion present in insertion-sort we consider the special case in which we
allow typings of the form (∗) provided t = if s′ then s(ft) else s′′ where f is not
free in s′ or s′′ (we treat the general case in the full paper).

First we must find a decomposition function. Assuming that s � Xs, t � Xt,
and ti � Yi, we can take as our decomposition function

d(�, χ) = Xt� �
(
cost

(
Xs�

)
+ cost

(
χ � X�

)
+ cost

(
pot(Xs�)(pot(χ � X�))

)
,

pot
(
pot(Xs�)(pot(χ � X�))

))

where we have written χ�X� for χ�X1��· · ·�Xk�. Assume the inductively-given
bounding t.c. denotations are bounded by safe polynomials ps, pt, and p1, . . . , pk.
The Soundness Theorem follows from the Recomposition Lemma provided we
have a polynomial bound on Φd,K(n), so now we establish such a bound.

When b is oracular, then since psp (= pot(ps)) is 〈〈b〉〉-safe, we have that
psp = λz〈〈b〉〉.(p, qs ∨ (rs ∨ z)) where qs is 〈〈b〉〉-strict and rs is 〈〈b〉〉-chary and does
not contain z. We can therefore find a 〈〈b〉〉-safe t.c. polynomial (P0(K, z〈〈b〉〉), P1)
and derive the following recursive bound on Φd,K using the same conventions as
in our analysis of cons-tail recursion:

Φd,K(0)� ≤ (2K + 1, 0)
Φd,K(n + 1)� = (P0(K, pot(Φd,K(n)�′)), P1) � Φd,K(n)�′

where �′ = �[vi �→ val(pip�)]. It is an easy induction to show that for n ≥ 1
Φd,K(n) ≤ ((n · P0(K, P1) + 2K + 1)ξn−1, P1ξ

n−1) and thus the Bounding and
Termination Lemmas that must be proved are exactly those of before.

When b is computational a similar calculation yields the bounding polynomial
((n · P0((n − 2)qs + P1) + 2p1p)ξn−1, (n − 1)qsξ

n−2 + P1ξ
n−1) for a 〈〈b〉〉-strict

polynomial qs.

4 Concluding Remarks

In ATS we introduced the formalism ATR which captures the basic feasible
functionals at type-level ≤ 2. We have extended the formalism with recursion
schemes that allow for more natural programming and demonstrated the new
formalism by implementing lists of binary strings and insertion-sort and showing
that the new recursion schemes do not take us out of the realm of feasibility. We

216 N. Danner and J.S. Royer

val g :Nε → Nε → N♦ =
fn y z ⇒ if leq y (head z) then cons y z

else cons (head z) (cons y (tail z))

val select :Nε → Nε =
fn l ⇒ letrec sel :Nε → Nε → Nε =

fn b l ’ ⇒ if tail(l ’) then down (g (head l ’) (sel b (tail l ’))) l ’ else l ’
in sel l l end

val sel sort :Nε → N♦ =
fn l ⇒ letrec ssort :Nε → Nε → N♦ =

fn b l ’ ⇒ let val m = select l ’ in cons (head m) (ssort b (tail m)) end
in ssort l l end

Fig. 6. Selection-sort in ATR. Note: let val x=s in t end abbreviates (fn x ⇒ t)s
where we restrict x to be of base type.

have also given a strategy for proving that particular forms of recursion can be
“safely” added to the base system. Here we indicate some future directions:

More general affine recursions. In the full paper we give a definition of plain
affine recursion that generalizes cons-tail recursion, allows recursive calls in argu-
ments, and permits recursive calls in the body of let-expressions. In particular,
it covers all forms of recursion used in the list operations and insertion- and
selection-sort (code for the latter is in Figure 6). At the time of writing, we do
not have all the details of the soundness argument in the general case, but we
expect it to follow the framework we have developed here.

Lazy ATR. A version of ATR with lazy constructors (streams) and evaluation
would be very interesting. There are many technical challenges in analyzing such
a system but again we expect that the general outline will be the approach we
have used in this paper. Of course one can implement streams in the current
call-by-value setting in standard ways (raising the type-level), but a direct lazy
implementation of streams is likely to be more informative. We expect the anal-
ysis of such a lazy-ATR to require an extensive reworking of the various semantic
models we have discussed here and in ATS.

Real-number algorithms. ATR is a type-2 language, but here we have focused
on type-1 algorithms. We are working on implementing real-number algorithms,
viewing a real number as a type-1 (stream) oracle. This can be done in either a
call-by-value setting (e.g., algorithms that take a string of length n as input and
return something like an n-bit approximation of the result) or a lazy setting (in
which the algorithm returns bits of the result on demand).

Time-Complexity Semantics for Feasible Affine Recursions 217

References

[1] Aehlig, K., Schwichtenberg, H.: A syntactical analysis of non-size-increasing poly-
nomial time computation. ACM Transactions on Computation Logic 3(3), 383–
401 (2002), http://doi.acm.org/10.1145/507382.507386

[2] Barber, A.: Dual intuitionistic linear logic. Technical Report ECS-LFCS-96-
347, Laboratory for Foundations of Computer Science, (1996) http://www.lfcs.
inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/index.html

[3] Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the poly-
time functions. Computational Complexity 2(2), 97–110 (1992) http://dx.doi.
org/10.1007/BF01201998

[4] Cook, S., Urquhart, A.: Functional interpretations of feasibly construc-
tive arithmetic. Annals of Pure and Applied Logic 63(2), 103–200 (1993)
http://dx.doi.org/10.1016/0168-0072(93)90044-E

[5] Danner, N., Royer, J.S.: Adventures in time and space. In: Conference Record
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Charleston, SC 2006), pp. 168–179, Association for Computing Ma-
chinery. New York (2006) http://doi.acm.org/10.1145/1111037.1111053

[6] Danner, N., Royer, J.S.: Adventures in time and space. To appear in Logical Meth-
ods in Computer Science; full version, at http://arxiv.org/abs/cs/0612116

[7] Frederiksen, C.C., Jones, N.D.: Recognition of polynomial-time programs.
Technical Report TOPPS/D-501, DIKU, University of Copenhagen, (2004)
http://www.diku.dk/topps/bibliography/2004.html

[8] Hofmann, M.: Linear types and non-size-increasing polynomial time compu-
tation. Information and Computation 183(1), 57–85 (2003) http://dx.doi.
org/10.1016/S0890-5401(03)00009-9

[9] Hofmann, M.: The strength of non-size increasing computation. In: Proceedings
of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Portland, OR, 2002), pp. 260–269. ACM Press, New York (2002)
http://doi.acm.org/10.1145/503272.503297

[10] Jones, N.D.: The expressive power of higher-order types or, life without
cons. Journal of Functional Programming 11(1), 55–94 (2001) http://dx.doi.
org/10.1017/S0956796800003889

[11] Leivant, D.: Ramified recurrence and computational complexity I: Word recur-
rence and poly-time. In: Feasible Mathematics II (Ithaca, NY, 1992), pp. 320–343.
Birkhäuser Boston, Boston, MA (1995)

[12] Mehlhorn, K.: Polynomial and abstract subrecursive classes. In: Proceedings
of the Sixth Annual ACM Symposium on Theory of Computing (Seattle,
WA, 1974), pp. 96–109. ACM Press, New York, NY, USA (1974) http://
doi.acm.org/10.1145/800119.803890

http://doi.acm.org/10.1145/507382.507386
http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/index.html
http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/index.html
http://dx.doi.org/10.1007/BF01201998
http://dx.doi.org/10.1007/BF01201998
http://dx.doi.org/10.1016/0168-0072(93)90044-E
http://doi.acm.org/10.1145/1111037.1111053
http://arxiv.org/abs/cs/0612116
http://www.diku.dk/topps/bibliography/2004.html
http://dx.doi.org/10.1016/S0890-5401(03)00009-9
http://dx.doi.org/10.1016/S0890-5401(03)00009-9
http://doi.acm.org/10.1145/503272.503297
http://dx.doi.org/10.1017/S0956796800003889
http://dx.doi.org/10.1017/S0956796800003889
http://doi.acm.org/10.1145/800119.803890
http://doi.acm.org/10.1145/800119.803890

Algebraic Model of an Arithmetic Unit for

TTE-Computable Normalized Rational Numbers

Gregorio de Miguel Casado, Juan Manuel Garćıa Chamizo,
and Maŕıa Teresa Signes Pont

SPA-Lab,University of Alicante,
03690, San Vicente del Raspeig, Alicante, Spain

{demiguel,juanma,teresa}@dtic.ua.es
http://www.dtic.ua.es/spa-lab/index.html

Abstract. A formal specification of an arithmetic unit for computable
normalized rational numbers is proposed. This specification, developed
under the scope of the paradigm known as algebraic models of processors,
exploits the connection between the signed digit representation for ra-
tional numbers in Type-2 Theory of Effectivity and online arithmetic in
Computer Arithmetic. The proposal aims for specification formalization
and calculation reliability together with implementation feasibility.

Keywords: formal methods for VLSI design, Type-2 Theory of Effec-
tivity, online arithmetic.

1 Introduction

Since the inception of computers, the progress of many scientific fields has be-
come more and more dependent on computer technology advances. As a matter
of fact, scientific and engineering computing raise an increasing reliability de-
mand according to the complexity growth of mathematical and physical models.
A remarkable example is the field of Physical Oceanography, in which the con-
tinuous growth of computing power provides the means to better understand the
ocean by combining theory and observations with computer models. Therefore,
in this field new computer science paradigms are demanded [15]. In this context,
advances in Computable Analysis allow for dealing with the computability and
complexity issues and then guarantee the reliability in software development [17].

Some researchers have focused their efforts on the development of specialized
software libraries for reliable scientific computing [9]. The IRRAM C++, devel-
oped by N. Müller, has shown to be one of the most successful approaches [3].
The interest of these software libraries is motivated by the lack of reliability of
the IEEE754/854 floating point standard hardware support for scientific com-
puting applications [14] [16]. An attempt to introduce a better standard based
on Interval Arithmetic did not success due to both commercial and theoretical
reasons, which led to its rejection [12]. Despite these drawbacks, a recent review
by J. Blanck for exact real arithmetic with centred intervals [4] has being done.

Within all the approaches to exact real arithmetic, we claim that signed digit
arithmetic resembles an interesting approach [2] as a conceptual convergence

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 218–227, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Algebraic Model of an Arithmetic Unit 219

between two paradigms which belong to two different Computer Science fields
can be realized: Type-2 Theory of Effectivity (TTE) [17], in Computable Anal-
ysis, and online arithmetic [7], in Computer Arithmetic. The former, developed
by Klaus Weihrauch, bases some computable representations of real numbers on
signed digit representations of rational and real numbers which, at the same time,
establish the basis for higher abstraction level representations such as common
computable spaces of functions. The latter, developed by Trivedi and Ercegovac,
deals with the hardware implementation of digit-serial left-to-right (online or
Most Significant Bit First) arithmetic operators for signed digit numbers, whose
operation dynamics resembles that of the Turing Machine model.

Finally, we summarize some previous work in VLSI design. Within the theo-
retical research in formal methods, algebraic models for specifying and verifying
processors is being consolidated [10] [8] [11]. Complementarily, advances in VLSI
and ULSI integration methods for memory technologies provide novel applica-
tions [13]. Also, the well known memory growth trend in the whole memory
hierarchy of computer systems can still be realized as time goes by [5]. Finally,
we remark an interesting processor technology trend based on the hybrid chip
approach [1] which deals with the development of conventional processors which
also embed Field Programmable Gate Array (FPGA) capabilities. This particu-
lar approach explores the possibilities of specialized hardware support embedded
in conventional processors for end user applications, keeping the low cost advan-
tages stemming from high scale manufacturing processes.

From the point of view of Computer Architecture, correctness and computabil-
ity criteria are conventionally considered hardly applicable issues due to the
limited utility of mathematical processor models and the inherent limited na-
ture of physical hardware resources, respectively. Nevertheless, we consider that
the technology advances analyzed motivate the introduction of paradigms of
correctness and computability for designing an arithmetic unit devoted to basic
arithmetic operations with TTE-computable signed digit rational numbers. This
research extends [6] by exploiting the conceptual connection between TTE and
online arithmetic in order to design an arithmetic unit for the operations of ad-
dition, multiplication and division, under the scope of the Fox-Harman-Tucker
algebraic models of processors.

The paper is organized in the following sections: after the introduction, a nor-
malized signed digit representation for non periodic normalized rational numbers
is introduced; the connection between TTE and online arithmetic is analyzed in
Section 3 and the arithmetic unit algebraic specification is developed in Section 4.
Finally, Section 5 summarizes the conclusions drawn from this research.

2 Computable Normalized Rational Number Signed
Digit Notation

Let Σ = {1, 0, 1} be a finite set. Let Σ∗ and Σw denote the sets of finite
and infinite sequences over Σ, respectively. We always assume that there ex-
ists an element # /∈ Σ and denote Σ# := Σ ∪ {#}. Let ιw : Σ∗ → Σ∗

be a

220 G. de Miguel Casado, J.M. Garćıa Chamizo, and M.T. Signes Pont

wrapping function that assigns to a word u = u0 . . . uk ∈ Σ∗ with u0 . . . uk ∈ Σ
and k ∈ N the word ιw(u) := ##u0#u1#...#uk## and let ιu : Σ∗

→ Σ∗ be
the corresponding unwrapping function that obtains from a word v ∈ Σ∗

the
word ιu(v) := w with w = w0 . . . wk ∈ Σ∗, and k ∈ N. Define the standard repre-
sentations in TTE of the natural and rational numbers as νN and νZ, respectively
as in [17, Def. 3.1.2]. Define the unpacking function s : Σ∗

→ Σ∗ × Σ∗ such as
for a word w = uv and w, u, v ∈ Σ∗

:

s (w) = s(uv) := {(ιu (u) , ιu (v)) | u � w and v is a suffix of w} . (1)

Define the count function c : dom (νsd) → dom (νN) , which outputs a natural
number corresponding to the position of the dot ” � ” in the input word. If the
dot ” � ” is not found, then the function outputs the length of the word.

Define the function a : Σ∗ × dom (ν
N
) → Σ∗ × dom(νZ) which removes the

0s at the beginning of an input string u ∈ Σ∗ and successively decrements the
input n ∈ dom (νN). This function outputs the remaining string m ∈ Σ∗ and the
decremented input n, which can be negative (z ∈ dom (νZ)).

Finally, define the function i : Σ∗ × dom (νZ) → dom (νsd) as

i (u, z) :=

⎧
⎨

⎩

0 � {0}z
u if z − 1 ≤ 0,

u0 . . . uz−1 � uz . . . uk if 0 < z − 1 < νZ (k) ,

u0 . . . u � {0}z−νZ(k)−1 if z − 1 ≥ νZ (k) ,

(2)

where u = u0 . . . uk ∈ Σ∗, z ∈ dom (νZ) and k ∈ N.
Now, a normalized notation νnsd is introduced in order to codify names of non

periodic rational numbers with exponent e ∈ Z and mantissa m ∈ Q by using
the notation νsd [17, Def. 7.2.4]. This notation νnsd aims for simplifying both the
hardware design of the arithmetic operators and final data memory packaging
and storage. In addition, in order to match both real circuit design and data
memory storage, the proposed representation has to be finally split into positive
and negative parts by translating both into the standard νb,2 notation, as it will
be shown in Section 4.

νexp
sd :⊂ Σ∗ −→ Z,

dom (νexp
sd) :=

⎧
⎨

⎩

all an . . . a0 ∈ Σ∗ for n ≥ 0,
ai ∈ Σ for i ≤ n,
an 	= 0, if n ≥ 0 and anan−1 /∈

{
11, 11

}
, if n ≥ 1,

νexp
sd (an . . . a0) := ρsd (an . . . a00w) .

νman
sd :⊂ Σ∗ −→ Q,

dom (νman
sd) := {u � v | u = 0, v ∈ Σ∗, u � v0w ∈ dom(ρsd)} ,

νman
sd (u � v) := ρsd (u � v0w) .

(3)

νnsd :⊂ Σ∗ −→ Q,
dom(νnsd) := {ιw(e)ιw(m)| e ∈ dom (νexp

sd) , m ∈ dom(νman
sd)} ,

νnsd (uv) := νsd (e · m) with e = ιu (u) and m = 0 � ιu (v) .
(4)

Algebraic Model of an Arithmetic Unit 221

Theorem 1. The notation νnsd induces the same concept of computability than
the standard notation νsd (νnsd ≡ νsd)

Proof. (νsd ≤ νnsd). The translation from νsd notation into νnsd notation can
be achieved using TTE-computable string manipulation functions:

1. Count the number of positions from the beginning of the string until the dot
character “ � ” is found with the function c : dom (νsd) → dom (νN). This will
provide the initial exponent.

2. Remove the dot character “ � ” from the string and then remove the 0s at
the beginning of it. At the same time, while removing the 0s, successively
decrement the exponent by applying the function a : Σ∗ ×dom(ν

N
) → Σ∗ ×

dom (νZ). The mantissa and the exponent at the output are the remaining
chunk of the string and the decremented exponent, respectively.

3. Apply the wrapping function in order to wrap the exponent and the mantissa:
ιw(e) := u = ##e0#e1#...#ek##,
ιw(m) := v = ##m0#m1#...#mk##,
and then concatenate u and v such as w = uv ∈ dom (νnsd) .

Proof. (νnsd ≤ νsd). The translation of the νnsd notation into νsd notation can
be obtained by using TTE-computable string manipulation functions:

1. Apply the search function s : Σ∗
→ Σ∗ × Σ∗ to obtain the unwrapped

exponent u and the mantissa v : s (w) = (ιu (x) , ιu (y)) , with x, y, w ∈ Σ∗
#

and then u = ιu (x) and v = ιu (y) .
2. Adjust the exponent by applying the function v = i (u, z) , v ∈ dom(νsd) , u ∈

Σ∗ and z ∈ dom(νZ) .

Then, as νsd is reducible to νnsd (νsd ≤ νnsd) and also νnsd is reducible to νsd

(νnsd ≤ νsd) it can be concluded that νnsd is equivalent to νsd (νnsd ≡ νsd).

3 TTE and Online Arithmetic

Digit-serial arithmetic deals with numerical value operations with digit vectors
applied at the input and delivered at the output one digit at a time (serially)
so that all the digits of the same numerical operand/results share the same
digit lines. The main benefit of this approach is the reduction of the number of
signal lines connecting modules and the simplification of their interfaces, since
these connections and interfaces influence both area an energy dissipation. The
drawback is the time (number of cycles) required to receive the inputs and to
deliver the results. Nevertheless, this delay can be compensated by overlapping
the execution of successive operations (even if dependent), since the succes-
sor operation can begin when a few digits of the operands have been received
[7, Chap. 9].

In this section the general approach to online algorithm design is first intro-
duced and then the key ideas of the algorithms for the addition/subtraction,
multiplication and division are commented.

222 G. de Miguel Casado, J.M. Garćıa Chamizo, and M.T. Signes Pont

3.1 The Method for Online Algorithm Design

In the Most Significant Digit First (MSDF) serial mode operation or online
arithmetic the total execution time is the sum of two components: the online
delay δ, which corresponds to the additional number of operand digits required
to determine the first result digit and the time to deliver the n output digits (n
cycles for an output of n digits). Therefore, the execution time is Tn = δ +1+n.

The general method for designing online algorithms consists in two parts:

1. Obtain the recurrence equation on the residual (internal state) wj+1 ∈
dom (νnsd) .

2. Obtain the result at a given iteration zj+1 ∈ dom (νnsd).

Let g : dom(νnsd) × dom(νnsd) × Σ × dom(νnsd) × Σ × dom(νnsd) × Σ →
dom (νnsd) and let f :dom (νnsd)×dom(νnsd)×Σ×dom(νnsd)×Σ×dom(νnsd)→
dom (νnsd) be computable functions such as

wj+1 := g (wj , xj , xj,j+1+δ , yj, yj,j+1+δ, zj , zj,j+1) , (5)
zj+1 := f (wj , xj , xj,j+1+δ , yj, yj,j+1+δ, zj) , (6)

for −δ ≤ j ≤ n − 1, δ, j ∈ dom (νZ) and n − 1 ∈ dom(νN) .
In the former equations xj , yj ∈ dom (νnsd)are the input operands, xj,j+1+δ ,

yj,j+1+δ ∈ Σ are the signed digit digits j + 1 + δ of the input operands xj , yj

in the position j + 1 + δ, zj ∈ dom (νnsd) is the result at the iteration step j,
zj ∈ dom (νnsd) is the result and zj,j+1+δ ∈ Σ is the signed digit of the result zj

in the position j + 1 + δ at the iteration step j.
The computability of the algorithm is absolutely concerned with the possi-

bility to reduce the recurrence equation on the residual to additions and shifts.
The proof is omitted due to space constraints.

3.2 Computable Algorithms for Addition, Subtraction,
Multiplication and Division

The algorithms for addition/subtraction, multiplication and division have as
keystone modules the signed digit adder and the bit shift register. These have
being programmed with Visual Basic .NET for supporting calculation procedures
in physical oceanography models, such as numerical approximation of integrals
[6]. As the software library has implemented as a test bench for a later hardware
implementation, it has not being optimized for a particular commercial processor
and then the abstraction of the functions has being done by matching final
arithmetic hardware modules, as far as possible. This library uses the .NET
link technology for connecting to the Mathematica kernel so that to handle
numerical values from complex functions, managing graphics and perform error
comparisons with IEEE 754/854 format.

Algebraic Model of an Arithmetic Unit 223

4 Specification of the Arithmetic Unit

This section first introduces a functional specification of the arithmetic unit and
then develops a part of the algebraic specification at programmer’s level. Finally,
the data memory packaging scheme of the normalized rational numbers and the
set of memory mapping functions for the representation νnsd is provided.

4.1 Functional Specification

The arithmetic unit (AU) for arithmetic operations with the representation νnsd

(Figure 1) consists of the following modules: the AU controller, the μInstruction
Encoder, the cache memory and the arithmetic modules for signed digit addition,
signed digit complement (not), shift, comparison, normalization and canonical
signed digit recoding. The AU controller manages the virtual digit serial cir-
cuits (datapath) according to specific programs of μInstructions for the addition,
subtraction, multiplication and division operations. The μInstruction Encoder
translates the high abstraction level arithmetic operations into simpler machine
instructions, which are associated to the datapath management of the virtual
digit serial circuits related to the arithmetic operations. The AU controller also
manages a bank or arithmetic registers and a cache memory for speeding up
internal operations by reducing the number of accesses to the main memory. It
also interfaces the CPU and the main memory system for loading and storing
operands as well as partial and final results of the operations.

The instruction set of the processor consists of two management instruction
and five arithmetic operations:

– Status request(): Idle∨Busy∨Error(1). Provides the status of the processor:
Idle or Busy.

– Halt(): Ack∨OPs∨Error(2) This is an instruction with priority for stopping
the AU. It returns the number of operations done.

– Add(addRA, lPrec, hPrec,addA, addB, addR):Ack∨OPs∨Error(3).
– Sub(addRA, lPrec, hPrec,addA, addB, addR):Ack∨OPs∨Error(4).
– Mul(addRA, lPrec, hPrec,addA, addB, addR):Ack∨OPs∨Error(5).
– Div(addRA, lPrec, hPrec,addA, addB, addR):Ack∨OPs∨Error(6).
– Not(addRA, lPrec, hPrec,addA, addB, addR):Ack∨OPs∨Error(7).

The arithmetic operations return Ack (acknowledgement) when completed
or the number of operations performed when the operation is halted.

According to estimations done with a register transfer algorithmic approach,
a μinstruction counter AUIC and a the following banks of are needed:

– Configuration Registers (CR): LP and HP (precision bounds).
– Base-Address Registers (BA): AA ←addA, AB ←addB, AC ←addC.
– Status Registers (SR): CS for the current status of the AU, μCI for the

current μinstruction, OR for result storage, RA result storage address, OC
for operation counter.

– Arithmetic Registers (AR). Provide arithmetic support (16 registers, accord-
ing to a register-to-register algorithmic approach for the operations).

224 G. de Miguel Casado, J.M. Garćıa Chamizo, and M.T. Signes Pont

Fig. 1. Arithmetic Unit schematic and connection with the system bus

4.2 Algebraic Specification: Programmer’s Level

By introducing an algebraic model for the arithmetic unit formal behavior meth-
ods over time and data representation as well as operations can be isolated. In
this section, an algebraic specification of the arithmetic unit at programmer’s
level is developed following [10]. The instruction delay is chosen as abstract
system clock T .

The next subsection develops the state and the next-state algebras. The ma-
chine algebra and the next-state and output functions are omitted due to space
constraints.

The State and Next-State Algebras. The arithmetic unit state consists of
the μinstruction counter AUIC, the register banks CR, BA, SR, AR, the cache
and the main memory system. The register AUCI holds the instruction ad-
dressed by the CPU. The μinstruction memory μIM , cache CM and data mem-
ory DM are modeled as a mapping of a subset of the natural numbers into the
binary numbers: μIM, CM, DM :⊆ N×B2, N ⊆ dom(νN) and B2 ⊆ dom (νb,2).
Notice that the address space DM holds the addresses of the operands and the
result of the operation.

The state of the machine is defined by:

Cc = AUIC × CR × BA × SR × AR × Mem, (7)

where Mem = AUIC −→ CM ∪ DM.
There are 5 inputs with the corresponding outputs:

IIn = {Status request(),Halt(), Add(), Sub(), Mul(), Div(), Not()}, (8)

IOut = {Idle ∨ Busy ∨ Error(1), Ack ∨ OPs ∨ Error(2),
Ack ∨ OPs ∨ Error(3), Ack ∨ OPs ∨ Error(4), Ack ∨ OPs ∨ Error(5),
Ack ∨ OPs ∨ Error(6), Ack ∨ OPs ∨ Error(7)}.

(9)

Algebraic Model of an Arithmetic Unit 225

Therefore, the input and output of the arithmetic unit at time t ∈ T are

In = IIn × AUIC, (10)

Out = IOut × AUCI × Mem, (11)

where an instruction is input in AUCI as a request from the CPU. The current
μinstruction register SR.μCI is updated during the arithmetic operation until
the output of the machine is stored in the main memory.

The state algebra can be expressed as:

Algebra Arithmetic Unit State
Sets T, Cc, In, Out, [T −→ In]
Operations CC : T × Cc × [T −→ In] −→ Cc × Out
End Algebra

CC is defined as:

CC1 (0, g, i) = g,
CC1 (t + 1, g, i) = cc (CC1 (t, g, i) , i (t)) ,
CC2 (0, g, i) = out (CC1 (t, g, i)) ,

(12)

where cc : Cc × In −→ Cc is the next-state function, and out : Cc −→ Out is
the output function.

Hence, the next-state algebra is defined as:

Algebra Arithmetic Unit Next-State
Sets T, Cc, In, Out, [T −→ In]
Constants 0 : T
Operations

t + 1 : T −→ T
cc : Cc × In −→ Cc
out : Cc −→ Out
eval : T × [T −→ In] −→ In

End Algebra

The stream evaluation function eval : T × [T −→ In] −→ In, eval (t, i) to
it (t), is defined by primitive recursive equations over the next-state algebra.

4.3 Data Memory Organization

A realistic memory organization can be achieved by introducing indirect address-
ing for a flexible mapping process. Figure 2 shows a memory mapping example
of a signed digit normalized rational number (exponent and mantissa) and its
memory packaging (right-to-left and left-to-right data, respectively).

The storage in memory of source and result values can be done by mapping
every value u ∈ dom (νnsd) into a memory designed as an address space M :⊆
N × B2, N ⊆ dom(νN) and B2 ⊆ dom (νb,2). This implies splitting each signed
digit value into positive and negative and parts.

Two functions pAddr nrm, pAddr val are proposed for the memory mapping
process. Their detailed definition is omitted due to space constraints.

226 G. de Miguel Casado, J.M. Garćıa Chamizo, and M.T. Signes Pont

Fig. 2. Memory mapping and data packaging for the νnsd representation

pAddr nrm maps the number of addresses of the exponent and mantissa as well
as the initial addresses of their values.

pAddr val maps the positive or negative part of a signed digit number in binary
notation into a memory position.

5 Conclusions

An arithmetic unit devoted to the operation with a signed digit TTE represen-
tation for normalized rational numbers has being presented. The specification
of the arithmetic unit has being done under the scope of the algebraic proces-
sor specification model of Fox, Harman and Tucker. By establishing a relation-
ship between a generalization of the method for developing online algorithms in
Computer Architecture and TTE, the computable arithmetic operators for ad-
dition/subtraction, multiplication and division have being analyzed. This result
establishes bounds for the requirements of Type-2 Turing Machines in terms of
the working tapes, with fixed time delays of operation for the arithmetic oper-
ators analyzed. Finally, the algebraic model of the arithmetic unit provides a
formal framework for its description and verification and also helps in filling the
gap between the TTE model and a feasible VLSI design.

As future work, the whole specification process, including the abstract circuit
level and the verification sketch, and a VHDL prototype for the arithmetic unit
presented are going to be developed.

References

1. Andrews, D., Sass, R., Anderson, E., Agron, J., Peck, W., Stevens, J., Baijot,
F., Komp, E.: The Case for High Level Programming Models for Reconfigurable
Computers. Proc. of the 2006 International Conference on Engineering of Recon-
figurable Systems & Algorithms, pp. 21–32 (2006)

2. Avizienis, A.: Signed-digit number representations for fast parallel arithmetic. IRE
Trans. Electronic Computers 10, 389–400 (1961)

Algebraic Model of an Arithmetic Unit 227

3. Blanck, J.: Exact real arithmetic systems: Results of competition, Computability
and Complexity in Analysis. In: Blank, J., Brattka, V., Hertling, P. (eds.) CCA
2000. LNCS, vol. 2064, pp. 390–394. Springer, Heidelberg (2001)

4. Blanck, J.: Exact real arithmetic using centred intervals and bounded error terms.
Journal of Logic and Algebraic Programming 66, 207–240 (2006)

5. Borkar, S.: Getting Gigascale Chips: Challenges and Opportunities in Continuing
Moore’s Law. ACM Queue 1(7), 26–33 (2003)

6. de Miguel Casado, G., Garćıa Chamizo, J.M.: The Role of Algebraic Models and
Type-2 Theory of Effectivity in Special Purpose Processor Design. In: Beckmann,
A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp.
137–146. Springer, Heidelberg (2006)

7. Ercegovac, M.D., Lang, T.: Digital Arithmetic. M. Kaufmann, Seattle (2004)
8. Fox, A.C.J., Harman, N.A.: Algebraic Models of Correctness for Abstract Pipelines.

The. Journal of Algebraic and Logic Programming 57(1-2), 71–107 (2003)
9. Gowland, P., Lester, D.: A Survey of Exact Arithmetic Implementations. In: Blank,

J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 30–47. Springer,
Heidelberg (2001)

10. Harman, N.A., Tucker, J.V.: Algebraic models of microprocessors: the verifica-
tion of a simple computer. In: Stravridou, V. (ed.) Mathematics of Dependable
Systems II. Oxford: Clarendon Press, pp. 135–170. Oxford University Press, New
York (1997)

11. Harman, N.A.: Models of Timing Abstraction in Simultaneous Multithreaded and
Multi-Core Processors, Logical Approaches to Computational Barriers, Report Se-
ries, vol. CSR 7-2006, pp. 129–139 (2006)

12. Hayes, B.: A Lucid Interval. American Scientist 91, 484–488 (2003)
13. ISSCC Roundtable: Embedded Memories for the Future, IEEE Design and Test of

Computers, vol. 20, pp. 66–81 (2003)
14. Lynch, T., Schulte, M.: A High Radix On-line Arithmetic for Credible and Accurate

Computing. Journal of UCS 1, 439–453 (1995)
15. Post, D.E., Votta, L.G.: Computational science demands a new paradigm. Physics

today 58(1), 35–41 (2005)
16. Schröder, M.: Admissible Representations in Computable Analysis. In: Calamoneri,

T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 471–480.
Springer, Heidelberg (2006)

17. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)

Feasible Depth

David Doty1,� and Philippe Moser2,��

1 Department of Computer Science, Iowa State University, Ames, IA 50011, USA
ddoty@iastate.edu

2 Dept de Informática e Ingenieŕıa de Sistemas, Centro Politécnico Superior,
Zaragoza, Spain

mosersan@gmail.com

Abstract. This paper introduces two complexity-theoretic formulations
of Bennett’s logical depth: finite-state depth and polynomial-time depth.
It is shown that for both formulations, trivial and random infinite se-
quences are shallow, and a slow growth law holds, implying that deep
sequences cannot be created easily from shallow sequences. Furthermore,
the E analogue of the halting language is shown to be polynomial-time
deep, by proving a more general result: every language to which a non-
negligible subset of E can be reduced in uniform exponential time is
polynomial-time deep.

Keywords: dimension, depth, randomness, polynomial-time, finite-state.

1 Introduction

Whereas many structures found in nature are highly complex (a DNA sequence,
a cell), some seem much simpler, either because of their complete regularity
(ice), or their complete randomness (gas). Bennett introduced logical depth [3]
to formalize computationally the difference between complex and non-complex
(trivial or random) structures. Briefly, a logically deep object is one with a
shorter description than itself, but which requires a long time to compute from
this short description.

Depth is not a measure of information contained in an object, which corre-
lates with randomness, but rather its value, or its useful information content.
According to classical [18] or algorithmic information theory [14], the informa-
tion content of a sequence is not representative of its value. Consider an infinite
binary sequence produced by random coin tosses. Although the sequence con-
tains a large amount of information in the sense that, with probability 1, it
cannot be significantly compressed, its information is not of much value, except

� Corresponding author. This author was partially supported by grant number 9972653
from the National Science Foundation as part of their Integrative Graduate Educa-
tion and Research Traineeship (IGERT) program.

�� This author was partially supported by subvenciones para grupos de investigación
Gobierno de Aragón UZ-T27 and subvenciones de fomento de movilidad Gobierno
de Aragón MI31/2005.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 228–237, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Feasible Depth 229

as a source of input to randomized algorithms. Contrast this with the character-
istic sequence of the halting language, access to which enables any computably
enumerable language to be decided in linear time. From this perspective, the
halting sequence is much more useful than a randomly generated sequence.

Bennett’s logical depth separates the sequences that are deep (i.e., that show
high internal organization) from those that are shallow (i.e., not deep). Infor-
mally, deep sequences are those which contain redundancy, but in such a way
that an algorithm requires extensive resources to exploit the redundancy (for in-
stance, to compress or to predict the sequence). In other words, deep sequences
are organized, but in a nontrivial way. Highly redundant sequences like 00000...
are shallow, because they are trivially organized. Random sequences are shallow,
because they are completely unorganized. One of the key features of Bennett’s
logical depth is that it obeys a slow growth law [3,11]: no fast process can trans-
form a shallow sequence into a deep one. Therefore a deep object can be created
only through a complex, time-consuming process.

Bennett [3] showed that the halting language is deep, arguing that its depth
was evidence of its usefulness. Juedes, Lathrop, and Lutz [11] generalized this
result and solidified the connection between usefulness and depth by proving
that every weakly useful language [8] is deep, where a weakly useful language is
one to which a nonnegligible subset of the decidable languages (in the sense of
resource-bounded measure theory [15]) reduce in a fixed computable time bound.

Unfortunately, because it is based on Kolmogorov complexity, Bennett’s logi-
cal depth is not computable. Lathrop and Lutz [13] investigated recursive com-
putational depth, which is computable, but not within any feasible time scale.
Antunes, Fortnow, van Melkebeek, and Vinodchandran [1] investigated several
polynomial-time formulations of depth as instances of the more general concept
of computational depth obtained by considering the difference between variants
of Kolmogorov complexity. Deep and intriguing connections were demonstrated
between depth and average-case complexity, nonuniform circuit complexity, and
efficient search for satisfying assignments to Boolean formulas. Nevertheless,
some of the depth notions in [1] require complexity assumptions to prove the ex-
istence of deep sequences, and not all the depth notions obey slow growth laws.
Furthermore, [1] lacks a polynomial-time analogue of the Juedes-Lathrop-Lutz
theorem demonstrating that useful objects are necessarily deep.

The aim of this paper is to propose a feasible depth notion that satisfies a
slow growth law and in which deep sequences can be proven to exist. We propose
two such notions: finite-state depth, and polynomial-time depth. Furthermore,
we connect polynomial-time depth to usefulness in deciding languages in the
complexity class E. In both cases, the definition of depth intuitively reflects that
of Bennett’s logical depth: a sequence is deep if it is redundant, but an algorithm
requires extensive resources in order to exploit the redundancy.

Our formulation of finite-state depth is based on the classical model of finite-
state compressors and decompressors introduced by Shannon [18] and inves-
tigated by Huffman [10] and Ziv and Lempel [20]. Informally, a sequence is
finite-state deep if given more states, a finite-state machine can decompress the

230 D. Doty and P. Moser

sequence from an input significantly shorter than is possible with fewer states. We
show that both finite-state trivial sequences (sequences with finite-state strong
dimension [2] equal to 0) and finite-state random sequences (those with finite-
state dimension [6] equal to 1, or equivalently normal sequences [4]) are shallow.
Our main result in this section shows that finite-state depth obeys a slow growth
law: no information lossless finite-state transducer can transform a finite-state
shallow sequence into a finite-state deep sequence. We conclude the section by
proving the existence of finite-state deep sequences.

Our formulation of polynomial-time depth – contrary to finite-state depth – is
not based on compression algorithms but on polynomial-time oblivious predictors.
Given a language L, a polynomial-time oblivious predictor is a polynomial-time
computable function that, given an input stringx, predicts the probability thatx ∈
L. Informally, L is polynomial-time deep if, given more time, a predictor is better
able to predict membership of strings in L. We show that both E-trivial languages
(languages in the complexity classE) andE-random languages are polynomial-time
shallow. Our main results in this section are a slow growth law similar to that for
finite-state depth and logical depth, and a theoremstating that any languagewhich
is “useful” for quickly deciding languages in E must be polynomial-time deep. It
follows that HE, the E version of the halting language, is polynomial-time deep.

2 Preliminaries

N is the set of all nonnegative integers. A (finite) string is an element of {0, 1}∗.
An (infinite) sequence is an element of the Cantor space C = {0, 1}∞. For a
string or sequence S and i, j ∈ N, S[i . . j] denotes the substring consisting of the
ith through the jth bits of S, inclusive, and S � n denotes S[0 . . n − 1]. For a
string x and a string or sequence S, we write x � S to denote that x = S � n for
some n ∈ N. For a string x, its length is denoted by |x|. s0, s1, s2 . . . denotes the
standard enumeration of the strings in {0, 1}∗ in lexicographical order, where
s0 = λ denotes the empty string. If x, y are strings, we write x < y if |x| < |y|
or |x| = |y| and x precedes y in alphabetical order, and x ≤ y if x < y or x = y.

A language is a subset of {0, 1}∗. A class is a set of languages. The character-
istic sequence of a language L is the sequence χL ∈ {0, 1}∞, whose nth bit is 1
if and only if sn ∈ L. Because L �→ χL is a bijection, we will often speak of lan-
guages and sequences interchangeably, with it understood that the “sequence”
L refers to χL, and the “language” χL refers to L. Let E =

⋃
c∈N

DTIME(2cn)
and EXP =

⋃
c∈N

DTIME(2nc

).
Let i ≤ j ∈ N. The ith projection function proji : ({0, 1}∗)j → {0, 1}∗, is

given by proji(x1, . . . , xj) = xi.

3 Finite-State Depth

3.1 Finite-State Compression

We use a model of finite-state compressors and decompressors based on finite-
state transducers, which was introduced in a similar form by Shannon [18] and

Feasible Depth 231

investigated by Huffman [10] and Ziv and Lempel [20]. Kohavi [12] gives an
extensive treatment of the subject.

A finite-state transducer (FST) is a 4-tuple T = (Q, δ, ν, q0), where

– Q is a nonempty, finite set of states,
– δ : Q × {0, 1} → Q is the transition function,
– ν : Q × {0, 1} → {0, 1}∗ is the output function,
– q0 ∈ Q is the initial state.

Furthermore, we assume that every state in Q is reachable from q0.
For all x ∈ {0, 1}∗ and a ∈ {0, 1}, define the extended transition function δ̂ :

{0, 1}∗ → Q by the recursion δ̂(λ) = q0, and δ̂(xa) = δ(δ̂(x), a). For x ∈ {0, 1}∗,
we define the output of T on x to be the string T (x) defined by the recursion
T (λ) = λ, and T (xa) = T (x)ν(δ̂(x), a) for all x ∈ {0, 1}∗ and a ∈ {0, 1}.

A FST can trivially act as an “optimal compressor” by outputting λ on every
transition arrow, but this is, of course, a useless compressor, because the input
cannot be recovered. A FST T = (Q, δ, ν, q0) is information lossless (IL) if the
function x �→ (T (x), δ̂(x)) is one-to-one; i.e., if the output and final state of T
on input x ∈ {0, 1}∗ uniquely identify x. An information lossless finite-state
transducer (ILFST) is a FST that is IL. We write FST to denote the set of all
finite-state transducers, and we write ILFST to denote the set of all information
lossless finite-state transducers. We say f : {0, 1}∞ → {0, 1}∞ is FS computable
(resp. ILFS computable) if there is a FST (resp. ILFST) T such that, for all
S ∈ {0, 1}∞, lim

n→∞ |T (S � n)| = ∞ and, for all n ∈ N, T (S � n) � f(S). In this

case, define T (S) = f(S).
The following well-known theorem [10,12] states that the function from {0, 1}∗

to {0, 1}∗ computed by an ILFST can be inverted – in an approximate sense –
by another ILFST.

Theorem 3.1. For any ILFST T , there exists an ILFST T−1 and a constant
c ∈ N such that, for all x ∈ {0, 1}∗, x � (|x| − c) � T−1(T (x)) � x.

Corollary 3.2. For any ILFST T , there exists an ILFST T−1 such that, for all
sequences S, T−1(T (S)) = S.

Fix some standard binary representation σT ∈ {0, 1}∗ of each FST T , and define
|T | = |σT |. For all k ∈ N, define

FST≤k = {T ∈ FST : |T | ≤ k},

ILFST≤k = {T ∈ ILFST : |T | ≤ k}.

Let k ∈ N and x ∈ {0, 1}∗. The k-FS decompression complexity (or when k is
clear from context, FS complexity) of x is

Dk
FS(x) = min

p∈{0,1}∗

{
|p|

∣
∣∣ (∃T ∈ FST≤k) T (p) = x

}
,

i.e., the size of the smallest program p ∈ {0, 1}∗ such that some k-bit FST
outputs x on input p.

232 D. Doty and P. Moser

For a fixed k, Dk
FS is a finite state analogue of Kolmogorov complexity. For

any sequence S, define the finite-state dimension of S by

dimFS(S) = lim
k→∞

lim inf
n→∞

Dk
FS(S � n)

n
, (3.1)

and the finite-state strong dimension of S by

DimFS(S) = lim
k→∞

lim sup
n→∞

Dk
FS(S � n)

n
. (3.2)

Finite-state dimension and strong dimension measure the degree of finite-
state randomness of a sequence. The above definitions are equivalent [19, 7] to
several other definitions of finite-state dimension and strong dimension in terms
of finite-state gamblers [6,2], entropy rates [20,5], information lossless finite-state
compressors [20, 6, 2], and finite-state log-loss predictors [9].

Schnorr and Stimm [17] (and more explicitly, Bourke, Hitchcock, and Vinod-
chandran [5]) showed that a sequence has finite-state dimension 1 if and only if
it is normal in the sense of Borel [4], meaning that for all k ∈ N, every substring
of length k occurs in S with limiting frequency 2−k.

3.2 Finite-State Depth

Intuitively, a sequence is finite-state deep if a finite state transducer, given ad-
ditional states (or more accurately, additional bits with which to represent the
transducer), can decompress the sequence from a significantly shorter input.

Definition 3.3. A sequence S is finite-state deep if

(∃α > 0)(∀k ∈ N)(∃k′ ∈ N)(∃∞n ∈ N) Dk
FS(S � n) − Dk′

FS(S � n) ≥ αn.

A sequence S is finite-state shallow if it is not finite-state deep.

Remark. All results in this section remain true if the quantification in the def-
inition of finite-state depth is changed to

(∀k ∈ N)(∃α > 0)(∃k′ ∈ N)(∃∞n ∈ N) Dk
FS(S � n) − Dk′

FS(S � n) ≥ αn.

Note that any sequence deep by the former definition must be deep by the latter
definition.

Finite-state trivial and finite-state random sequences are finite-state shallow.

Proposition 3.4. Let S ∈ C.

1. If DimFS(S) = 0, then S is finite-state shallow.
2. If S is normal (i.e., if dimFS(S) = 1), then S is finite-state shallow.

Finite-state deep sequences cannot be created easily, as the following theorem
shows. More precisely, no ILFST can transform a finite-state shallow sequence
into a finite-state deep sequence.

Feasible Depth 233

Theorem 3.5 (Finite-state slow growth law). Let S be any sequence, let
f : {0, 1}∞ → {0, 1}∞ be ILFS computable, and let S′ = f(S). If S′ is finite-state
deep, then S is finite-state deep.

Theorem 3.6. There exists a finite-state deep sequence.

4 Polynomial-Time Depth

Because the time bound defining polynomial-time depth is in terms of the char-
acteristic sequence of a language, we focus on the class E of languages decidable
in time 2c|sn| for a fixed c ∈ N, or equivalently, nc, where n is the length of the
characteristic sequence of a language up to the string sn.

4.1 Measure in E

We use Lutz’s measure theory for the complexity class E, which we now briefly
describe. See [16] for more details.

Measure on E is obtained by imposing appropriate resource bounds on a game
theoretical characterization of the classical Lebesgue measure of subsets of C. A
martingale is a function d : {0, 1}∗ → [0, ∞) such that, for every w ∈ {0, 1}∗,

d(w) =
d(w0) + d(w1)

2
.

We say that a martingale d succeeds on a language L if lim supn→∞ d(L � n) =
∞. Intuitively, d is a gambler that bets money on each successive bit of χL,
doubling the money bet on the bit that occurs, and losing the rest. It succeeds
by making unbounded money.

A class of languages C has p-measure zero, and we write μp(C) = 0, if there
is a polynomial-time computable martingale that succeeds on every language
in C. C has measure zero in E, denoted μ (C|E) = 0, if C ∩ E has p-measure
zero. A class C has p-measure one, denoted μp(C) = 1, if C has p-measure zero,
where C denotes the complement of C, and C has measure one in E, denoted
μ (C|E) = 1, if E−C has p-measure zero. We say that a language L is E-random
if the singleton {L} does not have p-measure zero.

Measure in E yields a size notion on the class E similar to Lebesgue measure
on the Cantor space. Subsets of E that have p-measure zero are then “small
subsets of E”; for example, the singleton set {L} for any L ∈ E. E, being the
largest subset of itself, has p-measure one.

4.2 Polynomial-Time Depth

This section proposes a variation of depth based on polynomial-time oblivious
predictors, which, given a language L, try to predict L[n] (i.e., the membership of
sn in L), without having access to L[0 . . n−1]. This is in contrast to a martingale,
where the bet on L[n] is by definition a function of L[0 . . n − 1]. Intuitively, L is
polynomial-time deep if giving a polynomial-time predictor more time allows it
to predict bits of L with significantly greater accuracy.

234 D. Doty and P. Moser

An oblivious predictor is a function P : {0, 1}∗ × {0, 1} → [0, 1] such that,
for all x ∈ {0, 1}∗, P (x, 0) + P (x, 1) = 1. Intuitively, when trying to predict
a language L, P (x, 1) is the probability with which the predictor predicts that
x ∈ L. To measure how well a predictor P predicts L, we consider its associated
martingale p : {0, 1}∗ → [0, ∞) given by

p(L � n) = 2n
∏

y≤sn

P (y, L(y)).

We shall consider predictors P such that P (sn, b) is computable in time poly-
nomial in n (hence computable in time 2c|sn| for some constant c), and call
such a P a polynomial-time oblivious predictor, and we call the martingale p its
polynomial-time oblivious martingale (pom), with the convention that predictors
are given in uppercase and pom in lowercase.

Definition 4.1. A language L is polynomial-time deep if there exists a > 0
such that, for all pom p, there exists a pom p′ such that, for infinitely many
n ∈ N,

p′(L � n)
p(L � n)

≥ a logn,

with the convention that 1
0 = ∞. L is polynomial-time shallow if it is not

polynomial-time deep.

Languages that are trivial or random for E are polynomial-time shallow.

Proposition 4.2. Let L be a language.

1. If L ∈ E, then L is polynomial-time shallow.
2. If L is E-random, then L is polynomial-time shallow.

4.3 Slow Growth Law

Let f : {0, 1}∗ → {0, 1}∗. We say f is monotone if, for all x, y ∈ {0, 1}∗, x <
y =⇒ f(x) < f(y). Given l : N → N, we say f is l-bounded if, for all x ∈ {0, 1}∗,
|f(x)| ≤ l(|x|). Given two languages L1, L2 and a time bound t : N → N and
length bound l : N → N, we say that L1 is t-time l-bounded monotone many-one
reducible to L2 (abbreviated t-l-M reducible), and we write L1 ≤t,l

M L2, if there is
a Turing machine M computing a monotone, l-bounded reduction f : {0, 1}∗ →
{0, 1}∗ such that, on input sn, M halts in at most t(|sn|) = t(log n) steps and
outputs f(sn) ∈ {0, 1}∗ such that sn ∈ L1 if and only if f(sn) ∈ L2. We say
L1 is E-time linearly bounded monotone many-one reducible to L2 (abbreviated
E-Lb-M reducible), and we write L1 ≤E,Lb

M L2, if there exists c ∈ N such that

L1 ≤2c|sn|,c|sn|
M L2. We follow the convention of letting n refer to the length of a

characteristic sequence, rather than the length of the input string sn. Therefore,
equivalently, L1 ≤nc,nc

M L2; i.e., f(sn) is computable in time nc, and, if m ∈ N is
such that sm = f(sn), then m ≤ nc.

The following result shows that shallow sequences cannot be transformed into
deep ones by simple processes.

Feasible Depth 235

Theorem 4.3 (Polynomial-time slow growth law). Let L1, L2 be languages
such that L1 ≤E,Lb

M L2. If L1 is polynomial-time deep, then L2 is polynomial-time
deep.

4.4 Languages That are Useful for E

In [3] Bennett showed that the halting language is deep, and Juedes, Lath-
rop, and Lutz [11] generalized this result by showing every weakly useful [11, 8]
language is deep. We prove a polynomial-time version of the result of Juedes,
Lathrop, and Lutz, namely, that every E-Lb-M weakly useful language is
polynomial-time deep.

Following the definition of weakly useful languages from [11] and [8], we define
a language L to be E-Lb-M weakly useful if the set of languages in E that are
reducible to L – within a fixed time and length bound – is not small (does
not have measure zero in E). Intuitively, an E-useful language is somewhere
in between an E-hard language and a trivial language, in the sense that the
language does not necessarily enable one to decide all languages in E, but rather
a nonnegligible subset of them. Note, however, that an E-hard (for instance,
under polynomial-time many-one reductions) language may not necessarily be
E-Lb-M weakly useful because of the requirements that an E-Lb-M reduction be
monotone and linearly bounded.

Definition 4.4. A language L is E-Lb-M weakly useful if there is a c ∈ N such
that the set of languages 2c|sn|-c|sn|-M reducible to L does not have measure zero
in E, i.e., if

μ

(
L≥2c|sn|,c|sn|

M

∣
∣
∣
∣E

)
= 0

where
L≥2c|sn|,c|sn|

M =
{

A
∣∣
∣ A ≤2c|sn|,c|sn|

M L
}

.

In other words, a language L is weakly useful if a nonneglible subset of E mono-
tonically many-one reduces to L within a fixed exponential time bound and fixed
linear length bound. An example of an E-Lb-M weakly useful language is the
halting language for E, defined as follows. Fix a standard linear-time computable
invertible encoding of pairs of strings (x, y) �→ 〈x, y〉. Let M1, M2, . . . be an enu-
meration of machines deciding languages in E, where machine Mi runs in time
2i|sn|. The E-halting language is given by HE =

{
〈0i, x〉

∣
∣ Mi accepts x

}
. It is

easy to verify that access to the E-halting language allows one to decide every lan-
guage Li ∈ E, decided by machine Mi, using the 1.01|sn|-time-bounded, 1.01|sn|-
length-bounded, monotone reduction f(x) = 〈0i, x〉; i.e., E ⊆ H

≥1.01|sn|,1.01|sn|
M

E ,
whence HE is E-Lb-M weakly useful.

For every g : N → N and pom p define

Dg
p =

{
L ∈ C

∣
∣∣
∣ (∃ pom p′)(∃∞n ∈ N)

p′(L � n)
p(L � n)

≥ g(n)
}

.

Note that L is polynomial-time deep if and only if there exists a > 0 such that,
for all pom p, L ∈ Da log n

p .

236 D. Doty and P. Moser

Lemma 4.5. For any g : N → N such that g(n) = o(2n) and any pom p,
μ

(
Dg

p

∣∣ E
)

= 1.

Theorem 4.6. Every E-Lb-M weakly useful language is polynomial-time deep.

Corollary 4.7. HE is polynomial-time deep.

Corollary 4.8. No language in E is E-Lb-M weakly useful.

Corollary 4.9. No E-random language is E-Lb-M weakly useful.

No decidable language is deep in the sense of Bennett [3] (see also [11, Corol-
lary 5.7]). However, the halting language H is deep and, while not decidable,
is computably enumerable. Compare this with the fact that Corollary 4.8 (or a
simple diagonalization) implies that HE ∈ E. It is easy to verify, however, HE ∈
DTIME(2|sn|2) ⊆ EXP. Thus, polynomial-time depth mirrors Bennett’s depth in
that E-decidable languages are not polynomial-time deep, but polynomial-time
deep languages can be found “close” to E. Similarly, Lemma 4.5 tells us, in an
analogous fashion to Corollary 5.10 of [11], that “partially deep” sequences can
be found in abundance in E.

References

1. Antunes, L., Fortnow, L., van Melkebeek, D., Vinodchandran, N.: Computational
depth: Concept and applications. Theoretical Computer Science (Special issue for
selected papers from the 14th International Symposium on Fundamentals of Com-
putation Theory) 354(3), 391–404 (2006)

2. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong di-
mension, algorithmic information, and computational complexity. SIAM Journal
on Computing (to appear). Preliminary version appeared in: Diekert, V., Habib,
M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 632–643. Springer, Heidelberg (2004)

3. Bennett, C.H.: Logical depth and physical complexity. In: Herken, R. (ed.) The
Universal Turing Machine: A Half-Century Survey, pp. 227–257. Oxford University
Press, London (1988)

4. Borel, E.: Sur les probabilités dénombrables et leurs applications arithmétiques.
Rendiconti del Circolo Matematico di Palermo 27, 247–271 (1909)

5. Bourke, C., Hitchcock, J.M., Vinodchandran, N.V.: Entropy rates and finite-state
dimension Theoretical Computer Science 349, 392–406 (to appear, 2005)

6. Dai, J.J., Lathrop, J.I., Lutz, J.H., Mayordomo, E.: Finite-state dimension. Theo-
retical Computer Science 310, 1–33 (2004)

7. Doty, D., Moser, P.: Finite-state dimension and lossy decompressors. Technical
Report cs.CC/0609096, Computing Research Repository (2006)

8. Fenner, S.A., Lutz, J.H., Mayordomo, E., Reardon, P.: Weakly useful sequences.
Information and Computation 197, 41–54 (2005)

9. Hitchcock, J.M.: Fractal dimension and logarithmic loss unpredictability. Theoret-
ical Computer Science 304(1–3), 431–441 (2003)

10. Huffman, D.A.: Canonical forms for information-lossless finite-state logical ma-
chines. IRE Trans. Circuit Theory CT-6 (Special Supplement), pp. 41–59, Also
available in E.F. Moore (ed.), Sequential Machine: Selected Papers, Addison-
Wesley, 1964, pp. 866–871 (1959)

Feasible Depth 237

11. Juedes, D.W., Lathrop, J.I., Lutz, J.H.: Computational depth and reducibility.
Theoretical Computer Science 132(1–2), 37–70 (1994)

12. Kohavi, Z.: Switching and Finite Automata Theory, 2nd edn. McGraw-Hill, New
York (1978)

13. Lathrop, J.I., Lutz, J.H.: Recursive computational depth. Information and Com-
putation 153(2), 139–172 (1999)

14. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Ap-
plications, 2nd edn. Springer, Berlin (1997)

15. Lutz, J.H.: Almost everywhere high nonuniform complexity. J. Comput. Syst.
Sci. 44(2), 220–258 (1992)

16. Lutz, J.H.: The quantitative structure of exponential time. In: Hemaspaandra,
L.A., Selman, A.L. (eds.) Complexity Theory Retrospective II, pp. 225–254.
Springer, Heidelberg (1997)

17. Schnorr, C.P., Stimm, H.: Endliche Automaten und Zufallsfolgen. Acta. Informat-
ica 1, 345–359 (1972)

18. Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 623–656 (1948)

19. Sheinwald, D., Lempel, A., Ziv, J.: On encoding and decoding with two-way head
machines. Information and Computation 116(1), 128–133 (1995)

20. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Transaction on Information Theory 24, 530–536 (1978)

Abstract Geometrical Computation and the

Linear Blum, Shub and Smale Model

Jérôme Durand-Lose�

Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans,
B.P. 6759, F-45067 ORLÉANS Cedex 2
Jerome.Durand-Lose@univ-orleans.fr

http://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose

Abstract. Abstract geometrical computation naturally arises as a con-
tinuous counterpart of cellular automata. It relies on signals (dimension-
less points) traveling at constant speed in a continuous space in continu-
ous time. When signals collide, they are replaced by new signals according
to some collision rules. This simple dynamics relies on real numbers with
exact precision and is already known to be able to carry out any (dis-
crete) Turing-computation. The Blum, Shub and Small (BSS) model is
famous for computing over R (considered here as a R unlimited register
machine) by performing algebraic computations.

We prove that signal machines (set of signals and corresponding rules)
and the infinite-dimension linear (multiplications are only by constants)
BSS machines can simulate one another.

Keywords: Abstract geometrical computation, Analog computation,
BSS model, Signal machine.

1 Introduction

There is no agreed analog counterpart of the Church-Turing thesis; relating the
models is crucial to understand the differences between the various computing
capabilities. For example, Bournez et al. related Moore’s recursion theory on R

[Moo96], computable analysis [Wei00] and the general purpose analog computer
[BH04, BCGH06]. The aim of this paper is to link two analog models of com-
putation. One, abstract geometrical computation deals with regular and auto-
matic drawing on the euclidean plane, while the second, the Blum, Shub and
Smale model [BCSS98] relies on algebraic computations over R

n. Let us note that
Bournez [Bou99] already provide some relations between linear BSS and Piece-
wise Constant Derivative systems. The latter also generate Euclidean drawings.

Abstract geometrical computation (ACG) arises from the common use in cel-
lular automata (CA) literature of Euclidean settings to explain an observe dy-
namics or to design a CA for a particular purpose. But CA operate in discrete
time over discrete space, while Euclidean geometry deals with both continuous
time and space. This switch of context is justified by the scaling invariance of

� Corresponding author.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 238–247, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Abstract Geometrical Computation and the Linear BSS Model 239

CA and comes for our preference and ability for thinking in classical continuous
terms rather than in discrete terms (for example just think how recent and com-
plex is discrete geometry compared to the Euclidean one). Abstract geometrical
computation works in a continuous setting: discrete signals/particles become
dimensionless points; the local function of CA, computing the next state of a
cell according to the states of neighbouring cells, is replaced by collision rules:
which signals emerges from a collision of signals. Signals and rules define sig-
nal machines (SM). This recent model, even restricted to rational numbers, is
able to carry out any (discrete) Turing-computation [DL06c]. With continuous
time, Zeno paradox arises: not only are accumulations possible, but they can be
used to decide recursively enumerable problems by using the black-hole principle
[DL05, DL06a]. Let us note that if accumulations can be generated at will, they
can hardly be foreseen [DL06b]. In this paper, we are not interested by accu-
mulations and the super-Turing capability that they bring forth in the discrete
computability. We are interested on considering AGC as an analog model, thus
there is no rational number restriction and accumulations are not encompassed
(they are considered as divergent computations).

In the Blum, Shub and Smale model (BSS), machines computes over any
ring. Roughly speaking, polynomial functions can be performed on variables as
well as test (according to some order) for branching. Linear BSS [MM97] is the
restriction where it is forbidden to multiply two variables, but it is still allowed
to multiply by constants. In the case where the dimension of the input is not
bounded or the number of registers needed to compute is not bounded, a shift
operator is provided on order to access any register (finitely many registers hold
non zero values since only finitely many registers can be accessed in finite time).
We prove the equivalence of AGC and linear BSS over R in infinite dimension. For
the sake of simplicity, we consider that there is no shift operator but indirect
addressing through addresses (natural counters, the term address is used to
distinguish from real registers) and that all operations are carried out on an
accumulator; this corresponds to the real number unlimited register machine
(R-URM) [Nov95] (the arguments for the full BSS translate to the linear case).

To simulate a lin-R-URM with a SM, the value of each register is encoded
as the distance between two signals. A lin-R-URM is considered as an assembly
language program and we show how to translate each instruction. Since the
reader might not be familiar with ACG, the first and simplest constructions are
more detailed to provide examples.

To simulate a SM with a lin-R-URM, a configuration is encoded as a finite
sequence of, alternatively, signal value and distance to the next one. Although
signal machines work with continuous time, the only important discrete dates
are when a collision occurs. The simulation goes from a collision date to the next.
This is achieved in three steps: compute the next collision time, then update the
distances between the signals and finally carry out the collision(s).

Section 2 gives the definition of both models. Section 3 provides the simulation
of any lin-R-URM by a SM while Sect. 4 carries the simulation the other way
round. Conclusion, remarks and perspective are gathered in Sect. 5.

240 J. Durand-Lose

2 Definitions

2.1 Abstract Geometrical Computations

In this model, dimensionless objects are moving on the real axis. When a collision
occurs they are replaces by others. This is defined by the following machines:

Definition 1. A signal machine is defined by (M, S, R) where M (meta-signals)
is a finite set, S (speeds) a mapping from M to R and R (collision rules) a
partial mapping from the subsets of M of cardinality at least two into subsets
of M (speeds must differ in both domain and range).

The elements of M are called meta-signals. Each instance of a meta-signal is
a signal. The mapping S assigns speeds to meta-signals. They correspond to
the inverse slopes of the segments in space-time diagrams. The collision rules,
denoted ρ−→ρ+, define what emerges (ρ+) from the collision of two or more
signals (ρ−). Since R is a mapping, signal machines are deterministic. The ex-
tended value set, V , is the union of M and R plus two symbols: one for void, �,
and one for an accumulation (which is not addressed here). A configuration, c,
is a total mapping from R to V such that the set { x ∈ R | c(x) �= � } is finite.

A signal corresponding to a meta-signal μ at a position x, i.e. c(x) = μ, is
moving uniformly with constant speed S(μ). A signal must start (resp. end)
in the initial (resp. final) configuration or in a collision. These correspond to
condition 2 in Def. 2. At a ρ−→ρ+ collision signals corresponding to the meta-
signals in ρ− (resp. ρ+) must end (resp. start) and no other signal should be
present (condition 3).

Definition 2. The space-time diagram issued from an initial configuration c0

and lasting for T , is a mapping c from [0, T] to configurations (i.e. a mapping
from R × [0, T] to V) such that, ∀(x, t) ∈ R × [0, T] :

1. ∀t∈[0, T], { x ∈ R | ct(x) �= � } is finite,
2. if ct(x)=μ then ∃ti, tf∈[0, T] with ti<t<tf or 0=ti=t<tf or ti<t=tf=T s.t.:

– ∀t′ ∈ (ti, tf), ct′(x + S(μ)(t′ − t)) = μ ,
– ti = 0 or cti(xi) ∈ R and μ ∈ (cti(xi))+ where xi = x + S(μ)(ti − t) ,
– tf = T or ctf

(xf) ∈ R and μ ∈ (ctf
(xf))− where xf = x+S(μ)(tf − t) ;

3. if ct(x)=ρ−→ρ+ ∈ R then ∃ε, 0<ε, ∀t′∈[t−ε, t+ε]∩ [0, T], ∀x′∈[x− ε, x+ ε],
– ct′(x′) ∈ ρ−∪ρ+ ∪ {�},

– ∀μ∈M , ct′(x′)=μ ⇒
∨

{
μ ∈ ρ− and t′ < t and x′ = x + S(μ)(t′ − t)) ,
μ ∈ ρ+ and t < t′ and x′ = x + S(μ)(t′ − t)) .

On space-time diagrams, the traces of signals represent line segments whose
directions are defined by (S(.), 1) (1 is the temporal coordinate). Collisions cor-
respond to the extremities of these segments. In the space-time diagrams, time
increases upwards.

A configuration is composed of the identities and positions of all the present
signals. Since the origin is not relevant (because of the shift invariance), if is
enough to have the identities and the distances between signals from left to
right. At any time, there are finitely, although unbounded, many signals.

Abstract Geometrical Computation and the Linear BSS Model 241

As a computing device, the input is the initial configuration and the output
is the final configuration (e.g. when no collision can happen).

2.2 Linear Real Number Unlimited Register Machines

We do not use the definition of [BCSS98] (graph with input, output, computation
and branch nodes plus a shift node to deal with infinite dimension). Instead, we
use the more assembly language like definition of linear R-URM. Each register
holds a real number (with exact precision). Inputs as well as outputs are stored
in the registers. The machine can add, multiply (by a constant) and copy values.
To cope with infinite dimension, address (natural integers) registers are used
for indirect addressing. To simplify our constructions we suppose that all real
computations are done with one accumulator (which corresponds to a constant
slowdown).

Definition 3. A linear real number unlimited register machine (lin-R-URM) is
described by a sequence of instructions among the following ones:

– incAi, decAi and if 0<Ai goton for the addresses, and
– loadRi (loadR(i)), storeRi (storeR(i)), addRi (addR(i)), mulα, and

if 0<X goton for the registers,

where i is a natural integer, α is a constant real number, n is a line number, Ai

is an address, Ri is a register and X is the accumulator. The indirect addressing,
R(i), corresponds to RAi .

The first register has number 0 to avoid any addressing problem. All the oper-
ations are done on the accumulator; thus there is no second argument. There
is no mulRi since multiplication is only by constant (otherwise it would not
be linear). To simplify, there is no addα, additive constants are supposed to be
stored in some registers.

A configuration consists of the line number, the values of the addresses and of
the registers. There are finitely many addresses (their number is directly given
by the code) and, at any instant, finitely many registers used (but their number
is not bounded).

3 Linear R-URM Simulation by Signal Machines

3.1 Encoding a Configuration

A lin-R-URM configuration is composed of a line number, n, and values for
addresses, {Ai}i∈I , and registers, {Ri}i∈K (I and K are finite initial segments
of N). The set I is a constant of the machine while K may be enlarged during
the computation. Since there are finitely many line numbers, each one can be
identified by a meta-signal. The rest of the configuration is encoded with speed 0
signals ensuring its stability (parallel signals never interact). Since addresses are
only used for indicating registers, they are added as markers on the corresponding
registers (again the number of addresses is bounded and as many as needed meta-
signals are available from the start).

242 J. Durand-Lose

Registers. A register is encoded as the distance from a base signal to the pairing
val signal. There is no absolute scale since signal machines are scale invariant.
Two scale signals whose distance amounts for a scale are provided as depicted
on Fig. 1. All registers use the same scale. For the value 0, the superposition of
base and val is encoded as a single signal nul. This value is never considered in
the rest of the paper; the reader is invited to check that it can be easily covered.

scale scale

1

val val base
or nul(0)

val val

π
−1.5

√
2

e

Fig. 1. Encoding: scale and positions of val for values −π, −1.5, 0,
√

2 and e

The registers are always encoded with the same meta-signals, base and val.
They are regularly displayed as depicted on Fig. 2. The signals base are at a
distance, say d, one from the next, such that each val is at distance strictly less
than d /2 from its corresponding base. Not to tangle one register encoding with
another one during the computation, each pair is kept away from the others; if a
value becomes too large (which is simple to check since sums and multiplications
are done on the accumulator), each distance from val to base is scaled down as
well as the scale pair to keep the same values.

The accumulator is encoded like a register and is displayed on the left of the
registers. An end marker indicates the right limit of the configuration. It is used
in order both to prevent signal from drifting forever on the right and to help
enlarging the configuration when needed. The line number is encoded as a signal,
linen, of negative speed which is about to hit the right scale and start the next
iteration. A complete encoding is given on Fig. 2.

scale

1

linen accumval

−2

base base base baseval

−2.1

val

√
2

val

e
2

val

π
2

end

Fig. 2. Scale, line number, accumulator (−2), registers (−2.1,
√

2, e
2 , π

2) and end

Addresses. Since they are used to designate registers, they are encoded by marks
on the corresponding base’s. This is done by replacing base by any value in
{baseJ}J⊆I (there are finitely many such meta-signals). Each i of I must appear
in exactly one baseJ . If needed, dummy null registers are added to cover all the
values of the addresses and all registers directly addressed in the code.

3.2 Updating the Configuration

The simulation is as follows: linen bounces on scale and changes to whatever
signal is used to carry out the instruction at line n. After the instruction is carried

Abstract Geometrical Computation and the Linear BSS Model 243

out, extra signals are disposed of and one signal with the new line number is sent
to the scale. It remains to deal independently with each possible instruction.

Address manipulations. These are: increasing or decreasing by one and branch
if non null. Decreasing corresponds to getting to the baseJ holding i and move
the element i to the base on the left except when this register is number 0. To
achieve this, signal

−−−−→
ndec0?

i is send to the right. The left subscript n is used
to record the line number; it is changed when the operation is performed. The
superscript 0? indicates that, as far the computation has gone, the value of the
address could still be zero. This signal moves to the right leaving every signal as
it is until it reaches the first baseJ . If i belongs to J then the address is 0 and
the signal goes back on the left as linen+1 (lower part of Fig. 3); otherwise it
turns to

−−−→
ndeci and keep going right until it meets the baseJ such that i belongs

to J . It then turns to
←−−−
ndeci and goes on the left; as soon as it reaches a baseJ ,

it replaces it by baseJ∪{i} and turns to linen+1 (upper part of Fig. 3).

ti
m

e

scale accum base{7} base{8} endlinen

−−−−→
ndec=

0
7

linen+1

−−−−−−
→

n+1dec=
0

8
−−−−−−

→
n+1dec

�=0
8

←−−−−−n+1dec8

linen+2

ba
se

∅

ba
se

{
7,

8}

Fig. 3. Example of register updating:

Increasing Ai corresponds to getting to the baseJ holding i and move i to
the next base on the right (lower part of Fig. 4). When there is no more register
on the right, end is reached and used to create a new nul register instead of end
and to reposition end one step on the right (upper part of Fig. 4). This time, the
meta-signals used are:

−−−→
nincs

i (searching) and
−−→
ninci plus two extra signals,

←−
end and

−→
end to regenerate end. The last two meta-signals must be three times faster than−−→
ninci in order to ensure the positioning of the new end at the same distance.

Branching is very easy, the signal goes on the right, passes the accumulator
and get to the first baseJ . Depending on whether i belongs to J , it comes back
as the following line or the branch line number.

n: dec A7
n+1: dec A8

244 J. Durand-Lose

ti
m

e

scale accum base{7} base{8} endlinen

−−−→
nincs

7

−−−→
nincf

7

linen+1

−−−−−→
n+1incs

7

−−−−−→
n+1incf

7

←−
end

−→
end

linen+2

ba
se

∅ ba
se

{
7,

8}

ba
se

{
7}

nu
l {

7}

en
d

Fig. 4. Example of register updating:

Registers operations. We first present how to move a value from the accumulator
to a given register (loadRi is similar). The register can be indicated directly
or indirectly. In the first case its number is know directly from the code, it is
thus possible to make as many as needed meta-signals to count down from i to
0 (meta-signals are used as a finite unary counter). At each baseJ crossing, it is
decremented until it reaches 0, the designated register is reached. In the second
case, a signal is issued that looks for the baseJ such that i belongs to J (as in
address manipulation).

The first column of Fig. 5 presents how the copy starts from the accumulator
and is stored on the corresponding register. The second column shows the erasing
of the previous value of the register. The first row deals with negative values and
the second row with positive ones (handling 0 is trivial). What happens on the
target register is the superposition of the right of left column and right column.
There is no risk of collision with the new val since

←−
del and

−→
del are below set−

and set+. The value stored is exactly the same since set and nsto are parallel
as well as the pair of set− (or of set+).

To handle multiplication, the scale invariance of AGC is used: if starting
from two signals at distance 1, they end up at distance α, then starting from
two signals at distance d, they end up at distance αd. There are two cases to
consider: α<1 and 1<α (multiplication by 1 is not very interesting). The space-
time diagrams and (pre-computed) speeds are given on Fig. 6.

Let us note that multiplication can produce an overflow: a value so large
that it might provoke some entanglement between two registers. This is easy

incn: A7
n+1: A8inc

Abstract Geometrical Computation and the Linear BSS Model 245

accumscale

line
n

val

nsto6
nsto

−
6

set −

set

base

nsto
−
0

set −

set

v
a
l

linen+1

base

nsto
?
0

val

del ←

de
l
→

del
⇒

linen+1

accumscale

line
n

val

nsto6
nsto

+
6

se
t
+

set

base

nsto
+
0

se
t
+

set

v
a
l

linen+1

base

nsto
?
0

val

de
l
→

del ←

del
⇐

linen+1

Fig. 5. Various cases to achieve storeR6

α < 1 (here α = − 1
2) 1 < α (here α = 2)

accum val

nMul
nMul

+
a

n
M
u
l +
b

n
M

u
l +c

v
a
llinen+1

accum val

nMul
nMul

+
a

n
M
u
l
+

b
n
M

ul
+
c

linen+1 v
a
l

Speed of nMul+a : 4 4

Speed of nMul+b : −1 1

Speed of nMul+c : 4α

5−4α

4α

4α−3

Fig. 6. Multiplication scheme

to detect: two dummy bounding signals are added around accum, whenever the
multiplication crosses any of them an overflow flag is raised (i.e. some signal
switches to a given meta-signal). The multiplication is carried out normally, but
the val is replaced by over (to distinguish it from any other val). When an overflow
occurs, a special subroutine is launched. It scales down by 1/α (for mulα with
1<α) all the registers, the accumulator and the scale. This way, all encoded real
values are preserved. All the val and accum remain at their positions, only the
left scale, over and all val are moved. The above multiplication scheme is used,
this time no overflow can happen.

Addition is not presented, let us just say that it works exactly like load except
that val (of the accumulator) is used as origin instead of accum, and deletion of
the old val is slightly different. Let us note that addition as an overflow detection
like multiplication, in such a case, all is scaled by one half.

246 J. Durand-Lose

4 Signal Machines Simulation by Linear R-URM

This construction is less detailed since it relies on classical construction on regis-
ter machines and the reader should have now a rather clear picture of what both
models are (and also because of the lack of room). A SM configuration consists
of an alternating sequence of meta-signals and distances, starting and ending
with a meta-signal. This is straight forwardly be translated into a sequence of
registers (meta-signals are encoded by integers starting at 1) followed by 0’s.

Updating is done in three steps: first find the delay to the next collision,
then update the distances and finally process the collision(s) (there might be
synchronous ones). Finding the delay is just to go through the sequence and
consider signals two by two: compute the delay before next collision (if any)
and store the minimum. To achieve this, it loops through the configuration en-
coding (this is easy with indirect addressing; the loop stops at the first 0 for a
meta-signal) and computes the collision delay. For the latter, there is a formula
depending on the distance and speeds of meta-signals but it is not linear. Nev-
ertheless, there are finitely many meta-signals and their speeds are known from
the signal machine; each case is linear. It only remains to branch to the correct
case with a big switch/if then else.

If no collision happens then the machine halts. Otherwise, it “advances” the
time by the given duration (i.e. the distances are updated) then it goes through
the configuration again and process each collision, i.e. signals at distance 0. There
could be more than two signals involved in a collision (but no more than the
number of meta-signals). Again, there are finitely many possible collision rules
and they are all given by the signal machine. So to find one, a huge switch has
to be provided (there is a case for each rule): first consider how many signals
are involved then find the corresponding rule. In-coming signals are replaced by
out-going. If their numbers are different, a procedure to compress or enlarge the
configuration (exactly like one would do inside any array) is used.

5 Conclusion

We have proved that signal machines are equivalent to lin-R-URM and infinite
dimensional linear R-BSS. Let us note that SM restricted to rational speeds and
positions are equivalent to lin-Q-URM with the same constructions. The number
of rules of the simulating SM is up bounded by an exponential in the number of
lines of the lin-R-URM while the number of line of the simulating lin-R-URM is
linear in the numbers of collisions and rules.

Considering the number of collisions as a complexity measure on SM, in each
case, the slowdown is of the order of the number of signals/register, i.e. of space.
Let us remember that all is constructed with lin-R-URM, not linear BSS and full
BSS has also a weak model of complexity [Koi93] so we do not go any further
on complexity issues here.

Let us note that reversible and conservative signal machines on rational have
full Turing-computability. Would reversible and conservative restrictions already

Abstract Geometrical Computation and the Linear BSS Model 247

be equivalent to linear BSS? In a rational setting, accumulation was used to climb
up the arithmetical hierarchy. We believe that in the real setting, they could be
used to provide inner multiplication and thus proved that signal machine could
simulate the full BSS model. We believe that in such a case BSS would be a
strictly less powerful model (unless some limit operator is provided).

References

[BCGH06] Bournez, O., Campagnolo, M.L., Graça, D.S., Hainry, E.: The general
purpose analog computer and computable analysis are two equivalent
paradigms of analog computation. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.)
TAMC 2006. LNCS, vol. 3959, pp. 631–643. Springer, Heidelberg (2006)

[BCSS98] Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computa-
tion. Springer, New York (1998)

[BH04] Bournez, O., Hainry, E.: An analog characterization of elementarily com-
putable functions over the real numbers. In: Dı́az, J., Karhumäki, J., Lep-
istö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 269–280.
Springer, Heidelberg (2004)

[Bou99] Bournez, O.: Some bounds on the computational power of piecewise con-
stant derivative systems. Theory of Computing Systems 32(1), 35–67 (1999)

[DL05] Durand-Lose, J.: Abstract geometrical computation for black hole compu-
tation (extended abstract). In: Margenstern, M. (ed.) MCU 2004. LNCS,
vol. 3354, pp. 176–187. Springer, Heidelberg (2005)

[DL06a] Durand-Lose, J.: Abstract geometrical computation 1: embedding black
hole computations with rational numbers. Fundamenta Informaticae 74(4),
491–510 (2006)

[DL06b] Durand-Lose, J.: Forcasting black holes in abstract geometrical compu-
tation is highly unpredictable. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.)
TAMC 2006. LNCS, vol. 3959, pp. 644–653. Springer, Heidelberg (2006)

[DL06c] Durand-Lose, J.: Reversible conservative rational abstract geometrical com-
putation is turing-universal. In: Beckmann, A., Berger, U., Löwe, B.,
Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 163–172. Springer, Hei-
delberg (2006)

[Koi93] Koiran, P.: A weak version of the Blum, Shub & Smale model. In: 34th
Annual Symposium on Foundations of Computer Science (FOCS ’93), pp.
486–495. IEEE, Washington (1993)

[MM97] Meer, K., Michaux, C.: A survey on real structural complexity theory. Bul-
letin of the Belgian Mathematical Society 4, 113–148 (1997)

[Moo96] Moore, C.: Recursion theory on the reals and continuous-time computation.
Theoret. Comp. Sci. 162(1), 23–44 (1996)

[Nov95] Novak, E.: The real number model in numerical analysis. J. Complex. 11(1),
57–73 (1995)

[Wei00] Weihrauch, K.: Introduction to computable analysis. In: Texts in Theoret-
ical computer science, Springer, Berlin (2000)

A Continuous Derivative for Real-Valued Functions

Abbas Edalat

Department of Computing, Imperial College London, UK
ae@ic.ac.uk

Abstract. We develop a notion of derivative of a real-valued function on a Ba-
nach space, called the L-derivative, which is constructed by introducing a gen-
eralization of Lipschitz constant of a map. The values of the L-derivative of a
function are non-empty weak* compact and convex subsets of the dual of the
Banach space. This is also the case for the Clarke generalised gradient. The
L-derivative, however, is shown to be upper semi continuous with respect to the
weak* topology, a result which is not known to hold for the Clarke gradient on
infinite dimensional Banach spaces. We also formulate the notion of primitive
maps dual to the L-derivative, an extension of Fundamental Theorem of Calculus
for the L-derivative and a domain for computation of real-valued functions on a
Banach space with a corresponding computability theory.

Keywords: L-derivative, Clarke gradient, weak* topology, upper semi-continuity.

This paper is dedicated to the historical memory of Sharaf al-din Tusi (d. 1213), the
Iranian mathematician who was the first to use the derivative systematically to solve
for roots of cubic polynomials and find their maxima [12,13,15].

1 Introduction

It is well-known that the classical derivative of a real-valued Lipschitz function of a real
variable may not always exist and when it does exist it may not give rise to a continuous
function. The same is true for the higher dimensional Gâteaux and Fréchet derivatives
of a real-valued Lipschitz function defined on a finite dimensional Euclidean space or
on a Banach space.

In 1980’s, Frank Clarke, motivated by problems in non-smooth analysis and control
theory, introduced the notion of generalized gradient of a function, which is now named
after him [4]. Clarke’s gradient of a locally Lipschitz real-valued function on a Banach
space always exists and is a set-valued function: on finite dimensional Euclidean spaces
it takes non-empty compact and convex subsets of the Euclidean space as its values
and the gradient is upper semi-continuous. On an infinite dimensional Banach space,
the Clarke gradient is a non-empty weak* compact and convex subset of the dual of
the Banach space. It is however not known if Clarke’s gradient is also upper semi-
continuous on infinite dimensional Banach spaces [3].

Since the derivative of functions plays a fundamental role in mathematics, one would
expect a real interest in a continuous derivative by researchers in computability theory,
where the continuity of a function is an essential requirement for its computability [16].

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 248–257, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Continuous Derivative for Real-Valued Functions 249

However, surprisingly, no attempt was made to develop a continuous derivative for func-
tions and the work of Clarke went unnoticed by researchers in computable analysis, who
have only worked with the classical derivative of functions; see for example [18].

A new approach to differential calculus based on mathematical structures in com-
puter science, called domains [17,14,2,5] was introduced in [9,10] first for real-valued
functions of a real variable and then for multivariable functions. The motivation here
has arisen from computer science and computable analysis to formulate and use, in
particular, a notion of continuous derivative for functions.

In the domain-theoretic framework, a continuous derivative for functions, a corre-
sponding notion of primitive maps, an extension of fundamental theorem of calculus
and a domain for differentiable functions have been developed, in a coordinate depen-
dent way, for finite dimensional Euclidean spaces.

In this paper, inspired by the above domain-theoretic framework, we introduce a co-
ordinate free approach to develop the notion of the L-derivative of a real-valued function
on a Banach space; it is constructed by formulating a generalized Lipschitz property of
functions. The local generalized Lipschitz properties of the function, which provide
finitary information about the rate of growth of the function in local neighbourhoods,
are used to define the L-derivative of the function globally. Like the Clarke gradient,
the values of the L-derivative are non-empty weak* compact and convex subsets of the
dual of the Banach space.

The L-derivative, developed here from the local to the global and from the discrete to
the continuum, is shown to be upper semi-continuous for real-valued locally Lipschitz
functions on any Banach space, a result which is not known for the Clarke gradient as
we have already mentioned above.

For a C1 function, i.e., one with a continuous Fréchet derivative, the L-derivative and
the Fréchet derivative coincide. More generally, the L-derivative contains the Clarke
gradient, and, when they exist, the Gâteaux and Fréchet derivatives.

The L-derivative gives rise to an extension of the Fundamental Theorem of Calculus.
The class of functions from the Banach space into the collection of non-empty weak*
compact and convex subsets of the dual of the Banach space, which are generated by
step functions, is dual via the L-derivative to families of real-valued locally Lipschitz
functions on the Banach space. The L-derivative is also employed to construct a domain
of computation for real-valued functions on Banach spaces, a structure which supports
a computability theory when the space is separable. These results extend those for finite
dimensions in [7,11].

In the full version of the paper which contains all proofs [6], we also show that
for functions on finite Euclidean spaces, the L-derivative is an element of a countably
based continuous domain which can be given an effective structure that characterizes
computable functions with computable L-derivatives. Any continuous function and its
L-derivative can be obtained as the supremum of an increasing sequence of pairs of
finitary and consistent information about the function and its L-derivative.

Although they are defined using very different techniques, we show in the full pa-
per that in finite dimensions the Clarke gradient and the L-derivative coincide. Thus,
in finite dimensions the construction of the L-derivative provides a new computable
representation for the Clarke gradient.

250 A. Edalat

1.1 Background Definitions

For the remainder of this section we will present the basic background definitions of the
various notions of derivative which we will need in this paper.

Let X and Y be Banach spaces and let U ⊂ X be an open subset. We recall that the
(one sided) directional derivative of f : U → Y at x ∈ U in the direction v ∈ X is

F ′(x; v) = lim
t↓0

f(x + tv) − f(x)
t

,

if the limit exists. If the above directional derivative exists for all v ∈ X , then the
Gâteaux derivative of f at x, a continuous linear functional from X to Y denoted by
D(f)(x), exists if F ′(x; v) = D(f)(x)(v) for all x ∈ X .

The Fréchet derivative of a map f : U → Y at x ∈ U , when it exists, is defined as
the linear map T : X → Y with

lim
‖x−y‖→0

‖f(x) − f(y) − T (x − y)‖
‖x − y‖ = 0.

The linear map T is denoted by f ′(x). When the Fréchet derivative exists at x, so does
the Gâteaux derivative and they are equal.

From now on we will assume that Y = R. We next aim to define the generalized
(Clarke) gradient of a function [4, Chapter two] and explain its properties. Let f : U →
R be Lipschitz near x ∈ U and v ∈ X . The generalized directional derivative of f at x
in the direction of v is

f◦(x; v) = lim sup
y→x t↓0

f(y + tv) − f(y)
t

.

Let us denote by X∗ the dual of X , i.e. the set of real-valued continuous linear functions
on X . Unless otherwise stated we will consider X∗ with its weak* topology. Recall that
the weak* topology is the weakest topology on X∗ in which for any x ∈ X the map
f �→ f(x) : X∗ → R is continuous.

The generalized gradient of f at x, denoted by ∂f(x) is the subset of X∗ given by

{A ∈ X∗ : f◦(x; v) ≥ A(v) for all v ∈ X}.

It is shown in [4, page 27] that

– ∂f(x) is a non-empty, convex, weak* compact subset of X∗.
– For v ∈ X , we have: f◦(x; v) = max{A(v) : A ∈ ∂f(x)}.

In finite dimensions, the Clarke gradient is upper semi-continuous, i.e. it is continu-
ous with respect to the upper topology on the space of the non-empty compact subsets
of R

n, where a basic open subset of the upper topology on this space is given by the
collection of all nonempty compact subsets of R

n contained in a given open subset of
R

n. It is not known if a similar result holds in infinite dimensions [3], i.e. if the Clarke
gradient is continuous with respect to the upper topology on the space of non-empty
weak* compact subsets of X∗, where a basic open subset of the upper topology on
this space is given by the collection of all nonempty weak* compact subsets of X∗

contained in a given weak* open subset of X∗.
We let C(X∗) denote the dcpo of non-empty, convex and weak* compact subsets of

X∗ ordered by reverse inclusion.

A Continuous Derivative for Real-Valued Functions 251

2 Ties of Functions

The local differential property of a function is formalized in our framework by the
notion of an interval Lipschitz constant. Assume U ⊂ X is an open subset of a Banach
space X .

Definition 1. Let f be a real-valued function with domain dom(f) ⊂ U . We say that
f : dom(f) → R has an interval Lipschitz constant b ∈ C(X∗) in a convex open
subset a ⊂ dom(f) if for all x, y ∈ a we have: b(x − y) � f(x) − f(y). The single
tie δ(a, b) of a with b is the collection of all real-valued partial functions f on U with
a ⊂ dom(f) ⊂ U which have an interval Lipschitz constant b in a.

For example, if X = R
2 and b is the compact rectangle b1 × b2 (with compact intervals

b1, b2 ⊂ R), the information relation above reduces to:

b1(x1 − y1) + b2(x2 − y2) � f(x) − f(y).

For any topological space Z and any bounded complete dcpo D with bottom ⊥, let
Z → D be the bounded complete dcpo of Scott continuous functions from Z to D. The
domain of f : Z → D is defined as dom(f) = {x : f(x)
= ⊥}. In particular, for
any open subset a ⊂ Z and any b ∈ D, the single-step function a ↘ b : Z → D, with
(a ↘ b)(x) = b if x ∈ a and (a ↘ b)(x) = ⊥ if x /∈ a, is Scott continuous and has
domain a. A step function is then the supremum of any finite set of consistent single-
step functions. In the sequel, we consider the dcpo U → C(X∗) of Scott continuous
functions with U ⊂ X equipped with its the norm topology.

The following proposition justifies our definition of the interval Lipschitz constant.
Let a be a convex open subset of X .

Proposition 1. If f : a → R is C1(a) i.e., f is Fréchet differentiable and f ′ : a → X∗

is continuous, then the following three conditions are equivalent: (i) f ∈ δ(a, b), (ii)
∀z ∈ a. f ′(z) ∈ b and (iii) a ↘ b � f ′.

We will now see that ties have a dual property in relation to step functions of type
U → C(X∗). For the rest of this section, we assume we are in an infinite dimensional
Banach space or in the finite dimensional space R

n with n ≥ 2. The case n = 1 is
completely covered in [9].

Definition 2. A tie of partial real-valued functions on U is any intersection Δ =⋂
i∈I δ(ai, bi), for an arbitrary indexing set I . The domain of a non-empty tie Δ is

defined as dom(Δ) =
⋃

i∈I{ai | bi
= ⊥}.

If a non-empty tie is given by the intersection of a finite number of single ties, then it
gives us a family of functions with a finite set of consistent differential properties. Gen-
erally, a non-empty tie gives a family of functions with a consistent set of differential
properties.

Recall that a function f : U → R defined on the open set U ⊆ X is locally Lipschitz
if it is Lipschitz in a neighbourhood of any point in U .

Proposition 2. If Δ is a tie and f ∈ Δ, then f is locally Lipschitz on dom(Δ).

252 A. Edalat

We now collect some fundamental properties of ties, which we will use later. The next
proposition is the key technical result for the development of our theory.

Proposition 3. For any indexing set I , the family of step functions (ai ↘ bi)i∈I is con-
sistent if

⋂
i∈I δ(ai, bi)
= ∅.

Proposition 4. (T(U) \ {∅}, ⊇) is a dcpo.

For any topological space Z and any bounded complete dcpo D, let Z →s D be the
subset of Z → D consisting of Scott continuous functions which are supremums of
step functions, i.e., f = supi∈I ai ↘ bi for a family (ai ↘ bi)i∈I of step functions
with ai an open subset of Z and bi ∈ D.

Consider U →s C(X∗). Since any open set a ⊂ X is the union of open balls, we
can assume without loss of generality that the open subsets ai (i ∈ I) in the expression
for f above are convex. It is easy to check that U →s C(X∗) is a dcpo.

We now show that, for any Banach space X , the set of maximal elements of U →s

C(X∗) contains the set of functions of type U → X∗, which are continuous with
respect to the norm topology on U and X∗. Recall that a metric space is separable if it
has a countable dense subset.

Proposition 5

(i) If f : U → X∗ is continuous with respect to the norm topologies on U and X∗,
then f ∈ U →s C(X∗). Moreover, if X is separable with a countable dense subset
P ⊂ X , then f is the lub of single step functions of the form a ↘ b where a is an
open ball centred at a point of P with rational radius whereas b is a closed ball
centred at a point of P with a rational radius.

(ii) If f : U → R is continuous with respect to the norm topology on U , then f ∈
U →s IR. Moreover, if X is separable with a countable dense subset P ⊂ X ,
then f is the lub of single step functions of the form a ↘ b where a is an open
ball centred at a point of P with rational radius whereas b is a rational compact
interval.

We are finally in a position to define the L-primitives of a Scott continuous function; in
fact now we can do more and define:

Definition 3. The L-primitive map
∫

: (U →s C(X∗)) → T(U) is defined by
∫

f =
⋂

a ↘ b	f

δ(a, b).

We call
∫

f the L-primitives of f .

Proposition 6. If f = supi∈I ai ↘ bi, then
∫

f =
⋂

δ(ai, bi).

Proposition 7. The L-primitive map is continuous and onto the set of non-empty ties.

If X = R
n, for n ≥ 2 or if X is infinite dimensional, the L-primitive map will have the

empty tie in its range, a situation which does not occur for n = 1. This is similar to the
situation in classical analysis in which a continuous vector field in R

n for n > 1 may
not be an exact differential.

A Continuous Derivative for Real-Valued Functions 253

Example 1. Let g ∈ R
2 → C(R2) be the maximal function given by g(x, y) =

(g1(x, y), g2(x, y)) with g1(x, y) = 1 and g2(x, y) = x. Then ∂g1
∂y = 0
= 1 = ∂g2

∂x ,
and it will follow as in classical analysis that

∫
g = ∅.

3 The L-Derivative

Given a Scott continuous function f : U → R, the relation f ∈ δ(a, b) provides, as
we have seen, finitary information about the local interval Lipschitz properties of f . By
collecting all such local information, we obtain the complete differential properties of
f , namely its L-derivative.

Definition 4. The L-derivative of a continuous function f : U → R is the map

Lf : U → C(X∗), given by Lf = sup
f∈δ(a,b)

a ↘ b.

Theorem 1

(i) The L-derivative is well-defined and Scott continuous.
(ii) If f ∈ C1(U) then Lf = f ′.

(iii) f ∈ δ(a, b) iff a ↘ b � Lf .

Since the Scott topology refines the upper topology on C(X∗), we also obtain:

Corollary 1. The L-derivative of any continuous function X → R is upper semi-
continuous. �
We now obtain the generalization of Theorem 1(iii) to ties, which provides a duality
between the L-derivative and L-primitives and can be considered as a general version
of the Fundamental Theorem of Calculus.

Theorem 2. (Fundamental Theorem of Calculus) For any g ∈ U →s C(X∗),

f ∈
∫

g ⇐⇒ g � Lf.

We will now see that the Gâteaux derivative, if it exists, is always in the L-derivative.

Corollary 2. The Gâteaux derivative of f at x, when it exists, belongs to the L-deriva-
tive. Similarly for the Fréchet derivative. �
In order to obtain the next corollary we first need the following characterization of the
generalized gradient.

Lemma 1. For any locally Lipschitz function f we have: A ∈ ∂f(x) iff for all v ∈ X ,

lim inf
y→x t↓0

f(y + tv) − f(y)
t

≤ A(v) ≤ lim sup
y→x t↓0

f(y + tv) − f(y)
t

Corollary 3. The generalized (Clarke) gradient is contained in the L-derivative.

We do not know if the L-derivative and the Clarke gradient coincide on an infinite
dimensional Banach space. We do know however that in finite dimensions they are the
same, as we have shown in the full version of this paper [6].

254 A. Edalat

4 Domain for Lipschitz Functions

We will construct a domain for locally Lipschitz functions and for C1(U). The idea is
to use step functions in U →s IR to represent the function and step functions in U →
C(X∗) to represent the differential properties of the function. Note that a continuous
partial function f of type U → R, as we have considered in defining ties of functions
in Section 2, can be regarded as an element f̂ of U →s IR with f̂(x) = f(x) if f(x)
is defined and f̂(x) = ⊥ = R otherwise; we always identify f and f̂ . Furthermore,
a function f ∈ U → IR is given by a pair of respectively lower and upper semi-
continuous functions f−, f+ : U → R with f(x) = [f−(x), f+(x)].

Consider the consistency relation

Cons ⊂ (U →s IR) × (U →s C(X∗)),

defined by (f, g) ∈ Cons if ↑f ∩
∫

g
= ∅. For a consistent (f, g), we think of f as the
function part or the function approximation and g as the derivative part or the derivative
approximation. We will show that the consistency relation is Scott closed. The proofs
of the rest of results in this section are essentially as in [9] for the case of X = R.

Proposition 8. Let g ∈ U →s C(X∗) and (fi)i∈I be a non-empty family of functions
fi : dom(g) → R with fi ∈

∫
g for all i ∈ I . If h1 = infi∈I fi is real-valued then

h1 ∈
∫

g. Similarly, if h2 = supi∈I fi is real-valued, then h2 ∈
∫

g.

Let R[0, 1] be the set of partial maps of [0, 1] into the extended real line. Consider the
two dcpo’s (R[0, 1], ≤) and (R[0, 1], ≥). Define the maps s : (U →s IR) × (U →s

C(X∗)) → (R, ≤) and t : (U →s IR) × (U →s C(X∗) → (R, ≥) by

s : (f, g) �→ inf{h : dom(g) → R | h ∈
∫

g & h ≥ f−}

t : (f, g) �→ sup{h : dom(g) → R | h ∈
∫

g & h ≤ f+}.

We use the convention that the infimum and the supremum of the empty set are ∞
and −∞, respectively. Note that given a connected component A of dom(g) with A ∩
dom(f) = ∅, then s(f, g)(x) = −∞ and t(s, f)(x) = ∞ for x ∈ A. In words, s(f, g)
is the least primitive map of g that is greater than the lower part of f , whereas t(f, g) is
greatest primitive map of g less that the upper part of f .

Proposition 9. The following are equivalent:

(i) (f, g) ∈ Cons.
(ii) s(f, g) ≤ t(f, g).

(iii) There is a continuous map h : dom(g) → R with g � Lh and f � h on dom(g).

Moreover, s and t are well-behaved:

Proposition 10. The maps s and t are Scott continuous.

This enables us to deduce:

A Continuous Derivative for Real-Valued Functions 255

Corollary 4. The relation Cons is Scott closed.

We can now sum up the situation for a consistent pair of function and derivative infor-
mation.

Corollary 5. Let (f, g) ∈ Cons. Then in each connected component A of the domain
of definition of g which intersects the domain of definition of f , there exist two locally
Lipschitz functions s : A → R and t : A → R such that s, t ∈ ↑f ∩

∫
g and for each

u ∈ ↑f ∩
∫

g, we have with s(x) ≤ u(x) ≤ t(x) for all x ∈ A.

We now can define a basic construct of this paper:

Definition 5. Define

D1(U) = {(f, g) ∈ (U →s IR) × (U →s C(X∗)) : (f, g) ∈ Cons}.

From Corollary 4, we obtain:

Corollary 6. The poset D1(U) is a bounded complete dcpo.

Proposition 11. For any f ∈ (U → R) the element (f, Lf) is a maximal element of
D1(U).

For a locally Lipschitz function f : U → R the L-derivative satisfies Lf(x)
= ⊥ for all
x ∈ U , whereas for a piecewise C1 function f we further have the property that Lf(x)
is maximal except for a finite set of points.

4.1 Computability

Let Z be a topological space with a countable basis M of its open subsets, and D a
bounded complete dcpo with a countable subset E ⊂ D. Let (fi)i≥0 be an effective
enumeration of the class of step functions of Z → D made from single-step functions
a ↘ b where a ∈ M and b ∈ E. We say f ∈ U →s D is computable with respect to this
enumeration if there exists a total recursive function φ : N → N such that (fφ(n))n≥0

is an increasing sequence with f = supn≥0 fφ(n).
When, in addition, Z is locally compact and D is a countably based continuous

dcpo, then Z → D is a countably based bounded complete continuous dcpo, which can
be given an effective structure. In this case, we obtain the same class of computable
elements with any effective change of a countable basis of D. In general however, the
computable elements will depend on the countable subset E.

Suppose now that X is a separable Banach space, with a countable dense set P ⊂ X .
Then the collection of open balls centred at points of P with rational radii provides a
countable basis of the norm topology on X . We use the rational compact intervals as a
countable basis of IR and the collection of closed balls of X∗ with centres at points P
with rational radii as a countable subset of C(X∗) to generate two countable sets, S1

and S2 say, of step functions for the two dcpo’s U →s IR and U →s C(X∗). We then
obtain an enumeration (fi)i≥0 of S1 and an enumeration (gi)i≥0 of S2.

256 A. Edalat

By Proposition 5, we know that any continuous function f : U → R and any function
g : U → CX∗ continuous with respect to the norm topology on X and X∗, is the
supremum of step functions in S1 and S2 respectively. We say that f is computable
with respect to the enumeration (fi)i≥0, respectively g is computable with respect to
(gi)i≥0, if f considered as an element of U → IR, respectively g considered as an
element of U → C(X∗), is computable with respect to the enumeration.

The question of decidability of the predicate (fi, gj) ∈ Cons, for i, j ≥ 0, depends
on the structure of the Banach space X under consideration and on the countable subsets
(fi)i≥0 and (gi)i≥0. Assuming that this is indeed decidable, we use an oracle to decide
if (fi, gj) ∈ Cons for i, j ≥ 0, which enables us to construct an enumeration (hi)i≥0

of a countable set, S3 say, of step functions of D1(U), where hi = (fp(i), gq(i)) for
i ≥ 0 with p, q : N → N total recursive functions. By Proposition 5, we know that if
f : U → R is Fréchet differentiable then (f, f ′) is the lub of step functions in S3. We
thus say that f and its Fréchet derivative f ′ are computable with respect to (hi)i≥0 if
(f, f ′) considered as a maximal element of D1(U) is computable with respect to this
enumeration.

5 Further Work and Open Problems

As we have shown in the full version of this paper [6], when X is finite dimensional
D1(U) is a countably based continuous Scott domain that can be given an effective
structure with respect to which Cons is decidable.

We also see in the full paper that in finite dimensions the L-derivative and the Clarke
gradient coincide thus providing a computable representation for the latter in this case.

As already pointed out, it remains an open question if the L-derivative coincides
with the Clarke gradient on infinite dimensional Banach spaces. It is also unknown if
the Clarke gradient is upper semi-continuous in infinite dimensions, a property which
holds for the L-derivative as we have shown in this paper. On the other hand, it will be
interesting to see if the L-derivative can be extended to functions from a Banach space
to a finite dimensional Banach space, for example to the complex plane, a case which
has applications in quantum field theory.

There are quite a few unsolved problems in finite dimensions. For n = 1, the al-
gorithm for testing consistency of basis elements in D1(U) as already mentioned. For
D2(U), consistency on basis elements is decidable but the present algorithm to test it
is super-exponential in the total number of single-step functions for the three approx-
imations of the function part, the derivative part and the second derivative part. [1].
Decidability of consistency for Dm(U) when m > 2 is unknown. For n = 2, consis-
tency on basis elements for D1(U) is decidable but the algorithm to test it in [10] is
super-exponential. The complexity of consistency test in this case is unknown as is the
question of decidability of consistency of basis elements for Dm(U) when m > 1.

Based on the domain-theoretic framework for differential calculus, one can embark
on the task of constructing a domain for orientable Euclidean manifolds, which would
extend the set-theoretic model for computational geometry and solid modelling pre-
sented in [8] to the piecewise smooth setting.

A Continuous Derivative for Real-Valued Functions 257

Acknowledgement

I would like to thank André Lieutier and Dirk Pattinson for reading and checking
various parts of this work.

References

1. Abolfathbeigi, S., Mahmoudi, M.: Manuscript in Persian (2003)
2. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E.

(eds.) Handbook of Logic in Computer Science, vol. 3, Clarendon Press, Oxford (1994)
3. Clarke, F.H.: Private communications. Summer (2005)
4. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, Chichester (1983)
5. Edalat, A.: Dynamical systems, measures and fractals via domain theory. Information and

Computation 120(1), 32–48 (1995)
6. Edalat, A.: A continuous derivative for real-valued functions. Invited submission to New

Computational Paradigms (2006) Available at www.doc.ic.ac.uk/∼ae/papers/banachf.ps.
7. Edalat, A., Krznarić, M., Lieutier, A.: Domain-theoretic solution of differential equations

(scalar fields). In: Proceedings of MFPS XIX, volume 83 of Electronic Notes in Theoretical
Computer Science (2003) Full paper in www.doc.ic.ac.uk/∼ae/papers/scalar.ps

8. Edalat, A., Lieutier, A.: Foundation of a computable solid modelling. Theoretical Computer
Science 284(2), 319–345 (2002)

9. Edalat, A., Lieutier, A.: Domain theory and differential calculus (Functions of one variable).
Mathematical Structures in Computer Science 14(6), 771–802 (2004)

10. Edalat, A., Lieutier, A., Pattinson, D.: A computational model for multi-variable differential
calculus. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 505–519. Springer,
Heidelberg (2005)

11. Edalat, A., Pattinson, D.: A domain theoretic account of Picard’s theorem. In: Proc. ICALP
2004 LNCS vol. 3142, pp. 494–505 (2004), Full paper in www.doc.ic.ac.uk/˜ae/
papers/picard.icalp.ps

12. Fars, N.: Aspects analytiques dans la mathematique de shraf al-din al-tusi. Historia Sc. 5(1)
(1995)

13. Fars, N.: Le calcul du maximum et la ’derive’ selon shraf al-din al-tusi. Arabic Sci. Phi-
los. 5(2), 219–237 (1995)

14. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous
Lattices and Domains. Cambridge University Press, UK (2003)

15. Hogendijk, J.P.: Shraf al-din al-tusi on the number of positive roots of cubic equations. Fund.
Math. 16(1), 69–85 (1989)

16. Pour-El, M.B., Richards, J.I.: A computable ordinary differential equation which possesses
no computable solution. Annals Math. Logic 17, 61–90 (1979)

17. Scott, D.S.: Outline of a mathematical theory of computation. In: 4th Annual Princeton Con-
ference on Information Sciences and Systems, pp. 169–176 (1970)

18. Weihrauch, K.: Computable Analysis (An Introduction). Springer, Heidelberg (2000)

file:www.doc.ic.ac.uk/~ae/papers/picard.icalp.ps
file:www.doc.ic.ac.uk/~ae/papers/picard.icalp.ps

Refocusing Generalised Normalisation

José Esṕırito Santo�

Departamento de Matemática
Universidade do Minho

Portugal
jes@math.uminho.pt

Abstract. When defined with general elimination/application rules,
natural deduction and λ-calculus become closer to sequent calculus. In
order to get real isomorphism, normalisation has to be defined in a “mul-
tiary” variant, in which reduction rules are necessarily non-local (reason:
nomalisation, like cut-elimination, acts at the head of applicative terms,
but natural deduction focuses at the tail of such terms). Non-local rules
are bad, for instance, for the mechanization of the system. A solution
is to extend natural deduction even further to a unified calculus based
on the unification of cut and general elimination. In the unified calculus,
a sequent term behaves like in the sequent calculus, whereas the reduc-
tion steps of a natural deduction term are interleaved with explicit steps
for bringing heads to focus. A variant of the calculus has the symmetric
role of improving sequent calculus in dealing with tail-active permutative
conversions.

Keywords: normalisation, generalised elimination rules, multiarity.

1 Introduction

Natural deduction with general elimination rules is closer to sequent calculus
than traditional natural deduction [10]. This paper investigates the exact re-
alization of this claim, and the outcome of such realization, in the context of
intuitionistic implicational logic.

In [10] von Plato obtains a perfect correspondence between “fully normal”
deductions and cut-free sequent derivations, extending to a bijection between
natural deductions and a subset of sequent derivations (where cuts are necessar-
ily “right-principal”). In this paper we start by investigating the isomorphism
between cut-elimination and generalised normalisation. The systems are pre-
sented as typed λ-calculi, and a computational reading is present throughout.

Sequent calculus is presented as system λGm, where cuts are “right-principal”.
In λGm there is the so-called multiarity facility, i.e. the facility of not naming
an active, linearly left-introduced formula [9]. In this system cuts correspond to
applicative terms, consisting of a head, a list of arguments, and a “continuation”
(or tail).
� The author is supported by FCT through the Centro de Matemática da Universidade

do Minho.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 258–267, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Refocusing Generalised Normalisation 259

In order to get real isomorphism, natural deduction is defined as the system
λNm, a multiary extension of von Plato’s system. However, normalisation has
to be defined with non-local reduction rules. The reason is simple: normalisation,
like cut-elimination, acts at the head of applicative terms, but natural deduction
focuses at the tail of such terms. Now, in a multiary system, heads are arbitrar-
ily distant from tails. So, we get isomorphism, but normalisation in the relevant
natural deduction system is just a clumsy way of doing cut-elimination. Sym-
metrically, sequent calculus is the wrong setting for doing tail-active permutative
conversions.

A way out of this situation, which is simultaneously the main outcome of
proving λGm ∼= λNm, suggested by the analysis of this isomorphism, is to extend
natural deduction even further, to a calculus λU that unifies λGm and λNm.
This unified calculus is based on the unification of cut and general elimination.

In the unified calculus all reduction rules are local, and a sequent term behaves
like in the sequent calculus, whereas the reduction steps of a natural deduction
term are interleaved with explicit steps for bringing heads to focus. This gives
an implementation of multiary normalisation with local reduction steps.

The unified calculus seems particularly appropriate for dealing with conver-
sions with are both head-acting and tail-acting. A variant of the calculus is
suggested which has the role of improving sequent calculus in dealing with tail-
acting permutative conversions.

Structure of the paper: Section 2 presents λGm, λNm and λGm ∼= λNm.
Section 3 is the central contribution, presenting the unified calculus λU and its
properties and variants. Section 4 concludes.

Notations: Types (=formulas) are ranged over by A, B, C and generated from
type variables using the “arrow type” (=implication), written A ⊃ B. Con-
texts Γ are consistent sets of declarations x : A. “Consistent” means that for
each variable x there is at most one declaration in Γ . The notation Γ, x : A
always denotes a consistent union, that is, one that produces a consistent set.
Barendregt’s variable convention is adopted. In particular, we take renaming of
bound variables for granted. Substitution is denoted by [/x] . “s.n.” abbreviates
“strongly normalising”.

2 Isomorphism

Natural deduction with general elimination rules: This system [10] may
be presented as a type system for the λ-calculus with generalised application.
The latter is the system ΛJ of [6], which we rename here as λg, for the sake of
uniformity with the names of other calculi. Terms of λg are given by

M, N, P ::= x | λx.M | M(N, x.P)

The typing rule for generalised application is

Γ � M : A ⊃ B Γ � N : A Γ, x : B � P : C

Γ � M(N, x.P) : C
gElim

260 J. Esṕırito Santo

The λg-calculus has two reduction rules

(β) (λx.M)(N, y.P) → [[N/x]M/y]P
(π) M(N, x.P)(N ′, y.P ′) → M(N, x.P (N ′, y.P ′)) .

The usual λ-calculus embeds in λg by setting MN = M(N, x.x). Likewise,
modus ponens (=Gentzen’s elimination rule for implication) may be seen as the
particular case of gElim where B = C and the rightmost premiss is omitted.

Sequent calculus: We present the system λGm (“G” is after Gentzen). It
should be understood as an extension of the λ-calculus whose typing rules define
a sequent calculus. As an extension of the λ-calculus, it adds to the application
constructor the features of generality and multiarity, to be explained soon. As
a sequent calculus, λGm contains, as primitive, cuts of a special form, namely
those whose cut-formula in the right premiss is principal in a left-introduction.

There are two sorts of expressions in λGm:

(Terms) t, u, v ::= x | λx.t | tl
(Lists) l ::= u · (x)v | u :: l

A term of the form tl is called a cut. In general, l has the form u1 :: ... :: un−1 ::
un · (x)v, for some n ≥ 1. We regard these expressions as generalised lists. In tl,
think of t as a function and of l as an expression that provides a non-empty list
of arguments for t (this is the multiarity feature), plus some “continuation” (x)v,
specifying what to do after the last argument is consumed (this is the generality
feature).

Define [u] = u · (x)x. Expressions of the form u1 :: ... :: un−1 :: [un] are
regarded as lists, writen as [u1, ..., un−1, un], and interpreted in [5] as “applicative
contexts”. Lists in λGm may be interpreted as generalised applicative contexts.

There are two sorts of sequents in λGm, namely Γ � t : A and Γ ; A � l : B.
The distinguished position in the antecedent of sequents of the latter kind is
named the stoup. Typing rules are as follows:

Γ, x : A � x : A
Axiom

Γ, x : A � t : B

Γ � λx.t : A ⊃ B
Right

Γ � u : A Γ ; B � l : C

Γ ; A ⊃ B � u :: l : C
plLeft

Γ � t : A Γ ; A � l : B

Γ � tl : B
Cut

Γ � u : A Γ, x : B � v : C

Γ ; A ⊃ B � u · (x)v : C
gLeft

These rules define a sequent calculus, with a primitive rule of cut, and two sorts of
primitive left-introduction rules: general left-introduction (gLeft) and principal-
linear left-introduction (plLeft). The system is such that, in any derivation, the
stoup always contains a formula that is principal and linear, that is, principal in
a left-introduction rule, and introduced without contraction. Given that the cut
rule and the left-introduction rules require some of the active formulas and/or
the principal formula to be in the stoup, these inference rules are of a particular

Refocusing Generalised Normalisation 261

kind. The cut-formula is always an implication and cut is right-principal. As to
left-introduction rules, they are both linear, in the sense that they both intro-
duce without contraction. In addition, rule plLeft, by requiring its right active
formula to be principal and linear, is of the restricted form identified in [5,1,7].

There are three reduction rules

(β1) (λx.t)(u · (y)v) → [[u/x]t/y]v (π) (tl)l′ → t(l@l′)
(β2) (λx.t)(u :: l) → ([u/x]t)l

where l@l′ is the “append” of generalised lists l and l′, defined by

(u :: l)@l′ = u :: (l@l′) (u · (x)v)@l′ = u · (x)(vl′).

Let β = β1 ∪ β2. By cut-elimination we mean βπ-reduction. A βπ-nf is a term
where every cut has the form xl. These normal forms correspond exactly to the
multiary sequent terms of [9]. In λGm, a λg-term is a term without occurrences
of u :: l (hence every cut in a λg-term is a g-application t(u · (x)v)).

Multiary natural deduction: We present the system λNm. It should be un-
derstood as an extension of the λg-calculus and of natural deduction with general
elimination rules. This system has an implementation of the multiarity feature
(the ability of forming chains of arguments for a function) within the framework
of natural deduction.

Expressions in λNm are given by:

(Terms) M, N, P ::= x | λx.M | app(F, N, (x)P)
(Functions) F ::= hd(M) | FN

This is a syntax with two syntactic classes: terms and functions. A term of the
form app(F, N, (x)P) may be called either gm-application or outer application.
Think of this construction as an extension of the generalized application of λg.
Indeed, generalized application is recovered as app(hd(M), N, (x)P), because
any term M can be coerced to a function hd(M). There is a second kind of
application construction, FN , named inner application or mp-application. Here
mp is mnemonic of modus ponens.

The elements of the second syntactic class are named functions because, in
expressions, they only occur in the function position of applications. Application
FN is inner because, being a function, occurs in the function position of another
application. The general form of a function is hd(M)N1...Nm−1, for some m ≥ 1.
A function of the form hd(M) is called a head. An intuition about functions is
that they are expressions which require an immediate and linear use. On the
other hand, in app(F, N, (x)P), the use of the application of F to N , specified
by the “continuation” (x)P is required neither to be immediate nor linear.

There are two sorts of sequents in λNm, namely Γ � M : A and Γ � F : A.
Typing rules are as follows:

262 J. Esṕırito Santo

Γ, x : A � x : A
Assumption

Γ � M : A
Γ � hd(M) : A

Coercion

Γ, x : A � M : B

Γ � λx.M : A ⊃ B
Intro

Γ � F : A ⊃ B Γ � N : A
Γ � FN : B

mpElim

Γ � F : A ⊃ B Γ � N : A Γ, x : B � P : C

Γ � app(F, N, (x)P) : C
gmElim

In accordance with what was observed before, this is a natural deduction system
extending that of von Plato’s. The system contains two primitive elimination
rules, general multiary elimination (or outer elimination) and inner elimination,
the latter being a form of modus ponens. There is a further rule, whose instances
are called coercions, with coercion formula A. The general elimination rule is
recovered as a combination of outer elimination and coercion. In addition, a
sequent of the form Γ � F : A occurs in a derivation of the system iff it occurs
as the major premiss of an elimination and A is an implication. The Coercion
rule, then, means that any sequent of the first kind can serve as major premiss
of an elimination.

There are three reduction rules: two β-rules

(β1) app(hd(λx.M), N, (y)P) → [[N/x]M/y]P
(β2) hd(λx.M)N → hd([N/x]M) ,

and rule (π)

app(hd(app(F, N, (x)P))N1...Nm−1, Nm, (y)P ′) →
→ app(F, N, (x)app(hd(P)N1...Nm−1, Nm, (y)P ′)) ,

where m ≥ 1. Let β = β1 ∪ β2. By gm-normalisation we mean βπ-reduction.
Notice that rule β2 is a relation on functions. As to rule π, if F = hd(M) and
m = 1, we recognize the π rule of λg. In the general case, rule π is non-local,
because, if we let the redex be app(F ′, Nm, (y)P), it requires the full inspection
of F ′ until the head emerges. Also a β2-reduction step requires the full inspection
of function F of the application app(F, N, (y)P) where the β2-redex is located.

In λNm, a λg-terms is a term without occurrences of FN (hence every gm-
application in a λg-term is a g-application app(hd(M), N, (x)P)). M is in βπ-nf
iff every coercion in M is of the form hd(x). A derivation D in λNm is βπ-normal
iff every coercion formula occurring in D is an assumption. In particular, this
gives von Plato’s criterion of normality for λg-terms, because in λg coercion
formula = main premiss of elimination.

Remark: Both λGm and λNm are new presentations of the system λJm of
[3]. A gm-application is written there t(u1, [u2, ..., un], (x)v). This representation
brings to the surface both the head t and the “continuation” (x)v. The price
to pay for these advantages is that the presentation in op. cit. has a hybrid
proof-theoretical character. The typing rule of the gm-application constructor

Refocusing Generalised Normalisation 263

in op. cit. is an elimination rule, but lists l of a restricted form are primitive.
Nevertheless, λGm and λNm inherit the properties of λJm [4]:

Theorem 1. In λGm and λNm, βπ-reduction is s.n. on typable terms and
confluent.

Mappings Θ and Ψ : We now define mappings between the set of λGm-terms
and the set of λNm-terms. Once and for all, variables and λ-abstractions are
mapped identically. The question will always be how to map cuts, left introduc-
tions and eliminations.

We start with a mapping Ψ : λNm−Terms −→ λGm−Terms. Let Ψ(M) = t,
Ψ(Ni) = ui and Ψ(P) = v. The idea is to map, say, app(hd(M)N1N2, N3, (x)P)
to t(u1 :: u2 :: u3 · (x)v). This is achieved with the help of an auxiliary function
Ψ : λNm − Functions × λGm − Lists −→ λGm − Terms as follows:

Ψ(x) = x Ψ(hd(M), l) = (ΨM)l
Ψ(λx.M) = λx.ΨM Ψ(FN, l) = Ψ(F, ΨN :: l)

Ψ(app(F, N, (x)P)) = Ψ(F, ΨN · (x)ΨP)

Next we consider a mapping Θ : λGm − Terms −→ λNm − Terms. Let
Θ(t) = M , Θ(ui) = Ni and Θ(v) = P . The idea is to map, say, t(u1 :: u2 ::
u3 · (x)v) to app(hd(M)N1N2, N3, (x)P). This is achieved with the help of an
auxiliary function Θ : λNm − Functions × λGm − Lists −→ λNm − Terms as
follows:

Θ(x) = x Θ(F, u · (x)v) = app(F, Θu, (x)Θv)
Θ(λx.t) = λx.Θt Θ(F, u :: l) = Θ(FΘu, l)

Θ(tl) = Θ(hd(Θt), l)

Theorem 2 (Isomorphism). Mappings Ψ and Θ are sound, mutually inverse
bijections between the set of λGm-terms and the set of λNm-terms. Moreover,
for each R ∈ {β1, β2, π}:

1. M →R M ′ in λNm iff ΨM →R ΨM ′ in λGm.
2. t →R t′ in λGm iff Θt →R Θt′ in λNm.

The proof follows the pattern of proof of similar results in [2].

3 Unification

A problem of wrong focus: Applicative terms in λGm and λNm have the
form of cuts and gm-eliminations

t(u1 :: ... :: um−1 :: um · (x)v) , (1)
app(hd(M)N1...Nm−1, Nm, (x)P) . (2)

264 J. Esṕırito Santo

respectively. In both cases there is a head, m arguments (m ≥ 1) and a tail (or
continuation). In the first case, the term is split next to the head, with the rest
of data organized as a list l; in the second case, the term is split just before the
tail, with the rest of data organized as a function F . In the first case, the head
is focused, in the second it is the tail that is focused.

Now both cut-elimination and gm-normalisation aim at reducing heads to
variables, and are a process of transforming heads. In this respect, the focus
of tails is unfortunate and explains the fact that both β2 and π are non-local
reduction rules in the natural deduction system λNm.

Non-local rules are bad, for instance, for the implementation of λNm, where
the search for heads has to be made explicitly. The solution we propose is to
extend λNm to a calculus where applicative terms are split at arbitrary position,
and not just around the tail. This means that both functions F and lists l are
used in the representation of applicative terms, and this representation turns out
to unify both cuts and gm-eliminations.

The telescopic effect: The idea of manipulating functions F and lists l in
the same system has many motivations. For instance, the intuition about lists l
is that they are “applicative contexts”, prescribing a linear and immediate use
to some expression to be supplied; symmetrically, functions F are expressions
which are used in a linear and immediate way (in the function position of some
application). But so far functions and lists live in separate systems.

Another motivation is as follows. Let M0 be the gm-application (2), and let
Θt = M , Θui = Ni and Θv = P . There are m choices of F, l such that M0 =
Θ(F, l), ranging from the choice F = hd(M)N1...Nm−1 and l = um · (x)v to the
choice F = hd(M) and l = u1 :: ...um−1 :: um · (x)v. This last case is particularly
important, because the representation of application M0 as Θ(hd(M), l), for such
l, brings to the surface the head hd(M). In general, we will use pattern matching
of gm-application with Θ(hd(M), l) to obtain the effect of extracting the head
of the application, an effect we call the telescopic effect. Similarly one extracts
the tail of cuts by pattern-matching with Ψ(F, u · (x)v).

The telescopic effect is useful in making global rules look local. This is achieved
by manipulating simultaneously, in the meta-language, both functions F and lists
l. For instance, reduction rule π in λNm may be defined as follows:

(π) Θ(hd(app(F, N, (x)P)), l) → app(F, N, (x)Θ(hd(P), l)) .

The calculus we introduce next manipulates expressions Θ(F, l) formally.

The unified calculus: Expressions in λU are given by:

(Terms) M, N, P ::= x | λx.M | θ(F, L)
(Functions) F ::= hd(M) | FN
(Lists) L, K ::= N :: L | N · (x)P

θ(F, L) is called a unified cut. The symbol θ is a formal counterpart of Θ. In
θ(F, L), we say that F is in focus. The new typing rule is:

Refocusing Generalised Normalisation 265

Γ � F : A Γ ; L : A � B

Γ � θ(F, L) : B
uCut

In λU , a sequent term is a term with no occurrences of FN , i.e an elimination-
free term, whereas a natural deduction term is a term with no occurrences of
N :: L, i.e. a left-introduction-free term. In sequent terms and natural deduction
terms, unified cuts have the form

ML = θ(hd(M), L) app(F, N, (x)P) = θ(F, N · (x)P)

respectively. These equations show how unified cut unifies cut and and gm-
elimination. Sequent terms (resp. natural deduction terms) dispense with the
syntactic class of functions F (resp. lists L) and constitute a copy of λGm-terms
(resp. λNm-terms) in λU . Given a λGm-term t (resp. λNm-term M), we denote
by t′ (resp. M ′) its copy in λU .

The reduction rules of λU are as follows:

(β1) θ(hd(λx.M), N · (y)P) → [[N/x]M/y]P
(β2) θ(hd(λx.M), N :: L) → θ(hd([N/x]M), L)
(π) θ(hd(θ(F, L)), K) → θ(F, L@K)
(ψ) θ(FN, L) → θ(F, N :: L)

Let β = β1∪β2. Rules β and π require a head in focus. For this reason, are local
transformations. Rule ψ is a step towards focusing a head. A λU -term is a ψ-nf
iff it is a sequent term. ψ-reduction is terminating (it decreases the number of
occurrences of FN) and locally confluent. Hence it is confluent. We denote by
ψ(M) the unique ψ-nf of a λU -term M . It holds, for all M ∈ λNm, that

ψ(M ′) = Ψ(M)′ .

It is easy to see that sequent terms are closed for βπ-reduction, and a λGm-
term t βπ-reduces in λGm exactly as t′ βπ-reduces in λU . Let us see what
happens when we βπ-reduce M ′ in λU , for M ∈ λNm.

Proposition 1. Let R ∈ {β1, β2, π}.

1. In λU , if M →R M1 and M →ψ M2 then there is M3 such that M2 →R M3

and M1 →∗
ψ M3.

2. If M →R N in λNm, then there are M1, N1 such that, in λU : M1 →R N1

and M →∗
ψ M1 and N →∗

ψ N1.

Theorem 3. Suppose M1 →R1 M2 → (· · ·) → Mn →Rn Mn+1 is a βπ-
reduction sequence in λNm (hence each Ri ∈ {β1, β2, π}). Then, the reductions
in λU depicted in Fig. 1 hold, when vertical arrows denote ψ-reduction.

Proof: By induction on n, using the previous proposition and confluence of ψ. �
Regarding Fig. 1 again, we can now compare reduction of M1 in λNm with
reduction of M ′

1 in λU . The latter is obtained from the former by interleaving

266 J. Esṕırito Santo

M1
R1� M2

R2� M3 � (· · ·) � Mn
Rn� Mn+1

M ′
1 M ′

2 M ′
3 (· · ·) M ′

n M ′
n+1

•
��

.........

R1

� •
��

.........

•
��

..........

R2

� •
��

..........................

(· · ·)

•
��

..

Rn

� •
��

...

ψ(M ′
1)

��

...
R1� ψ(M ′

2)

��

..........................
R2� ψ(M ′

3)

��

..........................

� (· · ·) � ψ(M ′
n)

��

........
Rn� ψ(M ′

n+1)

��

........

Fig. 1. Normalisation in λU

ψ-reduction steps. To a possibly non-local reduction step →Ri in the former
corresponds a necessarily local reduction step →Ri in the latter. The interleaved
ψ-reduction steps do explicitly the focusing of heads implicit in the reduction
steps at the λNm level. The reduction of ψ(M ′

1) is morally the same as the
reduction of Ψ(M1) in λGm. Fig. 1 is a refinement of the “only if” part of
statement 1 in Theorem 2.

Finally, observe that part 1 of Proposition 1 allows the projection of βπψ-
reduction sequences of λU into βπ-reduction sequences of λGm. So, it is easy to
lift Theorem 1 from λGm to λU .

Theorem 4. βπψ-reduction in λU is s.n. on typable terms and confluent.

Variant of the unified calculus: Consider a variant of permutative conversion
p of λJm [3], given here for λGm with the help of telescopic effect:

(p) Ψ(F, u · (x)v) → [Ψ(F, [u])/x]v, if v 	= x .

This rule acts on tails, eliminating occurrences of general left-introduction. It is
a non-local rule in λGm. A variant of the unified calculus, seen as an extension
of λGm, can be defined for tail-active conversions, with terms:

t, u, v ::= x | λx.t | ψ(f, l)

The p-rule now reads ψ(f, u · (x)v) → [ψ(f, [u])/x]v. In ψ(f, l) the focus is l and
a rule θ is needed for bringing continuations to focus: ψ(f, u :: l) → ψ(fu, l).

Refocusing Generalised Normalisation 267

4 Conclusion

From a logical point of view, λU achieves the same goal as the “uniform” calculus
of [8], but with a radically different approach (the latter approach is to extend
natural deduction with general elimination and general introduction rules).

It is to be expected that λU admits extensions (encompassing a sequent cal-
culus where cuts are not necessarily right-principal) and further variants. For
instance, consider the following rules for λNm, given with telescopic effect:

(μ) Θ(F, N · (x)Θ(hd(x), l)) → Θ(FN, l), if x /∈ l .

This is a natural deduction variant of rule μ introduced in [9]. Consider the
μ-redex. We analyze the tail of the outer applicative term and the head of the
inner applicative term. This rules needs a mix of head and tail focus. Maybe a
good system for dealing with such rules is a variant of the unified calculus with
reduction modulo the equation θ(FN, L) = θ(F, N :: L).

Acknowledgment. The diagram in Fig. 1 was produced with Paul Taylor’s
macros.

References

1. Dyckhoff, R., Pinto, L.: Permutability of proofs in intuitionistic sequent calculi.
Theoretical Computer Science 212, 141–155 (1999)

2. Esṕırito Santo, J.: Conservative extensions of the λ-calculus for the computational
interpretation of sequent calculus. PhD thesis, University of Edinburgh, (2002)
Available at http://www.lfcs.informatics.ed.ac.uk/reports/ .

3. Esṕırito Santo, J., Pinto, L.: Permutative conversions in intuitionistic multiary
sequent calculus with cuts. In: Hoffman, M. (ed.) TLCA 2003. LNCS, vol. 2701,
pp. 286–300. Springer, Heidelberg (2003)

4. Esṕırito Santo, J., Pinto, L.: Confluence and strong normalisation of the generalised
multiary λ-calculus. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003.
LNCS, vol. 3085, Springer, Heidelberg (2004)

5. Herbelin, H.: A λ-calculus structure isomorphic to a Gentzen-style sequent calculus
structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75.
Springer, Heidelberg (1995)

6. Joachimski, F., Matthes, R.: Short proofs of normalization for the simply-typed
lambda-calculus, permutative conversions and Gödel’s T. Archive for Mathematical
Logic 42, 59–87 (2003)

7. Mints, G.: Normal forms for sequent derivations. In: Odifreddi, P., Peters, A.K.
(eds.) Kreiseliana, pp. 469–492. Wellesley, Massachusetts (1996)

8. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge (2001)
9. Schwichtenberg, H.: Termination of permutative conversions in intuitionistic

gentzen calculi. Theoretical Computer Science, 212 (1999)
10. von Plato, J.: Natural deduction with general elimination rules. Annals of Mathe-

matical Logic 40(7), 541–567 (2001)

http://www.lfcs.informatics.ed.ac.uk/reports/

The Complexity Ecology of Parameters: An

Illustration Using Bounded Max Leaf Number�

Michael Fellows1,2 and Frances Rosamond1

1 University of Newcastle, Callaghan NSW 2308, Australia
{michael.fellows,frances.rosamond}@newcastle.edu.au

2 Durham University, Institute of Advanced Study,
Durham DH1 3RL, United Kingdom

Abstract. In the framework of parameterized complexity, exploring
how one parameter affects the complexity of a different parameterized
(or unparameterized problem) is of general interest. A well-developed
example is the investigation of how the parameter treewidth influences
the complexity of (other) graph problems. The reason why such investi-
gations are of general interest is that real-world input distributions for
computational problems often inherit structure from the natural compu-
tational processes that produce the problem instances (not necessarily in
obvious, or well-understood ways). The max leaf number of a connected
graph G is the maximum number of leaves in a spanning tree for G. Ex-
ploring questions analogous to the well-studied case of treewidth, we can
ask: how hard is it to solve 3-Coloring or Hamilton Path or Minimum

Dominating Set for graphs of bounded max leaf number? We do two
things:

(1) We describe much improved FPT algorithms for a large number of
graph problems, for input of bounded max leaf number, based on the
polynomial-time extremal structure theory associated to the parameter
max leaf number.
(2) The way that we obtain these concrete algorithmic results is general
and systematic. We describe the approach.

1 Introduction

The analysis of the complexity of problems, for graphs of bounded treewidth, is
well-developed and supports many systematic approaches that have developed
over a number of years [Cou90, ALS91, Bod96, DF99, Nie06, BK07]. For exam-
ple, determining whether a graph is 3-colorable can be solved in time O(n) for
� This research has been supported by the Australian Research Council through the

Australian Centre for Bioinformatics, by the University of Newcastle Parameterized
Complexity Research Unit under the auspices of the Deputy Vice-Chancellor for
Research, and by a Fellowship to the Durham University Institute for Advanced
Studies. The authors also gratefully acknowledge the support and kind hospitality
provided by a William Best Fellowship at Grey College while the paper was in
preparation.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 268–277, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Complexity Ecology of Parameters 269

graphs of treewidth at most k. In the terminology of parameterized complexity
[DF99, FG06], Graph 3-Coloring is fixed parameter tractable for the param-
eter treewidth. In this small example, the asymptotic notation conceals serious
costs associated to the treewidth bound k, from two sources:

(1) The complexity of computing a tree-decomposition of width k is O(235k3
n)

for an n-vertex graph.
(2) Once the tree-decomposition is obtained, one would then solve the problem
by dynamic programming, in time O(3kn).

Suppose that we wish to solve Graph 3-Coloring for graphs having a dif-
ferent structural restriction — how should this be done? Here we consider the
structural parameter of bounded max leaf number, where this is defined for a
connected graph G as the maximum number of leaves of a spanning tree for
G. (We choose this parameter mainly to illustrate the key issues, and because
enough is known of the associated P-time extremal structure theory to provide
a good example of the general approach. We are not aware of any strong direct
applications of bounded max leaf number.)

One way to approach the problem of determining 3-colorability, parameter-
izing by max leaf number, is to note that graphs of bounded max leaf num-
ber exclude a tree minor and therefore have bounded pathwidth, so that the
above sketched bounded treewidth approach can be used. This classifies Graph

3-Coloring, parameterized by max leaf number, as FPT, but this is not an
efficient algorithm.

We have two objectives in this paper:

(1) We describe efficient FPT algorithms for Graph 3-Coloring and many
other problems, for input parameterized by max leaf number.
(2) We do so in a way that is very generally systematic, and that “fits” the
study of how parameterized structure affects computational complexity in what
we term the “ecology” of parameterized complexity. One can view this effort
as a kind of generalized bidimensionality theory in the sense of Demaine and
Hajiaghayi [DFHT05, DH05, DH07].

In the next section, we discuss the basics of parameterized complexity and
motivate the general setting for this investigation.

2 Background on Parameterized Complexity and the
Complexity Ecology of Parameters

Contemporary sources of introductory material can be found in the survey ar-
ticles [Ra97, DFS99, Fe02, Nie04], and in the recent books and monographs
[DF99, FG06, Nie06].

Parameterized complexity is basically a two-dimensional generalization of the
familiar P versus NP framework. In addition to the overall input size n we
consider the effects on complexity of a declared secondary “measurement” k
(the parameter) that generally is used to capture some structure of the input

270 M. Fellows and F. Rosamond

or other aspect of our computational objective (for example, k = 1/ε turns out
to be a useful parameterization in the analysis of approximation complexity).
Solvability in time f(k)nc is termed fixed-parameter tractability (FPT), where f
is some function (usually exponential) and c is a constant independent of k.

Evidence that a parameterized problem is unlikely to admit an FPT algorithm
is provided by a strong two-dimensional analog of NP-hardness, termed W [1]-
hardness. A reference problem complete for W [1] is the k-step halting problem
for nondeterministic Turing machines of unlimited nondeterminism and alphabet
size. This is obviously solvable by brute force in time O(nO(k)). The positive
toolkit of FPT turns out to be technically quite rich, and the negative toolkit of
W [1]-hardness turns out to be widely applicable.

The main motivation for parameterized complexity is that in almost all real
world settings and for almost all purposes of computing, the input has “extra
structure” that we are able to relevantly capture with the mathematical device
of the parameter.

Historically, a key motivating source for parameterized complexity has been
the graph minors project of Robertson and Seymour [RS85]. The graph minors
structure theory is related to FPT in the following way. The parameterized
computational decision problem Graph Minor takes as input graphs G and H
and asks whether H is a minor of G (that is, whether a graph isomorphic to
H can be obtained from G by contracting edges of a subgraph of G). This is a
fundamental problem, naturally parameterized by H .

As far as we know, all of the beautiful structure theory of the graph minors
project, pathwidth, treewidth, and the like, is necessary in order to show that the
Graph Minor problem, parameterized by H , is fixed-parameter tractable.

The following lemma codifies how every FPT parameterized problem has a
canonically associated structure theory project, via the quest for efficient FPT
kernelization bounds.

Lemma 1. A parameterized problem Π is in FPT if and only if there is a
transformation from Π to itself, and a function g, that reduces an instance (x, k)
to (x′, k′) such that:

(1) the transformation runs in time polynomial in |(x, k)|,
(2) (x, k) is a yes-instance of Π if and only if (x′, k′) is a yes-instance of Π,
(3) k′ ≤ k, and
(4) |x′| ≤ g(k).

In the situation described above, we say that we have a kernelization bound of
g(k). The proof of the above “point of view” on FPT that focuses on P-time
kernelization is completely trivial, giving a kernelization bound of g(k) = f(k) for
an FPT problem solvable in time f(k)nc. But for many important FPT problems,
we can do much better, and the “pre-processing” routines that produce small
kernels seem to have great practical value [ACFLSS04, Nie04, Nie06, Wei98]. For
example, the Vertex Cover problem can be kernelized in polynomial time to a
graph on at most 2k vertices [NT75, ACFLSS04, CFJ04]. Planar Dominating

Set also has a problem kernel of linear size [AFN04].

The Complexity Ecology of Parameters 271

2.1 A Complexity Ecology of Parameters

The extent to which the structure theory of the graph minors project has turned
out to be of practical relevance to computing is quite striking. For one example,
many naturally occuring databases have bounded treewidth (or bounded hyper-
treewidth, a related notion) — a matter of immense significance to the realistic
assessment of the complexity of database problems [GM99, FFG01, Gr01].

Another example is the problem of Type Checking of programs written in
high-level logic-based programming languages such as ML. This problem has
been shown to be complete for EXP, and thus “extremely” intractable from the
classical point of view. Nevertheless, the ML compilers generally work just fine.
The explanation is that most naturally occuring programs have a maximum
type-declaration nesting depth k of no more than 5. The FPT type-checking
algorithm that runs in time O(2kn) is entirely adequate in practice. The reason
why naturally occuring programs have small nesting depth is that otherwise the
programs quickly become incomprehensible to the programmer.

A possible perspective on this quoted from the survey [DFS99]:

We feel that the parametric complexity notions, with their implicit ul-
trafinitism, correspond better to the natural landscape of computational
complexity, where we find ourselves overwhelmingly among hard prob-
lems, dependent on identifying and exploiting thin zones of computa-
tional viability. Many natural problem distributions are generated by
processes that inhabit such zones themselves (e.g., computer code that
is written in a structured manner so that it can be comprehensible to
the programmer), and these distributions then inherit limited parameter
ranges because of the computational parameters that implicitly govern
the feasibility of the generative processes, though the relevant parame-
ters may not be immediately obvious.1

We want to know how all the various parameterized structural notions in-
teract with all the other computational objectives one might have. The familiar
paradigm of efficiently solving various problems for graphs of bounded treewidth
just represents one row of a matrix of algorithmic questions that arise from the
relevant parameterized structure theories. In the case of Max Leaf, we investi-
gate how to solve the Independent Set problem, etc., on graphs bounded “max
leaf number”, exploiting the structure that bounding this parameter yields.

Consider the following table. We use here the shorthand: TW is Treewidth,
BW is Bandwidth, VC is Vertex Cover, DS is Dominating Set, G is
Genus and ML is Max Leaf. The entry in the 2nd row and 4th column in-
dicates that there is an FPT algorithm to optimally solve the Dominating

Set problem for a graph G of bandwidth at most k. The entry in the 4th row
and second column indicates that it is unknown whether Bandwidth can be
solved optimally by an FPT algorithm when the parameter is a bound on the
domination number of the input.
1 For a philosophically similar discussion see [Gur89].

272 M. Fellows and F. Rosamond

Table 1. The Complexity Ecology of Parameters

TW BW VC DS G ML

TW FPT W [1]-hard FPT FPT ? FPT
BW FPT W [1]-hard FPT FPT ? FPT
VC FPT ? FPT FPT ? FPT
DS ? ? W [1]-hard W [1]-hard ? ?

G W [1]-hard W [1]-hard W [1]-hard W [1]-hard FPT ?

ML FPT ? FPT FPT FPT FPT

Our attention so far has mostly been concerned with:
(1) The diagonal — for example, Treewidth is FPT and Bandwidth is W [1]-
hard — as stand-alone problems, and
(2) The first row.
But if the natural world of complexity “runs” on a commerce of (sometimes
rather hidden) structural parameters, then it is important to systematically in-
vestigate the entire matrix. The so-called bidimensionality theory gives a sys-
tematic approach to the first (treewidth) row [DH07].

3 Systematically Attacking a Row

We use the max leaf parameter to show how to systematically attack a row of
the “complexity ecology table” (which should not be thought of as limited to
the few illustrative examples of problems in the table above — the real table
is unbounded). We use the P-time extremal theory approach that is developed
in [Pr05, EFLR05] where it is used to give a 3.75k P-time kernelization for
the parameterized Max Leaf problem. The main point here is how to deploy
such P-time kernelization structure theory to prove FPT results in a row of the
complexity ecology table. The next two theorems extended and adapted from
[EFLR05] illustrate the approach. (We depend heavily and unavoidably on this
previous work.)

Theorem 1. For graphs of max leaf number bounded by k, the minimum dom-
ination number can be computed in time O∗(103k) based on a polynomial-time
reduction to a kernel of size at most 7k.

Proof. Sketch. Since this is an FPT result, we are necessarily (by Lemma 1)
interested in effective kernelization for this problem. We must therefore develop
a polynomial-time extremal account of the boundary case for the induction.

We take the following hypotheses:

(1) (G, k) is a yes-instance of Max Leaf.
(2) (G, k + 1) is a no-instance of Max Leaf.
(3) There is a witness structure for (1) that satisfies the inductive priorities of
the proof of Boundary Lemma II for Max Leaf (Lemma 8 of [EFLR05]).
(4) G is reduced according to an admissible set of polynomial time kernelization
rules.

The Complexity Ecology of Parameters 273

Here we must confine the interpretation of reduced to P-time reduction rules
that are compatible with the new computational objective of computing a mini-
mum dominating set. Many of the structural claims proved in [EFLR05] can now
be imported to this new situation, modified in some cases because of changes
to the admissible set of reduction rules. To illustrate the point, when proving a
kernelization bound for Max Leaf (as is done in [EFLR05]), one uses reduction
rules that can be applied in polynomial time to produce from G a graph G′ such
that G has a k-leaf spanning tree if and only if G′ has a k′ leaf spanning tree,
where k′ ≤ k. Here, because we are computing a minimum dominating set, we
are allowed reduction rules where G has a k-dominating set if and only if G′

has a k′ dominating set. To the extent that we can find reduction rules for this
new computational objective that “mimic” or approximate the ones that were
available for the Max Leaf problem, the structural claims about the kernel
still (with some modifications) carry over, and we can conclude similar kernel-
ization bounds for problems in the row of the complexity ecology table that
are amenable to this approach. (It turns out that many well-known NP-hard
problems are amenable in this way, and this is the main point of the paper.)

The reduction rules shown in Figure 1 below can be used in this way for the
Minimum Dominating Set problem, for graphs of bounded max leaf number.

Fig. 1. Reduction rules for minimum domination

The argument for the bound on the kernel size is by minimum counterexample.
One of our hypotheses is that (G, k) is a yes-instance for Max Leaf. We can
assume we are given as a witness structure a tree subgraph T = (V ′, E′) of G
that has k leaves, and we can also assume that G is connected.

We do not assume that T is a spanning subgraph. (If T is not spanning, then
it clearly extends to a spanning tree T ′ for G that has at least k leaves.)

A counterexample to our theorem would be a graph G = (V, E) such that: (1)
(G, k) is a reduced instance of Max Leaf, (2) (G, k) is a yes-instance of Max

Leaf, (3) (G, k + 1) is a no-instance, and (4) |G| > 7k.
Among all such counterexamples, we consider one where the witness subgraph

tree T is as small as possible.

274 M. Fellows and F. Rosamond

Fig. 2. The witness tree and various sets of vertices

Let O = V − V ′ be the set of vertices not in the witness subtree T , which we
will refer to as outsiders. Let L denote the leaves of T , I the internal (non-leaf)
vertices of T , B ⊆ I the branch vertices of T (the non-leaf, internal vertices of T
that have degree at least 3 with respect to T), and let J denote the subdivider
vertices of T (the non-branch internal vertices of T that have degree 2 with
respect to T). See Figure 2 for an illustration of the general situation. One of
the key roles of the reduction rules is to bound the number of outsiders (Claim
7 of Lemma 7 of [EFLR05]). In pursuing this sketch, which summarizes much
material in [EFLR05], necessarily many details are omitted.

Almost all of the structural claims in the proof of Boundary Lemma II of
[EFLR05] carry over (with a few requiring slight modification), yielding a kernel
of size at most 7k. The kernel can be analyzed by means of the algorithm due to
Fomin, Kratsch and Woeginger [FKW04], yielding the running time stated for
our algorithm. Knowing the domination number of the problem kernel allows
us to compute the domination number of the input graph by retracing this
information backwards along the kernelization path in polynomial time. �

What was the best previous result for this problem? Using the structure theory
of Boundary Lemma II of [EFLR05] we can show that a path decomposition of
width at most g(k) = 20k/3 can be computed in polynomial time for graphs
whose max leaf number is bounded by k. Combining this with the carefully
engineered dynamic programming algorithm for Dominating Set in this setting
of Telle and Proskurowsky [TP93] (refined by Alber and Niedermeier [AN02]) one
would get a “best previous” running time of around O∗(420k/3) or O∗(10322k).

The following theorem is also reported in [EFLR05], based on essentially the
same approach, making use of the reduction rules shown in Figure 3. (Quick
sketch: The imported structural claims give a bound of 4.5k on the size of a
vertex cover for the kernel, which yields the claimed running time by using the
algorithm of Chen, Kanj and Xia [CKX05] to analyze the situation.)

The Complexity Ecology of Parameters 275

Fig. 3. Reduction rules for maximum independent set

Theorem 2. For graphs of max leaf number bounded by k, the maximum size of
an independent set can be computed in time O∗(2.972k) based on a polynomial-
time reduction to a kernel of size at most 7k.

Many other NP-hard problems can be addressed for graphs of bounded max leaf
number in much the same way.

Theorem 3. For graphs of max leaf number bounded by k, it can be determined
in O∗(420.9k) whether the graph is 3-colorable, based on a polynomial-time re-
duction to a kernel of size at most 5.5k.

Proof. The reduction rules: (1) delete vertices of degree 1, and (2) erase vertices
of degree 2, are admissible for this problem. This yields an improved bound of
.5k over Claim 7 of Lemma 7 of [EFLR05]. The analysis of the kernel for the
stated result just tries all possible 3-colorings. �

Graph Hamiltonicity admits the same reduction rules, and thus there is a
5.5k kernel for this problem as well. The same statement holds for the Feedback

Vertex Set problem.

4 Summary

What we show in this paper is an example of how the structure theory associ-
ated (necessarily, by Lemma 1) to a good P-time kernelization result for an FPT
problem (such as Max Leaf), can be exploited to give good FPT results for
many of the entries in the corresponding “row” of the complexity ecology table.
We have obviously picked off the easy examples, where all that is necessary is to
identify reduction rules that are similar to the reduction rules used in the induc-
tive proof of a kernelization bound for Max Leaf. Our results are not difficult,
but the main point is the overall strategy, which clearly can be deepened. Some
of the “columns” of our chosen row are still open. It is unclear how to use the
Max Leaf kernel structure for the Bandwidth problem, for example. Since

276 M. Fellows and F. Rosamond

Bandwidth is NP-hard for trees (with unboundedly many leaves) this may be
interesting to resolve.

References

[ACFLSS04] Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A.,
Suters, W.H., Symons, C.T.: Kernelization algorithms for the ver-
tex cover problem: theory and experiments. In: Arge, L., Italiano, G.,
Sedgewick, R. (eds.) Proceedings of the 6th Workshop on Algorithm
Engineering and Experiments (ALENEX), New Orleans, ACM/SIAM,
Proc. Applied Mathematics 115 (January 2004)

[AFN04] Alber, J., Fellows, M., Niedermeier, R.: Polynomial time data reduction
for dominating set. Journal of the ACM 51, 363–384 (2004)

[AN02] Alber, J., Niedermeier, R.: Improved Tree Decomposition Based Algo-
rithms for Domination-Like Problems. In: Rajsbaum, S. (ed.) LATIN
2002. LNCS, vol. 2286, pp. 613–627. Springer, Heidelberg (2002)

[ALS91] Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-
decomposable graphs. J. Algorithms 12, 308–340 (1991)

[BK07] Bodlaender, H.L., Koster, A.M.: Combinatorial optimisation on graphs
of bounded treewidth. The Computer Journal (to appear 2007)

[Bod96] Bodlaender, H.L.: A linear time algorithm for finding tree-
decompositions of small width. SIAM J. Computing 25, 1305–1317
(1996)

[CFJ04] Chor, B., Fellows, M., Juedes, D.: Linear kernels in linear time, or how
to save k colors in O(n2) steps. In: Hromkovič, J., Nagl, M., West-
fechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 257–269. Springer,
Heidelberg (2004)

[CKX05] Chen, J., Kanj, I., Xia, G.: Simplicity is beauty: improved upper
bounds for vertex cover. Manuscript communicated by email, April
(2005)

[Cou90] Courcelle, B.: The monadic second order logic of graphs I: Recognizable
sets of finite graphs. Information and Computation 85, 12–75 (1990)

[DF99] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer,
Heidelberg (1999)

[DFHT05] Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subex-
ponential parameterized algorithms on graphs of bounded genus and
H-minor-free graphs. Journal of the ACM 52, 866–893 (2005)

[DFS99] Downey, R., Fellows, M., Stege, U.: Parameterized complexity: a frame-
work for systematically confronting computational intractability. In:
Graham, R., Kratochvil, J., Nesetril, J., Roberts, F. (eds.) Contem-
porary Trends in Discrete Mathematics, Proceedings of the DIMACS-
DIMATIA Workshop on the Future of Discrete Mathematics, Prague,
1997. AMS-DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 49, pp. 49–99 (1999)

[DH05] Demaine, E.D., Hajiaghayi, M.: Bidimensionality: New connections be-
tween FPT algorithms and PTASs. In: Proceedings of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), Van-
couver, pp. 590–601 (January 2005)

[DH07] Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its
algorithmic applications. The Computer Journal (to appear)

The Complexity Ecology of Parameters 277

[EFLR05] Estivill-Castro, V., Fellows, M., Langston, M., Rosamond, F.: Fixed-
parameter tractability is P-time extremal structure theory I: The case
of max leaf. In: Proceedings of ACiD 2005: Algorithms and Complexity
in Durham pp. 1–41 (2005)

[Fe02] Fellows, M.: Parameterized complexity: the main ideas and connec-
tions to practical computing. In: Fleischer, R., Moret, B.M.E., Schmidt,
E.M. (eds.) Experimental Algorithmics. LNCS, vol. 2547, pp. 51–77.
Springer, Heidelberg (2002)

[FFG01] Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-
decompositions. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001.
LNCS, vol. 1973, pp. 22–32. Springer, Heidelberg (2000)

[FG06] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Hei-
delberg (2006)

[FKW04] Fomin, F., Kratsch, D., Woeginger, G.: Exact (exponential) algorithms
for the dominating set problem. In: Hromkovič, J., Nagl, M., West-
fechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer,
Heidelberg (2004)

[GM99] Grohe, M., Marino, J.: Definability and descriptive complexity on
databases with bounded treewidth. In: Beeri, C., Bruneman, P. (eds.)
ICDT 1999. LNCS, vol. 1540, pp. 70–82. Springer, Heidelberg (1998)

[Gr01] Grohe, M.: The parameterized complexity of database queries. In: Proc.
PODS 2001, pp. 82–92. ACM Press, New York (2001)

[Gur89] Gurevich, Y.: The Challenger-Solver Game: Variations on the Theme
of P=? NP, Bulletin EATCS 39 pp. 112–121 (1989)

[GGHNW05] Guo, J., Gramm, J., Hueffner, F., Niedermeier, R., Wernicke, S.: Im-
proved fixed-parameter algorithms for two feedback set problems. In:
Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS,
vol. 3608, pp. 158–169. Springer, Heidelberg (2005)

[Nie04] Niedermeier, R.: Ubiquitous parameterization — invitation to fixed-
parameter algorithms. In: Fiala, J., Koubek, V., Kratochv́ıl, J. (eds.)
MFCS 2004. LNCS, vol. 3153, pp. 84–103. Springer, Heidelberg (2004)

[Nie06] Niedermeier, R.: Invitation to Fixed Parameter Algorithms (forthcom-
ing). Oxford University Press, Oxford (2005)

[NT75] Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties
and algorithms. Mathematical Programming 8, 232–248 (1975)

[Pr05] Prieto-Rodriguez, E.: Systematic kernelization in FPT algorithm de-
sign. Ph.D. Thesis, School of EE&CS, University of Newcastle, Aus-
tralia (2005)

[Ra97] Raman, V.: Parameterized Complexity. In: Proceedings of the 7th Na-
tional Seminar on Theoretical Computer Science, Chennai, India, pp.
1–18 (1997)

[RS85] Robertson, N., Seymour, P.: Graph minors: a survey. In: Anderson,
J. (ed.) Surveys in Combinatorics, pp. 153–171. Cambridge University
Press, Cambridge (1985)

[TP93] Telle, J.A., Proskurowski, A.: Practical Algorithms on Partial k-Trees
with an Application to Domination-Like Problems. In: Dehne, F., Sack,
J.-R., Santoro, N. (eds.) WADS 1993. LNCS, vol. 709, pp. 610–621.
Springer, Heidelberg (1993)

[Wei98] Weihe, K.: Covering trains by stations, or the power of data reduction.
In: Proc. ALEX’98 pp. 1–8 (1998)

Parameterized Complexity and Logic

Jörg Flum

Abteilung für Mathematische Logik, Universität Freiburg, Eckerstr. 1, 79104 Freiburg, Germany
joerg.flum@math.uni-freiburg.de

Abstract. We introduce and discuss some basic concepts of parameterized com-
plexity theory via model-checking problems.

1 Introduction

In parameterized complexity theory the complexity of a computational problem is mea-
sured not only in terms of the input size (as it is usually done in classical complexity),
but in addition in terms of a parameter. The idea is to choose the parameter in such a way
that it can be assumed to be small for the instances one is interested in. A prominent ex-
ample is the database query evaluation problem (or, more generally, the model-checking
problem). An instance of the database query evaluation problem consists of a database
and a query. Usually we have a large database and a small query. Therefore, a natural
parameter for a parameterized complexity analysis is the size of the query.

Central to parameterized complexity theory is the notion of fixed-parameter tractabil-
ity. It relaxes the classical notion of tractability by allowing algorithms whose running
time can be exponential but only in terms of the parameter. In Section 3 we will see that
fixed-parameter tractability yields a notion of tractability appropriate for the database
query evaluation problem.

Parameterized complexity theory not only provides methods for proving problems
to be fixed-parameter tractable but also gives a framework for dealing with apparently
intractable problems. There is a great variety of classes of parameterized intractable
problems. In Section 4 we introduce some of these classes by means of logic. These
“logical definitions” help to grasp the scope of these classes. Moreover, they allow to
obtain information about the parameterized complexity of some problems through the
syntactical structure of the defining sentences.

Fixed-parameter tractability is only a general first approximation to feasibilty of pa-
rameterized problems. Recently a new and more restrictive class has been introduced.
We present it in Section 5 and relate it to a classical approach via limited nondetermin-
ism.

In summary, we introduce some of the main concepts of parameterized complexity
via model-checking problems. For detailed expositions of parameterized complexity
theory and in particular of the material presented here we refer the reader to [3,8,11].

2 Preliminaries

We recall some notions from logic and fix our notation. A vocabulary τ is a finite
set of relation symbols. Each relation symbol has an arity. A τ -structure A consists

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 278–289, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Parameterized Complexity and Logic 279

of a set A called the universe, which we assume to be finite, and an interpretation
RA ⊆ Ar of each r-ary relation symbol R ∈ τ . For example, we view a graph as a
structure G = (G, EG), where E is a binary relation symbol and EG is an irreflexive
and symmetric binary relation on the set G of vertices.

For a τ -structure A we denote by ‖A‖ its size, that is, the length of a string encoding
A in a natural way. The number ‖A‖ will be within a polynomial factor of the term

|τ | + |A| +
∑

R∈τ

|RA| · arity(R).

Formulas of first-order logic FO of vocabulary τ are built up from atomic formulas
x = y and Rx1 . . . xr where x, y, x1, . . . , xr are variables and R ∈ τ is of arity r,
using the boolean connectives and existential and universal quantification. For t ≥ 0 let
Πt denote the class of all first-order formulas of the form

∀x11 . . . ∀x1k1∃x21 . . . ∃x2k2 . . . Qxt1 . . . Qxtkt ψ,

where Q = ∃ if t is even and Q = ∀ otherwise, and where ψ is quantifier-free. The
classes Σt are defined analogously starting with a block of existential quantifiers.

A variable x is free in ϕ if it has an occurrence in ϕ that is not in the scope of a
quantifier binding x. A sentence is a formula without free variables. If ϕ is a sentence
and A a structure one defines in a natural way whether A satisfies ϕ.

The difference between first-order logic and second-order logic is that the latter al-
lows quantification not only over elements of the universe of a structure but also over
subsets of the universe and even relations on the universe. For this purpose second-order
logic contains, in addition to the symbols of FO, relation variables, usually denoted by
X, Y, Unary relation variables are also called set variables. A second-order for-
mula only containing set variables is monadic. The class of all monadic second-order
formulas is denoted by MSO.

The set of natural numbers (that is, nonnegative integers) is denoted by N. For a
natural number n let [n] := {1, . . . , n}.

3 Model-Checking and Fixed-Parameter Tractability

The model checking problem MC(C, L) for a class C of finite structures and a logic L
is the problem

MC(C, L)
Input: A structure A in C and a sentence ϕ of L.

Question: Does A satisfy ϕ?

If C is the class of all finite structures, then we denote MC(C, L) by MC(L).
The model-checking problem arises very naturally in various areas of computer sci-

ence. Let us see two examples. In database theory, (relational) databases are viewed as
structures and (Boolean) queries to the databases as sentences; thus, the query evalua-
tion problem is the model-checking problem for the corresponding query language (the

280 J. Flum

“logic”). The model-checking problem also plays a role in computer-aided verification.
When verifying that a program or a finite state system has a desired property, the spec-
ification of the property in a suitable (modal or temporal) logic will usually be small
compared to the large state space of the system. We mostly deal with logics relevant
for this first area and do not consider logics like linear temporal logic LTL relevant for
computer-aided verification. We only mention that MC(LTL) (= MC(C, LTL), where C
is the class of all finite Kripke structures K) is PSPACE-complete and can be solved by
an algorithm in time 2|ϕ| · ‖K‖. Hence, such an algorithm has a running time that is
exponential only in the length of ϕ (the “small parameter”) and even linear in the size
of K.

It is well-known (see [15]) that the model-checking problem MC(FO) for (the class
of all finite structures and) first-order logic FO is PSPACE-complete. Note that in
MC(C, L), and in particular in MC(FO), we consider the so called combined complex-
ity: both the database and the query are input variables. The usual recursive definition
of the set of assignments (defined for all free variables of ϕ and) satisfying the formula
ϕ yields the following time bound:

Theorem 1 ([15]). MC(FO) can be solved in time

O(|ϕ| · |A|nϕ · nϕ + ‖A‖),

where nϕ denotes the maximum number of free variables of a subformula of ϕ.

Since the query is typically much smaller than the database, the so called data complex-
ity has widely been regarded as more meaningful. The data complexity is the complex-
ity of evaluating a query on a database (or structure), when the query is considered as
fixed. We write D-MC(C, L) ∈ COMPL, where COMPL is a complexity class, if the
database complexity of the model-checking problem for C and L is in COMPL, which
means that for all sentences ϕ ∈ L there is an algorithm according to COMPL solving
the problem

Input: A structure A in C.
Question: Does A satiyfy ϕ?

From Theorem 1 we see:

Theorem 2. D-MC(FO) ∈ PTIME.

In [13] Papadimitriou and Yannakakis discuss the relevance of the notions of combined
complexity and data complexity for the query evaluation problem:

It seems to us that neither of the two notions of complexity is completely satis-
factory. On the one hand, combined complexity is rather restrictive because it
treats queries and databases as part of the input in the same way, even though
the size of the queries is typically orders of magnitude smaller than the size of
the database. However, on the other hand, polynomial time in the context of
data complexity means time |A||ϕ|, [. . .] a running time that hardly qualifies as
tractable, especially in view of the fact that |A| is typically huge.

Parameterized Complexity and Logic 281

[. . .] parametric complexity theory is a productive framework for studying the
complexity of query languages, which puts the well-known tractability results
of the query languages mentioned above under a different perspective, one that
is perhaps more realistic and less confusing and misleading.

So “what one would like to have is a running time in which |A| is not raised to a
power that depends on ϕ, i.e. the dependence of |A| is of the form O(|A|c), where c is
constant independent of the query ϕ (and hopefully very small).” However, we allow
that the constant hidden in O(|A|c) depends on ϕ.

In terms of the following defintion such a running time for MC(C, L) means that the
model-checking problem is fixed-parameter tractable.

Definition 3
(a) A parameterized problem is a pair (Q, κ) consisting of a classical problem Q and a

parameterization κ, that is a polynomial time computable function associating with
every instance of Q a natural number.

(b) A parameterized problem (Q, κ) is fixed-parameter tractable if there is an algo-
rithm deciding whether x ∈ Q in time

f(κ(x)) · p(|x|)

for some computable function f and polynomial p ∈ N[X].
We denote by FPT the class of parameterized problems that are fixed-parameter tractable.
We call an algorithm with a running time bounded by f(κ(x)) · p(|x|) (for some com-
putable f and p ∈ N[X]) an fpt-algorithm.

We denote by p-MC(C, L) the parameterized model-checking problem for C and L and
represent it in the form

p-MC(C, L)
Input: A structure A in C and a sentence ϕ of L.

Parameter: |ϕ|.
Question: Does A satiyfy ϕ?

So the notation used for p-MC(C, L) shows that we consider the parameterization that
assigns to the instance (A, ϕ) the number |ϕ|. Usually, we will represent parameterized
problems in this way.

We see that parameterized complexity theory measures the complexity not only in
terms of the input size (as it is usually done in classical complexity), but in addition in
terms of a parameter. The main intention is to address complexity issues in situations
where we know that the parameter is comparatively small. Indeed a running time such
as O(2k · n), where k denotes the parameter and n the size of the instance, can be quite
good for small values of k, often better than the polynomial O(n2).

Example 4. p-MC(LTL) is fixed-parameter tractable.

Example 5. We consider the model-checking problem for the class of strings. For a
finite alphabet Σ, let τΣ be the vocabulary that consists of a binary relation symbol ≤

282 J. Flum

and, for each a ∈ Σ, a unary relation symbol Pa. A string ā = a1 . . . an ∈ Σ∗ may
be represented by the τΣ-structure S = S(a1 . . . an), where the universe of S is the set
[n], the relation ≤S is the natural order on [n], and for all a ∈ Σ, we have

PS
a := {i ∈ [n] | ai = a}.

We denote by MSO the set of formulas of monadic second-order logic. The problem

p-MC(STRING, MSO)
Input: An alphabet Σ, a string ā ∈ Σ∗, and an MSO-sentence ϕ of

vocabulary τΣ .
Parameter: |ϕ|.

Question: Does S(ā) satisfy ϕ?

is fixed-parameter tractable. In fact, by a well-known result due to Büchi [1], Elgot [5],
and Trakhtenbrot [14] there is an algorithm B associating with every MSO-sentence ϕ
a finite automaton M(ϕ) such that for all strings ā:

M(ϕ) accepts ā ⇐⇒ S(ā) satisfies ϕ.

Now the following algorithm A solves p-MC(STRING, MSO): given ā ∈ Σ∗ and an
MSO-sentence ϕ the algorithm A first computes the automaton M(ϕ) and then checks
whether M(ϕ) accepts ā. If f is a computable function bounding the running time of B,
then the algorithm A requires at most f(|ϕ|) + O(|M(ϕ)| · |ā|) ≤ f(|ϕ|) + O(f(|ϕ|) ·
|ā|) ≤ O(f(|ϕ|) · |ā|) steps, thus p-MC(STRING, MSO) ∈ FPT.

4 Model-Checking and Fixed-Parameter Intractability

We have seen in the preceding section that a parameterized complexity analysis of the
model-checking problem is appropriate for some applications we are interested in. Our
main example was the database query evaluation problem where usually we have a large
database and a small query. We presented two examples of fixed-parameter tractable
model-checking problems.

However, Theorem 1 does not qualify p-MC(FO) as fixed-parameter tractable. To
deal with parameterized intractable problems a core structural complexity theory has
been developed. Unfortunately, it has led to a great variety of parameterized complexity
classes. Of course, there are also many classical complexity classes, but NP plays a cen-
tral role while in parameterized complexity theory there are various important classes
of parameterized intractable problems. In this section we define some of the classes by
means of logic. These “logical definitions” help to grasp the scope of these classes.

We start by considering two parameterized problems for graphs, the parameterized
clique problem and the parameterized dominating set problem given by

p-CLIQUE

Input: A graph G and k ∈ N.
Parameter: k.

Question: Does G have a clique of size k?

Parameterized Complexity and Logic 283

p-DOMINATING-SET

Input: A graph G and k ∈ N.
Parameter: k.

Question: Does G have a dominating set of size k?

They are reducible to p-MC(FO) as shown by the equivalences:

(G, k) ∈ p-CLIQUE ⇐⇒ G |= ∃x1 . . .∃xk

∧

1≤i<j≤k

Exixj ; (1)

(G, k) ∈ p-DOMINATING-SET

⇐⇒ G |= ∃x1 . . . ∃xk∀y
(∧

1≤i<j≤k xi �= xj ∧
∨

i∈[k](y = xi ∨ Exiy)
)
.

(2)
However, we have to be careful with the notion of reduction we use. For example, in
general polynomial time reductions do not preserve fixed-parameter tractability. The
following notion of fpt-reduction is the one considered in parameterized complexity. It
is not hard to show that if (Q, κ) is fpt-reducible to (Q′, κ′) and (Q′, κ′) ∈ FPT, then
(Q, κ) ∈ FPT.

Definition 6. Let (Q, κ) and (Q′, κ′) be parameterized problems over the alphabets Σ
and Σ′, respectively. An fpt-reduction from (Q, κ) to (Q′, κ′) is a mapping R : Σ∗ →
(Σ′)∗ such that:

(a) For all x ∈ Σ∗ we have (x ∈ Q ⇐⇒ R(x) ∈ Q′).
(b) R is computable by an fpt-algorithm. That is, there is a computable function f and

a polynomial p(X) such that R(x) is computable in time f(κ(x)) · p(|x|).
(c) There is a computable function g : N → N such that κ′(R(x)) ≤ g(κ(x)) for all

x ∈ Σ∗.

We write (Q, κ) ≤fpt (Q′, κ′) if there is an fpt-reduction from (Q, κ) to (Q′, κ′).

Note that the equivalences (1) and (2) above show that p-CLIQUE ≤fpt p-MC(FO) and
that p-DOMINATING-SET ≤fpt p-MC(FO). It is not hard to show that p-CLIQUE ≤fpt

p-DOMINATINGSET, while it is conjectured that neither p-DOMINATING-SET ≤fpt

p-CLIQUE nor p-MC(FO) ≤fpt p-DOMINATING-SET.
The incomparability of fpt-reductions and polynomial time reductions is the source

of the richness of parameterized complexity theory.
Consider again the equivalences (1) and (2). The interpretations of the variables

x1, . . . , xk constitute the required clique and dominating set, respectively. Perhaps a
more natural way to express this in first-order logic is to consider the first-order for-
mulas clique(X) and ds(X) with a set variable X expressing that X is a clique and a
dominating set, respectively:

clique(X) := ∀y∀z
(
(Xy ∧ Xz ∧ ¬y = z) → Eyz

)
;

ds(X) := ∀y∃z
(
Xz ∧ (y = z ∨ Eyz)

)
.

More generally, let ϕ(X) be any first-order formula with a (second-order) relation vari-
able X of arity r. It Fagin-defines the parameterized problem

284 J. Flum

p-WDϕ

Input: A structure A and k ∈ N.
Parameter: k.

Question: Is there a subset S of Ar such that A |= ϕ(S) and |S| = k?

Here A |= ϕ(S) means that A satisfies ϕ if X is interpreted by S. (On the class of
graphs) p-WDclique coincides with p-CLIQUE and p-WDds with p-DOMINATING-SET.

The definition of the classes W[1], W[2], . . . of the W-hierarchy reflects the convic-
tion that the computational complexity of the problem p-WDϕ is related to its descrip-
tional complexity, that is, to the complexity of the formula ϕ(X):

Definition 7
(a) For t ≥ 1 let W[t] be the class of parameterized problems fpt-reducible to p-WDϕ

for some Πt-formula ϕ(X).
(b) AW[∗] is the class of parameterized problems fpt-reducible to p-MC(FO).

As clique(X) is a Π1-formula and ds(X) is a Π2-formula, we see that p-CLIQUE ∈
W[1] and p-DOMINATING-SET ∈ W[2]. Moreover, it can be shown that the problems
p-CLIQUE and p-DOMINATING-SET are W[1]-complete and W[2]-complete, respec-
tively, under fpt-reductions.

In the formula ds(X) Fagin-defining the W[2]-complete dominating set problem the
set variable occurs exactly once. One can even show:

Theorem 8 ([4]). For t ≥ 2 the class W[t] consists of all parameterized problems fpt-
reducible to p-WDϕ, where ϕ(X) is a Πt-formula with exactly one occurrence of X .

Remark 9. By Fagin’s Theorem every problem (of structures of fixed vocabulary) is
definable by a second-order formula of the form ∃Xψ(X), where ψ(X) is a first-
order formula and X is a relation variable of some finite arity. For many concrete
NP-problems the variable X can be viewed as a solution (or, witness) of the problem.
Using so-called Skolem relations one can show that in Fagin’s Theorem the formula
ψ can be replaced by a Π2-formula. However note that the use of Skolem relations
in our context does not yield a collapse of the W-hierarchy to its second level, as this
replacement would yield a non-parameter bounded increase of the parameter.

Many parameterized problems are Fagin-definable. In fact, as shown in Proposi-
tion 4.3 of [6], a parameterized problem (Q, κ) with instances of the form (A, k), where
A is a structure and k ∈ N is the parameter (that is, κ(A, k) = k), is Fagin-definable if
and only if Q is in NP and for some r ∈ N we have k ≤ |A|r for the positive instances
(A, k) of Q.

Clearly, we have

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ · · · ⊆ AW[∗].

To see that W[t] ⊆ AW[∗] consider any Πt-formula ϕ(X) and for simplicity assume
that X is a set variable. For any k ∈ N let ϕk be the Σt+1-sentence

∃x1 . . . ∃xk(
∧

1≤i<j≤k

xi �= xj ∧ ϕ′),

Parameterized Complexity and Logic 285

where ϕ′ is obtained from ϕ by replacing each subformula of the form Xz by
∨

i∈[k] xi

= z. Then for every structure A, there is a subset S ⊆ A with |S| = k such that
A |= ϕ(S) if and only if A |= ϕk. Thus the mapping (A, k) �→ (A, ϕk) is an fpt-
reduction from p-WDϕ to p-MC(FO).

Note that the length of the first (existential) quantifier block in the formulas ϕk de-
pends on k, however, all other quantifier blocks in the ϕk have fixed length, namely the
length of the corresponding block in the formula ϕ. For t, u ≥ 1 we denote by Σt,u the
class of Σt-formulas, where all quantifier blocks besides the first one have length ≤ u.
Even though the formulas ϕk which arose from the Πt-formula ϕ(X) are in Σt+1,u for
some u ≥ 1, one can show:

Theorem 10 ([4,7]). For t, u ≥ 1 the parameterized problem p-MC(Σt,u) is W[t]-
complete under fpt-reductions.

5 Bounded Fixed-Parameter Tractability

Let us emphasize again that one can expect the point of view of parameterized com-
plexity to be appropriate and the techniques of the theory to be useful, only for param-
eterized problems where it can be assumed that the parameterization takes small values
for the instances one is interested in.

Nevertheless, some additional remarks concerning the definition of fixed-parameter
tractability are in order. We allow an arbitrary computable function f to bound the de-
pendence of the running time of an fpt-algorithm on the parameter, that is, we are quite
liberal. Similarly, in classical complexity we allow an arbitrary polynomial to bound
the running time of a problem in PTIME. However, we expect that natural problems in
PTIME have a linear, quadratic, or at most cubic running time. In parameterized com-
plexity we expect to obtain functions f that have reasonable values for small arguments;
or more precisely, once we know that a natural problem is in FPT we hope to get, using
the combinatorics of the problem appropriately, a function f with this property.

In fact, among the known fixed-parameter tractable problems, problems that require
a larger than exponential parameter dependence are rare exceptions. Furthermore, much
of the theory is concerned with proving intractability (more precisely, hardness results),
and, of course, such results are even stronger for our liberal definition.

However, there are exceptions, the most prominent one being the parameterized
model-checking p-MC(STRING, MSO) for monadic second-order logic on the class of
strings. We know from Example 5 that it is fixed-parameter tractable. The following
result hardly qualifies it as tractable. Call a computable function f : N → N elementary
if there is an � ∈ N such that for all k ∈ N

f(k) ≤ tower(�, k),

where tower(0, k) := k and tower(� + 1, k) := 2tower(�,k).

Theorem 11 ([10]). Let f be an elementary function.
(a) There is no algorithm that for all (u, ϕ) decides whether (u, ϕ) ∈ p-MC(STRING,

MSO) in time f(|ϕ|) · |u| (unless PTIME = NP).

286 J. Flum

(b) There is no algorithm that for all instances (u, ϕ) decides whether
(u, ϕ) ∈ p-MC(STRING, FO) in time f(|ϕ|) · |u| (unless FPT = AW[∗]).

This raises some doubts about the notion of fixed-parameter tractability. The important
fact is that there are reasonable alternatives: one can simply put upper bounds on the
growth of the “parameter dependence” f , the most natural being f ∈ 2O(k). The result-
ing bounded fixed-parameter tractability, or 2O(k)-fixed-parameter tractability contains
nearly all of the problems that are “fixed-parameter tractable in practice.”

Definition 12. A parameterized problem is 2O(k)-fixed-parameter tractable if there is
a computable function f ∈ 2O(k) and a polynomial p ∈ N[X] and an algorithm that,
given x ∈ Σ∗, decides whether x ∈ Q in at most f(κ(x)) · p(|x|) steps.

We denote by 2O(k)-FPT the class of 2O(k)-fixed-parameter tractable problems (this
class is denoted by EPT in [8,9]).

Example 13. The parameterized satisfiability problem p-SAT for propositional formu-
las is in 2O(k)-FPT, where

p-SAT
Input: A propositional formula α.

Parameter: Number of variables of α.
Question: Is α satisfiable?

As in the unbounded theory, to compare the complexities of parameterized problems
that are not 2O(k)-fixed-parameter tractable, we need a notion of reduction. Again the
most fundamental property expected from the notion of reduction is that 2O(k)-FPT is
closed under the corresponding reductions, that is: if (Q, κ) is reducible to (Q′, κ′) and
(Q′, κ′) ∈ 2O(k)-FPT, then (Q, κ) ∈ 2O(k)-FPT.

There is a natural notion with this property:

Definition 14. Let (Q, κ) and (Q′, κ′) be parameterized problems over the alphabets
Σ and Σ′, respectively. An 2O(k)-reduction from (Q, κ) to (Q′, κ′) is a mapping R :
Σ∗ → (Σ′)∗ such that:

(a) For all x ∈ Σ∗ we have (x ∈ Q ⇐⇒ R(x) ∈ Q′).
(b) There is a computable function f ∈ 2O(k) such that R(x) is computable in time

f(κ(x)) · |x|O(1)

(c) There is a d ∈ N such that κ′(R(x)) ≤ d · (κ(x) + log |x|).
We write (Q, κ) ≤2O(k)

(Q′, κ′) if there is a 2O(k)-reduction from (Q, κ) to (Q′, κ′)
and (Q, κ) ≡2O(k)

(Q′, κ′) if (Q, κ) ≤2O(k)
(Q′, κ′) and (Q′, κ′) ≤2O(k)

(Q, κ).

Many reductions in parameterized complexity are fpt-reductions and 2O(k)-reductions.
However, there are notable exceptions. For example, we know that p-MC(FO) ≤fpt

p-MC(STRING, FO) does not hold (unless FPT = AW[∗]). However:

Theorem 15 ([9]). p-MC(FO) ≡2O(k)
p-MC(STRING, FO).

In the new framework we define the analogue of the W-hierarchy using Theorem 8 as
reference:

Parameterized Complexity and Logic 287

Definition 16
(a) For t ≥ 2 the class 2O(k)-W[t] consists of all parameterized problems 2O(k)-

reducible to p-WDϕ, where ϕ(X) is a Πt-formula with exactly one occurrence
of X .

(b) 2O(k)-AW[∗] is the class of all parameterized problems 2O(k)-reducible to
p-MC(FO).

Note that we skip the definition of 2O(k)-W[1], which is more problematic. For example,
p-WDϕ ∈ 2O(k)-FPT for every Π1-formula ϕ(X) with one occurrence of X .

Again one can show that p-DOMINATING-SET is 2O(k)-W[2] complete under 2O(k)-
reductions. Furthermore, as shown by Theorem 15, the problem p-MC(STRING, FO)
is 2O(k)-AW[∗]-complete under 2O(k)-reductions. Concerning the complexity of the
model-checking for the fragments Σt,u of FO the full analogue of Theorem 10 is valid,
namely:

Theorem 17 ([9]). For t ≥ 2 and u ≥ 1 the parameterized problem p-MC(Σt,u) is
2O(k)-W[t] complete under 2O(k)-reductions.

Recall that a tournament is a directed graph T = (T, ET) such that for all distinct
u, v ∈ T either (u, v) ∈ ET or (v, u) ∈ ET , but not both. A dominating set of T is
a set S ⊆ T such that for all w ∈ T \ S there exists a v ∈ S with (v, w) ∈ ET . We
consider the following parameterization:

p-TOURNAMENT-DOMINATING-SET
Input: A tournament T and k ∈ N.

Parameter: k.
Question: Does T have a dominating set of k elements?

Theorem 18 ([2,8]). p-TOURNAMENT-DOMINATING-SET is 2O(k)-W[2]-complete
under 2O(k)-reductions.

It is well-known and easy to prove that every tournament T = (T, ET) has a dom-
inating set of size k for every k with log |T | ≤ k ≤ |T |. Hence, p-TOURNAMENT-
DOMINATING-SET has logarithmic parameters, where:

Definition 19. A parameterized problem (Q, κ) has logarithmic parameters if for some
c ∈ N and all x, y with κ(x) > c · log |x| and κ(y) > c · log |y|

x ∈ Q ⇐⇒ y ∈ Q.

Polynomial time reductions and 2O(k)-reductions coincide on problems with logarith-
mic parameters as observed by J.A. Montoya (cf. [8]):

Proposition 20. Let the parameterized problems (Q, κ) and (Q′, κ′) have logarithmic
parameters. Then:

Q ≤ptime Q′ ⇐⇒ (Q, κ) ≤2O(k)
(Q′, κ′).

288 J. Flum

This property allows to link the 2O(k)-theory with the theory on bounded nonde-
terminism introduced by Papadimitriou and Yannakakis in [12]. In fact they consider
the classes LOG[2] and LOG[3], which they call LOGSNP and LOGNP, respectively,
where:

Definition 21. For t ≥ 2 the class LOG[t] consists of all (classical) problems reducible
in polynomial time to LOGϕ where ϕ(X) is a Πt-formula with exactly one occurrence
of the relation variable X , say, of arity r and where

LOGϕ

Input: A structure A and k ≤ log |A|.
Question: Does there exist a subset S of Ar such that |S| = k and A |=

ϕ(S)?

For example one can show (cf. [8]) that for arbitrary t, t′ ≥ 2

LOG[t] = LOG[t′] ⇐⇒ 2O(k)-W[t] = 2O(k)-W[t′].

Both hierarchies, the 2O(k)-W-hierarchy and the LOG-hierarchy, result from an attempt
to analyze the complexity of Fagin-defined problems for instances (A, k) with a “small”
k. In the LOG-hierarchy we assume explicitly that k is small compared with the cardi-
nality of the instance (even k ≤ log |A|) and then use the tools from classical complex-
ity theory like polynomial time reductions. In the 2O(k)-theory the notion of tractability
is defined in such a way that it relates to our intuitive concept of tractability only if the
parameter is small.

References

1. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik 6, 66–92 (1960)

2. Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Clote, P., Rem-
mel, J.B. (eds.) Proceedings of Feasible Mathematics II, Birkhäuser, pp. 219–244 (1995)

3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
4. Downey, R.G., Fellows, M.R., Regan, K.: Descriptive complexity and the W-hierarchy. In:

Beame, P., Buss, S (eds.) Proof Complexity and Feasible Arithmetic, volume 39 of AMS-
DIMACS Volume Series, AMS, pp. 119–134 (1998)

5. Elgot, J.C.C.: Decision problems of finite automata design and related arithmetics. Transac-
tions of the American Mathematical Society 98, 21–51 (1961)

6. Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model checking. SIAM
Journal on Computing 31(1), 113–145 (2001)

7. Flum, J., Grohe, M.: Model-checking problems as a basis for parameterized intractability.
Logical Methods in Computer Science, 1(1) (2004)

8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
9. Flum, J., Grohe, M., Weyer, M.: Bounded fixed-parameter tractability and log2n nondeter-

ministic bits. Journal of Computer and System Sciences 72, 34–71 (2006)
10. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revis-

ited. Annals of Pure. and Applied Logic 130, 3–31 (2004)

Parameterized Complexity and Logic 289

11. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Press (2006)
12. Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism and the complexity of the

VC-dimension. Journal of Computer and System Sciences 43, 425–440 (1991)
13. Papadimitriou, C.H., Yannakakis, M.: On the complexity of database queries. Journal of

Computer and System Sciences 58, 407–427 (1999)
14. Trakhtenbrot, B.: Finite Automata and the Logic of Monadic Predicates. Doklady Akademii

Nauk. SSSR 140, 326–329 (1961)
15. Vardi, M.Y.: The complexity of relational query languages. In: Proceedings of the 14th ACM

Symposium on Theory of Computing, pp. 137–146 (1982)

Index Sets of Computable Structures with

Decidable Theories

Ekaterina B. Fokina�

Sobolev Institute of Mathematics
Siberian Branch of the Russian Academy of Sciences

4 Acad. Koptyug avenue
630090 Novosibirsk Russia
e fokina@math.nsc.ru

Abstract. The index set of computable structures with decidable theory

for some fixed infinite language σ∗ is m–complete Σ0,∅(ω)

2 .

1 Introduction

One of the directions of the computable model theory is the study of relations
between definability and computability. Investigations on algorithmic complexity
of different classes of computable models were done in papers of S.Goncharov,
J.Knight, N.Kogabaev, V.Harizanov, R.Miller and many other authors. In the
framework of this approach, on the base of the earlier developed methods and
of the theory of computable numberings we study the algorithmic complexity of
the following natural class of structures: computable structures with decidable
theory.

We introduce some basic definitions. We fix a computable Gödel numbering
of a language L. Let all structures have universes contained in ω, which we
think of as computable sets of constants. A structure A of the language L is
computable if its domain is a computable subset of ω and all basic operations
and predicates are uniformly computable. We identify formulas with their Gödel
numbers. Then computability of a structure is equivalent to the condition that
the atomic diagram D(A) of A is computable. A structure B is decidable if it’s
full diagram FD(B) is computable.

There exists a universal computable enumeration of all computable structures
of the fixed predicate language. The index set of a structure A of this language
is the set I(A) of all indices of computable (isomorphic) copies of A in this
enumeration. For a class K of structures, closed under isomorphism, the index
set is the set I(K) of all indices for computable members of K. There are a lot
of papers on index sets: [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], etc.

Let Γ be a complexity class (e.g., Σ0
2). I(K) is m-complete Γ if I(K) is Γ

and for any S ∈ Γ , there is a computable function f such that

n ∈ S iff f(n) ∈ I(K).
� This work was partially supported by RFBR grant 05-01-00819 and President grant

of Scientific Schools of Russia 4413.2006.1.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 290–296, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Index Sets of Computable Structures with Decidable Theories 291

This condition is equivalent to the condition that there is a uniformly computable
sequence (Cn)n∈ω for which

n ∈ S iff Cn ∈ K.

In [11] we considered the index set of decidable structures. It was proved
that it is m-complete Σ0

3 . In this work we consider the index set of the class of
structures with decidable theory. We prove that it is m-complete Σ0,∅(ω)

2 , that is,
Σ0

2 relative to ∅(ω). To show this, we use the method of reducing the complexity
of structures, developed by S.Goncharov and B.Khoussainov in [12]. In Sect.2
and 3 we give the information on Marker’s extensions and 1-to-1-representation
of Σ0

2–sets that we need for reducing d-computable structures to computable
structures, where d is an arithmetical degree. In Sect.4 we directly prove that
the index set has the stated complexity.

2 Marker’s Construction

Let L be a finite language with no function symbols. Let A = (A, Pn0
0 , . . . , Pnm

m)
be a structure of L. We assume that for every P of this structure the sets P and
Ak \ P are infinite where k is the arity of P . For each k-ary predicate P of this
structure we define ∃- and ∀-extensions of P .

Marker’s ∃-extension of P is a (k+1)-ary predicate denoted by P∃ with the
following properties. Let X be an infinite set disjoint with A. Then P∃ satisfies
the following conditions:

1. If P∃(a1, a2, . . . , ak, ak+1) then P (a1, . . . , ak) and ak+1 ∈ X .
2. For every ak+1 ∈ X there exists a unique tuple (a1, . . . , ak) such that

P∃(a1, . . . , ak, ak+1).
3. If P (a1, . . . , ak) then there exists a unique a such that P∃(a1, a2, . . . , ak, a).

Marker’s ∀-extension of the predicate P is a (k + 1)-ary predicate P∀ with
the following properties. Let X be an infinite set disjoint with A. Then P∀
satisfies the following conditions:

1. If P∀(a1, a2, . . . , ak, ak+1) then a1, . . . , ak ∈ A and ak+1 ∈ X .
2. For all (a1, . . . , ak) ∈ A there exists at most one ak+1 ∈ X such that

¬P∀(a1, a2, . . . , ak, ak+1).
3. If P∀(a1, a2, . . . , ak, ak+1) for all ak+1 ∈ X then P (a1, . . . , ak).
4. For every ak+1 ∈ X there exists a unique tuple (a1, . . . , ak) such that

¬P∀(a1, . . . , ak, ak+1).

The set X in ∃- or ∀-extension is called a fellow of P .

Definition 1. Let A = (A, Pn0
0 , . . . , Pnm

m) be a model.

1. The model A∃ is a model (A∪X0 . . .∪Xm, Pn0+1
0 , . . . , Pnm+1

m , X0, . . . , Xm),
where each Pni+1

i , i = 0, . . . , m, is a Marker’s ∃-extension of Pni

i such that
fellows Xi of distinct predicates are pairwise disjoint sets.

292 E.B. Fokina

2. The model A∀ is a model (A∪X0 . . .∪Xm, Pn0+1
0 , . . . , Pnm+1

m , X0, . . . , Xm),
where each Pni+1

i , i = 0, . . . , m, is a Marker’s ∀-extension of Pni

i such that
fellows Xi of distinct predicates are pairwise disjoint sets.

Theorem 1. Let A∃ and A∀ be the Marker’s extensions of the model A. Then
they satisfy the following properties:

1. The model A is definable in each of the extensions.
2. If the theory of the model A is ℵ0-categorical then so is the theory of each of

the extensions.
3. If the theory of the model A is ℵ1-categorical then so is the theory of each of

the extensions.
4. If the theory of A is almost strongly minimal then so is the theory of each

of the extensions.
5. Any automorphism of A can be extended to automorphisms of each of the

extensions.

Let A be a structure and w be a word over the alphabet {∃, ∀}. We define Aw

by induction. If w is an empty string then Aw = A. If w = w′∃ or w = w′∀
and B = Aw′ then Aw′∃ = B∃ and Aw′∀ = B∀. Therefore we have the following
corollary:

Corollary 1. Let A be a structure and w be a word over the alphabet {∃, ∀}.
Then

1. The model A is definable in Aw.
2. If the theory of the model A is ℵ0-categorical (ℵ1-categorical) then so is the

theory of Aw.
3. Any automorphism of A can be extended to an automorphism of Aw.

3 On One-to-One Representation of Σ0
2-Sets

The following definition and lemmas can be found in [12]. We will need them for
the proof of the main results of the paper.

Definition 2. A Σ0
2 -set A is one-to-one representable if for some com-

putable predicate Q ⊂ ω3 the following is true:

1. For every n ∈ ω, ∃a∀bQ(n, a, b) if and only if n ∈ A.
2. For every n ∈ ω, ∃a∀bQ(n, a, b) if and only if ∃=1a∀bQ(n, a, b)1.
3. For every b there exists a unique pair 〈n, a〉 such that ¬Q(n, a, b).
4. For every pair 〈n, a〉 either ∃=1b¬Q(n, a, b) or ∀bQ(n, a, b).
5. For every a there exists a unique n such that ∀bQ(n, a, b).

Lemma 1. Let A be a coinfinite Σ0
2 -set that possesses an infinite computable

subset S such that A \ S is infinite. Then A has a one-to-one-representation.

1 ∃=1xP (x) means that there exists a unique x satisfying P .

Index Sets of Computable Structures with Decidable Theories 293

The definition of a one-to-one-representation of a Σ0
2-set can be relativized with

respect to any oracle X . The relativized version of the lemma will be used in the
proofs in the next sections.

Lemma 2. Let A be a coinfinite Σ0,X
2 -set that possesses an infinite X-compu-

table subset S such that A \ S is infinite. Then there exists a X-computable set
Q such that Q is a one-to-one-representation of A.

The following two theorems are corollaries of Lemma 2 and Corollary 1.

Theorem 2. For every Turing degree d a theory of a model M is d-decidable if
and only if theories of M∀ and M∃ are d-decidable.

Proof. According to Theorem 1 the model M is definable in each of the ex-
tensions M∀ and M∃. Therefore, if Th(M∀) or Th(M∃) is d-decidable then
so is Th(M). On the other hand, the properties of M∀ or M∃ are completely
determined by M. Thus, if Th(M) is d-decidable then Th(M∀) and Th(M∃)
are d-decidable.

Theorem 3. Let d be any arithmetical Turing degree. Let M0, . . . Mn, . . . be
a computable sequence of d′-computable structures, such that in every Mi for
every P ∈ σ there exists an infinite subset Si,P , uniformly computable from
i and P , such that P \ Si,P is infinite. Then there is a computable sequence
(M0)∀∃, . . . , (Mn)∀∃, . . . of d-computable models, such that for all i and P ′ ∈ σ∀∃
there exists an infinite subset Si,P ′ ⊆ P , uniformly computable from i and P ′,
such that P ′ \ Si,P ′ is infinite.

Proof. From [12], the construction of one-to-one-representations may be ar-
ranged uniformly for all n. Using the uniform version of the lemma 1 one can
construct the sequence (M0)∀∃, . . . , (Mn)∀∃, . . . and show that every (Mn)∀∃ is
d-computable and every extension of predicates has the desired properties.

For more details on proofs of Sect.2 and 3, see [12], [14].

4 Complexity of Index Set

Let M0, M1, . . . , Mn, . . . be a universal computable enumeration of all com-
putable structures of a fixed language σ. We consider the index set of computable
structures with decidable theories:

DT = {n | Th(Mn) is decidable}.

Theorem 4. The index set DT of all computable structures with decidable the-
ories is an m-complete Σ0,∅(ω)

2 set in the universal computable enumeration of
all computable structures of some infinite language σ∗.

Lemma 3. DT ∈ Σ0,∅(ω)

2 .

294 E.B. Fokina

Proof. Let {ϕk}k∈ω be an enumeration of all formulas with constants {c0,}.
We can compute a computable family of total functions with oracles f∅(s)

n,s (k)
such that for any number k we have Mn |= ϕk iff f∅(s)

n,s (k) = 1 and ϕk is in the
prenex normal form and has s alternations of quantifiers.

We have now that the index set DT of computable structures with decidable
theory has the definition: n ∈ DT iff there exists such x, that:

1. x is a number of a total computable function fx,
2. for all k, fx(k) ∈ {0, 1}, and
3. for all k, if ϕk is in the prenex normal form, has s alternations of quantifiers

and doesn’t have constants from {c0,}, then
(
fx(y) = 1 ↔ f∅(s)

n,s (y) = 1
)
.

From this description we have that DT ∈ Σ0,∅(ω)

2 .

Proof (of Theorem 4). By Lemma 3, the set DT ∈ Σ0,∅(ω)

2 . To prove that DT
is m-complete, it is sufficient to construct a computable sequence of computable
structures in the infinite language σ∗, such that

n ∈ A ⇔ An is computable and its theory is decidable;
n /∈ A ⇔ An is computable but its theory is not decidable,

where A is any Σ0,∅(ω)

2 set.
As A is a Σ0,∅(ω)

2 set, then there exists a computable with ∅(ω) relation R such
that n ∈ A iff (∃∞z)R(n, z). Given such a ∅(ω)–computable relation R we define
R∅(ω)�t(n, z) as follows. R∅(ω)�t(n, z) holds iff we can compute that R(n, z) holds
with only information about ∅(ω) restricted up to the set ∅(ω) � t � {(n, m) |
m ∈ ∅(n)&n ≤ t}.

Let X be a set which is Δ0
2 and not c.e. We code it into a new relation Q(n, z′)

that holds iff all the following conditions are true:

1. z′ = 〈z, t, q〉 and
2. R∅(ω)�t+1(n, z) and
3. ¬R∅(ω)�t(n, z) and
4. Dq is the set X ∩ {0, 1, ..., z}.

It is easy to see that (∃∞z)R(n, z) iff (∃∞z)Q(n, z). Note, that Q(n, z) iff S∅(z)

z (n)
for a computable sequence of relations with oracles.

Let σ0 = 〈P 〉 be a language with only one binary relation symbol. We con-
struct a computable sequence {An}n∈ω of computable structures for a language
σ∗ = ∪i(σ0)(∀∃)i ∪ θ, where θ defines an equivalence relation on the domain of
An.

We build An by stages as a union of an increasing sequence of computable
structures: A0

n ⊆ A1
n ⊆ ... ⊆ Ai

n ⊆ Ai+1
n ⊆ ... ⊆

⋃
i Ai

n = An. For every i, Ai
n

will be a structure of a language σi = ∪j≤i(σ0)(∀∃)j ∪ θ. To get Ai+1
n , we add to

Ai
n a new equivalence class Mi

n which we define in the following way.

Index Sets of Computable Structures with Decidable Theories 295

We consider two structures N1 and N2 for the language σ0. N1 consists of
infinitely many cycles of the length 3 and infinitely many cycles of the length
5. Similarly, N2 consists of infinitely many cycles of the length 4 and infinitely
many cycles of the length 5. Here all the cycles are pairwise disjoint.

Let Ai
n = 〈Ai

n, σi〉 be defined. To define Ai+1
n we consider S∅(i)

i (n). If S∅(i)

i (n)
holds, then we define N i

n � N1, otherwise we let N i
n � N2. In any case N i

n

is a ∅(i)–computable structure which satisfies the condition of Lemma 2. We
let Mi

n = (N i
n)(∀∃)(i+1) . Thus, Mi

n is a computable structure for the language
(σ0)(∀∃)i+1 . We now let Ai+1

n = 〈Ai
n ∪ M i

n, σi+1〉, where Ai
n and M i

n are the
universes of Ai

n and Mi
n respectively. The formula θ defines an equivalence

relation, such that its equivalence classes are the universes of Mj
n, for j ≤ i + 1.

All other predicates from σi+1 are true in Ai+1
n if they were true in Ai

n or Mi
n.

For all the tuples, for which any predicate is undefined, define it to be false on
this tuple.

We let An =
⋃

i Ai
n.

Lemma 4. n ∈ A iff the theory of An is decidable.

Proof. The theories of both N1 and N2 are decidable. By Theorem 2, the theories
of all Mi

n, for all n, i, are also decidable. If n ∈ A, then we add only finitely
many of equivalence classes constructed from N2 by applying Marker’s operators
∀∃ sufficiently many times. Therefore, in this case the theory of An is decidable.
Otherwise, we add infinitely many of such classes. In this case we can enumerate
the set X using Th(An) as an oracle. Namely,

x ∈ X ⇐⇒ (∃y, q)(x ∈ Dq = X ∩ {1, . . . , y}) ⇐⇒

⇐⇒ (∃y, q, t)
(
x ∈ Dq = X ∩ {1, . . . , y}&R∅(ω)�t+1(n, y)&¬R∅(ω)�t(n, y)

)
⇐⇒

⇐⇒ (∃z) (z1 ≥ x&Q(z, n)) , where z = 〈z1, z2, z3〉 ⇐⇒ (∃z)
(
z1 ≥ x&S∅(z)

z (n)
)

The last expression means that at stage z we add an equivalence class of the type
Mz

n = (N2)(∀∃)z . By the Corollary 1, we can write a sentence expressing that in
Mz

n there exists a cycle of length 4. Therefore, X is enumerable in Th(An). By
our choice, X ∈ Δ0

2 \ Σ0
1 , thus, Th(An) can not be decidable.

This proves the theorem.

References

1. Calvert, W.: The isomorphism problem for classes of computable fields. Archive
for Mathematical Logic 75, 327–336 (2004)

2. Calvert, W.: The isomorphism problem for computable Abelian p-groups of
bounded length. Journal of Symbolic Logic 70, 331–345 (2005)

3. Calvert, W., Cummins, D., Knight, J.F., Miller, S.: Comparing classes of finite
structures. Algebra and Logic 43, 374–392 (2004)

296 E.B. Fokina

4. Calvert, W., Harizanov, V., Knight, J.F., Miller, S.: Index sets of computable
structures. Algebra and Logic 45, 306–325 (2006)

5. Csima, B.F., Montalbán, A., Shore, R.A.: Boolean algebras, Tarski invariants, and
index sets, to appear in the Notre Dame Journal of Formal Logic

6. Dobritsa, V.P.: Complexity of the index set of a constructive model. Algebra and
Logic 22, 269–276 (1983)

7. Goncharov, S.S., Knight, J.F.: Computable structure and non-structure theorems.
Algebra and Logic (English translation) 41, 351–373 (2002)

8. Lempp, S., Slaman, T.: The complexity of the index sets of ℵ0-categorical theories
and of Ehrenfeucht theories, to appear in the Advances in Logic In: Proceedings of
the North Texas Logic Conference, Contemporary Mathematics, American Math-
ematical Society. October 8–10, (2004)

9. White, W.: On the complexity of categoricity in computable structures. Mathe-
matical Logic Quarterly 49, 603–614 (2003)

10. White, W.: Characterizations for Computable Structures, PhD dissertation, Cor-
nell University (2000)

11. Fokina, E.: Index sets of decidable models, Sibirsk. Mat. Zh (To appear)
12. Goncharov, S., Khoussainov, B.: Complexity of theories of computable categorical

models. Algebra Logic 43(6), 365–373 (2004)
13. Marker, D.: Non-Σn-axiomatizable almost strongly minimal theories. J. Symbolic

Logic 54, 921–927 (1989)
14. Fokina, E.: On complexity of categorical theories with computable models. Vestnik

NGU 5(2), 78–86 (2005)
15. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-

Hill, New York (1967)
16. Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hier-

archy. In: Studies in Logic and the Foundations of Mathematics, vol. 144, North-
Holland Publishing Co, Amsterdam (2000)

17. Ash, C.J., Knight, J.F.: Pairs of recursive structures. Ann. Pure Appl. Logic 46(3),
211–234 (1990)

18. Goncharov, S., Harizanov, V., Knight, J., McCoy, C., Miller, R., Solomon, R.:
Enumerations in computable structure theory. Ann. Pure Appl. Logic 136(3), 219–
246 (2005)

Minimal Representations for Majority Games�

Josep Freixas1,3, Xavier Molinero1,4, and Salvador Roura2,4

1 Escola Politècnica Superior d’Enginyeria de Manresa. E-08242 Manresa, Spain
2 Universitat Politècnica de Catalunya. CN-Ω, E-08034 Barcelona, Catalonia, Spain

3 Dept. de Matemàtica Aplicada 3
josep.freixas@upc.edu

4 Dept. de Llenguatges i Sistemes Informàtics
{molinero,roura}@lsi.upc.edu

Abstract. This paper presents some new results about majority games.
Isbell (1959) was the first to find a majority game without a minimum
normalized integer representation; he needed 12 voters to construct such
a game. Since then, it has been an open problem to find the minimum
number of voters of a majority game without a minimum normalized
integer representation. Our main new results are:

1. All majority games with less than 9 voters have a minimum integer
representation.

2. For 9 voters, there are 14 majority games without a minimum integer
representation, but all these games admit a minimum normalized
integer representation.

3. For 10 voters, there exist majority games with neither a minimum
integer representation nor a minimum normalized integer represen-
tation.

Keywords: Simple games, Weighted games, Majority games, Minimum
and minimal weighted representations/realizations, Computing games.

1 Introduction

We start by giving some basic definitions on simple games (we refer the interested
reader to [16] for a thoroughly presentation). Simple games can be viewed as
models of voting systems in which a single alternative, such as a bill or an
amendment, is pitted against the status quo.

Definition 1. A simple game G is a pair (N, W) in which N = {1, . . . , n} for
some positive integer n, and W is a collection of subsets of N that satisfies N ∈
W , ∅ /∈ W , and the monotonicity property: S ∈ W and S ⊆ R ⊆ N ⇒ R ∈ W .

� This research was partially supported by Grant MTM 2006–06064 of “Ministerio de
Ciencia y Tecnoloǵıa y el Fondo Europeo de Desarrollo Regional” and SGRC 2005-
00651 of “Generalitat de Catalunya”, and by the Spanish “Ministerio de Ciencia y
Tecnoloǵıa” programme TIN2005-05446 (ALINEX).

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 297–306, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

298 J. Freixas, X. Molinero, and S. Roura

Any set of voters is called a coalition, the set N is called the grand coalition,
and the empty set ∅ is called the null coalition. Members of N are called players
or voters, and the subsets of N that are in W are called winning coalitions. The
intuition here is that a set S is a winning coalition iff the bill or amendment
passes when the players in S are precisely the ones who voted for it. A subset of
N that is not in W is called a losing coalition, denoted by L. A minimal winning
coalition (maximal losing coalition), denoted by Wm (LM), is a winning (losing)
coalition all of whose proper subsets (supersets) are losing (winning). Because of
monotonicity, any simple game is completely determined by its set of minimal
winning coalitions. A voter i is null if i /∈ S for all S ∈ Wm.

Before proceeding, we introduce a real–world example (see [15] for an illus-
tration of many real–world examples and [4] for the European Union Council).

Example 1. We shall consider here the composition of the Catalan Parliament
today. Six parties got elected members in the last elections, giving rise to the
following distribution of the 135 seats:

Party Name of the Party Seats
1 Convergència i Unió 48
2 PSC-Ciutadans pel Canvi 37
3 Esquerra Republicana de Catalunya 21
4 Partit Popular 14
5 Iniciativa per Catalunya Verds - EUIA 12
6 Ciutadans-Partido de la Ciudadańıa 3

Voters are here parties since they vote by using party whip. Most of the
proposals require absolute majority to be passed, i.e., a minimum of 68 votes
are needed. Then Wm = {{1, 2}, {1, 3}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}}. Some others
proposals need a 2/3-qualified majority to be passed, that is, at least 90 votes.
In this case we have Wm = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4, 5}}. Note that
party 6 is null in both games.

Now, let us consider some special types of simple games.

Definition 2. A simple game (N, W) is strong if S /∈ W implies N \ S ∈ W .

A simple game that is not strong is called weak. Intuitively speaking, if a game
is weak it has too few winning coalitions, because adding sufficiently many win-
ning coalitions would make the game strong. Note that the addition of winning
coalitions can never destroy strongness.

Definition 3. A simple game (N, W) is proper if S ∈ W implies N \ S /∈ W .

A simple game that is not proper is called improper. An improper game has
too many winning coalitions, in the sense that deleting sufficiently many win-
ning coalitions would make the game proper. Note that the deletion of winning
coalitions can never destroy properness.

When a game is both proper and strong, a coalition wins iff its complement
loses. Therefore, in this case we have |W | = |L| = 2n−1.

Minimal Representations for Majority Games 299

Definition 4. A simple game is decisive (or self–dual, or constant sum) if it is
proper and strong.

Definition 5. Given a simple game (N, W), its dual game is (N, W ∗), where
S ∈ W ∗ if and only if N \ S /∈ W .

That is, winning coalitions in the dual game are just the “blocking” coalitions in
the original game. Note that (N, W) is proper iff (N, W ∗) is strong, and (N, W)
is strong iff (N, W ∗) is proper. As a consequence, we have that a simple game
(N, W) is decisive iff W = W ∗.

In the seminal work on game theory by von Neumann and Morgenstern [14]
only decisive simple games were considered. Nowadays, many governmental in-
stitutions made their decisions through voting rules that are in fact decisive
games. If abstention is not allowed (see [6] for voting games with abstention)
ties are not possible in decisive games.

This paper is organized as follows. Section 2 is devoted to weighted games,
its main properties and to formally introduce several kinds of minimal integer
realizations (representations in a more general context) for them. It specially
focuses in majority games and several open problems related to minimal real-
izations. There, all proofs have been omitted because of the lack of the space.
Section 3 explains the methodology and sketches the main algorithms used to
obtain our results. Section 4 provides the most representative cases of minimal
realizations. A conclusion section ends the paper.

2 Weighted Games and Majority Games

Weighted simple games (or weighted games, for short) are probably the most
important kind of simple games.

Definition 6. A simple game (N, W) is weighted if there exist a “ quota” q ∈ R

and a “ weight function” w : N → R such that each coalition S is winning exactly
when the sum of weights of S meets or exceeds q.

Any specific example of such a weight function w and quota q are said to realize
G as a weighted game. A particular realization of a weighted game is denoted
(q; w1, . . . , wn), or briefly (q; w). By w(S) we denote

∑
i∈S wi. Three parameters

can be defined for any realization (q; w) of a weighted game (N, W):

T = w(N), a = min
S∈W

w(S) and b = max
S∈L

w(S) .

From the definition of simple game, we have 0 < q ≤ T .
Although a simple game can fail to be proper and fail to be strong, this cannot

happen with weighted games. Note that Example 1 with absolute majority is a
proper and strong weighted game; for the 2/3-qualified majority, it is a proper
and weak weighted game.

Proposition 1. Any weighted game is either proper or strong.

300 J. Freixas, X. Molinero, and S. Roura

It is well–known that any weighted game admits an integer realization (see for
instance [3]), that is, a weight function with nonnegative integer values, and a
positive integer as quota. Integer realizations naturally arise; just consider the
seats distributed among political parties in any voting system.

Henceforth we will only consider the set I of all integer realizations1 for every
weighted game (N, W). Note that, if (q; w) ∈ I, then (c · q; c · w) ∈ I for every
positive c, so that I is an unbounded cone of integer values.

The desirability relation, which goes back at least to Isbell [7] and was later
generalized in [9] (see also [10,12]), is useful to define a natural preordering.

Definition 7. Let (N, W) be a simple game.

(i) Player i is more desirable than j (i � j, for short) in (N, W) if

S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W, for all S ⊆ N \ {i, j}.

(ii) Players i and j are equally desirable (i ∼ j, for short) in (N, W) if

S ∪ {i} ∈ W ⇔ S ∪ {j} ∈ W, for all S ⊆ N \ {i, j}.

(iii) Player i is strictly more desirable than player j (i � j, for short) in (N, W)
if i is more desirable than j, but i and j are not equally desirable.

If a weighted game admits (q; w1, . . . , wn) as a realization, then wi ≥ wj implies
i � j. Therefore, the desirability relation of weighted games is complete. (See [1]
for a classification theorem of complete simple games.) Note that wi = wj implies
i ∼ j. However, i ∼ j does not necessarily imply wi = wj . But i � j does imply
wi > wj . All these comments suggest the following definition.

Definition 8. A realization (q; w) of a weighted game is said to preserve types
or to be normalized if wi = wj whenever i ∼ j. By N we denote the set of all
normalized realizations of a game.

From now on, assume w.l.o.g. that i � i + 1 for every i = 1, . . . , n − 1. The set
of voters admits a partition in t classes N1, . . . , Nt such that two voters i and
j belong to the same class iff i ∼ j. The extreme cases arise when t = 1 (all
voters are equally desirable) and t = n (each class reduces to a singleton). We
sort the classes from the most desirable (N1) to the least desirable (Nt).

In the following definitions, let w ≤ w′ mean wi ≤ w′
i for all 1 ≤ i ≤ n.

Definition 9. A realization (q; w) of a weighted game is called minimum if w ≤
w′ for all realization (q′; w′) ∈ I. By MI we denote the set of all minimum
realizations of a game.

For instance, one may easily check that the minimum realization (6; 4, 3, 2, 1, 1, 0)
with just 11 seats is equivalent to the one given in Example 1 with absolute
majority.
1 Since there is no confusion about the used game, we will write I instead of I(N, W),

also for other sets defined later.

Minimal Representations for Majority Games 301

Definition 10. A realization (q; w) of a weighted game has minimum sum if
w(N) ≤ w′(N) for all (q′; w′) ∈ I. By sMI we denote the set of all minimum
sum realizations of a game.

Definition 11. A realization (q; w) of a weighted game is a minimum normal-
ized realization if w ≤ w′ for all (q′; w′) ∈ N . By MN we denote the set of all
minimum normalized realizations of a game.

Definition 12. A realization (q; w) of a weighted game is a minimum sum nor-
malized realization if w(N) ≤ w′(N) for all (q′; w′) ∈ N . By sMN we denote
the set of all minimum sum normalized realizations of a game.

Note that the quota q for minimum sum realizations must be a. This is why
there is no restriction for the quota in the definitions above.

The next proposition summarizes some properties of these types of realiza-
tions.

Proposition 2. For every weighted game,

(i) MI has at most one element.
(ii) sMI is never empty.

(iii) MI ⊆ sMI. Moreover, MI = sMI iff MI reduces to a singleton.
(iv) MN has at most one element.
(v) sMN is never empty.

(vi) MN ⊆ sMN . Moreover, MN = sMN iff MN reduces to a singleton.
(vii) MI ⊆ MN .

Regarding Proposition 2, it would be interesting to find the minimum number
of voters for a game in order to obtain: weighted games without a minimum
integer realization (i.e., with MI = ∅) and, distinguishing among, |sMI| = 1 or
|sMI| = 2 or |sMI| > 2. In the same way, it would also be meaningful deter-
mining the minimum number of voters for a weighted game without a minimum
integer normalized realization, i.e. MN = ∅.

In this topic, one of the goals during the last five decades has been to find
examples for each of these cases. The construction of all weighted games for
n < 7 goes as early as 1962 [11]. In 1970 [13] it was found that MI �= ∅ for
each weighted game with n < 8. Quite recently [5] it has been proved that,
for n = 8, there are 154 non–isomorphic weighted games such that MI �= ∅,
although none of them decisive. However, all these 154 games have a unique
normalized realization. Isbell [8] exhibited a remarkable example of a decisive
weighted game with 12 voters in which the two affected voters with different
weight are not equi–desirable: (99; 38, 31, 31, 28, 23, 12, 11, 8, 6, 5, 3, 1), which also
admits the equivalent realization (99; 37, 31, 31, 28, 23, 12, 11, 8, 7, 5, 3, 1). Since
1979 [2], Isbell’s example has been very useful in game theory. See [5] for an
example of a non–decisive weighted game with n = 10 and MN = ∅.

Now we introduce the class of games which are the aim of study in this paper.

Definition 13. A simple game is a majority game if it is weighted and decisive.

302 J. Freixas, X. Molinero, and S. Roura

From Proposition 1, it follows that there are three kind of weighted games:
proper but not strong, strong but not proper, and decisive. In what follows we
will only consider decisive games.

We are interested in finding minimal realizations for majority games. The
following result provides conditions for a realization to be minimal.

Proposition 3. Consider a majority game. Any element (q; w) in MI satisfies:
a = q, b = q − 1 and T = 2q − 1.

Therefore, the total weight T of every minimal realization of a majority game
is an odd number, and its quota is q = (T + 1)/2. Henceforth we will represent
such a minimal realization omitting the quota, which becomes redundant.

As we claimed, all majority games with n < 9 have a minimum realization.
On the other hand, Isbell’s game (which has n = 12) does not have a minimum
normalized realization. The goal of the next sections is to find out, with the
help of algorithms, majority games without a unique minimal realization and
majority games without a unique normalized realization.

3 Algorithm to Classify Majority Games

We implemented several algorithms about majority games, in order to exhaus-
tively study all the games with n < 10, and also to find examples with 10 voters
depending on its minimal realization. An exhaustive study of games with n = 10
was beyond our CPU time possibilities, because the huge number of games (see
Table 1 below). All the experiments were done with a processor AMD64X2 4400
(two cores at 2.2 GHz) with 4 Gb of DDR memory with ECC.

Because of the lack of space, we briefly sketch one of the algorithms (see
Figure 1 in Appendix). The C++ code can be obtained by asking the authors.

The program uses an integer array m[n], filled with empirical data, with the
maximum possible weight for each player when there are n of them. The values
for n = 1, . . . , 8 are 1, 1, 2, 3, 5, 9, 18, 42, respectively.

The main loop considers in increasing order the number of players n. For every
such n, and for every sum of weights s between n and n · m[n] also in increasing
order, a backtracking searches for all the combinations of n weights with total
sum s.

The backtracking searches the combinations in lexicographical order, choosing
the weights in increasing order from left to right, and cutting every useless
branch. A branch is declared useless when it is known that the weight of every
combination reachable from it will be strictly smaller or larger than s.

When we find a combination (we know that its sum of weights is s), we call
a routine to check its properties. There, we first compute the minimal winning
coalition Wm (also called representative function), that is, all the minimum sub-
sets whose sum of weights reaches at least �s/2� + 1. Each of these subsets is
codified as a bitmap in one integer. Them all, which together form the represen-
tative function of the game, are stored in a specific order in a vector<int>.

Minimal Representations for Majority Games 303

We then check with M.find(RF) if the current vector is a new one or if it
was already found before. We achieve this by storing every new vector in a map
(similar to a set) data structure. Then,

– For every game with a new representative function, we check if the game
verifies |sMI| = 2. Note that, here, we do not have enough information to
check whether |sMN| = 1 or |sMN| > 1.

– For every game with an already found representative function, we check if
the game verifies: |sMI| = 1, |sMI| > 1, |sMN| = 1, |sMN| > 1, etcetera.

4 Realizations of Majority Games

All possible majority games with less than 10 voters were considered. Table 1
shows the obtained results.

Table 1. Number of Complete Simple Games (CG), Weighted Complete Simple Games
(WG), Decisive Games (DG) and Majority Games (MG) with n voters

n 1 2 3 4 5 6 7 8 9

CG 1 3 8 25 117 1171 44313 16175188 −
WG 1 3 8 25 117 1111 29373 2730164 −
DG 1 1 2 3 7 21 135 2470 319124
MG 1 1 2 3 7 21 135 2470 175428

Some observations are worth noting for n = 9. In particular, there are just
14 majority games (see Table 2) such that MI = ∅ but |sMI| > 1. Muroga et.
al [13] already found these realizations. Note that |sMI| = 2 for all them. Of
course, by adding null voters to these games we obtain new games with these
properties.

In Table 3 we give examples of 10 voters with |sMI| > 2, so that 10 voters
is sharp to get games with MI = ∅ and |sMI| > 2. We have only listed here
a small sample because their properties are similar. Thus, things become more

Table 2. All majority games with 9 voters such that MI = ∅ and |sMI| = 2. The other
minimum sum integer realization are obtained by interchanging encircled weights.

T q w1 w2 w3 w4 w5 w6 w7 w8 w9

1 47 24 11 9 6 6 4 4 4 �2 �1
2 49 25 13 7 6 6 4 4 4 �3 �2
3 53 27 14 9 �7 �6 5 5 3 2 2

4 55 28 13 9 7 7 6 4 4 �3 �2
5 55 28 13 11 7 7 5 5 4 �2 �1
6 55 28 13 11 8 6 6 4 4 �2 �1
7 59 30 17 9 8 �7 �6 5 3 2 2

T q w1 w2 w3 w4 w5 w6 w7 w8 w9

8 63 32 15 13 9 7 7 5 4 �2 �1
9 63 32 15 13 10 8 6 4 4 �2 �1
10 65 33 13 11 10 8 6 6 �5 �4 2

11 65 33 17 12 8 8 �7 �6 3 2 2

12 67 34 16 14 11 9 6 4 4 �2 �1
13 71 36 17 15 11 9 7 5 4 �2 �1
14 75 38 18 16 12 10 7 5 4 �2 �1

304 J. Freixas, X. Molinero, and S. Roura

Table 3. Some majority games with 10 voters such that MI = ∅ and |sMI| > 2.
The other possible minimum sum integer realizations are obtained by interchanging
encircled weights.

T, T ′ q, q′ w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w′
1 w′

2 w′
3 w′

4 w′
5 w′

6 w′
7 w′

8 w′
9 w′

10

95 48 22 18 12 12 8 8 8 �3 �3 1 22 18 12 12 8 8 8 �4 �2 1

97 49 25 13 12 10 8 8 8 �6 �5 2 25 13 12 10 8 8 8 �7 �4 2

99 50 26 14 12 12 8 8 8 �5 �5 1 26 14 12 12 8 8 8 �6 �4 1

103 52 24 20 13 13 9 9 8 �3 �3 1 24 20 13 13 9 9 8 �4 �2 1

107 54 25 17 13 13 10 8 8 �6 �5 2 25 17 13 13 10 8 8 �7 �4 2

111 56 25 17 15 13 12 8 8 �6 �5 2 25 17 15 13 12 8 8 �7 �4 2

111 56 26 18 14 14 12 8 8 �5 �5 1 26 18 14 14 12 8 8 �6 �4 1

111 56 26 22 14 14 10 10 8 �3 �3 1 26 22 14 14 10 10 8 �4 �2 1

111 56 26 22 16 12 12 8 8 �3 �3 1 26 22 16 12 12 8 8 �4 �2 1

113 57 24 21 16 16 13 7 6 6 �2 �2 24 21 16 16 13 7 6 6 �3 �1
.

Table 4. Some majority games with 10 voters without minimum integer normalized
realization, MN = ∅

T, T ′ q, q′ w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w′
1 w′

2 w′
3 w′

4 w′
5 w′

6 w′
7 w′

8 w′
9 w′

10

73 37 19 14 �11 �7 5 5 5 3 2 2 19 14 �12 �6 5 5 5 3 2 2

75 38 �15 13 13 7 6 6 4 4 4 �3 �16 13 13 7 6 6 4 4 4 �2

77 39 �16 15 11 9 6 6 4 4 4 �2 �17 15 11 9 6 6 4 4 4 �1

77 39 20 13 �10 �9 7 7 5 2 2 2 20 13 �11 �8 7 7 5 2 2 2

79 40 19 13 10 10 8 �5 4 4 4 �2 19 13 10 10 8 �6 4 4 4 �1

79 40 23 �12 8 8 7 7 �5 3 3 3 23 �13 8 8 7 7 �4 3 3 3

81 41 �15 13 13 9 7 7 6 4 4 �3 �16 13 13 9 7 7 6 4 4 �2

81 41 17 �14 13 11 6 6 4 4 4 �2 17 �15 13 11 6 6 4 4 4 �1

81 41 �18 17 11 9 6 6 4 4 4 �2 �19 17 11 9 6 6 4 4 4 �1

81 41 21 11 10 10 8 �6 4 4 4 �3 21 11 10 10 8 �7 4 4 4 �2

.

compelling when there are more than 9 voters. Unfortunately, it was not possible
for us to study all (majority) games because of the huge number of games and
the limitation of our computers, but we could study a sufficiently large subset
of such games to find conspicuous examples.

All the examples given in Tables 2 and 3 satisfy MN �= ∅. Table 4 lists some
majority games with 10 voters without minimum integer normalized realization.
Therefore, 10 is the least number of voters required to get such majority games.
This contribution concludes the open problem left by Isbell in 1959 [8] when he
provided his famous example for 12 voters. All examples in Table 4 share the
properties MN = ∅ and |sMN| = 2 with Isbell’s example.

Minimal Representations for Majority Games 305

5 Conclusion

In this paper we have focused in majority games, with the following conclusions:

1. For less than 9 voters, all majority games have a minimum integer realization.
2. For 9 voters, there are exactly 14 majority games without a minimum in-

teger realization, but all these games have a minimum normalized integer
realization.

3. For 10 voters:
– There exist majority games without a minimum integer realization and

with more than two minimum sum integer realizations.
– There exists majority games without a minimum normalized integer re-

alization.

Note that 10 is the smallest number of voters for majority games without a
minimum normalized integer realization.

References

1. Carreras, F., Freixas, J.: Complete simple games. Mathematical Social Sciences 32,
139–155 (1996)

2. Dubey, P., Shapley, L.S.: Mathematical properties of the Banzhaf power index.
Mathematics of Operations Research 4(2), 99–131 (1979)

3. Freixas, J.: Structure of simple games. PhD thesis, Technical University of Catalo-
nia, Manresa (Barcelona), Spain. In Spanish. Oct (1994)

4. Freixas, J.: The dimension for the European Union Council under the Nice rules.
European Journal of Operational Research 156(2), 415–419 (2004)

5. Freixas, J., Molinero, X.: On the existence of a minimum integer representation
for weighted voting systems. Annals of Operations Research, (Submitted, October
2006)

6. Freixas, J., Zwicker, W.S.: Weighted voting, abstention, and multiple levels of
approval. Social Choice and Welfare 21, 399–431 (2003)

7. Isbell, J.R.: A class of simple games. Duke. Mathematics Journal 25, 423–439 (1958)
8. Isbell, J.R.: On the enumeration of majority games. Mathematical Tables and

Other Aids. to Computation 13(65), 21–28 (1959)
9. Maschler, M., Peleg, B.: A characterization, existence proof, and dimension bounds

for the kernel of a game. Pacific Journal of Mathematics 18, 289–328 (1966)
10. Muroga, S.: Threshold logic and its applications. Wiley-Interscience, New York,

USA (1971)
11. Muroga, S., Toda, I., Kondo, M.: Majority decision functions of up to six variables.

Mathematics of Computation 16(80), 459–472 (1962)
12. Muroga, S., Toda, I., Takasu, S.: Theory of majority decision elements. J. Franklin

Inst. 271(5), 376–418 (1961)
13. Muroga, S., Tsuboi, T., Baugh, C.R.: Enumeration of threshold funcitons of eight

variables. IEEE Trans. Computers 19(9), 818–825 (1970)
14. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior.

Princeton University Press, Princeton, New Jersey, USA (1944)
15. Taylor, A.D.: Mathematics and Politics. Springer, New York, USA (1995)
16. Taylor, A.D., Zwicker, W.S.: Simple games: desirability relations, trading, and

pseudoweightings. Princeton University Press, New Jersey, USA (1999)

306 J. Freixas, X. Molinero, and S. Roura

Appendix

Figure 1 sketches the used algorithms to compute all given examples.

const int N = 11; // maximum n

typedef vector<int> VI;

map<VI, VI> M;
vector<int> weight(N);
VI RF;
int m[] = { 0, 1, 1, 2, 3, 5, 9, 18, 42, ... };

...

void check(int sum) {

 int quota = sum/2 + 1;
 RF = compute_representative_function(quota);

 if (M.find(RF) == M.end()) { // RF is new

 M[RF] = weight; // we store RF in M
 if (is_sMI_2()) print_game("sMI_2"); // case |sMI| = 2

 } else {

 if (is_sMI()) print_game("sMI"); // case |sMI| = 1
 else if (is_Not_sMI()) print_game("Not_sMI"); // case |sMI| > 1

 if (is_sMN()) print_game("sMN"); // case |sMN| = 1
 else if (is_Not_sMN()) print_game("Not_sMN"); // case |sMN| > 1

 ...
 }
}

// Fill the array weight[0..n−1] from the position i,
// using weights less than or equal to m,
// knowing that sum = weight[0] + ... + weight[i−1],
// and in such a way that the total sum of weights will be s.
void backtracking(int n, int i, int m, int sum, int s) {

 if (sum > s) return;
 if (i == n) check(sum);
 else {
 if (sum == s) return;
 int minimum = (s − sum − 1)/(n − i) + 1;
 int maximum = min(m, s − sum − (n − i − 1));
 for (int x = minimum; x <= maximum; ++x) {
 weight[i] = x;
 backtracking(i + 1, x, sum + x, s);
 }
 }
}

int main() {
 ...

 for (int n = 1; n <= N; ++n)
 for (int s = n; s <= n*m[n]; ++s)
 backtracking(n, 0, m[n], 0, s);

 ...
}

Fig. 1. Sketch of the used algorithms

Linear Transformations in Boolean Complexity

Theory

Joel Friedman1,2,�

1 Department of Computer Science, University of British Columbia,
Vancouver, BC V6T 1Z4, Canada

2 Department of Mathematics, University of British Columbia,
Vancouver, BC V6T 1Z2, Canada

jf@cs.ubc.ca
http://www.math.ubc.ca/~jf

Abstract. We attempt to understand a cohomological approach to lower
bounds in Boolean circuits (of [Fri05]) by studying a very restricted case;
in this case Boolean complexity is described via the kernel (or nullspace)
of a fairly simple linear transformation and its transpose. We look at
this linear transformation approach for Boolean functions where we only
allow AND gates, which is essentially the SET COVER problem. These
linear transformations can recover the linear programming bound. More
importantly, we learn that the optimal linear transformation to use can
depend on the Boolean function whose complexity we wish to bound; we
also learn that infinite complexity (that can occur in AND complexity
over arbitrary sets and “bases”) appears as a limits of the linear trans-
formation bounds.

Keywords: Boolean circuit complexity, linear transformations, coho-
mology.

1 Introduction

We describe some new ideas for obtaining lower bounds for the complexity of
Boolean function. The general setting of these ideas, described in [Fri05], in-
volves somewhat specialized ideas in the cohomology of Grothendieck topologies
(or toposes). However, some very special cases of this setting are quite easy to
describe with graph theory and linear transformations; we believe that these
cases could shed light on the more general cohomological approach with arbi-
trary Grothendieck topologies.

We find it hard to understand the extent of the cohomological approach even
if we only allow AND gates in our computation (which is essentially the SET
COVER problem). Here we show that this linear transformation approach re-
covers the linear programming bound in SET COVER. But more compelling
is the light it sheds on some aspects of the cohomological approach: first, one
sometimes needs to vary the formal complexity measure depending on which
� Research supported in part by an NSERC grant.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 307–315, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

308 J. Friedman

Boolean function one wants to bound; this contradicts our initial intuition that
one should always hope to obtain a formal complexity measure via cohomology
that simultaneously gives good bounds on every Boolean function on n variables.
Second, in AND complexity functions can have infinite complexity (they can’t be
written as AND’s of the prespecified “base” functions); this infinitely complexity
can be recovered in the cohomological approach (and the linear transformation
approach and the linear programming bound) by a limit of formal complexity
measures.

In this abstract the proofs of Theorems 1 and 3 are omitted.
We thank the referees (unknown to us) for several suggestions and corrections

on the manuscript.

1.1 Cohomology in Lower Bounds

Over twenty years ago lower bounds for algebraic decision trees were obtained by
counting connected components (and in principle the sum of the Betti numbers)
of associated topological spaces (see [DL76, SY82, BO83]). This lead to a hope
that problems such as P vs. NP, viewed as lower bound problems in Boolean
circuit complexity of a Boolean function, could be studied via cohomology, e.g.,
the sum of the Betti numbers of a topological space (associated in some way
to the function). We are unaware of any essential progress in this direction
to date. (But see [Sma87] for a success of algebraic topology and the braid
group in another notion of complexity.) In [Fri05] we develop a number of ideas
that we hope may eventually give Boolean circuit depth lower bounds; these
ideas seem uninteresting unless we (1) generalize the notion of Betti number to
dimensions of Ext groups of general sheaves, and (2) replace topological spaces
with Grothendieck topologies.

There is a lot of appeal to trying to model Boolean complexity via coho-
mology over Grothendieck topologies: cohomology is a well studied subject that
takes large or infinite dimensional vector spaces and extracts concise, meaningful
information, and cohomology has various known connections to combinatorics.
We emphasize that Grothendieck topologies provide many examples akin to the
theory of finite graphs that ordinary topological spaces miss; also, since we are
trying to model finite or discrete computation, it seems natural to look for mod-
els in “discrete spaces,” which is very different from studying algebraic varieties
as was done previously for bounds for algebraic decision trees.

Part of the present difficulty with this approach is that it involves a question
in mathematics that has not received much attention. Usually cohomology is
used to analyze a particular topology and pair of sheaves (often the first sheaf
is the constant sheaf). Here we are asking to choose the topology and sheaves
in order to model Boolean complexity, and it seems difficult for us to know how
to select or rule out topologies and sheaves from the vast array of possibilities.
We are hoping that the special case presented in terms of linear transformation,
presumably much easier to analyze fully, will help select and rule out topologies
and sheaves for the general cohomological approach.

Linear Transformations in Boolean Complexity Theory 309

1.2 Formal Complexity Measures

Let S be a set, and denote by B
S = {0, 1}S the collection of functions from S to

B = {0, 1} (viewing 1 as TRUE and 0 as FALSE). By a formal AND measure we
mean a function, h, from B

S to the non-negative reals such that for all f, g ∈ B
S

we have
h(f ∧ g) ≤ h(f) + h(g) (1)

(compare the notion of a formal complexity measure, e.g., see [Weg87]). Given a
subset S1 = {f1, . . . , fr}, let size(f) be the minimum number of elements of S1

whose conjunction is f ; we define size(f) to be infinite if f cannot be expressed
as such a conjunction. Equivalently size(f) is the size of the smallest formula
computing f via conjunctions of elements of S1. By induction on “size” we see
that for any formal AND measure, h, we have

size(f) ≥ h(f)/M, where M = maxi h(fi).

If h also satisfies
h(f) = h(¬f), (2)

then similarly we have an h(f)/M lower bound on the size of a formula as
before, but where the operations are either conjunctions or the negation of a
conjunction; then log2(h(f)/M) would bound the formula (or circuit) depth.

The ultimate goal of this project is to obtain formal AND measures that
also satisfy equation (2) for circuit depth bounds with unrestricted gates with
two inputs. In this work we concern ourselves only with general formal AND
measures; however, it does not seem easy just to know which such measures
can be constructed via linear transformations arising from vector spaces on
graphs.

Given S and f1, . . . , fr, determining size(f) is NP-complete; this is essentially
the SET COVER problem. It can be approximated (to within O(log r)) by a lin-
ear program that we describe below. We shall show that the linear programming
bound can be obtained by the cohomological approach of [Fri05]. Furthermore
this special case of the cohomologically obtained bounds can be described just
with finite directed graphs and vector spaces.

We note that “AND-Circuits,” (quite different but) related to the above in
the case where S is a Boolean hypercube, have been studied in [AM06].

1.3 The Linear Programming Bound

Given S and S1 ⊂ B
S , determining size(f) is NP-complete, as it is almost a

reformulation of SET COVER (see [Vaz01], for example, for SET COVER);
indeed, to determine how many S1 elements we need to obtain f , we may assume
f ≤ fi for all i, and then the question is how many f−1

i (0) are required to cover
f−1(0). The size complexity is given by the integer program

310 J. Friedman

min
∑

i∈R

μi, subject to

∑

i∈R

μi(1 − fi(s)) ≥ 1, ∀s ∈ f−1(0)

μi = 0, 1 i ∈ R,

where R is the set of i with f ≤ fi. A lower bound to this program is given
by the “relaxed” linear program where the μi are non-negative reals. The gap
between the integer and linear program is known to be as high as Ω(log r) in
certain cases, and never higher (see [Vaz01]). Equivalent to the linear program
is its dual,

max
∑

s∈f−1(0)

αs, subject to (3)

∑

s∈f−1(0)

αs(1 − fi(s)) ≤ 1, ∀i ∈ R (4)

αs ≥ 0 ∀s ∈ S (5)

It is this linear program that we shall derive as a lower bound via linear trans-
formations based on vector spaces on graphs.

2 Linear Transformations

By a linear transformation, L, we mean a map L : s(L) → t(L) of finite dimen-
sional real vector spaces (s(L) is called the source of L, t(L) the target). We
define the Betti numbers of L to be

b0(L) = dim(Ker(L)), b1(L) = dim(Coker(L)) = b0(L∗),

(where Ker denotes the kernel or nullspace, and Coker(L) = t(L)/Image(L)
denotes the cokernel). We define the cohomological complexity of L to be

cc(L) = b0(L) + b1(L).

Roughly speaking our approach will associate to each Boolean function,
g : B

n → B a linear transformation, Lg, so that

h(g) = cc(Lg)

is a formal AND measure. More precisely, we will associate to each g a family
of linear transformations, Lg, such that b0, b1 of each element of Lg is the same.
We shall need to know a condition on two linear transformation, L, M , to have
the same b0 and b1.

Linear Transformations in Boolean Complexity Theory 311

By a morphism of linear transformations, φ : L → M , we mean a pair φ =
(φs, φt) of maps making the diagram

s(L) L−−−−→ t(L)

φs

⏐
⏐
�

⏐
⏐
�φt

s(M) M−−−−→ t(M)

commutative, i.e., such that Mφs = φtL. Two morphisms, φ, ν, are homotopy
equivalent if there is a map K : t(L) → s(M) such that φs − νs = KL and
φt − νt = MK. Say that φ is a homotopy equivalence if there is a θ : M → L
such that θφ is homotopy equivalent to the identity on L, and φθ is homotopy
equivalent to the identity on M . It is not hard to see that in this case bi(L) =
bi(M).

We shall associate to g a family of linear transformations, Lg, and homotopy
equivalences between any two elements of Lg (so that b0, b1 are the same on all
elements of Lg). We shall usually just describe one particular element of Lg,
although the proof that h is an AND measure may be easier when one uses the
whole family Lg.

A pair of linear transformations

A
α−−−−→ B

β−−−−→ C

is exact at B if Ker(β) = Image(α). In this case the dimension of B is bounded
by the sum of those of A and C, since B/Ker(β) is mapped injectively to C, and
the dimension of Ker(β) is that of Image(α) which is at most that of A.

If ν : L1 → L2 is a morphism of linear transformation, then νs induces a map
Ker(L1) → Ker(L2), and νt induces a map Coker(L1) → Coker(L2). Say that

L1
ν−−−−→ L2

μ−−−−→ L3

is a short exact sequence if there exists a linear transformation δ : Ker(L3) →
Coker(L1) such that

0 −−−−→ Ker(L1)
νs−−−−→ Ker(L2)

μs−−−−→ Ker(L3)

δ−−−−→ Coker(L1)
νt−−−−→ Coker(L2)

μt−−−−→ Coker(L3) −−−−→ 0

is an exact sequence, i.e., the kernel of each map is the image of the preceding
one. (Note that if L1 → L2 → L3 is a short exact sequence in the usual sense of
homological algebra, then it is one in this sense, using the Snake Lemma.) It is
easy to see this implies that that the cc(Li) satisfy the triangle inequality (i.e.,
any one is at most the sum of the other two). The proof of equation (1) will be
based on a few short exact sequences.

3 Vector Spaces on Graphs

Let H be a directed acyclic graph, possibly with multiple edges. Let V (H), E(H)
denote the vertex and edge sets of H ; if e ∈ E(H) with tail u and head v, we

312 J. Friedman

write e = (u, v) (this is somewhat abusive, since the graph may have multiple
edges). By a vector space on H , F , we mean an association to each vertex, v, of
H , a vector space Fv, and to each edge e = (u, v) of H a linear transformation
Fe : Fv → Fu (note the order is “reversed”). If U ⊂ V (H), let FU be F on all
vertices in U and edges with both endpoints in U , and otherwise FU zero.

If F, G are vector spaces on a graph, H , we wish to describe a linear trans-
formation, DHom(F, G), the derived Hom from F to G. To do so, note that if
e = (u, v) ∈ E(H) and if Lin(Fv, Gv) is the vector space of linear transforma-
tions from Fv to Gv, there is a natural map L1(e) : Lin(Fv, Gv) → Lin(Fv, Gu)
given by φ 	→ (Ge)φ; and similarly a map L2(e) : Lin(Fu, Gu) → Lin(Fv, Gu)
given by φ 	→ φ(Fe). So if we set

S =
⊕

v∈V (H)

Lin(Fv, Gv),

and
T =

⊕

e=(u,v)∈E(H)

Lin(Fv, Gu),

it makes to define L : S → T via L = L1 − L2, where for i = 1, 2, Li is the block
matrix given by summing the Li(e). We define DHom(F, G) to be this linear
transformation.

Notice that the kernel of DHom(F, G) can be interpreted as the set of tuples
of maps μv : Fv → Gv, one for each v ∈ V (H), such that for every e = (u, v) we
have μuFe = Geμv.

The cohomological interpretation of DHom(F, G) is the morphisms from F to
G in the derived category of presheaves (i.e., sheaves with the topologie grossière)
of the free category associated to the graph H . Since the free category has homo-
logical dimension 1, as evident from the resolution by “vertices” and “edges” (see
[Fri05]), the elements of the derived category can be taken to live on cochains
supported in the zeroth and first position, which amounts to giving a single
linear transformation. We further remark that DHom(F, G) has no “preferred
definition,” but all definitions are homotopy equivalent.

4 AND Measures Via Linear Transformations

Let F, G be vector spaces over a directed, acyclic graph, H . Say that U ⊂ V (H)
is open if for all e = (u, v) ∈ H and v ∈ U we have u ∈ U . Define the complexity
of U (with respect to F, G) to be

cpxF,G(U) = cc(DHom(F, G)). (6)

Theorem 1. For any open sets, U, W , we have

cpx(U ∩ W) ≤ cpx(U) + cpx(W) + cpx(V (H)).

Linear Transformations in Boolean Complexity Theory 313

Problem. Find a simple proof of this theorem.

One can prove Theorem 1 just by using linear algebra, provided one is willing
to unwind the sheaf theoretic proof in [Fri06], although we imagine there may
be a significantly shorter linear algebraic proof. The sheaf theoretic proof uses
the invariance of the cohomological complexity of a matrix under homotopy
equivalence, although this may not be necessary in this special case.

Say that r : B
S → Open(H), a map from Boolean functions on S to open

subsets of H , is an inf-preserving map if

r(f ∧ g) = r(f) ∩ r(g)

for all f, g ∈ B
S . Theorem 1 implies the following theorem.

Theorem 2. Let H be a directed graph, F, G vector spaces on H, and r : B
S →

Open(H) an inf-preserving map.

h(f) = cpxF,G(r(f)) + cpxF,G(V (H)) (7)

is a formal AND measure, where cpx is given in equation (6).

5 LP Bound Via Cohomological AND Measures

Let H be the directed graph with V (H) = B
S and an edge (f, g) provided f ≤ g

and f(s) = g(s) for all but exactly one s in S. For any f, g ∈ B
S we define P (f, g)

to be the set of directed paths of H starting in f and ending in g (viewing a path
of length k as a sequence of k + 1 vertices, P (f, f) consists of one element, the
path of length 0 consisting of the sequence (f)); if e = (u, v) ∈ E(H), then for
any f we have that e determines an augmentation map from P (f, u) to P (f, v)
by adding v (i.e., in other words, adding the edge, e, if we think of a path as a
sequence of edges). Given f ∈ B

S we define the vector space, Kf , on H via

Kfv = R
P (f,v)

for any v ∈ V (H), and for any e = (u, v) we Kfe is the transpose of the the
incidence matrix of the aforementioned augmentation map.

A vector space, F over H is called a superskyscraper vector space if Fe = 0
for all e ∈ E(H). Then F is determined (up to isomorphism) by the dimensions
of the Fv with v varying over V (H).

Consider the map r : B
S → Open(H) given by

r(f) = {g|g ≤ f}.

Clearly r(f ∧ g) = r(f) ∩ r(g). We define the formal AND measure h as in
equation (7) by taking a g ∈ B

S and fixing a non-negative integer Av for each v ∈
B

S and setting G = Kg and taking F to be a superskyscraper with dim(Fv) = Av

for all v ∈ V (H).

314 J. Friedman

Theorem 3. Let h as above, and assume that A0 = 0 (the subscript in A0 is
the Boolean function 0 ∈ V (H)). Then

h(f) =
∑

w �≤f

Aw|Pf (g, w)|,

where Pf (g, w) is the set of paths from g to w such that all but the last vertex
(namely w) in the path are ≤ f (at all their values).

Problem. Find a simple proof of this theorem.

We claim this recovers the linear programming bound. Indeed, let δs for s ∈ S
be the Dirac delta function at s, and let Aw = 0 unless w = g + δs for some
s ∈ g−1(0). So Pf (g, g + δs) (with g(s) = 0) is one if g ≤ f and g + δs is not ≤ f ,
and zero otherwise. Theorem 3 shows that

cc(f) =
∑

s,g(s)=f(s)=0

Ag+δs .

Denoting Ãs = Ag+δs , we get

size(g) ≥
∑

s

Ãs/M,

for any M with ∑

s,g(s)=fi(s)=0

Ãs ≤ M ;

this is just the dual linear programming bound (restricted to αs = As/M ratio-
nal, αs as in equations (3)–(5)).

We now see, as claimed in the introduction, that the vector space on H ,
G = Kg, depends on the Boolean functions whose size we wish to bound, and
that the case of infinite size can be accounted for as a limiting AND measure.

References

[AM06] Arpe, J., Manthey, B.: Approximability of minimum and-circuits. Electronic
Colloquium on Compuational Complexity, Report No. 45; also in Dagstuhl
Seminar Proceedings 2006:603 (2006)

[BO83] Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proceedings
of the Fifteenth Annual ACM Symposium on Theory of Computing (a.k.a.
STOC 1983), pp. 80–86 (1983)

[DL76] Dobkin, D., Lipton, R.J.: Multidimensional searching problems. SIAM J.
Comput. 5(2), 181–186 (1976)

[Fri05] Friedman, J.: Cohomology of grothendieck topologies and lower bounds in
boolean complexity. (to appear, 2005). http://www.math.ubc.ca/∼jf, also
http://arxiv.org/abs/cs/0512008

[Fri06] Friedman, J., Cohomology of grothendieck topologies and lower bounds in
boolean complexity ii. (to appear, 2006). http://www.math.ubc.ca/∼jf,
also http://arxiv.org/abs/cs/0604024

http://www.math.ubc.ca/~jf
http://arxiv.org/abs/cs/0512008
http://www.math.ubc.ca/~jf
http://arxiv.org/abs/cs/0604024

Linear Transformations in Boolean Complexity Theory 315

[Sma87] Smale, S.: On the topology of algorithms. I. J. Complexity 3(2), 81–89
(1987)

[SY82] Michael Steele, J., Yao, A.C.: Lower bounds for algebraic decision trees. J.
Algorithms 3(1), 1–8 (1982)

[Vaz01] Vazirani, V.V.: Approximation algorithms. Springer, Berlin (2001)
[Weg87] Wegener, I.: The complexity of Boolean functions. In: Wiley-Teubner Series

in Computer Science, John Wiley & Sons Ltd, Chichester (1987)

Exact Pair Theorem for the ω-Enumeration

Degrees

Hristo Ganchev�

Sofia University, Faculty of Mathematics and Informatics
5 James Bourchier blvd. 1164 Sofia, Bulgaria

h.ganchev@gmail.com

Abstract. In the paper the exact pair theorem for the ω-enumeration
degrees is proved. As a corollary an exact pair theorem involving the
jump operation for the enumeration degrees is obtained.

Mathematics subject classification: 03D30.

Keywords and Phrases: ω-enumeration degrees, enumeration degrees,
exact pair, jump.

1 Introduction

The ω-enumeration degrees and the structure Dω are introduced by Soskov in
[2]. In order to define it we first consider the set of all denumerable sequences of
sets of natural numbers, which we will denote by S. In S we define the reflexive
and transitive relation “≤u” and the equivalence relation “≡u” as follows: for
any two sequences A, B ∈ S

A ≤u B ⇐⇒ JB ⊆ JA, A ≡u B ⇐⇒ JA = JB

where JA is the set of the Turing degrees of all X ⊆ N such that (∀k)(Ak is r.e.
in X(k) uniformly in k). Since we have that A ≡u B ⇐⇒ A ≤u B & B ≤u B,
by factorizing the structure (S, ≤u) with respect to ≡u, we obtain the structure
(Dω, ≤ω), where the factor relation ≤ω is a partial order. By dω(A) we shall
denote the equivalence class generated by the sequence A.

In [2] it is shown that Dω is an upper semi-lattice with least element, that the
Σ0

2 ω-enumeration degrees are dense and that there is no minimal ω-enumeration
degree. A notion of a jump operator in Dω is also introduced. It is shown that the
substructure D1 = {dω(A) | An = ∅ for n > 0} is isomorphic to the semi-lattice
De of the enumeration degrees.

From the omitting theorem proved in [3] it follows that every ω-enumeration
degree is the greatest lower bound of two ω-enumeration degrees strictly above
it, i.e., every ω-enumeration degree has a minimal pair.

In this paper we shall prove that every monotone increasing sequence of ω-
enumeration degrees has an exact pair.
� This work was partially supported by Sofia University Science Fund.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 316–324, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Exact Pair Theorem for the ω-Enumeration Degrees 317

Definition 1. Let (X, ≤) be a partially ordered set and let a0 ≤ a1 ≤ · · · ≤
an ≤ . . . be an increasing sequence in X. We say that f, g ∈ X form an exact
pair for {an}n<ω if the following two conditions hold:

(i) (∀n)(an ≤ f, g);
(ii) x ≤ f, g =⇒ ∃n(x ≤ an).

The existence of exact pairs for the Turing degrees and for the enumeration
degrees is proved by Spector [4] and Case [1] respectively.

Here we are going to prove the following theorem:

Theorem 1. Let a0 ≤ω a1 ≤ω · · · ≤ω an ≤ω . . . be an increasing sequence in
Dω. Then for each g ∈ Dω, such that an ≤ω g, for all n, there is an f ∈ D1 such
that f ,g form an exact pair for the sequence {an}n<ω. Even more. For arbitrary
k the degrees f (k), g(k) form an exact pair for the sequence {a(k)

n }n<ω, where by
x(k) we denote the k-th jump of the degree x in Dω .

As a corollary we obtain the following exact pair theorem for the enumeration
degrees.

Theorem 2. Let a0 ≤e a1 ≤e · · · ≤e an ≤e . . . be an increasing sequence in
the semi-lattice of the enumeration degrees De. Then for each g ∈ De, such that
an ≤e g, for all n, there is an f ∈ De such that f (k), g(k) form an exact pair
for the sequence {a(k)

n }n<ω for arbitrary k, where by x(k) we denote the k-th
enumeration jump of the degree x.

2 Preliminaries

Let W0, W1, . . . , Wn, . . . be a Gödel enumeration of the recursively enumerable
sets. We will use the same notation for the enumeration operators, i.e., the op-
erators over sets of natural numbers acting by the rule We(A) = {x | ∃v(〈x, v〉 ∈
We & Dv ⊆ A)} for each A ⊆ N, where by Dv we shall denote the finite set
with canonical index v.

The enumeration jump of a set A is defined as A′ = LA ⊕ N\LA, where
LA = {〈a, x〉 | x ∈ Wa(A)}.

Given a sequence A = {An}n<ω of sets of natural numbers we define its jump
sequence P (A) = {Pn(A)}n<ω as follows:

(i) P 0(A) = A0

(ii) Pn+1(A) = Pn(A)′ ⊕ An+1.

In [3] it is shown that for any two sequences A, B we have that A ≤u B ⇐⇒
there is a recursive function g, such that An = Wg(n)(Pn(B)) for all natural
n (in particular An ≤e Pn(B)). This gives us that A ≡u P (A). The jump of
a sequence A ≡u {Pn(A)}n<ω is the sequence A′ = {Pn+1(A)}n<ω . It is true
that JA′ = {a′ | a ∈ JA} and that the jump agrees with the embedding of the
e-degrees, so (A, ∅, ∅, . . . , ∅)′ ≡u (A′, ∅, ∅, . . . , ∅).

Now we are ready to show that Theorem 2 follows from Theorem 1.

318 H. Ganchev

Proof of Theorem 2. Suppose that we have an increasing sequence of enumeration
degrees a0 ≤e a1 ≤e · · · ≤e an ≤e . . . and let g be an enumeration degree, such
that g is an upper bound for {an}n<ω. Fix a sequence of sets A0, A1, . . . , An, . . .
such that an = de(An) and let G be such that g = de(G). Now for each n
we take An to be the sequence (An, ∅, ∅, . . . , ∅, . . .) and G to be the sequence
(G, ∅, ∅, . . . , ∅, . . .). It is clear that A0 ≤u A1 ≤u · · · ≤u An ≤u · · · ≤u G. Thus
we have an increasing sequence

dω(A0) ≤ω dω(A1) ≤ω · · · ≤ω dω(An) ≤ω · · · ≤ω dω(G)

of ω-enumeration degrees.
Now according to Theorem 1 there is an ω-enumeration degree f ∈ D1, such

that f and dω(G) form an exact pair for the sequence {dω(An)}n<ω. Since f ∈ D1,
then f is of the form f = dω(F), where F = (F, ∅, ∅, . . . , ∅, . . .). We claim that
de(G) and de(F) form an exact pair for the sequence a0 ≤e a1 ≤e · · · ≤e

an ≤e Indeed: suppose that some enumeration degree x has the property
x ≤ de(G) and x ≤ de(F). Let x = de(X) and consider the sequence X =
(X, ∅, ∅, . . . , ∅, . . .). We have that X ≤u F and X ≤u G and therefor X ≤u An

for some n. But then X ≤e An, which proves that de(F) and de(G) are an exact
pair for the sequence a0 ≤e a1 ≤e · · · ≤e an ≤e

According to the definition of the jump operation in Dω we have that the
sequences A′

n, G′ and F ′ are equivalent to the sequences (A′
n, ∅, ∅, . . . , ∅, . . .),

(G′, ∅, ∅, . . . , ∅, . . .) and (F ′, ∅, ∅, . . . , ∅, . . .) respectively. Applying the same
reasoning as above, we obtain that de(F ′) and de(G′) (which are actually de(F)′

and de(G)′) are an exact pair for the sequence a′
0 ≤e a′

1 ≤e · · · ≤e a′
n

≤e �
In the rest of the paper we shall present a proof of Theorem 1.

3 Proof of Theorem 1

First we will prove the following omitting theorem:

Theorem 3. Let A0 ≤u A1 ≤u . . . ≤u An . . . be an increasing sequence of
sequences of sets of natural numbers. Let also {Rk}k<ω be a sequence of elements
of S such that Rk �≤u An, for each k and n. Then there is an F ∈ S such that
An ≤u F , for each n, but Rk �≤u F for all k.

For simplicity we will show how to omit only one sequence R. However, by
a simple and standard modification we can use the same technique to omit
countably many sequences.

Let us a fix an increasing sequence A0 ≤u A1 ≤u · · · ≤u An . . . of elements of
S and let R ∈ S be such that R �≤u An, for every natural n. We will suppose that
An = {Ak

n}k<ω and R = {Rk}k<ω (we will use upper indexes for coordinates in
the rest of the paper). Fix a sequence g0, g1, . . . , gn, . . . of all recursive functions.

We will search F in the form F = (f0, f1, . . . , fn, . . .), where fn is a mapping
from N in N. We will use the notation

−→
f instead of F . We will construct F by

Exact Pair Theorem for the ω-Enumeration Degrees 319

using a forcing technique so we have to define the modelling and forcing relations
and the notion of finite parts.

Let us begin with the “finite” parts. We shall call finite part every sequence
of the form −→τ = (τ0, τ1, . . . , τn, . . .), where each τ i is a mapping from of an
initial segment of N into N. By lh (τ i) we shall denote the length of the initial
segment which is the domain of τ i. We shall use the notation −→τ , −→ρ ,

−→
δ and −→σ

(sometimes with indexes) for finite parts and τ i, ρi, δi and σi for the respective
coordinates.

If n is a natural number, by −→n we shall denote an increasing sequence a0 <
a1 < a2 < . . . < an of n + 1 natural numbers. We will write −→n � −→m if n ≤ m
and −→m is an extension of −→n .

Since
−→
f has to “encode” in itself all sequences An we will regard only special

finite parts which we will call −→n -coding finite parts and which are defined by:

Definition 2. If −→n = a0 < a1 < a2 < . . . < an is an increasing sequence of
natural numbers and −→τ is a finite part, we say that −→τ is −→n -coding iff for all i
we have that:

ak < 〈x, k〉 < lh (τ i) =⇒ τ i(〈x, k〉) ∈ Ai
k

Now we are ready to define the modelling and forcing relations for the conditions
F k

e (the condition F k
e will be responsible for what happens to the k-th coordinate

when we apply the enumeration operator We to it). We begin with the modeling
relation since it is more natural.

Definition 3. Let
−→
f = (f0, f1, . . . , fn, . . .) be a sequence of mappings from N

into N. We define the relations
−→
f |= (¬)F k

e (x) (for each e) using induction on
k:

(i)
−→
f |= F 0

e (x) ⇐⇒ x ∈ We(Graph (f0)).
(ii)

−→
f |= ¬F 0

e (x) ⇐⇒ −→
f �|= F 0

e (x).
(iii)

−→
f |= F k+1

e (x) if there exist u, u0 and u1 such that
(1) 〈x, u〉 ∈ We;
(2) Du = Du1 ⊕ Du2 ;
(3) for each v ∈ Du1 is either true that v = 2〈ev, xv〉 and

−→
f |= F k

ev
(xv), or

v = 2〈ev, xv〉 + 1 and
−→
f |= ¬F k

ev
(xv);

(4) Du2 ⊆ Graph fk+1.
(iv)

−→
f |= ¬F k+1

e (x) ⇐⇒ −→
f �|= F k+1

e (x).

Note that from the definition it follows that do determine whether
−→
f |= (¬)F k

e (x)
it is sufficient to know only the first k + 1 elements of the sequence

−→
f , i.e., f0,

f1,. . ., fk. Even more. The following proposition is true:

Proposition 1. Let
−→
f be a sequence of mappings from N in N. Then for each

e and each k −→
f |= F k

e (x) ⇐⇒ x ∈ We(P k(
−→
f))

320 H. Ganchev

Now we will give the definition of the forcing relation.

Definition 4. Let −→n be an increasing sequence of n + 1 natural numbers and
let −→τ be an −→n -coding sequence of finite parts. We define the relations −→τ �−→n
(¬)F k

e (x) (for each e) using induction on k:

(i) −→τ �−→n F 0
e (x) ⇐⇒ x ∈ We(Graph τ0).

(ii) −→τ �−→n ¬F 0
e (x) ⇐⇒ (∀−→ρ ⊇ τ)(−→ρ is −→n -coding ⇒ −→ρ ��−→n F 0

e (x)).
(iii) −→τ �−→n F k+1

e if there exist u, u0 and u1 such that:
(1) 〈x, u〉 ∈ We;
(2) Du = Du1 ⊕ Du2 ;
(3) for each v ∈ Du1 is either true that v = 2〈ev, xv〉 and −→τ �−→n F k

ev
(xv),

or v = 2〈ev, xv〉 + 1 and −→τ �−→n ¬F k
ev

(xv);
(4) Du2 ⊆ Graph τk+1.

(iv) −→τ �−→n ¬F k+1
e (x) ⇐⇒ (∀−→ρ ⊇ τ)(−→ρ is −→n -coding ⇒ −→ρ ��−→n F k+1

e (x)).

Again from the definition it follows that the relations −→τ �−→n (¬)F k
e (x) depend

only on the first k + 1 members of the sequence −→τ .
The next proposition shows that the forcing relations are monotone.

Proposition 2. Let −→m and −→n be two increasing sequences of natural numbers
of length m + 1 and n + 1 respectively. Let also −→τ and −→ρ be two finite parts.
Then the following are true:

(1) if −→τ and −→ρ are both −→n -coding and −→τ ⊆ −→ρ , then

−→τ �−→n (¬)F k
e (x) =⇒ −→ρ �−→n (¬)F k

e (x);

(2) if −→m � −→n and −→τ is −→n -coding, then −→τ is −→m-coding and

−→τ �−→m (¬)F k
e (x) =⇒ −→τ �−→n (¬)F k

e (x);

(3) if −→m � −→n and −→τ is −→m-coding, −→ρ is −→n -coding and −→τ ⊆ −→ρ , then

−→τ �−→m (¬)F k
e (x) =⇒ −→ρ �−→n (¬)F k

e (x).

Now we are ready to begin the construction. The construction of
−→
f will be

carried out by steps. At each step s we will construct a finite part −→τ s and
a monotone sequence −→s in such a way that −→τ s is −→s -coding and also that
−→τ s ⊆ −→τ s+1 and −→s � −−−→

s + 1. Finally we will set
−→
f =

⋃

s<ω

−→τ s and we will obtain

an infinite increasing sequence −→ω =
⋃

s<ω

−→s of natural numbers.

At step 0 we set −→τ 0 = (∅, ∅, . . . , ∅, . . .) and
−→
0 = 0.

Now suppose that −→τ s and −→s are defined. We divide the step s into three
substeps.

First substep. We build an −→s -coding finite part
−→
δ s such that −→τ s ⊆ −→

δ s and
−→
δ s

encodes the first elements of sets Aj
i , for i, j ≤ s, which are not encoded by −→τ s.

Exact Pair Theorem for the ω-Enumeration Degrees 321

Second substep. We build an −→s -coding finite part −→σ s ⊇ −→
δ s such that for each

k ≤ s and each 〈e, x〉 ≤ s either −→σ �−→s F k
e (x) or −→σ �−→s ¬F k

e (x).

Third substep. We consider the sequence {Cn
s }n<ω, where

Cn
s ={x | (∃−→ρ ⊇n −→σ s)(−→ρ is −→s -coding & ρ0(lh σ0

s) � x & −→ρ �−→s Fn
gs(n)(lh σ0

s))},

where −→ρ ⊇n −→σ s means that ρi ⊇ σi
s for 0 ≤ i ≤ n, and ρi = σi

s for i > n. The
sequence {Cn

s }n<ω is uniformly reducible to the sequence As, i.e., {Cn
s }n<ω ≤u

As and therefore {Cn
s }n<ω �= R (for a detailed proof of an analogous statement

see [3]). Let n be such that Cn
s �= Rn. Then there is a x such that either x ∈

Cn
s & x �∈ Rn or x �∈ Cn

s & x ∈ Rn.
If x ∈ Cn

s & x �∈ Rn is the case, we take one −→ρ ⊇n −→σ s such that −→ρ is
−→s -coding, ρ0(lh σ0

s) � x and −→ρ �−→s Fn
gs(n)(lh σ0

s), and we set −→τ s+1 = −→ρ .
If x �∈ Cn

s & x ∈ Rn then we set −→τ s+1 to be an −→s -coding finite part such
that τ0

s+1(lh σ0
s) � x. Note that in this case is true that

(∀−→ρ ⊇n −→τ s+1)(−→ρ is −→s -coding =⇒ −→ρ ��−→s Fn
gs(n)(lh σ0

s)).

Since the forcing relation −→ρ �−→s Fn
gs(n) depends only on the first n + 1 elements

of −→ρ , we have that

(∀−→ρ ⊇ −→τ s+1)(−→ρ is −→s -coding =⇒ −→ρ ��−→s Fn
gs(n)(lh σ0

s)),

which means that −→τ s+1 �−→s ¬Fn
gs(i)(lh σ0

s).

Finally we set
−−−→
s + 1 = −→s ∗ max{lh τ i

s+1 | i < ω}, which concludes the con-
struction. In order to complete the proof, we have to prove three properties of−→
f .

Claim 1. An ≤u
−→
f , for each n.

Proof. Let −→ω = a0, a1, . . . , ai, Then, according to the first substep of each
step of the construction, we have that Ai

n = {fi(〈x, i〉) | 〈x, i〉 ≥ an}. �
Claim 2. (Truth lemma) For each e and each k

−→
f |= (¬)F k

e (x) ⇔ (∃−→m � −→ω)(∃−→τ ⊆ −→
f)(−→τ is −→m-coding & −→τ �−→m (¬)F k

e (x)).

Proof. This property is assured from the second substeps. We will prove it using
induction on k. First consider k = 0. The positive equivalence is obvious from the
definition of the relations |= F 0

e and �−→m F 0
e . Now we will prove the equivalence

−→
f |= ¬F 0

e (x) ⇔ (∃−→m � −→ω)(∃−→τ ⊆ −→
f)(−→τ is −→m-coding & −→τ �−→m ¬F 0

e (x)).

The right to left direction follows from the positive equivalence. Let us prove
the left to right direction. Suppose that

−→
f |= ¬F 0

e (x). Then consider a step
s + 1 such that s > 〈e, x〉. In the second substep we have constructed an −→s -
coding finite part −→σ s such that either −→σ s �−→s F 0

e (x) or −→σ s �−→s ¬F 0
e (x) and

322 H. Ganchev

−→σ s ⊆ −→τ s+1 ⊆ −→
f . If −→σ s �−→s F 0

e (x) than from the positive equivalence we obtain
that

−→
f |= F 0

e (x), which contradicts
−→
f |= F 0

e (x). Therefore −→σ s �−→s ¬F 0
e (x).

Now suppose that the statement is true for k. First we prove that

−→
f |= F k+1

e (x) ⇔ (∃−→m � −→ω)(∃−→τ ⊆ −→
f)(−→τ is −→m-coding & −→τ �−→m F k+1

e (x)).

For the left to right direction suppose that
−→
f |= F k+1

e (x). Then, according to
the definition we have that, there are u, u1 and u2 such that:

(1) 〈x, u〉 ∈ We;
(2) Du = Du1 ⊕ Du2 ;
(3) for all v ∈ Du1 is either true that v = 2〈ev, xv〉 and

−→
f |= F k

ev
(xv), or

v = 2〈ev, xv〉 + 1 and
−→
f |= ¬F k

ev
(xv).

(4) Du2 ⊆ Graph fk+1

Consider (3). According to the induction hypothesis, for each v ∈ Du1 we can
find −→mv � −→ω and −→ρ v ⊆ −→

f , such that −→ρ v is −→mv-coding and

v = 2〈ev, xv〉 =⇒ −→ρ v �−→mv
F k

ev
(xv),

v = 2〈ev, xv〉 + 1 =⇒ −→ρ v �−→mv
¬F k

ev
(xv).

Since −→mv � −→ω and −→ρ v ⊆ −→
f , there is an −→m � −→ω and a −→τ ⊆ −→

f , such that
for each v, −→mv � −→m and −→ρ v ⊆ −→τ . Then from the monotonicity of the forcing
relation we obtain that for each v ∈ Du1

v = 2〈ev, xv〉 =⇒ −→τ �−→m F k
ev

(xv),

v = 2〈ev, xv〉 + 1 =⇒ −→τ �−→m ¬F k
ev

(xv),

which is exactly point (3) from the definition of the forcing relation �−→m F k+1
e .

We can extend the k + 2-nd element of −→τ in such a way that τk+1 ⊆ −→
f k+1 and

Du2 ⊆ Graph τk+1. Of course this extension does not afflict the forcing relations
that we have satisfied, since they depend only on the first k + 1 elements of −→τ .

Thus we obtain that −→τ ⊆ −→
f , −→τ is −→m-coding and −→τ � F k+1

e (x).
For the opposite direction, suppose that there is an −→m � −→ω and a −→τ ⊆ −→

f
such that −→τ is −→m-coding and −→τ �−→m F k+1

e (x). Then we have, that there are u,
u1 and u2 such that

(1) 〈x, u〉 ∈ We;
(2) Du = Du1 ⊕ Du2 ;
(3) for all v ∈ Du1 either v = 2〈ev, xv〉 and −→τ �−→m F k

ev
(xv), or v = 2〈ev, xv〉+1

and −→τ �−→m ¬F k
ev

(xv).
(4) Du2 ⊆ Graph τk+1.

Applying the induction hypothesis to (3) we obtain

(1) 〈x, u〉 ∈ We;
(2) Du = Du1 ⊕ Du2 ;

Exact Pair Theorem for the ω-Enumeration Degrees 323

(3) for all v ∈ Du1 either v = 2〈ev, xv〉 and
−→
f |= F k

ev
(xv), or v = 2〈ev, xv〉 +1

and
−→
f |= ¬F k

ev
(xv);

(4) Du2 ⊆ Graph τk+1 ⊆ fk+1,
which is exactly what we have to prove. This concludes the proof of the positive
equivalence for k + 1. The proof of the negative equivalence is analogous to that
for k = 0. �
Claim 3. R �≤u

−→
f .

Proof. In order to obtain a contradiction assume that R ≤u
−→
f . Then the se-

quence {f0−1
(Rn)}n<ω is also uniformly reducible to

−→
f . Therefore there is a

recursive function gs such that f0−1
(Rn) = Wgs(n)(Pn(

−→
f)) for each n, which

means
x ∈ f0−1

(Rn) ⇐⇒ −→
f |= Fn

gs(n)(x)

Now consider the third substep of the s + 1-st step. There we have constructed
a finite part −→τ s+1 extending the finite part −→σ s such that for some i

−→τ s+1 �−→s (¬)F i
gs(i)(lh σ0

s) ⇐⇒ (¬)(τ0
s+1(lh σ0

s) �∈ Ri).

Now using the Truth Lemma and that τ0
s+1 ⊆ f0 we obtain that

lh σ0
s ∈ f0−1

(Ri) ⇒ f0(lh σ0
s) ∈ Ri ⇒ ¬(f0(lh σ0

s) �∈ Ri) ⇒ −→
f |= ¬F i

gs(i)(lh σ0
s);

lh σ0
s �∈ f0−1

(Ri) ⇒ f0(lh σ0
s) �∈ Ri ⇒ −→

f |= F i
gs(i)(lh σ0

s),

which is a contradiction with x ∈ f0−1(Rn) ⇐⇒ −→
f |= Fn

gs(n)(x). This means

that the assumption R ≤u
−→
f leads to a contradiction and therefore we have

that R �≤u
−→
f . �

Claim 1 and Claim 3 are exactly the properties of
−→
f that we had to prove in

order to prove Theorem 3 and so this concludes its proof. �
We are ready to prove Theorem 1.

Proof of Theorem 1. Let a1 ≤ω a2 ≤ω · · · ≤ω an ≤ω · · · ≤ω g be an infinite
increasing sequence of ω-enumeration degrees. Fix an increasing sequence A1 ≤u

A2 ≤u · · · ≤u An ≤u · · · ≤u G of elements of S such that an = dω(An) and
g = dω(G). Since there are only countably many sequences u-reducible to G then
the set {X ∈ S | X ≤u G & ∀n(X �≤u An)} is denumerable. Let us order its
elements into the sequence {Rk}k<ω. Now it is clear that if we take an F∗ ∈ S
as in Theorem 3, then dω(F∗) and dω(G) will be an exact pair for the sequence
{an}n<ω.

Now in order to obtain an f ∈ D1, such that g, f form an exact pair for the
sequence {ak}k<ω, we have to use the omitting theorem from [3]:

Theorem 4 (Soskov, Kovachev). Let A ∈ S and let {Rk}k<ω be a sequence
of elements of S, such that Rk �≤u A. Then there is a sequence F = (F, ∅, ∅, . . . ,
∅, . . .), such that A ≤u F and Rk �≤u F , for all k.

324 H. Ganchev

Therefore we can take a sequence F = (F, ∅, ∅, . . . , ∅, . . .), such that F∗ ≤u F
and F omits all the sequences which are under G, but are not under F∗. Now
set f = dω(F). It is clear that f ∈ D1 and that f and g form an exact pair for
the sequence {an}n<ω.

For the last part of the theorem is sufficient to prove the following

Proposition 3. Let f ,g ∈ Dω form an exact pair for the increasing sequence
{an}n<ω of ω-enumeration degrees. Then f ′ and g′ form an exact pair for the
sequence {a′

n}n<ω

Proof. Let f = dω(F) and g = dω(G). Then from the definition of the jump
operation we have that

f ′ = dω({Pn+1(F)}n<ω), g′ = dω({Pn+1(G)}n<ω)

Now suppose that x ≤ω f ′,g′ and that x is the ω-enumeration degree generated
by the sequence (X1, X2, . . . , Xk, . . .). Since

(X1, X2, . . . , Xk, . . .) ≤u {Pn+1(F)}n<ω,

(X1, X2, . . . , Xk, . . .) ≤u {Pn+1(G)}n<ω

we obtain that the sequence X = (∅, X1, X2, . . . , Xk, . . .) is uniformly reducible
to the sequences F and G. Therefore X ≤ An, for some n, i.e.,

(∅, X1, X2, . . . , Xk, . . .) ≤u (P 0(An), P 1(An), P 2(An), . . . , P k(An), . . .).

Therefore

(X1, X2, . . . , Xk, . . .) ≤u (P 1(An), P 2(An), . . . , P k(An), . . .),

which in the terms of the ω-enumeration degrees means that x ≤ω an. �

References

1. Case, J.: Enumeration reducibility and partial degrees. Ann.Math.Log 2, 419–439
(1971)

2. Soskov, I.N.: The ω-enumereation degrees (To appear)
3. Soskov, I.N., Kovachev, B.: Uniform regular enumerations. Math.Struct. in

Comp.Sci. 16, 901–924 (2006)
4. Spector, C.: On degrees of recursive unsolvability. Ann. of Math.(2) 64, 581–592

(1956)

Operational Semantics for Positive Relevant

Logics Without Distribution

Ying Gao and Jingde Cheng

Department of Information and Computer Sciences, Saitama University,
255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan

{gaoying,cheng}@aise.ics.saitama-u.ac.jp

Abstract. This paper investigates operational semantics for various
positive relevant logics without distribution after the work of Kit Fine
in Models for Entailment. To invalidate the law of distribution of con-
junction over disjunction, we use different types of states to model con-
junction and disjunction, respectively. The implication → is interpreted
by three operations ⊕, ⊗, �, instead of one operation ‘·’ as in Fine’s work.

Keywords: Relevant logics, Operational semantics.

1 Introduction

For relevant logics, there are two kinds of non-algebraic semantics, which are
both developed based on Urquhart’s semilattice semantics, that is, Routley and
Meyer’s relational semantics (see [11]), and Kit Fine’s operational semantics (see
[6]). Routley-Meyer theory uses a ternary relation to interpret implication, and
hence can evaluate disjunction by the standard clause. For Fine, implication is
modeled using a binary operation, and disjunction is interpreted by use of nega-
tion. Actually, these two methods are highly related, that is, the ternary relation
can be constructed canonically from a binary operation on sets of formulas; and
an operational model can derive an equivalent relational model easily. Since a
relation is more flexible than an operation, the ternary relational semantics is
used in more situations. But, the relational method will also cause the collapse
of some properties of canonical models, which can be revealed by operations.
This will make it difficult to generalize Routley and Meyer’s semantics to logics
without distribution.

Illuminated by Fine’s work and in order to overcome this deficiency, we
investigate operational semantics for relevant logics without distribution. We
use different types of states to model conjunction and disjunction, respectively.
Hence both conjunction and disjunction can be modeled by the standard clauses.
Canonically, these states are defined as theories and anti-counter-theories. As for
implication →, in the canonical construction of Fine’s model, prime theories play
an important role such that only one operation ‘·’ is sufficient to interpret →
in relevant logics with distribution. But in the non-distributive case, not every
theory can be primed into a prime one as in the distributive case. We show that

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 325–335, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

326 Y. Gao and J. Cheng

besides Fine’s operation (we denote it as ⊕), there are two other binary opera-
tions ⊗ and �, which should be used together to model →. These operations,
⊕, ⊗, �, are defined canonically on theories and anti-counter-theories.

We are aware that Kripke-style semantics for non-distributive substructural
logics, both of a relational and of an operational kind, have been proposed. For
example, Girard (see [7]) treat disjunction in a way to rely on the presence of
negation. Allwein and Dunn (see [1]) extended Urquhart’s representation for lat-
tices and provided a 3-valued relational semantics for linear logic. Hartonas (see
[8]) represented general lattices as systems with closure operators, and gave a
relational semantics for logics without distribution. In addition, non-standard
semantical treatments of disjunction can be found in [3,4,9,10], where implica-
tion → was modeled by an operation similar to Fine’s. Our approach is quite
different from these above semantics in that we use two sets of states to inval-
idate distribution, and make essential use of three operations to evaluate → in
different types of states.

2 Positive Relevant Logics Without Distribution

We begin with a basic system LB+1, which is Meyer-Routley minimal relevant
logic B+ (see [11]) subtracting the law of distribution.

Axioms
A1 A → A
A2 A → A ∨ B, B → A ∨ B
A3 A ∧ B → A, A ∧ B → B
A4 (A → B) ∧ (A → C) → (A → B ∧ C)
A5 (A → C) ∧ (B → C) → (A ∨ B → C)
Rules
R1 A, A → B ⇒ B (Modus Ponens)
R2 A, B ⇒ A ∧ B (Adjunction)
R3 A → B, C → D ⇒ (B → C) → (A → D) (Affixing).

The following axiom and rule schemes C1-C7 can be added to LB+ to obtain
various positive relevant logics without distribution.

C1 (A → B) ∧ (B → C) → (A → C)
C2 (A → B) → ((B → C) → (A → C))
C3 (A → B) → ((C → A) → (C → B))
C4 A ∧ (A → B) → B
C5 A → ((A → B) → B)
C6 (A → (B → C)) → (A ∧ B → C)
C7 A ⇒ (A → B) → B

Given a logical system L, use 	L C to denote that C is a theorem of L. If L
is obvious, the subscript ‘L’ will be omitted.
1 The notation ‘LB+’ is after ‘LR’ for the logic R without distribution.

Operational Semantics for Positive Relevant Logics Without Distribution 327

3 Basic Frame and Model

A basic frame is a triple (T1, T2, ≤), where, T1, T2 are non-empty sets; ≤ is a
reflexive, transitive and antisymmetric relation on T1 ∪ T2. A basic model is a
4-tuple (T1, T2, ≤, |=), where, (T1, T2, ≤) is a basic frame; |= is a binary relation
from T1 ∪ T2 to the set Sl (sentence letters), such that the following condition
and rules hold: ∀t1 ∈ T1, t2 ∈ T2, p ∈ Sl,

Atomic Hereditary Condition
• t1 |= p ⇔ ∀x ∈ T2, (t1 ≤ x ⇒ x |= p),
• t2 |= p ⇔ ∃x ∈ T1, (x ≤ t2 and x |= p).

Evaluation Rules for ∧, ∨
(∧1) t1 |= A ∧ B ⇔ t1 |= A and t1 |= B,
(∧2) t2 |= A ∧ B ⇔ ∃x ∈ T1, (x ≤ t2 and x |= A ∧ B);
(∨1) t1 |= A ∨ B ⇔ ∀x ∈ T2, (t1 ≤ x ⇒ x |= A ∨ B),
(∨2) t2 |= A ∨ B ⇔ t2 |= A or t2 |= B.

Lemma 1 (Hereditary Condition for ∧, ∨). ∀t1 ∈ T1, t2 ∈ T2:
(1) t1 |= C ⇔ ∀x ∈ T2, (t1 ≤ x ⇒ x |= C),
(2) t2 |= C ⇔ ∃x ∈ T1, (x ≤ t2 and x |= C).

Proof. By induction on the construction of C with Atomic Hereditary Con-
dition as the basis. For each of ∧, ∨, it is enough to prove only one direction of
(1) or (2).

For ∧, to show right-to-left of (1). Suppose t1 ∈ T1 and t1 � A ∧ B, then
t1 � A or t1 � B. By induction hypothesis, (∃x ∈ T2, t1 ≤ x and x � A) or
(∃x ∈ T2, t1 ≤ x and x � B), i.e., ∃x ∈ T2, t1 ≤ x, (x � A or x � B). If
x |= A ∧ B, then by evaluation rules ∃y ∈ T1, y ≤ x and y |= A ∧ B, i.e., y |= A
and y |= B. By induction hypothesis, x |= A and x |= B, giving a contradiction.
Hence, x � A ∧ B.

For ∨, to show left-to-right of (2). Suppose t2 ∈ T2 and t2 |= A ∨ B. Then,
t2 |= A or t2 |= B. By induction hypothesis, (∃x ∈ T1, x ≤ t2 and x |= A) or
(∃x ∈ T1, x ≤ t2 and x |= B). Suppose the former case, by induction hypothesis,
∀y ∈ T2, x ≤ y ⇒ y |= A. So, ∀y ∈ T2, x ≤ y ⇒ y |= A ∨ B. Hence, x |= A ∨ B
by evaluation rules. ��

4 Frame and Model for LB+

A frame for LB+ is a 7-tuple (T1, T2, ≤, l, ⊕, ⊗, �) such that:

(1) (T1, T2, ≤) is a basic frame;
(2) ⊕ is a binary operation, ⊕ : T1 × T1 → T1, which satisfies,

• ∀u ∈ T1, u ⊕ l = u;
(3) ⊗ is a binary operation, ⊗ : T1 × T2 → T2, which satisfies,

• ∀v ∈ T2, l ⊗ v = v.
(4) � is a binary operation, � : T1 × T2 → T2, which satisfies:

• ∀u ∈ T1, v ∈ T2, l ≤ u � v ⇔ u ≤ v;
(5) ∀t, u ∈ T1, ∀v ∈ T2, (u ⊕ t ≤ v ⇔ u ≤ t ⊗ v ⇔ t ≤ u � v).

328 Y. Gao and J. Cheng

A model for LB+ is a 8-tuple (T1, T2, ≤, l, ⊕, ⊗, �, |=), where, (T1, T2, ≤, l, ⊕,
⊗, �) is a frame; (T1, T2, ≤, |=) is a basic model; |= satisfies →2, and only one
of →⊕, →⊗, →�: ∀t1 ∈ T1, t2 ∈ T2,
Evaluation Rules for →

(→⊕) t1 |= A → B ⇔ ∀u ∈ T1, (u |= A ⇒ u ⊕ t1 |= B)2,
(→⊗) t1 |= A → B ⇔ ∀v ∈ T2, (t1 ⊗ v |= A ⇒ v |= B)3,
(→�) t1 |= A → B ⇔ ∀u ∈ T1, v ∈ T2, (t1 ≤ u � v and u |= A ⇒ v |= B),
(→2) t2 |= A → B ⇔ ∃x ∈ T1, (x ≤ t2 and x |= A → B).
Given a formula C, C is valid in a model (T1, T2, ≤, l, ⊕, ⊗, �, |=) iff l |= C;

C is valid in a frame (T1, T2, ≤, l, ⊕, ⊗, �) iff C is valid in every model based on
this frame; C is valid, denoted as |= C, iff C is valid in every frame.

Though a model for LB+ only satisfies one of →⊕, →⊗, →�, the following
propositions show that from any of these rules, we can deduce the others. So, in
a model for LB+, we can interpret implication by all of these rules. This feature
is important for LB+ and its extensions.

Lemma 2 (Hereditary Condition). ∀t1 ∈ T1, t2 ∈ T2:
(1) t1 |= C ⇔ ∀x ∈ T2, (t1 ≤ x ⇒ x |= C);
(2) t2 |= C ⇔ ∃x ∈ T1, (x ≤ t2 and x |= C).

Proof. By induction on the construction of C with Atomic Hereditary Con-
dition as the basis. The induction for ∧, ∨ has been established. Here it suffices
to prove right-to-left of (1) for →. We give proofs by each of →⊕, →⊗, →�.

By →⊕. First, we prove that ∀u ∈ T1, v ∈ T2, (u |= A and v � B ⇒ u � v �

A → B). Let t ∈ T1 and t ≤ u � v, to show t � A → B. Since t ≤ u � v,
u ⊕ t ≤ v. By induction hypothesis, u ⊕ t � B. So, t � A → B. Since t is
arbitrary, u � v � A → B.

Second, suppose t ∈ T1 and t � A → B. So, ∃u ∈ T1, u |= A and u ⊕ t � B.
By induction hypothesis, ∃v ∈ T2, u ⊕ t ≤ v and v � B. Hence, u � v � A → B.
Since u ⊕ t ≤ v, t ≤ u � v ∈ T2. Hence, we get the result.

By →⊗. First, we prove that ∀u ∈ T1, v ∈ T2, (u |= A and v � B ⇒ u � v �

A → B). Let t ∈ T1 and t ≤ u � v, to show t � A → B. Since t ≤ u � v,
u ≤ t ⊗ v. By induction hypothesis, t ⊗ v |= A. So, t � A → B. Since t is
arbitrary, u � v � A → B.

Second, suppose t ∈ T1 and t � A → B. So, ∃v ∈ T2, t ⊗ v |= A and v � B.
By induction hypothesis, ∃u ∈ T1, u ≤ t ⊗ v and u |= A. Hence, u � v � A → B.
Since u ≤ t ⊗ v, t ≤ u � v ∈ T2. Hence, we get the result.

By →�. Suppose t ∈ T1 and t � A → B. So, ∃u ∈ T1, v ∈ T2, t ≤ u � v and
u |= A, but v � B. Then, u � v � A → B. Otherwise, ∃x ∈ T1, x ≤ u � v and
x |= A → B. But, u |= A and v � B, giving a contradiction. So, u � v � A → B.
Hence, since t ≤ u � v, we get the result. ��

Corollary 1. ∀t, t′ ∈ T1 ∪ T2, t ≤ t′ and t |= C ⇒ t′ |= C.

2 Fine used ‘·’ to denote ⊕. His evaluation rule is t |= A → B ⇔ ∀u(u |= A ⇒ t · u |=
B).

3 This evaluation rule is given in [2] (Ch. 8).

Operational Semantics for Positive Relevant Logics Without Distribution 329

Proof. We consider t ∈ T2 and t′ ∈ T1. Since t |= C, ∃u ∈ T1, u ≤ t and u |= C.
Let v ∈ T2 and t′ ≤ v, then u ≤ v. So, v |= C. Since v is arbitrary, t′ |= C. Other
cases are similar. ��

Corollary 2. The evaluation rules →⊕,→⊗,→� are equivalent.

Proof. →⊕ ⇒ →⊗. First suppose t |= A → B, v ∈ T2 and t ⊗ v |= A, to show
v |= B. So, ∃u ∈ T1, u ≤ t⊗v and u |= A. Then, u⊕ t ≤ v and u⊕ t |= B. Hence,
v |= B. Conversely, suppose t � A → B, then ∃u ∈ T1, u |= A, but u ⊕ t � B.
So, ∃v ∈ T2, u ⊕ t ≤ v and v � B. Then, u ≤ t ⊗ v. So, t ⊗ v |= A.

→⊗ ⇒ →�. First suppose t |= A → B, u ∈ T1, v ∈ T2, t ≤ u � v and u |= A,
to show v |= B. Then, u ≤ t ⊗ v. So, t ⊗ v |= A. Hence, v |= B as required.
Conversely, suppose t � A → B, then ∃v ∈ T2, t ⊗ v |= A, but v � B. So,
∃u ∈ T1, u ≤ t ⊗ v and u |= A. So, t ≤ u � v.

→� ⇒ →⊕. First suppose t |= A → B, u ∈ T1 and u |= A, to show u⊕ t |= B.
Let v ∈ T2 and u ⊕ t ≤ v, then t ≤ u � v. So, v |= B. Since v is arbitrary,
u ⊕ t |= B. Conversely, suppose t � A → B, then ∃u ∈ T1, v ∈ T2, t ≤ u � v and
u |= A, but v � B. So, u ⊕ t ≤ v. So, u ⊕ t � B. ��

Corollary 3. l |= A → B ⇔ ∀u ∈ T1, (u |= A ⇒ u |= B).

Proof. This is obvious by u ⊕ l = u. ��

Theorem 1 (Soundness for LB+). If 	 C, then |= C.

Proof. We give proofs for A4,A5. For A4, suppose t ∈ T1 and t |= (A →
B) ∧ (A → C). So, t |= A → B and t |= A → C. Suppose further u ∈ T1 and
u |= A, then u ⊕ t |= B and u ⊕ t |= C. Hence, u ⊕ t |= B ∧ C. For A5, suppose
t ∈ T1 and t |= (A → C) ∧ (B → C). So, t |= A → C and t |= B → C. Suppose
further v ∈ T2 and t⊗v |= A∨B, then t⊗v |= A or t⊗v |= B. Hence, v |= C. ��

Now, we give a counter-model for the distribution axiom. Let M = (T1, T2, ≤,
l, ⊕, ⊗, �, |=), such that:

(1) T1 = {t}, T2 = {u, v};
(2) t ≤ u, t ≤ v;
(3) t |= p, u |= p, q, v |= p, r.

It is easy to see that M satisfies Atomic Hereditary Condition. So, M is a
model for LB+. We show l � p∧(q∨r) → (p∧q)∨r. By evaluation rules, u |= q∨r
and v |= q ∨ r. So, t |= q ∨ r, and then t |= p∧ (q ∨ r). But t � p∧ q. So, u � p∧ q.
Since u � r, u � (p∧q)∨r. Then, t � (p∧q)∨r. Hence, l � p∧(q∨r) → (p∧q)∨r
by Corollary 3.

5 Canonical Models and Completeness

5.1 Definitions of a Theory and an Anti-Counter-Theory

We give the following definitions for a logical system L, which is LB+ or one of
its extensions. A theory is a set of formulas χ closed under provable L-implication

330 Y. Gao and J. Cheng

and conjunction, i.e., if 	L A → B and A ∈ χ, then B ∈ χ; and if A, B ∈ χ, then
A ∧ B ∈ χ. A counter-theory4 (ab. c-theory) χ is defined dually, requiring that:
if 	L A → B and B ∈ χ, then A ∈ χ; and if A, B ∈ χ, then A∨B ∈ χ. Let Σ be
the set of all formulas and χ ⊆ Σ, call Σ − χ the complement of χ, and denote
it as −χ. The complement of a c-theory is called an anti-counter-theory (ab.
a-c-theory). It is easy to show that χ is an a-c-theory iff it satisfies: if 	L A → B
and A ∈ χ, then B ∈ χ; if A ∨ B ∈ χ, then A ∈ χ or B ∈ χ. It is easy to show
that for every theory χ, A ∧ B ∈ χ iff A ∈ χ and B ∈ χ; for every a-c-theory χ,
A ∨ B ∈ χ iff A ∈ χ or B ∈ χ.

For a logical system L, the set of all theories is denoted as Th(L), and the set
of all a-c-theories as aTh(L). We denote the set of all theorems of L as l(L), or
simply l. Then it is obvious that l ∈ Th(L).

5.2 Canonical Definitions of Operations ⊕, ⊗, �

For a logical system L, define three operations on sets of formulas, t, u, v ⊆ Σ:

(1) u ⊕ t = {B : ∃A, A → B ∈ t and A ∈ u},
(2) t ⊗ v = {A : ∀B, A → B ∈ t ⇒ B ∈ v}5,
(3) u � v = {C : ∀A, B, A ∈ u and 	L C → (A → B) ⇒ B ∈ v}.

Lemma 3. If t, u ∈ Th(L), v ∈ aTh(L), then u ⊕ t ∈ Th(L), t ⊗ v, u � v ∈
aTh(L).

Proof. We show u � v ∈ aTh(L) as an example. First, suppose 	L C → C′ and
C′ /∈ u � v, i.e., ∃A ∈ u, B /∈ v, 	L C′ → (A → B). So, 	L C → (A → B).
Hence C /∈ u � v. Second, suppose C1, C2 /∈ u � v, then ∃A1, A2 ∈ u, B1, B2 /∈ v,
	L C1 → (A1 → B1) and 	L C2 → (A2 → B2). Since 	L A1 ∧ A2 → A1,
	L (A1 → B1) → (A1 ∧ A2 → B1). Since 	L B1 → B1 ∨ B2, 	L (A1 ∧ A2 →
B1) → (A1 ∧ A2 → B1 ∨ B2). Then 	L C1 → (A1 ∧ A2 → B1 ∨ B2). Similarly,
	L C2 → (A1 ∧ A2 → B1 ∨ B2). So, 	L C1 ∨ C2 → (A1 ∧ A2 → B1 ∨ B2). Since
A1 ∧ A2 ∈ u and B1 ∨ B2 /∈ v, C1 ∨ C2 /∈ u � v. ��

5.3 Properties of Operations ⊕, ⊗, �

Lemma 4. ∀t, u, v ∈ Th(L) ∪ aTh(L), u ⊕ t ⊆ v ⇔ u ⊆ t ⊗ v ⇔ t ⊆ u � v.

Proof. For u ⊕ t ⊆ v ⇒ u ⊆ t ⊗ v, suppose A ∈ u and A /∈ t ⊗ v, then ∃B /∈ v,
A → B ∈ t. So, B /∈ u ⊕ t. But since A ∈ u, B ∈ u ⊕ t, giving a contradiction.

For u ⊆ t ⊗ v ⇒ t ⊆ u � v, suppose C ∈ t and C /∈ u � v, then ∃A ∈ u, B /∈ v,
	L C → (A → B). So, A ∈ t ⊗ v and A → B ∈ t. Then B ∈ v, giving a
contradiction.

For t ⊆ u � v ⇒ u ⊕ t ⊆ v, suppose B ∈ u ⊕ t, then ∃A ∈ u, A → B ∈ t. So,
A → B ∈ u � v. Since 	L (A → B) → (A → B), B ∈ v. ��
4 This name comes from Dunn [5].
5 This canonical definition is given in [2] (Ch. 8).

Operational Semantics for Positive Relevant Logics Without Distribution 331

Lemma 5. ∀t, u, v ∈ Th(L) ∪ aTh(L), (1) u ⊕ l = u; (2) l ⊗ v = v; (3) l ⊆
u � v ⇔ u ⊆ v.

Proof. The proof is by definitions of ⊕, ⊗, �, and properties of theories and a-
c-theories. We show (3) as an example. Suppose l ⊆ u � v and A ∈ u. Since
A → A ∈ l, A → A ∈ u � v. By 	L (A → A) → (A → A), A ∈ v as required.
Conversely, suppose C ∈ l and C /∈ u�v. Then ∃A ∈ u, B /∈ v, 	L C → (A → B).
So, A → B ∈ l, i.e., 	L A → B. Then, B ∈ u. Since u ⊆ v, B ∈ v, giving a
contradiction. ��

5.4 Canonical Hereditary Condition and Evaluation Rules

Lemma 6. ∀t1 ∈ Th(L), t2 ∈ aTh(L),
(1) C ∈ t1 ⇔ ∀x ∈ aTh(L), (t1 ⊆ x ⇒ C ∈ x),
(2) C ∈ t2 ⇔ ∃x ∈ Th(L), (x ⊆ t2 and C ∈ x).

Proof. It suffices to show right-to-left of (1) and left-to-right of (2).
For (1), suppose t1 ∈ Th(L) and C /∈ t1, let x = −{C′ :	L C′ → C}. Then

C /∈ x. Also, t1 ⊆ x, otherwise, ∃C′ ∈ t1 and C′ /∈ x, i.e., 	L C′ → C, then
C ∈ t1, giving a contradiction. We show x ∈ aTh(L), i.e., −x = {C′ :	L C′ → C}
is a c-theory. First, suppose 	L C1 → C2 and C2 ∈ −x. So, 	L C2 → C. Then,
	L C1 → C. Hence C1 ∈ −x. Second, suppose C1, C2 ∈ −x. Then 	L C1 → C
and 	L C2 → C. So, 	L C1 ∨ C2 → C. Hence, C1 ∨ C2 ∈ −x.

For (2), suppose t2 ∈ aTh(L) and C ∈ t2, let x = {C′ :	L C → C′}. Then
C ∈ x. Also, x ⊆ t2, since C ∈ t2. We show x ∈ Th(L). First, suppose 	L C1 →
C2 and C1 ∈ x, then 	L C → C1. So, 	L C → C2. Hence C2 ∈ x. Second,
suppose C1, C2 ∈ x, then 	L C → C1 and 	L C → C2. So, 	L C → C1 ∧ C2.
Hence, C1 ∧ C2 ∈ x. ��

Lemma 7. ∀t ∈ Th(L),
(1) A → B ∈ t ⇔ ∀u ∈ Th(L), A ∈ u ⇒ B ∈ u ⊕ t,
(2) A → B ∈ t ⇔ ∀v ∈ aTh(L), A ∈ t ⊗ v ⇒ B ∈ v,
(3) A → B ∈ t ⇔ ∀u ∈ Th(L), v ∈ aTh(L), t ⊆ u � v and A ∈ u ⇒ B ∈ v.

Proof. For each equivalence, it suffices to show right-to-left. The other direction
can be obtained by definitions of ⊕, ⊗, �.

For (1), suppose A → B /∈ t, let u = {A′ :	L A → A′}, then A ∈ u ∈ Th(L).
If B ∈ u ⊕ t, then ∃A′ ∈ u and A′ → B ∈ t. Then, 	L (A′ → B) → (A → B).
So, A → B ∈ t, giving a contradiction. Hence, B /∈ u ⊕ t.

For (2), suppose A → B /∈ t, let v = −{B′ :	L B′ → B}, then B /∈ v ∈
aTh(L). If A /∈ t ⊗ v, then ∃B′ /∈ v and A → B′ ∈ t. Then, 	L B′ → B. So,
	L (A → B′) → (A → B). So, A → B ∈ t, giving a contradiction. Hence,
A ∈ t ⊗ v.

For (3), suppose A → B /∈ t, let u = {A′ :	L A → A′} and v = −{B′ :	L

B′ → B}. Then, A ∈ u ∈ Th(L) and B /∈ v ∈ aTh(L). If t � u � v, then ∃C ∈ t,
but C /∈ u � v. So, ∃A′ ∈ u, B′ /∈ v, 	L C → (A′ → B′). So, 	L (A′ → B′) →
(A → B). So, 	L C → (A → B). So, A → B ∈ t, giving a contradiction. Hence,
t ⊆ u � v. ��

332 Y. Gao and J. Cheng

5.5 Canonical Models and Completeness

For a logical system L, let ⊆ be set inclusion relation, and ⊕, ⊗, � be canonically
defined above, define:

• the canonical basic frame as (Th(L), aTh(L), ⊆),
• the canonical frame for LB+ as (Th(LB+), aTh(LB+), ⊆, l(LB+), ⊕, ⊗,

�).

For any χ ∈ Th(L) ∪ aTh(L) and any formula C, let χ |= C iff C ∈ χ, define:

• the canonical basic model as (Th(L), aTh(L), ⊆, |=),
• the canonical model for LB+ as (Th(LB+), aTh(LB+), ⊆, l(LB+), ⊕, ⊗,

�, |=).

By definitions and lemmas in the above subsections, it is easy to show that
these canonical frames and models deserve their names.

Lemma 8. The above canonical frames and models are well defined.

Now, if C is not a theorem of L, then C /∈ l(L), i.e., C is not valid in the canonical
model of L. So we can obtain the following completeness results by proving the
contrapositive.

Theorem 2 (Completeness for LB+). If |= C, then 	LB+ C.

6 Extensions of LB+

In this section, we consider extensions to various positive relevant logics without
distribution. For each of C1-C7, we give corresponding semantical condition on
models so that soundness and completeness are maintained. Since implication
→ can be interpreted by three operations ⊕, ⊗, �, there may be a number of
semantical conditions, which are equivalent to each other (guaranteed by the
condition: ∀t, u ∈ T1, ∀v ∈ T2, u⊕ t ≤ v ⇔ u ≤ t⊗v ⇔ t ≤ u�v), corresponding
to one given axiom or rule.

Theorem 3. The extension of LB+ obtained by adding axiom or rule Ci is
sound and complete with respect to the class of models (T1, T2, ≤, l, ⊕, ⊗, �, |=),
which satisfy condition Di (with subscripts)6.

D1 ∀t ∈ T1, v ∈ T2, t ⊗ v ≤ t ⊗ (t ⊗ v)
D2 ∀t, u ∈ T1, v ∈ T2, (u ⊕ t) ⊗ v ≤ t ⊗ (u ⊗ v)
D3 ∀t, u ∈ T1, v ∈ T2, (u ⊕ t) ⊗ v ≤ u ⊗ (t ⊗ v)
D41 ∀t ∈ T1, v ∈ T2, t ≤ v ⇒ t ≤ t ⊗ v
D42 ∀t ∈ T1, v ∈ T2, t ≤ v ⇒ t ≤ t � v
D51 ∀t, u ∈ T1, v ∈ T2, u ≤ t ⊗ v ⇒ t ≤ u ⊗ v

6 Please note that there may be other corresponding conditions for each of C1-C7
besides those listed here. Especially, Fine’s semantical conditions with the operation
· in [6] work well on our models (one should permute 1-place and 2-place parameters
of ·).

Operational Semantics for Positive Relevant Logics Without Distribution 333

D52 ∀t, u ∈ T1, v ∈ T2, t ≤ u � v ⇒ u ≤ t � v
D53 ∀t ∈ T1, v ∈ T2, t ⊗ v ≤ t � v
D6 ∀u ∈ T1, v ∈ T2, u � v ≤ u � (u � v)
D71 ∀t ∈ T1, v ∈ T2, t ≤ v ⇒ l ≤ t ⊗ v
D72 ∀t ∈ T1, v ∈ T2, t ≤ v ⇒ t ≤ l � v

Proof. For soundness, we take an arbitrary model and assume it satisfies Di
(with subscripts). Then we demonstrate Ci is valid in this model. Completeness
is proved by showing the canonical model for an extension with Ci must satisfy
Di (with subscripts). We give proofs for some lists as examples.

C1. For soundness, suppose t ∈ T1 and t |= (A → B)∧(B → C), then t |= A → B
and t |= B → C. Suppose v ∈ T2 and t ⊗ v |= A. So, t ⊗ (t ⊗ v) |= A. Then,
t ⊗ v |= B. So, v |= C as required.

For completeness, suppose A ∈ t ⊗ v and A /∈ t ⊗ (t ⊗ v), then ∃B /∈ t ⊗ v,
A → B ∈ t. Then, ∃C /∈ v, B → C ∈ t. So, (A → B) ∧ (B → C) ∈ t. Then,
A → C ∈ t. Since A ∈ t ⊗ v, C ∈ v, giving a contradiction.

C2. For soundness, suppose t ∈ T1 and t |= A → B, u ∈ T1 and u |= B → C,
to show u ⊕ t |= A → C. Suppose further v ∈ T2 and (u ⊕ t) ⊗ v |= A. So,
t ⊗ (u ⊗ v) |= A. Then, u ⊗ v |= B. Then, v |= C as required.

For completeness, suppose A /∈ t ⊗ (u ⊗ v), then ∃B /∈ u ⊗ v, A → B ∈ t. So,
∃C /∈ v, B → C ∈ u. So, (B → C) → (A → C) ∈ t. Then, A → C ∈ u ⊕ t. Since
C /∈ v, A /∈ (u ⊕ t) ⊗ v.

C3. For soundness, suppose t ∈ T1 and t |= A → B, u ∈ T1 and u |= C → A,
to show u ⊕ t |= C → B. Suppose further v ∈ T2 and (u ⊕ t) ⊗ v |= C. So,
u ⊗ (t ⊗ v) |= C. So, t ⊗ v |= A. So, v |= B as required.

For completeness, suppose C /∈ u ⊗ (t ⊗ v). Then, ∃A /∈ t ⊗ v, C → A ∈ u.
Then, ∃B /∈ v, A → B ∈ t. So, (C → A) → (C → B) ∈ t. Then, C → B ∈ u ⊕ t.
Since B /∈ v, C /∈ (u ⊕ t) ⊗ v.

C4 by D41. For soundness, suppose t ∈ T1 and t |= A ∧ (A → B), then t |= A
and t |= A → B. Let v ∈ T2 and t ≤ v, to show v |= B. So, t ≤ t ⊗ v. Then,
t ⊗ v |= A. So, v |= B. Since v is arbitrary, t |= B as required.

For completeness, suppose A ∈ t and A /∈ t ⊗ v. Then, ∃B /∈ v, A → B ∈ t.
So, A ∧ (A → B) ∈ t. Then, B ∈ t. Since t ⊆ v, B ∈ v, giving a contradiction.

C5 by D51. For soundness, suppose t ∈ T1 and t |= A, v ∈ T2 and t⊗v |= A → B,
to show v |= B. Then ∃u ∈ T1, u ≤ t ⊗ v and u |= A → B. So, t ≤ u ⊗ v. Then,
u ⊗ v |= A. Hence, v |= B, as required.

For completeness, suppose A ∈ t, but A /∈ u ⊗ v. Then, ∃B /∈ v, A → B ∈ u.
Since u ⊆ t ⊗ v, A → B ∈ t ⊗ v. Since (A → B) → B ∈ t, B ∈ v, giving a
contradiction.

C6. For soundness, suppose t ∈ T1 and t |= A → (B → C), and u ∈ T1, v ∈ T2,
t ≤ u � v and u |= A ∧ B, to show v |= C. Then, u |= A and u |= B. Since
u � v ≤ u � (u � v), t ≤ u � (u � v). So, u � v |= B → C. Since u � v ≤ u � v,
v |= C as required.

334 Y. Gao and J. Cheng

For completeness, suppose C′ ∈ u� v and C′ /∈ u� (u� v), then ∃A ∈ u, A′ /∈
u � v, 	L C′ → (A → A′), Then ∃B ∈ u, C /∈ v, 	L A′ → (B → C). So,
	L C′ → (A → (B → C)). Then, 	L C′ → (A ∧ B → C) and A ∧ B ∈ u. Since
C′ ∈ u � v, C ∈ v, giving a contradiction.

C7 by D71. For soundness, suppose l |= A, t ∈ T1 and t |= A → B. Let v ∈ T2

and t ≤ v, to show v |= B. So, l ≤ t ⊗ v. Then, t ⊗ v |= A. So, v |= B. Since v is
arbitrary, t |= B as required.

For completeness, suppose A ∈ l and A /∈ t ⊗ v, then ∃B /∈ v, A → B ∈ t. So,
(A → B) → B ∈ l, i.e., 	L (A → B) → B. So, B ∈ t. Since t ⊆ v, B ∈ v, giving
a contradiction. ��

7 Concluding Remarks

In this paper, we presented operational semantics for various positive relevant
logics without distribution. Our work followed and extended Fine’s work. We
showed that three different binary operations ⊕, ⊗, � can be used together to
model implication →.

There are several topics that can be further developed. First, it is expected
to generalize our operational semantics to treat other substructural logics with-
out distribution. Second, since the canonical model for LB+ satisfies: ∀t, u, v ∈
Th(L) ∪ aTh(L), u ⊕ t ⊆ v ⇔ u ⊆ t ⊗ v ⇔ t ⊆ u � v, we can use a ternary
relation R, instead of these three operations, to evaluate →. Canonically, Rtuv
can be defined as: ∀A, B, (A → B ∈ t and A ∈ u ⇒ B ∈ v), i.e., u ⊕ t ⊆ v, i.e.,
u ⊆ t ⊗ v, i.e., t ⊆ u � v. Then, we can define an equivalent relational model for
LB+ with → modeled by R. Actually, we will obtain a new relational model,
which retains and extends most features of Routley-Meyer semantics for relevant
logic, including semantical conditions for C1-C7. But, since all these results are
not easy to obtain, we will leave this topic for another occasion.

References

1. Allwein, G., Dunn, J.M.: Kripke Models for Linear Logic. Journal of Symbolic
Logic 58, 514–545 (1993)

2. Brady, R.T. (ed.): Relevant Logics and their Rivals, Volume 2, Ashgate Publishing
Company (2003)

3. Dosen, K.: Sequent-Systems and Groupoid Models. I. Studia Logica 47, 353–385
(1988)

4. Dosen, K.: Sequent-Systems and Groupoid Models. II. Studia Logica 48, 41–65
(1989)

5. Dunn, J.M.: Positive Modal Logic. Studia Logica 55, 301–317 (1995)
6. Fine, K.: Models for Entailment. Journal of Philosophical Logic 3, 347–372 (1974)
7. Girard, J.Y.: Linear Logic. Theoretical Computer Science 50, 1–102 (1987)
8. Hartonas, C.: Duality for Lattice-Ordered Algebras and for Normal Algebraizable

Logics. Studia Logica 58, 403–450 (1997)
9. Ono, H., Kimori, Y.: Logics without the Contraction Rule. Journal of Symbolic

Logic 50, 169–201 (1985)

Operational Semantics for Positive Relevant Logics Without Distribution 335

10. Ono, H.: Semantics for Substructural Logics. In: Schroeder-Heister, P., Dosen, K.
(eds.) Substructural Logics, pp. 259–291. Oxford University Press, Oxford (1993)

11. Routley, R., Meyer, R.K.: The Semantics of Entailment. III. Journal of Philosoph-
ical Logic 1, 192–208 (1972)

12. Routley, R., Plumwood, V., Meyer, R.K., Brady, R.T.: Relevant Logics and their
Rivals, Volume 1, Ridgeview Publishing Company (1982)

Multi-valued Logics, Effectiveness and Domains

Giangiacomo Gerla

Department of Mathematics and Computer Science,
University of Salerno

Via Ponte don Melillo 84084,
Fisciano (SA) Italy
gerla@unisa.it

Abstract. Effective domain theory is applied to fuzzy logic to give suit-
able notions of semi-decidable and decidable L-subset. The connection
with the notions of fuzzy Turing machines and fuzzy grammar given in
literature is also investigated. This shows the inadequateness of these def-
initions and the difficulties in formulating an analogue of Church Thesis
for fuzzy logic.

Keywords: Multi-valued logic, Fuzzy logic, Computability, Domain the-
ory, Fuzzy grammar, Fuzzy Turing Machine, Church Thesis.

1 Introduction

Fuzzy logic is a promising chapter of multi-valued logic whose basic ideas have
been formulated by L. A. Zadeh, J. A. Goguen, J. Pavelka and others (see, for
example, [5], [18] and [13]) and successively investigated by several authors (see,
for example, [7], [11], [6], [4],[12]). The aim of such a logic is to formalize the
“approximate reasoning” we use in everyday life where vague notions, such as
big, slow, near, are constantly involved. This leads to define a deduction operator
associating every fuzzy subset of axioms with the related fuzzy subset of logical
consequences. Now it is evident that a basic task for fuzzy logic is to exhibit the
effectiveness of its deduction apparatus. In particular, it is important to prove
that the fuzzy subset of consequences of a “decidable” fuzzy subset of axioms
is “effectively enumerable”. To do this we have to give adequate definitions of
“effective enumerability” and “decidability” for fuzzy subsets.

On the other hand, in my opinion the phenomenon of the vagueness leads to
assume that the set of truth values is a continuum. More precisely, density is
suggested by the existence of intermediate values. To give an example, assume
that the atomic formula Big(a) is evaluated λ, that Big(b) is evaluated μ and
λ < μ. Then we cannot exclude the existence of an object d such that Big(d) has
a truth value between λ and μ. Also, completeness is suggested by the fact that
the quantifiers are interpreted by the least upper bound and the greatest lower
bound operators. Moreover, the existence of the least upper bounds is neces-
sary to fuse the different valuations given by different proofs of a given formula
(see [13]).

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 336–347, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Multi-valued Logics, Effectiveness and Domains 337

Once we accept the hypothesis that the set of truth values is a continuum,
the notion of effectiveness has to be based on endless effective approximation
algorithms (as in recursive analysis) and not on algorithms converging in finite
steps (as in recursive arithmetics). So, as proposed in [3], a natural framework to
define the notion of effectiveness in multi-valued logic is the theory of effective
domains (see also [1], [2]). Obviously, this is not the unique possible choice and it
is possible to refer to the vast and interesting literature concerning a constructive
approach to the continuum.

In this paper we compare the domain-based definition of semi-decidability for
fuzzy subsets with the definitions given in literature based on the notions of
fuzzy grammar and fuzzy Turing machine. This comparison proves that these
definitions are not adequate and it shows the difficulties in formulating an ana-
logue of Church Thesis for fuzzy logic. Also, it emphasizes an open question:
to find adequate definitions of multi-valued Turing machine and multi-valued
grammar.

2 Preliminaries: Effective Lattices and Semi-decidable
Elements

In this paper L always denotes a complete lattice with minimum 0 and maximum
1. Given x, y ∈ L, we say that x is way below y and we write x � y provided
that, for every nonempty upward directed subset A of L

y ≤ sup A ⇒ there is a ∈ A such that x ≤ a.

Definition 1. A based continuous lattice, in brief a based lattice, is a struc-
ture (L, ≤, B) where L is a complete lattice and B, the basis, is a subset of L
containing 0, closed with respect to ∨ and ∧ and such that, for every x ∈ L,

x = sup({b ∈ B : b � x}). (1)

We have that x � y entails x ≤ y. If L is a finite chain and we set B = L, then
(L, ≤, B) is a based lattice such that

x � y ⇔ x ≤ y.

If L is a complete chain and B a dense subset of L, then (L, ≤, B) is a based
lattice such that

x � y ⇔ either x = 0 or x < y.

Definition 2. An effective continuous lattice (see [15]), in brief an effective
lattice, is a based lattice (L, ≤, B) with an enumeration (bn)n∈N of B such that

- the relation {(n, m) ∈ N
2 : bn � bm} is recursively enumerable

- two recursive maps join : N × N → N, and meet : N × N → N exist such that

bn ∨ bm = bjoin(n,m) , bn ∧ bm = bmeet(n,m).

338 G. Gerla

In brief, an effective lattice is a based lattice such that in B the relation � is
recursively enumerable and ∨, ∧ are computable operations.

It is evident that every finite chain L is an effective lattice with respect to
B = L. The interval U = [0, 1] is an effective lattice whose basis is the set UQ of
rational numbers in U .

Definition 3. We say that an element x in an effective lattice (L, ≤, B) is semi-
decidable if the cut {n ∈ N : bn � x} is recursively enumerable.

In particular, every b ∈ B is semi-decidable and 1 is semi-decidable, too. In a
finite lattice all the elements are semi-decidable. If L = U , then

x is semi-decidable ⇔ {r ∈ UQ : r < x} is recursively enumerable.

Proposition 1. Let (L, ≤, B) be an effective lattice, then the following are equiv-
alent:

i) x is semi-decidable,
ii) a recursive map f exists such that (bf(n))n∈N is �-preserving and

x = sup
n∈N

bf(n), (2)

iii) a recursive map f satisfying (2) exists such that (bf(n))n∈N is order-preserv-
ing,

iv) a recursive map f satisfying (2) exists.

3 Decidable Elements

To define the notion of decidability we need to dualize some of the definitions
in the previous sections. Given a lattice (L, ≤), we denote by (L, ≤d) its dual.
Any order-theoretical concept in (L, ≤) is associated with its dual, i.e. the same
concept interpreted in (L, ≤d). As an example, we say that y is way above x and
we write x �d y in the case y is way below x in (L, ≤d). Then x �d y if, for
every downward directed subset A of L,

x ≥ inf A ⇒ there exists a ∈ A such thath y ≥ a.

Obviously x �d y entails y ≤ x. If L is a finite chain,

x �d y ⇔ y ≤ x.

If L coincides with U , then

x �d y ⇔ either y = 1 or y < x.

Definition 4. A structure (L, ≤, B, B) is called an effective above-below lattice,
in brief ab-lattice, provided that both the structures (L, ≤, B) and (L, ≤d, B) are
based (effective) continuous lattices. In such a case we say that B = (bn)n∈N is
the basis and B = (bn)n∈N the dual basis of (L, ≤d, B, B).

Multi-valued Logics, Effectiveness and Domains 339

The term above-below is due to the fact that, for every x ∈ L,

x = sup{b ∈ B : b � x} = inf{b ∈ B : x �d b}.

So, we can approximate every element both from below and from above. If the
approximation process is effective, we obtain the notion of decidable element.

Definition 5. Given an ab-lattice (L, ≤, B, B), we say that x is decidable if x
is semi-decidable both in (L, ≤, B) and in (L, ≤d, B), i.e. if both the cuts

{n ∈ N : bn � x} ; {n ∈ N : x �d bn}

are recursively enumerable.

Trivially, in all the ab-lattices both 0 and 1 are decidable. The proof of the
following proposition is an immediate consequence of Proposition 1.

Proposition 2. Given an element x of an effective ab-lattice, the following are
equivalent:

i) x is decidable
ii) two total recursive functions h : N → N, k : N → N exist such that

(bh(n))n∈N is �-preserving, (bk(n))n∈N is �d-reversing and

sup
n∈N

bh(n) = x = inf
n∈N

bk(n) (3)

iii) two total recursive functions h : N → N, k : N → N exist such that (3) is
satisfied, (bh(n))n∈N is order-preserving and (bk(n))n∈N is order-reversing

iv) a nested effectively computable sequence ([bh(n), bk(n)])n∈N of intervals exists
such that

{x} =
⋂

n∈N

[bh(n), bk(n)].

An easy way to obtain ab-lattices is by an involution in L.

Definition 6. A structure (L, ≤, −, B) is an effective lattice with an involution
if (L, ≤, B) is an effective lattice and − is an involution such that {(n, m) ∈
N × N : −bn � −bm} is recursively enumerable.

In the case L = {λ0, ..., λn} is a finite chain where 0 = λ0 < ... < λn = 1, there
is a unique involution ¬ defined by setting ¬(λi) = λn−i. In the case L is the
interval U , an involution ¬ is obtained by setting ¬(λ) = 1 − λ.

Since an involution is an isomorphism between L and its dual and since an
isomorphism preserves the definable relations, we have that, for every x ∈ L:

x �d y ⇔ −y � −x.

The proof of the following proposition is trivial.

340 G. Gerla

Proposition 3. Let (L, ≤, B, −) be an effective lattice with an involution and
set B = (bn)n∈N where bn = −bn. Then (L, ≤, B, B) is an effective ab-lattice.
Moreover,

x is decidable ⇔ both x and − x are semi-decidable.

This proposition entails that a finite chain L is an effective ab-lattice in which
B = B = L and in which all the elements are decidable. The interval U is an
effective ab-lattice in which B = B = UQ. In such a case an element x is decidable
provided that both the sections {r ∈ UQ : r < x} and {r ∈ UQ : x > r} are
recursively enumerable, i.e. x is a recursive real number.

4 The Effective Lattice of the L-Subsets of a Given Set

Let S be a nonempty set. Then we call L-subset of S every element in the direct
power LS . We denote by ∪ and ∩ the lattice operations in LS and we call these
operations union and intersection, respectively. Then the union and intersection
operations are defined by setting, for every s1, s2 ∈ LS and x ∈ S,

(s1 ∪ s2)(x) = s1(x) ∨ s2(x) ; (s1 ∩ s2)(x) = s1(x) ∧ s2(x).

In an analogous way we define the infinitary unions and intersections. If L = U an
L−subset is also called fuzzy subsets of S. In the case an involution ¬ : L → L
is defined in L, then we call complement the corresponding operation in LS .
Then, the complement of an L-subset s, is the L-subset −s defined by setting
(−s)(x) = ¬s(x). The elements in L are interpreted as truth values in a multi-
valued logic where 0 is interpreted as “true” and 1 as “false”. An L-subset is
interpreted as a generalized characteristic function to represent the extension of
a vague predicate. So, for every x ∈ S, s(x) is the membership degree of x to
s. We call crisp an L-subset s such that s(x) ∈ {0, 1} for every x ∈ S. Given
X ∈ P (S), the characteristic function of X is the map cX : S → L defined by
setting cX(x) = 1 if x ∈ X and cX(x) = 0 otherwise. We can identify the classical
subsets of S with the crisp L-subsets of S via the characteristic functions.

Given an L-subset s, we set Supp(s) = {x ∈ S : s(x) = 0} and Cosp(s) =
{x ∈ S : s(x) = 1}. We say that s is finite (co-finite) provided that Supp(s)
(Cosp(s), respectively) is finite. We call finite also the empty set and co-finite
the whole set S. The classes of finite and co-finite L-subsets of S are denoted by
Fin(LS) and Cof(LS), respectively. Obviously, if a negation is defined in L, then
an L-subset is finite if and only if its complement is co-finite.

In the following we assume that S admits a code. This enables us to identify
S with the set of natural numbers and to prove the following theorems (see [3]).

Theorem 1. Let (L, ≤, B) be an effective lattice. Then the class LS of L-subsets
of S is an effective lattice admitting as a basis the class Fin(BS) of finite L-
subsets of S with values in B. Also, for every s1 and s2 in LS,

s1 � s2 ⇔ s1 is finite and s1(x) � s2(x) for every x ∈ S.

Multi-valued Logics, Effectiveness and Domains 341

Observe that, by definition, an L-subset s is semi-decidable provided that

{n ∈ N : bn � s} = {n ∈ N : bn(i) � s(i) for every i ∈ Supp(bn)}.

is a recursively enumerable set. There are simple characterizations of the semi-
decidable L-subsets.

Theorem 2. Let (L, ≤, B) be an effective continuous lattice and s ∈ LS. Then
the following are equivalent:

i) s is semi-decidable
ii) a recursive function h : S×N → B exists which is �-increasing with respect

to n such that
s(x) = sup

n∈N

h(x, n)

iii) a recursive function h : S × N → B exists which is increasing with respect
to n such that

s(x) = sup
n∈N

h(x, n).

The following proposition enables us to define the notion of decidable L-subset.

Proposition 4. Let (L, ≤, B, B) be an effective ab-lattice. Then LS is an effec-
tive ab-lattice with dual basis the class Cof(BS) of co-finite L-subsets of S with
values in B. If (L, ≤, B, −) is an effective lattice with an involution, then LS is
an effective lattice with the complement as an involution.

Trivially, if L is an effective lattice with an involution, then
s is decidable ⇔ both s and its complement −s are semi-decidable.

5 The Main Cases

In this section we will consider two cases which are basic ones in fuzzy logic:
the finite chains and the interval U . Observe that in these cases the proposed
notions of semi-decidability and decidability for fuzzy subsets are in accordance
with the ones given in [1] and [2].

Proposition 5. Let L be a finite chain. Then the class LS of L-subsets of S is
an effective lattice with the complement as an involution and therefore it is an
effective ab-lattice. Its basis is the class Fin(LS) of finite L-subsets of S, its dual
basis is the class Cof(LS) of co-finite L-subsets of S. Also

s1 � s2 ⇔ s1 ⊆ s2 and s1 is finite
and

s1 �d s2 ⇔ s1 ⊆ s2 and s2 is co-finite.

In particular, the class P (S) of subsets of S is an effective lattice with an invo-
lution whose basis is the class of finite subsets and whose dual basis is the class
of co-finite subsets of S. Also

342 G. Gerla

X1 � X2 ⇔ X1 ⊆ X2 and X1 is finite
and

X1 �d X2 ⇔ X1 ⊆ X2 and X2 is co-finite.
Moreover, the proposed notions of decidability and semi-decidability coincide
with the classical ones.

Proposition 6. Let L be a finite chain. Then an L-subset s is semi-decidable
if and only if there is a recursive function h : S × N → L increasing with respect
to the second variable such that

s(x) = max
n∈N

h(x, n).

Moreover, s is decidable if and only if s is a recursive function.

The following proposition shows that, in the case of a finite chain, the proposed
definition of semi-decidability is the only possible extension of the classical one
such that

- the constant L-subsets are semi-decidable
- the union of two semi-decidable L-subsets is semi-decidable
- the intersection of two semi-decidable L-subsets is semi-decidable.

To show this, given an L-subset s, we call closed λ-cut of s the subset C(s, λ) =
{x ∈ S : s(x) ≥ λ} where λ ∈ L. The equation

s(x) =
⋃

λ∈L λ ∧ C(s, λ)

shows that the lattice of the L-subsets is the lattice generated by the constant
L-subsets and the crisp L-subsets.

Proposition 7. Let L be a finite chain. Then, the following are equivalent:
i) s is a semi-decidable L-subset
ii) all the cuts of s are recursively enumerable.

As a consequence, the lattice of the semi-decidable L-subsets is the lattice gen-
erated by the recursively enumerable subsets and the constant L-subsets.

In the case L = U we can prove a proposition similar to Proposition 5.

Proposition 8. The class of fuzzy subsets of S is an effective lattice with the
complement as an involution. The basis is the class Fin(U S

Q) of finite fuzzy
subsets of S with rational values. The dual basis is the class Cof(U S

Q) of co-
finite fuzzy subsets of S with rational values. Moreover

s1 � s2 ⇔ s1 is finite and s1(x) < s2(x) for every x ∈ Supp(s1).

s1 �d s2 ⇔ s2 is co-finite and s1(x) < s2(x) for every x ∈ Cosp(s1).

Unfortunately, we cannot extend Proposition 7 to this case since a closed cut
of a semi-decidable L-subset is not necessarily recursively enumerable. More
precisely, we have the following proposition whose proof is an immediate conse-
quence of a series of interesting results about the effectiveness in multi-valued
logic (see for example [7] and [10]).

Multi-valued Logics, Effectiveness and Domains 343

Theorem 3. A subset of S is a closed cut of a semi-decidable fuzzy subset iff it
belongs to the Σ2−level of the arithmetical hierarchy.

Observe that such a theorem gives an explanation of an apparent contradiction.
In fact the scholars interested in multi-valued logic claim that such a logic is not
effective since the set Val of valid formulas is not effective at all (see for example
[7]). At the same time it is possible to prove that the L-subset of theorems of a
decidable L-theory is semi-decidable and therefore, that the fuzzy set lt of the
logically true sentence is semi-decidible (see [1]). This apparent contrast depends
on the fact that Val is a cut of lt and, as claimed in Theorem 3, it is not surprising
that lt is semi-decidable and that such a cut is not recursively enumerable.

6 Fuzzy Machines and Fuzzy Grammars

A basic question is whether our definition of recursive enumerability is the correct
formal counterpart of the intuition and experience of fuzzy people about fuzzy
computability. In other words:
Is our definition a reasonable proposal for a “Church Thesis” in multi-valued
logic ?

As an attempt to face this question, we consider the notions of L-grammar
and L-Turing machine given in literature. To do this, we assume that in the
effective lattice L an operation ⊗ is defined to interpret the conjunction and
that ⊗ is order-preserving, associative, commutative and such that x⊗1 = x for
every x ∈ L. We assume also that ⊗ is recursive on the basis B. These conditions
are satisfied in all the main multi-valued logics. Firstly, we recall the notion of
L-grammar (see [8] and ([9]))

Definition 7. An L-grammar is a structure G = (T, I, μ, s) where:
- T is a finite set and I ⊂ T ,
- μ : T + × T + → B is a finite L-subset (the L-subset of productions)
- s ∈ T − I (the start symbol).

Given λ = 0 and two words w, w′, we say that w′ is directly derivable from w
with degree λ if x, y ∈ T + and a, b ∈ T ∗ exists such that w = axb, w′ = ayb and
λ = μ(x, y). We say that a sequence π = (w1, ..., wp, λ1, ..., λp−1) is a derivation
for w at degree λ(π) = λ1 ⊗ ... ⊗ λp−1 provided that w1 = s, wp = w and, for
i = 1, 2, ..., p − 1, the word wi+1 is directly derivable from wi with degree λi.
Since it is possible that there are different derivations of the same word, the
L-language generated by an L-grammar is defined as follows.

Definition 8. Let G = (T, I, μ, s) be an L-grammar, then the L-language gen-
erated by G is the L-subset s : I+ → L defined by

s(w) = sup{λ(π) : π is a derivation of w}. (4)

There are various attempts to formalize of the notion of fuzzy algorithms in
terms of Turing machines. The first ones are dated in late 1960s when this
notion was introduced by L. A. Zadeh (see [17]). The following definition is an
obvious extension of the one proposed by E. S. Santos in [14] (see also [16]).

344 G. Gerla

Definition 9. An L-Turing machine is a structure F = (S, T, I, b, q0, qf , μ, ⊗),
where

- S is the finite set of states;
- T is the finite set of tape symbols;
- I ⊂ T is the set of input symbols ;
- μ is an L-subset of S × T × S × T × {−1, 0, 1} with values in B (we call

L-transition function)
- b ∈ T − I is the blank symbol;
- q0 and qf are the initial and accepting states, respectively.

Symbol -1 (+1) denotes a move by one cell to the left (right) and 0 denotes
no move. The tape symbols can be printed on a tape that has a left-most cell
but is unbounded to the right. A move is an element m = (s1, t1, s2, t2, d) in
S ×T × S × T ×{−1, 0, 1} and this move is realized provided that if the current
state is s1 and the tape symbol scanned by the machine’s head is t1, then F will
enter the new state s2, the new tape symbol t2 will rewrite the previous symbol t1,
and the tape head will move in accordance with d. The value μ(m) is a valuation
of correctness (possibility) of the move m. The notion of computation is defined
as usual with the help of instantaneous descriptions (IDs). An instantaneous
description Qt of F working on input w at time t is a unique description of
the machine’s tape, of its state and of the position of the machine’s head after
performing its tth move on input w.

Definition 10. If Qt and Qt+1 are two IDs we denote by D(Qt, Qt+1) the last
upper bound of the set of correctness degrees μ(m) of the moves m leading from
Qt to Qt+1.

We can interpret D(Qt, Qt+1) as the valuation in a multi-valued logic of the
claim “there is a correct move leading from Qt to Qt+1”. Observe that if no move
exists leading from Qt to Qt+1 then D(Qt, Qt+1) = 0, otherwise D(Qt, Qt+1)
is a maximum and we can calculate it in an effective way. On input w whose
length is n, the machine starts its computation in an initial ID, we denote by
Q(w), describing the tape holding a string of n input symbols (the so-called
input string, or input word), one symbol per cell starting with the leftmost cell.
All cells to the right of the input string are blank. The head is scanning the
leftmost cell and the current state is q0. From this ID the computation proceeds
to an ID, we denote by Q1 which is reachable in one step from Q0, etc.

Definition 11. A computation is a sequence Q0, ...Qk of IDs. We extend the
function D to any computation Q0, ..., Qk, by setting

D(Q0, ..., Qk) = D(Q0, ..., Qk−1) ⊗ D(Qk−1, Qk).
Moreover, if Q and Q∗ are two IDs, we set

d(Q, Q∗) = sup{D(Q0, Q1, ..., Qt) : Q0 = Q, Qt = Q∗}.

We can interpret D(Q0, ..., Qk) as the valuation in a multi-valued logic of the
claim “the computation Q0, ...Qk is correct” and d(Q, Q∗) as the valuation of
the claim “there is a correct computation leading from Q to Q∗”.

Multi-valued Logics, Effectiveness and Domains 345

Definition 12. Let F be an L-Turing machine and w ∈ I+. Then we say that
Q0, Q1...Qk is an accepting computation for w, if Q0 = Q(w) and Qk is an ID
containing the accepting state qf . Moreover, the L-language accepted by F is the
L-subset e : I+ → L of I+ defined by setting

e(w) = sup{d(Q(w), Q∗) : Q∗ is an accepting ID for w}. (5)

The following theorem shows that the notion of effectiveness for multi-valued
logic proposed in this paper is in accordance with just given notions of L-
grammar and L-Turing machine.

Theorem 4. Let s be an L-language either generated by an L-grammar or ac-
cepted by an L-Turing machine. Then s is a semi-decidable L-subset.

Proof. Assume that s is generated by an L-grammar and therefore that s satisfies
(4). Then, since for every input w we can enumerate in an effective way the class
of derivations for w, s is semi-decidable. A similar argument holds true for the
L-Turing machines.

The following theorem shows that, in the case L is a finite chain, the domain-
based, the grammar-based and the machine-based notions of effectiveness all
coincide.

Theorem 5. Assume that L is a finite chain and let s be an L-subset. Then the
following are equivalent:

- s is semi-decidable,
- there is a suitable L-grammar able to generate s,
- there is a suitable L-Turing machine able to accept s.

Proof. Let L be the finite chain whose elements are 0 = λ0 < ... < λn = 1 and
assume that s is semi-decidable. Then all the cuts C(s, λi) of s are recursively
enumerable. For every 0 < i ≤ n, let Gi = (T, I, Mi, s) be a grammar able to
generate C(s, λi) where, as usual, Mi ⊆ T + × T +. Denote by G the L-grammar
(T, I, μ, s) obtained by setting μ(x) = sup{λi : x ∈ Mi} and assume that ⊗ is
the minimum. Then it is easy to see that the L-language generated by such a
machine coincides with s.

Likewise, denote by Fi a Turing machine (S, T, I, b, q0, qf , Mi) able to accept
C(s, λi) where Mi ⊆ S ×T ×S ×T ×{−1, 0, 1}. Let F be the L-Turing machine
(S, T, I, b, q0, qf , μ, ∧) such that μ(x) = sup{λi : x ∈ Mi}. Then it is easy to see
that the L-subset accepted by F coincides with s.

In order to examine the case L infinite, it is useful the following interesting
proposition whose proof is in [16].

Proposition 9. Let (M, ⊗, 1) be a finitely generated sub-monoid of (L, ⊗, 1).
Then every nonempty subset of M admits a maximal element. If L is totally
ordered, every nonempty subset of M admits a maximum. As a consequence, for
every word w, the supremum in (4) and in (5) is a maximum.

346 G. Gerla

The following theorem shows that the L-languages generated by an L-grammar
(accepted by an L-Turing machine) satify very particular properties.

Theorem 6. Assume that L is totally ordered and let s be an L-language gen-
erated by an L-grammar (accepted by an L-Turing machine). Then the values
assumed by s are in B and all the closed λ-cuts with λ ∈ B are recursively
enumerable.

Proof. Assume that s is generated by an L-grammar and therefore, by Proposi-
tion 9, that s(w) = max{λ(π) : π is a derivation of w}. Then,

C(s, λ) = {x ∈ S : there is a derivation π such that λ(π) ≥ λ}
and therefore, to prove that C(s, λ) is recursively enumerable, it is sufficient to
observe that that the map λ(w) is effectively computable and that the relation
λ(π) ≥ λ is decidable.

In the case of the L-Turing machines we can go on in a similar way.

Such a theorem shows that Theorem 5 cannot be extended to the case L is
an infinite chain. For example, if L = U , then every semi-decidable L-language
assuming irrational values gives an example of semi-decidable L-subset such
that there is no L-grammar able to generate it and no L-Turing machine able
to accept it. A more interesting example is furnished in the following theorem.

Theorem 7. Assume that L is the effective lattice defined by the interval U and
let big : I+ → U be the fuzzy subset of the “big words” defined by setting

big(w) = 1 − 1/length(w) (6)

for every word w. Then big is a decidable L-language such that
- big assumes only rational values
- the cuts of big are all decidable
- no L-grammar is able to generate big
- no L-Turing machine is able to accept big.

Proof. The proof is trivial. We observe only that, since there is no maximum in
the co-domain of big, no L-grammar is able to generate big and no L-Turing
machine is able to accept big.

Since should be hard to deny that big is decidable from an intuitive point of
view, we can conclude that the existing definitions of L-grammar and L-Turing
machine are not adequate. This corroborates the domain-based definition of the
effectiveness for multi-valued logic and a formulation of the following “Church
Thesis” for fuzzy set theory: the domain-based definitions give the adequate for-
malization of the intuition and experience of fuzzy people about the effectiveness
in the fuzzy framework. Once we accept such a thesis, it is an open question
to find adequate definitions of multi-valued Turing machine and multi-valued
grammar.

Multi-valued Logics, Effectiveness and Domains 347

References

1. Biacino, L., Gerla, G.: Fuzzy logic, continuity and effectiveness. Archive for Math-
ematical Logic 41, 643–667 (2002)

2. Gerla, G.: Decidability, partial decidability and sharpness relation for L-subsets.
Studia Logica 46, 227–238 (1987)

3. Gerla, G.: Effectiveness and Multivalued Logics. Journal of Symbolic Logic 71,
137–162 (2006)

4. Gerla, G.: Fuzzy logic: Mathematical tools for approximate reasoning. Kluwer Aca-
demic Publishers, Dordrecht (2001)

5. Goguen, J.A.: The logic of inexact concepts. Synthese 19, 325–373 (1968/69)
6. Gottwald, S.: A treatise on many-valued logics. Research Studies Press, Baldock

(2000)
7. Hájek, P.: Metamathematics of fuzzy logic. Kluwer Academic Publishers, Dordrecht

(1998)
8. Lee, E.T., Zadeh, L.A.: Note on fuzzy languages. Information Science 1, 421–434

(1969)
9. Mizumoto, M., Toyoda, J., Tanaka, K.: N-fold fuzzy grammars. Information Sci-

ence 5, 25–43 (1973)
10. Montagna, F.: Three complexity problems in quantified fuzzy logic. Studia Log-

ica 68, 143–152 (2001)
11. Mundici, D., Cignoli, R., D’Ottaviano, I.: Algebraic foundations of many-valued

reasoning. Kluwer Academic Publishers, Dordrecht (2000)
12. Novak, V., Perfilieva, I., Mockor, J.: Mathematical principles of fuzzy logic. Kluwer

Academic Publishers, Dordrecht (2000)
13. Pavelka, J.: On fuzzy logic I: Many-valued rules of inference. Zeitschrift für Math-

emathische Logik und Grundlagen der Mathematik 25, 45–52 (1979)
14. Santos, E.S.: Max-Product Machines. J. of Math. Anal. Appl. 37, 677–686 (1972)
15. Smyth, M.: Effectively given domains. Theoretical Computer Science 5, 257–274

(1977)
16. Wiedermann, J.: Fuzzy Turing Machines revised. Inform. and Computing 21, 1–13

(2002)
17. Zadeh, L.A.: Fuzzy algorithms. Information and Control 5, 62–94 (1968)
18. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate

reasoning I, II, III, Information Sciences, 8, 9 pp. 199–275, pp. 301–357, pp. 43–80
(1975)

Internal Computability

Guido Gherardi

Dipartimento di Scienze Matematiche e Informatiche
“R. Magari”, Università di Siena

Pian dei Mantellini 44 - 53100 Siena Italy
gherardi3@unisi.it

Abstract. We extend the notion of (TTE-)computability to nonstan-
dard universes by the traditional method of enlarging universes through
ultrafilters. In this way a nonstandard notion of effectivity is obtained.

Keywords: Computable Analysis, Nonstandard Analysis, Constructive
Mathematics, Type-2 Theory of Effectivity, Theory of Representations.

The objects investigated in computable analysis are elements of usual mathe-
matical universes. Through the notions of universe embedding and enlargement,
these objects can be extended within universes containing nonstandard elements.
By the transfer principle, which is fundamental in nonstandard analysis, all or-
dinary properties of computation hold also in nonstandard universes. In this
way we obtain an extension of the notion of computability to ∗IR and to other
nonstandard amplifications of ordinary mathematical structures.

Coherently, a possible notion of nonstandard effectiveness is obtained. By this,
we can then provide nonstandard computable versions of classical theorems of
nonstandard analysis, as the ordinary theory of representations does for standard
mathematics.

Nevertheless, some differences are evident. By our methods, we will define
“nonstandardly” computable functions, but the proof of their existence is indi-
rect, since it is given only by analogy with usual computation. In general, the
outputs of these functions will be nonstandard, thus objects which are not con-
cretely constructed. This is a characteristic of nonstandard mathematics, which
use entities, like particular types of numbers, whose individual essence is known
only theoretically.

As a first application, we give nonstandard computable versions of classical
results concerning the spillover principle.

Further, we show how this notion of nonstandard effectivity may fit to the in-
tuitive constructive method recently used by D. Ross ([13]) to give a nonstandard
proof of an existence result by E. Bishop and H. Cheng ([2]).

The aim of the present work is to introduce nonstandard computability. An
inquiry into the possible relations of this notion with the constructive approaches
to nonstandard analysis (see for example [10] and [14]) is not within the scope
of this paper.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 348–357, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Internal Computability 349

1 Basic Tools from Computable Analysis

We use the TTE-approach to computable analysis ([15]).
For the theory of representations, we use the Baire space B, which is the

ordinary metric space on ININ.
Given any sequence p ∈ B, we write n � p when n ∈ range(p).

Definition 1. Representations and realizations. A representation δ of a
set Y is a surjective function δ :⊆ B → Y . The pair (δ, Y) is then said to be a
represented set.

Let (δ1, Y1), (δ0, Y0) be two represented sets and let f :⊆ Y1 ⇒ Y0 be a multi-
function.

Then F :⊆ B → B is a (δ1, δ0)-realization of f if and only if δ0 ◦ F (p) ∈
f{δ1(p)} for all p ∈ B such that δ1(p) ∈ dom(f).

The multifunction f is (δ1, δ0)-computable if and only if it has a computable
(δ1, δ0)-realization.

If Y0 is enumerable, we may denote the elements in Y through IN. The notions
of realizations and computability are then extended coherently.

Definition 2. Computable metric space. A computable metric space Y =
(Y, d, ν) is a 3-tuple where (Y, d) is a nonempty complete metric space and:

– ν : IN → Y is a dense sequence in Y ;
– the distance function d is (ν, ν, ρ)-computable, where ρ is the standard rep-

resentation of IR (see [15]).

Let then (In)n∈IN be an obvious enumeration of all (sub)basic open balls B(c, α),
for c ∈ range(ν) and α ∈ Q+. The standard representation δY of Y is so defined:

δY(p) = y ∈ Y ⇐⇒ (y ∈ In ↔ n + 1 � p) .

In the following, when we speak of computability of some multifunctions f :⊆
Y ⇒ IN, we assume Y to be represented by δY, whereas the elements in IN are
denoted by themselves, coherently to Definition 1. This is a very natural way
to intend the computability of these multifunctions when they are supposed to
give their outputs in a finite amount of time.

Definition 3. Closed and compact sets representations. Given any com-
putable metric space Y = (Y, d, ν), define the following representation of the
collection A(Y) of the closed subsets A ⊆ Y : for p ∈ B and A ∈ A(Y),

ψ−(p) = A ⇐⇒∼ A =
⋃

n+1�p

In .

Further we represent the class K(Y) of compact subsets of Y in a natural way:
p ∈ B is a κmc-name of K ∈ K(Y) if p enumerates all finite minimal covers
of K, where In1 , ..., Ink

is a minimal cover of K if K ⊆ In1 ∪ ... ∪ Ink
, and

K ∩ Ini �= ∅ for 1 ≤ i ≤ k (recall that In1 , ..., Ink
are (sub)basic open balls).

350 G. Gherardi

For the representations ψ−, κmc see [4], where different symbols are used.
Given computable metric spaces Y1,Y0 we let δ→

Y1,Y0
be an ordinary repre-

sentation of continuous functions f : Y1 → Y0 such that the apply function
(f, y) �→ f(y), for y ∈ Y1, is computable (see [15]).

2 Nonstandard Analysis

We give the fundamental concepts of non standard analysis. Our presentation
cannot be exhaustive, but we refer the reader to [8] and [9] for a wider introduc-
tion to the subject.

Definition 4. Universes. Let IR ⊆ X. The n-th cumulative power set Un(X)
of X is defined inductively by:

U0(X) = X ,

Un+1(X) = Un(X) ∪ ℘(Un(X)) ,

so that U0(X) ⊆ U1(X) ⊆ ... ⊆ Un+1(X) ⊆ The superstructure (or universe)
U(X) over X is defined as:

U(X) =
⋃

n∈IN

Un(X) .

We assume that the elements of X are atomic, thus if b ∈ X there is no a ∈ U(X)
such that a ∈ b.

2.1 The Language of a Universe

As part of model theory, nonstandard analysis is based on the expressivity of
languages about U(X). We follow [8] for the definition of the language LX . Be-
sides variables, which are LX -terms, all objects in U(X) are constants LX -terms,
and if t, s are LX -terms, then t(s) is an LX -term. Obviously, this procedure can
bring to undefined terms (thus terms with no denotation) like tan(π/2) or 2(

√
).

Natural conditions for distinguishing defined and undefined terms are then given
in [8] for LX -terms.

Definition 5. LX-formulas

– atomic formulas are of the form t = s and t ∈ s for t,s LX -terms;
– if ϕ, ψ are LX-formulas, the same are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, ϕ ↔ ψ;
– if ϕ is a LX-formula, the same are (∀x ∈ t)ϕ and (∃x ∈ t)ϕ, where t is any

LX-term and x is a variable that does not occur in t.

A formula ϕ is defined if and only if all its closed terms are defined.
The conditions for a defined closed formula ϕ to be true in U(X) (for short,
U(X) � ϕ) are given by induction in a quite natural way. The most sensitive
case are the quantifiers:

Internal Computability 351

– U(X) � (∀x ∈ t)ϕ if and only if t names an element (set) A ∈ U(X) � X
and for all a ∈ A, U(X) � ϕ(a) is true, whenever ϕ(a) is defined.

The case of the existential quantifier is analogous. Again, we refer the reader
to [8] for further details.

2.2 Universe Embeddings

Given any two universes U(X), U(Y), let ∗ : U(X) → U(Y) be a 1-1 map. For
each a ∈ U(X) we write ∗a for ∗(a) as usually done in the literature.

Definition 6. If ϕ is a LX -formula, the ∗-transform ∗ϕ of ϕ is the LY -formula
obtained by replacing in ϕ each a ∈ U(X) by ∗a ∈ U(Y).

Definition 7. Given any two universes U(X), U(Y), a universe embedding of
U(X) to U(Y) is a 1-1 map ∗ : U(X) → U(Y) satisfying the transfer principle:

– For any LX-formula ϕ: U(X) � ϕ if and only if U(Y) � ∗ϕ.

We know through �Los theorem that by using a special ultrafilter we can “con-
struct” a proper extension U(Y) of U(X) such that ∗ : U(X) → U(Y) satisfies
the transfer principle. For the sake of simplicity, we can identify a standard ob-
ject a with ∗a, unless it is a function or a set and this is relevant in the given
context.

The new universe is called an enlargement of U(X) and is denoted by U(∗X),
where X �

∗X . Since U(∗X) contains nonstandard objects, we may call it a non-
standard universe. More remarkably, A �

∗A when A ∈ U(X) is infinite. Thus
the extension of any infinite standard set in the new universe contains non-
standard elements. This holds in particular for natural numbers, real numbers,
computable functions, representations of a given set, and so on. The elements of
∗IN and ∗IR are called hypernatural and hyperreal numbers, respectively.

Definition 8. Unlimited and infinitesimal numbers. A hyperreal number
a ∈ ∗IR is unlimited if for any n ∈ IN: n < |a|. A hyperreal which is not unlimited
is limited.

An element a ∈ ∗IR+ is infinitesimal if for any n ∈ IN: |a| < 1
n .

“IN∞” will denote the set of unlimited natural numbers, thus IN∞ = ∗IN � IN.
We will denote hypernatural numbers by capital letters, usually N, M, K, but we

prefer lower-case letters m,n,k for hypernaturals which are known to be standard.

Definition 9. Let (Y, d) ∈ U(X) be a metric space and let a, b ∈ ∗Y .
We write a � b if d(a, b) is infinitesimal.
The element b ∈ ∗Y is near-standard if a is standard, thus a ∈ Y . In this

case a can be denoted by st(b), as the standard part of b.

The fundamental theorems about near-standard elements are the followings:

Theorem 1. Given a metric space (Y, d), a real function f : Y → IR is contin-
uous if and only if for any given a ∈ Y :

– if y ∈ ∗Y and y � a, then ∗f(y) � ∗f(a) = f(a).

352 G. Gherardi

Theorem 2. Robinson’s compactness criterion. A metric space (Y, d) is
compact if and only if all y ∈ ∗Y are near-standard.

3 Internally Computable Functions

Definition 10. Internal and external objects. An entity a ∈ U(∗X) is in-
ternal if for some standard set B ∈ U(X), a ∈ ∗B.
All other entities in U(∗X) are external.

Internal entities are those in U(∗X) which are ruled by the transfer principle.
More precisely

U(X) � (Qx ∈ a)ϕ ⇐⇒ U(∗X) � (Qx ∈ ∗a)∗ϕ

for Q ∈ {∀, ∃}, a ∈ U(X), and ϕ(x) any LX -formula. Thus, the standard
elements in U(X) and the internal elements in U(∗X) satisfy the same LX -
properties. For this reason, we can use the expressions “internal” or “internally”
to denote nonstandard extensions of standard notions. For example if (xn)n∈IN

is a sequence, it is uniquely extended to an internal sequence (x′
N)N∈∗IN such

that x′
n = xn for all standard n. Moreover if xn → x, then xN � xM � x for all

N, M ∈ IN∞ (this fact will be used in the proof of Theorem 8).
Definition 11 is based on the same natural extension principle.
On the other hand, external entities need not to respect the transfer principle,

and are more difficult to be handled.
By transfer principle, any member of an internal set is internal. Indeed for

all B standard, B ⊆ Un(X) for some n ∈ N. Therefore a ∈ A ∈ ∗B implies
a ∈ ∗

Un+1(X).

Definition 11. Internally computable functions. By “Comp” we denote
the set of all (TTE-)computable functions F :⊆ B → Z, where Z ∈ {B, IN}.

Since ∗Comp and its members are internal, such members (most of them are
nonstandard) are said to be internally computable.

Let (Y1, δ1), (Y0, δ0) ∈ U(X) be represented sets, and let S(Y1, δ1, Y0, δ0) be
the set of all (δ1, δ0)-computable multifunctions f :⊆ Y1 ⇒ Y0. Then any f ∈
∗S(Y1, δ1, Y0, δ0) is said to be internally (δ1, δ0)-computable (this definition is
given coherently also for Y0 enumerated).

Since internal computable functions are internal objects, by transfer principle
they satisfy the translations of all LX -properties satisfied by usual computable
functions. In this way an extension of the notion of (computable) realization
of mathematical functions for the case of internally represented or enumerated
sets is obtained for free. A nonstandard version of the Main Theorem ([15]) is
then given coherently. Further, we can prove the existence of a certain internally
computable (multi)function, if we know that there is a standard (multi)function
doing something similar. On the other hand, we can prove the existence of a

Internal Computability 353

standard computable (multi)function, provided that we know that there is an
internally computable (multi)function that behaves similarly. In this way it is
possible in principle to give (shorter?) nonstandard proofs of the existence of
standard computable functions.

Nevertheless, the fundamental concepts of nonstandard analysis are external:
standard element, limited, unlimited, infinitesimal... Therefore, to provide non-
standard computable versions of classical nonstandard theorems, like is currently
done in computable analysis for classical mathematics, we need to consider the
behavior of internally computable functions on external subsets of their domains.
The idea is then to extend the notion of internal realization to the external sub-
sets in the the following way. Let (Y1, δ1), (Y0, δ0) be represented sets and let
Y ′

1 ⊆ ∗Y1, Y
′
0 ⊆ ∗Y0 be possibly external. An internally computable function

F :⊆ ∗
B → ∗

B will be an internal (δ1, δ0)-representation of a nonstandard
(multi)function f :⊆ Y ′

1 ⇒ Y ′
0 if all ∗δ1-names of any y ∈ dom(f) are mapped

by F to some ∗δ0-name of some z ∈ f{y}. In this case we say that f is inter-
nally (δ1, δ0)-computable. For Y0 enumerable, analogous notions are immediately
obtained.

3.1 Computability Properties of Spillover

We analyze some applications of internal computability to the basic nonstandard
principle of spillover. The following theorem is a fundamental classical result:

Theorem 3. Robinson’s Sequential Lemma. Let (sN)N∈∗IN be an internal
sequence in ∗IR with sn � 0 for all n ∈ IN. There is then M ∈ IN∞ such that
sN � 0 for all N ≤ M .

A proof of this result can be found in [11]. A different proof, which is more
suitable for an “internal effectivization”, has been given in [9]. Obviously, some
adaptations must be made in order to let the hidden computational structure
of the proof appear. Nevertheless, this is enough to let us think that the notion
of internal computability is sometimes actually used in nonstandard analysis,
even if in an intuitive and unexplicit form. This should not be a surprise, since
it simply extends the notion of constructibility to the nonstandard world.

Theorem 4. There is an internally computable multifunction f mapping each
internal sequence (sN)N∈∗IN in ∗IR with sn � 0 for all n ∈ IN to hypernatural
numbers M ∈ IN∞ such that sN � 0 for all N ≤ M .

Proof. For any k ∈ IN, consider the computable function which is described by
the following program:

Stage m ≤ k) If m = k then output k − 1. If m < k, test whether sm < 1
m−1 .

If this is the case, go to the next stage. But if sm > 1
m then output m−1. Choose

a priority rule in case both conditions are satisfied.
By transfer principle there is a similar internally computable function for a

fixed K ∈ N
∞.

We show that the function so defined works for any hypersequence (sN)N∈∗IN

with sn � 0 for all n ∈ IN.

354 G. Gherardi

Notice that for all n ∈ IN: sn < 1
n , 1

n−1 . If the same property holds for all
M ≤ K, then for all such M : sM � 0. Indeed on the one hand, by hypothesis,
sn � 0 for n ∈ IN, and on the other hand 1

M−1 � 0 for M ∈ IN∞. Therefore,
K − 1 is a reliable output.

Otherwise, suppose that there is an M < K −1 such that sM ≥ 1
M−1 or sM ≥

1
M . Thus sM ≥ 1

M anyway. In this case sM is not supposed to be infinitesimal.
Anyway, by transfer principle there is a least M such that sM ≥ 1

M . This means
that for all I < M : sI < 1

I � 0. Therefore M −1 is anyway a suitable output. ��

The adaptations introduced in the proof given in [9] are motivated essentially
by the undecidability of = in IR, and then in ∗IR.

We now consider another example of spillover from the real field (see [8]):

Theorem 5. Let an internal set A ⊆ ∗IR be given. If A has arbitrarily large
limited members, then it has a positive unlimited member.

Classically, this is a direct consequence of the internal Dedekind completeness.
For the internally computational version, we consider only a special case of the
statement, as commonly happens in standard computable analysis: very often
only specific restrictions of a classical result are proved to be computable.

We use the representation ρ> from [15], for which a real number is denoted
by all its strictly larger rational upper bounds.

Theorem 6. There is an internally (ψ−, ρ>)-computable function f mapping
any internal closed set A ⊆ ∗IR with arbitrarily large limited members to a
positive unlimited member in it.

Proof. Consider the following computable function. Fix k ∈ IN. Let then (any
ψ−-name of) any closed set C ⊆ IR be given. Observe that C ∩ [−k, k] = B is
compact, and so max(B) exists. Moreover, the interval [−k, k] is ψ−-computable,
and so we can compute a ψ−-name of B, by Lemmas 5.1.10 and 5.1.13 in [15].

The set B is included in [−k, k], and so by Definition 5.2.1 and Lemma 5.2.6
in [15], we can computably enumerate all α ∈ Q with max(B) < α.

By transfer principle, there is an analogous internally computable function
for any fixed K ∈ IN∞. Let then A ⊆ ∗IR closed and let A ∩ [−K, K] = D.
Then max(D) can be internally computably approximated by its strictly larger
rational upper bounds and it is unlimited, since D contains arbitrarily large
finite elements. ��

3.2 Ross’s Generalization of Bishop-Cheng Theorem

Given a Hausdorff space (Y, Υ), let CK(Y) be the vector space of real continuous
functions on Y with compact support, and C+

K (Y) be the subvector space of the
nonnegative elements of CK(Y).

If f ∈ CK(Y) and g ∈ C+
K (Y), the function f is said to be dominated by g if

g(y) = 1 whenever f(y) �= 0, for all y ∈ Y .
In [13] the following theorem is proved by nonstandard reasoning:

Internal Computability 355

Theorem 7. Let Y be a Hausdorff space. Suppose that T is a nonnegative lin-
ear functional on CK(Y), that (fn)n∈IN is a sequence from C+

K (Y) and that∑∞
n=1 Tfn < Tf0. If f0 is dominated, there exists y ∈ Y with

∑∞
n=1 fn(y) <

f0(y).

This statement generalizes an earlier result of constructive analysis by Bishop
and Cheng ([2]), which was formulated for the case of locally compact metric
spaces. Their original constructive proof is very difficult, and also the relatively
simpler proofs given in [1] and [6] are not trivial to understand. D.A. Ross
has recently provided two very simple nonstandard proofs of the more general
Theorem 7 (a proof for the particular case of compact metric spaces was already
included in [12]). About the second proof he gives, the author states that it is the
kind of argument that a nonstandard analyst might call “constructive modulo
an ultrafilter”, as it does in fact produce (in some sense) a point y. Indeed
the proof uses the extension to nonstandard entities of the principle, acceptable
constructively (see [5]), that if h ∈ CK(Y) and Th < 0, then a y with h(y) < 0
can be produced. This can be considered therefore as a nonstandard constructive
method, and this approach to nonstandard constructiveness is quite close to our
approach to nonstandard computability.

The second proof by Ross is interesting also for our investigation on inter-
nal computability, since it shows implicitly the existence of a certain internally
computable multifunction, for the case of (locally compact) computable metric
spaces (where any function with compact support is dominated and concrete
representations of points are given). We obtain in this way a computable version
of the original Bishop-Cheng Theorem. Some little addition in the proof of Ross
must be made to reveal the hidden internally computable function described, as
one gives evidence to what is computably implicit, but the whole reasoning can
be strictly followed.

Definition 12. For Y = (Y, d, ν) a computable metric space, define the follow-
ing representation δKY of CK(Y):

δKY〈q, r〉 = f ∈ CK(Y) ⇐⇒ δ→
Y,IR

(q) = f ∧ κmc(r) = K

where q, r ∈ B and K is the compact support of f .

When searching for internally computable versions of classical results, one of the
major problems to face is the external nature of the basic notions of nonstandard
analysis (like for example the concept of infinitesimal). As internal objects, the
functions in ∗Comp cannot explicitly separate the external objects from the in-
ternal ones. Therefore some strategies must be adopted, and we “cheat” someway.
In general, we define an internally computable function such that its outputs de-
note objects which satisfy our requirements (for example they are infinitesimals or
standard numbers) but this meaningful interpretation of the outputs is possible
only for “external observers”. We did this in proofs of Theorems 4 or 6. Another
method we suggest, which extends the previous one and may be more widely ap-
plicable, is that of obtaining more redundant outputs, with much useless informa-
tion. For example, an output can be a list of labelled individuals, most of them are

356 G. Gherardi

of no interest for us. Nevertheless, the relevant ones are supposed to be identified
by labels satisfying precise requirements. Such requirements may involve external
notions. Preferably, the labels could have finite length, so that they could (theo-
retically) be interpreted by an external observer in a single step, and the relevant
solutions could be then immediately individuated.

The multifunction described in the following proof outputs lists of individuals,
and uses standard natural numbers to label interesting elements, whereas the
unlimited numbers are used to label irrelevant entities.

Theorem 8. Internally computable Bishop-Cheng Theorem
Let Y = (Y, d, ν) be a locally compact computable metric space, and T a non-
negative linear functional on CK(Y).

There is an internally computable multifunction which outputs internal se-
quences of pairs (y, N) for y ∈ ∗Y and N ∈ ∗IN with the following properties. If
(fn)n∈IN is a sequence from C+

K (Y) such that
∑∞

n=1 Tfn < Tf0, then for all pairs
(y, N) with N standard:

∑∞
n=1 fn(st(y)) < f0(st(y)). Moreover (in each output

sequence) the set of enumerated pairs (y, N) with N standard is nonempty.

Proof. For brevity, for m ∈ N, let:

ϕm(x) =
m∑

n=1

fn(x) − f0(x), ϕ(x) =
∞∑

n=1

fn(x) − f0(x) ,

αm =
m∑

n=1

Tfn − Tf0 α =
∞∑

n=1

Tfn − Tf0 .

Let g dominate f0, and let K be the compact support of f0 (then g = 1 on K).
Fix M ∈ ∗IN∞. By hypothesis

∑∞
n=1 Tfn < Tf0, and so αm → α ∈ R

−. Hence
∗TϕM = αM � α < 0. Therefore for some (standard) ε > 0, ∗TϕM < −εT g,
thus ∗T (ϕM + ε∗g) < 0. By nonnegativity of T there is some y ∈ ∗Y for which
ϕM (y) + ε∗g(y) < 0, thus ϕM (y) < −ε∗g(y). Since all fn are non negative, then
∗f0(y) �= 0, hence ∗g(y) = 1 and ϕM (y) < −ε. In other words, there is y ∈ ∗K
such that

ϕM (y) < − 1
n

for some standard n ∈ IN (1)

and in particular we can let n to be the smallest. Let a δK
Y -name of f0 be

given. By Theorem 3.8 and Proposition 4.2 in [4], in the standard world we can
computably find a dense set A in K (which depends in general on the name of
K). Moreover, by apply function, given any m ∈ IN one can computably check
for each z ∈ A whether there is an n ∈ IN such that ϕm(z) < − 1

n . Suppose that
for some z such n exists; there is then a smallest such n. There is a computable
multifunction that maps z to n or n−1, as it looks computably for some n′ such
that − 1

n′−1 < ϕm(z) < − 1
n′+1 . We enumerate then all such pairs (z, n′) in the

output (where z is coded by a δY-name and n′ can denote itself).
By transfer principle, there is an analogous internal computable function

which executes the test relatively to ϕM , for all points z ∈ ∗A and all − 1
N

with N ∈ ∗IN, and which lists all suitable pairs (z, N).

Internal Computability 357

By transfer principle, without loss of generalization, the y satisfying (1) be-
longs to ∗A. Then either (y, n) or (y, n − 1) are enumerated in the output for a
standard n. We show then that st(y) exists and satisfies the requirements. In-
deed y ∈ ∗A ⊆ ∗K, thus y is near-standard by Robinson’s compactness criterion,
which means that st(y) exists. Therefore, by continuity of ϕm for any standard
m > 0, ϕm(st(y)) � ∗ϕm(y) ≤ ϕM (y) < − 1

n . Let a = st(y). By transfer princi-
ple, for all standard m ∈ IN, U(X) � ϕm(a) < − 1

n . Taking the supremum over
all standard m, U(X) � ϕ(a) ≤ − 1

n < 0. ��

We conclude this preliminary investigation on internal computability with an
observation: nonstandard real numbers can be constructed through equivalence
classes on Cauchy sequences modulo an ultrafilter. In particular, IR and ∗IR have
the same cardinality and a (concrete) representation δ :⊆ B → ∗IR is possible.
Are there meaningful examples of such representations?

References

1. Bishop, E.A., Bridges, B.S.: Constructive Analysis. Springer, Heidelberg (1985)
2. Bishop, E.A., Cheng, H.: Constructive measure theory. Mem. American Mathe-

matical Society. vol. 116 (1972)
3. Brattka, V.: Effective Borel measurability and reducibility of functions. Mathemat-

ical Logic Quarterly. 51, 19–44 (2005)
4. Brattka, V., Presser, G.: Computability on subsets of metric spaces. Theoretical

Computer Science. 305, 43–76 (2003)
5. Bridges, D.S.: Constructive Functional Analysis. Pitman (1979)
6. Chan, Y.K.: A short proof of an existence theorem in constructive measure theory.

Proceedings of the American Mathematical Society. 48, 435–437 (1975)
7. Friedman, H.: 6:Undefinability/Nonstandard Models, http://www.cs.nyu.edu/

pipermail/fom/1997-November/000278.html
8. Goldblatt, R.: Lectures on the Hyperreals. Springer, Berlin-Heidelberg-New York

(1998)
9. Loeb, P.A., Wolff, M. (eds.): Nonstandard Analysis for the Working Mathemati-

cian. Kluwer, Dordrecht-Boston-London (2000)
10. Palmgren, E.: Developements in constructive nonstandard analysis. The Bullettin

of Symbolic Logic 4, 233–273 (1998)
11. Robinson, A.: Non-Standard Analysis. North-Holland, Amsterdam (1966)
12. Ross, D.A.: The constructive content of nonstandard measure existence proof - is

there any? In: Berger, U., Osswald, P., Schuster, P. (eds.) Reunititing the antipodes
- Constructive and Nonstandard Views of the Continuum, pp. 229–239. Kluwer
Academic Publishers, Boston (2001)

13. Ross, D.A.: A nonstandard proof o a lemma from constructive measure theory.
Mathematical Logic Quartely 52, 494–497 (2006)

14. Tanaka, K.: Nonstandard Analysis in WKL0. Mathematical Logic Quarterly vol.
43 (1997)

15. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)

http://www.cs.nyu.edu/pipermail/fom/1997-November/000278.html
http://www.cs.nyu.edu/pipermail/fom/1997-November/000278.html

Post’s Problem for Ordinal Register Machines

Joel D. Hamkins1 and Russell G. Miller2,�

1 Department of Mathematics, College of Staten Island, and Doctoral Program in
Mathematics, The CUNY Graduate Center

2 Department of Mathematics, Queens College, and Doctoral Program in Computer
Science, The CUNY Graduate Center

jhamkins@gc.cuny.edu
Russell.Miller@qc.cuny.edu

Abstract. We study Post’s Problem for the ordinal register machines
defined in [6], showing that its general solution is positive, but that any
set of ordinals solving it must be unbounded in the writable ordinals.
This mirrors the results in [3] for infinite-time Turing machines, and also
provides insight into the different methods required for register machines
and Turing machines in infinite time.

Keywords: computability, ordinal computability, ordinal register ma-
chine, Post’s Problem.

1 Definitions

Ordinal register machines, or ORM’s, are defined and described by Koepke and
Siders in [6]. They generalize the traditional finite-time register machines: the
registers are now allowed to contain any ordinal value, not just natural numbers,
and the program runs through ordinal time, with its state at limit-ordinal stages
determined in a natural way by taking liminf’s of the cells and states at the pre-
ceding stages. Koepke and Siders proved that the sets of ordinals computable by
an ORM, with finitely many ordinal parameters, are precisely the constructible
sets of ordinals, i.e. those lying in Gödel’s constructible universe L.

Since the ordinal register machine programs are finite, they each refer to
only finitely many registers, and the memory used by any ORM algorithm is
correspondingly limited to these fixed finite number of ordinal values at any
time. This contrasts with the situation for the infinite time Turing machines of
Hamkins and Lewis [2] and for the ordinal Turing machines of Koepke [5], where
the algorithms can store information stretching out on an transfinite tape.

The original version of Post’s Problem applied to finite-time Turing machines.
It asked whether there exists a computably enumerable set A which is neither
computable nor complete. That is, it required ∅ <T A <T ∅′, where ∅′ is the
� The authors were partially supported by several grants from the Research Founda-

tion of CUNY. In addition, they are thankful for support provided by the Hausdorff
Center in Mathematics at the University of Bonn in connection with the Bonn In-
ternational Workshop on Ordinal Computability 2007.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 358–367, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Post’s Problem for Ordinal Register Machines 359

jump of the empty set, or equivalently the Halting Problem for finite-time Turing
machines. Post’s Program for solving this problem was to discover a nonvacuous
property of c.e. sets, expressible using only the containment relation ⊆, which
would guarantee that A was incomplete and noncomputable.

Post’s Program was the genesis of the notions of simple, hypersimple, and
hyperhypersimple sets, all of which properties Post originally hoped would ful-
fill his program. In fact, none of these properties implies incompleteness, and
Post did not live to see the solution of the problem that bears his name. Post’s
Program was completed by Harrington and Soare [4] in 1991, but his Problem
was solved much earlier, in 1956 and 1957, with the invention of the finite in-
jury priority method (independently) by Friedberg [1] and Muchnik [8]. A good
description of this method appears in section VII.2 of [10].

The notion of a computably enumerable subset of ω extends naturally to
our context: a set of ordinals is ORM-enumerable, or semidecidable, if it is the
domain (equivalently, the range) of some ORM-computable function. Shortly we
will also define the jump operation for ORM’s. Then we will ask the analogue
of Post’s Problem for sets of ordinals under computation by ORM’s.

An ordinal α is ORM-writable if there is an ordinal register machine which,
on input 0, halts and outputs α. Briefly, ϕe(0) ↓= α for some e ∈ ω. Also,
an ordinal σ is ORM-clockable if some computation ϕe(0) halts after exactly σ
steps. Notice that it is ORM-computable whether σ is clockable, since we can
run all computations ϕe(0) for σ-many steps and check whether any of them
halted after exactly σ steps. On the other hand, the set of writable ordinals is
ORM-enumerable, but not ORM-computable, essentially because a computation
which halts after a very long number of steps could still have a relatively small
ordinal as its output.

We write ϕe,σ(α) ↓ to signify that the program ϕe converges on input α in
fewer than σ steps. This notation is different from the common usage in finite-
time computability theory, where ϕe,s(n)↓ denotes convergence in ≤ s steps; our
way is more appropriate in a context where we must deal with limit ordinals.

The weak jump ∅♦ of the empty set is the set

∅♦ = {e ∈ ω : ϕe(0)↓}.

We have approximations to the weak jump:

∅♦
σ = {e : ϕe,σ(0)↓};

these are nested upwards, and are computable uniformly in σ. Also notice that
σ is clockable iff ∅♦

σ �= ∅♦
σ+1, and that for limit ordinals λ, ∅♦

λ = ∪σ<λ∅♦
σ . (This

would fail if we had kept the finite-time notation for ϕe,λ(α) ↓.) We also have
the strong jump ∅� of ∅ and its computable approximations ∅�

σ :

∅� = {〈e, α〉 : ϕe(α)↓} ⊂ ω × ON ∅�
σ = {〈e, α〉 : ϕe,σ(α)↓}.

The strong jump is the actual halting problem in ORM-computability; the weak
jump, roughly analogous to the jump in finite-time computability, is just the

360 J.D. Hamkins and R.G. Miller

most convenient way to diagonalize and build a noncomputable set. In finite
time, of course, the jump and the halting problem are computably isomorphic,
but in our context this is no longer true; indeed ∅♦ <ORM ∅�, under the standard
definition of oracle computability for ordinal register machines.

The version of the following lemma for infinite time Turing machines was
a significant result, proved by Philip Welch in [11], but in the ordinal register
machine context we may observe it easily.

Lemma 1. For ordinal register machines, the supremum γ of the clockable or-
dinals equals the supremum λ of the writable ordinals.

Proof. Every clockable ordinal α is writable: just run the computation ϕp(0)
which halts after α steps, adjusting the machine so that at each step, it incre-
ments the ordinal in a new step register. When ϕp(0) halts, transfer the contents
of the step register to the output register and then halt. Thus γ ≤ λ. Conversely,
if α = ϕq(0) is writable, then ϕq(0) takes at least α-many steps to halt, since
after β steps, no register can contain any ordinal > β. Hence λ ≤ γ. �

2 Post’s Problem

Now we begin to consider Post’s Problem. First we ask whether there exist
relatively simple ORM-enumerable sets (subsets of ω, for instance) which are
noncomputable and incomplete. The answer is no.

Theorem 1. No subset C ⊆ ω satisfies ∅ <ORM C <ORM ∅♦. Indeed, the same
holds for subsets C ⊆ ρ, for any writable ordinal ρ.

Proof. Consider a set C ⊆ ρ with ∅ ≤ORM C ≤ORM ∅♦ and ρ writable. This
part of the proof is similar to that of Theorem 2.1 in [3], the corresponding result
for infinite-time Turing machines.

Recall that ∅♦
σ = {e ∈ ω : ϕe,σ(0)↓}. This is a computable enumeration of the

semidecidable set ∅♦. By assumption there is a program q such that ϕ∅♦
q com-

putes the characteristic function of C. This gives us a computable approximation
to C:

Cσ = {β < ρ : (∃δ ≥ σ)[ϕ∅♦
σ

q,δ(β)↓= 1 & (∀θ)[σ < θ ≤ δ =⇒ ∅♦
σ = ∅♦

θ]]}.

Since ϕ∅♦
q is the characteristic function of C, it must be total. Indeed, since

∅♦
γ = ∅♦, we must have Cσ = C for all σ ≥ γ. Therefore we can compute,

uniformly in β and σ, whether β ∈ Cσ: having written ρ and checked that
β < ρ, just run ϕ

∅♦
σ

q (β) until we reach a stage δ ≥ σ such that either ∅♦
δ �= ∅♦

σ

(so β /∈ Cσ) or ϕ
∅♦

σ

q,δ(β) ↓. If we find that this computation halts and outputs 1,
before the approximation to ∅♦ changes, then β ∈ Cσ; if it outputs a different
value, then β /∈ Cσ. (In finite-time computability, the analogous process is the
construction of a computable approximation to an arbitrary set ≤T ∅′.)

Post’s Problem for Ordinal Register Machines 361

Lemma 2. With this approximation, if Cσ �= Cσ+1, then σ+1 is clockable (and
hence σ is writable).

Proof. If ∅♦
σ �= ∅♦

σ+1, then some computation ϕe(0) converged in (σ + 1)-many
steps, so (σ + 1) is clockable. Otherwise, the definition of Cσ shows that Cσ =
Cσ+1, as follows. To check whether some β < ρ lies in Cσ , we find the least δ ≥ σ

for which either ∅♦
σ �= ∅♦

δ , or ϕ
∅♦

σ

q,δ(β)↓. If δ ≥ σ+1, then we find the same δ when

checking whether β ∈ Cσ+1, so the answer is the same. If δ = σ, then ϕ
∅♦

σ
q,σ(β)↓,

and hence ϕ
∅♦

σ+1
q,σ+1(β)↓= ϕ

∅♦
σ

q,σ(β) as well, since the oracle has not changed. �

We now consider two cases. First, if there exists some β < γ(= λ) such that
Cβ = C, then C is ORM-computable. To compute C, we run some fixed program
ϕp(0) which writes the least writable ordinal δ ≥ β and then computes Cδ. By
Lemma 2, Cσ = Cβ = C for every σ with β ≤ σ < δ. But then ∅♦

δ = ∅♦
β as well,

since ∅♦
δ contains those programs which halt before stage δ, and so the definition

of Cσ shows that Cδ = Cβ = C. Hence we have computed C.
Otherwise there is no such β, and in this case ∅♦ ≤ORM C, since with a C-

oracle we can search for the least σ such that Cσ = C. (Here we need to know
that C is contained in ρ, as assumed by the theorem. We can write ρ, and then
to verify that C = Cσ, we need only check that all α < ρ lie in C iff they lie in
Cσ.) But by assumption, the σ we find is ≥ γ (in fact precisely γ), and when we
find it, we write it on the output tape and halt. Thus γ is C-writable, and with
γ it is easy to compute ∅♦. �

So Post’s Problem has a negative solution when we restrict to sets C such that
the supremum of C is writable. This is a large class of sets: it includes every
non-cofinal subset of γ. However, without this restriction, the same problem has
a positive solution. We prove this by a construction in the style of Friedberg and
Muchnik. First we give a necessary lemma.

Lemma 3 (Reflection Lemma for ORM’s). Suppose that ϕA
e (x)↓= 0, where

x is a writable ordinal and A is a semidecidable set of ordinals, with ORM-
computable enumeration 〈Aσ〉 such that Aγ = A. (This means that Aσ ⊆ Aτ for
all σ < τ , that Aβ = ∪σ<βAσ for limit ordinals β, and that there is a computable
function f(α, σ) with value 1 if α ∈ Aσ and 0 if not.) Assume also that every
σ with Aσ �= Aσ+1 is clockable. Then for every β less than the supremum γ
of the clockable ordinals, there exists a clockable limit ordinal τ > β such that
ϕAτ

e,τ (x)↓= 0.

The same would hold if we replaced “clockable” by “writable” throughout the
last paragraph. However, clockability will be the property we need.

Proof. Our proof mirrors that of the Reflection Lemma for infinite-time Turing
machines (Lemma 4.3 in [3]). Consider the algorithm which, on input 0, writes
x and then searches and outputs the least nonclockable ordinal σ > β such that
ϕAσ

e,σ(x)↓= 0.

362 J.D. Hamkins and R.G. Miller

Now Aγ = A, and since ϕA
e (x) ↓= 0, there are plenty of ordinals σ > γ > β

for which ϕAσ
e,σ(x)↓= 0. But our algorithm runs on input 0 with no oracle, so its

own halting time is clockable and greater than its output. Therefore there must
exist a nonclockable stage σ between β and γ such that ϕAσ

e,σ(x) ↓= 0. Let τ be
the least clockable ordinal > σ. Then τ is a limit ordinal and Aσ = Aτ , by our
condition on changes to the enumeration of A, so this τ satisfies the lemma. �

Theorem 2. There exist ORM-incomparable enumerable sets A and B of ordi-
nals. It follows that ∅ <ORM A <ORM ∅♦(<ORM ∅�), and likewise for B.

Proof. We build the ORM-enumerable sets A and B as follows, to satisfy the
usual Friedberg-Muchnik requirements for all e ∈ ω:

Re : (∃xe)[ϕA
e (xe)↓= 0 iff xe ∈ B] Se : (∃ye)[ϕB

e (ye)↓= 0 iff ye ∈ A].

These have the standard priority ranking: each Re has higher priority than Se,
which has higher priority than Re+1. At each stage σ we will have an approxi-
mation xe,σ to xe, which converges to xe as σ grows, and similarly for ye.

Set A0 = B0 = ∅, and start with approximation xe,0 = ye,0 = e to the witness
elements xe and ye. We will redefine xe,σ+1 �= xe,σ at only finitely many stages
σ, namely those stages at which S-requirements of higher priority than Re act,
and the same holds symmetrically for ye,σ.

If τ is a limit ordinal, define Aτ = ∪σ<τAσ, with xe,τ = limσ→τ xe,σ , and
similarly for Bτ and ye,τ . (Notice that each xe,σ is eventually constant as σ
approaches τ , so these limits exist.)

For successor ordinals τ = σ+1, if σ is either unclockable or a successor ordinal
itself, then we preserve the settings at stage σ + 1: Aσ+1 = Aσ, xe,σ+1 = xe,σ ,
and so on. Only if σ is a clockable limit ordinal do we act at the successor stage
σ + 1, as follows.

At such a stage σ + 1, we fix the highest-priority requirement, say Re, which
requires attention, by which we mean that Re is not yet satisfied and xe,σ ≤ σ
and ϕAσ

e,σ(xe,σ) ↓= 0. We act by enumerating xe,σ into Bσ+1, with Aσ+1 = Aσ.
We then set xi,σ+1 = xi,σ for all i ∈ ω, and yi,σ+1 = yi,σ for all i < e. The
lower-priority S-requirements are injured at this stage, for we redefine

ye+j,σ+1 = ye+j,σ + (xe,σ + σ) + j + 1

for each j ∈ ω. Notice that since xe,σ ≤ σ, we will have Bσ+1 ⊆ (σ + 1) (by
induction on the preceding stages). If there is no requirement Re which requires
attention at stage σ + 1, then we preserve all settings from stage σ.

If the highest-priority requirement requiring attention at stage σ + 1 is an S-
requirement, say Se, we simply interchange A with B and the x-witnesses with
the y-witnesses in the above paragraph. At this stage, we preserve yi,σ+1 = yi,σ

for all i, and xi,σ+1 = xi,σ for all i ≤ e, with

xe+j,σ+1 = xe+j,σ + (ye,σ + σ) + j

for each j > 0 in ω, but not for j = 0. This reflects the fact that Re has higher
priority than Se. Otherwise, the entire process is symmetric in A and B.

Post’s Problem for Ordinal Register Machines 363

The point of the redefinition of the y-elements when we satisfy Re is that
since the computation ϕAσ

e (xe,σ) = 0 converged in ≤ σ steps, the only oracle
questions it can have asked involved membership of ordinals ≤ xe,σ + σ in the
oracle set. The elements which may later enter A are the witness elements yi,ρ

at stages ρ > σ. By redefining ye+j,σ+1 > xe,σ + σ for all j ≥ 0 at stage σ + 1,
we ensure that any of these elements that later enters A will not change the
oracle computation ϕA

e (xe,σ) = 0, since the computation cannot have asked
whether such large elements were in A. (It is possible for ye+j,ρ to be redefined
yet again at a stage ρ + 1 > σ + 1, but our formula also ensures that it is
always redefined to be larger than it had been before.) Of course, if a higher-
priority y-witness element later enters A, it could change this computation, but
the usual finite-injury argument shows that eventually we will reach a stage
after which no higher-priority requirement acts again. So, using induction on
the requirements according to their priority, we see that for every e, the witness
elements xe = limσ xe,σ and ye = limσ ye,σ exist, and that if xe ∈ B, then
ϕA

e (xe)↓= 0, and symmetrically.
A further argument is necessary for the converse, using the Reflection Lemma

3. The point of restricting our construction to clockable stages was to ensure
that every witness element xe,σ and ye,σ at every stage is a writable ordinal,
i.e. equal to ϕp(0) for some program p. The clockable limit stages were chosen
precisely because, being clockable, they were writable, as are their successors
and the stage 0. (Also, clockability is easier to check than writability!) Then,
if we redefined any xi,σ+1 at stage σ + 1, we set it equal to a sum of writable
ordinals, and similarly for ye,σ+1. So, by induction on stages, all witness elements
are writable, and thus all elements of A and B are writable. But we can write
the stage at which a writable ordinal enters a semidecidable set, so Aγ = A and
Bγ = B, as required by the Reflection Lemma.

Now suppose that xe never entered B. Then for all sufficiently large clockable
limit ordinals δ, ϕAδ

e,δ(xe) either diverges or converges to a nonzero value, so by
the Reflection Lemma, the full computation ϕA

e (xe) cannot converge to 0. Thus
again xe witnesses that ϕA

e �= B, so B �≤ORM A. A symmetric result holds for
ye, so A and B are ORM-incomparable sets.

We have called this process a construction, and indeed it enumerated elements
into A and B, without ever removing them. Nevertheless, it remains to show that
A and B are actually ORM-enumerable, of course, since the description above
did not use ORM’s. The heart of the proof of Theorem 2 is the following lemma.

Lemma 4. There exists an ORM which decides, for arbitrary ordinal inputs α
and σ, whether α ∈ Aσ+1 − Aσ; and similarly for B. We refer to the algorithms
for these machines as the entry algorithms for A and B.

Proof. We use an ordinal stack machine, which is a special type of ordinal register
machine. In an ordinal stack machine, along with finitely many registers, we have
finitely many stacks, each of which (at any single stage of operation) consists
of a descending (hence finite) sequence of ordinals. We can push a new ordinal
from a register onto one of these stacks, provided that it is strictly less than all

364 J.D. Hamkins and R.G. Miller

ordinals currently on the stack; and we can pop the smallest ordinal off of any
stack and transfer it to a register, where it can be compared to the contents of
other registers, etc., by the usual register operations. In [6], Koepke and Siders
use the Cantor normal form of an ordinal to prove that the functions on ordinals
computable by ordinal stack machines are precisely those computable by regular
ORM’s, so we may prove our lemma by giving two stack-machine programs (one
for A, one for B) which answer the question for arbitrary α and σ.

Our stack machine accepts the inputs α and σ. It immediately pushes σ on
top of its stage stack, and pushes the ordinal (ωσ + α) on top of its input stack.
These will stay on these stacks for the rest of the operation of this machine, but
occasionally the entry algorithm will call itself and push smaller ordinals above
them, which are then popped off the stack when the subroutine ends. Of course,
we have access to the value σ from the top of the stage stack any time we need it,
and from the two stacks together we can also compute the value of α whenever
we need it.

The reason for not simply pushing α onto the input stack is that the entry
algorithm may later call itself, with inputs τ and β. We will ensure that τ < σ,
but we may have to allow β ≥ α, in which case we could not push β onto a stack
above α. However, pushing ωτ + β onto the stack above ωσ + α will be legal,
because we will always have β < σ.

We give the details for the entry algorithm which decides whether α entered
B at stage σ + 1. The entry algorithm for A is quite similar, of course, and in
fact is used by the algorithm for B. Given α and σ, we execute the following steps.

1. If α ≥ σ, or if σ is not a clockable limit stage, then output 0. Otherwise, go
on. (In our construction, a witness element α only enters B at successors of
clockable limit stages > α. These properties are indeed ORM-decidable.)

2. For each e < ω, check whether xe,σ = α. If such an e exists, then go on to
Step 3. Notice that if e exists, then it is unique, and we can always use it in
subsequent steps by using this same process to search for it again. If no such
e exists, output 0. (Only witness elements for R-requirements ever enter B.
We prove in Lemma 5 that we can compute xe,σ uniformly from e and σ.)

3. With the e from the previous step, we now simulate the operation of the
program ϕe on input α with oracle Aσ for σ steps. Of course, we have no
Aσ-oracle, so whenever our simulation asks whether some β < σ lies in Aσ,
we simply use the entry algorithm to check (for all τ with 0 ≤ τ < σ,
starting with 0) whether β entered A at stage τ . Notice that this is allowed
by our stack machine, since each such τ and β is strictly less than σ, even
though the β might be > α. (The construction ensured that Aσ ⊆ σ, so if the
simulation asks whether some β ≥ σ lies in Aσ, we answer “no” immediately,
without using the entry algorithm to check.) Thus we can determine whether
ϕAσ

e,σ(α)↓= 0. If not, output 0; if so, go on.
4. Now run the entry algorithm with α and with each stage τ < σ, to see if

α ∈ Bσ. If so, output 0, since α /∈ Bσ+1 − Bσ. If not, go on.
5. Now compute xi,σ for each i < e, and run the entry algorithm with each such

xi,σ and with stage σ to determine whether any higher-priority requirement

Post’s Problem for Ordinal Register Machines 365

than Re enumerated any element into B at stage σ + 1. For this we do not
push σ onto the stage stack, because to do so would be illegal. Nor do we
pop it off that stack at the end, because we want it to stay there until the
end of the run of the entry algorithm on α and σ. However, we do push
(ωσ + xi,σ) onto the input stack, which is legal since xi,σ < xe,σ for i < e,
and take it off again when we move on to the next i. If we find any such xi,σ

which entered B at stage σ + 1, then output 0.
Also, we compute yi,σ for each i < e and use the entry algorithm for A to

determine whether any such yi,σ entered A at stage σ + 1. Here we must be
careful, because this run of the entry algorithm for B might have been called
by the entry algorithm for A. So we check the top (i.e. smallest) element of
the stage stack from the entry algorithm for A. If that element equals σ,
then we leave it there, and just push ωσ + yi,σ onto the input stack, which
is safe, because if the entry algorithm for A was already running and needed
to know about xe,σ entering B, it must have been asking about an element
yj,σ with j ≥ e > i, so that ωσ + yj,σ > ωσ + yi,σ.

When the entry algorithm for A concludes, we find σ on top of its stage
stack and consider the top two elements, say β < δ, on its input stack. (If
there is only one element β on the input stack, then we pop β off its stack and
σ off its stack, leaving nothing on either stack.) Now β must equal ωσ + yi,σ.
Then we pop δ off the input stack and find the largest term of its Cantor
normal form, say δ = ωτ + θ for some τ and θ. If τ = σ, then we leave δ
on top of the input stack and σ on top of the stage stack. If τ �= σ, then we
leave δ on top of the input stack, but remove σ from the stage stack. Thus,
even though we left no specific indicator, when calling the entry algorithm
for A, of whether we had added a new σ on top of the stage stack or not,
we have still determined at the conclusion of that algorithm whether or not
a new σ had been added, and if it had, then we have now removed it again.

Having completed the entry algorithm for A, we now know whether any
xi,σ with i < e entered A at stage σ + 1. If so, then output 0; if not, then
output 1. This completes the entry algorithm for B.
(If any higher-priority requirement Ri or Si enumerated an element into B
at stage σ + 1, then Re would not enumerate an element of its own. If not,
then all conditions are satisfied for α = ye,σ to enter B at stage σ + 1.)

We define an analogous entry algorithm to check whether an arbitrary α
entered A at an arbitrary stage σ + 1, of course. Indeed, these two algorithms
call each other in certain cases, as detailed in Item 5. Because Re has higher
priority than Se, the entry algorithm for A must check in Item 5 whether any
xi,σ with i ≤ e entered B at stage σ + 1, rather than just checking for i < e.
Otherwise, the entry algorithms are symmetric in A and B.

Both entry algorithms are computable by stack machines, and the proof that
they give the correct answer is a fairly simple double induction, first on stages
σ, and for each individual stage, on inputs α < σ. The one twist to be noted is
that we promised a separate algorithm to compute xe,σ for arbitrary e and σ;

366 J.D. Hamkins and R.G. Miller

and since this algorithm is used in the entry algorithm, it can only call the entry
algorithm for smaller stages.

Lemma 5. There are ORM’s which compute xe,σ and ye,σ, uniformly in e and
σ, We refer to their programs as the witness algorithms for A and B. These
ORM’s use the entry algorithm from Lemma 4, but they only push stages < σ
onto the stage stack. (That is, they only ask whether elements entered A or B
at stages τ + 1 with τ < σ.)

Proof. The witness algorithm is allowed to call itself, but only with descending
stages, just like the entry algorithms. To compute ye,σ, we start with e = ye,0

in the output register of a stack machine. Then go through all stages τ with
τ +1 ≤ σ. At each such τ , we use the witness algorithm to compute x0,τ , . . . , xe,τ

and then the entry algorithm to check whether any β = xi,τ with i ≤ e entered
B at stage τ + 1. If so, then ye,τ+1 will have been redefined to equal ye,τ + β +
τ + (e − i) + 1, so we write this new value in the output register in place of ye,τ .
Otherwise we leave the output register as it is. When τ + 1 is finally ≥ σ, the
value in the output register will be ye,σ.

Notice that the corresponding routine for computing xe,σ asks only about
elements yi,τ with i < e. This mirrors the priority ranking of the requirements,
and is important for seeing that the inductive argument for correctness of this
algorithm is well-founded. This proves Lemma 5, and also Lemma 4. �

With Lemma 4, it is clear that the sets A and B are ORM-enumerable. A, for
instance, is the domain of the ORM-computable function which, on input α,
starts with σ = 0, asks for each σ in turn whether α enters A at stage σ + 1,
and halts, putting α in the domain, if it ever receives a positive answer.

ORM-enumerability immediately implies that A ≤ORM ∅�, but we promised
that A ≤T ∅♦. Given any ordinal x, we check first whether x is clockable. If not,
then x /∈ A. Otherwise, there is an ORM program q which writes x and then
gives x as an input to the ORM-computable function whose domain is A. We
can compute this q uniformly from x, and x ∈ A iff q ∈ ∅♦. The same proof
works for B, so we have a pair of ORM-incomparable semidecidable sets below
∅♦, as Theorem 2 claimed. �

3 Softer Proofs of the Result

In the preceding argument, in order to show that A and B are ORM-enumerable,
we provided a detailed ORM procedure for deciding the entry algorithms for the
sets A and B. We are pleased to have done so, and we believe that the procedure
helps illustrate several useful techniques of ORM computation. Nevertheless, this
part of the argument can be completely eliminated by making use of the main
theorem of [6]. The structure of our previous argument was first to provide a
set-theoretical definition of the sets A and B in terms of their approximations Aσ

and Bσ, which ensured that A and B would be ORM-incomparable, and then to
provide a detailed ORM algorithm to decide the entry problems α ∈ Aσ+1 − Aσ

Post’s Problem for Ordinal Register Machines 367

and α ∈ Bσ+1 − Bσ, which ensured that A and B would be ORM-enumerable.
The point we would like to make now is that once we have given the initial set-
theoretic construction of the sets Aσ and Bσ, we can simply observe that this
construction can be carried out inside Gödel’s constructible universe L, in such
a way that the construction is absolute to initial segments of L. That is, if some
level of the constructibility hierarchy Lη satisfies that an ordinal α has entered A
at stage σ, then this is truly the case. Therefore, in order to determine whether
or not α enters A at stage σ, we need only search for an ordinal η such that Lη

satisfies the set-theoretical assertion “α enters A at stage σ”. But the question of
whether Lη satisfies a given set-theoretical assertion ϕ(α, σ) is uniformly ORM-
decidable from input (η, α, σ, �ϕ�), by the main result of [6]. Consequently, both
A and B are ORM-enumerable, as desired.

In addition, we would like to mention that an even softer argument can be
made by appealing to the Sacks-Simpson [9] solution of Post’s problem in α-
recursion theory. It has been observed by Koepke, after the Bonn International
Workshop on Ordinal Computability 2007, that for any admissible ordinal α, the
subsets of α that are computable in α-recursion theory are exactly the sets that
are ORM-computable in time less than α. Using the admissible ordinal γ, the
supremum of the ORM-clockable ordinals, one may now transfer the solution of
Post’s problem from γ-recursion theory over to ordinal register machines. Koepke
provides the details of this idea in [7] in the case of ordinal Turing machines,
but explains how this argument also applies to ordinal register machines.

References

1. Friedberg, R.M.: Two recursively enumerable sets of incomparable degrees of un-
solvability. In: Proc. Nat. Acad. Sci (USA) vol. 43, pp. 236–238 (1957)

2. Hamkins, J.D., Lewis, A.: Infinite-time Turing machines. Journal of Symbolic
Logic 65(2), 567–604 (2000)

3. Hamkins, J.D., Lewis, A.: Post’s problem for supertasks has both positive and
negative solutions. Arch. Math. Logic 41, 507–523 (2002)

4. Harrington, L., Soare, R.I.: Post’s Program and Incomplete Recursively Enumer-
able Sets. In: Proc. Nat. Acad. Sci (USA) vol. 88, pp. 10242–10246 (1991)

5. Koepke, P.: Turing computations on ordinals. Bulletin of Symbolic Logic 11(3),
377–397 (2005)

6. Koepke, P., Bissell-Siders, R.: Ordinal Register Machines (to appear)
7. Koepke, P.: α-Recursion theory and ordinal computability, electronic manuscript
8. Muchnik, A.A.: On the Unsolvability of the Problem of Reducibility in the Theory

of Algorithms. Dokl. Akad. Nauk SSSR, N.S (Russian) 109, 194–197 (1956)
9. Sacks, G.E., Simpson, S.G.: The α-finite injury method. Annals of Mathematical

Logic 4, 343–367 (1972)
10. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, New York (1987)
11. Welch, P.: The lengths of infinite time Turing machine computations. Bulletin of

the London Mathematical Society 32(2), 129–136 (2000)

Unique Existence and Computability in

Constructive Reverse Mathematics

Hajime Ishihara

School of Information Science
Japan Advanced Institute of Science and Technology

Nomi, Ishikawa 923-1292, Japan
ishihara@jaist.ac.jp

Abstract. We introduce, and show the equivalences among, relativized
versions of Brouwer’s fan theorem for detachable bars (FAN), weak König
lemma with a uniqueness hypothesis (WKL!), and the longest path
lemma with a uniqueness hypothesis (LPL!) in the spirit of constructive
reverse mathematics. We prove that a computable version of minimum
principle: if f is a real valued computable uniformly continuous function
with at most one minimum on {0, 1}N, then there exists a computable
α in {0, 1}N such that f(α) = inf f({0, 1}N), is equivalent to some com-
putably relativized version of FAN, WKL! and LPL!.

Keywords: unique existence, computability, Brouwer’s fan theorem,
weak König lemma, constructive mathematics, reverse mathematics.

1 Introduction

The purpose of constructive reverse mathematics [8] is to classify various theo-
rems in intuitionistic, constructive recursive and classical mathematics by logical
principles, function existence axioms and their combinations. Classifying math-
ematical theorems means finding logical principles and/or function existence
axioms which are not only sufficient but also necessary to prove the theorems in
a weak system. An informal approach [9] to constructive reverse mathematics,
that is reverse mathematics in Bishop’s constructive mathematics [3,4,6], seems
to have started in Julian and Richman [11] proving that Brouwer’s fan theorem
for detachable bars is equivalent to a positivity property: every positively valued
uniformly continuous function on [0, 1] has a positive infimum. (See Veldman
[21] and others [16] for a similar program of intuitionistic reverse mathematics.)

Ishihara [7] showed in the context of constructive reverse mathematics that
the statement

MIN: every real valued uniformly continuous function f on a compact metric
space X attains its infimum, that is, there exists an x in X such that f(x) =
inf f(X),

is equivalent to weak König’s lemma

WKL: every infinite binary tree has an infinite path.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 368–377, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Unique Existence and Computability in Constructive Reverse Mathematics 369

(The corresponding result in Friedman-Simpson program of (classical) reverse
mathematics can be found in Simpson [19, IV.2].) Here a binary tree T is an
inhabited subset of the set {0, 1}∗ of finite binary sequences such that it is
detachable in the sense that there exists a characteristic function χT of T (and
hence ∀a ∈ {0, 1}∗(a ∈ T∨a �∈ T), which does not hold constructively in general),
and downward closed with respect to the predecessor relation � defined, using
the concatenation function ∗, by a � b := ∃c ∈ {0, 1}∗(a ∗ c = b). A binary tree
T is infinite if for each n there is a in T with |a| = n, where |a| denotes the
length of a, and a binary sequence α ∈ {0, 1}N is an infinite path of T if each
finite initial segment αn := (α(0), . . . , α(n − 1)) of α is in T . (We will use a
similar notation for a finite sequence a = (a0, . . . , am−1), that is, an stands for
(a0, . . . , an−1) if n ≤ m, and a otherwise.)

A real valued function f on a metric space X has at most one minimum if

∀x, y ∈ X [x �= y → ∃z ∈ X(f(z) < f(x) ∨ f(z) < f(y)].

Note that if m := inf f(X) exists, the above condition is equivalent to the
following condition in Berger et al. [1]:

∀x, y ∈ X [x �= y → m < f(x) ∨ m < f(y)],

and that the real valued function f : y �→ d(x, y) on an inhabited subset S of a
metric space (X, d) has at most one minimum if and only if x has at most one
best approximation in S in the sense of Bridges [5] (see also [4, 7.2.11] and [1]).
Berger et al. [1] showed that MIN with the uniqueness hypothesis

MIN!: every real valued uniformly continuous function with at most one mini-
mum on a compact metric space attains its infimum

is equivalent to Brouwer’s fan theorem for detachable bars

FAN: every detachable bar is uniform.

Here a bar B is a subset of {0, 1}∗ such that for each α in {0, 1}N there exists n
with αn ∈ B, and B is uniform if there exists n such that ∃k ≤ n(αk ∈ B) for
all α ∈ {0, 1}N. As a corollary of the above results, we can see the implication
from WKL to FAN, which was first proved indirectly in [7], and then directly in
[10].

A binary tree T has at most one path if

∀α, β ∈ {0, 1}N[α �= β → ∃n(αn �∈ T ∨ βn �∈ T)].

Berger and Ishihara [2] showed indirectly that the equivalence between FAN and
WKL with the uniqueness hypothesis

WKL!: every infinite binary tree with at most one path has an infinite path.

370 H. Ishihara

A nice direct proof of the equivalence between FAN and WKL! can be found in
Schwichtenberg [18]. Schuster [17] dealt with unique solutions in the context of
constructive reverse mathematics.

In this paper, we introduce relativized versions of FAN, WKL! and the longest
path lemma with the uniqueness hypothesis

LPL!: every binary tree with at most one path has a longest path,

where a longest path of a binary tree T is an infinite binary sequence such that
∀a ∈ {0, 1}∗(a ∈ T → α|a| ∈ T), and prove the equivalences among them in the
spirit of constructive reverse mathematics. (Note that the equivalence between
WKL and the longest path lemma

LPL: every binary tree has a longest path

was proved in [10].) Then we show that the following computable version of MIN!
for the Cantor space {0, 1}N:

if f is a real valued computable uniformly continuous function with at
most one minimum on the Cantor space {0, 1}N, then there exists a
computable α in {0, 1}N such that f(α) = inf f({0, 1}N)

is equivalent to some (classically true) computably relativized versions of FAN,
WKL!, and LPL!. Note that finding a zero of a real valued function g on {0, 1}N

with inf |g({0, 1}N)| = 0 is reducible to MIN, and hence this result is related to
the results in 6.3, especially Corollary 6.3.5, of [22].

2 Relativized Versions of FAN, WKL! and LPL!

Let C be a subset of NN. Then α ∈ NN is computable in C if there exist an
index e and β ∈ C such that

∀n∃z[T (e, β, n, z) ∧ U(z) = α(n)],

where T is Kleene’s T -predicate and U is the result-extracting function in [20,
3.7.6], and α is computable if it is computable in {λx.0}. We say that C is
computably closed if every α ∈ NN computable in C is in C. Let Rec be the
smallest computably closed inhabited subset of {0, 1}N, that is, consisting of all
computable α ∈ {0, 1}N.

A subset B of {0, 1}N is full if {0, 1}∗ ⊆ {αn | α ∈ B ∧ n ∈ N}. Note that
every computably closed inhabited subset of {0, 1}N is full.

Let B be a full subset of {0, 1}N. Then a detachable subset B of {0, 1}∗ is a
bar in B if for each α in B there exists n with αn ∈ B. Similarly, we may say a
uniform bar B in B if there exists n such that ∃k ≤ n(αk ∈ B) for all α ∈ B.
But, if a bar B is uniform in B, then, since B is full, we have

(∗) ∃n∀a ∈ {0, 1}∗[|a| = n → ∃k ≤ n(ak ∈ B)].

Unique Existence and Computability in Constructive Reverse Mathematics 371

Conversely, if (∗) holds, then B is uniform in any full subset of {0, 1}N. Therefore,
the notion of the uniformity on bars is independent of an underlying full set, and
so we adopt (∗) as the definition of the uniformity.

Let B and D be subset of {0, 1}N such that B is full. Then we have the
following relativized version of Brouwer’s fan theorem for detachable bars.

FAND(B): Every D-bar in B is uniform,

where D-bar is a detachable bar whose characteristic function is in D (here we
assume a coding of finite binary sequences into natural numbers). Similarly, we
will say D-tree for a binary tree whose characteristic function is in D. Note that
Kleene [12,13] showed that FANRec(Rec) is refutable (see also [20, 4.7.6]).

A binary tree T has at most one path in B if

∀α, β ∈ B[α �= β →∃n(αn �∈ T ∨ βn �∈ T)].

Similar to FAN, we have the following relativized version of WKL! and LPL!.

WKL!D(B): Every infinite D-tree with at most one path in B has an infinite
path in B.

LPL!D(B): Every D-tree with at most one path in B has a longest path in B.

Before discussing relations among FAND(B), WKL!D(B) and LPL!D(B), we
introduce a notion of uniformly having at most one path, which is similar to the
notion of having uniformly at most one minimum introduced in [17] for non-
negative functions; see also [14] and [15, 4.1]. A binary tree T has uniformly at
most one path if

(∗∗) ∀k∃n ≥ k∀a, b ∈ {0, 1}∗[|a| = |b| = n ∧ ak �= bk → a �∈ T ∨ b �∈ T].

Again, we may define this notion relative to a full subset B of {0, 1}N: a binary
tree T has uniformly at most one path in B if

∀k∃n ≥ k∀α, β ∈ B[αk �= βk → αn �∈ T ∨ βn �∈ T].

But we can see that if a binary tree T has uniformly at most one path in some
full set, then (∗∗) holds, and if (∗∗) holds, then T has uniformly at most one
path in any full set. Hence this notion is independent of an underlying full set.

We show the following proposition in a similar way to [18].

Proposition 1. Let B and D be computably closed inhabited subsets of {0, 1}N,
and assume FAND(B). Then every D-tree with at most one path in B has uni-
formly at most one path.

Proof. Let T be a D-tree with at most one path in B. Then

∀α, β ∈ B[∃k(αk �= βk)→∃n(αn �∈ T ∨ βn �∈ T)],

and hence
∀k∀α, β ∈ B[αk �= βk → ∃n(αn �∈ T ∨ βn �∈ T)].

372 H. Ishihara

Therefore, for given k, we have

∀α, β ∈ B∃n[αk �= βk →αn �∈ T ∨ βn �∈ T],

and so, since T is downward closed, we have

∀α, β ∈ B∃n ≥ k[αnk �= βnk → αn �∈ T ∨ βn �∈ T].

For α ∈ {0, 1}N, let Eα(n) := α(2n) and Oα(n) := α(2n + 1). Then, since B is
computably closed, if α ∈ B, then Eα, Oα ∈ B, and hence

∀α ∈ B∃n ≥ k[Eαnk �= Oαnk →Eαn �∈ T ∨ Oαn �∈ T].

For a = (a0, a1, . . . , an−1) ∈ {0, 1}∗, let E(a) := (a0, . . . , a2m−2) and O(a) :=
(a1, . . . , a2m−1), where m = �n/2�. Note that Eαn = E(α(2n)) and Oαn =
O(α(2n)). Then we have

∀α ∈ B∃n ≥ k[E(α(2n))k �= O(α(2n))k →E(α(2n)) �∈ T ∨ O(α(2n)) �∈ T].

Let
a ∈ B := 2k ≤ |a| ∧ [E(a)k �= O(a)k →E(a) �∈ T ∨ O(a) �∈ T].

Then, since D is computably closed, the characteristic function of B is in D, and
∀α ∈ B∃n(α(2n) ∈ B), that is B is a bar in B. By FAND(B), there exists m such
that

∀a ∈ {0, 1}∗[|a| = m →∃j ≤ m(aj ∈ B)].

Choose n such that m ≤ 2n. Then, taking 0m := (0, . . . , 0) with |0m| = m, there
exists j ≤ m such that 0mj ∈ B, and hence 2k ≤ |0mj| = j ≤ m ≤ 2n. Thus
k ≤ n. Let a = (a0, . . . , an−1) and b = (b0, . . . , bn−1) be in {0, 1}∗ with ak �= bk.
Then, setting c := (a0, b0, . . . , an−1, bn−1), we have m ≤ 2n = |c|, and there
exists j with j ≤ m such that cmj = cj ∈ B. Since 2k ≤ j ≤ m ≤ 2n, we have
E(cj)k = ak �= bk = O(cj)k, and hence either E(cj) �∈ T or O(cj) �∈ T . In the
former case, since E(cj) � a, we have a �∈ T . Similarly, in the latter case, we
have b �∈ T . Thus T has uniformly at most one path.

The following proposition shows that a binary tree with uniformly at most one
path has a longest path.

Proposition 2. Let D be a computably closed inhabited subset of {0, 1}N. Then
every D-tree with uniformly at most one path has a longest path in D.

Proof. Let T be a D-tree with uniformly at most one path, and define a relation
big(c, n) by

big(c, n) := ∀d ∈ {0, 1}∗[|d| = n → c ∗ d �∈ T].

Note that the characteristic function of big is computable in D. Then for given
c ∈ {0, 1}∗, since T has uniformly at most one path, there exists n such that

∀a, b ∈ {0, 1}∗[|a| = |b| = n → c ∗ (0) ∗ a �∈ T ∨ c ∗ (1) ∗ b �∈ T],

Unique Existence and Computability in Constructive Reverse Mathematics 373

and hence ¬big(c ∗ (0), n)→ big(c ∗ (1), n). Therefore for each c ∈ {0, 1}∗ there
exists n such that big(c ∗ (0), n) ∨ big(c ∗ (1), n), and so the function σ defined
by

σ(c) := min
n

[big(c ∗ (0), n) ∨ big(c ∗ (1), n)]

is computable in D. Define functions δ and τ by

δ(c) :=
{

0 if big(c ∗ (1), σ(c)),
1 if ¬big(c ∗ (1), σ(c)),

and

τ(0) := (),
τ(n + 1) := τ(n) ∗ δ(τ(n)).

Then, clearly, δ and τ are computable in D. Let α(n) := δ(τ(n)). Then α ∈
{0, 1}N is computable in D, and, since D is computably closed, α is in D. Note
that, by induction, αn = τ(n).

We prove that α is a longest path of T . Suppose that αn = τ(n) �∈ T . Then
we show that ∀d ∈ {0, 1}∗(|d| = n → d �∈ T), or big(τ(0), n). To this end, we
prove by induction that

∀k ≤ n[big(τ(n − k), k)].

If k = 0, then, trivially, big(τ(n), 0). Assume that big(τ(n−k), k). Then big(τ(n−
k − 1) ∗ α(n − k − 1), k), and hence σ(τ(n − k − 1)) ≤ k. Either α(n − k − 1) = 0
or α(n − k − 1) = 1. In the former case, big(τ(n − k − 1) ∗ (0), k) and, since
big(τ(n − k − 1) ∗ (1), σ(τ(n − k − 1))), we have big(τ(n − k − 1) ∗ (1), k). Hence
big(τ(n − k − 1), k + 1). In the latter case, big(τ(n − k − 1) ∗ (1), k), and, since
¬big(τ(n−k−1)∗(1), σ(τ(n−k−1))), we have big(τ(n−k−1)∗(0), σ(τ(n−k−1))).
Therefore big(τ(n − k − 1) ∗ (0), k), and so big(τ(n − k − 1), k + 1).

We omit proof of the following proposition which is an easy adaptation of the
proof in [2] or [18].

Proposition 3. Let B and D be computably closed inhabited subsets of {0, 1}N.
Then WKL!D(B) implies FAND(B).

The aforementioned propositions culminate in the following theorem.

Theorem 1. Let B and D be computably closed inhabited subsets of {0, 1}N

with D ⊆ B. Then the following statements are equivalent.

1. FAND(B).
2. Every D-tree with at most one path in B has a longest path in D.
3. Every infinite D-tree with at most one path in B has an infinite path in D.
4. LPL!D(B).
5. WKL!D(B).

Proof. (1) → (2): Assume FAND(B), and let T be a D-tree with at most one
path in B. Then, by Proposition 1, T has uniformly at most one path, and hence
T has a longest path in D, by Proposition 2. (2) → (3) and (4) → (5): Trivial.
(2) → (4) and (3) → (5): By D ⊆ B. (5) → (1): By Proposition 3.

374 H. Ishihara

3 A Computable Version of MIN!

We assume that a real number x is given by a Cauchy sequence (pn)n of rationals
with a fixed modulus, that is, ∀m, n(|pm − pn| < 2−m + 2−n). For a real number
x := (pn)n, we write (x)n for pn. See [3,4,6,20] for more on constructive theory
of the real numbers.

A uniformly continuous function f from the Cantor space {0, 1}N to R is
computable if there exists an index e and a computable M ∈ NN such that

∀α ∈ {0, 1}N∀n∃z[T (e, α, n, z) ∧ U(z) = (f(α))n]

and
∀k∀α, β ∈ {0, 1}N[αM(k) = βM(k)→ |f(α) − f(β)| < 2−k].

We show that the following computable version of MIN! for the Cantor space
{0, 1}N:

if f is a real valued computable uniformly continuous function with at
most one minimum on the Cantor space {0, 1}N, then there exists a
computable α in {0, 1}N such that f(α) = inf f({0, 1}N)

is equivalent to the classically true relativized versions WKL!Rec({0, 1}N),
FANRec({0, 1}N), and LPL!Rec({0, 1}N). We start with showing the following
propositions.

Proposition 4. Let T be an infinite Rec-tree with at most one path in {0, 1}N.
Then there exists a real valued computable uniformly continuous function f on
the Cantor space {0, 1}N such that if f(α) = inf f({0, 1}N), then α is an infinite
path of T .

Proof. Define a real valued function f on the Cantor space {0, 1}N by

(f(α))n :=
{

2−n if αn ∈ T ,
(f(α))n−1 if αn �∈ T .

Then f is a computable uniformly continuous function with inf f({0, 1}N) = 0.
Let α, β be in {0, 1}N with α �= β. Then, since T has at most one path in
{0, 1}N, there exists n such that αn �∈ T or βn �∈ T , and hence either 0 < f(α)
or 0 < f(β). Thus f has at most one minimum. If f(α) = 0, then (f(α))n ≤ 2−n

for all n, and hence αn ∈ T for all n.

Proposition 5. Let f be a real valued computable uniformly continuous func-
tion with at most one minimum on the Cantor space {0, 1}N. Then there exists
an infinite Rec-tree T with at most one path in {0, 1}N such that if α is an
infinite path of T , then f(α) = inf f({0, 1}N).

Proof. We may assume without loss of generality that inf f({0, 1}N) = 0. Let
M ∈ NN be a computable function such that

∀k∀α, β ∈ {0, 1}N[αM(k) = βM(k)→ |f(α) − f(β)| < 2−k].

Unique Existence and Computability in Constructive Reverse Mathematics 375

We may assume further that M is strictly increasing and 0 < M(0). For a ∈
{0, 1}∗, we write f(a) for f(a ∗ (λx.0)), where the concatenation is extended to
concatenation of a finite sequence with an infinite sequence. Define a subset T
of {0, 1}∗ by

a ∈ T := ∀k[M(k) ≤ |a| → (f(aM(k)))k < 2−|a| + 2−k+1].

Then T is a Rec-tree. For given n, choose α ∈ {0, 1}N such that f(α) < 2−n,
and set a := αn. Then, for each k with M(k) ≤ |a| = n, we have

(f(aM(k)))k ≤ f(aM(k)) + 2−k = f(αM(k)) + 2−k

< f(α) + 2−k+1 < 2−|a| + 2−k+1,

and hence a ∈ T . Therefore T is infinite. Let α, β be in {0, 1}N with α �= β.
Since f has at most one minimum, there exists n such that either 5 ·2−n < f(α)
or 5 · 2−n < f(β). In the former case, since n ≤ M(n), we have

(f(αM(n)))n ≥ f(αM(n)) − 2−n > f(α) − 2−n+1

> 2−n + 2−n+1 ≥ 2−M(n) + 2−n+1,

and hence αM(n) �∈ T . Similarly, in the latter case, we have βM(n) �∈ T . There-
fore T has at most one path. If α is an infinite path of T , then, for each n, we
have

f(α) < f(αM(n)) + 2−n ≤ (f(αM(n)))n + 2−n+1

< 2−M(n) + 2−n+2 ≤ 5 · 2−n,

and hence f(α) = 0.

The above propositions and Theorem 1 culminate in the following theorem.

Theorem 2. The following statements are equivalent.

1. If f is a real valued computable uniformly continuous function with at most
one minimum on the Cantor space {0, 1}N, then there exists a computable
α in {0, 1}N such that f(α) = inf f({0, 1}N).

2. If f is a real valued computable uniformly continuous function with at most
one minimum on the Cantor space {0, 1}N, then there exists α in {0, 1}N

such that f(α) = inf f({0, 1}N).
3. WKL!Rec({0, 1}N).
4. LPL!Rec({0, 1}N).
5. FANRec({0, 1}N).

Proof. Note that (1) → (2) is trivial. Then, by Theorem 1, it is enough to show
that (2) → (3) and (3) → (1).

(2) → (3): By Proposition 4. (3) → (1): Let f be a real valued computable
uniformly continuous function with at most one minimum on the Cantor space
{0, 1}N. Then, by Proposition 5, there exists an infinite Rec-tree T with at
most one path in {0, 1}N such that if α is an infinite path of T , then f(α) =
inf f({0, 1}N). By Theorem 1, there exists an infinite path α of T in Rec, that
is computable, and hence f(α) = inf f({0, 1}N).

376 H. Ishihara

4 A Concluding Remark

Let B be a subset in between Rec and {0, 1}N, say the set of characteristic
functions of computably enumerable sets. Then, since FANRec(Rec) is refutable
as mentioned before, it is natural to ask whether FANRec(B) is still refutable
or is derivable from FANRec({0, 1}N). In the latter case, since it is trivial that
FANRec(B) implies FANRec({0, 1}N), we could see the equivalence between
FANRec(B) and FANRec({0, 1}N).

Acknowledgments. A clue for this research was obtained when Martin Ziegler
was staying at Japan Advanced Institute of Science and Technology as a postdoc-
toral fellow of Japan Society for the Promotion of Science (JSPS). The author
would like thank him for discussions, and JSPS for supporting his stay. Also
this research was partly supported by a Grant-in-Aid for Scientific Research (C)
No.15500005 of JSPS.

References

1. Berger, J., Bridges, D., Schuster, P.: The fan theorem and unique existence of
maxima. J. Symbolic Logic 71, 713–720 (2006)

2. Berger, J., Ishihara, H.: Brouwer’s fan theorem and unique existence in constructive
analysis. MLQ Math. Log. Q. 51, 360–364 (2005)

3. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)
4. Bishop, E., Bridges, D.: Constructive Analysis. Springer, Berlin (1985)
5. Bridges, D.: Recent progress in constructive approximation theory. In: Troelstra,

A.S., van Dalen, D. (eds.) The L.E.J Brouwer Centenary Symposium, pp. 41–50.
North-Holland, Amsterdam (1982)

6. Bridges, D., Richman, F.: Varieties of Constructive Mathematics. Cambridge Uni-
versity Press, Cambridge (1987)

7. Ishihara, H.: An omniscience principle, the König lemma and the Hahn-Banach
theorem. Z. Math. Logik Grundlag. Math. 36, 237–240 (1990)

8. Ishihara, H.: Constructive reverse mathematics: compactness properties. In:
Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis,
pp. 245–267. Oxford Univ. Press, Oxford (2005)

9. Ishihara, H.: Reverse mathematics in Bishop’s constructive mathematics.
Philosophia Scientiæ, Cahier spécial 6, 43–59 (2006)

10. Ishihara, H.: Weak König lemma implies Brouwer’s fan theorem: a direct proof.
Notre Dame J. Formal Logic 47, 249–252 (2006)

11. Julian, W., Richman, F.: A uniformly continuous function on [0, 1] that is every-
where different from its infimum. Pacific J. Math. 111, 333–340 (1984)

12. Kleene, S.C.: Recursive functions and intuitionistic mathematics. In: Graves, L.M.,
Hille, E., Smith, P.A., Zariski, O. (eds.) Proceedings of the International Congress
of Mathematicians, Amer. Math Soc. Providence, pp. 679–685 (1952)

13. Kleene, S.C., Vesley, R.E.: The Foundations of Intuitionistic Mathematics, Espe-
cially in Relation to Recursive Functions. North-Holland, Amsterdam (1965)

14. Kohlenbach, U.: Effective moduli from ineffective uniqueness proofs: An unwinding
of de La Vallée Poussin’s proof for Chebycheff approximation. Ann. Pure Appl.
Logic 64, 27–94 (1993)

Unique Existence and Computability in Constructive Reverse Mathematics 377

15. Kohlenbach, U., Oliva, P.: Proof mining: a systematic way of analysing proofs in
mathematics. In: Proc. Steklov Inst. Math. vol. 242, pp. 136–164 (2003)

16. Loeb, I.: Equivalents of the (weak) fan theorem. Ann. Pure Appl. Logic 132, 51–66
(2005)

17. Schuster, P.: Unique solutions. MLQ Math. Log. Q. 52, 534–539 (2006)
18. Schwichtenberg, H.: A direct proof of the equivalence between Brouwer’s fan theo-

rem and König lemma with a uniqueness hypothesis. J. UCS 11, 2086–2095 (2005)
19. Simpson, S.G.: Subsystems of second order arithmetic. Springer, Berlin (1999)
20. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, Vol. I An Intro-

duction. North-Holland, Amsterdam (1988)
21. Veldman, W.: Brouwer’s fan theorem as an axiom and as a contrast to Kleene’s

alternative, preprint. Radboud University, Nijmegen (2005)
22. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

Input-Dependence in Function-Learning

Sanjay Jain1,�, Eric Martin2,��, and Frank Stephan3,���

1 Department of Computer Science,
National University of Singapore,

Singapore 117543, Republic of Singapore
sanjay@comp.nus.edu.sg

2 Department of Computer Science and Engineering,
The University of New South Wales,

Sydney 2052, NSW, Commonwealth of Australia
emartin@cse.unsw.edu.au

3 Department of Mathematics,
National University of Singapore,

Singapore 117543, Republic of Singapore
fstephan@comp.nus.edu.sg

Abstract. In the standard literature on inductive inference, a learner
sees as input the course of values of the function to be learned. In the
present work, it is investigated how reasonable this choice is and how
sensitive the model is with respect to variations like the overgraph or un-
dergraph of the function. Several implications and separations are shown
and for the basic notions, a complete picture is obtained. Furthermore,
relations to oracles, additional information and teams are explored.

Keywords: Inductive inference, recursion theory, various forms of input
presentation, team learning, learning with additional information.

1 Introduction

The central question of inductive inference is to investigate in clear mathematical
terms, which types of classes of functions or sets can be learned in principle
by an algorithm. This is formalized with notions from recursion theory and
therefore the objects to be learned are – in most scenarios – either classes of
recursive functions or classes of recursively enumerable sets. Gold [5] introduced
the notion of learning sets in the limit from positive data: here the learner M is a
recursive function which maps any finite string σ of data to a hypothesis M(σ).
This hypothesis is then an index from an acceptable numbering W0, W1, . . . of
all recursively enumerable sets; this numbering is assumed to be based on an

� Supported in part by NUS grant number R252-000-212-112.
�� E. Martin is jointly appointed at the UNSW and National ICT Australia which

is funded by the Australian Government’s Department of Communications, Infor-
mation Technology and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Centre of Excellence Program.

��� Supported in part by NUS grant number R252-000-212-112.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 378–388, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Input-Dependence in Function-Learning 379

acceptable numbering ϕ0, ϕ1, . . . of the partial-recursive functions by letting We

be the domain of ϕe. More precisely, the set We to be learned is described by
a text T which is a sequence containing all members of We in arbitrary order
and perhaps some pause-symbols denoted by #. Now M learns We from T iff
there is an n such that WM(T (0)T (1)...T (m)) = We for all m ≥ n. As one cannot
check effectively whether We = Wd for indices d, e, it is restrictive to postulate
in addition that M(T (0)T (1) . . . T (n)) = M(T (0)T (1) . . . T (m)) for all m ≥ n.
Both notions turned out to be reasonable in inductive inference, the more general
notion is called behaviourally correct learning and the more restrictive notion
is called explanatory learning. In the present work, only explanatory learning is
considered, but many questions could also be investigated in the more general
behaviourally correct setting.

Of course, if a learner has to learn only one set We, it could just output e on
all possible input data; therefore one considers the learnability of classes of sets
instead of single sets. Some well-known examples are the following ones.

– The class of finite sets. Here the learner outputs at every stage a hypothesis
which enumerates exactly the elements seen so far; the hypothesis is only
revised if a new element is discovered in the input.

– The class of all sets N − {x} consisting of the natural numbers different
from x. Here the learner conjectures, at every stage, a hypothesis for the set
N − {x}, where x is the least element not seen so far.

– Gold [5] showed that many natural classes are not learnable: the class of all
cofinite sets; the class consisting of N and all its finite subsets; the class

{Ef : f ∈ REC} with Ef = {(x, y) : y = f(x)}

of all graphs of recursive functions.

Here REC stands for the class containing all recursive functions from N into N;
note that properly partial-recursive functions are not in REC.

The learning of classes of functions in REC is a paradigm linked to the learn-
ing of sets as follows: A class S ⊆ REC is learnable (from the viewpoint of
function-learning) iff the corresponding class {Ef : f ∈ S} is learnable from the
viewpoint of learning sets from positive data. The new approach of this work
compared to previous papers is that here using Ef to describe f is only seen as
one possibility among several legitimate ones. Therefore it is investigated how
the choice of the representation of the function on the input influences the learn-
ability. Now, the following instantiations to replace the sets Ef are considered:

– Df = {(x, y) : y �= f(x)}, that is, Df is the set of all (x, y) with y different
from f(x);

– Lf = {(x, y) : y < f(x)}, that is, Lf is the set of all (x, y) with y less than
f(x);

– Gf = {(x, y) : y > f(x)}, that is, Gf is the set of all (x, y) with y greater
than f(x).

Furthermore, the learning criteria E, D, L and G mean that one is learning
functions f from texts for Ef , Df , Lf and Df , respectively.

380 S. Jain, E. Martin, and F. Stephan

Definition 1. A learner M is a recursive function which assigns to every initial
segment of a text T a hypothesis e. Let I denote E, D, L or G. The learner
M I-learns f iff M on any text for If outputs almost always the same index of
the set Ef ; in Section 5, other hypotheses spaces than Ef will be considered as
well. Furthermore, the symbols D, E, G and L also stand for the collection of all
classes S ⊆ REC such that some learner D-identifies, E-identifies, G-identifies
and L-identifies every f ∈ S respectively.

Example 2. A family f0, f1, f2, . . . of functions is called recursively enumerable
iff the two-ary function n, x �→ fn(x) is recursive. Every recursively enumerable
family f0, f1, f2, . . . is D-learnable as a learner can easily converge to an index
for the first function fn such that no pair (x, y) with y = fn(x) occurs in the
data.

The recursively enumerable class of those functions which take on almost all
inputs the same value cannot be learned from data of type L or G.

Example 3. A class S of functions is called self-describing iff ϕf(0) = f for all
functions f ∈ S; also other methods of self-description can be considered. The
self-describing functions can be learned from all four types of data presentation
as for each one of them one can find f(0) in the limit.

2 Inclusions

An inclusion like D ⊆ E would mean that every D-learnable class is also E-
learnable. One of the first topics of inductive inference is to determine which of
such inclusions are true and which are false; after this is done, further questions
are considered for the corresponding inference criteria.

Theorem 4. Concerning L, G, D, E, the inclusions L ⊆ D, D ⊆ E, L ⊆ E and
G ⊆ E hold, but no other ones.

Proof (sketch). The inclusion L ⊆ E is obtained by transitivity, thus only the
other three inclusions are shown. These three inclusions of the form I ⊆ J can
be shown by translating the sets Jf to If according to the following formulas.

Df = {(x, y) : ∃z �= y ((x, z) ∈ Ef)};
Lf = {(x, y) : ∀z ≤ y ((x, z) ∈ Df)};
Gf = {(x, y) : ∃z < y ((x, z) ∈ Ef)}.

These transformations permit to translate texts for these sets as well. The in-
dexes found by the corresponding learners need not be translated.

The noninclusions D �⊆ L, D �⊆ G, E �⊆ L, E �⊆ G are all witnessed by the class
of total functions that are constant almost everywhere, that is, the total functions
f that satisfy ∃y ∀x > y (f(x) = f(y)). The proof of the nonlearnability parts
is a direct translation of the proof that the class of cofinite sets is not learnable
from positive data. The learning algorithm for this class is called “learning by

Input-Dependence in Function-Learning 381

enumeration”, that is, given any uniformly recursive enumeration f0, f1, . . . of
the class, the learner always conjectures the first fe such that no data-item seen
so far contradicts this hypothesis. This means that no data-item (x, y) with
y �= fe(x) has shown up in the case of E and that no data-item (x, y) with
y = fe(x) has shown up in the case of D.

The noninclusion G �⊆ D is witnessed by the family of all recursive functions
satisfying one of the following two conditions:

– f = ϕf(0) and for all x, f(x) < f(x + 1);
– there is a y such that ∀x < y [f(x) = ϕf(0)(x) < f(x + 1) = ϕf(0)(x + 1)]

and ∀x ≥ y [f(x) = f(y)].

This noninclusion translates also into E �⊆ D as the f in the above class are also
learnable from the sets Ef but not from the sets Df .

The remaining noninclusions are witnessed by standard classes which corre-
spond to Gold’s example of an unlearnable family [5]. The noninclusion L �⊆ G
is given by the class of all functions of the form 1n0∞ plus 1∞. The noninclusion
G �⊆ L is witnessed by the class of all functions of the form 1n2∞ plus 1∞. �

3 Oracles

In the following, let A, A1, A2, A3, A4, B be sets of natural numbers which are
used as oracles. Let K denote the halting problem. Criteria like E, L, . . . are
modified to E[A], L[A], . . . where instead of recursive learners M , one consid-
ers A-recursive learners MA. Adleman and Blum [1] established the following
fundamental result.

Theorem 5 (Adleman and Blum [1]). REC ∈ E[A] iff A is high. That is,
REC can be learned from data-type E and oracle A iff A is high.

The corresponding variants of this theorem are that for D, high oracles are
sufficient, but for the other modes of input presentation, REC cannot be learned
using any oracle.

Theorem 6. REC ∈ D[A] iff A is high.

Proof (sketch). If A is high, then there is an A-recursive procedure Tot(e, t)
such that for every e, limt→∞ Tot(e, t) = 1, if ϕe is total, and limt→∞ Tot(e, t) =
0, if ϕe is partial. Then the learner converges on any text T for Df to the least
e such that limt→∞ Tot(e, t) = 1 and no pair (x, ϕe(x)) shows up in the text T .
It is easy to verify that this algorithm is correct.

Recall that D ⊆ E. The same holds for the relativized version D[A] ⊆ E[A],
that is, every D[A]-learner for REC can be translated into an E[A]-learner for
REC. Thus such an A has to be high. Alternatively, one can use the second
direction of Theorem 8 below for the necessity of A being high. �

382 S. Jain, E. Martin, and F. Stephan

Remark 7. The class of all cofinite sets cannot be learned from text with re-
spect to any oracle [5]. Using this technique, one can show that

{f ∈ REC : ∀x (f(x) ≤ 1) and ∃y ∀x ≥ y (f(x) = 1)}

is G-learnable but not L[A]-learnable for any oracle A. Similarly,

{f ∈ REC : ∀x (f(x) ≥ 1) and ∃y ∀x ≥ y (f(x) = 1)}

is L-learnable but not G[A]-learnable for any oracle A. Thus one cannot overcome
these separations with oracles.

Note that in the following, We,s is the set of all elements which are enumerated
into We within s steps. Without loss of generality, ∀x ∈ We,s [x < s].

Theorem 8. G ⊆ D[A] iff A is high.

Proof (sketch). The condition that A is high is certainly sufficient for this
inclusion as REC can be D[A]-learned for all high oracles A.

Now consider the class {f0, f1, f2, . . .} of functions where fe(x) is e+s for the
first stage s such that at least min{x, |We|} many elements are enumerated into
We,s; thus fe(0) = e and gives away the index of the function in this enumeration.

This class is easily seen to be G-learnable. One can find the value e of the
input function at 0 in the limit and knows then that fe is the function to be
learnt. Then the learner outputs a program which assigns to every input x the
output s+e for the first stage s with |We,s| ≥ x. In the case that some pair (x, y)
with |We,y | < x is found, the learner knows that fe(z) = fe(x) for all z > x and
can easily determine fe in the limit.

For the converse direction, one first shows that the sets Dfe are uniformly
recursively enumerable. The reason is that a pair (x, y) is enumerated into Dfe

iff at least one of the following four conditions holds:

– y < e;
– y ≥ e and there is a stage s with 0 ≤ s < y − e and |We,s| ≥ x;
– y ≥ e and there is a stage s with 0 ≤ s < y − e and |We,s| = |We,y−e|;
– y ≥ e, |We,y−e| < x and there is a stage s with |We,y−e| < |We,s|.

As these conditions are all Σ0
1-conditions, a text Te for Dfe can be constructed

uniformly from the index e. Given any e, one can simulate the behaviour of
any D[A]-learner M on Te in the limit and determine with oracle A′ the final
hypothesis e′. Note that ϕe′ is total. Now We is finite iff there are values x, s
such that e + s = ϕe′(x) and |We,s| < x. This condition is a Σ0

1 -condition and
can also be checked with oracle A′. Hence K ′ ≤T A′ and A is high. �
Theorem 9. Given recursively enumerable sets A1, A2, A3, A4 there are classes
SEA1 , SDA2 , SLA3 , SGA4 such that

SEA1 ∈ E[B] iff A′
1 ≤T B′;

SDA2 ∈ D[B] iff A′
2 ≤T B′;

SLA3 ∈ L[B] iff A′
3 ≤T B′;

SGA4 ∈ G[B] iff A′
4 ≤T B′.

Input-Dependence in Function-Learning 383

Furthermore, if the r.e. sets A1, A2, A3, A4 satisfy that A1 ≤T A2, A2 ≤T A3,
A2 ≤T A4, K <T A′

1 <T A′
2, A′

3 �≤T A′
4 and A′

4 �≤T A′
3 then the class

S = SEA1 ⊕ SDA2 ⊕ SLA3 ⊕ SGA4

of the fourfold join of functions in SEA1 , SDA2 , SLA3 and SGA4 satisfies for
every oracle B that

S ∈ E[B] iff A′
1 ≤T B′;

S ∈ D[B] iff A′
2 ≤T B′;

S ∈ L[B] iff A′
3 ≤T B′;

S ∈ G[B] iff A′
4 ≤T B′.

So the best possible oracles for the four learning criteria are different in each
case. The choice of such oracles A1, A2, A3, A4 is possible.

Proof (sketch). Kummer and Stephan [8] have shown that there is a class
TEA1 which is E[B]-learnable iff A′

1 ≤T B′. This class consists of {0, 1}-valued
functions. Now let

SEA1 = {g ∈ REC : ∃h ∈ TEA1 ∀n ∈ N

[g(2n) = h(n) ∧ g(2n + 1) = 1 − h(n)] }

and one can see that SEA1 ∈ E[B], D[B], L[B], G[B] iff A′
1 ≤T B′. The reason

is that, from an approximation of g(2n), g(2n + 1) from below, one can exploit
the equation g(2n) + g(2n + 1) = 1 in order to get both values. Similarly for
approximations from above. Hence, for these functions g, texts of Eg, Dg, Lg

and Gg are equally useful for learning.
As A′

2 is recursively enumerable relative to K, there is a total two-place ap-
proximation Ψ(x, s) such that x ∈ A′

2 iff Ψ(x, s) = 1 for all but finitely many s.
Now one defines, for every x, the function fx as

fx(y) =

⎧
⎪⎨

⎪⎩

x if y = 0;
s for the first s > fx(y − 1) with Ψ(x, s) �= 1

if such an s exists;
fx(y − 1) otherwise.

Note that the case-distinction is non-uniform in x. However, fx is still recursive
as either the second case applies for all y > 0 or fx is an eventually constant
function. Let SDA2 = {f0, f1, . . .}. Although one cannot effectively, from x,
compute an index for fx, one can compute an index u(x) of the following variant
of fx:

ϕu(x)(y) =

⎧
⎪⎨

⎪⎩

x if y = 0;
s for the first s > ϕu(x)(y − 1) with Ψ(x, s) �= 1

if such an s exists;
↑ otherwise.

Note that the sets Dfx , Lfx are uniformly r.e. in x as witnessed by the following
two definitions of these sets. Dfx is the set of all (a, b) satisfying one of the
following conditions:

384 S. Jain, E. Martin, and F. Stephan

– ∃c ≤ a [ϕu(x)(c)↓ > b];
– ∃c ≥ a [ϕu(x)(c)↓ < b];
– b �= x ∧ Ψ(x, b) = 1.

The set Lfx is given by the first condition, that is, Lfx is just the set of all (a, b)
such that there is a c ≤ a with ϕu(x)(c)↓ > b.

Hence, if SDA2 is L[B]-learnable or D[B]-learnable then A′
2 ≤T B′, as one

can, for any given x, simulate the learner on Lfx or Dfx , respectively, find the
final hypothesis e of the learner using B′ and determine whether there is an y
with ϕe(y) = ϕe(y + 1) using B′ again; the latter has the answer YES if x ∈ A′

2

and the answer NO if x /∈ A′
2.

The class SDA2 is E-learnable and G-learnable, as one can figure out from the
data, in the limit, the values fx(0) and x. Furthermore, it can be determined, in
the limit, whether there is a y with ϕu(x)(y) being defined and (y+1, ϕu(x)(y)) ∈
Efx or (y + 1, ϕu(x)(y) + 1) ∈ Gfx , respectively. If so, y is found in the limit and
the learner knows that fx equals the function which is ϕu(x) below y and is
constant from y onwards. If not, such a y will never be found and the learner
will conjecture ϕu(x) from the time it has determined x.

The class SDA2 is L[B]-learnable and D[B]-learnable for all oracles B with
A′

2 ≤T B′. The algorithm is similar to the one before. Again the learner observes
from the data in the limit the values fx(0) and x. Furthermore, it can use the
oracle B to determine in the limit whether x ∈ A′

2. If so, it finds the maximal
y in the limit where ϕu(x)(y) is defined and knows that fx equals the function
which is ϕu(x) below y and is constant from y onwards. If x /∈ A′

2 then fx = ϕu(x)

and the learner converges to the hypothesis u(x).
For the sets SLA3 and SGA4 , one takes functions fA3 , fA4 which are A3

′-
recursive and A4

′-recursive, respectively, and which furthermore satisfy that ev-
ery function dominating them computes A3

′ and A4
′, respectively. Now let

SLA3 = {(2n + 1)∞ : n ∈ N} ∪ {(2n + 1)m(2n)∞ : n ∈ N, m ≤ fA3(n)};
SGA4 = {(2n)∞ : n ∈ N} ∪ {(2n)m(2n + 1)∞ : n ∈ N, m ≤ fA4(n)}.

The class SLA3 is in L[B] iff A3
′ ≤T B′: On one hand, if A3

′ ≤T B′ then the
following algorithm works: One can find g(0) and the parameter n in the limit.
Then one can find an upper bound k for fA3(n) relative to B in the limit. After
that one can observe g(0), g(1), . . . , g(k) in the limit. Having these values, the
function makes a step only before k and thus the learner can converge to a
canonical hypothesis for g(0)g(1) . . . g(k)(g(k))∞.

On the other hand, if one infers SLA3 with oracle B, one can find for each
function (2n+1)∞ in the limit a locking sequence [3] and let h(n) be the largest
first coordinate of a pair (x, y) occurring in this locking sequence. Then h ≤T B′

and h(n) ≥ fA3(n) for all n; hence A3
′ ≤T B′.

The argumentation for SGA4 ∈ G[B] iff A′
4 ≤T B′ is symmetric. Furthermore,

one can easily see that SLA3 ∈ G, D, E and SGA4 ∈ L, D, E.
The second result on the combined class S is obtained by combining the

four results above including the additional learnability properties mentioned
above. Recall that g ∈ SEA1 ⊕ SDA2 ⊕ SLA3 ⊕ SGA4 iff there are g1 ∈ SEA1 ,

Input-Dependence in Function-Learning 385

g2 ∈ SDA2 , g3 ∈ SLA3 and g4 ∈ SGA4 such that for all x ∈ N and y ∈ {1, 2, 3, 4},
g(4x + y − 1) = gy(x). The hardness results translate immediately from the
hardness of learning the components. So the more difficult part would be to
verify the learnability.

Now let g, Eg, Dg, Lg and Gg be given. If the data is a text for Eg, then
one can learn the component g1 using oracle A1 and the components g2, g3,
g4 without any oracle. If the data is a text for Dg, then the component g1

can be learned using A1, the component g2 can be learned using A2 and the
components g3 and g4 do not require an oracle. If the data is a text for Lg,
then the oracle A3 is sufficient as it permits to reconstruct g1, g2 and g3 in
the limit; the component g4 does not need an oracle. If the data is a text for
Gg, then the oracle A4 is sufficient as it permits to reconstruct g1, g2 and g4

in the limit; the component g3 does not need an oracle. It is easy to see how
these things generalise if any oracle B is considered; it is necessary to use that
A′

1 ≤T A′
2 ≤T A′

3 and A′
1 ≤T A′

2 ≤T A′
4 for obtaining this generalization. �

4 Degrees of Inference

The question for which oracles A, B the inclusion E[A] ⊆ E[B] holds has been
investigated exhaustively [1,4,8]. Adleman and Blum [1] established that exactly
the high oracles B satisfy that E[A] ⊆ E[B] for all oracles A. Kummer and
Stephan [8] showed that for non-high r.e. sets A, B, E[A] ⊆ E[B] iff A ≤T B.
Besides the criterion E – which corresponds to explanatory function learning –
a lot of other convergence criteria have been studied in the publications [4,8].
The approach taken in the present work differs from these by the fact that not
the mode of convergence (explanatory or learning in the limit) is varied but the
mode of presentation of the input is; therefore the standard criterion E coincides
with explanatory learning while for L, G and D other results might be possible.

Remark 10. Assume that E[A] �⊆ E[B] for some oracles A, B. Then there is a
class R of {0, 1}-valued functions witnessing this [8]. Now one defines

S = {g : ∃h ∈ R ∀x (g(2x) = h(x) ∧ g(2x + 1) = 1 − h(x))}.

This set satisfies for every oracle C that

R ∈ E[C] ⇔ S ∈ E[C] ⇔ S ∈ L[C] ⇔ S ∈ G[C] ⇔ S ∈ D[C].

As a consequence, one has that L[A] �⊆ L[B], G[A] �⊆ G[B] and D[A] �⊆ D[B].

The inference-degrees of D and E might be quite similar, as previous results
already establish that the high oracles are also exactly those which are omniscient
for D. Indeed it can be conjectured that they are the same. For L and G, things
are a bit different.

Remark 11. Jain and Sharma [6] proved that there is no maximal inference-
degree for learning recursively enumerable sets from positive data. Kummer and

386 S. Jain, E. Martin, and F. Stephan

Stephan [8] strengthened this result by showing that inclusion in these inference
degrees implies Turing reducibility on the jump. Their witness classes for this
fact consisted of recursive sets; thus one can translate them into witness-classes
of functions for the input modes L and G, respectively. So one has that whenever
L[A] ⊆ L[B] or G[A] ⊆ G[B] then A′ ≤T B′. In particular, for each oracle there
is still a strictly more powerful oracle and so the structure of inference-degrees
differs from that of E and D.

Conjecture 12. The inference-degrees of E and D coincide. The inference-
degrees of L and G both coincide with the inference-degrees of learning recursively
enumerable sets from positive data.

5 Additional Information and Teams

An oracle supplies information independent of the concrete learning task. In
contrary to this, additional information and teachers are information linked to
the concrete learning task, although they might not yield any nonrecursive infor-
mation (like a solution for the halting problem). Indeed additional information
is even finite, mostly an index or a bound of an index related to the learning
task. The main result for function learning is that one can learn functions from
any upper bound of any index given as additional information. This is even true
independently of the chosen data type.

Proposition 13. REC is L-learnable and G-learnable with an upper bound of
an index of a function as additional information.

The reason is that one can for each two indices i, j below the given bound
of functions inconsistent at x find out in the limit whether ϕi(x) or ϕj(x) is
incorrect. With this method, one can eventually eliminate all indices inconsistent
with the data and converge to a hypothesis which amalgamates the set Z of the
remaining programs in the sense that ϕf(Z)(x) = y iff ϕe(x) = y for some e ∈ Z.

As the traditional setting gives no new insight, the following more general
setting is investigated, where each learning criterion has several aspects. A class
S is IJ(T)-learnable with I, J, T ∈ {D, E, G, L} iff there is a learner M doing
the following.

– M receives data of type I as in the concept of I-learning in previous sections;
– M outputs hypotheses of type J , that is, the output of M converges to an

index of a recursively enumerable set W which generates the set Jf linked
to the function to be learnt;

– The additional information is an index of a recursively enumerable set V
such that V = Tf ; in the case of IJ-learning, no additional information is
supplied.

Of course REC ∈ JI(I) as the additional information already solves the learning
task. Similarly, the inclusions from Section 2 carry over and REC ∈ JL(D) for
all J ∈ {D, E, G, L}: that is, an index for Df is given as additional information

Input-Dependence in Function-Learning 387

and an index for Lf has to be learned; so one can simply translate the additional
information into this form. Furthermore, data and additional information can
complement each other; for example EJ ⊆ LJ(G) as the additional information
G plus the data L permit to generate the data E. The next theorem characterises
many relations in this type of inference.

Theorem 14. For I, J ∈ {D, E, G, L}, the following statements are equivalent.

1. Every J-index can be translated into an I-index;
2. I ⊆ J , that is, without any additional information and using hypotheses of

type E, every class learnable from data of type I is also learnable from data
of type J ;

3. EE(I) ⊆ EE(J), that is, for every class S, if S can be learned with data E,
with hypothesis space E and with additional information I then S can also
be learned with data E, hypothesis space E and additional information J ;

4. REC ∈ DI(J);
5. REC ∈ EI(J);
6. REC ∈ GI(J);
7. REC ∈ LI(J).

A further important topic is the question of team-learning where a class S is
[m, n]IJ-learnable iff there is a team of n learners such that on every text for a
set If for a function f in S at least m members of the team converge to an index
for the language Jf . Here are some sample results which could be extended with
well-known techniques.

Proposition 15. [2, 3]IE = [1, 1]IE for all I ∈ {D, E, G, L}. That is, for all
modes of input presentation, as long as the hypotheses have to be of the type E
any [2, 3]IE-learner can be replaced by a [1, 1]IE-learner which is the same as
an I-learner.

Proof (sketch). Let M1, M2, M3 be a given [2, 3]IE-team learning S. Without
loss of generality, the size of the hypotheses of the simulated machines increases
at every mind change. Then a new learner N simulates M1, M2, M3 and considers
at every stage s the current outputs of the learning machines; in order of their size
they are denoted as e1, e2, e3. In the case that the ϕe1(x) = ϕe2(x) for all x ≤ s
where these two values are output within s stages of computation, the output
of N does not depend on e3 and is a value f(e1, e2) such that ϕf(e1,e2)(x) takes
ϕe1(x) or ϕe2 (x), whatever converges first. Otherwise the learner N outputs
g(e1, e2, e3) such that ϕg(e1,e2,e3)(x) is y iff at least two of the values ϕe1 (x),
ϕe2(x) and ϕe3(x) are y. For the verification note that at least two machines
converge and their final hypotheses e1, e2 are eventually below the hypothesis of
the third machine. If ϕe1 and ϕe2 are consistent then ϕf(e1,e2) equals the input
function as one of these two functions must be the input function. If they are
inconsistent, the third machine must converge as well to some final value e3 and
ϕg(e1,e2,e3) is equal to the input function. �
This proof technique can be generalised to obtain the following result which was
for EE already obtained by Pitt and Smith [11].

388 S. Jain, E. Martin, and F. Stephan

Theorem 16. For I ∈ {D, E, G, L}, [m, n]IE = [1, k]IE iff 1
k+1 < m

n ≤ 1
k .

In the case of ED-learning where the data is of type E and the hypotheses of type
D one can assume that every inconsistent hypothesis, that is, every hypothesis e
for a set De with (x, f(x)) ∈ De, is eventually updated and replaced by another
one. Then [2, 3]ED = [1, 1]ED by simply taking the union of the two oldest
hypotheses in each stage. Again one can generalise the result.

Proposition 17. [m, n]ED = [1, k]ED iff 1
k+1 < m

n ≤ 1
k .

The results can be very different if neither the data nor the hypotheses are of
type E; then they have some similarity to the case of language learning.

Remark 18. Translating results of language learning obtained by Jain and
Sharma [7] yields [1, 1]GG ⊂ [2, 3]GG ⊂ [1, 2]GG = [3, 6]GG ⊂ [2, 4]GG and
[1, 1]LL ⊂ [2, 3]LL ⊂ [1, 2]LL = [3, 6]LL ⊂ [2, 4]LL.

References

1. Adleman, L., Blum, M.: Inductive inference and unsolvability. Journal of Symbolic
Logic 56, 891–900 (1991)

2. Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45, 117–135 (1980)

3. Blum, L., Blum, M.: Towards a mathematical theory of inductive inference. Infor-
mation and Control 28, 125–155 (1975)

4. Fortnow, L., Gasarch, W., Jain, S., Kinber, E., Kummer, M., Kurtz, S., Pleszkoch,
M., Slaman, T., Solovay, R., Stephan, F.: Extremes in the degrees of inferability.
Annals of Pure. and Applied Logic 66, 231–276 (1994)

5. Gold, M.: Language identification in the limit. Information and Control 10, 447–474
(1967)

6. Jain, S., Sharma, A.: On the non-existence of maximal inference degrees for lan-
guage identification. Information Processing Letters 47, 81–88 (1993)

7. Jain, S., Sharma, A.: Computational limits on team identification of languages.
Information and Computation 130(1), 19–60 (1996)

8. Kummer, M., Stephan, F.: On the structure of degrees of inferability. Journal of
Computer and System Sciences, Special Issue COLT (1993) 52, 214–238 (1996)

9. Odifreddi, P.: Classical Recursion Theory. North-Holland, Amsterdam (1989)
10. Osherson, D., Stob, M., Weinstein, S.: Systems That Learn, An Introduction to

Learning Theory for Cognitive and Computer Scientists. Bradford/The MIT Press,
Cambridge, Massachusetts (1986)

11. Pitt, L., Smith, C.H.: Probability and plurality for aggregations of learning ma-
chines. Information and Computation 77, 77–92 (1988)

12. Soare, R.: Recursively Enumerable Sets and Degrees. A Study of Computable Func-
tions and Computably Generated Sets. Springer, Heidelberg (1987)

Some Notes on Degree Spectra of the Structures

Iskander Kalimullin

Kazan State University, Kazan, 420008, Kremlevskaya str. 18, Russia
Iskander.Kalimullin@ksu.ru

Abstract. In the paper the problem of existence of an algebraic struc-
ture with the degree spectra {x : x �≤ b} is studied for arbitrary degree b.

1 Restrictions on the Degree Spectra

A representation of a countable algebraic structure A is any isomorphic copy
of A with the universe, which is a subset of ω (the set of natural numbers
with zero). Under degree spectrum Sp (A) of a countable algebraic structure
A we understand the collection of Turing degrees of atomic diagrams of all
representations of A.

The following well-known result presents the first restriction on possible degree
spectra.

Theorem 1 (Knight [8]). Let A be a countable structure in a finite language.
Then precisely one of the following two statements holds:

1. For any two Turing degrees c ≤ d, if c ∈ Sp (A), then also d ∈ Sp (A) (i.e.,
the degree spectrum is closed upwards).

2. Sp (A) = {0}. (The structures with this property is called trivial).

Each finite structure is an obvious example of a trivial structure, but there are
also infinite trivial structures, such as the infinite complete graph.

In this paper we will consider only the nontrivial countable structures in finite
languages. Theorem 1 shows that for nontrivial structures the degree spectrum
is simply a collection of all degrees x such that the structure is x-computable.

One of important and interesting area of studying non-computable structures
is to describe which collections of degrees closed upward are realizable as a
degree spectra of structures (or, of some special kind of structures such as linear
orderings, Boolean algebras, groups, etc.). It is easy to check that the class of
such collections is closed under intersection: for any structures A and B there a
structure C such that Sp (A) ∩ Sp (B) = Sp (C).

There are is a lot of various papers devoted to this direction (see e.g. [1],
[3], [4], [9], [11], [13] etc.). In particular, by [11] for any degree a the collection
{x : x ≥ a} is realizable as spectrum of a structure.

There are also more surprising examples: Slaman [12] and, independently,
Wehner [14], constructed structures with the degree spectrum {x : x > 0}. An
easy relativization shows that for any degree b the collection {x : x > b} is

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 389–397, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

390 I. Kalimullin

also realizable as a spectrum. In the present paper we will try to obtain a more
strong relativization: for a degree b to find a structure with the degree spectrum
{x : x �≤ b}. We will see that for some degrees b this is not possible (Corollaries 4
and 5).

This problem is related to the following question posed by Miller [9]:

Question 1. (Miller). Does for any incomparable degrees a and b there exist a
linear ordering L such that a ∈ Sp (L) and b /∈ Sp (L)?

As it follows from the next theorem the answer on this question is negative.
Hence, there is a degree b such that, at least, the collection {x : x �≤ b} is not
realizable as a spectrum of linear ordering.

Theorem 2 ([7]). For each degree a > 0 there is a degree b incomparable with
a such that b′ ≤ a′ and for any linear ordering L

a ∈ Sp (L) =⇒ b ∈ Sp (L).

Corollary 1. There is a low degree b (i.e., b′ = 0′), such that Sp (L) �= {x :
x �≤ b} for any linear ordering L.

Note that, in comparison with the linear orderings, in the general case (Theo-
rem 7) for any low degree b we have some structure Ab such that Sp (Ab) =
{x �≤ b}.

The proof of Theorem 2 is just a more uniform version of the Richter’s result,
which is about only one ordering:

Theorem 3 (Richter [11]). For every degree a > 0 and any linear ordering L
such that a ∈ Sp (L) there is a degree b such that a �≤ b and b ∈ Sp (L). (And
hence, the collection {x : x ≥ a} is realizable as a degree spectrum of a linear
ordering if and only if a = 0).

Returning to algebraic structures in general, one can recall the following folklore
result (see e.g. [13]).

Theorem 4. (Folklore). Let A be a nonempty countable collection of degrees
without least element and A be a structure such that A ⊆ Sp (A). Then there is
a degree b such that a �≤ b for all a ∈ A, and b ∈ Sp (A).

Corollary 2. (Folklore). If A is a nonempty countable collection of degrees
without least element, then the collection ∪a∈A{x : x ≥ a} is not realizable
as a spectrum of an algebraic structure.

Corollary 3. (Folklore). If a0 and a1 are incomparable, then the collection {x :
x ≥ a0} ∪ {x : x ≥ a1} is not realizable as a spectrum of an algebraic structure.

For Theorem 4 the same uniformization is also possible:

Some Notes on Degree Spectra of the Structures 391

Theorem 5 ([7]). Let A be a nonempty countable collection of degrees without
least element. Then there is a degree b such that a �≤ b for all a ∈ A, and for
any algebraic structure A

A ⊆ Sp (A) =⇒ b ∈ Sp (A).

Applying the last theorem with A = {a0, a1} for a pair of incomparable degrees
a0 and a1, we get following

Corollary 4. There is a degree b, such that Sp (A) �= {x : x �≤ b} for any
algebraic structure A.

The construction of the degree b in the proof of the Theorem 5 essentially uses
a list of all structures (up to isomorphism) which are computable relative to any
element of A. By this reason, it is very difficult to give an upper bound for the
degree b from Corollary 4.

The following result is more weak than Theorem 5, but it has more construc-
tive proof. This allows to bound the degree b by the double-jump.

Theorem 6 ([7]). For any degree a0 > 0 there are degrees a1 ≤ a′′
0 and b ≤ a′′

0

such that a0 �≤ b, a1 �≤ b, and for any algebraic structure A

{a0,a1} ⊆ Sp (A) =⇒ b ∈ Sp (A).

Corollary 5. There is a degree b ≤ 0′′, such that Sp (A) �= {x : x �≤ b} for
any algebraic structure A.

An essential idea of the proof of Theorem 6 is to use the following not difficult
lemma:

Lemma. For any set A there is a noncomputable set A1 ≤T A′′, and there is a
partially A′′-computable function θ such that for any e ∈ ω

WA
e is c.e. in A1 ⇐⇒ θ(e) ↓ ⇐⇒ WA

e = Wθ(e).

Here WA
e is the standard numbering of all A-c.e. sets. In particular, the condition

above is an effective version of deg(A) ∩ deg(A1) = 0.

In fact, the degree a1 in Theorem 6 is the degree of the set A1 from the lemma
applied with A ∈ a0. Such set A1 allows to bound existential types of structures
A such that {a0,a1} ⊆ Sp (A): they must be c.e. and θ gives their c.e. indices.

2 The Structures with the Degree Spectra {x : x �≤ b}

In spite of Corollaries 4 and 5 there are a lot of nonzero degrees b such that the
collection {x : x �≤ b} is a degree spectrum of a structure. Moreover, we can
build such structures for any low degree b.

392 I. Kalimullin

Theorem 7 ([5]). For any low degree b there is a structure A such that Sp (A)=
{x : x �≤ b}.

The proof of this theorem is based on the same ideas as the proof of Wehner’s
result [14] on the structure with the degree spectrum Sp (A) = {x : x > 0}.

Namely, we first fix some effective coding S �→ Γ (S) of countable families S
of subsets of ω into a irreflexive symmetric graphs Γ (S) (see [3], [10]), such that
for any degree x

x ∈ Sp (Γ (S)) ⇐⇒ S is uniformly c.e. in x.

For example, we can define Γ (S) as the graph with the vertices A, Bi,j,X (where
i, j ∈ ω, X ∈ S), Ci,j,X (where i ∈ ω, j ∈ X ∈ S) and the edges {A, Bi,0,X}
(where i ∈ ω, X ∈ S), {Bi,j,X , Bi,j+1,X} (where i, j ∈ ω, X ∈ S), {Bi,j,X , Ci,j,X}
(where i ∈ ω, j ∈ X ∈ S).

Then for a low degree b it is sufficient to find a countable family S such that
for all degrees x

S is uniformly c.e. in x ⇐⇒ x �≤ b. (1)

For the case b = 0 Wehner [14], in fact, considered the family

F = {{n} ⊕ F : n ∈ ω & F ⊆ ω & F is finite & F �= Wn},

where Wn is the standard numbering of all c.e. sets. By the Recursion Theorem,
we immediately get that F is not uniformly c.e. (otherwise for every n we can
effectively enumerate a set not equal to Wn). Note that, in the original proof
Wehner used a direct diagonalization instead of using the Recursion Theorem. By
this reason his definition is more complicate, but it can be equivalently reduced
to the same form as the family F .

Now to build a family S = FB satisfying the equivalence (1) with b = deg(B),
b′ = 0′, it is sufficient to consider the easy analogue of F :

FB = {{n} ⊕ F : n ∈ ω & F ⊆ ω & F is finite & F �= WB
n },

where WB
n is the standard numbering of all B-c.e. sets. To prove that for all x

FB is uniformly c.e. in x ⇐⇒ x �≤ deg(B).

it is necessary to use the fact that, if B′ ≡T ∅′, then the predicate KB
0 (m, n) ⇐⇒

m ∈ WB
n is a Δ0

2-predicate.
By this reason, Theorem 7 can not be extended to non-low degrees b by the

same way. For example, for b = 0′ the predicate K∅′

0 is Σ0
2-complete, although

the theorem can be extended to such b.

Theorem 8 ([6]). For any c.e. degree b there is a structure A such that Sp (A)
= {x : x �≤ b}.

For a c.e. set B the following family S = EB satisfies the equivalence (1) with
b = deg(B):

EB = {{n} ⊕ F : n ∈ ω & F ∈ P & F �= WB
n },

Some Notes on Degree Spectra of the Structures 393

where P is the family of all c.e. set, which are images of injective primitive
recursive functions. Here such P is used because it is an example of sufficiently
rich family which is uniformly c.e. and contains only infinite sets (in contrast
with the infinite computable sets and the infinite c.e. sets).

We finish the section by the following remark. Theorems 7 and 8 give examples
when a nontrivial union of two degree spectra is again a degree spectrum (by
Corollary 3 this is not possible for such unions as {x : x ≥ a0} ∪ {x : x ≥ a1}).
Indeed, it is sufficient to take three different low (or c.e.) degrees a,b, c such
that a ∩ b = c. Then, obviously,

{x : x �≤ a} ∪ {x : x �≤ b} = {x : x �≤ c},

and each of these three collections is a degree spectrum. It follows from the next
section (Corollary 7 and Theorem 11), that if a and b are low then the union
{x : x �≤ a}∪{x : x �≤ b} is a degree spectrum even though a∩b does not exist.

3 Some Other Degree Spectra Derived from the Families

The proof of Theorem 7 is based on the fact, that the predicate “m ∈ WB
n ” is

Δ0
2, if B′ ≡ ∅′. This established the idea to change the numbering εB(n) = WB

n

by an arbitrary numbering ν : ω → 2ω such that the predicate “m ∈ ν(n)” is
Δ0

2, so called a computable numbering of Δ0
2 sets. Let

F(ν) = {{n} ⊕ F : n ∈ ω & F ⊆ ω & F is finite & F �= ν(n)},

and hence for the family FB from the previous section we have FB = F(εB).
Note that the class of degree spectra of graphs Γ (F(ν)) is closed under inter-

section. Moreover, it is easy to check, that for any numberings ν, η : ω → 2ω

Sp (Γ (F(ν))) ∩ Sp (Γ (F(η))) = Sp (Γ (F(ν + η))),

where ν + η is the standard sum of numberings: for all n ∈ ω

(ν + η)(2n) = ν(n); (ν + η)(2n + 1) = η(n).

Theorem 9 describes the degree spectra of the graphs Γ (F(ν)), where the
predicate ”m ∈ ν(n)” is Δ0

2.

Theorem 9 ([5]). Let ν be a computable numbering of Δ0
2 sets. Then for a set

X ⊆ ω the following conditions are equivalent:

1. deg(X) ∈ Sp (Γ (F(ν)));
2. there is a computable function f : ω2 → ω such that for all m, n ∈ ω we have

WX
f(n,m) �= ν(n), {k ∈ ω : k < m} ⊆ WX

f(n,m), and WX
f(n,m) is finite;

3. there is a computable function f : ω2 → ω such that for all m, n ∈ ω we have
WX

f(n,m) �= ν(n) and {k ∈ ω : k < m} ⊆ WX
f(n,m).

394 I. Kalimullin

As a corollary, we get that for computable numberings ν of Δ0
2 sets degree spectra

of graphs Γ (F(ν)) have the same behavior on non-low degrees.

Corollary 6. If x′ > 0′ and ν is a computable numbering of Δ0
2 sets, then

x ∈ Sp (Γ (F(ν))).

Indeed, if ∅′ <T X ′ then a computable function f , such that

WX
f(n,m) = X ′ ∪ {k ∈ ω : k < m},

satisfies the condition 3 of Theorem 9 (since X ′ /∈ Δ0
2).

For some computable numberings ν of Δ0
2 sets the description of Sp (Γ (F(ν)))

can be made more easy. Namely, we say that a numbering ν is an LR-numbering,
if for some computable functions L, R : ω → ω we have

ν(n) = ν(L(n)) ⊕1 ν(R(n))

for each n ∈ ω, where

X ⊕1 Y = {〈2x, y〉 : 〈x, y〉 ∈ X} ∪ {〈2x + 1, y〉 : 〈x, y〉 ∈ Y }

is the bijection between 2ω × 2ω and 2ω. In fact, for the next theorem no matter
which of X ⊕1 Y or the standard X ⊕ Y = {2x : x ∈ X} ∪ {2x + 1 : x ∈ Y } is
used in the definition of LR-numberings, but we prefer to use ⊕1 instead of ⊕
for the sake of Corollary 7.

Theorem 10 ([5]). Let ν be a computable LR-numbering of Δ0
2 sets. Then for

a degree x the following conditions are equivalent:

1. x ∈ Sp (Γ (F(ν)));
2. the family of all x-c.e. sets is not a subset of the image of ν (i.e. there is an

x-c.e. set Z /∈ {ν(n) : n ∈ ω}).

Note that the numbering ν(n) = WB
n is an LR-numbering for any B ⊆ ω. Thus,

Theorem 10 is a generalization of Theorem 7.
Let X ⊕2 Y be the another bijection between 2ω × 2ω and 2ω:

X ⊕2 Y = {〈x, 2y〉 : 〈x, y〉 ∈ X} ∪ {〈x, 2y + 1〉 : 〈x, y〉 ∈ Y }.

For numberings ν and η define the numbering ν×η as follows: for every n, m ∈ ω

(ν × η)(〈n, m〉) = ν(n) ⊕2 ν(m).

By the obvious identity

(A ⊕1 B) ⊕2 (C ⊕1 D) = (A ⊕2 C) ⊕1 (B ⊕2 D)

it follows, that if ν and η are LR-numberings then ν×η is also an LR-numbering.
Now the next corollary follows immediately:

Some Notes on Degree Spectra of the Structures 395

Corollary 7. Let ν and η be computable LR-numberings of Δ0
2 sets. Then ν +η

and ν × η are also computable LR-numberings of Δ0
2 sets, and

Sp (Γ (F(ν))) ∩ Sp (Γ (F(η))) = Sp (Γ (F(ν + η))),

Sp (Γ (F(ν))) ∪ Sp (Γ (F(η))) = Sp (Γ (F(ν × η))).

Note that for the LR-numberings εB = WB
n , B′ ≡T ∅′, Corollary 7 can be

strengthen:

Theorem 11 ([5]). If B′ ≡T ∅′, then for any computable numberings ν of Δ0
2

sets
Sp (Γ (F(ν))) ∪ Sp (Γ (F(εB))) = Sp (Γ (F(ν × εB))).

4 Further Questions

The questions from this paragraph are closely related to the results from the
previous three paragraphs. Namely, seeing Theorem 2 it is interesting to find
two different degrees which compute the same (up to isomorphism) collection
of linear orderings. By a result of Knight (see e.g. [1]) this two degrees must be
incomparable.

Question 2. Are there two incomparable degrees a and b such that for any linear
ordering L

a ∈ Sp (L) ⇐⇒ b ∈ Sp (L)?

Also, it is not so clear how to find the degree b in Theorem 5 more effectively.
In particular:

Question 3. Let a0 and a1 be incomparable arithmetical degrees. Is there an
arithmetical degree b such that a0 �≤ b, a1 �≤ b, and for any algebraic structure
A

{a0,a1} ⊆ Sp (A) =⇒ b ∈ Sp (A)?

The related questions are about possible extensions of Thorems 7 and 8:

Question 4. Does for any degree b ≤ 0′ there exist a structure A such that

Sp (A) = {x : x �≤ b}?

Question 5. Is there a structure A such that

Sp (A) = {x : x �≤ 0′′},

or, at least, Sp (A) = {x : x �≤ 0(n)} for some n ≥ 2?

396 I. Kalimullin

Finally, Theorem 10 allows for any uniformly Δ0
2 family C, which is closed under

left and right parts of ⊕1 (i.e., if X ⊕1 Y ∈ C then X ∈ C and Y ∈ C), to create
a structure with the degree spectra

S(C) = {x : (∃Z /∈ C)[Z is x-c.e.]}.

For example, consider the family Δ−1
ω of all ω-c.e. sets. Recall, that a set A is

ω-c.e. if there are computable functions f and g such that for all x ∈ ω

A(x) = lims f(x, s) and card {s : f(x, s) �= f(x, s + 1)} < g(x).

Then S(Δ−1
ω) consists from the degrees of sets X such that the Turing jump X ′ is

not ω-c.e. Note that the condition X ′ ∈ Δ−1
ω is not equivalent to a computability

of X (for example, for the sets constructed for the Original Friedberg-Muchnik
Theorem).

The family Δ−1
ω is the first infinite level of Ershov Hierarchy [2]. The closest

levels are Σ−1
ω and Π−1

ω . Namely, A ∈ Σ−1
ω , if there are a computable function

f and a partially computable fucntion g such that for all x ∈ ω we have A(x) =
lims f(x, s),

x ∈ A =⇒ g(x) is defined, and

g(x) is defined =⇒ card {s : f(x, s) �= f(x, s + 1)} < g(x).

The level Π−1
ω consists from the complements of sets from Σ−1

ω . The families
Σ−1

ω and Π−1
ω are again uniformly Δ0

2 families C, closed under left and right
parts of ⊕1, but it is not clear, are the collections S(Σ−1

ω) and S(Π−1
ω) equal to

S(Δ−1
ω):

Question 6. Is there a set X ⊆ ω such that X ′ ∈ Σ−1
ω − Δ−1

ω ?

Question 7. Is there a set X ⊆ ω such that X ′ ∈ Π−1
ω − Δ−1

ω ?

Acknowledgement. The research is partially supported by RFBR grant
05-01-00605.

References

1. Downey, R.: On Presentations of Algebraic Structures. In: Sorbi, A. (ed.) Com-
plexity, Logic, and Recursion Theory, pp. 157–205 Dekker, New York (1997)

2. Ershov, Y.L.: On a hierarchy of sets II. Algebra i Logika 7(4), 15–47 (1968)
3. Goncharov, S.S., Harizanov, V.S., Knight, J.F., McCoy, C., Miller, R., Solomon,

R.: Enumerations in computable structure theory. Annals of Pure and Applied
Logic 136, 219–246 (2005)

4. Hirschfeldt, D.R., Khoussainov, B., Shore, R.A., Slinko, A.M.: Degree spectra
and computable dimensions in algebraic structures. Annals of Pure and Applied
Logic 115, 71–113 (2002)

5. Kalimullin, I.Sh.: Degree spectra of some algebraic structures, Algebra and Logic
(to appear)

Some Notes on Degree Spectra of the Structures 397

6. Kalimullin, I.Sh.: A non-Δ0
2 structure is computable in any non-Δ0

2 degree (to
appear)

7. Kalimullin, I.Sh.: Restrictions on degree spectra of structures (to appear)
8. Knight, J.F.: Degrees coded in jumps of orderings. Journal of Symbolic Logic 51,

1034–1042 (1986)
9. Miller, R.G.: The Δ0

2-spectrum of a linear order. Journal of Symbolic Logic 66,
470–486 (2001)

10. Morozov, A.S., Puzarenko, V.G.: Σ-Subsets of Natural Numbers. Algebra and
Logic 43(3), 162–178 (2004)

11. Richter, L.J.: Degrees of Structures. Journal of Symbolic Logic 46, 723–731 (1981)
12. Slaman, T.: Relative to any Nonrecursive Set. In: Proceedings of the American

Mathematical Society vol. 126, pp. 2117–2122 (1998)
13. Soskov, I.N.: Degree spectra and co-spectra of structures. Ann. Univ. Sofia 96,

45–68 (2003)
14. Wehner, S.: Enumerations, Countable Structures, and Turing Degrees. In: Pro-

ceedings of the American Mathematical Society vol. 126, pp. 2131–2139 (1998)

Confluence of Cut-Elimination Procedures

for the Intuitionistic Sequent Calculus

Kentaro Kikuchi

RIEC, Tohoku University
Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan

kentaro@nue.riec.tohoku.ac.jp

Abstract. We prove confluence of two cut-elimination procedures for
the implicational fragment of a standard intuitionistic sequent calculus.
One of the cut-elimination procedures uses global proof transformations
while the other consists of local ones. Both of them include permutation
of cuts to simulate β-reduction in an isomorphic image of the λ-calculus.
We establish the confluence properties through a conservativity result on
the cut-elimination procedures.

Keywords: Sequent calculus, Cut-elimination, Confluence, λ-calculus,
Explicit substitution.

1 Introduction

Gentzen’s cut-elimination theorem [4] has long been a great influence on logic
and theoretical computer science. Recent development of structural proof theory
is revealing the computational aspect of cut-elimination procedures in the same
sense that proof transformations in natural deduction play through the Curry-
Howard correspondence [7]. In [8], the author identified a subset of proofs in a
standard sequent calculus that correspond to simply typed λ-terms, and defined
a reduction relation on those proofs that precisely corresponds to β-reduction
of the simply typed λ-calculus. Since the reduction relation is simulated by a
local-step cut-elimination procedure, the system of proof terms for the sequent
calculus can be considered as a syntactical extension of the λ-calculus including
reductions. It is worth noticing that the correspondence holds also for the type-
free case, so the reduction system in [8] can simulate the type-free λ-calculus,
which means that it is strong enough to represent all computations.

In this paper, we study confluence of a cut-elimination procedure based on
the one introduced in [8]. Since the reduction system in [8] is not confluent,
we modify one of the reduction rules to a more restricted form. The resulting
system is still strong enough to simulate β-reduction in the isomorphic image
of the λ-calculus. We also consider another cut-elimination procedure which
includes global proof transformations in the style of [2]. The reduction system
representing the cut-elimination procedure is similar to one considered in [3],
which uses meta-operations like meta-substitution in the λ-calculus.

It is well-known that a local-step cut-elimination procedure has a similarity
to explicit substitution calculi. Our proof method is essentially the one often

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 398–407, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Confluence of Cut-Elimination Procedures 399

used in the field of explicit substitutions (see, e.g. [1]), called the interpretation
method [6]. This method projects reduction steps with explicit substitutions
onto those using meta-substitution, and reduces the confluence problem of an
explicit substitution calculus to that of the original λ-calculus. To apply this
method to the case of a cut-elimination procedure, we need to find an appropri-
ate reduction using meta-operations. Although meta-operations are used in the
reduction system for the global cut-elimination procedure mentioned above, it
turns out that the system is not appropriate for a target calculus of the method
because proving confluence of it has a delicate matter that is not present in the
case of the usual λ-calculus. So we define another reduction relation on a certain
class of proof terms, and first prove its confluence by the method of parallel
reduction [10]. Confluence of the two cut-elimination procedures is inferred from
confluence of this reduction by the interpretation method.

Danos et al. [2] proved confluence of their cut-elimination procedures with
global proof transformations, depending on confluence of proof nets [5]. In this
paper, we give a direct proof of confluence of a similar cut-elimination proce-
dure, using proof terms and meta-operations on them. Our method works also
for cut-elimination procedures consisting of local proof transformations and for
underlying untyped calculi allowing non-terminating computations.

The paper is organized as follows. In Section 2 we introduce sequent calculus
and cut-elimination procedures. In Section 3 we study a subcalculus and meta-
operations from the reduction systems. In Section 4 we define another reduction
relation and prove its confluence. In Section 5 we prove confluence of the cut-
elimination procedures. In Section 6 we conclude by suggestions for future work.

To save space we omit details of proofs, but a full version with all details is
available at http://www.nue.riec.tohoku.ac.jp/user/kentaro/.

2 Sequent Calculus and Cut-Elimination Procedures

In this section we introduce a term notation for proofs in a standard sequent
calculus for intuitionistic implicational logic, following [8]. Our cut-elimination
procedures are represented as reduction rules for those terms.

First, the set of raw terms for sequent proofs is defined by the grammar:
t ::= x | λx.t | 〈xt/x〉t | [t/x]t where x ranges over a denumerable set of variables.
〈 / 〉 and [/] are function symbols like explicit substitutions and not meta-
substitution ([/] is called the cut-constructor). We use letters x, y, z, w for
variables and t, s, r, u for terms. The notions of free and bound variables are
defined as usual, with an additional clause that the variable x in 〈ys/x〉t or
[s/x]t binds the free occurrences of x in t. The set of free variables of a term
t is denoted by FV (t). We often use the notation 〈xs/y〉t to denote 〈xs/y〉t
if x /∈ FV (s) ∪ FV (t). The symbol ≡ denotes syntactical equality modulo α-
conversion; so for example, 〈zr/x〉〈xs/y〉t ≡ 〈zr/w〉〈ws/y〉t.

The term assignment for sequent proofs of intuitionistic implicational logic is
given in Table 1. We define a context, ranged over by Γ , as a finite set of pairs
{x1 : A1, . . . , xn : An} where the variables are pairwise distinct. The context

400 K. Kikuchi

Table 1. Sequent calculus and local cut-elimination

Ax
Γ, x : A � x : A

L ⊃ Γ � s : A Γ, y : B � t : C

Γ,x : A ⊃ B � 〈xs/y〉t : C
y /∈ Γ

R ⊃ Γ, x : A � t : B

Γ � λx.t : A ⊃ B
x /∈ Γ Cut

Γ � s : A Γ, x : A � t : B

Γ � [s/x]t : B
x /∈ Γ

〈xs/y〉t is used for 〈xs/y〉t when x /∈ FV (s) ∪ FV (t). In that case we assume x /∈ Γ
in the rule L ⊃.

(1) [t/x]y → y (y 	≡ x)

(2) [t/x]x → t

(3) [s/x](λy.t) → λy.[s/x]t

(4) [r/z]〈xs/y〉t → 〈x([r/z]s)/y〉[r/z]t (x 	≡ z)

(5) [r/x]〈xs/y〉t → [r/x]〈x([r/x]s)/y〉[r/x]t if x ∈ FV (s) ∪ FV (t)

(6) [z/x]〈xs/y〉t → 〈zs/y〉t
(7′) [〈xs/y〉t/z]〈zs′/w〉t′ → 〈xs/y〉[t/z]〈zs′/w〉t′

(Beta) [λz.r/x]〈xs/y〉t → [[s/z]r/y]t

(Perm1) [[r/x]〈xs/y〉t/z]〈zs′/w〉t′ → [r/x][〈xs/y〉t/z]〈zs′/w〉t′

(Perm2) [u/w][λz.r/x]〈xs/y〉t → [[u/w](λz.r)/x][u/w]〈xs/y〉t

Γ, x : A denotes the union Γ ∪{x : A}, and x /∈ Γ means that x does not appear
in Γ . For precise representation of proofs by terms, we should specify formulas
on binders, but we will omit them for brevity. If x /∈ FV (s) ∪FV (t) in the term
〈xs/y〉t, we assume x /∈ Γ in the rule L ⊃, which means the formula A ⊃ B is
introduced without implicit contraction.

The reduction rules in Table 1 define a cut-elimination procedure consisting
of local proof transformations. The reduction relation →cut is defined by the
contextual closures of these reduction rules. We use +→cut for its transitive clo-
sure, and ∗→cut for its reflexive transitive closure. These kinds of notations are
also used for the notions of other reductions in this paper.

The reduction system without the rule (Beta) is denoted by x. This subcal-
culus plays an important role in this paper and is studied in detail in Section 3.

The reduction rules (1) through (5) correspond to cut-elimination steps that
permute a cut upwards through its right subproof. The rules (6) and (7′) cor-
respond to steps permuting a cut upwards through its left subproof. The rule
(Beta) corresponds to the key-case which breaks a cut on an implication into
two cuts on its subformulas. The rules (Perm1) and (Perm2) permute two cuts

Confluence of Cut-Elimination Procedures 401

Table 2. Global cut-elimination

(Beta) [λz.r/x]〈xs/y〉t → [[s/z]r/y]t

(left) [u/x]〈xs/y〉t → 〈{{u}}s/y〉t if u is not of the form λz.r

(right) [u/x]r → {u/x}r if r is not of the form 〈xs/y〉t

where { / } and 〈{{ }} / 〉 are the meta-operations defined as follows:

{u/x}y =def y (y 	≡ x)

{u/x}x =def u

{u/x}(λy.t) =def λy.{u/x}t

{u/x}〈zs/y〉t =def 〈z({u/x}s)/y〉{u/x}t (z 	≡ x)

{u/x}〈xs/y〉t =def [u/x]〈x({u/x}s)/y〉{u/x}t

{u/x}[s/y]t =def [{u/x}s/y]{u/x}t

〈{{z}}s/y〉t =def 〈zs/y〉t
〈{{λz.r}}s/y〉t =def [λz.r/x]〈xs/y〉t

〈{{〈zs′/w〉r}}s/y〉t =def 〈zs′/w〉〈{{r}}s/y〉t
〈{{[s′/w]r}}s/y〉t =def [s′/w]〈{{r}}s/y〉t

with some restrictions. In (Perm1), the left rule over the lower cut is another cut,
and the right rules over both cuts must be L ⊃ that introduces the cut-formula
without implicit contraction. In (Perm2), the right rule over the lower cut is
another cut, which must construct a proof corresponding to a redex of the rule
(Beta).

The original cut-elimination procedure in [8] uses the following rule (7) instead
of (7′):

(7) [〈xs/y〉t/z]r → 〈xs/y〉[t/z]r

This rule makes the cut-elimination procedure non-confluent (e.g., the critical
pair w ← [〈xs/y〉t/z]w → 〈xs/y〉[t/z]w is not joinable). For a confluent cut-
elimination procedure, it is therefore necessary to restrict reductions. The rule
(7′) restricts the rule (7) so that the right rule over the cut must be L ⊃ that
introduces the cut-formula without implicit contraction. As shown in [8], this
cut-elimination procedure is still strong enough to simulate β-reduction in the
isomorphic image of the λ-calculus.

Table 2 presents another cut-elimination procedure which includes global
proof transformations. The cut-elimination procedure is implemented by reduc-
tion rules that use meta-operations { / } and 〈{{ }} / 〉 , analogously to proof
transformations in natural deduction. The operation 〈{{ }} / 〉 corresponds to
the cut-elimination process where the right rule over the cut is L ⊃ introducing
the cut-formula without implicit contraction, and the cut is permuted upwards
through its left subproof. Note that the conditions of (left) and (right) make the
cut-elimination procedure first permute a cut upwards through its right subproof

402 K. Kikuchi

and then through its left subproof. The reduction relation generated by the rules
(Beta), (left) and (right) is denoted by →gcut.

The following lemma is immediate from the definition of { / } .

Lemma 1. If x /∈ FV (t) then {u/x}t ≡ t.

Proof. By induction on the structure of t.
�

3 The Subcalculus x and Meta-operations

In this section we study properties of the subcalculus x which is the reduction
system in Table 1 without the rule (Beta). In the typed case, it corresponds
to the cut-elimination steps except the key-case, i.e., the case where both left
and right rules over the cut rule introduce the cut-formula. We show that the
subcalculus x is strongly normalizing and confluent, and investigate its relation
to the meta-operations in Table 2.

First we give a technical definition to prove strong normalization of the sub-
calculus x.

Definition 1. A term [s/x]t is called an application term if t is one of the
forms: [u/w]〈xs′/y〉t′, 〈xs′/y〉t′ and [〈xs′/y〉t′/z]〈zs′′/w〉t′′, where x occurs only
once in t.

Lemma 2. If [s/x]t is an application term and t →x t′, then [s/x]t′ is also an
application term.

Proof. It suffices to check each case.
�

Proposition 1. The subcalculus x is strongly normalizing.

Proof. The proof is by interpretation. We define a function h as follows:

h(x) =def 1
h(λx.t) =def h(t) + 1
h(〈xs/y〉t) =def h(s) + h(t) + 1

h([s/x]t) =def

{
(h(s) + 1)2 × h(t) if [s/x]t is an application term
(h(s) + 1)2×h(t) otherwise

and observe that if t →x t′ then h(t) > h(t′). If t ≡ [s/x]r is an application term
and r →x r′, then we use Lemma 2.
�

Proposition 2. The subcalculus x is confluent.

Proof. By Newman’s Lemma, it suffices to check the local confluence. There are
two critical pairs caused by the rules (7′) and (Perm1), and by (Perm1) and
(Perm1), both of which are joinable.
�

As a result, we can define the unique x-normal form of each term.

Confluence of Cut-Elimination Procedures 403

Definition 2. The unique x-normal form of a term t is denoted by x(t).

A term in which every cut-constructor forms a redex of the rule (Beta) is called
a Beta-term. The relation between Beta-terms and x-normal forms is as follows.

Proposition 3. t is a Beta-term if and only if t is in x-normal form.

Proof. The only if part is by induction on the structure of Beta-terms. We prove
the if part by induction on the structure of t. Suppose that t is in x-normal form.
Then by the induction hypothesis, all subterms of t are Beta-terms. Now, if t is
not a Beta-term then t is of the form [u/x]r(�≡ [λz.r′/x]〈xs/y〉t′) where u, r are
Beta-terms. In this case, t is an x-redex, which is a contradiction.
�
The next lemma shows that the subcalculus x correctly simulates the meta-
operations on Beta-terms.

Lemma 3. Let u, t, s be Beta-terms. Then

1. [u/x]t ∗→x {u/x}t,
2. [u/x]〈xs/y〉t ∗→x 〈{{u}}s/y〉t. Moreover, 〈{{u}}s/y〉t is a Beta-term, hence

x([u/x]〈xs/y〉t) ≡ 〈{{u}}s/y〉t.
Proof.

1. By induction on the structure of t.
2. By induction on the structure of u.
�

Next we show that →gcut is sufficient to reach x-normal forms.

Lemma 4. Let u, s, t be Beta-terms. Then

1. [u/x]〈xs/y〉t ∗→gcut x([u/x]〈xs/y〉t),
2. {u/x}t

∗→gcut x({u/x}t).

Proof.

1. If u ≡ λz.r then [u/x]〈xs/y〉t ≡ x([u/x]〈xs/y〉t). If u is not of the form λz.r,
then [u/x]〈xs/y〉t′ →left 〈{{u}}s/y〉t′ ≡ x([u/x]〈xs/y〉t′) by Lemma 3 (2).

2. By induction on the structure of t.
�
Lemma 5. t

∗→gcut x(t).

Proof. By induction on the structure of t.
�
The following lemmas are essential to the parallel reduction method in the next
section. Note that {u/x}〈{{t}}s/y〉t′ ≡ 〈{{{u/x}t}}s/y〉t′ instead of Lemma 7
does not hold in general; for example, {z/x}〈{{x}}w/y〉w′ ≡ [z/x]〈xw/y〉w′ �≡
〈zw/y〉w′ ≡ 〈{{{z/x}x}}w/y〉w′. This makes it difficult to apply a direct parallel
reduction method to →gcut. So we consider the meta-operation { / } followed
by x-reductions to x-normal forms (i.e., x({ / })), and in the next section we
define another reduction relation that matches such operation.

Lemma 6. 〈{{〈{{u}}s/y〉t}}s′/y′〉t′ ≡ 〈{{u}}s/y〉〈{{t}}s′/y′〉t′.
Proof. By induction on the structure of u.
�

404 K. Kikuchi

Lemma 7. Let u, t, s, t′ be Beta-terms. Then
x({u/x}〈{{t}}s/y〉t′) ≡ 〈{{x({u/x}t)}}x({u/x}s)/y〉x({u/x}t′).
In particular, if x /∈ FV (s) ∪ FV (t′) then
x({u/x}〈{{t}}s/y〉t′) ≡ 〈{{x({u/x}t)}}s/y〉t′.

Proof. By induction on the structure of t.
�

Lemma 8. Let u, s, t be Beta-terms with y /∈ FV (u). Then
x({u/x}x({s/y}t)) ≡ x({x({u/x}s)/y}x({u/x}t)).

Proof. By induction on the structure of t.
�

4 Confluence of β-Reduction

In this section we introduce another reduction relation on Beta-terms and show
that it is confluent by the parallel reduction method [10]. Confluence of the two
cut-elimination procedures is proved using projections onto this reduction.

The reduction relation →β on Beta-terms is defined by the contextual closure
of the rule:

(β) [λz.r/x]〈xs/y〉t → x({x({s/z}r)/y}t)

This reduction relation is indeed an extension of β-reduction on pure terms (i.e.,
the isomorphic image of λ-terms) in [8].

Proposition 4. Let t, t′ be Beta-terms.

1. If t →β t′ then t
+→cut t′.

2. If t →β t′ then t
+→gcut t′.

Proof. By induction on the reduction relation →β . We treat the case where the
reduction is at the root. Then

[λz.r/x]〈xs/y〉t0 →Beta [[s/z]r/y]t0
∗→x x([x([s/z]r)/y]t0) (∗)
≡ x([x({s/z}r)/y]t0) (by Lemma 3 (1))
≡ x({x({s/z}r)/y}t0) (by Lemma 3 (1))

where the step (∗) can also be established with ∗→gcut by Lemma 5.
�

The parallel reduction ⇒ for →β is defined by the rules in Table 3.

Lemma 9. For every Beta-term t, t ⇒ t.

Proof. By induction on the structure of t.
�

Confluence of Cut-Elimination Procedures 405

Table 3. Parallel reduction

x ⇒ x (pr1)
t ⇒ t′

λx.t ⇒ λx.t′ (pr2)
s ⇒ s′ t ⇒ t′

〈xs/y〉t ⇒ 〈xs′/y〉t′ (pr3)

r ⇒ r′ s ⇒ s′ t ⇒ t′

[λz.r/x]〈xs/y〉t ⇒ [λz.r′/x]〈xs′/y〉t′ (pr4)

r ⇒ r′ s ⇒ s′ t ⇒ t′

[λz.r/x]〈xs/y〉t ⇒ x({x({s′/z}r′)/y}t′)
(pr5)

Lemma 10

1. If t →β t′ then t ⇒ t′.
2. If t ⇒ t′ then t

∗→β t′.
3. If u ⇒ u′, s ⇒ s′ and t ⇒ t′ then 〈{{u}}s/y〉t ⇒ 〈{{u′}}s′/y〉t′.
4. If u ⇒ u′ and t ⇒ t′ then x({u/x}t) ⇒ x({u′/x}t′).

Proof.

1. By induction on the reduction relation →β .
2. By induction on the definition of t ⇒ t′.
3. By induction on the definition of u ⇒ u′.
4. By induction on the definition of t ⇒ t′.
�

Definition 3. For each Beta-term t, the term t� is defined inductively as fol-
lows:

1. x� =def x,
2. (λx.t)� =def λx.t�,
3. (〈xs/y〉t)� =def 〈xs�/y〉t�,
4. ([λz.r/x]〈xs/y〉t)� =def x({x({s�/z}r�)/y}t�).

Lemma 11. If t ⇒ t′ then t′ ⇒ t�.

Proof. By induction on the definition of t ⇒ t′.
�
Lemma 12. If t ⇒ t1 and t ⇒ t2 then there is t′ such that t1 ⇒ t′ and t2 ⇒ t′.

Proof. By Lemma 11.
�
Theorem 1. The reduction relation →β is confluent.

Proof. By Lemmas 10 and 12.
�
Lemma 13. Let u, t be Beta-terms.

1. If u →β u′ then x({u/x}t) ∗→β x({u′/x}t).
2. If t →β t′ then x({u/x}t) ∗→β x({u/x}t′).

Proof. These are derived from Lemmas 9 and 10.
�

406 K. Kikuchi

5 Confluence of Cut-Elimination Procedures

In this section we complete the proofs of confluence of the cut-elimination pro-
cedures. We also establish a conservativity result among the cut-elimination
procedures and β-reduction on Beta-terms.

Lemma 14

1. x(〈{{u}}s/y〉t) ≡ 〈{{x(u)}}x(s)/y〉x(t),
2. x({u/x}t) ≡ x({x(u)/x}x(t)).

Proof.

1. By induction on the structure of u.
2. By induction on the structure of t.
�

The next two lemmas show that the cut-elimination procedures project onto
β-reduction on Beta-terms.

Lemma 15. If t →gcut t′ then x(t) ∗→β x(t′).

Proof. By induction on the reduction relation →gcut.
�

Lemma 16. If t →cut t′ then x(t) ∗→β x(t′).

Proof. If t →x t′ then x(t) ≡ x(t′). So it suffices to show that if t →Beta t′ then
x(t) ∗→β x(t′). This is proved in a similar way to Lemma 15.
�
Now we have a conservativity result among the reductions on Beta-terms.

Theorem 2. For any Beta-terms t, t′, the following are equivalent.

1. t
∗→gcut t′

2. t
∗→cut t′

3. t
∗→β t′

Proof. By Lemmas 15 and 16, and Proposition 4.
�

We are now ready to show that the reduction relations →gcut and →cut are
confluent, using confluence of →β on Beta-terms (Theorem 1). The results also
hold in the typed case, so that confluence of the cut-elimination procedures
follows.

Theorem 3

1. The reduction relation →gcut is confluent.
2. The reduction relation →cut is confluent.

Proof.

1. Suppose that t
∗→gcut t1 and t

∗→gcut t2. Then by Lemma 15, x(t) ∗→β x(ti)
(i = 1, 2), so by confluence of →β, there is a Beta-term t′ such that x(ti)

∗→β

t′ (i = 1, 2). Since x(ti)
∗→gcut t′ by Theorem 2 and ti

∗→gcut x(ti) by Lemma
5, we have ti

∗→gcut t′ (i = 1, 2).
2. Similar, using Lemma 16 instead of Lemma 15.
�

Confluence of Cut-Elimination Procedures 407

6 Conclusion

We have proved confluence of global and local cut-elimination procedures, using
proof terms for a standard sequent calculus of intuitionistic logic. For the inter-
pretation method to work, we have introduced β-reduction on Beta-terms, and
proved its confluence by the method of parallel reduction. Then confluence of
the two cut-elimination procedures has been obtained through projections onto
the β-reduction. Additionally, we have established a conservativity result among
the cut-elimination procedures and the β-reduction. Note that our proofs are
also effective in the type-free case allowing non-terminating computations.

The problem on substitution lemmas (cf. the remark before Lemma 6) was
also pointed out in [11, page 136] for the case of the classical sequent calculus.
In future work, we will investigate the relation between their observations and
ours, and develop proofs of confluence for some cut-elimination procedures in
the classical sequent calculus.

Acknowledgements. This work was inspired by Stéphane Lengrand’s conjec-
tures on confluence of cut-elimination procedures that simulate β-reduction. The
work was partially supported by the Japanese Ministry of Education, Culture,
Sports, Science and Technology, Grant-in-Aid for Young Scientists (B) 17700003.

References

1. Bloo, R., Geuvers, H.: Explicit substitution: On the edge of strong normalization.
Theoretical Computer Science 211, 375–395 (1999)

2. Danos, V., Joinet, J.-B., Schellinx, H.: A new deconstructive logic: Linear logic.
The Journal of Symbolic Logic 62, 755–807 (1997)

3. Esṕırito Santo, J.: Revisiting the correspondence between cut elimination and nor-
malisation. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 600–611. Springer, Heidelberg (2000)

4. Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische
Zeitschrift, 39: pp. 176–210, pp. 405–431, English translation in [9 pp. 68–131]
(1935)

5. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
6. Hardin, T.: Résultats de confluence pour les règles fortes de la logique combinatoire

catégorique et liens avec les lambda-calculs. Thèse de doctorat, Université de Paris
VII (1987)

7. Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hind-
ley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda-Calculus
and Formalism, pp. 479–490. Academic Press, San Diego (1980)

8. Kikuchi, K.: On a local-step cut-elimination procedure for the intuitionistic se-
quent calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI),
vol. 4246, pp. 120–134. Springer, Heidelberg (2006)

9. Szabo, M.E. (ed.): The Collected Papers of Gerhard Gentzen. North-Holland (1969)
10. Takahashi, M.: Parallel reductions in λ-calculus. Information and Computa-

tion 118, 120–127 (1995)
11. Urban, C., Bierman, G.M.: Strong normalisation of cut-elimination in classical

logic. Fundamenta Informaticae 45, 123–155 (2001)

The Polynomial and Linear Hierarchies in V0

Leszek Aleksander Ko�lodziejczyk1,� and Neil Thapen2,��

1 Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
lak@mimuw.edu.pl

2 Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25,
CZ-115 67 Praha 1, Czech Republic

thapen@math.cas.cz

Abstract. We show that the bounded arithmetic theory V0 does not
prove that the polynomial time hierarchy collapses to the linear time
hierarchy (without parameters). This result follows from a lower bound
for bounded depth circuits computing prefix parity, where the circuits
are allowed some auxiliary input.

This is a continuation of earlier work by the authors which showed that
this collapse is not provable in PV under a cryptographic assumption.

Keywords: prefix parity, linear hierarchy, bounded arithmetic, bounded
depth circuits.

1 Introduction

One approach to problems of structural complexity is to look at their behaviour
in theories of bounded arithmetic. This allows us to consider how complexity
classes behave in models not unreasonably different from the real world, and
to study what logical resources are necessary to answer complexity-theoretic
questions. The most important problem in this area is whether there is a model
of full bounded arithmetic in which the polynomial hierarchy does not collapse
to a finite level, see e.g. [6].

In the present paper we deal with the problem of the relation between the
linear and polynomial time hierarchies, and look at it in the weak two-sorted
theory V0, which can be thought of as a subtheory of S1

2. V0 is strong enough to
prove the basic properties of AC0 circuits, but weak enough that we can use lower
bounds on the strength of AC0 circuits to obtain unconditional independence
results. We show the existence of a model of V0 in which a set in the second level
Σp

2 of the polynomial time hierarchy is not contained in the parameter free linear
time hierarchy. Our result uses a simple model-theoretic construction and the
following circuit bound: a bounded depth, polynomial size circuit can compute
the prefix parities of only an exponentially small fraction of n-bit inputs X , even
� This work was carried out while the author was visiting the Mathematical Institute

of the Academy of Sciences of the Czech Republic in Prague.
�� Corresponding author. Supported in part by grant AV0Z10190503 and by the Eduard

Čech Center grant LC505.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 408–415, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Polynomial and Linear Hierarchies in V0 409

if it has access to some auxiliary input strings of length n
1
4 which may depend

on X . Here the “prefix parity of X” is the string whose ith bit is the parity of
bits 1, . . . , i of X .

In the next section we explain how complexity classes are defined in nonstan-
dard models of arithmetic and describe the theory V0 and some of its simple
properties; in Section 3 we prove our main result, assuming the lower bound;
and in Section 4 we prove the lower bound, as a corollary of an old theorem of
Ajtai about the fraction of its inputs for which a bounded depth, polynomial
size circuit correctly computes the parity bit.

This paper continues work in [5] where we show, under a cryptographic as-
sumption, that some important statements about structural complexity theory
are not provable in the bounded arithmetic theories S1

2 and PV. Our assumption
is that there is no probabilistic polynomial time algorithm for factoring. This
guarantees the existence of a model of S1

2 in which the injective weak pigeonhole
principle fails for a polynomial time function f (that is, f is an injection from
n2 to n for some n) but in which the surjective weak pigeonhole principle holds
for all polynomial time functions (that is, for any n and any poly-time g, g is
not a surjection from n to n2). We use this to construct a model of PV in which
the polynomial time hierarchy does not collapse to the linear time hierarchy;
a model of S1

2 in which an NP set is not in the second level of the linear time
hierarchy; and a model of S1

2 in which the polynomial hierarchy does collapse to
the linear hierarchy, but does not collapse to any finite level Σp

i . Parameters are
allowed in the definition of these hierarchies.

Here we use the same basic technique as [5], which is to take a model of some
theory and close an initial segment of it (and possibly a few elements more)
under a certain set of functions (there PV, here FAC0). This gives a new model
in which formulas whose quantifiers only range over the common initial segment
keep their truth values unchanged, but in which some formulas with bigger
quantifiers will change their truth values. The present work has the advantage
that it does not use any assumptions. It has two main disadvantages, besides
the obvious one that V0 is a weaker theory than PV.

The first is that our result holds for the parameter-free versions of the hierar-
chies, while it seems that the natural definition of the hierarchies in nonstandard
models would allow parameters – we say more about this below. We deal with
parameters in [5] essentially by iterating our basic step and using a union-of-
chains construction. A similar approach does not appear to be possible here, at
least using our circuit lower bound.

The second disadvantage is related to properties of the set which is not prov-
ably in the linear time hierarchy. In the present case, this set is rather artificial
— for example, it is empty in the standard model, and even in nonstandard
models of stronger bounded arithmetic theories. Additionally, it is from the sec-
ond level Σp

2 of the polynomial time hierarchy, whereas the set in [5] is in NP.
The definition of that NP set depends on having a function f in a model of
PV which defines an injection from the set of numbers of length n2 (in binary
notation) into the set of numbers of length n. By the non-provability of the

410 L.A. Ko�lodziejczyk and N. Thapen

relativized pigeonhole principle in IΔ0 we know that there are models of V0 in
which there is a definable injection from some n+1 to n, giving an injection from
strings of length n + 1 to strings of length n. But this is too small a difference
between domain and range, and in the absence of the ability to iterate functions
polynomially many times (available in PV, but not in V0) there seems to be no
way of amplifying it. Of course the existence of a model of V0 with a definable
injection from n2 to n is equivalent to an old open problem, about the prov-
ability of the relativized weak pigeonhole principle in IΔ0. The existence of a
definable injection between strings of these lengths, instead of just the numbers,
is an interesting question in its own right, and may be an easier version of this
open problem.

2 Definitions

Most of the definitions below are based on [2].
We work in a language L2

A of two-sorted arithmetic. We will write variables
of the number or “first-order” sort as i, j, k, . . . and variables of the finite set
or “second-order” sort (which we will think of as strings) as X, Y, Z, The
language consists of the function and predicate symbols {0, 1, +, ·, | |, ∈, ≤, =}.
Here +, ·, ≤ only apply to the number sort. |X | is the least upper bound of the
set X , or 0 if X is empty; by abuse of notation we will also use it to mean the
length of X when we think of X as a string.

A ΣB
0 formula is a formula in this language in which the only quantifiers are

bounded number quantifiers, that is, quantifiers of the form ∀i < t or ∃i < t
where t is a number term (not containing i). Here a number term is one taking
a value of the number sort; it is allowed to contain subterms of the form |X |.

A polynomially bounded string quantifier is of the form ∀X (|X | < t → . . .)
or ∃X (|X | < t ∧ . . .) where t is a number term (not containing the variable X).
We will write these as ∀X <t and ∃X <t . A linearly bounded string quantifier is
defined in the same way, with the important difference that the bounding term
t is not allowed to contain multiplication.

For i ∈ N, the ΣB
i formulas consist of i alternations of blocks of polynomially

bounded string quantifiers, beginning with an existential quantifier, followed by
a ΣB

0 formula. The ΣLIN
i or “linear” formulas are defined similarly, but with

linearly bounded string quantifiers. ΠB
i and ΠLIN

i are defined dually. ΣB
∞ and

ΣLIN
∞ are the unions of the respective sets of formulas over all i ∈ N.
It is straightforward to see that for i ≥ 1 the sets of strings definable in the

standard model by ΣB
i formulas are exactly the sets from the ith level Σp

i of the
polynomial hierarchy. Similarly the sets of strings definable by ΣLIN

∞ formulas
are exactly the sets from the linear hierarchy [7, 4] – the linear hierarchy is not
defined so robustly, so we do not seem to have the level-by-level correspondence.
Hence in a nonstandard model of an arithmetical theory in this language it is
natural to identify the polynomial hierarchy with the ΣB∞ definable sets of strings
and the linear hierarchy with the ΣLIN

∞ sets of strings.
It seems natural to allow parameters to be used in defining these sets, firstly

because this captures the idea of limiting the time bounds of our Turing machines

The Polynomial and Linear Hierarchies in V0 411

to the standard polynomials, while letting the input and the code of the machine
range over the whole model; secondly because if there is a model in which the
polynomial hierarchy is contained in the linear hierarchy without parameters,
then we must have this containment already in the standard model. However we
are not currently able to prove our result for V0 in the version with parameters.

V0 is a theory of bounded arithmetic in our two-sorted language L2
A, based

on a theory of Zambella [8]. For a complete introduction to the version we use
here see [2]. V0 consists of a set 2-BASIC of axioms fixing the basic properties
of its language and the following comprehension axiom for each ΣB

0 formula φ,
possibly with parameters:

∃Z <j ∀i<j (i ∈ Z ↔ φ(i)).

Notice that together with the properties of the | | function, this gives induction
for ΣB

0 formulas. In fact, V0 is conservative over IΔ0.
Let φ(i, X̄) be any ΣB

0 formula, with a free number variable i, some free string
variables X̄, and no other free variables. Let t(X̄) be any number-valued term.
Then φ and t naturally give rise to a function Fφ,t: the output of Fφ,t on input
X̄ is the string of length t(X̄) whose bits are given by the values of φ(i, X̄)
for i = 1 to t(X̄). We call the functions defined in this way the uniform FAC0

functions. They correspond to the string functions defined by uniform families
of polynomial size, bounded depth circuits.

Now let M = (N, M) be a model of V0, where N is the set of number elements
and M the set of string elements. For any S ⊆ M , let T ⊆ M be the closure
in M of S under all uniform FAC0 functions and let U be the set of lengths of
strings from T . Then (U, T) is a model of V0; closure under the uniform FAC0

functions is exactly what is needed to guarantee that comprehension holds.

3 Main Theorem

We first state our lemma about small bounded depth circuits. The proof is
postponed until the next section.

Lemma 1. Let k ∈ N. Let (Cn) be a family of polynomial-size, bounded depth
circuits where each circuit has as input one string X of length n2 and k many
auxiliary input strings, each of length

√
n, and each circuit has as output a string

Y of length n2.
Then for all sufficiently large n, for all but a fraction of at most 2−

√
n input

strings X, Cn fails to output the prefix parity of X for any choice of auxiliary
strings.

Let φ(A) be the formula “for some X with |X | = |A|4, there is no prefix parity
Y of X”. This is ΣB

2 , since we can express “Y is the prefix parity of X” in a ΣB
0

way as

|Y | = |X | ∧ Y (1) ≡ X(1) ∧ ∀i< |X | (Y (i + 1) ≡ Y (i) ⊕ X(i + 1)),

where we use X(i) to mean the ith bit of the string X .

412 L.A. Ko�lodziejczyk and N. Thapen

Theorem 2. There is a model of V0 in which φ(A) is not equivalent to any
formula ψ(A) in ΣLIN

∞ without parameters.

Proof. It is enough to show that the theory

V0 + {∃A¬(φ(A) ↔ ψ(A)) : ψ ∈ ΣLIN
∞ }

is finitely satisfiable. So suppose for a contradiction that we have finitely many
linear formulas ψ1, . . . , ψm and that

V0 �
∨

i

∀A, φ(A) ↔ ψi(A).

We define a theory Γ with new constant symbols U1, . . . , Um+1 and n1, . . . ,
nm+1. For each i = 1, . . . , m + 1, each k ∈ N and each FAC0 function F , Γ
contains the sentence “|U i| = n2

i and for all auxiliary strings Z1, . . . , Zk, each
of length

√
ni, the output of F (U i, Z̄) is not the prefix parity of U i”. Γ also

contains “ni+1 > n4
i ” for each i = 1, . . . , m.

To see that Γ is finitely satisfiable in N, consider any k ∈ N and any finite
number of FAC0 functions. By the bound on any single FAC0 function given by
the lemma, for arbitrarily large n1 there is a string U1 of length n2

1 such that
none of our finitely many functions can calculate the prefix parity of U1, for any
choice of auxiliary input. Pick such an n1 and U1, then find n2 > n4

1 and a string
U2 with the same property, and so on.

Let M be a model of Γ together with the theory of true arithmetic in our
language L2

A. For each i, let Mi be the model of V0 given by taking the closure
in M of the set {strings of length ≤ √

ni} ∪ {U i} under all FAC0 functions in
M, as in the previous section.

For each i, by our assumption φ must be equivalent in Mi to some ψt. Since
we have more models than we have linear formulas ψ, by the pigeonhole principle
there must be two models Mi and Mj, with i < j, in both of which φ is equivalent
to the same ψt.

Now let A be the string consisting of
√

ni many 1s. ψt(A) must have the same
truth value in Mi as in Mj, since it only talks about strings whose lengths are
linear in |A| and about numbers polynomial in |A|, and these are the same in Mi

and Mj (since, for r ∈ N, numbers less than |A|r can be thought of as r-tuples
of numbers less than |A|).

However φ(A) is false in Mj, since nj ≥ n4
i so Mj is the same as M for all

strings of length |A|4 and thus contains a prefix parity for every such string. But
φ(A) is true in Mi, since U i is in Mi but, by construction, the unique prefix
parity (in M) of U i is not in Mi.

Hence φ(A) cannot be equivalent to ψt(A) in both Mi and Mj, which gives
a contradiction. ��
We note that minor changes to the argument show that V0 does not prove that
the polynomial hierarchy collapses to the quadratic time hierarchy, or to any
time hierarchy given by polynomials of fixed degree. Also, a similar argument
shows that there exists a model in which our formula φ is not equivalent to any
parameter-free ΣB

1 formula.

The Polynomial and Linear Hierarchies in V0 413

4 The Circuit Lower Bound

It remains to give the proof of Lemma 1, which relies on a result of Ajtai. In
the calculations of probabilities below we use the vertical lines |δ| to mean the
absolute value of a real number δ.

Theorem 3 (Ajtai [1]). Let (Cn) be a polynomial size family of bounded depth
circuits, where each Cn has n input bits. Let Pn be the fraction of input strings
X of length n for which the output bit of Cn is the parity of X. Then for any
ε > 0, for all sufficiently large n,

|Pn − 1
2 | < 2−n1−ε

.

Note that by the nonuniformity of this result the bound n can be chosen so as
to depend only on ε and the depth d and size exponent r of the circuit family.
Otherwise for arbitrarily large n there would exist some circuit Dn of depth d
and size nr with distance from 1

2 greater than 2−n1−ε

. These circuits would thus
define a family (Dn) violating the theorem.

It is also worth noting that our argument appears to need Ajtai’s strong
bound on the advantage away from 1

2 here. The bounds that can be obtained
from H̊astad’s method of switching lemmas do not seem to be strong enough.
See Chapter 8 of [3].

Now consider a polynomial size family (Cn) of bounded depth circuits, where
the nth circuit takes n2 input bits and has n output bits. We think of the input
as a n × n binary matrix X̄ with rows X1, . . . , Xn. We imagine the circuit as
attempting to output a “parity vector”, the ith entry of which is the parity of
the vector Xi. We will write Ci

n for the subcircuit which, on input X̄, calculates
bit i of the circuit’s output.

We will show that the circuit outputs the correct parity vector with an
appropriately small probability.

Lemma 4. Take any ε > 0. Fix n sufficiently large. We omit the subscript n in
what follows.

For k ≤ n let P k be the probability, over input matrices X̄, that Ci(X̄) =
parity(Xi) for every i ≤ k. Then

|P k − 1
2k | < 2 · 2−n1−ε

.

Proof. Let d be the depth and r the size exponent of the circuit family (Cn).
We take the n given by Theorem 3 with parameters ε, d + 4 and r + 1; all the
circuits in the proof will be of this size or smaller. Let δ = 2−n1−ε

.
The proof is by induction. The base case, k = 1, follows from Theorem 3

and an averaging argument. Suppose that, for a random matrix X̄, C1(X̄) =
parity(X1) with probability more than 1

2 + δ. Then there must be some fixed
vectors Z2, . . . , Zn such that if we take a random n-bit vector X1 and give C1 the
matrix with rows X1, Z2, . . . , Zn as input, then C1 outputs the correct parity of
X1 with probability more than 1

2 + δ, which is impossible. The same argument
works if the probability over X̄ is less than 1

2 − δ.

414 L.A. Ko�lodziejczyk and N. Thapen

Suppose the lemma is true for k. Say that P k = 1
2k + α, where |α| < 2δ. We

will calculate P k+1.
First let Pr(Ck+1(X̄) = parity(Xk+1)) = 1

2 + β. By averaging, |β| < δ.
Now consider the following function f , which takes as input a matrix X̄ and

tries to output the parity of Xk+1. If C1(X̄), . . . , Ck(X̄) correctly output the par-
ities of X1, . . . , Xk, then f outputs Ck+1(X̄). Otherwise f outputs ¬Ck+1(X̄).
Let Pr(f(X̄) = parity(Xk+1)) = 1

2 + γ.
We claim that |γ| < δ. Otherwise, again by our averaging argument, there

are some fixed values of Z1, . . . , Zk, Zk+2, . . . , Zn for the rows other than k + 1
over which, for a random row Xk+1, f correctly calculates parity(Xk+1) with
too high (or too low) a probability. This allows us to violate Theorem 3 by
defining a bounded depth circuit for parity(Xk+1) as follows. Take C1, . . . , Cn

and hardwire in Z1, . . . , Zk, Zk+2, . . . , Zn as the appropriate rows of the input.
At the bottom of the circuit, check whether C1, . . . , Ck compute the parities
of Z1, . . . , Zk correctly (since these strings are fixed, we can hardwire in their
parities); if so, output the output of Ck+1; otherwise output the inverse of Ck+1.
This construction adds no more than four levels to depth of the circuit Cn and
no more than 2n nodes to the size. This completes the proof of our claim, since
we chose n large enough to work for circuits of this depth and size.

Now for a random matrix X̄ , f is correct in precisely two cases:

1. C1, . . . , Ck are all correct and Ck+1 is correct. The probability of this is
P k+1.

2. C1, . . . , Ck are not all correct and Ck+1 is not correct. The probability of
this is

1 − Pr(C1, . . . , Ck all correct) − Pr(Ck+1 correct) + P k+1

= 1 − (1
2k + α) − (1

2 + β) + P k+1.

Now we can equate our two expressions for Pr(f is correct) to get

1
2 + γ = P k+1 + 1 − (1

2k + α) − (1
2 + β) + P k+1

and hence

P k+1 = 1
2 (1

2k + α + β + γ).

But |α| < 2δ and |β|, |γ| < δ. So the advantage of P k+1 away from 1
2k+1 is

smaller than 2δ, as required. ��

Proof of Lemma 1. First observe that from a small bounded depth circuit com-
puting prefix parities of strings of length n2, we can easily produce a small
bounded depth circuit computing parity vectors of n × n matrices. So, using
Lemma 4, for large n any circuit Cn with fixed auxiliary inputs will successfully
calculate the prefix parity for at most a fraction 2−n

2
3 of inputs X ; but there

are only 2k
√

n possible auxiliary strings. Hence there are no more than a fraction
2−n

2
3 · 2k

√
n ≤ 2−

√
n of inputs X for which there is at least one auxiliary string

which helps to compute the prefix parity of X . ��

The Polynomial and Linear Hierarchies in V0 415

References

[1] Ajtai, M.: Σ1
1 formulae on finite structures. Annals of Pure. and Applied Logic 24,

1–48 (1983)
[2] Cook, S., Nguyen, P.: Foundations of proof complexity: Bounded arithmetic

and propositional translations, (2006), book in preparation, available online at
http://www.cs.toronto.edu/∼sacook/.

[3] H̊astad, J.T.: Computational limitations for small depth circuits. MIT Press, Cam-
bridge (1987)

[4] Immerman, N.: Languages that capture complexity classes. SIAM Journal on Com-
puting 16, 760–778 (1987)

[5] Ko�lodziejczyk, L.A., Thapen, N.: The polynomial and linear hierarchies in models
where the weak pigeonhole principle fails, preprint (2006)

[6] Kraj́ıček, J.: Bounded arithmetic, propositional logic, and complexity theory. Cam-
bridge University Press, Cambridge (1995)

[7] Lynch, J.F.: Complexity classes and theories of finite models. Mathematical Sys-
tems Theory 15(2), 127–144 (1982)

[8] Zambella, D.: Notes on polynomially bounded arithmetic. Journal of Symbolic
Logic 61, 942–966 (1996)

http://www.cs.toronto.edu/~sacook/

The Uniformity Principle for Σ-Definability

with Applications to Computable Analysis�

Margarita Korovina1 and Oleg Kudinov2

1 Institute of Informatics Systems,
pr. Lavrenteva 6, 630090, Novosibirsk, Russia

korovina@brics.dk
http://www.brics.dk/~korovina

2 Sobolev Institute of Mathematics,
pr. Koptuga 4, 630090, Novosibirsk, Russia

kud@math.nsc.ru

Abstract. In this paper we prove the Uniformity Principle for Σ–defina-
bility over the real numbers extended by open predicates. Using this
principle we show that if we have a ΣK -formula, i.e. a formula with
quantifier alternations where universal quantifiers are bounded by com-
putable compact sets, then we can eliminate all universal quantifiers
obtaining a Σ-formula equivalent to the initial one. We also illustrate
how the Uniformity Principle can be employed for reasoning about com-
putability over continuous data in an elegant way.

1 Introduction

This work is the next step in a series of papers [7,8,5,9] using arguments from
definability theory to logically characterise computable continuous data. In order
to do this we have proposed the notion of majorant-computability and developed
logical approach to computability over continuous data. This approach is based
on representations of continuous data by suitable structures without the equality
test and Σ-definability in extensions of the structures by hereditarily finite sets.
One of the main features of the notion of majorant-computability is that on
the one side it is independent from concrete representations of the elements of
structures on the other side it is flexible, i.e. we can change the language of
Σ-formulas to express appropriate computability properties.

In this paper we introduce and study the language of ΣK-formulas which is
an extension of the language of Σ-formulas. This language simplifies reasoning
about computability of higher type continuous data, and admits elimination of
universal quantifiers bounded by computable compact sets. In order to show
these properties we prove the Uniformity Principle for Σ-definability over the
real numbers extended by open sets. We illustrate how the language of ΣK-
formulas and the Uniformity Principle can be employed for reasoning about
computability over continuous data.
� This research was partially supported by Grant Scientific School-4413.2006.1, RFBR-

DFG Project GZ: 436 RUS 113/850/01:06-01-04002 and RFBR 05-01-00819a.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 416–425, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Uniformity Principle for Σ-Definability 417

The structure of this paper is as follows. In Section 2 we recall basic notions
and introduce the language of ΣK-formulas. In Section 3 we prove the Unifor-
mity Principle for Σ-definability over the real numbers extended by open sets
and show that the language of ΣK-formulas admits elimination of existential
and universal quantifiers bounded by computable compact sets. Section 4 illus-
trates how the language of ΣK-formulas can be used to prove computability of
continuous data.

2 Basic Definitions and Notions

In this paper we consider the ordered structure of the real numbers in finite
predicate languages without equality, 〈IR, σP , <〉 = 〈IR, σ0〉 , where σP satisfies
the following assumption.

Assumption 1. The set σP is a finite set of open predicates i.e. interpreted
over the reals as open sets.

We extend the real numbers by the set of hereditarily finite sets HF(IR) which
is rich enough for information to be coded and stored. We construct the set
of hereditarily finite sets, HF(IR) over the reals, as follows:

1. HF0(IR) � IR,
2. HFn+1(IR) � Pω(HFn(IR)) ∪ HFn(IR), where n ∈ ω and for every set B,

Pω(B) is the set of all finite subsets of B.
3. HF(IR) =

⋃
m∈ω HFm(IR).

We define HF(IR) as the following model: HF(IR) � 〈HF(IR), R, σ0, ∅, ∈〉 �
〈HF(IR), σ〉 , where the constant ∅ stands for the empty set and the binary pred-
icate symbol ∈ has the set-theoretic interpretation. We also add a predicate
symbol R for elements of IR. For our convenience, we use variables subject to
the following conventions:

r, x, y, z, a, b, c, range over IRn, n ∈ IN,
r,x,y, z,a,b, c, range over HF(IR),
r̄, x̄, ȳ, z̄, ā, b̄, denote sequences.

We use the same letters as for variables to denote elements from the correspond-
ing structures.

The set of Δ0-formulas is the closure of the set of atomic formulas under ∧, ∨, ¬,
bounded quantifiers (∃x ∈ y) and (∀x ∈ y), where (∃x ∈ y) Ψ denotes ∃x(x ∈
y ∧ Ψ), (∀x ∈ y) Ψ denotes ∀x(x ∈ y → Ψ) and y ranges over sets.

The set of Σ-formulas is the closure of the set of Δ0-formulas under ∧,∨,
(∃x ∈ y), (∀x ∈ y) and ∃, where y ranges over sets.

The set of ΣK-formulas is the closure of the set of Σ-formulas under ∧,∨, ∃,
∃x ∈ K, and ∀x ∈ K, where K is a computable compact subset of IRn.

Assumption 2. We assume that the predicate < and all predicates from σP

occur positively in all Σ- and ΣK-formulas.

We define Π-formulas as negations of Σ-formulas.

418 M. Korovina and O. Kudinov

Definition 1. 1. A relation B ⊆ HF(IR)n is Σ-definable, if there exists
a Σ-formula Φ such that x ∈ B ↔ HF(IR) |= Φ(x).

In a similar way, we define the notions of ΣK-definable and Π-definable sets.
The following theorem reveals algorithmic properties of Σ-formulas over HF(IR).

Theorem 1 (Semantic Characterisation of Σ-definability)
A set B ⊆ IRn is Σ-definable if and only if there exists an effective sequence of
existential formulas in the language σ0, {Φs(x)}s∈ω, such that

x ∈ B ↔ HF(IR) |=
∨

s∈ω

Φs(x).

The proof of this theorem is based on Gandy’s theorem for abstract structures
without equality [6] and the technique developed in [5]. It is worth noting that
both of the directions of this characterisation are important. The right direction
gives us an effective procedure which generates existential formulas approximat-
ing Σ-relations. The converse direction provides tools for descriptions of the
results of effective infinite approximating processes by finite formulas.

3 Uniformity Principle for Σ-Definability

Now we assume σ0 = {M∗
E , M∗

H , P+
E , P+

H , <}, σ = σ0 ∪ {∅, ∈}, where M∗
E , M∗

H

are interpreted as an open epigraph and an open hypograph of multiplication
respectively, and P+

E , P+
H are interpreted as an open epigraph and an open hy-

pograph of addition respectively. In sequel we will use the following notations:
x · y < z for M∗

E(x, y, z), x · y > z for M∗
H(x, y, z), x + y < z for P+

E (x, y, z),
and x + y > z for P+

H(x, y, z). It is worth noting that in Σ-formulas we can
also use the expressions x > 0, y < 1 (and similar) as notations of the formulas
∃y (x > y · y), ∃z > 0 (x · z < z) respectively. In sequel we assume that || · || is
the standard norm on IRn, [a, b] denotes a closed interval, and B̄(x, ε) denotes a
closed ball with a center x and a radius ε. The following property of Σ-definable
sets over the reals in the language σ0 is a straightforward corollary of Theorem 1.

Corollary 1. A set B ⊆ IRn is Σ-definable if and only if B is c.e. open.

One of the main goals of this section is to prove that the language of ΣK-formulas
admits elimination of universal quantifiers bounded by computable compact sets.
In other words, we are going to show that if we have a formula with quantifier
alternations where universal quantifiers are bounded by computable compact sets
then we can eliminate all universal quantifiers obtaining a Σ-formula equivalent
to the initial one. In order to do that, first we prove the Uniformity Principle
for Σ-definability. We extend the given language σ by new predicate symbols P
and P ′

λ with the following meaning

– P defines an open subset of IRn;
– P ′

λ(a, b, x2, . . . , xn) ↔ ∀x1 ∈ [a, b]P (x1λ, . . . , xnλ), where λ : {1, . . . , n} →
{1, . . . , n}.

The Uniformity Principle for Σ-Definability 419

The following lemma shows that both languages σ ∪ {P} and σ ∪ {P ′
λ|λ :

{1, . . . , n} → {1, . . . , n}} are subject to Assumption 1.

Lemma 1. If P defines an open subset of IRn then P ′
λ defines an open subset

of IRm, where m depends on λ.

Proof. We give the main idea of the proof for λ = id{1,...,n}. It is sufficient to
show that for every closed interval [c, d] the set

Bc,d = {(a, b, x2, . . . , xn) ∈ [c, d]n+1|[a, b] = ∅ ∨ [a, b] ⊂ (c, d) ∧ P ′
λ(a, b, x2, . . . , xn)}

is open. Let us consider Ac,d, the complement of Bc,d in [c, d], which is defined
as follows.

Ac,d = {(a, b, x2, . . . , xn) ∈ [c, d]n+1|[a, b] ⊆ [c, d] ∧
(a = c ∨ b = d ∨ ∃x1 ∈ [a, b]¬P (x1, . . . , xn))}.

Since Ac,d is a projection of the compact set

{(a, b, x2, . . . , xn) ∈ [c, d]n+1|[a, b] ⊆ [c, d] ∧ (a = c ∨ b = d ∨ ¬P (x1, . . . , xn))},

Ac,d is compact. So P ′
λ is open as the union of all open sets Bc,d where c ∈ IR

and d ∈ IR.

Let us consider particularly interesting corollaries of Lemma 1. If f ∈ C(IR),
then the sets P−

f = {(x, c)|f(x) > c} and P+
f = {(x, c)|f(x) < c} are open.

Choosing λ to be identical on {1, 2} we get the following corollary.

Corollary 2. For every f ∈ C(IR), the sets

Ef (x1, x2, z) � f |[x1,x2] < z and Hf (x1, x2, z) � f |[x1,x2] > z are open .

If f ∈ C([0, 1]), then applying Corollary 1 to the function

g(x) =

⎧
⎨

⎩

f(0), if x < 0
f(x), if x ∈ [0, 1]
f(1), if x > 1

we get straightforwardly the following.

Corollary 3. For f ∈ C([0, 1]), the sets Ef (x1, x2, z) � f |[x1,x2]∩[0,1] < z and
Hf (x1, x2, z) � f |[x1,x2]∩[0,1] > z are open.

Theorem 2 (Uniformity principle). For every Σ-formula ϕ in the language
σ ∪ {P} there exists Σ-formula ψ in the language σ ∪ {P ′

λ|λ : {1, . . . , n} →
{1, . . . , n}} such that

HF(IR) |= ∀x ∈ [a, b]ϕ(x, x2, . . . , xn) iff HF(IR) |= ψ(a, b, x2, . . . , xn),

where free variables range over IR.

420 M. Korovina and O. Kudinov

Proof. First we consider the case of ∃-formulas in the language σ0 ∪ {P}. Using
induction on the structure of a ∃-formula ϕ, we show how to obtain a required
formula ψ. Then, based on Theorem 1 we construct a required formula ψ for
an arbitrary Σ-formula in the language σ ∪ {P}.

Atomic case.
1. If ϕ(x1, . . . , xn) � P (x1λ, . . . , xnλ), then ψ � P ′

λ.
2. If ϕ does not contain the predicate symbol P , we have a finite number of
subcases. We consider nontrivial ones.
2.1 If ϕ(x, z) � x · x > z then

ψ(a, b, z)�z < 0∨a > b∨(a > 0 ∧ b > 0 ∧ a · a > z)∨(a < 0 ∧ b < 0 ∧ b · b > z) .

2.2 If ϕ(x, z) � x · x < z then ψ(a, b, z) � a > b ∨ (a · a < z ∧ b · b < z) .
2.3 If ϕ(x, y) � x · y > x then

ψ(a, b, z) � a > b ∨ (a > 0 ∧ b > 0 ∧ y > 1) ∨ (a < 0 ∧ b < 0 ∧ y < 1) .

2.4 If ϕ(x) � x · x > x then ψ(a, b) � a > b ∨ (a > 1 ∧ b > 1) ∨ (a < 0 ∧ b < 0) .
2.5 If y · z < x then ψ(a, b, y, z) � y · z < a ∨ b < a. Other atomic subcases can
be considered by analogy.

Conjunction.
If ϕ � ϕ1 ∧ϕ2 and ψ1, ψ2 are already constructed for ϕ1, ϕ2 then ψ � ψ1 ∧ψ1.

Disjunction.
Suppose ϕ � ϕ1 ∨ϕ2 and ψ1, ψ2 are already constructed. Since [a, b] is compact,
validity of the formula ∀x ∈ [a, b] (ϕ1 ∨ ϕ2) is equivalent to existence of a finite
family of open intervals {(αi, βi)}i=1,...,r+s such that [a, b] ⊆

⋃r
i=1(αi, βi), for

i = 1, . . . , r IR |= ϕ1 and for i = r + 1, . . . , s IR |= ϕ2. Since ϕ1 and ϕ2 define
open sets, this is equivalent to existence of a finite family of closed intervals
{[α′

i, β
′
i]}i=1,...,r+s such that [a, b] ⊆

⋃r
i=1[α

′
i, β

′
i], for i = 1, . . . , r IR |= ϕ1 and

for i = r + 1, . . . , s IR |= ϕ2. It is represented by the following formula.

∨

r∈ω

∨

r∈ω

∃α′
1 . . . ∃α′

s+1∃β′
1 . . . ∃β′

s+1

⎛

⎝
r∧

i=1

∀x ∈ [α′
i, β

′
i]ϕ1 ∧

s∧

j=r+1

∀x ∈ [α′
j , β

′
j]ϕ2

⎞

⎠ .

By induction hypothesis and Theorem 1, this formula is equivalent to a
Σ-formula ψ in the language σ ∪ {P ′

λ|λ : {1, . . . , n} → {1, . . . , n}}.

Existential case.
Suppose ϕ � ∃zϕ1(z, x1, . . . , xn). As [a, b] is compact and

{{x1|IR |= ϕ1(z, x1, . . . , xn)}}z∈IR = {Vz}z∈IR

is its cover, there exists a finite set J = {z1, . . . , zs} ⊂ IR such that [a, b] ⊆⋃
z∈J Vz . So, validity of the formula ∀x1 ∈ [a, b]∃zϕ1(z, x1, . . . , xn) is equivalent

to existence of the finite set J = {z1, . . . , zs} such that

IR |= ∀x1 ∈ [a, b]∃zϕ1(z, x1, . . . , xn)↔IR |= ∀x1 ∈ [a, b]ϕs(z1, . . . , zs, x1, . . . , xn),

The Uniformity Principle for Σ-Definability 421

where ϕs(z1, . . . , zs, x1, . . . , xn) � ϕ1(z1, x1, . . . , xn) ∨ · · · ∨ ϕ1(zs, x1, . . . , xn).
By induction hypotheses, for every J = {z1, . . . , zs} there exists a Σ-formula
ψs(z1, . . . , zs, a, b, x2, . . . , xn) in the language σ ∪ {P ′

λ|λ : {1, . . . , n} → {1, . . . , n}}
which is equivalent to ∀x1 ∈ [a, b]ϕs(z1, . . . , zs, x1, . . . , xn). Finally,

IR |= ∀x1 ∈ [a, b]∃zϕ1(z, x1, . . . , xn) ↔
HF(IR) |=

∨
s∈ω ∃z1 . . .∃zs (ψs(z1, . . . , zs, a, b, x2, . . . , xn)) .

A required Σ-formula ψ can be constructed using Theorem 1.
Now we are ready to construct a required formula ψ for a Σ-formula. Suppose

ϕ is a Σ-formula. By Lemma 1 and Theorem 1, there exists an effective sequence
of existential formulas {ϕi}i∈ω such that HF(IR) |= ϕ ↔ HF(IR) |=

∨
i∈ω ϕi. As

[a, b] is compact and {{x1|IR |= ϕi(x1, . . . , xn)}}i∈ω = {Ui}i∈ω is its cover, there
exist k ∈ ω and a finite family {Ui}i≤k such that [a, b] ⊆

⋃
i≤k Ui. So,

IR |= ∀x1 ∈ [a, b]ϕ(x1, . . . , xn) ↔
HF(IR) |=

∨
k∈ω ∀x1 ∈ [a, b]

∨
i≤k ϕi(x1, . . . , xn)

By induction hypotheses, for every k ∈ ω there exits ψk(a, b, x2, . . . , xn)
in the language σ ∪ {P ′

λ|λ : {1, . . . , n} → {1, . . . , n}} which is equivalent to
∀x1 ∈ [a, b]

∨
i≤k ϕi(x1, . . . , xn). A required Σ-formula ψ can be constructed

using Theorem 1.

It is worth noting that the Uniformity Principle holds for any finite extension of
σ by open predicates.

Corollary 4. For every Σ-formula ϕ in the language σ there exists a Σ-formula
ψ in the language σ such that

HF(IR) |= ∀x ∈ [a, b]ϕ(x, ȳ) iff HF(IR) |= ψ(a, b, ȳ),

where free variables range over IR.

The following corollary shows that we can extend the given language in a certain
way without enlarging the set of Σ-definable sets.

Corollary 5. For every Σ-formula ϕ(ȳ) in the language σ and polynomials
p1(x̄), . . . , pn(x̄) with rational coefficients there exists a Σ-formula ψ in the lan-
guage σ such that HF(IR) |= ϕ(p1(x̄), . . . , pn(x̄), z̄) iff HF(IR) |= ψ(x̄, z̄).

Proof. Let ϕ(ȳ) be a Σ-formula and p1(x̄), . . . , pn(x̄) be polynomials with ratio-
nal coefficients. It is easy to note that

HF(IR) |= ϕ(p1(x̄), . . . , pn(x̄), z̄) iff HF(IR) |= ∃a1 . . . ∃an∃b1 . . .∃bn

∀y1 ∈ [a1, b1] . . .∀yn ∈ [an, bn]
∧

1≤i≤n (pi(x̄) < bi ∧ pi(x̄) > ai) ∧ ϕ(ȳ, z̄).

Since the formulas pi(x̄) < z and pj(x̄) > z are equivalent to Σ-formulas
with positive occurrences of the basic predicates M∗

E , M∗
H , P+

E and P+
H , we can

construct a required formula ψ using Corollary 4.

422 M. Korovina and O. Kudinov

Corollary 6. Suppose B is Π-definable and B ⊆ [−q, q]n for some rational q.
For every Σ-formula ϕ in the language σ there exists a Σ-formula ψ in the
language σ such that HF(IR) |= ∀x ∈ Bϕ(x, ȳ) iff HF(IR) |= ψ(ȳ), where free
variables range over IR.

Proof. Suppose B ⊆ [−q, q]n is definable by a Π-formula η. It is easy to see that
∀x ∈ Bϕ(x, ȳ) is equivalent to the formula

∀x ∈ [−q, q]n (¬η(x) ∨ ϕ(x, ȳ)) . (1)

By Corollary 4 and Corollary 5, the formula (1) is equivalent to a Σ-formula.

Corollary 7. Suppose K is a co-semicomputable compact set. For every
Σ-formula ϕ in the language σ there exists a Σ-formula ψ in the language σ
such that HF(IR) |= ∀x ∈ Kϕ(x, ȳ) iff HF(IR) |= ψ(ȳ), where free variables
range over IR.

Proof. It is easy to see that ∀x ∈ Kϕ(x, ȳ) is equivalent to the formula

∀x ∈ [−q, q]n (x�∈ K ∨ ϕ(x, ȳ)) (2)

for some rational q which can be find effectively by K. By properties of
co-semicomputable closed sets, the distance function dK is lower semicomputable
[1], and, as a corollary, {x|x�∈ K} = {x|dK(x) > 0} is Σ-definable. By
Corollary 6, the formula (2) is equivalent to a Σ-formula.

Corollary 8. Suppose K is a semicomputable compact set. For every Σ-formula
ϕ in the language σ there exists a Σ-formula ψ in the language σ such that

HF(IR) |= ∃x ∈ Kϕ(x, ȳ) iff HF(IR) |= ψ(ȳ),

where free variables range over IR.

Proof. Let us note that ∃x ∈ Kϕ(x, ȳ) is equivalent to the formula

∃x′∃ε > 0
(
ϕ(x′, ȳ) ∧ dK(x′) < ε ∧ ∀z ∈ B̄(x′, ε)ϕ(z, ȳ)

)
. (3)

By properties of semicomputable closed sets, the distance function dK is up-
per semicomputable [1], and, as a corollary, the set {(x′, ε)|dK(x′) < ε} is
Σ-definable. By the Uniformity Principle, the formula (3) is equivalent to a
Σ-formula.

Theorem 3. For every ΣK-formula ϕ(x) in the language σ there exists
Σ-formula ψ(x) such that HF(IR) |= ϕ(x) ↔ HF(IR) |= ψ(x).

4 The Uniformity Principle and Computable Analysis

In this section we illustrate how we can prove computability of continuous data
using the language of ΣK-formulas and the Uniformity Principle for
Σ-definability.

Let f ∈ C[0, 1]. We extend the language σ by two predicates Q(x1, x2, z) �
f |[x1,x2] < z and P (x1, x2, z) � f |[x1,x2] > z.

The Uniformity Principle for Σ-Definability 423

Proposition 1. For every λ : {1, 2, 3} → {1, 2, 3} there exist Σ-formulas ψ−

and ψ+ in the language σ ∪ {P, Q} which do not depend on the choice of f and

HF(IR) |= P ′
λ(a, b, x2, x3) ↔ ψ−(P, a, b, x2, x3) and

HF(IR) |= Q′
λ(a, b, x2, x3) ↔ ψ+(Q, a, b, x2, x3).

Proof. We show how to construct the required formulas ψ− for some λ. If λ =
id{1,2,3} then ψ−(a, b, x2, x3) � b < a ∨ P (a, y, z). If λ = {< 1, 1 >, < 2, 1 >, <
3, 3 >} then ψ−(a, b, x2, x3) � P (a, b, z). In the nontrivial case, where λ = {<
1, 1 >, < 2, 2 >, < 3, 1 >}, we have

HF(IR) |= ∀x1 ∈ [a, b]P (x1, x2, x1) ↔
HF(IR) |= x2 < a ∨ b < a ∨ (P (a, x2, a) ∧ θ(a, b, x2)) ,

where

θ(a, b, x2) �
(
x2 < b ∧

(
P (a, x2, x2) ∨

∨
m∈ω ∃t1 . . . ∃tm (a = t0 < . . .

· · · < tm < tm+1 = x2 ∧
∧

i≤m P (ti, ti+1, ti+1)
)))

∨
(
P (b, x2, b) ∧

(
P (a, b, b) ∨

∨
m∈ω ∃t1 . . . ∃tm (a = t0 < . . .

· · · < tm < tm+1 = b ∧
∧

i≤m P (ti, ti+1, ti+1)
)))

.

Using this equivalence and Theorem 1 we can effectively construct ψ−.

In [9] we have shown that a functional F : C[0, 1]n → IR is majorant-computable
iff it is computable in the sense of computable analysis [10]. Now we are going to
generalise this result to functionals F : C[0, 1]n × IRm → IR. For the definition
and properties of majorant-computability we refer to [9].

Theorem 4. For every functional F : C[0, 1]n × IRm → IR the following asser-
tions are equivalent:

1. The functional F is majorant-computable.
2. The functional F is computable.

Proof. Without loss of generality let us consider the case n = m = 1. For
simplicity of notation, we will give the construction only for that case, since the
main ideas are already contained here. Let F : C[0, 1] × IR → IR be a majorant-
computable functional. For f ∈ C[0, 1] we denote Ef (x1, x2, z) � f |[x1,x2]∩[0,1] <
z and Hf (x1, x2, z) � f |[x1,x2]∩[0,1] > z. Let us define G : C[0, 1]2 → IR by the
rule G(f, g) = F (f, g(1

2)). We show that G is also majorant-computable. It is
easy to see that

G(f, g) < y ↔
HF(IR) |= ∃x1∃x2

(
x1 < x2 ∧ ∀x ∈ [x1, x2]F (f, x) < y ∧ x1 < g(1

2) < x2

)
,

G(f, g) > y ↔
HF(IR) |= ∃x1∃x2

(
x1 < x2 ∧ ∀x ∈ [x1, x2]F (f, x) > y ∧ x1 < g(1

2) < x2

)
.

By the the Uniformity Principle and Theorem 1 [9], the formulas
∀x ∈ [x1, x2]F (f, x) < y, ∀x ∈ [x1, x2]F (f, x) > y are equivalent to ∀x ∈

424 M. Korovina and O. Kudinov

[x1, x2]ϕ−(Ef , Hf , x, y) and ∀x ∈ [x1, x2]ϕ+(Ef , Hf , x, y) for some Σ-formulas
ϕ−, ϕ+, and, by Proposition 1, to Σ-formulas ψ−, ψ+.

Since

x1 < g(1
2) < x2 ↔ HF(IR) |= ∃u∃v

(
u < 1

2 < v ∧ Eg(u, v, x1) ∧ Hg(u, v, x1)
)
,

by Corollary 5, the formula x1 < g(1
2) < x2 is equivalent to a Σ-formula in the

language σ ∪ {Eg, Hg}. As we can see the relations G(f, g) < y, G(f, g) > y
can be represented by Σ-formulas in the language σ ∪ {Ef , Hf , Eg, Hg}. So, G
is majorant-computable. In [9] we have shown that a functional H : C[0, 1]n →
IR is computable iff it is majorant-computable. Hence, G is computable. Since
F (f, x) = G(f, λz.x), F is computable as composition of computable functions.

If F is computable, then G is also computable. By Theorem 3 [9], there exist
two Σ-formulas ϕ− and ϕ+ such that

G(f, g) < y ↔ HF(IR) |= ϕ+(Ef , Hf , Eg, Hg, y),
G(f, g) > y ↔ HF(IR) |= ϕ−(Ef , Hf , Eg, Hg, y)

If we substitute Eg by U � [0, 1] × (x, +∞) and Hg by U � [0, 1] × (−∞, x)
then we get

F (f, x) < y ↔ HF(IR) |= ϕ+(Ef , Hf , U, V, y),
F (f, x) > y ↔ HF(IR) |= ϕ−(Ef , Hf , U, V, y)

By Theorem 1 [9], F is majorant-computable.
Now we show how the Uniformity Principle can be used to investigate com-

putability of the borders of regular compact sets. In [4] it has been proven that
the border operator defined on the closed sets over the reals is Σ0

2 -complete in
Borel hierarchy. In contrast the following theorem shows that in special cases it
is possible to prove computability of borders.

Theorem 5. Suppose K ⊂ IRn is a computable regular compact set, D is its
interior, Γ is its border, and dK : IRn → IR is its distance function. Then the
following assertions are equivalent:

1. Γ is Π−definable.
2. D is Σ−definable.
3. Γ is computable.

Proof. We give only main ideas of the proof.
1 → 2. Suppose that Γ is Π-definable. It is clear that the formula dΓ (x) > dK(x)
defines D. By properties of co-semicomputable closed sets, D is Σ-definable.
2 → 3. In order to show that Γ is computable it is sufficient to prove that the
epigraph and the hypograph of its distance function dΓ are Σ-definable. Indeed,

dΓ (x) < ε ↔ HF(IR) |= ∃y ∈ D∃z �∈K (||x − y|| < ε ∧ ||x − z|| < ε) and
dΓ (x) > ε ↔ HF(IR) |= B̄(x, ε) ⊂ D ∨ B̄(x, ε) ⊂ IRn \ K.

So, Γ is computable.
3 → 1 Since Γ is computable, the distance function dΓ is upper and lower
semicomputable. So, Γ = {x|dΓ (x) = 0} is Π-definable.

The Uniformity Principle for Σ-Definability 425

Theorem 6. Suppose K ⊂ IRn is a computable regular compact set, Γ is its
border, and every component of Γ is a smooth variety of codimension 1. Then
Γ is computable.

Proof. It is sufficient to show that Γ is Π-definable. Since Γ is smooth variety
of codimension 1, for any z ∈ Γ the following statement holds:

∃y ∈ D∃x �∈ K(x − z = z − y ∧ B(y, ||y − z||) ⊂ D ∧ B(x, ||x − z||) ⊂ IRn \ K).

So ψ(z) � z ∈ K ∧ ∃y ∈ K∀t > 0 (t ≤ 1 ∨ dK(z − t(y − z)) ≥ t||y − z||) defines
Γ . Since K is co-semicomputable, K is Π-definable. So, Γ is Π-definable by
Theorem 3.

References

1. Brattka, V., Weihrauch, K.: Computability on subsets of euclidean space I: Closed
and compact sets. TCS 219, 65–93 (1999)

2. Barwise, J.: Admissible sets and Structures. Springer, Berlin (1975)
3. Ershov, Y.L.: Definability and computability. Plenum, New-York (1996)
4. Gherardi, G.: Some results in computable analysis and effective Borel measurabil-

ity. PhD thesis, Siena (2006)
5. Korovina, M.V.: Computational aspects of sigma-definability over the real numbers

without the equality test. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS,
vol. 2803, pp. 330–344. Springer, Heidelberg (2003)

6. Korovina, M.V.: Gandy’s theorem for abstract structures without the equality test.
In: Vardi, M.Y., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 290–301.
Springer, Heidelberg (2003)

7. Korovina, M.V., Kudinov, O.V.: Characteristic properties of majorant-
computability over the reals. In: Gottlob, G., Grandjean, E., Seyr, K. (eds.) CSL
1998. LNCS, vol. 1584, pp. 188–203. Springer, Heidelberg (1999)

8. Korovina, M.V., Kudinov, O.V.: Semantic characterisations of second-order com-
putability over the real numbers. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001.
LNCS, vol. 2142, pp. 160–172. Springer, Heidelberg (2001)

9. Korovina, M.V., Kudinov, O.V.: Towards computability of higher type continuous
data. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526,
pp. 235–241. Springer, Heidelberg (2005)

10. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

Circuit Complexity of Regular Languages

Michal Koucký

Mathematical Institute of the Academy of Sciences of Czech Republic
Žitná 25, CZ-115 67 Praha 1, Czech Republic

koucky@math.cas.cz

Abstract. We survey our current knowledge of circuit complexity of
regular languages. We show that regular languages are of interest as lan-
guages providing understanding of different circuit classes. We also prove
that regular languages that are in AC0 and ACC0 are all computable by
almost linear size circuits, extending the result of Chandra et al. [5].

Keywords: regular languages, circuit complexity.

1 Introduction

Regular languages and associated finite state automata occupy a prominent po-
sition in computer science. They come up in a broad range of applications from
text processing to automatic verification. In theoretical computer science they
play an important role in understanding computation. The celebrated result of
Furst, Saxe and Sipser [6] separates circuit classes by showing that the regular
language PARITY is not in AC0, the class of languages that are computable
by bounded-depth polynomial-size circuits consisting of unbounded fan-in And,
Or gates and unary Not gates. The result of Barrington [1] shows that there
are regular languages that are complete for the class NC1, the class of languages
computable by logarithmic-depth circuits consisting of fan-in two And, Or gates
and unary Not gates. Recently in [8], regular languages were shown to separate
classes of languages computable by ACC0 circuits using linear number of gates
and using linear number of wires. The ACC0circuits are similar to AC0 circuits
but in addition they may contain unbounded fan-in Mod-q gates.

There is a rich classification of regular languages based on properties of their
syntactic monoids (see e.g. [17,16]). (The syntactic monoid of a regular language
is essentially the monoid of transformations of states of the minimal finite state
automata for the language. See the next section for precise definitions.) It turns
out that there is a close connection between algebraic properties of these monoids
and computational complexity of the associated regular languages. In this article
we survey our current knowledge of this relationship from the perspective of
circuit complexity and we point out the still unresolved open questions. Beside
that we provide a proof that all regular languages that are in AC0 and ACC0

are recognizable by AC0 and ACC0 circuits, resp., of almost linear size.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 426–435, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Circuit Complexity of Regular Languages 427

2 Preliminaries on Monoids

In order to understand regular languages one needs to understand their finite
state automata. It turns out that the proper framework for such a study are
associated transformation monoids. We recall few elementary concepts regarding
monoids. A monoid M is a set together with an associative binary operation
that contains a distinguished identity element 1M . We will denote this operation
multiplicatively, e.g., for all m ∈ M , m1M = 1Mm = m. For a finite alphabet Σ,
an example of a monoid is the (free) monoid Σ∗ with the operation concatenation
and the identity element the empty word. Except for the free monoid Σ∗, all the
monoids that we consider in this paper will be finite.

An element m ∈ M is called an idempotent if m = m2. Since M is finite,
there exists the smallest integer ω ≥ 1, the exponent of M , such that for every
m ∈ M , mω is an idempotent. A monoid G where for every element a ∈ G there
is an inverse b ∈ G such that ab = ba = 1G is a group. A monoid M is called
group-free if every group G ⊆ M is of size 1. (A group G in a monoid M does
not have to be a subgroup of M , i.e., 1M may differ from 1G).

For a monoid M the product over M is the function f : M∗ → M such
that f(m1m2 · · ·mn) = m1m2 · · ·mn. The prefix-product over M is the func-
tion Πp : M∗ → M∗ defined as Πp(m1m2 . . . mn) = p1p2 · · · pn, where for
i = 1, . . . , n, pi = m1m2 · · · mi. Similarly we can define the suffix-product over M
as a function Πs : M∗ → M∗ defined by Πs(m1m2 . . . mn) = s1s2 · · · sn, where
si = mimi+1 · · · mn. For a ∈ M , the a-word problem over M is the language
of words from M∗ that multiply out to a. When we are not concerned about a
particular choice of a we will refer to such problems as word problems over M .

For monoids M, N , a function φ : N → M is a morphism if for all u, v ∈ N ,
φ(uv) = φ(u)φ(v). We say that L ⊆ Σ∗ can be recognized by M if there exist
a morphism φ : Σ∗ → M and a subset F ⊆ M so that L = φ−1(F). A trivial
variant of Kleene’s theorem states that a language L is regular iff it can be recog-
nized by some finite monoid. For every such L there is a minimal monoid M(L)
that recognizes L, which we call the syntactic monoid of L, and the associated
morphism νL : Σ∗ → M(L) we call the syntactic morphism of L. The syntactic
monoid M(L) of L happens to be the monoid of state transformations gener-
ated by the minimum state finite automaton recognizing L, i.e. every element of
M(L) can be thought of as a map of states of the automaton to itself.

2.1 Boolean Circuits

Boolean circuits are classified by their size, depth and type of gates they use.
For us the following classes of circuits will be relevant. NC1 circuits are circuits
of logarithmic depth consisting of fan-in two And and Or gates, and unary
Not gates. Because of the bound on the depth and fan-in, NC1 circuits are of
polynomial size. AC0, AC0[q], ACC0, TC0 circuits are all of constant depth and
polynomial size. AC0 circuits consist of unbounded fan-in And and Or gates,
and unary Not gates whereas AC0[q] circuits contain in addition unbounded fan-
in Mod-q gates. (A Mod-q gate is a gate that evaluates to one iff the number

428 M. Koucký

of ones that are feed into it is divisible by q.) ACC0 circuits are union of AC0[q]
circuits over all q ≥ 1. Finally, TC0 circuits are circuits consisting of unbounded
fan-in And, Or and Maj gates, and unary Not gates. (A Maj gate is a gate
that evaluates to one iff the majority of its inputs is set to one.)

There are two possible measures of the circuit size—the number of gates and
the number of wires. As these two measures usually differ by at most a square
the difference in these measures is usually not important. As we will see for us
it will make a difference. Unless we say otherwise we will mean by the size of a
circuit the number of its gates.

Beside languages over a binary alphabet we consider also languages over an
arbitrary alphabet Σ. In such cases we assume that there is some fixed encoding
of symbols from Σ into binary strings of fixed length, and inputs from Σ∗ to
circuits are encoded symbol by symbol using such encoding. We use similar
convention for circuits outputting non-Boolean values.

There is a close relationship between a circuit complexity of a regular language
L and the circuit complexity of a word problem over its syntactic monoid M(L).
One can easily establish the following relationship.

Proposition 1

1. If a regular language L is computable by a circuit family of size s(n) and
depth d(n) and for some k ≥ 0, νL(L=k) = M(L) then the product over its
syntactic monoid M(L) is computable by a circuit family of size O(s(O(n))+
n) and depth d(O(n)) + O(1).

2. If the product over a monoid M is computable by a circuit family of size s(n)
and depth d(n) then any regular language with the syntactic monoid M is
computable by a circuit family of size s(n) + O(n) and depth d(n) + O(1).

The somewhat technical condition that for some k, νL(L=k) = M(L) is unfortu-
nately necessary as the language LENGTH(2) of strings of even length does not
satisfy the conclusion of the first part of the claim in the case of AC0 circuits.
However, the first part of the proposition applies in particular to regular lan-
guages that contain a neutral letter, a symbol that can be arbitrarily added into
any word without affecting its membership/non-membership in the language.
For L ⊆ Σ∗, L=k means L ∩ Σk.

3 Mapping the Landscape

It is folklore that all regular languages are computable by linear size NC1 circuits.
Indeed by Proposition 1 it suffices to show that there are NC1 circuits of linear
size for the product of n elements over a fixed monoid M : recursively reduce
computation of a product of n elements over M to a product of n/2 elements
over M by computing the product of adjacent pairs of elements in parallel.
Turning such a strategy into a circuit provides a circuit of logarithmic depth
and linear size. Thus we can state:

Theorem 1. Every regular language is computable by NC1 circuits of linear size.

Circuit Complexity of Regular Languages 429

Can all regular languages be put into even smaller circuit class? A surprising
result of Barrington [1] indicates that this is unlikely: if a monoid M contains
a non-solvable group then the word problem over M is hard for NC1 under
projections. Here, a projection is a simple reduction that takes a word w from a
language L and maps it to a word w′ from a language L′ so that each symbol of
w′ depends on at most one symbol of w and the length of w′ depends only on
the length of w. Thus, unless NC1 collapses to a smaller class such as TC0, NC1

circuits are optimal for some regular languages. The theorem of Barrington was
further extended by Barrington et al. [2] to obtain the following statement.

Theorem 2 ([1,2]). Any regular language whose syntactic monoid contains a
non-solvable group is hard for NC1 under projections.

An example of a monoid with a non-solvable group is the group S5 of permuta-
tions on five elements. Thus for example the word problem over the group S5 is
hard for NC1 under projections.

Chandra, Fortune and Lipton [5] identified a large class of languages that are
computable by AC0 circuits.

Theorem 3 ([5]). If a language L has a group-free syntactic monoid M(L)
then L is in AC0.

The regular languages with group-free syntactic monoids have several alternative
characterizations. They are precisely the star-free languages, the languages that
can be described by a regular expression using only union, concatenation and
complement operations but not the operation star where the atomic expressions
are languages {a} for every a ∈ Σ. They are also the non-counting languages,
the languages L that satisfy: there is an integer n ≥ 0 so that for all words x, y, z
and any integer m ≥ n, xymz ∈ L iff xym+1z ∈ L.

The proof of Chandra et al. uses the characterization of counter-free regular
languages by flip-flop automata of McNaughton and Papert [9]. Using this char-
acterization one only needs to prove that the prefix-product over carry semigroup
is computable by AC0 circuits. The carry semigroup is a monoid with three el-
ements P, R, S which multiply as follows: xP = x, xR = R, xS = S for any
x ∈ {P, S, R}. The carry semigroup is especially interesting because of its rela-
tion to the problem of computing the addition of two binary numbers.

Chandra et al. also prove a partial converse of their claim.

Theorem 4 ([5]). If a monoid M contains a group then the product over M is
not in AC0.

Their proof shows how a product over a monoid with a group can be used to
count the number of ones in an input from {0, 1}∗ modulo some constant k ≥ 2.
However, by the result of Furst, Saxe and Sipser [6] that cannot be done in AC0

so the product over monoids containing groups cannot be in AC0.
There is still an apparent gap between Theorems 3 and 4. Namely, the lan-

guage LENGTH(2) of words of even length is in AC0 although its syntactic
monoid contains a group. This gap was closed by Barrington et al. [2].

430 M. Koucký

Theorem 5 ([2]). A regular language is in AC0 iff for every k ≥ 0, the image
of L=k under the syntactic morphism νL(L=k) does not contain a group.

Surprisingly, there is a beautiful characterization of these languages using regular
expressions provided by [2]. L is in AC0 iff it can be described by a regular ex-
pression using operations union, concatenation and complement with the atoms
{a} for every a ∈ Σ and LENGTH(q) for every q ≥ 1. LENGTH(q) is the
language of all words whose length is divisible by q.

The remaining gap between regular languages with group-free monoids and
monoids that contain non-solvable groups was essentially closed by Barrington:

Theorem 6 ([1]). If a syntactic monoid of a language contains only solvable
groups then the language is computable by ACC0 circuits.

An example of such a language is the language PARITY of words from {0, 1}∗
that contain an even number of ones. There is a very nice characterization of also
these languages by regular expressions of certain type. For this characterization
we need to introduce one special regular operation on languages. For a language
L ⊆ Σ∗ and w ∈ Σ∗, let L/w denote the number of initial segments of w
which are in L. For integers m > 1 and 0 ≤ r < m we define 〈L, r, m〉 =
{w ∈ Σ∗; L/w ≡ r mod m}. Straubing [14] shows that the syntactic monoid of
a language contains only solvable groups iff the language can be described by
a regular expression built from atoms {a}, for a ∈ Σ, using operations union,
concatenation, complement and 〈La, r, m〉, for any a ∈ Σ, m > 1 and 0 ≤ r < m.

The above results essentially completely classify all regular languages with
respect to their circuit complexity—they are complete for NC1, they are com-
putable in AC0 or otherwise they are in ACC0. It is interesting to note that the
class TC0 does not get assigned any languages unless it is equal either to NC1

or ACC0. Proving that a regular language with its syntactic monoid containing
non-solvable group is in TC0 would collapse NC1 to TC0. Currently not much
is known about the relationship of classes ACC0, TC0, and NC1 except for the
trivial inclusions ACC0⊆TC0⊆NC1.

4 Circuit Size of Regular Languages

In the previous section we have shown that all regular languages are computable
by linear size NC1 circuits. Can anything similar be said about regular languages
in AC0 or ACC0? The answer may be somewhat surprising in the light of the
following example. Let Th2 be the language over the alphabet {0, 1} of words
that contain at least two ones. This is clearly a regular language and it is in AC0:
check for all pairs of input positions whether anyone of them contains two ones.
However this gives an AC0 circuit of quadratic size and it is not at all obvious
whether one can do anything better. Below we show a general procedure that
produces more efficient circuits. We note here that the language Th2 as well
as all the threshold languages Thk for up-to even poly-logarithmic k are in fact
computable by linear size AC0 circuits [12]. The construction of Ragde and

Circuit Complexity of Regular Languages 431

Wigderson [12] is based on perfect hashing and it is not known if it could be
applied to other regular languages.

Despite that we can reduce the size of constant depth circuits computing
regular languages as follows. Assume that a regular language L and the product
over its syntactic monoid is computable by O(nk)-size constant-depth circuits.
We construct O(n(k+1)/2)-size constant-depth circuits for product over M(L):
divide an input x ∈ M(L)n into consecutive blocks of size

√
n and compute the

product of each block in parallel; then compute the product of the
√

n block
products. This construction can be iterated constantly many times to obtain:

Proposition 2. Let L be a regular language computable by a polynomial-size
constant-depth circuits over arbitrary gates. If the product over its syntactic
monoid M(L) is computable by circuits of the same size then for every ε > 0,
there is a constant-depth circuit family of size O(n1+ε) that computes L.

A substantial improvement comes in the work of Chandra et al. [5] who prove:

Theorem 7 ([5]). Let g0(n) = n1/4 and further for each d = 0, 1, 2, . . . ,
gd+1(n) = g∗d(n). Every regular languages L with a group-free syntactic monoid
is computable by AC0 circuits of depth O(d) and size O(n ·g2

d(n)), for any d ≥ 0.

Here g∗(n) = min{i; g(i)(n) ≤ 1}, where g(i)(·) denotes g(·) iterated i-times.
Hence, Chandra et al. prove that almost all languages that are in AC0 are com-
putable by circuit families of almost linear size. Clearly the same is true for
the product over group-free monoids. We generalize this to all regular languages
computable in AC0.

Theorem 8. Let gd(n) be as in Theorem 7. Every regular languages L in AC0

is computable by AC0 circuits of depth O(d) and size O(n ·g2
d(n)), for any d ≥ 0.

The proof is a simple extension of the result of Chandra et al. We need to
establish the following proposition that holds for all languages in AC0.

Proposition 3. Let for every n ≥ 0, the image of L=n under the syntactic
morphism νL does not contain any group. Then there is a k ≥ 1 and a group-free
monoid M ⊆ M(L) such that for all w ∈ Σ∗, if k divides |w| then νL(w) ∈ M .

Due to space limitations we omit proofs of Proposition 3 and Theorem 8 from
this version of the paper. They can be found in the full version of the paper.

Chandra et al. prove actually the even stronger statement that the prefix-
problem of these regular languages is computable in that size and using that
many wires. We use the technique of Chandra et al. [5] together with the regular
expression characterization of languages to show a similar statement for the reg-
ular languages in ACC0. (Alternatively, we could use Thérien’s characterization
of regular languages in ACC0 [17].)

Theorem 9. Let gi(n) be as in Theorem 7. Every regular language L that is
computable by ACC0 circuits is computable by ACC0 circuits of size O(n ·g2

i (n)).

432 M. Koucký

The following general procedure that allows to build more efficient circuits for
the prefix-product over a monoid M from circuits for the product over monoid
M and less efficient circuits for the prefix-product over M is essentially the
procedure of Chandra et al. Together with the inductive characterization of
regular languages by regular expressions it provides the necessary tools to prove
the above theorem. Let g : N → N be a non-decreasing function such that for
all n > 0, g(n) < n, and M be a monoid with the product and prefix-product
computable by constant-depth circuits.

CFL procedure:
Step 0. We split the input x ∈ Mn iteratively into sub-words. We start with x
as the only sub-word of length n and we divide it into n/g(n) sub-words of size
g(n). We iterate and further divide each sub-word of length l > 1 into l/g(l) sub-
words of length g(l). Hence, for i = 0, . . . , g∗(n) we obtain n/g(i)(n) sub-words
of length g(i)(n).
Step 1. For every sub-word obtained in Step 0 we compute its product over M .
Step 2. Using results from Step 1 and existing circuits for prefix-product, for
each sub-word of length l > 1 from Step 0 we compute the prefix-product of the
products of its l/g(l) sub-words.
Step 3. For each i = 1, . . . , n, we compute the product of x1 · · · xi by computing
the product of g∗(n) values of the appropriate prefixes obtained in Step 2.

Let us analyze the circuit obtained from the above procedure. Assume that we
have existing circuits of size s(n) and constant depth ds for computing product
over M and of size p(n) and constant depth dp for computing prefix-product
over M . Then the above procedure gives a circuits of depth 2ds + dp and size

g∗(n)∑

i=0

n

g(i)(n)
· s(g(i)(n)) +

g∗(n)−1∑

i=0

n

g(i)(n)
· p

(
g(i)(n)

g(i+1)(n)

)
+ n · s(g∗(n)).

We demonstrate the use of the above procedure. Let M be a monoid such that
the product over M is computable by polynomial size constant-depth circuits.
Let ε > 0. Proposition 2 gives us circuits of size s(n) = O(n1+(ε/2)) for computing
the product over M . By choosing g(n) = n/2 we obtain the following proposition.

Proposition 4. Let L be a regular language computable by a polynomial-size
constant-depth circuits over arbitrary gates. If the product over its syntactic
monoid M(L) is computable by similar circuits then for every ε > 0, there is
a constant-depth circuit family of size O(n1+ε) that computes the prefix-product
over the monoid M(L).

Proposition 4 states clearly something non-trivial as a näıve construction of a
prefix-product circuit would provide at least quadratic size circuits. By setting
g(n) = g2

i (n) we obtain the following key lemma from the CFL procedure.

Lemma 1. Let gi(n) be as in Theorem 7. Let M be a monoid. If there is a
size O(n · gi+1(n)) depth ds circuit family for computing product over M and

Circuit Complexity of Regular Languages 433

a size O(n · g2
i (n)) depth dp circuit family for computing prefix-product over M

then there is a size O(n · g2
i+1(n)) depth 2ds + dp circuit family for computing

prefix-product over M .

It is trivial that if we can compute the prefix-product over some monoid M by
O(n · g2

i (n)) circuits then we can also compute the product by the same size
circuits. The above lemma provides essentially the other direction, i.e., building
efficient circuits for the prefix-product from circuits for the product.

These two claims are sufficient to prove Theorem 9. We omit the proof due
to space limitations. The proof can be found in the full version of this paper.

5 Wires vs. Gates

It is a natural question whether all languages that are in AC0 and ACC0 could be
computed by AC0 and ACC0 circuits, resp., of linear size. This is not known, yet:

Problem 1. Is every regular language in AC0 or ACC0 computable by linear-size
AC0 or ACC0 circuits?

One would be tempted to conjecture that this must be the case as O(n · gd(n))
may not look like a very natural bound. However, as we shall see further such an
intuition fails when considering the number of wires in a circuit. As we mentioned
earlier, Chandra et al. in fact proved Theorem 3 in terms of wires instead of
gates. A close inspection of our arguments in the previous section reveals that
our Theorems 8 and 9 also hold in terms of wires. Hence we obtain:

Theorem 10. Let L be a regular language, d > 0 be an integer and functions
gd be as in Theorem 7.

– If L is in AC0 then it is computable by AC0 circuits with O(ng2
d(n)) wires.

– If L is in ACC0 then it is computable by ACC0 circuits with O(ng2
d(n)) wires.

Interestingly enough the wire variant of Problem 1 was answered negatively:

Theorem 11 ([8]). There is a regular language in AC0 that requires AC0 and
ACC0 circuits of depth O(d) to have Ω(n · gd(n)) wires.

The language from the theorem is the simple language U = c∗(ac∗bc∗)∗. Al-
though we have described it by a regular expression using the star-operation
it is indeed in AC0. What is really interesting about this language is that it is
computable by ACC0 circuits using a linear number of gates.

Theorem 12 ([8]). The class of regular languages computable by ACC0 circuits
using linear number of wires is a proper subclass of the languages computable by
ACC0 circuits using linear number of gates.

It is not known however whether the same is true for AC0.

Problem 2. Are the classes of regular languages computable by AC0 circuits
using linear number of gates and liner number of wires different?

434 M. Koucký

[8] provides a precise characterization of regular languages with neutral letter
that are computable by AC0 and ACC0 circuits using linear number of wires.

Theorem 13 ([8]). Let L be a regular language with a neutral letter.

– L is computable by AC0 circuits with linear number of wires iff the syntac-
tic monoid M(L) satisfies the identity (xyz)ωy(xyz)ω = (xyz)ω, for every
x, y, z ∈ M(L).

– L is computable by ACC0 circuits with linear number of wires iff the syntactic
monoid M(L) contains only commutative groups and (xy)ω(yx)ω(xy)ω =
(xy)ω, for every x, y, z ∈ M(L).

Due to space limitations we omit here several other beautiful characterizations
of the language classes from the previous theorem [8,15,16].

6 Conclusions

We have demonstrated that regular languages are very low on the ladder of
complexity—they are computable by almost linear size circuits of different types.
Still they provide important examples of explicit languages that separate differ-
ent complexity classes. It is not much of an exaggeration to say that the current
state of the art circuit separations are based on regular languages. Regular lan-
guages could still provide enough ammunition to separate say ACC0 from NC1.
Such a separation is currently a major open problem.

Several other questions that may be more tractable remain also open. We
already mentioned the one whether all languages that are in AC0 and ACC0

are computable by linear size constant-depth circuits. The language U defined
in the previous section is particularly interesting as it is the essentially simplest
regular language not known to be computable by linear size AC0 circuits. It is
also closely related to Integer Addition: if two binary represented numbers can
be summed up in AC0 using linear size circuits then U is computable by linear
size circuits as well. We can state the following open problem of wide interest:

Problem 3. What is the size of AC0 and ACC0 circuits computing Integer
Addition?

(Previously an unsupported claim appeared in literature that Integer Addition
can be computed by linear size AC0 circuits [12,7].) If U indeed is computable by
linear size AC0 circuits then it presents an explicit language that separates the
classes of languages computable in AC0 using linear number of gates and using
linear number of wires. Such an explicit language is already known [8] however
that language is not very natural and was constructed explicitly to provide this
separation. If U is not computable by AC0 circuits of linear size then neither is
Integer Addition. We conclude with yet another very interesting problem that
reaches somewhat outside of the realm of regular languages.

Problem 4. What is the number of wires in AC0 and ACC0 circuits computing
Thk, for k ∈ ω(n)?

Circuit Complexity of Regular Languages 435

Acknowledgements

Theorem 9 was obtained jointly with Denis Thérien. I would like to thank him
for allowing me to publish the proof here and for sharing with me his insights
on regular languages. I am grateful to Pascal Tesson and anonymous referees
for useful comments that helped to improve this paper. Partially supported by
grant GA ČR 201/07/P276 and 201/05/0124.

References

1. Barrington, D.A.: Bounded-Width Polynomial-Size Branching Programs Recognize
Exactly Those Languages in NC1. Journal of Computer and System Sciences 38(1),
150–164 (1989)

2. Barrington, D.A.M., Compton, K.J., Straubing, H., Thérien, D.: Regular languages
in NC1. Journal of Computer and System Sciences 44(3), 478–499 (1992)

3. Barrington, D.A.M., Thérien, D.: Finite Monoids and the Fine Structure of NC1.
Journal of ACM 35(4), 941–952 (1988)

4. Chandra, A.K., Fortune, S., Lipton, R.J.: Lower bounds for constant depth circuits
for prefix problems. In: Proc. of the 10th ICALP, pp. 109–117 (1983)

5. Chandra, A.K., Fortune, S., Lipton, R.J.: Unbounded fan-in circuits and associative
functions. Journal of Computer and System Sciences 30, 222–234 (1985)

6. Furst, M., Saxe, J., Sipser, M.: Parity, circuits and the polynomial time hierarchy.
Mathematical Systems Theory 17, 13–27 (1984)

7. Chaudhuri, S., Radhakrishnan, J.: Deterministic restrictions in circuit complexity.
In: Proc. of the 28th STOC, pp. 30–36 (1996)

8. Koucký, M., Pudlák, P., Thérien, D.: Bounded-depth circuits: Separating wires
from gates. In: Proc. of the 37th STOC, pp. 257–265 (2005)

9. McNaughton, R., Papert, S.A.: Counter-Free Automata. The MIT Press, Cam-
bridge (1971)

10. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Chap. 10
in Handbook of language theory, vol. I, pp. 679–746. Springer, Heidelberg (1997)

11. Pudlák, P.: Communication in bounded depth circuits. Combinatorica 14(2), 203–
216 (1994)

12. Ragde, P., Wigderson, A.: Linear-size constant-depth polylog-threshold circuits.
Information Processing Letters 39, 143–146 (1991)

13. Schwentick, T., Thérien, D., Vollmer, H.: Partially ordered two-way automata: a
new characterization of DA. In: Proc. of DLT, pp. 242–253 (2001)

14. Straubing, H.: Families of recognizable sets corresponding to certain varieties of
finite monoids. Journal of Pure. and Applied Algebra 15(3), 305–318 (1979)

15. Tesson, P., Thérien, D.: Restricted Two-Variable Sentences, Circuits and Commu-
nication Complexity. In: Proc. of ICALP, pp. 526–538 (2005)

16. Tesson, P., Thérien, D.: Bridges between algebraic automata theory and complexity
theory. The Complexity Column, Bull. EATCS 88, 37–64 (2006)

17. Thérien, D.: Classification of Finite Monoids: the Language Approach. Theoretical
Computer Science 14, 195–208 (1981)

18. Vollmer, H.: Introduction to Circuit Complexity - A Uniform Approach. In: Texts
in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (1999)

Definability in the Homomorphic Quasiorder

of Finite Labeled Forests

Oleg V. Kudinov1,� and Victor L. Selivanov2,��

1 S.L. Sobolev Institute of Mathematics
Siberian Division Russian Academy of Sciences

kud@math.nsc.ru
2 A.P. Ershov Institute of Informatics Systems
Siberian Division Russian Academy of Sciences

and
Theoretische Informatik, Universität Würzburg
selivanov@informatik.uni-wuerzburg.de

Abstract. We prove that for any k ≥ 3 each element of the homomor-
phic quasiorder of finite k-labeled forests is definable, provided that the
minimal non-smallest elements are allowed as parameters. As corollaries,
we show that the structure is atomic and characterize the automorphism
group of the structure. Similar results hold true for two other relevant
structures: the homomorphic quasiorder of finite k-labeled trees, and of
finite k-labeled trees with a fixed label of the root element.

Keywords: Labeled tree, forest, homomorphic quasiorder, definability,
atomic structure, automorphism.

1 Introduction

In [Se04, Se06, KS06] the structure (Fk; ≤), k ≥ 2, of finite k-labeled forests
with the homomorphic quasiorder was studied. The structure is interesting in
its own right since the homomorphic quasiorder is one in a series of relations
on words, trees and forests relevant to computer science. The original interest
to this structure [Se04] was motivated by its close relationship to the Boolean
hierarchy of k-partitions. See [H96, Ko00, KW00, Se04, Se06, KS06, Ku06] for
more motivation and background. Throughout this paper, k denotes an arbitrary
integer, k ≥ 2, which is identified with the set {0, . . . , k − 1}. The cardinality of
a set F is denoted by |F |.

We use some standard notation and terminology on posets which may be found
in any book on the subject, see e.g. [DP94]. We will not be very cautious when
applying notions about posets also to quasiorders (known also as preorders); in
such cases we mean the corresponding quotient-poset of the quasiorder.

� Supported by RFBR Grant 05-01-00819a and by DFG-RFBR Grant 06-01-04002.
�� Supported by RFBR Grant 4413.2006.1, by DFG Mercator program and by DFG-

RFBR Grant 06-01-04002.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 436–445, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Definability in the Homomorphic Quasiorder of Finite Labeled Forests 437

A poset (P ; ≤) will be often shorter denoted just by P (this applies also
to structures of other signatures in place of {≤}). Any subset of P may be
considered as a poset with the induced partial ordering. In particular, this applies
to the “cones” x̌ = {y ∈ P |x ≤ y} and x̂ = {y ∈ P |y ≤ x} defined by any x ∈ P .

By a forest we mean a finite poset in which every lower cone x̂ is a chain.
A tree is a forest having a unique minimal element (called the root of the tree).
Note that any forest is uniquely representable as a disjoint union of trees, the
roots of the trees being the minimal elements of the forest. A proper forest is a
forest which is not a tree. Notice that our trees and forests “grow bottom up”,
like the natural ones while trees in [Se04, Se06] grow in the opposite direction.

A k-labeled poset (or just a k-poset) is an object (P ; ≤, c) consisting of a poset
(P ; ≤) and a labeling c : P → k. Sometimes we simplify notation of a k-poset
to (P, c) or even to P . A homomorphism f : (P ; ≤, c) → (P ′; ≤′, c′) between
k-posets is a monotone function f : (P ; ≤) → (P ′; ≤′) respecting the labelings,
i.e. satisfying c = c′ ◦ f .

Let Fk and Tk be the classes of all finite k-forests and finite k-trees, respec-
tively. Define [Ko00, KW00, Se04] a quasiorder ≤ on Fk as follows: (P, c) ≤
(P ′, c′), if there is a homomorphism from (P, c) to (P ′, c′). By ≡ we denote the
equivalence relation on Fk induced by ≤. For technical reasons we consider also
the empty k-forest ∅ (which is not assumed to be a tree) assuming that ∅ ≤ P
for each P ∈ Fk. Note that in this paper (contrary to notation in [Se04]) we
assume that ∅ ∈ Fk.

For arbitrary finite k-trees T0, . . . , Tn, let F = T0 	 · · · 	 Tn be their join, i.e.
the disjoint union. Then F is a k-forest whose trees are exactly T0, . . . , Tn. Of
course, every k-forest is (equivalent to) the join of its trees. Note that the join
operation applies also to k-forests, and the join of any two k-forests is clearly
their supremum under ≤. Hence, (Fk; ≤) is an upper semilattice.

A natural subset of k-trees is formed by k-chains, i.e. by words over the
alphabet k = {0, . . . , k − 1}. We will denote such words in the usual way, as
strings of symbols. E.g., 01221 and 011022 denote some words over the alphabet
{0, 1, 2}. Note that any word is equivalent modulo ≡ to a unique repetition-free
word. E.g., the words above are equivalent to 0121 and 0102, respectively.

For every finite k-forest F and every i < k, let pi(F) be the k-tree obtained
from F by joining a new smallest element and assigning the label i to this el-
ement. In particular, pi(∅) will be the singleton tree carrying the label i. In
[Se06] some properties of the operations p0, . . . , pk−1 were established. It is clear
that any k-forest is equivalent to a term of signature {	, p0, . . . , pk−1, ∅} with-
out variables. E.g., the words from the preceding paragraph are equivalent to
p0(p1(p2(p1(∅)))) and p0(p1(p0(p2(∅)))), respectively. Below we omit parenthesis
whenever they are clear from the context, e.g. we could write the last term as
p0p1p0p2(∅).

For each i < k, let T i
k be the set of finite k-trees the roots of which carry

the label i. Our interest to the sets Fk, Tk and T i
k is explained by the above-

mentioned relation to the Boolean hierarchy of k-partitions. Namely, the sets T i
k

438 O.V. Kudinov and V.L. Selivanov

and Fk \Tk generalize respectively the non-self-dual and self-dual levels levels of
the Boolean hierarchy of sets (i.e., of 2-partitions).

The main result of this paper is now formulated as follows.

Theorem 1. For any k ≥ 3, each element of the quotient structure of (Fk; ≤,
0, . . . , k − 1) is definable. The same is true for the quotient structures of (T 0

k ; ≤,
01, . . . , 0(k − 1)) and (Tk; ≤, 0, . . . , k − 1).

Recall that a relation in a structure is definable if there is a first-order formula
of signature of the structure true exactly on the tuples that satisfy the relation.
An element is definable if the corresponding singleton set is definable.

Because of space constraints, we give in this conference paper the proof of the
main theorem only for the first structure; the omitted proofs for the other two
are rather similar to the proof we present below, if one takes into account the
corresponding results and techniques from [Se04, Se06, KS06].

Then we deduce some corollaries. The first main corollary states that the
quotient structures of (Fk; ≤), (T i

k ; ≤) and (Tk; ≤) are atomic for all k ≥ 2 and
i < k. The second main corollary completely characterizes the automorphism
groups of the three structures.

In Section 2 we formulate some necessary auxiliary facts, in Section 3 we prove
the main theorem, in Section 4 we present some corollaries of the main theorem
and in Section 5 we conclude with some additional remarks and open questions.

2 Auxiliary Facts

In this section we formulate without proofs several necessary facts established in
[Se04, Se06]. Most of the corresponding proofs are short and straightforward and
hence maybe hopefully easily recovered by the reader. Otherwise, please consult
the source papers.

Recall that a quasiorder is called a well quasiorder (wqo) if it has neither
infinite descending chains nor infinite antichains. Any wqo P has a rank rk(P)
which is the greatest ordinal isomorphically embeddable into P . For any x ∈ P ,
rk(x) = rk(x̂) is the rank of x. With any quasiorder we associate also its width
w(P) defined as follows: if P has antichains with any finite number of elements,
then w(P) = ω, otherwise w(P) is the greatest natural number n for which P
has an antichain with n elements.

The first result cites some facts established in [Se04]. It implies in particular
that any element x of Fk is uniquely representable as a finite union of join-
irreducible elements; we call this the canonical lattice representation of x.

Proposition 1
(i) For any k ≥ 2, (Fk; ≤) is a wqo with rk(Fk) = ω.

(ii) w(F2) = 2 and w(Fk) = ω for k > 2.
(iii) For any k ≥ 2, the quotient structure of (Fk; ≤) is a distributive lattice.
(iv) The finite k-trees define exactly the non-empty join-irreducible elements of

the lattice (Fk; ≤).

The next easy fact was observed in [Se06].

Definability in the Homomorphic Quasiorder of Finite Labeled Forests 439

Proposition 2
(i) (T 0

k , . . . , T k−1
k) is a partition of Tk modulo ≡.

(ii) For any bijection f : k → k, the map (F, c)
→ (F, f ◦ c) defines an auto-
morphism of (Fk; ≤).

(iii) For all i, j < k, (T i
k ; ≤) is isomorphic to (T j

k ; ≤). Moreover, there is an
automorphism of (Fk; ≤) sending T i

k onto T j
k .

Next we formulate an interesting property of the lattice Fk enriched by the
unary operations pi from Introduction. For this we recall the following notion
introduced in [Se82].

Definition 1. By a semilattice with discrete closures of rank k (a dc-semilattice
for short) we mean a structure (S; ∪, p0, . . . , pk−1) satisfying the following
axioms:

1) (S; ∪) is an upper semilattice, i.e. it satisfies (x ∪ y) ∪ z = x ∪ (y ∪ z),
x ∪ y = y ∪ x and x ∪ x = x; as usual, by ≤ we denote the induced partial order
on S defined by x ≤ y iff x ∪ y = y.

2) Every pi, i < k, is a closure operation on (S; ≤), i.e. it satisfies x ≤ pi(x),
x ≤ y → pi(x) ≤ pi(y) and pi(pi(x)) ≤ pi(x).

3) The operations pi have the following discreteness property: for all distinct
i, j < k, pi(x) ≤ pj(y) → pi(x) ≤ y.

4) Every pi(x) is join-irreducible, i.e. pi(x) ≤ y ∪z → (pi(x) ≤ y∨pi(x) ≤ z).

The next fact was observed in [Se06].

Proposition 3. The quotient structure of (Fk; 	, p0, . . . , pk−1) is a dc-semi-
lattice, and pi(Fk) = T i

k for any i < k.

We recall also a result on the minimal forests, i.e. k-forests not equivalent (under
≡) to k-forests of lesser cardinality. For a finite poset P , h(P) will denote the
height of P , i.e. the number of elements of the longest chain in P . For any
i, 1 ≤ i ≤ h(P), let P (i) = {x ∈ P |h(x̂) = i}. Then P (1), . . . , P (h(P)) is a
partition of P on ”levels”; note that P (1) is the set of minimal elements of P .

The next assertion is Theorem 1.4 from [Se06] giving a kind of inductive
description (by induction on the cardinality) of the minimal k-forests.

Proposition 4
(i) Any trivial (i.e., empty or singleton) k-forest is minimal.

(ii) A nontrivial k-tree (T, c) is minimal iff ∀x ∈ T (1)∀y ∈ T (2)(c(x) �= c(y))
and the k-forest (T \ T (1), c) is minimal.

(iii) A proper k-forest is minimal iff all its k-trees are minimal and pairwise
incomparable under ≤.

This provides the canonical term representations of the elements of Fk by
variable-free terms of signature {	, p0, . . . , pk−1, ∅}. The canonical terms are ob-
tained from minimal trees by the usual procedure relating terms and trees.

440 O.V. Kudinov and V.L. Selivanov

3 Definability

Here we present a proof of the first assertion of Theorem 1. We start with a
series of lemmas. For any x ∈ Tk, let x′ =

⊔
{y ∈ Tk : y < x}. Since x is join-

irreducible, x′ < x. We need some properties of the introduced function x
→ x′

from Tk to Fk. We call a partial function f : Fk ⇀ Fk definable if its graph is
definable (note that this implies that both domain and range of f are definable).
The first lemma is obvious.

Lemma 1
(i) For any x ∈ Tk, x′ is the biggest element y of Fk with y < x.

(ii) The function x
→ x′ is definable.

For x ∈ Fk, let pred(x) be the set of maximal elements in {y ∈ Fk : y < x}.

Lemma 2
(i) For any x ∈ Tk, pred(x) = {x′}.

(ii) For all n > 0 and pairwise incomparable x0, . . . , xn ∈ Tk, pred(x0 	 · · · 	
xn) = {y0, . . . , yn}, where yj = x′

j 	 (
⊔

l �=j xl).
(iii) Let n > 0, i < k and x0, . . . , xn be pairwise incomparable elements in

Tk \ T i
k . Then pi(y0), . . . , pi(yn) (where yi are as in (ii)) are pairwise in-

comparable.
(iv) For all x, x̃ ∈ Fk \ Tk, pred(x) = pred(x̃) implies x = x̃.

Proof.
(i) is obvious.
(ii) Let x = x0 	 · · · 	 xn, then obviously yj ≤ x for any j ≤ n. Since

xj �≤ yj , yj < x. Elements y0, . . . , yn are pairwise incomparable because xl ≤ yj

and xl �≤ yl for all j �= l. It remains to show that if z < x then z ≤ yj for
some j ≤ n. By distributivity (see Proposition 1), z = x̃0 	 · · · 	 x̃n for some
x̃0 ≤ x0, . . . , x̃n ≤ xn. Since z < x, x̃j < xj , hence x̃j ≤ x′

j for some j ≤ n.
Therefore, z ≤ yj .

(iii) Follows from the fact that xl ≤ pi(yj) and xl �≤ pi(yl) for all l �= j.
(iv) Let x = x0 	 · · · 	xn and x̃ = x̃0 	 · · · 	 x̃m be canonical lattice represen-

tations, so n, m > 0. From pred(x) = pred(x̃) and (ii) we get n = m and w.l.o.g.
y0 = ỹ0, . . . , yn = ỹn. For any j ≤ n we have xj < x, hence xj ≤ ỹl for some
l ≤ n. Therefore, xj ≤ x̃. Since j was arbitrary, x ≤ x̃. By symmetry, x̃ ≤ x.
This completes the proof of the lemma.

The next lemma implies that the function x
→ x′ may be computed by
induction on the canonical term representation from Section 2.

Lemma 3
(i) For any i < k, (pi(∅))′ = ∅.

(ii) For all n > 0, i < k, and pairwise incomparable elements x0, . . . , xn ∈
Tk \T i

k , (pi(x0 	· · ·	xn))′ = pi(y0)	· · ·	pi(yn), where yj = x′
j 	(

⊔
l �=j xl),

and the elements pi(y0), . . . , pi(yn) are pairwise incomparable.
(iii) For all x ∈ Fk and distinct i, j < k, (pipj(x))′ = pj(x) 	 pi((pj(x))′) and

the elements pj(x), pi((pj(x))′) are incomparable.

Definability in the Homomorphic Quasiorder of Finite Labeled Forests 441

Proof.
(i) is obvious.
(ii) It suffices to check that if z ∈ Tk and z < pi(x0 	 · · · 	 xn) then z ≤
pi(y0)	· · ·	pi(yn), because other properties follow from Lemma 2. If z �∈ T i

k then
z ≤ x0	· · ·	xn, hence z ≤ xj for some j ≤ n. Therefore, z ≤ pi(y0)	· · ·	pi(yn).
If z ∈ T i

k then z = pi(z0) for some canonical term pi(z0). Then z0 < x0 	· · ·	xn,
hence z0 ≤ yj for some j ≤ n. Therefore, z ≤ pi(y0) 	 · · · 	 pi(yn).
(iii) First we check incomparability. The relation pj(x) �≤ pi((pj(x))′) is clear.
Suppose that pi((pj(x))′) ≤ pj(x). Since i �= j, pi((pj(x))′) < pj(x) and therefore
pi((pj(x))′) ≤ pj(x)′. Since pj(x)′ �∈ Tk by induction, this is a contradiction.

Clearly, pj(x) 	 pi((pj(x)′) < pipj(x). It remains to show that if y ∈ Tk and
y < pipj(x) then y ≤ pj(x) 	 pi((pj(x)′). If y �∈ T i

k then y ≤ pj(x) and we
are done. Otherwise, y ≡ pi(z) for some z. Assuming w.l.o.g. that terms in the
expression pi(z) < pipj(x) are canonical (see end of Section 2), by definition of
≤ we get z < pj(x). Therefore, z ≤ (pj(x))′ and hence y ≤ pi((pj(x)′). This
completes the proof.

For any x ∈ Fk, let l(x) = {i < k : i ≤ x}, i.e. l(x) is the set of labels assigned to
nodes of some (or, equivalently, of any) forest representing x. The next assertion
is an immediate corollary of the preceding one.

Lemma 4. For any x ∈ Tk \ k, l(x) = l(x′).

The function x
→ x′ is in general not injective. E.g., if x, y ∈ Tk are of the
same rank, l(x) = l(y) and |l(x)| < 3 then x′ = y′ is the unique element of
rank rk(x) − 1 below x. The next assertion implies that the function x
→ x′ is
injective in all other cases. Let Gk = {x ∈ Tk : |l(x)| ≥ 3}.

Lemma 5. If at least one of elements x, y ∈ Tk is in Gk then x′ = y′ implies
x = y.

Proof. In case when exactly one of x, y is in Gk the assertion follows from
Lemma 4. So assume that x, y ∈ Gk, then x′, y′ ∈ Gk by Lemma 4. Let x = pi(t)
and y = pj(s) be the canonical term representations.

First we check that i = j. Suppose not, and consider several cases. If t �∈ Tk and
s ∈ Tk then, by Lemma 3, all components in the canonical lattice representation
of x′ are in T i

k while one of the components of y′ is in T j
k , a contradiction with

y′ = x′. The case when t ∈ Tk and s �∈ Tk follows by symmetry.
Now let s, t ∈ Tk. By Lemma 3(iii), t = pj(s′) and s = pi(t′). Since s′ �∈ Tk

by Lemma 3, s′ < t. By Lemma 1, s′ ≤ t′. A symmetric argument shows that
t′ ≤ s′, hence s′ = t′. If t′ ∈ Gk then, by induction on (rk(x), rk(y)), s = t
and therefore pj(s′) = pi(t′), a contradiction. Finally, assume that t′ �∈ Gk, i.e.
|l(t′)| ≤ 2. By Lemma 4, l(t′) = l(t) and l(s′) = l(s). Since t = pj(s′) and
s = pi(t′), i ∈ l(s) and j ∈ l(t). Therefore, l(t) = l(s) = {i, j} and consequently
l(x) = l(y) = {i, j}, a contradiction.

We have checked that i = j, so x = pi(t) and y = pi(s). The case when exactly
one of s, t is in Tk is impossible by an above-used argument. If s, t �∈ Tk then,
by Lemma 3, {pi(z) : z ∈ pred(t)} = x′ = y′ = {pi(z) : z ∈ pred(s)}. From

442 O.V. Kudinov and V.L. Selivanov

Lemma 2 it follows that pred(t) = pred(s) and hence t = s. Therefore, x = y.
If s, t ∈ Tk then, by Lemma 3, t 	 pi(t′) = s 	 pi(s′) and the components are
incomparable. Hence, s = t and x = y. This completes the proof of the lemma.

Now we start to define some elements in our structures.

Lemma 6. Elements 01, 10, 02, 20, 12, 21 are definable in (F3; ≤, 0, 1, 2).

Proof. By symmetry, it suffices to show that 01 and 10 are definable. It is easy
to see that x ∈ {01, 10} iff x is a minimal join-irreducible element above 0, 1
with 2 �≤ x. The following formula ψ(x) is true on 01 and false on 10:

∃z∃y(ir(z) ∧ ir(y) ∧ ∀t(t < z ↔ t ≤ x 	 y) ∧ ∀t(t < y ↔ t ≤ 0 	 2))

where ir is a formula of signature {≤} that defines in every lattice exactly the
non-zero join-irreducible elements. (Such a formula is written easily in signature
{0, ≤, ∪}, namely x �= 0 ∧ ∀y∀z(x ≤ y ∪ z → (x ≤ y ∨ x ≤ z)). Since 0 and ∪
are first-order definable in signature {≤} the last formula may be rewritten as
an equivalent formula of {≤}.)

Indeed, for the case x = 01 we put z = p0(1 	 2), y = 02 and immediately
obtain ψ(01). Now let x = 10, and assume, towards a contradiction, that ψ(10)
is true and let z, y be some satisfying values. Then, by the second equivalence,
y ∈ {02, 20}, let e.g. y = 02. By the first equivalence and Proposition 3, z is
above at least one of p0(10 	 02), p1(10 	 02), p2(10 	 02). Taking in the first
case t = 010, in the second case t = 12 and in the third case t = 210 we obtain a
contradiction with the first equivalence. This completes the proof of the lemma.

Lemma 7. The set T 0
2 is definable in (F3; ≤, 0, 1, 2).

Proof. Let L be the set of 3-trees which have labels 0 and 2 and carry label 2 only
on the leaves (i.e., maximal elements). Let T2,0 be the set of trees in T2 having
a label 0. Let del : L → T2,0 be the function that deletes all 2-labeled leaves. It
is easy to see that the function del respects the homomorphic quasiorder. Then
we have:

x ∈ T2 ↔ ir(x) ∧ 2 �≤ x,

x ∈ T2,0 ↔ ir(x) ∧ 0 ≤ x ∧ 2 �≤ x,

x ∈ L ↔ ir(x) ∧ 0 ≤ x ∧ 2 ≤ x ∧ 20 �≤ x ∧ 21 �≤ x,

and del(x) =
⊔

{z ∈ T2 : z ≤ x}. It is easy to check that for all y ∈ F3 there
holds

y ∈ T 0
2 ↔ y ∈ T2,0 ∧ ∀x ∈ L(y = del(x) → 02 ≤ x).

By Lemma 6 and definitions above, T 0
2 is definable. This completes the proof of

the lemma.
Now we can prove a strengthening of Lemma 6.

Lemma 8. For any k ≥ 3, each element a ∈ Tk \ Gk is definable in (Fk, ≤,
0, . . . , k − 1).

Definability in the Homomorphic Quasiorder of Finite Labeled Forests 443

Proof. If |l(a)| ≤ 1 i.e. a ∈ {∅, 0, . . . , k − 1} then the assertion is obvious. Now
let l(a) = {i, j} for some distinct i, j < k. By Proposition 2(ii), there is an
automorphism of (Fk; ≤) sending i to 0 and j to 1, hence we can w.l.o.g. assume
that i = 0 and j = 1, i.e. a is (represented by) a repetition-free binary word w.

We use induction on the length |w| of w. Suppose |w| > 1 and w starts with
0 (the last assumption may be made by symmetry), so w = 0v for the unique
repetition-free word of length |w|−1 starting with 1. By induction, v is definable
by a formula φv(x). Then w is the least (under ≤) element y of T 0

2 such that
∃x(φv(x)∧x ≤ y). Since T 0

2 is definable by the previous lemma, the last informal
definition of w may be rewritten as a formula of signature {≤, 0, . . . , k−1}. This
completes the proof.

Proof of Theorem 1 for Fk. Let k ≥ 3 and a ∈ Fk. We check by induction
on rk(a) that a is definable in (Fk, ≤, 0, . . . , k − 1). The case rk(a) ≤ 1, i.e.
a ∈ {∅, 0, . . . , k − 1}, is obvious. Let a �∈ Tk ∪ {∅} and a = a0 	 · · · 	 an, n > 0,
be the canonical lattice representation of a. By induction, ai is definable by a
formula φai(x) for all i ≤ n. Then the formula

φa(x) = ∃x0 · · · ∃xn((
∧

i≤n

φai(xi)) ∧ x = x0 	 · · · 	 xn)

defines a. Now let a ∈ Tk and rk(a) > 1. If a ∈ Tk \Gk the assertion holds by the
previous lemma. Finally, let a ∈ Gk. By induction, there is a formula φa′(x) that
defines a′. By Lemmas 5 and 1, the formula φa(x) = ir(x) ∧ ∃y(φa′(y)∧ y = x′))
defines a. This completes the proof.

4 Atomicity and Automorphisms

In this section we establish some corollaries of the main theorem. First we show
that all three our structures are atomic, i.e. realize only the principal types (for
definition of these well-known notions from model theory see any standard text
on this subject, e.g. [CK73]).

Since each element of the structure (Fk; 	, p0, . . . , pk−1) is represented by
a term without variables, this structure is obviously atomic for every k ≥ 2.
Informally this means that the structure is the smallest in a model-theoretic
sense. In [Se06] it was shown that this structure is also the smallest in an algebraic
sense.

From the main theorem it follows that the structure (Tk; ≤, 0, . . . , k − 1) is
atomic for every k ≥ 2. The next result is a slight strengthening of this fact.

Theorem 2. For all k ≥ 2 and i < k, the quotient structures of (Fk; ≤), (T i
k ; ≤)

and (Tk; ≤) are atomic.

Proof. We give a proof only for the first structure but it works for the other
two structures as well. As is well-known, atomicity is equivalent to definability
of orbits of all tuples of elements. So we have to show that for any tuple ā =

444 O.V. Kudinov and V.L. Selivanov

(a0, . . . , an), n ≥ 0, of elements of Fk its orbit Orb(ā) = {f(ā) : f ∈ Aut(Fk; ≤)}
is definable, where f(ā) = (f(a0), . . . , f(an)). By the main theorem, for any i ≤ n
there is a formula φai(x) of signature {≤, 0, . . . , k − 1} that defines ai. Then the
formula φā(x̄) = φa0 (x0) ∧ · · · ∧ φan(xn) of signature {≤, 0, . . . , k − 1} defines ā.

Since any automorphism of (Fk; ≤) preserves ranks of elements and (Fk; ≤)
is a wqo, the orbit Orb(ā) is finite, i.e. Orb(ā) = {b̄0, . . . , b̄m} for some m <
ω and tuples b̄0, . . . , b̄m. Then the formula φ(x̄) = φb0 (x̄) ∨ · · · ∨ φbm(x̄)) of
signature {≤, 0, . . . , k − 1} defines the orbit Orb(ā) in (Fk; ≤, 0, . . . , k − 1). The
set {0, . . . , k − 1} is definable in (Fk; ≤) by a formula μ(x) stating that x is
minimal among all non-smallest elements. Let ψ(x̄) be the formula

∃u0 · · · ∃uk−1((
∧

i�=i

ui �= uj) ∧ (
∧

i<k

μ(ui)) ∧ φ′(x̄))

where φ′(x̄) is obtained from φ(x̄) by substituting variables u0, . . . , uk−1 in
place of constant symbols 0, . . . , k −1, respectively. Then ψ(x̄) defines Orb(ā) in
(Fk; ≤), completing the proof of the theorem.

Since each element of the structure (Fk; 	, p0, . . . , pk−1) is represented by a
term without variables, this structure is rigid, i.e. it has only the trivial iden-
tity automorphism. From the main theorem it follows that the structure (Fk; ≤,
0, . . . , k − 1), as well as the other two structures with the constants, is also rigid.
It is easy to obtain also a complete description of the automorphism groups of the
structures without the constants. Let Sk be the symmetric group on k elements,
i.e. the group of permutations of elements 0, . . . , k − 1. Let Aut(A) denote the
automorphism group of a structure A. By � we denote the isomorphism relation.

Theorem 3
(i) For any k ≥ 2, Aut(Fk; ≤) � Aut(Tk; ≤).

(ii) Aut(T2; ≤) � Sω
2 .

(iii) For any k ≥ 3, Aut(Fk; ≤) � Sk.
(iv) For all k ≥ 2 and i < k, Aut(T i

k ; ≤) � Sk−1.

Proof.
(i) For any f ∈ Aut(Fk; ≤), let f∗ be the restriction of f to Tk. Since Tk is
definable in (Fk; ≤), f∗ ∈ Aut(Tk; ≤). By Proposition 1, the map f
→ f∗ is a
surjective group homomorphism with the trivial kernel. Hence, Aut(Fk; ≤) �
Aut(Tk; ≤).
(ii) It is well known and obvious that (T2; ≤) is isomorphic to the partial order
obtained from (ω; ≤) by substituting a pair of incomparable points (a0

n, a1
n) in

place of any n ∈ ω. The group Sω
2 is isomorphic to the ω-cartesian power of the

cyclic group {0, 1} with two elements, hence it consists of functions h : ω →
{0, 1}. Relate to any such h the function h∗ : T2 → T2 defined by: for any n < ω,
if h(n) = 0 then h∗(a0

n) = a0
n and h∗(a1

n) = a1
n; otherwise, h∗(a0

n) = a1
n and

h∗(a1
n) = a0

n. Then h
→ h∗ is a desired automorphism.
(iii) For any f ∈ Aut(Fk; ≤), let f∗ be the restriction of f to {0, . . . , k − 1}. By
Proposition 2(ii), the map f
→ f∗ is a group homomorphism from Aut(Fk; ≤)

Definability in the Homomorphic Quasiorder of Finite Labeled Forests 445

onto Sk. Since (Fk; ≤, 0, . . . , k − 1) is rigid, the kernel of this homomorphism is
trivial. Hence, Aut(Fk; ≤) � Sk.

The assertion (iv) is proved similarly to (iii). This completes the proof.

5 Conclusion

In this paper definability in our structures was used to establish important al-
gebraic and model-theoretic properties of the structures. In the journal version
[KS0?] of [KS06] the definability was used to show that for every k ≥ 3 the
elementary theory of any of the three structures is computably isomorphic to
the elementary theory of the structure (ω; +, ·). A small addition to that proof
shows that actually the structure (ω; +, ·) is definable in (Fk; ≤) (as well as in
the other two structures) without parameters. At the same time, some natural
definability questions remain open. E.g., we do not currently know whether the
set Ck of finite k-chains or the relation “y = f(x) for some f ∈ Aut(Fk; ≤)” are
definable in (Fk; ≤).

References

[CK73] Chang, C.C., Keisler, H.J.: Model Theory. North Holland, Amsterdam (1973)
[DP94] Davey, B.A., Pristley, H.A.: Introduction to Lattices and Order. Cambridge

(1994)
[H96] Hertling, P.: Unstetigkeitsgrade von Funktionen in der effectiven Analysis.

PhD thesis, FernUniversität Hagen, Informatik-Berichte pp. 208–211 (1996)
[Ko00] Kosub, S.: On NP-partitions over posets with an application to reducing the

set of solutions of NP problems. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000.
LNCS, vol. 1893, pp. 467–476. Springer, Heidelberg (2000)

[KS06] Kudinov, O.V., Selivanov, V.L.: Undecidability in the homomorphic qua-
siorder of finite labeled forests. In: Beckmann, A. (ed.) Conf. Computability
in Europe-2006. LNCS, vol. 3988, pp. 289–296. Springer, Berlin (2006)

[KS0?] Kudinov, O.V., Selivanov, V.L.: Undecidability in the homomorphic qua-
siorder of finite labeled forests. Accepted by Journal of Logic and Computa-
tion

[Ku06] Kuske, D.: Theories of orders on the set of words. Theoretical Informatics
and Applications 40, 53–74 (2006)

[KW00] Kosub, S., Wagner, K.: The Boolean hierarchy of NP-partitions. In: Reichel,
H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 157–168. Springer,
Heidelberg (2000)

[Se82] Selivanov, V.L.: On the structure of degrees of generalized index sets. Algebra
and Logic, Russian, there is an English translation 21(4), 472–491 (1982)

[Se04] Selivanov, V.L.: Boolean hierarchy of partitions over reducible bases. Algebra
and Logic, 43, N 1 (2004), pp. 77–109 (Russian, there is an English transla-
tion), Technical Report 276, Institut für Informatik, Universität Würzburg
(2001), see also http://www.informatik.uni-wuerzburg.de

[Se06] Selivanov, V.L.: The algebra of labeled forests modulo homomorphic equiv-
alence. Conf. Computability in Europe- 2006. Beckmann, A., et.al. (eds.)
University of Swansea Report Series #CSR 7-2006, pp. 241–250 (full version
to appear in Algebra and Logic) (2006)

http://www.informatik.uni-wuerzburg.de

Physics and Computation:

The Status of Landauer’s Principle

(Extended Abstract)

James Ladyman

Department of Philosophy, University of Bristol

1 Introduction

Realism about computation is the view that whether or not a particular physical
system is performing a particular computation is at least sometimes a mind-
independent feature of reality. The caveat ‘at least sometimes’ is necessary here
because a realist about computation need not believe that all instances of com-
putation should be realistically construed. The computational theory of mind
presupposes realism about computation. If whether or not the human nervous
system implements particular computations is not a natural fact about the world
that is independent of whether we represent it as doing so, then the computa-
tional theory of mind fails to naturalise the mind. Realism about computa-
tion is also presupposed by attempts to use computational principles such as
Landauer’s Principle to dispel Maxwell’s Demon. Realism about computation
has been challenged by Hilary Putnam and John Searle among others. Various
arguments have been put forward purporting to show that any physical system
of sufficient complexity trivially implements all computations. Ladyman et al.
(2007) offer a precisification and general proof Landauer’s Principle. In order to
do this they present an analysis of what it is for a physical process to imple-
ment a logical transformation. In this paper, their analysis is explained and its
implications for realism about computation and the use of Landauer’s Principle
in foundational debates is assessed.

When we are concerned with the logical form of a computation and its for-
mal properties then it can be theoretically described in terms of functions and
relations between abstract entities. However, actual computation is realised by
some physical process, and the latter is of course subject to physical laws and
the laws of thermodynamics in particular. It is therefore important to consider
whether or not there are any systematic connections between the logical proper-
ties of computations consider abstractly and the thermodynamical properties
of their realizations. Rolf Landauer (1961) proposed such a general connec-
tion, known as Landauer’s Principle, namely that the erasure of information
in any computational device is necessarily accompanied by an appropriate in-
crease in the thermodynamic entropy of the device and/or its environment. This
result is often generalised as follows: (a) any logically irreversible process must
result in an entropy increase in the non-information bearing degrees of free-
dom of the information-processing system or its environment; (b) any logically

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 446–454, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Physics and Computation: The Status of Landauer’s Principle 447

reversible process can be implemented thermodynamically reversibly (see for
example Charles Bennett 2003). Landauer’s Principle is the subject of much de-
bate. In particular, John Norton (2005) and Owen Maroney (2005) both argue
that Landauer’s Principle has not been shown to hold in general.

In order to clarify the status of Landauer’s Principleis it is necessary to pre-
cisely define a computation, and what it means to say that a computation is
physically realized. In particular, this paper offers precise definitions of logical
irreversibility and thermodynamic irreversibility, and a detailed analysis of what
it means for a physical system to implement a logical transformation. The result
of this analysis is the notion of an L-machine. This is a hybrid physical-logical
entity that combines a physical device, a specification of which physical states of
that device correspond to various logical states, and an evolution of that device
which corresponds to the logical transformation L. Landauer’s Principle can be
restated and generalized to the claim that the logical irreversibility of L implies
thermodynamic irreversibility of every corresponding L-machine.

Everyone agrees that there are both logically reversible and irreversible trans-
formations, and that every logically reversible transformation is implementable
in a thermodynamically reversible way, and that any such transformation can
also be implemented in a thermodynamically irreversible way. Everyone also
agrees that a logically irreversible transformation can be implemented in a ther-
modynamically irreversible way. So the issue is whether there are any logically
irreversible transformations that can be implemented in a thermodynamically
reversible way (as illustrated in table 1).

Table 1. A table representing the different possibilities for logical and thermodynamic
reversibility. This paper addresses the issue of whether any logically irreversible trans-
formation can be implemented thermodynamically reversibly.

Possibilities
Thermodynamically

reversible
Thermodynamically

irreversible

Logically
reversible

� �

Logically
irreversible

? �

It is important to make a clear distinction between the logical and physical
domains, and to avoid talk of logical ‘processes’ and refer instead to logical
transformations and their implementation by families of physical processes. The
term ‘process’ always refers to a physical process in which a system starts in some
particular state and is guaranteed to end in some particular state1. Landauer’s

1 In general, the particular end state may be a probabilistic mixture of thermodynamic
states, but usually the final state is not such a mixture. Although, in the former
case, the system may be supposed to actually be in some specific component of the
mixture, it is not guaranteed to end up in that component, and so this component
state cannot be considered as the final state of the process.

448 J. Ladyman

Principle is only considered in the general and precise form introduced above: If L
is logically irreversible, then every L-machine is thermodynamically irreversible2.

2 Logical Irreversibility

A logical transformation is a mathematical operation, consisting of a single-
valued map L from a finite set X of input states, into a finite set Y of output
states (i.e. each input state is mapped by L to a unique output state). For ex-
ample, consider the case of binary-valued logic, in which the input and output
states are bit-strings (with 0 and 1 usually representing ‘false’ and ‘true’ respec-
tively); the mapping L can be represented by a truth table, or as a digital circuit
constructed from some set of universal gates (e.g. NAND and COPY). A logical
transformation is logically reversible if and only if L : X → Y is a one-to-one
(injective) mapping3. Hence with a reversible logical transformation, it is possi-
ble to uniquely reconstruct the input state from the output state. If L is not a
one-to-one mapping, then it is logically irreversible.

It is crucial that there is a distinction between a logical transformation, which
is a map from a set of logical states to a set of logical states, and a physical
process, which is a change in a physical system whereby it goes from a particular
physical state to a particular physical state. It follows that it makes no sense
to talk of the implementation of a logical transformation by a physical process,
rather in so far as logical transformations are implemented using physical sys-
tems, they are implemented by a family of processes. For the physical system to
implement the logical transformation reliably, the family of processes must take
each of the physical states that represent the logical input states to the appropri-
ate physical state, that is the one that represents the right logical output state
(The point here is clear in the case of a truth table, where each member of the
family of processes corresponds to a single row). The notion of implementation
of a logical transformation by a physical device is discussed in section 4 below.

3 Thermodynamic Irreversibility

Thermodynamic irreversibility is a feature of physical processes, expressed by
the second law of thermodynamics. There is much controversy about how the
latter can be justified on the basis of statistical mechanics. Without assum-
ing anything about the relationship between phenomenological thermodynamics
and statistical mechanics, its is assumed that the second law stated in terms of
thermodynamic entropy is valid.

In thermodynamics various operational assumptions are made that allow the
definition of the thermodynamic entropy of individual macroscopic states (up to
2 An L-machine is just the most general way of capturing the idea of physically im-

plementing a logical transformation L.
3 Note that whether or not L is surjective is irrelevant for the present paper. This is

because if there are output states that do not get arrived at by the implementation
of the transformation these are irrelevant to thermodynamic considerations.

Physics and Computation: The Status of Landauer’s Principle 449

a constant)4. This is almost universally accepted, however, there is controversy
about the assignment of entropy to probabilistic mixtures of macrostates (for
example, see Norton (2005)). For example, consider the mixture of macrostates
Mi, with probabilities qi. Assuming that the assignment of entropy to such a state
is legitimate, it might be supposed that it is simply the average of the individual
entropies S(Mi); explicitly,

∑
i qiS(Mi). However, it is common to also include a

term to represent the contribution to the entropy of the probability distribution
itself; explicitly:

Smixture =
∑

i

qiS(Mi) − k
∑

i

qi ln qi (1)

The latter term is an information theoretic entropy and its inclusion in ther-
modynamic calculations currently lacks rigorous foundational justification5. La-
dyman et al (2007) offers a proof of Landauer’s Principle that depends on the
use of the information theoretic entropy and a proof that is independent of it.

Consider a system in a heat reservoir at temperature T undergoing some
thermodynamic process p. If ΔSsys(p) is the change in the entropy of the system
during the process p, and ΔQ(p) is the heat flow from the system into the
reservoir during the same process, then the second law requires that

∀ p, ΔSsys(p) +
ΔQ(p)

T
≥ 0 (2)

Identifying ΔSres(p) = ΔQ(p)/T as the entropy change of the heat reservoir,
define

ΔStot(p) = ΔSsys(p) + ΔSres(p) (3)

as the total entropy change of the system and reservoir together. The second law
can then be restated in the familiar form

∀p, ΔStot(p) ≥ 0 (4)

i.e. total entropy is non-decreasing over time.
A process p is thermodynamically reversible if and only if ΔStot(p) = 0.
If ΔStot(p) > 0, the physical process p cannot be run in reverse, as the reverse

process p′ would have ΔStot(p′) < 0, and hence violate the second law. Therefore
any process p for which ΔStot(p) > 0 is thermodynamically irreversible. As is well
known, there are a number of formulations of the second law that are provably
equivalent to this, modulo certain assumptions.

A family of physical processes is thermodynamically irreversible if and only if
at least one of its members is. This is important for the definition of irreversibility
for L-machines in the next section.

4 See, for example, Fermi (1936), Chapter IV.
5 However, such a justification is the subject of work in progress by Ladyman, Presnell

and Short.

450 J. Ladyman

4 Implementing a Logical Transformation with a Physical
Device

In order to analyze the connection between logical transformations, and phys-
ical thermodynamic processes, it is necessary to consider what it means for a
physical system to implement a logical transformation. As stated above, a phys-
ical system can only implement a logical transformation through a family of
processes. To physically implement a logical transformation, there must be: A
physical device, a specification of which physical states of that device correspond
to the possible logical states (call the former representative states), and a time
evolution operator of that device. This combined system is an L-machine. Note
that L names a particular logical transformation, so there are LAND-machines,
and so on.

The time evolution operator must generate the relevant family of processes,
and the reliability of the implementation consists in the time evolution operator
being such as to ensure that whichever of the representative physical states the
device is prepared in, it ends up in the appropriate representative state. This
insistence on generality is an important difference between the present approach
and that of Maroney (2005) who considers only individual processes.

Furthermore, it is important to note that the time evolution operator must
encode everything about the behaviour of the device, and so the possibility of
an external agent intervening during its operation is ruled out. In particular this
prohibits any such external agent affecting the time evolution of the system by
making use of information about its state while it is running. In other words,
intelligent agents (such as demons) may be introduced only if their knowledge
and actions affecting the operation of the device are included in the specification
of the L-machine and its time evolution. Heuristically, suppose that the interac-
tion between the L-machine and the rest of the world is limited to the setting
of the input state and the pressing of the ’go’ button.

Formally, an L-machine is an ordered set

{D, {Din(x)|x ∈ X} , {Dout(y)|y ∈ Y } , ΛL} (5)

consisting of

– A physical device D, situated in a heat bath at temperature T .
– A set {Din(x)|x ∈ X} of macroscopic input states of the device, which are

distinct thermodynamic states of the system (i.e. no microstate is a compo-
nent of more than one thermodynamic state). Din(x) is the representative
physical state of the logical input state x.

– A set {Dout(y)|y ∈ Y } of distinct thermodynamic output states of the device.
Dout(y) is the representative physical state of the logical output state y. Note
that the set of input states and output states may overlap.

– A time-evolution operator ΛL for the device, such that

∀ x ∈ X, ΛL(Din(x)) = Dout(L(x)). (6)

Physics and Computation: The Status of Landauer’s Principle 451

An L-machine {D, {Din(x)|x ∈ X}, {Dout(y)|y ∈ Y }, ΛL} physically imple-
ments L in the following sense. If D is prepared in the input state Din(x) cor-
responding to the logical input state x ∈ X , and is then evolved using ΛL, it
will be left in the output state Dout(y) corresponding to the logical output state
y = L(x) ∈ Y . This physical process is denoted by px.

x
L−−−−−→ y

∥
∥
∥

∥
∥
∥

Din(x) −−−−−→
ΛL

Dout(y)

Fig. 1. An illustration of the relationship between the logical states x and y and their
representative physical states Din(x) and Dout(y), showing the logical transformation
L and the physical time evolution operator ΛL

Note that the labelling of the states is essential to the identity of a L-machine.
For example, exactly the same device and time-evolution operator could be used
as part of both an LAND-machine, and an LOR-machine by the appropriate
relabelling of the physical input and output states.

Consider the thermodynamics of the process px. If the entropy of the system
in the state Din(x) is Sin(x), the entropy of the system in state Dout(L(x))
is Sout(L(x)), and the heat flow from the system into the reservoir during the
process is ΔQ(px) = TΔSres(px), the total entropy change ΔStot(px) for the
process will be given by

ΔStot(px) = Sout(L(x)) − Sin(x) +
ΔQ(px)

T
≥ 0. (7)

This particular process will be thermodynamically reversible if ΔStot(px) = 0.
Note that in the commonly considered case in which the initial and final entropies
of the system are the same, ΔStot is proportional to the heat flow from the system
into the reservoir. Furthermore if the initial and final energies of the system are
the same as well, then from the first law of thermodynamics, this heat flow is
equal to the work done on the system.

An L-machine is thermodynamically reversible if and only if for all x ∈ X,
ΔStot(px) = 0 (i.e. if all of the processes px are thermodynamically reversible).
An L-machine is therefore thermodynamically irreversible if there exists an x ∈
X for which ΔStot(px) > 0.

Note implementing L by implementing some other ‘stronger’ L′ from which
the outputs of L can be deduced is ruled out; for example, the logical trans-
formation L′ corresponding to the combination of L and keeping a copy of the
input. Formally, a logical transformation L′ is stronger than a logical transforma-
tion L just in case, for every input x, L(x) can be recovered from L′(x), but for at

452 J. Ladyman

least one x, L′(x) cannot be recovered from L(x). It follows that if L′ is stronger
than L, then, for every x, L(x) = L∗(L′(x)), where L∗ is a logically irreversible
transformation6. In general an implementation of a logically stronger L′ is not
an implementation of L, and is unfaithful in the following sense: it allows that,
for some x, more can be learnt about the value of x from the output L′(x) than
from L(x) itself. Allowing that L can be implemented by the implementation
of a logically stronger transformation L′ must also be ruled out because it begs
the question at issue here by implicitly assuming that Landauer’s Principle is
false: it would always be possible to implement a logically irreversible process
by implementing a stronger logically reversible process, and all sides agree that
this could be done in a thermodynamically reversible way.

Note also that in the above definition a unique representative state is assigned
to each logical state as this makes for a clear and simple analysis. However, in
general it could be allowed that more than one physical state represents the
same logical state, in which case, for each x, Din(x) would be replaced by a
set {D

(1)
in (x), D(2)

in (x) . . .} of distinct physical states (and similarly for each y).
Call such a generalisation a ‘multi-L-machine’. The condition (6) on the time-
evolution operator of the device would then generalise in an obvious way to

∀ x ∈ X, ∀ D
(i)
in (x), ∃ D

(j)
out(L(x)) : ΛL(D(i)

in (x)) = D
(j)
out(L(x)). (8)

By definition, each representative state is a physically distinguishable macro-
state, so assume that the device can be prepared in a specific D

(i)
in (x), and it

can be determined which of the D
(j)
out(y) it ends up in. Hence, a refinement of

any multi-L-machine, is the multi-L-machine obtained by choosing a particular
representative state for each logical input state, and their corresponding output
states, and keeping the device and time evolution operator the same.

For many multi-L-machines, every refinement is an L-machine and in such
cases nothing is gained by considering the generalisation. However, in every other
case there exists a refinement which under relabelling of its output states is an
L′-machine, for some L′ that is logically stronger than L. This is unfaithful in
the sense defined above, and hence is ruled out. Furthermore, without ruling out
these cases then, for any logically irreversible L, a machine that implements L
merely in virtue of the fact that it is stipulated that for every logical input state x,
the same physical state represents x and L(x), where the time evolution operator
is the identity operator could be considered. This clearly trivialises the notion of
implementing a logical transformation. It is ruled out by the prescription above
since it could be used to implement the logically stronger identity operation.

On the basis of the above definitions it is possible to prove Landauer’s Prin-
ciple from the Kelvin statement of the Second Law of Thermodynamics using a
thermodynamic cycle.

6 Note that L′(x) can itself be logically irreversible, such as the logical transformation
L′ corresponding to the combination of LAND and keeping a copy of the second
input bit. L′ is stronger than LAND but is still logically irreversible.

Physics and Computation: The Status of Landauer’s Principle 453

Acknowledgements. This abstract is based on Ladyman, J., Presnell, S.,
Short, A. and Groisman, B. (2007), ‘The connection between logical and thermo-
dynamic irreversibility’, in Studies in History and Philosophy of Modern Physics.

References

Bennett, C.H.: The logical reversibility of computation. IBM Journal of Research and
Development 17, 525–532 (1973)

Bennett, C.H.: The Thermodynamics of Computation?A Review International Journal
of Theoretical Physics 21, 905–940 (1982) (Reprinted in Leff and Rex (1990), 213–
248)

Bennett, C.H.: Demons, Engines and the Second Law. Scientific American, vol. 257,
pp. 108–116

Bennett, C.H.: Notes on Landauer’s principle, reversible computation, and Maxwell’s
demon. Studies in the History and Philosophy of Modern Physics 34, 501–510 (2003)

Brillouin, L.: Maxwell’s demon cannot operate: Information and entropy. I. Journal of
Applied Physics 22, 338–343 (1951)

Bub, J.: Maxwell’s Demon and the thermodynamics of computation. Studies in the
History and Philosophy of Modern Physics 32, 569–579 (2001)

Earman, J., Norton, J.D.: Exorcist XIV: The wrath of Maxwell’s demon. Part I: From
Maxwell to Szilard. Studies in the History and Philosophy of Modern Physics 29,
435–471 (1998)

Earman, J., Norton, J.D.: Exorcist XIV: The wrath of Maxwell’s demon. Part II: From
Szilard to Landauer and beyond. Studies in the History and Philosophy of Modern
Physics 30, 1–40 (1999)

Fermi, E.: Thermodynamics. Dover, New York (1936)
Feynman, R.P.: Feynman Lectures on Computation. In: Hey, J.G., Allen, W. (eds.)

Reading, MA, Addison-Wesley, London (1996)
Jones, D.S.: Elementary Information Theory. Clarendon Press, Oxford (1979)
Ladyman, J., Presnell, S., Short, A., Groisman, B.: The connection between logical and

thermodynamic irreversibility. Studies in History and Philosophy of Modern Physics
(2007)

Landauer, R.: Irreversibility and heat generation in the computing process. IBM Jour-
nal of Research and Development (Reprinted in Leff and Rex (1990)) 5, 183–191
(1961)

Landauer, R.: Dissipation and heat generation in the computing process. IBM Journal
of Research and Development 5, 183–191 (1961)

Leff, H.S., Rex, A.F. (eds.): Maxwell’s demon: Entropy, information, computing, Bris-
tol: Adam Hilger (1990)

Leff, H.S., Rex, A.F. (eds.): Maxwell’s demon 2: Entropy, classical and quantum infor-
mation, computing. Bristol: Institute of Physics (2003)

Maroney, O.J.E.: The (absence of a) relationship between thermodynamic and logi-
cal reversibility. Studies in History and Philosophy of Modern Physics 36, 355–374
(2005)

Norton, J.D.: Eaters of the lotus: Landauer’s principle and the return of Maxwell’s
demon. Studies in the History and Philosophy of Modern Physics 36, 375–411 (2005)

Piechocinska, B.: Information erasure. Physical Review A, 61, 062314, 1–9 (2000)

454 J. Ladyman

Shizume, K.: Heat generation required by information erasure. Physical Review E 52,
3495–3499 (1995)

Szilard, L.: On the decrease of entropy in a thermodynamic system by the intervention
of intelligent beings. Zeitschrift für Physik 53, 840–856 (1929) (Reprinted in Leff
and Rex (1990), 124–133)

Uffink, J.: Bluff Your Way in the Second Law of Thermodynamics. Studies In History
and Philosophy of Modern Physics 32, 305–394 (2001)

Strict Self-assembly of Discrete Sierpinski

Triangles

James I. Lathrop, Jack H. Lutz�, and Scott M. Summers

Department of Computer Science, Iowa State University, Ames, IA 50014, USA
jil@cs.iastate.edu
lutz@cs.iastate.edu

summers@cs.iastate.edu

Abstract. Winfree (1998) showed that discrete Sierpinski triangles can
self-assemble in the Tile Assembly Model. A striking molecular realiza-
tion of this self-assembly, using DNA tiles a few nanometers long and
verifying the results by atomic-force microscopy, was achieved by Rothe-
mund, Papadakis, and Winfree (2004).

Precisely speaking, the above self-assemblies tile completely filled-in,
two-dimensional regions of the plane, with labeled subsets of these tiles
representing discrete Sierpinski triangles. This paper addresses the more
challenging problem of the strict self-assembly of discrete Sierpinski tri-
angles, i.e., the task of tiling a discrete Sierpinski triangle and nothing
else.

We first prove that the standard discrete Sierpinski triangle cannot
strictly self-assemble in the Tile Assembly Model. We then define the
fibered Sierpinski triangle, a discrete Sierpinski triangle with the same
fractal dimension as the standard one but with thin fibers that can carry
data, and show that the fibered Sierpinski triangle strictly self-assembles
in the Tile Assembly Model. In contrast with the simple XOR algorithm
of the earlier, non-strict self-assemblies, our strict self-assembly algo-
rithm makes extensive, recursive use of Winfree counters, coupled with
measured delay and corner-turning operations. We verify our strict self-
assembly using the local determinism method of Soloveichik and Winfree
(2005).

Keywords: fractals, molecular computing, self-assembly, Sierpinski
triangles.

1 Introduction

Structures that self-assemble in naturally occurring biological systems are often
fractals of low dimension, by which we mean that they are usefully modeled
as fractals and that their fractal dimensions are less than the dimension of the
space or surface that they occupy. The advantages of such fractal geometries

� This author’s research was supported in part by National Science Foundation Grant
0344187 and in part by Spanish Government MEC Project TIN 2005-08832-C03-02.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 455–464, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

456 J.I. Lathrop, J.H. Lutz, and S.M. Summers

for materials transport, heat exchange, information processing, and robustness
imply that structures engineered by nanoscale self-assembly in the near future
will also often be fractals of low dimension.

The simplest mathematical model of nanoscale self-assembly is the Tile As-
sembly Model (TAM), an extension of Wang tiling [11,12] that was introduced
by Winfree [14] and refined by Rothemund and Winfree [6,5]. (See also [1,4,9].)
This elegant model, which is described in the technical appendix, uses tiles with
various types and strengths of “glue” on their edges as abstractions of molecules
adsorbing to a growing structure. (The tiles are squares in the two-dimensional
TAM, which is most widely used, cubes in the three-dimensional TAM, etc.) De-
spite the model’s deliberate oversimplification of molecular geometry and bind-
ing, Winfree [14] proved that the TAM is computationally universal in two or
more dimensions. Self-assembly in the TAM can thus be directed algorithmically.

This paper concerns the self-assembly of fractal structures in the Tile Assem-
bly Model. The typical test bed for a new research topic involving fractals is
the Sierpinski triangle, and this is certainly the case for fractal self-assembly.
Specifically, Winfree [14] showed that the standard discrete Sierpinski triangle
S, which is illustrated in Figure 1, self-assembles from a set of seven tile types in
the Tile Assembly Model. Formally, S is a set of points in the discrete Euclidean
plane Z

2. The obvious and well-known resemblance between S and the Sierpinski
triangle in R

2 that is studied in fractal geometry [3] is a special case of a gen-
eral correspondence between “discrete fractals” and “continuous fractals” [13].
Continuous fractals are typically bounded (in fact, compact) and have intricate
structure at arbitrarily small scales, while discrete fractals like S are unbounded
and have intricate structure at arbitrarily large scales.

A striking molecular realization of Winfree’s self-assembly of S was reported
in 2004. Using DNA double-crossover molecules (which were first synthesized
in pioneering work of Seeman and his co-workers [8]) to construct tiles only
a few nanometers long, Rothemund, Papadakis and Winfree [7] implemented
the molecular self-assembly of S with low enough error rates to achieve correct
placement of 100 to 200 tiles, confirmed by atomic force microscopy (AFM).
This gives strong evidence that self-assembly can be algorithmically directed at
the nanoscale.

The abstract and laboratory self-assemblies of S described above are impres-
sive, but they are not (nor were they intended or claimed to be) true fractal self-
assemblies. Winfree’s abstract self-assembly of S actually tiles an entire quadrant
of the plane in such a way that five of the seven tile types occupy positions corre-
sponding to points in S. Similarly, the laboratory self-assemblies tile completely
filled-in, two-dimensional regions, with DNA tiles at positions corresponding to
points of S marked by inserting hairpin sequences for AFM contrast. To put the
matter figuratively, what self-assembles in these assemblies is not the fractal S
but rather a two-dimensional canvas on which S has been painted.

In order to achieve the advantages of fractal geometries mentioned in the first
paragraph of this paper, we need self-assemblies that construct fractal shapes
and nothing more. Accordingly, we say that a set F ⊆ Z

2 strictly self-assembles

Strict Self-assembly of Discrete Sierpinski Triangles 457

in the Tile Assembly Model if there is a (finite) tile system that eventually places
a tile on each point of F and never places a tile on any point of the complement,
Z

2 − F .
The specific topic of this paper is the strict self-assembly of discrete Sierpinski

triangles in the Tile Assembly Model. We present two main results on this topic,
one negative and one positive.

Our negative result is that the standard discrete Sierpinski triangle S cannot
strictly self-assemble in the Tile Assembly Model. That is, there is no tile system
that places tiles on all the points of S and on none of the points of Z

2 − S. This
theorem appears in section 3. The key to its proof is an extension of the theorem
of Adleman, Cheng, Goel, Huang, Kempe, Moisset de Espanés, and Rothemund
[2] on the number of tile types required for a finite tree to self-assemble from a
single seed tile at its root.

Our positive result is that a slight modification of S, the fibered Sierpinski
triangle T illustrated in Figure 2, strictly self-assembles in the Tile Assembly
Model. Intuitively, the fibered Sierpinski triangle T (defined precisely in section
4) is constructed by following the recursive construction of S but also adding a
thin fiber to the left and bottom edges of each stage in the construction. These
fibers, which carry data in an algorithmically directed self-assembly of T, have
thicknesses that are logarithmic in the sizes of the corresponding stages of T.
Intuitively, this means that T is visually indistinguishable from S at sufficiently
large scales. Mathematically, it implies that T has the same fractal dimension
as S.

Since our strict self-assembly must tile the set T “from within,” the algorithm
that directs it is perforce more involved than the simple XOR algorithm that
directs Winfree’s seven-tile-type, non-strict self-assembly of S. Our algorithm,
which is described in section 5, makes extensive, recursive use of Winfree counters
[14], coupled with measured delay and corner-turning operations. It uses 69 tile
types, but these are naturally positioned into small functional groups, so that
we can use Soloveichik and Winfree’s local determinism method [10] to prove
that T strictly self assembles in our tile system.

2 Preliminaries

We work in the n-dimensional discrete Euclidean space Z
n, where n is a positive

integer. (In fact, we are primarily concerned with the discrete Euclidean plane
Z

2.) We write Un for the set of all unit vectors, i.e., vectors of length 1, in Z
n.

We regard the 2n elements of Un as (names of the cardinal) directions in Z
n.

We write [X]2 for the set of all 2-element subsets of a set X . All graphs here
are undirected graphs, i.e., ordered pairs G = (V, E), where V is the set of
vertices and E ⊆ [V]2 is the set of edges.

An n-dimensional grid graph is a graph G = (V, E) in which V ⊆ Z
n and

every edge {a, b} ∈ E has the property that a − b ∈ Un. The full grid graph on
a set V ⊆ Z

n is the graph G#
V = (V, E) in which E contains every {a, b} ∈ [V]2

such that a − b ∈ Un.

458 J.I. Lathrop, J.H. Lutz, and S.M. Summers

We now give a brief and intuitive sketch of the Tile Assembly Model that
is adequate for reading this paper. More formal details and discussion may be
found in [14,6,5].

Intuitively, a tile type t is a unit square that can be translated, but not rotated,
so it has a well-defined “side u” for each u ∈ U2. Each side u is covered with
a “glue” of “color” colt(u) and “strength” strt(u) specified by its type t. If two
tiles are placed with their centers at adjacent points a, a−u ∈ Z

2, where u ∈ U2,
and if their abutting sides have glues that match in both color and strength, then
they form a bond with this common strength. If the glue does not so match, then
no bond is formed between these tiles. In this paper, all glues have strength 0, 1,
or 2. When drawing a tile as a square, each side’s glue strength is indicated by
whether the side is a dotted line (0), a solid line (1), or a double line (2). Each
side’s “color” is indicated by an alphanumeric label.

Given a set T of tile types, an assembly is a partial function α : T ��� Z
2 that

is stable in the sense that it cannot be “broken” into smaller assemblies without
breaking bonds of total strength at least τ , where τ = 2 is this paper.

Self-assembly begins with a seed assembly σ and proceeds asynchronously and
nondeterministically, with tiles adsorbing one at a time to the existing assembly
in any manner that preserves stability at all times. A tile assembly system (TAS)
is an ordered triple T = (T, σ, τ), where T is a finite set of tile types, σ is a seed
assembly with finite domain, and τ = 2 is the temperature. A generalized tile
assembly system (GTAS) is defined similarly, but without the finiteness require-
ments. An assembly α is terminal, and we write α ∈ A�[A][T], if no tile can be
stably added to it. A GTAS T is definitive, or produces a unique assembly, if it
has exactly one terminal assembly.

A set X ⊆ Z
2 weakly self-assembles if there exist a TAS T = (T, σ, τ) and a

set B ⊆ T such that α−1(B) = X holds for every terminal assembly α. The set
X strictly self-assembles if there is a TAS T for which every terminal assembly
has domain X .

An assembly sequence in a TAS T = (T, σ, τ) is an infinite sequence α =
(α0, α1, α2, . . .) of assemblies in which α0 = σ and each αi+1 is obtained from
αi by the addition of a single tile. In general, even a definitive TAS may have a
very large (perhaps uncountably infinite) number of different assembly sequences
leading to a terminal assembly. This seems to make it very difficult to prove that
a TAS is definitive. Fortunately, Soloveichick and Winfree [10] have recently
defined a property, local determinism, of assembly sequences and proven the
remarkable fact that, if a TAS T has any assembly sequence that is locally
deterministic, then T is definitive.

We briefly review the standard discrete Sierpinski triangle and the calculation
of its zeta-dimension.

Let V = {(1, 0), (0, 1)}. Define the sets S0, S1, S2, · · · ⊆ Z
2 by the recursion

S0 = {(0, 0)} , (2.1)

Si+1 = Si ∪
(
Si + 2iV

)
,

Strict Self-assembly of Discrete Sierpinski Triangles 459

where A+cB = {a+cb|a ∈ A and b ∈ B}. Then the standard discrete Sierpinski
triangle is the set

S =
∞⋃

i=0

Si,

which is illustrated in Figure 1. It is well known that S is the set of all (k, l) ∈ N
2

such that the binomial coefficient
(
k+1

k

)
is odd. For this reason, the set S is also

called Pascal’s triangle modulo 2.

Fig. 1. Standard Discrete Sierpinski Triangle S

3 Impossibility of Strict Self-assembly of S

This section presents our first main theorem, which says that the standard dis-
crete Sierpinski triangle S does not strictly self-assemble in the Tile Assembly
Model. In order to prove this theorem, we first develop a lower bound on the
number of tile types required for the self-assembly of a set X in terms of the
depths of finite trees that occur in a certain way as subtrees of the full grid graph
G#

X of X .
Intuitively, given a set D of vertices of G#

X , we define a D-subtree of G#
X to

be any rooted tree in G#
X that consists of all vertices of G#

X that lie at or on the
far side of the root from D. For simplicity, we state the definition in an arbitrary
graph G.

460 J.I. Lathrop, J.H. Lutz, and S.M. Summers

Definition 1. Let G = (V, E) be a graph, and let D ⊆ V .

1. For each r ∈ V , the D-r-rooted subgraph of G is the graph

GD,r =
(
VD,r, ED,r

)
,

where

VD,r =

{

v ∈ V

∣
∣∣
∣

every path from v to (any vertex in)
D in G goes through r

}

and
ED,r = E ∩ [VD,r]

2
.

(Note that r ∈ VD,r in any case.)
2. A D-subtree of G is a rooted tree B with root r ∈ V such that B = GD,r.
3. A branch of a D-subtree B of G is a simple path π = (v0, v1, . . .) that starts

at the root of B and either ends at a leaf of B or is infinitely long.

We use the following quantity in our lower bound theorem.

Definition 2. Let G = (V, E) be a graph and let D ⊆ V . The finite-tree depth
of G relative to D is

ft-depthD(G) = sup {depth(B)|B is a finite D-subtree of G} .

We emphasize that the above supremum is only taken over finite D-subtrees. It
is easy to construct an example in which G has a D-subtree of infinite depth,
but ft-depthD(G) < ∞.

Our lower bound result is the following.

Theorem 1. Let X ⊆ Z
2. If X strictly self-assembles in an n-GTAS T =

(T, σ, τ), then |T | ≥ ft-depthdom σ(G#
X).

We note that Adleman, Cheng, Goel, Huang, Kempe, Moisset de Espanés, and
Rothemund [2] proved the special case of Theorem 1 in which G#

X is itself a finite
tree and dom σ = {r}, where r is the root of G#

X .
We now show that the standard discrete Sierpinski triangle S has infinite

finite-tree depth.

Lemma 1. For every finite set D ⊆ S, ft-depthD(G#
S) = ∞.

We now have the machinery to prove our first main theorem.

Theorem 2. S does not strictly self-assemble in the Tile Assembly Model.

4 The Fibered Sierpinski Triangle T

We now define the fibered Sierpinski triangle and show that it has the same
fractal-dimension as the standard discrete Sierpinski triangle.

As in Section 2, let V = {(1, 0), (0, 1)}. Our objective is to define sets
T0, T1, T2, · · · ⊆ Z

2, sets F0, F1, F2, · · · ⊆ Z
2, and functions l, f, t : N → N with

the following intuitive meanings.

Strict Self-assembly of Discrete Sierpinski Triangles 461

1. Ti is the ith stage of our construction of the fibered Sierpinski triangle.

2. Fi is the fiber associated with Ti. It is the smallest set whose union with
Ti has a vertical left edge and a horizontal bottom edge, together with one
additional layer added to these two now-straight edges.

3. l(i) is the length (number of tiles in) the left (or bottom) edge of Ti ∪ Fi.

4. f(i) = |Fi|.
5. t(i) = |Ti|.

These five entities are defined recursively by the equations

T0 = S2 (stage 2 in the construction of S),
F0 = ({−1} × {−1, 0, 1, 2, 3}) ∪ ({−1, 0, 1, 2, 3} × {−1}) ,

l(0) = 5,

f(0) = 9 = t(0),
Ti+1 = Ti ∪ ((Ti ∪ Fi) + l(i)V) , (4.1)
Fi+1 = Fi ∪ ({−i − 1} × {−i − 1, −i, · · · , l(i + 1) − i − 2})
∪ ({−i − 1, −i, · · · , l(i + 1) − i − 2} × {−i − 1}) ,

l(i + 1) = 2l(i) + 1,

f(i + 1) = f(i) + 2l(i + 1) − 1,

t(i + 1) = 3t(i) + 2f(i).

Comparing the recursions (2.1) and (4.1) shows that the sets T0, T1, T2, · · · are
constructed exactly like the sets S0, S1, S2, · · · , except that the fibers Fi are
inserted into the construction of the sets Ti. A routine induction verifies that
this recursion achieves conditions 2, 3, 4, and 5 above. The fibered Sierpinski
triangle is the set

T =
∞⋃

i=0

Ti,

which is illustrated in Figure 2. The resemblance between S and T is clear from
the illustrations. We now verify that S and T have the same fractal-dimension.

Lemma 2. Dimζ(T) = Dimζ(S).

Proof. Solving the recurrences for l, f , and t, in that order, gives the formulas

l(i) = 3 · 2i+1 − 1,

f(i) = 3(2i+3 − i − 5),

t(i) =
3
2

(
3i+3 − 2i+5 + 2i + 11

)
,

which can be routinely verified by induction. It follows readily that

Dimζ (T) = lim sup
n→∞

log t(n)
log l(n)

= log 3 = Dimζ (S) .

462 J.I. Lathrop, J.H. Lutz, and S.M. Summers

We note that the thickness i + 1 of a fiber Fi is O(log l(i)), i.e., logarithmic in
the side length of Ti. Hence the difference between Si and Ti is asymptotically
negligible as i → ∞. Nevertheless, we show in the next section that T, unlike S,
strictly self-assembles in the Tile Assembly Model.

Fig. 2. Fibered Sierpinski Triangle T

5 Strict Self-assembly of T

In this section, we present our second main result, which is the following.

Theorem 3. T strictly self-assembles in the Tile Assembly Model.

To show this, we use four modified versions of Winfree’s binary counter that
produce output ports (points at which structures may attach to the modified
counter) which are used to grow additional modified counters at right angles.
Recursively applying this procedure to the new counters yields the fibered Sier-
pinski triangle, as shown in Figure 2. Our singly-seeded tile set that produces
the fibered Sierpinski triangle in this manner contains 69 tile types, and can be
shown to be definitive using the method of local determinism [10].

We first construct a vertical log-width modified counter having the property
that every natural number other than 0 is counted once and then is essentially
repeated as many times as there are zero bits to the right of its right most
one bit. We use shifters embedded in the counter to insert such spacing rows.
Although log-width counters are infinite, the width of any row is fixed, and is
in fact logarithmic in the number that it represents. It is easy to verify that

Strict Self-assembly of Discrete Sierpinski Triangles 463

the number of rows in a particular stage of width w of a log-width counter is
l(w−2), where the function l was defined in Section 4. As such, we use log-width
counters to self-assemble the two axes of T.

Self-assembly of the “internal structure” of T is accomplished via fixed-width
modified counters, which are constructed directly from log-width modified coun-
ters. A fixed-width counter of width w will attach to a contiguous sequence of
w spacing rows of an oppositely oriented modified counter. Counting starts at
2w +1 and stops when the count overflows to 0. One can verify that the number
of rows in a fixed-width modified counter of width w is l(w − 2) − w.

The following figure illustrates a snapshot of a natural, infinite assembly
sequence for T using our modified counters.

Fig. 3. Assembly sequence for T

The darkest squares in the above figure represent tile types that are exclusive
to log-width modified counters. It is these tile types that allow log-width counters
to never stop counting. The lightest squares represent rows in which an increment
operation occurs. All other squares represent the spacing rows, which not only
delay the count by the appropriate amount but also provide the locations to
which oppositely oriented modified counters ultimately attach.

Acknowledgment. We thank Dave Doty, Xiaoyang Gu, John Mayfield, Satya
Nandakumar, and Kirk Sykora for useful discussions.

References

1. Adleman, L.: Towards a mathematical theory of self-assembly, Tech. report (1999)
2. Adleman, L.M., Cheng, Q., Goel, A., Huang, M.-D. A., Kempe, D., de Espanés, P.

M., Rothemund, P. W. K.: Combinatorial optimization problems in self-assembly,
pp. 23–32 (2002)

3. Falconer, K.: Fractal geometry: Mathematical foundations and applications, 2nd
edn. Wiley, Chichester (2003)

4. Reif, J.H.: Molecular assembly and computation: From theory to experimental
demonstrations, International Colloquium on Automata, Languages and Program-
ming, pp. 1–21 (2002)

464 J.I. Lathrop, J.H. Lutz, and S.M. Summers

5. Rothemund, P.W.K.: Theory and experiments in algorithmic self-assembly, Ph.D.
thesis, University of Southern California (December 2001)

6. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). STOC, pp. 459–468 (2000)

7. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles, PLoS Biology 2(12) (2004)

8. Seeman, N.C.: Nucleic-acid junctions and lattices. Journal of Theoretical Biol-
ogy 99, 237–247 (1982)

9. Soloveichik, D., Winfree, E.: Complexity of compact proofreading for self-assembled
patterns, The Eleventh International Meeting on DNA Computing (2005)

10. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. In: Ferretti,
C., Mauri, G., Zandron, C. (eds.) DNA Computing. LNCS, vol. 3384, Springer,
Heidelberg (2005)

11. Wang, H.: Proving theorems by pattern recognition – II. The Bell System Technical
Journal XL(1), 1–41 (1961)

12. Wang, H.: Dominoes and the AEA case of the decision problem. In: Proceedings
of the Symposium on Mathematical Theory of Automata (New York, 1962), Poly-
technic Press of Polytechnic Inst. of Brooklyn, Brooklyn, N.Y., pp. 23–55 (1963)

13. Willson, S.J.: Growth rates and fractional dimensions in cellular automata. Physica
D 10, 69–74 (1984)

14. Winfree, E.: Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute
of Technology, June (1998)

Binary Trees and (Maximal) Order Types

Gyesik Lee

LIX - INRIA Futurs, Ecole Polytechnique, 91128 Palaiseau Cedex, France
leegy@lix.polytechnique.fr

Abstract. Concerning the set of rooted binary trees, one shows that
Higman’s Lemma and Dershowitz’s recursive path ordering can be used
for the decision of its maximal order type according to the homeomorphic
embedding relation as well as of the order type according to its canonical
linearization, well-known in proof theory as the Feferman-Schütte nota-
tion system without terms for addition. This will be done by showing
that the ordinal ωn+1 can be found as the (maximal) order type of a set
in a cumulative hierarchy of sets of rooted binary trees.

1 Introduction

Well-partial-ordering: A quasi-ordering is a pair (X, �), where X is a set
and � is a transitive, reflexive binary relation on X . If Y ⊆X we write (Y, �)
instead of (Y, � � Y × Y). A quasi-ordering (X, �) is called a partial ordering if
� is antisymmetric, too.

For any partial ordering (X, �) and any x, y ∈ X we write x ≺ y for x � y and
y �� x. A linear ordering is a partial ordering (X, �) in which any two elements
are �-comparable.

A well-quasi-ordering (wqo) is a quasi-ordering (X, �) such that there is no
infinite sequence 〈xi〉i∈ω of elements of X satisfying: xi �� xj for all i < j.
A well-partial-ordering (wpo) is a partial ordering which is well-quasi-ordered.
(X, ≺) is called well-ordering if (X, �) is a linear wpo. The following condition
is necessary and sufficient for a partial ordering (X, �) to be a wpo:

Every extension of � to a linear ordering on X is a well-ordering.

In the following, we assume a basic knowledge about ordinals up to ε0 and their
arithmetic. Here are some notations:

ω0(α) := α ωn+1(α) := ωωn(α) ωn := ωn(1)

The order type of a well-ordering (X, ≺), otyp(≺), is the least ordinal for
which there is an order-preserving function f : X → α:

otyp(≺) := min{α : there is an order-preserving function f : X → α}

Given a wpo (X, �) consider an extension (X, ≺+) which is a well-ordering. How
big is the order type of the well-ordering? Is there any non-trivial upper bound

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 465–473, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

466 G. Lee

for it? Here ‘non-trivial’ means that the bound is lower than the obvious upper
bound obtained by considering the cardinality of X . To this question, de Jongh
and Parikh [1] gives a clear answer.

Definition 1. Given a wpo (X, �) its maximal order type is defined as follows:

o(X, �) := sup{otyp(≺+) : ≺+ is a well-ordering on X extending �} .

We simply write o(X) for o(X, �) if it causes no confusion.

Theorem 2 (de Jongh and Parikh [1]). If (X, �) is a wpo, then there is a
well-ordering ≺+ on X extending � such that o(X) = otyp(≺+).

We refer to Schmidt [2] for more extensive study concerning maximal order type.

Higman embedding: Given a set A, let A∗ be the set of finite sequences of
elements from A. Let (A, �) be a partial ordering. The Higman embedding �H

is the partial ordering on A∗ defined as follows:

a1, . . . , am �H b1, . . . , bn

if there is a strictly increasing function g : [1, m] → [1, n] such that ai � bg(i) for
all i ∈ [1, m].

Theorem 3

1. (Higman’s Lemma) If (A, �) is a wpo(resp. wqo), then so is (A∗, �H).
2. (de Jongh and Parikh) If (A, �) is a wpo with o(A, �) = α > 0, then we

have:

o(A∗, �H) =

⎧
⎪⎨

⎪⎩

ωωα−1
if α ∈ ω \ {0} .

ωωα

if α = β + m, where β ≥ ω, β �= ωβ, and m ∈ ω .

ωωα+1
otherwise .

Proof. See e.g. [3,1,2,4]. �

Binary trees: A rooted binary tree T is a set of nodes such that, if it is not
empty, there is one distinguished node called the root of T and the remaining
nodes are partitioned into two rooted binary trees. Here is a formal definition:

Assume a constant o and a binary function symbol ϕ are given. The set of
rooted binary trees B is the least set of terms defined as follows:

– o ∈ B;
– if α, β ∈ B, then ϕ(α, β) ∈ B.

We will write ϕαβ instead of ϕ(α, β) if it causes no confusion. The homeo-
morphic embeddability relation � on B is the least subset of B × B defined as
follows:

Binary Trees and (Maximal) Order Types 467

– o � β for all β ∈ B;
– if α = ϕα1α2, β = ϕβ1β2, then α � β if one of the following cases holds:

(i) α � β1 or α � β2;
(ii) α1 � β1 and α2 � β2.

Higman [3] showed that (B, �) is a wpo, and in an unpublished paper, de
Jongh showed that o(B, �) = ε0. Furthermore, one easily finds a well-ordering
< extending � such that otyp(<) = ε0: α < β is true if

– α = o and β �= o; or
– α = ϕα1α2, β = ϕβ1β2 and one of the following cases holds:

(i) α1 < β1 and α2 < β; or
(ii) α1 = β1 and α2 < β2; or

(iii) α1 > β1 and α ≤ β2.

One can easily see that ≤ extends �, and it is a folklore in proof theory that
< is a well-ordering on B with otyp(<) = ε0. In fact, the system (B, <) is the
system which is obtained from the Feferman-Schütte notation system for Γ0 by
omitting the addition terms. See e.g. [5,6,7,8] for more details.

In this paper, we will give a new proof that o(B, �) = otyp(B, <) = ε0.
Furthermore, this will be done by characterizing the subsets of B which have
ωn as their maximal order types according to the homeomorphic embedding
relation.

2 Cumulative Hierarchies (Bd)d and (Bd,k)k

In Weiermann [9], a cumulative hierarchy of Bd sucht that
⋃

d Bd = B is pre-
sented. Here we give cumulative hierchies (Bd,k)k such that

⋃
k Bd,k = Bd for

any d > 0.1

Given a natural number d we define Bd recursively as follows:

– o ∈ Bd;
– if d > 0, α ∈ Bd−1, and β ∈ Bd, then ϕαβ ∈ Bd.

And define ρd(α) for α ∈ B as follows:

ρ0(α) = α and ρd+1(α) = ϕρd(α)0

Lemma 4. Let d be a natural number.

1. B =
⋃

{Bd : d ∈ ω}.
2. If α ∈ Bd, then α < ρd+1(o) and ρk(α) ∈ Bd+k.
3. ρd+1(o) ∈ Bd+1 \ Bd.
4. If α < β, then ρd(α) < ρd(β).
5. If α � β, then ρd(α) � ρd(β).
6. If α ∈ Bd+1 \ Bd and β ∈ Bd, then α � β and β < α.

1 These cumulative hierarchies are essential for the proofs of phase transition of some
combinatorial properties with respect to PA or IΣn respectively since they allow one
to a structural approach to the sets from below. See Weiermann [9] and Lee [10] for
more about phase transition concerning binary trees.

468 G. Lee

Proof. The first five claims are obvious. We show the last assertion by induction
on α and β. If β = 0 there is nothing to show. Let α = ϕα1α2 and β = ϕβ1β2.
If α1 ∈ Bd−1, then α2 ∈ Bd+1 \ Bd. Hence β < α2 < α by I.H. Now assume
α1 ∈ Bd \ Bd−1. Then β1 < α1 and β2 < α by I.H., so β < α and α � β. �

Note that ω and B1 can be identified by the isomorphism f defined as follows:
f(0) := o and f(n + 1) := ϕ(o, f(n)). Hence we may talk about occurrences of
natural numbers in α ∈ Bd, d ≥ 1.

For k ≥ 1 define

– B1,k := {0, 1, . . . , k − 1}.
– Bd+1,k := {α : α = 0 or α = ϕβγ, where β ∈ Bd,k and γ ∈ Bd+1,k}.

Lemma 5. Let d, k be natural numbers.

1. Bd =
⋃

k>0 Bd,k.
2. If α ∈ Bd+1,k, then α < ρd(k).
3. If α ∈ Bd,k+1 \ Bd,k and β ∈ Bd,k, then β < α and α � β.

Proof. Every claim can be shown by an simple induction on k. �

Given a positive natural number n define Bn by

Bn :=

{
Bd+1 if n = 2d

Bd+1,2 if n = 2d − 1 .

We claim
o(Bn, � �Bn) = otyp(< � Bn) = ωn+1 .

3 Maximal Order Types

In general it is not a simple task to decide the maximal order type of a wpo. Some
interesting methods are introduced in [2,11,4]. However, there is a problem that
in most cases they can be carried out in a long-winded way only. Fortunately,
there is a much more simple way for our case. We are going to take a well-known
wpo and compare it with (Bn, �).

Note first that the two sets Bd+1 and (Bd)∗ are similarly constructed. In
fact, every α ∈ Bd+1 is of the form α = ϕα1ϕα2 · · · ϕαmo, where αi ∈ Bd.
If β = ϕβ1ϕβ2 · · · ϕβno ∈ Bd+1 and α1 · · · αm �H β1 · · · βn then α � β. And,
though this relationship is not isomorphic, we can in fact show that o(Bd+1, �) =
o((Bd)∗, �H).

We need the following obvious fact.

Lemma 6. Let (A, �1) and (B, �2) be wpo’s and f : A → B an injective func-
tion such that

a �1 b ⇐⇒ f(a) �2 f(b)

for all a, b ∈ A. Then it holds that o(A) ≤ o(B).

Binary Trees and (Maximal) Order Types 469

Theorem 7. For any d > 0, o(Bd+1, �) = o(Bd+1 \ Bd, �) = o((Bd)∗, �H) .

Proof. Define f : Bd+1 → (Bd)∗ and g : (Bd)∗ → Bd+1 \ Bd defined as follows:

f(α) :=

⎧
⎪⎨

⎪⎩

ε if α = o

α if α = ϕα1α2 ∈ Bd

α1, f(α2) if α = ϕα1α2 �∈ Bd

and
g(α1, . . . , αm) := ϕα1ϕα2 · · ·ϕαmρd+1(o)

where ε denotes the empty sequence. It is then very easy to show that f and g
satisfy the conditions in Lemma 6. So we have the desired equalities. �

Corollary 8. For any d > 0, (Bd, �) is a wpo and o(Bd, �) = ω2d−1.

Proof. By induction on d > 0. If d = 1, then B1 = {o, ϕoo, ϕo(ϕoo), . . . } is
linearly ordered by � and so o(B1, �) = ω. If d > 1, use I.H., Theorem 7, and
Theorem 3. �

Corollary 9. (B, �) is a well-ordering and o(B) = ε0.

Lemma 10. Let d, k be positive natural numbers. Then

o(Bd,k, � �Bd,k) =

{
k if d = 1
ω2(d−1)(k − 1) otherwise .

Proof. Similar to Corollary 8. �

Theorem 11. o(Bn, � �Bn) = ωn+1 for any positive natural number n.

4 Order Types

We are now going to compute the order types of (Bn, <�Bn). It is not so obvious
as it might seem. B will be considered as ordinal notation systems based on the
recursive path ordering on strings.

Definition 12 (Recursive path ordering). Let (A, ≺) be a well-ordering.
The recursive path ordering ≺rpo on A∗ is defined as follows: Let ε be the empty
list.

– If ε ≺rpo u for u �= ε.
– If u = au1 and v = bv1, then u ≺rpo v if one of the following holds:

(i) a ≺ b and u1 ≺rpo v;
(ii) a = b and u1 ≺rpo v1;

(iii) b ≺ a and u �rpo v1.

Dershowitz [12] shows that the recursive path ordering preserves the well-
orderedness.

470 G. Lee

Theorem 13 (Dershowitz). If (A, ≺) is a well-ordering, so is (A∗, ≺rpo).

Let ξ < ε0 be the order type of ≺ on A and η �→ aη, η < ξ, the enumeration func-
tion of A. Using the idea elaborated by Touzet [13] we are going to characterize
the order type of ≺rpo on A∗.

Lemma 14. For each limit ordinal α < ωωξ

there are unique γ, β, and η < ξ
such that

(i) α = γ + ωωη · β,
(ii) 0 < β < ωωη+1

, and
(iii) there are no μ ∈ ωωη+1 \ {0} and δ ∈ ωωξ

such that γ = δ + μ.

Proof. Let α =NF ωα0 + · · · + ωαn . Let η < ξ and j be such that

ωη ≤ αn < ωη+1 and j := min{k : ωη ≤ αk < ωη+1} .

There are δk, j ≤ k ≤ n, such that αj = ωη + δj , . . . , αn = ωη + δn . Hence
α = γ + ωωη · β, where γ =NF ωα0 + · · · + ωαj−1 and β =NF ωδj + · · · + ωδn ,
and η, β, γ satisfy the conditions (ii) and (iii).

We now prove the uniqueness of the decomposition. Let η′, β′, γ′ also satisfy
(i) ∼ (iii). If β =NF ωβ0 + · · · + ωβm and β′ =NF ωβ′

0 + · · · + ωβ′
� and if γ is in

Cantor normal form too, then conditions (ii) and (iii) guarantee that

α =NF γ + ωωη+β1 + · · · + ωωη+βm =NF γ′ + ωωη′
+β′

1 + · · · + ωωη′
+β′

�

and hence η = η′. Suppose for instance γ < γ′. Then γ′ = γ + ωωη+β1 + · · · +
ωωη+βp for some p ≤ m. This contradicts (iii). So γ = γ′ and hence m = �,
βk = β′

k, 1 ≤ k ≤ m. �

In the sequel, γ + ωωη · β means always in the sense of Lemma 14. For ordinals
β > 0, −1 + β denotes β − 1 if β < ω and β otherwise.

Definition 15. Let (A, ≺) be a well-ordering and otyp(≺) = ξ ∈ ε0 \ {0}. The
function O : ωω−1+ξ → A∗ is defined by:

O(α) :=

⎧
⎪⎨

⎪⎩

ε if α = 0
a0O(β) if α = β + 1
a1+ηO(−1 + β)O(γ) if α = γ + ωωη · β .

Now we are going to show that the definition of ((Bd)∗, <rpo) is just another way
to see (Bd+1, <).

Theorem 16. Let (A, ≺) be a well-ordering. If otyp(≺) = ξ ∈ ε0 \ {0} on A,
then we have on A∗

otyp(≺rpo) = ωω−1+ξ

=

{
ωωξ−1

if ξ ∈ ω \ {0}
ωωξ

otherwise .

Binary Trees and (Maximal) Order Types 471

Proof. Weshow that the functionO : (ωω−1+ξ

, <) → (A∗, ≺rpo) is an isomorphism.

1. O is order-preserving, i.e. O(α) ≺rpo O(β) if α < β. Note that the ordering
< on ordinals is the transitive closure of the schemes ∀n ∈ ω(αn < α),
where (αn)n builds a fundamental sequence for α. (The definition of the
fundamental sequence will be directly given below in the proof.) So it suffices
to show that ∀n ∈ ω(O(αn) ≺rpo O(α)) for any α < ξ.
(a) α = β + 1: Then αn = β and O(αn) = O(β) ≺rpo a0O(β) = O(α).
(b) α = γ + ωωη · (β + 1):

– η = 0, i.e. αn = γ + ωω0 · β + n + 1: Then

O(αn) =

{
an+1
0 O(γ) if β = 0

an+1
0 a1O(−1 + β)O(γ) otherwise

≺rpo

O(α) =

{
a1O(γ) if β = 0
a1O(−1 + β + 1)O(γ) otherwise .

– η = η0 + 1, i.e. αn = γ + ωωη · β + ωωη0 · ωωη0 ·n: Then

O(αn) =

{
an+1
1+η0

O(γ) if β = 0
an+1
1+η0

a1+ηO(−1 + β)O(γ) otherwise

≺rpo

O(α) =

{
a1+ηO(γ) if β = 0
a1+ηO(−1 + β + 1)O(γ) otherwise .

– η is a limit ordinal, i.e.αn = γ + ωωη · β + ωωηn : Then

O(αn) =

{
a1+ηnO(γ) if β = 0
a1+ηnaηO(−1 + β)O(γ) otherwise

≺rpo

O(α) =

{
aηO(γ) if β = 0
aηO(−1 + β + 1)O(γ) otherwise .

(c) α = γ +ωωη ·λ, where λ is a limit ordinal: Then αn = γ +ωωη ·λn and
O(αn) = a1+ηO(−1 + λn)O(γ) ≺rpo a1+ηO(−1 + λ)O(γ) = O(α) .

We have shown that O is order-preserving, so it is injective.
2. Let u ∈ A∗. By induction on the length of u we show that there is an α < ωωξ

such that O(α) = u.
(a) u = ε: O(0) = ε.
(b) u = a0v: Then O(β + 1) = a0v, where O(β) = v.
(c) u = aηv, η > 0: Then let η′ = η if η ≥ ω and η′ = η + 1 otherwise.

472 G. Lee

– v ∈ {a0, . . . , aη}∗: Let O(−1 + β) = v. Then −1 + β < ωωη′
and

O(ωω−1+η · β) = aηO(−1 + β) = aηv = u .

Note that this case implies, in particular, that O : ωωξ−1 → A∗ is an
isomorphism if ξ ∈ ω \{0}. Indeed, if A = {a0, . . . , aη} and ξ = η+1
then we have just shown that α < ωωη

for α such that O(α) = u.
– v �∈ {a0, . . . , aη}∗: Let b ∈ A \ {a0, . . . , aη}, v1 ∈ {a0, . . . , aη}∗, and

v2 ∈ A∗ such that v = v1bv2. Let O(−1 + β) = v1 and O(γ) = bv2.
Then O(γ + ωω−1+η · β) = aηO(−1 + β)O(γ) = aηv1bv2 = u . �

Corollary 17. For any d > 0, (Bd, <) is a well-ordering and otyp(< �Bd) =
ω2d−1 .

Proof. Note just that (Bd+1, <) is isomorphic to ((Bd)∗, <rpo). �

Corollary 18. (B, <) is a well-ordering and otyp(<) = ε0.

Lemma 19. Let d, k be positive natural numbers. Then

otyp(< � Bd,k) =

{
k if d = 1
ω2(d−1)(k − 1) otherwise .

Proof. Similar to Corollary 17. �

Theorem 20. otyp(Bn, < �Bn) = ωn+1 for any positive natural number n.

Finally, Theorem 11 and Theorem 20 imply the main claim.

Theorem 21. o(Bn, � �Bn) = otyp(< �Bn) = ωn+1 for any positive natural
number n.

References

1. de Jongh, D.H.J., Parikh, R.: Well-partial orderings and hierarchies. Nederl. Akad.
Wetensch. Proc. Ser. A 80=Indag. Math 39(3), 195–207 (1977)

2. Schmidt, D.: Well-Partial Orderings and Their Maximal order Types. Habilitation-
sschrift, Heidelberg (1979)

3. Higman, G.: Ordering by divisibility in abstract algebras. In: Proc. London Math.
Soc 2(3), 326–336 (1952)

4. Hasegawa, R.: Well-ordering of algebras and Kruskal’s theorem. In: Sato, M.,
Hagiya, M., Jones, N.D. (eds.) Logic, Language and Computation. LNCS, vol. 792,
pp. 133–172. Springer, Heidelberg (1994)

5. Feferman, S.: Systems of predicative analysis. J. Symbolic Logic 29, 1–30 (1964)
6. Feferman, S.: Systems of predicative analysis. II. Representations of ordinals. J.

Symbolic Logic 33, 193–220 (1968)
7. Schütte, K.: Predicative well-orderings. In: Formal Systems and Recursive Func-

tions. In: Proc. Eighth Logic Colloq, Oxford, 1963. North-Holland pp. 280–303
(1965)

Binary Trees and (Maximal) Order Types 473

8. Schütte, K.: Proof theory. In: Translated from the revised German edition by Cross-
ley, J. N. Grundlehren der Mathematischen Wissenschaften, Band, Springer, Hei-
delberg (1977)

9. Weiermann, A.: Phase transition thresholds for some Friedman-style independence
results (to appear)

10. Lee, G.: Slowly-well-orderedness of binary trees in Peano arithmetic and its frag-
ments. (Preprint)

11. Rathjen, M., Weiermann, A.: Proof-theoretic investigations on Kruskal’s theorem.
Ann. Pure Appl. Logic 60(1), 49–88 (1993)

12. Dershowitz, N.: Orderings for term-rewriting systems. Theoret. Comput. Sci. 17(3),
279–301 (1982)

13. Touzet, H.: A characterisation of multiply recursive functions with Higman’s
lemma. Inform. and Comput, RTA ’99 (Trento) 178(2), 534–544 (2002)

A Weakly 2-Random Set That Is Not

Generalized Low�

Andrew Lewis1, Antonio Montalbán2, and André Nies3

1 University of Siena, Italy
2 University of Wellington, New Zealand
3 University of Auckland, New Zealand

Abstract. A guiding question in the study of weak 2-randomness is
whether weak 2-randomness is closer to 1-randomness, or closer to
2-randomness. Recent research indicates that the first alternative holds.
We add further evidence in this direction by showing that, in contrast
to the case for 2-randomness, a weakly 2-random set can fail to be
generalized low.

1 Introduction

Martin-Löf randomness, also called 1-randomness, is a central algorithmic ran-
domness notion for subsets of N (see for instance [6]). We say that a set is
2-random if it is 1-random relative to ∅′. 2-randomness was first studied by
Kurtz [5], and more recently in [8], where a characterization was given using the
plain Kolmogorov complexity of the initial segments. Kurtz also considered weak
2-randomness, an interesting notion lying strictly in between 1-randomness and
2-randomness: a set is weakly 2-random if it is not in any Π0

2 null class. Part
of the attractiveness of this notion stems from its conceptually very simple def-
inition. It is also the weakest randomness notion that eliminates some of the
intuitively ‘non-random’ features that 1-random sets can have, such as being
left-c.e. On the other hand, contrary to the case for 1- and 2-randomness, there
is no universal test for weak 2-randomness (i.e., there is no largest Π0

2 null class).
The separation from 1-randomness and the separation from 2-randomness

both hold up to Turing degree ([4]). For the first separation, note that a
1-random set can be Δ0

2 (even left-c.e.) while a weakly 2-random set forms a
minimal pair with ∅′ [2]. For the second separation, if a set has hyperimmune
free degree then it is 1-random iff it is weakly 2-random ([8], by an observation
of Yu), and such sets exist by the hyperimmune free basis theorem. On the other

� The first author was supported by Marie-Curie Fellowship MEIF-CT-2005-023657
and partially supported by the NSFC Grand International Joint Project no.
60310213, New Directions in the Theory and Applications of Models of Compu-
tation. The second author was partially supported by NSF Grant DMS-0600824 and
by the the Marsden Foundation of New Zealand, via a postdoctoral fellowship. The
third author was partially supported by the Marsden Fund of New Zealand, grant
no. 03-UOA-130.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 474–477, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Weakly 2-Random Set That Is Not Generalized Low 475

hand, each 2-random set is of hyperimmune degree (Kurtz [5], or see the more
recent, shorter proof in [8]).

A guiding question in the study of weak 2-randomness is whether weak
2-randomness is closer to 1-randomness, or closer to 2-randomness. Recent
research indicates that it is closer to 1-randomness:

(a) a set is low for weak 2-randomness iff it is low for 1-randomness ([2,6], also
unpublished work of J. Miller);

(b) by a result of Hirschfeldt and Miller, see the last Section of [7], a 1-random
set Z is already weakly 2-random unless there is a noncomputable set A ≤T

∅′, Z. (If so, the set A can actually be chosen to be c.e., and if Z is not Turing
above ∅′, then such an A is K-trivial, by [3].) In a sense, then, there are few
1-random sets that are not weakly 2-random.

By [8], each 2-random set is generalized low (and even low for Ω, a stronger
property). In our main result, we add another piece of evidence that weak
2-randomness is closer to 1-randomness, by showing that a weakly 2-random
set Z can fail to be generalized low. In fact, one can choose Z of hyperimmune
free degree, whence it suffices to make Z 1-random to obtain weak 2-randomness.

We thank one of the anonymous referees for supplying a proof that weak
2-randomness can also be separated from 2-randomness within the sets of hy-
perimmune degree. In other words, there is a weakly 2-random set D of hyperim-
mune degree such that no set of the same Turing degree is 2-random. To see this,
take any weakly 2-random set A that is not 2-random (for instance, choose a
1-random set A of hyperimmune-free degree). A forms a minimal pair with ∅′ by
the comments above, so the class C = {B : A⊕B forms a minimal pair with ∅′}
has measure 1. Thus there exists a set B in C that is 2-random relative to A, and
hence of hyperimmune degree. By van Lambalgen’s Theorem (see for instance
[6]), D = A ⊕ B is 1-random. Since D ∈ C, D is weakly 2-random. Finally, no
set Turing equivalent to D is 2-random, otherwise A would be 2-random, being
1-random and Turing below a 2-random set [8].

2 The Main Result

We consider the Cantor space 2ω and denote the standard measure on 2ω by μ.
Λ ⊆ 2<ω is said to be downward closed if, whenever τ ∈ Λ, all initial segments
of τ are in this set. Given any Λ ⊆ 2<ω we denote by [Λ] the set of infinite paths
through Λ i.e. those sets A such that there exist an infinite number of initial
segments of A in Λ. P ⊆ 2ω is a Π0

1 class if there exists a downward closed
computable Λ ⊆ 2<ω such that P = [Λ]. Given τ ∈ 2<ω we let [τ] denote the
set of infinite sequences extending τ . A Martin-Löf test {Ue}e∈ω is a uniformly
c.e. sequence of sets of strings such that for all e ∈ N, μ(Ue) < 2−(e+1) and
Ue ⊇ Ue+1. A set A is called 1-random if for every Martin-Löf test {Ue}e∈ω we
have A /∈ ∩eUe. We say that A is hyperimmune free if every function computable
in A is majorized by a computable function. We say A is generalized low if
A′ ≡T A ⊕ ∅′. We let {Ψe}e∈ω be an effective listing of the Turing functionals.

476 A. Lewis, A. Montalbán, and A. Nies

Theorem 1. There exists Z which is 1-random, hyperimmune free (and there-
fore weakly 2-random) and which is not generalized low.

Proof. In order to construct Z we shall use forcing with Π0
1 classes of positive

measure. Initially we suppose given P0 = [Λ0] of positive measure and which
contains only 1-random sets. At stages 2n, given P2n = [Λ2n], we define P2n+1 ⊆
P2n of positive measure such that if Z ∈ P2n+1 then:

Hn: if ΨZ
n is total then it is majorized by some computable f.

At stages 2n + 1 we define P2n+2 ⊆ P2n+1 of positive measure such that if
Z ∈ P2n+2 then:

Jn: ΨZ⊕∅′

n
= Z ′.

Since the Cantor space is compact
⋂

n Pn will be non-empty. During the course
of the construction we will make use of the following lemma which was originally
proved by Kučera and which is frequently very useful in dealing with Π0

1 classes
of positive measure. For a very simple proof we refer the reader to [1].

Lemma 1 (Kučera). Given any Π0
1 class P of positive measure there exists a

Π0
1 class of positive measure K(P) ⊆ P such that the intersection of K(P) with

any Π0
1 class is either empty or of positive measure.

2.1 Stage 2n

First we define Q = K(P2n) and let Λ be such that Q = [Λ]. Then we ask,
does there exist Z ∈ Q and m ∈ ω such that ΨZ

n (m) ↑? In the case that this
question receives a positive answer we can just define P2n+1 to be the set of all
Z ∈ Q such that ΦZ

n (m) ↑. Since P2n+1 has non-empty intersection with Q it
is of positive measure. If this question receives a negative response then we can
define P2n+1 = Q. A standard argument suffices to show that for any Z ∈ Q

there exists a computable function f which majorizes ΦZ
n . In order to define

f(m) for any m ∈ ω find s such that Φτ
n(m) ↓ for all τ ∈ Λ of length s and then

define f(m) to be greater than all such values.

2.2 Stage 2n + 1

The activity at stage 2n + 1 is divided into several steps.
Step (1). We define Q0 = K(P2n+1) and let Q0 = [Λ].
Step (2). We define Q1 ⊆ Q0 which is of positive measure and such that for

each τ which is an initial segment of some Z ∈ Q1 there exists τ ′ ⊇ τ with
[τ ′] ∩ Q1 = ∅ and [τ ′] ∩ Q0 is of positive measure.

It is clear that such Q1 exists, but one simple way of defining such a class is to
proceed as follows. Let the finite binary strings be ordered according to length
and then from left to right. Let i be such that Σj≥i2−j < μ(Q0). For each string
τ ∈ Λ let j be such that τ is the jth string according to the ordering specified

A Weakly 2-Random Set That Is Not Generalized Low 477

above. Begin by removing from Q0 all strings extending the first string in Λ
extending τ of length i + j, τ ′ say, if there exists such. If it subsequently turns
out that [τ ′] ∩ Q0 = ∅ then proceed to remove from Q0 all strings extending the
second string in Λ extending τ of length i + j if there exists such, and so on.

Step (3). Let e be such that, for all Z, m:

ΨZ
e (m) ↓= 0 if Z /∈ Q1 and ΨZ

e (m) ↑ otherwise.

We ask whether there exists τ an initial segment of some Z ∈ Q1 and σ ⊂ ∅′ such
that Ψτ⊕σ

n (e) ↓= 0. If not then we can define P2n+2 = Q1. For all Z ∈ P2n+2,
Z ′(e) = 0
= ΨZ⊕∅′

n (e), so requirement Jn is satisfied. Otherwise there exists
τ ′ ⊇ τ such that [τ ′] ∩ Q1 = ∅ and [τ ′] ∩ Q0 is of positive measure. In this case
we can define P2n+2 = [τ ′] ∩ Q0. For all Z ∈ P2n+2, Z ′(e) = 1
= ΨZ⊕∅′

n (e) = 0,
so requirement Jn is satisfied.

References

1. Downey, R., Miller, J.: A basis theorem for Π0
1 classes of positive measure and jump

inversion for random reals. In: Proc. Amer. Math. Soc. vol. 134, pp. 283–288 (2006)
2. Downey, R., Nies, A., Weber, R., Yu, L.: Lowness and Π0

2 nullsets. J. Symbolic
Logic 71, 1044–1052 (2006)

3. Hirschfeldt, D., Nies, A., Stephan, F.: Using random sets as oracles. (to appear)
4. Kautz, S.: Degrees of random sets. Ph.D. Dissertation, Cornell University (1991)
5. Kurtz, S.: Randomness and genericity in the degrees of unsolvability. In: Ph.D.

Dissertation, University of Illinois, Urbana (1981)
6. Nies, A.: Computability and Randomness. Oxford University Press. To appear in

the series Oxford Logic Guides
7. Nies, A.: Eliminating concepts. In: Proceedings of the IMS workshop on computa-

tional prospects of infinity (to appear)
8. Nies, A., Stephan, F., Terwijn, S.A.: Randomness, relativization and Turing degrees.

J. Symbolic Logic 70(2), 515–535 (2005)

Speed-Up Theorems in Type-2 Computation

Chung-Chih Li

School of Information Technology
Illinois State University, Normal, IL 61790-5150, USA

cli2@ilstu.edu

Abstract. A classic result known as the speed-up theorem in machine-
independent complexity theory shows that there exist some computable
functions that do not have best programs for them [2,3]. In this pa-
per we lift this result into type-2 computation under the notion of our
type-2 complexity theory depicted in [15,13,14]. While the speed-up phe-
nomenon is essentially inherited from type-1 computation, we cannot di-
rectly apply the original proof to our type-2 speed-up theorem because
the oracle queries can interfere the speed of the programs and hence the
cancellation strategy used in the original proof is no longer correct at
type-2. We also argue that a type-2 analog of the operator speed-up the-
orem [16] does not hold, which suggests that this curious phenomenon
disappears in higher-typed computation beyond type-2.

1 Introduction

Speed-up phenomena have been extensively studied by mathematicians for more
than a half century, which was first remarked by Gödel [8] in the context of the-
orem proving.1 In [2,3] Blum re-discovered the speed-up theorem in terms of
computable functions and his complexity measures. The theorem asserts that
the best program does not always exist for some computable functions. In order
to state the theorem precisely, we first fix some notations and conventions. By
computable we mean Turing machine computable. A function is said to be recur-
sive if it is total and computable. Let ϕe denote the function computed by the
eth Turing machine and Φe denote the cost function associated to the eth Turing
machine. More precisely, let 〈ϕi〉i∈N be an acceptable programming system [17]
and 〈Φi〉i∈N be a complexity measure [2] associated to 〈ϕi〉i∈N, where N is the

set of natural numbers. The standard asymptotic notion,
∞
∀ , is read as for all

but finitely many2. We state the original speed-up theorem as follows:

Theorem 1 (The Speed-up Theorem [2,3]). For any recursive function r,
there exists a recursive function f such that

(∀ i : ϕi = f) (∃j : ϕj = f) (
∞
∀ x)

[
r(Φj(x)) ≤ Φi(x)

]
.

1 The original remarks were translated in [7], pages 82-83. More discussion about
the relation between the computational speed-up phenomena and Gödel’s speed-up
results in logic can be found in [21].

2 The negation of “for all but finitely many” is “exist infinitely many” denoted by
∞
∃ .

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 478–487, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Speed-Up Theorems in Type-2 Computation 479

We say that function f in the theorem above is r-speedable. We revise the original
proof of this theorem so that it can be easily modified for our type-2 speed-up the-
orem (see [12] for details). More original proofs can be found in [2,3,21,6,22,4,19].
Many variations of the speed-up theorem have been proven since Blum’s [2,3]. We
are interested in Meyer and Fischer’s operator speed-up theorem [16] where the
speed-up factor r, a recursive function, is strengthened to an effective operator
Θ as follows:

Theorem 2 (The Operator Speed-up Theorem [16]). For any total effec-
tive operator Θ, there is a recursive function f that can be uniformly constructed
such that

∀ i : ϕi = f ∃j : ϕj = f
∞
∀ x[Θ(Φj)(x) ≤ Φi(x)].

Our goal in the present paper is to lift these two speed-up theorems to type-2
computation. We obtain a type-2 analog of Theorem 1. However, Theorem 2 fails
to hold in the context of type-2 computation, which suggests that there always
exist best programs in higher-typed computation beyond type-2.

In the next section, we briefly introduce the current status of type-2 com-
plexity theory and describe some necessary preliminaries. These paragraphs are
perforce brief and superficial due to space constraints. Since the speed-up the-
orem is for the most part independent from the other parts of the theory, our
coverage will be limited to the topics pertinent to our results. More details can
be found in [15,13,14].

2 Conventions and Type-2 Complexity Theory

We consider natural numbers as type-0 objects and functions over natural num-
bers as type-1 objects. Type-2 objects are called functionals that take as inputs
and produce as outputs type-0 or type-1 objects. By convention, we consider ob-
jects of lower type as special cases of higher type, and thus, type-0 ⊂ type-1 ⊂
type-2. Without loss of generality we restrict type-2 functionals to our standard
type T × N ⇀ N, where T is the set of total functions and ⇀ means possibly
partial. Note that f ∈ T may not be computable. For n ∈ N, |n| denotes the
length of the binary bit string representing n. For type-2 computation we use
the Oracle Turing Machine (OTM) as our standard computing formalism. An
OTM is a Turing machine equipped with a function oracle. Before an OTM be-
gins to run, the type-1 argument should be presented to the OTM as an oracle.
In addition to the standard I/O tape for type-0 input/output and intermediate
working space, an OTM has two extra tapes – one is for oracle queries and the
other one is for the answers to the queries. During the course of the computation,
the OTM may enter a special state called query-state. In this state the oracle
will read the query left on the query-tape and prepare its answer on the the
answer-tape for the OTM to read. All this will be done at no cost to the OTM.
However, the OTM has to prepare the queries and read their answers at its own
computational cost. We also fix a programming system 〈ϕ̂i〉i∈N associated with

480 C.-C. Li

some complexity measure 〈Φ̂i〉i∈N for OTM. By convention, we take the num-
ber of steps as our time complexity measure, i.e., the number of times an OTM
moves its read/write heads. Also, we use M̂e to denote the OTM with index e

and ϕ̂e is the functional computed by M̂e. Following these conventions, Seth [20]
adapted Hartmanis and Stearns’s notion [9] to define type-2 complexity classes.
He proposed two alternatives:

1. Given recursive t : N → N, let DTIME(t) denote the set of type-2 functionals
such that, for every functional F ∈ DTIME(t), F is total and there is an
OTM M̂e that computes F and, on every (f, x) ∈ T × N, M̂e halts within
t(m) steps, where m = |max({x}∪Q)| and Q is the set of all answers returned
from the oracle during the course of the computation.

2. Given computable functional H : T ×N → N, let DTIME(H) denote the set
of type-2 functionals such that, for every functional F ∈ DTIME(H), F is
total and there is an OTM M̂e that computes F and, on every (f, x) ∈ T ×N,
M̂e halts within H(f, x) steps.

The key idea behind Seth’s complexity classes is directly lifted from [9]. The
same machine characterization idea can also be found in other works such as
Kapron and Cook’s [10] and Royer’s [18]. In Seth’s first definition stated above,
the resource bound is determined by the sizes of oracle answers; but the set Q
in the definition of DTIME(t) in general is not computable and hence can’t be
available before the computation halts, if ever. Alternatively, we may update
the bound dynamically upon each answer returned from the oracle during the
course of the computation. But if we do so, there is no guarantee that a clocked
OTM must be total. For example, Cook’s POTM [5] is an OTM bounded by a
polynomial in this manner but a POTM may run forever. Kapron and Cook’s
proposed their remedies in the context of feasible functionals and gave a very neat
characterizations of type-2 Basic Feasible Functionals (BFF) in [10], where the
so-called second-ordered polynomial is used as the bound. In [13,14] we adapted
all these ideas and extended the second-ordered polynomial to a general type-2
computable functional to have the following complexity class:

DTIME(H) = {F
∣
∣ ∃e[ϕ̂e = F and Φ̂e ≤∗

2 H]}. (1)

The relation, ≤∗
2, used above will be defined in Definition 3, which is crucial

to our works. Along the lines of the classical complexity theory initiated by a
series of seminal papers [9,2,3], our previous results in [15,13,14] show that the
complexity theory at type-2 does not parallel to its type-1 counterpart. To begin
with, we defined ≤∗

2 with a workable and reasonable type-2 analog of asymp-
totic notion. We equated our notion of finitely many at type-2 to the compact
sets in some Baire-like topology [1] that was relatively defined by the concerned
functionals. As there is no type-2 equivalent of Church-Turing thesis, the com-
pactness in our definition is the key to computability of our construction. In [14]
we examined some alternative clocking schemes for OTM and defined a class of
limit functionals determined by some computable functions to serve as type-2
time bounds. With these type-2 time bounds, we were able to define an explicit

Speed-Up Theorems in Type-2 Computation 481

type-2 complexity class similar to (1) for a general type-2 complexity theory.
Unlike many other complexity theorems, the speed-up theorems do not need a
precisely defined complexity classes. We thus skip details regarding our explicit
type-2 complexity classes. However, the asymptotic notion is still indispensable
in the present paper. We formalize the notion as follows. Let F denote the set
of finite domain functions over natural numbers, i.e., σ ∈ F iff dom(σ) is finite.
Given F : T × N → N, let F (f, x) ↓= y denote the case that F is defined at
(f, x) and its value is y. For σ ∈ F and f ∈ F ∪ T , let σ ⊂ f denote the case
that f is an extension of σ.

Definition 1. Let F : T × N → N and (σ, x) ∈ F × N. We say that (σ, x) is a
locking fragment of F if and only if

∃y ∈ N ∀f ∈ T
[
σ ⊂ f ⇒ F (f, x) ↓= y

]
.

Also, we say that (σ, x) is a minimal locking fragment of F if (σ, x) is a locking
fragment of F and, for every τ ∈ F with τ ⊂ σ, (τ, x) is not a locking fragment of
F . Clearly, if F is total and computable, then for every (f, x) ∈ T ×N, there must
exist a unique σ ∈ F with σ ⊂ f such that (σ, x) is a minimal locking fragment
of F . It is also clear that, in general, whether of not (σ, x) is a minimal locking
fragment of F cannot be effectively decided. For any σ ∈ F , let ((σ)) be the set
of total extensions of σ, i.e., ((σ)) = {f ∈ T

∣∣ σ ⊂ f}. Also, if (σ, x) ∈ F × N,
let ((σ, x)) = {(f, x)

∣
∣ f ∈ ((σ))}. We observe that, ((σ1)) ∩ ((σ2)) = ((σ1 ∪ σ2))

if σ1 and σ2 are consistent; otherwise, ((σ1)) ∩ ((σ2)) = ∅. The union operation
((σ1)) ∪ ((σ2)) is conventional. Given any f, g ∈ T , it is clear that, if f �= g, then
there exist σ ⊂ f, τ ⊂ g, and k ∈ dom(σ) ∩ dom(τ) such that σ(k) �= τ(k). In
stead of taking every ((σ, x)) with σ ∈ F as the basic open set3, we consider only
those that are related to the concerned functionals as follows.

Definition 2. Given any continuous functionals, F1 and F2, let T(F1, F2) de-
note the topology induced from T × N by F1 and F2, where the basic open sets
are defined as follows: ((σ, a)) is a basic open set of T(F1, F2) if and only if, for
some (f, a) ∈ T × N, (σ1, a) and (σ2, a) are the minimal locking fragments of
F1 and F2, respectively, and ((σ, a)) = ((σ1, a)) ∩ ((σ2, a)).

Note that, in the definition above, since ((σ, a)) = ((σ1, a))∩((σ2, a)) = ((σ1∪σ2, a))
we have that if ((σ, a)) is a basic open set of T(F1, F2), then (σ, a) must be a
locking fragment of both F1 and F2. Let X[F1≤F2] ⊆ T × N denote the set
{(f, a)

∣
∣ F1(f, a) ≤ F2(f, a)}. X[F1>F2] is simply the complement of X[F1≤F2]

called the exception set of F1 ≤ F2. Now, we are in a position to define our
type-2 almost-everywhere relation.

Definition 3. Let F1, F2 : T × N → N be continuous. Define

F1 ≤∗
2 F2 if and only if X[F1≤F2] is co-compact in T(F1, F2).

3 This will form the product topology T × N, where T is the Baire topology and N the
discrete topology on N.

482 C.-C. Li

Using the same idea of compactness in Definition 3, two modified quantifiers,
for all but finitely many and exist infinitely many, can be understood in type-2
context as follows: For continuous functionals F, G : T × N → N, we have
∞
∀ 2 (f, x)[F (f, x) ≤ G(f, x)] if and only if {(f, x)

∣
∣ F (f, x) ≤ G(f, x)} is compact

in T(F, G). Similarly, we say that
∞
∃ 2 (f, x)[F (f, x) ≤ G(f, x)] if and only if

{(f, x)
∣
∣ F (f, x) ≤ G(f, x)} is not compact in T(F, G). One can verify that

F ≤∗
2 G ⇐⇒

∞
∀ 2 (f, x)[F (f, x) ≤ G(f, x)] ⇐⇒ ¬

∞
∃ 2 (f, x)[F (f, x) > G(f, x)].

When the concerned functionals F and G are clear from the context, we simply
read

∞
∀ 2 (f, x) as “for all (f, x) except those in a compact set such that”, and

∞
∃ 2 (f, x) as “there exists a noncompact set such that, for all (f, x) in the set”,
where compact is understood as T(F, G)-compact.

3 Lifting Speed-Up Theorems to Type-2

Since type-1 computations are just a special case of type-2 computations, the
speedable function constructed for the original speed-up theorem can be seen as
a type-2 functional that just does not make any oracle queries. In other words,
as long as the concerned complexity measure satisfies Blum’s two axioms, the
proof of the original speed-up theorem should remain valid at type-2. Clearly,
our standard complexity measure 〈Φ̂i〉, the number of steps the OTM performs,
does satisfy Blum’s two axioms. However, we observe that oracle queries in
type-2 computation have introduced some difficulties when we attempt a direct
translation of the original proof. Recall that the original construction of the
speedable function is based on the cancellation on some programs when their run
times fall into certain ranges. When we directly lift the construction to type-2,
we note that there are cases in which the oracle queries may be used to slow down
or speed up the computation in such a way the programs can escape from being
canceled. Note that the proofs of the Union Theorem and Gap Theorem do not
involve the cancellation but directly construct time bounds and let the definition
of the complexity class take care of the rest. Unfortunately, one can easily show
that there are functionals that always make unnecessary oracle queries. Consider
functional F : T × N → N defined by,

F (f, x) =
{

f(0) + 1 if ϕx(x) ↓ in f(0) steps;
0 otherwise. (2)

Clearly, F is computable and total. Fix any a such that, ϕa(a) ↑. Then, on
input (f, a), the value of f(0) only affects the speed of computing F (f, a). Thus,
F (f, a) = 0 for any f ∈ T , and hence (∅, a) is the minimal locking fragment
of F on (f, a). That means any queries made during the computation of F on
(f, a) are unnecessary. Thus, if there were an OTM that would not make any
unnecessary queries for F , one could modify such OTM to solve the halting
problem, which is impossible. However, the answer to the query does affect the

Speed-Up Theorems in Type-2 Computation 483

speed of the machine to halt. The smaller the value of f(0) is, the sooner the
computation halts. In fact, it is easy to construct computable functionals that
make unnecessary queries on all inputs, and moreover, the number of unnecessary
queries can be arbitrarily large. Such kind of unnecessary but speed-affecting
queries is the problem for us to get around in lifting the speed-up theorems into
type-2.

It is clear that our ϕ̂-programming system for OTM can be used to code the
entire class of type-1 computable functions. Thus, the speedable function con-
structed in the original speed-up theorem can be coded in our ϕ̂-programming
system. To that speedable function, any queries made during the course of com-
putation are unnecessary. However, as we have seen, unnecessary queries may
affect the computational time. Therefore, we cannot simply cancel those ϕ̂-
programs that make oracle queries. Moreover, if we intuitively enumerate all
possible queries in our construction, we face another difficulty in trying to make
our speedable functional total, because we cannot decide whether a query is
necessary or not; thus our construction will tend to be fooled by infinitely many
unnecessary queries and fail to converge. Fortunately, we will see that our notion
of ≤∗

2 defined by Definition 3 based on the compactness of the relative topologies
(Definition 2) resolves this problem automatically and easily.

4 Type-2 Speed-Up Theorems

Type-2 speed-up theorems vary with the nature of the speed-up factors that can
be either type-1 or type-2. For type-3 speed-up factors, the theorem becomes a
type-2 analog of the operator speed-up theorem, and we will argue that there is
no such theorem. From Theorem 2 (the operator speed-up theorem) we immedi-
ately have the following corollary, in which we replace the operator Θ : T → T
by a functional R : T × N → N.

Corollary 1. For any computable functional R : T × N → N, there exists a
recursive function f such that,

∀ i : ϕi = f ∃j : ϕj = f
∞
∀ x[R(Φj , x) ≤ Φi(x)].

However, this corollary is of no interest. Our goal is to construct a type-2 speed-
able functional using our programming system 〈ϕ̂i〉i∈N for OTM. We are inter-
ested in the following two theorems:

Theorem 3. For any recursive function r : N → N, there exists a computable
functional Fr : T × N → N such that,

∀ i : ϕ̂i = Fr ∃j : ϕ̂j = Fr [r ◦ Φ̂j ≤∗
2 Φ̂i].

Theorem 4 (Type-2 Speed-up Theorem). For any computable functional
R : T ×N×N → N, there exists a computable functional FR : T ×N → N such
that,

∀ i : ϕ̂i = FR ∃j : ϕ̂j = FR [λf, x.R(f, x, Φ̂j(f, x)) ≤∗
2 Φ̂i].

484 C.-C. Li

Theorem 3 and Theorem 4 are obtained by lifting Theorem 1 and Theorem 2,
respectively, into type-2 compuation. Note that since Theorem 3 is a special case
of Theorem 4, we rather consider Theorem 4 as our type-2 speed-up theorem.
Instead of proving Theorem 4 directly, we prove a simpler result of Theorem 3.
The idea can be applied to prove Theorem 4.

Consider Theorem 3. We observe that Fr = ϕ̂i = ϕ̂j . By Definition 3, the
relative topology for the type-2 relation, r ◦ Φ̂j ≤∗

2 Φ̂i, is

T(r ◦ Φ̂j , Φ̂i) = T(r ◦ ϕ̂j , ϕ̂j) = T(ϕ̂j) = T(ϕ̂i) = T(Fr).

Thus, if we construct Fr with (∅, x) as its minimal locking fragment for every
x ∈ N, then the relative topology for ≤∗

2 in the theorem is the coarsest one, i.e.,
the topology with basic open sets: ((∅, 0)), ((∅, 1)), Our idea is that: given any
S ⊂ T ×N with S being noncompact in the topology T(Fr), we then must have
that the type-0 component of the elements of S has infinitely many different
values. If a ϕ̂-program i needs to be canceled, we thus have infinitely many
chances to do so on some type-0 inputs. We can therefore ignore the effects of the
type-1 input in the computation. In other words, it is not necessary to introduce
another parameter for the type-1 argument when defining the cancellation sets.

This wishful thinking, however, is problematic in the corresponding type-2
pseudo-speed-up theorem. Because, for every ϕ̂-program i for Fr, its pseudo
sped-up version, ϕ̂-program j, does not exactly compute ϕ̂i on some finitely
many type-0 inputs, and hence ϕ̂i and ϕ̂j may define two different topologies.
Thus, if we ignore the effect of the type-1 argument, the almost everywhere
relation r ◦ Φ̂j ≤∗

2 Φ̂i may fail in topology T(ϕ̂i, ϕ̂j). To fix this problem,
we introduce a weaker type-2 pseudo-speed-up theorem, in which the com-
pactness is not considered. The theorem in weaker in a sense that we do not
use the type-2 almost everywhere relation. Nevertheless, this weaker type-2
pseudo-speed-up theorem will be sufficient for our proof of Theorem 3.

Theorem 5 (Type-2 Pseudo-Speed-up Theorem). For any recursive func-
tion function r : N → N, there exists a computable functional Fr : T × N → N
such that, for every ϕ̂-program i for Fr, there is another ϕ̂-program j such that,

∞
∀ x ∈ N ∀ f ∈ T [(ϕ̂j(f, x) = Fr(f, x)) ∧ (Φ̂i(f, x) > r ◦ Φ̂j(f, x))].

We shall omit detailed proof of this pseudo-speed-up theorem due to space con-
straints and refer readers to [12] for details.

Proof of Theorem 3: According to the construction of ϕ̂e in Theorem 5, for
every (f, x) ∈ T × N, ϕ̂e(0, f, x) = ϕ̂e(0, f0, x), where f0 = λx.0. It follows that
(∅, x) is the minimal locking fragment of ϕ̂s(e,0) on every (f, x) ∈ T × N. Let
ϕ̂i = ϕ̂s(e,0) and j = s(e, i + 1). Note that ϕ̂i =∗

2 ϕ̂j and r ◦ Φ̂j ≤∗
2 Φ̂i does not

hold in general because ((∅, x)) may not be a basic open set for some x. Consider
the following exception set

E =
{
(f, x)

∣
∣ ϕ̂i(f, x) �= ϕ̂j(f, x)

}
.

Speed-Up Theorems in Type-2 Computation 485

Although E may not be compact in topology T(ϕ̂i, ϕ̂j), {x|(f, x) ∈ E} must be
finite. Thus, we can have a patched ϕ̂-program j′ such that the program will
search a look-up table if the type-0 argument is in {x|(f, x) ∈ E}. In such a
way, the type-1 input will not affect the result, and hence the minimal locking
fragment becomes (∅, x). On the other hand, if type-0 argument x �∈ {x|(f, x) ∈
E}, then ϕ̂-program j′ starts running ϕ̂-program j. Similarly, consider

E′ =
{

(f, x)
∣∣ r ◦ Φ̂j(f, x) > Φ̂i(f, x)

}
.

Set {x|(f, x) ∈ E′} is finite. Also, consider the patched ϕ̂-program, j′. We have

E′′ =
{
(f, x)

∣
∣ r ◦ Φ̂j′ (f, x) > Φ̂i(f, x)

}
,

and {x|(f, x) ∈ E′′} is finite. Therefore, E′′ is compact in T(ϕ̂i, ϕ̂j′), because
ϕ̂i = ϕ̂j′ and, for every x ∈ N, (∅, x) is the only basic open set in T(ϕ̂i, ϕ̂j′).

Finally, we shall discuss the case that there may exist some best ϕ̂-program
for ϕ̂s(e,0) using some unnecessary queries to escape from being canceled. This is
possible because we replace the actual type-1 input by f0 for every ϕ̂-program,
and hence we do not know the program’s behavior on actual f ∈ T . Clearly,
by Claim 6 in the proof of Theorem 5, this problem can be ignored, because
any program that will make any query on some inputs does not compute our
speedable functional. This completes the proof of Theorem 3. �

5 Type-2 Operator Anti-Speed-Up Theorem

In the previous section we established two speed-up theorems. The speed-up
factor in Theorem 3 is a type-1 function and the proof is directly modified from
a proof for the original speed-up theorem. In Theorem 4 we consider type-2
speed-up factors and it is lifted from the original operator speed-up theorem.
In this section we consider a type-2 analog of the operator speed-up theorem,
namely, we will try to explore a speed-up phenomenon when the speed-up factor
is type-3. Clearly, a proof fo such theorem needs a general type-2 s-m-n and
a type-2 recursion theorem, which we don’t have. Instead, we argue that the
type-2 analog of the operator speed-up theorem does not exist.

By “an effective type-2 operator” we mean a computable type-3 functional [11]
of type (T ×N → N) → (T ×N → N) with inputs restricted to computable total
type-2 functionals. Thus, we can think up that an effective type-2 operator is
computed by a ϕ̂-program that takes a total ϕ̂-program as its input and outputs
another total ϕ̂-program. Our next theorem asserts that there is an effective
type-2 operator Θ̂ such that, for every total ϕ̂-program e, there is no Θ̂-sped up
version for e. In other words, the Θ̂-best programs always exist. Our theorem is
stronger than a direct negation of the operator speed-up theorem in the sense
that we claim that every ϕ̂-program is a Θ̂-best ϕ̂-program.

486 C.-C. Li

Theorem 6 (Type-2 Operator Anti-Speed-up Theorem). There is a
type-2 effective operator Θ̂ : (T × N → N) → (T × N → N) such that, for
every computable functional, F : T × N → N, we have

∀i : ϕ̂i = F ∀j : ϕ̂j = F
∞
∃ 2 (f, x)[Θ̂(Φ̂j)(f, x) > Φ̂i(f, x)].

Proof: Define Θ̂ : (T × N → N) → (T × N → N) by

Θ̂(F)(f, x) = f(2F (f,x)+1).

Clearly, such Θ̂ is a type-2 effective operator. Fix any computable F : T ×N →
N. Also, fix a ϕ̂-program i for F . By contradiction, suppose that j is a Θ̂-sped-up
version of i, i.e., Θ̂(Φ̂j) ≤∗

2 Φ̂i. If so, for all but finitely many x ∈ N such that,
for every f ∈ T , we have

Θ(Φ̂j)(f, x) ≤ Φ̂i(f, x).

Fix such x and f . By the definition of Θ̂ and our assumption, we have

f(2Φ̂j(f,x)+1) ≤ Φ̂i(f, x).

Since there is no such query f(2Φ̂j(f,x)+1) =? during the course of the com-
putation of Φ̂j(f, x), it follows that the value of f at 2Φ̂j(f,x)+1 has no effect
on the value of Φ̂j(f, x). Therefore, if f(2Φ̂j(f,x)+1) is sufficiently large, then
Θ̂(Φ̂j)(f, x) > Φ̂i(f, x). This contradicts our assumption. �
Corollary 2. There is a type-2 effective operator Θ̂ : (T ×N → N) → (T ×N →
N) such that, for all computable F : T × N → N, we have

∃i : ϕ̂i = F ∀j : ϕ̂j = F
∞
∃ 2 (f, x)[Θ̂(Φ̂j)(f, x) > Φ̂i(f, x)].

It is clear that Corollary 2 follows Theorem 6 immediately. Note that the
corollary is the direct negation of the operator speed-up theorem.

6 Conclusion

In spite of the fact that oracle queries might interfere with the speed of an
OTM, our investigation shows that the speed-up phenomena indeed exist in
type-2 computation as long as the complexity measure satisfies Blum’s two
axioms. However, the phenomena disappear in higher-typed computation after
type-2. We therefore have a strong belief that our investigation has completed
the study of speed-up phenomena along the classical formulation of computa-
tional complexity, i.e., Blum’s complexity measure. On the other hand, Blum’s
complexity measure may not be appropriate at type-2. For example, the query-
complexity apparently fails to meet Blum’s two axioms but it is such a commonly
concerned resource in type-2 computation. Thus, a new approach is needed in
understanding the concept of query-optimum programs. With a clear notion of
query-optimum programs, we then can further examine the speed-up phenomena
with respect to the notion of query-optimum programs. It would be interesting
to continue research along this direction.

Speed-Up Theorems in Type-2 Computation 487

References

1. Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.): Handbook of Logic in Com-
puter Science. In: Background: Mathematical Structures, Oxford University Press,
Oxford (1992)

2. Blum, M.: A machine-independent theory of the complexity of recursive functions.
Journal of the ACM 14(2), 322–336 (1967)

3. Blum, M.: On effective procedures for speeding up algorithms. Journal of the
ACM 18(2), 290–305 (1971)

4. Calude, C.: Theories of Computational Complexity. Number 35 in Annals of Dis-
crete Mathematics. North-Holland, Elsevier Science Publisher, B.V (1988)

5. Cook, S.A.: Computability and complexity of higher type functions. In: Logic from
Computer Science, pp. 51–72. Springer, Heidelberg (1991)

6. Cutland, N.: Computability: An introduction to recursive function theory. Cam-
bridge, New York (1980)

7. Davis, M.: The Undecidable. Raven Press, New York (1965)
8. Gödel, K.: Über die länge der beweise. Ergebnisse eines Math. Kolloquiums 7, pp.

23–24, Translation in [7], pp. 82–83, On the length of proofs (1936)
9. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms.

Transitions of the American Mathematics Society, pp. 285–306, May (1965)
10. Kapron, B.M., Cook, S.A.: A new characterization of type 2 feasibility. SIAM

Journal on Computing 25, 117–132 (1996)
11. Kleene, S.C.: Turing-machine computable functionals of finite types II. In: Pro-

ceedings of London Mathematical Society 12, 245–258 (1962)
12. Li, C.-C.: Speed-up theorems in type-2 computation (full version). http://

www.itk.ilstu.edu/faculty/chungli/mypapers/SpeedUpFullVersion.pdf
13. Li, C.-C.: Asymptotic behaviors of type-2 algorithms and induced baire topologies.

In: Proceedings of the Third International Conference on Theoretical Computer
Science, pp. 471–484, Toulouse, France, August (2004)

14. Li, C.-C.: Clocking type-2 computation in the unit cost model. In: Proceedings of
Computability in Europe: Logical Approach to Computational Barriers, pp. 182–
192, Swansea, UK, Report# CSR 7-2006 (2006)

15. Li, C.-C., Royer, J.S.: On type-2 complexity classes: Preliminary report. pp. 123–
138, May (2001)

16. Meyer, A.R., Fischer, P.C.: Computational speed-up by effective operators. The.
Journal of Symbolic Logic 37, 55–68 (1972)

17. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. First
paperback edition published by MIT Press in 1987, McGraw-Hill, (1967)

18. Royer, J.S.: Semantics vs. syntax vs. computations: Machine models of type-2
polynomial-time bounded functionals. Journal of Computer and System Science 54,
424–436 (1997)

19. Seiferas, J.I.: Machine-independent complexity theory. In: van Leeuwen, J (ed.),
Handbook of Theoretical Computer Science, volume A, pp. 163–186. North-
Holland, Elsevier Science Publisher, B.V, MIT press for paperback edition (1990)

20. Seth, A.: Complexity theory of higher type functionals. Ph.d. dissertation, Univer-
sity of Bombay (1994)

21. Van Emde Boas, P.: Ten years of speed-up. In: Proceedings of the Fourth Sym-
posium Mathematical Foundations of Computer Science, pp. 13–29, 1975. Lecture
Notes in Computer Science (1975)

22. Wagner, K., Wechsung, G.: Computational Complexity. In: Mathematics and its
applications, D. Reidel Publishing Company, Dordrecht (1985)

http://www.itk.ilstu.edu/faculty/chungli/mypapers/SpeedUpFullVersion.pdf
http://www.itk.ilstu.edu/faculty/chungli/mypapers/SpeedUpFullVersion.pdf

The Complexity of Quickly ORM-Decidable Sets

Joel David Hamkins1, David Linetsky2, and Russell Miller3

1 The College of Staten Island of CUNY and
The CUNY Graduate Center

jdh@hamkins.org
http://jdh.hamkins.org

2 The CUNY Graduate Center
365 Fifth Avenue, New York NY 10016

dlinetsky@gc.cuny.edu
https://wfs.gc.cuny.edu/DLinetsky/www/

3 Queens College of CUNY and
The CUNY Graduate Center
Russell.Miller@qc.cuny.edu

http://qcpages.qc.cuny.edu/math/faculty/miller.htm

Abstract. The Ordinal Register Machine (ORM) is one of several dif-
ferent machine models for infinitary computability. We classify, by com-
plexity, the sets that can be decided quickly by ORMs. In particular, we
show that the arithmetical sets are exactly those sets that can be decided
by ORMs in times uniformly less than ωω. Further, we show that the
hyperarithmetical sets are exactly those sets that can be decided by an
ORM in time uniformly less than ωCK

1 .

Keywords: Ordinal, ordinal computation, infinite time computation,
computability, register machine, arithmetical hierarchy, hyperarithmeti-
cal hierarchy, complexity.

1 Introduction

The Ordinal Register Machine (ORM) is one of several different machine models
for infinitary computability that can be found in the literature. They are a
direct generalization of classical register register machines that differ from their
classical counterparts in that they are permitted to contain arbitrary ordinal
values in their registers and to run for ordinal time. At limit times, the program
state of an ORM is determined by taking a limit inferior (liminf) of the previous
states and the content of a register is defined to be the liminf of the values that
appeared in it at all previous times. ORMs have been shown to be extremely
powerful; the sets of ordinals that they can compute from finitely many ordinal
parameters have been characterized by Koepke ([5]) as precisely the constructible
sets of ordinals, that is, those found in the Gödel constructible universe, L.

We noticed a curious difference between ORMs and infinite time Turing ma-
chines, however, much lower down in the hierarchy, in terms of the lengths of
time that these machines take to decide arithmetic truth. Specifically, the nat-
ural recursive algorithm for deciding arithmetic truth with ORMs takes time

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 488–496, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://jdh.hamkins.org
https://wfs.gc.cuny.edu/DLinetsky/www/
http://qcpages.qc.cuny.edu/math/faculty/miller.htm

The Complexity of Quickly ORM-Decidable Sets 489

unbounded in ωω, while with infinite time Turing machines this can be done
before ω2 (see [2]). For infinite time Turing machines, each limit allows one to
decide two additional quantifiers, with Σ0

2n truth being decidable in time ωn,
and one pushes already into the hyperarithmetical hierarchy at time ω2. But
with ORMs, although the first limit allows one essentially to decide three quan-
tifiers, one needs infinitely many additional limits (time ω2) to go even just a
little bit further and decide the Δ0

4 sets. In general with ORMs, we prove that in
time ωn+1, one decides exactly the Δ0

3n+1 sets. It follows that ORMs really do
need this extra time to decide arithmetic truth in comparison with infinite time
Turing machines. We conclude the paper by proving that for hyperarithmetical
truth, however, ORMs require time up to ωck

1 , just as for infinite time Turing
machines.

2 Arithmetical Sets

Given their demonstrated power, it is certainly clear that ORMs can decide any
arithmetical set. However, it is not immediately clear how long such computa-
tions actually require. To begin with, we take the case of some relatively simple
arithmetic sets and provide a general description of the algorithm used to decide
membership in them.

Lemma 1. Every Σ0
3 and Π0

3 subset of ω can be decided by an ORM in ω + 2
steps.

Proof. Let A = {t | ∃x∀y∃zR(t, x, y, z)}, where R is finite time decidable. We
describe a program to determine whether t ∈ A.

Start with t in R1 (register 1) and 0 ∈ R2 (register 2). The program consists
of a large loop, each step of which consists of the following:

– For the current element n ∈ R2, decode n = 〈x, y, z〉, check whether R(t, x,
y, z) and

(∀y′ < y)(∃z′)[〈x, y′, z′〉 < n & R(t, x, y′, z′)] , (1)

and
(∀z′)[〈x, y, z′〉 < n → ¬R(t, x, y, z′)] . (2)

– If all three of these hold, then we have evidence at step n that (∀y′ ≤
y)(∃z′)R(t, x, y, z′) for a larger y the we had found before this step. In this
case, copy x into register R0.

– If not, then increment R0 by 1.
– Finally, increment register R2 by 1 and start over.

Notice that all of these tasks can be accomplished in finite time while using
finitely many registers by making use of a program which computes R as a
subroutine.

We run this loop ω many times. At stage ω, we compare the values in R0

and R2. If they are equal, then we zero the output register and halt. Otherwise,
we write 1 in the output register and halt. Clearly, at the limit stage R2 will

490 J.D. Hamkins, D. Linetsky, and R. Miller

contain ω. If R2 and R0 are equal at this point, then no x was was copied into
register R0 more than finitely often. Hence, ∀x∃y∀z ¬R(t, x, y, z), i.e., t /∈ A and
0 is written in the output register. On the other hand, if R0 does not contain ω,
then it has some finite value x0. This can only be the case if infinitely often more
evidence was found that x0 was a witness to the property ∀y∃z R(t, x, y, z). It
immediately follows that ∃x∀y∃z R(t, x, y, z), and hence we have that t ∈ A and
we output 1.

To decide membership in a Π0
3 set, simply reverse the outputs. 	

Using the algorithm described above, we can push on a little further into the
arithmetical hierarchy:

Lemma 2. Every Δ0
4 set can be decided in time less than ω2.

Proof. Let A ∈ Δ0
4. Then A and ω \ A have Σ4 definitions:

A = {t | ∃x R(t, x)} (3)
ω \ A = {t | ∃x R′(t, x)} (4)

where R, R′ ∈ Π0
3 . To decide if t ∈ A, we begin searching for an x so that either

R(t, x) or R′(t, x). By Lemma 1, we can decide R, R′ in ω + 2 steps. Thus, we
can decide whether t lies in A in ω · n steps, for some n ∈ ω. 	

These initial results are easily extended to cover all arithmetical sets. This next
lemma give the easy direction of the main theorem to come.

Lemma 3. Every arithmetic set is ORM-decidable in time uniformly less than
ωω. Indeed, if A ∈ Δ0

3n+1, then A is ORM-decidable in time less than ωn+1.

Proof. We proceed by induction on n. The case n = 0 is clear; it simply asserts
the classical fact that Δ0

1 sets are finite time decidable. In fact, the previous
lemma gives the case n = 1 as well. Now, suppose the result holds below n and
let A ∈ Δ0

3n+1. Then A and ω \ A have Σ3n+1 definitions:

A = {t | ∃x R(t, x)} (5)
ω \ A = {t | ∃x R′(t, x)} (6)

where R, R′ ∈ Π0
3n. Then, R = {t | ∀x∃y∀z Q(t, x, y, z)}, where Q ∈ Σ0

3n−3 ⊆
Δ0

3n−2. By the inductive hypothesis, Q is ORM-decidable in time less than ωn.
So, we simply apply the algorithms described in Lemmas 1 and 2, using the
program that decides Q as a subroutine. In this manner, we can decide A in
time less than ωn+1. 	

3 Characterizing the Quickly Decidable Sets

We now prove the harder direction, that in time uniformly less than ωω, ORMs
do not escape the arithmetical hierarchy. The Main Theorem provides a charac-
terization of the sets decidable by ORMs in times strictly less than ωω.

The Complexity of Quickly ORM-Decidable Sets 491

Theorem 1. The subsets of ω that are ORM-decidable (using arbitrary ordinal
parameters!) in time uniformly less than ωω are exactly the arithmetical sets.
In particular, a set A is ORM-decidable in time less than ωn+1 if and only if
A ∈ Δ0

3n+1.

This theorem should be contrasted with its analogue for Infinite Time Turing
Machines (ITTMs) found in [2], which states that every arithmetic set can be
decided by an ITTM in time uniformly less than ω2. Of course, ITTMs are able
to do this by making use of their infinite tape memory on which they are able to
write out oracles that can be later referred to in order to greatly speed up later
computations. ORMs, on the other hand, can store only finitely many ordinals
and are thus unable to use this type of strategy. Instead, they must recompute
the information required to preform a computation each time it is required.

Before we prove this main result, we provide some definitions and develop
some of the key ideas involved. In order to analyze the descriptive complexity
of a set that is decidable in time less than ωn, for some n ∈ ω, we need to
be able to talk about ORM configurations in a first order fashion. Since the
register contents of an ORM are arbitrary ordinals, in order to accomplish this,
we require a method of coding these ordinals as natural numbers.

Definition 1. For any ordinal α < ωω · 2, let �α� = 〈m, n0, . . . , nk〉 where
m ∈ {0, 1} and α = ωω · m + ωk · nk + · · · + ω · n1 + n0 < ωω. Furthermore, let
≺ be the order on these codes such that �α� ≺ �β� if and only if α < β.

Now, since ORM programs are finite and can make use of only finitely many
registers, we may also code an ORM configuration as a natural number.

Definition 2. An ORM configuration consists of a program state and the con-
tents of each register. In the case that a computation uses only ordinals less than
ωω ·2, then we use the above coding to code each of the its configurations as some
natural number C ∈ ω.

The statement of Theorem 1 allowed for arbitrary ordinal parameters while
Definition 1 only allows us to code ordinals smaller than ωω · 2. The next result
shows that this is in fact sufficient.

Lemma 4. Given any ORM program P , finite sequence of ordinals
−→
β < ωω,

and any ordinal parameter β > ωω, P (
−→
β , β) ↓= γ < ωω in time less than ωω if

and only if P (
−→
β , ωω) ↓= γ, and they do so in exactly the same number of steps

(where P (−→α) ↓ means that program P converges on inputs −→α).

Proof. The idea of the proof is that the ordinal β is much too large for the ORM
algorithm to make use of in such a short time; any such β operates identically
to ωω itself in any computation. Specifically, we prove the result by induction
on time. On one ORM, M, we run P (

−→
β , β), while on a second ORM, M′, we

run P (
−→
β , ωω). It is not hard to see that at every time t, the machine state of

M is the same as that of M′, and if any register in M contains a value < ωω,
then the corresponding register of M′ contains the same value. Moreover, any

492 J.D. Hamkins, D. Linetsky, and R. Miller

register of M has value β + γ, with β > ωω, if and only if the corresponding
register in M′ has value ωω + γ. At limit times we use the fact that for any
α < ωω, α + ωω = ωω. 	

In fact, the above proof goes through if every occurrence of ωω in the statement
of the lemma is replaced by any ordinal of the form ωα. Now, given the method
of Definition 2 for coding machine configurations, we now define a relation that
will allow us to describe how two configurations relate to each other relative to
a particular program.

Definition 3. Let C, C′ ∈ ω be codes for two ORM configurations, α < ωω

and let P ∈ ω be the code for an ORM-program. Define relation R ⊆ ω4 by:
R(C, C′, P, �α�) if and only if the configuration coded by C′ follows the con-
figuration coded by C in exactly α steps under the operation of the program
coded by P . Also, for any ordinal α < ωω, define the relation Rα ⊆ ω3 by
Rα(C, C′, P) ↔ R(C, C′, P, �α�).

Of course, in order to make use of this relation, we need to know that it can be
expressed in a first order fashion. This is taken care of by the next result.

Lemma 5. For each ordinal α < ωω, the relation Rα(C, C′, P) is arithmetical.
Indeed, if α = ωk ·nk + · · ·+ω ·n1+n0, then the statement Rα(C, C′, P) is Δ0

3k+1.

Proof. By induction on k where α = ωk · nk + · · · + ω · n1 + n0. Clearly R1 is
finite time computable, and hence Δ0

1. Suppose the result holds below k and
that α = ωk · nk + · · · + ω · n1 + n0. Clearly, Rα(C, C′, P) holds if and only if
there is a configuration C′′ such that Rωk·nk

(C, C′′, P) and Rβ(C′′, C′, P), where
β = ωk−1·nk−1+· · ·+ω·n1+n0. The latter relation is arithmetical by assumption,
so we need only consider Rωk·nk

(C, C′′, P).
Now, if nk > 1, then Rωk·nk

(C, C′′, P) is equivalent to asserting that there
exist configuration D0, . . . , Dnk

such that C = D0, C′′ = Dnk
, and that Rωk(Di,

Di+1, P) for i < nk, i.e., each configuration follows the previous one in ωk steps.
Thus, it suffices to consider the case nk = 1, which asserts that C leads to C′′

in ωk steps. Using the relation for smaller ordinals, and our coding of smaller
ordinals as natural numbers, we can simply write out the liminf definition as a
first order sentence and see that it is indeed arithmetical.

Indeed, by the remarks above, it suffices to show that Rωk(C, C′, P) ∈ Π0
3k,

from which it follow that Rα(C, C′, P) ∈ Δ0
3k+1, where α = ωk ·nk+· · ·+ω ·n1 ·n0.

To see that this is so, we give the portion of the liminf definition which bounds
its complexity, that is, we look closely at how to say that the value of the nth

register, C′(n), is equal to some ordinal ξ.

C(n) = ξ iff (∀�β� ≺ �ξ�)(∃�γ� ≺ �ωk�)(∀D)(∀�δ� � �γ�)
[(

�δ� ≺ �ωk� & R(C, D, P, �δ�)
)

→ �D(i)� � �β�
]

& (∀�β� ≺ �ωk�)(∃D)(∃�γ� � �β�) (7)
[R(C, D, P, �γ�) & �D(i)� � �ξ�]

Assuming inductively that R(C, D, P, �γ�) ∈ Δ0
3k−2, for all γ < α, it follows that

the above sentence is indeed Π0
3k, and hence that Rα(C, C′, P) ∈ Δ0

3k+1. 	

The Complexity of Quickly ORM-Decidable Sets 493

Putting together all of these pieces, we can now go ahead and prove the main
result of this section.

Proof (of Theorem 1). Suppose A is decidable in time less than ωn+1 (by pro-
gram P , say). Then, x ∈ A if and only if

(∃C)(∃n) [Rα(x∗, C, P) & n = �α� & C halts with output 1] (8)

if and only if

(∀C)(∀n) [(Rα(x∗, C, P) & n = �α�) → C halts with output 1] , (9)

where x∗ is the start configuration with x in the input register. Hence, since
Rα(x∗, C, P) is Δ0

3n+1, it follows that A ∈ Δ0
3n+1. 	

4 Deciding Hyperarithmetical Sets

Of course, ORMs are capable of deciding membership in sets much more complex
than the arithmetical sets. In this final section we present two results concern-
ing hyperarithmetical sets. The first shows that the uniformity in time found
in Theorem 1 is necessary, i.e., there are hyperarithmetical sets that can be de-
cided in time less than ωω (but not uniformly so). The second result gives a
characterization of the sets decidable in times uniformly less than ωCK

1 , the first
non-recursive ordinal, as precisely the hyperarithmetical sets.

Theorem 2. There exist hyperarithmetic sets that are ORM-decidable in time
less than ωω (not uniformly). Indeed, the ωth jump of zero, ∅(ω), is such a set.

Proof. We show that ∅(ω) can be computed in time less than ωω by describing an
algorithm that accomplishes this. Of course, Theorem 1 ensures that this can’t be
done in time uniformly less than ωω. The algorithm requires that we simulate a
stack machine (as in [5] and [3]) with two stacks on an ORM. To decide whether
(n, k) ∈ ∅(ω), i.e., whether k ∈ ∅(n) we proceed as follows: First, we run the
algorithm which computes whether k ∈ ∅(n) using an ∅(n−1)-oracle. When the
algorithm queries the oracle as to whether some natural number k′ ∈ ∅(n−1), push
n−1 onto stack 1, and push ω ·(n−1)+k′ onto stack 2 and run this same program
over again. We push ω · (n − 1) + k′ instead of just k′ because when deciding
whether k′ ∈ ∅n−1 we may have to make a query about some number l > k′.
However, pushing l onto stack 2 would violate the stack protocol, which requires
that any number pushed onto a non-empty stack must be smaller than the
number preceding it. This recursive process will eventually decide membership
in k ∈ ∅(ω). Moreover, an analysis of the algorithm shows that it always halts
in time less than ωω, but that for every m ∈ ω there is some 〈n, k〉 ∈ ω such
that the computation that decides whether 〈n, k〉 ∈ ∅(ω) takes more than ωm

steps. 	

494 J.D. Hamkins, D. Linetsky, and R. Miller

Finally we characterize the sets decidable by an ORM in time less than some
recursive ordinal.

Theorem 3. The sets that are ORM-decidable in time less than ωCK
1 are exactly

the hyperarithmetic sets.

We prove this result using a sequence of lemmas. To begin with, we will show
that every hyperarithmetical set is decidable in time less than some recursive
ordinal. In order to this, we use a result of Shoenfield (see [9] or exercise 16-93
in [7]), which states that every hyperarithmetical set is Turing reducible to some
element of a particular series of sets. The sets are defined using the usual jump
operator; we denote the jump of a set D by D′.

Lemma 6 (Shoenfield). Define a sequence of sets Dα, for 0 < α < ωCK
1 , as

follows:
D0 = ω ;

Dα+1 = Dα ∩ (Dα)′ ; (10)

Dα =
⋂

β<α

Dβ , if α is a limit ordinal.

Then, A ∈ Δ1
1 if and only if A ≤T Dα for some α < ωCK

1 .

Of course, in order for Lemma 6 to be useful, we need to know that each of the
Dα’s is ORM-decidable in time less than some recursive ordinal, which we take
care of in the next result.

Lemma 7. For every α < ωCK
1 , Dα is ORM-decidable in time less than some

β < ωCK
1 .

Proof. We proceed by induction on α. Suppose that Dα is ORM-decidable in
time less than β, where β < ωCK

1 . For any x ∈ ω, to determine whether x ∈
Dα+1, we need to determine whether x ∈ Dα (requiring time < β) and whether
x ∈ (Dα)′, which may require up to ω queries about Dα and possibly one more
step to determine that x /∈ (Dα)′. Thus, Dα+1 can be decided in time at most
β · ω + 1, which is again a recursive ordinal since ωCK

1 is closed under ordinal
arithmetic.

Now suppose that α is a limit and the result holds for all γ < α. Define the
function fα : α → ωCK

1 by f(γ) = δ if and only if δ is least such that Dγ is
ORM-decidable in time less than δ. Now, if we want to decide whether some
x ∈ Dα, we need to decide whether it is in Dγ for each γ < α. Thus, Dα should
be decidable in time at most ε :=

⋃
γ<α fα(γ). Thus, if can show that ε < ωCK

1 ,
we are done.

We note that Dα ∈ LωCK
1

for each α < ωCK
1 , and that the notion of ORM

computability can be defined in a Δ0 way in LωCK
1

. Thus, the graph of fα is Δ0

definable in LωCK
1

. So, since ωCK
1 is an admissible ordinal, and thus satisfies Σ1

replacement, it follows that ε = ran fα ∈ LωCK
1

, and hence that ε < ωCK
1 . 	

The Complexity of Quickly ORM-Decidable Sets 495

Lemmas 6 and 7 essentially complete the proof of the backwards direction of
Theorem 3. To see this, suppose that A is hyperarithmetical, i.e., that A ∈ Δ1

1.
Then, by Lemma 6, we have that A ≤T Dα for some α < ωCK

1 . By Lemma 7,
we can decide Dα is time less than some β < ωCK

1 . Thus, it follows that we can
decide A in time at most β · ω < ωCK

1 . Hence, every hyperarithmetical set can
be decided by an ORM in time less than some recursive ordinal.

All that remains now is to show the converse. In order to this, we will make
use of Kleeene’s O, which provides natural number notations for every recursive
ordinal. We will not define O, but the standard definitions and results concerning
O may be found in any standard text on the subject. We will follow the notation
found in [1]. Thus, for any n ∈ O, we write |n|O to denote the ordinal denoted
by n and we denote the standard order relation on O by <O so that a <O b if
and only if |a|O < |b|O. We now complete the proof of Theorem 3 by proving
the following lemma.

Lemma 8. If A ⊆ ω is ORM-decidable in time less than some recursive ordinal,
then A ∈ Δ1

1.

Proof. Suppose that A ⊆ ω is ORM-decidable, by the program P , in time less
than α for α < ωCK

1 . Fix some a ∈ O so that |a|O = α. Then, the set S :=
{b | b <O a} ⊆ ω is recursively enumerable and provides a set of notations for
all ordinals less than α. Using S, we can mimic Definition 2 and code any ORM
configuration having register contents less than α as natural numbers. For any
C, C′ ∈ ω coding two such configurations, let us say that QP (C, C′, n) holds if
and only if the configuration coded by C′ follows that coded by C, under the
operation of the program P , in exactly |n|O many steps.

We claim that for any n ∈ S the relation QP (C, C′, n) ∈ Δ1
1. This is easily

shown by induction. Let n ∈ S and suppose that the result holds for all m <O n.
If |n|O = β + 1, then n = 2m for m ∈ S, m <O n, and |m|O = β. In this case,
QP (C, C′, n) ∈ Δ1

1 if and only if (∃D)[QP (C, D, m)&QP (C, D, 2)] (note: |2|O=1).
Thus, by the induction hypothesis, it follows that QP (C, D, n) ∈ Δ1

1. On the
other hand, if |n|O is a limit ordinal, then we must unravel the lim inf definition
as we did in the proof of Lemma 5, except that we use codes from S and the
order <O instead of ≺. To do this, we require only quantifiers over ω, which
do not increase the complexity. Hence, the relation QP (C, C′, n) ∈ Δ1

1 for every
n <O a.

The theorem now follows immediately, since x ∈ A if and only if

(∃C)(∃n ∈ S)
[
QP (x∗, C, n) & C halts with output 1

]
(11)

if and only if

(∀C)(∀n ∈ S)
[
QP (x∗, C, n) → C halts with output 1

]
, (12)

where x∗ is the start configuration with x in the input register, and all other
registers set to zero. Hence, A ∈ Δ1

1 and is thus hyperarithmetical. 	

496 J.D. Hamkins, D. Linetsky, and R. Miller

References

1. Ashe, C.J., Knight, J.: Computable Structures and the Hyperarithmetical Hierarchy.
In: Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam
(2000)

2. Hamkins, David, J., Lewis, A.: Infinite Time Turing Machines. J. Symbolic
Logic 65(2), 567–604 (2000)

3. Hamkins, David, J., Miller, R.: Post’s Problem for Ordinal Register Machines. (To
appear in this volume)

4. Jech, Thomas.: Set Theory. The Third Millenium Edition. In: Springer Monographs
in Mathematics, Springer, Heidelberg (2003)

5. Koepke, Peter.: Ordinals, Computations, and Models of Set Theory: A Tutorial
at Days in Logic, Coimbra, Portugal. Tutorial Material. (accessed January 2006)
http://www.mat.uc.pt/∼kahle/dl06/koepke.pdf

6. Koepke, Peter.: Turing Computations on Ordinals. J. Symbolic Logic 11(3), 377–397
(2005)

7. Rogers, Hartley Jr.: Theory of Recursive Functions and Effective Computability.
The MIT Press, Cambridge (1967)

8. Sacks, G.E.: Higher Recursion Theory. In: Perspectives in Mathematical Logic,
Springer, Heidelberg (1990)

9. Shoenfield, Joseph, R. (eds.): Recursion Theory. Lecture Notes in Logic. Springer,
Heidelberg (1993)

http://www.mat.uc.pt/ ~kahle/dl06/koepke.pdf

On Accepting Networks of Splicing

Processors of Size 3

Remco Loos�

Research Group on Mathematical Linguistics
Rovira i Virgili University

Pça Imperial Tàrraco 1, 43005 Tarragona, Spain
remcogerard.loos@urv.cat

Abstract. In this paper, we show that accepting networks of splicing
processors (ANSPs) of size 3 are computationally complete. Moreover,
we prove that they can decide all languages in NP in polynomial time.
The previous lower bound for both issues was 7. Since, by its definition,
ANSPs need at least 2 nodes for any non-trivial computation, we leave
only one open case. We also prove the following normal form: For any
ANSP there exists an equivalent ANSP without output filters.

Keywords: Molecular Computation, Splicing, Networks of Processors.

1 Introduction

Accepting networks of splicing processors (ANSPs for short) [5,6] are a variant
of networks of evolutionary processors, a well studied model of bio-inspired com-
puting [1,2,7]. Networks of evolutionary processors consist of several processors
placed in a graph. Each processor performs simple rewriting operations (inser-
tion, deletion, substitution), after which the strings are redistributed among the
nodes of the graph according to filters.

In the case of accepting networks of splicing processors, these rewriting op-
erations are replaced by splicing rules. ANSPs were introduced in [5], where it
was shown that ANSPs are computationally complete. Also, the complexity class
NP was proved to correspond to the class of languages accepted by ASNPs in
polynomial time and PSPACE to the class accepted by ANSPs with at most
polynomial length of the stings used in the derivation. Finally, a linear time so-
lution for SAT was presented. In [6] it was proved that that ANSPs of constant
size accept all regularly enumerable languages and can solve all problems in NP
in polynomial time.

In both cases the number of nodes needed was 7. Here we show that both
things can be achieved by ANSPs of 3 nodes. Moreover, in [6] the constant size
was achieved using an encoding in a 2-letter alphabet. Here we present a direct
construction for any language accepted by a deterministic Turing machine. In

� Work supported by Research Grant BES-2004-6316 of the Spanish Ministry of
Education and Science.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 497–506, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

498 R. Loos

passing, we prove the following normal form: For any ANSP there exists an
equivalent ANSP without output filters.

For the complexity result, we show by a more involved construction that
ANSPs of size 3 can simulate the computations of a non-deterministic Turing
machine in parallel. We then use this fact to show that ANSPs of size 3 can
decide all languages in NP.

Since, by its definition, ANSPs need at least two nodes to accept any non-
trivial language, these results go a long way in settling this issue, leaving just
one open case. Moreover, our results suggest that research in reduced ANSPs
with less features might be fruitful.

2 Basic Definitions and Notation

We assume the reader’s familiarity with the basic concepts in complexity classes
and formal language theory. The reader may refer to [4] and [10] for definitions.

For any set A, |A| denotes the cardinality of A and for a word w, |w| denotes
the length of w. The smallest W such that w ∈ W ∗ is denoted by alph(w) and
the empty word is denoted by λ.

A splicing rule over an alphabet V is a word of the form u1#u2$v1#v2 such
that u1, u2, v1, and v2 are in V ∗ and such that $ and # are two symbols not in V .

For a splicing rule r = u1#u2$v1#v2 and for x, y, w, z ∈ V ∗, we say that
r produces (w, z) from (x, y) (denoted by (x, y) �r (w, z)) if there exist some
x1, x2, y1, y2 ∈ V ∗ such that x = x1u1u2x2, y = y1v1v2y2, z = x1u1v2y2, and
w = y1v1u2x2.

For a language L over V and a set of splicing rules R we define

σR(L) = {z, w ∈ V ∗ | (∃u, v ∈ L, r ∈ R)[(u, v) �r (z, w)]}.

For two disjoint subsets P and F of V and a word x over V , we define the
predicates:

φs(x; P, F) ≡ P ⊆ alph(x) ∧ F ∩ alph(x) = ∅
φw(x; P, F) ≡ P ∩ alph(x)
= ∅ ∧ F ∩ alph(x) = ∅.

Here, P is the set of permitting symbols and F the set of forbidding symbols.
The first condition (s=strong) requires all permitting symbols and no forbid-
ding symbol to be present in x, whereas for the second (w=weak) at least one
permitting and no forbidding symbol should be present in x. For a language
L ⊆ V ∗ and β ∈ {w, s},

φβ(L, P, F) = {x ∈ L | φβ(x; P, F)}.

If we want to permit all strings of L, we should say P = V ∗ for β = w or P = ∅
for β = s. For simplicity, in those cases we simply write P = ∅, not specifying β.
A splicing processor over V is a 6-tuple (S, A, PI, FI, PO, FO) with

– S a finite set of splicing rules over V ,
– A a finite set of auxiliary words,

On Accepting Networks of Splicing Processors of Size 3 499

– PI, FI ⊆ V the input permitting/forbidding symbols,
– PO, FO ⊆ V the output permitting/forbidding symbols.

An accepting network of splicing processors (ANSP) is a construct
Γ = (V, U, 〈, 〉, G, N , α, xI , xO), where

- U is the network alphabet and V ⊆ U is the input alphabet.
- 〈, 〉 ∈ U − V are two special symbols.
- G = (XG, EG) is an undirected graph with nodes XG and edges EG. We

assume G to be complete and without loops.
- N is a mapping which associates with each node x ∈ XG the splicing pro-

cessor N = (Sx, Ax, P Ix, F Ix, POx, FOx).
- α : XG → {s, w} defines the type of the input/output filters, where for each

node x ∈ XG the input filter ρ and output filter τ are defined as:

ρx(·) = φα(x)(·; PIx, F Ix),
τx(·) = φα(x)(·; POx, FOx).

- xI , xO ∈ XG are the input and output node, respectively.

The size of Γ corresponds to the number of nodes in the graph, i.e. |XG|. A
configuration of an ANSP Γ is a mapping C : XG → 2U which associates a set
of words to every node of the graph. A configuration can be seen as the sets of
words which are present in any node at a given moment. For a word w ∈ V ∗ the
initial configuration of Γ on w is defined by C

(w)
0 (xI) = 〈w〉 and C

(w)
0 (x) = ∅

for all other x ∈ XG. By convention, the auxiliary words do not appear in any
configuration.

There are two ways to change a configuration, by a splicing step or by a
communication step. When changing by a splicing step, each component C(x) of
the configuration C is changed according to the set of splicing rules Sx, whereby
the words in the set Ax are available for splicing. Formally, configuration C′ is
obtained in one splicing step from the configuration C, written as C ⇒ C′, iff
for all x ∈ XG

C′(x) = C(x) ∪ σSx(C(x) ∪ Ax)1.

In a communication step, each processor sends out all strings that can pass
the output filter. They are received by all other nodes in the graph, provided
they pass the input filter. Note that, according to this definition, strings that
can leave a node are sent out even if they cannot pass any input filter. In this
case we will say that the are lost. Formally, C′ is obtained from C (we write
C′ |= C) iff for all x ∈ XG

C′(x) = (C(x) − τx(C(x))) ∪
⋃

{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y))).

1 This definition is slightly different from those in [5,6], which are also different from
each other. Our definition is ’weaker’ in the sense that our constructions will also
work for both other definitions.

500 R. Loos

For an ANSP Γ , the computation on an input word w is a sequence of con-
figurations C

(w)
0 , C

(w)
1 , C

(w)
2 , ..., where C

(w)
0 is the initial configuration of Γ on

w, C
(w)
2i ⇒ C

(w)
2i+1 and C

(w)
2i+1 |= C

(w)
2i+2, for all i ≥ 0. A computation halts if one

of the following two conditions holds:

1. There exist a configuration in which the set of words existing in the output
node xO is non-empty. This is an accepting computation.

2. There exist two consecutive identical configurations.

The language accepted by Γ is defined as

L(Γ) = {w ∈ V ∗ | Γ ′s computation on w is an accepting computation}.

We say Γ decides a language L if L(Γ) = L and Γ halts on every computation.
For a halting computation C

(w)
0 , C

(w)
1 , C

(w)
2 , ..., C

(w)
m , we define the time com-

plexity of Γ on w by TIMEΓ (w) = m. The time complexity of Γ is the partial
function from N to N,

TIMEΓ (n) = max{TIMEΓ (x) | x ∈ V ∗, |x| = n}.

3 ANSPs of Three Nodes are Computationally Complete

In this section, we provide a completeness proof based on the simulation of a
deterministic Turing machine. The technique used here is reminiscent of the
proof of [8].

Theorem 1. ANSPs of size 3 accept all RE languages.

Proof. Let M = (Q, V, Δ, q0, {qf}, δ, B) be a Turing machine, with Q is the set
of states, V and Δ respectively the input and tape alphabet, q0 the initial state,
B the blank symbol and δ : Q × Δ → Q × Δ × {L, R} the transition function.
We assume without loss of generality that M is deterministic, has a semi-infinite
tape and a single accepting state qf .

We construct the ANSP Γ = (V, U, 〈, 〉, G, N , α, 3, 1), where G is the complete
graph with 3 nodes, U = V ∪ Δ ∪ {L, R, Z, 〈, 〉} and (the value of α is omitted
where irrelevant):

– S1 = ∅
A1 = ∅
PI1 = {qf}
FI1 = {L, R}
PO1 = FO1 = ∅

In what follows a, b, c, d ∈ V ∪ Δ ∪ {〈, 〉}, and qi, qj ∈ Q.

– S2 = {
c#qi〉$L#qiB〉R (Right end of the tape)
c#qia$L#bqjR for (qi, a) → (qj , b, R) ∈ δ (Right move)

On Accepting Networks of Splicing Processors of Size 3 501

λ#cqia$L#qjcbR for (qi, a) → (qj , b, L) ∈ δ} (Left move)
A2 = {LbqjR | (qi, a) → (qj , b, R) ∈ δ} ∪ {LqjcbR | (qi, a) → (qj , b, L) ∈ δ}
∪{LqiB〉R}
FI2 = {L, R}
PI2 = PO2 = FO2 = ∅

– S3 = {
〈a#λ$〈q0a#Z for a ∈ V (Initialisation)
cqiB〉#R$Lqi〉#λ (Right end of the tape)
cbqj#R$Lqia#λ for (qi, a) → (qj , b, R) ∈ δ (Right move)
dqjcb#R$Lcqia#λ for (qi, a) → (qj , b, L) ∈ δ} (Left move)
A3 = {〈q0aZ | a ∈ V }
PI3 = {L, R}
FI3 = PO3 = FO3 = ∅
α(3) = w

The systems works as follows. Node 3 is the input node, where the input 〈w〉 is
converted into 〈q0w〉, which is sent out in the communication step. It will reach
only node 2 (unless q0 is the final state). Now, the moves of M are simulated by
moving back and forth between nodes 2 and 3. When a final state is reached,
that is we get to a word of the form 〈w1qfw2〉, with w1, w2 ∈ (V ∪Δ)∗, this word
can pass the input filter of node 1, and input w is accepted.

In node 2, we can start simulating the moves of M . For a right move (qi, a) →
(qj , b, R) on a configuration 〈wqiaw′〉 we apply rule c#qia$L#bqjR using LbqjR
from A2, giving 〈wbqjR and Lqiaw′〉, which are passed to node 3. In node 3,
the two words are combined by rule cbqj#R$Lqia#λ to give 〈wbqjw

′〉, the
new configuration. This word is sent back to node 2, where the simulation
of the next move begins. Left moves are simulated in a similar way, using
a rule λ#cqia$L#qjcbR in node 2 and a rule dqjcb#R$Lcqia#λ in node 3.
If M needs more tape space on the right, we can insert a blank symbol B
at the end of our configuration using rules c#qi〉$L#qiB〉R in node 2 and
cqiB〉#R$Lqi〉#λ in node 3. Indeed, when we have a configuration of the form
〈wqi〉, rule c#qi〉$L#qiB〉R yields 〈wqiB〉R and Lqi〉, which combine in node
3 to give Lqi〉R and 〈wqiB〉. This last string is sent out to node 2, where the
simulation resumes.

It should be clear from this explanation that Γ accepts input 〈w〉 if M reaches
a final state on input w. To see that Γ accepts only these words, recall that since
M is deterministic, there is only one possible move at every step, thus at all times
only one word representing a configuration is present in node 2 or two parts of
this configuration in node 3. Moreover, all auxiliary and intermediate strings do
not produce words that can interfere in the derivation. The input word 〈w〉 is
sent out in the first communication step and can reach only node 2. There, no
rule can be applied to it, and it is sent out in the next step. Now, it is lost, since
it cannot enter either 1 or 3. The words LvR, v ∈ Δ ∪ Q ∪ {〉} produced in node
3 are sent out and cannot pass any input filter. In node 2, only strings involved
in the derivation are produced and sent to node 3. The word representing the
previous configuration is sent out, but cannot enter any node, so it is lost.

502 R. Loos

Thus, Γ accepts on input 〈w〉 if and only ifM reaches a final state on input w. ��

Note that the ANSP constructed above uses only input filters. This means we
can state the following normal form for ANSPs.

Corollary 1. For each ANSP Γ there exists an equivalent ANSP Γ ′ such that
for each node x of Γ , POx = FOx = ∅.

4 Complexity Results

In [6] it is shown that ANSPs of size 7 can accept languages in NP in polynomial
time. Since in our construction we simulated a deterministic Turing machine, no
such claim about ANSPs of three nodes can be derived from Theorem 1. However,
in this section we show that all NP-problems can be decided in polynomial time
by ANSPs of size 3.

First, we present a more involved construction of an ANSP with 3 nodes that
can simulate in parallel the computations of non-deterministic Turing machines.
We will use a variation of the rotate-and-simulate technique introduced in [11]
and the ’counting-down’ mechanism often used in proofs for test-tube systems
and time-varying H systems, e.g. [3,12,9].

Lemma 1. For any non-deterministic Turing machine M we can construct an
ANSP Γ of size 3 such that L(Γ) = L(M) and Γ simulates all computations of
M on a given word in parallel.

Proof. Let M = (Q, V, Δ, q0, {qf}, δ, B) be a non-deterministic Turing machine,
with Q the set of states, V and Δ respectively the input and tape alphabet, q0 the
initial state, B the blank symbol and δ : Q×Δ → Q×Δ×{L, R} the transition
function. We assume without loss of generality that M has a semi-infinite tape
and a single accepting state qf .

Let |Δ∪V | = n and K = {〈i, 〉i, 〈i′
, 〉i′ | 0 ≤ i ≤ 2n}. We assume some ordering

such that Δ ∪ V = {k1, ..., kn} and each ki identifies a unique element of Δ ∪ V .
We construct the ANSP Γ = (V, U, 〈, 〉′, G, N , α, 3, 1), where G is the complete
graph with 3 nodes, U = V ∪ Δ ∪ K ∪ {Z, E, 〈, 〉, 〈′, 〉′}, all αi = w, 1 ≤ i ≤ 3
and:

– S1 = ∅
A1 = ∅
PI1 = {qf}
FI1 = {Z} ∪ {〈i, 〈i′

, 〉i, 〉i′ | 0 ≤ i ≤ 2n}
PO1 = FO1 = ∅

In what follows a, b, c, d ∈ V ∪ Δ ∪ {〈, 〉}, m ∈ V ∪ Δ ∪ Q and q, qi, qj ∈ Q.

– S2 = {
(simulate)
〈qia#c$〈′bqj#Z for (qi, a) → (qj , b, R) ∈ δ

On Accepting Networks of Splicing Processors of Size 3 503

〈0′
qia#c$〈′bqj#Z for (qi, a) → (qj , b, R) ∈ δ

〈cqia#d$〈′cb#Z for (qi, a) → (qj , b, L) ∈ δ

〈0′
cqia#d$〈′cb#Z for (qi, a) → (qj , b, L) ∈ δ

(right end of tape)
c#qE〉$Z#qBE〉
(start rotate)
〈q#c$〈ikiq#Z for 1 ≤ i ≤ n
c#ki〉$Z#〉i for 1 ≤ i ≤ n
〈ki−n#qc$〈i#Z for n + 1 ≤ i ≤ 2n
c#〉$Z#ki−n〉i for n + 1 ≤ i ≤ 2n
(decrease counter)
〈i′

#m$〈i−1#Z for 1 ≤ i ≤ 2n
a#〉i′

$Z#〉i−1 for 1 ≤ i ≤ 2n}
A2 = {〈′bqjZ | qi, a) → (qj , b, R) ∈ δ} ∪ {〈′cbZ | qi, a) → (qj , b, L) ∈ δ}
∪{〈ikiqZ, Z〉i | 1 ≤ i ≤ n} ∪ {〈iZ, Zki〉i | n + 1 ≤ i ≤ 2n} ∪ {ZqBE〉 | q ∈
Q} ∪ {〈iZ, Z〉i | 0 ≤ i ≤ 2n − 1}
PI2 = {〈, 〈0′} ∪ {〉i′ | 1 ≤ i ≤ 2n}
FI2 = {Z}
PO2 = {〉} ∪ {〈i| 0 ≤ i ≤ 2n}
FO2 = ∅

– S3 = {
(initialise)
〈#ab$〈q0#Z
λ#〉′$Z#E〉
(return simulate)
〈′#m$〈#Z
(prime counter)
〈i#m$〈i′

#Z for 0 ≤ i ≤ 2n
m#〉i$Z#〉i′

for 1 ≤ i ≤ 2n
(resume computation)
m#〉0$Z#〉}
A3 = {〈Z, 〈q0Z, ZE〉, Z〉} ∪ {Z〉i′ | 1 ≤ i ≤ 2n}
∪ {〈i′

Z | 0 ≤ i ≤ 2n}
PI3 = {〈′} ∪ {〉i | 0 ≤ i ≤ 2n}
FI3 = {Z}
PO3 = {〉} ∪ {〈i′ | 1 ≤ i ≤ 2n}
FO3 = ∅

We show that 〈w〉′ is accepted by Γ if and only if w is accepted by M2.
We start with the ’if’-part. The computation of Γ begins with the initialisation
phase. The word 〈w〉′ is converted to 〈q0wE〉′ by the rule 〈#ab$〈q0#Z. This
word cannot pass PO3 so it stays in node 3. Next, λ#〉′$Z#E〉 is applied to
give 〈q0wE〉. The symbol E denotes the end of the tape of M . This string is
passed to node 2. This concludes the initialisation phase.
2 Note that we use 〉′ for the input. This is turned into 〉 in the initialisation phase.

We prefer the unusual input in order to avoid a proliferation of primes in the proof.

504 R. Loos

In node 2, we have two possibilities, simulating a move of M or rotating a
symbol. We can simulate a right move (qi, a) → (qj , b, R) by applying the rule
〈qia#c$〈′bqj#Z. Starting from a string 〈qiaw〉 this yields 〈′bqjw〉. This string
is sent out to node 3, where it is converted to 〈bqjw〉 by 〈′#m$〈#Z, which is
passed back to node 2. Thus we have the desired result of the move. If we have
a word 〈cqiaw〉 and (qi, a) → (qj , b, L) is a valid move in M , we obtain the
desired result 〈qjcbw〉 in node 2 by applying 〈cqia#d$〈′cb#Z and, in node 3,
〈′#m$〈#Z.

Note that we simulate the moves of M only at the left end of the string.
This means that if we have a sequence of two left moves or two right moves,
we need to rotate symbols to make the simulation possible. For instance, from
a string 〈dqaw〉 we need to go to 〈qawd〉 to allow for the simulation of a move
(q, a) → (qj , b, R). This rotating is done as follows. Suppose d = ki. Then in
node 2, we can apply a rule c#ki〉$Z#〉i to convert 〈dqaw〉 to 〈dqawd〉i. This
string does not pass the output filter, so it stays in node 2. In the next step,
〈dqawd〉i becomes 〈iqawd〉i by a rule 〈q#c$〈ikiq#Z. Now the counter is pro-
gressively lowered by moving the string back and forth between nodes 2 and 3.
The word 〈iqawd〉i passes to node 3, where a rule m#〉i$Z#〉i′ gives 〈iqawd〉i′

(remains in node 3) and 〈i#m$〈i′
#Z yields 〈i′

qawd〉i′
(to node 2). In node 2,

rules a#〉i′
$Z#〉i−1 (result remains in 2) and 〈i′

#m$〈i−1#Z give 〈i−1qawd〉i−1,
which passes to node 3. This process is repeated until arriving at 〈0qawd〉0. This
string arrives in node 3, where 〈i#m$〈i′

#Z (result remains) and m#〉0$Z#〉
convert the string to 〈0′

qawd〉. This string is passed to node 2, where a sim-
ulation rule 〈0′

qia#c$〈′bqj#Z could be applied. Rotating a symbol to the left
is done similarly. To avoid interference between right and left rotation of the
same symbol, for the left rotation of symbol ki we use counter i + n. Note that
the rotated strings begin with the symbol 〈0′

. For strings starting with 〈0′
, S2

contains the same simulation rules as for 〈, but no rotation rules. This avoids
fruitless rotations, since we know that the head of a Turing machine moves at
most one symbol per move.

The special symbol E cannot be rotated, which enforces that the head of M
never goes beyond the left end of the tape. If M needs more tape cells on the
right, a rule c#qE〉$Z#qBE〉 can be applied to insert a blank symbol between
the head and the end-of-tape symbol. The result of this does not leave node 2,
so simulation can continue as described above. All necessary auxiliary strings,
all containing the symbol Z, for the described process are present in the sets A2

and A3. Finally, if M reaches a final state, the simulation in Γ will yield a word
of the form 〈wqfw′〉 in node 3. This word passes the output filters and the input
filters of node 1, causing Γ to accept.

For the ’only if’-part of the proof, we show that only by the way described
above we can get an accepting computation of Γ . First of all, in the initialisa-
tion phase we could apply the rule λ#〉′$Z#E〉 first. The result 〈wE〉 can pass
to node 2. However, since there is no state symbol, no simulation or acceptance
is possible. We can only rotate, but after arriving at a string 〈0′

v〉 no further rule

On Accepting Networks of Splicing Processors of Size 3 505

applications are possible. For the simulation steps, they can clearly only give
the described result. Also in node 3, there is only one applicable rule. The old
configuration can leave node 2, but not enter any other node.

For the rotation, the decreasing procedure involves two splicing steps in the
same node before being passed to the other node. If we apply these two rules
in the inverse order with respect to our description above, it is easy to verify
that we get a string that can leave the node, but not enter the other node. Now,
when starting the rotation phase, it can be that the new symbol we attach to
one side does not correspond to the symbol removed on the other side. We show
that these incorrect rotations do not lead to accepting computations. Suppose
we have 〈qawkj〉 and we apply 〈q#c$〈ikiq#Z for some i
= j. This means we get
〈ikiqaw〉j for i
= j in the next step. For rotation to the right we can get 〈iwkj〉j

for i
= j. Then we can have two cases:

i < j If i < j, by the decreasing procedure, we arrive at a string 〈0v〉l in node 2,
with l > 0. This string is passed to node 3. There we can apply m#〉i$Z#〉i′
to give 〈0v〉l′ . This string cannot pass the output filter, so it stays in node 3.
Then, the only applicable rule is 〈i#m$〈i′

#Z. This gives 〈0′
v〉l′ . This string

cannot leave node 3 and no more rules can be applied to it, so it is ’trapped’
and can’t lead to acceptance. If the two rules are applied in the inverse order,
we first get 〈0′

v〉l, which cannot pass the output filter, and then the same
string 〈0′

v〉l′ .
i > j If i > j, we arrive at a string 〈lv〉0, l > 0 in node 2. This string passes

to node 3, where two rules can apply. If we apply a rule 〈i#m$〈i′
#Z, we

get 〈l′v〉0. Applying m#〉0$Z#〉 gives 〈lv〉. Both these strings can pass the
output filter, but no input filter, so they are lost.

This shows that only correct simulations of M can lead to acceptance, and thus
L(Γ) = L(M). Moreover, whenever there is more than one move available to
M on a given computation, Γ will simulate all moves, using the multiplicity
inherent in the model.

��

Theorem 2. All languages in NP can be decided by ANSPs of size 3 in
polynomial time.

Proof. If a language L is in NP, there exists a non-deterministic Turing machine
M accepting all w ∈ L in time f(|w|), where f(n) is a polynomial function.
Moreover, there exists a f(n)-bounded Turing machine M ′ which simulates M
but halts after f(n) steps. By Lemma 1, this means that there exists an ANSP
Γ deciding L. Moreover, for each move of M ′, Γ needs 4 steps for simulation,
at most 1 step for expanding the work tape and at most 4 · 2 · m rotation steps,
where m = |V ∪ Δ| and V and Δ are the input and tape alphabet of M . Thus,
TIMEΓ (w) ≤ 40m·f(|w|)+1 for all w (the term +1 comes from our assumption
in Lemma 1 that M ′ has a single final state). This is clearly polynomial. ��

506 R. Loos

5 Final Remarks

As mentioned in the introduction, acceptance in ANSPs is defined in such a
way that at least two nodes are needed to accept any non-trivial language. This
means that only the computational power of ANSPs of size 2 is still open.

Our normal form for ANSPs also points at other directions of research. Can we
find reduced types of ANSPs which are still universal? In Theorem 1, forbidding
filters are only used in one place. Can we find complete systems with only per-
mitting filters? For such reduced systems it would be interesting to investigate
which price we have to pay in terms of size of the systems, or in computational
resources.

References

1. Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J.: Networks of evolution-
ary processors. Acta. Informatica 39, 517–529 (2003)

2. Castellanos, J., Leupold, P., Mitrana, V.: Descriptional and computational com-
plexity aspects of hybrid networks of evolutionary processors. Theoretical Com-
puter Science 330, 205–220 (2005)

3. Freund, R., Csuhaj-Varjú, E., Wachtler, F.: Test Tube Systems with Cut-
ting/Recombination Operations. In: Pacific Symposium on BIOCOMPUTING’97,
pp. 163–175. World Scientific, Singapore (1997)

4. Hopcroft, J E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation (1979)

5. Manea, F., Martin-Vide, C., Mitrana, V.: Accepting networks of splicing proces-
sors: Complexity results. Theoretical Computer Science (CiE 2005 special issue)
371(1-2), 72–82 (2007)

6. Manea, F., Martin-Vide, C., Mitrana, V.: All NP-problems can be solved in poly-
nomial time by accepting networks of splicing processors of constant size. In: Mao,
C., Yokomori, T. (eds.) DNA Computing. LNCS, vol. 4287, pp. 47–57. Springer,
Heidelberg (2006)

7. Margenstern, M., Mitrana, V., Perez-Jimenez, M.: Accepting hybrid networks of
evolutionary systems. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004.
LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005)

8. Margenstern, M., Rogozhin, Y.: Time-varying distributed H systems of degree 2
generate all recursively enumerable languages. In: Martin-Vide, C., Mitrana, V.
(eds.) Where Mathematics, Computer Science and Biology Meet, Kluwer Aca-
demic, Dordrecht (2000)

9. Margenstern, M., Rogozhin, Y., Verlan, S.: Time-varying distributed H systems of
degree 2 can carry out parallel computations. In: Hagiya, M., Ohuchi, A. (eds.)
DNA8. LNCS, vol. 2568, pp. 326–336. Springer, Heidelberg (2003)

10. Papadimitriou, C.H.: Computational Complexity (1994)
11. Păun, Gh.: Regular extended H systems are computationally universal. J. Au-

tomata, languages, Combinatorics 1(1), 27–36 (1996)
12. Păun, A.: On time-varying H systems. Bulletin of the EATCS 67, 157–164 (1999)

Liquid Computing

Wolfgang Maass�

Institute for Theoretical Computer Science
Technische Universitaet Graz

A-8010 Graz, Austria
maass@igi.tugraz.at

http://www.igi.tugraz.at/

Abstract. This review addresses structural differences between that
type of computation on which computability theory and computational
complexity theory have focused so far, and those computations that are
usually carried out in biological organisms (either in the brain, or in the
form of gene regulation within a single cell). These differences concern
the role of time, the way in which the input is presented, the way in
which an algorithm is implemented, and in the end also the definition of
what a computation is. This article describes liquid computing as a new
framework for analyzing those types of computations that are usually
carried out in biological organisms.

1 Introduction

The computation of a Turing machine always begins in a designated initial state
q0, with the input x (some finite string of symbols from some finite alphabet)
written on some designated tape. The computation runs until a halt-state is en-
tered (the inscription y of some designated tape segment is then interpreted as
the result of the computation). This is a typical example for an offline computa-
tion, where the complete input x is available at the beginning of the computation,
and no trace of this computation, or of its result y, is left when the same Tur-
ing machine subsequently carries out another computation for another input x̃
(starting again in state q0). In contrast, the result of a typical computation in
the neuronal system of a biological organism, say the decision about the location
y on the ground where the left foot is going to be placed at the next step (while
walking or running), depends on several pieces of information: on information
from the visual system, from the vestibular system which supports balance con-
trol, from the muscles (proprioceptive feedback about their current state), from
short term memory (how well did the previous foot placement work?), from long
term memory (how slippery is this path at the current weather condition?), from
brain systems that have previously decided where to go and at what speed, and
on information from various other parts of the neural system. In general these

� Partially supported the Austrian Science Fund FWF, project P17229 and project
S9102-N13, and by the European Union, project FP6-015879 (FACETS).

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 507–516, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

508 W. Maass

diverse pieces of information arrive at different points in time, and the com-
putation of y has to start before the last one has come in. Furthermore, new
information (e.g. visual information and proprioceptive feedback) arrives con-
tinuously, and it is left up to the computational system how much of it can be
integrated into the computation of the position y of the next placement of the
left foot (obviously those organisms have a better chance to survive which also
can integrate later arriving information into the computation). Once the compu-
tation of y is completed, the computation of the location y′ where the right foot
is subsequently placed is not a separate computation, that starts again in some
neutral initial state q0. Rather, it is likely to build on pieces of inputs and results
of subcomputations that had already been used for the preceding computation
of y.

The previously sketched computational task is a typical example for an online
computation (where input pieces arrive all the time, not in one batch). Further-
more it is an example for a real-time computation, where one has a strict dead-
line by which the computation of the output y has to be completed (otherwise a
2-legged animal would fall). In fact, in some critical situations (e. g. when a
2-legged animal stumbles, or hits an unexpected obstacle) a biological organism
is forced to apply an anytime algorithm, which tries to make optimal use of
intermediate results of computational processing that has occurred up to some
externally given time point t0 (such forced halt of the computation could oc-
cur at“any time”). Difficulties in the control of walking for 2-legged robots have
taught us how difficult it is to design algorithms which can carry out this seem-
ingly simple computational task. In fact, this computational problem is largely
unsolved, and humanoid robots can only operate within environments for which
they have been provided with an accurate model. This is perhaps surprising,
since on the other hand current computers can beat human champions in seem-
ingly more demanding computational tasks, such as winning a game of chess.
One might argue that one reason, why walking in a new terrain is currently
a computationally less solved task, is that computation theory and algorithm
design have focused for several decades on offline computations, and have ne-
glected seemingly mundane computational tasks such as walking. This bias is
understandable, because evolution had much more time to develop a compu-
tational machinery for the control of human walking, and this computational
machinery works so well that we don’t even notice anymore how difficult this
computational task is.

2 Liquid State Machines

A computation machine M that carries out online computations typically com-
putes a function F that does not map input numbers or (finite) bit strings onto
output numbers or bit strings, but input streams onto output streams. These
input- and output streams are usually encoded as functions u : ZZ → IRn or
u : IR → IRn, where the argument t of u(t) is interpreted as the (discrete or

Liquid Computing 509

continuous) time point t when the information that is encoded by u(t) ∈ IRn

becomes available. Hence such computational machine M computes a function
of higher type (usually referred to as operator, functional, or filter), that maps
input functions u from some domain U onto output functions y. In lack of a
better term we will use the term filter in this article, although filters are often
associated with somewhat trivial signal processing or preprossessing devices.
However, one should not fall into the trap of identifying the general term of a
filter with special classes of filters such as linear filters. Rather one should keep
in mind that any input to any organism is a function of time, and any motor
output of an organism is a function of time. Hence biological organisms compute
filters. The same holds true for any artificial behaving system, such as a robot.

We will only consider computational operations on functions of time that are
input-driven, in the sense that the output does not depend on any absolute
internal clock of the computational device. Filters that have this property are
called time invariant. Formally one says that a filter F is time invariant if any
temporal shift of the input function u(·) by some amount t0 causes a temporal
shift of the output function by the same amount t0, i.e., (Fut0)(t) = (Fu)(t+ t0)
for all t, t0 ∈ IR, where ut0 is the function defined by ut0(t) := u(t + t0). Note
that if the domain U of input functions u(·) is closed under temporal shifts,
then a time invariant filter F : U → IRIR is identified uniquely by the values
y(0) = (Fu)(0) of its output functions y(·) at time 0. In other words: in order
to identify or characterize a time invariant filter F we just have to observe its
output values at time 0, while its input varies over all functions u(·) ∈ U . Hence
one can replace in the mathematical analysis such filter F by a functional, i.e. a
simpler mathematical object that maps input functions onto real values (rather
than onto functions of time).

Various theoretical models for analog computing are of little practical use be-
cause they rely on hair-trigger decisions, for example they allow that the output
is 1 if the value of some real-valued input variable u is ≥ 0, and 0 otherwise.
Another unrealistic aspect of some models for computation on functions of time
is that they automatically allow that the output of the computation depends on
the full infinitely long history of the input function u(·). Most practically relevant
models for analog computation on continuous input streams degrade gracefully
under the influence of noise, i.e. they have a fading memory. Fading memory
is a continuity property of filters F , which requires that for any input function
u(·) ∈ U the output (Fu)(0) can be approximated by the outputs (Fv)(0) for
any other input functions v(·) ∈ U that approximate u(·) on a sufficiently long
time interval [−T, 0] in the past. Formally one defines that F : U → IRIR has
fading memory if for every u ∈ Un and every ε > 0 there exist δ > 0 and T > 0
so that |(Fv)(0) − (Fu)(0)| < ε for all v ∈ U with ‖u(t) − v(t)‖ < δ for all
t ∈ [−T, 0]. Informally, a filter F has fading memory if the most significant bits
of its current output value (Fu)(0) depend just on the most significant bits of
the values of its input function u(·) in some finite time interval [−T, 0]. Thus,
in order to compute the most significant bits of (Fu)(0) it is not necessary to
know the precise value of the input function u(s) for any time s, and it is also

510 W. Maass

not necessary to have knowledge about values of u(·) for more than a finite time
interval back into the past.

The universe of time-invariant fading memory filters is quite large. It contains
all filters F that can be characterized by Volterra series, i.e. all filters F whose
output (Fu)(t) is given by a finite or infinite sum (with d = 0, 1, . . .) of terms of

the form
∞∫

0

. . .
∞∫

0

hd(τ1, . . . , τd) · u(t − τ1) · . . . · u(t − τd)dτ1 . . . dτd, where some

integral kernel hd is applied to products of degree d of the input stream u(·) at
various time points t − τi back in the past. In fact, under some mild conditions
on the domain U of input streams the class of time invariant fading memory
filters coincides with the class of filters that can be characterized by Volterra
series.

In spite of their complexity, all these filters can be uniformly approximated
by the simple computational models M of the type shown in Fig. 1, which had
been introduced in [1]:

Fig. 1. Structure of a Liquid State Machine (LSM) M , which transforms input streams
u(·) into output streams y(·). If LM is a bank of k basis filters, the “liquid state”
xM (t) ∈ IRk is the output of those k filters at time t. If LM is a more general dynamical
system, xM (t) is that part of its current internal state that is “visible” for a readout.

Theorem 1. (based on [2]; see Theorem 3.1 in [3] for a detailed proof). Any
filter F defined by a Volterra series can be approximated with any desired degree
of precision by the simple computational model M shown in Fig. 1

– if there is a rich enough pool B of basis filters (time invariant, with fading
memory) from which the basis filters B1, . . . , Bk in the filterbank LM can be
chosen (B needs to have the pointwise separation property) and

– if there is a rich enough pool R from which the readout functions f can
be chosen (R needs to have the universal approximation property, i.e. any

Liquid Computing 511

continuous function on a compact domain can be uniformly approximated by
functions from R).

Definition: A class B of basis filters has the pointwise separation property if
there exists for any two input functions u(·), v(·) with u(s) �= v(s) for some s ≤ t
a basis filter B ∈ B with (Bu)(t) �= (Bv)(t).

It turns out that many real-world dynamical systems (even a pool of water)
satisfy (for some domain U of input streams) at least some weak version of
the pointwise separation property, where the outputs xM (t) of the basis filters
are replaced by some “visible” components of the state vector of the dynamical
system. In fact, many real-world dynamical systems also satisfy approximately
an interesting kernel property1, which makes it practically sufficient to use just
a linear readout function fM . This is particularly important if LM is kept fixed,
and only the readout fM is selected (or trained) in order to approximate some
particular Volterra series F . Reducing the adaptive part of M to the linear
readout function fM has the unique advantage that a learning algorithm that
uses gradient descent to minimize the approximation error of M cannot get stuck
in local minima of the mean-squared error. The resulting computational model
can be viewed as a generalization of a finite state machine to continuous time
and continuous (“liquid”) internal states xM (t). Hence it is called a Liquid State
Machine (LSM)2.

If the dynamical systems LM have fading memory, then only filters with
fading memory can be represented by the resulting LSM’s. Hence they cannot
approximate arbitrary finite state machines (not even for the case of discrete time
and a finite range of values u(t)). It turns out that a large jump in computational
power occurs if one augments the computational model from Fig. 1 by a feedback
from a readout back into the circuit (assume it enters the circuit like an input
variable).

Theorem 2. [5]. There exists a large class Sn of dynamical systems C with
fading memory (described by systems of n first order differential equations) that
acquire through feedback universal computational capabilities for analog comput-
ing. More precisely: through a proper choice of a (memoryless) feedback function
K and readout h they can simulate any given dynamical system of the form
z(n) = G(z, z′, . . . , z(n−1)) + u with a sufficiently smooth function G:

1 A kernel (in the sense of machine learning) is a nonlinear projection Q of n input
variables u1, . . . , un into some high-dimensional space. For example all products
ui · uj could be added as further components to the n-dimensional input vector
< u1, . . . , un >. Such nonlinear projection Q boosts the power of any linear readout
f applied to Q(u). For example in the case where Q(u) contains all products ui ·uj ,
a subsequent linear readout has the same expressive capability as quadratic readouts
f applied to the original input variables u1, . . . , un. More abstractly, Q should map
all inputs u that need to be separated by a readout onto a set of linearly independent
vectors Q(u).

2 Herbert Jaeger (see [4]) had simultaneously and independently introduced a very
similar computational model under the name Echo State Network.

512 W. Maass

This holds in particular for neural circuits C defined by differential equations
of the form x′

i(t) = −λixi(t) + σ(
∑n

j=1 aijxj(t)) + bi · σ(v(t)) (under some con-
ditions on the λi, aij , bi).

If one allows several feedbacks K, such dynamical systems C become universal for
nth order dynamical systems defined by a system consisting of a corresponding
number of differential equations. Since such systems of differential equations
can simulate arbitrary Turing machines [6], these dynamical systems C with a
finite number of feedbacks become (according to the Church-Turing thesis) also
universal for digital computation.

Theorem 2 suggests that even quite simple neural circuits with feedback have
in principle unlimited computational power3. This suggests that the main prob-
lem of a biological organism becomes the selection (or learning) of suitable feed-
back functions K and readout functions h. For dynamical systems C that have a
good kernel-property, already linear feedbacks and readouts endow such dynami-
cal systems with the capability to emulate a fairly large range of other dynamical
systems (or “analog computers”).

3 Applications

LSMs had been introduced in [1] (building on preceding work in [7]) in the
process of searching for computational models that can help us to understand the
computations that are carried out in a “cortical microcircuit” [8], i.e. in a local
circuit of neurons in the neocortex (say in a “cortical column”). This approach
has turned out to be quite successful, since it made it possible to carry out quite
demanding computations with circuits consisting of reasonably realistic models
for biological neurons (“spiking neurons”) and biological synapses (“dynamical
synapses”). Note that in this model a large number of different readout neurons
can learn to extract different information from the same circuit. One concrete
benchmark task that has been considered was the classification (“recognition”) of
3 Of course, in the presence of noise this computational power is reduced to that of a

finite state machine, see [5] for details.

Liquid Computing 513

spoken digits [9]. It turned out that already a LSM where the “liquid” consisted
of a randomly connected circuit of just 135 spiking neurons performed quite well.
In fact, it provided a nice example for “anytime computations”, since the linear
readout could be trained effectively to guess at “any time”, while a digit was
spoken, the proper classification of the digit [1,10]. More recently it has been
shown that with a suitable transformation of spoken digits into spike trains one
can achieve with this simple method the performance level of state-of-the-art
algorithms for speech recognition [11].

The same computational task had also been considered in an amusing and
inspiring study of the computational capability of LSMs where a bucket of wa-
ter was used as the “liquid” LM (into which input streams were injected via
8 motors), and video-images of the surface of the water were used as “liquid
states” xM (t) [12]. Also this realization of a LSM was able to carry out speech
recognition, but “fortunately” its performance was below that of a LSM with a
simulated circuit of neurons as “liquid”. This experiment raises two questions:

i) Can interesting new artificial computing devises be designed on the basis of
the LSM-paradigm?

ii) Can the LSM-paradigm be used to gain an understanding of the computa-
tional role of specific (genetically encoded) details of the components and
connectivity structure of circuits of neurons in the neocortex?

Research in the direction i) is currently carried out in the context of optical
computing. First results regarding question ii) were recently published in [13].

Perhaps the most exciting research on the LSM-approach is currently carried
out in experimental neuroscience. The LSM-approach makes specific experimen-
tally testable predictions regarding the organization of computations in cortical
circuits:

a) information from subsequent stimuli is superimposed in the “liquid state”
of cortical circuits, but can be recovered by simple linear readouts (see the
“separation property” in Theorem 1).

b) cortical circuits produce nonlinear combinations of different input compo-
nents (kernel property)

c) the activity of different neurons within a cortical column in response to
natural stimuli shows a large diversity of individual responses (rather than
evidence that all neurons within a column carry out a specific common com-
putational operation), since a “liquid” can support many different readouts.

A rather clear confirmation of predictions a) and b) has recently been produced
at the Max-Plank Institute for Brain Research in Frankfurt [14]. Some earlier
experimental studies had provided already evidence for prediction c), but this
prediction needs to be tested more rigorously for natural stimuli.

The exploration of potential engineering applications of the computational
paradigm discussed in this article were usually carried out with the closely re-
lated echo state networks (ESNs) [4], where one uses simpler non-spiking models
for neurons in the “liquid”, and works with high numerical precision in the sim-
ulation of the “liquid” and the training of linear readouts (which makes a lot of

514 W. Maass

sense, since artificial circuits are subject to substantial lower amounts of noise
in comparison with biological circuits of neurons). Research in recent years has
produced quite encouraging results regarding applications of ESNs to problems
in tele-communication [4], robotics [15], reinforcement learning [16], natural lan-
guage understanding [17], as well as music-production and -perception [18].

4 Discussion

We have argued in this article that Turing machines are not well-suited for
modeling computations in biological neural circuits, and proposed liquid state
machines (LSMs) as a more adequate modeling framework. They are designed to
model real-time computations (as well as anytime computations) on continuous
input streams. In fact, it is quite realistic that a LSM can be trained to carry
out the online computation task that we had discussed in section 1 (see [19]
for a first application to motor control). A characteristic feature of practical
implementations of the LSM model is that its “program” consists of the weights
w of a linear readout function. Since these weights can be chosen to be time
invariant, they provide suitable targets for learning (while all other parameters of
the LSM can be fixed in advance, based on the expected complexity and precision
requirement of the computational tasks that are to be learnt). It makes a lot of
sense (from the perspective of statistical learning theory) to restrict learning
to such weights w, since they have the unique advantage that gradient descent
with regard to some mean-square error function E(w) cannot get stuck in local
minima of this error function (since ∇wE(w) = 0 defines an affine – hence
connected – subspace of the weight space).

One can view these weights w of the linear readout of a LSM as an analogon to
the code < M > of a Turing machine M that is simulated by a universal Turing
machine. This analogy makes the learning advantage of LSMs clear, since there
is no efficient learning algorithm known which allows us to learn the program
< M > for a Turing machine M from examples for correct input/output pairs
of M . However the examples discussed in section 3 show that an LSM can be
trained quite efficiently to approximate a particular map from input – to output
streams.

We have also shown in Theorem 2 that LSMs can overcome the limitation of
a fading memory if one allows feedback from readouts back into the “liquid”.
Then not only all digital, but (in a well-defined sense) also all analog comput-
ers can be simulated by a fixed LSM, provided that one is allowed to vary the
readout functions (including those that provide feedback). Hence these read-
out functions can be viewed as program for the simulated analog computers
(note that all “readout functions” are just “static” functions, i.e. maps from IRn

into IR, whereas the LSM itself maps input streams onto output streams). In
those practically relevant cases that have been considered so far, these readout
functions could often be chosen to be linear. A satisfactory characterization of
the computational power that can be reached with linear readouts is still miss-
ing. But obviously the kernel-property of the underlying “liquid” can boost the

Liquid Computing 515

richness of the class of analog computers that can be simulated by a fixed LSM
with linear readouts.

The theoretical analysis of computational properties of randomly connected
circuits and other potential “liquids” is still in its infancy. We refer to [20] for a
very useful first step. The qualities that we expect from the “liquid” of a LSM
are completely different from those that one expects from standard computing
devices. One expects diversity (rather than uniformity) of the responses of indi-
vidual gates within a liquid (see Theorem 1), as well as diverse local dynamics
instead of synchronized local gate operations. Achieving such diversity is appar-
ently easier to attain by biological neural circuits and by new artificial circuits
on the molecular or atomic scale, than emulating precisely engineered circuits
of the type that we find in our current generation of digital computers, which
only function properly if all local units are identical copies of a small number of
template units that respond in a stereotypical fashion. In addition, sparse ran-
dom connections turn out to provide better computational capabilities to a LSM
than those connectivity graphs that have primarily been considered in theoreti-
cal studies, such as all-to-all connections (Hopfield networks) or a 2-dimensional
grid (which is commonly used for cellular automata).

We refer to the 2007 Special Issue on Echo State Networks and Liquid State
Machines of the journal Neural Networks for an up-to-date overview of fur-
ther theoretical results and practical applications of the computational ideas
presented in this article.

References

1. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
Computation 14(11), 2531–2560 (2002)

2. Boyd, S., Chua, L.O.: Fading memory and the problem of approximating nonlinear
oparators with Volterra series. IEEE Trans. on Circuits and Systems 32, 1150–1161
(1985)

3. Maass, W., Markram, H.: On the computational power of recurrent circuits of
spiking neurons. Journal of Computer and System Sciences 69(4), 593–616 (2004)

4. Jäger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving
energy in wireless communication. Science 304, 78–80 (2004)

5. Maass, W., Joshi, P., Sontag, E.D.: Computational aspects of feedback in neural
circuits. PLOS Computational Biology 3(1), e165, 1–20 (2007)

6. Branicky, M.S.: Universal computation and other capabilities of hybrid and con-
tinuous dynamical systems. Theoretical Computer Science 138, 67–100 (1995)

7. Buonomano, D.V., Merzenich, M.M.: Temporal information transformed into a
spatial code by a neural network with realistic properties. Science 267, 1028–1030
(1995)

8. Maass, W., Markram, H.: Theory of the computational function of microcircuit
dynamics. In: Grillner, S., Graybiel, A.M. (eds.) The Interface between Neurons
and Global Brain Function, Dahlem Workshop Report 93, pp. 371–390. MIT Press,
Cambridge (2006)

516 W. Maass

9. Hopfield, J.J., Brody, C.D.: What is a moment? Transient synchrony as a collective
mechanism for spatio-temporal integration. Proc. Nat. Acad. Sci. USA 98(3), 1282–
1287 (2001)

10. Maass, W., Natschläger, T., Markram, H.: Fading memory and kernel properties
of generic cortical microcircuit models. Journal of Physiology – Paris 98(4–6), 315–
330 (2004)

11. Verstraeten, D., Schrauwen, B., Stroobandt, D., Van Campenhout, J.: Isolated
word recognition with the liquid state machine: a case study. Information Process-
ing Letters 95(6), 521–528 (2005)

12. Fernando, C., Sojakka, S.: Pattern recognition in a bucket: a real liquid brain. In:
Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003.
LNCS (LNAI), vol. 2801, pp. 588–597. Springer, Heidelberg (2003)

13. Häusler, S., Maass, W.: A statistical analysis of information processing properties
of lamina-specific cortical microcircuit models. Cerebral Cortex 17(1), 149–162
(2007)

14. Nikolić, D., Haeusler, S., Singer, W., Maass, W.: Temporal dynamics of informa-
tion content carried by neurons in the primary visual cortex. In: Proc. of NIPS
2006, Advances in Neural Information Processing Systems, vol. 19, MIT Press,
Cambridge (2007)

15. Hertzberg, J., Jaeger, H., Schoenherr, F.: Learning to ground fact symbols in
behavior-based robot. In: van Harmelen, F. (ed.) Proc. of the 15th European Con-
ference on Artificial Intelligence, pp. 708–712. IOS Press, Amsterdam (2002)

16. Bush, K., Anderson, C.: Modeling reward functions for incomplete state representa-
tions via echo state networks. In: Proceedings of the International Joint Conference
on Neural Networks, Montreal, Quebec (2005)

17. Tong, M.H., Bickett, A.D., Christiansen, E.M., Cotrell, G.W.: Learning grammat-
ical structure with echo state networks. Neural Networks (in press 2007)

18. Jaeger, H., Eck, D.: Can’t get you out of my head: A connectionist model of cyclic
rehearsal. In: Wachsmuth, I., Knoblich, G (eds.) Modeling Communication with
Robots and Virtual Humans (in press 2007)

19. Joshi, P., Maass, W.: Movement generation with circuits of spiking neurons. Neural
Computation 17(8), 1715–1738 (2005)

20. White, O.L., Lee, D.D., Sompolinsky, H.: Short-term memory in orthogonal neural
networks. Phys. Rev. Letters 92(14), 102–148 (2004)

Quotients over Minimal Type Theory

Maria Emilia Maietti

Dipartimento di Matematica
Università di Genova, Italy
maietti@math.unipd.it

Abstract. We consider an extensional version, called qmTT, of the in-
tensional Minimal Type Theory mTT, introduced in a previous paper
with G. Sambin, enriched with proof-irrelevance of propositions and ef-
fective quotient sets. Then, by using the construction of total setoid à la
Bishop we build a model of qmTT over mTT.

The design of an extensional type theory with quotients and its in-
terpretation in mTT is a key technical step in order to build a two level
system to serve as a minimal foundation for constructive mathematics
as advocated in the mentioned paper about mTT.

Keywords: Dependent type theory, intuitionistic logic, quotient
completion.

1 Introduction

In [MS05] we argued for the need of a minimal foundation for constructive
mathematics. We wanted this theory to be minimal among relevant constructive
foundations such as the generic internal theory of a topos and Martin-Löf’s type
theory, besides the classical Zermelo-Fraenkel set theory. Then, being Martin-
Löf’s type theory predicative, our theory must be predicative, too.

The constructivity of our foundation is expressed by the fact that it satis-
fies the proofs-as-programs paradigm. In [MS05] we motivated that an essential
characteristic of a proofs-as-programs theory must be its consistency with the
axiom of choice and the formal Church thesis altogether. In other words, the
proofs-as-programs theory must be equipped with a realizability model where
the extraction of programs from proofs is internalized by validating the axiom
of choice and the formal Church thesis as internal theorems.

But, then, it turned out that this requirement is so strong to be incompatible
with another desirable feature that a foundation for mathematics should have,
namely with the capability of representing extensional concepts as those used in
everyday mathematics. In other terms, as reported in [MS05], we cannot have an
extensional theory that is also proofs-as-programs in our sense. Indeed, it is well-
known that extensionality of functions is inconsistent with the axiom of choice
and the formal Church thesis altogether. And, for an extensional constructive
theory even the consistency with the axiom of choice alone can be a problem.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 517–531, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

518 M.E. Maietti

Indeed, while the axiom of choice is an accepted principle in intensional type
theory, it is not generally validated in an extensional constructive one since it
may force the theory to be classical (see for example [Mai99], [MV99], [Car04],
[ML06]). This is simply because the choice function cannot be always guaranteed
to be extensional constructively.

The solution proposed in [MS05] to the problem of building an extensional
proofs-as-programs foundation consists in building a two level theory: one should
start with an intensional proofs-as-programs theory in the above sense and then
build an extensional level upon it according to the forget-restore principle in
[SV98]. This principle says that extensional concepts must be designed by ab-
stracting on the intension of their representations at the intensional level in such
a way that all the forgotten computational information of their representations
can be restored at will. An example of this is the design of the many-sorted
logic obtained from a type theory by using Martin-Löf’s true-judgements (see
[Mar84], [SV98]). In this way proofs at the extensional level are turned into
proofs at the intensional level that correspond to programs. We then decided to
name programs level the intensional one and proofs level the extensional one to
express that the link between the two levels is also part of the proofs-as-programs
transformation.

To serve as the intensional level of the minimal foundation advocated in
[MS05], we there introduced Minimal Type Theory (mTT). This is obtained
by extending the set constructors of intensional Martin-Löf’s type theory in
[NPS90] with a primitive notion of propositions. The main difference between
our theory and Martin-Löf’s one is that the axiom of choice and, even the axiom
of unique choice are not valid theorems in mTT.

Here we assume the extensional level to be given by a type theory, called
qmTT. This is obtained as follows. First, we take the extensional version of our
Minimal Type Theory, in the same way as the type theory in [Mar84] is the
extensional version of intensional Martin-Löf’s type theory in [NPS90]. Then we
collapse propositions into mono sets in the sense of [Mai05] and, finally, we add
effective quotient sets similarly to those in [Mai05].

In order to interpret our extensional type theory qmTT in mTT we build a
category Q(mTT) of total setoids, whose objects and morphisms coincide with
the notion of sets and functions given by E. Bishop [Bis67].

Q(mTT) turns out to be a categorical model of qmTT. Categorically speaking,
it turns out to be a lextensive list-arithmetic locally cartesian closed category
with stable effective quotients of equivalence relations obtained by comprehen-
sion from a propositional fibration (for all these categorical properties see, for
example, [Jac99, Mai05]).

Our total setoid model corresponds categorically to a different quotient com-
pletion from the same construction of total setoids performed over Martin-Löf’s
type theory [NPS90], here called MLTT, as studied in [Pal05]. In fact, the total
setoid model Q(MLTT) over MLTT coincides with the exact completion of the
weakly lex category [CV98, CC82] of the MLTT sets. Instead, Q(mTT) can be

Quotients over Minimal Type Theory 519

seen as an instance of a more general completion of quotients starting from a
weakly cartesian category equipped with a suitable comprehensive fibration.

It is worth noting that in both models there are at least two ways of in-
terpreting propositions. One consists in interpreting propositions as sets. Then,
both in Q(mTT) and in Q(MLTT) the extensional version of Martin-Löf’s type
theory in [Mar84] is validated. Therefore, the axiom of choice where quantifiers
are interpreted as dependent product and indexed sum is also valid in both.
But then we know that the axiom of choice may be constructively incompatible
with well-behaved quotients, in particular effectiveness of quotients (see [Mai99]).
Therefore, it seems that our total setoid constructions cannot be considered as
a quotient completion of a propositions-as-sets theory.

The other way of interpreting propositions consists in interpreting them in
Q(MLTT) as all mono sets (as in [Mai05]), and in Q(mTT) as only some mono
sets like in qmTT. Then, both models support well-behaved quotients, i.e. effec-
tive quotients. In particular, the internal language of Q(MLTT) includes that of
locally cartesian closed pretopos in [Mai05]. But, by interpreting propositions as
mono sets, Q(MLTT) and even more Q(mTT) loose the general validity of the
propositional axiom of choice. In fact, following propositions as mono sets, the
interpretation of the axiom of choice in Q(MLTT) turns out to be equivalent to
what Martin-Löf calls the extensional axiom of choice in [ML06], known to fail
constructively [ML06, Car04]. Only the validity of the axiom of unique choice
survives in its generality in Q(MLTT).

The design of qmTT and its interpretation over mTT is a key technical step
in order to build the extensional level of the minimal constructive foundation ad-
vocated in [MS05]. This extensional level does not exactly coincide with qmTT,
since qmTT is just obtained from mTT by abstracting on the intensional equal-
ity between elements of sets and propositions. Further abstractions, like that
from proof-terms of propositions or the addition of subsets, are also desirable
in order to get a many-sorted logic closer to set-theoretic languages used in ev-
eryday mathematics. However these can be obtained by associating to qmTT
a many sorted logic with true-judgements as in [Mar84, Mar85] and subsets as
in [SV98, Car03]. Another important point is that the extensional level advo-
cated in [MS05] should have predicates depending on more general types than
sets, like the collection of all subsets of a set (these are particularly needed in
a predicative theory to define some of common mathematical concepts, like, for
example, the definition of formal topology in [Sam03]).

Here we decided to concentrate on how to interpret quotients in mTT given
that various proposals of how to add quotients have been given in the literature
of type theory with the notion of setoid (see for example [Hof97] and [BCP03]
and references therein) and also in category theory with the notion of quotient
completions of a (weakly) lex category or of a regular one (see for example
[CC82, CV98, Car95, CR00]). The exact formulation of the extensional level of
the minimal constructive foundation based on mTT is left to future work with
G. Sambin.

520 M.E. Maietti

2 The Extensional System

Here we briefly introduce the extensional type theory qmTT that we will in-
terpret in a model built out of the intensional type theory mTT introduced in
[MS05]. We assume that mTT includes also a boolean universe (as mentioned in
[Car04] and whose rules are the same as those for Ub of qmTT in the appendix)
to make the disjoint sum set really disjoint (see, for example, [Mai05] for its
definition).

qmTT is obtained as follows: we first take the extensional version of mTT, in
the same way as Martin-Löf’s type theory in [Mar84] is the extensional version
of that in [NPS90]; then we collapse propositions into mono sets according to the
notion in [Mai05]; and finally we add effective quotient sets as in [Mai05]. The
precise rules to form sets and propositions of qmTT are given in the appendix.

The form of judgements to describe qmTT are those of mTT. Hence, for
building sets, in the style of Martin-Löf’s type theory [Mar84, NPS90], we have
four kinds of judgements:

A set [Γ] A = B [Γ] a ∈ A [Γ] a = b ∈ A [Γ]

that is the set judgement, the equality between sets, the term judgement and the
(definitional) equality between terms of the same set, respectively. The contexts
Γ of these judgements are formed as in [Mar84] and they are telescopic [dB91]
since sets are allowed to depend on variables ranging over other sets.

The set constructors of qmTT are those of mTT with the addition of effective
quotient sets (see [Mai05]).

Moreover, to build propositions, as in mTT, we have the following judgements:

A prop [Γ] A = B [Γ]

In order to make propositions into mono sets, namely to make propositions into
sets inhabited with at most one proof according to the notion in [Mai05], we add
the rules

prop-into-set
A prop [Γ]
A set [Γ]

prop-mono
A prop [Γ] p ∈ A [Γ] q ∈ A [Γ]

p = q ∈ A [Γ]

The requirement that propositions are mono sets is crucial in the presence of
quotient effectiveness which would otherwise become similar to a choice operator.
Indeed, if we identify propositions with sets simply, quotient effectiveness may
lead to classical logic (see [Mai99]) and hence it is no longer a constructive rule.
The propositions of qmTT are those of mTT but their proofs are all made equal.
Moreover, the intensional propositional equality is replaced by the extensional
one of [Mar84], which, besides being mono by definition, is equivalent to the
definitional equality of terms.

Our extensional theory is a variation of the internal type theory of a lextensive
list-arithmetic locally cartesian closed pretopos, as devised in [Mai05]. The main
difference is that we discharge the identification propositions as mono sets typical

Quotients over Minimal Type Theory 521

of a pretopos by simply taking propositions as primitive mono sets, without
requiring that all mono sets are propositions. In this way we avoid the validity
of the axiom of unique choice, which would instead follow under the identification
of propositions with mono sets (see [Mai05]).

The mono condition for propositions makes their proof-terms irrelevant. The
proof-irrelevance of propositions is helpful to implement subsets as in [SV98]
without the restrictions pointed out in [Car03].

3 The Setoid Model

We define the following category of sets equipped with an equivalence relation,
sometimes called “total setoids” in the literature:

Definition 1. The category Q(mTT) is defined as follows:
ObQ(mTT): the objects are pairs (A, =A) where A is a set in mTT, called
“support”, and

x =A y prop [x ∈ A, y ∈ A]

is an equivalence relation on the set A. This means that in mTT there exist
proof-terms witnessing reflexivity, symmetry and transitivity of the relation:

refl(x) ∈ x =A x [x ∈ A]
sym(x, y, z) ∈ y =A x [x ∈ A, y ∈ A, z ∈ x =A y]
trans(x, y, z, u, v) ∈ x =A z [x ∈ A, y ∈ A, z ∈ A, u ∈ x =A y, v ∈ y =A z]

MorQ(mTT): the morphisms from an object (A, =A) to (B, =B) are terms
f(x) ∈ B [x ∈ A] preserving the corresponding equality, i.e. in mTT there exists
a proof-term

pr1(x, y, z) ∈ f(x) =B f(y) [x ∈ A, y ∈ A, z ∈ x =A y]

Moreover, two morphisms f, g : (A, =A) → (B, =B) are equal if and only if in
mTT there exists a proof-term

pr2(x) ∈ f(x) =B g(x) [x ∈ A]

This category comes naturally equipped with an indexed category (or fibration)
satisfying comprehension (see [Jac99] for its definition):

Definition 2. The indexed category:

Pq : Q(mTT)OP → Cat

is defined as follows. For each object (A, =A) in Q(mTT) then Pq((A, =A)) is
the following category: ObPq((A, =A)) are the propositions φ(x) prop [x ∈ A]

depending on A and preserving the equality on A, namely there exists a proof-
term:

ps(x, y, d) ∈ φ(x) → φ(y) [x ∈ A, y ∈ A, d ∈ x =A y]1

1 Indeed, from this, by using the symmetry of x =A y it follows that φ(x) is equivalent
to φ(y) if x =A y holds.

522 M.E. Maietti

Morphisms in MorPq((A, =A)) are given by a partial order, namely

Pq((A, =A))(φ(x) , ψ(x)) ≡ φ(x) ≤ ψ(x)

iff there exists a proof-term pt(x) ∈ φ(x) → ψ(x) [x ∈ A]

Moreover, for every morphism f : (A, =A) → (B, =B) in Q(mTT) given by
f(x) ∈ B [x ∈ A] then Pq(f) is the substitution functor, i.e. Pq(f)(φ(y)) ≡
φ(f(x)) for any proposition φ(y) prop [y ∈ B] (recall that Pq is contravariant).

Lemma 1. Pq is an indexed category satisfying comprehension.

Proof. To describe the comprehension adjunction, we consider the Grothendieck
completion Gr(Pq) of Pq (see [Jac99] for its definition) and the functor T :
Q(mTT) → Gr(Pq) defined as follows:

T ((A, =A)) ≡ ((A, =A) , tt) T (f) ≡ (f, idtt)

where tt is the truth constant that can be represented by any tautology.
T has a right adjoint

Cm : Gr(Pq) → Q(mTT)

defined as follows on the objects: Cm(((A,=A) , φ)) ≡ (Σx∈Aφ(x) , =Cm) where
z1 =Cm z2 ≡ π1(z1) =A π1(z2) for z1, z2 ∈ Σx∈Aφ(x); and on the mor-
phisms: Cm((f , ≤)) ≡ f where f(z) ≡ 〈 f(π1(z)) , pt(π1(z))(π2(z)) 〉 for
z ∈ Σx∈Aφ(x) and f : (A, =A) → (B, =B).

Definition 3 (Pq-equivalence relations). Given an equivalence relation R ∈
Pq((A, =A) × (A, =A)), namely a predicate R(x, y) prop [x ∈ A, y ∈ A] that pre-
serves =A on both dependencies and is also an equivalence relation, then the
first component of the counit on ((A, =A)× (A, =A) , R) is a monic equivalence
relation in Q(mTT), and it is called a Pq-equivalence relation.

The category Q(mTT) enjoys all the categorical properties necessary to interpret
qmTT (for their definitions see, for example, [Mai05]).

Theorem 1. The category Q(mTT) is lextensive (i.e. with terminal object, bi-
nary products, equalizers and stable finite disjoint coproducts) list-arithmetic (i.e.
with parameterized lists) and locally cartesian closed (i.e. with also dependent
products) with stable effective quotients with respect to Pq-equivalence relations.
Moreover, the indexed category Pq validates first-order intuitionistic logic.

Remark 1. Note that to prove theorem 1 is crucial to have explicit proof-terms
witnessing that x =A y in a Q(mTT)-object is an equivalence relation, that a
Q(mTT)-morphism preserves the corresponding equivalence relations and when
two Q(mTT)-morphisms are equal. In other words it seems that it would not
follow if we give the definition of setoid objects, morphisms and their equality
via true-judgements of the kind x =A y true [x ∈ A, y ∈ A] as in the first setoid
model in [Hof97]2.
2 Note that the mentioned setoid model is anyway very different from Q(mTT) since

the morphism equality is simply the definitional equality of the terms between the
setoid supports.

Quotients over Minimal Type Theory 523

The interpretation of qmTT in Q(mTT). After theorem 1, in order to
interpret qmTT in Q(mTT) we can simply use the interpretation in [Mai05]
given by fibred functors (we recall that this overcomes the problem, first solved
in [Hof94], of interpreting substitution correctly when following the informal
interpretation first given by Seely in [See83] and recalled in [Joh02]). But this
interpretation is not first order since it requires to quantify over fibred functors.
Luckily, in our case we can give a predicative interpretation in the setoid model
similar to that in the completeness proof in [Mai05]. This is because the setoid
model is indeed a syntactic one!

The key point to get this interpretation is to note that the slice category of
arrows in (A, =A) is equivalent to the category of dependent setoids as defined
in [Bis67, Pal05].

Definition 4. Given an object (A, =A) of Q(mTT), abbreviated with A=, we
define a dependent setoid on the setoid (A, =A) written

B=(x) [x ∈ A=]

as a dependent set B(x) set [x ∈ A], called “dependent support”, together with
an equivalence relation

y =B(x) y′ prop [x ∈ A, y ∈ B(x), y′ ∈ B(x)].

Moreover, for any x1, x2 ∈ A there must exist

σx1,x2(y) ∈ B(x2) [x1 ∈ A, x2 ∈ A, d ∈ x1 =A x2, y ∈ B(x1)]

non depending on d ∈ x1 =A x2 and preserving the equality on B(x1), namely
there exists a proof of

σx1,x2(y) =B(x2) σx1,x2(y
′) prop [x1 ∈ A, x2 ∈ A, d ∈ x1 =A x2,

y ∈ B(x1), y′ ∈ B(x1), w ∈ y =B(x1) y′].

Furthermore, σx,x is the identity, namely there exists a proof of

σx,x(y) =B(x) y ∈ B(x) prop [x ∈ A, y ∈ B(x)]

and the σx1,x2 ’s are closed under composition, namely there exists a proof of

σx2,x3(σx1,x2(y)) =B(x3) σx1,x3(y) prop

[x1 ∈ A, x2 ∈ A, x3 ∈ A, y ∈ B(x1), d1 ∈ x1 =A x2, d2 ∈ x2 =A x3].

Categorically speaking, the category having the elements of A with their equality
as objects and σx1,x2 as (the unique) morphism from x1 to x2 forms a groupoid,
because every σx1,x2 gives rise to an isomorphism between B(x1) and B(x2).

Definition 5. Let us call Dep((A, =A)) the category whose objects are depen-
dent setoids B=(x) [x ∈ A=] on the setoid (A, =A), and whose morphisms

b(x) ∈ B=(x) [x ∈ A=]

524 M.E. Maietti

are dependent terms b(x) ∈ B(x) [x ∈ A] preserving the equality on A, namely
in mTT there exists a proof of

σx1,x2(b(x1)) =B(x2) b(x2) prop [x1 ∈ A, x2 ∈ A, d ∈ x1 =A x2].

Proposition 1. The category Q(mTT)/(A, =A) is equivalent to Dep((A, =A)).

This proposition suggests that the categorical interpretation in Q(mTT) given
in [Mai05] can be equivalently formulated by interpreting dependent sets into
dependent setoids as follows.

Sketch of the interpretation of qmTT into dependent setoids: A de-
pendent set B(x1, . . . xn) [x1 ∈ A1, . . . xn ∈ An] of qmTT is interpreted as a
dependent setoid

B=(x1, . . . xn)I [x1 ∈ A1
I
=, . . . xn ∈ An

I
=]

assuming to have generalized def. 4 to setoids with telescopic dependencies,
where B(x1, . . . xn)I [x1 ∈ A1

I , . . . xn ∈ An
I] is its dependent support.

In the following, we leave the reader to deduce himself the σ’s of the various
dependent setoids. Except for the extensional propositional equality, any propo-
sition is interpreted in the corresponding one of mTT with the warning that
its equality is trivial, namely if φ is a proposition then z =φI z′ ≡ tt for all
z, z′ ∈ φI . Hence, for example,

(φ ∨ ψ)I ≡ φI ∨ ψI (∀x∈BC(x))I ≡ ∀x∈BI CI(x).

Instead the extensional propositional equality is interpreted in the equality of
the set to which it refers:

(Eq(B, b1, b2))I ≡ bI
1 =BI bI

2

The emptyset, the singleton and the boolean universe are interpreted in them-
selves with the equality given by the propositional one: for example

(Ub)I ≡ Ub and z =UI
b

z′ ≡ Id(Ub, z, z′) for z, z′ ∈ Ub .

Instead the other constructors are interpreted as follows:

Strong Indexed Sum set: (Σx∈BC(x))I ≡ Σx∈BICI(x)
and z =Σx∈BC(x)I z′ ≡ π1(z)=BI π1(z′)∧σπ1(z),π1(z′)(π2(z))=CI(π1(z′))π2(z′)
for z, z′ ∈ Σx∈BC(x)I .

Disjoint Sum set: (B + C)I ≡ BI + CI

and z =BI+CI z′ ≡

⎧
⎨

⎩

b =BI b′ if z = inl(b) z′= inl(b′) for b, b′∈BI

c =CI c′ if z = inr(c) z′= inr(c′) for c, c′∈CI

⊥ otherwise
for z, z′ ∈ BI + CI .

Quotients over Minimal Type Theory 525

Dependent Product set: (Πx∈BC(x))I ≡
Σh∈Π

x∈BI CI(w) ∀x1,x2∈BI x1 =BI x2 → σx1,x2 (h(x1)) =CI(x2) h(x2)
and z=Π

x∈BI C(x)I z′ ≡, ∀x∈BIπ1(z)(x) =CI(x) π1(z′)(x) for z, z′∈Πx∈BI C(x)I .

Quotient set: (A/R)I ≡ AI

and z =A/RI z′ ≡ RI(z, z′) for z, z′ ∈ AI .

List set: (List(C))I ≡ List(CI)
and z=List(C)I z′ ≡, ∃l∈List(R) Id(List(CI), π1(l), z) ∧ Id(List(CI), π2(l), z′)

for z, z′ ∈ List(C)I where R ≡ Σx∈CI Σy∈CI x =CI y and πi ≡ List(πi) is the
lifting on lists of the i-th projection for i = 1, 2.

To see that the interpretation of disjoint sum sets is well-defined, recall that in
mTT the sum is disjoint thanks to the presence of the boolean universe Ub.

Remark 2. Internal logic of Q(mTT). We are not able to prove that Q(mTT)
has qmTT as its internal language. The reason is that the interpretation, of
implication, of universal quantification and of dependent product set do not
seem to be preserved by the functor ξ : Q(mTT) → C(qmTT) sending a setoid
into its quotient, where C(qmTT) is the syntactic category of qmTT defined as
in [Mai05] (note that we can naturally interpret mTT into qmTT by sending
all the constructors in the corresponding ones and, in particular, the intensional
propositional equality of mTT into the extensional one of qmTT).

However, observe that the coherent fragment cqmTT of qmTT, obtained by
cutting out implication, universal quantification and dependent product sets
from qmTT, is the internal language of the setoid model built over the corre-
sponding coherent fragment cmTT of mTT obtained by cutting out the
corresponding sets and propositions.

Remark 3. Connection with the exact completion of a weakly lex cat-
egory. The construction of total setoids on mTT corresponds categorically to
an instance of the following generalization of the exact completion construc-
tion [CV98, CC82] of a weakly lex category: we start from a weakly cartesian
category C endowed with a split comprehensive fibration P satisfying enough log-
ical laws to express the notion of equivalence relation; then we simulate the exact
completion of a weakly lex category by taking only those pseudo-equivalence re-
lations coming by comprehension from equivalence relations in the fibres of P .
If C is weakly lex and P is the codomain fibration (see [Jac99]) then our con-
struction is the exact completion of C.

Therefore, knowing the internal language of such categorical constructions
from [Mai05], we conclude that the total setoid construction coincides with the
exact completion construction as in [CV98, CC82] if we perform such a con-
struction on an extension of mTT, called MLTT, equivalent to Martin-Löf’s
type theory in [NPS90]. In order to get the the first order fragment of Martin-
Löf’s type theory it is enough to strengthen the existential quantifier of mTT to
enjoy E-Σ and C-Σ of the Strong Indexed Sum set, after adding the rule that

526 M.E. Maietti

any set A set is also a proposition A prop (recall that in mTT propositions are
not assumed to be proof-irrelevant!).

Then, the category Q(MLTT) of total setoids built on MLTT turns out to be
a list-arithmetic locally cartesian closed pretopos and it coincides with the exact
completion, as defined in [Car95, CV98], of the weakly lex category C(MLTT),
where the category C(MLTT) is defined as follows: its objects are MLTT-sets
and its morphisms from A to B are terms b(x) ∈ B [x ∈ A] and two morphisms
b1(x) ∈ B [x ∈ A] and b2(x) ∈ B [x ∈ A] are equal if there exists a proof of
Id(B, b1(x), b2(x)) prop [x ∈ A] in MLTT. The identity and composition are
defined as in the syntactic categories in [Mai05].

However, it is important to note that the total setoid model Q(MLTT) does not
seem to be closed under well-behaved quotients if we identify propositions as sets
as done in MLTT. The reason is that under this identification Q(MLTT), but also
Q(mTT), supports the axiom of choice where the quantifiers are replaced by Π and
Σ as a consequence that they validate the extensional version of Martin-Löf’s type
theory in [Mar84]. Then, effectiveness of quotients, being generally incompatible
with the axiom of choice (see [Mai99]), does not seem to be validated.

To gain well-behaved quotients in Q(MLTT) one possibility is to reason by
identifying propositions as mono sets as in the logic of a pretopos (see [Mai05]).
Instead, in Q(mTT) we get them by identifying propositions with only those
mono sets arising from propositions in mTT as in the interpretation of qmTT.
In fact, even if Q(mTT) supports quotients of all mono equivalence relations,
these do not seem to enjoy effectiveness. Categorically speaking, this means
that Q(mTT) does not seem to be a pretopos even if it has quotients for all
monic equivalence relations because we are not able to prove that all monic
equivalence relations are in bijection with Pq-equivalence relations, for which
effective quotients exist (which explains why we introduced the concept of Pq-
equivalence relation!).

As expected from [Mai99], under the identification propositions as mono sets,
Q(MLTT) looses the validity of the axiom of choice. In fact it turns out that
the propositional axiom of choice is exactly interpreted in Q(MLTT) (and also in
Q(mTT)) as the extensional axiom of choice in [ML06, Car04] following the given
interpretation of qmTT in Q(mTT). Therefore, the arguments in [ML06, Car04]
exactly show that the propositional axiom of choice fails to be valid in the total
setoid models Q(MLTT), and even more in Q(mTT), under the identification
of propositions with mono sets. In Q(MLTT) the propositional axiom of choice
survives only for those setoids whose equivalence relation is the propositional
equality of MLTT. Only the validity of the axiom of unique choice continues to
hold in its generality in Q(MLTT) (see also [ML06]).

Remark 4. In order to interpret quotients in mTT we also considered to mimic
the exact completion on a regular category in [CV98, Hyl82] by taking only
those equivalence relations obtained by comprehension from the propositional
fibration. But we ended up just in a list-arithmetic pretopos, for example not
necessarily closed under dependent products, since mTT is predicative and the
axiom of choice is not a theorem there.

Quotients over Minimal Type Theory 527

Acknowledgements. I thank Giovanni Curi, Ferruccio Guidi, Pino Rosolini,
Giovanni Sambin, Thomas Streicher, Silvio Valentini for very useful discussions
on the topics treated here, and Jesper Carlström about the notion of Ub.

References

[BCP03] Barthes, G., Capretta, V., Pons, O.: Setoids in type theory. J. Funct. Pro-
gramming, Special issue on Logical frameworks and metalanguages 13(2),
261–293 (2003)

[Bis67] Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill Book Co,
New York (1967)

[Car95] Carboni, A.: Some free constructions in realizability and proof theory. J.
Pure Appl. Algebra 103, 117–148 (1995)

[Car03] Carlström, J.: Subsets, quotients and partial functions in Martin-Löf’s type
theory. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646,
Springer, Berlin (2003)

[Car04] Carlström, J.: EM + Ext- + ACint is equivalent to ACext. Mathematical
Logic Quarterly 50(3), 236–240 (2004)

[CC82] Carboni, A., Celia Magno, R.: The free exact category on a left exact one.
Journal of Australian Math. Soc. 33, 295–301 (1982)

[CR00] Carboni, A., Rosolini, G.: Locally cartesian closed exact completions. J. Pure
Appl. Algebra, Category theory and its applications (Montreal, QC 1997)
pp. 103–116, (2000)

[CV98] Carboni, A., Vitale, E.M.: Regular and exact completions. Journal of Pure.
and Applied Algebra 125, 79–116 (1998)

[dB91] de Bruijn, N.G.: Telescopic mapping in typed lambda calculus. Information
and Computation 91, 189–204 (1991)

[Hof94] Hofmann, M.: On the interpretation of type theory in locally cartesian closed
categories. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp.
427–441. Springer, Heidelberg (1995)

[Hof97] Hofmann, M.: Extensional Constructs in Intensional Type Theory. In: Dis-
tinguished Dissertations, Springer, Heidelberg (1997)

[Hyl82] Hyland, J.M.E.: The effective topos. In: The L.E.J. Brouwer Centenary Sym-
posium (Noordwijkerhout, 1981), Stud. Logic Foundations Math. Stud. Logic
Foundations Math, vol. 110, pp. 165–216. North-Holland, Amsterdam-New
York (1982)

[Jac99] Jacobs, B.: Categorical Logic and Type Theory, Studies in Logic. Studies in
Logic, vol. 141. Elsevier, Amsterdam (1999)

[Joh02] Johnstone, P.T.: Sketches of an Elephant: a Topos Theory Compendium.
Vol. 2., volume 43 of Oxford Logic Guides. The Clarendon Press, Oxford
University Press, New York (2002)

[Mai99] Maietti, M.E.: About effective quotients in constructive type theory. In:
Naraschewski, W., Altenkirch, T., Reus, B. (eds.) TYPES 1998. LNCS,
vol. 1657, pp. 164–178. Springer, Heidelberg (1999)

[Mai05] Maietti, M.E.: Modular correspondence between dependent type theories
and categories including pretopoi and topoi. Mathematical Structures in
Computer Science 15(6), 1089–1149 (2005)

[Mar84] Martin-Löf, P.: Intuitionistic Type Theory, notes by G. Sambin of a series
of lectures given in Padua, June 1980. Bibliopolis, Naples (1984)

528 M.E. Maietti

[Mar85] Martin Löf, P.: On the meanings of the logical constants and the justifications
of the logical laws. In: Proceedings of the conference on mathematical logic,
volume 2, pp. 203–281. Univ. Siena, Siena, 1985. Reprinted in Nordic J.
Philos. Logic, 1(1):11–60 (1996)

[ML06] Martin-Löf, P.: 100 years of Zermelo’s axiom of choice:what was the problem
with it? The Computer Journal 49(3), 10–37 (2006)

[MS05] Maietti, M.E., Sambin, G.: Toward a minimalist foundation for construc-
tive mathematics. In: Crosilla, L., Schuster, P. (eds.) From Sets and Types
to Topology and Analysis: Practicable Foundations for Constructive Mathe-
matics, in Oxford Logic Guides, vol. 48, pp. 91–114. Oxford University Press,
Oxford (2005)

[MV99] Maietti, M.E., Valentini, S.: Can you add powersets to Martin-Löf intuition-
istic type theory? Mathematical Logic Quarterly 45, 521–532 (1999)

[NPS90] Nordström, B., Petersson, K., Smith, J.: Programming in Martin Löf’s Type
Theory. Clarendon Press, Oxford (1990)

[Pal05] Palmgren, E.: Bishop’s set theory. Slides for lecture at the TYPES summer
school (2005)

[Sam03] Sambin, G.: Some points in formal topology. Theoretical Computer Science
(2003)

[See83] Seely, R.A.G.: Hyperdoctrines, natural deduction and the Beck condition.
Zeitschr. f. Math. Logik. und Grundlagen d. Math. 29, 505–542 (1983)

[SV98] Sambin, G., Valentini, S.: Building up a toolbox for Martin-Löf’s type the-
ory: subset theory. In: Sambin, G., Smith, J. (eds.) Twenty-five years of
constructive type theory, Proceedings of a Congress held in Venice, October
1995, pp. 221–244. Oxford U. P, Oxford (1998)

Appendix: The qmTT Typed Calculus

We present here the inference rules to form sets and propositions in qmTT. Note
that to write the elimination constructors of the various sets and propositions
we adopt the higher order syntax as in [NPS90]3.

For brevity, in presenting formal rules we omit the corresponding equality
rules that are defined as in [Mar84].

The contexts are generated by the same rules as for mTT in [MS05]. Note
that the piece of context common to all judgements involved in a rule is omitted
and that the typed variables appearing in a context are meant to be added to
the implicit context as the last one. We also recall that the contexts are made of
assumptions on sets only, and that we have the rule prop-into-set and prop-
mono mentioned in section 2.
3 For example, note that the elimination constructor of disjunction El∨(w, aB, aC)

binds the open terms aB(x) ∈ A [x ∈ B] and aC(y) ∈ A [y ∈ C]. Hence these
open terms should be then encoded into the elimination constructor given that they
are needed in the disjunction conversion rules. To simplify the notation we use the
higher order syntax as in [NPS90]. Thanks to this syntax from the open term aB(x) ∈
A [x ∈ B] we get (x ∈ B)aB(x) of higher type (x ∈ B) A. Then by η-conversion
among higher types (x ∈ B)aB(x) is equal to aB and we can simply write the short
expression aB to recall the open term where it comes from.

Quotients over Minimal Type Theory 529

The rules to generate the propositions in qmTT are the following:

Falsum

F-Fs) ⊥ prop E-Fs)
a ∈ ⊥ A prop

ro(a) ∈ A

Propositional Equality

Eq)
C set c ∈ C d ∈ C

Eq(C, c, d) prop
I-Eq)

c ∈ C

eqC(c) ∈ Eq(C, c, c)
E-Eq)

p ∈ Eq(C, c, d)

c = d ∈ C

Implication

F-Im
B prop C prop

B → C prop
I-Im

B prop C prop c(x) ∈ C [x ∈ B]

λ→xB.c(x) ∈ B → C

E-Im
b ∈ B f ∈ B → C

Ap→(f, b) ∈ C

Conjunction

F-∧)
B prop C prop

B ∧ C prop
I-∧)

B prop C prop b ∈ B c ∈ C

〈b,∧ c〉 ∈ B ∧ C

E1-∧ d ∈ B ∧ C

πB
1 (d) ∈ B

E2-∧ d ∈ B ∧ C

πC
2 (d) ∈ C

Disjunction

F-∨)
B prop C prop

B ∨ C prop

I1-∨)
B prop C prop b ∈ B

inl∨(b) ∈ B ∨ C
I2-∨)

B prop C prop c ∈ C

inr∨(c) ∈ B ∨ C

E-∨)
A prop w ∈ B ∨ C aB(x) ∈ A [x ∈ B] aC(y) ∈ A [y ∈ C]

El∨(w, aB , aC) ∈ A
Existential quantification

F-∃)
C(x) prop [x ∈ B]

∃x∈BC(x) prop
I-∃)

C(x) prop [x ∈ B] b ∈ B c ∈ C(b)

〈b,∃ c〉 ∈ ∃x∈BC(x)

E-∃)
M prop d ∈ ∃x∈BC(x) m(x, y) ∈ M [x ∈ B, y ∈ C(x)]

El∃(d,m) ∈ M

Universal quantification

F-∀ C(x) prop [x ∈ B]

∀x∈BC(x) prop
I-∀ C(x) prop [x ∈ B] c(x) ∈ C(x) [x ∈ B]

λ∀xB.c(x) ∈ ∀x∈BC(x)

E-∀ b ∈ B f ∈ ∀x∈BC(x)

Ap∀(f, b) ∈ C(b)

The rules to generate qmTT sets are the following:

Empty set

F-Em) N0 set E-Em)
a ∈ N0 A(x) set [x ∈ N0]

empo(a) ∈ A(a)

530 M.E. Maietti

Singleton set

S) N1 set I-S) � ∈ N1 C-S)
t ∈ N1 M(z) [z ∈ N1] c ∈ M(�)

ElN1(t, c) ∈ M(t)

Indexed Sum set

F-Σ)
C(x) set [x ∈ B]

Σx∈BC(x) set
I-Σ)

b ∈ B c ∈ C(b)

〈b, c〉 ∈ Σx∈BC(x)

E-Σ)

M(z) [z ∈ Σx∈BC(x)]

d ∈ Σx∈BC(x) m(x, y) ∈ M(〈x, y〉) [x ∈ B, y ∈ C(x)]

ElΣ(d, m) ∈ M(d)

C-Σ)

M(z) [z ∈ Σx∈BC(x)]

b ∈ B c ∈ C(b) m(x, y) ∈ M(〈x, y〉) [x ∈ B, y ∈ C(x)]

ElΣ(〈b, c〉, m) = m(b, c) ∈ M(〈b, c〉)
Disjoint Sum set

+)
C set B set
C + B set

I1-+)
c ∈ C

inl(c) ∈ C + B
I2-+)

b ∈ B

inr(b) ∈ C + B

E-+)

A(z) [z ∈ C + B]

w ∈ C + B aC(x) ∈ A(inl(x)) [x ∈ C] aB(y) ∈ A(inr(y)) [y ∈ B]

El+(w, aC , aB) ∈ A(w)

C1-+)

A(z) [z ∈ C + B]

c ∈ C aC(x) ∈ A(inl(x)) [x ∈ C] aB(y) ∈ A(inr(y)) [y ∈ B]

El+(inl(c), aC , aB) = aC(c) ∈ A(inl(c))

C2-+)

A(z) [z ∈ C + B]

b ∈ B aC(x) ∈ A(inl(x)) [x ∈ C] aB(y) ∈ A(inr(y)) [y ∈ B]

El+(inr(b), aC , aB) = aB(b) ∈ A(inr(b))
Dependent Product set

F-Π
C(x) set [x ∈ B]

Πx∈BC(x) set
I-Π

c ∈ C(x)[x ∈ B]

λxB.c ∈ Πx∈BC(x)

E-Π
b ∈ B f ∈ Πx∈BC(x)

Ap(f, b) ∈ C(b)
βC-Π

b ∈ B c(x) ∈ C(x)[x ∈ B]

Ap(λxB.c(x), b) = c(b) ∈ C(b)

βC-Π
c ∈ Πx∈BC(x)

λxB.Ap(c, x) = c ∈ Πx∈BC(x)

Boolean universe

F-bU Ub set I1-bU Ñ0 ∈ Ub I2-bU Ñ1 ∈ Ub

E-bU
d ∈ Ub

T (d) set
βC1-bU T (Ñ0) = N0 βC2-bU T (Ñ1) = N1

Quotients over Minimal Type Theory 531

Quotient set

Q)

R(x, y) prop [x ∈ A, y ∈ A]

refl(x) ∈ R(x, x) [x ∈ A]
sym(x, y, z) ∈ R(y, x) [x ∈ A, y ∈ A, z ∈ R(x, y)]
trans(x, y, z, u, v) ∈ R(x, z) [x ∈ A, y ∈ A, z ∈ A,

u ∈ R(x, y), v ∈ R(y, z)]

A/R set

I-Q)
a ∈ A A/R set

[a] ∈ A/R
eq-Q)

a ∈ A b ∈ A d ∈ R(a, b) A/R set
[a] = [b] ∈ A/R

E-Q)

L(z) [z ∈ A/R]

p ∈ A/R l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x])

[
x ∈ A,
y ∈ A,d ∈ R(x, y)

]

ElQ(l, p) ∈ L(p)

C-Q)

L(z) [z ∈ A/R]

a ∈ A l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A,d ∈ R(x, y)]

ElQ(l, [a]) = l(a) ∈ L([a])

Effectiveness

a ∈ A b ∈ A [a] = [b] ∈ A/R

eff(a, b) ∈ R(a, b)

List set

list)
C set

List(C) set
I1-list) ε ∈ List(C) I2-list)

s ∈ List(C) c ∈ C

cons(s, c) ∈ List(C)

E-list)

L(z) [z ∈ List(C)]

s ∈ List(C) a ∈ L(ε) l(x, y, z) ∈ L(cons(x, y))

[
x ∈ List(C),
y ∈ C, z ∈ L(x)

]

ElList(a, l, s) ∈ L(s)

C1-list)

L(z) [z ∈ List(C)]

a ∈ L(ε) l(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(a, l, ε) = a ∈ L(ε)

C2-list)

L(z) [z ∈ List(C)]

s ∈ List(C) c ∈ C a ∈ L(ε) l(x, y, z) ∈ L(cons(x, y))

[
x ∈ List(C),
y ∈ C, z ∈ L(x)

]

ElList(a, l, cons(s, c)) = l(s, c, ElList(a, l, s)) ∈ L(cons(s, c))

Note that List(N1) corresponds to the set of natural numbers represented as
lists on a singleton, with 0 ≡ ε and s(n) ≡ cons(n, ∗) for n ∈ List(N1).

Hairpin Completion Versus Hairpin Reduction

Florin Manea1 and Victor Mitrana1,2

1 Faculty of Mathematics and Computer Science, University of Bucharest
Str. Academiei 14, 70109, Bucharest, Romania

flmanea@funinf.cs.unibuc.ro
2 Research Group in Mathematical Linguistics, Rovira i Virgili University

Pl. Imperial Tarraco 1, 43005, Tarragona, Spain
mitrana@fmi.unibuc.ro

Abstract. We define the hairpin reduction as the inverse operation of
a formal operation on words and languages suggested by DNA biochem-
istry, namely the hairpin completion, introduced in [3]. We settle the
closure properties of some classes in the Chomsky hierarchy as well as
some complexity classes under the non-iterated version of the hairpin re-
duction, in comparison with the hairpin completion. Then an algorithm
that decides whether or not a regular language coincides with its primi-
tive hairpin root is presented. Finally, we discuss a cubic time algorithm
for computing the common ancestors of two given words. This algorithm
may be used also for computing the closest or farthest primitive hairpin
root of a given word.

Keywords: DNA computing, formal languages, hairpin completion, hair-
pin reduction, primitive hairpin root.

1 Introduction

A DNA molecule consists of a double strand, each DNA single strand being com-
posed by nucleotides which differ from each other by their bases: A (adenine),
G (guanine), C (cytosine), and T (thymine). The two strands which form the
DNA molecule are kept together by the hydrogen bond between the bases: A
always bonds with T, while C with G. This paradigm is usually referred as the
Watson-Crick complementarity. Another important biological principle is the
annealing, that refers to fusing two single stranded molecules by complementary
base. This operation of fusing two single stranded molecules by complementary
base requires a heated solution containing the two strands, which is cooled down
slowly. It is known that a single stranded DNA molecule might produce a hair-
pin structure, a phenomenon based on these two biological principles. In many
DNA-based algorithms, these DNA molecules cannot be used in the subsequent
computations. Hairpin or hairpin-free DNA structures have numerous applica-
tions to DNA computing and molecular genetics. In a series of papers (see, e.g.,
[4,6,7]) such structures are discussed in the context of finding sets of DNA se-
quences which are unlikely to lead to “bad” hybridizations. On the other hand,
these molecules which may form a hairpin structure have been used as the basic

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 532–541, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Hairpin Completion Versus Hairpin Reduction 533

feature of a new computational model reported in [14], where an instance of
the 3-SAT problem has been solved by a DNA-algorithm whose second phase is
mainly based on the elimination of hairpin structured molecules. Different types
of hairpin and hairpin-free languages are defined in [12], [2], and more recently
in [9], where they are studied from a language theoretical point of view.

The source of inspiration for introducing in [3] a new formal operation on
words, namely hairpin completion, consists of three biological principles. Be-
sides the Watson-Crick complementarity and annealing, the third biological phe-
nomenon is that of lengthening DNA by polymerases. This phenomenon produces
a complete double stranded DNA molecule as follows: one starts with two sin-
gle strands such that one (usually called primer) is bonded to a part of the
other (usually called template) by Watson-Crick complementarity and a poly-
merization buffer with many copies of the four nucleotides. Then polymerases
will concatenate to the primer by complementing the template.

We now informally explain the hairpin completion operation and how it can be
related to the aforementioned biological concepts. Let us consider the following
hypothetical biological situation: we are given one single stranded DNA molecule
z such that either a prefix or a suffix of z is Watson-Crick complementary to a
subword of z. Then the prefix or suffix of z and the corresponding subword of z
get annealed by complementary base pairing and then z is lengthened by DNA
polymerases up to a complete hairpin structure. The mathematical expression
of this hypothetical situation defines the hairpin completion operation. By this
formal operation one can generate a set of words, starting from a single word.
This operation is considered in [3] as an abstract operation on formal languages.
Some algorithmic problems regarding the hairpin completion are investigated in
[10].

In this paper, we consider the inverse operation of hairpin completion, namely
hairpin reduction. Naturally, the hairpin reduction of a word x consists of all
words y such that x can be obtained from y by hairpin completion. We settle the
closure properties of some classes in the Chomsky hierarchy as well as some com-
plexity classes under the non-iterated version of hairpin reduction, in comparison
with the hairpin completion. A primitive hairpin root of a given word can be
obtained by iterated hairpin reductions applied to the original word (including
zero steps) until no hairpin reduction is applicable anymore. Then an algorithm
that decides whether or not a regular language coincides with its primitive hair-
pin root is presented. Finally, we discuss a cubic time algorithm for computing a
common ancestor of two given words. This algorithm may be used for computing
the closest or farthest primitive hairpin root of a given word.

2 Basic Definitions

We assume the reader to be familiar with the fundamental concepts of formal
language theory and automata theory, particularly with the notions of grammar
and finite automaton [13].

534 F. Manea and V. Mitrana

An alphabet is a finite set of letters. For a finite set A we denote by card(A)
the cardinality of A. The set of all words over an alphabet V is denoted by V ∗.
The empty word is written ε; moreover, V + = V ∗ \ {ε}. Given a word w over
an alphabet V , we denote by |w| its length, while |w|a denotes the number of
occurrences of the letter a in w. If w = xyz for some x, y, z ∈ V ∗, then x, y, z are
called prefix, subword, suffix, respectively, of w. For a word w, w[i..j] denotes
the subword of w starting at position i and ending at position j, 1 ≤ i ≤ j ≤ |w|.
If i = j, then w[i..j] is the i-th letter of w, which is simply denoted by w[i].

Let Ω be a “superalphabet”, that is an infinite set such that any alphabet
considered in this paper is a subset of Ω. In other words, Ω is the universe of
the languages in this paper, i.e., all words and languages are over alphabets that
are subsets of Ω. An involution over a set S is a bijective mapping σ : S −→ S
such that σ = σ−1. Any involution σ on Ω such that σ(a) �= a for all a ∈ Ω
is said to be, in this paper’s context, a Watson-Crick involution. Despite that
this is nothing more than a fixed point-free involution, we prefer this terminology
since the hairpin completion defined later is inspired by the DNA lengthening by
polymerases, where the Watson-Crick complementarity plays an important role.
Let · be a Watson-Crick involution fixed for the rest of the paper. The Watson-
Crick involution is extended to a morphism from Ω∗ to Ω∗ in the usual way. We
say that the letters a and a are complementary to each other. For an alphabet
V , we set V = {a | a ∈ V }. Note that V and V can intersect and they can
be, but need not be, equal. Remember that the DNA alphabet consists of four
letters, VDNA = {A, C, G, T }, which are abbreviations for the four nucleotides
and we may set A = T , C = G.

We denote by (·)R the mapping defined by R : V ∗ −→ V ∗, (a1a2 . . . an)R =
an . . . a2a1. Note that R is an involution and an anti-morphism ((xy)R = yRxR

for all x, y ∈ V ∗). Note also that the two mappings · and ·R commutes, namely,
for any word x, (x)R = xR holds.

Let V be an alphabet, for any w ∈ V + we define the k-hairpin completion of
w, denoted by HCk(w), for some k ≥ 1, as follows:

HCPk(w) = {γRw|w = αβαRγ, |α| = k, α, β, γ ∈ V +}
HCSk(w) = {wγR|w = γαβαR, |α| = k, α, β, γ ∈ V +}

HCk(w) = HCPk(w) ∪ HCSk(w)

The hairpin completion of w is defined by

HC(w) =
⋃

k≥1

HCk(w).

This operation is schematically illustrated in Figure 1.

α

βαRγ
γR

Fig. 1. Hairpin completion

α

βαRγR

γ

Hairpin Completion Versus Hairpin Reduction 535

Clearly, HCk+1(w) ⊆ HCk(w) for any w ∈ V + and k ≥ 1, hence HC(w) =
HC1(w). The hairpin completion is naturally extended to languages by

HCk(L) =
⋃

w∈L

HCk(w) HC(L) =
⋃

w∈L

HC(w).

The iterated version of the hairpin completion is defined as usual by:

HC0
k(w) = {w}, HCn+1

k (w) = HCk(HCn
k (w)), HC∗

k(w) =
⋃

n≥0 HCn
k (w)

HC0(w) = {w}, HCn+1(w) = HC(HCn(w)), HC∗(w) =
⋃

n≥0 HCn(w)

HC∗
k(L) =

⋃

w∈L

HC∗
k(w) HC∗(L) =

⋃

w∈L

HC∗(w).

Of course, all these phenomena are considered here in an idealized way. For
instance, we allow polymerase to extend in either end (3’ or 5’) despite that, due
to the greater stability of 3’ when attaching new nucleotides, DNA polymerase
can act continuously only in the 5’−→ 3’ direction. However, polymerase can
also act in the opposite direction, but in short “spurts” (Okazaki fragments).
Moreover, in order to have a “stable” hairpin structure the subword x should be
sufficiently long.

Let V be an alphabet, for any w ∈ V + we define the k-hairpin reduction of
w, denoted by HRk(w), for some k ≥ 1, as follows:

HRPk(w) = {αβαRγR|w = γαβαRγR, |α| = k, α, β, γ ∈ V +}
HRSk(w) = {γαβαR|w = γαβαRγR, |α| = k, α, β, γ ∈ V +}
HRk(w) = HCPk(w) ∪ HCSk(w)

The hairpin reduction of w is defined by

HR(w) =
⋃

k≥1

HRk(w).

The hairpin reduction is naturally extended to languages by

HRk(L) =
⋃

w∈L

HRk(w) HR(L) =
⋃

w∈L

HR(w).

The iterated version of the hairpin reduction is defined as usual by:

HR0
k(w) = {w}, HRn+1

k (w) = HRk(HRn
k (w)), HR∗

k(w) =
⋃

n≥0 HRn
k (w)

HR0(w) = {w}, HRn+1(w) = HR(HRn(w)), HR∗(w) =
⋃

n≥0 HRn(w)

HR∗
k(L) =

⋃

w∈L

HR∗
k(w) HR∗(L) =

⋃

w∈L

HR∗(w).

Note that x ∈ HC∗
k(y) is equivalent to y ∈ HR∗

k(x).
An element in HC∗

k(w) is sometimes called k-descendant of w while an element
of HR∗

k(w) is sometimes called k-ancestor of w.

536 F. Manea and V. Mitrana

3 The Non-iterated Case

In this section we make a brief comparison between the non-iterated hairpin com-
pletion and reduction as formal operations on languages. A family of languages F
is closed under hairpin completion/reduction if the hairpin completion/reduction
of any language from F lies in F .

First, we recall from [3]:

Theorem 1. For any integer k ≥ 1, a language is linear if and only if it is the
morphic image of the k-hairpin completion of a regular language.

Consequently, the class of regular languages is not closed under hairpin comple-
tion. However, the situation changes in the case of hairpin reduction.

Theorem 2. The class of regular languages is closed under k-hairpin reduction
for any k ≥ 1.

Proof. Assume that L is a regular language and let A = (Q, V, q0, {s}, δ) a finite
automaton that accepts L and has one final state only, namely s. We further
assume that there is no a ∈ V and q ∈ Q such that q0 ∈ δ(q, a). For a given
integer k ≥ 1, we show first that HRSk(L) is regular. Let A′ = (Q′, V, q′0, F

′, δ′)
be the non-deterministic finite automaton defined as follows:

Q′ = Q × Q ∪ {q(x) | q ∈ Q, x ∈ V ∗, 1 ≤ |x| ≤ k} × Q ∪
{q[x] | q ∈ Q, x ∈ V ∗, |x| ≤ k} × Q

F ′ = {(q[ε], q) | q ∈ Q},

q′0 = (q0, s),
− δ′((q0, s), a) = (δ(q0, a) × {p | s ∈ δ(p, a)}),
− δ′((q, r), a) = (δ(q, a) × {p | r ∈ δ(p, a)}) ∪ {(t(a), r) | t ∈ δ(q, a)},

− δ′((q(x), r), a) =
{

{(t(xa), r) | t ∈ δ(q, a)}, if |x| ≤ k − 1
{(t[x], r), (t(x), r) | t ∈ δ(q, a)}, if |x| = k

− δ′((q[xa], r), a) = {(t[x], r) | t ∈ δ(q, a)}.

In the definition of δ′, we take q, r ∈ Q \ {q0}, x ∈ V ∗, |x| ≤ k.
It is rather easy to see that A′ accepts exactly HRSk(L). Since HRPk(L) =

(HRS(LR))R, the proof is complete. �

The class of context-free languages behaves in the same way with respect to the
closure under hairpin completion and reduction. Namely,

Theorem 3. The class of context-free languages is closed under neither hairpin
completion nor hairpin reduction.

Proof. The non-closure under hairpin completion is shown in [3]. We take the
context free language L = {bancanbdbamcamb | n, m ≥ k}. Given any k ≥ 1,
HRk(L) intersected with the regular language defined by the regular expres-
sion ba+ca+bdba+c gives the non-context-free language L = {bancanbdbanc |
n ≥ k}. �

Hairpin Completion Versus Hairpin Reduction 537

The behavior of the class P of polynomially recognizable languages with respect
to the hairpin completion/reduction is the same, namely

Theorem 4. For every k ≥ 1, if L is recognizable in O(f(n)) time, then both
HCk(L) and HRk(L) are recognizable in O(nf(n)) time. Therefore, P is closed
under hairpin reduction.

Proof. We consider here the hairpin reduction only; the statement for hairpin
completion is proved in [10]. Let L ⊆ V ∗ be a language recognizable in O(f(n))
time, k be an positive integer, and w an arbitrary word over V of length n. The
next function decides whether or not w ∈ HRSk(L) in O(nf(n)) time.

Algorithm 1.
function Rec HRS(w, L, k);
begin
for i=1 to

[
n−1

2

]

if (w[i + 1..i + k − 1] = w[n − k + 1..n]R) and (ww[1..i]R ∈ L)

then Rec HRS:=true; halt;
endif;

endfor;
Rec HRS:=false;
end.

A similar function can be easily constructed for deciding whether or not w ∈
HRPk(L) in O(nf(n)) time. �

In [10] one proves that the n factor is not needed for the class of regular and
context-free languages in the case of hairpin completion. In the case of hairpin
reduction, the n factor is still not needed for regular languages as shown below,
but we do not know what happens with the class of context-free languages.

Let L be a regular language accepted by the deterministic finite automaton
A = (Q, V, q0, F, δ). The next function decides whether or not w ∈ HRSk(L) in
O(n) time.

Algorithm 2.
function Rec HRS REG(w, L, k);
begin
q := δ(q0, w);
a[0] := F ;
for i=1 to

[
n−1

2

]
a[i] = {s ∈ Q | δ(s, w[i]) ∈ a[i − 1]};

endfor;
for i=1 to

[
n−1

2

]

if (w[i + 1..i + k − 1] = w[n − k + 1..n]R) and (q ∈ a[i])

then Rec HRS REG:=true; halt;
endif;

endfor;
Rec HRS REG:=false;
end.

538 F. Manea and V. Mitrana

The case of space complexity classes is slightly different, namely:

Theorem 5. Let f(n) ≥ log n be a space-constructible function.
1. NSPACE(f(n)) and DSPACE(f(n)) are closed under k-hairpin comple-

tion for any k ≥ 1.
2. If f(n + n/2) ∈ O(f(n)), then NSPACE(f(n)) and DSPACE(f(n)) are

closed under k-hairpin reduction for any k ≥ 1.

Proof. Again, we prove here the closure under hairpin reduction only. Let L ⊆ V ∗

be a language recognizable by an off-line Turing machine in O(f(n)) space, k be
an positive integer, and w an arbitrary word over V of length n. The function
defined by Algorithm 1 can clearly be implemented on an off-line nondetermin-
istic (multi-tape) Turing machine in O(f(n)) space. Note that log n is needed
in order to store the value of i within the input word w that indicates the cur-
rent word ww[1..i]R whose membership to L is tested. As the maximal length of
ww[1..i]R is n + n/2, and f(n + n/2) ∈ O(f(n)), the overall space of the Turing
machine is in O(f(n)). By finite state one can keep track of whether or not the
first condition of the if statement is satisfied. �

Note that the class of function satisfying the conditions required by the second
statement of the previous theorem is pretty large; it contains all polynomials,
all functions logp n and is closed under addition and multiplication.

4 The Iterated Case

As shown in [3,10], Theorem 5 remains valid for iterated hairpin completion
while the n factor from Theorem 4 becomes n2 for iterated hairpin completion;
however, this factor is not needed in the case of context-free languages. The
situation of iterated hairpin reduction seems much more difficult: we were not
able to settle even whether or not the language HR∗

k(L) is always recursive
provided that L is regular.

We consider here another concept that appears attractive to us. Given a word
x ∈ V ∗ and a positive integer k, the word y is said to be the primitive hairpin
root of x if the following two conditions are satisfied:

(i) y ∈ HR∗
k(x)(or, equivalent, x ∈ HC∗

k(y)),
(ii) HRk(y) = ∅.

In other words, y can be obtained from x by iterated hairpin reduction (maybe in
zero steps) and y cannot be further reduced by hairpin reduction. Clearly, a word
may have more than one primitive hairpin root; the set of all primitive hairpin
roots of a word x is denoted by Hkroot(x). Naturally, the primitive hairpin root
of a language L is defined by Hkroot(L) =

⋃

x∈L

Hkroot(x).

We start our investigation on primitive hairpin roots with some remarks about
the primitive hairpin root of a regular language. Clearly, a given language L is

Hairpin Completion Versus Hairpin Reduction 539

its primitive hairpin root if and only if every word of L is its primitive hairpin
root, if and only if HRk(L) = ∅. Since HRk(L) is a regular language for any
regular language L, it follows that one can decide whether or not a given regular
language is its primitive hairpin root. Moreover, if Hkroot(L) �= L, then it might
happen that Hproot(L) = L for some p > k; as soon as Hproot(L) = L, then
Htroot(L) = L for all t ≥ p. Therefore, it makes sense to compute the minimal
k, if any, such that Hkroot(L) = L.

Theorem 6. Given a regular language L, one can decide whether or not there
exists k such that Hkroot(L) = L. Moreover, if such a k exists, then one can
algorithmically compute the minimal one in polynomial time with respect to the
number of states of the minimal automaton recognizing L.

Proof. Let L be a regular language and let A = (Q, V, q0, F, δ) be the minimal
finite automaton, with n states, accepting L. The following algorithm outputs
the minimal k such that Hkroot(L) = L or k = ∞ provided that there is no k
such that Hkroot(L) = L.

Algorithm 3.
begin
k := 0;
for every pair of states (q1, q2) such that δ(q1, x) = q2 for some x ∈ V +

L0(q1) = {w ∈ V + | δ(q0, w) = q1};
Lf (q2) = {w ∈ V + | δ(q2, w) ∈ F};
if L0(q1) ∩ Lf (q2)R is infinite then k := ∞; halt; else

if max{|x| | x ∈ L0(q1)∩Lf (q2)R} > k then k := max{|x| | x ∈ L0(q1)∩Lf (q2)R};
endif;

endif;
endfor
end.

It is clear that the automaton recognizing the intersection L0(q1) ∩ Lf(q2)R

can be constructed in O(n2). The finiteness of this intersection can be decided
in O(n2). The length of the longest word in the aforementioned intersection,
provided that it is finite, can be computed in O(n2). Therefore, the overall
computing time of the algorithm is O(n4). �

By the results reported in [10], given x and y one can decide whether or not y is
a descendant of x in time O(|y|2); in other words, given x and y one can decide
whether or not x is an ancestor of y in time O(|y|2). Since one can test in linear
time if HRk(x) = ∅, given a word x, it follows that for two words x and y one
can decide whether or not x is a primitive hairpin root of y in time O(|y|2).

On the other hand, the problem of deciding the existence of a common de-
scendant of two given words is left open in [10]. We show that the existence of
a common ancestor of two given words is decidable in polynomial time.

Theorem 7. Given two words x, y, one can decide the existence of a k-common
ancestor in O(max(|x|, |y|)3) for any k ≥ 1.

540 F. Manea and V. Mitrana

Proof. Assume that x is a word of length n; first we compute an n × n matrix
Px defined by

Px[i][j] =
{

max({t | x[i..i + t − 1] = x[j − t + 1..j]R} ∪ {0}), j − i ≥ 2k
0, otherwise

This matrix can be easily computed in time O(n2) by using the relation

Px[i][j] =
{

Px[i + 1][j − 1] + 1, if x[i] = x[j]
0, if x[i] �= x[j]

Then we compute the matrix Mx[i][j] defined by

Mx[i][j] = min{t | x[i..j] is obtained from x by t hairpin reductions}.

This computation can be accomplish in O(n3) time as shown in the next algo-
rithm. In this algorithm, S is a queue storing pairs of integers between 1 and
n; by −→ we denote the insertion of an element in the queue while the extrac-
tion of an element from the queue is denoted by ←−. We assume that initially
Mx[1][n] = 0 and Mx[i][j] = ∞ for all (i, j) �= (1, n).

Algorithm 4.
begin
(1, n) −→ S;
while S �= ∅

(i, j) ←− S;
if Px[i][j] > k then

for t = 1 to Px[i][j] − k

if Mx[i][j − t] > Mx[i][j] + 1 then Mx[i][j − t] := Mx[i][j] + 1

if (i, j − t) has never been in S then (i, j − t) −→ S
endif;

endif;
if Mx[i + t][j] > Mx[i][j] + 1 then Mx[i + t][j] := Mx[i][j] + 1

if (i + t, j) has never been in S then (i + t, j) −→ S
endif;

endif;
endfor;

endif;
endwhile;
end.

We now compute Py and My in the same way. The overall time needed so
far is O(|x|3 + |y|3). Finally, we check for every subword x[i..j] of x such that
Mx[i][j] �= ∞ whether there exist s, t such that x[i..j] = y[s..t] and My[s][t] �= ∞.
This step can be accomplished, either using the KMP algorithm ([8]) or using
the Galil-Seiferas algorithm ([5]), in time O(|x|2(|x| + |y|)), which concludes the
proof. �

Hairpin Completion Versus Hairpin Reduction 541

The hairpin reduction distance between two words x and y is defined as the
minimal number of hairpin reduction which can be applied either to x in order
to obtain y or to y in order to obtain x. If none of them can be obtained from the
other by iterated hairpin reduction, then the distance is ∞. Clearly, this measure
is not a mathematical distance. As soon as the array Mx has been constructed,
one can find a primitive hairpin root of x closest or farthest to x without extra
time. Also the common primitive root of x and y or a common ancestor, such
that the sum of its hairpin reduction distance to x and y is minimum, can be
computed in the same computational time.

References

1. Bottoni, P., Labella, A., Manca, V., Mitrana, V.: Superposition based on Watson-
Crick-like complementarity. Theory of Computing Systems 39(4), 503–524 (2006)

2. Castellanos, J., Mitrana, V.: Some remarks on hairpin and loop languages. In: Ito,
M., Păun, G., Yu, S. (eds.) Words, Semigroups, and Translations, pp. 47–59. World
Scientific, Singapore (2001)

3. Cheptea, D., Martin-Vide, C., Mitrana, V.: A new operation on words suggested
by DNA biochemistry: hairpin completion, In: Proc. Transgressive Computing, pp.
216–228 (2006)

4. Deaton, R., Murphy, R., Garzon, M., Franceschetti, D.R., Stevens, S.E.: Good en-
codings for DNA-based solutions to combinatorial problems, In: Landweber, L.F.,
Baum, E (eds). Proc. of DNA-based computers II, DIMACS Series, vol. 44, pp.
247–258 (1998)

5. Galil, Z., Seiferas, J.: Time-space optimal string matching. Journal of Computer
and System Sciences 26, 280–294 (1983)

6. Garzon, M., Deaton, R., Neathery, P., Murphy, R.C., Franceschetti, D.R., Stevens,
E.: On the encoding problem for DNA computing, The Third DIMACS Workshop
on DNA-Based Computing, Univ. of Pennsylvania, pp. 230–237 (1997)

7. Garzon, M., Deaton, R., Nino, L.F., Stevens, Jr S.E., Wittner, M.: Genome en-
coding for DNA computing, In: Proc. Third Genetic Programming Conference,
Madison, MI, pp. 684–690 (1998)

8. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal of Computing 6, 323–350 (1977)

9. Kari, L., Konstantinidis, S., Sosik, P., Thierrin, G.: On hairpin-free words and
languages. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp.
296–307. Springer, Berlin (2005)

10. Manea, F., Mart́ın-Vide, C., Mitrana, V.: On some algorithmic problems regarding
the hairpin completion (submitted)

11. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. New Computing
Paradigms, Springer-Verlag, Berlin, 1998, Tokyo (1999)

12. Păun, G., Rozenberg, G., Yokomori, T.: Hairpin languages. Intern. J. Found. Comp.
Sci. 12(6), 837–847 (2001)

13. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3.
Springer, Berlin, Heidelberg (1997)

14. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T.,
Hagiya, M.: Molecular computation by DNA hairpin formation. Science 288, 1223–
1226 (2000)

Hierarchies in Fragments of Monadic Strict NP

Barnaby Martin and Florent Madelaine

Department of Computer Science, University of Durham,
Science Labs, South Road, Durham DH1 3LE, U.K.

Abstract. We expose a strict hierarchy within monotone monadic strict
NP without inequalities (MMSNP), based on the number of second-order
monadic quantifiers. We do this by studying a finer strict hierarchy within
a class of forbidden patterns problems (FPP), based on the number of
permitted colours. Through an adaptation of a preservation theorem of
Feder and Vardi, we are able to prove that this strict hierarchy also
exists in monadic strict NP (MSNP). Our hierarchy results apply over a
uniform signature involving a single binary relation, that is over digraphs.

1 Introduction

Answering a question of Fagin, Martin Otto proved in [1] that there is a strict
hierarchy in monadic NP (MNP) – the monadic fragment of existential second-
order logic – based on the second-order quantifier rank, i.e. the number of
second-order quantifiers. The strictness of the hierarchy is proved with a uniform
signature involving two binary relations. It is worth noting that this hierarchy
was known to collapse to its first level in the very restricted case of word struc-
tures (strings). In fact, MNP with a single second-order quantifier is as powerful
as the whole of monadic second-order logic – not just its existential fragment – on
word structures, capturing exactly the class of regular languages [2,3,4].

In this paper we search for a similar, second-order quantifier-rank-based, hi-
erarchy within monadic strict NP (MSNP), and its monotone inequality-free
fragment (MMSNP). We note that the problems involved in Otto’s proof are
not monotone, and in any case require first-order existential quantification –
placing them outside MSNP. We achieve our hierarchy theorems by proving
a strict hierarchy within a class of forbidden patterns problems (FPP), intro-
duced in [5,6] to provide a combinatorial characterisation for MMSNP, based
on the number of permitted colours. Specifically, we are able to prove that the
digraph colourability problem k + 1-Col is expressible in the k + 1th level of
FPP, but is not expressible in the kth level. We can then derive that 2k+1-Col

is expressible in the k + 1th level of MMSNP (respectively, MSNP), but is not
expressible in the kth level. We work in FPP to expose a finer hierarchy than
that in MMSNP; informally we demonstrate a complexity jump between the
problems k-Col and k + 1-Col, and not just between 2k-Col and 2k+1-Col.
For the reader more familiar with the Ehrenfeucht-Fräıssé method, we provide
in the appendix an overview of how the hierarchy result for MMSNP (and con-
sequently MSNP) may be so obtained. Like Otto, we do not require extensional

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 542–550, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Hierarchies in Fragments of Monadic Strict NP 543

relations of increasing arity for our hierarchy results; we work with a uniform
signature involving a single binary relation, i.e. on digraphs.

MMSNP was studied by Feder and Vardi [7] because of its close relationship
with the non-uniform constraint satisfaction problem CSP(T) – for an input
structure A, does A admit a homomorphism to a fixed template T ? Not only
can every CSP(T) be easily recast as some MMSNP query ψT , but it is now
known that, for every ψ in MMSNP, there is a Tψ such that the query evaluation
problem for ψ and CSP(Tψ) are polynomial-time equivalent [7,8]. If one were to
consider classes of non-uniform constraint satisfaction problems CSP

k in which
the template was restricted to being of size ≤ k, then it would be virtually
immediate that this hierarchy was strict and, indeed, separated by the problems
k-Col. Essentially, one could not express the problem k+1-Col as a CSP whose
template T has less than k + 1 vertices, since then the k + 1-clique Kk+1, which
is plainly k + 1-colourable, would manifest as a no-instance. The relationship
between the size of a CSP template T and the number of colours required to
express it as a FPP, is explored in [5]. Certainly any CSP whose template T is
of size k can be expressed as a FPP whose forbidden patterns involve k colours.
However, this relationship is not known to hold in the converse, and, therefore,
proving the corresponding strict hierarchy in FPP does not appear to be trivial.

Following the necessary preliminaries, the paper is organised as follows. In
Section 3 we prove the hierarchy result for FPP and in Section 4 we derive the
related result for MMSNP. In Section 5 we demonstrate how to adapt a certain
preservation theorem of Feder and Vardi to derive the same hierarchy in MSNP.
At the end of the paper sits an appendix, in which we show how our results may
be obtained through the ubiquitous Ehrenfeucht-Fräıssé games.

2 Preliminaries

In this paper, the only structures we consider are finite, non-empty digraphs. A
digraph G consists of a finite vertex set V (G) together with an edge set E(G) ⊆
V (G) × V (G). For a positive integer k, let [k] be the set {0, . . . , k − 1}. A k-
coloured digraph is a pair (G, ck) where G is a digraph and ck is a function from
V (G) to the colour set [k] (note that we do not require that a colouring be
‘proper’, i.e. we do not force adjacent vertices to take different colours). If the
range of ck is the singleton {i}, then we refer to (G, ck) as i-monochrome.

A homomorphism between the digraphs G and H is a function h : V (G) →
V (H) such that, for all x, y ∈ V (G), (x, y) ∈ E(G) implies (h(x), h(y)) ∈ E(H).
A homomorphism between the k-coloured digraphs (G, ck

G) and (H, ck
H) is a

digraph homomorphism h : G → H that also respects the colouring of G, i.e.,
for all x ∈ V (G), ck

H(h(x)) = ck
G(x). Existence (respectively, non-existence) of

a homomorphism between entities P and Q is denoted P −→ Q (respectively,
P −→/ Q).

Let Kk be the antireflexive k-clique, that is the digraph with vertex set [k]
and edge set {(i, j) : i �= j}. Define the problem k-Col to be the set of digraphs
G which admit a homomorphism to Kk. We describe digraphs G s.t. G ∈ 2-Col

544 B. Martin and F. Madelaine

as bipartite. An edge of the form (x, x) in a digraph G is described as a self-loop;
a digraph with no self-loops is said to be antireflexive. It is a simple observation
that a digraph with a self-loop cannot map homomorphically into an antireflexive
digraph.

Let Rk be some finite set of k-coloured digraphs. Define the forbidden pat-
terns problem FPP(Rk) to be the set of digraphs G for which there exists a
k-colouring ck

G such that, for all (H, ck
H) ∈ Rk, (H, ck

H)−→/ (G, ck
G). Intuitively,

FPP(Rk) is the class of digraphs for which there exists a k-colouring that for-
bids homomorphism from all of the k-coloured digraphs of Rk, whence we refer
to Rk as the set of forbidden patterns. Define FPP

k to be the class of problems
FPP(Rk), where Rk ranges over all finite sets of k-coloured digraphs, and let
FPP be ∪i∈ωFPP

i.
The logic k-monadic NP (MNP

k) will be considered that fragment of monadic
existential second-order logic that allows at most k second-order quantifiers. The
logic k-monadic strict NP (MSNP

k) is that fragment of MNP
k that involves

prenex sentences whose first-order quantification is purely universal. We may
therefore consider MSNP

k to be the the class of sentences ϕ of the form

∃M∀v Φ(M,v),

where M is an k-tuple of monadic relation symbols and Φ is quantifier-free.
In these logics, we refer to k as the second-order quantifier rank. The logic
k-monotone MSNP without inequalities (MMSNP

k) is defined similarly, but
with the additional restriction that Φ be of the form

∧

i

¬(αi(v) ∧ βi(M,v)),

where: αi is a conjunction of positive atoms, involving neither equality nor re-
lations from M; and βi is a conjunction of positive or negative atoms, involving
only relations from M. Define MNP (respectively, MSNP, MMSNP) to be
∪i∈ωMNP

i (respectively, ∪i∈ωMSNP
i, ∪i∈ωMMSNP

i). The following hierar-
chy theorem for MNP is due to Otto.

Theorem 1 ([1]). For all k, MNP
k ⊆ MNP

k+1 but MNP
k �= MNP

k+1.

Furthermore, the following is straightforward.

Proposition 1. For all k, we have the inclusions FPP
k ⊆ FPP

k+1, MSNP
k ⊆

MSNP
k+1 and MMSNP

k ⊆ MMSNP
k+1.

Proof. For the first part, let FPP(Rk) be a problem of FPP
k. Construct Rk+1

from Rk by the addition of a k-monochrome copy of K1. Since the extra colour
is now forbidden, it is plain to see that FPP(Rk+1) = FPP(Rk).

For the second part, let ∃M0 . . . ∃Mk−1∀v Φ be a sentence of MSNP
k, and

v be one of the variables of v. Then ∃M0 . . . ∃Mk−1∃Mk∀v Φ ∧ ¬Mk(v) is an
equivalent sentence of MSNP

k+1.
The third part may be proved in the same manner. ��

The contribution of this paper will be to prove that these inclusions are strict.
The following result ties together FPP and MMSNP.

Hierarchies in Fragments of Monadic Strict NP 545

Theorem 2 ([5]). The class of problems expressible in MMSNP
k coincides

exactly with the class of problems that are finite unions of problems in FPP
2k

.

Example 1. Let us consider the problem 2-Col. This is a forbidden patterns
problem FPP(R2), where R2 consists of two coloured digraphs (P1, c

2
0) and

(P1, c
2
1), which are 0- and 1-monochrome, respectively, where P1 is the digraph

with vertex set {0, 1} and a single edge (0, 1). In the following depiction, we may
view the white vertices as coloured 0, and the black vertices as coloured 1.

, }R2 := {
2-Col may also be expressed by the sentence ϕ of MMSNP

1:

∃M∀u∀v ¬(E(u, v) ∧ M(u) ∧ M(v)) ∧ ¬(E(u, v) ∧ ¬M(u) ∧ ¬M(v)).

Define the chromatic number of a digraph G to be the minimal k such that G ∈
k-Col. We define the symmetric closure of a digraph G, denoted Sym(G), over
the same vertex set as G, but with edge set {(x, y), (y, x) : (x, y) ∈ E(G)}. For
k ≥ 3, let Ck be the undirected k-cycle, that is the digraph with vertex set [k] and
edge set {(i, j), (j, i) : j = i + 1 mod k}. Define the odd girth of an antireflexive,
non-bipartite digraph G to be the minimal odd k s.t. Ck is (isomorphic to) an
induced subdigraph of Sym(G) (note that this is always defined). We define the
odd girth of an antireflexive, non-bipartite coloured digraph likewise. It may
be easily verified that, if two digraphs G and H have odd girth γG and γH ,
respectively, with γG ≤ γH , then G−→/ H .

We require the following lemma, originally proved by Erdös through the prob-
abilistic method [9], but for which the citation provides a constructive proof.

Lemma 1 (See [10]). For all i, one may construct a digraph Bi whose chro-
matic number and odd girth both strictly exceed i.

3 A Strict Hierarchy in FPP

In this section we aim to prove that there is a strict hierarchy in FPP given by
the number of colours allowed in the set R. We will establish this through the
following theorem.

Theorem 3. For each k ≥ 1, k + 1-Col ∈ FPP
k+1 but k + 1-Col /∈ FPP

k.

Proof. (k + 1-Col ∈ FPP
k+1.) This follows similarly to Example 1. k + 1-Col

is expressed by FPP (Rk+1), where Rk+1 consists of k + 1 coloured digraphs
(P1, c

2
0), . . . , (P1, c

2
k), in which, for 0 ≤ i ≤ k, (P1, c

2
i) is i-monochrome.

(k + 1-Col /∈ FPP
k.) Suppose that k + 1-Col ∈ FPP

k, and is expressed
by FPP (Rk) where Rk is a finite set of k-coloured digraphs. We are therefore
claiming that, for all digraphs G:

(∗) G ∈ k + 1-Col iff exists ck
G s.t. ∀ (H, ck

H) ∈ Rk (H, ck
H)−→/ (G, ck

G).

First, we aim to prove that, for every i, Rk must contain some i-monochrome
bipartite digraph. Suppose, for some i, it does not. Let the maximum odd girth of

546 B. Martin and F. Madelaine

the coloured digraphs of Rk be γ; if all members of Rk possess a self-loop or are
bipartite, set γ := 3. Set μ to be 1 + max{k, γ}. By Lemma 1, we can construct
a graph Bμ whose chromatic number and odd girth both strictly exceed μ. We
now deduce from (∗) the absurdity Bμ ∈ k + 1-Col, since the i-monochrome
colouring of Bμ forbids homomorphism from all of the coloured digraphs of Rk

(recall that any bipartite members of Rk are not i-monochrome).
Now we aim to prove that Kk+1 /∈ FPP (Rk). Consider any k-colouring ck

of Kk+1; there must be distinct vertices x and y such that ck(x) = ck(y), let
their colour be i. But we know that Rk contains an i-monochrome bipartite
digraph, which plainly maps homomorphically into (Kk+1, c

k) (in fact into its
i-monochrome subdigraph K2 induced by {x, y}). By definition, we deduce that
Kk+1 /∈ FPP(Rk).

Finally, we reach a contradiction since Kk+1 is plainly in k + 1-Col. ��

4 A Strict Hierarchy in MMSNP

We now show how to adapt the previous proof to generate the following1.

Theorem 4. For k ≥ 0, 2k+1-Col ∈ MMSNP
k+1 but 2k+1-Col /∈ MMSNP

k.

Proof. (2k+1-Col ∈ MMSNP
k+1.) This follows similarly to Example 1. 2k+1-

Col may be expressed by the following sentence of MMSNP
k+1:

∃M0 . . . ∃Mk∀u∀v
∧

i∈[2k+1]

¬(E(u, v) ∧ Ψi(M0, . . . , Mk, u, v)),

where Ψi(M0, . . . , Mk, u, v) is

(¬)i0M0(u) ∧ (¬)i0M0(v) ∧ (¬)i1M1(u) ∧ (¬)i1M1(v) ∧
. . . ∧ (¬)ikMk(u) ∧ (¬)ik Mk(v)

where ij is the j + 1th digit in the binary expansion of i.
(2k+1-Col /∈ MMSNP

k.) Suppose that 2k+1-Col ∈ MMSNP
k. By Theo-

rem 2, this implies that 2k+1-Col is the union, for some s, of the forbidden
pattern problems FPP(R2k

0), . . . , FPP(R2k

s−1). In a similar vein to before, we
can deduce that, for each j (0 ≤ j < s), R2k

j contains, for each i (0 ≤ i < 2k),
an i-monochrome bipartite digraph. The proof concludes as before. ��

Remark 1. Our proof can actually go further, yielding not just 2k+1-Col /∈
MMSNP

k, but also 2k + 1-Col /∈ MMSNP
k.

5 A Strict Hierarchy in MSNP

We say that a class of finite digraphs C is closed under inverse homomorphism iff
whenever we have G−→H and H ∈ C we also have G ∈ C. Similarly, a class of
1 By abuse of notation, we write that a class of digraphs belongs to a logic precisely

when that class is expressible in the logic, e.g. 2k+1-Col ∈ MMSNP
k+1.

Hierarchies in Fragments of Monadic Strict NP 547

finite digraphs is antireflexive iff each digraph within it is antireflexive. It follows
straight from our definition that, for each k, the class k-Col is both antireflexive
and closed under inverse homomorphism. The following is from [11], and is an
example of a preservation theorem.

Theorem 5 ([11]). For every ψ ∈ MSNP s.t. the class of finite models of ψ is
closed under inverse homomorphism, there exists ψ′ ∈ MMSNP s.t. ψ and ψ′

agree on all finite models.

In fact, we will require a variant on their proof, to derive the following theorem
(whose proof we defer to the end of this section).

Theorem 6. For every ψ ∈ MSNP
k s.t. the class of finite models of ψ is

both antireflexive and closed under inverse homomorphism, there exists ψ′ ∈
MMSNP

k s.t. ψ and ψ′ agree on all finite models.

We are now in a position to state and prove the main result of this section.

Theorem 7. For each k ≥ 0, 2k+1-Col ∈ MSNP
k+1 but 2k+1-Col /∈ MSNP

k.

Proof. Membership follows as in Theorem 4
(2k+1-Col /∈ MSNP

k.) Note that 2k+1-Col is an antireflexive class that is
closed under inverse homomorphism. By the previous theorem that implies that
it may be expressed in MSNP

k+1 only if it may be expressed in MMSNP
k+1,

which we know it can not – by Theorem 4. ��

Proof (of Theorem 6). We show how to adapt the proof of Theorem 3 of [11].
In [11], they demonstrate how, if ψ0 is a sentence of MSNP whose finite models
form a class closed under inverse homomorphism, to construct a sequence of
sentences culminating with ψ5 in MMSNP s.t. ψ0 and ψ5 agree on all finite
models. Unfortunately, it is not the case that the second-order quantifier rank is
preserved: in their construction of ψ2 from ψ1 it may be necessary to introduce
new second-order monadic relations. In all other of their translations, the second-
order quantifier rank is preserved. Our proof uses the additional constraint of
antireflexivity to amend the translation from ψ1 to ψ2 into something very simple
that does preserve the second-order quantifier rank. This is the only area in which
our proof differs from theirs. We now sketch the proof.

Starting with a sentence ψ0 of MSNP
k whose finite models form an antireflex-

ive class that is closed under inverse homomorphism, we will describe a sequence
of sentences culminating in ψ5 that is in MMSNP

k and agrees with ψ0 on all
finite digraphs. We may assume that ψ0 is in prenex form with its quantifier-free
part in conjunctive normal form, where we interpret each clause as a negated
conjunction. That is, ψ0 is of the form

∃M∀v
∧

i

¬(
∧

j

αij(M,v))

where each αij is atomic.
From ψ0 we generate ψ1 by enforcing that, if distinct u and v occur in some

negated conjunct, then u �= v also occurs in that conjunct. If this is not already

548 B. Martin and F. Madelaine

the case, then we split the negated conjunct in two, one involving u �= v and
the other involving u = v, whereupon, in the latter case, we may substitute all
occurrences of v with u, dispensing with the equality.

From ψ1 we generate ψ2 by removing any atomic instances of ¬E(v, v). From
ψ2 we generate ψ3 by removing any negated conjuncts that contain either an
instance v �= v or both atoms E(u, v) and ¬E(v, u). From ψ3 we generate ψ4 by
removing all negative atoms. Finally, from ψ4 we generate ψ5 by removing all
inequalities. It is transparent that ψ5 is in MMSNP

k. It remains for us to settle
the following.

Lemma 2. Let ψ0 be a sentence of MSNP
k in the required form. Then, on the

class of finite digraphs,

(i) ψ0 is equivalent to ψ1,
(ii) ψ1 is equivalent to ψ2 (since ψ1 describes an antireflexive class),

(iii) ψ2 is equivalent to ψ3,
(iv) ψ3 is equivalent to ψ4, and
(v) ψ4 is equivalent to ψ5 (since ψ4 describes a class closed under inverse

homomorphism).

(i) and (iii) are trivial (and appear in [11]). Part (ii) is transparent. Parts (iii)
and (iv) are non-trivial and appear as Lemmas 8 and 7, respectively, in [11]. ��

6 Further Work

The problems in Otto’s proof of the strict hierarchy in MNP are colouring
problems of a kind. However, they demand highly regular structures that, in some
sense, make them less natural than the problems k-Col. It would be interesting
to know whether the problems 2k-Col separate the hierarchy in MNP; that is,
whether 2k+1-Col can be proved inexpressible in MNP

k. Our attempts to use
Ehrenfeucht-Fräıssé games (even Ajtai-Fagin games) to settle this have not, thus
far, succeeded.

References

1. Otto, M.: A note on the number of monadic quantifiers in monadic Σ1
1 . Information

Processing Letters 53(6), 337–339 (1995)
2. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für

mathematische Logik und Grundladen der Mathematik 6, 66–92 (1960)
3. Elgot, C.: Decision problems of finite-automata design and related arithmetics.

Trans. Amer. Math. Soc. 98, 21–51 (1961)
4. Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer and

System Sciences 25, 360–376 (1982)
5. Madelaine, F.: Constraint satisfaction problems and related logic. PhD thesis, Uni-

versity of Leicester (2003)
6. Madelaine, F., Stewart, I.A.: Constraint satisfaction, logic and forbidden patterns

(SIAM Journal of Computing) 33 pp (To appear)

Hierarchies in Fragments of Monadic Strict NP 549

7. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: a study through datalog and group theory. SIAM J.
Comput. 28 (1999)

8. Kun, G.: Constraints, MMSNP and expander structures (2006)
9. Erdös, P.: Graph theory and probability. Canad. J. Math. 11, 34–38 (1959)

10. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. OUP (2004)
11. Feder, T., Vardi, M.: Homomorphism closed vs existential positive (2003)
12. Fagin, R.: Monadic generalized spectra. Z. Math. Logik Grund. Math. 21, 89–96

(1975)

Appendix

An Ehrenfeucht-Fräıssé Game for MMSNP
Ehrenfeucht-Fräıssé games traditionally provide the preferred method for sepa-
rating logics. Here we state the relevant Ehrenfeucht-Fräıssé game for MMSNP

and give its methodology theorem. We are then able to give an alternative proof
of Theorem 4.

For digraphs G and H , the game Gm
q (G, H) is played between two players,

Spoiler and Duplicator, and proceeds as follows.

– Spoiler chooses a 2m-colouring c2m

G of G;
– Duplicator responds with a 2m-colouring c2m

H of H .
– Spoiler places q pebbles a0, . . . , aq−1 on H ;
– Duplicator responds with q pebbles b0, . . . , bq−1 on G.

Duplicator wins iff the resultant relation {(a0, b0), . . . , (aq−1, bq−1)} is a partial
homomorphism from (H, c2m

H) to (G, c2m

G).
Let MMSNP

m
q be that fragment of MMSNP

m in which the first-order part
of the sentences has quantifier-rank bounded by q (owing to the restricted syntax
of MMSNP, we may equivalently consider q to be a bound on the number of
first-order variables). The next theorem ties together the game and the logic; a
proof, based on the connection between FPP and MMSNP appears at the end
of the section (although it is possible to derive a more conventional proof similar
to that given by Fagin for his original game for MNP [12]).

Theorem 8 (Methodology). For digraphs G and H the following are equiv-
alent.

– Duplicator has a winning strategy in the game Gm
q (G, H).

– For all ϕ ∈ MMSNP
m
q , G |= ϕ implies H |= ϕ.

We are now in a position to give another proof of Theorem 4.

Theorem 9 (a.k.a. Theorem 4). For each m ≥ 0, 2m+1-Col /∈ MMSNP
m.

Proof. Suppose that 2m+1-Col were expressible by a sentence ψm
q ∈ MMSNP

m
q ,

for some q. Set μ to be 1+max{2m+1, q}. Note that the digraph Bμ, constructed
as in Lemma 1, is not in 2m+1-Col. We aim to prove that Duplicator has a

550 B. Martin and F. Madelaine

winning strategy in the game Gm
q (K2m+1 , Bμ), which, taken with the previous

methodology theorem, leads to a contradiction.
Let Spoiler give a 2m-colouring of K2m+1 , and let x and y be some distinct

vertices that are given some same colour i (such vertices clearly must exist). Du-
plicator chooses the i-monochrome colouring of Bμ. Now Spoiler places q pebbles
on Bμ. Crucially, because of the enormous odd girth of Bμ, the subdigraph in-
duced by these q pebbles must be bipartite. It therefore homomorphically maps
onto the subdigraph K2 of K2m+1 induced by the set {x, y}, and we are done. ��

Proof (of Theorem 8). Let FPP
m
q be that subclass of FPP

m in which all the
forbidden patterns in Rm have size bounded by q. We require the following,
more sophisticated, version of Theorem 2, also proved in [5].

• The class of problems expressible in MMSNP
m
q coincides exactly with the

class of problems that are finite unions of problems in FPP
2m

q .

By this result, it suffices to prove that the following are equivalent.

(i) Duplicator has a winning strategy in the game Gm
q (G, H).

(ii) For all R2m

0 , . . . , R2m

s−1, whose members are of size bounded by q, we have
that G ∈

⋃
i∈[s] FPP(R2m

i) implies H ∈
⋃

i∈[s] FPP(R2m

i).

[(i) ⇒ (ii)] Consider a winning strategy for Duplicator in the game Gm
q (G, H),

and any sequence of sets of forbidden patterns,each of whose members is bounded
in size by q, R2m

0 , . . . , R2m

s−1 . Further assume that G ∈
⋃

i∈[s] FPP(R2m

i). It
follows that there is some i ∈ [s] s.t. G ∈ FPP(R2m

i). We will prove that
H ∈ FPP(R2m

i) whereupon H ∈
⋃

i∈[s] FPP (R2m

i) is immediate. Take the
2m-colouring c2m

G of G that witnesses its membership of FPP (R2m

i), and con-
sider Duplicator’s response c2m

H on H to it in her winning strategy in the game
Gm

q (G, H). We claim that this witnesses the membership of H in FPP (R2m

i); for,
otherwise, if some forbidden pattern – of size bounded by q – of R2m

i mapped
homomorphically into (H, c2m

H) then it would also map homomorphically into
(G, c2m

G), by the winning strategy of Duplicator, which is a contradiction.
[¬(i) ⇒ ¬(ii)]. Given a winning strategy for Spoiler in the game Gm

q (G, H),
we will construct a set of forbidden patterns R2m

, each of whose size is bounded
by q, such that G ∈ FPP (R2m

) but H /∈ FPP (R2m

). Taking Spoiler’s winning
strategy, consider the size ≤ q induced subdigraph H ′ of H that he pebbles with
a0, . . . , aq−1. Let R2m

be the set of all 2m-colourings of H ′. Now, G ∈ FPP(R2m

)
and this is witnessed by Spoiler’s initial colouring c2m

G of G in his winning strat-
egy. But H /∈ FPP (R2m

) since any colouring of H admits homomorphism from
itself, and consequently from the same colouring restricted to its induced subdi-
graph H ′. ��

Membrane Systems and Their Application to

Systems Biology

Giancarlo Mauri

University of Milano-Bicocca
mauri@disco.unimib.it

1 Introduction

P-systems, or membrane systems [1], were introduced by George Păun as a class
of unconventional computing devices of distributed, parallel and nondeterminis-
tic type, inspired by the compartmental structure and the functioning of living
cells. The basic model consists of a membrane structure, described by a finite
string of well matching parentheses, and graphically represented as regions on
the plane, hierarchically embedded within an external region. Each membrane
contains a multiset of objects (representing chemical substances) that evolve ac-
cording to given evolution rules (representing reactions). Objects are described
as symbols or strings over a given alphabet, evolution rules are given as rewriting
rules. The rules act on objects, by modifying and moving them, and they can also
affect the membrane structure, by dissolving the membranes. A computation in
P systems starts from an initial configuration, identified by the membrane struc-
ture, the objects and the rules initially present inside each membrane, and then
letting the system evolve. Assuming an universal clock, rules are applied in a
nondeterministic and maximal parallel manner: all the applicable rules are used
at each step to modify all objects which can be the subject of a rule, and this is
done in parallel for all membranes; the evolved objects are then communicated
to the regions specified by the rules. When no rule can be further applied, the
computation halts and the output is defined in terms of the objects sent out of
the external membrane or, alternatively, collected inside a specified membrane.
No output is obtained if the computation never halts (that is, whenever a rule
can be continuously applied). A comprehensive overview of basic P systems and
of other classes appeared in [1], an updated bibliography can be found in the
P systems Web Page ([2]). As a model of computation inspired by biological
mechanisms, P systems have been extensively studied in the area of Natural
Computing from the point of view of their computational power, and compared
with other models like DNA computing or splicing systems. However, they can
also be considered as a powerful tool to model complex systems and to simu-
late processes taking place inside them. In this view, they have been applied in
various research areas, ranging from Biology to Linguistics to Computer Science
(see, e.g., [3]), but very promising results have been obtained in simulating cellu-
lar phenomena, hence returning meaningful and useful information to biologists,
in the frame of systems biology.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 551–553, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

552 G. Mauri

2 Stochastic Modelling

In this view, it is important to take into account the role of stochastic noise in
modelling and simulating coupled chemical reactions (see the classical Gillespie
algorithm [4]) and, in a more general frame, in cellular processes involving few
molecules as, e.g., signal transduction pathways, and the working of transcription
or translation machinery [5]. For this reason, in [6] the class of dynamical proba-
bilistic P systems (DPPs) has been introduced for the analysis and simulation of
the behavior of complex systems. DPPs are discrete and stochastic models, where
probability values are associated with the rules, and such values change during
the evolution according to the current state of the system. A different approach
to stochastic modeling of biological systems has been given in [7].

3 Simulation Results

In order to check both the effectiveness and the correctness of the models, we
designed and implemented a software simulator, that hopefully will become a
tool for biologists for testing known data, predicting unknown scenarios and re-
turning meaningful information. The last version of the simulator uses a novel
method, called tau leaping, introduced by Gillespie et al. [8] and then adapted
by Cazzaniga et al. [9] to work in the framework of P Systems (this new method
is named tau-DPPs). Using tau-DPPs, we can simulate systems structured by
several volumes, tracing the simulated time of the compartments as well as time
line of the whole system. This gives us the possibility to quantitatively and quali-
tatively describe biological systems. Our model was able to simulate properly the
Ras protein cycle, the activation of adenylate cyclase, the production of cyclic
AMP and the activation of cAMP-dependent protein kinase in a single yeast
cell of the yeast Saccharomyces cerevisiae. The results are compared with the
experimental data and give information on the key regulatory elements of this
signalling network. Another application was to metapopulation modeling [10].
A slightly different approach to modeling biological systems with P-systems can
be found in [11].

References

1. Păun, Gh.: Membrane Computing. An Introduction. Springer, Berlin (2002)
2. The P Systems Web Page: http://psystems.disco.unimib.it/
3. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane

Computing. Springer, Berlin (2005)
4. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journ.

Phys. Chem. 81, 2340–2361 (1977)
5. Meng, T.C., Somani, S., Dhar, P.: Modelling and simulation of biological systems

with stochasticity. In Silico Biology 4, 293–309 (2004)
6. Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P sys-

tems. Int. J. of Foundations of Computer Science 17, 183–204 (2006)

http://psystems.disco.unimib.it/

Membrane Systems and Their Application to Systems Biology 553

7. Bernardini, F., Gheorghe, M., Krasnogor, N., Muniyandi, R.C., Pérez-Jiménez,
M.J., Romero-Campero, F.J.: On P systems as a modelling tool for biological
systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005.
LNCS, vol. 3850, pp. 114–133. Springer, Berlin (2005)

8. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-
leaping simulation method. Journ. Chem. Phys. 124, 44–109 (2006)

9. Cazzaniga, P., Pescini, D., Besozzi, D., Mauri, G.: Tau leaping stochastic simulation
method in P systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A.
(eds.) WMC 2006. LNCS, vol. 4361, pp. 298–313. Springer, Berlin (2007)

10. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: Modelling metapopulations with
stochastic membrane systems. BioSystems (To appear)

11. Bianco, L., Fontana, F., Franco, G., Manca, V.: P systems for biological dynamics.
In: [3], pp. 81–126

Some Aspects of a Complexity Theory for

Continuous Time Systems

Marco Gori1 and Klaus Meer2,�

1 Dipartimento di Ingegneria dell’Informazione
Università di Siena, Via Roma 56, I-53100 Siena, Italy

2 Syddansk Universitet Odense, Dept. of Mathematics and Computer Science
Campusvej 55, DK-5230 Odense M, Denmark

Abstract. In this paper we survey previous work by the authors defin-
ing a complexity measure for certain continuous time systems. Starting
point are energy functions of a particular structure. Global minimizers
of such energies correspond to solutions of a given problem, for example
an equilibrium point of an ordinary differential equation. The structure
of such energies is used to define complexity classes for continuous prob-
lems and to obtain completeness results for those classes. We discuss as
well algorithmic aspects of minimizing energy functions.

1 Introduction

The use of analog systems as computational models has attracted increasing
interest in recent years. One way to formalize computation in this framework is
to consider a differential equation and follow a trajectory until a solution, e.g.,
an equilibrium point, is reached. There are many interesting and open problems
related to such an approach, ranging from the question of setting up a complexity
theoretic framework for such dynamical systems (including notions of complexity
classes, reducibility, completeness etc.) to concrete solution algorithms. For an
excellent up to date survey on related questions see [3] and the literature cited
in there. An older yet very readable survey is [6].

In this paper we discuss a general framework for measuring the complexity of
analog systems introduced in [4].

Based on the notion of a problem we define complexity classes in dependence
of the structural complexity of certain energy functions. Those functions are
related to the solutions of a problem instance through their global minimizers.
This gives a way to introduce complexity classes which mimic classical P and
NP as well as the polynomial hierarchy, and to obtain completeness results.

Both the strength and weakness of this approach may be are its abstractness.
On the negative side one might expect a complexity theory for continuous time
� Partially supported by the IST Programme of the European Community, under the

PASCAL Network of Excellence, IST-2002-506778 and by the Danish Agency for
Science, Technology and Innovation FNU. This publication only reflects the author’s
views.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 554–565, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Some Aspects of a Complexity Theory for Continuous Time Systems 555

systems to be more concrete. However, on the positive side the approach is not
based on how to specify a complexity measure for following a trajectory.

Section 2 recalls the definition of a problem and introduces the above men-
tioned complexity classes in our model. We then discuss the main results con-
cerning completeness for the introduced classes. In Section 3 we outline how the
approach can be made more concrete by adding as well a measure for following
trajectories. As examples we consider linear system solving and the perceptron
learning algorithm.

Proof details can be found in [4].

2 The General Framework

A problem in our setting is defined as a binary relation over the space R
∞ :=⊕

i≥1

R
i of finite sequences of real numbers.

Definition 1. A problem Π is a relation in R
∞ × R

∞. Solving a problem

means that on input d ∈ R
n for some n ∈ N, a vector y ∈ R

k for some k ∈ N is
computed such that (d, y) ∈ Π. Usually we require the output dimension k to be
polynomially related to n, i.e. there exists a polynomial p such that k = p(n) for
all n ∈ N.

Remark 1. We shall frequently use the notation Π(d) to denote a solution y such
that (d, y) ∈ Π, even though Π may not be a function.

Example 1. The following examples are typical for our framework:

a) The problem of solving linear equations is given by

Π := {(A, b, y)|A ∈ R
m×n, b ∈ R

m, y ∈ R
n such that A · y = b}.

In terms of Definition 1 we thus have d := (A, b).
b) The problem of finding a separating hyperplane for two classes X+ ⊂ R

n,
X− ⊆ R

n of patterns is given by

Π := {(X+, X−, w, δ)|wT x ≥ δ ∀ x ∈ X+, wT x ≤ −δ ∀x ∈ X−}.

Again, in terms of Definition 1 it is d := (X+, X−) and y := (w, δ).
c) Consider a dynamical system dx

dt = F (x(t)) for which an equilibrium point
is searched. This can be formalized in different ways. One appropriate pos-
sibility is to consider d := F as the first component of a problem Π and to
look for a y which is an equilibrium point of F . Thus

Π = {(F, y) ∈ R
∞ × R

∞ | y is an equilibrium of
dx

dt
= F (x(t))} .

The above definition requires F to be representable in a certain way as a
point in R

∞. This is, for example, the case if F is given as a rational function.

556 M. Gori and K. Meer

We are interested in characterizing the complexity of a problem through the
structure of certain energy functions in the following sense. Such energies are
associated to the problem in a uniform way by considering a family {En}n∈N

of functions for each dimension n. Every En is a function depending on two
blocks d and w of variables. The block d ∈ R

n is taken to represent an input
instance of a problem Π. The block w ∈ R

m will be related to a solution y of Π
for input d. Once more, the dimension m should be polynomially related to n,
that is m = q(n) for a polynomial q. This polynomial is given together with the
family {En}.

Moreover, for each n and fixed d ∈ R
n the function w → En(d, w) is supposed

to have a global minimum. Such a minimum w∗ can be used by an additional
(computationally easy to perform) algorithm to yield a solution of the particular
instance d for our problem.

Another main point of the definition is the way how these energies can be
computed. This will be crucial for defining a complexity measure later on. We
use straight-line programs for this purpose.

Definition 2. (Straight-line programs) For an operation set O a straight-

line program of input dimension T over O is a sequence β1, . . . , β� of opera-
tions defined as follows. Every βi is either of the form βi := c for a constant c ∈ R

or of the form βi := βj◦βk, where ◦ ∈ O and j, k ∈ {−T+1, . . . , 0, 1, . . . i−1}. For
any T -dimensional real input x1, . . . , xT , to the first T registers β−T+1, . . . , β0

we assign the values β−T+1 := x1, β−T+2 := x2, . . . , β0 := xT . A computation
of the program then proceeds in the obvious manner assigning the corresponding
values to the βi, i ≥ 1. The result is supposed to be computed in β�. The size or
computation time of the program is the number � of operations performed.

In our framework, input variables for an SLP are chosen as d1, . . . , dn and
w1, . . . , wq(n). Thus, T = n + q(n). We are interested in computing a real valued
function En : R

n+q(n) → R. We want to combine SLPs in a uniform way in order
to relate them to functions from R

∞ → R
∞.

Definition 3. A family E := {En}n∈N of SLPs, every En of input dimension
n + q(n) ∈ N for a fixed polynomial q, is called to be uniformly polynomi-

ally bounded if there exists an algorithm which on input n ∈ N, computes a
description of En and runs in polynomial time with respect to n. We call such a
family an SLP energy family.

In this paper we restrict the operation set O to be {+, −, ∗}, but more general
sets are thinkable, see [4]. Thus, our energies basically are multivariate polyno-
mials and can be treated in the framework of the BSS model of computation,
see [2]. We suppose the reader to be familiar with this model.

2.1 Complexity Classes

For defining the complexity of a problem we now look for the structure of related
families of energy functions. At this level the complexity of a problem will be

Some Aspects of a Complexity Theory for Continuous Time Systems 557

independent of the question how to find a global minimum of an energy. The
latter problem is addressed in the next section.

Next, we introduce certain complexity classes denoted by U,NU, and PU
that are relevant in our framework.

Definition 4. Let Π be a problem.
a) Π belongs to the class U if there exists an SLP energy family {En}n together

with another family {Nn} of SLPs which is uniformly given by a polynomial
time BSS machine such that the following is true:
i) There is a fixed polynomial q such that every En is a map En : R

n ×
R

q(n) → R;
ii) For any fixed d ∈ R

n the function w → En(d, w) is unimodal;
iii) If w∗ is a global minimizer of w → En(d, w) for given d, then we can

compute a solution Π(d) using the SLP Nq(n), i.e. (d, Nq(n)(w∗)) ∈ Π.
b) Problem Π belongs to class NU if items i) and iii) above hold, but w →

En(d, w) has not to be unimodal. Clearly, it is U ⊆ NU.
c) Π belongs to the continuous-time polynomial hierarchy PU if the following

holds: there exist an SLP energy family {En}n and a function N : R
∞ → R

∞

computable by a uniform family of SLPs in polynomial time such that:
i) There is a fixed polynomial q such that every En is a map En : R

n ×

R
n1 × R

n2 × . . . × R
nk → R, where

k∑

i=1

ni = q(n).

ii) If for given d the point w∗
1 is a solution for the choice of variables w1 in

the optimization problem

min
w1

max
w2

. . . min
wk

En(d, w1, . . . , wk),

then we can compute a solution of Π for input d as (d, N(w∗
1)). The same

should hold w.r.t. every ŵ1 such that max
w2

. . . min
wk

En(d, ŵ1, . . . , wk) does

not exist. Above, the last optimization operation is min if k is odd and
max if k is even. The problem belongs as well to PU if the optimization
starts with max .

The classes U and NU can be seen as a natural counterparts of P and NP in
our framework. We thus conjecture the obvious inclusion U ⊂ NU to be proper.

In order to speak about complete problems finally the following definition is
needed.

Definition 5
a) Let Π1 and Π2 be two problems. We say that Π1 is SLP-reducible in

polynomial time to Π2 if there exist two functions φ and φ∗ from R
∞ →

R
∞, both computable in polynomial time by a uniform SLP in the BSS model

of computation, such that

∀d ∈ R
∞ Π1(d) = φ∗ (Π2 (φ(d)))

Note that since Π2 (φ(d)) might not be unique (cf. Remark 1) we require Φ∗

to compute a solution of Π1(d) for any possible value of Π2 (φ(d)) .
b) A problem Π ∈ NU is NU-complete if every other problem in NU is

SLP-reducible in polynomial time to Π. Similarly for PU-completeness.

558 M. Gori and K. Meer

2.2 Completeness Results

The following results show the existence of complete problems for NU and PU.
For proofs we refer to [4].

Theorem 1
a) There exist NU-complete problems with respect to the operation-set O :=

{+, −, ∗} and SLP-reducibility.
b) The following quadratic optimization problem is NU-hard with respect to

the operation set given in a): Given a linear objective function f : R
n →

R together with finitely many constraints h1(x) = 0, . . . , hm(x) = 0, x ∈
R

n, where the hi are polynomials of degree at most 2, find a solution point
of min{f(x)|hi(x) = 0, 1 ≤ i ≤ m}. Thus, QP is the problem defined by
tuples (f, h1, . . . , hm, x) such that x is a global minimizer of the constrained
optimization problem min f(x) subject to hi(x) = 0, 1 ≤ i ≤ m.

For the polynomial hierarchy it can be shown

Theorem 2. The following problem is PU-complete under SLP reductions: Gi-
ven a polynomial f of degree 4 in n blocks w, X2, . . . , Xn of variables, compute
a minimizer of the function

w → max
X2

min
X3

. . . max
Xn

f(w, X1, . . . , Xn)

Again, the last optimization operation is min if n is odd and max if n is even.

To get a rough idea of how the proof works consider a problem in NU with
an input d and attached energy w → En(d, w). The decision problem: Given z
and d, does z minimize w → En(d, w) is in co-NPR over the reals. Using the
common reduction arguments from [2] one realizes that by means of a max-
min problem such a minimizer can be found (if existing). In general, a related
argument establishes the problem in the statement to be PU-complete by finding
a reduction of a given problem in the hierarchy to the former that increases the
number of alternations of max and min by one.

We consider it to be important in our framework to extend the list of complete
problems.

3 A Discretization for Trajectory Following: Guiding
Examples

The framework analyzed above results in a split of the relevant parts contributing
to the complexity of continuous time problems. The first deals with the structure
and the SLP complexity of an underlying energy function. As mentioned in
the introduction, this is advantageous in that the approach is independent of
concrete measures for following trajectories of the given ODE. On the other
side, this approach remains abstract when it comes to approximating concrete
solutions. Thus, a second part contributes to the complexity of a problem. There

Some Aspects of a Complexity Theory for Continuous Time Systems 559

is so far no real consensus about what a unifying approach for measuring this
second part should be. For a much deeper discussion of different approaches we
refer once more to [3].

In this final section we discuss briefly one natural such attempt. It adds a
typical measure for the steepest descent algorithm finding minima of energy
functions occuring in the above approach. We outline the resulting complexity
statements for the first two problems of Example 1. Not surprising, the results
obtained that way resemble well known properties for numerical solutions of
those problems. Since most of the calculations are quite standard we just outline
them.

Let {En}n be an SLP energy family as above. W.l.o.g. we assume that 0 is
the minimal value for each En. For the moment we fix the input d ∈ R

n and
suppress it and its size n notationally, i.e., instead of En(d, w) we write E(w).
Choosing a start value w0 we consider (see [8] for more on terminal dynamics)
the terminal attractor equation

d

dt
w(t) = −E0

σ
· DwE(w(t))
‖DwE(w(t))‖2

, (1)

where E0 := E(w0) and σ > 0 is fixed, together with its Euler-discretization

wk+1 = wk − τ · E0

σ
· DwE(wk)
‖DwE(wk)‖2

(2)

with step size τ > 0. It is easy to see that the exact solution w̃(t) of (1) for t < σ
satisfies

E(w̃(t)) = E0 · (1 − t

σ
), t ∈ [0, σ).

Thus, the terminal attractor approaches a point with energy value 0 in finite
time t = σ. The following theorem addresses the complexity of the discretization
procedure (2).

We shall first study the number of discretization steps necessary in order to
achieve a point w∗ such that the energy value satisfies E(w∗) ≤ ε for a given
precision ε > 0. The theorem below is proven by a straightforward calculation
using Taylor’s formula.

Theorem 3. Let E be an energy function as above and let E0 denote the energy
value for a starting point w0 (see below). For a pair (ε1, ε2), ε1 > ε2 > 0 consider
the differential equation

d

dt
w(t) = −E0

σ
· DwE(w(t))
‖DwE(w(t))‖2

,

and its Euler-discretization

wk+1 = wk − τ · E0

σ
· DwE(wk)
‖DwE(wk)‖2

Suppose that there exist bounds L(ε1, ε2) and H(ε1, ε2) on the set Ω(ε1, ε2) :=
{w̃ ∈ Ω|ε1 ≥ E(w̃) ≥ ε2} such that:

560 M. Gori and K. Meer

(i) ‖DwE(w̃)‖ ≥ L(ε1, ε2) > 0 for all w̃ ∈ Ω(ε1, ε2) as well as
(ii) ‖D2

wE(w̃)‖ ≤ H(ε1, ε2) for all w̃ ∈ Ω(ε1, ε2), where the norm is the operator
norm corresponding to the Euclidean vector norm.

Then starting from a point w0 in Ω(ε1, ε2) a point w∗ such that E(w∗) ≤ ε2
can be reached in

k(ε1, ε2) := O

(
ε21 · H(ε1, ε2)
ε2 · L(ε1, ε2)2

)

many discretization steps of step size

τ(ε1, ε2) = O

(
ε2 · L(ε1, ε2)2 · σ

ε21 · H(ε1, ε2)

)
.

After having reduced the energy value below ε2 we let ε2 play the role of
ε1 and choose a new target value for the energy. This results in considering a
sequence {εk}k∈N which is used in the steepest descent algorithm until we have
reduced the energy below a given accuracy ε. The number of iteration steps then
is given by

K∗
∑

k=1

1
2

·
H(εk−1, εk) · ε2k−1

L(εk−1, εk)2 · εk
, (3)

where ε0 := E0 is the first energy value we start with. The goal now is to deter-
mine how this sum depends on the required accuracy ε and to choose reasonable
sequences {εk} to keep it as small as possible.

A typical choice is given by εk := E0
2k . Then K∗ in the above formula has to

be taken such that E0
2K∗ ≤ ε for a given precision ε > 0, i.e. K∗ := �log(E0

ε).

Remark 2.
(a) It should be clear from the above arguments that the ratio κ(E, εk−1, εk) :=
H(εk−1,εk)
L(εk−1,εk)2 can be interpreted as a condition number for the problem of mini-
mizing the energy on the set Ω(εk−1, εk). The limit behaviour of κ(E, εk−1, εk)
for k → ∞ for an optimal sequence {εk} is a measure of the conditioning of
minimizing the energy.
(b) The above analysis can be carried out for other numerical procedures as well
(e.g., for higher degree discretizations). Since we want to focus on outlining the
general framework we restrict ourselves to the Euler-method.

Clearly, with respect to applying a concrete numerical algorithm like the Euler
method additional requirements related to the energies are necessary. One such
is that an approximation of a global minimum still can be used to obtain (for
example through the SLP family {Nn} of Definition 4) a suitable approximation
of a solution of the given problem. Here follow two classical problems that can
be treated completely that way.

Some Aspects of a Complexity Theory for Continuous Time Systems 561

3.1 Example: Linear Systems

Let us consider a square linear system A · x = b with regular matrix A ∈ R
n×n.

Define an energy

E(A, b, w) =
1

‖b‖2
· ‖A · w − b‖2 ,

where ‖ • ‖ denotes the Euclidean norm. We have

DwE(w̃) = 2 · AT · (A · w̃ − b)
‖b‖2

and D2
wE(w̃) = 2 · AT · A

‖b‖2
.

A is regular, so E is unimodal and the only critical point w∗ of E is the solution.
It clearly satisfies E(w∗) = 0. Moreover,

‖DwE(A, b, w̃)‖ = 2 · ‖(AT)−1‖ · ‖AT · (A · w̃ − b)‖
‖(AT)−1‖ · ‖b‖2

≥ 2 · ‖A · w̃ − b‖
‖(AT)−1‖ · ‖b‖2

=
2 ·

√
E(A, b, w̃)

‖A−1‖ · ‖b‖
Thus, in the terminology of Theorem 3 we get for ε1 > ε2 > 0 the bounds

H(ε1, ε2) ≤ 2 · ‖AT ‖ · ‖A‖
‖b‖2

and L(ε1, ε2) ≥ 2 · √
ε2

‖A−1‖ · ‖b‖ .

For an application of Theorem 3 we choose the sequence εk := 1
2k , ε0 := 1 =

E(0) =: E0, a step size τ(εk−1, εk) := 4σ·ε2k
ε2k−1·‖A‖2·‖A−1‖2 and get as a bound on

the number of steps

1
2

·
K∗
∑

k=1

2 · ‖AT ‖ · ‖A‖
‖b‖2

·
(

1
2k−1

)2

· (2k)2

4
· ‖A−1‖2 · ‖b‖2

=
K∗∑

k=1

‖A‖2 · ‖A−1‖2

= ‖A‖2 · ‖A−1‖2 · �log(1
ε)

since K∗ := �log(1
ε) iterations are sufficient to reduce the energy to a value ≤ ε.

Several remarks are in charge. The quantity ‖A‖ · ‖A−1‖ of course is well
known as the condition number of a square matrix. So it is no surprise that
in comes into our analysis. The complexity of the algorithm to minimize the
energy also depends (besides on the number of iterations) on the complexity of
evaluating DwE. Thus, the approach taken in the previous section is important

562 M. Gori and K. Meer

as well here. The latter evaluation complexity is bounded by the complexity of
performing two matrix-vector multiplications, which is O(n2). Thus, for well-
conditioned families of matrices, i.e, if the condition number can be bounded
by a (known) constant, we get a number O(n2 · log 1

ε) of arithmetic operations.
Note that in this case the step sizes can be easily computed as well.

A related example can be found in [1], where the ranking problem for webpages
is considered.

3.2 Example: Separating Hyperplane

In this subsection we want to show how our general framework gives back qual-
itatively the results obtained by the well known Perceptron learning algorithm,
see [5]. Relations between the perceptron algorithm and steepest descent meth-
ods have been studied previously, see, for example, [7].

Given two finite sets X+, X− of points in R
n and a δ > 0, the task is to find

a w ∈ R
n such that

wT · x ≥ δ ∀ x ∈ X+ and wT · x ≤ −δ ∀ x ∈ X− . (4)

An energy for this problem can be defined as:

E(X+, X−, w) :=
∑

x∈X+

β(wT · x − 2 · δ) +
∑

x∈X−

β(−wT · x − 2 · δ) ,

where

β(t) :=
{

t4 t ≤ 0
0 t > 0

The idea behind using this energy is as follows: First, it is not hard to see
that E is twice differentiable and unimodal. If w is a hyperplane doing a correct
separation, then for x ∈ X+ we obtain wT ·x ≥ δ > 0; similarly for x ∈ X−. The
energy is not necessarily vanishing in such a separating hyperplane w; however,
E is vanishing in 2 · w. Note that β is penalizing those hyperplanes that do not
separate the test sets sufficiently good, even though such a hyperplane might
solve the initial problem. Note as well that any w satisfying E(w) < δ4 is a
separating hyperplane, even though it might not be a global minimizer of E.

We compute upper and lower bounds according to Theorem 3.

i) Let ε1 > ε2 > 0. We compute an upper bound for ‖D2
wE(X, w)‖ on the

set Ω(ε1, ε2). Instead of the operator norm ‖D2
wE‖2 induced by the Euclidean

vector norm we use the well-known estimation

‖D2
wE‖2 ≤

√
‖D2

wE‖1 · ‖D2
wE‖∞ ,

where ‖ • ‖∞ denotes the maximal sum of absolute values of row entries and
‖ • ‖1 does the same for the column sums.

Some Aspects of a Complexity Theory for Continuous Time Systems 563

Suppose that for X := X+ ∪ X− it is |X | =: m, i.e. there are m many test
points; let BX > 0 denote a bound such that ‖x‖∞ ≤ BX for all x ∈ X. For
i, j ∈ {1, . . . , n} we get

∂2E

∂wi∂wj
=

∑

x∈X+

wT ·x<2·δ

12 · (wT · x − 2 · δ)2 · xi · xj+

+
∑

x∈X−
wT ·x>−2·δ

12 · (wT · x + 2 · δ)2 · xi · xj .

Using norm equivalence in R
n : ‖z‖2 ≤

√
n · ‖z‖4 ∀ z ∈ R

n together with the
assumption that w ∈ Ω(ε1, ε2) easy calculations result in

‖D2
wE(X, w)‖∞ ≤ 12 · n2 · √

ε1 · B2
X

as well as

‖D2
wE(X, w)‖1 ≤ 12 · n2 · √ε1 · B2

X

and thus the same bound holds for ‖D2
wE(X, w)‖2.

ii) For obtaining a lower bound for ‖DwE(X, w)‖ on Ω(ε1, ε2) consider once
more a separating hyperplane w̃ and apply the Cauchy-Schwartz inequality

‖DwE(X, w)‖2 ≥ ‖w̃‖−1
2 · |w̃T · DwE(X, w)| .

Now

|w̃T ·DwE(X, w)| ≥ 4δ ·
∑

x∈X+

wT ·x<2δ

|wT ·x−2δ|3+
∑

x∈X−
wT ·x>−2δ

|wT ·x+2δ|3 ≥ 4·δ ·E(w)
3
4 .

using the norm inequality ‖z‖3 ≥ ‖z‖4 for any z ∈ R
n, where ‖z‖p :=

(
n∑

i=1

zp
i

) 1
p

for p ∈ N.
Altogether, we obtain as lower bound on Ω(ε1, ε2) :

‖DwE(w)‖2 ≥ 4 · ‖w̃‖−1
2 · δ · ε

3
4
2 .

iii) With these bounds we can compute the number of steps necessary to get
an ε-approximate solution. We apply Theorem 3 with the following quantities:
ε0 := E(X, 0) = 16 · m · δ4; εk := E(ε0)

2k , ε > 0 fixed and

H(εk−1, εk) ≤ 12 · n · B2
X · √

εk−1 , L(εk−1, εk) ≥ 4 · δ · ‖w̃‖−1
2 · ε

3
4
k

for any separating hyperplane w̃; the latter should be taken in the analysis so
to minimize the norm (note that w̃ is not used in the algorithm).

564 M. Gori and K. Meer

Thus, the number of steps to reduce the energy from εk−1 to εk is bounded
by

1
2

·
H(εk−1, εk) · ε2k−1

L(εk−1, εk)2 · εk
≤ 3√

2
· n2 · B2

X · ‖w̃‖2
2

δ2
.

With K∗ := O(log E0
ε) many iterations we thus need

O

(
n2 · B2

X · ‖w̃‖2
2

δ2
· log

E0

ε

)

many steps. Finally, recalling that ε < δ4 is a sufficient choice for obtaining a
separating hyperplane we end up with

O

(
n2 · B2

X · ‖w̃‖2
2

δ2
· log m

)

many steps for the Euler-discretization. For the computation of the gradient in
each step an upper bound of order O(n · m) is obvious.

These bounds pretty well correspond to the bounds known from the percep-
tron convergence theorem, see [5]. The important difference is that our algorithm
results as just one specific example from a much more general framework, that
hopefully can be applied to a larger class of problems as well.

4 Conclusion and Acknowledgement

We have studied a framework for measuring the complexity of analog systems.
The latter is based on the notion of a problem. In its more abstract part the ap-
proach allows to define complexity classes independently of particular trajectory
following algorithms. The existence of complete problems for such classes was
established. In a second part we considered steepest descent algorithms for dis-
cretized versions of our problems resulting in a concrete running time analysis.
Two such examples were discussed.

We still believe that a lot of questions have to be investigated. To get a better
overview what has been done so far and which problems are waiting to be solved
let us finally refer once again to the survey by Bournez and Campognolo [3].

We would like to thank the anonymous referees for some helpful remarks.

References

1. Bianchini, M., Gori, M., Scarselli, F.: Inside PageRank. ACM Transactions on In-
ternet Technology 5(1), 92–128 (2005)

2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer, Heidelberg (1998)

3. Bournez, O., Campagnolo, M.L.: A Survey on Continuous Time Computations.
Preprint (2006)

4. Gori, M., Meer, K.: A step towards a complexity theory for analog systems. Math-
ematical Logic Quarterly 48(1), 45–58 (2002)

Some Aspects of a Complexity Theory for Continuous Time Systems 565

5. Minsky, M., Papert, S.: Perceptrons. The MIT Press, Cambridge (1969)
6. Orponen, P.: A survey of continuous-time computation theory. In: Du, D.-Z., Ko, K.-

I. (eds.) Advances in Algorithms, Languages, and Complexity, pp. 209–224. Kluwer
Academic Publishers, Dordrecht (1997)

7. Shynk, J.J.: Performance Surfaces of a Single-Layer Perceptron. IEEE Transactions
on Neural Networks 1(3), 268–274 (1990)

8. Zak, M.: Introduction to terminal dynamics. Complex Systems 7, 59–87 (1993)

Enumerations and Torsion Free Abelian Groups�

Alexander G. Melnikov

Sobolev Institute of Mathematics, Novosibirsk, Russia
vokinlem@bk.ru

Abstract. We study possible spectrums of torsion free Abelian groups.
We code families of finite sets into group and set up the correspondence
between their algorithmic complexities.

1 Introduction

Studying model theory and theory of algorithms gives us another branch of
science - computable model theory. We say that the model is computable if it’s
main set, predicates and functions are recursive, and all functions and predicates
are effectively enumerated. We may think these models as “the only ones that
can be applied in computer science and that can be presented on some computer”
or “the ones we can exactly imagine” etc. Note that we don’t think about time
or space complexity of algorithms - this is another subject for studying.

Starting with abstract computable models, we try to apply some results or
their variations to effective algebra. In particular, computable fields, Boolean
algebras and groups are widely studying.

We generalize the notion of computable model replacing in it’s definition all
words “recursive” by “X-recursive”, where X is some countable set. That means
that we can ask someone on some steps of given program whether x ∈ X or
not, for arbitrary x. It’s not easy to imagine, how can we apply it in computer
science. We can think that this “oracle” is some physical experiment - but is
there any physicist who knows everything about halting problem?.. That means
that we need some methods to answer the question:

Question. Let A be a model, and suppose that A has copies, computable in a
fixed family of Turing degrees respectively. Does it necessarily follow that A has
a computable copy?

If A is a Boolean algebra, and it has a low copy, then the answer is “yes”[1].
There is another related question:

Question. Given a structure A what can we say about {deg(Â) : Â � A}?

For an arbitrary structure, this family of degrees (called degree spectrum) can
be enough complicated and reach, but does not contain 0-degree or low degrees.
Wehner [7] built a graph that has presentations exactly in non-recursive degrees

� Partially supported by President grant of Scientific School NSh-4413.2006.1.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 566–574, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Enumerations and Torsion Free Abelian Groups 567

(see also [4] for alternative proof). Miller R. [3] built a linear order, that has all
noncomputable Δ0

2 - copies, but does not have a computable one. These results
give us examples of algorithmic “anomaly” and shows the variety and richness
of pure and applied computable algebra.

We study possible spectrums of torsion free Abelian groups. For torsion free
Abelian group the key notion is its rank. In this paper we study algorithmic
properties of groups in the case of infinite rank, and we obtain the following:

Theorem. For any family R of finite sets there exists a torsion free Abelian
group GR of infinite rank, such that GR has X-computable copy iff R has ΣX

2 -
computable enumeration.

Interpretation of a family, that can be obtained by relativization of Wehner’s
result, gives us the corollary:

Theorem. There exists a torsion free Abelian group G of infinite rank, such
that G has X-computable copy iff X ′ >T 0′, i.e. has exactly nonlow copies.

2 Basic Notions

We need some basic notions and facts from computability theory, theory of
groups and computable model theory. For better background see also [5], [6]
and [2]. We suppose that the reader knows the elementary properties of recursive
functions and recursively enumerable sets.

Definition 1. A set A is recursive with respect to a set B (A ≤T B), if its
characteristic function is B-recursive. That means that it can be computed by
Turing machine with “oracle” B. If A ≤T B and B ≤T A then A ≡T B. It’s
obvious that ≡T is the relation of equivalence. The equivalence classes for ≡T

are called degrees.

Definition 2. Let K = {x: ΦA
x (x) ↓} = {x: x ∈ WA

x }. This set is denoted by A′

and called the jump of a set A.

Index A in ΦA
x (x) means that Φ is (partially) recursive with respect to a set A.

It’s clear how to define the n-th jump of A (A(n)) using the same construction for
A(n−1). Jump is well-defined on degrees, and iteration of jumps induces hierarchy,
that is called arithmetical:

X ∈ ΣY
n ↔ X is r.e. in Y (n−1).

Definition 3. We say that a set A ≤T ∅′ is low if A′ ≡T ∅′, and it is n-low if
A(n) ≡T ∅(n).

Definition 4. Let R = {Ri|i ∈ ω} and ν : ω →on R. The set Sν � {〈n, i〉|n ∈
ν(i)} is called enumeration of R. We also refer to ν as an enumeration of R,
using a simple fact, that having Sν we can recollect the map ν and vice versa.

We will follow the tradition of enumeration theory in defining computable
enumeration:

568 A.G. Melnikov

Enumeration ν is called ΣX
n -computable if Sν ∈ ΣX

n (and X-computable if
Sν ∈ ΣX

1).

Now let G be a countable group.

Definition 5. A group 〈G, ·〉 is called computable group if | G | ⊆ N is a recur-
sive set and the operation · is presented by some recursive function.

We define A-computable groups by substitution of the word “recursive” by
“A-recursive” in the definition above.

Definition 6. Let 〈G, +, 0〉 be a torsion free Abelian group (i.e for all a = 0,
0 = n ·a � a + a + ... + a︸ ︷︷ ︸

n

). The elements g0, ..., gn ∈ G are linearly independent

if, for all c0, ..., cn ∈ Z, the equality c0g0 + c1g1 + ... + cngn = 0 implies that
ci = 0 for all i. An infinite set is linearly independent if every finite subset is
linearly independent. A maximal linearly independent set is called a basis, and
the cardinality of any basis is called the rank of G.

As for vector spaces, it can be proved that the notion of rank is proper, i.e. all
maximal linearly independent sets have the same cardinality.

Fix a canonical listing of prime numbers:

p1, p2, ..., pn, ...

Definition 7. Let g ∈ G. Then pk|g � (∃h ∈ G)(pkh = g) and

hp(g) =

{
max{k : pk|g}, if this maximum exists,
∞, else.

The infinite sequence χ(g) = (hp1(g), ..., hpn(g), ...) is called the characteristic of
element g.

Now we are ready to define one of the basic notions in Abelian groups theory.

Definition 8. Given two characteristics, (k1, ..., kn, ...) and (l1, ..., ln, ...), we
say that they are equivalent, (k1, ..., kn, ...) � (l1, ..., ln, ...), if kn = ln only for
finite different n, and only if these kn and ln are finite. This relation is ob-
viously an equivalence relation, and the corresponding equivalence classes are
called types.

It can be easily proved that linear dependant elements has the same type. That
means that we can give a proper definition of type of group in the case of rank 1.
The following theorem is the key result for torsion free Abelian groups of rank 1:

Theorem 1 (Baer, see [6]). Let G and H be torsion free Abelian groups of
rank 1. Then G is isomorphic to H iff they have the same type.

Proof (sketch).
We can choose any nonzero g ∈ G and h ∈ H , and it will be necessarily χ(g) �
χ(h). Then we extract the finite number of roots receiving g′ ∈ G and h′ ∈ H
with identical characteristics. We define isomorphism ϕ : G → H starting with
g′ → h′.

Enumerations and Torsion Free Abelian Groups 569

3 Constructing The Group

Theorem 2. For any family R of finite sets there exists a torsion free Abelian
group GR of infinite rank, such that GR has X-computable copy iff R has ΣX

2 -
computable enumeration.

Proof.
Notation. We fix the family of finite sets denoted by R and it’s ΣX

2 -computable
enumeration νX with corresponding SX

ν � {〈n, i〉|n ∈ νX(i)} ∈ ΣX
2 . Without

loss of generality, we can assume that ∅ ∈ R.
We will use the fact, that every ΣX

2 -relation can be presented as {〈i, k〉 :
(∃<∞x)PX(x, 〈i, k〉)}, where PX is some recursive in X relation. We fix T X

such that
SX

ν = {〈i, k〉 : (∃<∞x)T X(x, 〈i, k〉)}.

The scheme of proof is the following:
Given a ΣX

2 -computable enumeration νX of R we build a r.e. in X presenta-
tion GX ⊆ Qω of group GR =

⊕
k∈ω

⊕
m∈ω Gk,m, where rank(Gk,m) = 1. Since

Qω is computable, then GX must have a computable copy as a r.e. subgroup
(see [2]).

Then, to make inverse step, we need to construct some ΣX
2 -computable enu-

meration if we have some X-computable presentation of GR.

This is the idea of building a group:
1. Fix a computable listing of prime numbers {pn}n∈ω and canonical enumer-

ation of (nonempty) finite sets {Dn}n∈ω.
2. Build a group such that any νX(k) corresponds to ω linearly independent

elements gk,m, and for all m, n, k:

¬(p∞n |gk,m) ⇐⇒ (Dn ⊆ νX(k)).

3. To build a group, enumerate T X(x, 〈i, k〉) until a new x for some pair 〈i, k〉
appeared. If we have found such x, add pn-roots to elements gk,m for all n, such
that i ∈ Dn.

First we define a procedure Root(〈i, k〉, tn〈x,i,k〉, Y
n
〈x,i,k〉), that adds prime roots

to elements gk,m. Y n
〈x,i,k〉 is the “memory” of this procedure, and tn〈x,i,k〉 is it’s

“counter of steps”.

Root(〈i, k〉, tn〈x,i,k〉, Y
n
〈x,i,k〉) :

For all n′ ∈ Y n
〈x,i,k〉, add pn′ -root to gk,tn

〈x,i,k〉
. If i ∈ Dtn

〈x,i,k〉
, then Y n+1

〈x,i,k〉 :=
Y n
〈x,i,k〉 ∪{tn〈x,i,k〉} and add ptn

〈x,i,k〉
-root to gk,m, m ≤ tn〈x,i,k〉. If i /∈ Dtn

〈x,i,k〉
, then

Y n+1
〈x,i,k〉 := Y n

〈x,i,k〉.
Finally, let tn+1

〈x,i,k〉 := tn〈x,i,k〉 + 1.
End of procedure.

Let Search(〈i, k〉, l) � μx(x ≥ l ∧ T X(x, 〈i, k〉)).

570 A.G. Melnikov

Construction.

Step 0. Fix a computable presentation of Qω and numbers for gk,m (we can
suppose that gk,m is an element of a form (0, 0, ..., 0, 1

︸ ︷︷ ︸
pm

k

, 0, 0, ...)).

For all i, k, x, let l0〈i,k〉 = 0, t0〈x,i,k〉 = 0, Y 0
〈x,i,k〉 = ∅.

Step s. We denote by GX
s the part of GX that has been constructed by the step

s. For all {(g1, ..., gn) : gi ∈ GX
s , gi ≤ s, n ≤ s}, add to GX

s linear combinations
{m1g1 + ... + mngn : mi ≤ s} (if they were not already added).

Make s steps in computation of Search(〈i, k〉, ls〈i,k〉), 〈i, k〉 ≤ s.
If Searchs(〈i, k〉, ls〈i,k〉) ↓= x for some i, k, x, then ls+1

〈i,k〉 := x + 1, and 〈x, i, k〉
gets attention. Suppose Rs

〈x,i,k〉 � Root(〈i, k〉, ts〈x,i,k〉, Y
s
〈x,i,k〉), and

〈x1, i1, k1〉, ..., 〈xj , ij , kj〉

be the listing of all triples, that have got attention by this moment. Perform
Rx1,s

〈i1,k1〉, then perform the next, ..., and finally R
xj,s

〈ij ,kj〉
1.

End of construction.

Lemma 1. GX , built by construction, is torsion free Abelian group and has
computable in X copy.

Proof. The first statement is clear: G ⊆ Qω by construction. The second is true
because the algorithm of building GX is effective with oracle X , i.e. G is X-r.e.,
and G ⊆ Qω, that is computable (again see [2]).

Lemma 2. For any k and m, ¬(p∞n |gk,m) in GX iff (Dn ⊆ νX(k)).

Proof. νX(k) is finite, and i ∈ νX(k) iff

(∃<∞x)T X(x, 〈i, k〉),

That means that in the procedure Search after some moment no “new” x for
〈i, k〉 will appear for all i ∈ νX(k).

We notice that the existence of such step follows from two key properties: R
contains only finite sets and i ∈ νX(k) iff “there is only finitely many x, such
that T X(x, 〈i, k〉).”

We can make a conclusion that after this step, roots that correspond to subsets
of νX(k), will not be added by procedures Root to elements of a form gm,k.

Now let n ∈ {l : Dl � νX(k)}. That means that Dn contains i /∈ νX(k) and

(∃∞x)T X(x, 〈i, k〉),

i.e. infinitely many triples of a form 〈x, i, k〉 will get attantion. Therefore proce-
dures Root will add infinetly many pn-roots to elements gm,k. This completes
the proof of lemma.
1 Remember that the procedure Root(〈i, k〉, s, Y s

〈x,i,k〉) defines the value of Y s+1
〈x,i,k〉 and

ts+1
〈x,i,k〉.

Enumerations and Torsion Free Abelian Groups 571

Lemma 3. Let νX and νY be enumerations of R. Then two groups GX and GY

(built using construction for νX and νY respectively) are isomorphic.

Proof. First fix enumeration νX . Notice that ω identic elements {gk,m}m∈ω (in
GX), corresponds to one νX(k), and gk1,m1 and gk2,m2 are linearly independent
for 〈k1, m1〉 = 〈k2, m2〉.

We add roots to gk,m in such a way that GX is a direct sum:

GX =
⊕

k∈ω

⊕

m∈ω

GX
k,m,

where GX
k,m corresponds to element gk,m (and therefore codes νX(k), i.e. GX

k,m �
GX

k,n for all m, n and fixed k), and rank(GX
k,m) = 1.

Now we fix νY , and build GY . We receive a group of the similar form

GY =
⊕

k∈ω

⊕

m∈ω

GY
k,m.

All sets from Ri ∈ R are finite, therefore νX(k) and νY (t), coding the same
Ri ∈ R in enumerations, give us elements of the same type: these elements have
only finitely many finite roots, and these roots correspond to the same prime
numbers. By Baer Theorem we have the isomorphism of groups of rank 1.

The last problem is to show that the direct sum has the same structure. But
by construction we always have exactly ω subgroups, coding the same Ri ∈ R,
even if there are repetitions in coding of Ri in enumeration.

We showed that both GX and GY are isomorphic to

GR =
⊕

k∈ω

Gk,

where Rk ∈ R is coded by Gk =
⊕

m∈ω Gk,m, Gk,m
∼= Gk,m′

Given ΣX
2 enumeration of R we can build a r.e. group GX that has a computable

copy. It is a presentation of

GR =
⊕

k∈ω

⊕

m∈ω

Gk,m.

Now we need an inverse step, i.e. to construct some ΣX
2 -computable enumer-

ation if we have some X-computable presentation of GR.

Proposition 1. There exists an algorithm, that for any computable in X pre-
sentation GX of GR (defined above for R) gives ΣX

2 -enumeration of R.

Proof.
We define X-p.r.f. r as follows:

r(g, n, k) =

{
1, if GX |= pk

n|g,

r(g, n, k) ↑, else.

572 A.G. Melnikov

We define also X ′-recursive function r̂:

r̂(g, n, k) =

{
1, if r(g, n, k) ↓= 1,

0, if r(g, n, k) ↑ .

Using r̂ we can check (with oracle X ′) the existence of prime roots for any
g ∈ GX . If there is a pair 〈n, k〉, such that r̂(g, n, k) = 0, then g has only finitely
many pn-roots.

We identify elements from G with there codes in GX .

Construction.

Step 0: Let all m0
t be undefined.

Step s:
Substep s,1: For g ∈ GX , such that g ≤ s and ms−1

g is undefined, compute
r̂(g, m, k) for m, k ≤ s. If there exist gi, mi, ki ≤ s, such that r̂(gi, mi, ki) =
0 ∧ (∀n < ki)(r̂(gi, mi, n) = 1), then suppose ms

gi
= mi

2. For every such gi add
to the enumeration all pairs

{〈j, gi〉 : j ∈ Dms
gi

}.

Substep s,1: For g ∈ GX , such that g ≤ s and ms−1
g is defined, compute

r̂(g, m, k) for m, k ≤ s. If there exist gi, mi, ki ≤ s, such that r̂(gi, mi, ki) =
0∧ (∀n < ki)(r̂(gi, mi, n) = 1∧Dms−1

gi
⊂ Dmi , then for every such gi, add to the

enumeration pairs
{〈j, gi〉 : j ∈ Dmi \ Dms−1

gi
},

and then suppose ms
gi

= mi.

End of Construction.

Lemma 4. Described algorithm builds the enumeration of R.

Proof. Remember that
GR =

⊕

k∈ω

⊕

m∈ω

Gk,m,

where rank(Gk,m) = 1 and Gk,m
∼= Gk,m′ (for any m, m′). For every gk,m ∈ Gk,m

we have the following:

¬(p∞n |gk,m) ⇐⇒ (Dn ⊆ RX
k).

Let g ∈ G. Then g = rk1,m1gk1,m1 + ... + rkt,mtgkt,mt for some gk1,m1 ∈
Gk1,m1 , ..., gkt,mt ∈ Gkt,mt . But G is the direct sum, and g is the linear combi-
nayion of linear independent elements. It is easy to see that

(∀k)((¬p∞k |g) ⇐⇒
∨

j=1,...,t

(Dk ⊆ Rkj)),

2 We can suggest (for every i) mi be the minimal one with this property.

Enumerations and Torsion Free Abelian Groups 573

i.e. the characteristic of g is the g.l.b. of characteristics of components. That
means that g codes the union of all subsets, coded by it’s components.

Algorithm let us to move higher and higher along the subsets of some Rkj ,
until we reach this Rkj . After we reach it, there will be no new pairs of a form
〈l, g〉 added in enumeration. That means that we enumerate Rkj , and we do it
for all elements of R, and only this elements could be enumerated.

Lemma 5. Enumeration built by algorithm (for GX) is ΣX
2 .

Proof. The function r̂(g, n, k) is recursive in X ′. That means that the Procedure
is effective in X ′, and enumeration is ΣX

2 .

We set up a correspondence between ΣX
2 -enumerations of R and computable in

X presentations of GR. This completes the proof of theorem.

The following result is one of the possible applications of the previous theorem:

Theorem 3. There exists a torsion free Abelian group G of infinite rank, such
that G has X-computable copy iff X ′ >T 0′, i.e. has exactly nonlow copies.

Proof (sketch). First we relativize the result of Wehner [7]. This gives us the fam-
ily of finite sets that has ΣX

2 (X ′ >T 0′) enumerations, but has no Σ2 enumera-
tion. Then we apply construction from previous theorem for this family of sets.

4 Questions

We suggest some related problems.

Question 1. Is it possible to build a torsion free Abelian group with copies ex-
actly in none-recursive degrees? Can we generalize our second theorem for the
case of lown-degrees, for arbitrary n?

At the case of finite rank the answer for the first part is “no” (for the second
part it is also natural to get “no”). But in general case the question is open -
there is no uniform procedure for coding of any given property into torsion free
Abelian groups, especially coding respecting effectiveness.

Question 2. What can we say about Abelian p-groups? Can we build a p-group
with any of these properties?

Studying p-groups from these point of view is very interesting and needs some
new ideas and methods to be developed.

References

1. Downey, R., Jockusch, G.: Every low Boolean algebra is isomorphic to a recursive
one. Proc. Amer. Math. Soc 122, 871–880 (1994)

2. Ershov, Y., Goncharov, S.: Constuctive models. Novosibirsk, Nauchnaya kniga
(1999)

574 A.G. Melnikov

3. Miller, R.: The Δ0
2-spectrum of a linear order, preprint.

4. Slaman, T.: Relative to ani non-recursive set. Proc. of the Amer. Math. Soc 126,
2117–2122 (1998)

5. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin Heidelberg
(1987)

6. Fuchs, L.: Infinite Abelian Groups. vol. II. Academic Press, San Diego (1973)
7. Wehner, S.: Enumerations, countable structures and Turing degrees. Proc. of the

Amer. Math. Soc 126, 2131–2139 (1998)

Locally Computable Structures

Russell G. Miller1,2,�

1 Department of Mathematics
Queens College – C.U.N.Y.

65-30 Kissena Blvd.
Flushing, New York 11367 U.S.A.

2 Doctoral Program in Computer Science
The Graduate Center of C.U.N.Y.

365 Fifth Avenue
New York, New York 10016 U.S.A.

Russell.Miller@qc.cuny.edu

Abstract. We introduce the notion of a locally computable structure,
a natural way of generalizing the notions of computable model theory
to uncountable structures S by presenting the finitely generated sub-
structures of S effectively. Our discussion emphasizes definitions and
examples, but does prove two significant results. First, our notion of
m-extensional local computability of S ensures that the Σn-theory of S
will be Σn for all n ≤ m + 1. Second, our notion of perfect local com-
putability is equivalent (for countable structures) to the classic definition
of computable presentability.

Keywords: computability, computable model theory, extensional, lo-
cally computable, perfectly locally computable.

1 Introduction

Turing computability has always been restricted to maps on countable sets.
This restriction is inherent in the nature of a Turing machine: a computation
is performed in a finite length of time, so that even if the available input was
a countable binary sequence, only a finite initial segment of that sequence was
actually used in the computation. Thus only that finite segment was relevant
to the computation. To be sure, there are approaches that have defined natural
notions of computable functions on the real numbers. These include the bitmap
model, detailed in [2], and the Blum-Shub-Smale model (see [1]). These are
elegant in several respects, but also omit certain basic functions, and moreover,
each was built with the real numbers (viewed either as 2ω or as the real line)
specifically in mind, rather than arbitrary uncountable structures.

Nevertheless, mathematicians are hardly daunted by the prospect of doing
actual computations on R. When faced with a real number whose binary expan-
sion is not immediately accessible, they do not flinch; they simply call that real
� The author was partially supported by PSC-CUNY grants numbered 67182-00-36,

68470-00-37, and 80209-04-12.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 575–584, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

576 R.G. Miller

“x.” All field operations can then be performed with ease within the subfield of
R generated by x; the mathematician only needs to know whether x is algebraic
or transcendental, and, in the former case, what its minimal polynomial over Q

is. Similar devices handle the situation of several unknown reals at once. The
binary expansions of these reals are not required for the algebraic operations.

In this paper we formalize this process, and generalize it to arbitrary structures
in finite languages. Starting with the notion of a computable model, which is
entirely in keeping with Turing’s notion of computability, we will view the real
numbers and other fields as locally computable structures. No claim is made that
operations on the reals can be performed globally, but we develop a definition in
which countable objects are used to describe all finitely generated substructures
of a (potentially uncountable) structure S. Then the local computability of S is
determined by the computability of the countable objects. In cases such as the
field R, where every finitely generated substructure is computably presentable,
we will say that we have a computable cover of the structure. Indeed, for R, a
single algorithm can list out all elements of this cover.

The term “cover” is borrowed from the definition of a manifold, and the
analogy, while imprecise, can be useful for intuitions about our definitions. For
instance, for a topological space M , being a manifold does not just require the
existence of a cover by open subsets of R

n, but also that the charts within M
given by the cover should fit together in a nice way: the transition functions
between open subsets of R

n, defined whenever two charts in M intersect, should
be continuous (or differentiable, or C∞, depending on how nicely we wish the
manifold to behave). In short, it is not sufficient just to describe the local be-
havior of M ; one must ensure that where the descriptions overlap, they agree
with one another in a reasonable way.

For us, it will certainly be true that finitely generated substructures of a struc-
ture S can overlap. Therefore, our description of finitely generated substructures
of S will include an account of which such substructures extend to others. Since
any two finitely generated substructures of S lie within a single larger finitely
generated substructure, it is sufficient for our purposes to consider the question
of extensions among them. Topological notions do not fit our setting very well,
but embeddings among finitely generated computable structures are themselves
inherently computable, since they are determined by their values on the gen-
erators of the domain. (This is our main reason for considering only finitely
generated substructures of S, in fact, rather than all countable substructures.)
In order for a structure to be called locally computable, we will require not only
that the finitely generated substructures be computably presentable in a uniform
way, but also that there be a computable enumeration of the embeddings among
them corresponding to extensions in the structure S. Various strengthenings of
this requirement will allow us to prove stronger theorems about certain of the
structures.

The technical content of this paper is not especially high, and for reasons of
space we have emphasized our definitions and new concepts, and omitted many
of the proofs. When computability-theoretic notions arise, we refer the reader

Locally Computable Structures 577

to [4], the standard source, for notation and definitions. A good overview of the
field of computable model theory is given in [3].

2 Local Computability

Let T be a ∀-axiomatizable theory in a language with n symbols. (If T is finitely
axiomatizable but not ∀-axiomatizable, we can Skolemize to give it a set of
∀-axioms, while keeping the language finite.) We first consider simple covers of
a model S of T . These describe only the finitely generated substructures of S,
with no attention paid to any relations between those substructures.

Definition 1. A simple cover of S is a (finite or countable) collection A of
finitely generated models A0, A1, . . . of T , such that:

– every finitely generated substructure of S is isomorphic to some Ai ∈ A; and
– every Ai ∈ A embeds isomorphically into S.

A simple cover A is computable if every Ai ∈ A is a computable structure
whose domain is an initial segment of ω. A is uniformly computable if the se-
quence 〈(Ai, ai)〉i∈ω can be given uniformly: there must exist a computable func-
tion which, on input i, outputs a tuple of elements 〈e1, . . . , en, 〈a0, . . . , aki〉〉 ∈
ωn × A<ω

i such that {a0, . . . , aki} generates Ai and ϕej computes the j-th func-
tion, relation, or constant in Ai.

The intention is that S itself should not be finitely generated, of course, although
the definition is still valid in this case. Indeed, S is not at all required to be
countable, since a single Ai may be isomorphic to many substructures of S. For
countable structures S, a related notion is Fräıssé’s concept of the age of S,
i.e. the set of all finitely generated substructures of S. We note that all elements
of A will be models of T ; this was the reason for which we demanded that T be
∀-axiomatizable.

Notice that the definition requires that the generators of Ai be given as a
tuple 〈a0, . . . , aki〉, so that ki is computable uniformly in i and we know how
many values from Aj are needed to define an embedding in IA

ij . (In the language
of [4], the definition requires the canonical index for the set {a0, . . . , aki}.)

As an example, it is straightforward to show that the best-known uncountable
structure in mathematics is locally computable. We omit the proof, since most
of its ingredients have long been established.

Proposition 1. The field R = (R, +, ·, −, r, 0, 1) of real numbers is locally com-
putable. ��

Notice that we have added the operations of negation and inversion (r, for re-
ciprocal) to the usual language of fields, in order to get a Π1 axiom set.

It is also useful to see a negative example. Although the real numbers form a
locally computable field, Adding the usual < relation to the field R of Proposition
1 destroys local computability.

578 R.G. Miller

Proposition 2. The ordered field (R, <) of real numbers, with R as in Propo-
sition 1, has no computable simple cover, uniform or otherwise.

Proof. Let b be any noncomputable real number. We claim that the ordered
subfield B of R generated by b has no computable presentation. Suppose A
were a computable presentation of B, with a ∈ A representing b. Then just
from knowing the additive and multiplicative identity elements in A, we could
compute the representation in A of any rational number p

q . But then we could
compute the n-th bit of the binary expansion of a, uniformly in n, just by using
the computable relation < in A to compare a to various dyadic rationals. But
this is also the n-th bit of the binary expansion of b, which was assumed to be
noncomputable. Therefore no such A can exist. ��

We will be concerned mainly with the full definition of a cover, in which we also
describe how the substructures of S fit together.

Definition 2. An embedding f : Ai ↪→ Aj lifts to the inclusion B ⊆ C, via
isomorphisms β : Ai � B and γ : Aj � C, if if the diagram below commutes:

Ai �f Aj

� �β ∼= γ ∼=

B � C⊆
with γ ◦ f = β.

A cover of S consists of a simple cover A = {A0, A1, . . .} of S, along with sets
IA
ij (for all Ai, Aj ∈ A) of injective homomorphisms f : Ai ↪→ Aj , such that:

– for all finitely generated substructures B ⊆ C of S, there exist i, j ∈ ω and
an f ∈ IA

ij which lifts to B ⊆ C via some isomorphisms β : Ai � B and
γ : Aj � C; and

– for every i and j, every f ∈ IA
ij lifts to an inclusion B ⊆ C in S via some

isomorphisms β and γ.

This cover is uniformly computable if A is a uniformly computable simple cover
of S and there exists a c.e. set W such that for all i, j ∈ ω,

IA
ij = {ϕe�Ai : 〈i, j, e〉 ∈ W}.

A structure B is locally computable if it has a uniformly computable cover.

If A is a computable simple cover, then every embedding of any Ai into any
Aj is determined by its values on the generators of Ai. Since Ai is finitely
generated, all such embeddings are computable, and therefore it is reasonable to
call A a computable cover without any further requirements on the sets IA

ij . For
a uniformly computable cover, on the other hand, the sets IA

ij will play a key
role in our development of the subject, and it should be kept in mind that IA

ij

need not contain every possible embedding of Ai into Aj .
It is an easy exercise to see that the second condition of Definition 2 follows

trivially from the definition of a simple cover, for any embedding f : Ai ↪→ Aj .

Locally Computable Structures 579

We include this second condition here because it is the dual of the first, and in
the rest of our study of local computability, this duality between inclusion maps
within S and embeddings among structures in A will appear repeatedly.

Lemma 1. A structure S has a uniformly computable cover (i.e. is locally com-
putable) iff S has a uniformly computable simple cover.

Proof. Given a uniformly computable simple cover A = {A0, A1, . . .}, we adjoin
all finitely generated substructures of each Ai. The embeddings are precisely the
inclusion maps from each substructure of Ai into Ai. It is quickly seen that this
yields a uniformly computable cover. ��
In light of this lemma, one naturally asks why we bothered to give Definition 2.
The answer is that local computability will be the m = 0 case in the following
definition, which uses the enumeration of the sets IA

ij extensively. Indeed, it is
the enumeration of the embeddings, rather than that of the finitely generated
substructures of S, which will be the heart of our study of local computability.

Definition 3. Let A be a cover of a structure S. Every embedding β of any
Ai ∈ A into S will be called 0-extensional. For each m ≥ 0, we say that such an
embedding β, with image B ⊆ S, is (m + 1)-extensional if:

– for every j ∈ ω, every f ∈ IA
ij lifts to an inclusion B ⊆ C in S via β and

some m-extensional match γ with domain Aj; and
– for every finitely generated C with B ⊆ C ⊆ S, there exists j ∈ ω and f ∈ IA

ij

which lifts to B ⊆ C via β and some m-extensional match γ with domain Aj.

A uniformly computable cover A of S is m-extensional if every Ai ∈ A
m-extensionally matches some substructure of S and every finitely generated
substructure of S m-extensionally matches some Ai ∈ A. If such a cover exists,
we say that S is m-extensionally locally computable (or just m-extensional). A
structure is ω-extensionally locally computable if it is m-extensionally locally
computable for every m ∈ ω.

Notice that S is 0-extensional iff S is locally computable, iff S has a uniformly
computable simple cover (by Lemma 1). Definition 3 will be used in Proposi-
tion 4 to derive results about the complexity of the theory of S. The idea of
1-extensionality is that the embeddings in the sets IA

ij (for all j) correspond
precisely to the finitely generated superstructures of B in S, rather than just to
some possible extension of some B′ ∼= B within S to some superstructure of B′

in S. The distinction is best illustrated by the negative example of Proposition
3 below. However, Proposition 5 will show that the definition holds for the field
of complex numbers. Indeed, the set IA

ij of embeddings of one Ai in the cover
into another Aj is just the set of all embeddings of Ai into Aj , and this set is
actually computable, uniformly in i and j.

m-extensionality is the obvious iteration of this notion. The extra conditions
for extensionality strengthen the idea that each finitely generated substructure
of S is represented by some Ai ∈ A: not only are they isomorphic, but the
embeddings (given by IA) of Ai into other structures in A coincide exactly with
the extensions of B to larger finitely generated substructures of S.

580 R.G. Miller

Proposition 3. The field R of real numbers is not 1-extensionally locally com-
putable.

Proof. Suppose that A were a 1-extensional cover of R. Fix any noncomputable
real number t ∈ R. Definition 3 gives an Ai ∈ A which 1-extensionally matches
(via some isomorphism β) the subfield B of R generated by t, and we may assume
we know i and β−1(t), since they constitute finitely much information.

Now we can enumerate the lower cut of rationals q < t in R, knowing that
extensions of B in R correspond to embeddings f ∈ IA

ij (for all j) in the
1-extensional cover. For any rational q ∈ R:

|=R q < t ⇐⇒ |=R (∃x)x2 = t − q

⇐⇒ (∃ f.g. C)[B ⊆ C ⊂ R & |=C (∃x)x2 = t − q]

⇐⇒ (∃j)(∃f ∈ IA
ij) |=Aj (∃x)x2 = f(β−1(t − q))

⇐⇒ (∃j)(∃f ∈ IA
ij)(∃a ∈ Aj) |=Aj a2 = f(β−1(t)) − f(β−1(q)).

A similar argument holds for the upper cut of rationals q > t, using square roots
of (q − t) in R. This contradicts the noncomputability of t. (Of course, β and
f fix the rationals, so f(β−1(q)) ∈ Aj is just the element of Aj representing q.
This f(β−1(q)), lying in dom(Aj), is a natural number, but the element of Aj

representing any particular rational q can easily be computed from the numerator
and denominator of q, uniformly in j, by using the functions of Aj .) ��

So the extensional local computability of C in Proposition 5 does not follow solely
from the existential closure of the structure; after all, R, viewed as a real closed
field, is also existentially closed. The difficulty for R is that real closed fields have
an implicit order on their elements, whether it is included in the language of the
structure or not, and as we saw in Proposition 2, adding the order relation to
R destroys local computability. R itself can still be locally computable, because
the relation < cannot be defined in R without quantifiers (even though it is
both Σ1-definable and Π1-definable!) and existential questions about R can be
left unanswered by a uniformly computable cover. An extensional cover, on the
other hand, answers all such questions, as we now see.

Proposition 4. For m ∈ ω, any m-extensionally locally computable structure
S, and any n ≤ m + 1, the Σn-theory of S,

{ϕ ∈ Th(S) : ϕ is a Σn sentence},

is itself a Σn set in the arithmetic hierarchy. (For n > 0, this means that the
Σn-theory is 1-reducible to ∅(n), and for n = 0, the Σ0-theory is computable.)

Proof. Let 〈Ai〉i∈ω be an m-extensionally computable cover of S. For arbitrary
n ≤ m + 1, the key fact is simply that for any formula ϕ(x),

|=S (∃x)ϕ(x) iff (∃ f.g. B ⊆ S)(∃ b ∈ Bj) |=S ϕ(b).

Locally Computable Structures 581

When we have alternating quantifiers, we need to take superstructures at each
step. For an arbitrary formula ϕ(x, y),

|=S (∃x)(∀y)ϕ(x, y)

iff (∃ f.g. B ⊆ S)(∃ b ∈ Bk) |=S (∀y)ϕ(b, y)

iff (∃ f.g. B ⊆ S)(∃ b ∈ Bk)(∀ f.g. C s.t. B ⊆ C ⊆ S)(∀c ∈ Cp) |=S ϕ(b, c)

If the original sentence was Σ2, then the matrix (after all the quantifiers) will
be the truth in S of the quantifier-free formula ϕ(b, c). In this case, ϕ(b, c) holds
in S iff it holds in C, so we can add the following:

iff (∃ f.g. B ⊆ S)(∃ b ∈ Bk)(∀ f.g. C s.t. B ⊆ C ⊆ S)(∀c ∈ Cp) |=C ϕ(b, c)

iff (∃i)(∃ a ∈ Ak
i)(∀j)(∀f ∈ IA

ij)(∀d ∈ Ap
j) |=Aj ϕ(f(a), d).

The definition of 1-extensional cover shows these last two lines to be equivalent.
Specifically, if the last line holds, then the witness Ai has a 1-extensional match
β onto some B ⊆ S, and Definition 3, applied to any Aj and f ∈ IA

ij , provides
a 0-extensional match γ from Aj onto some C ⊇ B such that γ ◦ f = β. Then
ϕ(γ(f(b)), γ(c)) must hold in C, since ϕ(f(b), c) holds in Aj and γ is an iso-
morphism. Conversely, if the next-to-last line holds, a similar argument applies,
since there is some 1-extensional match onto the witness B from some Ai ∈ A.
This completes the proof of the result on 1-extensional structures.

The obvious iteration of this process, applied to any Σn sentence about S,
yields a statement consisting of a Σn-sequence of quantifiers over structures in
A, their elements, and the sets IA

ij , followed by a quantifier-free statement about
an Aj ∈ A. The argument requires that each Ai correspond to some B via an
(n−1)-extensional map, so that the extensions must then correspond via (n−2)-
extensional maps, and so on down to 0-extensional maps once all the quantifiers
have been moved outside the turnstile |=. Therefore, for an m-extensionally
locally computable S with m ≥ (n − 1), the Σn statement yielded by iterating
the process holds iff the original Σn sentence held in S. Since the structures in A,
the sets IA

ij and the atomic diagram of such an Aj are all computable uniformly
in i and j, the truth of the original Σn-sentence in S is itself a Σn fact. Moreover,
this process is entirely uniform in n. ��

Notice that this argument does not extend to values n > m + 1. For m = 0 a
specific counterexample appears in Proposition 3.

Theorem 1. For m ∈ ω, any m-extensionally locally computable structure S,
any finite tuple p of parameters from S, and any n ≤ m, the Σn-theory of S
over p,

{ϕ ∈ Th(S, p) : ϕ is a Σn sentence},

is itself Σn, uniformly in n and in an appropriate description of the parameters
(as discussed after the proof).

582 R.G. Miller

Proof. Let B be generated by p in S, and fix an m-extensional match β : Al � B
for some Al ∈ A. As before, we give an example by evaluating the truth in S
of an arbitrary Σ2 sentence with the parameters p, assuming now that m ≥ 2.
Seeting ai = β−1(pi) and applying an argument similar to that in the proof of
Proposition 4, we see that the Σ2 sentence (∃x)(∀y)ϕ(p, x, y) holds in S iff

(∃i)(∃h ∈ IA
li)(∃b ∈ Ak

i)(∀j)(∀f ∈ IA
ij)(∀c ∈ Am

j)

|=Aj ϕ(f(h(a)), f(b), c),

which is a Σ2 condition, uniformly in a and l. The obvious iteration works for
any n ≤ m, but no longer applies when n = m + 1. In the example above, since
S is 2-extensional, we can find a 2-extensional match β onto Al, so that Ai will
have a 1-extensional match in its turn. Adding the parameters forces us to start
by fixing an Al ∈ A and a β, whereas in Proposition 4 we were allowed simply to
search for any Ai and a single embedding into an Aj . Hence parameters require
one more level of extensionality.

Of course, knowing an original parameter pi ∈ B is useless to us; we need
to know l and the value ai = β−1(pi) in Al. For finitely many parameters,
this constitutes only finitely much information, but we also wish to consider
uniformity. It does not make sense to ask that parameters from a potentially
uncountable structure S be given uniformly. Instead, our formal statement of
uniformity is that if we are given an l and finitely many parameters a from Al,
then for any n and any n-extensional match β mapping Al into S, the Σn-theory
of S over the parameters β(a1), . . . , β(ak) is Σn uniformly in l and a and n. ��

We view Theorem 1 as the strongest argument yet that local computability, and
in particular perfect local computability (see Definition 4), is the appropriate
analogue in uncountable structures to computable presentability in countable
structures. The point of a computable presentation of a structure is not just
that it allows us to compute the atomic theory and enumerate the Σ1-theory
and so on, but that it actually allows us to do over specific elements of the
structure: the atomic diagram is computable, and the Σn diagram is Σn, uni-
formly in n. For an uncountable S, of course, there is no effective way to name
all individual elements, so it is hopeless to expect the entire atomic diagram to
be computable. An m-extensional cover, however, gives us a way of describing
individual elements and tuples of them: using the cover, we name an Al which
m-extensionally matches the substructure of S generated by the tuple, and spec-
ify which elements of Al correspond to the tuple.

To state the same fact differently, having an m-extensional cover tells us
exactly what information we need about the tuple p from S in order to compute
the atomic theory of S over p, or to enumerate its Σ1 theory over p, etc. In
Proposition 5, for instance, for the field of complex numbers, an Ai is given by its
transcendence degree and the minimal polynomial of a single additional element
generating the rest of Ai over a transcendence basis. If we can determine this
information for the subfield Q(p) ⊂ C, and know which elements correspond to p,
then without further information we can give a Σn description of the Σn-theory

Locally Computable Structures 583

of (C, p). Indeed, there is another perfect cover of the field C, more difficult to
describe, in which every finite tuple p from C corresponds, via a perfect match,
to the generators of a particular Ai in the cover. Using this cover, one would
only need to know the minimal polynomial of each pi+1 over Q(p1, . . . , pi), or else
to know that no such minimal polynomial exists. Similarly, each m-extensional
cover of any S says, “if you tell me this particular information about your tuple
p from S, I will give you a Σn-presentation of the Σn facts about p in S, for
each n ≤ m.”

Corollary 1. For any ω-extensionally locally computable structure S, and any
finite parameter set p from S, the Σn-theory of (S, p) is Σn for every n, uniformly
in n and in p (as described above). In particular, this holds for any S with a
correspondence system, including any perfectly locally computable S. ��

Corollary 2. Any two structures with the same ω-extensional cover are elemen-
tarily equivalent and realize the same types. Also, any two structures with the
same m-extensional cover have the same Σm+1-theory. ��

We add one more version of local computability, even stronger than ω-extensional
local computability, whose main interest stems from Theorem 2.

Definition 4. Let A be a uniformly computable cover for a structure S. A set
M is a correspondence system for A and S if it satisfies all of the following:

1. Each element of M is an embedding of some Ai ∈ A into S; and
2. Every Ai ∈ A is the domain of some β ∈ M ; and
3. Every finitely generated B ⊆ S is the image of some β ∈ M ; and
4. For every i and j and every β ∈ M with domain Ai, every f ∈ IA

ij lifts to
an inclusion β(Ai) ⊆ γ(Aj) via β and some γ ∈ M ; and

5. For every i, every β ∈ M with domain Ai, and every finitely generated C ⊆ S
containing β(Ai), there exist a j and an f ∈ IA

ij which lifts to β(Ai) ⊆ C via
β and some γ ∈ M mapping Aj onto C.

The correspondence system is perfect if it also satisfies

6. For every finitely generated B ⊆ S, if β : Ai � B and γ : Aj � B both lie
in M and have image B, then γ−1 ◦ β ∈ IA

ij .

If a perfect correspondence system exists, then its elements are called perfect
matches between their domains and their images. S is then said to be perfectly
locally computable, with perfect cover A.

This concept is related to extensionality, clearly, and any element β of a cor-
respondence system M is quickly seen to be an m-extensional match for every
m ∈ ω. However, perfect local computability is stronger than ω-extensional local
computability in two distinct ways. First, for the map β to be an m-extensional
match, we only needed the existence of (m − 1)-extensional matches γ to relate
the embeddings f ∈ IA

ij (for all j) to the finitely generated extensions of the
image of β in S, and for different values of m, we could use different maps β.

584 R.G. Miller

Here Conditions 4 and 5 require that the isomorphisms γ be in M themselves,
hence that they satisfy the same conditions. The second difference is Condition
6, which is not related to Definition 3, but appears necessary for Theorem 2.

Proposition 5. Every algebraically closed field of characteristic 0, and in par-
ticular the field C, is perfectly locally computable. ��

Theorem 2. Let S be a countable structure. Then S is perfectly locally com-
putable iff S is computably presentable.

We omit these proofs for reasons of space. Proposition 5 is not difficult to prove,
but the =⇒ direction of Theorem 2 requires a detailed construction. To close,
we state several more relevant results, also without proof.

Proposition 6. Let Rc be the ordered field containing all computable real num-
bers. Then Rc has a computable cover, but no uniformly computable cover. ��

Lemma 2. There exist countable structures S and S′ with the same uniformly
computable cover, such that S is computable (and hence perfectly locally com-
putable), but S′ is not computably presentable, indeed not even 1-extensional. ��

Lemma 3. There exist 2ω-many countable structures, all with the same uni-
formly computable cover, which are pairwise elementarily non-equivalent. Indeed,
these structures all have distinct Σ2-theories, and every Turing degree is the de-
gree of the Σ2-theory of some such structure. ��

Finally, the converse of each statement in Theorem 1 is false.

Proposition 7. There exists a tree T which is not 1-extensionally locally com-
putable, yet such that for every m and every finite tuple p from T , the Σm-theory
of (T, p) is itself Σm.

References

1. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions, and universal machines.
Bulletin of the AMS 21, 1–46 (1989)

2. Braverman, M., Cook, S.: Computing over the Reals: Foundations for Scientific
Computing. Notices of the AMS 53(3), 318–329 (2006)

3. Harizanov, V.S.: Pure computable model theory, Handbook of Recursive Mathe-
matics, vol. 1, pp. 3–114. Elsevier, Amsterdam (1998)

4. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, New York (1987)

Logic and Control

Anil Nerode

Cornell University,
Ithaca, New York, USA

Abstract. I will give a brief account of how I came to introduce the
term Hybrid System and to encourage it as a subject of study. I will also
discuss what one should understand to pursue the subject fully, and also
discuss the lines of development of my joint research with Wolf Kohn
in this area. This is an area at the interface of mathematics, computer
science, and control engineering, which has been pursued by many in
all three areas since its inception. It can be thought of as the subject
which deals with the interaction of discrete and continuous processes.
This paper is intended to be legible to those without advanced analysis
or differential geometry in their background. We concentrate on control,
not on logics of hybrid systems, and aim at an audience unfamiliar with
control. I make no apologies for not being technical. This is not a survey
of the field. For a year 2000 survey see [1]. A survey made now would be
very large.

Relevant Subjects. To advance hybrid systems one really ought to acquire a
firm grasp of

– PROLOG and Horn Clause Logic
– Temporal logics used in Computer Science
– Automata logics of Büchi, Rabin
– Automata theory for finite state transducers of Eilenberg and Schutzenberger
– Linear Control
– Pontryagin’s optimal control theory
– Optimization Theory
– Calculus on Banach spaces
– Relaxed calculus of variations of L. C. Young and E. J. McShane (1937-40)
– Tensor calculus and Cartan exterior differential forms
– Differential geometry of geodesics, connections, sprays
– Finsler geometry
– Variational inequalities
– Lie Theory

This was a bit much for most engineers, many mathematicians, and all busi-
nessmen. So to prove that our mathematical technology can be implemented
for real time systems, Wolf Kohn and I founded a company in 1995 to develop
real time hybrid control software for specific applications. We developed general
software, hoping the user could simply dump their particular models into that

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 585–597, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

586 A. Nerode

software, letting the software extract the desired control automaton. But it turns
out in practice that each important application requires extensive development
of special models and speed-up algorithms based on the particular model in
addition to the universal software. This is not really surprising. Generally, if a
physicist wants information about how to solve a new system of partial differ-
ential equations, the theory of PDE’s and the general algorithms we have for
them, while necessary, is the least of the problem. It often takes years to work
out practical algorithms for a single problem, especially real time algorithms. In
the course of development often the underlying model is changed to one which
is more tractable but still represents the problem closely enough to be useful.

Complex Systems
Complex systems can be viewed as consisting of:

– “Plants” whose evolution in time is to be constrained
– “Sensors”, which sense current plant state and can transfer measurements

of plant state to “controllers”
– “Controllers” which use this information to issue control orders to
– “Actuators” which act to change plant state.

Fundamental Problem of Control
Given a plant and a plant peformance specification,

– Design and place sensors of plant state.
– Design and place controllers of plant state.
– Design, analyze, simulate, prototype
– Test to verify that the completed system satisfies the performance specifica-

tions.

Some Grand Challenge Problems for Control

– Air traffic
– Automated battle command
– Supply chain
– Robotic cooperation
– Distributed simulation
– Network routing
– Banking systems
– Financial prediction
– The Internet

Kohn and I and our co-workers have published proposals for applying our
methods to problems in these and other areas. We have produced software prod-
ucts in some of them.

My Background in Control. I am best known as a logician. But in 1954, when
I was a graduate student in pure mathematics at the University of Chicago, I had
a position at the Institute for Systems Research. This organization was created
by the by the Dean of Physical Sciences of the University of Chicago, Walter

Logic and Control 587

Bartky, at the request of the Wright Air Development Command. I learned
control theory and practice there on the job, mostly by reading the whole MIT
Radiation Laboratory red series and also from senior engineer James Corbett.
I worked on design and evaluation of air to air weapon systems. I have been a
consultant for over fifty years for many military and civilian engineering projects.

Pacifica Meeting and Col. Erik G. Mettala
In 1990 I was Director of the Mathematical Sciences Institute (MSI) at Cor-
nell, sponsored by the Army Research Office (ARO). My program director,
Dr. Jagdish Chandra, requested that I attend a DARPA meeting in Pacifica,
California, July 17-19, 1990, near Monterrey, California. The meeting was enti-
tled “Domain Specific Software Architectures”. I had no idea what the organizer,
Col. Erik G. Mettala, had in mind. I could not make heads nor tails out of the
preliminary announcement. When I got there, most of the participants were from
the control industry. Colonel Mettala explained that the purpose of the meeting
was to explore how to clear a major bottleneck, the control of large military sys-
tems such as air-land-sea forces in a battle space. Such problems occur widely
in government, business and industry as well. How can one control highly non-
homogeneous non-linear systems in which many digital processes and continuous
processes interact in real time?

First Day. Many control industry representatives said that if their community
were given several hundreds million per year, they could scale up their design
software for control systems to extract control for such large systems. They
outlined the tools they intended to scale. I was astounded that these were the
SAME tools that I and others had always used for design of control systems,
but now implemented in software. These tools have been extremely successful
for the control of linear and mildly nonlinear systems throughout business and
industry. They are still the bread and butter of practical control engineering.
But they can not handle complex systems.

Second Day. Participants were asked to submit their analyses for the second
day of the meeting. I wrote a one page paper [11] to explain that as the state of
the system evolves, the digital and continuous systems interact. A change of state
of the digital subsystem causes a change of state of the continuous subsystem.
A change of state of the continuous subsystem causes a change of state in the
digital subsystem, and so on ad infinitum. I said that although one can simulate
on a computer the evolution of state induced by a specific proposed control, there
exist no mathematics or algorithms which, applied to a model of the complex
system and its performance requirements, could extract a control program which
enforces that the system satisfy its performance requirements. I left this paper
on the table of handouts the second morning, next to the comments of others.
The second day the group had a lively argument trying to determine what we
were talking about. Someone suggested that my formulation be taken as the
definition of the problem, a motion which was adopted. I suggested that DARPA
fund a modest research program to determine if appropriate mathematics and

588 A. Nerode

algorithms could be developed to extract such controls, and in this I was seconded
by Wolf Kohn of Boeing.

First Workshop. I organized a first Hybrid Systems Workshop on June 10-12,
1991 at MSI at Cornell. I brought together all researchers I could locate world
wide who had worked on logical (digital) control of physical plants, some from
the control point of view, some from the logic and expert systems point of view.
As a result of the enthusiasm of the workshop participants, I organized a second
workshop.

Second Workshop. This was the first International Hybrid Systems Confer-
ence, held at Cornell in 1992. I proposed a simple representation for Hybrid
Systems. This representation did not contribute to extracting controls, but it
did provide a common framework for many who subsequently have published
work on hybrid systems. It has been widely reproduced and elaborated. The
conference volume [2] was the first volume devoted to Hybrid Systems.

The Simple Hybrid Systems Model

– a plant
– a digital control automaton
– a sensor of plant state
– an actuator to change plant state
– an analog to digital (AD) converter
– a digital to analog (DA) converter.
– The sensor measures current plant state, sends this measurement to the AD

converter.
– The AD converter outputs a digitized measurement sent to the control au-

tomaton.
– The control automaton sends a digitized command to the AD converter.
– The AD converter converts this to a continuous input to the actuator.
– The actuator changes the plant state.

We can model hybrid systems with many plants, sensors, control automata,
actuators in the same way.

In retrospect I would say that the significant relevant literature for hybrid
systems that existed at that time was as follows.

– First, there was linear control with switching. I and many others had used
this over forty years. One can approximate to almost any non-linear control
by piecewise linear control. If an engineer devises a scheme for when to switch
linear controls based on sensed system state, that engineer can implement
the scheme. The problem was, there was no methodology for extracting such
a control scheme to meet performance specifications.

– Second, there was Wonham and Ho’s Discrete Event Systems. They generally
replace physical models by automata models, and then control those models.
This leads to difficult questions as to how well any controls extracted will
control the original physical process, in particular how robust such control

Logic and Control 589

schemes are in the real world. Verification by simulation has not proved to be
practical for large non-linear systems. The number and length of simulation
runs needed is huge due to the vast variety of dynamical phenomena which
may be encountered.

– Third, there was the Declarative Control of Wolf Kohn at Boeing. At the
time I was unaware of Kohn’s work [8]. Kohn’s supporting comments at the
Pacifica meeting and at the subsequent 1991 Cornell workshop were so acute
that I wanted to know what he did and so I asked him to send me his papers.
I found them very difficult to decipher. Kohn’s method was described to me
in 1990 as one of the few successful uses of AI methods for control. It looked
like AI because it used PROLOG. When I got his papers, it took me a year
or two to figure out what the proper underpinning was for the method. It
was not AI. More about that below.

A Growing Literature. There were three more workshops in that series [4],
[5], [6]. After that many others have held Hybrid Systems workshops, conferences,
and engineering and computer science meetings too numerous to list. A majority
of the literature investigates verification problems. Our interest is in extraction
of control algorithms. In a sense these do not require formal verification since
they are the result of a mathematical derivation. But they have to be tested
extensively anyway because the models used may not reflect the dynamics with
sufficient accuracy and may not be sufficiently robust.

Capsule Historical Summaries
Linear Control. These algorithms extract linear controls (such as PID con-
trollers) for linear systems. They are a 20th century triumph of linear algebra
and Laplace transforms. I think of serious linear control as having its inception
in the 1916 patents of Armstrong for linear amplifiers, the boost that moved us
from crystal sets to loudspeakers and AM radio and a new industry. Then H.
Bode and his colleagues at Bell Laboratories developed high performance ampli-
fiers for telephone lines in the 1920’s and 1930’s, developing frequency response
curves, the Nyquist diagram and Hilbert transforms. At MIT Norbert Weiner
coined the name Linear Servomechanisms for negative feedback linear control
of linear systems. In World War II at the MIT radiation laboratories there was
systematic development of Laplace transforms and transfer functions for the de-
sign of linear servomechanisms to keep RADAR on its moving targets. Much of
the further development of linear control stemmed from MIT. The subject was
codified neatly by Kalman in about 1960.

Digital Control. The 1900-1950 period was the golden age of magnetic relay
circuits. Two big companies developing and vending them were Western Electric
(for AT&T) and Kellogg Switch (for elevators and subways). A widely publicized
advance was Claude Shannon’s 1937 master’s thesis on using the language and
theorems of Boolean algebra to analyze switching circuits. Another was Har-
vard’s Howard Aiken and his Mark I computer (1939-44) and Germany’s Konrad
Zuse’s Z1-Z4 (1938-44). To minimize cost was then to minimize the number
of relays used. Each relay could open and close many circuits. This is a very

590 A. Nerode

complicated minimization since the connectives a relay represented had many
arguments. Next we have the evolution of logic based control: programmable
controllers, real time operating systems, robotics, digital signal processing, and
digital circuit design. Nowadays embedded digital control is ubiquitous in our
consumer products from cameras to automobiles.

Expert Systems and Control. At the end of the 1950’s, as time on main-
frames became available for pure research, the first programs for automated
deduction were written. Very limited forms of some of these systems were used
to write the first medical diagnosis systems such as Mycin at Stanford. In 1962-
3, Alan Robinson at Syracuse, building on the work of Herbrand in the 1920’s,
developed his unification resolution method for automatic theorem proving for
first order logic. This is still the main paradigm in automated deduction. In
1970 Kowalski, observing the effectiveness of Colmerauer’s planning language
PROLOG for extracting plans from constraints and goals, gave that language
an overhaul with a complete theoretical underpinning, an elegant reduction of
Robinson’s unification-resolution method for universal Horn sentence logic. For
the sake of improving running times, all commercial applications of PROLOG
are incomplete and semantically incorrect. They use such shortcuts as depth first
search, the cut rule, and a unification algorithm without an occurs check. This
has led to a specialized profession of PROLOG Programmers who avoid these
pitfalls. The credo “the program specification is the program” does not hold
for the commercial PROLOG’s. Hundreds of PROLOG based planning systems
have been written by professional PROLOG programmers. How do expert sys-
tems relate to control? By the 1970’s expert systems had been constructed to
give advice on courses of action, and generally for planning. There is now a large
logic based planning community. A description of the current system state is fed
into the expert system, which then deduces a recommended action to lead to a
prescribed goal state on the basis of its facts and rules. Most of the facts and
rules are the constraints describing the system, a system model reflected in rules
and facts. If the expert system is written in Colmeraur-Kowalski’s PROLOG,
the course of action recommended to get to the goal is part of the answer sub-
stitution that proves the goal state can be obtained from current system state.
The answer substitution contains the sequence of actions needed to get to the
goal provided the rule base is kept constant and the states of the controlled sys-
tem have the transitions expected by the rule base. However, if due to system
dynamics unmodeled in the expert system, the state of the system evolves in a
way unexpected by the rule base, and if this is detected, the rule base has to be
modified, and a new answer substitution has to be deduced from a changed rule
base. This form of belief revision is carried out by extralogical assert and retract
operations which change the rule base. If one automates input of system state,
execution of recommended action, and the belief revision mechanism, so that
human intervention is eliminated, we have a control system. A planning policy
can be viewed as a control program to steer the system to a specified goal, while
preserving constraints.

Logic and Control 591

Limitations of Expert Systems for Control. In the 1970’s and early 1980’s,
attempts were made to use this technology for real time control of physical
systems, such as aircraft or missles or tank formations. But, given a goal and
the physical model of a complex non-linear system, there existed no general tools
for extracting a control program leading to a prescribed goal, if one indeed exists.
Ad hoc methods for figuring out transition table representations of such controls
were not very successful because of the size of state spaces and because of a lack of
tools to analyze the effect of a control imposed on a non-linear system. If expert
system software has to carry out online deductions to decide what control to
use in real time we are in trouble. Automated deduction does not yet execute
fast enough to control a rapidly changing physical process. For instance, if we
use PROLOG and the present state and the goal state are specified, PROLOG
carries out a backwards chaining search for a branch connecting two nodes of a
graph, the present state and a goal state. If we are working “off line” to produce
a control map, the time required to compute the control map may not matter.
But this does not meet the reuirements of real time online control of life-critical
processes, when the control law has to be changed on line due to unexpected
changes in constraints or intentional changes in goal.

Automata and Automata Logics. In 1943 McCulloch and Pitts developed
a theory of neural nets in a form of predicate temporal logic. Between 1950
and 1965 the theory of finite automata and their languages was developed
by Kleene, Moore, Mealy, McNaughton, Büchi, Nerode, Myhill, Scott, Rabin,
Schutzenberger, Eilenberg. In the 1960’s and 1970’s Büchi (S1S) and Rabin (S2S)
developed the theory of automata on infinite strings, extensions of which are
active areas of research now in logic and computer science.

State Charts and Fuzzy Control. In the 1980’s piecewise linear control was
explored for non-linear systems. A generic description of the methodology is,
break up the state space into a finite number of regions; as a controlled trajectory
enters a region, change the linear control being used by consulting a transition
table. The problem is that there was no systematic methodology either for break-
ing the state space into regions or constructing the required transition table. A
main point in developing hybrid systems theory is to explore methodologies for
doing just this.

Static Optimization. In both the World Wars maximizing the throughput of
supply lines for troops and ships and aircraft was of cardinal importance. So
was operational planning for the distribution of men, troops, ships. Driven by
these needs, mathematical optimization tools were developed with consequent
wide impact on business, government, and industry. Optimization deals with
finding an optimal state or an optimal path of system states to get to a desired
goal relative to some definition of optimality. Important early contributions to
static optimization were Van Dantzig’s linear programming(1949) and Gomory’s
integer programming (1957).

592 A. Nerode

Connections with Logic. Optimization theory did not arise from logic. But
the linear programming problem gives a solution to the decision problem for the
first order theory of the additive group of reals under addition and order, and
conversely. In fact the simplex method can replace the usual logician’s decision
method of elimination of quantifiers. The mixed integer linear programming
problem is equivalent to the decision problem for the first order theory of the
additive group of reals under addition, order, and with a distinguished predicate
for the integers; and indeed the usual algorithm supplies such a decision method.
These structures are representable by finite and Büchi automata, which gives
alternate automata theoretic decision methods.

Dynamic Optimization. At the same time, the theory of optimal policies
for dynamic (time dependent) optimization problems was developed, including
Bellman’s dynamic programming (1949), Issacs’s differential games for pursuit
(1951), and Pontryagin’s optimal control theory (1960). These subjects have
some fragmentary connections with logic through temporal logics and automata.
We would expect that future hybrid systems developments will reveal deeper
connections. Generally speaking, logics which deal with function spaces and
functional analysis have not been extensively developed except for O-minimal
theories, which indeed give some hybrid system results.

Kohn-Nerode
Control Maps. Kohn and I model the usual space of states x of the system as
a manifold which is defined by the constraints, some of which may be differen-
tial and some of which may be logical. We refer to the usual system state x as
“position x” and use x′ as the variable for possible “velocities”, rates of change
of state x along trajectories on the manifold x′ . The pair (x, x′) may as well
be taken as a point in the tangent manifold of the state manifold of x’s. For the
uninitiated, this use of x′ as a free variable ranging over the possible tangent
directions is a standard source of confusion in trying to read the traditional cal-
culus of variations texts. Here x′ is just another variable, it is not a derivative at
a point on a curve (which would be denoted y′(t) for a curve y(t).) The intuition
for a control map is that the control map determines the new x′ when your tra-
jectory passes through x; that is, the control map determines the direction field
along the controlled trajectory. We view a control map as a map M from the
tangent manifold of the system state manifold to controls. A control map M and
a state A induce a controlled trajectory of states starting at A. Suppose that we
can define a non-negative cost function (Lagrangian) on controlled trajectories
starting at state A ending at state B such that if we add up (integrate) costs
along a controlled trajectory, we get the total cost of going from A to B along
that controlled trajectory using the prescribed control map. An optimal control
map from A to B, if such exists, is one yielding a controlled trajectory whose cost
is miminal among the costs of all controlled trajectories from A to B. Bellman
called this the cost-to-go from A to B. Finding controls as a function of state
was called by Pontryagin the synthesis problem. The vast majority of the control
literature represents controls as functions of time. It is very desirable to have

Logic and Control 593

controls as a function of state because there are always unmodeled dynamics.
At any time in the real system you may be in an unexpected state. You do not
wish to use a control scheduled at that time which assumes you are in another
state at that time. (For relaxed control maps as discussed below, the direction
x′ assigned by the control map is the expected value of x′ using a probability
measure.)

Necessary Conditions for Optimal Controls. There may be a wide choice
of cost functions which would serve for a given problem, and which would give
rise to different optimal control maps. Also, for a given cost function there may
be one, or a whole family, or no optimal control maps. If we search for an optimal
control map relative to a prescribed cost function, we need only search among
control laws that satisfy all necessary conditions that all optimal control maps
must satisfy. Those necessary conditions most used and investigated assume the
control maps and controlled trajectories are fairly smooth. They are general-
izations to function spaces of the multivariable calculus first derivative test for
minima relative to constraints. This test is the Lagrange multiplier test; a well-
behaved function can attain a minimum subject to constraints only if Lagrange
multipliers exist. We need only to search for a minimal control map subject to
constraints in a function space of control maps. Differentiation of functions of
functions and computing Lagrange multipliers is the domain of the 300 year old
calculus of variations, and is where functional calculus enters. For many complex
systems there is not sufficient smoothness to ensure the applicability of the La-
grange test. Even if applicable, the problem of finding the multipliers reduces to
solving a complicated system of ordinary differential equations, and is often in-
tractable. Let us examine the alternative provided by existence proofs (sufficient
conditions).

Sufficient Conditions for Optimal Controls. Hilbert, in a famous short pa-
per at the turn of the twentieth century on the direct method of the calculus
of variations (the granddaddy of the finite element method and weak solutions)
opined that all calculus of variations problems have solutions, provided the no-
tion of solution is properly defined. The editors of his collected works changed
this to “all regular calculus of variations problems”, but that is not what he
said, and I think he meant what he said. I view L. C. Young’s theory as the
control theory realization of Hilbert’s remark. L. C. Young and E. J. McShane
proved in 1937-40 that most variational problems asking for a curve minimizing
a cost function had solutions, provided that the notion of solution was extended
properly. Their early existence proof led L. C. Young in 1969 to introduce control
maps whose values are probability measures on the usual values of control maps.
These are the so-called relaxed control maps. His existence proof (sufficient con-
dition) showed that relative to a wide variety of cost functions, generally speaking
control problems have optimal relaxed control maps. The relaxed control maps
induce controlled trajectories of states, but these controlled trajectories are of-
ten far from smooth. The Pontryagin theory alluded to above dealt with nec-
essary conditions, not sufficient. The proof that Young optimal relaxed control

594 A. Nerode

maps exist is non-constructive due to using the Arzela-Ascoli lemma, which is a
compactnss theorem for function spaces.

ε-Optimal Control. It is my belief that this non-constructivity was the reason
that, as far as I know, though the Young theory has been available since 1969
in several books, no one before Kohn and I seriously contemplated approxi-
mately implementing the Young theory. From our point of view, approximating
to Young’s relaxed optimal controls is the point at which automata and hy-
brid systems enter. For us the saving grace is that, although the existence proof
for optimal relaxed controls is non-constructive, we need only the constructive
part of the proof, the part that verifies that the hypothesis of the Ascoli-Arzela
lemma hold. We do not need the non-constructive compactness argument that
concludes from the constructive part that the optimal control laws exist. The
part that is constructive is defining control maps that yield controlled trajecto-
ries achieving within ε of minimum cost. These we call the ε-optimal controlled
trajectories. They put us in the domain of ε-variational inequalities. The reason
constructing ε-optimal controlled trajectories is enough for us is that engineers
who design systems are never required to produce optimal control maps. Here
is why. Suppose you want a control map to get to a goal. Usually, if the control
map puts you close enough to the goal at an affordable cost, you are happy. If the
incremental cost of designing a system getting much closer to the goal is high,
and the return is low, why bother to get closer? Another way of putting it is
that as positive number ε decreases, the cost of building an implementation that
controls the process to achieve the goal within ε of the minimal cost increases.
It is not the cost of computing a control map I am referring to, it is the cost
of constructing physical devices precise enough to implement the control map
in the real world, which increases as ε decreases. So the engineer has to ask the
client: “how much are you willing to spend”? We build to accuracy ε if it is
possible to do that within budget and the result is good enough to satisfy the
client’s needs. Thus the ε used is the result of a negotiation between client and
system architect.

The non-constructive proof of the Arzela-Ascoli lemma for proving there exist
optimal controls reflects itself in the following limitation: if you have computed
an ε-optimal relaxed control and now want a (say) ε

2 -optimal relaxed control,
you have to start over; you cannot get it by a uniform method of successive
approximations, refining the previous control to get the next, more accurate,
one. Successive approximation is useful only for fairly smooth problems. Most
large practical problems are not smooth and are not convex.

Another reason that ε-optimal controls suffice is that true optimality is not
an issue. System models are always imperfect; there are always unmodeled dy-
namics not incorporated into the model used. An optimal control map for a
model is usally not perfectly optimal in the real world. The concentration has to
be on extracting robust ε-optimal controlled trajectories, that is, which remain
ε-optimal for small perturbations of initial conditions, constraints, goals. Our ex-
perience at the company Kohn and I founded is that for each specific real time
control problem one has to refine the general algorithms for computing robust

Logic and Control 595

ε -optimal trajectories in order to to obtain efficient real time algorithms. The
tweaks needed are highly model and goal dependent, that is they depend on
knowledge specific to the domain to be controlled. Building a good model can
entail years of work on algorithms for one application. Physics and engineering
in general have the same problem. General theory and algorithms are all very
well, but many years may have to be spent on a single equation to understand
and compute solutions. Think of the hundreds of years for special cases of the
Navier-Stokes equation.

ε−Optimal Control Maps. We use the fact that control maps with finite
probability measures as values are dense, in the appropriate topology, in the
space of relaxed controls. These are what we want to implement. How does one
(approximately) implement a finite probability measure valued control acting
from time t0 to time t0 + δt? If the finite probability measure assigns probability
p1 to control value c1, ..., probability pk to control value ck, then divide up the
time interval from t0 to t1 into k successive subintervals of lengths p1δt, ...,
pkδt, and use ci as control value in the i−th interval of length piδt. This is a
finite chattering control law for the time interval from t to t + δt. A general
algorithm based on the constructive part of the Arzela-Ascoli lemma allows us to
compute a δt and divide time into successive intervals of length δt and compute
a finite chattering control to apply during each such interval, and to obtain an
ε-optimal control that way.

Open Covers and Automata. In approximating to a continuous control map,
whether by piecewise linear controls or piecewise constant controls or chattering
controls, the question is: when do we change from using one such simple con-
trol map to using another as we move along a trajectory on the manifold? The
abstract answer Kohn-Nerode gave is that we cover the control map, regarded
as a closed set in the space of appropriate control maps, by a finite cover of
small open sets correctly chosen. Then we convert the cover into the desired
control automaton. This was introduced in Kohn-Nerode [13], Appendix II, and
used in papers of Davoren and of Diaz [14]. This is possible for relaxed controls
as well. We emphasize that extracting arbitrarily close finite control automata
approximations to a continuous control map is possible independent of optimal-
ity. It depends only on assumptions of compactness and continuity. In concrete
applications in which we want to extract ε−optimal controls, we need better al-
gorithms based on additional information which turns out to be of a differential
geometric character.

Continualization. When presented with discrete constraints, such as Boolean
constraints or PROLOG constraints, we convert them into continuous form,
replacing a hybrid system by a continuous system. There are a variety of methods
to continualize, see [14]. So we convert finding optimal controls for a hybrid
system problem to a purely continuous problem on an appropriately constructed
manifold determined by all constraints, discrete and continuous. Then we extract
approximate optimal relaxed control by a finite control automaton, ending up

596 A. Nerode

with a hybrid system. From discrete to continuous and back again. There are
many unsolved problems associated with choosing continualizations.

Finsler Geometry in Control. With appropriate assumptions, finding an
optimal control map is finding a control map which minimizes total cost to the
goal from present position. If we think of cost as length, the goal is a point,
and we assume such controlled trajectories always exist and are unique, we can
think of the optimal controlled paths as forming a geodesic field. Many systems
have states which evolve according to ordinary differential equations which are
a function of time. Raising time to be an independent variable, we find that we
are in the domain of a Finsler geometry, and are dealing with Finsler geodesics.
This makes the Finsler apparatus of tensor calculus, Cartan exterior differential
forms, and Finsler connections apply. This is the main set of tools for obtaining
additional relations which reduce the labor of computing optimal controls and
their approximations. One can express optimal controlled trajectories as deter-
mined by either their geodesic fields or a connection, or a Cartan form. The
method incorperates Pontryagin’s necessary conditions as indirect descriptions
of the geodesic field. When feasible, errors and tolerances are computed using
the second variation. We conclude this paragraph with the following description.
We are working with a Finsler connection; the notion of optimality recedes to
the background. We choose a connection whose geodesic field we try to follow
by always heading in the direction indicated by the connection at your current
position. The connection is computed from the goal and the constraints. If, in fol-
lowing a controlled trajectory, unmodeled dynamics put you off course, you head
in the direction of the geodesic through that point. If the goal point is altered or
the constraints change midcourse, you follow the geodesic field of the connection
associated with the new goal and new constraints. In practice you follow an
ε−optimal approximation implemented by a finite automaton controller. As a
concluding remark, our Finsler models lead to new algorithms for linear, mixed
integer-linear, and dynamic programming problems.

References

[1] Davoren, J.M., Nerode, A.: Logics for Hybrid Systems. Proceedings of the
IEEE 88(7), 985–1010 (2000)

[2] Hybrid control systems. Antsaklis, P.J., Nerode, A. (eds.) IEEE Transactions
Automatic Control 43, no. 4. Institute of Electrical and Electronics Engineers,
Inc (1998)

[3] Hybrid Systems, Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.)
LNCS, vol. 736, Springer, Heidelberg (1993)

[4] Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.): Hybrid systems II. Papers
from the Third Workshop held at Cornell University. LNCS, vol. 999, pp. 28–30.
Springer, Heidelberg (1995)

[5] Alur, R., Sontag, E.D., Henzinger, T.A. (eds.): Hybrid Systems III. LNCS,
vol. 1066. Springer, Heidelberg (1996)

[6] Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.): Hybrid Systems IV. LNCS,
vol. 1273. Springer, Heidelberg (1997)

Logic and Control 597

[7] Antsaklis, P., Kohn, W., Nerode, A., Lemmon, M., Sastry, S. (eds.): Hybrid Sys-
tems V. LNCS, vol. 1567. Springer, Heidelberg (1999)

[8] Kohn, W.: A Declarative Theory for Rational Controllers. Proceedings of the 27th
IEEE Conference on Decision and Control 1, 131–136 (1988)

[9] Kohn,, Wolf,, Nerode,, Anil,, Remmel,, Jeffrey, B.: Hybrid systems as Finsler
manifolds: finite state control as approximation to connections. In: Antsaklis,
P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) Hybrid Systems II. LNCS, vol. 999,
Springer, Heidelberg (1995)

[10] Kohn, W., Brayman, V., Cholewinski, P., Nerode, A.: Control in Hybrid Systems,
International Journal of Hybrid Systems vol. 3 (2003)

[11] Kohn, W., Brayman, V., Nerode, A.: Control Synthesis in Hybrid Systems with
Finsler Dynamics, Houston Journal of Mathematics vol. 28(2), pp. 353–375

[12] Nerode, A.: Modeling Intelligent Control, In: Proc. DARPA Workshop on Software
Tools for the Domain Specific Software Initiative, Pacifica, Ca, July 17-19 (1990)

[13] Kohn, W., Nerode, A.: Parallel Computer Architectures. LNCS, vol. 732. Springer,
Heidelberg (1993)

[14] Kohn, W., Nerode, A., Remmel, J.B.: Continualization: A Hybrid Systems Control
Technique for Computing, In: Proceedings of CESA’96 IMACS Multiconference,
vol 2. pp. 507–511

[15] Diaz, A.: Extraction of Finite State Controllers, AD and DA maps, and Associ-
ated Small Topologies for Measure Valued Control Laws International Journal of
Hybrid Systems (September 2003)

Nash Stability in Additively Separable Hedonic

Games Is NP-Hard�

Martin Olsen

Department of Computer Science
University of Aarhus
mo@daimi.au.dk

Abstract. Ballester has shown that the problem of deciding whether a
Nash stable partition exists in a hedonic game with arbitrary preferences
is NP-complete. In this paper we will prove that the problem remains NP-
complete even when restricting to additively separable hedonic games.

Bogomolnaia and Jackson have shown that a Nash stable partition
exists in every additively separable hedonic game with symmetric prefer-
ences. We show that computing Nash stable partitions is hard in games
with symmetric preferences. To be more specific we show that the prob-
lem of deciding whether a non trivial Nash stable partition exists in
an additively separable hedonic game with non-negative and symmetric
preferences is NP-complete. The corresponding problem concerning in-
dividual stability is also NP-complete since individually stable partitions
are Nash stable and vice versa in such games.

Keywords: Nash Stability, Hedonic Games, NP-Completeness.

1 Introduction

In a Coalition Formation Game a set of players splits up in coalitions so that each
player belongs to exactly one coalition. Each player prefers certain partitions1

of the players to other partitions. If all players are satisfied with the partition in
some formalized sense - or not able to move - the partition is said to be stable. A
stable partition is called an equilibrium. For an overview of the field of Coalition
Formation Games we refer to the report [7] by Hajdukova.

A given notion of stability can have limitations in terms of computability. For
some types of games it might be impossible to effectively compute equilibriums
on a computing device under the assumption NP �=P. If a real world system is
modeled using Coalition Formation Games and equilibriums with such limita-
tions you should not expect to be able to calculate the equilibriums using a
computer if the model is large. It is also an interesting question whether a real
system is able to find an equilibrium if a computer can not find it effectively.
� The research is partly sponsored by the Danish company Cofman (www.cofman.

com).
1 A partition of a set N is a collection of non empty disjoint subsets of N with union

N .

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 598–605, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

file:www.cofman.com
file:www.cofman.com

Nash Stability in Additively Separable Hedonic Games Is NP-Hard 599

This is the motivation for analyzing the computational complexity for a given
notion of stability as also pointed out by Daskalakis and Papadimitriou in [4]
and Chen and Rudra in [3]. This paper deals with proving limitations for the
notion of Nash stability in Additively Separable Hedonic Games.

1.1 Additively Separable Hedonic Games

In a hedonic game we are given a set N = {1, 2, . . . , |N |} of players. Each player
i ∈ N has a reflexive, complete and transitive preference relation �i on the set
Ni = {S ⊆ N : i ∈ S}. In this way we know which coalitions player i prefers to
be a member of. The game is additively separable if there exists a utility function
vi : N → IR for each i ∈ N such that

∀S, T ∈ Ni : T �i S ⇔
∑

j∈T

vi(j) ≤
∑

j∈S

vi(j) .

In an additively separable hedonic game the payoff vi(j) of player i for be-
longing to the same coalition as player j is independent of how other players are
forming coalitions. Changing the value vi(i) has no effect on �i so we assume
vi(i) = 0.

1.2 An Example

We would like to give an example of an additively separable hedonic game. We
will use biological terminology metaphorically to ease the understanding for the
game. The game does not represent a serious attempt to model a biological
system.

Assume that there are two buffaloes b1 and b2 in an area with n waterholes
w1, w2, . . . , wn. Each waterhole wi has a capacity c(wi) specifying how much
water a buffalo can drink from that hole per year. There are also two parasites
p1 and p2 in the area. The only possible host for p1 is b1 and b1 must drink a lot
of water if p1 is sitting on its back. The same goes for p2 and b2. Now assume
that b1 and b2 are enemies and that a buffalo must drink water corresponding
to half the total capacity C of the waterholes if it is the host of a parasite.
This system can be viewed as an additively separable hedonic game depicted
as a weighted directed graph in Fig. 1 where the weight of edge (i, j) is vi(j) -
if there is no edge (i, j) then vi(j) = 0. We have added two edges (b1, b2) and
(b2, b1) with capacity −C − 1 to model that b1 and b2 are enemies. Please note
that the waterholes are also players in the game. The waterholes do not care to
which coalitions they belong.

1.3 Stability

In this paper we will focus on one type of stability: Nash stability. We refer to
[7] for more information on other types of stability.

A partition Π = {S1, S2, . . . , SK} of N is Nash stable if it is impossible to
find a player who would be strictly better of if the player left his coalition and

600 M. Olsen

w1

b1 b2

c(w1) c(w1)

c(wn) c(wn)

c(w2)
w2

wn

c(w2)1 1

-C/2 -C/2

-C-1

p1 p2

-C-1

Fig. 1. An additively separable hedonic game

joined one of the other coalitions in the partition. If SΠ(i) denotes the set in the
partition Π such that i ∈ SΠ(i) then Π is Nash stable if and only if

∀i ∈ N, ∀Sk ∈ Π ∪ {∅} : Sk ∪ {i} �i SΠ(i) .

Now consider the game in Fig. 1. A partition of the players is not Nash stable
if b1 is not the host of p1 - in this case p1 would be strictly better off by joining
SΠ(b1). This fact can be expressed more formally: SΠ(b1) ∪ {p1} �p1 SΠ(p1) if
SΠ(p1) �= SΠ(b1). As an exercise the reader is invited to figure out necessary
and sufficient conditions for the existence of a Nash stable partition of this game.
We will return to this problem in Sect. 2.

1.4 Related Work

Ballester has shown in [1] that the problem of deciding whether a Nash stable
partition exists in a hedonic game with arbitrary preferences is NP-complete.

On the other hand Bogomolnaia and Jackson show in [8] that a Nash sta-
ble partition exists in every additively separable hedonic game with symmetric
preferences. The preferences are symmetric if ∀i, j ∈ N : vi(j) = vj(i). If vij is
the common value for vi(j) and vj(i) in a symmetric game then Bogomolnaia
and Jackson show that any partition Π maximizing f(Π) =

∑
S∈Π

∑
i,j∈S vij

is Nash stable.

Nash Stability in Additively Separable Hedonic Games Is NP-Hard 601

Flake et al. work with so called communities in [5] where the objective is to di-
vide a network into clusters. The web graph and the CiteSeer graph are examples
of networks that are processed in [5]. Using the terminology from coalition forma-
tion games a community is a subset of players C ⊆ N in an additively separable
game with symmetric preferences such that ∀i ∈ C :

∑
j∈C vij ≥

∑
j∈N−C vij .

In other words each player in C gets at least half the total possible payoff by
belonging to C. Flake et al. show that the problem of deciding whether it is
possible to partition N into k communities is NP-complete. Such a partition
is Nash stable but a Nash stable partition is not necessarily a partition into
communities. The proof techniques used in this paper are similar to those used
in [5].

Burani and Zwicker introduces the concept of descending separable preferences
in [2]. Burani and Zwicker show that descending separable preferences guaran-
tees the existence of a Nash stable partition. They also show that descending
separable preferences do not imply and are not implied by additively separable
preferences.

1.5 Our Results

In Sect. 2 we restrict our attention to additively separable hedonic games com-
pared to Ballester [1]. Compared to Bogomolnaia and Jackson [8], we also allow
asymmetric preferences. Informally we show that things are complicated even
when looking at additively separable hedonic games. With an intuitively clear
proof based on the example in Sect. 1.2 we show that the problem of deciding
whether a Nash stable partition exists in a hedonic game remains NP-complete
when restricting to additively separable preferences.

In Sect. 3 we show that computing Nash stable and individually stable parti-
tions is hard in games with symmetric preferences. To be more specific we show
that the problem of deciding whether a non trivial Nash stable partition exists
in an additively separable hedonic game with non-negative and symmetric pref-
erences is NP-complete. This result also applies to individually stable partitions
since individually stable partitions are Nash stable and vice versa in such games.

2 Restricting to Additively Separable Games

We will now formally define the problem of deciding whether a Nash stable
partition exists in an additively separable hedonic game:

Definition 1. The ASHNASH problem:

– Instance: A set N = {1, 2, . . . , n} and a function vi : N → IR such that
vi(i) = 0 for each i ∈ N .

– Question: Does a partition Π of N exist such that

∀i ∈ N, ∀Sk ∈ Π ∪ {∅} :
∑

j∈SΠ(i)

vi(j) ≥
∑

j∈Sk∪{i}
vi(j) . (1)

We are now in a position to prove that this problem is intractable.

602 M. Olsen

Theorem 1. ASHNASH is NP-complete.

Proof. It is easy to check in polynomial time that Π is a partition satisfying (1)
thus ASHNASH is in NP.

We will transform an instance of the NP-complete problem PARTITION [6]
into an instance of ASHNASH in polynomial time such that the answers to
the questions posed in the two instances are identical - if such a transformation
exists we will write PARTITION ∝ ASHNASH following the notation in [6]. This
means that we can solve the NP-complete problem PARTITION in polynomial
time if we can solve ASHNASH in polynomial time thus ASHNASH is NP-
complete since it is a member of NP. The rest of the proof explains the details
of the transformation.

An instance2 of PARTITION is a finite set W = {w1, w2, . . . , wn} and a
capacity c(w) ∈ Z+ for each w ∈ W . The question is whether a subset W ′ ⊂ W
exists such that

∑
w∈W ′ c(w) = C

2 where C =
∑

w∈W c(w).
Now suppose we are given an instance of PARTITION. The PARTITION

instance is easily transformed into the buffalo-parasite-game from Sect. 1.2 in
polynomial time. All we have to do to translate this as an ASHNASH instance
is to perform a simple numbering of the players in the game.

Now we only have to show that a Nash stable partition of the game in Fig. 1
exists if and only if W ′ exists. This can be seen from the following argument:

– The partition Π = {{b1, p1} ∪ W ′, {b2, p2} ∪ W − W ′} is Nash stable if W ′

exists.
– Now assume that a Nash stable partition Π exists and define

W1 = SΠ(b1) ∩ W and W2 = SΠ(b2) ∩ W . The set SΠ(b1) must contain
p1. Due to the stability we can conclude that

∑
w∈W1

c(w) ≥ C
2 - oth-

erwise b1 would be better off by its own. By a symmetric argument we
have

∑
w∈W2

c(w) ≥ C
2 . The two nodes b1 and b2 are not in the same

coalition so the two sets W1 and W2 are disjoint, so we can conclude that∑
w∈W1

c(w) =
∑

w∈W2
c(w) = C

2 . We can take W ′ = W1. ��

3 Non-negative and Symmetric Preferences

In this section we will restrict our attention to additively separable games with
non-negative and symmetric preferences. The trivial partition where all players
cooperate is optimal for all players in such games. If all players form a clique
where the payoffs are identical then the trivial partition is the only Nash stable
partition.

Now let us on the other hand assume that two disjoint communities S and
T of players exist as defined in Sect. 1.4. If we collapse these communities to
two players s and t then we can effectively calculate the s-t minimum cut in
the underlying graph for the game. This cut defines a non trivial Nash stable
2 The objects constituting an instance in [6] are renamed to match the example in

Sect. 1.2.

Nash Stability in Additively Separable Hedonic Games Is NP-Hard 603

partition. We will denote a non trivial Nash stable partition as an inefficient
equilibrium. In this section we will prove that inefficient equilibriums generally
are hard to compute. To be more specific we will prove that the problem of
deciding whether they exist is NP-complete.

As in the proof of Theorem 1 we need a known NP-complete problem in the
proof of the theorem of this section. The “base” problem of the proof in this
section is the following problem:

Definition 2. EQUAL CARDINALITY PARTITION

– Instance: A finite set W = {w1, w2, . . . , wn} and a capacity c(w) ∈ Z+ for
each w ∈ W

– Question: Does a non trivial partition of W exist such that |Wi| = |Wj |
and

∑
w∈Wi

c(w) =
∑

w∈Wj
c(w) for all sets Wi and Wj in the partition?

EQUAL CARDINALITY PARTITION is closely related to the balanced
version of PARTITION where we are looking for a set W ′ ⊂ W such that∑

w∈W ′ c(w) = C
2 and |W ′| = |W |

2 . The balanced version of PARTITION is
known to be NP-complete [6]. An instance of the balanced version of PARTI-
TION is transformed into an equivalent instance of EQUAL CARDINALITY
PARTITION by adding two more elements to the set W - both with capacity
C + 1. This shows that EQUAL CARDINALITY PARTITION is NP-complete
since it is easily seen to belong to NP.

We will now formally define the problem of deciding whether a non trivial
Nash stable partition exists in an additively separable hedonic game with non-
negative and symmetric preferences:

Definition 3. The INEFFICIENT EQUILIBRIUM problem:

– Instance: A set N = {1, 2, . . . , n} and a function vi : N → IR+ ∪ {0} such
that vi(i) = 0 for each i ∈ N and vi(j) = vj(i) for each i, j ∈ N .

– Question: Does a non trivial partition Π of N exist such that

∀i ∈ N, ∀Sk ∈ Π ∪ {∅} :
∑

j∈SΠ(i)

vi(j) ≥
∑

j∈Sk∪{i}
vi(j) .

Theorem 2. INEFFICIENT EQUILIBRIUM is NP-complete.

Proof. We will show that EQUAL CARDINALITY PARTITION ∝ INEFFI-
CIENT EQUILIBRIUM. By the same line of reasoning as in the proof of The-
orem 1 we conclude that INEFFICIENT EQUILIBRIUM is NP-complete since
INEFFICIENT EQUILIBRIUM is easily seen to belong to NP.

We will now show how to transform an instance of EQUAL CARDINALITY
PARTITION into an equivalent instance of INEFFICIENT EQUILIBRIUM. All
the members of W are players in the instance of INEFFICIENT EQUILIBRIUM
and the payoff for wi and wj for cooperating is c(wi) + c(wj) + C. For each
player wi we also add a player zi. Player zi only gets a strictly positive payoff
by cooperating with wi - in this case the payoff is 2c(wi)+C. Figure 2 depicts a

604 M. Olsen

w izi

w j

2c (wi)+ C

c(wi)+ c(wj)+ C

zj
2c (wj)+ C

Fig. 2. A part of a game with positive and symmetric preferences

part of the INEFFICIENT EQUILIBRIUM instance as an undirected weighted
graph. The members of W are fully connected but zi is only connected to wi in
the graph.

We will now prove that the two instances are equivalent:

– Suppose that we have a non trivial Nash stable partition Π of the players
in Fig. 2. For Sk ∈ Π we define Wk = Sk ∩ W . The player zi cooperates
with wi - otherwise Π would not be stable. The total payoff of wi ∈ Wk is
|Wk|(C + c(wi)) +

∑
w∈Wk

c(w).
• |Wi| = |Wj |: If |Wi| < |Wj | then all the players in Wi would be strictly

better off by joining Wj . This contradicts that Π is stable.
•

∑
w∈Wi

c(w) =
∑

w∈Wj
c(w): Now assume

∑
w∈Wi

c(w) <
∑

w∈Wj
c(w).

Once again the players in Wi would be strictly better off by joining Wj

since |Wi| = |Wj |. Yet another contradiction.
– Suppose that we have a non trivial partition of W into sets with equal

cardinality and capacity. For a set Wi in this partition let Si be the union
of Wi and the corresponding z-members. The set of Si’s is easily seen to be
a non trivial Nash stable partition of the game in Fig. 2. ��

4 Conclusion

We have shown that the problem of deciding whether a Nash stable partition
exists in an additively separable hedonic game is NP-complete. For additively
separable games with non-negative and symmetric preferences we have shown
that the problem of deciding whether a non trivial Nash stable partition exists
is NP-complete.

Acknowledgments. The author of this paper would like to thank Peter Bro
Miltersen from University of Aarhus for valuable comments and constructive
criticism.

References

1. Ballester, C.: NP-completeness in Hedonic Games. Games and Economic Behav-
ior 49(1), 1–30 (2004)

2. Burani, N., Zwicker, W.S.: Coalition formation games with separable preferences.
Mathematical Social Sciences 45(1), 27–52 (2003)

Nash Stability in Additively Separable Hedonic Games Is NP-Hard 605

3. Chen, N., Rudra, A.: Walrasian equilibrium: Hardness, approximations and
tractable instances. In: WINE, pp. 141–150 (2005)

4. Daskalakis, K., Papadimitriou, C.H.: The complexity of games on highly regular
graphs. In: ESA, pp. 71–82 (2005)

5. Flake, G., Tarjan, R., Tsioutsiouliklis, K.: Graph clustering and minimum cut trees.
Internet Mathematics 1(4), 385–408 (2004)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

7. Hajdukova, J.: On Coalition Formation Games. Technical report, Institute of Math-
ematics, P.J. Safarik University (2004)

8. Jackson, M.O., Bogomolnaia, A.: The Stability of Hedonic Coalition Structures.
Games and Economic Behavior 38(2), 201–230 (2002)

Comparing Notions of Computational Entropy

Alexandre Pinto�

DCC-FC & LIACC
R. Campo Alegre 1021/1055

4169-007 Porto
alx@dcc.fc.up.pt

Abstract. In the information theoretic world, entropy is both the mea-
sure of randomness in a source and a lower bound for the compression
achievable for that source by any encoding scheme. But when we must
restrict ourselves to efficient schemes, entropy no longer captures these
notions well. For example, there are distributions with very low entropy
that nonetheless look random for polynomial-bound algorithms.

Different notions of computational entropy have been proposed to take
the role of entropy in such settings. Results in [GS91] and [Wee04]) sug-
gest that when time bounds are introduced, the entropy of a distribution
no longer coincides with the most effective compression for that source.

This paper analyses three measures that try to capture the compress-
ibility of a source, establishing relations and separations between them
and analysing the two special cases of the uniform and the universal
distribution mt over binary strings of a fixed size. It is shown that for
the uniform distribution the three measures are equivalent and that for
mt there is a clear separation between metric type entropy, and thus
pseudo-entropy, and the maximum compressibility of a source.

Keywords: Computational Entropy, Compressibility, Kolmogorov Com-
plexity.

1 Introduction

Randomness is an essential concept in computer science. It is fundamental in
cryptography and has been used extensively to provide quick algorithms for
otherwise difficult problems. Unfortunately, it is beyond the abilities of classi-
cal computers to produce true random bits. For this reason, it is necessary to
simulate true randomness by deterministic methods, but the distributions thus
generated are only useful if they are ’random enough’, or pseudo-random. The
definition of pseudo-randomness is based on computational indistinguishability
from a truly random distribution.

� Partially supported by KCrypt (POSC/EIA/60819/2004), the grant SFRH/BD/
13124/2003 from FCT and funds granted to LIACC through the Programa de Fi-
nanciamento Plurianual, FCT and Programa POSI.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 606–620, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Comparing Notions of Computational Entropy 607

The randomness of a distribution is measured by the notion of entropy, intro-
duced by Shannon in [Sh48]. A related notion is that of min-entropy, which is a
lower bound on the entropy of some distribution.

It is natural to try to extend these objective measures to the pseudo-random
case, thus defining notions of computational entropy. The first such definition
is due to Yao ([Yao88]), but the most used one is due to Hastad, Impagliazzo,
Levin and Luby ([HILL99]). Barak, Shaltiel and Wigderson provide definitions
for computational analogues of min-entropy in [BSW03].

In Information Theory, randomness is tighly related to compression, in the
sense that the output of a random distribution can not be noticeably compressed.
The ultimate notion of compression is Kolmogorov complexity, introduced by
Solomonoff, Kolmogorov and Chaitin [Sol64, Kol65, Cha66]. For an in-depth
analysis of this notion, see [LV97].

Kolmogorov defended this measure characterized the intrinsic randomness of
a string, independently of the distribution from which it was sampled. One of
the major results in the theory of Kolmogorov complexity is precisely the tight
relation that exists between this and entropy, namely the fact that the latter is
assymptotically equal to the average value of the former. This relation has been
studied in [GV03] and suggests that a similar one might exist between resource-
bounded Kolmogorov complexity and some notion of computational entropy.

Yao’s definition of effective entropy has not been much studied. Goldberg
and Sipser ([GS91]) analyse languages that can be compressed efficiently by a
probabilistic machine, which is the computation model considered by Yao, but
do not mention any notion of computational entropy. The notion of pseudo-
entropy appears in [HILL99]. In [BSW03], the authors introduce an analogue
of min-entropy that closely resembles that in [HILL99]. For this reason, the au-
thors call it HILL-type entropy. They introduce a similar notion, metric entropy,
and present a measure based on a compression idea which they called Yao-type
pseudo-entropy. They show that for some models of computation, metric entropy
is equivalent to HILL-type entropy.

Hoeteck Wee studies compressibility, improving on a result from [GS91] that
separated compressibility from pseudo-entropy in an oracle setting and giving a
separation between BSW’s metric-entropy and Yao-type entropy. Hoeteck says
that this result suggests pseudo-entropy is not the right lower bound for the size
of the compression on samplable sources.

The present paper focuses on these measures, comparing Yao-type entropy,
effective entropy and the expected value of the time-bounded Kolmogorov com-
plexity. Effective entropy is by definition the lower bound for compression of a
samplable source and because time-bounded Kolmogorov complexity is the lower
bound for compression of a single word in a fixed time, it seems reasonable that
its expected value be related to effective entropy.

We show that all three are equivalent for the uniform distribution. We also
show that for the distribution mt, Yao-type entropy and effective entropy have
very different values. This result depends on a standard complexity assump-
tion and it can be applied to HMetric

ε , thus giving a clear separation between

608 A. Pinto

pseudo-entropy (by a connection of HMetric
ε to HHILL

ε given in [BSW03]) and
effective entropy. We note that if we remove the randomness in the encoder then
the result is unconditional.

Our results are as follows: in Sec. 3, we show that effective entropy is at
least as large as Yao-type entropy when considering efficiency to be represented
either by FP or the equivalent class for BPP. In Sec. 4, it is shown that the
effective entropy is at least as large as the average of the resource-bounded
Kolmogorov complexity. Sec. 5 shows that the latter is not necessarily larger than
Yao-type entropy, although it is always larger than a variant thereof. Finally,
Sec. 6 analyses two special distributions, uniform and mt, and shows that for
the uniform distribution, the three notions are equivalent. It is also shown that
for mt there is a difference between the values of metric and Yao type entropy of
[BSW03] on the one hand and that of the expected Kolmogorov complexity, and
under a reasonable complexity assumption, Yao’s effective entropy of [Yao88],
on the other.

Some proofs were omitted in the main text and presented in the appendix at
the end of the paper.

2 Preliminaries

Throughout this paper, all logs are taken base 2. Throughout the paper, for some
random variable, we use x ∈ X as a shorthand to “x is in the support of X”.

We use the same notations used in the original papers: Hc for Yao’s effective
entropy, HMetric

ε and HYao
ε for BSW’s metric and Yao type entropies respectively.

Sometimes we use the notation Pr[X ∈ D] where X is a random variable and D
is a set. This signifies the probability that a random value of X belongs to D,
and is shorthand to

∑
x∈X Pr[x ∈ D].

We use the notation O(f(n)) in several places when computing the complexity
of a given string, say x, according to the standard practice in the theory of
Kolmogorov Complexity. This term represents a quantity not greater than c·f(n)
for some constant c. This constant is always considered to be positive, since the
term usually represents the size of some part of a program for x. For this reason,
this quantity is usually signed.

The whole theory of Kolmogorov Complexity is based on this kind of approx-
imations. This is a consequence of its cornerstone theorem of invariance, which
says the universal Turing machine chosen as reference affects K(x) only in a
constant term independent of x. Since the theory is generally concerned with
assymptotic results when n is big enough, this constant is represented by O(1)
even though it may be big.

We now give the basic definitions of computational entropy used.

2.1 Yao’s Effective Entropy

Definition 1. Consider a fixed finite alphabet Σ and some language L = Σ+.
A source S is a random variable defined over L with probability distribution p
subject to the restriction that

∑
x∈S p(x)|x| < ∞.

Comparing Notions of Computational Entropy 609

A source ensemble S is a sequence of sources S1, S2, . . . with probability dis-
tributions p1, p2, . . . such that for some fixed t every element y ∈ [Sn] has |y|
< nt. �

To simplify the notation in the rest of the paper, we define a constant λ = nk

when n and k are understood from the context.

Definition 2. Let Sλ
n = Sn × · · · × Sn︸ ︷︷ ︸

λ times

be the random variable over λ = nk

independent draws of Sn.

Definition 3. A (t, k)−encoding scheme for S is a triple of probabilistic poly-
nomial algorithms M = (MA, MB, MC) such that:

– MA receives as input a parameter n and a “text” composed of λ words of
L. These words are independently identically sampled from Sn. Then, x =
(w1, w2, . . . , wλ) has probability of occurring equal to pk

n(x) = pn(w1)·pn(w2)·
. . . · pn(wλ), i.e., x is sampled from Sλ

n.
– Let MA(n, x) = y. Let MB(n, y) = u. Then, the probability that u �= x must

be smaller than 1/nt for sufficiently large n.
– Let b > 0 be any fixed constant, and let u = O(nb). Pick x1, x2, . . . , xu where

each xi is independently distributed from Sλ
n with probability pk

n(x). Then, let
MA(n, xi) = zi and z = z1z2 . . . zu be the concatenation of the u outputs of
MA. Evaluate MC(n, z) = a. Then, for sufficiently large n, it must happen
that a = (z1, z2, . . . , zu) with probability at least 1 − 1/nt.

The last property states that to code a whole text we can encode different blocks
of it and concatenate the results. If the number of blocks is polynomial in n, then
MC will be able to separate the blocks such that each of them can be correctly
decoded. Roughly, the code is uniquely decipherable. �

Definition 4. Let Ln(M ; S) represent the average number of bits per symbol
of S that encoding M = (MA, MB, MC) achieves. Since all the algorithms are
probabilistic, for a fixed input the algorithm MA may return different outputs.
Let then |MA(n, x)| represent the expected length of MA(n, x) over all possible
random values that MA uses internally. Then,

Ln(M ; S) =

∑
x∈Sλ

n
pk

n(x)|MA(n, x)|
λ

�

Definition 5. A (t, k)−entropy-sequence for S is a sequence s1, s2, . . . such that
there exists a (t, k)−encoding scheme M for S with Ln(M ; S) = sn. �

Definition 6 (Effective Entropy). We say that a source S has effective en-
tropy Hc(S; n) ≤ g(n) if there exist t and k and a (t, k)−entropy sequence such
that sn ≤ g(n) for every sufficiently large n.

Similarly, Hc(S; n) ≥ g(n) if for every pair (t, k) and every (t, k)−entropy
sequence 〈sn〉 satisfies sn ≥ g(n). �

610 A. Pinto

This definition is very general, since it not only allows the encoder and the
decoder to be probabilistic but it also considers the effect of patterns occurring
in a longer text that would not be detected if the compression acted on each word
individually. For this to be feasible, the text must have at most a polynomial
number of words.

This makes Hc hard to compare with the other notions of computational
entropy, which are concerned with individual words. As such, Hc(S; n) will be
compared with HYao

ε (Sλ
n) and E(Kt(Sλ

n)). All these functions are based on inputs
of length n · λ, but Hc is scaled down by dividing by λ. We feel that to properly
compare these measures, we should consider the unscaled version of Hc instead,
that is, λ · Hc(S; n). That’s what is done in the statemente of the theorems in
the following sections.

2.2 BSW’s Yao-Type Entropy

Definition 7. Let C be a class of efficiently computable functions, for example,
FP. For any two functions (c, d) ∈ C defined as c : S → {0, 1}� and d : {0, 1}� →
S, let their codeset be D = {x : d(c(x)) = x}. Denote by C(�) the class of all
such functions and by D(�) the class of all such D.

A random variable S has computational Yao-like entropy at least k, written
HYao

ε (S) ≥ k, if for all � < k and all D ∈ D(�) it happens that Pr[S ∈ D] ≤
2�−k + ε. �

3 Relations Between Hc and HYao
ε

Given that these two definitions are analogues of entropy and min-entropy, it is
interesting to find if the order relation between them still holds in the computa-
tional setting. That is, is it true that HYao

ε ≤ Hc?
This section investigates the answer to this question.
We begin by giving a deterministic analog of Hc.

Definition 8. Hd
c (S; n) is defined as Hc(S; n), with the difference that MA, MB

are not allowed to fail. That is, they are deterministic. �
It is clear that if a deterministic encoding scheme achieves entropy g(n) for
some source S, then adding randomness to this scheme can only improve the
compression. Therefore,

Hc(S; n) ≤ Hd
c (S; n)

The following theorem will be needed in the sequel:

Theorem 1. Given any language L over {0, 1}<n, it is possible to build an-
other language L′ isomorphic to this such that all words in L′ have length n.
Furthermore, the isomorphism can be computed and reverted in linear time.

Proof. For any string x ∈ L, define f{0, 1}<n
→ {0, 1}n : f(x) = 0n−|x|−11x.
It is easy to check that this construction can be made and reverted quickly.

Comparing Notions of Computational Entropy 611

Now, it is necessary to show that all words thus formed are distinct. For any
two words x1, x2 ∈ L of distinct sizes, f(x1) and f(x2) have the leftmost 1 at
different positions, so they are different. For any two distinct strings x1, x2 of
the same size, the prefix appended to both strings is equal, so f(x1) �= f(x2)
because x1 �= x2. �

Theorem 2. Consider Definition 7. Considering that efficient functions are
those that can be computed in polynomial time, C = FP. Then, for any integer
i > 0, HYao

ε (Sλ
n) ≥ λ · g(n) + (i + 1) ⇒ Hd

c (S; n) ≥
(
1 − 1

2i

)
g(n). Equivalently,

λ · Hd
c (S; n) ≥

(
1 − 1

2i

) (
HYao

ε (Sλ
n) − (i + 1)

)
.

The case i = 0 can be solved with a different technique.

Theorem 3. Consider Definition 7 and let C = FP. Then, HYao
ε (Sλ

n) ≥ λ ·
g(n)+1 ⇒ Hd

c (S; n) ≥ g(n)−1/λ or equivalently λ · Hd
c (S; n) ≥ HYao

ε (Sλ
n)−2.

The previous results concern the deterministic version of Hc. That is due to
considering C = FP. It is commonly accepted today that the class of probabilistic
polynomial algorithms may be a better representation of real-world efficiency.
Letting C equal to that class, the previous results all hold for Hc using essentially
the same proofs.

Theorem 4. Consider the class C referred in Definition 7 and let C be the class
of probabilistic polynomial algorithms. Then, for any integer i > 0, HYao

ε (Sλ
n) ≥

λ ·g(n)+(i+1) ⇒ Hc(S; n) ≥
(
1 − 1

2i

)
g(n), which is equivalent to λ ·Hc(S; n) ≥(

1 − 1
2i

) (
HYao

ε (Sλ
n) − (i + 1)

)
.

Theorem 5. Consider the class C referred in Definition 7 and let C be the class
of probabilistic polynomial algorithms. Then, HYao

ε (Sλ
n) ≥ λ ·g +1 ⇒ Hc(S; n) ≥

g − 1/λ or equivalently λ · Hc(S; n) ≥ HYao
ε (Sλ

n) − 2.

These theorems establish the expected relation, that up to a multiplicative con-
stant, the effective entropy is at least as great as Yao-type entropy.

4 Relations Between Hc and Kt

By definition, Yao’s effective entropy identifies the probabilistic polynomial en-
coding scheme that achieves the best compression. This section shows that
despite the randomness available to the encoding schemes, the average time-
bounded Kolmorogov complexity is still a lower bound for Hc.

Since Kt is defined for deterministic Turing Machines, this section first com-
pares Kt with the deterministic version of Hc. Then it addresses the general
case.

Theorem 6. λ · Hd
c (S; n) ≥ E(Kp(Sλ

n)) − O(1)

Proof. Let Hc(S; n) = g(n) and M = (MA, MB, MC) be any (t, k)−encoding
scheme for S that achieves Ln(M ; S) = g(n). Then every x ∈ S can be computed

612 A. Pinto

by MB and a codeword output by MA. Furthermore, these algorithms all run in
time polynomial on n, say p(n). Since MB is fixed, its size is a constant. Then,
for all x ∈ Sλ

n , Kp(x) ≤ |MA(n, x)| + Kp(MB) = |MA(n, x)| + O(1).
But then,

E(Kp(Sλ
n)) =

∑

x∈Sλ
n

pk
n(x)Kp(x) ≤

∑

x∈Sλ
n

pk
n(x)|MA(n, x)| + O(1)

= λ · Ln(M ; S) + O(1) = λ · g(n) + O(1)

Since for all n such an M exists, the theorem follows. �

To allow for probabilistic machines, we consider a program for x that has access
to a pseudo-random generator (PRG) and to a random permutation of size
O(log n). With these auxiliary constructions, we can show the following theorem.

Theorem 7. If cryptographically-secure pseudo-random generators exist, then
λ · Hc(S; n) ≥ E(Kp(Sλ

n)) − O(log n).

5 Relations Between HYao
ε and Kt

The objective of this section is to analyse whether a meaningful relationship can
be found between Yao-type entropy and the average value of Kt(X). To begin,
we give a relaxation of Definition 7 that can be compared to E(Kt(X)).

Definition 9. Let C be as in Definition 7. Let c, d be a pair of computable func-
tions as before, but only d is required to belong to C. Let D+ be the corresponding
class of codesets.

A random variable X has inefficient computational Yao-type entropy at least
k, written HYao+

ε (X) ≥ k, if Pr[X ∈ D] ≤ 2�−k + ε for all � < k and all
D ∈ D+(�). �

This definition includes at least all the functions allowed by the definition of
HYao

ε (X). Thus if a certain property holds for all the functions allowed by Def-
inition 9, then it also holds for all the functions allowed by Definition 7. Hence
the following lemma:

Lemma 1. For any random variable X, the following holds:

HYao+
ε (X) ≤ HYao

ε (X).

The relation between HYao+
ε and E(Kt(X)) can be shown by a theorem that

uses the same technique of Theorem 2, and so the proof is omitted.

Theorem 8. Consider the class C referred in Definition 9 and let C = FP.
Then, for any integer i > 0, HYao+

ε (X) ≥ k + i ⇒ E(Kt(X)) ≥
(
1 − 1

2i

)
k.

If the inverse implication were true, then we would be able to relate E(Kt(X))
to HYao

ε (X). Unfortunately, that is not the case.

Comparing Notions of Computational Entropy 613

Example 1. Let P (x) be the probability function associated with a random dis-
tribution X defined as this:

Pr[Kt(x) = 1] = 5/2k

Pr[Kt(x) ∈ {0, 2, . . . , k − 1}] = 0

Pr[Kt(x) ≥ k] = 1 − 5/2k

for some k ≥ 5. For this distribution, HYao+
ε (X) ≤ k −1. However, E(Kt(X)) ≥

k · (1 − 5/2k) + 5/2k ≥ k − 5k/2k, which, for k ≥ 5, is greater than k − 1. �

The results in the previous sections can be summed up in the following inequal-
ities, up to the approximations shown in the Theorems:

HYao+
ε (Xλ) ≤ HYao

ε (Xλ) ≤ λ · Hc(X)

HYao+
ε (Xλ) ≤ E(Kt(Xλ)) ≤ λ · Hc(X)

It remains an open question to find the relation between E(Kt(X)) and
HYao

ε (X). As shown later, for the universal distribution mt, E(Kt(X)) is mark-
edly superior to HYao

ε (X), but there can be other distributions for which the
relation is inverted.

6 Relations for Specific Distributions

This section analyses the uniform and the mt distributions. Throughout this
section, Un denotes the uniform distribution over binary strings of length n.

6.1 Uniform Distribution

Theorem 9. HYao
ε (Un) = n.

Proof. First we show that HYao
ε (Un) ≥ n. In fact, for every pair of functions

c, d ∈ C(�) the set D = {x : c(d(x)) = x} has at most 2� different words. Since
all of them have probability equal to 2−n, we get Pr[X ∈ D] = |D|/2n ≤ 2�/2n.
Then by definition, HYao

ε (Un) ≥ n.
To prove the converse, we have to show that there is some � < n + 1 and a

pair of functions c, d ∈ C(�) such that for D = {x : c(d(x)) = x}, Pr[X ∈ D] >
2�/2n+1. There are exactly 2n strings in this distribution, all of them with length
equal to n. Then we can code them by the identity function. Therefore, |D| = 2n

and Pr[X ∈ D] = 1 > 2n/2n+1. Then, HYao
ε < n + 1. �

Next we prove a similar result for Hc. First, we state an easy lemma.

Lemma 2. For any random variable S over binary strings of length at most n,
E(Kt(S)) ≤ n + O(1).

Theorem 10. For the uniform distribution, E(Kt(Un)) = Θ(n).

614 A. Pinto

Corollary 1. If cryptographically-secure pseudo-random generators exist, then
Hc(Un; n) = Θ(n).

The previous theorems show that for the uniform distribution, all three notions
are assymptotically equivalent. Since in that case [BSW03] has shown that Yao-
type entropy is equivalent to Hill-type entropy, a distribution is pseudo-random
only if the expected time-bounded Kolmogorov complexity and the effective
entropy are about the logarithm of its support set.

6.2 Universal Distribution mt

This section analyses the relation between these notions under the universal
distribution mt.

Definition 10. The universal distribution mt is defined as mt(x) = 2−Kt(x)

(see [LV97], pg 506). �

This distribution is computable in time t(n)2n+1 for n = |x|. In the remainder of
this section, we consider only the restriction to binary strings of length n, mt

n(x).
Unlike the case for the uniform distribution, there is a noticeable difference
between HYao

ε (mt
n(X)) and Hc(mt

n(X); n).

Theorem 11. For any constant c′ > 0, HYao
ε (mt

n(X)) < 2c′ log n + 1.

This can be generalized to the following theorem:

Theorem 12. If there is a polynomial-time computable distribution X with
probability function P (x) such that HYao

ε (X) < f(n), then HYao
ε (mt

n(X)) <
f(n) + Kt(n)(P).

It is possible to prove a result for Hc opposite to Theorem 11 that is a conse-
quence of the following Theorem:

Theorem 13. For the universal distribution mt, E(Kt(mt
n(X))) = Θ(n).

Corollary 2. If cryptographically-secure pseudo-random generators exist, then
Hc(mt

n(X); n) = Θ(n).

The same idea of the proof of Theorem 11 can be used to show the separation
between Hc(mt

n(X); n) and metric type entropy. We first give the definition
presented in Lemma 3.3 of [BSW03] and then list the corresponding theorem.
The proof can be found in the Appendix.

Definition 11. Let X be a random variable over a set S. For every class C which
is closed under complement and for every k ≤ log |S| − 1 and ε, HMetric

ε (X) ≥ k
if and only if for every set D whose characteristic function belongs to C, Pr[X ∈
D] ≤ |D|

2k + ε.

Theorem 14. For any constant c′ > 0, HMetric
ε (mt

n(X)) < c′ log n + 1.

Comparing Notions of Computational Entropy 615

It is known that mt′
(X) dominates all polynomial-time computable distributions

P (X), where t′(n) = nt(n). This can be used to prove the next theorem:

Theorem 15. Suppose there is a polynomial-time computable distribution X

such that Hc(X ; n)≥g(n). Then Hc(mt′

n (X); n) ≥ g(n)/2cP , for cP = 2Knt(n)
(P)

+ O(1).

The results in this section show that there is a computable distribution that
clearly separates Hc from HYao

ε and especially HMetric
ε . Since HMetric

ε is equiva-
lent to HILL-type entropy, this establishes a separation between pseudo-entropy
and the maximum compressibility of a samplable source. This result is similar to
Wee’s, which is relative to an oracle and depends on the existence of good PRGs.
This assumption is needed only because the coding function may be a proba-
bilistic algorithm. If we allow only deterministic encodings, the result follows
unconditionally.

7 Conclusion

In this paper we made an analysis of three measures that try to capture the maxi-
mum compression of a samplable source: effective entropy, Yao-type entropy, and
Time-Bounded Kolmogorov complexity. We showed that effective entropy dom-
inates the other two, in the sense that it is always greater than them up to some
multiplicative parameter. We gave an inefficient definition of Yao-type entropy
which is shown to be less than both Kolmogorov complexity and the traditional
Yao-type entropy, but we could not relate these two notions, which remains an
open question. We showed that for the uniform distribution all three notions are
equivalent.

Also we gave an example of a distribution for which Yao-type and metric
Entropies are very different from the other two notions, showing that they are
not the right measure for the maximum compressibility of a samplable source
and thus giving another evidence that pseudo-entropy and maximum compress-
ibility are not necessarily related in a computationally-limited setting. It seems
reasonable to believe that the average of bounded Kolmogorov Complexity is a
strict lower-bound for the maximum compressibility of a source. Yao’s effective
entropy can not be easily computed. We’d have to consider all possible encoding
schemes and run them over all strings to compare their averages. The problem
is that the number of possible schemes is infinite.

However, Kolmogorov Complexity theory gives as a framework for computing
this value, if one can spend a large amount of time: we can use the standard
trick of, for every string in the support of Sλ

n , enumerating all programs of size
up to λ · n in dovetailing fashion, from the shortest to the longest, and running
each of them only up to a fixed number of steps polynomial on n. As soon as
the shortest program is found for x, keep the its size and advance for the next
string. This is a finite computation, since the number of strings, of programs and
execution time are all finite quantities. Thus, computing the average bounded
Kolmogorov complexity is at least theoretically possible, and for that reason it

616 A. Pinto

might be a better candidate for the true measure of maximum compressibility
of a random source.

References

[BSW03] Barak, B., Shaltiel, R., Widgerson, A.: Computational Analogues of En-
tropy. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM
2003 and APPROX 2003. LNCS, vol. 2764, pp. 200–215. Springer,
Heidelberg (2003), Available at http://www.math.ias.edu/∼avi/
PUBLICATIONS/MYPAPERS/BSW03/bsw03.ps

[Cha66] Chaitin, G.J.: On the length of programs for computing finite binary se-
quences. Journal of the ACM 13(4), 145–149 (1966)

[GS91] Goldberg, A., Sipser, M.: Compression and Ranking. SIAM Journal On
Computing 20(3), 524–536 (1991)

[GV03] Grünwald, P., Vitányi, P.: Kolmogorov Complexity and Information The-
ory. Journal of Logic, Language and Information 12(4), 497–529 (2003),
Available at http://citeseer.ist.psu.edu/565384.html

[HILL99] Hastad, J., Impagliazzo, R., Levin, L., Luby, M.: A Pseudorandom
Generator from any One-way Function. SIAM Journal On Comput-
ing 28(4), 1364–1396 (1999), Available at http://citeseer.ist.psu.edu/
hastad99pseudorandom.html

[Kol65] Kolmogorov, A.N.: Three approaches to the quantitative definition of infor-
mation. Problems Inform. Transmission 1(1), 1–7 (1965)

[LV97] Li, M., Vitányi, P.M.B.: An introduction to Kolmogorov complexity and its
applications, 2nd edn. Springer, Heidelberg (1997)

[Sh48] Shannon, C.E.: A mathematical theory of communication. Bell System
Technical Journal, vol. 27, pp. 379–423 and 623–656, July and October
(1948)

[Sol64] Solomonoff, R.: A formal theory of inductive inference, part i. Information
and Control, 7(1) 1–22, 1964.

[Wee04] Wee, H.: On Pseudoentropy versus Compressibility. IEEE Conference
On Computational Complexity, pp. 29–41, (2004) Available at http://
ieeexplore.ieee.org/iel5/9188/29139/01313782.pdf

[Yao88] Yao, A.: Computational Information Theory. In: Complexity in Information
Theory, pp. 1–15. Springer, Heidelberg (1988)

http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/BSW03/bsw03.ps
http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/BSW03/bsw03.ps
http://citeseer.ist.psu.edu/565384.html
http://citeseer.ist.psu.edu/hastad99pseudorandom.html
http://citeseer.ist.psu.edu/hastad99pseudorandom.html
http://ieeexplore.ieee.org/iel5/9188/29139/01313782.pdf
http://ieeexplore.ieee.org/iel5/9188/29139/01313782.pdf

Comparing Notions of Computational Entropy 617

A Appendix: Omitted Proofs

This section presents the proofs omitted in earlier Sections.

Theorem 2. Consider Definition 7. Considering that efficient functions are
those that can be computed in polynomial time, C = FP. Then, for any integer
i > 0, HYao

ε (Sλ
n) ≥ λ · g(n) + (i + 1) ⇒ Hd

c (S; n) ≥
(
1 − 1

2i

)
g(n). Equivalently,

λ · Hd
c (S; n) ≥

(
1 − 1

2i

) (
HYao

ε (Sλ
n) − (i + 1)

)
.

Proof. Suppose for contradiction that Hd
c (S; n) <

(
1 − 1

2i

)
g(n). Then, there

is a (t, k)−encoding scheme M = (MA, MB, MC) that, for sufficiently large n,
satisfies Ln(M ; S) <

(
1 − 1

2i

)
g(n). Fix some sufficiently large n and let g =

g(n) ≥ Ln(M ; S). Then, this condition is equivalent to
∑

x∈Sλ
n

pk
n(x)|MA(n, x)| < λ ·

(
1 − 1

2i

)
g

Define the set D = {x : |MA(n, x)| ≤ λ · g}. Then,

λ ·
(

1 − 1
2i

)
g >

∑

x∈Sλ
n

pk
n(x)|MA(n, x)| ≥

∑

x∈Sλ
n\D

pk
n(x)|MA(n, x)|

> λ · g · Pr[Sλ
n �∈ D] ⇒ Pr[Sλ

n �∈ D] <

(
1 − 1

2i

)

This means that Pr[Sλ
n ∈ D] > 1

2i . To show that HYao
ε (Sλ

n) < λ · g + i + 1, it
suffices to give a pair of functions c′, d′ ∈ C(λ · g + 1) and respective codeset D′

such that Pr[Sλ
n ∈ D′] > 2λ·g+1

2λ·g+i+1 + ε = 1
2i + ε.

Since every x ∈ D can be compressed to a string of length at most λ · g, by
Theorem 1 we can efficiently compute a set D′ that is isomorphic to D and such
that every element y ∈ D′ has length λ · g + 1. The reverse operation is also
efficient.

Let f be this isomorphism. Then, let c′(x) = f(MA(n, x)) and d′(y) =
MB(f−1(y)). Since Pr[Sλ

n ∈ D] = Pr[Sλ
n ∈ D′], the theorem follows. �

Theorem 3. Consider Definition 7 and let C = FP. Then, HYao
ε (Sλ

n) ≥ λ ·
g(n)+1 ⇒ Hd

c (S; n) ≥ g(n)−1/λ or equivalently λ · Hd
c (S; n) ≥ HYao

ε (Sλ
n)−2.

Proof. Fix n and let g = g(n). Fix any efficient deterministic encoding scheme
M = (MA, MB, MC). Let c(x) be the restriction of MA(n, x) to the domain
R = {x ∈ Sλ

n : |MA(n, x)| < λ · g}. Then, d(x) = MB(x). Using Theorem 1,
there are functions c′, d′ and D = {x : d′(c′(x))} such that all and only elements
in R are in D and |c′(x)| = λ · g for all x ∈ R. Then, by definition, Pr[X ∈ D] ≤

2λ·g

2λ·g+1 = 1/2 ⇔ Pr[|MA(n, x)| ≥ λ · g] ≥ 1/2, and Ln(M ; S) can be estimated:

λ · Ln(M ; S) =
∑

x∈Sλ
n

p(x)|MA(n, x)|

≥
∑

x∈R

p(x)|MA(n, x)| + 1/2 · λ · g (1)

618 A. Pinto

The objective of the proof now is to show a lower bound for Ln(M ; S). The
worst case happens when the x ∈ Sλ

n that have shortest |MA(n, x)| descriptions
have maximal probability. The first half of (1) is studied next.

Since Pr[|MA(n, x)| < λ · g] is at most 1/2, in the worst case it is 1/2. For any
� < λ · g the function MA(n, x)||x|=� is also an efficient coding for the strings in
the domain that have length �. The result for other strings is not defined, for
example we can assume they are all transformed into the empty string. Then we
have

Pr[|MA(n, x)| = �] ≤ 2l/2λ·g+1 (2)

Pr[|MA(n, x)| < �] ≤ 2l/2λ·g+1. (3)

the first by assumption and the second using Theorem 1.
We can write

∑
x∈R p(x)|MA(n, x)| =

∑λ·g−1
i=0 i · Pr[|MA(n, x)| = i].

To find a lower bound, we let the probabilities in the sum be maximum.
Starting with i = 0, let Pr[|MA(n, x)| = i] be 2i/2λ·g+1. This satisfies both (2)
and (3). Now,

∑

x∈R

p(x)|MA(n, x)| =
λ·g−1∑

i=0

i · Pr[|MA(n, x)| = i] =
λ·g−1∑

i=0

i · 2i

2λ·g+1

=
1

2λ·g+1
·
[
2λ·g · (λ · g − 2) + 2

]
≥ λ · g − 2

2

But then, λ · Ln(M ; S) ≥ λ · g − 1. Since this must happen for any encoding
scheme, it follows that

λ · Hd
c (S; n) ≥ λ · g(n) − 1 ⇔ Hd

c (S; n) ≥ g(n) − 1/λ �

Theorem 7. If cryptographically-secure pseudo-random generators exist, then
λ · Hc(S; n) ≥ E(Kp(Sλ

n)) − O(log n)

Proof. Let G be a cryptographically secure PRG that stretches O(log n) bits
of randomness into nδ bits of pseudo-randomness for some δ. Let H be a fixed
permutation over {0, 1}O(logn) chosen at random.

Let y = MA(n, x). We show how to compute x from y with small randomness
with high probability.

Take some uniformly random string s1 of size O(log n). Then use this to obtain
r1 = G(s1) and use r1 as the randomness in one execution of x′ = MB(n, y).
The output x′ may be correct or not. If it is wrong, then let s2 = H(s1) and
r2 = G(s2). Run MB again using r2 as the random choices and repeat this
process until the answer is correct.

Since H is a random permutation, si is uniformly random over {0, 1}O(log n)

and so G(si) returns a pseudorandom output over {0, 1}nδ

. Therefore, eventually
MB(n, y) will output the correct x. The number of times MB has to be run with

Comparing Notions of Computational Entropy 619

this scheme is sufficient to give a description of x. Let this number be m. Then,
for some polynomial p

Kp(x) ≤ |MA(n, x)| + Kp(MB) + Kp(H) + Kp(G) + |s1| + log m ⇒
Kp(x) ≤ |MA(n, x)| + log m + O(log n) + O(1)

where we lumped the sizes of MB, H and G in one constant term.
We compute the expected value of m: E(m) =

∑
i≥0(i+1)·

(
1 − 1

nt

)
·(1/nt)i =

1 + 1
nt−1 . Since by definition nt is big enough to make 1/nt negligible, then also

1/(nt−1) is negligible, so in average MB(n; x) is correct in the first try. Therefore,
for each x the expected value of Kp(x) is Kp(x) ≤ |MA(n, x)| + O(log n) and so
we get λ · Hc(S; n) ≥ E(Kp(Sλ

n)) − O(log n). �

Theorem 10. For the uniform distribution, E(Kt(Un)) = Θ(n).

Proof. Lemma 2 shows E(Kt(Un)) ≤ n + O(1).
Now we prove the converse by giving a lower bound for E(Kt(Un)).
It is known that Kt(x) ≤ n + 2 logn, where n = |x|, so we can write

E(Kt(Un)) = 1
2n

∑n+2 log n
i=0 i · f(i) where f(i) is the number of strings x with

Kt(x) = i. This sum is minimum when the complexities Kt(x) are minimum,
this is, exhausting the programs of short length. Thus

E(Kt(Un)) ≥ 1
2n

(

n +
n−1∑

i=0

i · 2i

)

≥ 1
2n

· (2n · (n − 2) + 2) ≥ n − 2 �

Theorem 11. For any constant c′ > 0, HYao
ε (mt

n(X)) < 2c′ log n + 1.

Proof. Let b = 2c′ log n + 1. We find some �, and a pair of functions f, g ∈ C(�)
such that for D = {x : g(f(x)) = x}, it happens that Pr[X ∈ D] > 2�/2b + ε.

Consider the following algorithm. When f receives x ∈ {0, 1}n, it executes
some universal prefix-free Turing machine U in dovetail fashion with all programs
pi of length up to c′ log n for at most t(n) steps, where c′ is some constant. If
there is some i such that U t(pi) = x, then f(x) is the shortest such program.
Otherwise, it returns the empty string. This program runs in time polynomial
in t(n) and returns some shortest prefix-free program for x that runs in time
t(n). Therefore, |pi| = Kt(x). The set D associated with this function contains
only and all strings x of size n with Kt(x) ≤ c′ log n. Since all these strings form
a prefix-free code, they can be padded with zeroes so that they all have length
c′ log n.

There certainly is at least one string in this set, for example, the string x0

composed of n zeroes has Kt(x0) ≤ log n+O(1). Therefore, |D| > 0. For all x ∈
D, Kt(x) ≤ c′ log n ⇔ mt

n(x) ≥ 1/nc′
. Then Pr[X ∈ D] ≥ |D| / nc′ ≥ 1 / nc′

.
Let � = c′ log n. Then, Pr[X ∈ D] ≥ 1/2�. Since b = 2� + 1, it follows that
1/2� > 2�/2b. Therefore, HYao

ε (mt
n(X)) < 2c′ log n + 1. �

620 A. Pinto

Theorem 14. For any constant c′ > 0, HMetric
ε (mt

n(X)) ≤ c′ log n.

Proof. The proof is similar to the one for Theorem 11, and it even uses some
constructions from it.

Let C = P and C(�) be the restriction of this class as outlined in Definition 7.
Now, consider the pair of functions c, d ∈ C(�) and the corresponding codeset D
given in that proof.

We build a predicate A ∈ C such that {x : A(x) = 1} = D. For that, let
A(x) evaluate d(c(x)) and output 1 if and only if the result is x. Since both
c and d are efficient and deterministic, so is A(x). Then, all and only ele-
ments in D satisfy A. As was seen in the proof of Theorem 11, Pr[X ∈ D] ≥
|D|/nc′

. Plugging c′ log n for k in Definition 11, we get that HMetric
ε (mt

n(X)) ≤ c′

log n. �

Theorem 13. For the universal distribution mt, E(Kt(mt
n(X))) = Θ(n).

Proof. By Lemma 2 we have E(Kt(mt
n(X))) ≤ n + O(1) .

Consider the minimal prefix-free programs for all strings of length n. It is
known that Kt(x) ≤ n + 2 logn. However, given that mt

n(X) ranges only over
the strings of length n, then n is implicit in it. Therefore, we can use instead
Kt(x|n) ≤ n + O(1). Let δ be the constant represented by O(1). We can write
E(Kt(mt

n(x))) =
∑n+δ

i=0
f(i)
2i · i where f(i) is the number of strings that have

Kt(x) = i. Since 2i is the dominant term in the fraction, the minimum sum is
achieved when all the strings have complexity as large as possible. There are 2n

strings of length n, so f(i) = 2n for i = n + δ and 0 everywhere else.

E(Kt(mt
n(X))) ≥ 2n/2n · (n + δ) = n + O(1) �

Theorem 15. Suppose there is a polynomial-time computable distribution
X such that Hc(X ; n) ≥ g(n). Then Hc(mt′

n (X); n) ≥ g(n)/2cP , for cP =
2Knt(n)

(P) + O(1).

Proof. For any (t, k)−encoding scheme M = (MA, MB, MC) for X , we have, by

definition, that Ln(M ; X) ≥ g(n) ⇔
∑

x pk
n(x)|MA(x)|

λ ≥ g(n). Recall that x =
〈x1, . . . , xλ〉 is a word distributed according to Xλ. Since X is polynomial-time
computable, then for cP = 2Knt(n)(P)+O(1), mt′

n (xi) ≥ pn(xi)/2cP ⇔ Kt′
(xi) ≤

log 1/pn(xi) + cP . The proof of this theorem in [LV97] uses the description of P
to reconstruct the distribution and thence the string that is sought.

This reasoning can also be applied to x as a whole, but now the reconstruction
of P need be done only once. Thus, cP is not multiplied by λ. Therefore,

Kt′
(x) ≤ log 1/pk

n(x) + cP ⇔ mt′

n (x) ≥ pk
n(x)/cP

and so

Ln(M ;mt′

n (X)) ≥
∑

x
pk

n(x)
2cP

|MA(x)|
λ

≥ g(n)
2cP

and the theorem follows. �

From Logic to Physics: How the Meaning of

Computation Changed over Time

Itamar Pitowsky

The Edelstein Center, Levi Building, The Hebrew University, Jerusalem, Israel

1 The Church-Turing Thesis and the Meaning of
‘Computable Function’

The common formulation of the Church-Turing thesis runs as follows:
Every computable partial function is computable by a Turing machine
Where by partial function I mean a function from a subset of natural numbers

to natural numbers. As most textbooks relate, the thesis makes a connection
between an intuitive notion (computable function) and a formal one (Turing
machine). The claim is that the definition of a Turing machine captures the
pre-analytic intuition that underlies the concept computation. Formulated in
this way the Church-Turing thesis cannot be proved in the same sense that a
mathematical proposition is provable. However, it can be refuted by an example
of a function which is not Turing computable, but is nevertheless calculable by
some procedure that is intuitively acceptable.

What exactly is our intuition about computation, and where does it come
from? Turing was interested in the decision problem for formal systems, that of
arithmetic in particular1. He was therefore concerned with a sense of “compu-
tation” that is tightly related to the formal concept of proof. Formal proofs by
their very nature can be validated, at least in principle, by checking whether
each step follows the mechanical rules of inference. This means that computa-
tions in the sense that is relevant for logic should also have that character, they
should be idealizations of (symbolic) calculation with pencil and paper. To put it
in Enderton’s (1977) words; “One can picture an industrious and diligent clerk,
well supplied with scratch paper, tirelessly following his instructions”. If there is
only a finite list of instructions and no bound on the supply of paper and pencils,
and no preassigned limit on time, we have a Turing machine. In this context the
Church-Turing thesis is simply the assertion that the language of Turing ma-
chines (or any other universal programming language) is the correct idealization
for that purpose. Turing (1936) provided a very powerful argument to that ef-
fect, which is not less convincing than any informal mathematical proof. To sum,
what the Church-Turing thesis meant initially can be formulated as follows

Any function that is computable by an ideal “industrious tireless and diligent
clerk” is Turing machine computable.

With the advance of technology computer science has left its place of birth in
mathematical logic and became an independent enterprise. It was pointed out
1 Much of what I say here applies also to Church.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 621–631, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

622 I. Pitowsky

by Shagrir (2002) that this development also led to a change in the concept of
computation. The stress is no longer put on idealized human activity (proofs,
calculations) but shifts to the abilities of “discrete finite automata”2. With this
change we obtain the physical Church-Turing thesis that reads

Any function that is computable by a discrete finite automaton is Turing ma-
chine computable.

However, with this change some of the transparency of the thesis is gone.
While every schoolchild knows what a pencil and paper calculation is, and is
able to imagine how it can be idealized, no equivalent understanding exists with
regard to finite automata. It is not completely clear what kind of contraptions
should be included as legitimate finite discrete automata, and what are the
grounds for inclusion. Of course, we do have some intuition, most of it in the
form of physical constraints of a very general kind. For example, we imagine
the automaton to be composed of discrete parts distributed in space, such that
only finitely many of them participate in each step. We believe that there is a
limit to the speed with which one part can influence other parts, so that in each
step a part can only induce a change in its spatial neighbors, and so on. Using
intuitions of this kind Gandy (1980) tried to give a very general (and abstract)
characterization of finite discrete automata and prove the thesis. His work is
explicated in Sieg and Byrnes (1999).

It seems to me that this issue is nevertheless not settled. What we mean by
finite discrete automaton depends too heavily on our theories of space and time,
and more importantly, on what we mean by “physical state”. These issues are
contingent and can change quite radically with the advance of empirical science.
In this context we should perhaps refer to the physical Church-Turing hypothesis.
However, it must be emphasized that even in this contingent form the thesis has
not yet been seriously challenged. Neither by any physically realizable machine
model, nor even by an ideal physical automaton working in our universe.

2 Challenges to the Thesis

Consider two attempted counterexamples to the Church-Turing thesis in its
physical, finite automaton version. The first, I think, does not get off the ground,
and the second is so highly idealized that it never gets to the ground.

2.1 Kieu’s Quantum Computer

Kieu (2005) claimed that given a Diophantine equation there is a quantum adi-
abatic computer that decides if the equation is solvable. Since this problem is
generally undecidable we have an (alleged) automaton that can decide a non-
Turing computable predicate. Kieu’s proposal has been widely criticized on var-
ious counts. My aim here is not to repeat or assess previous points of criticism

2 The word discrete serves to exclude analog computers that use continouus space-
time processes. By finite I mean that every instance of computation requires a finite
amont of resources. However, the amount can grow with the size of the instances.

From Logic to Physics 623

but rather to make a simple general point which does not require a detailed
understanding of the model. The gist is as follows: Kieu’s design assumes tacitly
that we are already in possession of some physical process that computes another
non-recursive function. In other words, it begs the question. This point is also
made in Hagar and Korolev (2006), which contains a wide reference list on the
subject.

Consider the set of all Diophantine equations, this set can be effectively enu-
merated, so let E1, E2, ..., En, ... be such an enumeration. Fix a universal Turing
machine U and let dU (n) be the number of steps it takes U to decide that En

has a solution in case it is solvable, and dU (n) = 0 in case En is not solvable.
Put DU (n) = max

1≤j≤n
dU (j). The function DU (n) is not computable, it grows

asymptotically faster than any recursive function, like the famous Busy Beaver
(Boolos and Jeffrey, 1974). Moreover, this property of DU (n) is independent of
the universal Turing machine U and the enumeration of the equations.

Kieu is employing a version of the adiabatic quantum computation. Suppose
that we set to decide the Diophantine equation En. Then one takes a time
dependent Hamiltonian of the form

H(t) = (1 − t

Tn
)H0 +

t

Tn
H1

Where Hn
0 and Hn

1 are stationary Hamiltonians (which depend on the equa-
tion En), they do not commute, and the spectrum of Hn

0 is known. The adiabatic
theorem states that if Tn is sufficiently large, and if we start from the ground
state of Hn

0 we end after time Tn in the ground state of Hn
1 . The trick is to

encode the solution to the computational problem as the ground state of Hn
1

which is then discovered by a measurement after time Tn.
But how large should Tn be? According to the adiabatic theorem it is a

polynomial in the inverse of the spectral gap of the Hamiltonian. However, this
needs not concern us here. What is important is that in the worst case Tn grows
with n like DU (n). Or, to put it more precisely: No matter what translation
is chosen between “number of Turing machine steps” and the physical “number
of seconds”, so long that this translation is a monotone recursive function, the
worst case max

1≤j≤n
Tj is non-recursive.

Kieu does not assume that we explicitly know from the outset the value of
Tn, which would directly beg the question. He devises a probabilistic algorithm
which is executed in steps. We run a few copies of the computer for some time T
and then performs a measurement on all copies. If more than half the copies give
the same outcome we are done. Otherwise we have to increase the running time
and try again, and so on. Assuming that we accept the mathematical correctness
of the Kieu’s procedure, we are still left with the puzzle. Suppose that we are
in one of the worst cases and the actual running time is � Tn seconds. Suppose
that we ran the process for “only” 1

2Tn seconds and got the wrong result, so in
the next step we have to slow the process, say by a factor of 1

2 . How do we do
that? How do we know that when we start the process afresh it is running at half
the paste of the previous one, or even that it is just slower than the previous one?

624 I. Pitowsky

It requires a “speedometer” that is capable of distinguishing between a process
that will end after 1

2Tn seconds and one that will end after Tn seconds.
The model of adiabatic quantum computation assumes that the speed of the

process is just a parameter over which we have physical control. We can run it
slower or faster at will. But as we take more and more complicated Diophantine
equations En the speeds involved become asymptotically slower then 1

f(n) for
every monotone increasing recursive function f(n)3. To assume that we have
such a degree of control over a physical parameter begs the question.

2.2 Supertasks

A machine performs a supertask if it performs an infinite number of steps in a
finite span of time. It turns out that the existence of such devices is compatible
with the principles of general relativity (Pitowsky 1990, Hogarth 1994, Earman
and Norton, 1993). In some space-time manifolds which are solutions to the
Einstein’s equation we can find a point p, and a time-like future directed half
curve γ (with

∫
γ dτ = ∞) such that the entire stretch of γ lies in the chronological

past of p. If we let a regular computer which is equipped with a transmitter move
along γ, while a reciever moves along another future directed time-like curve that
connects a beginning point, call it q, with p. The time of travel of the receiver
from q to p is finite, while “at the same time” the computer and transmitter
complete the infinite time trip along γ. The computer can check an undecidable
proposition of the form ∀nΦ(n) case by case, to infinity. If a counter-example is
found the computer transmits a message. The receiver will get it before it arrives
at p, and the result of the computation is that ∀nΦ(n) is false. If, on the other
hand, no message is received by the time the computer arrives at p, then ∀nΦ(n)
is true.

On one level the model comprises a counter-example to the Church-Turing
thesis in its finite automaton version4. In particular, it shows that some of the
physically inspired constraints on finite automata (for example, that there is a
limit to the speed of information transmission) do not prevent the machine from
completing a supertask (roughly, because when such a limit exists the length of
the time interval becomes observer dependent). The question is how significant
this counter-example really is?

This model is not free of conceptual problems, some of which were pointed
out by Shagrir and Pitowsky (2001). Here I will concentrate on some physical
observations made by Earman and Norton (1993) that shed light on the notion
of “physical possibility” assumed by this model. We apply here a rule that may
be formulated as follows: If there is a solution to Einstein’s equation in which P
holds, then P is physically possible. As a methodological dictum it serves as a

3 That is, for every such f there is N such that if n > N , then the (worst case) process
is slower than f−1(n).

4 If ∀nΦ(n) turns out to be true, more powerful computers should be built to check
larger instances. However, at no finite time along γ an actual infinite machine is
needed.

From Logic to Physics 625

useful tool to expose tacit assumptions behind claims of impossibility. However,
it provides a very weak notion of physical possibility. For many physicists the
existence of Einsteinian manifolds on which supertasks and other strange phys-
ical effects are possible is an indication of a handicap of the theory. One way to
handle this handicap is to formulate physical principles that rule out undesir-
able solutions on a wholesale basis. A significant example is the (strong version)
of cosmic censorship which eliminates the kind of hypercomputation described
above, as well as many other strange effects (Penrose 1972).

Another problem with the model is that it entails the existence of a singular-
ity, namely, a process through which a physical magnitude grows without bound.
Suppose that the message from the transmitter to the receiver is an electromag-
netic wave. One way the singularity is expressed in this case is in terms of the
frequency of the message received on the way from q to p. The longer it takes to
find a counter example to ∀nΦ(n) (assuming there is one) the shorter is the wave
length that arrives from γ. Beyond a certain point such hard photons with huge
energies are no longer described by the familiar laws of physics. To delay this
effect the transmitter can lower its frequency as it goes along γ, but beyond a
certain point it will be masked by thermal noise. Hence, like other more famous
cases of singularity, the model actually points out a limit to the validity of the
general theory of relativity rather than a physical possibility, even in a weak
sense of the term.

To sum, despite the fact that “discrete finite automaton” is not a precisely
defined notion, the intuition the lies behind the physical Church -Turing thesis
seems so far to be standing on a solid ground. Although Turing, Church and the
other founders of the theory of computation did not mean their work to apply
to physics, they may have inadvertently made a great discovery in this field.

3 Exponential vs. Polynomial

3.1 Quantum Computation

A common way to formulate the physical Church-Turing thesis is the following
The distinction between computable and non-computable functions is indepen-

dent of the machine model.
Indeed, one method to gather support for the thesis is to demonstrate for as

many machine-models as possible that they are equivalent to Turing machines.
An unexpected feature of these equivalences is that they are of polynomial time
complexity, that is

(computation time of f(x) on machine model I) ≤

≤ C(computation time of f(x) on machine model II)k

for some constant C > 0 and a fixed natural number k which are independent of
f and x. Computation time is measured by the number of steps the machine is
performing, assuming that it is a finite discrete automaton. The polynomial time

626 I. Pitowsky

dependence has been noticed quite early (see Cobham, 1964; Edmonds, 1965).
Let P be the class of functions which are polynomial time Turing computable. As
the evidence about the transformations between machine models accumulated
the following thesis became more established

The Polynomial Church -Turing thesis: The class P is independent of the
machine model.

In other words, no automaton can reduce the complexity of an exponential
time5 Turing computable function, and compute it in polynomial time. It is an
interesting historical fact that the robustness of P , although independent of the
Church-Turing thesis, was noticed while evidence for the latter was mounting.

The polynomial Church-Turing thesis has no counterexample, but there is a
very serious candidate: Shor’s (1994) quantum algorithm for the factorization of
numbers. (Recall that the classical complexity of this problem is not known to
be exponential.) In the following I will assume that the classical factorization
of integers is not in P and discuss the question: What is it about quantum
computers which is responsible for the speed-up? Note that this question can
still be of some interest even if factorization turns out to be classically in P ,
because more modest speed-up is gained in other circumstances (e.g., Grover’s
1997 search algorithm).

The robustness of P has been conjectured because all computer models avail-
able at the time could be simulated in polynomial time by a Turing machine.
When we try to figure out why quantum computers should fail to be polyno-
mially simulated an immediate answer seems to suggest itself: Because of the
principle of superposition, that is, entanglement. However, this is at best a very
partial answer (see Jozsa and Linden, 2003). In the following I will point out why
this answer is only partially true. I will also compare the state of quantum com-
putation with the situation in other fields of quantum information theory, where
proven advantages are gained by quantum resources, and where the reasons for
the enhancement are better understood.

But first, why should entanglement be the immediate suspect? Let L be a nat-
ural number, and let a =

∑L−1
k=0 ak2k be a natural number where a0, a1, ..., aL−1

∈ {0, 1}. Choose, as usual, an orthonormal basis |0〉, |1〉 in the two dimensional
complex space C

2, and represent the number a in terms of L qbits on the L-times
tensor product of C

2 as follows: |a〉 = |aL−1〉 |aL−2〉 ... |a0〉. By the principles of
quantum mechanics any superposition of the form

|φ〉 =
2L−1∑

c=0

c(a) |aL−1〉 |aL−2〉 ... |a0〉 ,

where c(a) are complex numbers and
∑2L−1

c=0 |c(a)|2 = 1, corresponds to a pos-
sible (pure) state of a quantum system. Storing the generic state |φ〉 (or its
approximation) in the memory of a classical computer requires more than 2L

bits. This may seem as the source of difficulty in simulating quantum computers
5 Here by “exponential” I mean anything higher than polynomial (including the sub-

exponential).

From Logic to Physics 627

efficiently on a classical automaton. However, one has to remember that in the
model of quantum computation the arbitrary state |φ〉 has to be generated from
|0〉L = |0〉 |0〉 ... |0〉, and there seems to be no general way of doing it in a num-
ber of steps which is bounded by a polynomial in L. On the other hand, even if
a specific genuinely entangled state can be generated in polynomial time from
|0〉L it does not necessarily entail that it can serve to speed-up computation.
To achieve speed-up one needs specific entangled states which can be generated
in polynomial time (a certain amount of noise can of course be permitted). So
entanglement seems to be only a part of the answer and more details should be
added.

Consider two examples, one positive and one negative. The crucial step in
Shor’s algorithm is the proof that the Fourier transform FL |a〉, which is defined
on the computational basis vectors by

FL |a〉 =
1√
2L

2L−1∑

c=0

exp
(

2πiac

2L

)
|c〉

can be computed in poly(L) steps on a quantum computer. It is safe to say that
apart from Born’s rule this is the only physical aspect of the algorithm (the
rest is number theory). The actual entangled state required for the calculation
is generated by the application of FL to a state that was previously prepared by
a measurement.

The negative example concerns the graph isomorphism problem. It is an open
problem whether it is classically solvable in polynomial time, although it is be-
lieved to be simpler than the NP-complete problems. A (simple) graph is a pair
G = (V, E) where V is the set of vertices, which we take to be V = {1, 2, ..., n},
and E the set of edges is a subset of the set of pairs E ⊆ {{i, j} ; 1 ≤ i < j ≤ n}.
Two graphs G = (V, E) and G‘ = (V, E‘), with the same set of vertices V , are
called isomorphic if there is a permutation π of V such that {i, j} ∈ E if and
only if {πi, πj} ∈ E‘. The computational task is to decide whether two given
graphs are isomorphic.

To represent a graph G = (V, E) by a quantum state we can use 1
2n(n − 1)

qbits and label them by the pairs {i, j} with 1 ≤ i < j ≤ n. Define χ(i, j) = 1
when {i, j} ∈ E, and = 0 otherwise, and denote

|G〉 = |χ(1, 2)〉 |χ(1, 3)〉 ... |χ(i, j)〉 ... |χ(n − 1, n)〉

Then the graph G is uniquely characterized by the state |G〉. Similarly define
the state

∣
∣G‘

〉
corresponding to the graph G‘ and its function χ‘(i, j) which

equals 1 when {i, j} ∈ E‘ and 0 otherwise. Now, consider the entangled state

|SG〉 =
1√
n!

∑

π∈Sn

|χ(π1, π2)〉 |χ(π1, π3)〉 ... |χ(πi, πj)〉 ... |χ(π(n − 1), πn)〉 ,

where the sum ranges over all permutations π of V , and define a similar state∣
∣SG‘

〉
for the graph G‘. It is easy to see that if G is isomorphic to G‘then

628 I. Pitowsky

∣
∣SG‘

〉
= |SG〉. Moreover, in case G and G‘ are not isomorphic |SG〉 is orthogonal

to
∣
∣SG‘

〉
. If we could create the state |SG〉 in a number of steps that is polynomial

in n then we would have solved graph isomorphism in polynomial time (Beckman,
2004) . However, nobody knows how to do that.

It seems therefore that the possibility of quantum speed-up depends on the
ability to create specific entangled states fast. Both examples can be described
in group theoretic terms, the first relating to a commutative, and the second to
a non-commutative group. The notion of entanglement seems to be too general
to capture the structure that underlies fast quantum algorithms, and a more
complete understanding is not yet available.

3.2 Quantum Communication

While the causes of quantum computational speed-up are elusive the advantages
of some quantum mechanical communication protocols are better understood.
The reason is that those protocols are built on the general concept of entangle-
ment and the associated quantum correlations.

To understand the difference we shall concentrate on communication between
two parties. Connsider pairs of objects sent from a source, one in the direction
of Alice, and one in Bob’s direction. Alice can perform either one of two mea-
surements on her object; she can decide to detect the event A1 or its absence
(which means detecting the event A1). Alternatively, she can decide to detect
the event A2 or A2. So each of these two possible measurements has two possible
outcomes. Similarly, Bob can test for event B1 or use a (possibly different) test
to detect B2. We have three possibilities:

(1) Assume the four events A1, A2, B1, and B2 are events in a classical prob-
ability space, and let p be a probability measure. Consider the eight dimensional
real vector:

v = (p(A1), p(A2), p(B1), p(B2), p(A1B1), p(A1B2), p(A2B1), p(A2B2)).

Let the A’s and B’s range over any events in any classical event space, and p
range over all possible probability measures on that space. Then the vector v
ranges over a convex polytope L in R

8. The 16 vertices of L are just the extreme
zero-one assignments to the probabilities of the A’s and B’s, and the non-trivial
facets of L are just the Clauser Horne (1974) inequalities of the form

−1 ≤ p(A1B1) + p(A1B2) + p(A2B2) − p(A2B1) − p(A1) − p(B2) ≤ 0.

All the non trivial facets of L are obtained by permuting the events in this
inequality (Pitowsky, 1989).

(2) Consider what happens if we let the A’s and B’s range over quantum
events. In other words, suppose that Ai and Bj are projection operators in some
Hilbert space H, and ρ a (pure or mixed) state on H ⊗ H, then the corresponding
quantum probabilities are p(Ai) = tr[ρ(Ai ⊗ I)], p(Bj) = tr[ρ(I ⊗ Bj)], and
p(AiBj) = tr[ρ(Ai ⊗ Bj)]. The set of all probability assignments of this kind,
which is obtained as we vary H, Ai, Bj and ρ, is a convex subset Q of R

8, and it

From Logic to Physics 629

satisfies L � Q. In particular, the Clauser Horne Inequality is violated in some
cases. The boundary of Q is a complicated set which was described by Tsirelson
(1980).

(3) Furthermore, one can theoretically consider possibilities that even tran-
scend quantum theory (and therefore not known to be physically realizable).
Popescu and Rohrlich (1996) introduced such extended correlations, which are
constrained only by the condition of no-signaling6. These correlations ‘live’
within yet another convex polytope P which is still larger than Q. The situ-
ation is schematically described in the figure.

If ρ is a pure entangled quantum state one can always find Ai, Bj such that
the correlation is quantum (that is, lies in Q�L). This is not true for some
entangled mixed states (Werner, 1989), so entanglement does not always imply
the existence of quantum correlations. Quantum correlations can be used in a
variety of tasks. The number of articles published on these topics is staggering:

6 The no-signaling condition says that a change in Bob’s measurement does not influ-
ence Alice’s marginals p(Ai), and vice versa.

630 I. Pitowsky

from Ekert’s (1991) application of quantum correlations to secure quantum key
distribution, to a recent applications of the so-called pseudotelepathy (Gisin et
al., 2006). Some of these applications are provably impossible without quantum
correlations.

In addition, entanglement sometimes provide exponential gain in communi-
cation complexity over classical correlations (Buhrman, Cleve and Wigderson,
1998), and assuming the existence of the unphysical regime of the Popescu
Rohrlich correlations in P trivialize communication complexity entirely (van
Dam, 2005; Brassard et al., 2005). Barrett (2005) developed a general frame-
work in which a variety of probabilistic theories can be defined, including the
classical and quantum theories, but also others, which allow the inclusion of
the Popescu Rohrlich correlations. Each theory of this kind gives rise to certain
information theoretic possibilities. It will be an interesting excercise to develop
a theory of computation within such a wide framework and see what are the
possibilities for speed-up. This may shed some light on the power of quantum
computers, and on the relations between physics and computational complexity.

References

Barrett, J.: Information processing in generalized probabilistic theories (2005)
http://arxiv.org/quant-ph/0508211

Beckman, D.E.: Investigations in quantum computing, causality and graph isomor-
phism PhD thesis, California Institute of Technology (2004)

Boolos, J.S., Jeffrey, C.J.: Computability and Logic. Cambridge University Press, Cam-
bridge (1974)

Brassard, G., Buhrman, H., Linden, N., Methot, A.A., Tapp, A., Ungerquant, F.: A
limit on nonlocality in any world in which communication complexity is not trivial
(2005) http://arxiv.org/abs/quant-ph/0508042

Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. Classical Communication and
Computation (1998) http://arxiv.org/abs/quant-ph/9802040

Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories.
Physical Review D 10, 526–535 (1974)

Cobham, A.: The intrinsic computational difficulty of a function. In: Bar-Hillel, Y.
(ed.) Proc. 1964 International Congress for Logic, Methodology, and Philosophy of
Science, North Holland, Amsterdam (1964)

Earman, J., Norton, J.D.: Forever is a Day: Supertasks in Pitowsky and Malament-
Hogarth Spacetimes. Philosophy of Science 60, 22–42 (1993)

Edmonds, J.: Paths trees and flowers. Canadian Journal of Mathematics 17, 449–467
(1965)

Ekert, A.: Quantum cryptography based on Bell’ s theorem. Physical Review Letters 67,
661–664 (1991)

Enderton, H.B.: Elements of recursion theory In: Barwise, J. (ed.) Handbook of Math-
ematical Logic North Holland, Amsterdam, pp. 527–566

Gandy, R.O.: Church’s Thesis and Principles of Mechanisms. In: Barwise, J., Keisler,
J.J., Kunen, K. (eds.) The Kleene Symposium, pp. 123–145. North Holland, Ams-
terdam (1980)

Gisin, N., Methot, A.A., Scarani, V.: Pseudo-telepathy: input cardinality and Bell-type
inequalities (2006) http://arxiv.org/quant-ph/0610175

http://arxiv.org/quant-ph/0508211
http://arxiv.org/abs/quant-ph/0508042
http://arxiv.org/abs/quant-ph/9802040
http://arxiv.org/quant-ph/0610175

From Logic to Physics 631

Grover, L.K.: Quantum Mechanics helps in searching for a needle in a haystack. Phys-
ical Reveiw Letters 78, 325–328 (1997)

Hagar, A., Korolev, A.: Quantum hypercomputability? Minds and Machines 16, 87–93
(2006)

Hogarth, M.L.: Non-Turing Computers and Non-Turing Computability. Proceedings of
the Philosophy of Science Association (PSA) 1, 126–138 (1994)

Jozsa, R., Linden, N.: On the role of entanglement in quantum computational speed-up.
In: Proceedings of the Royal Society of London A vol. 459, pp. 2011–2032 (2003)

Kieu, T.D.: An Anatomy of a Quantum Adiabatic Algorithm that Transcends the
Turing Computability. International Journal of Quantum Information 3, 177–183
(2005)

Penrose, R.: Gravitational collapse. In: De Witt-Morette, C. (ed.) Gravitational Radi-
ation and Gravitational Collapse, pp. 82–91. Reidel, Dordrecht (1974)

Pitowsky, I.: Quantum Probability, Quantum Logic. Lecture Notes in Physics, vol. 321.
Springer, Heidelberg (1989)

Pitowsky, I.: The Physical Church Thesis and Physical Computational Complexity,
Iyun vol. 39, pp. 161–180 (1990)

Popescu, S., Rohrlich, D.: Action and Passion at a Distance: An Essay in Honor of
Professor Abner Shimony (1996) http://arxiv.org/abs/quant-ph/9605004

Shagrir, O.: Computations by Humans and Machines. Minds and Machines 12, 221–240
(2002)

Shagrir, O., Pitowsky, I.: The Church-Turing Thesis and Hypercomputation. Minds
and Machines 13, 87–101 (2003)

Shor, P.W.: Polynomial Time Algorithms for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer. SIAM Journal of Computing 26, 1484–1509 (1994)

Sieg, W., Byrnes, J.: An Abstract Model for Parallel Computations: Gandy’s Thesis.
The Monist 82, 150–164 (1999)

Tsirelson, B.S.: Quantum generalizations of Bell’s inequality. Letters in Mathematical
Physics 4, 93–100 (1980)

Turing, A.M.: On Computable Numbers with an application to the Entscheidungsprob-
lem. Proceedings of the London Mathematical Society 45(2), 115–154 (1936)

van Dam, W.: Implausible Consequences of Superstrong Nonlocality (2005)
http://arxiv.org/abs/quant-ph/0501159

Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a
hidden-variable model. Physical Review A 40, 4277–4281 (1989)

http://arxiv.org/abs/quant-ph/9605004
http://arxiv.org/abs/quant-ph/0501159

Theories and Ordinals: Ordinal Analysis

Michael Rathjen

Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, UK

1 Introduction

How do ordinals gauge the strength and computational power of theories and
what kind of information can be extracted from this correlation? This will be
the guiding question of this talk. The connection between ordinal representation
systems and theories is established in ordinal analysis, a central area of proof
theory. The origins of proof theory can be traced back to the second problem on
Hilbert’s famous list of problems, which called for a proof of consistency of the
arithmetical axioms of the reals. In the 1920s, Ackermann [1] and von Neumann
[15], in pursuit of Hilbert’s Programme, were working on consistency proofs for
arithmetical systems. Ackermann’s 1924 [1] dissertation gives a consistency proof
for a second-order version of primitive recursive arithmetic which explicitly uses a
finitistic version of transfinite induction up to the ordinal ωωω

. The employment
of transfinite induction on ordinals in consistency proofs came explicitly to the
fore in Gentzen’s [9] 1936 consistency proof for Peano arithmetic, PA. He showed
that transfinite induction up to the ordinal

ε0 = sup{ω, ωω, ωωω

, . . .} = least α such that ωα = α

suffices to prove the consistency of Peano Arithmetic, PA. To assess Gentzen’s
result at its true worth it is important to note that he applied transfinite in-
duction up to ε0 solely to primitive recursive predicates and besides that his
proof used only finitistically justified means. Hence, a more precise rendering of
Gentzen’s analysis reads as follows:

F + PR − TI(ε0) � Con(PA), (1)

where F notates a theory that is acceptable from a finitist’s viewpoint (e.g. F =
PRA = Primitive Recursive Arithmetic) and PR-TI(ε0) stands for transfinite
induction up to ε0 for primitive recursive predicates (while Con(PA) formalizes
the consistency of PA). Gentzen also showed that his result is best possible in
that PA proves transfinite induction up to α for arithmetic predicates for any
α < ε0. The compelling picture emanating from this is that the non-finitist part
of PA is encapsulated in PR-TI(ε0) and therefore “measured” by ε0, thereby
suggesting the following definition of proof-theoretic ordinal of a theory T :

|T |Con = least α. PRA + PR − TI(α) � Con(T). (2)

Note, however, that the definition of |T |Con depends on the representation of
an intial segment of ordinals in the theory PRA (i.e. an ordinal representation

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 632–637, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Theories and Ordinals: Ordinal Analysis 633

system). In the case of PA what is required is a representation O(ε0) of the
ordinals below and including ε0 (which is usually engineered by the Cantor
normal form).

A caveat to be uttered here is that ordinal analysis establishes a relationship
in which both parts have to be “natural” in that a “natural” theory (e.g. PA) is
related to a “natural” ordinal representation system (e.g. O(ε0)). It is a striking
empirical fact that many “natural” theories, i.e. theories which have something
like an “idea” to them, are comparable with regard to consistency strength. This
has actually been proved in many cases, for theories whose ideas and motivations
have nothing at all to do with one another. A plethora of results in proof theory
and set theory seems to provide compelling evidence that the ordering of consis-
tency strength, ≤Con , is a linear ordering on “natural” theories. To illustrate this
by way of examples from set theory, with a few exceptions, large cardinal axioms
have been shown to form a well-ordered hierarchy when ordered as follows:

φ ≤Con ψ := ZFC + φ ≤Con ZFC + ψ,

where φ and ψ are large cardinal axioms. This has not been established for all
of the large cardinal axioms which have been proposed to date; but there is
strong conviction among set theorists that this will eventually be accomplished
(cf. [13,28]). The mere fact of linearity of ≤Con is remarkable. But one must
emphasize “natural” here, because one can construct a pair of self-referential
sentences to engender incomparable theories (cf. [24], 2.17, 2.18). In the same
vein, for of a given theory T , it is possible (as Kreisel liked to emphasize) to write
down a “self-referential” ordinal representation system O(T) of sorts (utilizing
T ’s proof predicate) to the effect that the consistency of T is trivially implied
by the well-foundedness of O(T).

2 Natural Wellorderings

Proof theorists have concerned themselves with the problem of discerning the dif-
ference between the examples of well-orderings that arise naturally in the proof
theory of formal systems and pathological examples. Feferman [6,7,8] put forward
the idea “that what distinguishes such orderings are certain intrinsic mathemat-
ical properties that are independent of their possible use in proof-theoretical
work” ([8], p.10). Uniqueness up to recursive isomorphism has been suggested
by Kreisel as a criterion for naturalness (cf. [14]) who also proposed that natural-
ness can be found in algebraic characterizations of ordered structures. Feferman,
in [6], chose the properties of completeness, repleteness, relative categoricity and
preservation of these under iteration of the critical process as significant features
of systems of natural representation.

The representation of all ordinals < ε0 used by Gentzen is based on the Cantor
normal form with respect to base ω, i.e. every ordinal 0 < α < ε0 can be uniquely
represented in the form

α = ωα1 · k1 + . . . + ωαn · kn

634 M. Rathjen

with ε0 > α1 > . . . > αn and 0 < k1, . . . , kn < ω. To capture the abstract
essence of a representation system for ordinals, Girard [10] proposed a gener-
alized Cantor-normal-form-type of representations, dubbed denotation systems.
He characterized them in categorical terms as derived from certain structure
preserving functors on the category of ordinals. Let Ord be the category whose
objects are the ordinals and whose arrows are the strictly increasing functions
between ordinals. A dilator F is an endofunctor of the category Ord preserving
direct limits and pullbacks. Since any ordinal is a direct limit lim→(xi, fij) of a
system of finite ordinals xi, a dilator F is completely determined by its behaviour
on the subcategory Ordω of finite ordinals. By utilizing the latter property and
the fact that F preserves pullbacks one can assign a unique denotation of the
form (γ; α0, . . . , αn−1) to every ordinal β < F (α) such that α0, . . . , αn−1 < α
and γ < F (n) for some finite ordinal n.

Definition 2.1 ([10]). Let ON be the class of ordinals and F : ON → ON. A
denotation-system for F is a class D of ordinal denotations of the form

(c; α0, . . . , αn−1; α)

together with an assignment D : D → ON such that the following hold:

1. If (c; α0, . . . , αn−1; α) is in D, then α0 < . . . < αn−1 < α and
D(c; α0, . . . , αn−1; α) < F (α).

2. Every β < F (α) has a unique denotation (c; α0, . . . , αn−1; α) in D, i.e. β =
D(c; α0, . . . , αn−1; α).

3. If (c; α0, . . . , αn−1; α) is a denotation and γ0 < . . . < γn−1 < γ, then
(c; γ0, . . . , γn−1; γ) is a denotation.

4. If D(c; α0, . . . , αn−1; α) ≤ D(d; α′
0, . . . , α

′
m−1; α), γ0 < . . . < γn−1 < γ,

γ′
0 < . . . < γ′

m−1 < γ, and for all i < n and j < m, αi ≤ α′
j ⇔ γi ≤ γ′

j , then

D(c; γ0, . . . , γn−1; γ) ≤ D(d; γ′
0, . . . , γ

′
m−1; γ).

In a denotation (c; α0, . . . , αn−1; α), c is called the index, α is the parameter and
α0, . . . , αn−1 are the coefficients of the denotation. If β = D(c; α0, . . . , αn−1; α)
the index c represents some ‘algebraic’ way of describing β in terms of the ordi-
nals α0, . . . , αn−1, α.

Dilators and denotation systems are basically the same thing (cf. [10]) in that
every dilator F gives rises to a denotation system DF in the way described above
and every denotation system D induces a dilator F

D
by letting F

D
(α) be the least

ordinal η that does not have a denotation of the form D(c; α0, . . . , αn−1; α) and
for any arrow f : α → δ of the category Ord letting F

D
(f) : F

D
(α) → F

D
(δ) be

defined by

F
D

(f)(D(c; α0, . . . , αn−1; α)) := D(c; f(α0), . . . , f(αn−1); δ).

Several of the hierarchies of ordinal functions used to engender representa-
tion systems in proof theory have been shown to fit the categorical framework.

Theories and Ordinals: Ordinal Analysis 635

Girard’s approach has been applied to give a functorial reconstruction of the
Veblen hierarchy (see [11]). In a technically difficult and dense paper [12] this
work has been extended to some part of the Bachmann hierarchy up to the
Bachmann-Howard ordinal (the proof-theoretic ordinal of Kripke-Platek set the-
ory and the theory of positive inductive arithmetic definitions). Bachmann [4]
defines a hierarchy of functions (ϕB

α)α∈B simultaneously with a set of ordinals B
closed under successor such that with each limit λ ∈ B is associated an increas-
ing sequence (called a fundamental sequence) 〈λ[ξ] : ξ < τλ〉 of ordinals λ[ξ] ∈ B
of makes the functions length τλ ≤ B and limξ<τλ

λ[ξ] = λ. Keeping track of
fundamental sequences makes the Bachmann functions ϕB

α particularly difficult
to deal with. After the work of Bachmann, the story of ordinal representations
became very complicated. Significant papers (by Isles, Bridge, Pfeiffer, Schütte,
Gerber to mention a few) involved quite horrendous computations to keep track
of the fundamental sequences. Feferman (cf. [7]) then proposed an entirely dif-
ferent method for generating a Bachmann-type hierarchy of normal functions
which does not involve fundamental sequences. This led to the Aczel-Buchholz-
Feferman hierarchy of fixed point free functions θ̄α. Weiermann [27] showed that
these functions are dilators.

The ordinal representation systems that have been recast in functorial form
are rather weak compared to the ones used in proof theory today. However, it
is quite likely that many of them can eventually be reconstructed as based on
dilators. While the theory of dilators and denotation system has been of value
in illuminating an abstract property shared by many representation systems for
ordinals in proof theory, it could very well turn out that this property merely
scratches the surface of what defines a good ordinal representation system. It
is also worth stating that the theory of dilators has not contributed to the goal
of finding an ordinal analysis of Π1

2 -comprehension. It has not led to any new
ideas of attaining stronger ordinal representation systems nor has it simplified
existing ones.

One of the central ideas used in devising strong representation systems is to
use collapsing functions that mimic reflection properties of large cardinals (cf.
[18,19,22,23,24,16,25,26]). I have said something about this in [23] so I won’t re-
peat any details here. Another interesting way of defining ordinal representation
systems has been pursued by Tim Carlson [5]. In this approach the class of or-
dinals gets furnished with a relation of ∃1 elementary substructurehood and the
ordinal representations correspond to finite substructures of this class structure.

There are several other aspects of representation systems used in proof theory
that make them special. Due to space limitations this cannot be discussed here
(but see [24]).

3 Plan of the Talk

In the first part of the talk, I shall outline the general form of an ordinal anal-
ysis and discern some crucial properties that ordinal representation systems
used in proof theory always have, one being their versatility in establishing

636 M. Rathjen

proof-theoretic equivalences between classical non-constructive theories and in-
tuitionistic constructive theories based on radically different ontologies.

The second part is earmarked for applications of ordinal analysis. To mention
a few, this will include the characterization of provable functions and function-
als, Π0

2 -conservativity between theories, and independence results, notably in
connection with Kruskal’s tree theorem and the graph minor theorem.

Ordinal analyses have been obtained for mathematically strong theories up to
and including the subsystem of second order arithmetic based on Π1

2 -comprehen-
sion (cf. [18,21,22,17,2,3,25,26]). In the final part of the talk I will address the
problem of extending this ordinal analysis to the full system of second order
arithmetic.

References

1. Ackermann, W.: Begründung des, tertium non datur mittels der Hilbertschen The-
orie der Widerspruchsfreiheit. Dissertation (Göttingen, 1924)

2. Arai, T.: Wellfoundedness proofs by means of non-monotonic inductive definitions.
I. Π0

2 -operators. Journal of Symbolic Logic 69, 830–850 (2004)
3. Arai, T.: Proof theory for theories of ordinals. II. Π3-reflection. Annals of Pure

and Applied Logic 129, 39–92 (2004)
4. Bachmann, H.: Die Normalfunktionen und das Problem der ausgezeichneten Folgen

von Ordinalzahlen. Vierteljahresschrift Naturforsch. Ges. Zürich 95, 115–147 (1950)
5. Carlson, T.: Elementary patterns of resemblance. Annals of Pure and Applied

Logic 108, 19–77 (2001)
6. Feferman, S.: Systems of predicative analysis II. Representations of ordinals. Jour-

nal of Symbolic Logic 33, 193–220 (1968)
7. Feferman, S.: Proof theory: a personal report. In: Takeuti, G. (ed.) Proof Theory,

2nd edn, pp. 445–485. North-Holland, Amsterdam (1987)
8. Feferman, S.: Three conceptual problems that bug me. Unpublished lecture text

for 7th Scandinavian Logic Symposium (Uppsala, 1996)
9. Gentzen, G.: Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische

Annalen 112, 493–565 (1936)
10. Girard, J.-Y.: A survey of Π1

2 -logic. Part I: Dilators. Annals of Mathematical
Logic 21, 75–219 (1981)

11. Girard, J.-Y., Vauzeilles, J.: Functors and Ordinal Notations. I: A Functorial Con-
struction of the Veblen Hierarchy. Journal of Symbolic Logic 49, 713–729 (1984)

12. Girard, J.-Y., Vauzeilles, J.: Functors and Ordinal Notations. II: A Functorial
Construction of the Bachmann Hierarchy. Journal of Symbolic Logic 49, 1079–
1114 (1984)

13. Kanamori, A.: The higher infinite. Springer, Berlin (1995)
14. Kreisel, G.: A survey of proof theory. Journal of Symbolic Logic 33, 321–388 (1968)
15. von Neumann, J.: Zur Hilbertschen Beweistheorie. Mathematische Zeitschrift pp.

1–46 (1926)
16. Pohlers, W.: Proof theory and ordinal analysis. Archive for Mathematical Logic 30,

311–376 (1991)
17. Pohlers, W.: Subsystems of set theory and second order number theory. In: Buss,

S. (ed.) Handbook of proof theory, pp. 209–335. North-Holland, Amsterdam (1998)
18. Rathjen, M.: Ordinal notations based on a weakly Mahlo cardinal. Archive for

Mathematical Logic 29, 249–263 (1990)

Theories and Ordinals: Ordinal Analysis 637

19. Rathjen, M.: Proof-Theoretic Analysis of KPM. Archive for Mathematical Logic 30,
377–403 (1991)

20. Rathjen, M.: How to develop proof–theoretic ordinal functions on the basis of
admissible sets. Mathematical Quarterly 39, 47–54 (1993)

21. Rathjen, M.: Collapsing functions based on recursively large ordinals: A well–
ordering proof for KPM. Archive for Mathematical Logic 33, 35–55 (1994)

22. Rathjen, M.: Proof theory of reflection. Annals of Pure and Applied Logic 68,
181–224 (1994)

23. Rathjen, M.: Recent advances in ordinal analysis: Π1
2 -CA and related systems.

Bulletin of Symbolic Logic 1, 468–485 (1995)
24. Rathjen, M.: The realm of ordinal analysis. In: Cooper, S.B., Truss, J.K. (eds.)

Sets and Proofs, pp. 219–279. Cambridge University Press, Cambridge (1999)
25. Rathjen, M.: An ordinal analysis of stability. Archive for Mathematical Logic 44,

1–62 (2005)
26. Rathjen, M.: An ordinal analysis of parameter-free Π1

2 comprehension. Archive for
Mathematical Logic 44, 263–362 (2005)

27. Weiermann, A.: A Functorial Property of the Aczel-Buchholz-Feferman Function.
Journal of Symbolic Logic 59, 945–955 (1994)

28. Woodin, W.H.: Large cardinal axioms and independence: The continuum problem
revisited. The Mathematical Intelligencer 16(3), 31–35 (1994)

Computable Riemann Surfaces

(Extended Abstract)

Robert Rettinger

FernUniversität Hagen
LG Komplexität und Algorithmen

Universitätsstrasse 1
D-58095 Hagen

robert.rettinger@fernuni-hagen.de

Abstract. In this paper we introduce computable and time bounded
Riemann surfaces, based on the classical abstract definition by charts.
Building upon this definition we discuss computable versions of several
classical results, such as the existence of complete continuations of holo-
morphic functions, universal coverings and the uniformization theorem
(for some cases).

Though we state most of our results for computable surfaces, many of
them can also be transformed to a uniform version, i.e. based on represen-
tations of the class of Riemann surfaces (modulo conformal equivalence).

Keywords: computable Riemann surface, computable uniformization.

1 Introduction

The importance and influence of Riemann surfaces to many areas of mathe-
matics, physics and even computer graphics can hardly be overestimated. Not
surprisingly, there exists a vast literature on this topic even giving constructive
results and implementations in many cases.

Surprisingly, however, a common computability notion for and on Riemann
surfaces seems not to exist (beside a recent definition by [Hoe06] which is different
to the definition we present, from the technical and philosophical point of view,
see below).

We will introduce our definitions based on the abstract definition of Riemann
surfaces by charts and the well developed type-2-theory of computability. This
definitions immediately give computability and complexity notions in a very
natural way which are in many respects compatible with the classical results.

Type-2-theory is based on representations of topological spaces, i.e. names
for the elements of the topological spaces on which we want to introduce com-
putability or complexity. We will introduce and discuss such representations for
Riemann surfaces and classes of Riemann surfaces in Section 2 (computability)
and Section 3 (complexity), where we restrict ourself to single Riemann surfaces.
Nevertheless we give a basic construction for representations of the class of Rie-
mann surfaces itself. The presented results can in most cases be translated to the
(uniform) case, i.e. based on the representation of the class of Riemann surfaces.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 638–647, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Computable Riemann Surfaces 639

A central tool of type-2 theory are computable (or continuous) reductions
which lead to different equivalence classes on to the structure of representations.
The usual definition of computable reductions, however, seems not totally accu-
rate for the given representations of Riemann surfaces. To this end we relax the
definitions to computable conformal reductions.

To prove basic properties of the given representations and reductions we will
follow the classical line of results on homotopy and uniformization. Of course, we
can only scratch on these results instead of giving the fully adequate treatment
they’d deserve. Thus, this paper is rather meant to be a starting point and
invitation for further research on this topics than a full treatment of the classical
theory in a computable way.

Beside the translation of known results, the strong connection between ana-
lytic and algebraic aspects of Riemann surfaces should be of interest, especially
because negative results on holomorphic functions are usually hard to prove.
Finally there is a third important application, which we won’t discuss here.
Riemann surfaces seem useful to extend results, which work well for compact
subsets, to a global scope.

As already mentioned there is a large literature on Riemann surfaces. For the
purpose of this paper any standard book on the topic will do. An introduction
to type-2-theory is given in [Wei00].

There are several results related to the presented ones. An early treatment of
holomorphic functions based on type-2-theory can be found in [Mue87],[Mue93].
More recent results (on complex dynamics) can be found in a line of publi-
cations [BY06],[Bra06],[BBY07],[RW03],[Ret05]. The latter paper is one of our
motivations to start a more systematic investigation of Riemann surfaces, as an
adequate treatment of the dynamics even of rational functions can be done on
Riemann surfaces only. A treatment of the computability of Riemann mappings
theorem can be found in [Her99], a complexity treatment is given in [BBY06].
The only known strict definition of computable Riemann surfaces is given by
a recent paper of van der Hoeven [Hoe06] . This definition is, however, based
on a different notion of computability and excludes non-computable numbers.
Even if we consider generalization of this definition (or restrict our definition to
computable points) the two definitions are not equivalent.

In Section 2 we will give the definitions and representations of computable
Riemann surfaces and give some basic facts on these surfaces. Furthermore we
discuss reductions and the induced equivalence relation on (representations of)
Riemann surfaces.

A variant of these definition adequate for complexity will be given in Section 3.
There we also discuss continuations of holomorphic functions and their complete
surface.

In Section 4 we prove the computability of universal Riemann surfaces and
Deck transformations, ending up with computable versions of the uniformization
theorem.

Because of the restricted space we give only proof ideas rather than full proofs.
These will be found in the full version of this paper.

640 R. Rettinger

2 Computable Riemann Surfaces

In this section we will introduce computable Riemann surfaces. Actually we
will give two (non-equivalent) definitions of computable Riemann surfaces (with
computable and r.e. domains) to fit compact as well as non-compact Riemann
surfaces. The definitions are in some way standard adoptions of abstract Rie-
mann surfaces (given by atlases). In addition any computability structure of a
Riemann surface defines a (standard) representation of the underlying manyfold.

Before we give the exact definitions we will introduce a few notations and
definitions which we will need throughout this paper. For further discussions on
the theory of holomorphic functions see e.g. [Ahl81]. For an adequate treatment
of type-2-theory of computation see [Wei00].

A Riemann surface is a two dimensional (real) manyfold with the additional
property that the transitions are holomorphic (i.e. the complex derivative exists
on the open domain), that is, a Riemann surface is a connected Hausdorff space
M together with a maximal atlas A. Here an atlas is a set of bijective mappings
(charts) φ : U → M so that U is a connected, bounded and open subset of C, M
is covered by the images of the charts and any two mappings φ0 : U0 → M and
φ1 : U1 → M are holomorphically compatible. That means, that the transition
φ−1

1 ◦ φ0 is holomorphic wherever it is defined. The atlas A is maximal iff we
cannot add any holomorphically compatible chart φ : U → M not already in A.

To simplify things in the sequel we assume that all atlases considered in this
paper are given by a sequence (φi)i of charts φi : Ui → M . Notice, that for any
Riemann surface there exists such a representation of countably many charts.
Furthermore we can restrict Ui to be D = {z ∈ C : |z| < 1} and Ui ∩ Uj to
be either empty or simply connected. We will assume that charts are normed in
this way.

Examples of Riemann surfaces are C, D and Cinf where the latter is given
by Cinf = C ∪ {∞} and the charts φ1(z) = z and φ2(z) = 1

z . More complex
examples are the tori Tw1,w2 defined as C modulo the group ZZw1 × ZZw2.

To introduce computability on C and open subsets of C we will shortly repeat
some notions and notations of discrete and type-2-computability theory. Let Σ
be some finite set (alphabet). Then partial computable functions f :⊆ Σ∗ → Σ∗

on the free monoid Σ∗ can be defined by Turing-machines. This model gives nat-
urally complexity classes by restricting the time and space the Turing-machines
are allowed to use. Here the complexity is measured by means of the input length.
These notions can be extended to the set Σ∞ of infinite sequences of elements
of Σ as follows: A function f :⊆ Σ∞ → Σ∞ is computable iff there exists a
computable function g : Σ∗ × IN → Σ∗ so that for all u, w with f(u) = w and all
n ∈ IN there exists exactly one m ∈ IN so that g(u|m, n) = wn is defined, where
w|n denotes the initial word of w of length n. Here and henceforth we assume
that natural numbers are given by their binary representation. Time and space
complexity is measured by means of the parameter n.

To define computability on other spaces M we need representations, i.e. sur-
jections ν :⊆ Σ∞ → M . A word w with ν(w) = m is also called (ν−)name of m.
A function f between represented spaces (M1, ν1) and (M2, ν2) is computable

Computable Riemann Surfaces 641

if we can realize f by a computable g in the sense that ν2 ◦ g equals f ◦ ν1

wherever the latter is defined. Products, even for sequences of representations
or names, and representations of integers and rational numbers can be define
straightforwardly, for example by using linear time computable pairing func-
tions IN × IN → IN. (Standard) representation of IR and thus C (identified by
IR× IR) can be introduced as follows: A name of a real x is a sequence (qi)i of ra-
tional numbers so that |qi − x| ≤ 2−i for all i. The corresponding representation
is denoted by ρ.

Finally we have to introduce r.e. and computable open subsets of C: We will
call an open subset U of C r.e. iff there exist computable sequences (zi)i and
(qi)i of numbers in Q + iQ (Q(i) for short) and rational numbers, respectively,
so that U =

⋃
i Bqi(zi) where Br(z) denotes the open ball of diameter r and

center z. We call U computable, iff the distance function dU : C → IR, dU (z) =
inf{d(z, z′) : z′
∈ U} and dU (z) = inf{d(z, z′) : z′ ∈ U} for z ∈ U , z
∈ U ,
respectively, where d(z, z′) denotes the euclidean distance on C.

It’s time to define computable Riemann surfaces:

Definition 1. A Riemann surface (M, A) is computable with r.e. domains
iff there exists a computable atlas with r.e. domains. That means that there exists
an atlas (φi)i, φi : D → M , and a computable mapping ψ :⊆ IN× IN× D → D so
that dom(ψ) is r.e. and ψ(i, j, x) = φi ◦ φ−1

j (x) whenever this value is defined.
If, in addition, dom(ψ) is computable we call M a computable Riemann

surface with computable domains.

For computable Riemann surfaces with computable domains we have full control
about the domains of the charts. We will see later on that this definition will
allow us to unify certain Riemann surfaces, whereas it seems hopeless to find
such kind of theorems for surfaces of the relaxed kind.

By the uniformization theorem we know that any simply connected Riemann
surface is computable. The first question is, wether there exist non-computable
Riemann surfaces?

Theorem 1. There exists hyperbolic and parabolic Riemann surfaces, which are
not computable.

To prove this theorem we can use a simple countability argument: Any com-
putable atlas is based on at least one Turing-machine realizing ψ. Furthermore,
any two (possibly) different Riemann surfaces defined by atlases based on the
same Turing-machine are conformally equivalent, i.e. there exists a holomorphic
bijection between these surfaces. However, there are uncountably many hyper-
bolic and parabolic Riemann surfaces, which are not conformally equivalent (in
contrast to countably many Turing-machines).

One easily shows that manyfolds can have many different complex structures
and each of these structures can have many different computability structures
(i.e. there are computable atlases which cannot be translated into each other
computably). To give a simple example consider the disk D with φ1 = id and D

together with some non-computable automorphism.Thus, once we realize that

642 R. Rettinger

a Riemann surface is computable, we have to fix a computable atlas to talk
about computability in a reasonable way. Any such atlas defines a (standard)
representation of M (as a topological space) in the sense of type-2 theory. More
generally, any atlas of a Riemann surface determines a representaion in the
following way:

Definition 2. The (standard) representation νM of a Riemann surface (defined
by the atlas (φi)i) is defined by νM (i, ω) = φi(ρ(ω)).

From now on we assume that every (computable) Riemann surface is given
by a (computable) atlas and the above representation (even if not explicitly
mentioned). Thus we can freely adopt computability on the considered surfaces.

In type-2-theory we usually compare representations by reductions, i.e trans-
lations of names of the represented objects. Wheras two standard representa-
tions of a Riemann surface (in the sense of the above definition) are always
continuously equivalent (the representations can be translated into each other
by continuous mappings) this no longer holds for computational reductions.

On the other hand, if the exact definition of M is not of importance, we can use
another interesting kind of (computable) equivalence on Riemann surfaces: We
call two (atlases of) Riemann surfaces computably (conformally) equivalent
iff there exists a computable conformal mapping between them (with respect to
their standard representations). Thus the next interesting question arising is
wether two (computable) representations are always computably equivalent.

Theorem 2. Let M be a computable Riemann surface. Then any two com-
putability structures of M are computably equivalent iff M is compact.

There is another aspect of conformal equivalence: Although there obviously does
not exist a representation of all Riemann surfaces, such representations do exist
if we consider the class of Riemann surfaces modulo conformal equivalence. The
only ingredient we need is a proper representation of holomorphic functions,
which can be done in many ways. As we need only to consider holomorphic
functions f :⊆ U → C where U is an open subset of D, we can represent U by a
dense and computable sequence (ri)i of numbers in D∩Q(i), where Q(i) = Q+iQ,
and a second sequence (di)i of rational numbers so that U =

⋃
i Ui, where

Ui is the open ball of diameter di and center ri (di = 0 implies Ui = ∅). To
represent the values we take a third sequence (vi)i of numbers in Q(i) so that
|f(ri) − vi| ≤ 2−i. A name of f is then given by these three sequences.

As a simple application of this definition one can show that a Riemann sur-
face is computable iff it has a computable name (with respect to the above
representation).

3 Continuation

A fundamental fact about holomorphic functions is that they are determined
already by their values on a non-discrete subset of its (connected) domain. In

Computable Riemann Surfaces 643

this section we will give the corresponding result for computable Riemann sur-
faces with rough complexity bounds. To this end we will introduce linear and
polynomial time bounded Riemann surfaces.

Finally we show the computability of complete continuations of computable
holomorphic functions under a reasonable extension of the computability of holo-
morphic functions.

It is a simple consequence of a result by Norbert Müller ([Mue93]) for power
series that, if a holomorphic function is computable on an open subset of its
domain (inside C), this holomorphic function is computable everywhere on its
connected domain (containing these subset). By continuation along arcs (con-
tinues functions γ : [0, 1] → M) one can easily prove that this also holds for
computable Riemann surfaces. If we assume, that the transitions φ−1

i ◦ φj are
polynomial time computable, the result in [Mue93] also shows that if a holo-
morphic mapping h is polynomial time computable locally, it is polynomial time
computable everywhere. This only shows, that for any compact subset of the
domain of h there exists a polynomial p so that h can be computed in time O(p)
on this compact set. To get uniform results on the time complexity we will use
the uniformization theorem (see Section 4). Before we state this result we will
first introduce time bounded Riemann surfaces.

Definition 3. Let an atlas (M, (φi)i) and ψ be given as in Definition 1. Then
we call this atlas t-time-bounded iff ψ can be computed in time O(t).

We call (M, (φi)i) locally t-time-bounded if ψ(i, j, ·) can be computed in time
O(t) for all fixed pairs (i, j).

For t(n) = n and t a polynomial we also say, that an atlas is linear time or
polynomial time bounded, respectively. As already mentioned, continuation is
easy as long as we are only interested in computability (for example by applying
the results of the next section). However, if complexity comes into play, we
have to do a little more. Before we give the central ideas we will first state
the main result of this section. Although we will give a much more general
result (concerning computability) we will also state the result on computable
continuation.

Theorem 3. Let (M, (φi)i) be computable and h be a holomorphic mapping on
M . If h can be computed on some open subset of the connected domain dom(h),
then h can be computed on every compact subset of dom(h).

If in addition (M, (φi)i) is locally linear time bounded and h is O(t)-time
computable on some open subset of the connected domain dom(h), then h can be
computed in time at most O(n · t(n) + n3) on every compact subset of dom(h).

To prove this result we want to reduce the problem to a continuation problem
inside D. The main ingredient here is the uniformization theorem: Assume we
have two charts φ1 : D → U and φ2 : D → U ′ and an arc γ from φ1(0) to
φ2(0). Furthermore let h be computable on U in time O(t). Then we can choose
a covering of a neighborhood of γ by a sequence φ3, φ4,... of charts. These
charts can be replaced by a sequence φ′

1, φ′
2, ... so that the image of φ′

i is

644 R. Rettinger

contained in the image of φi, the union V of these images still cover the arc γ,
the transitions are polynomials over Q(i) and φ′ ◦φ−1 is linear time computable.
By the uniformization theorem we can find a conformal mapping f : D → V .
f can be approximated by a conformal mapping p over Q(i) so that p defines
a bijection of D onto V ′ ⊂ V so that V ′ still covers γ and furthermore p is a
polynomial on V ′ ∩ φ′

1(D). Then p is a polynomial even on V ′ ∩ φ′
2(D). Thus we

can translate any holomorphic mapping to a mapping on D and moreover this
can be done efficiently.

Notice that the above result can be improved to some O(n · t(n) + n2 · p(n)),
where p is a polylogarithmic function ([?]). Whether the n · t(n) term can be
improved is open.

Lets move to a more global discussion of continuation. One of the roots of
Riemann surfaces is, that complete continuations of holomorphic functions (like
log(z)) do usually not exist inside C, leading in a natural way to Riemann
surfaces.

First we need a more general definition of computable holomorphic functions:
For z1, z2, ..., zn in Q(i) let 〈z1, ..., zn〉 denote the arc defined by the concatena-
tion of linesegments [zi, zi+1]. Now we call a holomorphic function h completely
computable iff there exists a computable z ∈ dom(h) and a neighborhood U of
h so that h is computable on U , and there exists a computable enumeration of
all arcs < z, z1, ..., zn > and corresponding open sets Ui with zi ∈ Ui for which
h can be continued along these arcs so that h is defined on the Ui.

Theorem 4. Let h be a completely computable holomorphic function. Then
there exists a computable Riemann surface M and a complete continuation of h
in M so that the embedding of any r.e. subset of dom(h) in C into M and the
translation of h to its continuation is computable.

Notice however that this is not the most general statement of this kind. One
easily adopts the classical construction to give the above result (and more general
ones).

4 The Universal Covering Map and Uniformization

In this section we will present some results on the computability of the uni-
formization of simply connected computable Riemann surfaces. It is quite obvi-
ous that there exist computable Riemannn surfaces for which the uniformization
is not computable. Such surfaces can for example be defined by subsets of C using
the result of Peter Hertling ([Her99]) on Riemann mappings. Thus it seems to
be important to find conditions under which the uniformization is computable.

Concerning non-simply connected computable Riemann surfaces we will show
that the universal covering map of a computable Riemann surface is again com-
putable and even the Deck-transformations are computable in this case. To this
end we will also formulate a computable version of liftings.

Whereas the results of the previous sections don’t depend on the kind of
computability of Riemann surfaces (with computable or r.e. domains), most
results in this section do.

Computable Riemann Surfaces 645

The uniformization theorem states that any simply connected Riemann sur-
face is conformally equivalent either to C∞ (elliptic case), C (parabolic case) or
D (hyperbolic case).

We will start with a negative result on uniformization for computable Riemann
surfaces with r.e. domains.

Theorem 5. There exists computable Riemann surfaces M with r.e. domains
and only two charts, for which the uniformization is not computable.

In contrast to this result we can prove that

Theorem 6. The uniformization of any simply connected computable Riemann
surface with computable domains and finitely many charts is computable.

The main step in proving this theorem is an algorithm to merge two charts,
which can be done by potential theory methods or simple approximation us-
ing computable Riemann mappings. As an immediate consequence we get that
any elliptic Riemann surface is computable. For more general Riemann surfaces
the existence is less simple to answer. Nevertheless we will give a first charac-
terization of those hyperbolic computable Riemann surfaces, which do admit
computable uniformizations. At the end of this section we will in addition show
that any computable Riemann surfaces which is the universal covering of a com-
putable compact Riemann surface admits computable uniformizations.

Theorem 7. Let (M, (φi)i), φi : D → Ui, be a computable and simply connected
hyperbolic Riemann surface. Then the uniformization of M is computable iff
there exists a r.e. subset R of IN × IN so that for all i the set U =

⋃
(i,j)∈R Uj

covers some neighborhood of ∞ and we have for all c ∈ U : |c| > 2i, where
distances are measured in the hyperbolic metric.

We will leave the uniformization theorem for the moment and show how to get
hand on simply connected coverings. It is well known, that any Riemann surface
M has a unique (up to conformal equivalence) universal covering, i.e. a simply
connected Riemann surface N and a locally conformal mapping f : N → M so
that for any z ∈ M there exists a neighborhood U of z so that f is a bijection of
each connected component of f−1(U) onto U . The classical construction of the
universal covering (adopted to our situation) is based on a procedure deciding
wether two arcs are homotopic. For computable Riemann surfaces with finitely
many arcs this can be done for both kinds of computability, i.e with r.e. or
computable domains. In the general case, however, we get only a computable
Riemann surface with r.e. domains:

Theorem 8. Let M be a computable Riemann surface. Then there exists a com-
putable universal covering with r.e. domains and the covering map is computable.

If in addition M has finitely many charts and computable domains, then also
the universal covering has computable domains.

Once we have the universal covering we can identify the original Riemann surface
by the universal covering modulo the group of Deck transformations, which form

646 R. Rettinger

a subgroup of the automorphism group of the universal covering. The main
tool in the construction of deck transformations are liftings (of arcs). Let h :
(M, (φi)i) → (M ′, (φ′

i)i) be a locally conformal bijective map. It is well known
that any arc γ′ in M ′ can be lifted to an arc γ in M so that h ◦ γ = γ′.

A first (simple) version of computable liftings is stated below.

Theorem 9. Let h : (M, (φi)i) → (M ′, (φ′
i)i) be a computable, locally conformal

map of computable Riemann surfaces. Furthermore let z′ ∈ M ′ be computable
and z ∈ M with h(z) = z′ be given and γ′ be a computable arc on M ′ with
γ′(0) = z′. Then the uniquely determined arc γ on M with γ(0) = z and h◦γ = γ′

is computable.
If M, M ′, z′, z, γ′ and h are all linear time computable then γ is linear time

computable.

Similar results can be also shown for homotopies. As here are only finitely many
charts involved, this can be easily proven along the classical construction. In
the construction of Deck transformations we face, however, the problem that we
have to find reasonable neighborhoods on which the covering map is conformal. A
simple algorithm to find such neighborhoods uses tests to ensure injectivity of the
covering maps. Such tests can for example be implemented using the Koebe 1/4
theorem. Before we can state this result formally we have to define computability
of groups: We call a group (G, ·) computable iff G is finite or there exists an
enumeration g1, g2, ... of all elements in G so that the sets {(i, j) : gi = gj) and
{(i, j, k) : gi · gj = gk} are r.e., i.e. are domains of computable functions.

Theorem 10. Let N , h be a computable covering and computable covering map,
respectively. Then the group of Deck transformations and thus the fundamental
group of the covered Riemann surface is computable.

In the previous situation even the set of Deck transformations are computable in
a sense similar to the computability of groups. To end this section we will state
a result on uniformization of computable compact Riemann surfaces. A proof
can be given by using the Gauss-Bonnet theorem:

Theorem 11. For compact computable Riemann surfaces with computable
domains the uniformization of its universal covering is computable.

References

[Ahl81] Ahlfors, L.: Complex Analysis. McGraw-Hill, New York (1981)
[BBY06] Binder, I., Braverman, M., Yampolsky, M.: On computational complexity of

Riemann mapping, unpublished manuscript
[BBY07] Binder, I., Braverman, M., Yampolsky, M.: On computational complexity of

Siegel Julia sets, Commun. Math. Physics
[Bra06] Braverman, M.: Parabolic Julia Sets are Polynomial Time Computable, Non-

linearity 19 (2006)
[BY06] Braverman, M., Yampolsky, M.: Non-Computable Julia Sets, Journ. Amer.

Math. Soc. 19(3) (2006)

Computable Riemann Surfaces 647

[Her99] Hertling, P.: An effective Riemann mapping theorem. Theor. Comp. Sci. 219,
225–265 (1999)

[Hoe06] van der Hoeven, J.: On Effective Analytic Continuation, unpublished
manuscript (2006)

[Mue87] Müller, N.: Uniform computational complexity of Taylor series. In: Ottmann,
T. (ed.) Automata, Languages and Programming. LNCS, vol. 267, pp. 435–
444. Springer, Berlin (1987)

[Mue93] Müller, N.: Polynomial-Time Computation of Taylor Series In: Proc. 22
JAIIO - PANEL ’93, Part 2, Buenos Aires, pp. 259–281 (1993)

[RW03] Rettinger, R., Weihrauch, K.: The computational complexity of some julia
sets, STOC, pp. 177–185 (2003)

[Ret05] Rettinger, R.: A Fast Algorithm for Julia Sets of Hyperbolic Rational Func-
tions. ENTCS 120, 145–157 (2005)

[Ret07] Rettinger, R.: On continuations of holomorphic mappings, unpublished
manuscript (2007)

[Wei00] Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

Rank Lower Bounds for the Sherali-Adams

Operator

Mark Rhodes

Durham University, Department of Computer Science,
South Road, Durham, Co. Durham, DH1 3LE, UK

m.n.c.rhodes@dur.ac.uk
http://www.dur.ac.uk/m.n.c.rhodes

Abstract. We consider the Sherali-Adams (SA) operator as a proof
system for integer linear programming and prove linear lower bounds on
the SA rank required to prove both the pigeon hole and least number
principles. We also define the size of a SA proof and show that that while
the pigeon hole principle requires linear rank, it only requires at most
polynomial size.

Keywords: Propositional Proof Complexity, Lift and Project Proof
Systems, Rank Lower Bounds, Sherali-Adams Relaxation.

1 Introduction

This work is concerned with the field of proof complexity: the measure of effi-
ciency of automated theorem proving methods. Most systems studied in this area
are motivated by solving problems in propositional logic, most notably the satis-
fiability problem [6], however there are also methods such as the Lovász-Shrijver
(LS) and Cutting Planes proof systems [1] that are motivated by solving inte-
ger linear programming problems, the SA operator can be viewed as one of the
latter. Generally, such systems operate by taking a 0/1 programming problem
and from it producing a linear programming problem with constraints which
increasing resemble those in the original problem. The reason behind using this
approach is that linear programming is solvable in polynomial time [3], whilst
the original 0/1 programming problem is known to be NP-Complete.

The SA operator was introduced in [5] as a method for generating a hierar-
chy of relaxations for linear and polynomial 0/1 programming problems, in this
paper we discuss the operator as a proof system. The obvious measure of proof
complexity with the SA operator is the rank required. There are a number of
results on the rank lower bounds of proofs using both cutting planes procedures
and LS systems presented in [1] and [2]. It has been shown in [4] that the SA
operator is at least a powerful as LS (i.e. every tautology which can be proved
with rank k in LS can be proven with a SA proof of rank at most k). In this
paper we prove two linear rank lower bounds for the SA operator. We also define
a metric which allows us to view the complexity of a SA proof as the size of the
proof required, we then show that rank and size are not necessarily comparable

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 648–659, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Rank Lower Bounds for the Sherali-Adams Operator 649

by demonstrating that the pigeon hole principle requires a SA proof of linear
rank, but, just polynomial size.

2 Preliminaries

The SA operator is a procedure that produces progressively tighter formulations
for 0/1 integer linear programs by introducing new variables and constraints.
As with many similar systems, one begins by dropping the constraint that the
variables must take integer values i.e. they can be fractional. This gives us a
linear programming problem which we know to be solvable in polynomial time.
By introducing new constraints, we restrict the values the variables can take
until eventually, only values bounded by the convex hull of feasible solutions in
the original 0/1 integer linear programming problem will satisfy them. It was
shown in [5] that we can be certain to reach this state when the SA rank is
one less than the number of variables in the original set of inequalities. The SA
operator can be viewed as a static proof system since it simply generates a set
of linear inequalities which can either be proven to have integer solutions or not,
with the use of a polynomial time LP algorithm, there is no need to consider the
computational path taken to obtain the contradiction or solution.

To use the SA operator we initially rewrite the given instance of the 0/1
linear programming problem Φ, by replacing each positive occurrence of the
variable xi in each inequality ϕ ∈ Φ with the variable χ[xi|∅] and each negative
occurrence with 1 − χ[∅|xi], e.g. the inequality 3x1 − 4x2 ≥ 1 is replaced with
3χ[x1|∅] − 4(1 − χ[∅|x2]) ≥ 1, which becomes 3χ[x1|∅] + 4χ[∅|x2] ≥ 5. Let k ≥ 0
be an integer. The Sherali-Adams formulation of level-k derived from a set of
converted inequalities Φ on 2n variables is the following:

It has a variable χ[P |N] for every pair of disjoint subsets P and N of all
variables appearing in Φ, where |P ∪N | ≤ min{k+1, n}. For any variable χ[P |N]

we will refer to the set P as the positive side of the variable and the set N as
the negative side. We add the inequalities χ[P |N] ≤ 1 and χ[P |N] ≥ 0 for each
variable in the system, ensuring the value each can take is bounded between 0
and 1. We also add the following constraints:

χ[∅|∅] = 1.

For all variables χ[P |N] ∈ Φ and all variables i in the original instance, where
|P ∪ N | ≤ k and i /∈ P ∪ N ,

χ[P∪i|N] + χ[P |N∪i] = χ[P |N].

Each inequality ϕi ∈ Φ multiplied by each variable χ[P |N], where |P ∪N | ≤ k.
Each variable χ[A|B] ∈ ϕi, multiplied by χ[P |N] becomes χ[A∪P |B∪N]. If the sets
A ∪ P and B ∪ N are not disjoint the variable is assigned the value 0. Also,
trivially 0 × χ[P |N] = 0 and χ[P |N] × 1 = χ[P |N], for all possible P and N . We
will refer to the deriving of a new inequality by multiplying by a variable χ[P |N]

where |P ∪ N | = 1 in this way as an SA multiplication.

650 M. Rhodes

When the SA rank is k there are 1 +
∑k

i=0

(
n

i+1

)
× 2i+1, different variables

in total and at most polynomially times as many inequalities. Since we know
linear programming is in P , if a given set of inconsistent inequalities requires at
most constant rank, we can be sure that the SA operator can prove them to be
inconsistent in polynomial time. It can be observed that HORNSAT and 2-SAT
require SA ranks 0 and 1 respectively. If however the SA rank required is linear,
we know that any algorithm assigned to solve the generated set of inequalities
will take at least exponential time in the size of the original instance.

The two combinatorial principles this paper is concerned with are the Pigeon
Hole Principle (PHP) and the Least Number Principle (LNP).

PHP states that for any natural number n ≥ 2, if you tried to put n+1 pigeons
into n holes, you would have a hole with at least two pigeons in it. It can be
stated as a collection of two sets of inequalities with SA variables, which we will
call the holeset and the pigeonset. When discussing PHP we use ordered pairs
to represent a single variable and when the pair (i, j) appears in the positive
side of a variable we take this to mean that the pigeon i is assigned to hole j,
whilst if it appears in the negative side, this indicates pigeon i does not go to
hole j. The holeset ensures that any two pigeons are not assigned to the same
hole, it can be written as all the inequalities of the form χ[(i,j)|∅] + χ[(i′,j)|∅] ≤ 1,
where i �= i′, 1 ≤ i, i′ ≤ n + 1 and 1 ≤ j ≤ n for some given n. The pigeonset
states that each pigeon must go to a hole, as a set of inequalities this is written
as

∑n
j=1 χ[(i,j)|∅] ≥ 1, for every i where 1 ≤ i ≤ n + 1.

LNP says that every set of n natural numbers has a smallest element, where
n ≥ 1. When discussing this principle we use ordered pairs to represent single
variables. The pair (i, j) appearing in the positive side of a variable indicates
that i ≺ j or conversely j � i, whilst the same pair appearing in the negative
side of the variable means i � j or j ≺ i, unless i = j in which case we take it to
refer to some trivially true statement. The principle can be written as a system
of inequalities consisting of three sets which we will refer to as trans, lower and
self . The set trans, is so called because it ensures that the transitive property
of the set elements is adhered to, namely that if i ≺ j and j ≺ k then i ≺ k must
be true, this translates to the set of inequalities χ[(i,j)|∅] +χ[(j,k)|∅] −χ[(i,k)|∅] ≤ 1
for all i,j and k where 1 ≤ i, j, k ≤ n. The set of inequalities lower take the
form

∑n
i=1 χ[(i,j)|∅] ≥ 1 for all j, where 1 ≤ j ≤ n, and state that there must be

at least one element of the set smaller than element j. The final set self states
that an element is not less than itself, this translates to the set of inequalities
χ[(i,i)|∅] ≤ 0 for all i, where 1 ≤ i ≤ n.

3 Rank Lower Bounds

Theorem 1. The Pigeon Hole Principle requires at least SA level 	n+1
2
 − 2 to

prove.

Proof. To show this statement is true we will argue that the set of inequalities
produced by SA level �n

2 �−2 can be satisfied by assigning suitable values to the
variables.

Rank Lower Bounds for the Sherali-Adams Operator 651

The value given to the variable χ[P |N] is roughly related to the probability
of picking a random assignment of n

2 pigeons to n
2 holes, including all those

mentioned in the pairs in the variable, and finding that the information declared
within the variable fits the assignment. It is calculated as follows:

1. If P contains two pairs (i, j) and (i′, j) then we can see straight away there
is a contradiction and so assign the value 0.

2. Otherwise for every j, where 1 ≤ j ≤ n and j is not the second element of
any pair in P , we take all pairs in N which have j as a second element, and put
them in a new set we denote Sj .

3. We assign any variable not already assigned 0 the value 2
n

|P | ×
∏n

j=1

(1 − 2|Sj |
n).

We can see straight away that when the SA level is at most �n
2 �−1 and n ≥ 2

all inequalities of the form χ[P |N] ≥ 0 and χ[P |N] ≤ 1 are trivially satisfied by
the method, as is the constraint that χ[∅|∅] = 1 and that if χ[P |N] = 0, then
χ[Q|W] = 0, where P ⊆ Q and N ⊆ W .

Lemma 1. The method provides values which satisfy the set of equations of the
form χ[P∪(i,j),N] + χ[P |N∪(i,j)] = χ[P |N] for all pigeons i, all holes j and all
possible sets P and N where |P ∪ N | ≤ n

2 − 1 and n > 2 .

Proof. There are three cases to consider with this lemma depending on whether
or not the hole j already appears in N or P , these are (1) when j does not appear
in either N or P , (2) when j appears in P and finally (3) when j does not appear
in P but does appear at least once in N . Note that case two includes instances
where j appears in pairs in N , as well as those where it does not. Throughout
we will denote the value assigned to the variable χ[P |N] as ξ.

Case 1. In this instance χ[P∪(i,j)|N] = ξ × 2
n , since the extra pair does not affect

the set Sj and therefore the only difference is that the set P is one larger. We
can also see that χ[P |N∪(i,j)] = ξ × n−2

n . Given this, it is easy to show that the
equations are satisfied for any value of ξ since substituting these values gives us
the following:

χ[P∪(i,j)|N] + χ[P |N∪(i,j)] = χ[P |N]

(ξ × 2
n

) + (ξ × n − 2
n

) = ξ.

Case 2. In this instance χ[P∪(i,j)|N] = 0 since we have at least two pairs in P
with hole j, however we can be sure that χ[P |N∪(i,j)] = ξ as Sj = ∅ as the hole
j appears in P . Using these values, the equation is trivially satisfied.

Case 3. In this situation, χ[P |N∪(i,j)] = κ× (f − 2
n) where ξ = κ×f and f is the

factor n−(2|Sj |)
n , since the additional pair in N makes Sj one larger. We can also

see that χ[P∪(i,j)|N] = κ× 2
n , since the factor f is removed by the addition of the

positive assignment of a pigeon to hole j, yet the addition makes P one larger,

652 M. Rhodes

hence the inclusion of the factor 2
n . We can see that this gives us the required

result as follows:

χ[P∪(i,j)|N] + χ[P |N∪(i,j)] = χ[P |N]

κ × 2
n

+ κ × (f − 2
n

) = κ × f

f − 2
n

+
2
n

= f

Lemma 2. The method satisfies the set of inequalities holeset, when the SA
level �n

2 � − 2 is used and n ≥ 4.

Proof. To prove this lemma, we will split the set of all possible variables by which
the inequalities holeset maybe multiplied, when using SA level �n

2 � − 2, into 5
distinct cases and discuss each in turn. Throughout this section we will refer to
the variable by which the inequalities are multiplied by as δ. The positive side
of this variable will be denoted δP and the negative side δN . We will denote the
value assigned by the method to the variable δ as ξ.

Case 1. (k, j) /∈ δP and (k, j) /∈ δN for all k where 1 ≤ k ≤ n + 1.

Both χ[(i,j)|∅] × δ = ξ × 2
n and χ[(i′,j)|∅] × δ = ξ × 2

n must be true as the addition
of these pairs only affects the size of P , as Sj = ∅. It is easy to see that the
inequalities are satisfied as when n ≥ 4, for any possible value of ξ as follows:

ξ × 2
n

+ ξ × 2
n

≤ ξ

ξ × 4
n

≤ ξ

4
n

≤ 1

Case 2. At least one pair (i′′, j) ∈ δP , where i′′ �= i′ and i′′ �= i.

This case is trivial since both χ[(i,j)|∅] × δ and χ[(i′,j)|∅] × δ, contain at least two
pairs with the same hole j in their positive parts P and therefore will be set to
0, giving us 0 + 0 ≤ ξ, which is true for all values of ξ ≥ 0.

Case 3. At least one pair (i′′, j) ∈ δN , where i′′ �= i′, i′′ �= i and (k, j) /∈ δP for
all k where 1 ≤ k ≤ n + 1.

The addition of the pairs (i, j) and (i′, j) to δP ensures Sj = ∅, making the
inclusion of any pair (i′′, j) in δN irrelevant, but, is sure to make P one larger
since no other pair in P contains hole j. We define ξ = κ×f where f is the factor
n−(2|Sj|)

n , giving us χ[(i,j)|∅] × δ = χ[(i′,j)|∅] × δ = κ× 2
n . Using this, together with

Rank Lower Bounds for the Sherali-Adams Operator 653

the fact that the the limit on the SA level means |Sj | ≤ �n
2 � − 2 we can show

the inequality holds no matter what that value of ξ as follows:

κ × 2
n

+ κ × 2
n

≤ κ × n − (2|Sj |)
n

κ × 4
n

≤ κ × n − (2|Sj |)
n

4
n

≤ n − (n − 4)
n

Case 4. At least one of (i, j) ∈ ξP and (i′, j) ∈ ξP is true.

If both pairs were in ξP then all the variables would be 0, so the inequality would
be satisfied. If only one of the pairs is in ξP then the variable which adds pair
not in ξP will contain two pigeons going to the hole j and hence be assigned 0.
Since from lemma 1 we know adding a pair to a set can never increase the value
assigned to the variable the inequality must be satisfied.

Case 5. At least one of (i, j) ∈ ξN and (i′, j) ∈ ξN is true where (i, j) /∈ ξP and
(i′, j) /∈ ξP .

From the definition of the SA operator we know that any variable containing
the same pair in both positive and negative sides must have the value of 0 (the
method does not account for such variables as their value is trivial). In the case
where both statements are true, our inequalities are trivially satisfied since we
have 0 + 0 ≤ ξ. In the case that one of the statements is true, we know that one
of the variables must be 0, and again from lemma 1 we know the other variable
can not be assigned a greater value than ξ and hence the inequality is satisfied.

Lemma 3. The method satisfies the set of inequalities pigeonset, when the max-
imum SA level is �n

2 � − 2.

Proof. Throughout this proof we denote the variable by which the inequalities
can be multiplied as δ. The positive side of δ is denoted δP , its negative side δN

and the value assigned to it by the method is denoted as ξ.
The maximum number of pairs in δ is limited to the the maximum SA level

and since each pair contains only one hole, this is also the maximum number of
holes that can appear in δ. Each inequality in pigeonset contains n different j
values. This means that we can be sure that at least n − (�n

2 � − 2) variables in
any inequality in pigeonset that contain a hole j where j /∈ δ. Each of these will
be assigned the value ξ × 2

n and therefore see that even in the worst case, where
all the variables of the form χ[(i,j)|∅] × δ where j ∈ δ are assigned the value of 0,
any inequality in pigeonset is satisfied as follows:

(n − (�n

2
� − 2)) × (ξ × 2

n
) ≥ ξ

(
n

2
+ 2) × 2ξ

n
≥ ξ

ξ +
4ξ

n
≥ ξ

654 M. Rhodes

As we have proved in the previous lemmas that all the inequalities and equa-
tions produced by the SA operator running the pigeon hole principle will be
satisfied by the values given by the method, our proof of theorem 1 is concluded.

Theorem 2. LNP requires at least SA level n − 2 to prove.

Proof. We will argue that the set of equations produced by SA level n − 3 can
be satisfied by assigning suitable values to the variables.

The intuition behind the value we assign a variable is that it is the probabil-
ity of the information contained within it being true, under the assumption that
each element in the set has equal probability of being either smaller or larger
than any other element. We calculate the value of the variable χ[P |N] as follows:

1. Consider a directed acyclic graph (DAG) in which each of the set of n
integers is represented by a node and each pair (i, j) in P is represented as an
edge going from the ith node to the jth node, if the pair instead appeared in
N it would be represented as an edge going from the jth node to the ith node
unless i = j in which case the pair is removed from N .

2. If this graph contains a cycle, including one consisting of a single edge,
there is inconsistent information so we assign the value 0.

3. Remove all edges in the graph between two nodes i and j where there exists
a longer path from i to j via some other nodes. This ensures we remove irrelevant
information.

4. If the variable has not been assigned the value 0, we assign it the value of
1
2

E where E is the number of edges left in the graph.

For example, the variable χ[(1,2),(2,3),(1,4)|(4,3),(4,4)] is assigned the same value
as the variable χ[(1,2),(2,3)|(4,3)], which is 1

8 .
It is trivial to show that the method satisfies the constraint χ[∅|∅] = 1, as such

a variable will generate a graph with no edges and therefore be assigned 1
2

0 = 1.
Also, that all inequalities of the form χ[P |N] ≤ 1 and χ[P |N] ≥ 0 for all sets P
and N , will be adhered to. The members of self are also trivially satisfied using
this method since we assign 0 to any variable containing the pair (i, i) in its
positive side therefore giving us:

χ[P∪(i,i)|N] ≤ 0 × χ[P |N]

Throughout the rest of this proof we will refer to the variable by which we
multiply the inequalities when using the SA operator as χ[P |N].

Lemma 4. The inequalities in lower are satisfied using this method when the
SA level is set to n − 3 or less.

Proof. As the right hand side of each equation is simply 1, we know that this side
will take the value of whichever variable we multiply the inequality by. Therefore,
when we multiply by the variable χ[P |N] we get the inequality

∑n
i=1 χ[(i,j)∪P |N] ≥

χ[P |N]. If the graph for the variable χ[P |N] contains a cycle then so too must each
of the variables χ[(i,j)∪P |N], as these will be represented by the same graph with

Rank Lower Bounds for the Sherali-Adams Operator 655

perhaps one more edge between the ith and jth nodes, if the fact that i ≺ j
can not be derived from the other edges. In this case the inequality is trivially
satisfied as it reads as follows:

n∑

i=1

0 ≥ 0

If however the graph for the variable χ[P |N] does not contain a cycle, then
adding the pair (i, j) will in the worst case create a cycle, and therefore a variable
with the value 0. Apart from the case where i = j, which will trivially give you
a loop, the only way this loop can be made by adding the pair (i, j) is if there is
a path from j to i, this in turn means that at least one edge must finish at i. For
such an edge to exist, at least one of the following must be true, (k, i) ∈ P or
(i, k) ∈ N , for some k, where 1 ≤ k ≤ n and k �= i as otherwise the variable χ[P |N]

would contain a loop. Since all the variables on the left side of any inequality
in lower contain different values for i, we can see that even in the worst case
we still need at least one pair in the variable χ[P |N] to render a single variable
inconsistent. As SA level n − 3 allows us at most n − 3 pairs in P ∪ N and each
equation in self contains n − 1 variables on the left side which do not trivially
contain a cycle (i.e. all those except the one with the pair (i, i)), we can be
sure that at least 2 variables will not contain a cycle. The minimum value these
variables can be assigned is half the value of χ[P |N], in which case the inequality
can be shown to be satisfied as follows:

χ[(k,j)∪P |N] + χ[(k′,j)∪P |N] ≥ χ[P |N]

χ[P |N]

2
+

χ[P |N]

2
≥ χ[P |N]

Clearly, since this is the worst case, in all other cases where
∑n

i=1 χ[(i,j)∪P |N]

has a greater value, the inequalities are also satisfied.

Lemma 5. The inequalities in trans can be shown to be satisfied using this
method.

Proof. To prove this lemma, we consider a number of cases. In all but the first
case we assume i �= j, i �= k and j �= k.

Case 1. When at least two of i, j or k have the same value. We can see straight
away that adding an additional pair to the positive side of a variable can never
increase the value assigned to the variable and that any variable which contains
a pair (g, g) in its positive side, for any value g where 1 ≤ g ≤ n, is assigned
the value of 0. Using these statements and the fact that the left side of each
inequality in trans has just two positive variables we can see that if any of i,
j or k have the same value, except when i = k and i �= j, then the inequality
is satisfied as one of these positive parts will contain a single edge cycle, take
the value 0, and leave us with an inequality in which the single positive part
remaining on the left can not be larger than the right side as it is the same
variable except it has an additional pair in its positive side.

656 M. Rhodes

When i = k and i �= j, the inequality multiplied by a variable becomes
χ[(i,j)∪P |N] + χ[(j,i)∪P |N] ≤ χ[P |N], we can remove the negative part of the left
side as it will be given the value 0. This is satisfied by the method as if no path
exists between nodes i and j or vice versa in the graph for χ[P |N] then we get:

χ[P |N]

2
+

χ[P |N]

2
≤ χ[P |N]

If however it contains one or more of these paths then at least one variable
on the left side of the inequality must contain a cycle going from i to j and back
again and will therefore be assigned the value 0, in which case the inequality
must be satisfied as the remainder of the left is the same as the right with one
extra pair in its positive side.

Case 2. When the graph for the variable χ[P |N] contains a cycle. This case is
trivial as all the variables on the left must also generate a graph which contains
the graph for χ[P |N] as a subgraph and therefore will also contain a cycle. As all
cyclic graphs are assigned the value of 0, the inequality becomes 0 + 0 − 0 ≤ 0,
which is trivially true.

Case 3. The graph derived from χ[P |N] using the method contains a path be-
tween nodes i and k. In this case χ[P∪(i,k)|N] will generate the same graph, and
hence be assigned the same value as the variable χ[P |N], as the extra pair will
be removed as irrelevant. Since adding extra pairs can not increase the value of
a variable, even if the other variables are assigned the maximum possible value,
the inequality is still satisfied as follows:

χ[P∪(i,j)|N] + χ[P∪(j,k)|N] − χ[P |N] ≤ χ[P |N]

χ[P |N] + χ[P |N] − χ[P |N] ≤ χ[P |N]

1 + 1 − 1 ≤ 1

Case 4. The variable χ[P |N] generates a graph containing neither a path between
nodes i and k nor vice versa. In this instance, the variable χ[P∪(i,k)|N] will always
generate a graph with one more edge than the one from χ[P |N] and therefore be
assigned half the value of χ[P |N] or 0 if χ[P |N] contains contradictory information.
The latter instance is already covered by case 2, and the former is also covered
as at least one of χ[P∪(i,j)|N] and χ[P∪(j,k)|N] must be assigned no more than half
the value of χ[P |N] otherwise we would have a path from i to k. Even if the other
takes the maximum possible value the inequality is still satisfied as follows:

χ[P∪(i,j)|N] + χ[P∪(j,k)|N] −
χ[P |N]

2
≤ χ[P |N]

χ[P |N] +
χ[P |N]

2
−

χ[P |N]

2
≤ χ[P |N]

χ[P |N] ≤ χ[P |N]

Case 5. The graph for χ[P |N] contains a path between nodes k and i and does
not contain a cycle. When this happens, the variable χ[P∪(i,k)|N] will take the

Rank Lower Bounds for the Sherali-Adams Operator 657

value 0. If the graph for the variable χ[P |N] contains neither a path between
nodes i and j nor between nodes j and k then both χ[P∪(i,j)|N] and χ[P∪(j,k)|N]

will take the value of half that of χ[P |N], thus giving:
χ[P |N]

2
+

χ[P |N]

2
− 0 ≤ χ[P |N]

1
2

+
1
2

≤ 1

If however χ[P |N] does contain one of the aforementioned paths, then the
variable whose graph contains the path not included in χ[P |N] will always contain
a cycle and therefore be assigned the value of 0. Even though the other variable
left will be set to the same value as χ[P |N] the inequality is clearly satisfied.

Lemma 6. The method satisfies the equations introduced by the SA operator of
the form χ[P∪(i,j)|N] + χ[P |N∪(i,j)] = χ[P |N] for all sets P and N and all i and j
where 1 ≤ i, j ≤ n and (i, j) �∈ P ∪ N .

Proof. We can show that the the set of equations are satisfied through the
following four cases:

Case 1. When the graph associated with χ[P |N] contains a cycle. This case is
trivial since the cycle will also be contained within the graphs of the other
variable giving us 0 + 0 = 0.

Case 2. When i = j and the graph for χ[P |N]. This is satisfied as we ignore such
a pair when it is added to the set N and we set any variable to be 0 when it is
added to the set P giving us an equation equivalent to 0 + χ[P |N] = χ[P |N].

Case 3. When i �= j, the graph for χ[P |N] is acyclic and does not contain a path
between nodes i and j or vice versa. In this case both the variable on the left
side of the equation will take the value of χ[P |N]

2 because the graph they produce
will always contain the extra edge giving us χ[P |N]

2 + χ[P |N]

2 = χ[P |N].

Case 4. When i �= j and the graph for χ[P |N] is acyclic and contains a path
between nodes i and j or vice versa. The graph containing the same path as
χ[P |N] will clearly be assigned the same value as it since the extra edge will be
removed. The other variable will add an edge which completes a cycle and hence
be assigned 0. The equation is then clearly satisfied.

Since we have proven all the sets of inequalities produced by the SA operator
will be satisfied, our proof of theorem 2 is concluded.

4 SA Proof Size

Another measure by which we can judge the lengths of SA proofs, rather than
the required rank, is the combined number of SA multiplications required to
reach a contradiction. This measure we shall refer to as the size of the proof.
We will now show that for the SA operator, the required rank does not reflect
the required proof size, specifically that the proof required for PHP is at most
polynomial in size, whilst we have already shown the required rank to be linear.

658 M. Rhodes

Theorem 3. The size SA of the proof required for PHP is at most polynomial.

Proof. We will derive the contradiction by deducing
∑n

j=1

∑n+1
i=1 χ[(i,j)|∅] ≥ n+1

and
∑n

j=1

∑n+1
i=1 χ[(i,j)|∅] ≤ n. The first inequality can be derived straight away

by adding up all equations in the set pigeonset, we will prove the other can be
proven by induction.

Lemma 7. With any inequality in holeset, χ[(i,j)|∅] + χ[(i′,j)|∅] ≤ 1, we can
derive that χ[(i,j)|(i′,j)] = χ[(i,j)|∅] with a single SA multiplication.

Proof. We accomplish this by multiplying the inequality by the variable χ[(i′,j)|∅]
then proceeding as follows:

χ[(i,j),(i′j)|∅] + χ[(i′,j)|∅] ≤ χ[(i′,j)|∅]
χ[(i,j),(i′j)|∅] ≤ 0
χ[(i,j),(i′j)|∅] = 0

χ[(i,j),(i′j)|∅] + χ[(i,j)|(i′j)] = χ[(i,j)|∅]
χ[(i,j)|(i′j)] = χ[(i,j)|∅]

Lemma 8. We can derive
∑q+1

i=1 χ[(i,j)|∅] ≤ 1 from
∑q

i=1 χ[(i,j)|∅] ≤ 1 with one
SA multiplication.

Proof. To accomplish this we multiply by the variable χ[∅|(q+1,j)] and proceed
as follows:

q∑

i=1

χ[(i,j)|(q+1,j)] ≤ χ[∅|(q+1,j)]

q∑

i=1

χ[(i,j)|(q+1,j)] ≤ 1 − χ[(q+1,j)|∅]

χ[(q+1,j)|∅] +
q∑

i=1

χ[(i,j)|(q+1,j)] ≤ 1

χ[(q+1,j)|∅] +
q∑

i=1

χ[(i,j)|(q+1,j)] ≤ 1

q+1∑

i=1

χ[(i,j)|∅] ≤ 1

Note that we make use of lemma 7 for each variable within the summation to
accomplish the final step of this derivation.

By continually applying lemma 8 to each of the inequalities of the form χ[(1,j)|∅]+
χ[(2,j)|∅] ≤ 1 in holeset then we will be able to derive

∑n+1
j=1 χ[(i,j)|∅] ≤ 1

for each value i and hence by adding all such inequalities be able to derive∑n
j=1

∑n+1
i=1 χ[(i,j)|∅] ≤ n. The number of multiplications required to accomplish

this was clearly polynomial in n.

Rank Lower Bounds for the Sherali-Adams Operator 659

5 Further Work

In this paper we have shown the SA operator to require linear rank for both
PHP and LNP and that PHP only requires at most a polynomially sized SA
proof. Whilst a number of more powerful LS systems have been proposed in
[2], no extensions to the SA operator have currently been developed to make
it as powerful as these new systems. We will look to add additional rules to
enhance the SA operator and prove linear rank lower bounds for these systems.
One major challenge with this will be finding candidate tautologies, since it is
difficult to argue about randomly generated formulas, but, as with most powerful
proof systems, the standard set of combinatorial principles and other well known
tautologies are likely to yield constant rank bounds.

References

1. Buresh-Oppenheim, J., Galesi, N., Hoory, S., Magen, A., Pitassi, T.: Rank bounds
and integrality gaps for cutting planes procedures. Theory of Computing 2, 65–90
(2006)

2. Grigoriev, D., Hirsch, E.A., Pasechnik, D.V.: Complexity of semi-algebraic proofs.
Moscow Mathematical Journal 2(4), 647–679 (2002)

3. Khachian, L.G.: A polynomial time algorithm for linear programming. Doklady
Akademii Nauk SSSR, n.s., 244(5), pp. 1063–1096. English translation in Soviet
Math. Dokl. 20, pp. 191–194 (1979)

4. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre
relaxations for 0-1 programming. Mathematics of Operations Research 28(3), 470–
496 (2003)

5. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal of
Discrete Mathematics 3, 411–430 (1990)

6. Warners, J.P.: Nonlinear approaches to satisfiability problems. PhD thesis, Eind-
hoven University of Technology, The Netherlands (1999)

Infinite Computations and a Hierarchy in Δ3

Branislav Rovan and Ľuboš Steskal�

Department of Computer Science,
Faculty of Mathematics Physics and Informatics,
Comenius University, 84248 Bratislava, Slovakia

{rovan,steskal}@dcs.fmph.uniba.sk

Abstract. We present a hierarchy of families between the Σ2 and Δ3

levels of the arithmetic hierarchy. The structure of the top five levels of
this hierarchy is in some sense similar to the structure of the Chomsky
hierarchy, while the bottom levels are reminiscent of the bounded oracle
query hierarchy.

Keywords: Super Turing computation, arithmetical hierarchy, infinite
computation, Chomsky hierarchy.

1 Introduction

Several models of computation having “super Turing” computational power have
been proposed and studied in the literature (e.g., Relativistic Computation using
Malament-Hogarth space-times [EN02] [WvL02], Infinite Time Turing Machines
[HL00], Neural Networks with real value weights[SS95], or the Accelerated Turing
Machine proposed by Russel, Blake and Weyl). Some of these machines share the
capability to perform infinite computations. In this paper we introduce a new
model which allows us to separate the finite and infinite parts of computations
and to retrieve information about infinite computations. Our model allows us
to show that more sophisticated postprocessing of the information provided by
infinite computation increases computational power.

2 Notation and Preliminaries

In this part, we introduce a new computational model– the Display Turing Ma-
chine1. We shall assume basic notations of the formal languages theory (see e.g.
[HU79]). Let Λ be a finite alphabet. We denote by Λ∗ the set of all finite words
over Λ, by Λω the set of all infinite words over Λ, and by Λ∞ the union of Λ∗ and
Λω. We shall also use the standard notation for the degrees in the arithmetic
hierarchy (Σi, Πi, Δi). Let C be a family of machines. We shall denote by L(C)
the family of corresponding languages.
� This research was supported in part by the grant VEGA 1/3106/06.
1 We shall use the acronym TMD (Turing Machine with Display) to avoid confusion

with the Deterministic Turing Machine.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 660–669, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Infinite Computations and a Hierarchy in Δ3 661

Informally, the TMD is a standard one–tape deterministic Turing Machine
equipped with an additional tape called the display tape. During the computa-
tion both tapes are used in a standard way. Initially the first tape contains the
input word and the second tape, the display, is blank. We shall be interested in
the content of the display tape after the computation is performed. We shall use
it, e.g., to determine the acceptance (in TMDC – the Display Turing Machine
with Control). The key feature of the TMD is its ability to display information
about infinite computations. The content of the display tape represents “the re-
sult” of an infinite computation in the following way. The resulting content of
each tape square of the display tape is either a letter of the tape alphabet (in
case the content of the square stops changing after finitely many steps of the
computation) or a special symbol † (in case the content of the square changes
infinitely many times during the computation). We shall also say that the TMD
transforms the input word to a display word (the limit contents of the display
tape in case of an infinite computation).

Let us now formally define TMD and TMDC.

Definition 1. A Display Turing Machine is a 5-tuple (Λ, Γ, δ, K, q0) where Λ ⊆
Γ are the input and auxiliary alphabets, B and $ in Γ −Λ are special symbols for
a blank space and the beginning of the display tape, † /∈ Γ is the special symbol
mentioned above, K is a finite set of all states of the machine, q0 ∈ K is the
initial state, and δ : K × Γ 2 → K × ({Γ − {B}} × {−1, 0, 1})2 is the transition
function such, that δ(q, a0, a1) = (p, a′

0, d0, $, d1) if and only if a1 = $, and d1

never equals −1 if a1 is $.

Definition 2. A Configuration of TMD T is an element of the set K × B(Γ −
{B})∗B × N × $(Γ − {B, $})∗B × N

Configurations are interpreted in the usual way. For example in (p, BwB, i,
$vB, j), p denotes the current state of the machine, w content of the first tape,
the head on the first tape is on the i–th square, v is the content of the display
tape and j gives the position of the display tape head.

Definition 3. A computational step of a TMD T is the relation �T on configu-
rations of TMD defined by (p, Bu0u1 . . . unB, k, $v0v1 . . . vmB, l) �T (q, Bu0u1. . .
uk−1auk+1 . . . unB, k+d0, $v0v1 . . . vl−1bvl+1 . . . vmB, l+d1) ⇐⇒ δ(p, uk, vl) =
(q, a, d0, b, d1). We omit the index T and shall write only � if it is obvious what
machine we are referring to.

The result T (w) of the computation of the TMD T on the word w is the “limit”
content of the display tape defined formally as follows.

Definition 4. Let T be an TMD and w ∈ Λ∗. Let DT (w) = {dT (w)(n)}∞n=0

denote the sequence of contents of the display tape of the machine T working on
the input w. Let D

T (w)
i = {d

T (w)
i (n)}∞n=0 denote the sequence of letters written

on the i-th square of the display tape during the computation of T on the input
w (where the beginning of the tape $ is considered to be the minus first square).

662 B. Rovan and Ľ. Steskal

Let d
T (w)

i be the limit of D
T (w)
i if it converges, † if it does not. If there exists an

l such that l = min{i|Di converges to B}, then we say that

T (w) = d
T (w)

0 d
T (w)

1 . . . d
T (w)

l−1

is the result of the TMD T with w on input.
If there is no such l then the result of the TMD T with w on input is the

infinite word

T (w) = d
T (w)

0 d
T (w)

1 d
T (w)

2 . . .

We have defined TMD as a machine transforming an input word by a (possibly
infinite) computation to a (possibly infinite) display word. We shall now turn
TMD into a language accepting device by using the resulting display word to
determine the acceptance of the input word.

Definition 5. The Display Turing Machine with Control is a pair A = (T, S)
such, that T is an TMD and S is a set. We shall call S the Control set of
A and sometimes refer to it as C(A). The language accepted by A is the set
L(A) = {w ∈ Λ∗|T (w) ∈ S}.

We shall now define a few useful functions and notations.

Notation 1. Let f(n) : N → N be a nondecreasing function. We denote by Tf(n)

the family of all TMD for which the size of their result on input words of length
at most n does not exceed f(n).

Definition 6. Let T be a TMD. #†T (w) shall denote the number of †
symbols in T (w).

Definition 7. PAR(u) shall denote a predicate that is true if the number of
non–† symbols in u is even2.

We shall use the following notation in our study of subfamilies of TMDC based
on restrictions on the size of the display tape and the use of † in control languages.

Notation 2

– Let (Tf(n), L) denote a family of Display Turing Machines with Control such
that A = (T, S) is in (Tf(n), L) iff A is in Tf(n) and S is in L and there is
no w in S containing the symbol †.

– Let (T †
f(n), L) denote a family of Display Turing Machines with Control such

that A = (T, S) is in (T †
f(n), L) iff A is in Tf(n) and S is in L.

In what follows, we might omit some indices if they are clearly implied by the
context.
2 We shall use this predicate for T (w), the result of a TMD T on an input w, and

write PAR T (w) instead of PAR(T (w)).

Infinite Computations and a Hierarchy in Δ3 663

3 Restricted Display Turing Machines with Control

We shall consider TMDC with restrictions on the size of the display tape and
on the use of † in control languages. We shall also study the influence of the
Chomsky type of control languages on the power of TMDC

3.1 TMDC with Single Square Display

To demonstrate some techniques we shall first consider TMDC having the dis-
play tape restricted to a single square. We shall see that even this minimal
increase in resources over the standard TM substantially increases their power.

Theorem 1. L(T1, R) = Σ2.

Proof. Consider Σ2 ⊆ L(T1, R). Let L be in Σ2 and let M be an oracle machine
(with a Σ1 oracle) accepting L. We shall construct a (T1, R) machine D =
(T, {1}) accepting L as follows.

As long as there is no oracle query, T shall simulate the computation of
M in a standard way. Once the machine M enters a oracle query state, the
computation of T shall fork into two different computations. One computation
follows the simulation of M presuming a negative answer to the query, while
the other computation actually computes its real outcome. If the simulation of
M enters another query state, the computation shall fork again, thus creating
more parallel “threads”. If the computation of an oracle query eventually halts
with an affirmative answer (meaning, that T has made a wrong guess for the
oracle outcome), then the entire computation is rolled back to the point where
the query was made (and the computation of respective threads is abandoned).
Now the simulation continues as described above, only that there is no fork and
the query answer is positive.

If the simulated machine M enters an accepting state, the symbol 1 is written
onto the output square. Should the simulated computation of M halt but not
accept, the symbol 0 is written on the display. Whilst the simulation of M is in
process (by this we mean solely the computation of M , not those of the oracle
queries), the content of the display oscillates between two contents (say a and b).

Clearly, T shall eventually know the outcome of each query asked by M . Thus
T shall write the symbol 1 onto the display tape and not rewrite it from some
time on iff M accepts its input. On the other hand, if the computation of M
does not halt at all, the content of the display square is altered infinitely many
times, thus it will result into the † symbol. Thus (T, {1}) accepts an input word
if and only if M does.

Consider L(T1, R) ⊆ Σ2. Let A = (T, C) be in (T1, R)3. We shall construct
an oracle machine M (with a Σ1 oracle) accepting w if and only if w is in L(A).
All we need to do is to determine the result T (w) of the display machine T in
finite time assuming, that the output belongs to C. We shall utilize the fact,
that if T (w) ∈ C then T (w) �= † (in other words the number of changes of the
3 Since the display size is limited to 1 only some finite languages from R are usable.

664 B. Rovan and Ľ. Steskal

display is finite). So M shall simulate A and ask the oracle, whether the content
of the display square shall be changed during the forthcoming computation (it
can be seen, that such a query is recursively enumerable, thus in Σ1). If it does
not change, we shall just check if it is in C. If it does, it must happen after some
finite time so we can simulate the computation to the point of the change and
then ask the oracle again. Thus w ∈ L(A) ⇐⇒ w ∈ L(M). �

We see, that the infinite computation of the Display Turing Machine can be used
to answer (arbitrary many, but finite) number of queries to the Halting problem
of standard Turing machines. It can be seen that if all the words in the control
set are †–free it suffices to consider control sets consisting of words of length one.
Thus having display tape of size k, k > 1, does not increase the power of TMDC
in this case. We shall now consider the question whether TMDC can compute
more in case the words in the control language may contain the symbol †.

Theorem 2. {L|∃A = (T, C) ∈ (T †
1 , R) : A accepts L and † ∈ C} = Π2

Proof. Consider Π2 ⊆ L(T †
1 , R) Let L ∈ Π2 then its complement L ∈ Σ2. Thus

there exists an oracle Turing machine M with a Σ1 oracle accepting L. We shall
construct an equivalent Display Turing Machine with Control A = (T, {†}) such
that T (w) = † ⇐⇒ w /∈ L(M). Let T ′ be the display machine used in the proof
of Theorem 1. We already know, that T ′(w) = † if the computation of M requires
infinitely many oracle queries. We shall construct T by a slight modification of
T ′. The only reason, why T ′ does not satisfy our needs is that if the computation
of M needs only a finite number of queries and then rejects the input, T ′ does
not produce a † on its display. So T shall differ from T ′ in such case. T shall
simulate M just as T ′ does, but should the simulation come to the point, where
M would reject, T shall enter a loop in which it continually rewrites the content
of the display square. Of course, the parallel simulation of oracle queries does
not stop. This implies, that w ∈ L(M) ⇒ T (w) = 1 as in the proof of Theorem
1 and w /∈ L(M) ⇒ T (w) = † ⇒ w ∈ L(A).

Consider {L|∃A = (T, C) ∈ (T †
1 , R) : A accepts L and † ∈ C} ⊆ Π2. Let

A = (T, C) be in (T †
1 , R) such that † ∈ C(A). We shall construct an oracle

machine M with a Σ1 oracle such that L(M) = L(A). M shall simulate the
computation of T on w and try to determine the display T (w) of T . It shall ask
the oracle, whether given a configuration of the display machine T , the content
of the display changes after finite number of computational steps. If it does not,
M will know the resulting content of the display d0 of T and shall accept if
d0 /∈ C and vice versa.

If the content is to be rewritten, then M can simulate the computation of T
to that point and then ask again. If T (w) = † then M never halts and thus does
not accept w. Thus w ∈ L(M) ⇐⇒ T (w) /∈ C. �

Corollary 1. L(T †
1 , R) = Π2 ∪ Σ2

The above results show that in one square, we can compute the answer to one
oracle call to a Σ2 oracle. So if there was a larger display tape, we might be

Infinite Computations and a Hierarchy in Δ3 665

able to compute more. Since we know (see [Bie95]), that for an oracle machine
k + 1 queries to Σ2 are better then k queries, it would be of interest to have an
analogous result for our model. This shall be the goal of the next section.

3.2 The Tape–Size Hierarchy

In this section, we shall examine the relation between oracle machines with a
Σ2 oracle and Display Turing Machines with Control. The main result of this
section is the proof that, for all k, the display tape of fixed size k + 1 is stronger
than the one of size k. We shall call the hierarchy established in this way the
Tape–size Hierarchy. Since all machines studied in this section have a constant
bound on their display tape, their control languages may be restricted to finite
sets and are thus regular.

We shall first formulate an easy to see but useful “concatenation” property of
the Display Turing Machines with Control. For any two machines, we can create
a third one by “gluing” these two machines together. Conversely, if we have one
display machine using a display tape of size k, we can “split” it into two machines
with display tapes of sizes a and k −a each computing the respective part of the
result of the original machine.

Lemma 1 (Concatenation Lemma)

i. Let (T1, S1) and (T2, S2) be two TMDC. Then there exists a machine (T, S)
such that L(T, S) = L(T1, S1) · L(T2, S2).

ii. Let T be a TMD. Then there exist two machines T1 and T2 such that for all
w a T (w) = T1(w) · T2(w) and if |T (w)| > 0 then |T1(w)| = 1.

We might refer to T by writing T1 · T2. We shall now show how to simulate an
oracle machine that uses at most k oracle calls by using an exponentially long
display tape.

Lemma 2. Let M be an oracle machine that is allowed to make at most k oracle
calls (to a Σ2 oracle). Then L(M) ∈ L(T †

2k+1−1
, R)

Proof. We shall find a TMDC A = (T, C) simulating M . The proof is based on
the fact, that if the computation of M is limited to k queries, then there are 2k

possible computations depending on the outcome of the queries.
T shall compute the result of M for each possible computation as well as the

result of each possible query. This obviously requires a display tape of length not
exceeding 2k+1 − 1. From this information, A can easily determine the proper
computation of M on w. �

Since our computational model with fixed size display tape is similar to the
model of a Turing machine making parallel queries presented by Richard Biegel
in [Bie95] [BGH89], we shall try to use similar proof techniques.

We shall start by examining the properties of the predicate PAR T (w) which
is true if the number of non–† symbols in T (w) is even.

666 B. Rovan and Ľ. Steskal

Lemma 3. If (∀m ∈ N)(∃n ∈ N)(∃T ∈ Tn) : (PAR(T) �∈ L(T †
m, R)) then4

(∀i ∈ N) : L(T †
i , R) � L(T †

i+1, R).

Proof. Let n′ be the maximum, for which all the machines in Tn′ have their PAR
language acceptable by a machine from L(T †

m, R). Thus there exists a T ′ ∈ Tn′+1

such, that PAR(T ′) �∈ L(T †
m, R). Using the Concatenation Lemma (Lemma 1)

we know, that T ′ = Tn · T1 where Tn has its display tape of size n and T1 has
its display tape of size 1.

Since PAR(Tn) ∈ L(T †
m, R) ∧ PAR(T1) ∈ L(T †

1 , R) we can find a machine in
(T †

m+1, R) accepting PAR(T ′). Thus L(T †
m, R) � L(T †

m+1, R). �

We shall now show, that the assumption of the previous Lemma is true and thus
that its consequence is true as well. We shall use the following known fact.

Lemma 4. Let n ∈ N and let bini(n) denote the i-th bit in the binary encoding
of n. Then bini(n) = bin0

(
n
2i

)
.

Lemma 5. If (∃m ∈ N)(∀n ∈ N)(∀T ∈ Tn) : (PAR(T) ∈ L(T †
m, R)) then

(∀k ∈ N)(∀T ∈ Tk)(∃T ′ ∈ Tm·�lg k� and there exists a recursive function f such,
that f(T ′(w)) = #†T (w).

Proof. T ′ shall use PAR(T) to compute #†T (w) bit by bit. It is obvious that
knowing PAR T (w) is sufficient to determine the value of the last bit of #†T (w).
Let n denote the number of non-† symbols in T (w). Obviously n = k−#†T (w) .
Let Ti denote the display machine computing the content of the i-th output
square of T . Let S be a subset of {1, 2, · · · , k}. Let TS be a display machine
returning 1 if (∀i ∈ S)(Ti(w) �= † and returning † otherwise.

Let S2j be the set of all 2j element subsets of {1, · · · , k} and let T2j be the
machine T2j =

⊙
S∈S2j

TS (where
⊙

denotes the concatenation operator).
Then PAR T2j (w) = binj (n) . This follows from the fact, that PAR T2j (w) =

bin0

(
n
2j

)
= binj(n).

Let PAR(Tl) = (TPAR(Tl), C). Let us presume, that TPAR(Tl) always produces
an output of size m. Let Jk be the set of all powers of 2 smaller or equal to k.
Then T ′ =

⊙
l∈Jk

(
TPAR(Tl)

)
. Since each PAR needs only m squares, T ′ needs

m · lg k� squares. Now, f can transform each block of length m to a 0 or 1
depending on its correspondence to A and thus compute #†T (w). It can be
easily seen that f is recursive. �

Lemma 6. (∀m ∈ N)(∃n ∈ N)(∃T ∈ Tn) : (PAR(T) �∈ L(T †
m, R))

Proof. By contradiction. Let (∃m ∈ N)(∀n ∈ N)(∀T ∈ Tn) : (PAR(T) ∈
L(T †

m, R)) be true. Let M be an oracle Turing machine with a Σ2 oracle us-
ing no more then k oracle queries such, that there is no oracle Turing machine
accepting the same language using less then k queries. Then by Lemma 2 there
is TMDC D = (T, C) ∈ (T †

2k+1−1
, R) accepting L(M). Then by Lemma 5 there

is T ′ and f ′ with T ′ ∈ Tm·�lg 2k+1−1� computing #†T and a T ′′ and f ′′ with

4 By PAR(T) we mean the language of all words w, for which PAR T (w) is true.

Infinite Computations and a Hierarchy in Δ3 667

T ′′ ∈ Tm·�lg m+lg (k+1)� computing #†T ′. We shall construct a Σ2–oracle ma-
chine M ′ simulating M with only m · lg m + lg (k + 1)� + 1 queries.

First of all M ′ shall compute the value #†T ′. Due to Corollary 1 and the
recursiveness of f ′′ this will require only m · lg m + lg (k + 1)� queries. With
the value #†T ′ given, there exists a Σ1–oracle Turing machine M ′′ computing
#†T . This follows from Theorem 1 and from the fact that M ′′ “knows” when to
halt. Analogously, there is another Σ1–oracle Turing machine M ′′′ computing T
and accepting if the result of T is in C. Thus M ′ needs only one more query to
determine the acceptance of M ′′′ and thus the acceptance of D and M .

This clearly contradicts m · lg m + lg (k + 1)� + 1 < k for k big enough. �

Thus Lemmas 3 and 6 imply that

Theorem 3. k < l ⇒ L(T †
k , L) � L(T †

l , L)

We can see, that there is an infinite hierarchy of machines with constant display
tape sizes.

3.3 The Extended Chomsky Hierarchy

In this section we shall examine the impact of placing Chomsky like constrains
on the Control language on the TMDC computational power. We shall also
impose a finiteness restriction on the display machine output.

Notation 3. By T †
<ω we denote the set of all TMD having for each v on input

an output on the display tape of finite size.

We shall often refer to the machines accepting control languages as Control
Machines. We shall show (for Chomsky hierarchy5), that using stronger Control
we can accept more languages. In our proofs, we shall use the diagonalization
argument.

Lemma 7 (diagonalization). Let C be a family of machines and let there exist
a code for each machine from this family. Then no machine in C can accept the
language consisting of codes of machines rejecting their own codes. We shall
denote this language by DC and call it the diagonal language for C.

We shall now show, that regular Control sets are weaker then context–free Con-
trol sets. This result shall be achieved by providing a machine using a context–
free Control accepting the diagonal language DL(T †

<ω,R).

Theorem 4. L(T †
<ω , R) � L(T †

<ω , LCF)

Proof. Let A be a finite automaton and let M = (T, L(A)) ∈ (T †
<ω, R). Let

〈T 〉〈A〉 be a (proper) code of M . The machine MD = (TD, L(AD)) (where AD

5 It is the hierarchy R � LCF � LECS � LREC � LRE of regular (accepted by
finite automata), context-free (accepted by push-down automata), extended context-
sensitive (accepted by lineary bounded automata), recursive and recursively enumer-
able languages respectively.

668 B. Rovan and Ľ. Steskal

is a push–down automaton) accepting the diagonal language shall work in the
following way. Given 〈T 〉〈A〉 on input, TD shall output the output of T concate-
nated with all words of size |T (〈T 〉〈A〉)| (we shall denote this number by P) and
one bit holding the information, whether A accepts it (as shown below)

T (〈T 〉〈A〉) wR
1 A(w1) wR

2 A(w2) · · · wR
P A(wP)

AD shall work in the following way. At first, it shall read the output T (〈T 〉〈A〉)
into its push-down stack and continue to move along the display tape. If AD

is about to read T (〈T 〉〈A〉)R (AD can nondeterministically guess this) it shall
compare it letter by letter with the content of its push-down stack. Then AD

reads the next letter. It is the symbol 1 if 〈T 〉〈A〉 ∈ L(A) and 0 otherwise. If it
was the symbol 0, AD accepts, otherwise rejects.

Thus we created a machine TD ∈ (T †
<ω, LCF) accepting DL(T †

<ω,R). �

Theorem 5. L(T †
<ω , LCF) � L(T †

<ω, LECS)

Proof. Let the code of a machine M = (T, L(A)) ∈ (T †
<ω, LCF) be the string

〈T 〉〈A〉 where 〈T 〉 is the code of the display machine T and 〈A〉 is the code for the
push-down automaton accepting L(A). Then the machine MD = (TD, L(AD)) ∈
(T †

<ω, LECS) for accepting the diagonal language operates similarly as in the
previous proof, only the reverses are not necessary any more and TD simulates
the computation of a push–down automaton. �

Proofs showing that L(T †
<ω , LECS) � L(T †

<ω , LREC) as well as L(T †
<ω , LREC) �

L(T †
<ω , LRE) differ from the previous proof only in small technical details.

Thus, we have proved the existence of a Chomsky like hierarchy. We shall call
it the Extended Chomsky hierarchy.

L(T †
<ω , R) � L(T †

<ω , LCF) � L(T †
<ω , LECS) � L(T †

<ω, LREC) � L(T †
<ω, LRE)

4 Conclusion

To conclude our study we shall prove, that by increasing the power of the Control
as shown in the previous section, the models remain in the domain of the Δ3

level of the arithmetic hierarchy.

Theorem 6. L(T †
<ω , LRE) ⊆ Δ3

Proof. Let A = (T, C) be a machine in (T †
<ω, LRE). As we have seen in the

Section 3, an oracle machine M with a Σ2 oracle needs only one query to de-
termine, if the content of the i-th output square of T is the † symbol. If T is
working over the alphabet Γ it can be easily seen, that M needs at most |Γ | + 1
queries to determine the exact output of the i-th query. Since T ∈ T<ω, the
output T (w) has finite size for each input. Thus, the machine M needs at most

|T (w)| · |Γ | + 1

queries to determine the output of T .

Infinite Computations and a Hierarchy in Δ3 669

Since there is a standard Turing machine accepting C, M needs only one
more query to find out, if T (w) is in C. This implies, that M is an always
halting machine, thus L(T †

<ω , LRE) ⊆ Δ3. �
We can now summarize all our results. In Section 3.2, we established existence of
a Tape–size hierarchy. Since all the control languages in the Tape–size hierarchy
are regular, one can easily see that all degrees of this hierarchy are in the lowest
level of the Extended Chomsky hierarchy. By combining all our results we obtain
the following structure of the Σ3 level of the Arithmetical hierarchy.

Σ3

Δ3

L(T †
<ω , LRE)

L(T †
<ω , LREC)

L(T †
<ω , LECS)

L(T †
<ω, LCF)

L(T †
<ω, R)
...

L(T †
3 , R)

L(T †
2 , R)

Π2 ∪ Σ2 = L(T †
1 , R)

Σ2 = L(T1, R)

Some open questions. Our study could be continued by examining the proper-
ties ofmore machines coupled together, i.e., using one TMDC as control in another
TMDC. It would also be interesting to show exact relation of the degrees in our
Tape–size hierarchy to the bounded query hierarchy and to show, that each degree
of the arithmetical hierarchy contains its own Extended–Chomsky hierarchy.

References

[BGH89] Biegel, R., Gasarch, W.I., Hay, L.: Bounded query classes and the difference
hierarchy. Archive for Mathematical Logic, 29(2) (1989)

[Bie95] Biegel, R.: Query-limited reducibilities. Dissertation at Stanford University
(1995)

[EN02] Etesi, G., Németi, I.: Non-turing computations via malament-hogarth space-
times. Int. J. Theor. Phys, 41, 2002. see also: http://arXiv.org/abs/
gr-qc/0104023.

[HL00] Hamkins, J.D., Lewis, A.: Infinite time turing machines. Journal of Symbolic
Logic, 65(2) (2000)

[HU79] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, London (1979)

[SS95] Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets.
Journal of Computer and System Sciences 50(1), 132–150 (1995)

[WvL02] Wiedermann, J., van Leeuwen, J.: Relativistic computers and non-uniform
complexity theory (2002)

http://arXiv.org/abs/gr-qc/0104023
http://arXiv.org/abs/gr-qc/0104023

Natural Computing: A Natural and Timely

Trend for Natural Sciences and Science of
Computation

Grzegorz Rozenberg

Leiden Institute of Advanced Computer Science, Leiden University,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Department of Computer Science, University of Colorado at Boulder,
Boulder, CO 80309, USA

Natural computing refers to computation taking place in nature and to human-
designed computation inspired by nature. When complex phenomena going on
in nature are viewed as computational processes, our understanding of these
phenomena and of the essence of computation is enhanced. On the other hand
human-designed computing inspired by nature has had already a big impact
on the development of computer science (think, e.g., about neural computing,
evolutionary computing, molecular computing and quantum computing).

The currently accepted/used notion of computation is actually the result
of formalizing the concept of a calculation. For example, the Turing machine
model explicitly formalizes mental activities of a person performing a calculation
(following a finite set of rules).

To a great majority of the contemporary society computer science associates
only with the Information and Communication Technology (ICT). Indeed, com-
puter science is largely responsible for the continuous impressive progress of ICT,
as it designs both “hard and soft” instrumentarium needed for this progress.
However, from the scientific point of view there is much more to computer
science than ICT. Most importantly, computer science has developed into the
science of information processing, and as such it is a fundamental science for
other scientific disciplines.

This development goes hand in hand with the development of the “informa-
tion trend” in a number of scientific disciplines which adopted Information and
Information Processing as their central notions and thinking habits. Biology and
physics are prime examples of such disciplines - here computer science provides
not only the instrumentarium (such as powerful computers and software), but
also a way of thinking.

Also, the only common denominator for scientific research done in so many and
so diverse areas of computer science is the study of various aspects of information
processing. Clearly, in this context, the term “informatics” widely used in Europe
is much better than the term “computer science”, with the latter stipulating
that a particular instrument, viz. a computer, is the main research topic of our
discipline.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 670–671, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Natural and Timely Trend for Natural Sciences 671

Research in computer science is genuinely interdisciplinary and in this way
natural computing forms a bridge between informatics and natural science. Nat-
ural computing had already a big and lasting impact on the development of
informatics, and in particular it contributed to our understanding of the notion
of computation.

One of the central questions of Natural Computing is: “How does nature com-
pute?”. It is a very challenging question, as the term “compute” in the context
of nature is difficult to define, and certainly very difficult to formalize. One
will have to redefine the notion of computation so that it accommodates also
information processing taking place in nature. This will lead to a grand interdis-
ciplinary science of computation that shows up already now on the horizon. How
far away are we from this horizon? Nobody knows, but we have to be patient:
it took (at least) 300 years to understand, formalize and utilize the notion of
human-designed computation/calculation !!!

References

Cardelli, L.: Abstract machines of systems biology. In: Priami, C., Merelli, E., Gonzalez,
P., Omicini, A. (eds.) Transactions on Computational Systems Biology III. LNCS
(LNBI), vol. 3737, pp. 145–168. Springer, Heidelberg (2005)

Chen, J., Jonoska, N., Rozenberg, G. (eds.): Nanotechnology: Science and Computa-
tion. Springer, Berlin (2006)

Davidson, E.H.: The Regulatory Genome: Gene Regulatory Networks in Development
and Evolution, Academic Press/Elsevier, Burlington (2006)

Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae 76, 1–18
(2006)

Kitano, H.: Systems biology: a brief overview. Science 295, 1662–1664 (2002)
Lindenmayer, A.: Mathematical nodels for cellular interaction in development, I and

II. Journal of Theoretical Biology 18, 280–315 (1968)
Lindenmayer, A., Rozenberg, G.: Introduction, In: Lindenmayer, A., Rozenberg, G.

(eds.) Automata, Languages, Development, v–vi, North Holland, Amsterdam (1976)
Lloyd, S.: Programming the Universe: A quantum computer scientist takes on the

cosmos. Jonathan Cape, London (2006)
McCulloch, W.S., Pitts, W.H.: A logical calculus of the ideas immanent in neural nets.

Bulletin of Mathematical Biophysics 5, 115–133 (1943)
Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Academic Press,

New York (1980)
Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of the

Royal Society of London, B 237, 37–72 (1952)

Biochemical Reactions as Computations

Andrzej Ehrenfeucht1 and Grzegorz Rozenberg1,2

1 Department of Computer Science, University of Colorado at Boulder,
Boulder, CO 80309, USA

2 Leiden Institute of Advanced Computer Science, Leiden University,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Two main mechanisms behind the functioning of biochemical reactions are
facilitation and inhibition; these mechanisms are also central for the interaction
between biochemical reactions. This observation underlies the theory of reac-
tion systems which is a formal framework for the investigation of biochemical
reactions, and especially interactions between them.

More specifically, a biochemical reaction is formalized as follows. A (formal)
reaction is a triplet a = (Ra, Ia, Pa), where Ra is the set of reactants, Ia is the
set of inhibitors, and Pa is the set of products. The intuition behind this formal
notion of a reaction corresponds in a straightforward way to the functioning
of a biochemical reaction: reaction a converts/transforms the set of reactants
Ra into the product set Pa providing that it is not inhibited by (one or more)
inhibitors from Ia. Therefore, more formally, the result of applying reaction a
to a set T , denoted by resa(T), is conditional: if T separates Ra from Ia (i.e., if
Ra is included in T and Ia is disjoint with T), then a is enabled on (applicable
to) T , otherwise a is not enabled on (not applicable to) T . If a is enabled on T ,
then a transforms the set of reactants into the product set, and so resa(T) = Pa;
otherwise resa(T) is the empty set.

Then, the notion of transformation by a single reaction is extended to sets
of reactions, and the dynamics of reaction systems (which are essentially sets
of reactions) is investigated through the notion of an interactive process. Such
a process is a sequence of states, where each state is a set (a subset of the
background set fixed for a given reaction system) which is a union of two sets:
the result of transforming the previous state in the sequence, and a context set
(which may, e.g., represent an interaction with “the rest of the system” or “the
environment”).

In developing the theory of reaction systems we adhere to a number of as-
sumptions (axioms) that hold for a great number of biochemical reactions. First
of all, in our approach reactions are primary while structures are secondary:
reactions create states rather than transform states as is the case in traditional
models in theoretical computer science. Another way to express this is to say
that reactions create the environment rather than they work in an environ-
ment. We assume the “threshold supply” of elements (molecules): either an ele-
ment is present, and then there is “enough” of it, or an element is not present.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 672–673, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Biochemical Reactions as Computations 673

Thus we do not have counting here (we work with sets rather than multisets),
and therefore we present here a qualitative rather than quantitative analysis of
interactions between reactions. Another important assumption we make is that
there is no permanency of elements: if “nothing”happens to an element (it is not
a reactant for any active reaction), then it ceases to exist. The only way to keep
an element present is to sustain it by a suitable reaction – sustaining an element
requires an effort, it is not for free (“life/existence must be sustained!”).

As we argue in the lecture, the axioms/assumptions underlying the function-
ing of biochemical reactions, and hence the underlying assumptions of our model,
are very different (often ortogonal to) the underlying axioms of the vast majority
of models in theoretical computer science. This lecture introduces reaction sys-
tems to the audience of scientists interested in natural computation. It provides
the basic definitions, illustrates them by providing biology (genetic regulatory
networks) as well as computer science (counters) oriented examples, relates this
model to a couple of traditional models of computation (elementary net systems
and boolean functions), and proves some basic properties of reaction systems.
We will also outline a theory of formation of “ordered” biochemical substructures
(modules).

References

Ehrenfeucht, A., Rozenberg, G.: Basic notions of reaction systems. In: Calude, C.S.,
Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 27–29. Springer,
Heidelberg (2004)

Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae 76, 1–18
(2006)

Ehrenfeucht, A., Rozenberg, G.: Events and modules in reaction systems, Theoretical
Computer Science (To appear)

Doing Without Turing Machines:

Constructivism and Formal Topology

Giovanni Sambin

Dipartimento di Matematica Pura ed Applicata
via Trieste 63, 35121 Padova, Italy

sambin@math.unipd.it

Abstract. We add some new insights, and thus hopefully contribute
to give new impetus, to an old theme: constructive mathematics, and
topology in particular, can be thought of as an abstract way to deal with
computation.

Keywords: constructive mathematics, minimalist foundation, pointfree
topology, formal topology.

With recent technological developments, computability theory is growing into
the science of information processing. Also in this new field mathematics can
still play a crucial role. A first necessary step is to abandon a static view of
mathematics, as in the classical foundation which sees mathematics as the sci-
ence of absolute truths. More fruitful is a dynamic view, in which a foundation
is seen as the choice of which kind of information is considered relevant, and
thus must be kept in the process of abstraction. For example, the choice for
intuitionistic logic means that one cares of proofs of propositions, and not only
of their truth; the proofs-as-programs principle reminds of the impact of this
on computability. Similarly, the set theoretic postulates characterizing the var-
ious brands of constructive mathematics correspond to different choices in the
management of information.

Constructivism as conceived by E. Bishop [1] and P. Martin-Löf [4] is char-
acterized by a computational view: any statement of mathematics is meaningful
only if it has a clear computational (or even numerical) content. Topology per-
meates the book [4], which deals mostly with four key examples of topological
spaces. Since they are introduced by means of basic neighbourhoods given prim-
itively, [4] has rightly been seen as a precursor of pointfree topology. The link
with computation is also evident, since a point is defined as a recursively enumer-
able subset of intervals, satisfying certain closure conditions (and the author’s
intention is witnessed also by a complete treatment of computability given in
the first chapter).

With the advent of formal topology in the 80s [5], the predicative and pointfree
approach has been extended to topological spaces in general. The link with
computability is however less visible, since one speaks of sets, subsets, relations,
etc. with no explicit mention of computations. However, the strictly predicative
treatment allows one to say that formal topology respects computational content;

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 674–675, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Doing Without Turing Machines: Constructivism and Formal Topology 675

roughly speaking, any amount of effectiveness one puts in, is fully preserved by
all definitions and theorems. This is guaranteed by realizability models.

A more recent global project, of which the first published act is [3], seems to
shed new light on the link between topology and computation. As argued in [3],
one needs a foundation with two distinct levels of abstraction. First, a ground
type theory, which deals with computations and actually acts as an abstract
programming language. Then a properly extensional theory, in which sets are
closed under quotients, functions are graphs, etc. Integration between these two
levels is due to the fact that the latter is obtained from the former by abstraction
in a controlled way, so that implementation remains possible. Roughly speaking,
the extensional level is obtained by forgetting only that information which can
be restored (see [2]).

As a consequence, the treatment of some effectively presented structures (like
frames or domains) can be done avoiding any explicit mention of recursive func-
tions and their indices, that is, one can do without Turing machines. In fact, this
information can be restored whenever wished.

The foundation introduced in [3] was called minimalist since, contrary to
Martin-Löf’s type theory, it does not validate the axiom of choice AC!. This
brings to two additional advantages. Firstly, the absence of AC! and the pres-
ence of two levels makes the minimalist foundation compatible also with an
impredicative foundation, like topos theory. This means that communication is
open with an important tradition in constructive mathematics, that is the theory
of locales. Secondly, the absence of AC! allows for a better integration between
the computational and the geometric, or infinitary, aspect of mathematics. In
fact, while the pointfree part remains effective, the notion of formal point is
openly infinitary. A predicative foundation takes care of not confusing these two
aspects. However, if AC! holds, a formal point (in Baire space, for example) is
reduced to a law-like sequence. The absence of AC! means that formal points can
be identified with choice sequences, and so also the geometric aspect is respected.

References

1. Bishop, E.: Foundations of constructive analysis. McGraw-Hill Book Co, New York
(1967)

2. Maietti, M.E.: Quotients over minimal type theory. this volume
3. Maietti, M.E., Sambin, G.: Toward a miminalist foundation for constructive math-

ematics, in From Sets and Types to Topology and Analysis. In: Crosilla, L., Schus-
ter, P. (eds.) Towards practicable foundations for constructive mathematics, Oxford
Logic Guides, pp. 91–114. Clarendon Press, Oxford (2005)

4. Martin-Löf, P.: Notes on Constructive Mathematics, Almqvist & Wiksell (1970)
5. Sambin, G.: Intuitionistic formal spaces – a first communication, in Mathematical

Logic and its Applications, Skordev, D. (ed.), Plenum, pp. 187–204 (1987)

Problems as Solutions

Peter Schuster

Mathematisches Institut, Universität München
Theresienstr. 39, 80333 München, Germany

pschust@math.lmu.de

Abstract. If a continuous function on a complete metric space has ap-
proximate roots and in a uniform manner at most one root, then it
actually has a root. We validate this heuristic principle in Bishop–style
constructive mathematics without countable choice, following Richman’s
way of defining the completion of a metric space as the set of all locations.

MSC (2000): Primary 03F60; Secondary 03E25, 26E40, 54E50.

Keywords: Metric spaces, completeness, uniform continuity, unique
existence, constructive mathematics, countable choice.

1 Introduction

This note is conceived in the realm of Bishop’s constructive mathematics [6,7,9].
As compared with the—then dubbed classical—customary way of doing math-
ematics, the principal characteristic of the framework created by Bishop is the
exclusive use of intuitionistic logic. According to Richman [21], this allows to
view Bishop’s setting as a generalisation of classical mathematics.

Moreover, we follow Richman’s proposal, first put forward in [22], to perform
constructive mathematics à la Bishop without countable choice. For a discussion
of this approach with references we refer to [25]; see also [24] for early observa-
tions in the context of the present paper.

Doing without countable choice is further indispensable because we want our
work to be expressible in the constructive Zermelo–Fraenkel set theory (CZF)
begun by Aczel with [1]. Countable choice, namely, does not belong to CZF.
Details on this and on CZF in general can be found in [3,20].

In the sequel, however, we will repeatedly use the principle of unique choice.1

Put in set–theoretic terms, this principle says that, for arbitrary sets A and B,
if R is a subset of A×B such that for each a ∈ A there is a uniquely determined
b ∈ B with (a, b) ∈ R, then there is a function f : A → B with (a, f (a)) ∈ R
for every a ∈ A. Now unique choice is trivial also in CZF where, as common
in set theory, the function–as–graphs paradigm is assumed: the given relation
R ⊆ A × B is already the desired function f : A → B.

To recollect the necessary prerequisites from [26], let (S, d) be a metric space
with at least one point. We often suppose that S is complete—or even that it is

1 Or, as it is sometimes called, the principle of “non–choice”.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 676–684, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Problems as Solutions 677

compact in the sense of Bishop: that is, totally bounded and complete. (Until we
adopt the different definition proposed by Richman, completeness means that
every Cauchy sequence converges.) Also, let δ, ε and x, x′, y, y′ always denote
positive rational numbers and points of S, respectively. Note that x �= y stands
for d (x, y) > 0, which is to say that d (x, y) � δ for some δ. Furthermore,
let F : S → R denote a non–negative continuous function. It will be specified
as occasion demands whether F is supposed to be sequentially, pointwise, or
uniformly continuous. The way in which these notions are related to each other
is recalled with references in [26].

The conditional existence problem

If infx∈S F (x) = 0, is there any ξ ∈ S with F (ξ) = 0 ?

subsumes, with F (x) = d (y, x) − dist (y, S), the search for the best approxima-
tions in S to a point y of a metric space T comprising S as a subspace. A best
approximation, namely, is nothing but a point of S at which the uniformly contin-
uous function d (y, ·) : S → R attains its infimum dist (y, S). Note that if S ⊆ T
is totally bounded, then it is located in T : that is, dist (y, S) = infx∈S d (y, x)
can be computed for each y ∈ T . This, however, does not mean that a best
approximation can always be constructed even if S is compact—see below.

An alternative formulation of the existence problem we are looking at is

If F (x) = 0 has approximate solutions in S, does it have an exact
solution in S ?

In more logical terms, the problem consists in the validity of the uniformity
principle

∀ε > 0 ∃x ∈ S (F (x) < ε) ⇒ ∃ξ ∈ S ∀ε > 0 (F (ξ) < ε) .

Given the antecedent of this implication, a natural first attempt to obtain its
consequent is to choose—by countable choice—a sequence (xn) in S with

∀n (F (xn) < 1/n) . (1)

In classical analysis, one can proceed by saying that if S is compact, then (xn)
has a cluster point ξ in S, for which F (ξ) = 0 if, in addition, F is sequentially
continuous. To do so, one needs to invoke the Bolzano–Weierstrass theorem
(BWT) that every sequence in a compact metric space has a cluster point.

By a consequence of BWT, the minimum theorem (MIN) which says that ev-
ery continuous function on a compact metric space has a minimum, the problem
considered above would anyway have been solved with a single stroke of the pen.
However, MIN and thus BWT are essentially non–constructive. We refer to [26]
for an outline of this, including references.

The non–constructive character of MIN notwithstanding, there is a construc-
tive proof [9, Chapter 2, Theorem 4.5] that infx∈S F (x) can be computed when-
ever F is uniformly continuous, and S is totally bounded. So the question
remains under which circumstances our problem allows for a constructive so-
lution. In other words, when does a uniformly continuous function on a compact
metric space have a minimum: that is, attain its infimum?

678 P. Schuster

2 With Countable Choice

A function F : S → R with inf F = 0 has uniformly at most one minimum [26]
if

∀δ ∃ε ∀x, y (F (x) < ε ∧ F (y) < ε ⇒ d (x, y) < δ)

or, equivalently,

∀δ ∃ε ∀x, y (d (x, y) � δ ⇒ F (x) � ε ∨ F (y) � ε) .

(To see this equivalence, consider the function (x, y) �→ F (x) + F (y).) If F has
uniformly at most one minimum, then F has at most one minimum [4]: that is,

∀x, y (x �= y ⇒ F (x) > 0 ∨ F (y) > 0) . (2)

By substituting F − c for F , one can adapt the definition of “F has (uniformly)
at most one minimum” to the case of a function F : S → R with arbitrary
infimum c ∈ R.

If F has at most one minimum, then the point—if it exists—at which F
attains its infimum 0 is uniquely determined:

∀x, y (F (x) = 0 ∧ F (y) = 0 ⇒ d (x, y) = 0) . (3)

If F has uniformly at most one minimum, then the unique ξ ∈ S with F (ξ) = 0
(if there is any) is even a strong minimum [4]: that is,

∀δ ∃ε ∀x (F (x) < ε ⇒ d (x, ξ) < δ) .

Conversely, if F has a strong minimum, then F has uniformly at most one
minimum.

As the author has shown in [26], Brouwer’s fan theorem for decidable bars is
equivalent to the statement that, for uniformly continuous functions on a com-
pact metric space, the condition that F has uniformly at most one minimum
follows from its non–uniform counterpart that F has at most one minimum.
(One half of this equivalence corresponds to the rule from [14, Theorem 4.3].)
This classification in the spirit of the constructive reverse mathematics—as prop-
agated by Ishihara [12,13] and others—sharpens an earlier result obtained jointly
with Berger and Bridges [4] (see also [5]).

Let S be a complete metric space, and F : S → R a sequentially continuous
function with inf F = 0. As recalled in Proposition 2.2 of [26], if F has uniformly
at most one minimum, then F has a minimum: that is, attains its infimum 0.
(This is analogous to the rule from [14, Theorem 4.4].) To see this, one starts as
in the classical argument discussed before: by inf F = 0 one can choose—notably
by countable choice—a sequence (xn) in S with (1). Now one can profit from
the additional hypothesis that F has uniformly at most one minimum, which
ensures that (xn) is a Cauchy sequence. Since S is complete, the sequence (xn)
has a limit ξ in S, for which F (ξ) = 0 by the sequential continuity of F .

Being essentially folklore, this argument has some history. The presumably
first printed occurrences with a uniform uniqueness condition are Theorem 4 of

Problems as Solutions 679

Lifschitz’s [17],2 and Problem 10 in Chapter 2 of Bridges and Richman’s [9].3

(The work Bridges did in the 1980s was centred around non–uniform unique-
ness; see [8] for an overview and for references.) The very concept of uniform
uniqueness was then used intensively by Kohlenbach from the early 1990s [14],
first in the context of best approximations; see also the survey [15].

To be more precise on the latter, with the rules from [14, Section 4] a formal
classical proof of the non–uniform uniqueness of the desired solution is converted
into a formal constructive proof first of its uniform uniqueness (actually of the
presence of a so–called modulus of uniqueness), and next of its existence as a
point, which, finally, varies continuously with the parameters. In each of those
rules, moreover, a choice principle for quantifier–free formulas is eliminated.

By the argument sketched above, one obtains a constructive solution, which a
fortiori is unique, of the aforementioned problem under the additional hypothesis
that F has uniformly at most one minimum—and if countable choice is taken
for granted. Even if S fails to be complete, the given data are converted—by a
simple invocation of countable choice—into an element of the completion of S:
namely, into the Cauchy sequence (xn) in S.

3 Without Countable Choice

To solve our problem without countable choice, we first recall from [22] Rich-
man’s particular way to define the completion of S as the set Ŝ of all locations
on S. (In [23] he has used the wider concept of a locater.) Similar definitions were
given before by Burden–Mulvey [10], Mulvey [18], and Stolzenberg [27]; recent
occurrences of analogous concepts in point–free topology include the work by
Vickers [28,29] and Palmgren [19].

Let R denote the set of Dedekind reals understood—as in [22]—as (located)
lower cuts in Q. A location on a metric space S is a function f : S → R with
inf f = 0 and

|f (x) − f (y)| � d (x, y) � f (x) + f (y) .

The set Ŝ of all locations on S is a metric space whose metric is given by

d (f, g) = sup |f − g| = inf (f + g) .

We note in passing that R is a set in CZF [3]; more generally, if S is a set in
CZF, then so is Ŝ, for it can be separated from the set R

S . To prove this one
only needs, in addition to exponentiation and (restricted) separation, a binary
form of the principle of fullness [11] (see also [2]).

Again according to [22], there is the isometric embedding

S ↪→ Ŝ , z �→ d (z, ·) ,

2 There is no proof of Lifschitz’s Theorem 4 in the English translation of the Russian
original from 1971. In the context of unique existence Kreinovich [16] also refers to
a metatheorem by M.G. Gelfond from 1972.

3 This was communicated to the authors by P. Aczel.

680 P. Schuster

along which we identify each point of S with its image in Ŝ, and the whole of S
with the corresponding subspace of Ŝ. For all f ∈ Ŝ and z ∈ S we have

d (f, z) = f (z) ;

whence each location on S measures the distance between itself and the points
of S. Moreover, S is dense in Ŝ, and if S equals Ŝ, then S is said to be complete.
Needless to say, Ŝ is complete; in particular, R is complete, for R ∼= Q̂.

The following is hidden in the proof of [22, Theorem 4]. Let h : S → R and
a ∈ R with

inf
x∈S

|h (x) − a| = 0 . (4)

For every g : S → R and b ∈ R, we use

lim
h(x)→a

g (x) = b (5)

as a shorthand for

∀ε ∃δ ∀x (|h (x) − a| < δ ⇒ |g (x) − b| < ε) . (6)

(In the specific case of S = R and h (x) = x this is nothing but limx→a g (x) = b.)
In view of (4) the notation (5) is well–defined by (6), because the limit—if it
exists—is uniquely determined. In fact, if there is any b ∈ R with (6), then b = c
for every c ∈ R satisfying (6) with c in place of b.

However, when does limh(x)→a g (x) exist in R for any given g : S → R? A
sufficient condition for the existence of the limit is that g satisfies

∀ε ∃δ ∀x, y (|h (x) − a| < δ ∧ |h (y) − a| < δ ⇒ |g (x) − g (y) | < ε) . (7)

In fact, if (7) holds, then the subset L of Q characterised by

r ∈ L ⇔ ∃s ∈ Q [r < s ∧ ∃δ ∀x (|h (x) − a| < δ ⇒ s < g (x))]

is a lower cut in Q defining b ∈ R with limh(x)→a g (x) = b. Note that condition
(7) is also necessary for the existence of the limit.

Back to [22], every f ∈ Ŝ is uniformly continuous (in fact, it is Lipschitz
continuous with Lipschitz constant 1), has uniformly at most one minimum, and
satisfies

f (y) = lim
f(x)→0

d (x, y) .

Each ϕ : S → T that is uniformly continuous on bounded subsets extends
uniquely to a mapping ϕ̂ : Ŝ → T̂ with

ϕ̂ (f) (z) = lim
f(x)→0

d (ϕ (x) , z)

for every z ∈ T , which is uniformly continuous on bounded subsets. If S and T
are complete, then ϕ̂ = ϕ.

Having at hand all this material from [22], we can solve our problem without
countable choice.

Problems as Solutions 681

Lemma 1. Let F : S → R be a function on a metric space S with inf F = 0. If
F is uniformly continuous and has uniformly at most one minimum, then

f (x) = lim
F (y)→0

d (x, y)

defines f ∈ Ŝ with F̂ (f) = 0.

Proof. For every x the limit exists and is uniquely determined by x; whence
unique choice suffices to obtain the function f . It is routine to verify that f is a
location on S. Since

d
(
F̂ (f) , 0

)
= F̂ (f) (0) = lim

f(x)→0

F (x)
︷ ︸︸ ︷
d (F (x) , 0)

(†)
= 0 ,

this f is also a root of F̂ . As for (†), it is straightforward to give a rigorous version
of the following argument: if f(x) is small, then x is close—by the definition of
f—to some y with F (y) small, so that F (x) is small by the continuity of F .

Example 1. If S = R and F (x) = |x − ξ|k with k � 1 and ξ ∈ R, then

f(x) = lim
F (y)→0

d (x, y) = lim
y→ξ

d(x, y) = d(x, ξ) = |x − ξ| .

In particular, f = F precisely when k = 1, which is the only k for which F is a
location.

Remark 1. Let F and f be as in Lemma 1 above. If F is already a location, then
f = F .

Theorem 1. Let F : S → R be a uniformly continuous function on a complete
metric space S. If inf F = 0 and F has uniformly at most one minimum, then
F has a minimum: that is, attains its infimum 0.

Literally as in [26], Theorem 1 can be extended to the more general case of
an equation F (x, u) = 0 depending on a parameter u varying over yet another
metric space T . For the sake of a complete presentation we include this result,
and its short proof. The step from Theorem 1 to Corollary 1 is analogous to the
one from Theorem 4.4 to Corollary 4.5 of [14].

Let F : S ×T → R be a function. If for each u ∈ T there is exactly one ξu ∈ S
with F (ξu, u) = 0 (for instance, if F (· , u) : S → R satisfies the hypotheses
of Theorem 1 for every u ∈ T), then—by unique choice—there is a mapping
h : T → S with F (h (u) , u) = 0 for all u ∈ T .

Corollary 1. Let S and T be metric spaces with S complete, and F : S×T → R

such that F (· , u) : S → R is uniformly continuous with infx∈S F (x, u) = 0 for
each u ∈ T . If

∀δ ∀u ∃ε ∀v ∀x, y (d (u, v) < ε ∧ F (x, u) < ε ∧ F (y, v) < ε ⇒ d (x, y) < δ) ,
(8)

682 P. Schuster

then there is a pointwise continuous mapping h : T → S with F (h (u) , u) = 0
for all u ∈ T . If even

∀δ ∃ε ∀u, v ∀x, y (d (u, v) < ε ∧ F (x, u) < ε ∧ F (y, v) < ε ⇒ d (x, y) < δ) ,
(9)

then h is uniformly continuous.

Proof. Note first that (9) implies (8).4 The case u = v of (8) says that F (· , u) has
uniformly at most one minimum, and thus satisfies the hypotheses of Theorem 1.
Arguing as before, we obtain a mapping h : T → S with F (h (u) , u) = 0 for all
u ∈ T . The case x = h (u) and y = h (v) of (8) finally says that h is pointwise
continuous, or uniformly continuous if F even satisfies (9).

4 Discussion

In view of Lemma 1, in Theorem 1—and thus also in Corollary 1—a given
problem has prompted its desired solution in a fairly direct way. Example 1
and Remark 1 raise the questions how far a problem is from its solution, to
what extent they can be identified with one another, and how many problems
have the same solution. Questions of practical interest are which common types
of equations satisfy the (uniform) uniqueness precondition, and whether any
kind of local uniqueness suffices. Future work in this area will also include an
adaptation of the techniques we have developed above from Richman’s concept
of a completion to the road followed by Vickers [28,29] and Palmgren [19] in
point–free topology.

Acknowledgements. Vladimir Lifschitz provided the reference of his article,
whose existence was first indicated by Grigori Mints. The present paper was
worked out at the Lorentz Center of Leiden University during the workshop
Mathematics: Algorithms and Proofs organised in January 2007 by Herman Geu-
vers, Bas Spitters (chair), and Freek Wiedijk. Suggestions by Douglas Bridges
helped to bring this article into its final form. Last but not least, the author
owes special thanks to Ulrich Berger.

References

1. Aczel, P.: The type theoretic interpretation of constructive set theory. In: Macin-
tyre, A., Pacholski, L., Paris, J. (eds.) Logic Colloquium ’77, pp. 55–66. North–
Holland, Amsterdam (1978)

2. Aczel, P., Crosilla, L., Ishihara, H., Palmgren, E., Schuster, P.: Binary refinement
implies discrete exponentiation. Studia Logica 84, 361–368 (2006)

3. Aczel, P., Rathjen, M.: Notes on Constructive Set Theory. Institut Mittag–Leffler
Preprint No. 40 (2000/01)

4 They differ from one another only by the order of the quantifiers ∃ε and ∀u.

Problems as Solutions 683

4. Berger, J., Bridges, D., Schuster, P.: The fan theorem and unique existence of
maxima. J. Symbolic Logic 71, 713–720 (2006)

5. Berger, J., Ishihara, H.: Brouwer’s fan theorem and unique existence in constructive
analysis. Math. Log. Quart. 51, 369–373 (2005)

6. Bishop, E.: Foundations of Constructive Analysis. McGraw–Hill, New York (1967)
7. Bishop, E., Bridges, D.: Constructive Analysis. Springer, Berlin (1985)
8. Bridges, D.: Recent progress in constructive approximation theory. In: Troelstra,

A.S., van Dalen, D. (eds.) The L.E.J. Brouwer Centenary Symposium, pp. 41–50.
North–Holland, Amsterdam (1982)

9. Bridges, D., Richman, F.: Varieties of Constructive Mathematics. Cambridge Uni-
versity Press, Cambridge (1987)

10. Burden, C.W., Mulvey, C.J.: Banach spaces in categories of sheaves. In: Fourman,
M., Mulvey, C., Scott, D. (eds.) Applications of Sheaves. Proceedings, Durham,
1977. Lecture Notes in Math, vol. 753, pp. 169–196. Springer, Berlin and Heidelberg
(1979)

11. Crosilla, L., Ishihara, H., Schuster, P.: On constructing completions. J. Symbolic
Logic 70, 969–978 (2005)

12. Ishihara, H.: Informal constructive reverse mathematics. Sūrikaisekikenkyūsho
Kōkyūroku 1381, 108–117 (2004)

13. Ishihara, H.: Constructive reverse mathematics: compactness properties. In:
Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis.
Oxford Logic Guides, vol. 48, pp. 245–267. Oxford University Press, Oxford (2005)

14. Kohlenbach, U.: Effective moduli from ineffective uniqueness proofs. An unwind-
ing of de La Vallée Poussin’s proof for Chebycheff approximation. Ann. Pure
Appl. Logic 64, 27–94 (1993)

15. Kohlenbach, U., Oliva, P.: Proof mining: a systematic way of analysing proofs in
mathematics. Proc. Steklov Inst. Math. 242(3), 136–164 (2003)

16. Krĕınovič, V.Ja.: Review of Constructive Functional Analysis. MR0521982
(82k:03094)

17. Lifshits, V.A.: Investigation of constructive functions by the method of fillings.
J. Soviet Math. 1, 41–47 (1973)

18. Mulvey, C.J.: Banach spaces over a compact space. In: Herrlich, H., Preuss, G.
(eds.) Categorical Topology. Proceedings, Berlin, 1978. Lecture Notes in Math,
vol. 719, pp. 243–249. Springer, Berlin and Heidelberg (1979)

19. Palmgren, E.: A constructive and functorial embedding of locally compact metric
spaces into locales. Department of Mathematics, Uppsala University, Report 25
(2006)

20. Rathjen, M.: Choice principles in constructive and classical set theories. In: Chatzi-
dakis, Z., Koepke, P., Pohlers, W. (eds.) Logic Colloquium ’02. Proceedings,
Münster, 2002. Lect. Notes Logic 27, Assoc. Symbol. Logic, La Jolla pp. 299–326
(2006)

21. Richman, F.: Intuitionism as generalization. Philos. Math (3) 5, 124–128 (1990)
22. Richman, F.: The fundamental theorem of algebra: a constructive development

without choice. Pacific J. Math. 196, 213–230 (2000)
23. Richman, F.: Spreads and choice in constructive mathematics.

Indag. Math. (N.S.) 13, 259–267 (2002)
24. Schuster, P.: Unique existence, approximate solutions, and countable choice. The-

oret. Comput. Sci. 305, 433–455 (2003)
25. Schuster, P.: Countable choice as a questionable uniformity principle. Philos. Math

(3) 12, 106–134 (2004)

684 P. Schuster

26. Schuster, P.: Unique solutions. Math. Log. Quart. 52 (2006), pp. 534–539. Corri-
gendum: Math. Log. Quart. 53, 214 (2007)

27. Stolzenberg, G.: Sets as limits yellow. Typescript (1988)
28. Vickers, S.: Localic completion of generalised metric spaces. I. Theor. Appl.

Categ. (15) (electronic) 14, 328–356 (2005)
29. Vickers, S.: Localic completion of generalised metric spaces. II. Power locales.

Preprint, School of Computer Science, University of Birmingham (2004)

A Useful Undecidable Theory

Victor L. Selivanov�

A.P. Ershov Institute of Informatics Systems
Siberian Division Russian Academy of Sciences

and
Theoretische Informatik, Universität Würzburg
selivanov@informatik.uni-wuerzburg.de

Abstract. We show that many so called discrete weak semilattices con-
sidered earlier in a series of author’s publications have hereditary un-
decidable first-order theories. Since such structures appear naturally in
some parts of computability theory, we obtain several new undecidabil-
ity results. This applies e.g. to the structures of complete numberings,
of m-degrees of index sets and of the Wadge degrees of partitions in the
Baire space and ω-algebraic domains.

Keywords: Semilattice, discrete weak semilattice, partition, reducibil-
ity, undecidability, theory.

1 Introduction

In a series of papers [Se79, Se82, Se04, Se05, Se06] we discovered that in several
parts of computability theory and hierarchy theory structures of certain kind
(called discrete weak semilattices or dws for short) appear frequently. In this
paper we show that any dws with an antichain property (to be defined in the
next section) has hereditary undecidable first-order theory. Recall that a theory
of signature σ is hereditary undecidable if any of its subtheories of the same
signature σ is undecidable. This general undecidability result applies to the dws’s
considered earlier because they turn out to have the antichain property. In this
way, we obtain several new undecidability results which maybe of interest to the
corresponding parts of computability theory.

We shall use standard set-theoretic notation. Let us fix some terminology
concerning partitions. Let M be a set, P (M) the class of subsets of M , and for
each k ≥ 2 let kM be the set of all functions A : M → k (we identify a natural
number k < ω with the set {0, . . . , k − 1}). We call maps A ∈ kM k-partitions
of M because they are in a natural bijective correspondence with the tuples
(A0, . . . , Ak−1) of pairwise disjoint sets satisfying A0 ∪ · · · ∪ Ak−1 = M . For any
class C ⊆ P (M), let Ck denote the set of C-partitions, i.e. partitions A ∈ kM

such that A−1(i) ∈ C for each i < k. For any class C of subsets of M , BC(C)
denotes the Boolean closure of C.
� Supported by RFBR Grant 4413.2006.1, by DFG Mercator program and by DFG-

RFBR Grant 06-01-04002.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 685–694, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

686 V.L. Selivanov

In some parts of the text we assume the reader to be acquainted with basic
notions of computability theory and hierarchy theory like computable functions,
computably enumerable sets, m-reducibility, hyperarithmetical hierarchy with
levels denoted Σ0

n, Π0
n, Δ0

n or Borel hierarchy in topological spaces with levels
denoted Σ0

n,Π0
n,Δ0

n, for n > 0. By B we denote the class of Borel sets. By
κ and π we denote the standard numberings of the class of computable partial
functions and of the class of computably enumerable sets, respectively. Following
A.I. Mal’cev, we call κ and π Kleene and Post numberings, respectively. For more
information on this, see e.g. [Od99, Ke94].

We use some standard notation and terminology on posets which may be
found e.g. in [DP94]. We will not be very cautious when applying notions about
posets also to preorders; in such cases we mean the corresponding quotient-
poset of the preorder. A poset (P ; ≤) will be often shorter denoted just by P .
Any subset of P may be considered as a poset with the induced partial ordering.
In particular, this applies to the “lower cones” x̂ = {y ∈ P | y ≤ x}, for any
x ∈ P . A semilattice is a structure (P ; ≤, ∪) consisting of a preorder (P ; ≤)
and a binary operation ∪ of supremum in (P ; ≤) (thus, we consider only upper
semilattices). With a slight abuse of notation, we apply the operation ∪ also to
finite non-empty subsets of P . This causes no problem because the supremum
of any non-empty finite set is unique ap to equivalence relation ≡ induced by ≤.

In Section 2 we introduce main notions and establish some necessary facts
about dws’s. In Section 3 we prove the undecidability result. In Section 4 we
describe the above-mentioned applications of the undecidability result, and we
conclude in Section 5.

2 The Theory

We start with a definition which is a slight modification of the corresponding
notions introduced in [Se79, Se82].

Definition 1. Let I be a non-empty set. By I-discrete weak semilattice (dws,
for short) we mean a structure (P ; ≤, {Pi}i∈I) with Pi ⊆ P such that:

(i) (P ; ≤) is a preorder;
(ii) for all n < ω, x0, . . . , xn ∈ P and i ∈ I there exists ui = ui(x0, . . . , xn) ∈

Pi which is a supremum for x0, . . . , xn in Pi, i.e. ∀j ≤ n(xj ≤ ui) and for any
y ∈ Pi with ∀j ≤ n(xj ≤ y) it holds ui ≤ y;

(iii) for all n < ω, x0, . . . , xn ∈ P , i
= i′ ∈ I and y ∈ Pi′ , if y ≤ ui(x0, . . . , xn)
then y ≤ xj for some j ≤ n.

Throughout the paper, we consider only the case when I is a non-empty finite
set with at least two elements. Usually we consider the case when I = k for some
integer k ≥ 2; in this case we write the dws also in the form (P ; ≤, P0, . . . , Pk−1).
Note that the operations ui above maybe considered as n-ary operations of P
for each n > 0. These operations are associative and commutative, so we can
apply them also to finite nonempty subsets of P . It is clear that for any dws the
structure (Pi; ≤, ui) is a semilattice for each i ∈ I, and that (P ; ≤, {Pj}j∈J) is a

A Useful Undecidable Theory 687

dws for any nonempty subset J of I. The following properties of dws’s are also
immediate (see [Se79, Se82]).

Proposition 1. Let (P ; ≤, P0, . . . , Pk−1) be a dws and y, x0, . . . , xn ∈ P0 ∪· · ·∪
Pk−1.

(i) If xj ≤ y for all j ≤ n then ui(x0, . . . , xn) ≤ y for some i < k.
(ii) If y ≤ ui(x0, x . . . , xn) for all i < k then y ≤ xj for some j ≤ n.
(iii) If {x0, . . . , xn} has no greatest element then it has no supremum in P0 ∪

· · · ∪ Pk−1.

The next easy assertion shows that considering of only binary operations ui is
sufficient to recover the structure of a dws.

Proposition 2
(i) Let (P ; ≤, P0, . . . , Pk−1) be a dws. Then the binary operations u0, . . . , uk−1 on
P have for all x, y, z, t ∈ P and distinct i, j < k the following properties: x, y ≤
ui(x, y); x, y ≤ ui(z, t) → ui(x, y) ≤ ui(z, t); uj(z, t) ≤ ui(x, y) → (uj(z, t) ≤
y ∨ uj(z, t) ≤ z).
(ii) Let (P ; ≤) be a preorder and u0, . . . , uk−1 binary operations on P satisfying
the properties in (i). Then (P ; ≤, P0, . . . , Pk−1), where Pi = {ui(x, y) | x, y ∈ P},
is a dws.
(iii) The maps (P ; ≤, P0, . . . , Pk−1) �→ (P ; ≤, u0, . . . , uk−1) and back are inverses
of each other, up to isomorphism of the quotient-structures.

By the last proposition, we may apply the term “dws” also to structures (P ; ≤
, u0, . . . , uk−1) satisfying the three properties in (i). Note that the class of dws’s
written in this form is universally axiomatizable, so any substructure of a dws
(P ; ≤, u0, . . . , uk−1) is also a dws.

Note that for any dws the unary operations ui are closure operators on (P ; ≤),
i.e. they satisfy ∀x(x ≤ ui(x)), ∀x∀y(x ≤ y → ui(x) ≤ ui(y)) and ∀x(ui(ui(x)) ≤
ui(x)). They have also the discreteness property: ∀x∀y(ui(x) ≤ uj(y) → ui(x) ≤
y), for all i
= j. This shows a close relation of dws’s to semilattices with discrete
closures (dc-semilattices, for short) introduced in [Se82]. By a dc-semilattice
we mean a structure (P ; ≤, ∪, p0, . . . , pk−1) satisfying the following properties:
(P ; ≤, ∪) is a semilattice; the unary operations pi are closure operators on (P ; ≤)
with the discreteness property; every element pi(x) is join-irreducible, i.e. pi(x) ≤
y ∪ z → (pi(x) ≤ y ∨ pi(x) ≤ z)) for all y, z ∈ P . The next easy assertion shows
that dws’s that are semilattices essentially coincide with dc-semilattices.

Proposition 3
(i) Let (P ; ≤, P0, . . . , Pk−1) be a dws and (P ; ≤, ∪) is a semilattice. Then the
structure (P ; ≤, ∪, u0, . . . , uk−1) with the unary operations ui on P is a dc-
semilattice.
(ii) If (P ; ≤, ∪, p0, . . . , pk−1) is a dc-semilattice then (P ; ≤, P0, . . . , Pk−1),
where Pi = {pi(x) | x ∈ P} is a dws.
(iii) The maps (P ; ≤, ∪, P0, . . . , Pk−1) �→ (P ; ≤, ∪, u0, . . . , uk−1)) and back are
inverses of each other, up to isomorphism of the quotient-structures.

688 V.L. Selivanov

In [Se82] we considered also some variations of dws’s and dc-semilattices. By
a 2-dws we mean a structure (P ; ≤, {P j

i }i,j∈I) with the properties similar to
those of dws’s with the only exception: this time the property (iii) states that
for all n < ω, x0, . . . , xn ∈ P , i
= i′, j
= j′ and y ∈ P j′

i′ , if y ≤ uj
i (x0, . . . , xn)

then y ≤ xl for some l ≤ n. By a 2-dc-semilattice we mean a structure (P ; ≤,
∪, {rj

i }i,j∈I) satisfying the same properties as dc-semilattices with a similar
modification of the discreteness property: for all x, y ∈ P , i
= i′, j
= j′,
rj
i (x) ≤ rj′

i′ (y) → rj
i (x) ≤ y. Analogs of Propositions 1—3 are easily seen to

be true also for 2-dws’s and 2-dc-semilattices. We state also the following evi-
dent relationship between the introduced notions.

Proposition 4
(i) If (P ; ≤, {P j

i }i,j∈I) is a 2-dws then (P ; ≤, {P i
i }i∈I) is a dws.

(ii) If (P ; ≤, ∪, {rj
i }i,j∈I) is a 2-dc-semilattice then (P ; ≤, ∪, {ri

i}i∈I) is a
dc-semilattice.

We conclude this section with discussing a subclass of dws’s for which the un-
decidability result holds true. Recall that a subset F of a preorder is an an-
tichain if every two elements of F are incomparable. By a strong antichain in
a dws (P ; ≤, P0, . . . , Pk−1) we mean a finite set F ⊆ P that has at least two
elements and x
≤ ui(F \ {x}) for all x ∈ F and i < k. We say that a dws
(P ; ≤, P0, . . . , Pk−1) has unbounded width if Pi has antichains with any finite
number of elements, for some i < k.

Proposition 5. If (P ; ≤, P0, . . . , Pk−1) is a dws of unbounded width then for
each j < k the set Pj has strong antichains with any finite number of elements.

Proof. Suppose w.l.o.g. that P0 has antichains with any finite number of ele-
ments. For all n > 0 and j < k we have to find a strong antichain {a0, . . . , an}
with n + 1 elements in Pj . First we consider the case j
= 0. Let {b0, . . . , b2n+1}
be an antichain in P0 with 2n + 2 elements. Set ai = uj(b2i, b2i+1) for all i ≤ n.
We have to check that ai
≤ ul(a0, . . . , ai−1, ai+1, . . . , an) for all i ≤ n and l < k.
Suppose the contrary. If j
= l then, since ai ∈ Pj , ai ≤ am = uj(b2m, b2m+1)
for some m ≤ n, m
= i. Then b2i ≤ uj(b2m, b2m+1). Since b2i ∈ P0 and
j
= 0, b2i ≤ b2m or b2i ≤ b2m+1, a contradiction. Now let l = j. Then
b2i ≤ ul(a0, . . . , ai−1, ai+1, . . . , an). Since b2i ∈ P0 and j
= 0, b2i ≤ am for
some m ≤ n, m
= i, and we obtain the same contradiction.

It remains to consider the case j = 0, i.e. to construct a strong antichain with
n + 1 elements in P0. By the preceding paragraph, P1 has strong antichains,
hence also antichains with any finite number of elements. Taking in the preceding
argument 1 in place of 0 and j = 0 we obtain the desired strong antichain in P0.
This completes the proof.

Finally, we show that many dws’s automatically have unbounded width.

Proposition 6. Let k ≥ 3 and (P ; ≤, P0, . . . , Pk−1) be a dws that is not linearly
ordered. Then it has unbounded width.

Proof. Let x, y be incomparable elements in P . Let k+ be the set of finite
nonempty words over alphabet k. For any w ∈ k+, let |w| be the length of w,

A Useful Undecidable Theory 689

and for i < |w| let w(i) be the i-th letter of w, so w = w(0) · · · w(n − 1) where
n = |w|. We say that w is repetition-free if w(i)
= w(i + 1) for any i < |w| − 1.
Relate to any w ∈ k+ the element uw = uw(0) · · · uw(n−1)(x, y) ∈ P where
n = |w|. E.g., u021 = u0(u2(u1(x, y))).

We claim that for all repetition-free words w, v ∈ k+, uw ≤ uv iff w ⊆ v,
i.e. v = v0w(0)v1 · · ·w(n − 1)vn for some (possibly, empty) words v0, . . . , vn,
where again n = |w|. From right to left, the assertion follows from the fact
that any unary operation ui is a closure operator. Conversely, let uw ≤ uv;
we argue by induction on (n, m) in the lexicographic ordering, where m = |v|.
Assume first that w(0)
= v(0). Since x, y < uw, from the discreteness property
we obtain m > 1. Again by discreteness, uw ≤ uv′ where v′ = v(1) · · · v(m − 1).
By induction, w ⊆ v′, hence w ⊆ v. Now assume w(0) = v(0). If n = 1, we are
done. Otherwise, uw′ ≤ uv (because uw′ ≤ uw). Since w′(0)
= v(0), by the first
case we have m > 1 and uw′ ≤ uv′ . By induction, w′ ⊆ v′ and therefore w ⊆ v.

For any n > 0, let An be the set of repetition-free words of length n from k+ with
the first letter 0. By induction on n, An has exactly (k−1)n elements. Since k ≥ 3,
the number of elements in An is unbounded when n is growing. By the property
of uw, {uw | w ∈ An} is an antichain in (P0; ≤). This completes the proof.

3 The Undecidability

In this section we present the undecidability result

Theorem 1. Let k ≥ 2 and (P ; ≤, P0, . . . , Pk−1) be a dws of unbounded width.
Then the first-order theory FO(P ; ≤) is hereditary undecidable.

Proof is a slight modification of a proof in [KS06]. As is well-known [E+65], it
suffices to find first-order formulas φ0(x, p̄), φ1(x, y, p̄) and φ2(x, y, p̄) of signature
{≤} (where x, y are variables and p̄ is a string of variables called parameters)
with the following property:

(*) for every n < ω and for all equivalence relations ξ, η on {0, . . . , n} there are
values of parameters p̄ ∈ P such that the structure ({0, . . . , n}; ξ, η) is isomorphic
to the structure (φ0(P, p̄); φ1(P, p̄), φ2(P, p̄)).

Here φ0(P, p̄) = {a ∈ P |(P ; ≤) |= φ0(a, p̄)}, φ1(P, p̄) = {(a, b) ∈ P |(P ; ≤) |=
φ1(a, b, p̄)} and similarly for φ2. In other words, for all n, ξ, η as above there are
parameter values p̄ ∈ P such that the set {0, . . . , n} and the relations ξ, η are
first-order definable in (P ; ≤) with parameters p̄.

We will use short notation v̄ = (v0, . . . , vk−1), w̄ = (w0, . . . , wk−1) and z̄ =
(z0, . . . , zk−1) for strings of different variables. By Proposition 5, for any n < ω
there is a strong antichain {c0, . . . , cn} in P0. Let τ(x, v̄) be the formula

x ∈ P0 ∪ · · · ∪ Pk−1 ∧
∧

i<k

(x ≤ vi) ∧ ¬∃y > x(y ∈ P0 ∪ · · · ∪ Pk−1 ∧
∧

i<k

(y ≤ vi))

which means that x is a maximal lower bound for {v0, . . . , vk−1} in P0∪· · ·∪Pk−1.
If we fix the values

vj = uj(c0, . . . , cn) ∈ Pj , j < k, (1)

690 V.L. Selivanov

of parameters v̄ then, by Proposition 1,

τ(P, v̄) = {c0, . . . , cn}. (2)

Let ψ(x, y, v̄, w̄) be the formula τ(x, v̄)∧ τ(y, v̄) ∧∃t(τ(t, w̄)∧ x ≤ t ∧ y ≤ t). Let
us fix values v̄ as in (1) and values of w̄ as follows:

wj = uj(u0({ci | i ∈ ξ0}), . . . , u0({ci | i ∈ ξm})) ∈ Pj , j < k, (3)

where ξ is an equivalence relation on n + 1 and (ξ0, . . . , ξm) is the partition of
n + 1 to ξ-equivalence classes. From the strong antichain property of c0, . . . , cn

and Proposition 1 it follows that for these values we have

ψ(P, v̄, w̄) = {(ci, cj)|(i, j) ∈ ξ}. (4)

Now let p̄ be the string of 3k variables (v̄, w̄, z̄), φ0(x, p̄) be τ(x, v̄), φ1(x, y, p̄)
be ψ(x, y, v̄, w̄) and φ2(x, y, p̄) be ψ(x, y, v̄, z̄) (the last formula is obtained from
ψ(x, y, v̄, w̄) by substituting z̄ in place of w̄). We claim that formulas φ0, φ1, φ2

satisfy the condition (*). Let equivalence relations ξ, η on n+1 be given. Specify
values of parameters v̄, w̄ as in (1), (3), and values of parameters z̄ as

zj = uj(u0({ci | i ∈ η0}), . . . , u0({ci | i ∈ ηl})) ∈ Pj , j < k,

where (η0, . . . , ηl) is the partition of n + 1 to η-equivalence classes. From (2)
and (4) we obtain φ0(P, p̄) = {c0, . . . , cn}, φ1(P, p̄) = {(ci, cj)|(i, j) ∈ ξ}, and
φ2(P, p̄) = {(ci, cj)|(i, j) ∈ η}. This means that i �→ ci is an isomorphism of
(n + 1; ξ, η) onto (φ0(P, p̄); φ1(P, p̄), φ2(P, p̄)). This completes the proof.

4 The Usefulness

In this section we present some applications of the undecidability result from
the previous section.

4.1 The Homomorphic Preorder

Here we consider the so called homomorphic preorder introduced and studied in
[KW00, Se04, Se06] in connection with the Boolean hierarchy of partitions. We
briefly recall some definitions in which all posets are assumed to be (at most)
countable and without infinite chains. By a forest we mean a poset in which
every lower cone x̂ is a chain. A tree is a forest having the least element (called
the root of the tree).

A k-poset is a triple (P ; ≤, c) consisting of a poset (P ; ≤) and a labeling c :
P → k. A morphism f : (P ; ≤, c) → (P ′; ≤′, c′) between k-posets is a monotone
function f : (P ; ≤) → (P ′; ≤′) respecting the labelings, i.e. satisfying c = c′ ◦ f .
Let P̃k, F̃k, T̃k and T̃ i

k denote the classes of all countable k-posets, countable k-
forests, countable k-trees and countable i-rooted k-trees without infinite chains,
respectively. The homomorphic preorder ≤ on P̃k is defined as follows: (P, ≤,
c) ≤ (P ′, ≤′, c′), if there is a morphism from (P, ≤, c) to (P ′, ≤′, c′). Let Pk, Fk,
Tk and T i

k be the subsets of the corresponding tilde-sets formed by finite posets
only. The next result extends a result in [KS06].

A Useful Undecidable Theory 691

Theorem 2. For all k ≥ 3 and i < k, the first-order theories of (P̃k; ≤), as well
as of the other seven sets from the preceding paragraph with the homomorphic
preorder, are hereditary undecidable.

Proof. Let � be the join operation on (P̃k; ≤). For all P ∈ P̃k and j < k,
let pj(P) be the k-poset obtained from P by adjoining a new smallest element
and assigning the label j to this element. By [Se06], (P̃k; ≤, �, p0, . . . , pk−1), as
well as the corresponding structures on F̃k, Pk and Fk, are dc-semilattices. By
Propositions 3, 6 and Theorem 1, first-order theories of (P̃k; ≤) and the other
three preorders are hereditary undecidable.

Again by [Se06], there are operations ∪, q1, . . . , qk−1 such that the structure
(T̃ i

k ; ≤, ∪, q1, . . . , qk−1) is a dc-semilattice, and the same applies to T i
k . This

proves the assertion for these two structures for k > 3. For k = 3, it is easy
to show that the corresponding dws’s have unbounded width. Hence, the first-
order theories are hereditary undecidable also in this case.

Since pj(F̃k) = T̃ j
k for any j < k, (T̃k; ≤, T̃ 0

k , . . . , T̃ k−1
k) is a dws that has,

by the preceding paragraph, unbounded width. Hence, FO(T̃k; ≤) is hereditary
undecidable. The same argument applies to Tk. This completes the proof.

4.2 Complete Numberings

Here we discuss some parts of the numbering theory [Er77]. For definition of
the well-known notions of a numbering, reducibility, complete and 2-complete
numbering see e.g. [Er77, Se82].

For any C ⊆ P (ω), let Ck be the corresponding subset of kω (see Section 1).
Let C1

k (C2
k) be the set of complete (respectively, 2-complete) numberings from

Ck. E.g., P (ω)k = kω, P (ω)1k is the set of complete numberings in kω, and (Δ0
2)2k

is the set of 2-complete Δ0
2-partitions in kω.

Theorem 3. Let k ≥ 2 and C be one of P (ω), Σ0
n, Π0

n, BC(Σ0
n), Δ0

n+1, where
n > 0. Then FO(Ck; ≤), FO(C1

k; ≤) and FO(C2
k ; ≤) are hereditary undecidable.

Proof. Let μ ⊕ ν be the join of numberings μ and ν. For ν ∈ kω and i <
k, let pi(ν) ∈ kω be the completion of ν w.r.t. i [Er77, Se82]. By [Se82],
(kω; ≤, ⊕, p0, . . . , pk−1) is a dc-semilattice. It is clear that Ck is closed under
⊕, p0, . . . , pk−1 for all the classes C. Hence, (Ck; ≤, ⊕, p0, . . . , pk−1) is a dc-semi-
lattice as well. The corresponding dws has unbounded width (for k ≥ 3 by
Proposition 6, and for k = 2 by a direct easy construction). By Proposition 3
and Theorem 1, FO(Ck; ≤), is hereditary undecidable.

By [Se82], C1
k =

⋃
i<k pi(Ck) for any C from the formulation. Hence, (C1

k; ≤,
p0(Ck), . . . , pk−1(Ck)) is a dws of unbounded width (for k = 2 this follows from
[Moh83]) and therefore FO(C1

k; ≤) is hereditary undecidable.
For ν ∈ kω and i, j < k, let rj

i (ν) ∈ kω be the 2-completion of ν w.r.t. i, j.
By [Se82], (kω; ≤, ⊕, rj

i) is a 2-dc-semilattice. It is clear that Ck is closed under
rj
i for all i, j < k and the classes C in the formulation. Hence, (Ck; ≤, ⊕, rj

i) is a
2-dc-semilattice as well. The corresponding dws has unbounded width (for k ≥ 3

692 V.L. Selivanov

by Propositions 6, and for k = 2 this follows from [Se78]). Again by [Se82],
C2

k =
⋃

i,j<k rj
i (Ck) for any C from the formulation. Hence, (C2

k; ≤, rj
i (Ck)) is a

2-dws of unbounded width and therefore FO(C2
k ; ≤) is hereditary undecidable.

This completes the proof of the theorem.

4.3 Index Sets and Partitions

Let ν be a numbering of S. A ν-index set of a set A ⊆ S is the preimage
ν−1(A). Let Iν be the class of all ν-index sets. Investigation of m-degrees of index
sets of important numberings (especially of the Kleene and Post numberings) is
a popular topic in computability theory (see e.g. [Hay72, Se79, Se82, Kuz81,
Moh83]). Similar questions are also interesting for the more general case of ν-
index k-partitions which are partitions of the form c ◦ ν where c : S → k (in
[Se82] they are called generalized index sets). For any C ⊆ P (ω), let Cν

k be the
set of ν-index partitions in Ck. E.g., P (ω)κ

2 is the class of all Kleene index sets
while (Δ0

2)
π
3 is the class of Post 3-partitions in (Δ0

2)3.

Theorem 4. Let k ≥ 2 and C be one of P (ω), Σ0
n, Π0

n, BC(Σ0
n), Δ0

n+1, where
n > 0. Then FO(Cκ

k ; ≤) and FO(Cπ
k ; ≤) are hereditary undecidable.

Proof. From [Se82] it follows that the quotient-structures of (Cκ

k ; ≤) and of
(C1

k; ≤) from the preceding subsection, and also those of (Cπ
k ; ≤) and (C2

k; ≤), are
isomorphic. Hence, the assertion follows from Theorem 3.
Remark. The reason for isomorphisms in the proof above is that the Kleene
numbering κ is universal complete [Er77, Se82] while the Post numbering π is
universal 2-complete [Se82]. By [Se82], Theorem 4 is true actually for all universal
complete and 2-complete numberings, and among those are many numberings
of interest for computability theory.

4.4 Wadge Reducibility in the Baire Space

Here we discuss the Wadge reducibility of partitions. Let X be a topological
space and A, B : X → k be k-partitions of X . We say that A is Wadge reducible
to B (in symbols, A ≤W B) if A = B ◦ f for some continuous function f on X .
Study of the Wadge reducibility on subsets of the Baire space ωω is a central topic
in descriptive set theory [Ke94]. Study of the Wadge reducibility of partitions
was initiated in [H96, Se04, Se06]. Analog of the next result holds true also for
the Cantor space.

Theorem 5. Let k ≥ 3 and C be one of the classes P (ωω),B, BC(Σ0
1),Σ

0
n,Π0

n,
BC(Σ0

n), Δ0
n+1 in the Baire space, where n > 1. Then FO(Ck; ≤W) is hereditary

undecidable.

Proof. Define an operation A ⊕ B on k-partitions of ωω by (A ⊕ B)(0ξ) = A(ξ)
and (A ⊕ B)(iξ) = B(ξ) for all 0 < i < ω and ξ ∈ ωω. For all i < k and k-
partition A of ωω, define a k-partition pi(A) of ωω as follows: [pi(A)](ξ) = i, if

A Useful Undecidable Theory 693

ξ
∈ 0∗1ωω, and [pi(A)](ξ) = A(η), if ξ = 0n1η. In [Se04, Se06] it was shown that
(kωω

; ≤W , ⊕, p0, . . . , pk−1) is a dc-semilattice. The classes Ck are closed under
⊕, p0, . . . , pk−1, hence (Ck; ≤CA, ⊕, p0, . . . , pk−1) are dc-semilattices as well. The
assertion follows by Propositions 3, 6 and Theorem 1.

4.5 Wadge Reducibility in ω-Algebraic Domains

Here we discuss the Wadge reducibility in the ω-algebraic domains that are cen-
tral objects of the domain theory (for definitions and general properties of these
objects see e.g. [AJ94]). Since ω-algebraic domains are topological spaces, it is
possible to define the Borel hierarchy for them with the usual properties [Se05].
We will consider two classes of ω-algebraic domains introduced and studied
in [Se05].

By a reflective domain we mean an ω-algebraic domain X with a bottom
element ⊥ such that there exist continuous functions q0, e0, q1, e1 : X → X such
that q0e0 = q1e1 = idX and e0(X), e1(X) are disjoint open sets. Examples of
reflective domains are the domain ω≤ω of finite and infinite sequences of natural
numbers, the domain ωω

⊥ of partial functions g : ω ⇀ ω, and many other natural
(in particular, functional) domains, see [Se05].

By a 2-reflective domain we mean an ω-algebraic domain X with a bot-
tom element ⊥ and a top element � such that there exist continuous functions
q0, e0, q1, e1 : X → X and open sets B0, C0, B1, C1 with the following properties:
q0e0 = q1e1 = idX ; B0 ⊇ C0 and B1 ⊇ C1; e0(X) = B0\C0 and e1(X) = B1\C1;
B0 ∩ B1 = C0 ∩ C1. Examples of 2-reflective domains are the domain Pω, and
many other natural (in particular, functional) domains, see [Se05].

Theorem 6. Let X be a reflective or a 2-reflective domain, k ≥ 3 and C is one
of the classes P (X),B, BC(Σ0

1),Σ
0
n, Π0

n, BC(Σ0
n),Δ0

n+1 in X, where n > 1.
Then FO(Ck; ≤W) is hereditary undecidable.

Proof. Let X be reflective. For i < k, let Pi = {A ∈ kX |A(⊥) = i}. By [Se05],
(kX ; ≤, P0, . . . , Pk−1) is a dws. The set Ck is easily seen to be closed under the
corresponding operations ui, hence the assertion follows.

Now let X be 2-reflective. For all i, j < k, let Pj
i = {A ∈ kX |A(⊥) = i ∧

A(�) = j}. By [Se05], (kX ; ≤, {Pj
i }i,j<k) is a 2-dws. Again, the set Ck is easily

seen to be closed under the corresponding operations uj
i . The assertion follows

from Propositions 4, 6 and Theorem 1.

5 Conclusion

When the notions of dws and dc-semilattice were introduced in [Se79, Se82]
for the study of index sets they could look rather ad hoc. This paper shows
that these notions appear naturally in several areas of computability theory and
hierarchy theory. Moreover, it is possible to prove a general undecidability result
that applies to those areas. Note that for some of the theories in Section 4 exact
complexity estimations are known (see e.g. [KS06]). But for most of them such
estimations are still open.

694 V.L. Selivanov

References

[AJ94] Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Computer
Science, v. 3, Oxford, pp. 1–168 (1994)

[DP94] Davey, B.A., Pristley, H.A.: Introduction to Lattices and Order. Cambridge
(1994)

[Er77] Ershov, Yu.L.: Theory of numberings, Moscow, Nauka (Russian) (1977)
[E+65] Ershov, Yu.L., Lavrov, I.A., Taimanov, A.D., Taitslin, M.A.: Elementary

theories. Uspechi Mat. Nauk (Russian) 20(4), 37–108 (1965)
[Hay72] Hay, L.: A discrete chain of degrees of index sets. J. Symbolic Logic 37,

139–149 (1972)
[H96] Hertling, P.: Unstetigkeitsgrade von Funktionen in der effectiven Analysis.

PhD thesis, FernUniversität Hagen, Informatik-Berichte, pp. 208–211 (1996)
[Ke94] Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York (1994)
[KS06] Kudinov, O.V., Selivanov, V.L.: Undecidability in the homomorphic qua-

siorder of finite labeled forests. In: Beckmann, A., Berger, U., Löwe, B.,
Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 289–296. Springer, Hei-
delberg (2006) (full version submitted to Journal of Logic and Computation.)

[Kuz81] Kuzmina, T.M.: Structure of m-degrees of index sets of families of partial
recursive functions. Algebra and Logic (Russian, there is an English transla-
tion) 20, 55–68 (1981)

[KW00] Kosub, S., Wagner, K.: The Boolean hierarchy of NP-partitions. In: Reichel,
H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 157–168. Springer,
Heidelberg (2000)

[Moh83] Mohrherr, J.: Kleene index sets and functional m-degrees. J. Symbolic
Logic 48(4), 829–840 (1983)

[Od99] Odifreddi, P.G.: Classical Recursion Theory. Elsevier, Amsterdam (1999)
[Se78] Selivanov, V.L.: On the index sets of computable classes of finite sets. In:

Algorithms and Automata, Kazan (Russian) pp. 95–99 (1978)
[Se79] Selivanov, V.L.: On the structure of degrees of index sets. Algebra and Logic

(Russian, there is an English translation) 18(4), 463–480 (1979)
[Se82] Selivanov, V.L.: On the structure of degrees of generalized index sets. Algebra

and Logic (Russian, there is an English translation) 21(4), 472–491 (1982)
[Se04] Selivanov, V.L.: Boolean hierarchy of partitions over reducible bases. Algebra

and Logic (Russian, there is an English translation) 43(1), 77–109 (2004)
[Se05] Selivanov, V.L.: Variations on the Wadge reducibility. Siberian Advances in

Math. 5(3), 44–80 (2005)
[Se06] Selivanov, V.L.: The algebra of labeled forests modulo homomorphic equiv-

alence. Conf. Computability in Europe-2006 Beckman, A. et.al. (eds.) Uni-
versity of Swansea Report Series #CSR 7-2006, pp. 241–250 (full version to
appear in Algebra and Logic) (2006)

On the Computational Power of Flip-Flop

Proteins on Membranes

Shankara Narayanan Krishna

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay,

Powai, Mumbai, India 400 076
krishnas@cse.iitb.ac.in

Abstract. P Systems with proteins on membranes were introduced re-
cently by A.Paun and B. Popa, in an effort to bridge the gap between
membrane computing and brane calculi. In this variant, one considers
multisets of objects inside the membranes as well as proteins on the mem-
branes. The action of the proteins on the objects is classified broadly into
5 categories. In this paper, we study the computational power of these
actions and come up with upper and lower bounds in terms of computa-
tional power for some of them.

Keywords: Membrane Computing, Universality, Register Machines.

1 Introduction

Membrane computing [7] and brane calculi [1] start from the same reality, viz.,
the living cell, but they develop in different directions and have different ob-
jectives. Membrane computing tries to abstract the computing power of bio-
logically inspired models in the Turing sense, whereas brane calculi work in
the framework of process algebra. Various operations on membranes appear in
both areas. We continue the study of P systems with proteins on membranes
[6], a variant of P systems introduced to understand and bridge the gap between
membrane computing and brane calculi. A few related attempts in this direction
include [2], [3].

Five operations of proteins acting on membranes, inspired from brane calculi,
have been considered in [6]. The power of some of the operations individually
(3ffp) and in combination (2res and 4cpp, 2res and 1cpp, 1res and 2ffp) has
been looked at in [6] and universality results obtained with arbitrary number of
proteins (in case of 3ffp, 1res and 2ffp), and with 2 proteins for the other two
combinations. However, no comparisons between the operations and no charac-
terizations of classes less than RE were made.

In this paper, we obtain a universality result with 6 proteins for the operation
3ffp, and also show that universality cannot be obtained with (i) one protein
even when having an unbounded environment, and (ii)having a finite number
of proteins k, k ≥ 1, and a finite environment. We also compare the operation
3ffp with two pairs of operations (1ffp, 2ffp) and (2ffp, 5ffp), and study

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 695–704, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

696 S.N. Krishna

the power of the single operation 4ffp. The full hierarchy of these operations
and their expressive power under various conditions remains to be studied. The
next section is devoted towards pre-requisites; section 3 introduces the variant
we study here and also analyzes the computational power; an Appendix contains
proofs for some of the Theorems.

2 Some Pre-requisites

We refer to [9] for the elements of formal language theory we use here. We
list a few notions and notations: N denotes the set of natural numbers; V de-
notes a finite alphabet; V ∗ is the free monoid generated by V under the op-
eration of concatenation and the empty string denoted by λ, as unit element;
by NFIN,NREG,NCF,NCS and NRE we denote the family of finite sets,
regular sets, context-free sets, context-sensitive sets and recursively enumerable
sets of natural numbers, respectively. These can also be looked at as the family
of sets of numbers recognized by these languages. For k ≥ 1 and a family of
languages FL, by NkFL we denote the length sets of FL excluding the ini-
tial segment upto k − 1. Equivalently, NkFL = {k + L | L ∈ NFL}, where
k + L = {k + n | n ∈ L}. A multiset over an alphabet V is represented by a
string over V (and by all its permutations) and each string precisely identifies a
multiset. It is known that NFIN ⊂ NREG = NCF ⊂ NCS ⊂ NRE.

For basic elements of membrane computing we refer to [8]; for the state-of-the
art of the domain, the reader may consult the bibliography from the web address
http://psystems.disco.unimib.it.

For proving computational universality, we use the concept of Minsky’s regis-
ter machine [5]. Such a machine runs a program consisting of numbered instruc-
tions of several simple types. Several variants of register machines with different
number of registers and different instruction sets were shown to be computa-
tionally universal (e.g., see [4], [5]).

An n-register machine is a construct M = (n, P, i, h) , where: (i) n is the num-
ber of registers, (ii) P is a set of labeled instructions of the form j : (op (r) , k, l),
where op (r) is an operation on register r of M , j, k, l are labels from the set
Lab (M) (which numbers the instructions in a one-to-one manner), (iii) i is the
initial label, and (iv) h is the final label.

The machine is capable of the following instructions:

(add(r), k, l): Add one to the contents of register r and proceed to instruction
k or to instruction l; in the deterministic variants usually considered in the
literature we demand k = l.
(sub(r), k, l): If register r is not empty, then subtract one from its contents
and go to instruction k, otherwise proceed to instruction l.
halt: Stop the machine. This additional instruction can only be assigned to
the final label h.

In their deterministic variant, such n-register machines can be used to com-
pute any partial recursive function f : Nα → Nβ; starting with (n1, . . . , nα) ∈

On the Computational Power of Flip-Flop Proteins on Membranes 697

Nα in registers 1 to α, M has computed f (n1, . . . , nα) = (r1, . . . , rβ) if it halts
in the final label E with registers 1 to β containing r1 to rβ . If the final label
cannot be reached, then f (n1, . . . , nα) remains undefined. A deterministic m-
register machine can also analyze an input (n1, . . . , nα) ∈ Nα

0 in registers 1 to α,
which is recognized if the register machine finally stops by the halt instruction
with all its registers being empty. If the machine does not halt, the analysis was
not successful.

In their non-deterministic variant, n-register machines can compute any re-
cursively enumerable set of non-negative integers (or of vectors of non-negative
integers). Starting with all registers being empty, we consider a computation of
the n-register machine to be successful, if it halts with the result being contained
in the first (β) register(s) and with all other registers being empty. In fact, [5] has
shown that 3 registers are enough for computing any recursively enumerable set
of numbers, such that the input is in register 1, register 3 is never decremented,
and the machine, when it halts, has the output in register 3. Some classic results
on register machines are mentioned below:

Proposition 1. For any partial recursive function f : Nα → Nβ there exists a
deterministic (max {α, β} + 2)-register machine M computing f in such a way
that, when starting with (n1, . . . , nα) ∈ Nα in registers 1 to α, M has computed
f (n1, . . . , nα) = (r1, . . . , rβ) if it halts in the final label h with registers 1 to β
containing r1 to rβ (and with all other registers being empty); if the final label
cannot be reached, f (n1, . . . , nα) remains undefined.

Proposition 2. For any recursively enumerable set L ⊆ Nβ of vectors of non-
negative integers there exists a non-deterministic (β + 2)-register machine M
generating L in such a way that, when starting with all registers 1 to β +2 being
empty, M non-deterministically halts with ni in registers i, 1 ≤ i ≤ β, and
registers β + 1 and β + 2 being empty if and only if (n1, . . . , nβ) ∈ L.

A register machine can also be used for defining a language, in the following way.
If V = {a1, . . . , ak}, then each string w ∈ V ∗ can be interpreted as a number
in base k + 1. Specifically, if w = ai1ai2 . . . ain , 1 ≤ ij ≤ k, 1 ≤ j ≤ n, then
val(w) = i1(k + 1)n−1 + . . . + in−1(k + 1) + in. Then, we have:

Proposition 3. If L ⊆ V ∗, card(V) = k, L ∈ RE, then a 3-register machine
M exists such that for every w ∈ V ∗ we have w ∈ L if and only if M halts when
starting with valk+1(w) in its first register; in the halting step, all registers of
the machine are empty.

3 P Systems with Proteins on Membranes

The systems we work with are of the form Π = (O, P, μ, w1/z1, . . . , wm/zm,
E, R1, . . . , Rm, io), where (i) O is a finite alphabet, (ii) P is the set of flip-flop
proteins (with O ∩ P = ∅), (iii) μ is the membrane structure, consisting of m
membranes, (iv) wi, 1 ≤ i ≤ m are the finite multisets of objects over O present

698 S.N. Krishna

in region i of μ, (v) zi ⊆ P, 1 ≤ i ≤ m are the sets of proteins present in region
i of μ, (vi) E is the multiset of objects from some set J ⊆ O present in the
environment (in an arbitrarily large number of copies/ only finitely many copies
each), (vii) Ri, 1 ≤ i ≤ m are finite sets of rules associated with region i of μ,
of the types 1ffp to 5ffp given below, and (viii) io is the output membrane, a
membrane from μ.

1. 1ffp : [ip|a → [ip
′|b, a[ip| → b[ip

′| or [ip
′|a → [ip|b, a[ip

′| → b[ip|
(protein p (p′) modifies an object, changes state to p′ (p))

2. 2ffp : [ip|a → a[ip
′|, a[ip| → [ip

′|a or [ip
′|a → a[ip|, a[ip

′| → [ip|a
(protein p (p′) moves one object unmodified, changes state to p′ (p))

3. 3ffp : [ip|a → b[ip
′|, a[ip| → [ip

′|b or [ip
′|a → b[ip|, a[ip

′| → [ip|b
(protein p (p′) modifies, moves one object, changes state to p′ (p))

4. 4ffp : a[ip|b → b[ip
′|a or a[ip

′|b → b[ip|a
(protein p (p′) interchanges two objects, changes state to p′ (p))

5. 5ffp : a[ip|b → c[ip
′|d or a[ip

′|b → c[ip|d
(protein p (p′) interchanges, modifies two objects, changes state to p′ (p))

In all the above rules, a protein can alternate in the two states p or p′ upon
application of a rule. (ffp stands for flip-flop protein).

The rules are used in the maximally parallel way: in each step, a maximal
multiset of rules is used, that is, no other rule can be applied to the objects
and the proteins which remain unused by the chosen multiset. As usual, each
object and each protein can be involved in the application of only one rule, but
the membranes are not considered as involved in the rule applications, hence
the same membrane can appear in any number of rules at the same time. Only
halting computations are considered successful, thus a non-halting computation
will yield no result. With a halting computation we associate a result, in the form
of the multiplicity of objects present in region io in the halting configuration.

The family of sets of numbers N(Π) generated by systems Π with at most
m membranes, using rules as specified in the list-of-types-of-rules, and with at
most r flip-flop proteins present on a membrane is denoted by NOP x

m(pror; list-
of-types-of-rules). If E has arbitrarily large number of copies of objects, x = ∞.
If there is an upper bound on the number of copies for each object in E, then
x = b. If there is no upper bound on the number of proteins (membranes), then
we replace r (m) by ∗.

Theorem 1. NOP∞
1 (pro6; 3ffp) = NRE.

Proof. We only prove the assertion NRE ⊆ NOP∞
1 (pro6; 3ffp), and infer the

other inclusion from the Church-Turing thesis. We simulate a non-deterministic
register machine with 3 registers.

In order to prove this assertion, we consider a register machine with 3 regis-
ters, the last one being a special output register which is never decremented. Let
there be a program consisting of instructions l0, l1, . . . , lh which computes f . Let
lh correspond to the instruction HALT and l0 be the first instruction. The input

On the Computational Power of Flip-Flop Proteins on Membranes 699

value x is expected to be in register 1 and the output value in register 3. Without
loss of generality, we can assume that all registers other than the first one are
empty at the beginning of a computation. We can also assume that in the halting
configuration all registers except the third, where the result of the computation
is stored, are empty.
Construct a P system Π = (O, P, [1]1, A/P, E, R1, 1) with

O = {o1, o2, o3} ∪ {Lj, L
′
j, lj , l

′
j , l

′′
j , l′′′j | 0 ≤ j ≤ h} ∪ {l̂0, l̄0, A, H, †},

P = {p1, p2, p3, s1, s2, p},

E = {o1, o2, o3}.

The proteins pi are used to simulate ADD instructions of register i, and pro-
teins si are used to simulate SUB instructions of register i. p is a protein which
is used in both simulations. Creation of ox

1 , x ≥ 0 in membrane 1, representing
input x in register 1

1. [1p1|A → A[1p
′
1|, o1[1p

′
1| → [1p1|o1, A[1p1| → [1p

′
1|α, α ∈ {A, l̂0},

[1p
′
1|l̂0 → l̄0[1p1|, l̄0[1p| → [1p

′|l0, [1p1|l̂0 → l̄0[1p
′
1|

Simulation of instructions li, where i = (add(r), j, k), 0 ≤ i, j, k ≤ h, 1 ≤ r ≤ 3

2. [1pr | li → l′i[1p
′
r |,

3. or[1p
′
r | → [1pr | or, l′i[1p | → [1p

′ | α, l′i[1p
′ → [1p | α, α ∈ {lj, lk}

An add instruction li is simulated when object li in membrane 1. Rule 2
shows that the object li is transformed into l′i and is sent out, while the protein
becomes p′r. Next, rule 3 gets a copy of or from the environment, changing p′r
into pr, and in parallel p (or p′) replaces l′i by lj or lk, the next instruction to
be simulated.

Table 1. Rules for decrementing registers 1,2

4. [1sr | li → Li[1s
′
r |

5. [1s
′
r | or → or[1sr | , Li[1p | → [1p

′|L′
i, Li[1p

′ | → [1p|L′
i

6. [1p | L′
i → L′′

i [1p
′ | or [1p

′ | L′
i → L′′

i [1p |
Register r is non-zero Register r is zero

7. L′′
i [1sr → [1s

′
r | l′′j

8a. [1s
′
r | l′′j → l′′′j [1sr |

9a. l′′′j [1p | → [1p
′ | lj or l′′′j [1p

′ | → [1p | lj

8b.
[1s

′
r | or → or[1sr | and [1p | l′′j → †[1p

′ | or
[1p

′ | l′′j → †[1p |

9b. †[1p | → [1p
′ | † or †[1p

′ | → [1p | †

7. L′′
i [1s

′
r | → [1sr | lk

˜

700 S.N. Krishna

Simulation of instructions li, where i=(sub(r), j, k), 0 ≤ i, j, k ≤ h, r∈ {1, 2} A
sub instruction (rules in Table 1) li is simulated by sr (rule 4) when object li
is inside the membrane. li is sent out as Li. Next, s′r sends out a copy of or (if
any present) in the membrane, while in parallel, p (or p′) interacts with Li, and
brings it in as L′

i, and subsequently, takes it out as L′′
i (rules 5,6).

Case 1: Register r is non-zero: Rule 7 is used, and L′′
i is brought inside as l′′j by

sr. Next, s′r, interacts with l′′j , and sends it out as l′′′j , which in the next step, is
brought in as lj by p (or p′) (rules 8a, 9a). Another possibility is that the s′r again
send out a copy of or, in which case, the object l′′j is sent out as the trap symbol
† by p or (p′) leading to a never ending computation (rules 8b, 9b).

Case 2: Register r is zero: In this case, rule 5 for s′r is not used, so we apply
rule 7, by which s′r acts on L′′

i and brings it in as lk.

Halting: The system should halt when the halt instruction lh is introduced in
membrane 1. Since the output is supposed to consist of objects of register 3
alone, we remove lh when it is introduced. Since there are no instructions to be
simulated after lh, we can add the rule [1p | lh → H [1p

′| or [1p
′ | lh → H [1p |,

and the system halts.

Theorem 2. NOP b
1 (prok; 3ffp) ⊆ NFIN , for any finite k.

Proof. Observe that the system has a finite number of possible configurations,
in particular the initial number of symbols in the system cannot be increased.
Hence, it is clear, that corresponding family is (possibly strictly) included in
NFIN.

Theorem 3. NOP∞
1 (pro1; 3ffp) ⊆ NFIN .

Proof. It is enough to observe that the number of objects in the system may
only increase if a rule a[p| → [p′|c is used, with a being a symbol present in
an infinite number of copies. However, in this case no rule b[p′| → [p|x, with
b being in infinite number of copies, may be used, otherwise the system never
stops. Hence, only one of p (or p′) may be used to increase the number of objects
inside. But in order to reach p (or p′), another object must be sent outside the
membrane. This means that for any halting computation, at most n + 1 may be
generated, with n being the number of objects initially present in the membrane.
Hence, the generated set of numbers is (probably strictly) included in NFIN .

Corollary 1. NOP∞
∗ (pro∗; 3ffp) ⊆ NFIN provided there is only one protein

in the skin membrane.

Next, we analyze the operations 2ffp, 1ffp and 2ffp, 5ffp in combination. We
show that in principle, these two pairs of operations can simulate 3ffp.

Theorem 4. 1. NOP∞
1 (prok; 3ffp) ⊆ NOP∞

1 (prok+1; 1ffp, 2ffp),
2. N1OP∞

1 (prok; 3ffp) ⊆ NOP∞
1 (pro2k+1; 2ffp, 5ffp).

On the Computational Power of Flip-Flop Proteins on Membranes 701

Proof. We give only the construction here.

1. Consider a system Π = (O, P, [1]1, w1/z1, E, R1, 1) with rules 3ffp, and let
P = {pi | 1 ≤ i ≤ k}. Construct Π ′ = (O′, P ′, [1]1, w1/z′1, E, R′

1, 1) where
O′ = O ∪ {âp, āp | a ∈ O, p ∈ P}, P ′ = P ∪ {Z} and z′1 = z1 ∪ {Z}.
Construction of R′

1 based on R1 is as follows:
I. Simulation of a rule [1p|a → b[1p

′| ([1p
′|a → b[1p|) is done in 3 steps:

(a) [1p|a → [1p
′|b̂p ([1p

′|a → [1p|b̂p)
(b) [1p

′|b̂p → b̂p[1p| ([1p|b̂p → b̂p[1p
′|), [1Z(or Z ′)|b̂p → [1Z

′(or Z)|†
(c) b̂p[1p| → b[1p

′| (b̂p[1p
′| → b[1p|), b̂p[1Z(or Z ′)| → †[1Z ′(or Z)|

I(a), (c) are 1ffp, I(b) are 2ffp, 1ffp.

II. Simulation of a rule a[1p| → [1p
′|b (a[1p

′| → [1p|b) is done in 3 steps:
(a) a[1p| → b̄p[1p

′| (a[1p
′| → b̄p[1p|)

(b) b̄p[1p
′| → [1p|b̄p (b̄p[1p| → [1p

′|b̄p), b̄p[1Z(or Z ′)| → †[1Z ′(or Z)|
(c) [1p|b̄p → [1p

′|b ([1p
′|b̄p → [1p|b), [1Z(or Z ′)|b̄p → [1Z

′(or Z)|†

Common rule for I, II: For any q ∈ P ,
†[1q → [1q

′|†, [1q|† → †[1q′|, †[1q′ → [1q|†, [1q′|† → †[1q|.
Let us examine I. Protein p interacts with a inside and modifies it as b̂p.
In the next step, p′ must necessarily process b̂p, otherwise, a never ending
computation will be induced by Z. Note that indexing the object b̂p by
p makes it impossible for any other protein (other than p, p′) to process
it, even if there are similar rules (say for instance, we have rules a[1p| →
[1p

′|b, a[1q| → [1q
′|b in Π). In the last step again b̂p is changed to b, and

protein p becomes p′, thereby producing the same scenario as the 3ffp rule.
Replacing p by p′ and p′ by p in I, we obtain the simulation of a rule [1p

′|a →
b[1p|. In short, I says that in the presence of an object b̂p inside/outside the
membrane, the protein p (or p′) must necessarily act on it for correct results.
Note that since we always have only one copy of either p or p′ inside, this
will work.

Now, look at II. Initially, p acts on a, changing it to b̄p. Similar to I, this
new object b̄p needs immediate processing by p (or p′) to obtain the desired
results : the object b inside, and protein in state p′ (p) at the end. Note
again, that changing p to p′ and p′ to p in II will simulate a[1p

′| → [1p|b as
in I. Finally, since both kinds of rules require 3 steps to be simulated, the
3kth configuration (object contents inside the membrane) of Π ′ will be the
same as the kth configuration of Π , k ≥ 0. Thus, Π ′ halts when Π halts
with the same result.

2. Let Π=(O, P, [1]1,w1/z1, E, R1, 1) be a system with rules 3ffp, with P be-
ing equal to {p1, . . . , pk}. Construct Π ′ = (O′, P ′, [1]1, w

′
1/z′1, E

′, R′
1, 1)

where O′ = {η, Ua, Va, Xa, Za} ∪ {āp, âp, a
′
p, Yap | a ∈ O, p ∈ P} ∪ O,

P ′ = P ∪{np | p ∈ P}∪{Z}, E′ = {âp | a ∈ E, p ∈ P}∪{κ, Xa, Ua | a ∈ O},
z′1 = z1 ∪ {np | p ∈ z1} ∪ {Z} and w′

1 = w1η. Construction of R′
1 based on

R1 is as follows:

702 S.N. Krishna

(a) Xa[
1
p|a → b̄p[1p

′|Ybp (Xa[
1
p′|a → b̄p[1p|Ybp)

(b) [1p
′|Ybp → Ybp[1p| ([1p|Ybp → Ybp[1p

′|), b̄p[1np(or n′
p)| → [1n

′
p(or np)|b̄p

κ[1Z|Ybp → †[1Z ′|† or κ[1Z
′|Ybp → †[1Z|†

(c) Ybp[1p|b̄p → b̂q[1p
′|Zb, (Ybp[1p

′|b̄p → b̂q[1p|Zb), q ∈ P ,
Ybp[1Z(or Z ′)|b̄p → †[1Z ′(or Z)|†,

(d) [1np|Zb → Zb[1n
′
p| or [1n

′
p|Zb → Zb[1np|

II. Simulation of a rule a[1p| → [1p
′|b (a[1p

′| → [1p|b)
(a) âp[1p| → [1p

′|âp (âp[1p
′| → [1p|âp),

âq[1p(or p′)|η → †[1p′(or p)|†, q = p,
(b) Ua[1p

′|âp → b′p[1p|Vb (Ua[1p|âp → b′p[1p
′|Vb), κ[1Z|âp → †[1Z ′|†

(c) b′p[1p|Vb → Vb[1p
′|b, κ[1Z|Vb → †[1Z ′|†

Common rule for I, II: For any q ∈ P ,
†[1q → [1q

′|†, [1q|† → †[1q′|, †[1q′ → [1q|†, [1q′|† → †[1q|.
I(a), I(c), II(b) and II(c) are 5ffp; I(b), II(a) are 2ffp and 5ffp, while I(d)
is 2ffp.

Corollary 2. NOP∞
1 (pro13; 2ffp, 5ffp) = N1RE, NOP∞

1 (pro7; 2ffp, 1ffp)
= NRE.

However, by independent construction, the above result can be improved:

Theorem 5. NOP∞
1 (pro7; 2ffp, 5ffp) = NOP∞

1 (pro6; 1ffp, 2ffp) = NRE.

Proof. We prove only NOP1(pro6; 1ffp, 2ffp) = NRE. As in Theorem 1, we
start with a register machine with 3 registers, the input being in register 1, and
the output in register 3, register 3 is never decremented, having instructions
l0, . . . , lh, l0 being the initial instruction and lh being the HALT instruction.

Construct the P system Π = (O, P, [1]1, Z/P, E, R1, 1) where

O = {a1, a2, a3} ∪ {li, l
′
i, l

′′
i , l′′′i | 0 ≤ i ≤ h} ∪ {Z, †},

P = {p1, p2, p3, s1, s2, p}, E = {a1, a2, a3}.

In the initial configuration, we have the single object Z in the membrane.
The proteins pi are used in the simulation of an ADD instruction to register i.
The proteins si, p assist in simulation of a SUB instruction of register i. First
we generate contents ax

1 in the membrane representing the initial contents of
register 1 as follows:

[1p1|Z → [1p
′
1|Z, a1[1p

′
1| → [1p1|a1, [1p

′
1|Z → [1p1|l0

1. Simulation of an ADD instruction li : (ADD(r), lj , lk), 1 ≤ r ≤ 3:

[1pr | li → [1p
′
r | lj or [1pr | li → [1p

′
r | lk, ar[1p

′
r | → [1pr | ar.

To start with, we have the instruction li in membrane one. Protein pr inter-
acts with li, replacing it with either lj or lk. In the process, pr enters into
the state p′r. In the next step, this state of the protein is used to bring an
object ar from the environment, finishing a simulation correctly.

On the Computational Power of Flip-Flop Proteins on Membranes 703

2. Simulation of a SUB instruction li : (SUB(r), lj , lk), 1 ≤ r ≤ 2

Step Rules Type
1 [1sr | li → [1s

′
r | l′i 1ffp

2 [1s
′
r | ar → ar[1sr | and [1p | l′i → [1p

′ | l′′i or 2ffp, 1ffp
[1s

′
r | ar → ar[1sr | and [1p

′ | l′i → [1p | l′′i
Register r is zero

3 [1s
′
r | l′′i → [1sr | lk 1ffp

Register r is non-zero
3 [1sr | l′′i → [1s

′
r | l′′′j 1ffp

4 [
1
s′r | l′′′j → [

1
sr | lj 1ffp

3 [1sr | l′′i → [1s
′
r | l′′′j 1ffp

4 [1s
′
r | ar → ar[1sr | and [1p | l′′′j → [1p

′ | † or 2ffp, 1ffp
[1s

′
r | ar → ar[1sr | and [1p

′ | l′′′j → [1p | †
5 [1p | † → [1p

′ | † or [1p
′ | † → [1p | † 1ffp

We start with li in membrane one. sr acts upon li, replacing it by l′i. sr

enters s′r in the process. We use this state of the protein to check if there are
any ar’s in the membrane, and if yes, send one out. In parallel, l′i is replaced
by l′′i by the protein p (or p′). We now look at the cases where register r was
zero or not.
Case 1: Register r is zero
In this case, we have the protein s′r at the end of step 2, and hence, we can
apply the rule as given in step 3, replacing l′′i by lk, thereby, finishing the
simulation.
Case 2: Register r is non-zero
This means we have sr at the end of step 2. We have to use the rule where
sr interacts with l′′i , and converts it to l′′′j . After this, sr becomes s′r. Now we
have two possibilities, a correct one, and a wrong one, leading to an infinite
computation. These are depicted by subtables 2,3. If we follow subtable 2,
s′r acts on l′′′j , and replaces it by lj , thereby, completing the simulation.
However, if the s′r does not act on l′′′j , but instead acts on ar, then p (or p′)
acts on l′′′j and introduces the trap symbol †, which can never be removed.

3. Halting : As in the previous theorem, we remove lh from the membrane at
the end of a halting configuration by [1p | lh → lh[1p

′ | or [1p
′ | lh → lh[1p | .

Next, we look into the operation 4ffp. We first observe that for 4ffp, we do
not require E to contain arbitrarily many objects.

Proposition 4. Let Π = (O, P, [1]1, w/z, E, R, 1) be a P system with rules
4ffp, |w| = n and let z contain arbitrarily many proteins. Then, among the
symbols initially present in the environment, atmost 2n symbols are involved in
rules.

Proof. We give only a proof sketch. Note that since all rules are of type 4ffp, the
number of objects inside the membrane will always remain n. Since we have not

704 S.N. Krishna

assumed anything about the number of proteins, it is possible that in any step,
all n objects have applicable rules. Assume that k objects inside the membrane
have applicable rules in step 1. Assume further that all of them, bring inside the
same object a from the environment. This means, we have k copies of a inside
the membrane at the end of step 1. In the next step, it is possible that each of
these a’s, and l of the remaining n−k objects bring in a from the environment. In
the worst case, we may have n copies of a inside the membrane, and considering
a rule which exchanges a for a, we need a total of 2n copies of a.

Based on the above, we conjecture the following (to be proved like Theorem 2):

Theorem 6. NOP∞
∗ (prok; 4ffp) ⊆ NFIN .

4 Conclusion

In this paper, we have examined the power of some of the operations introduced
in [6]. The power of the other operations as well the optimality of the results
proved here remains open.

We summarize the results in this paper below:

Number of proteins Rules Number of objects in E Power
6 3ffp Arbitrary NRE

k ≥ 0 3ffp Bounded NFIN
1 3ffp Arbitrary NFIN
* 4ffp Arbitrary NFIN
6 1ffp, 2ffp Arbitrary NRE
7 5ffp, 2ffp Arbitrary NRE

References

1. Cardelli, L., Calculi, B.: Interactions of biological membranes, In: Proceedings of
Computational Methods in Systems Biology (2004)

2. Cardelli, L., Paun, G.: An universality result for a (mem)brane calculus based on
mate/drip operations. Int. J. Found. Comput. Sci. 17(1), 49–68 (2006)

3. Krishna, S.N.: Universality Results for P Systems based on Brane Calculi Opera-
tions, Theoretical Computer Science (to appear)

4. Lambek, J.: How to program an infinite abacus. Canad. Math. Bull. 4, 295–302
(1961)

5. Minsky, M.L.: Finite and Infinite Machines. Prentice Hall, EngleWood Cliffs, New
Jersey (1967)

6. Paun, A., Popa, B.: P Systems with Proteins on Membranes. Fundamenta Infor-
maticae 72(4), 467–483 (2006)

7. Paun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000)

8. Păun, G.: Computing with Membranes. An Introduction. Springer, Heidelberg
(2002)

9. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Hei-
delberg (1997)

10. Salomaa, A.: Formal Languages. Academic Press, San Diego (1973)

Computability and Incomputability

Robert I. Soare

Department of Mathematics
University of Chicago

Chicago, Illinois 60637-1546
soare@uchicago.edu

Abstract. The conventional wisdom presented in most computability
books and historical papers is that there were several researchers in the
early 1930’s working on various precise definitions and demonstrations of
a function specified by a finite procedure and that they should all share
approximately equal credit. This is incorrect. It was Turing alone who
achieved the characterization, in the opinion of Gödel. We also explore
Turing’s oracle machine and its analogous properties in analysis.

Keywords: Turing a-machine, computability, Church-Turing Thesis,
Kurt Gödel, Alan Turing, Turing o-machine, computable approxima-
tions, effectively continuous functions on reals, computability in analysis,
strong reducibilities reexamined.

1 The Modern Era of Computability Theory

Mathematicians have studied algorithms and calculation at least since the time
of the Babylonians and later Euclid (c. 330 B.C.). However, it was only in the
modern period which began in the 1930’s that mathematicians were able to
give precise formal models which characterized the informal notion of a finite
procedure, and harness these models in what evolved into modern computers.
The modern period of the theory of computability can be split into three periods.

1. λ-Definability Era: 1931–1935
2. Recursion Theory Era: 1935–1995
3. Computability Era: 1996-present

1.1 Transition from λ-Definable to Recursive in 1935

Kleene arrived as a graduate student of Church in Princeton in 1935 and worked
on showing that a large class of number theoretic functions were λ-definable.
Kleene gave lectures to audiences of mathematicians but was disappointed that
they were unfamiliar with the λ-calculus definitions and failed to appreciate
Kleene’s work.

In the spring of 1934 Gödel moved to Princeton and gave his lectures on the
“general recursive functions.” Both Kleene and Church immediately switched

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 705–715, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

706 R.I. Soare

from the λ-definable formalism to the Herbrand-Gödel general recursive func-
tions. Church introduced the use of “recursive” as an adverb to mean
“computable,” e.g. “recursively enumerable,” and Kleene later introduced the
term “recursive function theory.” The term “recursive” had previously meant
“inductive,” but in 1935 under Church and Kleene, it acquired the meaning
“computable” for the sake of explaining the results to mathematicians unfamil-
iar with the λ-definable terminology.

1.2 Transition from Recursive to Computable in 1996

By 1995 the computer revolution had brought computers and their concepts and
terminology into everyday lives. One of the biggest influences was the introduc-
tion in 1981 of the IBM personal computer (PC) which meant that more and
more ordinary people had a PC on their desks by 1995. Not only scientists but
the general population recognized the basic concepts and terminology of com-
puting, but very few recognized the terminology of “recursive.” Those who did
associated it with “inductive” not “computable.”

Soare wrote a paper Computability and Recursion [1996] whose content was
delivered in an invited address at the International Congress for Logic, Method-
ology and Philosophy of Science in Florence in August, 1995.

He pointed out that in the 1930’s the principal founders of Computability The-
ory, Turing and Gödel, never used the term “recursive” to mean computable and
explicitly rejected such suggestions. The field was ripe for a change of terminol-
ogy to make itself better understood by the public, just as Kleene and Church
had changed terminology. Soare’s paper suggested that using the term “com-
putable” would not only be more recognizable by the public, but would be more
scientifically and historically accurate. By the time the American Mathematical
Society international meeting on the subject was held in Boulder, Colorado in
1999 (see Soare [2000]) the majority of the researchers had changed to the com-
putability terminology, and the title of the conference was now Computability
Theory and its Applications: Current Trends and Open Problems.

1.3 Three Main Points in [1996]

Soare’s paper [1996] on computability was not by itself responsible for the change
which took place from 1996 to 1999 with “recursive” replaced by “computable.”
The seeds of change were already there. However, Soare’s paper made three main
points which have been subsequently confirmed.

1. The subject is about computability, not recursion, not λ-definability, not
Post canonical systems. The subject is about studying functions which can
be “computed by a finite procedure,” to use the words of Gödel [1934].

2. It was Turing, not Kleene, not Church, not Post, not even Gödel. It was
Turing alone who: (1) gave the first convincing formal definition of a com-
putable function (Turing a-machine); (2) proved that the informal notion
coincided with this formal one; (3) defined the universal Turing machine;

Computability and Incomputability 707

and (4) defined the Turing oracle machine (o-machine), the central concept
in computability.

3. Finally, if we use terminology and notation of computability as Turing did,
and indicate our interest in wider questions beyond narrow technical ones
as Turing did, then we can form connections with other diverse researchers
also interested in other aspects of computability.

This has indeed happened since 1996. An organization called Computability
and Complexity in Analysis (CCA) has held several meetings, the most recent in
November, 2006, in Gainesville, Florida. A related organization, Computability
in Europe (CIE), is sponsoring this conference and this paper. Both have at-
tracted a large, diverse collection of members. The lectures reflect a much wider
range of interests in computability than in recursion theory a decade or so ago.
Could either organization have attracted so many members today with the term
“recursion” in place of “computability” in the title?

2 Defining Computability in the 1930’s

2.1 Several Formalisms Emerge

Gödel’s Incompleteness Theorem [1931] not only solved the first Hilbert question
on whether a formal system could prove its own consistency, but it generated a
lot of interest in Hilbert’s second question, the Entscheidungsproblem, decision
problem, described in Hilbert and Ackermann [1928] for first order logic. Hilbert
had characterized this as the fundamental problem of mathematical logic. In
Princeton Alonzo Church had introduced a precise formal system called the λ-
calculus (now used as a programming language), but by 1931 he knew only that
the successor function and addition were λ-definable. Stephen Kleene arrived in
Princeton in 1931 as a student of Church, and Church put him to work adding to
the knowledge of λ-definable functions. The first version of Church’s λ-notation
was shown to be inconsistent by Rosser and Kleene, but Church and Kleene
focused on a more restricted version now known as the λ-calculus.. By 1934
Kleene had shown that virtually all common functions in number theory algebra
were λ-definable.

Gödel, by then the most famous and respected mathematical logician in the
world, moved to Princeton in 1934. In [1931] he had introduced two elements
which would play an important role in computability: the use of primitive recur-
sive functions to code configurations; and the use of sequences to code a sequence
of syntactical objects such as a proof. However, Gödel knew that the primitive
recursive functions did not exhaust all the computable functions. In the spring
of 1934 Gödel [1934] gave a series of lectures, recorded by Kleene and Rosser,
modifying an idea of Herbrand to produce what Gödel called a general recur-
sive function to distinguish it from the 1931 functions he had called “recursive
function” (“rekursiv” in German). By 1936 Gödel’s terminology was changed by
Church and Kleene so that “recursive function” came to mean “general recursive
function” and the adjective “primitive” was added to the earlier notion.

708 R.I. Soare

2.2 Towards a Computability Thesis

The history of the development of a thesis characterizing the computable
functions is fascinating. Gödel [1934] wrote:

Gödel Considers a Thesis in [1934]

“[Primitive] recursive functions have the important property that, for
each given set of values for the arguments, the value of the function can
be computed by a finite procedure3.”

Footnote 3.
“The converse seems to be true, if, besides recursion according to scheme
(V) [primitive recursion], recursions of other forms (e.g., with respect to
two variables simultaneously) are admitted. This cannot be proved, since
the notion of finite computation is not defined, but it serves as a heuristic
principle.”

We shall return to this quote, especially the second paragraph (his footnote 3),
which gives us crucial insight into Gödel’s thinking about the computability
thesis and his later pronouncements about the achievements of Turing versus
others.

Church’s Thesis “Thoroughly Unsatisfactory”. Largely on the basis of
the evidence of the large class of number theoretic functions shown to be
λ-definable by Kleene, and based also on his own intuition, Church proposed
privately to Gödel the first version of Church’s Thesis. Around March, 1934,
Church suggested to Gödel that the notion of “λ-definable” be identified with “ef-
fectively calculable” (which was Church’s term for what we now call “intuitively
computable.”)

Gödel strongly rejected this suggestion of Church which he called “thoroughly
unsatisfactory.” Undeterred by this encounter with Gödel, Church changed for-
mal definitions from “λ-definable” to the (Herbrand-Gödel) (general) recursive
functions just introduced by Gödel in his lectures in 1934. This time without
consulting Gödel, Church presented on to the American Mathematical Society
on April 19, 1935, his famous proposition published in 1936 and known since
Kleene [1952] as Church’s Thesis.

Thesis 1 (Church’s Thesis) [1935] and [1936]. “In this paper a definition of
recursive function of positive integers which is essentially Gödel’s is adopted.
It is maintained that the notion of an effectively calculable function of positive
integers should be should be identified with that of a recursive function, . . . ”

Church always presented this as a definition of an effectively calculable function,
not as a thesis. It was Kleene who much later called it a Thesis [1943] and
finally [1952] called it “Church’s Thesis.” Using the identification of solvable
problems with those solved by a recursive function, Church went on to exhibit
an unsolvable problem in mathematics, and hence a negative solution to Hilbert’s
Entscheidungsproblem.

Computability and Incomputability 709

2.3 Church and Kleene Collect Evidence

By the beginning of 1936 Church had become ever more confident of his for-
mal definition of effectively calculable function and its application to unsolvable
problems. He had announced his work [1935] to the American Mathematical So-
ciety. Church’s major paper [1936] had been submitted and would soon appear
on recursive functions and the definition of effectively calculable functions. In an
abstract received by the American Mathematical Society in July, 1935, which
would soon appear as Kleene [1936b], Kleene had announced the equivalence
of the formal definitions of λ-definable and recursive, which Kleene and Church
had shown.

Kleene had introduced a third formalism, the μ-recursive functions, the least
class of functions closed under the former schemes (I)–(V) for the primitive
recursive functions and also scheme (VI) the least number operator, ψ(x) =
(μy)[θ(x, y) = 0]. This definition was derived (as Kleene pointed out) from
Gödel’s [1931] paper with its use of coding of syntax using primitive recursive
functions. Also received on July 1, 1935, was an abstract of the paper to appear
as Kleene [1936] in which Kleene stated that every (general) recursive function is
μ-recursive. This gives a useful and succinct formalism, but it is entirely deriva-
tive of Gödel [1931] because its two key ingredients are the primitive recursive
functions used for coding as in Gödel and the idea of coding of syntax (or here
coding steps in the computation).

The coincidence of these formal definitions of effectively calculable function
gave Church more confidence that he had indeed correctly captured the informal
notion of finite procedure. By January, 1936 Church had already written this for
his major paper Church [1936] to appear shortly.

“The fact, however, that two such widely different and (in the opinion
of the author) equally natural definitions of effective calculability turn
out to be equivalent adds to the strength of the reasons addressed below
for believing that they constitute as general a characterization of this
notion as is consistent with the usual intuitive understanding of it.”

2.4 Stalemate at Princeton in Early 1936

Church had accumulated more and more evidence for his case, but he still did not
have the approval of one man who counted most to him and to the community
in mathematical logic. Gödel continued to reject Church’s Thesis. He was not
convinced by the confluence argument above even though he himself had supplied
virtually all the essential mathematical ingredients in [1931] and [1934] for the
work by Church and Kleene including the (general) recursive functions, and the
use of primitive recursive functions and coding of sequences of syntactical objects
later used by Kleene in the μ-recursive functions and T predicate and normal
form. Why did Gödel reject Church’s Thesis by early 1936, and why did he not
put forward a thesis himself in 1934?

710 R.I. Soare

Gödel’s Doubts. First, Gödel had hinted in footnote 3 of [1934] quoted above
in S2.2 that if other recursions were added they might comprise all mechanically
calculable functions. However, in a letter to Martin Davis dated February 15,
1965, Gödel wrote as follows.

“. . . It is not true that footnote 3 is a statement of Church’s Thesis. The
conjecture stated there refers to the equivalence of “finite (computation)
procedure” and “recursive procedure.” However, I was, at the time of
these lectures, not at all convinced that my concept of recursion com-
prises all possible recursions . . . ”

-Gödel 1965, letter to Martin Davis

Second, Gödel had written in footnote 3,

“This cannot be proved, since the notion of finite computation is not
defined, but it serves as a heuristic principle.”

For Gödel a crucial ingredient was to analyze the intrinsic nature of the notion
of “finite procedure” not just prove the confluence of various formal definitions
as Church and Kleene had done. In January, 1936 Gödel not only believed that
this had not yet been done, but he also expressed some doubt as to whether
“finite procedure” could be formally analyzed at all or whether it must serve
only “as a heuristic principle.”

3 Turing Breaks the Stalemate

Those gathered at Princeton, Gödel, Church, Kleene, Rosser, and Post nearby,
constituted the most distinguished and powerful group of scholars in the world
working on the notion of a computable function, and yet as the year 1936 began
they could not agree. At that moment stepped forward a twenty-two year old
youth. Well, not just any youth. Alan Turing had already proved the Central
Limit Theorem in probability theory (not knowing it had been previously proved,
see Zabell [1995]), and as a result Turing had been elected a Fellow of King’s
College, Cambridge.

The work of Hilbert and Gödel had already attracted interest at Cambridge
University where topologist Professor M.H.A. (Max) Newman gave lectures on
Hilbert’s Entscheidungsproblem in 1935. Alan Turing attended. Turing’s mother
had a typewriter which fascinated him as a boy. He designed his automatic ma-
chine (a-machine) as a kind of typewriter with an infinite carriage over which
the reading head passes with the ability to read, write, and erase one square
at a time. Equally important with this Turing machine was Turing’s analysis of
the intuitive conception of a “function produced by a mechanical procedure.” In
a masterful demonstration, which Robin Gandy considered as precise as most
mathematical proofs, Turing analyzed the informal nature of functions com-
putable by a finite procedure, and demonstrated that they coincide with those
computable by an a-machine. Also Turing [1936, p. 243] introduced the universal
Turing machine which has great theoretical and practical importance.

Computability and Incomputability 711

Thesis 2 (Turing’s Thesis [1936]). A function on the integers is computable
by a finite procedure if and only if it is computable by a Turing a-machine.

Church [1936] had tried to give a similar informal argument for Church’s Thesis
but Gandy [1988, p. 79] and especially Sieg [1994, pp. 80, 87] in their excellent
analyses brought out the weakness in Church’s argument. In 1936 Turing’s was
the only convincing demonstration of any thesis that a formal definition captured
the informal notion of computable.

4 Gödel’s Opinion of Turing’s Work

Gödel’s reaction was swift and emphatic. He never accepted Church’s Thesis,
but he accepted Turing’s Thesis at once.1

“That this really is the correct definition of mechanical computability
was established beyond any doubt by Turing.”

-Gödel 193? Notes in Nachlass [1935]

“ But I was completely convinced only by Turing’s paper.”
-Gödel: letter to Kreisel of May 1, 1968 [Sieg, 1994, p. 88].

“ . . . one [Turing] has for the first time succeeded in giving an absolute
definition of an interesting epistemological notion, i.e., one not depending
on the formalism chosen.”

-Gödel, Princeton Bicentennial, [1946, p. 84].

“. . . For the concept of computability, however, although it is merely a
special kind of demonstrability or decidability, the situation is different.
By a kind of miracle it is not necessary to distinguish orders, and the
diagonal procedure does not lead outside the defined notion.”

—Gödel: [1946, p. 84], Princeton Bicentennial

“The greatest improvement was made possible through the precise defini-
tion of the concept of finite procedure, . . . This concept, . . . is equivalent
to the concept of a ‘computable function of integers’ . . . The most sat-
isfactory way, in my opinion, is that of reducing the concept of finite
procedure to that of a machine with a finite number of parts, as has
been done by the British mathematician Turing.”

—-Gödel [1951, pp. 304–305], Gibbs lecture

1 Gödel was interested in the intensional analysis of finite procedure. He never believed
the arguments and confluence evidence which Church presented to justify his Thesis.
On the other hand Gödel accepted immediately not only Turing machines, but more
importantly the analysis Turing gave of a finite procedure. The fact that Turing
machines were later proved extensionally equivalent to general recursive functions
did not convince Gödel of the intrinsic merit of the other definitions.

712 R.I. Soare

“. . . due to A.M. Turing’s work a precise and unquestionably adequate
definition of the general concept of formal system can now be given, the
existence of undecidable arithmetical propositions and the non-demon-
strability of the consistency of a system in the same system can now be
proved rigorously for every consistent formal system containing a certain
amount of finitary number theory.”

-Godel’s Postscriptum to Gödel [1934], see Davis, [1965].

4.1 Gödel on Church’s Thesis

In June, 1964, Gödel remarked (see Davis [1965, p. 72]).

“See A. Turing [1936] and the almost simultaneous paper by E.L. Post
[1936]. As for previous equivalent definitions of computability, which,
however, are much less suitable for our purpose, see A. Church [1936].”

4.2 Kleene Said About Turing

“Turing’s computability is intrinsically persuasive” but “λ-definability is
not intrinsically persuasive” and “general recursiveness scarcely so (its
author Gödel being at the time not at all persuaded).”

-Stephen Cole Kleene [1981b, p. 49]

“Turing’s machine concept arises from a direct effort to analyze computa-
tion procedures as we know them intuitively into elementary operations.
Turing argued that repetitions of his elementary operations would suf-
fice or any possible computation. For this reason, Turing computability
suggests the thesis more immediately than the other equivalent notions
and so we choose it for our exposition.”

-Stephen Cole Kleene, second book [1967, p. 233]

4.3 Church Said About Turing

Computability by a Turing machine, “ has the advantage of making
the identification with effectiveness in the ordinary (not explicitly de-
fined) sense evident immediately—i.e., without the necessity of proving
preliminary theorems.”

-Alonzo Church, [1937], Review of Turing [1936]

5 Turing Defines Oracle Machines

After Turing’s discovery in April, 1936, Professor Newman suggested that he
go to Princeton to take his Ph.D., which he did under Church. Turing’s thesis
in 1939 was on ordinal logics, an attempt to get around Gödel’s incomplete-
ness theorem by adding new axioms. In an obscure part of his paper Turing
[1939, §4] wrote,

Computability and Incomputability 713

“Let us suppose we are supplied with some unspecified means of solving
number-theoretic problems; a kind of oracle as it were. . . . this oracle
. . . cannot be a machine.

With the help of the oracle we could form a new kind of machine
(call them o-machines), having as one of its fundamental processes that
of solving a given number-theoretic problem.”

There are several ways that a Turing machine with oracle may be defined.
We prefer the definition in Soare [1987, p. 46] of a machine with a head which
reads the work tape and oracle tape simultaneously. Any of these definitions
gives the definition of a Turing functional ΦA

e (x) = y. The crucial point is that
any definition must produce a computably enumerable (c.e.) set Ve as the graph2

of Φe,
Ve = {〈σ, x, y : Φσ

e (x) = y}.

These Turing computable functionals are exactly like the more general contin-
uous functions on Cantor space 2ω but relativized to an oracle set X ⊂ om. A
continuous function on Cantor space is one with graph V X

e for some x ⊂ ω. Is a
a researcher in analysis wants to work on the slightly different space of the real
numbers with the usual topology in analysis given by open balls Bi with rational
center and rational radius as the basic open sets, then the description is exactly
analogous. If the function is continuous, then the inverse of a basic open set Bi

is set of balls c.e. in X for some read X ⊂ ω.
In September, 1939, Turing entered the world of British crypotography and

did not develop the notion of oracle machine further. Post [1944] began to ex-
plore the notion of oracle machines and their associated definition of Turing
reducibility B ≤T A, and Post studied a number of stronger less general re-
ducibilities, such as 1-reducible, m-reducible, btt-reducible, tt-reducible (truth
table reducible). The full Turing reduciblity was not well understood until at
least a decade later with the Kleene Post [1954] paper finding Turing incompa-
rable sets below ∅′.

Many problems in the real world are not explicitly computable but are limit
computable. The function f may be represented as f(x) = lims f̂(x, s) for some
computable function f̂(x, s). These problems in turn can be looked at via oracle
machines. Consider the halting problem K = { e : e ∈ We }.

Lemma 1. [Limit Lemma] A is limit computable iff A ≤T K.

Many processes can be looked at as having a fixed finite control, but an oracle
which may be changed as external conditions warrant, i.e., an oracle Ks at stage
s which goes to a limit K = ∪sKs. Thus, the concept of Turing’s oracle machine
(o-machine) is the most important in the subject of computability at both the
theoretical and practical level.

A number of textbooks on computability theory follow Post’s lead by defining
a Turing a-machine in chapter 1 and not defining a Turing o-machine and Turing
2 The term “graph” for this set is becoming standard by analogy with the graph of

partial computable (p.c.) function φe which is the same but with out the σ.

714 R.I. Soare

functionals until a much later chapter, spending the intermediate chapters on
the intermediate reducibilities or other smaller themes. This is analogous to
having a calculus textbook delay the definition of continuous or differentiable
function until chapter 10 spending the time on derivates of special functions
like polynomials. We should proceed as quickly to the full definition of a Turing
functional ΦA

e and its graph Ve defined above.

References

[Church, 1936] Church, A.: An unsolvable problem of elementary number theory.
American J. of Math. 58, 345–363 (1936)

[Church, 1937] Church, A.: Review of Turing 1936. J. Symbolic Logic 2(1), 42–43
(1937)

[Davis, 1965] Davis, M.: The Undecidable. Basic Papers on Undecidable Propositions,
Unsolvable Problems, and Computable Functions. Raven Press, Hewlett, New
York (1965)

[Davis, 1982] Davis, M.: Why Gödel did not have Church’s Thesis. Information and
Control 54, 3–24 (1982)

[Gandy, 1980] Gandy, R.: Church’s thesis and principles for mechanisms, In: The
Kleene Symposium, North-Holland, pp. 123–148 (1980)

[Gandy, 1988] Gandy, R.: The confluence of ideas in 1936, In: Herken, pp. 55–111
(1988)

[Godel, 1931] Gödel, K.: Über formal unentscheidbare sätze der Principia Mathematica
und verwandter systeme. I, Monatsch. Math. Phys. vol. 38 pp. 173–178 (1931)
(English trans. in Davis 1965, pp. 4–38, and in van Heijenoort, pp. 592–616 (1967)

[Godel, 1934] Gödel, K.: On undecidable propositions of formal mathematical systems,
Notes by Kleene, S.C., Rosser, J.B. (eds.) on lectures at the Institute for Advanced
Study, Princeton, New Jersey, 30 pp (Reprinted in Davis 1965 [3, 39–74] (1934)

[Godel, 193?] Gödel, K.: Undecidable diophantine propositions, In: Gödel, pp. 156–175
(1995)

[Godel, 1946] Gödel, K.: Remarks before the Princeton bicentennial conference of prob-
lems in mathematics, Reprinted in: Davis 1965 [3], pp. 84–88 (1946)

[Godel, 1951] Gödel, K.: Some basic theorems on the foundations of mathematics and
their implications, In: Gödel pp. 304–323 (This was the Gibbs Lecture delivered
by Gödel on December 26, 1951 to the Amer. Math. Soc.) (1995)

[Godel, 1964] Gödel, K.: Postscriptum to Gödel 1931, written in 1946, printed in Davis
pp. 71–73 (1965)

[Hilbert, Ackermann] Hilbert, D., Ackermann, W.: Grundzüge der theoretischen Logik.
In (English translation of 1938 edition, Chelsea, New York, 1950), Springer, Berlin
(1928)

[Hodges, 1983] Hodges, A.: Alan Turing: The Enigma, Burnett Books and Hutchinson,
London, and Simon and Schuster, New York (1983)

[Kleene, 1936] Kleene, S.C.: General recursive functions of natural numbers. Math.
Ann. 112, 727–742 (1936)

[Kleene, 1943] Kleene, S.C.: Recursive predicates and quantifiers. Trans. A.M.S. 53,
41–73 (1943)

[Kleene, 1952] Kleene, S.C.: Introduction to Metamathematics, Van Nostrand, New
York. Ninth reprint 1988, Walters-Noordhoff Publishing Co., Groningën and
North-Holland, Amsterdam (1952)

Computability and Incomputability 715

[Kleene, 1967] Kleene, S.C.: Mathematical Logic. John Wiley and Sons, Inc, New York,
London, Sydney (1967)

[Kleene, 1981] Kleene, S.C.: Origins of recursive function theory. Annals of the History
of Computing 3, 52–67 (1981)

[Kleene, 1987] Kleene, S.C.: Reflections on Church’s Thesis. Notre Dame. Journal of
Formal Logic 28, 490–498 (1987)

[Kleene, 1988] Kleene, S.C.: Turing’s analysis of computability, and major applications
of it, In: Herken, pp. 17–54 (1988)

[Kleene, Post, 1954] Kleene, S.C., Post, E.L.: The upper semi-lattice of degrees of re-
cursive unsolvability. Ann. of Math. 59, 379–407 (1954)

[Post, 1936] Post, E.L.: Finite combinatory processes–formulation, J. Symbolic Logic
vol. 1 pp. 103–105 (1936). Reprinted in Davis, pp. 288–291 (1965)

[Post, 1944] Post, E.L.: Recursively enumerable sets of positive integers and their de-
cision problems, Bull. Amer. Math. Soc. vol. 50, pp. 284–316 (1944). Reprinted
in Davis, pp. 304–337 (1965)

[Sieg, 1994] Sieg, W.: Mechanical procedures and mathematical experience. In: George,
A. (ed.) Mathematics and Mind, Oxford Univ. Press, Oxford (1994)

[Soare, 1987] Soare, R.I.: Recursively Enumerable Sets and Degrees: A Study of Com-
putable Functions and Computably Generated Sets. Springer, Heidelberg (1987)

[Soare, 1996] Soare, R.I.: Computability and recursion. Bulletin of Symbolic Logic 2,
284–321 (1996)

[Soare, 2000] Soare, R.I.: Extensions, Automorphisms, and Definability, In: Cholak,
P., Lempp, S., Lerman, M., Shore, R. (eds.) Computability Theory and its Ap-
plications: Current Trends and Open Problems, American Mathematical Society,
Contemporary Math. #257, American Mathematical Society, Providence, RI, pps.
279–307 (2000)

[Soare, cta] Soare, R.I.: Computability Theory and Applications, Springer-Verlag, Hei-
delberg (To appear)

[Turing, 1936] Turing, A.M.: On computable numbers, with an application to the
Entscheidungsproblem. In: Proc. London Math. Soc. ser. 2 vol. 42 (Parts 3 and 4)
pp. 230–265 (1936) [Turing, 1937] A correction, ibid. vol. 43, pp. 544–546 (1937)

[Turing, 1939] Turing, A.M.: Systems of logic based on ordinals. In: Proc. London
Math. Soc. vol. 45 Part 3 pp. 161–228 (1939) reprinted in Davis, pp. 154–222
(1965)

[Zabell, 1995] Zabell, S.L.: Alan Turing and the Central Limit Theorem. American
Mathematical Monthly 102(6), 483–494 (1995)

A Jump Inversion Theorem for the Degree

Spectra

Alexandra A. Soskova�

Faculty of Mathematics and Computer Science,
Sofia University,

5 James Bourchier Blvd.,
1164 Sofia, Bulgaria

asoskova@fmi.uni-sofia.bg

Abstract. A jump inversion theorem for the degree spectra is presented.
For a structure A which degree spectrum is a subset of the jump spectrum
of a structure B, a structure C is constructed as a Marker’s extension of
A such that the jump spectrum of C is exactly the degree spectrum of A

and the degree spectrum of C is a subset of the degree spectrum of B.

Keywords: enumeration degrees, degree spectra, Marker’s extensions,
enumerations.

1 Introduction

The notion of a degree spectrum of a countable structure is introduced by Richter
[9] as the set of all Turing degrees generated by all one-to-one enumerations of
the structure. It is studied by Ash, Downey, Jockush and Knight [1,4,7]. It is
a kind of a measure of complexity of the structure. Soskov [11] represented the
notion of a degree spectrum of a structure from the point of view of enumeration
degrees.

Let A be a countable structure. The degree spectrum of the structure A is
the set DS(A) of all enumeration degrees generated by all enumerations of A.
The main benefit of considering not only one-to-one but all enumerations of the
structure is that the degree spectrum is always closed upwards with respect to
total degrees [11], i.e. if a ∈ DS(A) then each total enumeration degree b greater
than a is in DS(A). If a is the least element of DS(A) then a is called the degree
of A.

The jump spectrum of A is the set DS1(A) of all enumeration jumps of the
elements of DS(A). If a is the least element of DS1(A) then a is called the first
jump degree of A.

For any countable structures A and B define the relation

B � A ⇐⇒ DS(A) ⊆ DS(B) .

And let A ≡ B if A � B and B � A.
� This work was partially supported by Sofia University Science Fund. The author

thanks the anonymous referees for helpful comments.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 716–726, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Jump Inversion Theorem for the Degree Spectra 717

Let B′ � A if DS(A) ⊆ DS1(B) and A � B′ if DS1(B) ⊆ DS(A). We say that
A ≡ B′ if A � B′ and B′ � A.

Soskov [12] showed that each jump spectrum is a degree spectrum of a struc-
ture. So, for every structure B there is a structure A such that B′ ≡ A, i.e.
DS(A) = DS1(B).

In this paper we shall show that if A and B are structures and B′ � A then
there exists a structure C such that B � C and C′ ≡ A.

The structure C we shall construct as a Marker’s extension of A. In [6]
two model-theoretic extension operators were introduced based on the ideas
of Marker’s construction from [8]. These extensions are called Marker’s ∃ and
∀-extensions and are studied in [5,6]. In our construction we will use also the
relativized representation lemma for Σ0

2 sets proved by Goncharov and
Khoussainov [6].

As an application we shall show that if a structure A has a degree and B′ � A
for some structure B then there is a torsion free abelian group G of rank 1 such
that B � G, G′ ≡ A and G has a degree as well.

As a corollary of the main result we receive an analogue of the jump inversion
theorem for the joint spectra of finitely many structures considered in [13,15].
Let A, A1, . . . , An be countable structures. The joint spectrum of A, A1, . . . , An is
the set of all enumeration degrees a ∈ DS(A) such that a′ ∈ DS(A1), . . . ,a(n) ∈
DS(An).

We will prove that if there is a structure B such that B′ � A then there exists
a structure C
 B such that the joint spectrum of A, A1, . . . , An is exactly the
jump joint spectrum of C, A, A1, . . . , An.

Next application is a similar result for another relativized version of the no-
tion of a degree spectrum of a structure with respect to finitely many abstract
structures studied in [14]. It is shown [13,14,15] that both generalized notions
of degree spectra have all general properties of the degree spectra of a structure
such as minimal pair theorem and the existence of quasi-minimal degrees.

The relative spectrum of the structure A with respect to A1, . . . , An is the set of
all enumeration degrees generated by those enumerations of A which “assume”
that each Ai is relatively Σ0

i+1 on A for i = 1, . . . k. We will show that if there is
a structure B such that B′ � A then there exists a structure C
 B such that
the relative spectrum of A with respect to A1, . . . , An coincide with the jump
relative spectrum of C with respect to A, A1, . . . , An.

2 Preliminaries

2.1 Enumeration Degrees

For any sets of natural numbers A and B the set A is enumeration reducible to
B (A ≤e B) if there is an enumeration operator Γz such that A = Γz(B). In
other words:

A ≤e B ⇐⇒ (∃z)(∀x)(x ∈ A ⇐⇒ (∃v)(〈v, x〉 ∈ Wz & Dv ⊆ B))

where Dv is the finite set with the canonical code v and {Wz}z<ω is a Gödel
enumeration of the c.e. sets.

718 A.A. Soskova

The relation ≤e is reflexive and transitive and induces an equivalence relation
≡e on all sets of natural numbers. The respective equivalence classes are called
enumeration degrees.

By de(A) we denote the enumeration degree of the set A and by De the set of
all enumeration degrees. Let A+ = A ⊕ (N\A). The set A is total if A ≡e A+. An
enumeration degree a is total if a contains the e-degree of a total set. The jump
operation “′” denotes here the enumeration jump introduced by Cooper [3].

Definition 1. Let LA = {〈x, z〉 | x ∈ Γz(A)}.
The e-jump A′ of A is the set (LA)+.

In fact, the set A is Σ0
2 relatively the set B (A ∈ Σ0

2(B)) if and only if A ≤e

(B+)′. This follows from the observation that K+
B ≡e (B+)′ where KB = {〈e, x〉 |

x ∈ WB
e }.

A ∈ Σ0
2(B) ⇐⇒ A is c.e. in KB ⇐⇒ A ≤e K+

B ⇐⇒ A ≤e (B+)′ .

So, if the set B is total then B ≡e B+ and hence A ∈ Σ0
2(B) ⇐⇒ A ≤e B′.

2.2 Degree Spectra

Let A = (A; R1, . . . , Rs) be a countable structure such that = is among the
predicates R1, . . . , Rs.

An enumeration f of A is a total mapping of N onto A.
For B ⊆ Aa define f−1(B) = {〈x1, . . . , xa〉 | (f(x1), . . . , f(xa)) ∈ B}.
For each predicate R of A of arity r the pullback Rf of R is defined by

Rf (x1, . . . , xr) ⇐⇒ R(f(x1), . . . , f(xr)). Let

f−1(R) = {〈x1, . . . , xr, 0〉 | Rf (x1, . . . , xr)}∪
{〈x1, . . . , xr, 1〉 | ¬Rf (x1, . . . , xr)} .

Denote by f−1(A) = f−1(R1) ⊕ . . . ⊕ f−1(Rs).

Definition 2. The degree spectrum of A is the set

DS(A) = {de(f−1(A)) | f is an enumeration of A} .

Our definition of degree spectra is equivalent to Soskov’s from [11]. The structure
A is total if the predicates R1, . . . , Rs are totally defined on A. We consider here
only total structures. It is easy to see that if the structure A is total then all
elements of the degree spectra of A are total enumeration degrees. Let ι be the
Roger’s embedding of the Turing degrees into the enumeration degrees. Then

DS(A) = {ι(dT(f−1(A))) | f is an enumeration of A} .

Richter [9] and Knight [7] defined the degree spectra by taking into account
only the bijective enumerations, while we allow as in [11] arbitrary surjective
enumerations.

A Jump Inversion Theorem for the Degree Spectra 719

Proposition 3. [11] Let f be an arbitrary enumeration of A. There exists a
bijective enumeration g of A such that g−1(A) ≤e f−1(A).

The above proposition shows that almost all of the known results about Turing
degree spectra remain valid also for enumeration degree spectra.

Proposition 4. [11] Let g be an enumeration of A. Suppose that F is a total set
and g−1(A) ≤e F . There exists an enumeration f of A such that f−1(A) ≡e F .

From the last proposition it follows that the degree spectrum DS(A) is closed
upwards with respect to the total enumeration degrees.

The jump spectrum of A is the set DS1(A) = {a′ | a ∈ DS(A)}.
Since by [12] every jump spectrum is a degree spectrum of a structure it follows

that DS1(A) is also closed upwards with respect to total enumeration degrees.
One can see this fact directly using the jump inversion theorem from [10].

3 Marker’s Extensions

Marker [8] presented a method of constructing for any n ≥ 1 a ℵ0-categorical
almost strongly minimal theory which is not Σn-axiomatizable. Further Gon-
charov and Khoussainov [6] adapted the construction to the general case in
order to find for any n ≥ 1 examples of ℵ1-categorical computable models as
well as ℵ0-categorical computable models whose theories are Turing equivalent
to ∅(n). We shall give the definition of Marker’s ∃ and ∀ extensions following [6].

Let A = (A; R1, . . . , Rs, =) be a countable total structure and for each i the
predicate Ri has arity ri.

Marker’s ∃-extension of Ri, denoted by R∃
i , is defined as follows. Consider a

set Xi with new elements such that Xi = {xi
〈a1,...,ari

〉 | Ri(a1, . . . , ari)}. The set
Xi we shall call a ∃-fellow for Ri. We suppose that all sets A, X1,. . . , Xs are
pairwise disjoint.

The predicate R∃
i is a predicate of arity ri+1 such that R∃

i (a1, . . . , ari , x) ⇐⇒
a1, . . . , ari ∈ A & x ∈ Xi & x = xi

〈a1,...,ari
〉 (and so Ri(a1, . . . , ari)).

From the definition of R∃
i it follows that if a1, . . . , ari ∈ A then

(∃x ∈ Xi)R∃
i (a1, . . . , ari , x) ⇐⇒ Ri(a1, . . . , ari).

Definition 5. The structure A∃ is defined as follows:

(A ∪
s⋃

i=1

Xi, R
∃
1 , . . . , R∃

s , X̄1, . . . , X̄s, =),

where each R∃
i is a Marker’s ∃-extension of Ri with ∃-fellow Xi and X̄i is a

unary predicate true over the elements of the ∃-fellow for Ri.

Marker’s ∀-extension of Ri, denoted by R∀
i , is defined as follows. Consider an

infinite set Yi of new elements such that Yi = {yi
〈a1,...,ari

〉 | ¬Ri(a1, . . . , ari)}.
The set Yi we shall call a ∀-fellow for Ri.

720 A.A. Soskova

The predicate R∀
i is a predicate of arity ri + 1 such that

1. If R∀
i (a1, . . . , ari , y) then a1, . . . , ari ∈ A and y ∈ Yi;

2. If a1, . . . , ari ∈ A & y ∈ Yi then ¬R∀
i (a1, . . . , ari , y) ⇐⇒ y = yi

〈a1,...,ari
〉.

Note that from the definition of R∀
i it follows that if a1, . . . , ari ∈ A then

(∀y ∈ Yi)R∀
i (a1, . . . , ari , y) ⇐⇒ Ri(a1, . . . , ari).

Definition 6. The structure A∀ is defined as follows:

(A ∪
s⋃

i=1

Yi, R
∀
1 , . . . , R∀

s , Ȳ1, . . . , Ȳs, =),

where each R∀
i is a Marker’s ∀-extension of Ri with ∀-fellow Yi and Ȳi is a unary

predicate true over the elements of the ∀-fellow for Ri. The ∀-fellows of the
distinct predicates and the set A are pairwise disjoint.

Definition 7. The structure A∃∀ is obtained from A as (A∃)∀, i.e.

(A ∪
s⋃

i=1

Xi ∪
s⋃

i=1

Yi, R
∃∀
1 , . . . , R∃∀

s , X̄1, . . . , X̄s, Ȳ1, . . . , Ȳs, =),

where Xi is a ∃-fellow for Ri and Yi is a ∀-fellow for R∃
i .

The structure A∃∀ has the following properties:

Proposition 8. Let a1, . . . , ari ∈ A. Then:
1. Ri(a1, . . . , ari) ⇐⇒ (∃x ∈ Xi)(∀y ∈ Yi)R∃∀

i (a1, . . . , ari , x, y);
2. For each y ∈ Yi there exists a unique sequence a1, . . . , ari ∈ A and x ∈ Xi

such that ¬R∃∀
i (a1, . . . , ari , x, y);

3. For each x ∈ Xi there exists a unique sequence a1, . . . , ari ∈ A such that
for all y ∈ Yi it holds that R∃∀

i (a1, . . . , ari , x, y).

Proof. 1.(⇒) Let Ri(a1, . . . , ari). Then there exists x ∈ Xi such that
R∃

i (a1, . . . , ari , x). From the definition of Yi it follows that for any y ∈ Yi

R∃∀
i (a1, . . . , ari , x, y).
(⇐) Let x ∈ Xi and R∃∀

i (a1, . . . , ari , x, y) for all y ∈ Yi. Then
R∃

i (a1, . . . , ari , x) and hence Ri(a1, . . . , ari).
2. Follows from the definition of Yi.
3. Let x ∈ Xi then x = xi

〈a1,...,ari
〉 and Ri(a1, . . . , ari). Hence

R∃
i (a1, . . . , ari , x). Then for any y ∈ Yi it is not possible that

¬R∃∀
i (a1, . . . , ari , x, y).

4 Join of Two Structures

Let A = (A; R1, . . . , Rs, =) and B = (B; P1, . . . , Pt, =) be countable structures in
the language L1 and L2 respectively. Suppose that L1∩L2 = {=} and A∩B = ∅.
Let L = L1 ∪ L2 ∪ {Ā, B̄}, where Ā and B̄ are unary predicates.

A Jump Inversion Theorem for the Degree Spectra 721

Definition 9. The join of the structures A and B is the structure A ⊕ B =
(A ∪ B; R1, . . . , Rs, P1, . . . , Pt, Ā, B̄, =) in the language L, where

(a) the predicate Ā is true only over the elements of A and similarly B̄ is true
only over the elements of B;

(b) the predicate Ri is defined on the elements of A as in the structure A and
false on all elements not in A and the predicate Pj is defined similarly.

Lemma 10. Let A and B be countable total structures and C = A ⊕ B. Then
A � C and B � C.

Proof. We have to prove that DS(C) ⊆ DS(A) and DS(C) ⊆ DS(B).
Let f be an enumeration of C. Fix x0 ∈ f−1(A). Define
m(0) = x0; m(i + 1) = μz ∈ f−1(A)[(∀k ≤ i)(〈m(k), z〉 �∈ f−1(=))].
Set h = λx.f(m(x)). Note that m ≤e f−1(C) since

z ∈ f−1(A) ⇐⇒ 〈z, 0〉 ∈ f−1(Ā).
Define h−1(Ri) = {〈x1, . . . , xri , e〉 | 〈m(x1), . . . , m(xri), e〉 ∈ f−1(Ri)}. And

h−1(=) = {〈x, y, e〉 | 〈m(x), m(y), e〉 ∈ f−1(=)}.
Then h is an enumeration of A and h−1(A) ≤e f−1(C). Since C is a total

structure and DS(A) is closed upwards then de(f−1(C)) ∈ DS(A).

5 Representation of Σ0
2(D) Sets

Let D ⊆ N. A set M ⊆ N is in Σ0
2(D) if there exists a computable in D predicate

Q such that
n ∈ M ⇐⇒ ∃a∀bQ(n, a, b) .

Definition 11. [6] If M ∈ Σ0
2(D) then M is one-to-one representable if there

is a computable in D predicate Q with the following properties:

1. n ∈ M ⇐⇒ there exists a unique a such that ∀bQ(n, a, b);
2. for every b there is a unique pair 〈n, a〉 such that ¬Q(n, a, b);
3. for every a there exists a unique n such that ∀bQ(n, a, b).

The predicate Q from the above definition is called an one-to-one representation
of M . Goncharov and Khoussainov [6] proved the following lemma:

Lemma 12. [6] If M is a coinfinite Σ0
2(D) subset of N which has an infinite

computable in D subset S such that M \ S is infinite then M has an one-to-one
representation.

Remark 13. We will use this lemma in the next section in our proof of Theo-
rem 14. In order to satisfy the conditions of the lemma we need the following
technical explanations.

Let A = (A; R1, . . . , Rs). Suppose that each Ri is true over infinitely many
elements and it is false over infinitely many elements also.

722 A.A. Soskova

We can add to the domain A of the structure A two new elements say “T”
and “F”. Define the predicate R∗

i as follows:

1. Let ri ≥ 2. Then R∗
i (a1, . . . , ari) is defined as Ri(a1, . . . , ari) if F and T are

not among the arguments {a1, . . . , ari}. If T ∈ {a1 . . . ari} then R∗
i (a1, . . . , ari)

and if F ∈ {a1, . . . , ari} and T �∈ {a1, . . . , ari} then ¬R∗
i (a1, . . . , ari).

2. Let the predicate Ri be unary. Then we define the binary predicate R∗
i as

follows: R∗
i (a, a) ⇐⇒ Ri(a) if a �∈ {T, F}. If T ∈ {a, b} then R∗

i (a, b) is true
and if F ∈ {a, b} and T �∈ {a, b} then ¬R∗

i (a, b).

Let A∗ be the obtained structure with domain A ∪ {T, F} and predicates R∗
i

for i = 1, . . . , s. Then one can easily see using Proposition 4 and Proposition 3
that DS(A) = DS(A∗). Indeed, note that if an enumeration of the structure
A is bijective then the pullback of the equality is computable. Let f be an
enumeration of A and de(f−1(A)) ∈ DS(A). By Proposition 3 there is a bijective
enumeration g of A such that g−1(A) ≤e f−1(A). Then there is a bijective
enumeration h of A∗ such that h−1(A∗) ≡e g−1(A). Moreover in h−1(A∗) each
h−1(R∗

i) is infinite and posses a computable subset S such that h−1(R∗
i) \ S is

infinite. The set S is formed by all tuples containing the number h−1(T). Since
h−1(A∗) ≤e f−1(A) and A is total then de(f−1(A)) ∈ DS(A∗) by Proposition 4.
The proof of DS(A∗) ⊆ DS(A) is similar.

6 Jump Inversion Theorem for the Degree Spectra

Theorem 14. Let A and B be total structures such that B′ � A. Then there
exists a structure C such that B � C and C′ ≡ A.

Proof (Sketch). Without loss of generality we may suppose that the structures
B and A∃∀ are disjoint. Let C = B ⊕A∃∀. By Lemma 10 B � C. We shall prove
that C′ ≡ A, i.e. DS(A) = DS1(C).

1. =⇒ [DS1(C) ⊆ DS(A)].
Let c ∈ DS1(C) and let h be an enumeration of C such that c = de(h−1(C))′.

We shall construct an enumeration f of A such that f−1(A) ≤e h−1(C)′. Since
h−1(C)′ is a total set, by Proposition 4 it will follow that c ∈ DS(A).

Fix x0 ∈ h−1(A). Define
m(0) = x0; m(i + 1) = μz ∈ h−1(A)[(∀k ≤ i)(〈m(k), z〉 �∈ h−1(=))].
Set f = λa.h(m(a)). We have m ≤e h−1(A∃∀) since z ∈ h−1(A) ⇐⇒

(∀i ≤ s)(〈z, 1〉 ∈ h−1(X̄i) ∩ h−1(Ȳi) ∩ h−1(B̄)). Define:

R∃∀,h
i = {〈a1, . . . , ari , x, y, e〉 | 〈m(a1), . . . , m(ari), x, y, e〉 ∈ h−1(R∃∀

i) &
〈x, 0〉 ∈ h−1(X̄i) & 〈y, 0〉 ∈ h−1(Ȳi)} .

Rf
i (a1, . . . , ari) ⇐⇒ (∃x)(∀y)(〈a1, . . . , ari , x, y, 0〉 ∈ R∃∀,h

i &
〈x, 0〉 ∈ h−1(X̄i) & 〈y, 0〉 ∈ h−1(Ȳi)) .

Then it is clear that f is an enumeration of A and f−1(A) ∈ Σ0
2(h−1(A∃∀)).

Then f−1(A) ≤e h−1(A∃∀)′ ≤e h−1(C)′ by the monotonicity of the e-jump.

A Jump Inversion Theorem for the Degree Spectra 723

2. =⇒ [DS(A) ⊆ DS1(C)].
Let a ∈ DS(A) and f̄ be an enumeration of A such that a = de(f̄−1(A)).

By Proposition 3 there is a bijective enumeration f of A such that f−1(A) ≤e

f̄−1(A). We are going to construct an enumeration h of C such that h−1(C)′ ≤e

f−1(A). Then since A is a total structure and the DS1(C) is upwards closed with
respect to total degrees then a ∈ DS1(C).

Since B′ � A, i.e. DS(A) ⊆ DS1(B) there is an enumeration g of B such that
f−1(A) ≡e (g−1(B))′. Denote by D = g−1(B) and note that D is a total set
since the structure B is total. So for each predicate Ri of the structure A we have
that f−1(Ri) ≤e D′. Then f−1(Ri) ∈ Σ0

2(D). Denote by Mi = f−1(Ri). If the
positive part or the negative part of f−1(Ri) is finite then f−1(Ri) is computable.
Otherwise by Remark 13 we can suppose that Mi satisfies all conditions from
Lemma 12. Then by Lemma 12 for each i ≤ s there exists a computable in D
predicate Qi which is an one-to-one representation of Mi. Then

— n̄ ∈ Mi ⇐⇒ there exists a unique a such that (∀b)Qi(n̄, a, b);
— for every b let r(b) = 〈n̄, a〉 be the unique pair such that ¬Qi(n̄, a, b);
— for every a let l(a) = n̄ be the unique n̄ such that ∀bQi(n̄, a, b).
Denote by N1 = {〈1, n〉 | n ∈ N}, N2 = {〈2, i, a〉 | i ≤ s & a ∈ N} and

N3 = {〈3, i, b〉 | i ≤ s & b ∈ N}. Let N0 = N \ (
⋃3

i=1 Ni). Consider a computable
bijection m of N0 onto N and denote by 〈0, n〉 = m(n).

The definition of the enumeration h of C is the following:
h(〈0, n〉) = g(n);
h(〈1, n〉) = f(n);
h(〈2, i, a〉) = xi

〈f(n1),...,f(nri
)〉, if l(a) = 〈n1, . . . , nri〉;

h(〈3, i, b〉) = yi
〈f(n1),...,f(nri

),h(〈2,i,a〉)〉, if r(b) = 〈〈n1, . . . , nri〉, a〉.
Here Xi = {xi

〈a1,...,ari
〉 | Ri(a1, . . . , ari)} is the ∃-fellow for Ri and

Yi = {yi
〈a1,...,ari

,x〉 | ¬R∃
i (a1, . . . , ari , x)} is the ∀-fellow for R∃

i . Define

R∃∀,h
i (〈1, n1〉, . . . , 〈1, nri〉, 〈2, i, a〉, 〈3, i, b〉) ⇐⇒ Qi(〈n1, . . . , nri〉, a, b) .

Let h−1(A) = N1, h−1(Xi) = N2, h−1(Yi) = N3.
It follows that

Ri(f(n1) . . . f(nri)) ⇐⇒ 〈n1, . . . , nri , 0〉 ∈ f−1(Ri)
⇐⇒ (∃a)(∀b)Qi(〈n1, . . . , nri〉, a, b)
⇐⇒ (∃a)(∀b)R∃∀,h

i (〈1, n1〉, . . . , 〈1, nri〉, 〈2, i, a〉, 〈3, i, b〉)
⇐⇒ (∃x)(∀y)R∃∀

i (f(n1) . . . f(nri), x, y) &x ∈ Xi&y ∈ Yi.

From the definition of h it follows that h is an enumeration of A∃∀. It is clear
that h−1(A∃∀) ≤e D.

Let B = (B; P1, . . . , Pt, =) then for each j ≤ t
h−1(Pj) = {〈〈0, n1〉, . . . , 〈0, npj 〉, e〉 | 〈n1, . . . , npj , e〉 ∈ g−1(Pj)} and

h−1(B) = N0. It is obvious that h−1(B) ≤e D.
The pullback of the equality is defined naturally over the elements which are

pullbacks of elements of A as f−1(=) and over the elements which are pullbacks
of elements of B as g−1(=). Over the elements which are the pullbacks of Xi and

724 A.A. Soskova

Yi is a normal equality, since the special form of the Marker’s ∃ and ∀ extensions.
So, h−1(=) ≤e D since f−1(=) is computable.

Thus h is an enumeration of C = B ⊕ A∃∀. Moreover h−1(C) ≤e D. Hence
h−1(C)′ ≤e f−1(A) as D′ ≡e f−1(A).

7 Some Applications

The degree of the structure A, if it exists, is the least element of the degree spec-
trum of A. The results of Richter [9] show that there exist structures, e.g. linear
orders, which do not have degrees. Richter proved that if the degree spectrum
of a linear order has a degree then it is 0.

If the jump spectrum DS1(A) has a least element then it is called the first
jump degree of A. For example Knight [7] shows that if a linear order has a first
jump degree then it is 0′. There are examples of structures [1,4] which have a
first jump degree but do not posses a degree. In [2,11] it is shown that every
torsion free abelian group G of rank 1, i.e. G is a subgroup of the group of the
rational numbers Q, has a first jump degree.

Let G be a nontrivial subgroup of the additive group of the rational numbers.
Fix a �= 0 an element of G. For every prime number p set

hp(a) =
{

k if k is the greatest number such that pk|a in G,
∞ if pk|a in G for all k.

Let p0, p1, . . . be the standard enumeration of the prime numbers and set

Sa(G) = {〈i, j〉 : j ≤ hpi(a)}.

If a and b are non-zero elements of G then Sa(G) ≡e Sb(G). Let dG =
de(Sa(G)), where a is some non-zero element of G.

In [11] it is proved that for every total enumeration degree d, there exists a
bijective enumeration f of G such that f−1(G) ∈ d if and only if dG ≤ d. Since
for every enumeration f we have that f−1(G) is a total set and dG ≤ de(f−1(G)),
DS(G) = {a : a is total & a ≥ dG}.

It turns out that for any total structures A and C such that C′ ≡ A if C has
a degree a then a′ is the first jump degree of C and clearly a′ is the degree of A
since DS(A) = DS1(C).

Proposition 15. Let A and B be total structures such that B′ � A. Then if
the structure A has a degree then there exists a torsion free abelian group G of
rank 1 which has a degree such that B � G and G′ ≡ A.

Proof. Let C = B ⊕ A∃∀ be the structure constructed in Theorem 14 such that
B � C and C′ ≡ A.

Suppose now that a is the degree of A. Then there is a total degree c ∈ DS(C)
such that c′ = a. Then by [11] since c is a total degree there exists a subgroup
G of Q such that dG = c. So, DS(G) = {e : e is total and e ≥ dG}. And
hence DS1(G) = {e′ : e is total & e′ ≥ a}. It is clear that DS1(G) ⊆ DS(A). If

A Jump Inversion Theorem for the Degree Spectra 725

d ∈ DS(A) then d ≥ a. Since the structure A is total d is total. By the jump
inversion theorem from [10] there is a total enumeration degree e such that e′ = d
and e ≥ c. Then e′ ∈ DS1(G) and thus d ∈ DS1(G). Hence DS(A) = DS1(G).
Clearly DS(G) ⊆ DS(B) since dG = c ∈ DS(G) ⊆ DS(B).

The next application concerns a generalization of the notion of degree spectra
considered in [13,15]. Let A, A1, . . . , An be countable structures.

Definition 16. The joint spectrum of A, A1, . . . , An is the set

DS(A, A1, . . . , An) = {a | a ∈ DS(A), a′ ∈ DS(A1), . . . ,a(n) ∈ DS(An)} .

The next proposition follows directly from Theorem 14.

Proposition 17. Let A and B be total structures such that B′ � A. Then there
exists a structure C
 B such that DS(A, A1, . . . , An) = DS1(C, A, A1, . . . , An).

We can show a similar result for the relativized spectra from [14].

Definition 18. An enumeration f of A is n-acceptable with respect to the struc-
tures A1, . . . , An, if f−1(Ai) ≤e (f−1(A))(i) for each i ≤ n.

The relative spectrum of the structure A with respect to A1, . . . , An is the set

RS(A, A1, . . . , An) = {de(f−1(A)) | f is a n-acceptable enumeration of A} .

Proposition 19. Let A and B be total structures such that B′ � A. Then there
exists a structure C
 B such that RS(A, A1, . . . , An) = RS1(C, A, A1, . . . , An).

Proof (sketch). Let C = B⊕A∃∀. Suppose that h is a (n+1)-acceptable enumer-
ation of C and de(h−1(C))′ ∈ RS1(C, A, A1, . . . , An). Let F = h−1(C). Consider
a computable in F function m with range h−1(A). Let s �= t ∈ A. Define an
enumeration of A:

f(x) �

⎧
⎨

⎩

h(m(x/2)) if x is even,
s if x = 2z + 1 and z ∈ F ′,
t if x = 2z + 1 and z �∈ F ′.

Then f−1(A) ≡e F ′ and f−1(Ai) ≤e h−1(Ai) ⊕ F ′ ≤e h−1(C)(i+1) ⊕ F ′ ≡e

F (i+1) ≡e f−1(A)(i) for every i ≤ n. So, de(h−1(C))′ ∈ RS(A, A1, . . . , An).
Let f be a n-acceptable enumeration of A such that

de(f−1(A)) ∈ RS(A, A1, . . . , An). Then as in Theorem 14 one can construct an
enumeration h of C such that h−1(C)′ ≡e f−1(A) and additionally h−1(Ai) ≤e

f−1(Ai) for each i ≤ n. Then h−1(Ai) ≤e f−1(A)(i) ≤e h−1(C)(i+1). Then
de(f−1(A)) ∈ RS1(C, A, A1, . . . , An).

726 A.A. Soskova

References

1. Ash, C.J., Jockush, C., Knight, J.F.: Jumps of orderings. Trans. Amer. Math.
Soc. 319, 573–599 (1990)

2. Coles, R., Downey, R., Slaman, T.: Every set has a least jump enumeration. Bulletin
London Math. Soc 62, 641–649 (2000)

3. Cooper, S.B.: Partial degrees and the density problem. Part 2: The enumeration
degrees of the Σ2 sets are dense. J. Symbolic Logic 49, 503–513 (1984)

4. Downey, R.G., Knight, J.F.: Orderings with αth jump degree 0(α). Proc. Amer.
Math. Soc. 114, 545–552 (1992)

5. Gavryushkin, A.N.: On complexity of Ehrenfeucht Theories with computable
model. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J. (eds.) Logical Ap-
proaches to Computational barriers CiE2006, University of Wales Swansea, Report
Series, No. CSR 7-2006 pp. 105–108 (2006)

6. Goncharov, S., Khoussainov, B.: Complexity of categorical theories with com-
putable models. Algbra and Logic 43(6), 365–373 (2004)

7. Knight, J.F.: Degrees coded in jumps of orderings. J. Symbolic Logic 51, 1034–1042
(1986)

8. Marker, D.: Non Σn-axiomatizable almost strongly minimal theories. J. Symbolic
Logic 54(3), 921–927 (1989)

9. Richter, L.J.: Degrees of structures. J. Symbolic Logic 46, 723–731 (1981)
10. Soskov, I.N.: A jump inversion theorem for the enumeration jump. Arch. Math.

Logic 39, 417–437 (2000)
11. Soskov, I.N.: Degree spectra and co-spectra of structures. Ann. Univ. Sofia 96,

45–68 (2004)
12. Soskov, I.N.: The Jump Spectra are Spectra. in preparation
13. Soskova, A.A.: Minimal pairs and quasi-minimal degrees for the joint spectra of

structures. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS,
vol. 3526, pp. 451–460. Springer, Heidelberg (2005)

14. Soskova, A.A.: Relativized degree spectra. In: Beckmann, A., Berger, U., Löwe, B.,
Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 546–555. Springer, Heidelberg
(2006)

15. Soskova, A.A., Soskov, I.N.: Co-spectra of joint spectra of structures. Ann. Univ.
Sofia 96, 35–44 (2004)

Cupping Δ0
2 Enumeration Degrees to 0′

e

Mariya Ivanova Soskova1,� and Guohua Wu2,��

1 Department of Pure Mathematics
University of Leeds, Leeds LS2 9JT, U.K.

mariya@maths.leeds.ac.uk
2 School of Physical and Mathematical Sciences

Nanyang Technological University,
Singapore 639798

guohua@ntu.edu.sg

Abstract. In this paper we prove that every nonzero Δ0
2 e-degree is

cuppable to 0′
e by a 1-generic Δ0

2 e-degree (so low and nontotal) and
that every nonzero ω-c.e. e-degree is cuppable to 0′

e by an incomplete
3-c.e. e-degree.

1 Introduction

Intuitively, we say that a set A is enumeration reducible to a set B, denoted as
A ≤e B, if there is an effective procedure to enumerate A, given any enumeration
of B. More formally, A ≤e B if there is a computably enumerable set W such
that

A = {x : (∃u)[〈x, u〉 ∈ W & Du ⊆ B]}

where Du is the finite set with canonical index u.
Let ≡e denote the equivalence relation generated by ≤e and let [A]e be the

equivalence class of A — the enumeration degree (e-degree) of A. The degree
structure 〈De, ≤〉 is defined by setting De = {[A]e : A ⊆ ω} and setting [A]e ≤
[B]e if and only if A ≤e B. The operation of least upper bound is given by
[A]e ∨ [B]e = [A ⊕ B]e where A ⊕ B = {2x : x ∈ A} ∪ {2x + 1 : x ∈ B}.
The structure De is an upper semilattice with least element 0e, the collection
of computably enumerable sets. Gutteridge [9] proved that De does not have
minimal degrees (see Cooper [1]).

An important substructure of De is given by the Σ0
2 e-degrees i.e. the e-

degrees of Σ0
2 sets. Cooper [2] proved that Σ0

2 e-degrees are the e-degrees below
0′

e, the e-degree of K. An e-degree is Δ0
2 if it contains a Δ0

2 set, a set A with
a computable approximation f such that for every element x, f(x, 0) = 0 and
lims f(x, s) exists and equals to A(x). Cooper and Copestake [5] proved that

� Soskova is supported by the Marie Curie Early Training grant MATHLOGAPS
(MEST-CT-2004-504029).

�� Wu is partially supported by a a start-up grant No. M48110008 and a research grant
No. RG58/06 from NTU.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 727–738, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

728 M.I. Soskova and G. Wu

below 0′
e there are e-degrees that are not Δ0

2. These e-degrees are called properly
Σ0

2 e-degrees.
In this paper we are mainly concerned with the cupping property of Δ0

2

e-degrees. An e-degree a is cuppable if there is an incomplete e-degree c such
that a∪c = 0′

e. In [6], Cooper, Sorbi and Yi proved that all nonzero Δ0
2 e-degrees

are cuppable and that there are noncuppable Σ0
2 e-degrees.

Theorem 1. (Cooper, Sorbi and Yi [6]) Given a nonzero Δ0
2 e-degree a, there

is a total Δ0
2 e-degree c such that a ∪ c = 0′

e, where an e-degree is total if it
contains the graph of a total function. Meanwhile, noncuppable e-degrees exist.

In this paper we first prove that each nonzero Δ0
2 e-degree a is cuppable to 0′

e

by a non-total Δ0
2 e-degree.

Theorem 2. Given a nonzero Δ0
2 e-degree a, there is a 1-generic Δ0

2 e-degree b
such that a∪b = 0′

e. Since 1-generic e-degrees are quasi-minimal and 1-generic
Δ0

2 e-degrees are low, b is nontotal and low.

Here a set A is 1-generic if for every computably enumerable set S of {0, 1}-
valued strings there is some initial segment σ of A such that either S contains
σ or S contains no extension of σ. An enumeration degree is 1-generic if it
contains a 1-generic set. Obviously, no nonzero e-degree below a 1-generic e-
degree contains a total function and hence 1-generic e-degrees are quasi-minimal.
Copestake proved that a 1-generic e-degree is low if and only if it is Δ0

2 (see [7]).
Our second result is concerned with cupping ω-c.e. e-degrees to 0′

e. A set A
is n-c.e. if there is an effective function f such that for each x, f(x, 0) = 0,
|{s + 1 | f(x, s) �= f(x, s + 1)}| ≤ n and A(x) = lims f(x, s). A is is ω-c.e. if
there are two computable functions f(x, s), g(x) such that for all x, f(x, 0) = 0,
|{s + 1 | f(x, s) �= f(x, s + 1)}| ≤ g(x) and lims f(x, s) ↓= A(x).

An enumeration degree is n-c.e. (ω-c.e.) if it contains an n-c.e. (ω-c.e.) set.
It’s easy to see that the 2-c.e. e-degrees are all total and coincide with the Π1

e-degrees, see [3]. Cooper also proved the existence of a 3-c.e. nontotal e-degree.
As the construction presented in [6] actually proves that any nonzero n-c.e.
e-degree can be cupped to 0′

e by an (n + 1)-c.e. e-degree, we will prove that any
nonzero ω-c.e. e-degree is cuppable to 0′

e by a 3-c.e. e-degree.

Theorem 3. Given a nonzero ω-c.e. e-degree a, there is a 3-c.e. e-degree b such
that a ∪ b = 0′

e.

This is the strongest possible result. We explain it as follows. Consider the stan-
dard embedding ι of DT to De given by: ι(degT (A)) = dege(χA) where χA

denotes the graph of the characteristic function of A. It is well-known that ι is
an order-preserving mapping and that the Π1 enumeration degrees are exactly
the images of the Turing c.e degrees under ι. Consider a noncuppable c.e. degree
a. ι(a) is Π1, hence ω-c.e., and ι(a) is not cuppable by any Π1 e-degree, as ι
preserves the least upper bounds. Therefore, no 2-c.e. e-degree cups ι(a) to 0′

e.
We use standard notation, see [4] and [10].

Cupping Δ0
2 Enumeration Degrees to 0′

e 729

2 Basic Ideas of Cooper-Sorbi-Yi’s Cupping

In this section we describe the basic ideas of Cooper-Sorbi-Yi’s construction
given in [6]. Let {As}s<ω be a Δ0

2 approximation of the given Δ0
2 set A which

is assumed to be not computably enumerable. We will construct two Δ0
2 sets

B and E (auxiliary) and an enumeration operator Γ such that the following
requirements are satisfied:

S : Γ A,B = K
NΦ : E �= ΦB

The first requirement is the global cupping requirement and it guarantees that
the least upper bound of the degrees of A and B is 0′

e. Here Γ A,B denotes an
enumeration operation relative to the enumerations of A and B.

The second group of requirements NΦ, where Φ ranges over all enumeration
operators, guarantees that the degree of B is not complete. Indeed, we have a
witness — the degree of E is not below that of B.

To satisfy the global requirement S we will construct by stages an enumeration
operator Γ such that K = Γ A,B. That is, at stage s we find all x < s such that
x ∈ Ks but x �∈ Γ A,B[s], the approximation of Γ A,B at stage s, we define two
markers ax (bound of the A-part) and bx (bound of the B-part and bx ∈ B)
and enumerate x into Γ A,B via the axiom 〈x, As � ax + 1, Bs � bx + 1〉. If x
leaves K later, we can make this axiom invalid by extracting bx from B or by a
change (from 1 to 0) of A on As � ax + 1. Intuitively we must use A-changes in
the definition of Γ since otherwise B would be complete, contradicting the N -
requirements. Since A is not in our control, if A does not provide such changes
then we have to extract bx out of B. We call this process the rectification of
Γ at x.

Note that after stage s, at stage t > s say, if x ∈ Kt but At � ax + 1 �⊆ At or
Bs � bx + 1 �⊆ Bt then we need to put x into Γ A,B by enumerating a new axiom
into Γ . If this happens infinitely often then x is not in Γ A,B and we cannot
ensure that Γ A,B(x) = K(x). To avoid this at stage t, when we re-enumerate
x into Γ A,B, we keep ax the same as before, but let bx be a bigger number.
We put bx[t] into B and extract bx[s] from B (we want only one valid axiom
enumerating x into Γ A,B). Assuming that the G-strategies also do not change
ax after a certain stage, as A is Δ0

2 there can be only finitely many changes in
A � ax and hence we will eventually stop enumerating axioms for x in Γ .

Now we consider how to satisfy a NΦ-requirement. We use variant of the
Friedberg-Muchnik strategy. Namely, we select x as a witness, enumerate it into
E and wait for x ∈ ΦB . If x never enters ΦB then NΦ is satisfied. Otherwise we
will extract x from E, preserving B � φ(x) where φ(x) denotes the use function
of the computation ΦB(x) = 1.

The need to preserve B � φ(x) conflicts with the need to rectify Γ . To avoid this
before choosingx the NΦ-strategywill first choose a (big) number k as its threshold
and try to achieve bn > φ(x) for all n ≥ k. For elements n < k, S will be allowed
to rectify Γ at its will. Whenever K changes below k +1 we reset this NΦ-strategy
by cancelling all associated parameters except for this k. Since k is fixed such a

730 M.I. Soskova and G. Wu

resetting process can happen at most k + 1 many times, so we can assume that
after a stage large enough this NΦ-strategy will never be reset anymore.

If k enters K, the threshold is moved automatically to the next number in K.
Since K is infinite, eventually, the threshold will stop changing its value. This
threshold will be the real threshold of the corresponding NΦ-strategy.

In order to be able to preserve some initial segment of B for the diagonal-
ization, NΦ will first try to move all markers bn for elements n ≥ k above the
restraint. A useful A-change will facilitate this. In the event that no such useful
change appears we will be able to argue that A is c.e. contrary to hypothesis.
To do this we will have an extra parameter U , aimed to construct a c.e. set
approximating A.

The NΦ-strategy works as follows at stage s:

Setup: Define a threshold k to be a big number. Choose a witness x > k and
enumerate it in E.

K-Check: If a marker bn for an element n ≤ k has been extracted from B
during Γ -rectification then restart the attack.

Attack:

1. If x ∈ ΦB go to step 2. Otherwise return to step 1 at the next stage.
2. Approximate A by As � ak at stage s. Extract bk[s] from B. Cancel all

markers an and bn for n ≥ k. Define ak new, bigger than any element seen
so far in the construction. Go to step 3.

3. Initialize all strategies of lower priority. If a previous approximation of A
defined at stage t < s is not true then enumerate bk[t] back in B, extract x
from E and go to step 4, otherwise go back to step 1.

4. While the observed change in A is still apparent, do nothing. Otherwise
enumerate x back in E and extract bk[t] from B, go back to step 3.

If after a large enough stage the strategy waits at 1 or 4 forever then the
NΦ-requirement is obviously satisfied. In the latter case ΦB(x) = 1 �= 0 = E(x)
and the construction of Γ will never change the enumeration of ΦB(x) = 1 since
all γ-markers are lifted to bigger values by the changes of A below ak[s]+1. This
strategy will not go from 1 or 4 back to 3 infinitely often and hence the NΦ-
requirement is satisfied. Otherwise as A is Δ0

2 it would pass through 2 infinitely
often. Let t1 < t2 < · · · < tn < · · · be the stages at which this strategy passes
through 2. Then for each i, Ati � ak[ti] + 1 ⊂ A. By this property we argue that
A is computably enumerable as follows: for each x, x is in A if and only if x is
in Ati for some i, or

x ∈ A ⇔ ∃i(x ∈ Ati).

This contradicts our assumption on A.

3 Cupping by 1-Generic Degrees

In this section we give a proof of Theorem 2. That is, given an non-c.e. Δ0
2 set

A, we will construct a Δ0
2 1-generic B satisfying the following requirements:

Cupping Δ0
2 Enumeration Degrees to 0′

e 731

S : Γ A,B = K;
Gi : (∃λ ⊂ B)[λ ∈ Wi ∨ (∀μ ⊇ λ)[μ /∈ Wi]].

If all requirements Gi together with the global requirement S are satisfied
then B will have the intended properties. It is well known that the degree of a
1-generic set can not be complete.

Definition 1. The tree of outcomes will be a perfect binary tree T . Each node
α ∈ T of length i will be labelled by the requirement Gi. We will say that α is a
Gi-strategy.

At stage 0 B = ∅, Γ = ∅, Uα = ∅ for all α and all thresholds and witnesses will
be undefined.

At stage s we start by rectifying Γ and then construct a path through the
tree δs of length s visiting all nodes α ⊂ δs and performing actions as stated in
the construction.

The Γ -rectification module for satisfying the global S requirement is as follows:

Γ -rectification module. Scan all elements n < s and perform the following
actions for the elements n such that Γ A,B(n) �= K(n):

– n ∈ K.

1. If an ↑, define an = an−1 + 1(if n= 0, define an = 1). Note that this is
the only case when the Γ -module changes the value of an. Once defined
an can only be redefined due to a G-strategy. The idea is that eventually
G-strategies will stop cancelling an, so that we can approximate A � an

correctly and obtain a true axiom for n.
2. If bn ↓ then extract it from B and cancel all markers bn′ for n′ > n.
3. Define bn to be big, i.e a number greater than any number mentioned in

the construction so far, and enumerate it in B.
4. Enumerate in Γ the axiom 〈n, A � an + 1, {bm|m ≤ n}〉.

– n /∈ K

Then find all valid axioms in Γ for n – 〈n, A � a + 1, Mn〉 and extract the
greatest element of Mn from B.

Construction of δs. We will define δs(n) for all n < s by induction on n.
Suppose we have already defined δs � i = α working on requirement GW . We
will perform the actions assigned to α and choose its outcome o ∈ {0, 1}. Then
δs(i) = o.

α will be equipped with a threshold k and a witness λ, a finite binary string.
When α is visited for the first time after initialization it starts from Setup. At
further stages it always performs Check first. If the Check does not empty Uα

then it continues with the Attack module from where it was directed to at the
previous α-true stage. Otherwise it continues with the Setup to define λ again
and then proceeds to step 1 of Attack.

732 M.I. Soskova and G. Wu

Setup: If a threshold has not been defined or is cancelled then define k to be big –
bigger than any element appeared so far in the construction. If a witness has not
yet been defined choose a binary string λ of length bk +1 so that λ = B � bk +1.

Check: If a marker bn for an element n ≤ k has been extracted from B during
Γ -rectification at a stage t such that s− < t ≤ s where s− is the previous α-true
stage then initialize the subtree below α, empty U .

If k /∈ K then define k to be the least k′ > k such that k′ ∈ K. I nitialize the
subtree below α, empty U .

If bk has changed since the last α-true stage and λ � B then define λ to be
B � bk. Do not empty U.

Attack:

1. Check if there is a finite binary string μ ⊇ λ in W . If not then the outcome is
o = 1. Return to step 1 at the next stage. If there is such a μ then remember
the least one and go to step 2.

2. Enumerate in the guess list U a new entry 〈As � ak, μ, bk〉. Extract bk from
B. Let μ̂ be the string μ but with position bk = 0. For all elements n > |λ|
such that μ̂(n) is defined let B(n) = μ̂(n). Cancel all markers an and bn for
n ≥ k. Define ak to be bigger. Note that μ̂ ⊂ B and at the next stage Check
will define a new value of λ to be B � bk + 1 so that λ ⊇ μ̂. Go to step 3.

3. Initialize all strategies below α. Scan the guess list U for errors. The entries
in the guess list will be of the following form 〈Ut, μt, bt〉 where Ut is a guess
of A and bt is the marker that was extracted from B when this guess was
made at stage t. Note that to make μt ⊂ B we only need to enumerate bt in
B. If there is an error in the guess list, i.e. some Ut � As, then enumerate bt

in B and go to step 4 with current guess G = 〈Ut, μt, bt〉 where t is the least
index of an error in U . If all elements are scanned and no errors are found
go back to step 1.

4. If the current guess G = 〈Ut, μ, bt〉 has the property Ut � As then let the
outcome be o = 0. Come back to step 4 at the next stage. Otherwise extract
bt from B. If the Γ -rectification module has extracted a marker m for an
axiom that includes bt in its B−part since the last stage on which this
strategy was visited then enumerate m back in B. Go back to step 3.

The Proof. Define the true path f ⊂ T to be the leftmost path through the
tree that is visited infinitely many times, i.e. ∀n∃∞t(f � n ⊆ δt) and ∀n∃tn∀t >
tn(δt �<L f � n).

Lemma 1. For each strategy f � n the following is true:

1. There is a stage t1(n) > tn such that at all f � n-true stages t > t1(n) Check
does not empty U .

2. There is a stage t2(n) > t1(n) such that at all f � n-true stages t > t2(n)
the Attack module never passes through step 3 and hence the strategies below
f � n are not initialized anymore, B is not modified by f � n, and the markers
an for any elements n are not moved by f � n

Cupping Δ0
2 Enumeration Degrees to 0′

e 733

Proof. Suppose the two conditions are true for m < n. Let f � n = α. Let t0 be
an α-true stage bigger than t2(m) for all m < n and tn.

Then after stage t0 α will not be initialized anymore.
After stage t0 all elements n < k have permanent markers an. Indeed none

of the strategies above α modify them anymore according to the induction hy-
pothesis, strategies to the left are not accessible anymore and strategies to the
right are initialized on stage t0, hence the next time they are accessed they will
have new thresholds greater than k.

The threshold k will stop shifting its value as K is infinite and we will even-
tually find the true threshold k ∈ K.

As A is Δ0
2, eventually all A � an for element n < k will have their final value

and so will K � k. Hence there is a stage t1(n) > t0 after which no markers bn for
elements n ≤ k will be extracted from B by the Γ -rectification and the Check
module at α will never empty U again.

To prove the second clause suppose that the module passes through step 3
infinitely many times and consider the set V =

⋃
L(U) where L(U) denotes

the left part of entries in the guess list U , that is the actual guesses at the
approximation of A. By assumption A is not c.e. hence A �= V .

If V � A then there is a least stage t′ and element p such that p ∈ Ut′\A
and all Ut for t < t′ are subsets of A. Let tp > t2 be a stage such that the Δ0

2

approximation of A settles down on p, i.e. for all t > tp, At(p) = A(p) = 0. Then
when we pass through step 3 after stage tp we will spot this error, go to step 4
and never again return to step 3.

If V ⊂ A, let p be the least element such that p ∈ A\V . Every guess in
U is eventually correct and returns to step 1. To access step 3 again we pass
through step 2, i.e. we pass through step 2 infinitely often. As a result ak grows
unboundedly and will eventually reach a value greater than p. As on all but
finitely many stages t, p ∈ At, p will enter V . �
Corollary 1. Every Gi-requirement is satisfied.

Proof. Consider the Gi-strategy α = f � i. Choose a stage t3 > t2(i) from
Lemma 1, after which the Attack module is stuck at step 1 or step 4, we have a
permanent value for ak and A � ak remains unchanged. Then so will the marker
bk and we will never modify λ again and λ ⊆ Bt at all t > t3.

If the module is stuck at step 1 we have found a string λ such that λ ⊂ B
and no string μ ⊃ λ is in the set Wi.

If the module is stuck at step 4 we have found a string μ from the guess
G = 〈Ut, μ, bt〉 which is in Wi. It follows from the construction that μ ⊂ B.
The current markers bn, for n ≥ k at stage t were cancelled and bk[t] = bt was
extracted from B. Any axiom defined after stage t has b-marker greater than
|μ|. Hence the Γ -rectifying procedure will not extract any element below the
restraint B � |μ| from B. It does not extract markers of elements n < k. If n ≥ k
and n ∈ K then its current marker is greater than |μ|. If n > k and n /∈ K
then any axiom defined before stage t is invalid, because its b-marker is already
extracted from B at a previous stage t0 < t or else it has an A-component that
contains as a subset Ut � A. �

734 M.I. Soskova and G. Wu

Lemma 2. The S-requirement is satisfied.

Proof. At each stage s we make sure that Γ is rectified. For elements n < s, we
have Γ A,B(n)[s] = K(n)[s]. This is enough to prove that n /∈ K ⇒ n /∈ Γ A,B.
Indeed if we assume that n ∈ Γ A,B then there is an axiom 〈n, An, Mn〉 ∈ Γ and
An ⊆ A, Mn ⊂ B. Hence this axiom is valid on all but finitely many stages. But
according to our construction we will ensure Mn � B on infinitely many stages,
a contradiction.

To prove the other direction, n ∈ K ⇒ n ∈ Γ A,B, we have to establish that
the N -strategies will stop modifying the markers an and bn eventually. Indeed
the markers can be modified only by N -strategies with thresholds k < n. The
way we choose each threshold guarantees that there will be only finitely many
nodes on the tree with this property. The nodes to the left of the true path will
eventually not be accessible anymore and the nodes to the right will be cancelled
and will choose new thresholds, bigger then n. Lemma 1 proves that every node
along the true path will eventually stop moving an and bn by property 2.

Suppose the markers are not modified after stage t1. After stage t1, an has a
constant value. As A is Δ0

2 there will be a stage t2 > t1 such that for all t > t2
A � an[t] = A � an. At stage t2 + 1 we rectify Γ . If n ∈ Γ A,B then there is
an axiom 〈n, An, Mn〉 in Γ such that An ⊂ A � an and at all further stages
this axiom will remain valid, so the Γ -rectifying procedure will not modify it
again. Otherwise it will extract a b-marker for the last time and enumerate an
axiom 〈n, A � an, M ′

n〉 that will be valid at all further stages. In both cases we
have found an axiom for n that is valid on all but finitely many stages, hence
n ∈ Γ A,B. �

Lemma 3. B is Δ0
2.

Proof. We need to show that for each n, n can be put in and moved out from
B at most finitely times. To see this fix n and consider the Gi-strategy along
the true path that has a threshold ki > n. As we have already established in
Corollary 1 there is a stage t3 > t2(i), after which we will never modify λi again
and λ ⊆ Bt on all t > t3. As n < |λi| then Bt(n) will remain constant on all
stages t > t3. This means that B(n) changes at most t3 many times. �

4 Cupping the ω-c.e. Degrees

In this section we give a proof of Theorem 3. Suppose we are given an ω-c.e. set
A with bounding function g. We will modify the construction of the set B so
that it will turn out to be 3 − c.e.. The requirements are:

S : Γ A,B = K
NΦ : E �= ΦB

The structure of the axioms enumerated in Γ will be more complex. Again we
will have an a-marker an for each element n, but instead of just one marker bn

we will have a set of b-markers Bn of size gn+1 where gn =
∑

x<an
g(x) together

Cupping Δ0
2 Enumeration Degrees to 0′

e 735

with a counter cn that will tell us which element we should extract if we need to.
Every time A � an changes we will extract from B a different element – the cn-th
element bn ∈ Bn and then add 1 to cn to ensure that each element in B will be
extracted only once. If we need to restore a computation due to the N -strategies
we will enumerate the extracted marker back in B, hence B is 3− c.e.. Note that
if a restored computation has to be destroyed again, we will need to extract a
different marker from B. This could destroy further computations. That is why
will always try to restore the last computation ΦB(x).

Γ -rectification module. Scan all elements n < s and perform the following
actions for the elements n such that Γ A,B(n) �= K(n):

– n ∈ K.
1. If an ↑ then define an = an−1 + 1(if n = 0, define an = 1).
2. If Bn ↓. Extract the cn-th member of Bn. Move the counter cn to the

next position cn + 1. Cancel all Bn′ for n′ > n.
3. If Bn ↑ then define a set of new markers Bn of size gn + 1 where gn =∑

x<an
g(x) and a new counter cn = 1 and enumerate Bn in B.

4. Enumerate in Γ the axiom 〈n, As � an + 1,
⋃

{Bn′(cn′)|n′ ≤ n}〉 where
Bn′(cn′) is the set of all elements in Bn′ with positions greater than or
equal to cn′ .

– n /∈ K
Then find all valid axioms in Γ for n – 〈n, At � a + 1, Mn〉 where Mn =⋃

{Bn′ |n′ ≤ n} and extract the least member of Bn that has not yet been
extracted from B. Increment the counter cn that corresponds to the set of
markers Bn.

Construction of δs. Setup: If a threshold has not been defined or is cancelled
then define k to be big, bigger than any element appeared so far in the con-
struction. If a witness has not yet been defined choose x > k and enumerate it
in E.

Check: If a marker from Bn for an element n < k has been extracted from B
during Γ -rectification at a stage t, s− < t ≤ s where s− is the previous α-true
stage, then initialize the subtree below α, empty U .

If k /∈ K then shift it to the next possible value and redefine x to be bigger.
Again initialize the subtree below α and empty U .

Attack:

1. Check if x ∈ ΦB . If not then the outcome is o = 1, return to step 1 at the
next stage. If x ∈ ΦB go to step 2.

2. Initialize all strategies below α. Scan the guess list U for errors. If there is
an error then take the last entry in the guess list, say the one with index t:
〈Ut, Bt, ct〉 ∈ U and Ut � As. Enumerate the (ct − 1)-th member of Bt back
in B. Extract x from E and go to step 4 with current guess G = 〈Ut, Bt, ct〉.
If all elements are scanned and no errors are found go to step 3.

736 M.I. Soskova and G. Wu

3. Enumerate in the guess list U a new entry 〈As � ak, Bk, ck〉. Extract the
ck-th member of Bk from B and move ck to the next position ck +1. Cancel
all markers an and Bn for n ≥ k. Define ak new, bigger than any element
seen so far in the construction. Go to back to step 1.
Note that this ensures that our guesses at the approximation of A are mono-
tone. Hence if there is an error in the approximation, this error will be
apparent in the last guess. This allows us to always use the computation
corresponding to the last guess. We will always be able to restore it.

4. If the current guess G = 〈Ut, Bt, ct〉 has the property Ut � As then let
the outcome be o = 0. Come back to step 4 at the next stage. Otherwise
enumerate x back in E and extract the ct-th member of Bt from B and move
the value of the counter to ct + 1. If at this stage during the Γ -rectification
procedure a different marker m for an axiom that contains Bt was extracted
then enumerate m back in B. Go back to step 1.

The Proof. The construction ensures that for any n, at any stage t, at most one
axiom in Γ defines Γ A,B(n). Generally, we extract a number from Bn to drive n
out of Γ A,B. When an N -strategy α acts at step 3 of the Attack module, at stage
s say, α needs to preserve ΦB(xα). All lower priority strategies are initialized and
an element b1 in Bkα is extracted from B to prevent the S-strategy from changing
B on φ(xα). Note that all axioms for elements n ≥ kα contain Bkα . So at stage s,
when we extract b1 from B, n is driven out of Γ A,B. As in the remainder of the
construction, at any stage, we will have either that A has changed below an or
B has changed on Bn, these axioms will never be active again. As the Γ -module
acts first, it may still extract a marker m from an axiom for n > kα if A � an has
changed back and thereby injure B � φ(xα). But when α is visited it will correct
this by enumerating m back in B and extracting a further element b2 ∈ Bkα from
B to keep Γ true. This makes our N -strategies and the S-strategy consistent.
We comment here that such a feature is also true in the proof of Theorem 2, but
there we do not worry about this as we are constructing a Δ0

2 set. In the proof
of Theorem 3, this becomes quite crucial, as we are constructing B as a 3-c.e.
set, and we have less freedom to extract numbers out from B.

The construction ensures that B is a 3 − c.e. set. First we prove that the
counter cn never exceeds the size of its corresponding set Bn and therefore we
will always have an available marker to extract from B if it is necessary.

Lemma 4. For every set of markers Bn and corresponding counter cn at all
stages of the construction cn < |Bn| and the cn-th member of Bn is in B.

Proof. For each set of markers Bn only one node along the true path can enu-
merate its elements back into B. Indeed if Bn enters the guess list Ut at some
node α on the tree then at stage t, Bn is the current set of markers for n and n
is the threshold for α. When α enumerates Bn in its Ut, it cancels the current
markers for the element n. Hence Bn does not belong to any Uβ

t′ for t′ ≤ t and
any node β or else Bn will not be current and Bn will not enter Uβ

t′′ at any stage
t′′ ≥ t and any node β as it is not current anymore.

Cupping Δ0
2 Enumeration Degrees to 0′

e 737

We ensure that n being a threshold is in K, hence after stage t the Γ -
rectification procedure will not modify B � Bn. Before stage t while the markers
were current the counter cn was moved only when the Γ -rectification procedure
observed a change in A � an, i.e some element that was in A � an at the previous
stage is not there anymore. After stage t α will move the marker cn once at entry
in Ut and then only when it observes a change in A � an, i.e Un = A � an[t]
was a subset of A at a previous step but is not currently. Altogether cn will be
moved at most gn + 1 < |Bn| times.

Otherwise Bn belongs to an axiom which contains the set Bk for a particular
threshold k and n /∈ K. Then again its members are enumerated back in B only
in reaction to a change in A � an. �

We will now prove that Lemma 1 is valid for this construction as well. Note that
this construction is a bit different, therefore we will need a new proof. The true
path f is defined in the same way.

Lemma 5. For each strategy f � n the following is true:

1. There is a stage t1(n) > tn such that at all f � n-true stages t > t1(n) Check
does not empty U .

2. There is a stage t2(n) > t1(n) such that at all f � n-true stages t > t2(n) the
Attack module never passes through step 2 and hence the strategies below α
are not initialized anymore, B is not modified by f � n, and the markers an

for any elements n are not moved by f � n

Proof. Suppose the two conditions are true for m < n. Let f � n = α. Let t0 be
an α-true stage bigger than t2(m) for all m < n and tn.

Then after stage t0 α will not be initialized anymore. The proof of the the
existence of stage t1(n) satisfying the first property is the same as in Lemma 1.

To prove the second clause suppose that the module passes through step 2
infinitely many times and consider the set V =

⋃
L(U) where L(U) denotes the

left part of entries in the guess list U . By assumption A is not c.e. hence A �= V .
If V � A then there is element p such that p ∈ V \A. Let tp > t2 be a

stage such that the approximation of A settles down on p, i.e. for all t > tp,
At(p) = A(p) = 0. Then when we pass through step 2 after stage tp we will spot
this error, go to step 4 and never again return to step 1.

If V ⊂ A, let p be the least element such that p ∈ A\V . Every guess in U
is eventually correct and allows us to move to step 3, i.e. we pass through step 3
infinitely often. As a result ak grows unboundedly and will eventually reach a value
greater than p. As on all but finitely many stages t, p ∈ At, p will enter V . �

Corollary 2. Every Ni-requirement is satisfied.

Proof. Let α ⊂ f be an Ni-strategy. As a corollary of Lemma 5 there is a stage
t3 > t2(i) after which the Attack module is stuck at step 1, and hence x /∈ ΦB ,
but x ∈ E. Or else the module is stuck at step 4, in which case x ∈ ΦB and
x /∈ E. Indeed step 4 was accessed with G = 〈Ut, Bt, ct〉, belonging to the last

738 M.I. Soskova and G. Wu

entry in the guess list 〈Ut, Bt, ct〉. At stage t we had x ∈ ΦB [t]. The current
markers bn , for n ≥ k were cancelled and bk[t] was extracted from B. Hence the
Γ -rectifying procedure will not extract any element below the restraint B � φ(x)
from B. It does not extract markers of elements n < k. If n ≥ k and n ∈ K then
its current marker is greater than φ(x). If n > k and n /∈ K then any axiom
defined before stage t is invalid, because one of its b-markers is extracted from
B at a previous stage or else it has an A-component Ut � A. Any axiom defined
after stage t has b-markers greater than φ(x).

After stage t, if α modifies B it will be in the set of markers Bt, and when
step 4 is accessed we have Bt ⊂ B. �

Lemma 2 is now valid for Theorem 3 as well, hence all requirements are satisfied
and this concludes the proof of Theorem 3.

Acknowledgments. We thank an anonymous reviewer for pointing out an
inaccuracy in the previous version of this paper.

References

1. Cooper, S.B.: Partial degrees and the density problem. J. Symb. Log. 47, 854–859
(1982)

2. Cooper, S.B.: Partial Degrees and the density problem. part 2: the enumeration
degrees of the Σ2 sets are dense. J. Symb. Log. 49, 503–513 (1984)

3. Cooper, S.B.: Enumeration reducibility, nondeterminitsic computations and rela-
tive computability of partial functions. In: Ambos-Spies, K., Müller, G., Sacks, G.E
(eds.) Recursion Theory Week, Oberwolfach 1989. Lecture Notes in Mathematics,
vol. 1432, pp. 57–110. Springer, Heidelberg (1990)

4. Cooper, S.B.: Computability Theory, Chapman & Hall/CRC Mathematics, Boca
Raton, FL, New York, London (2004)

5. Cooper, S.B., Copestake, C.S.: Properly Σ2 enumeration degrees. Zeits. f. Math.
Logik. u. Grundl. der Math. 34, 491–522 (1988)

6. Cooper, S.B., Sorbi, A., Yi, X.: Cupping and noncupping in the enumeration de-
grees of Σ0

2 sets. Ann. Pure Appl. Logic 82, 317–342 (1996)
7. Copestake, K.: 1-Genericity in the enumeration degrees below 0′

e. In: Petkov, P.P.
(ed.) Mathemcatical Logic, pp. 257–265. Plenum Press, New York (1990)

8. Copestake, K.: 1-Genericity enumeration Degrees. J. Symb. Log. 53, 878–887 (1988)
9. Gutteridge, L.: Some Results on Enumeration Reducibility, PhD thesis, Simon

Fraser University (1971)
10. Soare, R.I.: Recursively enumerable sets and degrees. Springer, Berlin, Heidelberg,

London, New York, Paris, Tokyo (1987)

What Is the Lesson of Quantum Computing?

(Extended Abstract)

Christopher G. Timpson

Division of History and Philosophy of Science, Department of Philosophy,
University of Leeds, Leeds, LS2 9JT, UK

c.g.timpson@leeds.ac.uk

It would be a mistake to seek for a single lesson that the advent of quantum
computing has provided: the theory is rich in both physics and computer science
terms. But my quarry is a, or perhaps the, central conceptual point that we
should draw; and it concerns putative shifts in our understanding of the Church-
Turing hypothesis inspired by reflection on quantum computation.

Deutsch [1,2] argues forcefully that a principle called the Turing Principle
ought to replace the familiar Church-Turing hypothesis [3,4] as the centrepiece
of the theory of computation:

Turing Principle: Every finitely realizable physical system can be per-
fectly simulated by a universal model computing machine operating by
finite means.

Church-Turing hypothesis: The class of effectively calculable func-
tions is the class of Turing machine computable functions.

He takes his Turing Principle to support and be supported by the notion of
quantum computers; and finds it noteworthy that the Principle is satisfied in a
quantum world, but not in a classical one.

The point here really concerns liberation: The classical Turing machine, ab-
stractly characterised, has dominated theorising since its conception. What the
development of quantum computers has shown is that just focusing on abstract
computational models, in isolation from the consideration of the physical laws
governing the objects that might eventually have to implement them, can be to
miss a lot.

What the progenitors of quantum computation (Benioff, Feynman, Deutsch)
realised was that the question of what computational processes fundamental
physics might allow was a very important one; and one which had typically
been neglected in the purely mathematical development of computer science.
One can argue that Turing’s model of computing involved implicit classical as-
sumptions about the kinds of physical computational processes there could be;
hence his model was not the most general, hence Feynman’s tongue-in-cheek
remark a propos Turing: ‘He thought he understood paper’1. This is the inspi-
ration for Deutsch’s move to the Turing Principle, for that Principle is intended
to be minimally committed physically.

1 Cited by [2, p.252].

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 739–741, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

740 C.G. Timpson

But while the point about liberation is very important indeed, I shall suggest
that we ought not to buy in to Deutsch’s version of it by endorsing the Turing
Principle. Instead we ought to think rather harder about what propositions like
the Church-Turing hypothesis and the Turing Principle are for; and to be aware
of salient differences between some of these propositions.

As many commentators have urged (e.g., [5,6,7]) it is essential to distinguish
between the Church-Turing hypothesis proper (as above), which is a stipulation
or definition of how the rough intuitive notion of effective calculability is to be
understood and concerns primarily what can be computed by human agents ;
and what are sometimes called physical versions of the thesis, which come in
various flavours, but are roughly of the form:

Physical Church-Turing thesis: The class of functions that can be
computed by any physical system is co-extensive with the Turing com-
putable functions.

Notice that the kind of evidence that might be cited in support of these respective
theses is quite different. In fact, since the first is a stipulation, it wouldn’t make
sense to offer evidence in support of its truth. All one can do is offer reasons for
or against it as a good definition. The facts that are typically cited to explain its
entrenchment are precisely of this form: one points to all the different attempts
at capturing the notion of algorithm or of the effectively calculable: they all
return the same class of functions. This tells us that Church and Turing did
succeed in capturing the intuitive notion exceedingly well: we have no conflict
with our pre-theoretic notions.

By contrast, the physical thesis is an empirical claim and consequently requires
inductive support. It’s truth depends on what you can get physical systems to do
for you. The physical possibility of, for example, Malament-Hogarth spacetimes
[8,9] would prove it wrong. It’s not clear how much direct or (more likely) indi-
rect inductive support it actually possesses, certainly it should not be thought
as deservedly entrenched as the Church-Turing hypothesis, although many are
inclined to believe it. (See Pitowsky, this volume, for further discussion.)

Now Deutsch’s Turing Principle has more in common with physical versions
of the Church-Turing thesis: it is the ‘liberated’ analogue: it is concerned to de-
scribe the ultimate limits of physical computation, computation by machines;
and is notionally unconstrained by parochial reference to any particular physical
theory. But suppose it were true. Would that mean that there is no place for
something like the original Church-Turing hypothesis? I shall argue not. Not
only because their subject matter is different (characterising the effectively cal-
culable vs. delimiting the ultimate abilities of mechanical computers) but more
significantly because there is a further dimension to consider: the question of
where physical evolutions get their mathematical meaning from.

What can be computed in physical reality has two sorts of determinant, math-
ematical and physical. The mathematical determines what the evolution of given
physical states into others in a certain way would mean, what would have been
computed by such a process; and the physical determines whether such a process
can occur. Identifying the ‘naturally computable’ functions with those that can

What Is the Lesson of Quantum Computing? 741

be computed by any physical system (as in Deutsch’s Turing Principle) we em-
phasize the physical determinant to the exclusion of the mathematical one—we
say that what can be computed is whatever can be computed by any physical
system, but we have not said what, if anything, these various physical processes
amount to in mathematical terms [10].

Thus I shall argue that while postulates like the Turing Principle and physical
versions of the Church-Turing thesis might well have an important role to play in
characterising the limits of machine computation, they do not stand on their own
as potential foundations for the theory of computation. We require in addition
definitions along the lines of the original Church-Turing hypothesis, which are apt
to endow mathematical meaning on physical evolutions. In making this argument
I will therefore endorse the line that whether or not a given physical process
counts as a computation is not an intrinsic property of that process, but is rather
an extrinsic one. Physical processes are only adventitiously computational: they
gain their status because we mark them so; or so I shall argue.

References

1. Deutsch, D.: Quantum theory, the Church-Turing Principle and the universal quan-
tum computer. Proceedings of the Royal Society of London A 400, 97–117 (1985)

2. Deutsch, D.: The Fabric of Reality. Penguin Books, London (1997)
3. Church, A.: An unsolvable problem of elementary number theory. American Jour-

nal of Mathematics. 58: pp. 345–365, repr. in [11] pp.89-107 (1936)
4. Turing, A.: On Computable Numbers, with an application to the Entschei-

dungsproblem. In: Proceedings of the London Mathematical Society, 42: pp. 230–
265, repr. in [11] pp.116-51 (1936)

5. Jack Copeland, B.: Narrow versus wide mechanism: Including a re-examination of
Turing’s views on the mind-machine issue. The Journal of Philosophy, XCVI(1)
(2000)

6. Jack Copeland, B.: The Church-Turing thesis, The Stanford Encyclopedia of
Philosophy (2002), http://plato.stanford.edu/archives/fall2002/entries/
church-turing/

7. Pitowsky, I.: Quantum speed-up of computations. Proceedings of PSA 2000, Sym-
posia papers 69(3), 168–177 (2002)

8. Hogarth, M.: Non-Turing computers and non-Turing computability. Philosophy of
Science Supplementary, I: pp. 126–138 (1994)

9. Shagrir, O., Pitowsky, I.: Physical hypercomputation and the Church-Turing thesis.
Minds and Machines 18, 87–101 (2003)

10. Timpson, C.G.: Quantum computers: The Church-Turing hypothesis versus the
Turing Principle. In: Teuscher, C. (ed.) Alan Turing: Life and Legacy of a Great
Thinker, pp. 213–240. Springer, Berlin Heidelberg (2004)

11. Davis, M. (ed.): The Undecidable. Raven Press, Hewlett, New York (1965)

http://plato.stanford.edu/archives/fall2002/entries/church-turing/
http://plato.stanford.edu/archives/fall2002/entries/church-turing/

Does the Cell Compute?

Giuseppe Trautteur

Dipartimento di Scienze fisiche, Università di Napoli Federico II

Abstract. We propose a tentative parallel between computational fea-
tures and cellular operations in order to explore the possibility that the
cell itself is intrinsically and not metaphorically a symbol-processing,
computing entity. Central to this possible identification is the notion of
virtuality, as understood in computational theory.

Keywords: Systems biology, Computability, Virtuality.

1 Introduction

Natural Computing works bidirectionally. In one direction, biological inspira-
tion drives the search for computational systems with desirable characteristics
of natural systems, such as robustness or self-repair. Notable examples include
neural networks, evolutionary algorithms and genetic programs, p-systems or
membrane computing, ant-computing, etc. In the opposite direction, computa-
tion is applied to natural systems. This is done in an instrumental or heuristic
way (e.g. data mining of accrued results, plain data processing in experiments,
modeling), but also by looking at natural systems qua computational systems.

Investigations of natural systems qua computational ones – and here ‘natural’
is practically synonymous with ‘biological’ – are mainly concerned with nervous
systems and cellular machinery. But is there actual computing outside the human
mind and the computing machinery created by the same human mind? Does
the brain – as distinguished from mind – compute? Is the cellular machinery
intrinsically computational?

We address here the latter question, which is an instance of the more general
problem whether computing is a natural kind. It is worth noting that this ques-
tion is not settled by showing that the cell can be computationally simulated: it
has indeed now become a commonplace to remark that in the computing room
of a hurricane simulation it does not rain.

The real issue at stake is whether the cell itself is – intrinsically, and not
metaphorically – a symbol-processing, computing entity.

These questions give rise to epistemologically intriguing problems and might
be the origin of useful insights for the development of the understanding of
cellular machinery. As examples one could look at formal methods developed
in Computer science to cope with parallelism, cooperation, and concurrency in
programs with the aim of carrying over those methods on regulatory networks
of the cell, or at model checking techniques for assessing properties of (cell)
programs, for instance sustainability of an internal trophic path in a cell. On

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 742–747, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Does the Cell Compute? 743

a more abstract plane, concepts of self-maintenance and reproduction, basilar
to the endeavour of establishing the concept of minimal gene set [2], might be
usefully connected with von Neumann’s self reproducing machines [4], or the
intriguing [3], and the underlying recursion theorem [6].

Therefore, we now turn to consider whether distinguishing features of com-
puting entities are present in cell machinery. More specifically, we ask whether
virtuality – which is, in our view, one of the key properties of computing entities
[10] – is present in cell machinery.

2 Virtuality in Computational Systems

By virtuality in computational systems we understand the capability of inter-
preting, transforming, and running machines which are present, as it were, only
under their code (program) aspect. The theoretical underpinning of virtuality
is, of course, the normal form theorem of Partial recursive functions theory and
the closely related notion of Universal Turing Machine (UTM) [7].

Distinctive features of the notion of virtuality that directly take their origin
in computability theory are:

– the capability for creating or modifying machine code, and
– the capability for simulating or rather realizing the behaviour of any member

of some given class of computing machines by interpreting the stored code
of the machine to simulate.

In a recent paper [10] it was proposed – in connection with brain activity –
to consider virtuality, rather than discreteness and finiteness, as the hallmark
of computation, insofar virtuality allows the physical entities so endowed with
some sort of “immaterial” or “as if” capability consisting in the substitution of
actual machinery by its (code) description. Is there anything like virtuality in
biological cell operation?

3 Metabolic Pathways and the Coding of Programs

In Systems biology [5] it is now customary to treat metabolic pathways as if they
were algorithms or programs, albeit under the name of regulatory networks, genic
expression networks, etc.

Closed and intertwined plain metabolic pathways can be seen as instances of
multiply nested and looped programs except that the program appears to be
written nowhere. It is as if it were implicit in the physical structure of the loop.

Pathways of the same kind, but which distinctively involve steps including
actual gene expression, do possess a measure of explicit representation of the
program, insofar as the enzymatic proteins which take part in the pathway’s
execution are assembled out of a read-only memory (ROM), which is formed
by strings of genetic material. However, those strings of genetic material are
not complete and explicit programs for the pathway. There seem to be two
components in them, according to an intuition originally formulated by Gunther
Stent[8]:

744 G. Trautteur

– the sequence of bases of the operon or set of interrelated genes, which can be
looked upon as a text specifying the primary structure of the proteins and,
by way of the actual transcription process, its ternary and active structure;

– the unique placement of the genes so that their appearance and subsequent
presence in the cytoplasm identifies and enacts the actual path of reactions.

An important step forward in the algorithmic interpretation of pathways would
ensue from the discovery of biochemical constraints on the abstract shape (loops,
nesting, interconnection between pathways as co-routines, etc.) of a pathway due
to the concentration, possibly timed appearance, diffusion and brownian motion,
etc. of the chemical species coded for by genic material. The active elements
(proteins), because of their chemical affinities, could not but interact between
themselves and the extant (intra and extra cellular) environment in the way
“designed” in the ROM. The existence of such constraints would make more
explicit the coding of the entire biochemical program (the pathway) in terms of
the (sequences) of genic texts.

4 The Search for Full-Fledged Virtuality in the
Genic-Metabolic Complex

An important feature of virtuality as applied to those systems that are called
universal in computability theory, is the belonging of the interpreting program
to the system itself: e.g. the UTM, the interpreter of a language written in the
language itself, etc.

Now there might exist different kinds of (sub-)universalities in which a given
system does include an interpreter for some important although incomplete class
of programs. In the case of the cell machinery, the gene expression/metabolic
pathways complex may not be universal in the sense of being able to realize
any generic chemical process for the production of any chemical species, but
still capable, within itself, of coding the processing of at least those pathways
and related chemical species which allow its own successful self-maintenance and
reproduction in some range of environments.

In order to deepen the analysis of the relations between fixed machinery and
simulated behaviour we will consider three different time scales observable in the
biological world:

– the time scale appropriate to the description of behavior (units of millisec-
onds to minutes);

– ditto for development and learning (except for one-shot learning, units of
hours to years);

– evolutionary time scale (up to hundreds of millions of years).

The reason for introducing these time scales is that, making use of the no-
tion of adiabatic learning hypothesis introduced in [1], we want to consider the
structures of the lower levels as fixed or frozen with respect to the activities (be-
haviour) of the upper level. More precisely the adiabatic hypothesis maintains

Does the Cell Compute? 745

that over durations short with respect to the lower level time scale the phenom-
ena on the upper level can be studied as if the structures of the lower scale were
constant in time.

For procariotes, with which we are primarily concerned here, it is hard to
consider development or learning of single cells. We therefore consider only two
time scales and orders of activities:

– metabolic and reproductive actions of a single cell (minutes);
– processing of the genome (many generations: hours, days).

The actual cell machinery on the level of metabolic and reproductive actions
could be taken to be some sort of fixed “universal machine” for assembling – out
of the inert, but potentialy reactive nutrient material – a very large number of
special purpose machines (the biochemical processing plants) of varying degrees
of complexity, and up to that “universal machine” which is the cell itself.

It can be therefore surmised that at least the second of the virtuality features,
i.e. the capability for simulating or realizing the behaviour by interpreting some
stored code, is present in nature and confirmed by genetic engineering, recombi-
nant DNA technology and reproductive cloning. However, because of the validity
of the Central Dogma, the only active processing of the explicit program, the
DNA which acts as a ROM, consists in its duplication – possibly with crossin-
gover in eucariotes. Further processing of the genome does not exist and therefore
full virtuality, including the capability for creating or modifying machine code,
does not appear to subsist. Indeed the modification or creation of program text
is evolutionary in nature and resorts uniquely to the slowest, evolutionary time
scale. The methods used in genetic engineering, which do process the genome,
are entirely outside the actual operation of cell machinery.

Further steps in search of virtuality in cell machinery require a detailed
examination of specific cellular pathways, with the aim of isolating plausible
candidates for biological “realizers” of algorithmic processes that give rise to vir-
tual behaviour. Accordingly, we conclude this extended abstract by proposing
a tentative table of correspondences between algorithmic precursors of virtual
behaviour and their candidate realizers in the cell.

Features of computability Features of the genic-metabolic complex
Program interpretation and
execution.

Transcription of gene or operon + ribosome
translation. Execution is the combined running
of chemical reactions dictated by the genome.

Program creation and
modification.

The genome has unknown origins and cannot
be altered except by agencies such as radiation
or a chemically aggressive, mutagenic,
environment. Spontaneous or internal
mutations also occur, mainly because of
deamination or flipping of tautomeric
equilibria. However, the frame of analysis we
are concerned with is situated at the fast
metabolic and reproductive time scale level

746 G. Trautteur

and, according to the adiabatic hypothesis, the
genic (symbolic, DNA) structure is fixed. In
such a frame of analysis the behaviour of the
cell is stationary: i.e. the rate of variation of
concentration of its metabolites is on the
average zero. This implies, as is well known,
that the vector of the metabolites fluxes
belongs to the (right) null space of the
S-matrix of the cell [5]. We surmise that the
fluxes of the mutagenic factors are kinetically
negligible, and so excluded from the S-matrix,
also on account of the strong defenses of the
genome against mutation. Were the mutagenic
agencies included in the overall S-matrix,
including the external ones, we might gain true
virtuality (a program acting on programs
including itself) and have a theory also at the
evolutionary time scale level. But would it be
computational? Its essential stochastic nature
poses formidable problems.

Conditionals. Fluxes of enzimes.
Addressing. This universal
feature of concrete
programming systems is not
theoretically necessary for full
fledged computational
capability [9]. Rewriting
systems only need a
unidimensional proximity
relation, rather akin to
enzymatic site recognition.

Via specific affinities of chemical species and
diffusion or brownian motion processes in
cytoplasm.

Locations and values. Locations are chemical species, values their
concentrations or activities.

Procedure calls, constructs
both hardware and software
for concurrency, cooperation
and distributed processing.

The activation of a gene expression path by
intertwined and nested chains of reactions,
possibly arising from the environment.
Allosteric activation.

Memory. Stored programs. The genome: ROM; transient storage in RNA.
Physical machinery, usually
electronic. CPU chips are
UTMs.

Purine-pyrimidine bases chains and the 20
amino acids.

Acknowledgements. The author acknowledges gratefully the many discussions
and material help generously proffered by Carmine Garzillo and Guglielmo Tam-
burrini. Francesco Donnarumma and Paolo Coragggio are gratefully thanked for

Does the Cell Compute? 747

some very helpful editing. Two anonymous referees’ comments and consequent
recommendations have been conducive to a number of revisions and expansions.
They are hereby thanked.

References

1. Caianiello, E.R: Outline of a theory of thought-processes and thinking machines.
J Theor. Biol. 1, 204–235 (1961)

2. Gil, R., Silva, F.J., Peretó, J., Moya, A.: Determination of the Core of a Minimal
Bacterial Gene Set. Microbiology and Molecular Biology Reviews, 68 pp. 518–537
(2004) Koonin, E.V.: How Many Genes Can Make a Cell: The Minimal-Gene-Set
Concept. Annual Review of Genomics and Human Genetics 1 pp. 99–116 (2000)

3. Myhill, J.: The abstract Theory of Self-Reproduction. In: Mesarovic, M.D. (ed.):
Views on General Systems Theory, Proceedings of the Second Systems Symposium
at Case Institute of Technology. John Wiley and Sons pp. 106–118 (1964) also
reprinted in Burks, A.W. (ed.): Essays on Cellular Automata. University of Illinois
Press pp.206–218 (1970)

4. von Neumann, J.: Theory of Self-Reproducing Automata. Edited and completed
by Burks, A.W. Univ. of Illinois Press, Urbana (1966)

5. Palsson, B.Ø.: Systems Biology. Cambridge University Press, Cambridge 2006.
6. Rogers Jr, H.: Theory of partial recursive functions and effective computability,

pp. 188–190. McGraw-Hill, New York (1967)
7. Rogers Jr, H.: Theory of partial recursive functions and effective computability.

McGraw-Hill, Chap. 1, Theorems IV and X pp. 22–23, 29–30 (1967)
8. Stent, G.: Explicit and Implicit Semantic Content of the Genetic Information. In:

The Centrality of Science and Absolute Values, vol. 1, Fourth International Con-
ference on the Unity of the Science, New York. International Cultural Foundation,
pp. 261–277 (1975)

9. Trautteur, G.: On Addresses. Proc. of the 1988 IEEE International Conf. on Sys-
tems, Man and Cybernetics, Beijing II, 1267–1269 (1988)

10. Trautteur, G., Tamburrini, G.: A note on discreteness and virtuality in analog
computing. Theoretical Computer Science 371, 106–114 (2007)

Computational Complexity of Constraint

Satisfaction

Heribert Vollmer

Theoretische Informatik, Universität Hannover, Appelstr. 4, D-30167 Hannover
vollmer@thi.uni-hannover.de

Abstract. The input to a constraint satisfaction problem (CSP) con-
sists of a set of variables, each with a domain, and constraints between
these variables formulated by relations over the appropriate domains; the
question is if there is an assignment of values to the variables that sat-
isfies all constraints. Different algorithmic tasks for CSPs (checking sat-
isfiability, counting the number of solutions, enumerating all solutions)
can be used to model many problems in areas such as computational
logic, artificial intelligence, circuit design, etc. We will survey results on
the complexity of these computational tasks as a function of properties
of the allowed constraint relations. Particular attention is paid to the
special case of Boolean constraint relations.

Keywords: satisfiability problems, constraint satisfaction, computa-
tional complexity, polymorphism, clone, Galois connection.

1 Satisfiability Problems

The propositional satisfiability problem SAT, i.e., the problem to decide, given
a propositional formula φ (without loss of generality in conjunctive normal form
CNF), if there is an assignment to the variables in φ that satisfies φ, is the
first and standard NP-complete problem [Coo71]. This means that it belongs to
a class of decision problems for which we do not know if an efficient (that is:
running in polynomial time) solution algorithm exists; in fact many researchers
strongly believe there is none. However, there are well-known syntactic restric-
tions for which satisfiability is efficiently decidable, for example if every clause
in the CNF formula has at most two literals (2CNF formulas) or if every clause
has at most one positive literal (Horn formulas) or at most one negative literal
(dual Horn formulas), see [KL99].

To study this phenomenon more generally, let us look at “clauses” of arbi-
trary shapes. A logical relation (or constraint relation) of arity k is a relation
R ⊆ {0, 1}k. A constraint (or constraint application) is a formula R(x1, . . . , kk),
where R is a logical relation of arity k and the x1, . . . , xk are (not necessarily
distinct) variables. An assignment I of truth values to the variables satisfies the
constraint if

(
I(x1), . . . , I(xk)

)
∈ R. A constraint language Γ is a finite set of

logical relations. A Γ -formula is a conjunction of constraint applications using
only logical relations from Γ . Such a formula φ is satisfied by an assignment I
if I satisfies all constraints in φ simultaneously.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 748–757, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Computational Complexity of Constraint Satisfaction 749

The for us central family of algorithmic problems, parameterized by a con-
straint language Γ , now is the following:

Problem: CSP(Γ)
Input: a Γ formula φ

Question: Is φ satisfiable, i.e., is there an assignment that satisfies φ?

The NP-complete problem 3SAT, the satisfiability problem for CNF formulas
with exactly three literals per clause, now is the problem CSP(Γ3SAT), where
Γ3SAT = {x∨ y ∨ z, x∨ y ∨¬z, x∨¬y ∨¬z, ¬x∨¬y ∨¬z}; here and in the sequel
we do not distinguish between a formula φ and the logical relation Rφ it defines,
i.e., the relation consisting of all satisfying assignments of φ. If every relation in
Γ is definable by a Horn formula, then CSP(Γ) is polynomial-time decidable,
also if every relation in Γ is definable by a 2-CNF formula. Hence we see that the
family of problems CSP(Γ) has NP-complete members as well as easily solvable
members.

A question attacked by Thomas Schaefer [Sch78] is the following: Can we
determine for each constraint language Γ the complexity of CSP(Γ)? Is there
even a simple algorithm that, given Γ , determines the complexity of CSP(Γ)?
Are there more cases than NP-complete and polynomial-time solvable? Before
we can answer these questions we have to recall some basic notions and results
from universal algebra.

2 Universal Algebra

When we want to determine the complexity of all CSP-problems, we will cer-
tainly need a way to compare the complexity of CSP(Γ) and CSP(Γ ′) for differ-
ent constraint languages Γ and Γ ′. For example, to show that some CSP(Γ) is
NP-complete we might show that using Γ we can “simulate” or “implement” all
relations in Γ3SAT, and to show that CSP(Γ) is polynomial-time decidable we
might implement all relations in Γ using Horn-formulas. As it turns out, a useful
notion of implementation comes from universal algebra, from clone theory.

For a constraint language Γ , we define 〈Γ 〉 to be the relational clone (or
co-clone) generated by Γ , i.e., 〈Γ 〉 is the smallest set of relations such that

– 〈Γ 〉 contains the equality relation and all relations in Γ , and
– 〈Γ 〉 is closed under primitive positive definitions, i.e., if φ is a 〈Γ 〉-formula

and R(x1, . . . , xn) ≡ ∃y1 . . . y� φ(x1, . . . , xn, y1, . . . , y�), then R ∈ 〈Γ 〉. (Such
formulas are sometimes also called conjunctive queries over 〈Γ 〉.)

Intuitively, 〈Γ 〉 contains all relations that can be implemented by Γ and is thus
called the expressive power of Γ , as justified by the following observation:

If Γ ⊆ 〈Γ ′〉 then CSP(Γ) ≤log
m CSP(Γ ′). (1)

750 H. Vollmer

To see this, let F be a Γ -formula. We construct a formula F ′ by performing the
following steps:

– Replace every constraint from Γ by its defining existentially quantified
(
Γ ′∪

{=}
)
-formula.

– Delete existential quantifiers.
– Delete equality clauses and replace all variables that are connected via a

chain of equality constraints by a common new variable.

Then, obviously, F ′ is a Γ ′-formula, and moreover, F is satisfiable iff F ′ is
satisfiable. The complexity of the above transformation is dominated by the
last step, which is essentially an instance of the undirected graph reachability
problem, which is solvable in logarithmic space [Rei05]. Hence we conclude that
CSP(Γ) is reducible to CSP(Γ ′) under logspace reductions, q.e.d.

In particular, we thus have shown that

if 〈Γ 〉 = 〈Γ ′〉, then CSP(Γ) ≡log
m CSP(Γ ′), (2)

i.e., the complexity of CSP(Γ) depends only on 〈Γ 〉. Thus, we only have to
study co-clones in order to obtain a full classification, and the question arises
what co-clones there are.

Astonishingly, all co-clones, each with a “simple” basis, are known. The key
to obtain this list is to study closure properties of relations. For this , let
f : {0, 1}m → {0, 1} and R ⊆ {0, 1}n. We say that f preserves R, f ≈ R, if
for all x1, . . . , xm ∈ R, where xi = (xi[1], xi[2], . . . , xi[n]), we have

(
f
(
x1[1], · · · , xm[1]

)
, f

(
x1[2], · · · , xm[2]

)
, . . . , f

(
x1[n], · · · , xm[n]

))
∈ R.

In other words, if we apply f coordinatewise to a sequence of m vectors in R then
the resulting vector must again be in R. Then we also say that R is invariant
under f or that f is a polymorphism of R, and for a set of relations Γ we write
Pol(Γ) to denote the set of all polymorphisms of Γ , i.e., the set of all Boolean
functions that preserve every relation in Γ .

It is now straightforward to verify that for every Γ , Pol(Γ) is a clone, i.e., a set
of Boolean functions that contains all projections (all functions Ink (x1, . . . , xn) =
xk for 1 ≤ k ≤ n) and is closed under composition; the smallest clone containing
a set B of Boolean functions will be denoted by [B] in the sequel. In fact, the
connection between clones and relational clones is much tighter. For a set B
of Boolean functions, let Inv(B) denote the set of all invariants of B, i.e., the
set of all Boolean relations that are preserved by every function in B. It can
be observed that each Inv(B) is a relational clone. In fact, as shown first in
[Gei68, BKKR69] (see also [Lau06, Sect. 2.9]), the operators Pol-Inv constitute
a Galois correspondence between the lattice of sets of Boolean relations and the
lattice of sets of Boolean functions. In particular, for every set Γ of Boolean
relations and every set B be of Boolean functions,

– Inv
(
Pol(Γ)

)
= 〈Γ 〉,

– Pol
(
Inv(B)

)
= [B].

Computational Complexity of Constraint Satisfaction 751

Thus, there is a one-one correspondence between clones and co-clones and we
may compile a full list of relational clones from the list of clones obtained by
Emil Post in [Pos20, Pos41]. In these papers, Post presented a complete list of
Boolean clones, the inclusion structure among them, and a finite basis for each
of them. We do not have enough space here to describe Post’s lattice, as the
structure became known, in more detail, but we refer the interested reader to
[Pip97] for a gentle introduction to clones, co-clones, the Galois connection, and
Post’s results. A rigorous comprehensive study is [Lau06]. Complexity-theoretic
applications of Post’s lattice in the constraint context but also the Boolean circuit
context are surveyed in [BCRV03, BCRV04]. A compilation of all co-clones with
simple bases is given in [BRSV05].

We will give a brief description of that part of the lattice that will be important
here. The clone generated by the logical AND function is denoted by E2. A
relation is preserved by AND iff it is Horn, that is, definable by a Horn-formula,
i.e., Inv(E2) is the set of all Horn relations. Similarly, V2 = [{OR}], and Inv(V2)
is the set of all dual Horn relations. Relations definable by 2CNF formulas, the
so called bijunctive relations, are exactly those in Inv(D2), where D2 is the clone
generated by the 3-ary majority function. Finally, the clone L2 is generated by
the 3-ary exclusive-or x ⊕ y ⊕ z (the 3-ary addition in GF[2]), and Inv(L2) is
the set of all affine formulas, i.e., conjunctions of XOR-clauses (consisting of an
XOR of some variables plus maybe the constant 1)—these formulas may also be
seen as systems of linear equations over GF[2].

Let us say that a constraint language is Schaefer, if it belongs to one of
the above four types, i.e., Γ is Horn (i.e., every relation in Γ is Horn), dual
Horn, bijunctive, or affine. If Γ is Schaefer then CSP(Γ) is polynomial-time
solvable, as already noted above for the cases Horn, dual Horn, and bijunctive;
for the remaining case of affine relations we remark that we use the interpretation
as equations over GF[2] and thus may check satisfiability efficiently using the
Gaussian algorithm. (A detailed exposition can be found in [CKS01].)

There is a unique minimal relational clone that is non-Schaefer: this is the co-
clone Inv(N), where the clone N is generated by the negation function NOT plus
the Boolean constans 0,1. This relational clone consists of all relations that are at
the same time complementive (negating all entries of a tuple in the relations leads
again to a tuple in the relation), 1-valid (the all-1 tuple is in the relation), and
0-valid (the all-0 tuple is in the relation). Because of these latter two properties,
satisfiability for CSPs build using only relations from Inv(N) is again efficiently
decidable (in fact, they are all satisfiable). If we drop the requirement 1-valid and
0-valid we arrive at the relational clone Inv(N2) consisting of all complementive
relations (N2 = [{NOT}]). Obviously, Inv(N) ⊆ Inv(N2), and from Post’s lattice
it can be seen that there is no relational clone in between. The only super-
co-clone of Inv(N2) is the co-clone Inv(I2) of all relations (I2 = [∅]).

3 Complexity Results

We have seen that if Γ is Schaefer or Γ ⊆ Inv(N) then CSP(Γ) is decidable
in polynomial time. If Γ is not of this form, it follows from Post’s lattice that

752 H. Vollmer

Γ ⊇ Inv(N2), the co-clone of all complementive relations. A particular example
here is the relation

RNAE =
{
(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)

}
.

The language CSP({RNAE}) thus consists of 3CNF formulas with only positive
literals where we require that in every clause not all literals obtain the same
truth value. This is the so-called NOT-ALL-EQUAL-SAT problem, known to be
NP-complete (see, e.g., [Pap94]). Thus, we have proved Schaefer’s Theorem:

If 〈Γ 〉 ⊇ Inv(N2) then CSP(Γ) is NP-complete.
In all other cases, CSP(Γ) is polynomial-time decidable. (3)

Because each member of the infinite family of the CSP-problems falls in
two complexity cases and avoids the (under the assumption P �= NP) infinitely
many intermediate degrees, this theorem is also known as Schaefer’s Dichotomy
Theorem.

In [ABI+05] the polynomial-time cases in the above classification have been
studied more closely using first-order reductions, and it turned out that under
this strict approach, seven cases for the complexity of the CSP-problem arise.

Recently there has been growing interest in quantified constraints, and we
want to survey some of the developments here. The CSP(Γ) problem is equivalent
to asking if a Γ -formula with all variables existentially quantified evaluates to
true. In the quantified CSP problem one allows also universal quantifiers.

Let us first go one step back and look at usual propositional formulas again.
The problem QBF of deciding, whether a given closed quantified propositional
formula is true, is PSPACE-complete [SM73], even if the formula is restricted
to 3CNF. If the number of quantifier alternations is bounded, the problem is
complete in the polynomial-time hierarchy, which was defined by Meyer and
Stockmeyer [MS72]. Following the notation of [Pap94], Σ0P = Π0P = P and for
all i ≥ 0, Σi+1P = NPΣiP and Πi+1P = coNPΣiP. The set QBFk of all closed,
true quantified Boolean formulas with k−1 quantifier alternations starting with
an ∃-quantifier, is complete for ΣkP for all k ≥ 1 [SM73]. This problem remains
ΣkP-complete if we restrict the Boolean formula to be 3CNF for k odd, and
3DNF for k even [Wra77]. Since disjunctive normal forms cannot be naturally
modeled in a constraint satisfaction context, in order to generalize QBFk to
arbitrary set of constraints Γ in the same way we generalized SAT to CSP(Γ), we
consider the unsatisfiability problem for these cases and we adopt the following
definition for QCSPk(Γ) from [Hem04].

Let Γ be a constraint language and k ≥ 1. For k odd, a QCSPk(Γ) formula is
a closed formula of the form φ = ∃X1∀X2 . . . ∃Xkψ, and for k even, a QCSPk(Γ)
formula is a closed formula of the form φ = ∀X1∃X2 . . . ∃Xkψ, where the Xj ,
j = 1, . . . , k, are disjoint sets of variables and ψ is a quantifier-free Γ -formula
with variables from

⋃
j Xj.

Problem: QCSPk(Γ)
Input: a QCSPk(Γ)-formula φ

Computational Complexity of Constraint Satisfaction 753

Question: If k is odd: Is φ true?
If k is even: Is φ false?

As in the case of simple CSPs above, we note that the Galois connection still
helps to study the complexity of QCSP:

If Γ ⊆ 〈Γ ′〉 then QCSPk(Γ) ≤log
m QCSPk(Γ ′) for all k ≥ 1. (4)

The proof of this is very similar to the one for (1): Given a Γ -formula F , we
construct a formula F ′ by replacing every constraint from Γ by its defining
existentially quantified

(
Γ ′ ∪ {=}

)
-formula. The newly introduced quantified

variables will be quantified in the final quantifier block which is by definition of
QCSPk(Γ)-formulas always existential. All that remains to do now is to delete
equality clauses as above.

Certainly, for every constraint language Γ and every k ≥ 1, QCSPk(Γ) ∈
ΣkP and QCSPk(Γ3SAT) is ΣkP-complete. In fact, even for the single constraint
relation

R1-IN-3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
we have that QCSPk({R1-IN-3}) is ΣkP-complete. This follows since R1-IN-3 is
only closed under projections and, thus, Pol(R1-IN-3) is the minimal clone I2 in
Post’s lattice and 〈R1-IN-3〉 is the co-clone Inv(I2) of all Boolean relations. Thus,
from (4) we conclude QCSPk(Γ3SAT) ≤log

m QCSPk({R1-IN-3}).
In the case of Schaefer’s theorem for CSP, already the constraint language

consisting of the relation RNAE is hard. We want to show an analogous result for
QCSP next. To show this, we will reduce QCSPk({R1-IN-3}) to QCSPk({RNAE}):

Let ϕ be a QCSPk({R1-IN-3})-formula,

ϕ = QX1 . . . ∃Xk

p∧

j=1

R1-IN-3(xj1 , xj2 , xj3),

where Q is existential if k is odd and universal if k is even. We now replace each
constraint R1-IN-3(xj1 , xj2 , xj3) by the following conjunction:

∧

j �=k∈{j1,j2,j3}
RNAE(xj , xk, t) ∧ RNAE(xj1 , xj2 , xj3).

It can be checked that this conjunction is true iff exactly 2 of the 4 variables
xj1 , xj2 , xj3 , t are true, hence we will abbreviate it by R2-IN-4(xj1 , xj2 , xj3 , t). Now
define ϕ′ = QtQX1 . . . ∃Xk

∧p
j=1 R2-IN-4(xj1 , xj2 , xj3 , t). Since R1-IN-3(x, y, z) =

R2-IN-4(x, y, z, 1), the formula ϕ′[t = 1] (every occurrence of t in ϕ is replaced
by 1) is true iff ϕ is true. Since R1-IN-3(x̄, ȳ, z̄) = R2-IN-4(x, y, z, 0), the formula
ϕ′[t/0] is true iff Ren(ϕ) is true, where Ren(ϕ) is obtained from ϕ by renaming
all variables x by their negation x̄. Finally, since Ren(ϕ) is true iff ϕ is true,
we proved that ϕ is true if and only if ϕ′ is true. Thus, QCSPk({R1-IN-3}) ≤log

m

QCSPk({RNAE}).
Hence we now know that if 〈Γ 〉 ⊇ Inv(N2), then QCSPk(Γ) is complete for

ΣkP for every k ≥ 1. What about the next lower relational clone Inv(N)? In the
case of CSP(Γ) (i.e., QCSP1(Γ)), satisfiability is trivial for all Γ ⊆ Inv(N), since

754 H. Vollmer

every formula is satisfied by the constant-0 or constant-1 assignment. However,
this tells us nothing about QCSPp(Γ) for k ≥ 2. Let us look at the relation

R0 =
{

(u, v, x1, x2, x3)
∣∣u = v or RNAE(x1, x2, x3)

}
.

It is easy to see that R0 is complementive, 0-valid, and 1-valid. We will show
that QCSPk({RNAE}) reduces to QCSPk({R0}). Let

ϕ = QX1 . . .∃Xk

p∧

j=1

RNAE(xj1 , xj2 , xj3),

where Q is existential if k is odd and universal if k is even, be an instance of
QCSPk({RNAE}). We define

ϕ′ = QX1 . . .∀Xi−1∀u∀v∃Xk

p∧

j=1

R0(u, v, xj1 , xj2 , xj3).

Clearly ϕ is true iff ϕ′ is true, thus QCSPk({RNAE}) ≤log
m QCSPk({R0}) for all

k ≥ 2.
We conclude that if 〈Γ 〉 ⊇ Inv(N), then QCSPk(Γ) is complete for ΣkP

for every k ≥ 2. If we drop the bound on the number of quantifier alterna-
tions and denote the resulting problem by QCSP(Γ), we know from [SM73] that
QCSP(Γ3SAT) is PSPACE-complete. The just given reductions thus also show
that if 〈Γ 〉 ⊇ Inv(N), then QCSP(Γ) is PSPACE-complete.

If Γ does not include Inv(N), we know from the structure of Post’s lattice
that it must be Schaefer. However, it is known that in all four cases (Horn, dual
Horn, 2CNF, and affine), the evaluation of quantified formulas is computable in
polynomial time (the algorithms for the first three cases rely on Q-resolution,
a variant of resolution for quantified propositional formulas, see [KL99]; the
algorithm for the affine case is a refinement of the Gaussian algorithm [CKS01]).
Thus we have proved the following classification:

If Γ is Schaefer then QCSP(Γ) is polynomial-time decidable.
In all other cases, QCSP(Γ) is PSPACE-complete. (5)

This result was stated without proof and only for constraint languages that
include the constants in Schaefer’s paper [Sch78]. In its full form it was stated
and proven for the first time in [Dal97] and later published in [CKS01].

Looking at QCSPs with bounded quantifier alternations we obtain Hema-
spaandra’s Theorem [Hem04]. For all k ≥ 2 (the case k = 1 is given by Schaefer’s
Theorem) the following holds:

If Γ is Schaefer then QCSPk(Γ) is polynomial-time decidable.
In all other cases, QCSP(Γ) is ΣkP-complete. (6)

Both (3), (5), and (6) were originally proven in a different much more involved
way. The above simple proofs using Galois theory appeared later. The proof of
(3) is implicit in [JCG97, Dal00]. The proofs of (5) and (6) are from [BBC+05].
A different proof is given in [Che06].

Computational Complexity of Constraint Satisfaction 755

Many further results, classifying the computational complexity of different
algorithmic tasks such as counting the number of satisfying assignments [CH96,
BCC+05, BBC+05], enumeration of all satisfying assignments [CH97], equiva-
lence and isomorphism of CSPs [BHRV02, BHRV04], and many more (cf. also
[CKS01, BCRV04]) have been obtained in the past decades. Some of these rely
on the algebraic approach explained in this paper, for others this approach does
not seem to be useful.

4 Non-boolean Domains

A very active research area, which—alas!—we can only address very briefly in
the end, is the study of the questions from the above for larger (non-Boolean)
domains. Feder and Vardi [FV98] have conjectured that over arbitrary finite do-
mains, the satisfiability for CSPs is, analogously to Schaefer’s dichotomy, either
NP-complete or polynomial-time solvable. This is the famous Dichotomy con-
jecture, which is still open. What is known is that the conjecture holds for the
case of a 3-element universe [Bul06].

Note that the Galois connection described above holds in the non-Boolean
context as well, however, already for three elements the lattice of clones is
uncountable (see [Pip97]).

Several approaches to identify tractable cases of the satisfiability problem
have been intensively developed, one is a logical approach where definability
of CSPs in Datalog leads to efficient algorithms (see, e.g., [KV07]), one is the
algebraic approach where structural properties of the clones of polymorphisms
are exploited (see, e.g., [JCG97, BJK05]). Further computational goals besides
satisfiability have also been studied, we only mention evaluating quantified CSPs
[BBJK03, BBC+05, Che06], counting the number of solutions [BD03, BBC+05],
and enumerating all solutions [SS07].

In the context of non-Boolean domains, a version of the CSP where both the
formula and the constraint language Γ are part of the problem instance has been
studied. This is the so called uniform CSP, in contrast to the non-uniform CSP
from the above where the constraint language is always fixed (see, e.g., [KV07]).

More on the topics we could only mention here can be found in the different
articles in [CKV07] or the recent surveys [Che06, KV07].

References

[ABI+05] Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.: The
complexity of satisfiability problems: Refining Schaefer’s theorem. In:
Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618,
pp. 71–82. Springer, Heidelberg (2005)

[BBC+05] Bauland, M., Böhler, E., Creignou, N., Reith, S., Schnoor, H., Vollmer,
H.: Quantified constraints: The complexity of decision and counting for
bounded alternation. Technical Report 05-025, Electronic Colloqium on
Computational Complexity (Submitted for publication 2005)

756 H. Vollmer

[BBJK03] Börner, F., Bulatov, A., Jeavons, P., Krokhin, A.: Quantified constraints:
algorithms and complexity. In: Baaz, M., Makowsky, J.A. (eds.) CSL
2003. LNCS, vol. 2803, Springer, Berlin Heidelberg (2003)

[BCC+05] Bauland, M., Chapdelaine, P., Creignou, N., Hermann, M., Vollmer,
H.: An algebraic approach to the complexity of generalized conjunctive
queries. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542,
pp. 30–45. Springer, Heidelberg (2005)

[BCRV03] Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean
blocks, part I: Post’s lattice with applications to complexity theory. ACM-
SIGACT Newsletter 34(4), 38–52 (2003)

[BCRV04] Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean
blocks, part II: Constraint satisfaction problems. ACM-SIGACT Newslet-
ter 35(1), 22–35 (2004)

[BD03] Bulatov, A., Dalmau, V.: Towards a dichotomy theorem for the count-
ing constraint satisfaction problem. In: Proceedings Foundations of Com-
puter Science, pp. 562–572. ACM Press, New York (2003)

[BHRV02] Böhler, E., Hemaspaandra, E., Reith, S., Vollmer, H.: Equivalence and
isomorphism for Boolean constraint satisfaction. In: Bradfield, J.C. (ed.)
CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 412–426. Springer,
Berlin Heidelberg (2002)

[BHRV04] Böhler, E., Hemaspaandra, E., Reith, S., Vollmer, H.: The complexity
of Boolean constraint isomorphism. In: Dunin-Keplicz, B., Nawarecki, E.
(eds.) CEEMAS 2001. LNCS (LNAI), vol. 2296, pp. 164–175. Springer,
Berlin Heidelberg (2002)

[BJK05] Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of con-
straints using finite algebras. SIAM Journal on Computing 34(3), 720–742
(2005)

[BKKR69] Bodnarchuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Galois
theory for Post algebras. I, II. Cybernetics, 5 pp. 243–252, pp. 531–539
(1969)

[BRSV05] Böhler, E., Reith, S., Schnoor, H., Vollmer, H.: Bases for Boolean co-
clones. Information Processing Letters 96, 59–66 (2005)

[Bul06] Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems
on a 3-element set. Journal of the ACM 53(1), 66–120 (2006)

[CH96] Creignou, N., Hermann, M.: Complexity of generalized satisfiability
counting problems. Information and Computation 125, 1–12 (1996)

[CH97] Creignou, N., Hébrard, J.-J.: On generating all solutions of gen-
eralized satisfiability problems. Informatique Théorique et Applica-
tions/Theoretical Informatics and Applications 31(6), 499–511 (1997)

[Che06] Chen, H.: A rendezvous of logic, complexity, and algebra. ACM-SIGACT
Newsletter 37(4), 85–114 (2006)

[CKS01] Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of
Boolean Constraint Satisfaction Problems. Monographs on Discrete Ap-
plied Mathematics. SIAM (2001)

[CKV07] Creignou, N., Kolaitis, Ph., Vollmer, H. (eds.): Complexity of Constraints.
Springer, Berlin Heidelberg (2007)

[Coo71] Cook, S.A.: The complexity of theorem proving procedures. In: Proceed-
ings 3rd Symposium on Theory of Computing, pp. 151–158. ACM Press,
New York (1971)

Computational Complexity of Constraint Satisfaction 757

[Dal97] Dalmau, V.: Some dichotomy theorems on constant-free quantified
boolean formulas. Technical Report LSI-97-43-R, Department de Llen-
guatges i Sistemes Informàtica, Universitat Politécnica de Catalunya
(1997)

[Dal00] Dalmau, V.: Computational complexity of problems over generalized for-
mulas. PhD thesis, Department de Llenguatges i Sistemes Informàtica,
Universitat Politécnica de Catalunya (2000)

[FV98] Feder, T., Vardi, M.Y.: The computational structure of monotone
monadic SNP and constraint satisfaction: a study through Datalog and
group theory. SIAM Journal on Computing 28(1), 57–104 (1998)

[Gei68] Geiger, D.: Closed systems of functions and predicates. Pac. J.
Math 27(2), 228–250 (1968)

[Hem04] Hemaspaandra, E.: Dichotomy theorems for alternation-bounded quanti-
fied boolean formulas. CoRR, cs.CC/0406006 (2004)

[JCG97] Jeavons, P.G., Cohen, D.A., Gyssens, M.: Closure properties of con-
straints. Journal of the ACM 44(4), 527–548 (1997)

[KL99] Kleine Büning, H., Lettmann, T.: Propositional Logic: Deduction and Al-
gorithms. In: Cambridge Tracts in Theoretical Computer Science, Cam-
bridge University Press, Cambridge (1999)

[KV07] Kolaitis, P., Vardi, M.: A logical approach to constraint satisfaction. In:
Finite Model Theory and its Applications, Texts in Theoretical Computer
Science, Springer, Berlin Heidelberg (2007)

[Lau06] Lau, D.: Function Algebras on Finite Sets. In: Monographs in Mathemat-
ics, Springer, Berlin Heidelberg (2006)

[MS72] Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular ex-
pressions with squaring requires exponential time. In: Proceedings 13th
Symposium on Switching and Automata Theory, pp. 125–129. IEEE
Computer Society Press, Washington (1972)

[Pap94] Papadimitriou, C.H.: Computational Complexity, Reading. Addison-
Wesley, MA (1994)

[Pip97] Pippenger, N.: Theories of Computability. Cambridge University Press,
Cambridge (1997)

[Pos20] Post, E.L.: Determination of all closed systems of truth tables. Bulletin
of the AMS 26, 437 (1920)

[Pos41] Post, E.L.: The two-valued iterative systems of mathematical logic. An-
nals of Mathematical Studies 5, 1–122 (1941)

[Rei05] Reingold, O.: Undirected st-connectivity in log-space. In: Proceedings of
the 37th Symposium on Theory of Computing, pp. 376–385. ACM Press,
New York (2005)

[Sch78] Schaefer, T.J.: The complexity of satisfiability problems. In: Proccedings
10th Symposium on Theory of Computing, pp. 216–226. ACM Press, New
York (1978)

[SM73] Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential
time. In: Proceedings 5th ACM Symposium on the Theory of Computing,
pp. 1–9. ACM Press, New York (1973)

[SS07] Schnoor, H., Schnoor, I.: Enumerating all solutions for constraint satisfac-
tion problems. In: 24nd Symposium on Theoretical Aspects of Computer
Science, pp. 694–705 (2007)

[Wra77] Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theoret-
ical Computer Science 3, 23–33 (1977)

Finding Most Likely Solutions

Osamu Watanabe and Mikael Onsjö

1 Dept. of Math. and Comput. Sci., Tokyo Inst. of Technology, Japan
2 Dept. of Computer Sci. and Eng., Chalmers Univ. of Technology, Sweden

watanabe@is.titech.ac.jp

Abstract. As one simple type of statistical inference problems we con-
sider Most Likely Solution problem, a task of finding a most likely solution
(MLS in short) for a given problem instance under some given proba-
bility model. Although many MLS problems are NP-hard, we propose,
for these problems, to study their average-case complexity under their
assumed probabality models. We show three examples of MLS problems,
and explain that “message passing algorithms” (e.g., belief propagation)
work reasonably well for these problems. Some of the technical results
of this paper are from the author’s recent joint work with his colleagues
[WST, WY06, OW06].

1 Introduction

We discuss here the following general statistical inference problem. Consider any
function g(s, r) on a pair of binary strings that can be efficiently computable,
say, polynomial-time computable w.r.t. |s| by some deterministic algorithm. Let
n = |s|; on the other hand, we assume that both m = |r| and |g(s, r)| are
determined from n and that they are polynomially bounded by n. Consider
also some parameterized distribution D(m) on {0, 1}m, and assume that some
randomized algorithm generates r ∈ {0, 1}m with probability following D(m)
efficiently, e.g., in polynomial-time w.r.t. m. By “r : D(m)” we mean that r is
generated by this algorithm. Then our statistical problem is defined as follows.

Most Likely Solution Problem
Instance: A string x such that x = g(s, r) for some s and r.
Task: Find s that maximizes probability Prr:D(m)[g(s, r) = x].

For a given instance x, we regard a string s such that x = g(s, r) holds for
some r as a solution; then the above probability is the likelihood of s being
a solution of x. That is, this problem is to find a most likely solution (MLS,
in short) for a given problem instance x. The function g generating problem
instances from solutions is called a (instance) generating function. Problems like
this can be found in various contexts including computational learning theory.
Intuitively speaking, an instance x is some observed event or outcome, and s
can be regarded as its reasoning; we would like to find out one of the most likely
reasonings for the observed event.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 758–767, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Finding Most Likely Solutions 759

As we will see below, actual MLS problems are in many cases NP-hard.
But for each MLS problem, since we assume some probability model for input
instances, we propose here to study its average-case complexity under this proba-
bility model. More specifically, we may consider the following three average-case
scenarios for one MLS problem X .

I. Define I(s) to be the distribution of instances generated as g(s, r) by using
r generated randomly following D(m); study the average-case complexity of
X under I(s), for some typical or all solutions s.

II. Assume also some distribution S(n) for solutions in {0, 1}n, and study the
average-case complexity of X under I(s : S(n)).

III. Assume further some distribution F(n) for the instance generating function
f , and study the average-case complexity of X under I(f : F(n), s : S(n)).

In these scenarios, a solution s used for creating instances for the problem X
is called a planted solution. Note that there is a case where a planted solution
is not the most likely solution; for example, most of instances x generated by
the distribution I(s) may have some other sx as their most likely solution. On
the other hand, by choosing some appropriate parameters for defining D(m), we
may usually define I(s) so that, with high probability, the planted solution s
is the unique most likely solution. Here we consider distributions satisfying this
property.

For such average-case scenarios, we can sometimes find algorithms that per-
form well on average; furthermore, some of such performance can be formally
proved. We will show three such examples from:- Linear Code Decoding prob-
lem, MAX-2SAT problem, and Graph Bisection problem. Interestingly, message
passing algorithms work well for these problems, including those derived from
Pearl’s belief propagation [Pea88] (which we call simply BP-algorithms). Al-
though it is unbelievable that message passing algorithms always perform well,
we may expect that there is some class of MLS problems that can be solved well
on average by message passing algorithms. Characterizing such a set of problems
is an interesting and important open question.

Related Work
Three examples shown below are taken from the investigations of average-case
performance of message passing algorithms. For studying such average-case per-
formance, probability models called planted solution models have been often used
(see, e.g., [JS98]), which are essentially the same as the above average-case sce-
nario I. Here we simply look at these algorithms from a different view point, i.e.,
from the view point of statistical inference.

Note also that our MLS problem includes the problem of inverting a one-way
function. More specifically, for a given randomized one-to-one one-way function
f , inverting it is regarded as a special type of MLS problem that computes
the unique s from f(s, r), where s is a message and r is a random seed; for
discussing its basic average-case complexity, we may assume that s and r are
taken uniformly at random, which is our average-case scenario II. Thus, if we

760 O. Watanabe and M. Onsjö

believe in the existence of one-way functions, we should also expect that some
MLS problem is hard even on average.

2 Example 1: Linear Code Decoding Problem

We recall basics on linear codes. A linear code is determined by a m × n 0,1-
matrix H , which we call a parity check matrix. For a parity check matrix H , a
vector a = (a1,, an) satisfying Ha = 0 is called a code word (w.r.t. H), which is
supposed to be sent for communication. We consider a binary symmetric channel
for our noise model; when a code word is transmitted, some of its bits are flipped
independently at random with noise probability p. That is, when sending a code
word a, a message b received through the channel is computed as b = a + n,
where n is a 0,1-vector whose each element takes 1 with probability p (which
we may assume small, e.g., p < 0.2). We call n a noise vector. (Here by + we
mean the bit wise addition under modulo 2.) Now our task is to obtain the
transmitted code word a from b. Obviously, all code words can be a candidate
for the solution, but what we want is the one that is most likely for a given c.

Let us state this requirement formally. First we define the following generating
function:

gH(x, v) =
{

x + v, if Hx = 0, and
⊥, otherwise.

Let B(n, p) denote a distribution on 0,1-vectors of size n defined by the standard
binomial distribution; that is, a random vector following B(n, p) is generated
by independently choosing, for each element, 1 with probability p and 0 with
probability 1 − p. Now our task is formally stated as follows.

Most Likely Solution Problem (Linear Code Decoding)
Instance: A received message b.
Task: Find a code word a that maximizes the following probability:

Pr
v:B(n,p)

[gH(a, v) = b].

Note that for any noise vector n having 1 at k coordinates, we have

Pr
v:B(n,p)

[n = v] = pk(1 − p)k,

which takes larger value for smaller k (provided that p < 1/2). Thus, our task
is to obtain a code word a such that a + n = b with a noise vector with the
smallest number of 1’s. Note further that

c = Hb = H(a + n) = Ha + Hn = Hn.

Therefore, our task is essentially to obtain n satisfying the above with the small-
est number of 1’s. Although it is polynomial-time to compute some n from
c satisfying the above, computing the one with the smallest number of 1’s is
known to be NP-hard; see, e.g., [GJ79]. Thus, our MLS problem (or, Linear Code
Decoding problem) is NP-hard.

Finding Most Likely Solutions 761

Gallager [Gal62] proposed to use very sparse parity check matrices, i.e., parity
check matrices with quite a small number of 1 entries. Linear codes using very
sparse parity check matrices are called Low Density Parity Check Codes (in short,
LDPC). For simplicity, we consider parity check matrices with c 1’s in each row
d 1’s in each column; let H(c, d, n) denote the set of these matrices. (We will
use H(c, d, n) also for denoting a distribution of choosing a matrix uniformly
at random from the set H(c, d, n).) Gallager proposed1 to use a random parity
check matrix from, e.g., H(3, 5, n). In order to solve the decoding problem for
such parity check matrices, he proposed a message passing type algorithm, which
is essentially the same as the one derived from the belief propagation, i.e., the
BP algorithm [Mac99]. It has been shown (see, e.g., [Mac99]) that this algorithm
works well for randomly chosen matrices and random noise up to some noise
probability level.

For a more specific discussion, we consider here the following average-case
scenario: Use B(n, p) for the noise vector distribution defined by noise probability
p and H(3, 5, n) for the matrix distribution, and assume that, for any fixed
code word a ∈ {0, 1}n for H : H(3, 5, n), a received message b is generated
b = a + n by n : B(n, p). This is the distribution of instances for the (3,5)-
LDPC Decoding problem. Note that this is a variant of type III scenario, where
no distribution is assumed (i.e., the worst-case is considered) for solutions, i.e.,
the choice of code words a. For the decoding problem, it is natural to expect that
the original code word a for generating an instance b is the unique most likely
solution for b. We can easily check that this property indeed holds with high
probability provided the noise probability p is smaller than a certain threshold.
Some detailed experiment shows that, if p ≤ p∗ for some threshold p∗, Gallager’s
algorithm solves the problem with high probability for sufficiently large n.

Although the theoretical justification of Gallager’s algorithm or the BP-
algorithm is still open, Luby et al. [LMSS01] gave a theoretical justification
to a message passing algorithm that is a similar (but much simpler) variant
of Gallager’s BP algorithm, which is called Gallager’s hard-decision algorithm.
Roughly speaking, they show that Gallager’s heuristic formula for analyzing
the performance of the hard-decision algorithm is sufficiently accurate within
any constant parallel message exchanging rounds; on the other hand, Gallager’s
formula shows that the algorithm can get an almost correct code word within
a certain constant parallel message exchanging rounds. Thus, they could show
that with high probability (under our distribution) Gallager’s hard-decision al-
gorithm yields an output a′ from a given b that is close to the original code word
a. (See [LMSS01] for the details.)

3 Example 2: MAX-2SAT Problem

Next consider MAX-2SAT problem, one of the well studied NP-hard optimiza-
tion problems. Here we use n and m to denote respectively the number of
1 Although researchers have shown (e.g., [LMSS01]) that irregular random matrices

have a better error correcting performance, we consider a simple case for our analysis.

762 O. Watanabe and M. Onsjö

variables and clauses of a given input Boolean formula. We use x1, . . . , xn for de-
noting Boolean variables. A CNF formula is a conjunction of clauses, a clause is
a disjunction of literals, and a literal is either a Boolean variable or its negation.
In particular, a 2CNF formula is a formula defined as a conjunction of clauses
with two literals, where each clause is specified as (xi ∨ xj), (xi ∨ xj), (xi ∨ xj),
or (xi ∨ xj), for some 1 ≤ i ≤ j ≤ n. For simplicity, we assume that clauses are
syntactically one of the above four types; e.g., there is no clause like (xj ∨ xi)
for some i < j. Note that it is possible that a formula has a clause like (xi ∨xi),
(xi ∨xi), or (xi ∨xi). (Since (xi ∨xi) is semantically the same as (xi ∨xi), we do
not allow clauses of this type. Thus, there are altogether

(
n
2

)
× 4 + 3n = 2n2 + n

clauses.) We use �i to denote either xi or xi.
An assignment is a function t mapping {x1, . . . , xn} to {−1, +1}; t(xi) = +1

(resp., t(xi) = −1) means to assign true (resp., false) to a Boolean variable
xi. An assignment is also regarded as a sequence a = (a1, a2, . . . , an) of ±1’s,
where ai = t(xi) for each i, 1 ≤ i ≤ n. For a given CNF formula F , its optimal
assignment is an assignment satisfying the largest number of clauses in F . Now
the MAX-2SAT problem is defined as follows.

MAX-2SAT problem
Instance: A 2CNF formula F = C1 ∧ · · · ∧ Cm over variables x1, . . . , xn.
Task: Find an optimal assignment of F .

We give a probability model and explain that this problem can be regarded as
a MLS problem for this probability model. Again consider a model generating
MAX-2SAT instances from some (fixed) solution. We first fix one assignment
a = (a1, . . . , an), or generate it a = (a1, . . . , an) uniformly at random. Let a′

be its complement assignment (−a1, . . . , −an), i.e., an assignment obtained by
flipping the sign of all individual assignments. This pair of a and a′ is called
a planted solution pair. A formula is constructed by adding all possible clauses
independently by the following rule using parameters p and r: add each clause
satisfied by both assignments with probability p (type A), and add each clause
not satisfied by one of the assignments with probability r (type B). (Note that
there is no clause that is satisfied by neither of a planted solution pair.) Note
that there are n2 type A clauses; hence, the number of clauses of type A added
to the formula is on average pn2. On the other hand, the formula has on average
rn(n + 1) type B clauses. Clearly adding type B clauses is to make an obtained
formula unsatisfiable, for making a formula nontrivial. (Recall that 2SAT prob-
lem is easy to solve.) It is easy to see that both members of the planted solution
pair can satisfy all the type A clauses and the half of the type B clauses; that
is, both fail to satisfy rn(n + 1)/2 type B clauses on average.

This generating process can be expressed by the following polynomial-time
computable generating function gsat: given a ∈ {0, 1}n, r1 ∈ {0, 1}n2

, and r2 ∈
{0, 1}n(n+1), gsat(a, r1, r2) is a formula obtained above where each bit of r1 and
r2 is used to determine whether the corresponding clause is added to the formula.
Thus, for the above distribution, we generate r1 ∈ {0, 1}n2

following B(n2, p)

Finding Most Likely Solutions 763

procedure algo MAX-2SAT (F);
// An input F = C1 ∧ · · · Cm is a 2CNF formula over variables x1, . . . , xn.
// Let S = S+ ∪ S−, where S+ = {+1, . . . , +n} and S− = {−n, . . . , −1}.
begin

construct G = (V, E); // See the text for the explanation.
set b(vs) to 0 for all s ∈ S;
b(v+1) ← +1; b(v−1) ← −1; // This is for the assumption that x1 = +1.
repeat MAXSTEP times do {

for each i ∈ {2, . . . , n} in parallel do {
b(v+i) ←

∑

vs∈N(v+i)

min(0, b(vs)); b(v−i) ←
∑

vs∈N(v−i)

min(0, b(vs));

b(v+i) ← b(v+i) − b(v−i); b(v−i) ← −b(v+i); — (1)
}
if sg(b(vi)) is stabilized for all i ∈ {2, . . . , n} then break;
b(v+1) ← 0; b(v−1) ← 0; — (2)

}
output(+1, sg(b(v+2)), . . . , sg(b(v+n)));

end-procedure

Fig. 1. A message passing algorithm for the MAX-2SAT problem

and r2 ∈ {0, 1}n(n+1) following B(n(n + 1), r). Thus for the MLS problem, the
probability that we need to minimize, for a given formula F , is

Pr
u1,u2

[F = gsat(a, u1, u2)] = pm1rm2(1 − p)n2−m1(1 − r)n(n+1)−m2 ,

where m1 and m2 are the number of clauses of F of type A and type B w.r.t.
a solution candidate a, and the probability is on random variables u1 and u2

following distributions B(n2, p) and B(n(n + 1), r) respectively. Intuitively, we
may consider that clauses are randomly generated from some reasoning a; clauses
of type A are constraints derived from a while clauses of type B are somewhat
irregularly derived from a. Then our goal is to find a most likely reasoning from
observed constraints.

Since m = m1 + m2 is determined by F and we assume that p > r, this prob-
ability gets largest by an assignment a maximizing m1. On the other hand, since
any assignment satisfies all its type A clauses and it or its complement satisfies at
least half of its type B clauses. Thus, if a is the most likely solution for F , either
a or its complement a′ satisfies at least m1 + m2/2 clauses. While this may not
be the optimal from MAX-2SAT view point, we can easily prove that it indeed is
the optimal with high probability if p and r are in an appropriate range.

Here again we expect that one of the planted solution pair is the optimal with
high probability. In fact, by a relatively standard argument (though it is not so
trivial as the first example), we can prove it and that no other assignment is as
well as this optimal assignment with high probability, provided p = Ω(ln n/n)
and p > 3r [WY06].

Now we consider a simple message passing algorithm stated in Figure 1. We
first explain the outline of the algorithm. Below we use i and j to denote unsigned

764 O. Watanabe and M. Onsjö

(i.e., positive) indices in {1, . . . , n}, whereas s and t are used for signed indices
in S = {−n, −(n− 1), . . . , −1, +1, . . . , +(n − 1), +n}. The algorithm is executed
on a directed graph G = (V, E) that is constructed from a given formula F as
follows: A set V is a set of 2n vertices vs, s ∈ S, each of which corresponds to
literal xs if s is positive and literal x|s| if s is negative. A set E consists of two
directed edges v corresponding to each clause (�i ∨ �j) of F , where i < j; e.g., an
edge (v−i, vj) corresponds to clause (xi ∨xj) (= (xi → xj)). On the other hand,
only one edge, a self-loop, is added to E for each clause of type (xi ∨ xi). Note
that graph G has no multiple edge, while it may have some self-loops. Let N(u)
denote the set of vertices v having a directed edge to u.

The algorithm computes a “belief” b(vs) at each vertex vs, an integral value
indicating whether the Boolean variable x|s| should be assigned true (i.e., +1)
or false (i.e., −1). More specifically, for an optimal assignment, the algorithm
suggests, for each xi, to assign xi = +1 if the final value of b(v+i) is positive
and xi = −1 if it is negative. Note that b(v−i) = −b(v+i); we may regard b(v−i)
as a belief for xi. These belief values are initially set to 0 except for one pair of
vertices, e.g., v+1 and v−1 that are assigned +1 or −1 initially. In the algorithm
of Figure 1, b(v+1) (resp., b(v−1)) is set to +1 (resp., −1), which considers the
case that x1 is true in the optimal assignment. Clearly we need to consider the
other case; that is, the algorithm is executed again with the initial assignment
b(v+1) = −1 and b(v−1) = +1, and among two obtained assignments the one
that satisfies more clauses is used as an answer. Now consider the execution of
the algorithm. The algorithm updates beliefs based on messages from the other
vertices. At each iteration, the belief of each vertex v+i (resp., v−i) is recomputed
based on the last belief values of its neighbor vertices. More specifically, if there
is an edge from v+i to vs, and b(vs) is negative, then this negative belief is sent to
v+i (from vs) and used for computing the next belief of v+i. The edge v+1 → vs

corresponds to a clause (xi → �|s|) (where �|s| is the literal corresponding to
vs), and the condition that b(vs) < 0 means that the literal �|s| is assigned false
(under the current belief). Thus, in order to satisfy the clause (xi → �|s|), we
need to assign false to xi. This is the reason for the message from vs. Belief b(v+i)
at this iteration is defined as the sum of these messages. It should be remarked
here that all belief values are updated in parallel; that is, updated beliefs are not
used when updating the other beliefs in the same iteration, but those computed
at the previous iteration are used. This update is repeated until no belief value
has changed its sign after one updating iteration or the number of iterations
reaches a bound specified as MAXSTEP. This is the outline of our algorithm. It
is easy to see that each iteration can be executed in time O(n + m).

In [WY06], some theoretical justification to this algorithm is given. More
precisely, a slightly simpler version modified as follows has been studied: (i)
set MAXSTEP = 2; that is, beliefs are updated only twice, (ii) execute state-
ment (1) only after the second iteration, and (iii) insert statement (2). For this
algorithm, it is shown that the algorithm yields one of the planted solution
pair with probability 1 − o(1) if n = Ω(ln(n/δ)/p2) (or almost equivalently,
p = Ω(n−1/2 ln n))), where “order” is taken w.r.t. n.

Finding Most Likely Solutions 765

4 Example 3: Graph Bisection Problem

For the last example, we consider a well-known graph partitioning problem,
called Graph Bisection problem. The problem is to find an equal size partition
of a given undirected graph with the smallest number of crossing edges. Again
it is NP-hard in the worst case.

Here we consider undirected graphs with no loop nor multiple edges, and
assume that the number of vertices is even. We use 2n and m to denote the
number of vertices and edges respectively. For a graph G = (V, E), an (equal
size) partition is a pair of disjoint subsets V+ and V− of V such that V = V+∪V−
and |V+| = |V−|. For a given partition V+ and V− edges in V+ ×V−∩E are called
crossing edges. The Graph Bisection problem is then defined as follows.

Graph Bisection problem
Instance: An undirected graph G = (V, E) with 2n vertices.
Task: Find an equal size partition of V with the smallest number

of cut edges.

Consider our probability model. Here let us first define its instance gen-
erating function gpart. Let V = {v1, ..., v2n} be a set of 2n vertices, and let
a ∈ {+1, −1}2n be an assignment denoting one partition V+ and V− of V ; that
is, vi is in V+ (resp., V−) if ai = +1 (resp., ai = −1). A pair of vertices vi and vj

of V is called a like-class pair (resp., a diff-class pair) if both are in either V+ or
V− (resp., one is in V+ and another is in V−). Let m1 and m2 be the number of
like-class and diff-class pairs of vertices in V respectively; let r1 ∈ {0, 1}m1 and
r2 ∈ {0, 1}m2. For these a, r1, and r2, we define gpart(a, r1, r2) to be a graph
G = (V, E), where E has an edge (vi, vj) if and only if the corresponding bit
of r1 (resp., r2) is 1 for a pair (vi, vj) is like-class (resp., diff-class pair). Now
with two probability parameters p and r (p > r) we assume that our problem in-
stance is generated (from a given assignment a) as gpart(a, r1, r2) for randomly
generated r1 : B(m1, p) and r2 : B(m2, r). This is the distribution we consider
for Graph Bisection problem. Note that this distribution or probability model is
essentially the same as the planted solution model that has been used to discuss
Graph Bisection problem [JS98]).

For this generating function, a MLS problem we can consider naturally is to
find a minimizing the following probability for a given input graph G:

Pr
u1,u2

[G = gpart(a, u1, u2)]

=
∏

(vi,vj)∈E

p[ai=aj]r[ai �=aj] ·
∏

(vi,vj)∈E

(1 − p)[ai=aj](1 − r)[ai �=aj],

where random variables u1 and u2 follow B(m1, p) and B(m2, r) respectively.
Note that we do not restrict a to those corresponding to some equal size parti-
tion, and m1 and m2 vary depending on a, more precisely, the number of +1’s
in a. As explained in the previous section, we can consider some scenario for
this inference problem; see also, e.g., [DLP03].

766 O. Watanabe and M. Onsjö

procedure algo BiSect (G, p, r);
begin

set all bi to 0;
repeat MAXSTEP times do {

b1 ← +∞;
for each vi ∈ V do in parallel {

bi ←
∑

vj∈Ni

h+ · Th+(bj)

−
∑

vj �∈Ni

h− · Th−(bj);

}
if all bi’s get stabilized then break;

}
output (+1, sg(b2), ..., sg(b2n));

end-procedure

parameters & functions

c− =
1 − p

1 − r
, c+ =

p

r
,

h− =

∣
∣
∣
∣
c− − 1

c− + 1

∣
∣
∣
∣ , h+ =

∣
∣
∣
∣
c+ − 1

c+ + 1

∣
∣
∣
∣ ,

th− =

∣
∣
∣
∣
ln c−

h−

∣
∣
∣
∣ , th+ =

∣
∣
∣
∣
ln c+

h+

∣
∣
∣
∣ ,

Th+(z) = sg(z)min(|z|, th+),

Th−(z) = sg(z) min(|z|, th−),

sg(z) = the sign of z, and

Ni = the set of vi’s neighbors.

Fig. 2. Computation of pseudo beliefs for the MLP problem

Again the goal of this MLS problem is not always the same as that of Graph
Bisection problem. Furthermore, for any choice of parameters p and r, we can find
some example for which two problems ask for different answers. Nevertheless,
we can show that the same solution is asked by these two problems with high
probability for some range of parameters p and r. More specifically, we can
show [Betal87] that if p − r = Ω(n−1/2), then with high probability, the planted
solution is the unique optimal solution of Graph Bisection problem. On the
other hand, the planted solution is also the unique optimal solution for the MLS
problem with high probability if p − r = Ω(n−1/2) [Ons05]. Thus, for this range
of p and r, with high probability, two problems share the same solution, which
is indeed the planted solution.

Now we explain the algorithm algo BiSect of Figure 2. This algorithm is
derived from the standard belief propagation algorithm following the template
given in [MMC98] applying two simplifications; see [OW05] for the derivation.
It again updates beliefs for each vertex vi ∈ V+ at each round. An updated
value of bi is computed by summing up the beliefs of all vertices vj , multiplied
by either h+ > 0 (if an edge (vi, vj) exists) and by −h− < 0 (otherwise). This
is intuitively reasonable because one can expect that two vertices vi and vj are
in the same class (resp., in the different classes); if an edge exists (resp., does
not exist) between them. The algorithm uses threshold functions Th+(z) and
Th−(z) so that too large (or too small) beliefs are not sent to the other vertices.
The algorithm terminates (before the time bound) if bi gets stabilized for every
i, i.e., either the change of bi becomes small, or |bi| exceeds the threshold value
max(Th+, Th−).

In [OW06] we give some theoretical analysis to this algorithm, again under the
following further simplifications: (i) set MAXSTEP = 2; (ii) use some small θ <
min(th+, th−) for the initial value of b1 (for avoiding the thresholding), and (iii) set
b1 = 0 before the second round (for ignoring the effect from v1 in the second round).

Finding Most Likely Solutions 767

For this version of algo BiSect, we prove that it yields the planted solution with
high probability if p − r = Ω(n−1/2 log n). Note that this result is weaker than
those for the other algorithms [Bop87, McS99, Coj06]; but we conjecture that the
general version of our algorithm performs as well as the other ones.

References

[Bop87] Boppana,R.B.: Eigenvalues and graphbisection: an average-case analysis. In:
Proc. Symposium on Foundations of Computer Science, pp. 280-285 (1987)

[Betal87] Bui, T., Chaudhuri, S., Leighton, F., Spiser, M.: Graph bisection algorithms
with good average behavior. Combinatorica 7, 171–191 (1987)

[Coj06] Coja-Oghlan, A.: A spectral heuristic for bisecting random graphs. Random
Struct. Algorithms 29(3), 351–398 (2006)

[DLP03] Dubhashi, D., Laura, L., Panconesi, A.: Analysis and experimental evalu-
ation of a simple algorithm for collaborative filtering in planted partition
models. In: Pandya, P.K., Radhakrishnan, J. (eds.) FST TCS 2003. LNCS,
vol. 2914, pp. 168–182. Springer, Heidelberg (2003)

[Gal62] Gallager, R.G.: Low density parity check codes. IRE Trans. Inform. The-
ory IT-8(21), 21–28 (1962)

[GJ79] Garey, M.R., Johnson, D.S.: Computers and Intractability, Bell Telephone
Laboratories, Incorporated (1979)

[JS98] Jerrum, M., Sorkin, G.: The Metropolis algorithm for graph bisection. Dis-
crete Appl. Math 82(1-3), 155–175 (1998)

[LMSS01] Luby, M., Mitzenmacher, M., Shokrollahi, M., Spielman, D.: Improved low-
density parity-check codes using irregular graphs. IEEE Trans. on Informa-
tion Theory 47(2), 585–598 (2001)

[Mac99] MacKay, D.: Good error-correcting codes based on very sparse matrices.
IEEE Trans. Inform. Theory IT-45(2), 399–431 (1999)

[MMC98] McEliece, R., MacKay, D., Cheng, J.: Turbo decoding as an instance of
Pearl’s Belief Propagation algorithm In: EEE J. on Selected Areas in Comm.
16(2) (1998)

[McS99] McSherry, F.: Spectral partition of random graphs. In: Proc. 40th IEEE
Sympos. on Foundations of Computer Science (FOCS’99), IEEE, NJ, New
York (1999)

[Ons05] Onsjö, M.: Master Thesis (2005)
[OW05] Onsjö, M., Watanabe, O.: Simple algorithms for graph partition problems,

Research Report C-212, Dept. of Math. and Comput. Sci. Tokyo Inst. of
Tech (2005)

[OW06] Onsjö, M., Watanabe, O.: A simple message passing algorithm for graph
partition problem. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp.
507–516. Springer, Heidelberg (2006)

[Pea88] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference, Morgan Kaufmann Publishers Inc (1988)

[WST] Watanabe, O., Sawai, T., Takahashi, H.: Analysis of a randomized lo-
cal search algorithm for LDPCC decoding problem. In: Albrecht, A.A.,
Steinhöfel, K. (eds.) SAGA 2003. LNCS, vol. 2827, pp. 50–60. Springer,
Heidelberg (2003)

[WY06] Watanabe, O., Yamamoto, M.: Average-case analysis for the MAX-2SAT
problem. In: Campilho, A., Kamel, M. (eds.) ICIAR 2006. LNCS, vol. 4142,
pp. 277–282. Springer, Heidelberg (2006)

Turing Unbound: Transfinite Computation

Philip D. Welch

School of Mathematics, Unversity of Bristol, England
p.welch@bristol.ac.uk

Till thine Infinity shall be
A robe of envenomed agony;
And thine Omnipotence a crown of pain,
To cling like burning gold round thy dissolving brain.

Shelley, Act 1 Prometheus Unbound

1 Introduction
2 To the ω’th station!
3 Scope of some other models: the extent of computation in Malament-Hogarth
spacetimes. Case Studies : a) Etesi-Németi models in Kerr spacetimes;
b) Hogarth’s models more abstractly considered.
4 Examples from the Other Side: Infinite Time Turing Machines, Punch Hole
Machines.
5 Longer Tapes, Larger objects: Ordinal length Turing machines, Register ma-
chines on Ordinals, α-recursion theory; Higher type recursion: Kleene recursion
on reals.

1 Introduction

The intention of this talk is to look at various models of transfinite computation
and give some calculations as to their comparative power. To clarify the kind of
models that we are looking at, they will all be discrete acting: this will mean
that they essentially perform simple discrete tasks in simple steps or stages. The
reader should have in mind the paradigm of the standard Turing Machine which
of course performs such simple actions as moving one cell left or right on the tape
that it is reading, altering a symbol, changing a state etc etc. We are thus not
considering any kind of machine or notional device that computes in an analogue
fashion, nor any machine, such as neural network with nodes primed by infinitely
precise real numbers, nor computations performed in chemistry beakers, across
cell membranes, or in buckets of slime.

Our purpose here is purely logico-mathematical : to determine what these mod-
els can and can not do. Just as Turing established the range and capabilities of
the Turing machine we wish to do likewise for the various models considered
here. We are diagnostic of the formalisms proposed, but agnostic as to the desir-
ability, notional feasability, and so forth, of them. The disclaimer is that mention
of any product or products does not imply endorsement by the author.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 768–780, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Turing Unbound: Transfinite Computation 769

Various machine proposals that fall under our rubric but which seek to com-
pute functions beyond the standard recursive functions1 are deliberately con-
structed to conform to some ambient physical theory or constraint (cf. [2],
Davies). Apart from Sect.5, we shall not be entering into any discussion of phys-
ical viabilities, feasabilities and so forth.

In Section 2 we consider briefly some well-known facts about the standard
model when the latter is allowed to run out to ω: i.e. infinitely many stages are
computed and we then are allowed to inspect the tape.

Section 3 looks at a recent group of papers of Hogarth, [9], [10] and Etesi &
Németi [2] which consider how to answer questions beyond the recursive using
arrangements of Turing machine(s) in a class of general relativistic spacetimes
known as Malament-Hogarth spacetimes. We delineate there the possible extent
of computation in such universes.

Going beyond the ω’th stage requires either stacking up machines, or recycling
the tape in some way or other. The Infinite Time Turing Machines (ITTM’s)
of Hamkins and Kidder [5] do precisely this. One might regard such a model as
a laboratory to investigate what can be done transfinitely, just as the standard
TM appears to be a suitable laboratory for finite discrete computation (strong
forms of the Church-Turing thesis may claim that it is a suitable model for such
computation). Section 4 considers these. Section 5 catalogues conceptual devices
that extend this, or otherwise use “more sets” in their description. One may al-
low the tape to also be transfinite and one arrives at the ordinal tape machines
of Koepke, Dawson, Siders; Koepke and Siders have considered ordinal register
machines : these have finitely many registers, and a push-down stack, but allow
ordinals (rather than integers) as objects to populate the machines. Naturally
such devices will compute more relations than an ITTM will. As their authors
have shown, one essentially can define Gödel’s constructible hierarchy L from
these. For completeness we mention here also finite state automata working on
trees, or ordinals, (Rabin, Büchi, Neeman, Thomas inter alia) but their capabil-
ities are well documented elsewhere, and so we do not pay them much attention
in this article. Nor de we consider the extensive field of computation on the reals :
we consider computation on infinite sequences, as ITTM’s and others deal with
(and so are capable of higher type recursion) but such models consider reals as
elements of P(N) rather than elements of the real continuum R. Older examples
of such recursion are Kleene’s recursion in R. (See for example [11]).

The unifying thread is a simple statement: transfinite processes encroach on
the infinitary world of subsytems of analysis, and of low level set theory, therefore
analytical techniques, or those previously studied under the rubric of generalised
recursion theory (such as α-recursion, higher type recursion) and descriptive set
theory have a role to play. We want to urge that arguing at a higher conceptual
level brings clarity and avoids repeating arguments from earlier eras or other
fields.

1 We shall reserve the term recursive functions for those standardly computed by
TM’s leaving “computable function” free for use for those functions computed by
the model currently under consideration.

770 P.D. Welch

2 To the ω’th Station!

A Turing machine if left to its own devices can write a recursively enumerable,
or Σ1, set of integers to its output tape. We may thus consider as computing
partial answers to whether ?n ∈ A? for any Σ1 set A. If we suppose that there
is an ω’th stage of time, then we may think of that as also having computed a
full answer: if at time ω no affirmative answer to ?n ∈ A? has been received
we may conclude that n /∈ A. However we can do better than that. We suppose
that our standard Turing machine’s are writing an Accept/Reject 0/1 output to
the first cell of their tape, without actually halting, but continue computing in
case they wish to change their minds

Definition 1. (Putnam [16]) R ⊂ N is a trial and error predicate if there is a
Turing machine M0 so that

n ∈ R ⇐⇒the eventual value of M0’s output tape on input n is 1
n /∈ R ⇐⇒the eventual value of M0’s output tape on input n is 0.

The determining feature is that for such predicates the machine eventually settles
down to a fixed value after some finite time. The standard interpretation is that
for a trial and error predicate one can have a computational arrangement that
provides the correct answer without one ever being in the position at a finite
stage in time of knowing for sure that we have it. Nor can we have any recursive
bound in terms of the input n on the number of time to expect a change of mind.
Such predicates are known to be equivalent to Δ2 predicates in the arithmetical
hierarchy (cf. also Gold [3]).

One might be concerned that positing an ω’th stage in time might require
a mechanism that writes to a particular cell on the tape infinitely often, when
calculating such predicates, thereby raising the spectre of some Thomson Lamp
like difficulties of what is written on the cell at time ω. However for Δ2 predicates
one can arrange matters so that this does not occur. (Of course this begs the
question of where the read/write head will be at time ω!)

To decide Σ2 predicates in ω steps, this will have to fail. We may write a
Σ2 predicate Q, or subset of N, to a recursive slice of the tape, but if we are
requiring that the first cell C0 on the tape has the correct 0/1 answer after ω
steps, it is easy to see we may have a positive answer (say given by 1) but for
a negative answer in general there can be no finite stage at which “0” will be
written to C0 never to change later (else the predicate would be Δ2).

So to decide Σ2 questions requires a substantial modification, to which we shall
turn after an interlude spent looking at computations in special spacetimes..

3 General Relativistic Models

As mentioned Hogarth, in [9], and [10], and Etesi & Németi [2] consider how to
answer questions beyond the recursive using arrangements of Turing machine(s)
in a class of general relativistic spacetimes known as Malament-Hogarth space-
times. Both sets of authors query how far in the arithmetic hierarchy such

Turing Unbound: Transfinite Computation 771

computations can succeed. In [24] we consider the logico-mathematical limits
of computation in their models.

Pitowsky [15] gives an account of an attempt to define spacetimes in which
the effect of infinitely many tasks can be realised - essentially they allow the
result of infinitely many computations by one observer Or (he used the, as then
unsolved, example of Fermat’s Last Theorem) performed on their infinite (i.e.
endless in proper time) world line γ1, to check whether there exists a triple of
integers xk + yk = zk for some k > 2 as a counterexample to the Theorem or
not. If a counterexample was found a signal would be sent to another observer
Op travelling along a world line γ2. The difference being that the proper time
along γ2 was finite, and thus Op could know the truth or falsity of the Theorem
in a (for them) finite time, depending on whether a signal was received or not.
As Earman and Norton [1] mention, there are problems with this account not
least that along γ2 Op must undergo unbounded acceleration.

Malament and Hogarth alighted upon a different spacetime example. The
following definition comes from [1] (M is a pseudo-Riemannian manifold, gab a
suitable metric):

Definition 2. M=(M, gab) is a Malament-Hogarth (MH) spacetime just in
case there is a time-like half-curve γ1 ⊂ M and a point p ∈ M such that∫

γ1
dτ = ∞ and γ1 ⊂ I−(p).

(Here τ is proper time.2) This makes no reference to the word-line of an ob-
server Op travelling along their path γ2, but point out that there will be in
any case such a future-directed timelike curve γ2 from a point q ∈ I−(p) to
p such that

∫
γ2(q,p)

dτ < ∞, with q chosen to lie in the chronological future
of the past endpoint of γ2. (The important point is that the whole of γ1 lies
in the chronological past of Op. As Hogarth showed in [8] such spacetimes are
not globally hyperbolic, thus ruling out many “standard” space-times (such as
Minkowski space-time). Hogarth’s diagram of a “toy MH space-time” is Figure 1
below. These are in general limited by assumptions they make concerning their
physical set ups. Both sets of authors make

Assumption 1. “no swamping”: no observer or part of the machinery of the
system has to send or receive infinitely many signals.

Etesi & Németi then consider a particular spacetime (Kerr spacetime) and the
case of a Turing machine sent along the world-line γ1 searching for counterexam-
ples to a Π1 predicate (for example). A signal can be sent to Op if one is found.
Consequently they have a (real world (?)) procedure for deciding Π1 queries.
They observe that if the arrangment sends, for example, two signals to Op ,
then they can decide the difference of two Π1 sets, and ask how far this can be
taken. We show:
2 We conform to the notation of Hawking & Ellis [7] and so I−(p) is the chronological

past of p: the set of all points q from which a future-directed timelike curve meets
p. The spacetimes, all derived from Malament and Hogarth’s “toy spacetime”, are
differentible manifolds with a Lorentz metric gab, and are time-oriented.

772 P.D. Welch

��

1γ

r

C

p

γ2

Fig. 1. A toy MH spacetime

Theorem 1. [24] The relations R ⊆ N computable in the Etesi-Németi model
form a subclass of the Δ2 predicates of N; this is a proper subclass if and only if
there is a fixed finite bound on the number of signals sent to the observer Op.

Clearly this is limited by Assumption 1: we know that there can be no recursive
bound on the number of times a machine can change its mind (i.e. send a signal
to Op) when computing a trial and error predicate, and so a fortiori no finite
bound. If Op is prepared to receive a potentially unbounded number of signals
then the arrangement decides Δ2. Note that Op will not actually have to receive
infinitely many signals, to decide a Δ2 predicate, so Assumption 1 is not broken,
but they had better be able in their physical arrangements not to have any
boundedness restriction.

Hogarth is more ambitious, he considers preparing spacetime manifolds by
arranging singularities as “MH-points” with observers or machines now Opj , in
open regions Oj of M , arranged with chains. By so doing he can decide any
arithmetic predicate. He explicitly makes:

Assumption 2. The regions Oj are all disjoint open regions of M .

However with this formalism, the construction only scratches the surface of what
is possible, one may show:

Theorem 2. If H is any hyperarithmetic predicate on integers, then there is an
MH spacetime in which any query ?n ∈ H? can be computed. Indeed there is a
single spacetime which is HYP-Deciding, that can compute all such queries.

However in one sense this is best possible. The last theorem is demonstrated
by embedding, not just chains of MH spacetime components as in Fig. 1 in
regions Oj , but embedding recursive finite path trees . Such can code the recursive
construction of hyperarithemetic sets (a well known fact - see [17] 16.8 or [18])3

3 Of course this is not to say that H is itself recursive, it is just that its construction
has a recursive description. The set of codes of hyperarithmetic sets is not recursive,
or r.e., or even arithmetic, it is complete Π1

1 ; it thus requires a universal function
quantification in analysis, or second order number theory (see for example, [17]
Thm.XX.

Turing Unbound: Transfinite Computation 773

Theorem 3. Assuming the (modest and standard) requirement that space-time
manifolds be paracompact and Hausdorff, for any MH spacetime M there will be
a countable ordinal upper bound, w(M), on the complexity of predicates in the
Borel hierarchy resolvable in it.

The reason is simple: just as in first year analysis, there can be at most countably
many disjoint open intervals of R, so there can be only countably many disjoint
open regions Oj ⊆ M (paracompactness and Hausdorff implies separable). So
there cannot be for every countable ordinal α less than ω1, regions of M in which
there is finite path tree Tα of rank α, of singularities arranged à la Hogarth.

Of course you may prefer to believe that our spacetime Mreal has w number 0!

4 Beyond ω: Infinite Time Turing Machines (ITTM’s)

Let us change the architecture. Suppose we allow cell values to change infinitely
often. Let us arbitrarily declare that at stage ω the value of the cell Ci is its
eventual value, if such exists, or otherwise, if the value has changed infinitely
often let us fill the cell with B(lank) at time ω. Now our extended Turing machine
(as we have gone beyond the standard Turing machine) will have a definite
answer for us at time ω for answering ?n ∈ Q? for Σ2 Q: the first cell will have
a 1 for “yes” and a B for “no”.4

Having gone this far we might as well go the whole hog and restart the machine
using the current tape contents. We specify that the R/W head has magically
reappeared on the first cell C0. The cell values are as given in the last paragraph,
and the machine has entered a special “Limit state” qL. We thus enlarge the
standard state set that the machine was equipped with, q1, . . . , qN . Likewise
the transition table, or program instruction list, or however we have set up our
machines, will have instructions involving qL which will tell the machine how to
proceed to the ω +1, or ω.2+1 or any λ+1 stage (for any limit ordinal λ). Note
that we still have finite programs and so can assume an enumeration 〈Pe|e ∈ N〉 of
all programs. At limit stages λ we regard the R/W head as reading C0. Note also
that we have essentially a machine acting on an alphabet of 3 letters {0, 1, B}.
We may let this machine run indefinitely through any or all ordinal segments of
time according to taste.

Noting that the machine may halt with the contents of its output tape es-
sentially a member of 3N (identifying 3 with {0, 1, B}) or perhaps 2N, we can
think of the machine as outputting reals. Indeed we may think of the machine
as having a sequence y ∈ 3N on the tape to start with. So we could also think of
the machines as performing some kind of higher type recursion computing func-
tionals F : 3N −→ 3N, or we may require more conventional output and compute
functions F : 2N −→ 2N. Suppose we denote by Pe(n) the e’th computation

4 One can show that actually one only needs the first cell alone to have the ability to
change value infinitely often, the calculation can be done without more than a finite
number of chages for the other cells.

774 P.D. Welch

on integer input of n, represented by an infinite string of n 1’s followed by an
infinite string of 0’s. Several natural questions arise.

Q1: What is {e|Pe(0) ↓}? (The halting problem on integers).
Q2: What is {y ∈ 2N|∃e ∈ N Pe(0) ↓ y} ?
Q3: What are the halting times that arise? That is if Pe(0) ↓halts in α steps

(Pe(0) ↓α)how large is α? Is α a recursive ordinal?
Q4: What is the degree structure that arises, setting

x ≤∞ y ⇐⇒ ∃e ∈ N Pe(y) ↓ x?

The architecture we have here is essentially that of the Infinite Time Turing
Machines of Hamkins and Kidder [5]. The difference between the presentation
of a 1 tape machine here, and their 3 tape version is rather inessential: they
have separate but parallel infinite tapes for input, scratch work, and output. A
R/W head may scan the k’th cell from each of the tapes simultaneously, but it
acts at limit stages in the same manner by returning to the leftmost triplet of
cells. They work instead on an alphabet of 2 = {0, 1} and specify at limit times
λ that Cn(λ) has value the limsupα→λ{Cn(α)}. The answers to Q1-Q4 above
are unaffected by the choice between these two formalisms5. Likewise the class
of functions f : N −→ N, or F : 2N −→ 2N is the same for both types of
machine. For most global questions it is immaterial which class of machines is
employed.

In order to prove some kind of Normal Form Theorem (such as Kleene’s
T -predicate provides for standard Turing machines) one needs that the class
of halting times of computations does not outstrip codes for ordinals that are
potentially themselves the lengths of such halting computations. Fortunately
this turns out to be the case [22] and we have

Theorem 4. (Normal Form Theorem [23]) ∀e∃e′∀x ∈ 2N

Pe(x) ↓−→ [Pe′ (x) ↓ y where y ∈ 2N codes a wellordered course-of-computa-
tion sequence for Pe(x) ↓].

Moreover the map e −→ e′ is effective (in the usual Turing sense).

Definition 3. [5]

x ⊆ N is (infinite time) semi-decidable iff ∃e∀n ∈ ω[Pe(n) ↓ 1 ↔ n ∈ x].

X ⊆ 2Nis (infinite time) semi-decidable iff ∃e∀x ∈ 2N[Pe(x) ↓ 1 ↔ x ∈ X].

5 There are some tiny variations in some cases of answers to Q3 on halting times,
globally the supremum γ of halting times on integer inputs are the same, but to
some halting times an addition of ω or so units of time is needed to get the sums
to come out right. In fact the limit rule that [5] choose is quite robust: changing
lim sup to liminf is (perhaps unsurprisingly) immaterial when considering the class
of computable functions.

Turing Unbound: Transfinite Computation 775

Definition 4
(i) x ≤∞ y ←→ ∃ePe(y) ↓ x; we have a jump operation:

x∇ =df {e|Pe(x) ↓}

(ii) X≤∞ Y ←→ ∃e∀x[PY
e (x) ↓ 1 ↔ x ∈ X ∧ PY

e (x) ↓ 0 ↔ x /∈ X] ;
we have again a jump operation:

X� =df {(e, x)|Pe(x) ↓} ∪ X.

In the second clause we have used the notation PY
e for the relativised oracle

machine which answers queries ?y ∈ Y ? for y ∈ 2N.

Theorem 5. (Hamkins-Lewis) [5] Any arithmetical predicate is decidable by
ITTM’s in < ω.ω = ω2 steps.

(ii) Any Π1
1 predicate on 2N is also ITTM decidable, in particular there is a

machine Pe that decides whether an input y ∈ 2N is in WO.
(iii) The relations “Pe(x) ↓ y” and “Pe(x) ↑” are Δ1

2. The ITTM semi-
decidable predicates form a Spector class which is a proper subclass of the Δ1

2

sets.

Because of (ii) and (iii) above we see that the reducibility ≤∞ is, say on the sets
of integers, intermediate between hyperarithmeticity and Δ1

2. Indeed we have an
ordinal assignment that satisfies a Spector Criterion:

Theorem 6. Let λx =dfthe least ordinal λ which has no code computable from
x. Then:

x ≤∞ y −→ (x∇ ≤∞ y ←→ λx < λy).

4.1 Punch Tape Machines

Suppose you object to the notion of rewriting values to a cell on a tape infinitely
often. The you might be happier with the concept of a punch tape machine. Such
merely have a read/punch head now for writing to a blank cell by punching a
hole. So, ignoring difficulties with “hanging chads”, such cells are usable once
only. Equipped with a standard-ish Turing program, one easily sees that in ω
steps again Δ2, or trial-and-error predicates are decidable. What if now we reset
the head to the zero’th cell at time ω and let the machine continue? Could we
calculate more? We have the following observation:

Proposition 1. (S-D. Friedman-PDW) Precisely the arithmetical predicate are
decidable by punch tape machines, and any such computation either halts by, or
is in an infinite loop, by time ω2.

5 Larger Machines

One may consider ITTM’s a starting point for wider classes of machines. Koepke
and Dawson independently came up with the idea of allowing ordinal length tape

776 P.D. Welch

on which {0, 1} marks could be input or written. To make use of this tape we
must not continually reset the head position to 0, to allow the head position at
some limit ordinal time λ say, to be the liminf of its previous positions. They
both allowed the machine at time λ to go into the state that was the again the
liminf of the previous states. In programming terms this quite neatly puts the
machine back at the head of the outermost loop it was cycling through before
reaching time λ.

As sets can be coded by ordinals (assuming some form of Axiom of Choice) we
have a means of working with sets. Conversely we can think of such machines as
producing codes for sets by the marks they write. Dawson formulates an Axiom
of Computability that asserts thet every set can appear coded on the output
tape by some program. He then proves that the computable sets form a transi-
tive class satisfying AC and moreover the Generalised Continuum Hypothesis.
Clearly such machines have a very absolute nature, and so can be run inside the
constructible hierarchy L. It then becomes clear that the class of computable
sets in this sense, being a transitive ZF model containing all ordinals, can be
none other than L itself which is the smallest such.

Koepke gave a detailed description [12], [13] of the organisation of such pro-
grams and a proof that a bounded truth function for L is ordinal computable
by a halting program. Whereas Dawson was considering sets that appeared on
a tape, Koepke considers halting computation from an input tape containing
marks for finitely many ordinals.

Theorem 7. (Koepke [12]) A set x of ordinals is ordinal computable from a fi-
nite set of of ordinal parameters if and only if it is an element of the constructible
hierarchy L.

We thus have another presentation of the constructible hierarchy to join those
of Gödel, Jensen, and Silver.

5.1 Ordinal Register Machines (ORM)

It appears that the concept of a machine with finitely many registers, but with
ordinals (rather than natural numbers) stored in them has arisen from time
to time. Platek considered such when he formulated the axioms of KP, and
the metarecursion theory which was an early example of generalising recursion
theory from ω to ωck

1 (see Part B of [18]). Siders considers [14] such a machine
with a stack, and the authors show again that the recursive truth predicate for
the constructible universe is decidable by such machines.

5.2 Higher Type- and α-Recursion

Kleene Recursion and ITTM semi-decidability. Kleene developed an
equational calculus for developing the notion of recursion on a higher type:

x ∈ A � {e}(x, y, B,2 E) ↓ 1 A, B ⊆ R (= 2N)

Turing Unbound: Transfinite Computation 777

(Here 2E is the Type 2 functional evaluating equality between members of
N2.) It has been characterised ([11]) as a model of computation in which a com-
putational device had a

(i) countably infinite memory, and
(ii) an ability to manipulate (search through, write to) that memory in finite

time; optionally
(iii) an ability to quiz an oracle (for B) about its entire memory contents .
We may think of this as a Turing machine with one (or more) infinite tapes

on which reals (identified with infinite sequences of 0’s,1’s) are written and the
ability to ask the oracle at any stage of the computation as to whether the
current real under consideration is in some “oracle set” B ⊆ R.

• This is not to be conceived as a computation that runs in transfinite seg-
ments of discrete time, but rather as one that makes calls for values from sub-
computations ; a computation thus has a wellfounded finite path tree structure.

• The course of computation may evolve its own tree structure as it progresses
according to its instruction set; we may also view a “machine” as having a
previously determined tree structure as part of its “instructions” or program. In
short the machine may be viewed as determined by a (finite) program together
with a (code, y, for) an infinite finite path-tree.

Kleene degrees: Let A, B ⊆ R; we say that A ≤K B iff
there is some computational arrangement P such as above so that

∀x ∈ R(x
∈
/∈ ⇐⇒ PB(x) ↓ 1

0
)

iff there are Σ1-formulae in L∈,Ẋ ϕ1, ϕ2, there is y ∈ R so that
for any x ∈ R (x ∈ A ⇐⇒ LωB,y,x

1
[B, y, x] |= ϕ1[B, y, x]

⇐⇒ LωB,y,x
1

[B, y, x] |= ¬ϕ2[B, y, x])

(here ωB,y,x
1 is the least (B, y, x)-admissible ordinal).

0K contains ∅, R, and in fact consists of the Borel sets. 0′K (the K-degree
of a complete Kleene semi-recursive set of reals) contains WO the set of reals
coding wellorders, and so a complete Π1

1 set of reals. In fact it consists of the
co-analytic, so Π1

1 sets.
• (Solovay) [20] AD (Axiom of Determinacy) implies that the K-degrees are

wellordered. Indeed a K-degree forms a boldface pointclass being closed under
continuous preimages.

•(Harrington-Steel) [21], [6] Determinacy(Bool(Π1
1)) ⇐⇒ ¬∃A(0 <K A <K

WO)
(Simpson) [11] V = L =⇒ there are many <K-incomparable sets of reals

below WO.
If one formulates the Definitions 3 and 4 of decidable and semi-decidable

similarly with a real parameter y occurring just as for Kleene degrees, then one
obtains similarly a notion of bold-face pointclass. The degrees so obtained are
then closed unde continuous pre-images, in short they form a Wadge degree and
their study is then amenable to methods of descriptive set theory.

778 P.D. Welch

Contrasting with the characterisation of Kleene’s degrees above we have:

Theorem 8. [23]A≤∞B⇐⇒df for some e ∈ ω,some y ∈ R :
∀x(x∈

/∈A ←→ P y,B
e (x) ↓ 1

0)
⇐⇒there are Σ1-formulae in L∈,Ẋ ϕ1, ϕ2, and y ∈ R,

so that
∀x ∈ R(x ∈ A ←→ LλB,y,x [B, y, x] |= ϕ1[B, y, x]

←→ LλB,y,x [B, y, x] |= ¬ϕ2[B, y, x]).

Note the recurrence of the λ symbol: λB,y,x is the supremum of all halting times
of programs on input x with oracles for y, and B. The first equivalence here is
The last equivalence of course has to be proven, but the reader can take it as a
definition.

The ≤∞-degrees so formed are then boldface pointclasses within the Wadge hi-
erarchy, with 0 and 0� as the (degrees of the) ∞-recursive, and ∞-semirecursive
sets of reals, respectively.

Definition 5. Let Γ0 be the class of ∞-semi-decidable sets of reals.

Let F be the class of “quickly computable” reals: x ∈ F ⇐⇒ x ∈ Lλx (Think of
the “quickly constructible reals Q = {x|x ∈ Lωx

1
}.) The theorems of Simpson,

and Harrington, Steel above become in this setting:

Theorem 9. [23] (V=L) 0 <∞ F <∞ 0�.

Theorem 10. [23] (Det(Bool(Γ0)) There is no A ⊆ R with 0 <∞ A <∞ 0�.

ITTM’s, ORM’s and α-recursion. Clearly computing on ordinals invites
comparison with the theory of α-recursion (see [18] Part C). One could consider
computation on tapes of admissble ordinal length, or ORM’s with entries re-
stricted to ordinals below some admissible. Given the very absolute nature (in
the sense of set theoretic absoluteness) of these machine models, and given the
theorems just cited concerning the decidability of the bounded truth predicate
for L one sees fairly immediately that proofs of theorems such as the Sacks-
Simpson Theorem [19] on a solution to Post’s problem, can be carried over, more
or less by straight translation, to corresponding proofs concerning incomparable
“semi-decidable” sets.

We may also compare the computations on ITTM’s with say integer input and
α-recursion theoretic results, with α = λ. Here we are in the easiest case of Sacks-
Simpson, as we find, like ωck

1 , that λ is Σ1-projectible to ω and Lλ |=“Everything
is countable”.

Bearing this in mind the following theorem of Hamkins and Lewis (which they
proved by using Friedberg-Muchnik arguments) has a soft proof from α-recursion
theory: one can simply replace the ordinals coded in the λ-r.e. incomparable sets
A∗, B∗ by their real codes and obtain ITTM semi-decidable (according to Def.
4) incomparable sets of reals A, B.

Theorem 11. [4] (Hamkins-Lewis) There are ITTM semi-decidable sets A, B
with 0 <∞ A, B <∞ 0� which are <∞ incomparable.

Turing Unbound: Transfinite Computation 779

(If the reader wonders why this appears to be a ZF theorem, which seems to
conflict with 9 above, this is because the reducibility [4] uses is that of Def. 4,
and the sets A, B are countable - in fact Σ1-definable over Lλ - as one would ex-
pect from an α-recursion theoretic perspective. Hence if one uses the “boldface”
reduction of 8 these sets simply disappear into a real parameter y.)

Similar results can be deduced from α-recursion theory for ordinal register or
tape machines where the ordinals, or tape lengths come from other admissible α.

References

[1] Earman, J., Norton, J.D.: Forever is a day: Supertasks in Pitowsky and Malament-
Hogarth spacetimes. Philosophy of Science 60, 22–42 (1993)

[2] Etesi, G., Németi, I.: Non-Turing computations via Malament-Hogarth space-
times. International Journal of Theoretical Physics 41(2), 341–370 (2002)

[3] Gold, E.: Limiting recursion. Journal of Symbolic Logic 30(1), 28–48 (1965)
[4] Hamkins, J. D., Lewis, A.: Post’s problem for supertasks has both positive and

negative solutions. Archive for Mathematical Logic
[5] Hamkins, J.D., Lewis, A.: Infinite time Turing machines. Journal of Symbolic

Logic 65(2), 567–604 (2000)
[6] Harrington, L.: Analytic determinacy and 0#. JSL 43(4), 684–693 (1978)
[7] Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge

University Press, Cambridge (1973)
[8] Hogarth, M.: Does general relativity allow an observer to view an eternity in a

finite time? Foundations of Physics Letters 5(2), 173–181 (1992)
[9] Hogarth, M.: Non-Turing computers and non-Turing computability. PSA: Pro-

ceedings of the Biennial Meeting of the Philosophy of Science Association 1, 126–
138 (1994)

[10] Hogarth, M.: Deciding arithmetic using SAD computers. British Journal for the
Philosophy of Science 55, 681–691 (2004)

[11] Hrbacek, K., Simpson, S.: On Kleene degrees of analytic sets. In: Keisler, H.J.,
Barwise, J., Kunen, K. (eds.) Proceedings of the Kleene Symposium, Studies in
Logic, pp. 347–352. North-Holland, Amsterdam (1980)

[12] Koepke, P.: Turing computation on ordinals. Bulletin of Symbolic Logic 11, 377–
397 (2005)

[13] Koepke, P., Koerwien, M.: Ordinal computations. Mathematical Structures in
Computer Science 16(5), 867–884 (2006)

[14] Koepke, P., Siders, R.: Computing the recursive truth predicate on ordinal register
machines. In: Beckmann, A., et al. (ed.) Logical Approaches to Computational
Barriers, Computer Science Report Series, p. 21. Swansea (2006)

[15] Pitowsky, I.: The physical Church-Turing thesis and physical computational com-
plexity. Iyyun 39, 81–99 (1990)

[16] Putnam, H.: Trial and error predicates and the solution to a problem of Mostowski.
Journal of Symbolic Logic 30, 49–57 (1965)

[17] Rogers, H.: Recursive Function Theory. Higher Mathematics. McGraw (1967)
[18] Sacks, G.E.: Higher Recursion Theory. In: Perspectives in Mathematical Logic,

Springer, Heidelberg (1990)
[19] Sacks, G.E., Simpson, S.: The α-finite injury method. Annals of Mathematical

Logic 4, 343–367 (1972)

780 P.D. Welch

[20] Solovay, R.M.: Determinacy and type 2 recursion. Journal of Symbolic Logic 36,
374 (1971)

[21] Steel, J.R.: Analytic sets and Borel isomorphisms. Fundamenta Mathemati-
cae 108, 83–88 (1980)

[22] Welch, P.D.: The length of infinite time Turing machine computations. Bulletin
of the London Mathematical Society 32, 129–136 (2000)

[23] Welch, P.D.: Post’s and other problems in higher type supertasks. In: Löwe, B.,
Piwinger, B., Räsch, T. (eds.) Classical and New Paradigms of Computation and
their Complexity hierarchies, Papers of the Conference Foundations of the Formal
Sciences III, Trends in logic, October, vol. 23, pp. 223–237. Kluwer, Dordrecht
(2004)

[24] Welch, P.D.: Turing Unbound: The extent of computations in Malament-Hogarth
spacetimes. British Journal for Philosophy of Science (submitted)

Computability in Amorphous Structures�

Jǐŕı Wiedermann1 and Lukáš Petr̊u2

1 Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic

jiri.wiedermann@cs.cas.cz
2 Faculty of Mathematics and Physics, Charles University,

Malostranské náměst́ı 25, 118 00 Prague 1
Czech Republic

lukas.petru@st.cuni.cz

Abstract. Amorphous computing differs from the classical ideas about
computations almost in every aspect. The architecture of amorphous
computers is random, since they consist of a plethora of identical compu-
tational units spread randomly over a given area. Within a limited radius
the units can communicate wirelessly with their neighbors via a single-
channel radio. We consider a model whose assumptions on the underlying
computing and communication abilities are among the weakest possible:
all computational units are finite state probabilistic automata working
asynchronously, there is no broadcasting collision detection mechanism
and no network addresses. We show that under reasonable probabilis-
tic assumptions non-uniform families of such amorphous computers can
possess universal computing power with a high probability. To the best
of our knowledge this is the first result showing the universality of such
computing systems.

Keywords: computability, universality, amorphous computers, simula-
tion, complexity.

1 Introduction

Classical models of universal computations, such as Turing machines, RAMs,
etc., are rigorously defined mathematical structures in whose design there is
no room for randomness. The situation is slightly different when the comput-
ing systems represented by networks of processors (such as the Internet, wireless
networks, etc.) are considered: here, the network topology may result from a ran-
dom process. In order to “compute” bold assumptions about such networks have
been usually made: at least we require that all network nodes are connected by
communication links, that prior to the start of computation each network node
possesses a unique “network address”, that there are communication primitives

� This research was carried out within the institutional research plan AV0Z10300504
and partially supported by the GA ČR grant No. 1ET100300517 and GD201/05/
H014.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 781–790, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

782 J. Wiedermann and L. Petr̊u

supporting message exchange and, last but not least, that each network node
does posses a universal computing power. Such models have been the domain
of the classical computational theory of the distributed system. However, recent
developments in micro-electro-mechanical systems, wireless communications and
digital electronics have brought yet a new challenge into the area of distributed
computing systems. Their new instances integrate sensing, data processing and
wireless communication capabilities. Typical representatives of such systems are
sensor, mobile, or ad-hoc wireless networks (cf. [5]). At an extreme end, people
consider exotic systems such as smart dust (cf. [8]) or amorphous computers (cf.
[1], [2], [3]). In these systems the miniaturization is pushed to its limits resulting,
presumably, into processors of almost molecular size with the respective com-
munication and computing facilities adequately (and thus severely) restricted.
These limitations call for the change of the basic computational and communi-
cation model of distributed computing systems which must subsequently be also
reflected in the design of the corresponding algorithms.

It seems that so far the related research has mainly concentrated on the con-
crete hardware, software and algorithmic issues neglecting almost completely the
computational and complexity aspects in that kind of computing (cf. [7]). Very
often the designers of such algorithms have paid little attention to the underlying
computational model and, e.g., they take for granted the universal computing
power of all processors, synchronicity of time in all processors, the existence of
unique node identifiers and those of communication primitives allowing efficient
message delivery.

In our paper we focus on a computational model of a wireless communication
network where such assumptions do not hold. This could be the case of e.g.,
the smart dust mentioned earlier. Our model, called amorphous computer works
under very week assumptions: basically, it is a random graph which emerges
by distributing the nodes randomly in the bounded planar area. The graph’s
nodes are processors represented by probabilistic finite state automata possess-
ing no unique identifiers (“addresses”). The graph’s edges exist only among the
nodes within the bounded reach of each node’s radio. Each node operates asyn-
chronously, in either broadcasting or listening mode, hearing a message only if
it is sent exactly by one of the node’s neighbors. That is, there is no mechanism
distinguishing the case of a multiple broadcast from the case of no broadcast.
This model has been introduced recently by the authors in [6].

Due to its weak (and thus, general) underlying assumptions which correspond
well to the case of amorphous computing as described in the literature, we believe
that such a model presents a fundamental model of amorphous computing (cf.
[1], [2], or an overview in [3]). Within the theory of computation a model of an
amorphous computer, as given by our definition, represents an interesting object
of study by itself since it contains elements of randomness built–in into both the
computer’s “set–up process” and its operations. The fundamental question is,
of course, whether such a model does possess a universal computational power.
The first steps towards this end have been taken in [6]. Here, under the above
mentioned mild assumptions concerning the model of amorphous computing

Computability in Amorphous Structures 783

and under reasonable statistical assumptions on the underlying graph a scalable
randomized auto-configuration protocol enabling message delivery from a source
node to all other nodes has been designed. In this paper, a further modification
of this protocol is used in designing an algorithm simulating a unit–cost RAM
(for inputs of bounded size). This simulation shows that our model of amorphous
computer does possess a universal computing power. The model represents an
unusual instance of a non-uniform computational model since the choice of its
parameters and the size of the network depends both on the space used by
the standard computing (hence indirectly on the input size) but also on the
computing time. To the best of our knowledge this is the first result of this kind.

A formal model of the amorphous computer is described in Section 2. In Sec-
tion 3, for the sake of completeness, the asynchronous communication protocol
from [6] is briefly presented followed by a new version of the broadcasting al-
gorithm. The main result of the paper, i.e., an algorithm simulating a unit-cost
RAM on our model of the amorphous computer, and its complexity analysis, is
given in Section 4. Some useful properties of random graphs pertinent to our
application are mentioned here as well. Section 5 is devoted to conclusions.

2 Model

In order to be able to prove universality of any model of computation we have to
define this model quite rigorously: only then we can design plausible algorithms
for it. To that end we give the definition of an amorphous computer as introduced
in [6].

Definition 1. An amorphous computer is a quintuple A = (N, P, A, r, T)
where

1. N is the number of processors (also called nodes) in the underlying network.
Each node is created by a RAM enhanced by a module for wireless sending
and receiving. All nodes are identical, controlled by the same program, except
of a single distinguished node called the base station. In addition to the
standard node facilities (see below) this node is capable to send and receive
data to/from a remote operator and is used to enter the data into the AC
and to send the results of AC data processing to the operator.

2. Each RAM has a fixed number of registers holding numbers represented by
O(log N) bits. Every RAM is equipped with a special read-only register called
rand, a special read-only register rin and a special write-only register rout.
On each read, register rand delivers a new random number. The registers in
all nodes are initialized by the same starting values.

3. P is a random process assigning to each node a position with continuous
uniform distribution over a planar area A, independently for each node.

4. r gives the radius of a communication neighborhood. Any two nodes at dis-
tance at most r > 0 are called neighbors. All neighbors of a node form the
node’s neighborhood.

5. T > 0 is transmission time of a message within a neighborhood of any node.

784 J. Wiedermann and L. Petr̊u

6. (Asynchronicity:) In each RAM any instruction takes one unit of time. The
actions (computations, communication) of all processors are not synchro-
nized.

7. The nodes communicate according to the following rules:
– all nodes broadcast on the same channel;
– if a node writes a value representing a message to rout, this message is

broadcasted to its communication neighborhood;
– if none of the given node’s neighbors is broadcasting a message, then the

given node register rin contains an empty message λ;
– if exactly one of a given node’s neighbors is broadcasting a message m,

then after time T register rin in the given node contains m;
– if two or more of the node’s neighbors are broadcasting a message and

the time intervals of broadcasting these message transfers overlap, then
there is a so–called collision and the rin register of the receiving node
contains empty message λ;

– the nodes have no means to detect a collision, i.e., to distinguish the case
of no-broadcast from the case of a multiple broadcast.

Note that since the register size of each RAM is bounded by O(log N) each
RAM, inclusively its random number generator, can be seen as a probabilistic
finite automaton of size polynomial in N (since each RAM has but a constant
number of registers). That is, the size of automata grows with the size of the
network. However, we have chosen to see each automaton as a “little RAM”
since such a view will support the result we are after (i.e., a simulation of a
unit-cost RAM) and corresponds more to practice.

An AC operates as follows. The input data enter the AC via its base station.
From there, the data (which might also represent a program for the processors)
spread to all nodes accessible via broadcasting. In a “real” AC additional data
might also enter into individual processors via their sensors which, however, are
not captured in our model since they do not influence the universality result.
Then the data processing within processors and data exchange among processors
begins. The results are delivered to the operator again via the base station.

3 Asynchronous Communication Protocol

In order to enable communication among all (or at least: a majority of) avail-
able processors the underlying communication graph of our AC must have cer-
tain desirable properties. The properties which are of importance in this case
are: graph connectivity, graph diameter and the maximal degree of its nodes.
Obviously, a good connectivity is a necessary condition in order to be able to
harness a majority of all processors. Graph diameter bounds the length of the
longest communication path. Finally, the node degree (i.e., the neighborhood
size) determines the collision probability on the communication channel.

An instance of an amorphous computer A whose underlying computational
graph has a maximal connected component of size N containing the base station
is called a well–formed instance of A of size N.

Computability in Amorphous Structures 785

Assuming that all nodes of an AC should participate in its computation there
must exist a mechanism of node–to–node communication used by the nodes to
coordinate their actions. Such a mechanism will consist of two levels. The lower
level is given by a basic randomized broadcasting protocol enabling each node to
broadcast a message to its neighborhood. Making use of this protocol we extend
it, on the next level, to a broadcasting algorithm that can be used to broadcast
a message from a given node to all other network nodes.

Protocol Send: A node is to send a message m with a given probability ε > 0 of
failure. The protocol must work correctly under the assumption that all nodes are
concurrently, asynchronously, in a non-coordinated way, using the same protocol,
possibly interfering thus one with each other’s broadcast.

The idea is for each node to broadcast sporadically, minimizing thus a com-
munication collision probability in one node’s neighborhood. This is realized as
follows. Each node has a timer measuring timeslots (intervals) of length 2T (T is
time to transfer a message between any two neighbors). During its own timeslot,
each node is allowed either listen, or to send a message at the very beginning
of its timeslot (and then listen till the end of this timeslot). Making use of its
random number generator, a node keeps sending m at each start of the timeslot
with probability p for k subsequent slots. The values of p and k are given in the
proof of the following theorem. After performing the above algorithm each node
waits for 2kT steps (so–called safe delay) before it can perform the next round
of the protocol.

Theorem 1 (Sending a message). Let A be a well–formed instance of an
amorphous computer, let the underlying computational graph has the maximal
neighborhood size bounded by Q. Let 1 > ε > 0 be an a priori given allowable
probability of failure. Assume that all nodes send their messages asynchronously
according to the Protocol Send. Let X be a node sending message m and Y be
any of X’s neighbors. Then Protocol Send delivers m to Y in time O(Q log(1/ε))
with probability at least 1 − ε.

Sketch of the proof: Thanks to our choice of the length of the timeslots, for each
timeslot of a given node X there is exactly one corresponding timeslot of some
other node Y such that if both nodes send asynchronously in their timeslots,
only a single collision will occur. This is so because if X has started its sending
at the beginning of its timeslot, X ’s and Y ’s sendings overlap if and only if
Y had started a sending in a timeslot that was shifted w.r.t. the beginning of
X ’s timeslot by less than T time units in either time direction. The timeslots
of length shorter than 2T could cause more than a single broadcast collision
between the arbitrary pairs of nodes, whereas longer timeslots would delay the
communication.

We will treat message sendings as independent random events. Message m is
correctly received by Y in one timeslot if X is transmitting m (the probability
of such event is p) and none of Y ’s neighbors is transmitting (the corresponding
probability is (1 − p)Q), giving the joint probability p(1 − p)Q. The value of
p(1 − p)Q is maximized for p = 1/(Q + 1). The probability of a failure after

786 J. Wiedermann and L. Petr̊u

k timeslots is [1 − p(1 − p)Q]k = ε. Hence, k = log ε/log[1 − p(1 − p)Q]. The
denominator in the latter expression equals −

∑∞
i=1[p(1−p)Q]i/i ≤ −p(1−p)Q =

−1/(Q + 1)(1 + 1/Q)−Q ≤ −e−1/(Q + 1) leading to k = O(Q log(1/ε)). �

In order to send a message to any node of an AC we use flooding, i.e, broadcasting
the message to all nodes of the network.

Algorithm Broadcast. This algorithm is used to deliver a message m from a
node X in the network to all remaining nodes which are in a quiet state w.r.t.
some (previous) message p �= m (i.e., the nodes transmit any message except of
p). To do so X sends m using Protocol Send with probability ε/N of failure and
thereafter, it enters the quiet state w.r.t. m (by remembering m and rejecting its
further transmission should it be received again). Upon receiving m, any other
node which is not yet in the quiet state w.r.t. m also starts sending m using the
previous procedure.

Theorem 2 (Broadcasting). Let D denote the diameter of the communication
graph. Then, for any ε : N/2N/Q ≤ ε ≤ 1, Algorithm Broadcast delivers m to
each node in time O(DQ log(N/ε)) and with probability 1 − ε. Afterwards, all
nodes will be in a quiet state w.r.t. m.

Sketch of the proof: Starting in X, m spreads through the network as a random
breadth-first search algorithm of the communication graph starting in X would
do. This is because each node, after receiving and re-sending m via Protocol Send
with probability ε/N of failure, stops re–sending of m. Obviously, after repeating
this process at most D times, m will reach all nodes and all nodes will be in a
quiet state w.r.t. m. The algorithm thus takes time O(DQ log(N/ε)). For one
node the failure probability is ε/N and for the whole network this probability
will rise to ε. The boundary on ε follows from the bounded memory size of each
processor. �

Note that the previous algorithm cannot process two identical messages sent one
after the other.

4 The Universal Computing Power of an AC

We show the universal computing power of on AC by letting it simulate a unit–
cost RAM. We will assume that the entire RAM program as well as two RAM
accumulators are stored in the base station. The input data are provided by the
operator upon request. The contents of the RAM registers will be held in the
individual AC processors (assuming that the contents of any RAM register will
fit any AC processor). Obviously, in order to be able to address the registers we
must allocate an address to each of them.

The RAM program will consist of the usual kind of instructions. For simplicity
we will assume that all instructions requiring two operands (indirect addressing,
arithmetical operations) are realized in the following way. The first operand is
assumed to be in the first accumulator. The second operand (if any) is to be de-
livered into the second accumulator. An instruction moving the register contents

Computability in Amorphous Structures 787

between a register and the accumulator is realized as follows. The base station
broadcasts the current instruction holding the address of the register to which
the instruction is pertinent to all nodes of the AC. The instruction is realized in
the requested register (processor) which then sends back the confirmation along
with the current contents of that register.

Thus, in order to the previous ideas to work we must ensure that:

– enough registers with the different addresses get allocated in the AC;
– at the same time, no two different messages occur in the net (since Algorithm

Broadcast can handle only one message at a time).

Addresses Allocation: Assume that we need an address space of size M > 0. The
following randomized algorithm makes use of N = 2M processors in order to
generate the addresses for at least M different registers with a high probability
(the occurrence of registers with the same address does not harm).

Algorithm Generate Addresses

1. All processors randomly generate and store a binary string of length �log(2M
+1)� in a variable called address;

2. The base station initializes two variables, round := 1 and max := 1;
3. Using Algorithm Broadcast, the base broadcasts pair (round, max) to all

processors;
4. Upon receiving this message, each processor whose address = round sends

a confirmation — message “0” — back to the base and resets its address to
max;

5. If within the waiting period the base receives at least one confirmation, max
is increased by 1;

6. After the waiting time has elapsed, round is increased by 1.
7. If round < 2M then go to step 3;
8. If max ≥ M then HALT else go to step 1.

Clearly, variable max counts the number of processors with different ad-
dresses. Algorithm Generate Addresses is repeated until at least M different
addresses are generated. The probability that this happens already after the
first trial is high and tends to 1 with the increasing M :

Lemma 1. Choosing 2M random numbers uniformly distributed in interval 1
to 2M , the probability that only M or less different numbers were chosen is less
than 1/

√
M + 1.

Proof: There are (2M)2M sequences of length 2M over {1, 2, . . . , 2M}. Among
them, there are M2M sequences “made of” at most M different numbers which
can be selected in

(
2M
M

)
different ways. Hence the probability that a sequence

contains M or less different numbers is
(
2M
M

)
M2M/(2M)2M . By induction, one

can prove that
(
2M
M

)
< 22M/

√
M + 1. The claim of the theorem follows. �

Simulation: Prior to the start of the simulation, using Algorithm Broadcast the
base station sends the values of parameters k, Q, D, N and ε to all nodes in the

788 J. Wiedermann and L. Petr̊u

network. These parameters are used by the nodes in order to fix the duration
of the safe delay and that of the break (in Protocol Send). Then the simulation
proceeds in rounds. In general, each round is performed with a different failure
probability εt. In each round, the base station issues the instruction to be re-
alized. The network is “flooded” by this instruction using Algorithm Broadcast.
Upon arriving into any processor holding the respective register the instruction
is realized. Subsequently, after making a big break (of duration O(DQ log(N/εt)),
a confirmation is broadcasted back to the base station, again by using the broad-
cast algorithm. The purpose of the big break is to allow all nodes to enter the
quiet state.

In more detail, the simulation of the t-the instruction in the t-th round pro-
ceeds as follows.

Algorithm Simulate: At the beginning of the t–th round, we assume that the
following invariant holds: with probability 1−

∑t−1
i=1 εi, each register represented

in the processors of the AC holds the correct value (corresponding to the values
of the RAM registers after realizing the first t − 1 instructions) and that all
processors are in a quiet state w.r.t. the lastly sent message.

In order to realize an instruction requiring a load from register i, or a store of
value contents into register i, the base station broadcasts a quadruple of form
(t mod N, i, instr, contents), where t denotes the order of the instruction in the
instruction sequence to be performed, instr is either LOAD or STORE. In the
former case, contents is empty, whereas in the latter case contents holds the
value to be stored in the i-th register. Upon arriving at any processor which
is in a quiet state, the processor starts the re-sending of the quadruple using
Protocol Send. Moreover, upon arriving at a register whose address = i, after
the big break a load instruction makes the processor to broadcast a confirmation
triple of a form (t mod N, LOAD, reg[i]) where reg[i] is the contents of the i-th
register. A store instruction is realized by performing the assignment reg[i] :=
contents within the processor and again, after the big break, by broadcasting
a confirmation triple of a form (t mod N, STORE, empty). The base station
also allows to elapse the big break within which it should receive a confirmation
of the t-th instruction realization. If during the big break no confirmation is
obtained, the base station allows for another big break. Of course, with a small
probability it may happen that the base station, expecting a confirmation at time
t, receives a confirmation issued at some earlier time t1 < t. Such a confirmation
is neglected by the base station. This, of course, does not mean that the time
stamps in the confirmations are superfluous: the base station has always wait
until the confirmation of the current instruction reaching its goal is obtained.
Without the time stamps, a confirmation from an earlier instruction could cause
the base station to issue the next instruction what could lead to an incorrect
simulation. Note that due to the counting modulo N some care is necessary when
comparing the values of time stamps.

By that time, the t-th instruction has been carried out with probability 1 −
εt, where εt is the failure probability of protocol Broadcast. With the same
probability, the base station has obtained the respective confirmation. Moreover,

Computability in Amorphous Structures 789

again with probability 1 − εt, the network nodes are in a quiet state w.r.t. the
lastly sent message. This means that the invariant has been re-established and
the simulation of the next, t + 1-st instruction can start. �

The previous algorithm consists of a series of T (n) rounds, where T (n) de-
notes the time complexity of the original RAM algorithm. If each round will fail
with the same probability O(ε1), the entire simulation will fail with probability
O(ε1T (n)). Thus, choosing ε1 = O(ε/T (n)) leads to a simulation algorithm with
the probability of failure at most ε.

If T (n) is not known in advance we perform each next simulation round with a
decreased probability of failure. If the t-th round is realized with the probability
of error ε/t2, the probability of an error after performing T (n) rounds is bounded
by min{1,

∑T (n)
t=1 ε/t2} < min{1,

∑∞
t=1 ε/t2} = min{1, επ2/6}.

Assume now that we want to simulate with failure probability ε > 0 a RAM R
of time complexity T (n), of space complexity S(n), with register size c log T (n)
for some c > 0. Suppose that our simulating AC A has s ≥ 2 registers of
size O(log N) available in each processor for computing and storing the value
DQ log(Nt2/ε) of the big break, for 1 ≤ t ≤ T (n), and for storing each RAM
register contents. For this to happen it is enough that NQ log(NT 2(n)/ε) +
c log T (n) ≤ Ns leading to ε ≥ NT 2(n)/22Ns−1/Q. Since s ≥ 2 and c log T (n) =
O(log N), for sufficiently large n’s there is enough room in AC processors to
compute with any given ε > 0.

Putting all the results together we see that in order to simulate R for an
input of size n, we must first “set up” a well-formed instance of an amorphous
computer with at least max{2S(n), NO(1)} processors. Since the time complexity
of Broadcast in the t–th round is O(DQ log(Nt2/ε)) and

∑T (n)
t=1 log(Nt2/ε))) ≤

T (n) log(NT 2(n)/ε), for the complexity of our simulation algorithm we get the
following result:

Theorem 3 (Simulation). Under the previous notation and assumptions, for
any ε > 0 and sufficiently large inputs of size n there exists an AC A simu-
lating R in time O(T (n)DQ log(NT 2(n)/ε)), with probability of failure at most
min{επ2/6, 1}.

In [6], the maximal connected component size, the diameter, and the maximal
neighborhood size of a communication graph of an amorphous computer have
been studied using both experiments and combinatorial tools. The respective
results show that under reasonable statistical assumptions chances are high that
an amorphous computer with good expected properties will emerge. For instance,
it has been experimentally verified that for an AC spread over a square A with
density d = 6, where the density is defined as d = Nπr2/a (a denotes the size
of area A), one can expect that with a high probability, a connected component
containing 0.48N processors will arise. Furthermore, for such areas it has been
experimentally verified that the diameter of the resulting graph is bounded by
O(

√
N). Finally, it has been analytically shown that the maximal neighborhood

size in such graphs is O(log N/ log log N). Interestingly, it is not known whether
the first two results can also be derived analytically (for references, cf. [6]).

790 J. Wiedermann and L. Petr̊u

Using these results one can derive a corollary of the previous theorem stating
the efficiency of our RAM–simulation for the case when the previous estimates of
random graph parameters hold as O(T (n) log(NT 2(n)/ε)

√
N log N/ log log N)).

More research is needed in order to better understand important properties of
random graph underlying amorphous computers.

5 Conclusion

The main departure point of the amorphous computing structures from other
models of wireless networks or distributed computing is the randomness of the
underlying network topology, anonymity of processors not possessing universal
computing power and a principal lack of synchronicity combined with the im-
possibility to detect broadcasting collisions. Unlike the majority of the known
models which work whenever appropriately programmed, this need not be the
case with an amorphous computer since its nodes can be dispersed in an un-
lucky manner that does not support the computer’s functionality. For our model
we have designed and analyzed a probabilistic algorithm simulating a unit-cost
RAM. To the best of our knowledge, our simulation algorithm seems to be the
first result showing the universal computing power of a non–uniform family of
amorphous computers of the type we have considered.

References

1. Abelson, H., Allen, D., Coore, Ch., Hanson, G., Homsy, T.F., Knight Jr, R., Nagpal,
E., Rauch, G.J., Sussman, R.: Weiss.: Amorphous Computing. Communications of
the ACM 43(5), 74–82 (2000)

2. Abelson, H., et al.: Amorphous Computing. MIT Artificial Intelligence Laboratory
Memo No. 1665, August (1999)

3. Coore, D.: Introduction to Amorphous Computing. In: Banâtre, J.-P., Fradet,
P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 99–109.
Springer, Heidelberg (2005)

4. D’Hondt, E.: Exploring the Amorphous Computing Paradigm. Master’s Thesis, Vrije
University (2000)

5. Nikoletseas, S.: Models and Algortihms for Wireless Sensor Networks (Smart Dust).
In: Wiedermann, J. (ed.) SOFSEM 2006. LNCS, vol. 3831, pp. 65–83. Springer,
Heidelberg (2007)

6. Petru, L., Wiedermann, J.: A Model of an Amorphous Computer and its Commu-
nication Protocol. In: Proc. SOFSEM’07. LNCS, vol. 4362, Springer, Berlin (2007)

7. Spirakis, P.G.: Algorithmic and Foundational Aspects of Sensor Systems (Invited
Talk). In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS,
vol. 3121, pp. 3–8. Springer, Heidelberg (2004)

8. Warneke, B., et al.: Smart dust: communicating with a cubic-millimeter computer.
Computer 34(1), 44–51 (2001)

The Complexity of Small Universal Turing

Machines

Damien Woods1 and Turlough Neary2

1 Department of Computer Science,
University College Cork, Ireland

d.woods@cs.ucc.ie
2 TASS, Department of Computer Science,

National University of Ireland Maynooth, Ireland
tneary@cs.may.ie

Abstract. We survey some work concerned with small universal Tur-
ing machines, cellular automata, and other simple models of computa-
tion. For example it has been an open question for some time as to
whether the smallest known universal Turing machines of Minsky, Ro-
gozhin, Baiocchi and Kudlek are efficient (polynomial time) simulators of
Turing machines. These are some of the most intuitively simple computa-
tional devices and previously the best known simulations were exponen-
tially slow. We discuss recent work that shows that these machines are
indeed efficient simulators. As a related result we also find that Rule 110,
a well-known elementary cellular automaton, is also efficiently universal.
We also mention some new universal program-size results, including new
small universal Turing machines and new semi-weakly universal Turing
machines. We then discuss some ideas for future work arising out of these,
and other, results.

1 Introduction

Shannon [38] was the first to consider the question of finding the smallest pos-
sible universal Turing machine, where size is the number of states and symbols.
In the early sixties Minsky and Watanabe had a running competition to see
who could come up with the smallest universal Turing machine [20,21,40,41].
Early attempts [9,41] gave small universal Turing machines that efficiently (in
polynomial time) simulated Turing machines. In 1962, Minsky [21] found a small
7-state, 4-symbol universal Turing machine. Minsky’s machine worked by simu-
lating 2-tag systems, which where shown to be universal by Cocke and Minsky [3].
Rogozhin [35] extended Minsky’s technique of 2-tag simulation and found small
machines with a number of state-symbol pairs. Subsequently, some of Rogozhin’s
machines were reduced in size or improved by Robinson [34], Rogozhin [36],
Kudlek and Rogozhin [11], and Baiocchi [2]. All of the smallest known 2-tag
simulators are plotted as circles in Figure 1.

Unfortunately, Cocke and Minsky’s 2-tag simulation of Turing machines was
exponentially slow. The exponential slowdown was essentially caused by the use

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 791–798, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

792 D. Woods and T. Neary

: universal, direct simulation, O(t2)
�� : universal, 2-tag simulation, O(t4 log2 t)
� : universal, bi-tag simulation, O(t6)
�� : semi-weakly universal, direct simulation, O(t2)
� : semi-weakly universal, cyclic-tag simulation, O(t4 log2 t)

∞ : weakly universal, Rule 110 simulation, O(t4 log2 t)

��

universal

non-universal

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

states

symbols

�

�

�

�

��

��

��

��

��

��

��

��

��

��

��

��
∞

∞

∞

∞

��

��

�

�

Fig. 1. State-symbol plot of small universal Turing machines. The type of simulation
is given for each group of machines. Also we give the simulation overheads in terms of
simulating a single tape, deterministic Turing machine that runs in time t.

of a unary encoding of Turing machine tape contents. Therefore, for many years
it was entirely plausible that there was an exponential trade-off between program
size complexity on the one hand, and time/space complexity on the other; the
smallest universal Turing machines seemed to be exponentially slow.

Figure 1 shows a non-universal curve. This curve is a lower bound that gives
the state-symbol pairs for which it is known that we cannot find a universal
machine. The 1-symbol case is trivial, and the 1-state case was shown by Shan-
non [38] and, by using another method, Hermann [8]. Pavlotskaya [30] and, via
another method, Kudlek [10] have shown that there are no universal 2-state,
2-symbol machines, where one transition rule is reserved for halting. Pavlot-
skaya [31] has also shown that there are no universal 2-state, 3-symbol machines,
and also claimed [30], without proof, there are no universal machines for the 3-
state, 2-symbol case. Again, both of these cases assume that a transition rule is
reserved for halting.

2 Time Efficiency of Small Machines

As mentioned above, some of the very earliest small Turing machines were
polynomial time simulators. Subsequently attention turned to the smaller, but
exponentially slower, 2-tag simulators given by Minsky, Rogozhin and others.
Recently [28] we have given small machines that are efficient polynomial time
simulators. More precisely, if M is a deterministic single-tape Turing machine
that runs in time t, then there are machines, with state-symbol pairs given by the
squares in Figure 1, that directly simulate M in polynomial time O(t2). These

The Complexity of Small Universal Turing Machines 793

machines define a O(t2) curve. They are currently the smallest known universal
Turing machines that (a) simulate Turing machines directly and (b) simulate
in O(t2) time.

Given these efficient O(t2) simulators it still remained the case that the small-
est machines were exponentially slow. However we have recently shown [45] that
2-tag systems are in fact efficient simulators of Turing machines. More precisely,
if M is a deterministic single-tape Turing machine that runs in time t then there
is a 2-tag system that simulates M and runs in polynomial time O(t4 log2 t).
The small machines of Minsky, Rogozhin, and others have a quadratic time
overhead, when simulating 2-tag systems, hence by the result in [45] they sim-
ulate Turing machines in time O(t8 log4 t). It turns out that the time overhead
can be improved to O(t4 log2 t), giving the O(t4 log2 t) machines in Figure 1
(this improvement is as yet unpublished). Thus, there is currently little evidence
for the claim of an exponential trade-off between program size complexity, and
time/space complexity.

In a further improvement Neary and Woods [24,25] have given four Turing
machines that are presently the smallest known machines with 2, 3, 4 and 5 sym-
bols. The 5-symbol machine improves on the 5-symbol machine of Rogozhin [36]
by one transition rule. The remainder of these machines improve on the 2- and
4-symbol machines of Baiocchi [2], and the 3-symbol machine of Rogozhin [36],
by one state each. They simulate our universal variant of tag systems called a
bi-tag system [26]. These small machines simulate Turing machines in polyno-
mial time O(t6) and are illustrated as triangles in Figure 1. Bi-tag systems are
essentially 1-tag systems (and so they read and delete one symbol per timestep)
augmented with additional context sensitive rules that read, and delete, two sym-
bols per timestep. On the one hand bi-tag systems are universal, while on the
other hand they are sufficiently ‘simple’ to be simulated by such small machines.

Improving the time efficiency of 2-tag systems has implications for a number of
models of computation, besides small universal Turing machines. Following our
result, the simulation efficiency of many biologically inspired models of compu-
tation, including neural networks, H systems and P systems, has been improved
from exponential to polynomial. For example, Siegelmann and Margenstern [39]
give a neural network that uses only nine high-order neurons to simulate 2-tag
systems. Taking each synchronous update of the nine neurons as a single parallel
timestep, their neural network simulates 2-tag systems in linear time. They note
that “tag systems suffer a significant slow-down ... and thus our result proves
only Turing universality and should not be interpreted complexity-wise as a Tur-
ing equivalent.” Our work shows that their neural network is in fact efficiently
universal. Rogozhin and Verlan [37] give a tissue P system with eight rules that
simulates 2-tag systems in linear time, and thus we have improved its simulation
time overhead from exponential to polynomial. This system uses splicing rules
(from H systems) with membranes (from P systems) and is non-deterministic.
Harju and Margenstern [7] gave an extended H-system with 280 rules that gen-
erates recursively enumerable sets using Rogozhin’s 7-state, 4-symbol universal
Turing machine. Using our result from 2-tag systems, the time efficiency of their

794 D. Woods and T. Neary

construction is improved from exponential to polynomial, with a possible small
constant increase in the number of rules. The technique of simulation via 2-
tag systems is at the core of many of the universality proofs in Margenstern’s
survey [16]. Our work exponentially improves the time overheads in these sim-
ulations, such as Lindgren and Nordahl’s cellular automata [12], Margenstern’s
non-erasing Turing machines [13,14], and Robinson’s tiling [33].

3 Weak Universality and Rule 110

So far we have been discussing results for universal Turing machines that have
one tape, one tape head, and are deterministic. Of course one can consider results
for other variants of the model [32]. An interesting case is when we stick to the
above conventions, but we allow the blank portion of the tape to contain a word,
that is constant (independent of the input), and is repeated infinitely often in
one direction, say to the left of the input. We call such universal Turing machines
semi-weakly universal. Some of the earliest small universal Turing machines were
semi-weak [41,42]. Sometimes another word is also repeated infinitely often to
the right. Universal machines that use this kind of encoding are called weakly
universal [17].

It is not difficult to see how this generalisation can help to reduce program size.
For example, it is typical of small universal Turing machine computations that
the program being simulated is stored on the tape. When reading an instruction
we often mark certain symbols. At a later time we then restore marked symbols
to their original values. If the simulated program is repeated infinitely often, say
to the left of the input, things may be much easier as we can simply skip the
‘restore’ phase of our algorithm and access a new copy of the program when
simulating the next instruction, thus reducing the universal program’s size.

This was the strategy used by Watanabe [41,42] to find the semi-weak, direct
Turing machine simulators shown in Figure 1 as hollow diamonds. Recently [44]
we have given two new semi-weakly universal machines and these are shown as
solid diamonds in Figure 1. These machines simulate cyclic tag systems, which
were first used by Cook [5] to show that Rule 110 is universal. It is interesting
to note that our machines are symmetric with those of Watanabe, despite the
fact that we use a different simulation technique. Our 4-state, 5-symbol machine
has only 17 transition rules, making it the smallest known semi-weakly universal
machine (Watanabe’s 5-state, 4-symbol machine has 18 transition rules). The
time overhead for our machines is polynomial. More precisely, if M is a single-
tape deterministic Turing machine that runs in time t, then M is simulated by
either of our semi-weak machines in time O(t4 log2 t).

Matthew Cook [5] dramatically changed the situation in Figure 1 by finding
weakly universal Turing machines that are substantially smaller than those found
to date. Cook’s machines work by simulating Rule 110, a very simple kind of
cellular automaton. Rule 110 is an elementary cellular automaton, which means
that it is a one-dimensional, nearest neighbour, binary cellular automaton [43].
More precisely, it is composed of a sequence of cells . . . p−1p0p1 . . . where each

The Complexity of Small Universal Turing Machines 795

cell has a binary state pi ∈ {0, 1}. At timestep t + 1 the value of cell pi,t+1 =
F (pi−1,t, pi,t, pi+1,t) is given by the synchronous local update function F

F (0, 0, 0) = 0 F (1, 0, 0) = 0
F (0, 0, 1) = 1 F (1, 0, 1) = 1
F (0, 1, 0) = 1 F (1, 1, 0) = 1
F (0, 1, 1) = 1 F (1, 1, 1) = 0

Cook showed that Rule 110 is universal via an impressive simulation. Since
Rule 110 is so ‘simple’ Cook was able to write very small, weakly universal ma-
chines that simulate it, these are illustrated as ∞ symbols in Figure 1. The use of
weak universality here is very important, since (a) Cook encodes a (possibly uni-
versal) program in one of these repeated words and (b) it is known from a result
of Codd [4] that one-dimensional elementary cellular automata (e.g. Rule 110)
on finite initial configurations are not universal.

Rule 110 was shown to be universal by simulating Cook’s cyclic tag systems,
which in turn simulate 2-tag systems. The chain of simulations included the
exponentially slow 2-tag algorithm of Cocke and Minsky, thus Rule 110, and
Cook’s universal machines, were exponentially slow. In a recent paper [27] we
have improved their simulation time overhead to polynomial by showing that
cyclic tag systems are efficient simulators of Turing machines. This result has
interesting implications for Rule 110. For example, given an initial configuration
of Rule 110, and a value t given in unary, predicting t timesteps of a Rule 110
computation is P-complete. Therefore, unless P = NC, which is widely believed
to be false, we cannot hope to quickly (in polylogarithmic time) predict the evo-
lution of this simple cellular automaton even if we have a polynomial amount of
parallel hardware. The question of whether Rule 110 prediction is P-complete
has been asked, either directly or indirectly, in a number of previous works (for
example [1,22,23]). Rule 110 is the simplest (one-dimensional, nearest neigh-
bour) cellular automaton that has been shown to have a P-complete prediction
problem. In particular Ollinger’s [29] intrinsic universality result shows that pre-
diction for one dimensional nearest neighbour cellular automata is P-complete
for six states, and our result improves this to two states.

It is currently not known if all of the lower bounds in Figure 1 hold for
machines that are of the style of Cook’s. For example, the non-universality results
of Pavlotskaya were proven for the case where one transition rule is reserved for
halting, whereas Cook’s machines do not halt.

4 Further Work

There are many avenues for further work in this area, here we highlight a few
examples.

Applying computational complexity theory to the area of small universal Tur-
ing machines allows us to ask a number of questions that are more subtle than
the usual questions about program size. As we move towards the origin, the

796 D. Woods and T. Neary

universal machines have larger (but polynomial) time overheads. Can the time
overheads in Figure 1 be further improved (lowered)? Can we prove lower bounds
on the simulation time of machines with a given state-symbol pair? Proving non-
trivial simulation time lower bounds seems like a difficult problem. Such results
could be used to prove that there is a polynomial trade-off between simulation
time and universal program size.

As we move away from the origin, the non-universal machines seem to have
more power. For example Kudlek’s classification of 2-state, 2-symbol machines
shows that the sets accepted by these machines are regular, with the exception
of one context free language (anbn). Can we hope to fully characterise the sets
accepted by non-universal machines (e.g. in terms of complexity or automata
theoretic classes) with given state-symbol pairs or other program restrictions?

When discussing the complexity of small machines the issue of encodings
becomes very important. For example, when proving that the prediction problem
for a small machine is P-complete [6] then the relevant encodings should be in
logspace, and this is the case for all of the polynomial time machines in Figure 1.

For results on more general definitions of small universal Turing machines
(higher dimensional tapes, more tape heads, etc.), see for example Priese [32]
and the references therein. Margenstern and Pavlotskaya show tight lower and
upper bounds for universality on other variants on the Turing machine model
including non-erasing Turing machines [13,14,15] and Turing machines coupled
with a finite automaton [18].

The space between the non-universal curve and the smallest non-weakly uni-
versal machines in Figure 1 contains some complicated beasts. These lend weight
to the feeling that finding new lower bounds on universal program size is tricky.
Most noteworthy are the weakly and semi-weakly universal machines discussed
in the previous section. Also of importance are the small machines of Margen-
stern [16] and Michel [19] that live in this region and simulate iterations of the
3x + 1 problem. So it seems that there are plenty of animals yet to be tamed.

Acknowledgements

We thank Olivier Bournez and Paola Bonizzoni for the invitation to speak at CiE
2007. During this work the authors were partially funded by the Irish Research
Council for Science, Engineering and Technology.

References

1. Aaronson, S.: Book review: A new kind of science. Quantum Information and
Computation 2(5), 410–423 (2002)

2. Baiocchi, C.: Three small universal Turing machines. In: Margenstern, M., Ro-
gozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 1–10. Springer, Heidelberg
(2001)

3. Cocke, J., Minsky, M.: Universality of tag systems with P = 2. Journal of the
Association for Computing Machinery 11(1), 15–20 (1964)

4. Codd, E.: Cellular Automata. Academic Press, New York (1968)

The Complexity of Small Universal Turing Machines 797

5. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1),
1–40 (2004)

6. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to parallel computation:
P-completeness theory. Oxford university Press, Oxford (1995)

7. Harju, T., Margenstern, M.: Splicing systems for universal Turing machines. In:
Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA Computing. LNCS, vol. 3384, pp.
149–158. Springer, Heidelberg (2005)

8. Hermann, G.T.: The uniform halting problem for generalized one state Turing
machines. In: Proceedings of the ninth annual Symposium on Switching and Au-
tomata Theory (FOCS), Oct. 1968, pp. 368–372. IEEE Computer Society Press,
Schenectady, New York (1968)

9. Ikeno, N.: A 6-symbol 10-state universal Turing machine. In: Proceedings, Institute
of Electrical Communications, Tokyo (1958)

10. Kudlek, M.: Small deterministic Turing machines. Theoretical Computer Sci-
ence 168(2), 241–255 (1996)

11. Kudlek, M., Rogozhin, Y.: A universal Turing machine with 3 states and 9 symbols.
In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp.
311–318. Springer, Heidelberg (2002)

12. Lindgren, K., Nordahl, M.G.: Universal computation in simple one-dimensional
cellular automata. Complex Systems 4(3), 299–318 (1990)

13. Margenstern, M.: Non-erasing Turing machines: A frontier between a decidable
halting problem and universality. In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710, pp.
375–385. Springer, Heidelberg (1993)

14. Margenstern, M.: Non-erasing Turing machines: a new frontier between a decidable
halting problem and universality. In: Baeza-Yates, R.A., Poblete, P.V., Goles, E.
(eds.) LATIN 1995. LNCS, vol. 911, pp. 386–397. Springer, Heidelberg (1995)

15. Margenstern, M.: The laterality problem for non-erasing Turing machines on {0, 1}
is completely solved. Theoretical Informatics and Applications 31(2), 159–204
(1997)

16. Margenstern, M.: Frontier between decidability and undecidability: a survey. The-
oretical Computer Science 231(2), 217–251 (2000)

17. Margenstern, M.: An algorithm for building intrinsically universal cellular au-
tomata in hyperbolic spaces. In: Proceedings of the 2006 International Conference
on Foundations of Computer Science (FCS), pp. 3–9. CSREA Press, Las Vegas,
NV (2006)

18. Margenstern, M., Pavlotskaya, L.: On the optimal number of instructions for uni-
versality of Turing machines connected with a finite automaton. International Jour-
nal of Algebra and Computation 13(2), 133–202 (2003)

19. Michel, P.: Small Turing machines and generalized busy beaver competition. The-
oretical Computer Science 326, 45–56 (2004)

20. Minsky, M.: A 6-symbol 7-state universal Turing machines. Technical Report
54-G-027, MIT, Aug (1960)

21. Minsky, M.: Size and structure of universal Turing machines using tag systems.
In: Recursive Function Theory: Proceedings, Symposium in Pure. Mathematics,
Provelence, AMS vol. 5, pp. 229–238 (1962)

22. Moore, C.: Quasi-linear cellular automata. Physica D 103, 100–132 (1997)
23. Moore, C.: Predicting non-linear cellular automata quickly by decomposing them

into linear ones. Physica D 111, 27–41 (1998)
24. Neary, T.: Small polynomial time universal Turing machines. In: Fourth Irish Con-

ference on the Mathematical Foundations of Computer Science and Information
Technology (MFCSIT’06), pp. 325–329. University College Cork, Ireland (2006)

798 D. Woods and T. Neary

25. Neary, T., Woods, D.: Four small universal Turing machines. In: Machines, com-
putations and universality(MCU) 2007, Sept. Springer LNCS. (Accepted)

26. Neary, T., Woods, D.: A small fast universal Turing machine. Technical Report
NUIM-CS-TR-2005-12, Department of Computer Science, NUI Maynooth (2005)

27. Neary, T., Woods, D.: P-completeness of cellular automaton Rule 110. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
132–143. Springer, Heidelberg (2006)

28. Neary, T., Woods, D.: Small fast universal Turing machines. Theoretical Computer
Science 362(1–3), 171–195 (2006)

29. Ollinger, N.: The quest for small universal cellular automata. In: Widmayer, P.,
Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP
2002. LNCS, vol. 2380, pp. 318–329. Springer, Heidelberg (2002)

30. Pavlotskaya, L.: Solvability of the halting problem for certain classes of Turing ma-
chines. Mathematical Notes (Springer), vol. 13(6) pp. 537–541, June 1973 (Trans-
lated from Matematicheskie Zametki, Vol. 13, No. 6, pp. 899–909, June 1973)

31. Pavlotskaya, L.: Dostatochnye uslovija razreshimosti problemy ostanovki dlja
mashin T’juring. Avtomaty i Mashiny, pp. 91–118 (Sufficient conditions for the
halting problem decidability of Turing machines) (in Russian) (1978)

32. Priese, L.: Towards a precise characterization of the complexity of universal and
nonuniversal Turing machines. SIAM J. Comput. 8(4), 508–523 (1979)

33. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inven-
tiones Mathematicae 12(3), 177–209 (1971)

34. Robinson, R.M.: Minsky’s small universal Turing machine. International Journal
of Mathematics 2(5), 551–562 (1991)

35. Rogozhin, Y.: Sem’ universal’nykh mashin T’juringa. Systems and theoretical pro-
gramming, Mat. Issled (Seven universal Turing machines. In Russian) 69, 76–90
(1982)

36. Rogozhin, Y.: Small universal Turing machines. Theoretical Computer Sci-
ence 168(2), 215–240 (1996)

37. Rogozhin, Y., Verlan, S.: On the rule complexity of universal tissue P systems. In:
Freund, R. (ed.) WMC 2005. LNCS, vol. 3850, pp. 356–362. Springer, Heidelberg
(2005)

38. Shannon, C.E.: A universal Turing machine with two internal states. Automata
Studies, Annals of Mathematics Studies 34, 157–165 (1956)

39. Siegelmann, H.T., Margenstern, M.: Nine switch-affine neurons suffice for Turing
universality. Neural Networks 12(4–5), 593–600 (1999)

40. Watanabe, S.: On a minimal universal Turing machines. Technical report, MCB
Report, Tokyo, Aug (1960)

41. Watanabe, S.: 5-symbol 8-state and 5-symbol 6-state universal Turing machines.
Journal of the ACM 8(4), 476–483 (1961)

42. Watanabe, S.: 4-symbol 5-state universal Turing machines. Information Processing
Society of Japan Magazine 13(9), 588–592 (1972)

43. Wolfram, S.: Statistical mechanics of cellular automata. Reviews of Modern
Physics 55(3), 601–644 (1983)

44. Woods, D., Neary, T.: Small semi-weakly universal Turing machines. In: Machines,
computations and universality(MCU) 2007, Sept. Springer LNCS. (Accepted)

45. Woods, D., Neary, T.: On the time complexity of 2-tag systems and small universal
Turing machines. In: 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), Oct, pp. 439–446. IEEE, Berkeley, California (2006)

Approximating Generalized Multicut on Trees

Peng Zhang�

State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, P.O.Box 8718, Beijing, 100080, China

Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
zhangpeng04@iscas.cn

Abstract. Given a tree T with costs on edges and a collection of termi-
nal sets X = {S1, S2, . . . , Sl}, the generalized Multicut problem asks to
find a set of edges on T whose removal cuts every terminal set in X, such
that the total cost of the edges is minimized. The standard version of
the problem can be approximately solved by reducing it to the classical
Multicut on trees problem. For the prize-collecting version of the prob-
lem, we give a primal-dual 3-approximation algorithm and a randomized
2.55-approximation algorithm (the latter can be derandomized). For the
k-version of the problem, we show an interesting relation between the
problem and the Densest k-Subgraph problem, implying that approxi-
mating the k-version of the problem within O(n1/6−ε) for some small
ε > 0 is hard. We also give a min{2(l − k + 1), k}-approximation algo-
rithm for the k-version of the problem via a nonuniform approach.

Keywords:GeneralizedMulticut,Tree,ApproximationAlgorithm,Com-
binatorial Optimization.

1 Introduction

The cut problem is a classical and active topic in combinatorial optimization.
We propose and study the problem generalized Multicut on trees. Given an undi-
rected graph G = (V, E) with costs on edges and a collection of terminal sets
X = {S1, S2, . . . , Sl}, the generalized Multicut problem (GMC for short) asks
to find a set of edges in E whose removal disconnects every terminal set in X ,
such that the total cost of the picked edges is minimized. Denote by GMC(G)
the problem on general (undirected) graphs, and by GMC(T) the problem on
trees. The generalized Multicut problem is of its own interest since the problem
is a natural generalization of the classical Multicut problem, and also is the dual
of the generalized Steiner Forest problem.

The GMC problem is a natural generalization of the classical Multicut prob-
lem. If in the instance of the GMC problem every terminal sets is restricted
to be of cardinality 2, then the problem is just the classical Multicut problem.
� Supported by NSFC grants No. 60325206 and No. 60310213. This work is part of

the author’s Ph.D. thesis prepared at Institute of Software, Chinese Academy of
Sciences under the supervision of Prof. Angsheng Li.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 799–808, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

800 P. Zhang

The GMC problem generalizes the Multiway Cut problem too, since if l is re-
stricted to be 1 then the problem is reduced to the Multiway Cut problem. On
the other hand, the GMC problem is the dual of the generalized Steiner Forest
problem (GSF). The instance of the GSF problem is the same as that of the
GMC problem, but the goal is to connect every terminal set in X by edges with
minimized total cost. Obviously, the optimal solution to GSF is a forest, while
the optimal solution to GMC is just a set of edges, which destroys any subgraph
interconnecting any terminal sets.

1.1 Related Work

For the problem Multicut on trees (MC(T)), Garg, Vazirani and Yannakakis [4]
gave a primal-dual approximation algorithm (which is referred to as the GVY
algorithm in this paper) with factor 2. This is also the best known performance
ratio for MC(T). Recently, Levin and Segev [8] considered the problem prize-
collecting Multicut on trees (pc-MC(T)) and the problem k-Multicut on trees
(k-MC(T)). They reduced pc-MC(T) to MC(T) and proved that the GVY al-
gorithm for pc-MC(T) possesses the so-called Lagrangian Multiplier Preserving
[7] property, and thus gave a 8

3 + ε-approximation for k-MC(T) for arbitrarily
small ε > 0 via Lagrangian relaxation. The same result for k-MC(T) was also
obtained independently by Golovin, Nagarajan and Singh [5].

For the problem Multicut on general undirected graphs (MC(G)), Garg, Vazi-
rani and Yannakakis [3] gave an O(log l)-approximation algorithm through the
region growth based LP-rounding technique. Later, Avidor and Langberg [1]
extended the region growth technique to deal with the GMC(G) problem, and
obtained the same performance ratio O(log l) for GMC(G).

1.2 Our Results

We consider the problem generalized Multicut on trees and its prize-collecting
variant (pc-GMC(T)) and k-version variant (k-GMC(T)). Recall that by the
results of Garg, Vazirani and Yannakakis [4] the problem Multicut on trees can
be approximated within factor 2. Garg et al. [4] proved that MC(T) is NP-hard
and MAX SNP-hard even for trees of height 1 and unit costs on edges. This
implies the same hardness results for GMC(T). The GMC(T) problem can be
easily reduced to MC(T) by the following way: Given the instance of GMC(T),
for each terminal set Si ∈ X , just

(|Si|
2

)
possible terminal pairs are added to the

reduced instance. Obviously this reduction can be finished in polynomial time.
Then by the results of [4], GMC(T) admits 2-approximation.

Proposition 1. The problem generalized Multicut on trees is both NP-hard and
MAX SNP-hard. ��

Proposition 2. There is a polynomial time 2-approximation algorithm for the
problem generalized Multicut on trees. ��

Approximating Generalized Multicut on Trees 801

In pc-GMC(T), every terminal set Si is either cut by the picked edges or not
cut but has to pay for the penalty πi. Note that only if all terminals in Si are
separated from each other, we say that the terminal set Si is cut. The goal
of pc-GMC(T) is to minimize the sum of the total cost of picked edges and
the penalties of uncut terminal sets. We extend the GVY algorithm to deal
with pc-GMC(T), resulting in a primal-dual 3-approximation algorithm for pc-
GMC(T). The main difference of our algorithm from the GVY algorithm is
that our algorithm may raise many dual variables simultaneously, whereas the
GVY algorithm raises each dual variable individually. We also give a randomized
2.55-approximation algorithm for pc-GMC(T), which can be derandomized and
thus the final algorithm is deterministic. The randomized algorithm needs to
solve linear program, whereas the primal-dual algorithm does not and is purely
combinatorial.

The k-GMC(T) problem asks to find a solution with minimized cost to cut
at least k terminal sets in X . Könemann, Parekh and Segev [10] gave a unified
framework based on Lagrangian relaxation to approximate a class of Set Cover-
like k-version optimization problems. Although the k-MC(T) problem can be
viewed as a Set Cover-like problem and thus can be casted in the framework of
[10], we find that the k-GMC(T) problem can not be solved by their framework
since if one converts k-GMC(T) to Set Cover then the set family is of exponential
size in l. We give a polynomial time min{2(l−k+1), k}-approximation algorithm
for k-GMC(T) via a nonuniform approach. The performance ratio min{2(l −
k + 1), k} behaves well when k is near to 1 or l. we also find an interesting
relation between k-GMC(T) and the Densest k-Subgraph problem, implying
that approximating k-GMC(T) within factor O(n1/6−ε) for some small ε > 0 is
hard.

2 Prize-Collecting Generalized Multicut on Trees

2.1 The Linear Program Formulations

First we give the fractional linear program formulation for the GMC(T) problem,
as shown in (LPs) (where the index s means the standard version of the problem).

(LPs) min
∑

e∈E

cexe (1)

subject to
∑

e∈p

xe ≥ 1, ∀i ∈ [l], ∀p ∈ Pi (2)

xe ≥ 0, ∀e ∈ E

To better understand (LPs), consider its integral version. The variable xe is
defined for every edge e ∈ E to indicate whether edge e is picked in the solution.
For simplicity, we use the notation [l] to denote the set {1, 2, . . . , l}. For every
terminal set Si, there are

(|Si|
2

)
possible terminal pairs in total. Since GMC(T)

802 P. Zhang

is defined on tree, for each terminal pair there is a unique path between them.
For a terminal pair (t, t′) in Si, denote by [t, t′] the unique path between t and
t′. The notation Pi in constraint (2) denotes the set of unique paths for every
possible terminal pairs in Si. Then constraint (2) states that for every terminal
set Si and for every path in Pi there is at least one edge e with xe = 1 (and
hence Si is cut by edges {e ∈ E : xe = 1}). Since the objective function (1) is to
minimize the total cost of picked edges, an integral optimal solution to (LPs) is
just an optimal solution to GMC(T), and vice versa.

The fractional linear program for pc-GMC(T) can be written as (LPp) (where
the index p means the prize-collecting version of GMC(T)).

(LPp) min
∑

e∈E

cexe +
∑

i∈[l]

πizi

subject to
∑

e∈p

xe + zi ≥ 1, ∀i ∈ [l], ∀p ∈ Pi (3)

xe ≥ 0, ∀e ∈ E

zi ≥ 0, ∀i ∈ [l]

In the linear program (LPp), the variable zi is defined for every terminal set
to indicate whether the terminal set Si is cut by edges {e ∈ E : xe = 1}. If the
terminal set Si is uncut, then zi = 1 and Si has to pay for the penalty πi. The
constraint (3) states that for every terminal set Si, either for every path in Pi

there is at least one edge e with xe = 1, or zi = 1 (and thus Si has to pay for
the penalty πi).

The dual program of (LPp) is shown as the following linear program (DPp).

(DPp) max
∑

i∈[l]

∑

p∈Pi

fp

subject to
∑

i∈[l]

∑

p : e∈p
p∈Pi

fp ≤ ce, ∀e ∈ E (4)

∑

p∈Pi

fp ≤ πi, ∀i ∈ [l] (5)

fp ≥ 0, ∀i ∈ [l], ∀p ∈ Pi

The variable fp in (DPp), which is defined for every path in every terminal
set, can be interpreted as the flow value on the path. In fact linear program
(DPp) describes the flow problem which is the dual to pc-GMC(T). Last but
not least, note that a terminal pair, say (t, t′), may appear in more than one
terminal sets. So, in dual program (DPp) the path [t, t′] may have more than
one delegate paths, with each delegate path p corresponding to a terminal set in
which [t, t′] appears. The variable fp is defined actually for every delegate path.

Approximating Generalized Multicut on Trees 803

2.2 The Primal-Dual Approximation Algorithm

Given the primal program and the dual program for pc-GMC(T), we design
an approximation algorithm for pc-GMC(T) based on the primal-dual scheme,
as shown in algorithm A. Algorithm A is extended from the GVY algorithm
by adding the process for penalties in each iteration. A distinct difference of
algorithm A from the GVY algorithm is that algorithm A may raise many dual
variable fp simultaneously, whereas the GVY algorithm raises each dual variable
individually.

Algorithm A

input: Tree T , terminal sets {Si} and their penalties {πi}.
output: Edge set D and index set N , such that removing D from T cuts
every terminal set in {Si : i �∈ N}.

1. let D ← ∅, fp ← 0, N ← ∅.
2. Root the tree at any vertex.
3. while there exists non-processed vertices do
4. Let v be the deepest non-processed vertex, breaking ties arbitrarily.
5. for each (t, t′) in some Si such that i �∈ N and lca(t, t′) = v do
6. Suppose that the terminal sets which contain (t, t′) and are not fully

paid for are Si1 , Si2 , . . . , Sir (i.e. for every j ∈ [r], {t, t′} ⊆ Sij and
ij �∈ N). For each j ∈ [r], let pj be the delegate of path [t, t′] in Pij .

7. Simultaneously increase fpj for all 1 ≤ j ≤ r. And in this process,
8. if for some j ∈ [r] the penalty πij is fully paid for, then stop

increasing fpj and let N ← N ∪ {ij}.
9. if some edge e ∈ [t, t′] is saturated then stop increasing all fpj

and let D ← D ∪ {e}.
10. end
11. end
12. Let e1, e2, . . . , et be the ordered list of edges in D, and A be the index set of

terminal sets in X which are cut by D.
13. for j = t downto 1 do
14. if D − {ej} still cut every terminal set with index in A then remove ej

from D.
15. end
16. output D and N .

In algorithm A, D denotes the edges picked by the algorithm, and N denotes
the set of indices of terminal sets that have to pay for their penalties. The
algorithm starts with an infeasible primal solution (x = 0, z = 0) and a trivial
feasible dual solution f = 0. In each iteration, algorithm A continues to improve
the feasibility of the primal solution (x, z) and the optimality of the dual solution
f . Eventually, algorithm A finds an integral feasible solution to (LPp) and an as
optimal as possible solution to (DPp), meanwhile the final primal solution and
dual solution satisfy the complementary slackness conditions.

804 P. Zhang

Garg et al. in [4] proved a structural property about the solution found by
the GVY algorithm in the setting of MC(T). For each disconnected pair (si, ti),
if the flow on the path [si, ti] is nonzero, then at most one edge is picked by the
GVY algorithm in each of the two paths [si, v] and [v, ti], where v is the least
common ancestor of si and ti. For algorithm A although there may be many
paths with non-zero flows and the algorithm does not pick any edge on these
paths (these paths are not cut and the flows on these paths pay for penalties of
uncut terminal sets), we can show that for every disconnected terminal pair the
structural property still holds and thus introduce the structural property into
the setting of pc-GMC(T). The proof of Lemma 1 is essentially the same as that
of Lemma 18.5 in [11](page 149), and is omitted here.

Lemma 1 ([4,11]). For every disconnected terminal pair (t, t′) in some termi-
nal set, if the flow on the path [t, t′] is nonzero, then at most one edge is picked
by algorithm A in each of the two paths [t, v] and [v, t′], where v = lca(t, t′) is
the least common ancestor of t and t′. ��

Now, we are ready to prove the main theorem for algorithm A.

Theorem 1. Algorithm A is a polynomial time 3-approximation algorithm for
the problem prize-collecting generalized Multicut on trees.

Proof. It is obvious that the output of algorithm A is a feasible solution to pc-
GMC(T). By the primal-dual scheme of algorithm A, the primal solution (x, z)
and the dual solution f found by A satisfy that xe = 1 iff

∑
i∈[l]

∑
p : e∈p,p∈Pi

fp =
ce and zi = 1 iff

∑
p : p∈Pi

fp = πi. So, for the set D of picked edges, we have
∑

e∈D

ce =
∑

e∈D

∑

i∈[l]

∑

p : e∈p
p∈Pi

fp =
∑

i∈[l]

∑

p∈Pi

fp · |D ∩ p| ≤ 2
∑

i∈[l]

∑

p∈Pi

fp. (6)

In inequality (6), the second equality holds since the summation order is changed.
The last inequality is relaxed from the following two aspects: First, by Lemma
1 we know that for every cut path p, fp > 0 implies that |D ∩ p| ≤ 2. Second,
there are still some paths p satisfying that fp > 0 and |D ∩ p| = 0.

Then, for the index set N of uncut terminal sets, we have
∑

i∈N

πi =
∑

i∈N

∑

p∈Pi

≤
∑

i∈[l]

∑

p∈Pi

fp. (7)

By inequalities (6) and (7), we know that A(I), the value of the output of
algorithm A, satisfying that

A(I) =
∑

e∈D

ce +
∑

i∈N

πi ≤ 3
∑

i∈[l]

∑

p∈Pi

fp ≤ 3 · OPTf (LPp) ≤ 3 · OPT, (8)

where OPTf (LPp) denotes the optimum of factional linear program (LPp),
and OPT denotes the optimum of the instance of pc-GMC(T). The second
inequality in (8) is due to the primal-dual theorem. This completes the proof of
the theorem. ��

Approximating Generalized Multicut on Trees 805

2.3 The Randomized Rounding Approximation Algorithm

Using the randomized rounding with scaling technique, we design a 2.55-approxi-
mation algorithm for pc-GMC(T). Similar technique also appears in [6] to deal
with the problem prize-collecting Steiner Forest on graphs. The proof of Theorem
2 is omitted in this extended abstract.

Theorem 2. There is a polynomial time 2.55-approximation algorithm for the
problem prize-collecting Multicut on trees. ��

3 k-Generalized Multicut on Trees

The k-GMC(T) problem is the natural k-version of the GMC(T) problem. We
find an interesting relation between the k-GMC(T) problem and the Densest
k-Subgraph problem, implying that simply adding the parameter k significantly
increase the hardness of the problem generalized Multicut on trees. Then we give
a polynomial time approximation algorithm to k-GMC(T) through a nonuniform
approach, with performance ratio min{2(l − k + 1), k}.

3.1 Hardness of k-GMC(T)

We show that the hardness of k-GMC(T) can be reduced to that of the Densest
k-Subgraph problem. First we show that the Minimum k-Edge Coverage problem
can be reduced to k-GMC(T) by approximation factor preserving reduction. The
instance of the Minimum k-Edge Coverage problem (k-MEC) consists of a graph
G and an integer k > 0, and the goal of the problem is to find the minimum
number of vertices in graph G whose induced subgraph has at least k edges.

Lemma 2. There is an approximation factor preserving reduction from the k-
MEC problem to the k-GMC(T) problem.

Proof. The instance of k-GMC(T) is constructed as follows. The root of the
reduced instance is r. For every vertex vi in the instance of k-MEC, there is a
vertex vi in the reduced instance whose parent is r. For every edge e = (vi, vj) in
the instance of k-MEC, there is a terminal set S = {r, vi, vj} in the instance of
k-GMC(T). Then one can see that if in the instance of k-MEC there is a vertex
set V ′ which strictly covers at least k edges, then in the instance of k-GMC(T)
there is an edge set (in which each edge corresponds to a vertex in V ′) whose
removal cuts at least k terminal sets (each cut terminal set corresponds to an
edge that is strictly covered in k-MEC), and vice versa. The lemma follows. ��

Given a graph G and an integer k > 0, the Densest k-Subgraph problem asks
to find a set of k vertices with maximum number of induced edges. Hajiaghayi
and Jain [6] proved that if the k-MEC problem can be approximated within α,
then the Densest k-Subgraph problem can be approximated within 2α2. The
currently best known performance ratio for the Densest k-Subgraph problem is
O(n1/3−ε) for some small ε > 0 and the improvement is believed to be hard [2,9].
By these facts and Lemma 2 we have Theorem 3.

806 P. Zhang

Theorem 3. If the k-GMC(T) problem can be approximated within factor
O(n1/6−ε) in polynomial time for some small ε > 0, then there is an O(n1/3−2ε)-
approximation algorithm for the Densest k-Subgraph problem. ��

3.2 Approximating k-GMC(T)

In this subsection we design a min{2(l − k + 1), k}-approximation algorithm for
k-GMC(T) through a nonuniform approach. In fact we design two approximation
algorithms for k-GMC(T). One is based on greedy approach which deals with
the case that k is small, and the other is based on LP-rounding technique which
deals with the case that l − k is small.

If the parameter l is restricted to be 1 in k-GMC(T), then the problem is
reduced to the Multiway Cut problem on trees. We show that the problem
Multiway Cut on trees can be optimally solved in polynomial time. The proof
of Lemma 3 is omitted in this extended abstract.

Lemma 3. The problem Multiway Cut on trees is polynomial time solvable. ��
The polynomial time solvability of the problem Multiway Cut on trees suggests
a simple greedy approximation to the k-GMC(T) problem.

Lemma 4. The k-GMC(T) problem can be approximated within factor k in
polynomial time.

Proof. Solve the Multiway Cut instance for every terminal set Si in X . Suppose
that the solution to the instance corresponding to Si is edge set Fi. Then the
union of the lightest k sets Fi is a k-approximation to k-GMC(T), since the
optimal solution to k-GMC(T) must cut at least k terminal sets, and hence for
every 1 ≤ i ≤ k the cost of Fi is no more than the optimum of k-GMC(T). ��
Then we give the fractional linear program formulation for k-GMC(T), as shown
in (LPk) (where the index k means the k-version of GMC(T)).

(LPk) min
∑

e∈E

cexe

subject to
∑

e∈p

xe + zi ≥ 1, ∀i ∈ [l], ∀p ∈ Pi (9)

∑

i∈[l]

zi ≤ l − k, (10)

xe ≥ 0, ∀e ∈ E

zi ≥ 0, ∀i ∈ [l]

Consider the integral version of linear program (LPk). The variable zi indi-
cates whether the terminal set Si is cut by the edges {e ∈ E : xe = 1}. If Si

is not cut, then zi = 1. The constraint (10) states that the number of terminal
sets that is cut must be at least k. The objective function of (LPk) is to mini-
mize the total cost of edges that cut at least k terminal sets. A straightforward
observation of (LPk) is the following Lemma 5.

Approximating Generalized Multicut on Trees 807

Lemma 5. For the optimal solution (x∗, z∗) to (LPk), the constraint (10) holds
with equality. ��

Then we give an approximation guarantee with respect to the parameter l and
k for the k-GMC(T) problem. The technique is LP-rounding with scaling.

Lemma 6. The k-GMC(T) problem can be approximated within factor 2(l−k+
1) in polynomial time.

Proof. Without loss of generality, by reordering the indices, suppose that for the
optimal solution (x∗, z∗) the variables z∗i ’s are in the order z∗1 ≥ z∗2 ≥ · · · ≥ z∗l .
Then we round the variables z∗1 , . . . , z∗l−k to 1 and the variables z∗l−k+1, . . . , z

∗
l

to 0. That is, we leave every terminal set S ∈ {S1, . . . , Sl−k} not cut. Denote by
ẑ the rounded z∗, and by Q the index set {i : ẑi = 0}. By Lemma 5,

∑
i∈[l] z

∗
i =

l−k. We argue that z∗i ≤ (l−k)/(l−k+1) holds for every i ∈ Q, since otherwise
z∗1 + · · · + z∗l−k+1 > l − k, which contradicts constraint (10). So, by constraint
(9), we know that ∀i ∈ Q, ∀p ∈ Pi,

∑

e∈p

xe ≥ 1 − zi ≥ 1 − l − k

l − k + 1
.

Let a = (l−k)/(l−k+1). Now, define x′
e = min{ 1

1−ax∗
e, 1} for every e. Then,

x′ is a feasible solution to the linear program (LPs) on Q. Notice that (LPs) on
Q is just the linear program for the problem Multicut on trees with terminal sets
X = {Si : i ∈ Q}. By the GVY algorithm, an integral 2-approximate solution x̂
to (LPs) can be found in polynomial time. Now, (x̂, ẑ) is a feasible solution to
(LPk), with solution value

∑

e∈E

cex̂e ≤ 2 · OPTf (LPs) ≤ 2
∑

e∈E

x′
e ≤ 2

1 − a

∑

e∈E

x∗
e ≤ 2

1 − a
OPT, (11)

where OPTf (LPs) denotes the value of an optimal fractional solution to (LPs),
and OPT denotes the optimum to the instance of k-GMC(T). In inequality
(11), the second inequality holds since x′ is a feasible solution to (LPs), the
third inequality holds since by definition x′

e ≤ 1
1−ax∗

e for every edge e. Finally,
we know that 2/(1 − a) = 2(l − k + 1). The lemma follows. ��

Lemma 4 and Lemma 6 establish the main theorem of this subsection.

Theorem 4. There is a polynomial time min{2(l − k + 1), k}-approximation
algorithm for the k-GMC(T) problem. ��

Note that the performance ratio min{2(l − k +1), k} in Theorem 4 behaves well
when k is near to 1 or l. Since k ranges over {1, . . . , l}, we always have that
min{2(l − k + 1), k} ≤ (2/3)l + 2/3.

808 P. Zhang

4 Discussion

We obtain an instance, which takes advantage of the penalties, showing that
the integrality gap of (LPp) for pc-GMC(T) is at least 2. Then by the results in
section 2 we know that the integrality gap for pc-GMC(T) is between 2 and 2.55.
Thus getting an instance to show that the integrality gap for (LPp) is strictly
greater than 2 or reducing the performance ratio for pc-GMC(T) is an interesting
problem. Moreover, although the performance ratio min{2(l − k + 1), k} for k-
GMC(T) is non-trivial, it seems that there is still a large space to improve the
ratio.

Acknowledgement. We would like to thank the anonymous referees for their
helpful comments, which help us significantly improve the presentation of the
paper.

References

1. Avidor, A., Langberg, M.: The multi-multiway cut problem. In: Proceedings of the
9th Scandinavian Workshop on Algorithm Theory (SWAT’04), pp. 273–284 (2004)

2. Feige, U.: Relations between average case complexity and approximation complex-
ity. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing
(STOC’02), pp. 534–543 (2002)

3. Garg, N., Vazirani, V., Yannakakis, M.: Approximate max-flow min-(multi)cut
theorems and their applications. SIAM Journal on Computing 25, 235–251 (1996)

4. Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithm for
integral flow and multicut in trees. Algorithmica 18, 3–20 (1997)

5. Golovin, D., Nagarajan, V., Singh, M.: Approximating the k-multicut problem.
In: Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms
(SODA’06), pp. 621–630 (2006)

6. Hajiaghayi, M., Jain, K.: The prize-collecting generalized Steiner tree problem via
a new approach of primal-dual schema. In: Proceedings of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’06), pp. 631–640 (2006)

7. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.: Greedy facility lo-
cation algorithms analyzied using dual fitting with factor-revealing LP. Journal of
the ACM 50(6), 795–824 (2003)

8. Levin, A., Segev, D.: Partial multicuts in trees. In: Erlebach, T., Persinao, G. (eds.)
Approximation and Online Algorithms. LNCS, vol. 3879, pp. 320–333. Springer,
Heidelberg (2006)

9. Khot, S.: Ruling out PTAS for graph min-bisection, densest subgraph and bipartite
clique. In: Proceedings of the 44th Annual IEEE Symposium on the Foundations
of Computer Science (FOCS’04), pp. 136–145 (2004)

10. Könemann, J., Parekh, O., Segev, D.: A unified approach to approximating partial
covering problems. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168,
pp. 468–479. Springer, Heidelberg (2006)

11. Vazirani, V.: Approximation Algorithms, 2nd edn. Springer, Berlin (2003)

(Short) Survey of Real Hypercomputation

Martin Ziegler�

University of Paderborn, Germany
ziegler@upb.de

Abstract. We survey and compare models of computation on real num-
bers exceeding the Church–Turing Hypothesis.

1 Computability

Any theory of computability must rely on some model of computation, that
is a mathematical abstraction and idealization of the kind of actual devices
whose fundamental power the theory is to describe. On the discrete realm several
major such notions of effectivity (Turing machines, WHILE–programs, λ–calculus,
μ–recursivity, . . .) have turned out as equivalent and are now widely agreed upon
as appropriately capturing a, say, PC’s capabilities operating on bits or integers.
This model has been extended in two fundamental directions whose fusion the
present text surveys on: (discrete) hypercomputation and real computability
theory.

1.1 Real Computability

deals with questions of computability for problems involving real numbers. This
departure from the discrete realm has borne three major notions, each one re-
flecting some while (as necessary for any idealization) neglecting other aspects
of actual real computing devices:

Recursive Analysis as initiated by Alan M. Turing himself [Turi36] con-
siders effective approximability of real numbers and function values with
fractions of (discrete) integers by a Turing machine (Section 2.2).

Algebraic/symbolic computation extends Turing machines to store in each
cell and operate in each step arithmetically on a real number (Section 2.1)

Analog computation, including real recursion theory, is however beyond our
scope; instead see e.g. [Moor96, Orpo97, CMC02, GrCo03, Kawa05, BoCa07].

They are largely inequivalent to one another. For example the exponential func-
tion is computable in Recursive Analysis but not in the algebraic model [Brat00],
whereas the situation for sign function is vice versa. On the other hand certain
natural extensions of these models do admit instructive ways of comparing their
power [BoVi99]. Such extensions bring us to the topic of

� Supported by the German Research Foundation (DFG) project Zi 1009/1-1.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 809–824, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

810 M. Ziegler

1.2 Hypercomputation

In classical computability over bits and integers,

a) the aforementioned proven equivalence of several natural notions,
b) the continuous failure to come up with a device capable of solving the Turing–

undecidable Halting problem H ,
c) and the success of having a vast variety of physical systems simulated on a

Turing machine

all support the conclusion that this is not just a rather appropriate but actually
the universal model of practical computation:

“every function which would naturally be regarded as computable can be
computed by a Turing Machine.”

This has become known as “the Church–Turing Thesis” (CTH). However every
single word of this name is misleading:

• More a hypothesis than a ‘thesis’, it has not been and cannot be proven —
simply because it is far too informal with ambiguous notions like ‘naturally’.

• Neither Alonzo Church nor Alan Turing have actually put forth a claim
as bold as the one above,

• and, as opposed to ‘the’, current science more carefully distinguishes various
variants of this hypothesis; see e.g. [Ord02, Section 2.2] or [Cope02].

As a matter of fact the above supports of CTH are nowadays known to fail
at least in principle: c) in Quantum Gravitation [Gero86, p.547]; b) in Relativ-
ity Theory [Hoga92, EtNe02, WiLe02], Quantum Mechanics [ACP04, Kie04b,
Zie05b] or even within Classical Physics [Smit06, BeTu06]; and a) when turning
to real numbers.

This suggests to study models of computation exceeding the Turing machine,
so-called hypercomputers.

1.3 Real Hypercomputation

Real Hypercomputation applies, investigates, and compares models of real num-
ber computability beyond the Church–Turing Hypothesis.

2 Models of Real Computation

The classical Turing machine can store and operate on (e.g. add, subtract, mul-
tiply, divide, and compare) rational numbers within finite time; it is equivalent
to the RAM model [Scho79]. This observation suggests two different directions
of generalization to the real numbers which nicely complement each other.

(Short) Survey of Real Hypercomputation 811

2.1 Algebraic Computation

Considering Q and R as algebraic structures (ordered fields), a machine which
can store reals and perform on them a finite number of arithmetic operations
and comparisons is called an R–machine or BCSS–machine [Tuck80], [BSS89],
[BCSS98], and [TuZu00]. This is the standard model in Computational Geome-
try [BKOS00] (there named “real-RAM”) and ubiquitous in Computer Algebra
[BCS97], [GaGe03] as well as Algebraic Geometry [BPR03]. Gaussian Elimina-
tion and Simplex Algorithm typically pertain to this kind of machine. Regarding
(un-)computability, we mention

Example 1.
a) The set N of integers is decidable1

b) Every discrete problem P ⊆ N is decidable to a BCSS–machine by storing
c :=

∑
n∈P 2−n as a real constant [BSS89, Example 6].

c) The sets Q of rational and A of algebraic real numbers are semi-decidable
yet undecidable.

d) Also the Mandelbrot Set has been proven undecidable as well as the set
of starting points for convergence of the Newton iteration [BCSS98, Sec-

tion 2.4].
e) Both exponential R � x �→ exp(x) and square root function [0, ∞) �→

√
x

are uncomputable.
f) Feasibility of a given system of real polynomial in-/equalities

{
�x ∈ R

m : p1(�x) = . . . = pk(�x) = 0 ∧ q1(�x) > 0 ∧ . . . ∧ q�(�x) > 0
}

(1)

is decidable by means of Tarski’s Quantifier Elimination [BPR03, §2.5.1].

Claim f) asserts that NPR ⊆ EXPR ⊆ RECR: real non-determinism can be
simulated deterministically in exponential time. The problem in f) can also
be regarded as a real counterpart to the feasibility of a system of polynomi-
als over integers; the latter is undecidable to a Turing machine by the fa-
mous result [Mati70]. Also, there exists no computable real pairing function
〈 · , · 〉 : R × R → R. On the other hand many properties from discrete com-
putability do carry over to R:

Fact 2
a) A language L ⊆ R

∗ is decidable iff both L and its complement are semi-
decidable.

b) Non-empty L is semi–decidable iff it is enumerable in the sense of coin-
ciding with the range of a computable total function f : R

∗ → R
∗.

c) One can naturally encode a BCSS–machine M as 〈M〉 ∈ R
∗ and thus obtain a

real Gödelization together with a universal BCSS–machine, and obtain SMN
and UTM properties.

1 However the number of steps performed will depend on the value of the input. Such
behavior disappears in computations over C where, similar to Turing machines over
bit strings {0, 1}n, any algorithm terminating for all inputs from C

n does so in time
bounded by some function of the size n of the input only [Ross93]. In particular, N

is undecidable over (C, +, −, ×,÷, =).

812 M. Ziegler

d) The real Halting problem H is undecidable, where

H =
{
〈M〉 : M terminates on empty input

}
⊆ R

∗ .

A source of criticism against this model arises from its ability to compare arbi-
trary reals exactly [BoVi99] which leads to strange functions being computable
[Weih00, Example 9.7.2]. As a remedy, [BrHe98] proposes a modified seman-
tics for comparisons. Example 1b) can be avoided by restricting the use of real
machine constants, cf. Section 4.3.

2.2 Recursive Analysis

Every real is the limit of a rational Cauchy sequence; so consider real computa-
tion in terms of classical Turing computations on Cauchy sequences of rationals.

Definition 3
a) Call a number x ∈ R naively computable if there exists a Turing–computable

sequence (qn) ⊆ Q with x = limn qn.
b) The number x is computable if there exists a Turing–computable sequence

(qn) ⊆ Q with |x − qn| ≤ 2−n.
c) Lower computability of x means existence of a Turing–computable sequence

(qn) ⊆ Q such that x = supn qn.
d) Function f : R → R is computable if, upon input of (qn) ⊆ Q with |x−qn| ≤

2−n, a Turing machine can output (pm) ⊆ Q such that |f(x) − pm| ≤ 2−m.
e) A set U ⊆ R

k is semi-decidable if there exists a Turing machine which, on
input of (qn) ⊆ Q

k with |x − qn| ≤ 2−n, terminates in case x ∈ U and
diverges in case x ∈ U .

Notion b) is equivalent to the one considered already by Turing [Turi36, Turi37].
Notice that, although an admissible computation takes infinitely long, one may
abort the execution after attaining the desired absolute precision. In a) however,
rational approximations need not satisfy computable error bounds; hence a finite
part of the output does not permit any conclusion about the final result. For the
Halting Problem H ⊆ N, the real number

∑
n∈H 2−n is naively computable and

lower computable yet uncomputable [Spec49]; see also Section 3.2.
Notion d) dates back to [Grze57] and is equivalent to many other reasonable

notions [Laco57, PERi89, Ko91, Brat96], cf. [Weih95, Section 10] or [Weih00,
Section 9]. For instance we mention [PERi89, Section 0.7]

Proposition 4 (Effective Weierstraß Theorem). A function f : [0, 1] →
R is computable iff there exists a Turing–computable sequence of (degrees
and coefficients of) rational polynomials (Pm) ⊆ Q[X] such that ‖f − Pm‖ :=
sup0≤x≤1 |f(x) − Pm(x)| ≤ 2−m.

Most analytic functions from practice are computable: addition, multiplication,
division, exponentiation, logarithms [Weih00, Section 4.3]. Uncomputable is
the constant function f(x) ≡

∑
n∈H 2−n; also notice [Weih00, Theorem 4.3.1]:

Fact 5 (‘Main Theorem’). Every discontinuous function is uncomputable.

(Short) Survey of Real Hypercomputation 813

Decidability thus fails for equality “=” and every non-empty strict subset of R:

Lemma 6. Any semi-decidable set U ⊆ R
k is necessarily open: U is semi-

decidable iff recursively enumerable (r.e. open) in the following sense: a Turing
machine can output rational centers (qn) and radii (rn) of open rational ‘balls’
B(q, r) = {x ∈ R

k : |x − q| < r} whose union
⋃

n B(qn, rn) coincides with U .

Fact 5 raises criticism from supporters of the algebraic model [Koep01] as it
prevents functions as simple as the sign from being computable. Regarding the
topic of this survey, an interesting question asks whether hypercomputation may
lift the continuity requirement (Section 3.3). Another characterization of com-
putable (and thus continuous) functions proceeds in terms of effective continuity:

Proposition 7 ([Laco57]). A function f : R → R is computable iff there
exists a Turing machine which, upon input of (centers and radii of) open ra-
tional balls B(qn, rn) exhausting U ⊆ R, outputs corresponding balls B(pm, sm)
exhausting f−1[U] ⊆ R.

The present text focuses on computability on real numbers, (continuous) real
functions, and (open) subsets of reals. However the concept underlying Defini-
tion 3 extends to arbitrary spaces X of continuum cardinality: Fix an encoding
of each element x ∈ X as an infinite string of bits or integers (Cantor or Baire
space) and define computability on X in terms of these ‘names’. The study and
comparison of these encodings, so-called representations, leads to Weihrauch’s
(meta-) theory of computability called TTE [Weih00].

2.3 Further Models: Domain Theory and Analytic Machines

In view of Definition 3 and Proposition 4, Recursive Analysis can be considered as
a foundation for interval computation; conversely it has indeed been implemented
in practice [Muel01, Lamb05]. Another formalization, Domain Theory [Scot70]
is often equivalent but in detail subtly different by requiring (in contrast to
Definition 3d) each single input interval to yield a corresponding output interval;
cf. [Weih00, Section 9.5] for a comparison.

A proof establishing computability of some problem strictly speaking only
asserts the existence of an algorithm. Practical implementations like the above
raise the issue of actually devising one: and of doing so in an elegant and intuitive
language [BrHe98]. In discrete computability theory, λ–calculus had led to the
concept of functional programming (LISP, Haskell etc); [Esca96] has devised a
similar language including data types over reals.

Analytic Machines form an entire family of models combining various aspects
of BCSS–machines with Recursive Analysis [HVS95, ChHo99]. Classical Turing–
computability amounts to Q–machines, R–machines are BCSS–machines, and
Definition 3d) is realized by so-called robust strongly δ–Q–analytic machines. The
powerful (strongly) R–analytic machine finally may use exact real arithmetic on
x ∈ R in order to approximate the result f(x) in the limit (with error bounds
2−n). They however lack closure under composition.

814 M. Ziegler

An interesting in-between constitutes the class of robust quasi-strongly δ–Q–
analytic machines. Their output approximations qn ∈ Q may violate error bound
2−n for an arbitrary but finite number of times. This notion does ensure closure
under composition while adding to all functions satisfying Definition 3d) the ca-
pability to compute also discontinuous ones. More precisely using so-called con-
servative branching, any function realized by a BCSS–machine (using only com-
putable constants) can be shown robust quasi-strongly δ–Q–analytic [ChHo99,
Theorem 3].

3 Arithmetical Hierarchies of Hypercomputers

Even the study of (discrete) hypercomputers dates back to Turing with his dis-
sertation [Turi39] about oracle machines. For example, the power of oracle access
to the Halting problem is characterized in

Fact 8 (Shoenfield’s Limit Lemma). For an arbitrary oracle O, a (discrete)
function f : N → N is computable relative to O′ iff f(n) = limm g(n, m) is the
pointwise limit of a function g : N × N → N computable relative to O.

O′, called the jump of O, denotes the Halting problem for machines equipped
with oracle O. By iteration one obtains the Arithmetical Hierarchy [Soar87]

∅ ∅′ ≡ H ∅′′ =: ∅(2) . . . ∅(d) . . . (2)

“X Y ” here means many-one reducibility from X to Y but lack of Turing-
reducibility from Y to X . A syntactical formulation proceeds in terms of iterated
alternating quantifiers: (light-face) Σd is the class of languages of the form

L =
{
x ∈ N

∣
∣ ∃y1 ∈ N ∀y2 ∈ N ∃y3 ∈ N . . . θdyd ∈ N : 〈x; y1, . . . , yd〉 ∈ R

}
(3)

for a decidable problem R ⊆ N. Σ1 thus coincides with the class of semi-decidable
languages, that is, (the empty set and) images of computable total functions.
By Post’s Theorem, a problem belongs to Σd+1 iff it is semi-decidable relative
to ∅(d). The following question FIN is Σ2–complete under many-one reduction
[Soar87, Theorem §IV3.2]:

“Given an (encoding of a) Turing machine, is the set it accepts finite?”

A set is defined to belongs to Δd if it, as well as its complement, lie in Σd. The
Arithmetical Hierarchy

Δ1 � Σ1 � Δ2 � Σ2 � . . . � Δd � Σd � . . . (4)

has been carried from the discrete setting over to both the BCSS model of real
number computation (Section 3.5) and to Recursive Analysis (Sections 3.1–3.4):

(Short) Survey of Real Hypercomputation 815

3.1 Effective Borel Hierarchy

The Borel Hierarchy of a topological space X starts with the (bold-face) class
Σ1(X) of open subsets; next comes the class Σ2(X) of Fσ–subsets, that is, of
countable unions over closed sets; and, inductively, Σd+1(X) consists of all sets⋃

n∈N
(X \ Sn) where Sn ∈ Σd(X); cf. e.g. [Kech95]. Finally Δd(X) := {S ∈

Σd(X) : X \ S ∈ Σd(X)} constitute the ambiguous classes. Then it holds for
X = N, X = R, X = {0, 1}N, and X = N

N:

Δ1(X) � Σ1(X) � Δ2(X) � Σ2(X) � . . .Δd(X) � Σd(X) � . . .

Many similarities between the Borel and the Arithmetical hierarchy have been
observed long ago [Hinm78] and led to study of effective descriptive set theory
[Mosc80]. For instance, Lemma 6 and Definition 3e) can be regarded as equip-
ping Σ1(Rk) with a notion of effectivity. This has been generalized [Weih00,
Exercises 4.3.17+18] to (complements of) Σ2(Rk) and [Brat05] to arbitrary
(finite) levels Σd(Rk), see also [Mosc80, Chapter 3]:

Definition 9. A set S ⊆ R
k is Σd–computable if it coincides with

⋃

m1

⋂

m2

⋃

m3

· · ·
⊙

md

B(p(m1,...,md), s(m1,...,md)) (5)

for Turing–computable rational (multi-)sequences p = (pm1,...,md
) and

s = (sm1,...,md
). “

⊙

m
Sm” means “

⋃

m
Sm” for odd d and “

⋂

m
(Rk \Sm)” for d even.

The class of Σd–computable sets is a (countable hence strict) subclass of Σd. On
the other hand, Σd–computable sets exceed Δd [Hinm78, Exercise III.1.28].
In fact a set belongs to Σd iff it is Σd–computable relative to some oracle O.
Replacing in Definition 9 the space R

k by the natural numbers N, one recovers
the discrete Hierarchy (3). This has led to the application of the light-face notion
“Σd” to refer more generally to perfect Polish spaces including N and R

k but
also Cantor {0, 1}N and Baire space N

N [Mosc80].

3.2 Hypercomputable Real Numbers

Recall that, as opposed to the BCSS model, computability of single real numbers
is a non-trivial topic and in fact origin of Recursive Analysis [Turi36]. We have
mentioned for instance (§2.2) that

∑
n∈H 2−n lacks computability but is naively

computable and does become computable by means of oracle-access to H .

Proposition 10 ([Ho99, Theorem 9]). For an arbitrary oracle O, a real
number x is naively computable relative to O iff it x computable relative to O′.

That is, a jump makes the difference between approximations with or without
effective error bounds: fast 2−n convergence versus ultimate convergence of a
Turing-computable function f : N → Q. This can also be regarded as a continu-
ous variant of Shoenfield’s Limit Lemma (Fact 8)! [ZhWe01] has extended Ho’s
above result from a single jump to arbitrary levels of the Arithmetical Hierarchy:

816 M. Ziegler

Theorem 11. For x ∈ R, oracle O, and d ∈ N, the following are equivalent:

• x is computable relative to O(d)

• x = lim
n

qn for a rational sequence qn computable relative to O(d−1)

• x = lim
n

lim
m

q〈n,m〉 for a sequence q〈n,m〉 ⊆ Q computable relative to O(d−2)

• . . .
• x = lim

n1
. . . lim

nd

q〈n1,...,nd〉 for a rational sequence computable relative to O.

Let the class Δd(R) consist of all x ∈ R satisfying one (and thus all) conditions
from Theorem 11 for O = ∅. Similar characterizations hold for lower semi-
computable real numbers, that is, suprema (rather than arbitrary limits) of
rational sequences. These lead to a hierarchy of real numbers similar to (4):

Δ1(R) � Σ1(R) � Δ2(R) � Σ2(R) � . . . Δd(R) � Σd(R) � . . .

Its relation to the discrete counterpart is even closer for Δ–classes: For S ⊆
N,

∑
n∈S 2−n belongs to Δd(R) iff S ∈ Δd [ZhWe01, Theorem 7.8]. The

corresponding claim for the Σ–classes however fails already for d = 1: Σd(R)
satisfies closure under e.g. addition whereas the sum of two reals with semi-
decidable binary expansion in general does not have a semi-decidable expansion.

3.3 Hypercomputable Real Functions

[Ho99] has studied in addition to real numbers also real function computability
(Definition 3d) relative to ∅′ and obtained for instance the following analogue of
Proposition 4 with non-effective uniform convergence:

Proposition 12 ([Ho99, Corollary 17]). A function f : [0, 1] → R is com-
putable relative to ∅′ iff there exists a Turing–computable sequence of (degrees
and coefficients of) rational polynomials (Pm) ⊆ Q[X] such that ‖f − Pm‖ → 0.

In particular the Halting oracle, employed in this way, does not lift the conti-
nuity condition Fact 5. More generally it immediately follows from the Kreitz-
Weihrauch Representation Theorem [KrWe85]

Corollary 13. A function f : R → R is continuous iff there exists an oracle
O such that f is computable relative to O.

A different approach to real function computability on the Arithmetical Hierar-
chy however does include discontinuous examples: Based on Theorem 11, relax
Definition 3d) as follows:

Definition 14. Function f : R → R is (k, �)–hypercomputable if, upon input of
(qn) ⊆ Q with x = limn1 . . . limnk

q〈n1,...,nk〉 (|x−qn| ≤ 2−n in case k = 0) a Tur-
ing machine can output (pm) ⊆ Q such that f(x) = limm1 . . . limm�

p〈m1,...,m�〉
(|f(x) − pm| ≤ 2−m in case � = 0).

(Short) Survey of Real Hypercomputation 817

The example of the identity function reveals that only the case � ≥ k makes
sense. By [Zie05a, Section 3.2], the discontinuous Heaviside Function is (k, �)–
hypercomputable whenever � > k. On the other hand in case � = k = 0, Fact 5
requires continuity. This has been extended to � = k = 1 in [BrHe02, Section 6],
then to � = k = 2 in [Zie05a, Theorem 10], and finally to arbitrary � = k
[Zieg06, Corollary 2.11].

3.4 Effective Borel Measurability

A function f : X → Y is continuous iff f−1[V] ∈ Σ1(X) for every open V ⊆ Y ;
it is called Σd–measurable iff f−1[V] ∈ Σd(X) for every open V ⊆ Y . This has
led [Brat05] to the following

Definition 15. A function f : R
k → R

� is effectively Σd–measurable if there
exists a Turing machine which, upon input of (centers and radii of) open rational
balls B(qn, rn) exhausting U ⊆ R

�, output centers p and radii s such that f−1[U]
coincides with (5); compare [Mosc80, Chapter 3D].

Effective continuity (Proposition 7) thus amounts to effective Σ1–measurability.
Its generalization to d ≥ 2 constitutes a notion of real hypercomputation which
does include discontinuous functions. In fact we could establish [Zieg06] the
following characterization relating Definitions 14 and 15:

Theorem 16. A function f : R → R is (0, d)–hypercomputable iff it is effec-
tively Σd+1–measurable.

3.5 Arithmetical Hierarchy of BCSS Machines

The diagonalization argument underlying the undecidability of the real Halting
Problem H (Fact 2d) relativizes and yields by iteration a strict hierarchy of
problems BCSS–∅(d) similar to Equation (2).

However regarding a syntactical definition, any problem L of the form (3) is
BCSS–decidable by Example 1b). And replacing N with R does not help either
because d–fold application of Example 1f) eliminates all quantifiers. Instead,
[Cuck92] considers some arbitrary finite field extension F = Q(c1, . . . , ck) and
a double sequence An,m ⊆ R

m of real subsets algebraic over F , i.e., each An,m

is the set of solutions �x ∈ R
m of some system ϕn,m(�x) of in-/equalities (1) of

polynomials in m variables with coefficients in F . Now define the class BCSS–Σk

to consist of all sets of the form
{
�x ∈ R

m
∣∣ m ∈ N, ∃n1 ∈ N∀n2 ∈ N ∃n3 ∈ N . . . θdnd ∈ N : R � ϕ〈n1,...,nd〉,m(�x)

}

where (ϕn,m) ranges over all double sequences of systems of in-/equalities of
polynomials over (the same but also arbitrarily varying) finite real number field
extension.

Proposition 17 ([Cuck92, Theorem 2.11]). A set L ⊆ R
∗ belongs to BCSS-

Σd+1 iff it is BCSS–semidecidable relative to BCSS–∅(d).

818 M. Ziegler

Interestingly this result, although a counterpart to Post’s Theorem, is proven
very differently from the latter. [Cuck92, Theorem 2.15] also establishes a real
analogue of FIN to be Σ2–complete in the BCSS setting.

Every open subset of R
m is BCSS semi-decidable. Conversely every semi-

decidable subset of R
m is a countable union of closed sets and hence in Σ2(Rk),

from which [Cuck92, Theorem 4.3] concludes that the BCSS Arithmetical Hi-
erarchy coincides with the Borel Hierarchy

⋃
d∈N

Σd.

3.6 Transfinite Levels

The finite Borel classes Σd, d ∈ N, can and must be extended to transfinite
countable ordinals d in order to obtain closure under (both complement and)
countable unions and to yield the σ–algebra of Borel sets [Kech95, Section 22].
Strictly exceeding it, the class Σ1

1 of so-called analytic2 sets consists of all pro-
jections of closed subsets of R

k × (NN) [Kech95, Section 14.A]. However by
Souslin’s Theorem, a set is Borel iff it as well as its complement is analytic
[Kech95, Section 14.C]. This is the starting point of the Projective Hierarchy
Δ1

1 � Σ1
1 � Δ1

2 � Σ1
2 � . . . It is complemented on the effective (i.e.

light-face) side by the Analytical Hierarchy Δ1
1 � Σ1

1 � Δ1
2 � Σ1

2 � . . . As
with the bold-face variant, the class Δ1

1 of so-called hyperarithmetical sets strictly
contains the finite arithmetical hierarchy

⋃
d∈N

Σd and coincides with the case
of d running through all recursive ordinals [Roge67, §16.4].

[Barm03] has extended Zheng and Weihrauch’s arithmetical hierarchy of
real numbers (recall Section 3.2) to transfinite levels. Non-deterministic real
computation in the sense of Immerman–Szelepscényi [Zie05a, Section 5]
has been revealed to have power coinciding with Δ1

1 [Zieg06].
Nondeterministic BCSS computation can, by means of real quantifier elimi-

nation, be simulated deterministically. Tarski however does not apply to oracle
computation. As a matter of fact, nondeterministic BCSS computation relative
to H already has the capability to decide every Borel set, i.e. whole Δ1

1 [Cuck92,
Corollary 4.5].

4 Real Hypercomputation Below the Halting Problem

Section 3 has focused on hypercomputers at least as powerful the Halting prob-
lem. An opposite direction of research investigates the recursive fine structure
below H , initiated by

4.1 Post’s Problem

Undecidability proofs usually proceed by reduction from the Halting problem;
compare e.g. the famous results regarding Hilbert’s Tenth [Mati70] or the Word
Problem for Groups [Novi59, Boon58]. Already in 1944, Emil L. Post asked
whether a set L ⊆ N can be undecidable (and semi-decidable) yet lack reducibility

2 Not to be confused with sets in the analytical hierarchy.

(Short) Survey of Real Hypercomputation 819

from H . It was answered to the positive in 1956/57 independently by Muchnik

and Friedberg [Frie57]. Their proofs are based on a new method of diagonaliza-
tion, cf. e.g. [Soar87, Chapters V to VII] or [ScPr98, Theorem 1.1].

A far more explicit solution is feasible for BCSS machines: one can show that
the subset Q of rational reals is undecidable and semi-decidable but not reducible
from the BCSS Halting problem H [MeZi05]. Similar results have been obtained
in [MeZi06, Section 2] and [Gass06] for a linear variant of BCSS machines
lacking multiplication and division. This brings us to the topic of

4.2 BCSS Machines with Alternative Sets of Operations

A ‘classical’ BCSS machine can perform addition, subtraction, multiplication,
division, and (exact) comparisons on real numbers. Other sets of operations and
their computational power have been studied as well. We have already mentioned
linear BCSS Machines which, by omitting the capability of obtaining exponen-
tially large numbers via repeated multiplication, are more closely related to the
bit-oriented Turing machines [Koir94]. Also in order to make the model more
realistic, [BrHe98] has restricted the semantics of real comparisons.

A simple but very interesting result with respect to real hypercomputation, the
sine-function as a primitive enables a BCSS machine to decide the (otherwise un-
decidable, recall Section 4.1) set Q of rational numbers [Meer93, Theorem 1.1].
Closely related, one may include the exponential function as an operation (e.g. in
order to obviate criticism of the model like [Brat00]). Then, however, quantifier
elimination provably fails [Drie84]. The question “NPexp

R
⊆ RECexp

R
?” whether

non-deterministic BCSS computation with exponentiation can still be simulated
deterministically—e.g. by means of Schanuel’s conjectured generalization of the
Lindemann–Weierstraß Theorem [Maci91]—remains open [MaWi96].

4.3 BCSS Machines with Restricted Constants

Because of Example 1b), the BCSS machine is sometimes already counted as
a hypercomputer. On the other hand, this example does not apply to the real
Halting problem. So, even equipped with arbitrary non-recursive constants, the
computational power remains below H. On the other hand each additional per-
mitted such constant provably does increase the capabilities of a BCSS machine
[MeZi06, Theorems 5 and 11]. Recall from Section 2.1 that the lack of a real
pairing function prevents us ‘combining’ several reals into a single one.

4.4 Below Naively Recursive Reals

Concerning Recursive Analysis, we have seen that oracle access to H corre-
sponds to proceeding from computable to naively computable real numbers;
recall Proposition 10. Hence a class of reals located strictly between Δ1(R) and
Δ2(R) constitutes a notion hypercomputation below the Halting problem. The
vast variety of results in that respect, mostly obtained by X. Zheng et al., is
the topic of an entire survey of its own [Zhen07].

820 M. Ziegler

5 Conclusion

Real Hypercomputation is a very interesting area of research combining real
computability theory with hypercomputation. Different from the discrete realm,
there are (at least) two major models of real computation to start with. A stan-
dard way of enhancing such a machine beyond the Church-Turing Hypothesis
proceeds by equipping it with access to some undecidable oracle, leading to
the notion of degrees. However, due to the nature of real number computation,
other natural extensions make sense as well: recall Sections 3.4, 4.2, and 4.3. A
systematic investigation of their relation to degrees has only started [Meer93,
Section 2], [Mark96], [BoVi99], [MeZi06, Section 3].

Reflecting the real number background, proofs are generally based on logical
as well as on topological and algebraic arguments.

5.1 Omissions

For reasons of conciseness the present survey has, deliberately as well as inad-
vertendly, neglected many contributions related to real hypercomputation; e.g.
infinite time machines [HaLe00] or higher recursion theory [Sack90].

References

[ACP04] Adamyan, V.A., Calude, C.S., Pavlov, B.S.: Transcending the limits of
Turing computability. In: Hida, T., Saito, K., Si, S. (eds.) Proc. Meijo
Winter School, pp. 119–137. World Scientific, Singapore (2003)

[Barm03] Barmpalias, G.: A Transfinite Hierarchy of Reals. Mathematical Logic
Quarterly 49(2), 163–172 (2003)

[BCS97] Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity The-
ory. Springer, Heidelberg (1997)

[BCSS98] Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Compu-
tation. Springer, Heidelberg (1998)

[BeTu06] Beggs, E.J., Tucker, J.V.: Can Newtonian systems, bounded in space,
time, mass and energy compute all functions? Theoretical Computer Sci-
ence (to appear 2007)

[BKOS00] de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Compu-
tational Geometry: Algorithms and Applications. Springer, Heidelberg
(2000)

[BoCa07] Bournez, O., Campagnolo, M.: A Survey On Continuous Time Com-
putations. In: submitted as a chapter of the book New Computational
Paradigms, Springer, Heidelberg (2007)

[Boon58] Boone, W.W.: The word problem. Proc. Nat. Acad. Sci. U.S.A 44, 265–
269 (1958)

[BoVi99] Boldi, P., Vigna, S.: Equality is a Jump. in Theoretical Computer Sci-
ence 219, 49–64 (1999)

[BPR03] Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry.
Springer, Heidelberg (2003)

(Short) Survey of Real Hypercomputation 821

[Brat96] Brattka, V.: Recursive Characterization of Computable Real-Valued
Functions and Relations. in Theoretical Computer Science 162, 45–77
(1996)

[Brat00] Brattka, V.: The Emperor’s New Recursiveness: the Epigraph of the Ex-
ponential Function in Two Models of Computability. In: Ito, M., Imaoka,
T. (eds.) Words, Languages & Combinatorics, vol, vol. III, pp. 63–72.
World Scientific Publishing, Singapore (2000)

[Brat05] Brattka, V.: Effective Borel measurability and reducibility of functions.
in Mathematical Logic Quarterly 51, 19–44 (2005)

[BrHe98] Brattka, V., Hertling, P.: Feasible real random access machines. Journal
of Complexity 14(4), 490–526 (1998)

[BrHe02] Brattka, V., Hertling, P.: Topological Properties of Real Number Repre-
sentations. Theoretical Computer Science 284, 241–257 (2002)

[BSS89] Blum, L., Shub, M., Smale, S.: On a Theory of Computation and Com-
plexity over the Real Numbers: NP-Completeness, Recursive Functions,
and Universal Machines. in Bulletin of the American Mathematical Soci-
ety (AMS Bulletin) 21, 1–46 (1989)

[ChHo99] Chadzelek, T., Hotz, G.: Analytic Machines. Theoretical Computer Sci-
ence 219, 151–165 Elsevier, Amsterdam (1999)

[CMC02] Campagnolo, M.L., Moore, C., Costa, J.F.: An analog characterization of
the Grzegorczyk hierarchy. in Journal of Complexity 18, 977–1000 (2002)

[Cope02] Copeland, J.: Hypercomputation. In: Minds and Machines, vol. 12, pp.
461–502. Kluwer, Dordrecht (2002)

[Cuck92] Cucker, F.: The Arithmetical Hierarchy over the Reals. Journal of Logic
and Computation 2(3), 375–395 (1992)

[Drie84] van den Dries, L.: Remarks on Tarski’s problem concerning (R,+, ×, exp).
In: Longi, G., Longo, G., Marcja, A. (eds.) Logic Colloquium ’82, North-
Holland, Amsterdam (1984)

[Esca96] Escardó, M.H.: PCF extended with real numbers. Theoretical Computer
Science 162, 79–115 (1996)

[EtNe02] Etesi, G., Németi, I.: Non-Turing Computations Via Malament-Hogarth
Space-Times. in International Journal of Theoretical Physics 41(2), 341–
370 (2002)

[Frie57] Friedberg, R.M.: Two recursively enumerable sets of incomparable degrees
of unsolvability. Proc. Natl. Acad. Sci. 43 43, 236–238 (1957)

[GaGe03] Gathen, J. v. z., Gerhard, J.: Modern Computer Algebra 2nd Edition,
Cambridge (2003)

[Gass06] Gassner, C.: The Addititve Halting Problem is Not Decidable by means
of the Rationals as an Oracle, pre-print

[Gero86] Geroch, R., Hartle, J.B.: Computability and Physical Theories. Founda-
tions of Physics 16(6), 533–550 (1986)

[GrCo03] Graça, D.S., Costa, J.F.: Analog computers and recursive functions over
the reals. Journal of Complexity 19, 644–664 (2003)

[Grze57] Grzegorczyk, A.: On the Definitions of Computable Real Continuous
Functions. Fundamenta Mathematicae 44, 61–77 (1957)

[HaLe00] Hamkins, J.D., Lewis, A.: Infinite Time Turing machines. Journal of Sym-
bolic Logic 65(2), 567–604 (2000)

[Hinm78] Hinman, P.G.: Recursion-Theoretic Hierarchies. In: Perspectives in Math-
ematical Logic, Springer, Heidelberg (1978)

[Ho99] Ho, C.-K.: Relatively recursive reals and real functions. Theoretical Com-
puter Science 210, 99–120 (1999)

822 M. Ziegler

[Hoga92] Hogarth, M.L.: Does General Relativity Allow an Observer to View an
Eternity in a Finite Time? Foundations of Physics Letters 5(2), 173–181
(1992)

[HVS95] Hotz, G., Vierke, G., Schieffer, B.: Analytic Machines, Electronic Collo-
quium on Computational Complexity vol. 025 (1995)

[Kawa05] Kawamura, A.: Type-2 Computability and Moore’s Recursive Functions.
Electronic Notes in Theoretical Computer Science 120, 83–95 (2005)

[Kech95] Kechris, A.S.: Classical Descriptive Set Theory. In: Graduate Texts in
Mathematics, Springer, Heidelberg (1995)

[Kie04b] Kieu, T.D.: A reformulation of Hilbert’s tenth problem through quantum
mechanics. Proc. Royal Soc. A 460, 1535–1545 (2004)

[Koir94] Koiran, P.: Computing over the Reals with Addition and Order. Theo-
retical Computer Science 133, 35–48 (1994)

[Ko91] Ko, K.: Complexity Theory of Real Functions, Birkhäuser (1991)
[Koep01] Koepf, W.: Besprechungen zu Büchern der Computeralgebra: Klaus

Weihrauch Computable Analysis. Computeralgebra Rundbrief 29, 29
(2001), http://fachgruppe-computeralgebra.de/CAR/CAR29/node19.
html

[KrWe85] Kreitz, C., Weihrauch, K.: Theory of representations. Theoretical Com-
puter Science 38, 35–53 (1985)

[Laco57] Lacombe, D.: Les ensembles récursivement ouverts ou fermés, et leurs
applications à l’analyse récursive, pp. 1040–1043 in Compt. Rend. Acad.
des Sci. Paris vol. 245 (1957); sequel pp. 28–31 in Compt. Rend. Acad.
des Sci. Paris, vol. 246 (1958)

[Lamb05] Lambov, B.: RealLib: an Efficient Implementation of Exact Real Arith-
metic, to appear in Mathematical Structures in Computer Science

[Maci91] Macintyre, A.: Schanuel’s conjecture and free exponential rings. Ann.
Pure Appl. Logic 51, 241–246 (1991)

[Mark96] Marker, D.: Model Theory and Exponentiation, Notices of the AMS, 753–
759 (1996)

[MaWi96] Macintyre, A., Wilkie, A.J.: On the decidability of the real exponential
field, in Kreiseliana. About and Around Georg Kreisel, A.K. Peters pp.
441–467 (1996)

[Mati70] Matiyasevich, Y.V.: Enumerable Sets are Diophantine. Soviet
Math.Dokl 11, 354–357 (1970)

[Meer93] Meer, K.: Real Number Models under Various Sets of Operations. Journal
of Complexity 9, 366–372 (1993)

[MeZi05] Meer, K., Ziegler, M.: An Explicit Solution to Post’s Problem over the
Reals. In: Lískiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623,
pp. 456–467. Springer, Heidelberg (2005)

[MeZi06] Meer, K., Ziegler, M.: Uncomputability below the Real Halting Problem.
In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006.
LNCS, vol. 3988, pp. 368–377. Springer, Heidelberg (2006)

[Moor96] Moore, C.: Recursion theory on the reals and continuous-time computa-
tion. Theoretical Computer Science 162, 23–44 (1996)

[Mosc80] Moschovakis, Y.N.: Descriptive Set Theory. In: Studies in Logic, North-
Holland, Amsterdam (1980)

[Muel01] Müller, N.: The iRRAM: Exact Arithmetic in C++. In: Blank, J., Brattka,
V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer,
Heidelberg (2001)

http://fachgruppe-computeralgebra.de/CAR/CAR29/node19.html
http://fachgruppe-computeralgebra.de/CAR/CAR29/node19.html

(Short) Survey of Real Hypercomputation 823

[Novi59] Novikov, P.S.: On the algorithmic unsolvability of the word problem in
group theory. Trudy Mat. Inst. Steklov 44, 1–143 (1959)

[Ord02] Ord, T.: Hypercomputation: computing more than the Turing machine,
Honour’s Thesis, University of Melbourne (2002)

[Orpo97] Orponen, P.: A survey of continuous-time computation theory. In: Du, D.-
Z., Ko, K.-I. (eds.) Advances in Algorithms, Languages, and Complexity,
pp. 209–224. Kluwer, Dordrecht (1997)

[PERi89] Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics.
Springer, Heidelberg (1989)

[Roge67] Rogers, J.H.: Theory of Recursive Functions and Effective Computability.
Series in Higher Mathematics. McGraw-Hill, New York (1967)

[Ross93] Cucker, F., Rosselló, F.: Recursiveness over the Complex Numbers is
Time-Bounded. In: Shyamasundar, R.K. (ed.) Foundations of Software
Technology and Theoretical Computer Science, vol. 761, pp. 260–267.
Springer, Heidelberg (1993)

[Sack90] Sacks, G.: Higher Recursion Theory. Springer, Heidelberg (1990)
[Scho79] Schönhage, A.: On the Power of Random Access Machines. In: Maurer,

H.A. (ed.) Automata, Languages, and Programming. LNCS, vol. 71, pp.
520–529. Springer, Heidelberg (1979)

[Scot70] Scott, D.S.: Outline of a Mathematical Theory of Computation. In: Tech-
nical Monograph PRG-2, Oxford University, Oxford (1970)

[ScPr98] Schöning, U., Pruim, R.: Gems of Theoretical Computer Science.
Springer, Heidelberg (1998)

[Smit06] Smith, W.D.: Church’s Thesis meets the N-body Problem. J. Applied
Mathematics and Computation 178, 154–183 (2006)

[Soar87] Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Heidel-
berg (1987)

[Spec49] Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. Journal of
Symbolic Logic 14(3), 145–158 (1949)

[Tuck80] Tucker, J.V.: Computability and the algebra of fields. J. Symbolic
Logic 45, 103–120 (1980)

[Turi36] Turing, A.M.: On Computable Numbers, with an Application to the
Entscheidungsproblem. Proc. London Math. Soc 42(2), 230–265 (1936)

[Turi37] Turing, A.M.: On Computable Numbers, with an Application to the
Entscheidungsproblem. A correction. Proc. London Math. Soc 43(2), 544–
546 (1937)

[Turi39] Turing, A.M.: Systems of Logic Based on Ordinals. Proc. London Math.
Soc 45, 161–228 (1939)

[TuZu00] Tucker, J.V., Zucker, J.I.: Computable functions and semicomputable sets
on many-sorted algebras. In: Abramsky, S., Gabbay, D.M., Maybaum,
T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 5, pp. 317–
523. Oxford Science Publications, Oxford (2000)

[Weih95] Weihrauch, K.: A Simple Introduction to Computable Analysis, Mono-
graphs of the Electronic Colloquium on Computational Complexity
(1995)

[Weih00] Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)
[WiLe02] Wiedermann, J., van Leeuwen, J.: Relativistic Computers and Non-

uniform Complexity Theory. In: Calude, C.S., Dinneen, M.J., Peper, F.
(eds.) UMC 2002. LNCS, vol. 2509, pp. 287–299. Springer, Heidelberg
(2002)

824 M. Ziegler

[Zhen07] Zheng, X.: On the hierarchy of Δ2 real numbers. Theoretical Informatics
and Application (to appear)

[ZhWe01] Zheng, X., Weihrauch, K.: The Arithmetical Hierarchy of Real Numbers.
Mathematical Logic Quarterly 47, 51–65 (2001)

[Zie05a] Ziegler, M.: Computability and Continuity on the Real Arithmetic Hier-
archy. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS,
vol. 3526, pp. 562–571. Springer, Heidelberg (2005)

[Zie05b] Ziegler, M.: Computational Power of Infinite Quantum Parallelism. Inter-
national Journal of Theoretical Physics 44, 2059–2071 (2005)

[Zieg06] Ziegler, M.: Revising Type-2 Computation and Degrees of Discontinuity.
In: Proc. 3rd International Conference on Computability and Complexity
in Analysis pp. 347–366

Author Index

Acerbi, Luigi 1
Adriaans, Pieter 11
Allender, Eric 25

Barmpalias, George 135
Bauer, Andrej 28
Bernardini, Francesco 43
Bie, Rongfang 53
Bienvenu, Laurent 63
Bonfante, Guillaume 73
Brattka, Vasco 83
Bridges, Douglas S. 98
Busi, Nadia 105

Case, John 115, 125
Cenzer, Douglas 135, 146
Cervelle, Julien 152
Cheng, Jingde 325
Chong, Chi Tat 162
Collins, Pieter 169
Cordòn-Franco, Andres 179
Costa, José Félix 189
Csima, Barbara F. 196

Danner, Norman 205
de Miguel Casado, Gregorio 218
Dennunzio, Alberto 1
Doty, David 63, 228
Durand-Lose, Jérôme 238

Edalat, Abbas 248
Ehrenfeucht, Andrzej 672
Esṕırito Santo, José 258

Fellows, Michael 268
Fernández-Margarit, Alejandro 179
Flum, Jörg 278
Fokina, Ekaterina B. 290
Formenti, Enrico 1, 152
Freixas, Josep 297
Friedman, Joel 307

Ganchev, Hristo 316
Gao, Ying 325
Garćıa Chamizo, Juan Manuel 218

Gerla, Giangiacomo 336
Gheorghe, Marian 43
Gherardi, Guido 83, 348
Gori, Marco 554
Guillon, Pierre 152

Hamkins, Joel D. 358, 488

Ishihara, Hajime 368

Jain, Sanjay 378

Kaczmarek, Matthieu 73
Kalimullin, Iskander 389
Kikuchi, Kentaro 398
Ko�lodziejczyk, Leszek Aleksander 408
Korovina, Margarita 416
Koucký, Michal 426
Krishna, Shankara Narayanan 695
Kudinov, Oleg V. 416, 436

Ladyman, James 446
LaForte, Geoffrey 146
Lara-Mart́ın, Francisco Felix 179
Lathrop, James I. 455
Lee, Gyesik 465
Lewis, Andrew 474
Li, Chung-Chih 478
Linetsky, David 488
Loff, Bruno 189
Loos, Remco 497
Lutz, Jack H. 455

Maass, Wolfgang 507
Madelaine, Florent 542
Maietti, Maria Emilia 517
Manea, Florin 532
Margenstern, Maurice 43
Marion, Jean-Yves 73
Martin, Barnaby 542
Martin, Eric 378
Mauri, Giancarlo 551
Meer, Klaus 554
Melnikov, Alexander G. 566
Miller, Russell G. 358, 488, 575

826 Author Index

Mitrana, Victor 532
Moelius III, Samuel E. 125
Molinero, Xavier 297
Montalbán, Antonio 474
Moser, Philippe 228
Mycka, Jerzy 189

Neary, Turlough 791
Nerode, Anil 585
Nies, André 474

Olsen, Martin 598
Onsjö, Mikael 758

Petr̊u, Lukáš 781
Pinto, Alexandre 606
Pitowsky, Itamar 621

Rathjen, Michael 632
Remmel, Jeffrey B. 135
Rettinger, Robert 638
Rhodes, Mark 648
Rosamond, Frances 268
Roura, Salvador 297
Rovan, Branislav 660
Royer, James S. 205
Rozenberg, Grzegorz 670, 672

Sambin, Giovanni 674
Schuster, Peter 676
Selivanov, Victor L. 436, 685

Signes Pont, Maŕıa Teresa 218
Soare, Robert I. 705
Soskova, Alexandra A. 716
Soskova, Mariya Ivanova 727
Stephan, Frank 63, 378
Steskal, L’uboš 660
Stone, Christopher A. 28
Summers, Scott M. 455

Thapen, Neil 408
Timpson, Christopher G. 739
Trautteur, Giuseppe 742

Verlan, Sergey 43
Vollmer, Heribert 748

Watanabe, Osamu 758
Weber, Rebecca 135
Welch, Philip D. 768
Wiedermann, Jǐŕı 781
Woods, Damien 791
Wu, Guohua 53, 146, 727

Yu, Liang 162

Zandron, Claudio 105
Zhang, Peng 799
Ziegler, Martin 809

	Title Page
	Preface
	Table of Contents
	Shifting and Lifting of Cellular Automata
	Introduction and Motivations
	Topology and Dynamical Properties
	Shifting
	Lifting
	Conclusions and Future Works

	Learning as Data Compression
	Learning as Compression
	MDL as Two-Part Code Optimization
	Kolmogorov Complexity
	Randomness Deficiency

	A Case Study: MDL and DFA Induction
	Conclusion

	Reachability Problems: An Update
	RZ: A Tool for Bringing Constructive and Computable Mathematics Closer to Programming Practice
	Introduction
	Typed Realizability
	Modest Sets and Pers
	Interpretation of Logic

	Specifications as Signatures with Assertions
	The Input Language
	Translation
	Translation of Sets and Terms
	Translation of Propositions

	Implementation
	Examples
	Decidable Sets
	Inductive Types
	Axiom of Choice
	Modulus of Continuity

	Related Work
	Coq and Other Tools
	Other Models of Computability

	Producer/Consumer in Membrane Systems and Petri Nets
	Introduction
	Membrane Systems
	Producer/Consumer Systems
	Petri Net Representation
	Discussion

	A Minimal Pair in the Quotient Structure M/NCup
	Introduction
	Proof of Theorem 3
	The G and H-Strategies
	 The P and Q-Strategies
	The R-Strategies
	The S-Strategies

	Proof of Theorem 4
	The Q-Strategies
	The R-Strategies

	Constructive Dimension and Weak Truth-Table Degrees
	Introduction
	Constructive Dimension Extractors
	Nonexistence of Universal Extractors

	A Classification of Viruses Through Recursion Theorems
	Theoretical Computer Virology
	A Virus Definition
	The $WHILE^+$ Language
	A Computer Virus Representation

	Blueprint Duplication
	Blueprint Distribution Engine
	Distributions of Evolving Blueprint Viruses

	Smith Reproduction
	Smith Viruses
	Smith Distributions

	Borel Complexity of Topological Operations on Computable Metric Spaces
	Introduction
	Borel Representation Theorem
	Representations of Closed Subsets
	The Borel Lattice of Representations
	Perfect and Proper Spaces
	Intersection and Union
	Complement, Interior and Closure
	Boundary and Derivative
	Conclusions

	Colocatedness and Lebesgue Integrability
	Computing with Genetic Gates
	Introduction
	Basic Definitions
	Genetic Systems
	Partial Configurations, Reaction Relation and Maximal Parallelism Step

	Expressiveness of Genetic Systems
	Random Access Machines
	Encoding RAMs in Genetic Systems

	Conclusions

	Resource Restricted Computability Theoretic Learning: Illustrative Topics and Problems
	Introduction and Motivation
	Memory-Limited and U-Shaped Language Learning
	Complexity of Learned Programs
	Feasible Iteration of Feasible Learning Functionals

	Characterizing Programming Systems Allowing Program Self-reference
	Introduction
	Kleene's Recursion Theorems
	Control Structures
	Summary of Results

	Notation and Preliminaries
	Results

	K-Trivial Closed Sets and Continuous Functions
	Introduction
	K-Trivial Closed Sets
	K-Trivial Continuous Functions
	Medvedev Degrees of K-Trivial Classes

	Pseudojump Operators and Π01 Classes�
	Sofic Trace Subshift of a Cellular Automaton
	Introduction
	Definitions
	Traces
	k-Traceability
	From k-Trace to Trace
	Borders
	Default Mode

	Examples
	Putting Things Together

	Thin Maximal Antichains in the Turing Degrees
	Introduction
	Thin Maximal Antichains
	Applications to the Measure Theory of Turing Degrees

	Effective Computation for Nonlinear Systems
	Introduction
	Reachability and Safety Computation
	Representations as Interfaces
	The Standard Representation of Points
	Representations of Sets
	Representations of Continuous Functions

	Implementation in Ariadne
	Numerical Types
	Linear Algebra
	Geometric Calculus
	Computing the Image of Sets
	The Verification Algorithm

	Concluding Remarks

	On Rules and Parameter Free Systems in Bounded Arithmetic
	Introduction
	Fragments of Bounded Arithmetic
	On $\exists \hat{\Pi}^b_i$--Maximal Models and Conservation Results}
	On Replacement and Bit--Comprehension Rules

	The New Promise of Analog Computation
	Statement of the Conjecture and Its Solution
	The Model of Recursive Real-Valued Functions
	Proof Methods

	Comparing C.E. Sets Based on Their Settling Times
	Introduction
	Dominant Sets
	Settling Time Reducibility
	Strong Settling Time Reducibility
	Questions

	Time-Complexity Semantics for Feasible Affine Recursions
	Two Algorithms in Search of a Type-System
	Programming in ATR
	Soundness Theorems
	Concluding Remarks

	Algebraic Model of an Arithmetic Unit for TTE-Computable Normalized Rational Numbers
	Introduction
	Computable Normalized Rational Number Signed Digit Notation
	TTE and Online Arithmetic
	The Method for Online Algorithm Design
	Computable Algorithms for Addition, Subtraction, Multiplication and Division

	Specification of the Arithmetic Unit
	Functional Specification
	Algebraic Specification: Programmer's Level
	Data Memory Organization

	Conclusions

	Feasible Depth
	Introduction
	Preliminaries
	Finite-State Depth
	Finite-State Compression
	Finite-State Depth

	Polynomial-Time Depth
	Measure in E
	Polynomial-Time Depth
	Slow Growth Law
	Languages That are Useful for E

	Abstract Geometrical Computation and theLinear Blum, Shub and Smale Model
	Introduction
	Definitions
	Abstract Geometrical Computations
	Linear Real Number Unlimited Register Machines

	Linear R-URM Simulation by Signal Machines
	Encoding a Configuration
	Updating the Configuration

	Signal Machines Simulation by Linear R-URM
	Conclusion

	A Continuous Derivative for Real-Valued Functions
	Introduction
	Background Definitions

	Ties of Functions
	The L-Derivative
	Domain for Lipschitz Functions
	Computability

	Further Work and Open Problems

	Refocusing Generalised Normalisation
	Introduction
	Isomorphism
	Unification
	Conclusion

	The Complexity Ecology of Parameters: An Illustration Using Bounded Max Leaf Number
	Introduction
	Background on Parameterized Complexity and the Complexity Ecology of Parameters
	A Complexity Ecology of Parameters

	Systematically Attacking a Row
	Summary

	Parameterized Complexity and Logic
	Introduction
	Preliminaries
	Model-Checking and Fixed-Parameter Tractability
	Model-Checking and Fixed-Parameter Intractability
	Bounded Fixed-Parameter Tractability

	Index Sets of Computable Structures with Decidable Theories
	Introduction
	Marker's Construction
	On One-to-One Representation of Σ_2^0-Sets
	Complexity of Index Set

	Minimal Representations for Majority Games
	Introduction
	Weighted Games and Majority Games
	Algorithm to Classify Majority Games
	Realizations of Majority Games
	Conclusion

	Linear Transformations in Boolean Complexity Theory
	Introduction
	Cohomology in Lower Bounds
	Formal Complexity Measures
	The Linear Programming Bound

	Linear Transformations
	Vector Spaces on Graphs
	AND Measures Via Linear Transformations
	LP Bound Via Cohomological AND Measures

	Exact Pair Theorem for the ω-Enumeration Degrees�
	Introduction
	Preliminaries
	Proof of Theorem 1

	Operational Semantics for Positive Relevant Logics Without Distribution
	Introduction
	Positive Relevant Logics Without Distribution
	Basic Frame and Model
	Frame and Model for LB^+
	Canonical Models and Completeness
	Definitions of a Theory and an Anti-Counter-Theory
	Canonical Definitions of Operations \oplus,\otimes,\ominus
	Properties of Operations \oplus,\otimes,\ominus
	Canonical Hereditary Condition and Evaluation Rules
	Canonical Models and Completeness

	Extensions of LB^+
	Concluding Remarks

	Multi-valued Logics, Effectiveness and Domains
	Introduction
	Preliminaries: Effective Lattices and Semi-decidable Elements
	Decidable Elements
	The Effective Lattice of the L-Subsets of a Given Set
	The Main Cases
	Fuzzy Machines and Fuzzy Grammars

	Internal Computability
	Basic Tools from Computable Analysis
	Nonstandard Analysis
	The Language of a Universe
	Universe Embeddings

	Internally Computable Functions
	Computability Properties of Spillover
	Ross's Generalization of Bishop-Cheng Theorem

	Post’s Problem for Ordinal Register Machines
	Definitions
	Post's Problem
	Softer Proofs of the Result

	Unique Existence and Computability in Constructive Reverse Mathematics
	Introduction
	Relativized Versions of FAN, WKL! and LPL!
	A Computable Version of MIN!
	A Concluding Remark

	Input-Dependence in Function-Learning
	Introduction
	Inclusions
	Oracles
	Degrees of Inference
	Additional Information and Teams

	Some Notes on Degree Spectra of the Structures
	Restrictions on the Degree Spectra
	The Structures with the Degree Spectra $\{\dg x:\dg x\not\le \dg b\}$
	Some Other Degree Spectra Derived from the Families
	Further Questions

	Confluence of Cut-Elimination Procedures for the Intuitionistic Sequent Calculus
	Introduction
	Sequent Calculus and Cut-Elimination Procedures
	The Subcalculus x and Meta-operations
	Confluence of $\bm{\beta}$-Reduction
	Confluence of Cut-Elimination Procedures
	Conclusion
	References

	The Polynomial and Linear Hierarchies in V^0
	Introduction
	Definitions
	Main Theorem
	The Circuit Lower Bound

	The Uniformity Principle for Σ-Definabilitywith Applications to Computable Analysis�
	Introduction
	Basic Definitions and Notions
	Uniformity Principle for Σ-Definability
	 The Uniformity Principle and Computable Analysis

	Circuit Complexity of Regular Languages
	Introduction
	Preliminaries on Monoids
	Boolean Circuits

	Mapping the Landscape
	Circuit Size of Regular Languages
	Wires vs. Gates
	Conclusions

	Definability in the Homomorphic Quasiorder of Finite Labeled Forests
	Introduction
	Auxiliary Facts
	Definability
	Atomicity and Automorphisms
	Conclusion

	Physics and Computation: The Status of Landauer’s Principle (Extended Abstract)
	Introduction
	Logical Irreversibility
	Thermodynamic Irreversibility
	Implementing a Logical Transformation with a Physical Device

	Strict Self-assembly of Discrete Sierpinski Triangles
	Introduction
	Preliminaries
	Impossibility of Strict Self-assembly of S
	The Fibered Sierpinski Triangle T
	Strict Self-assembly of T

	Binary Trees and (Maximal) Order Types
	Introduction
	Cumulative Hierarchies $(\calb^d)_d$ and $(\calb^{d,k})_k$
	Maximal Order Types
	Order Types

	A Weakly 2-Random Set That Is Not Generalized Low
	Introduction
	The Main Result
	Stage $2n$
	Stage $2n+1$

	Speed-Up Theorems in Type-2 Computation
	Introduction
	Conventions and Type-2 Complexity Theory
	Lifting Speed-Up Theorems to Type-2
	Type-2 Speed-Up Theorems
	Type-2 Operator Anti-Speed-Up Theorem
	Conclusion

	The Complexity of Quickly ORM-Decidable Sets
	Introduction
	Arithmetical Sets
	Characterizing the Quickly Decidable Sets
	Deciding Hyperarithmetical Sets

	On Accepting Networks of Splicing Processors of Size 3
	Introduction
	Basic Definitions and Notation
	ANSPs of Three Nodes are Computationally Complete
	Complexity Results
	Final Remarks

	Liquid Computing
	Introduction
	Liquid State Machines
	Applications
	Discussion

	Quotients over Minimal Type Theory
	Introduction
	The Extensional System
	The Setoid Model

	Hairpin Completion Versus Hairpin Reduction
	Introduction
	Basic Definitions
	The Non-iterated Case
	The Iterated Case

	Hierarchies in Fragments of Monadic Strict NP
	Introduction
	Preliminaries
	A Strict Hierarchy in FPP
	A Strict Hierarchy in MMSNP
	A Strict Hierarchy in MSNP
	Further Work

	Membrane Systems and Their Application to Systems Biology
	Introduction
	Stochastic Modelling
	Simulation Results

	Some Aspects of a Complexity Theory for Continuous Time Systems
	Introduction
	The General Framework
	Complexity Classes
	Completeness Results

	A Discretization for Trajectory Following: Guiding Examples
	Example: Linear Systems
	Example: Separating Hyperplane

	Conclusion and Acknowledgement

	Enumerations and Torsion Free Abelian Groups
	Introduction
	Basic Notions
	Constructing The Group
	Questions

	Locally Computable Structures
	Introduction
	Local Computability

	Logic and Control
	Nash Stability in Additively Separable Hedonic Games Is NP-Hard
	Introduction
	Additively Separable Hedonic Games
	An Example
	Stability
	Related Work
	Our Results

	Restricting to Additively Separable Games
	Non-negative and Symmetric Preferences
	Conclusion

	Comparing Notions of Computational Entropy
	Introduction
	Preliminaries
	Yao's Effective Entropy
	BSW's Yao-Type Entropy

	Relations Between H_c and H_ϵ^Yao
	Relations Between H_c and K^t
	Relations Between $H_epsilon^Yao$ and K^t
	Relations for Specific Distributions
	Uniform Distribution
	Universal Distribution m^t

	Conclusion
	Appendix: Omitted Proofs

	From Logic to Physics: How the Meaning of Computation Changed over Time
	The Church-Turing Thesis and the Meaning of `Computable Function'
	Challenges to the Thesis
	Kieu's Quantum Computer
	Supertasks

	Exponential vs. Polynomial
	Quantum Computation
	Quantum Communication

	Theories and Ordinals: Ordinal Analysis
	Introduction
	Natural Wellorderings
	Plan of the Talk

	Computable Riemann Surfaces (Extended Abstract)
	Introduction
	Computable Riemann Surfaces
	Continuation
	The Universal Covering Map and Uniformization

	Rank Lower Bounds for the Sherali-Adams Operator
	Introduction
	Preliminaries
	Rank Lower Bounds
	SA Proof Size
	Further Work

	Infinite Computations and a Hierarchy in Δ_3�
	Introduction
	Notation and Preliminaries
	Restricted Display Turing Machines with Control
	$TMDC$ with Single Square Display
	The Tape--Size Hierarchy
	The Extended Chomsky Hierarchy

	Conclusion

	Natural Computing: A Natural and Timely Trend for Natural Sciences and Science of Computation
	Biochemical Reactions as Computations
	Doing Without Turing Machines: Constructivism and Formal Topology
	Problems as Solutions
	Introduction
	With Countable Choice
	Without Countable Choice
	Discussion

	A Useful Undecidable Theory
	Introduction
	The Theory
	The Undecidability
	The Usefulness
	The Homomorphic Preorder
	Complete Numberings
	Index Sets and Partitions
	Wadge Reducibility in the Baire Space
	Wadge Reducibility in ω-Algebraic Domains

	Conclusion

	On the Computational Power of Flip-Flop Proteins on Membranes
	Introduction
	Some Pre-requisites
	P Systems with Proteins on Membranes
	Conclusion

	Computability and Incomputability
	The Modern Era of Computability Theory
	Transition from λ-Definable to Recursive in 1935
	Transition from Recursive to Computable in 1996
	 Three Main Points in [1996]

	Defining Computability in the 1930's
	Several Formalisms Emerge
	Towards a Computability Thesis
	Church and Kleene Collect Evidence
	Stalemate at Princeton in Early 1936

	Turing Breaks the Stalemate
	Gödel's Opinion of Turing's Work
	Gödel on Church's Thesis
	Kleene Said About Turing
	Church Said About Turing

	Turing Defines Oracle Machines

	A Jump Inversion Theorem for the Degree Spectra
	 Introduction
	Preliminaries
	Enumeration Degrees
	Degree Spectra

	Marker's Extensions
	Join of Two Structures
	Representation of $\Sigma_2^0(D)$ Sets
	Jump Inversion Theorem for the Degree Spectra
	Some Applications

	Cupping Δ_2^0 Enumeration Degrees to ${\bf 0}_e'$
	Introduction
	Basic Ideas of Cooper-Sorbi-Yi's Cupping
	Cupping by 1-Generic Degrees
	Cupping the ω-c.e. Degrees

	What Is the Lesson of Quantum Computing? (Extended Abstract)
	Does the Cell Compute?
	Introduction
	Virtuality in Computational Systems
	Metabolic Pathways and the Coding of Programs
	The Search for Full-Fledged Virtuality in the Genic-Metabolic Complex

	Computational Complexity of Constraint Satisfaction
	Satisfiability Problems
	Universal Algebra
	Complexity Results
	Non-boolean Domains

	Finding Most Likely Solutions
	Introduction
	Example 1: Linear Code Decoding Problem
	Example 2: MAX-2SAT Problem
	Example 3: Graph Bisection Problem

	Turing Unbound: Transfinite Computation
	Introduction
	To the ω'th Station!
	General Relativistic Models
	Beyond ω: Infinite Time Turing Machines (ITTM's)
	Punch Tape Machines

	Larger Machines
	Ordinal Register Machines (ORM)
	Higher Type- and α-Recursion

	Computability in Amorphous Structures
	Introduction
	Model
	Asynchronous Communication Protocol
	The Universal Computing Power of an AC
	Conclusion

	The Complexity of Small Universal Turing Machines
	Introduction
	Time Efficiency of Small Machines
	Weak Universality and Rule 110
	Further Work
	References

	Approximating Generalized Multicut on Trees
	Introduction
	Related Work
	Our Results

	Prize-Collecting Generalized Multicut on Trees
	The Linear Program Formulations
	The Primal-Dual Approximation Algorithm
	The Randomized Rounding Approximation Algorithm

	k-Generalized Multicut on Trees
	Hardness of k-GMC(T)
	Approximating k-GMC(T)

	Discussion

	(Short) Survey of Real Hypercomputation
	Computability
	Real Computability
	Hypercomputation
	Real Hypercomputation

	Models of Real Computation
	Algebraic Computation
	Recursive Analysis
	Further Models: Domain Theory and Analytic Machines

	Arithmetical Hierarchies of Hypercomputers
	Effective Borel Hierarchy
	Hypercomputable Real Numbers
	Hypercomputable Real Functions
	Effective Borel Measurability
	Arithmetical Hierarchy of BCSS Machines
	Transfinite Levels

	Real Hypercomputation Below the Halting Problem
	Post's Problem
	BCSS Machines with Alternative Sets of Operations
	BCSS Machines with Restricted Constants
	Below Naively Recursive Reals

	Conclusion
	Omissions

	Author Index

