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Abstract. Service-centric systems pose new challenges and opportunities for 
requirements processes and techniques. This paper reports new techniques  
developed by the EU-funded SeCSE Integrated Project that enable service dis-
covery during early requirements processes and exploit discovered services to 
enhance requirements specifications. The paper describes the algorithm for dis-
covering services from requirements expressed using structured natural lan-
guage, and demonstrates it using an automotive example. The paper also reports 
a first evaluation of the utility of the environment that implements this algo-
rithm when improving the specification of requirements with retrieved services. 

1   Developing with Web Services 

Web and software services are operations that users access via the internet through a 
well-defined interface independent of where the service is executed [15]. Service-
centric systems integrate software services from different providers seamlessly into 
applications that discover, compose and monitor these services. Developments in 
service-centric computing have been rapid. Leavitt [3] reports that worldwide spend-
ing on web services-based software projects will reach $11 billion by 2008. However, 
there has been little reported software engineering research to address how to engi-
neer service-centric systems. 

One consequence of service-centric systems is that requirements processes might 
change due to the availability of services. Discovering candidate services can enable 
analysts to increase the completeness of system requirements based on available ser-
vice features. However, for this to happen, new tools and techniques are needed to 
form service queries from incomplete requirements specifications – tools and tech-
niques developed in the EU-funded SeCSE Integrated Project. 

SeCSE’s mission statement is to create new methods, tools and techniques for re-
quirements analysts, system integrators and service providers that support the cost-
effective development and use of dependable services and service-centric applications 
in the European automotive and telecommunication sectors [12]. The four-year  
research project covers four main activity areas – service engineering, service discov-
ery, service-centric systems engineering, and service delivery. In this technical re-
search paper we describe new tools and algorithms for discovering services to use to 
make requirements specifications more complete. 
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Sections 2 and 3 describe SeCSE’s service-centric requirements process and two 
research challenges that it generates. Sections 4 and 5 describe our response to these 
challenges – SeCSE’s environment and service discovery algorithm. The algorithm 
extends information retrieval techniques to overcome these two challenges. Section 6 
reports a first evaluation of the usefulness of the environment and algorithm when 
specifying requirements for service-centric systems. The paper ends with a discussion 
of future work to extend the environment and its algorithms. 

2   Discovering Services in SeCSE 

In previous SeCSE work we report an iterative and incremental requirements process 
for service-centric systems [2]. Requirements analysts form queries from a require-
ments specification to discover services that are related to the requirements in some 
form. Descriptions of these discovered services are retrieved and explained to stake-
holders, then used to refine and complete the requirements specification to enable 
more accurate service discovery, and so on. 
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Fig. 1. SeCSE’s Requirements Process 

Relevance feedback, as it is known, has important advantages for the requirements 
process. Stakeholders such as service consumers will rarely express complete re-
quirements at the correct levels of abstraction and granularity to match to the descrip-
tions of available services. Relevance feedback enables service consumers and ana-
lysts to specify new requirements and re-express current ones to increase the likeli-
hood of discovering compliant services. Furthermore, accurate relevance feedback 
provides information about whether requirements can be satisfied by available ser-
vices, to guide the analysts to consider alternative build, buy or lease alternatives or 
trade-off whether requirements can be met by the available services. 

The process has 2 important features. Firstly, to ensure its widespread industrial 
uptake, the process uses established specification techniques based on structured natu-
ral language. For example, to specify system behaviour the process uses UML use 
case specifications. To specify the required properties in a testable form for generat-
ing service monitoring policies it uses the VOLERE requirements shell [6]. As such 
the process extends the Rational Unified Process (RUP) without enforcing its use or 
mandating unnecessary specification or service querying activities. 
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Secondly, the process uses services that are discovered from service registries to 
support requirements processes in different ways [2]. During early requirements proc-
esses it uses services to challenge system boundaries and discover new requirements. 
For example, if no services are found with an initial query, SeCSE provides advice on 
how to broaden the query to find services that, though not exactly matching the needs 
of the future system, might provide a useful basis for further specification. During late 
requirements processes it uses services to decompose and refine requirements and 
restructure them to enable more effective service monitoring. Service descriptions 
provide the requirements team with important quality-of-service information, for 
example about likely system performance and reliability, used to specify measurable 
fit criteria for requirements [6]. 

3   Two Research Challenges for SeCSE 

To deliver the SeCSE requirements process we need two new capabilities that over-
come common characteristics of natural language requirement specifications – ambi-
guity and incompleteness. These capabilities are designed to generate queries that will 
discover services using requirements that are ambiguous and incomplete. Consider the 
requirement for a car’s route planning system: the system shall provide the driver with 
directions to a chosen destination by the most direct route. It is incomplete because it 
does not state what the directions are and what direction information is needed. It is 
also ambiguous because it does not define what is the sense of the “most direct” route. 
There are several possible meanings of direct. Does the analyst mean direct in spatial 
dimensions; proceeding without deviation or interruption; straight and short, or does 
s/he mean having no intervening persons or agents? 

To handle incompleteness and ambiguity when discovering services we have de-
signed and implemented the two capabilities listed in Table 1. We extend query ex-
pansion techniques previously only applied to WSDL service specifications [16] to 
incomplete statements of requirement to generate more complete service queries. And 
we apply term disambiguation techniques from information retrieval [9] to ambiguous 
statements of requirement to generate unambiguous service queries. The claimed 
innovation is to import research from related disciplines and extend it to handle prob-
lems specific to requirements engineering and service discovery. 

Table 1. SeCSE’s two new querying capabilities 

Requirements SeCSE querying capabilities 
Incompleteness Expansion of service query with terms that have similar meanings 
Ambiguity Disambiguation of query terms using pre-defined term senses 

In SeCSE we adopted an engineering paradigm and prototyped a requirements-
based service discovery environment, reported in the next section, that implemented 
these new capabilities as proof of concept and to enable evaluation of their usefulness 
with our industrial partners. 
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4   SeCSE’s Service Discovery Environment 

The environment has three main components: (i) UCaRE, a module to document 
requirements and generate service queries; (ii) EDDiE, the service discovery engine; 
(iii) the service registries. We describe these 3 components in turn. 

4.1   SeCSE’s Service Registries 

The environment discovers services from federated SeCSE service registries that store 
both the service implementation that applications invoke and one or more facets that 
specify different aspects of each service. Current service registries such as UDDI are 
inadequate for discovering services using criteria such as cost, quality of service and 
exception handling. Therefore SeCSE has defined 6 facets of a service – signature, 
description, operational semantics, exception, quality-of-service, cost/commerce, and 
testing [8] – that specify features that are important when discovering services. Each 
facet is described using an XML data structure. The requirements-based service dis-
covery reported in this paper uses the description and quality-of-service facets. The 
quality-of-service facet is used to refine selection once services are discovered. 

Figure 2 presents an example of part of the description facet for a service called 
YNavigation, which finds the location of a reseller of some commodity. Again, to 
facilitate industrial take-up, SeCSE assumes that service providers describe each facet 
of a service using structured natural language, due to the excessive effort needed to 
document services more formally. For example the ServiceGoal attribute describes 
the purpose of the service as an end-state expressed in structured natural language. 
The ShortServiceDescription atribute describes the service’s behaviour using a short 
paragraph similar to a use case précis, whilst the LongServiceDescription attribute 
describes this behaviour in more detail using structured English similar to a use case 
normal course. Service providers specify and publish services in SeCSE registries 
using SeCSE’s service specification tool reported at length in [8]. 

Owner: FIAT 
Service goal: A reseller for a commodity to purchase is found 
Short service description: This service helps you to find the nearest location where you could 
talk with our reseller. Calculates the arrival time on the basis of the current car position, road 
preferences and car features. 
Service rationale: Car drivers this service to find the commodity. 

Fig. 2. Example of part of one service with SeCSE’s description facet 

SeCSE’s service registries are implemented using eXist, an Open Source native 
XML database featuring index-based XQuery processing, automatic indexing. The 
EDDiE service discovery engine queries these registries using XQuery, a query lan-
guage designed for processing XML data and data whose structure is similar to XML. 
Generated queries are transformed into XQueries that are fired at the service descrip-
tion facets of services in the SeCSE service registries. 

4.2   The UCaRE Requirements Module 

Analysts express requirements for new applications using UCaRE, a web-based  
.NET application. UCaRE supports tight integration of use case and requirements 
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specifications – a requirement expressed using VOLERE can describe a system-wide 
requirement, a requirement on the behavior specified in one use case, or a requirement 
on the behavior expressed in one use case action. UCaRE allows analysts to create 
service queries from use case and requirements specifications. 

At the start of the requirements process, analysts work with future service consum-
ers to develop simple use case précis that describe the required behaviour of a new 
system. Figure 3(a) shows a use case précis expressed in UCaRE, taken from our 
industrial automotive partners, to specify what a driver might want from an in-car 
route planner. The précis is repeated in a readable form in Figure 4. Figure 3(b) shows 
a simple requirement, also from these partners, associated with the précis expressed 
using the UCaRE VOLERE shell. An analyst can specify functional and qualities 
requirements such as the two also shown in Figure 4. 

(a)

(b)
(c)

 

Fig. 3. Specification of a use case (a) and requirement (b) in UCaRE, and selection of use case 
and requirements attributes to generate service queries (c) 

Precis:    A driver is driving his car. The driver wants to find out how long it will take him to get 
from his current location to a specified destination. The driver activates the onboard 
trip management service. He selects a destination and requests an estimate of the 
time it will take him to arrive at that location from the current location. 

FR1:       The trip management service will provide the driver with route information at different 
levels of detail. 

PR1:     The trip management service will provide the driver with route information within 10 
seconds. 

Fig. 4. A simple use case précis and requirements for an in-car route planner application, which 
are used to formulate queries with which to discover services 

The analyst then uses the simple tick-box feature shown in Figure 3(c) to select at-
tributes of use cases and requirements to include in a service query. Each service 
query is formed of one or more elements of a pre-defined type such as a requirement 
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description or rationale, or a use case précis, pre-condition or action. UCaRE maps 
these element types to service query elements to deliver the seamless integration of 
service querying with requirements specification that we believe is important for 
industrial uptake of UCaRE. These integration features are described at length in [18]. 
The analyst then uses additional UCaRE features described in the next section to 
refine each generated service query. 

An analyst using UCaRE can generate one or more service queries from the speci-
fication of a system. Each query is a structured XML file containing structured natural 
language statements. Because these statements are derived from requirements and use 
cases, each is potentially ambiguous and incomplete. Each query is then passed to 
EDDiE, the service discovery engine. 

5   SeCSE’s Service Discovery Algorithm 

The main function of the service discovery algorithm is to discover descriptions of 
candidate services expressed using the service description facet shown in Figure 1 
with service queries composed on the structured natural language statements. Non-
functional requirement types fulfil important roles during service selection once dis-
covered, but their use is not described further in this paper. 

The algorithm implements SeCSE’s two new capabilities: 

1. Query expansion – the addition of terms in the service query that have the 
same or similar meaning to existing query terms, to make the query more 
complete; 

2. Term disambiguation – selecting the meaning, or sense of each term in the 
query to enable query expansion, thus making the query unambiguous. 

The algorithm has the 4 key components shown in Figure 5. In the first the service 
query is divided into sentences, then tokenized and part-of-speech tagged and modi-
fied to include each term’s morphological root (e.g. driving to drive, and drivers to 
driver). Secondly, the algorithm applies procedures to disambiguate each term by 
defining its correct sense and tagging it with that sense (e.g. defining a driver to be a 
vehicle rather than a type of golf club). Thirdly, the algorithm expands each term with 
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Fig. 5. SeCSE service discovery algorithm 
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other terms that have similar meaning according to the tagged sense, to make it more 
complete and increase the likelihood of a match with a service description (e.g. the 
term driver is synonymous with the term motorist which is also included in the 
query). In the fourth component the algorithm matches all expanded and sense-tagged 
query terms to a similar set of terms that describe each candidate service, expressed 
using the service description facet, in the SeCSE service registry. Query matching is 
in 2 steps: (i) XQuery text-searching functions to discover an initial set of services 
descriptions that satisfy global search constraints; (ii) traditional vector-space model 
information retrieval, enhanced with WordNet, to further refine and assess the quality 
of the candidate service set. This two-step approach overcomes XQuery’s limited 
text-based search capabilities. 

The WordNet on-line lexicon fulfils an important role for three of the algorithm’s 
components. WordNet is a lexical database inspired by current psycholinguistic theo-
ries of human lexical memory [5]. It has two important features. Firstly it divides the 
lexicon into four categories: nouns, verbs, adjectives and adverbs. Word meanings,  
called senses, for each category are organized into synonym sets (synsets) that repre-
sent concepts, and each synset is followed by its definition or gloss that contains a 
defining phrase, an optional comment and one or more examples. Secondly WordNet 
is structured using semantic relations between word meanings that link concepts. 
Relationships between concepts such as hypernym and hyponym relations are repre-
sented as semantic pointers between related concepts [5]. A hypernym is a generic 
term used to designate a whole class of specific instances. For example, vehicle de-
notes all the things that are separately denoted by the words train, chariot, dogsled, 
airplane, and automobile, and is therefore a hypernym of each of those words. On the 
other hand, a hyponym is a specific term used to designate a member of a class, e.g. 
chauffeur, taxidriver and motorist are all hyponyms of driver. A semantic relation 
between word meanings, such as a hypernymy, links concepts. 

WordNet is an essential component of SeCSE’s two new capabilities. WordNet’s 
word senses and definitions provide the data with which to disambiguate terms in 
service queries. WordNet’s semantic relations link terms to other terms with similar 
meanings with which to make service queries more complete. 

EDDiE implements the WordNet.Net library, the .Net Framework library for 
WordNet [10]. The library provides public classes that can be accessed through public 
interfaces. For example, to look up a word to see if it is in the dictionary, the follow-
ing code sample achieves this using one of the public classes:  

if(WNDB.is_defined(word,pos).NonEmpty) where word is a string, pos is a 
part-of-speech. The next sections describe in more detail how the algorithm exploits 
WordNet to discover service descriptions from service queries. 

5.1   Natural Language Pre-processing 

This component prepares the structured natural language service query for sense dis-
ambiguation and term expansion. In the first step the text is split into sentences and 
word tokens. For example, when using white space as the delimiter for splitting the 
sentence the engine is misfiring, we get the following tokens: the, engine, is, misfir-
ing. In the second step the algorithm identifies complex nominals (e.g. the term auto-
motive highway) based on domain-specific terms defined within a glossary (see 5.2.1) 
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and term definitions in WordNet. In the third step the algorithm identifies and re-
moves all terms defined in a list of stop words (e.g. prepositions and pronouns). Next, 
all terms are tagged with their corresponding part-of-speech (e.g. singular common 
noun, comparative adjective, etc.) and classified accordingly using an improved ver-
sion of the Brill Tagger [1]. In the fifth step each term is converted to its morphologi-
cal root (e.g. driving to drive). Finally, all duplicate occurrences of a term are re-
moved so that each term is stored only once with its cardinality, as reported in [16]. 

Returning to our example of the service query generated for requirements shown in 
Figure 3, the algorithm produces the first version of the XML service query, showing 
only the noun terms (e.g. driver, car, location, destination, service, etc) processed 
from the use case précis element in Figure 4. The next section describes how EDDiE 
determines the correct sense of each term. 

5.2   Word Sense Disambiguation 

Assigning the correct sense to a word in context requires syntactic, semantic and 
pragmatic knowledge about the word itself, its part of speech, and its context [13]. 
The pre-processing described in section 5.1 adds syntactic and semantic information 
to query terms through part-of-speech tagging and WordNet. With this component the 
algorithm completes disambiguation by iteratively using context knowledge from the 
project glossary, requirements analyst and other terms in the service query through 7 
procedures. Word sense ambiguity is problematic in information retrieval with small 
queries [14]. However requirements-based service discovery uses larger queries that 
offer more terms with which to disambiguate. Each procedure is increasingly costly to 
apply. The first, the cheapest, exploits prior analysis work that the analyst normally 
undertakes with UCaRE. The next 5 are applied automatically. The seventh, the most 
expensive, demands analyst input. The 7 procedures are: (i) defining the glossary; (ii) 
defining single term senses; (iii) defining synonyms; (iv) defining hypernyms; (v) 
frequency-based senses; (vi) context-based senses, and; (vii) user selection. 

For each term T the algorithm determines its sense S using one of 7 procedures that 
are applied in order. If Procedure i does not provide any positive result, then Proce-
dure i+1 will be applied. In a generic iteration of the algorithm the input is a list of 
pre-processing terms T = [ti,…,tn], and a list of associated senses S = [Sti,…,Stn]. T 
represents all terms to be disambiguated and S represents the semantic meaning of T, 
where Sti is either the chosen sense for ti or the empty set, i.e. the term is not yet dis-
ambiguated. A set of ambiguous terms A = {ti| Sti = ∅} is also maintained. T is initial-
ized with the empty set T = {} and A with the list formed by all terms parsed from the 
Natural Language Processor. The output is the updated list S of senses associated with 
the input terms T. 

The disambiguation procedures are described below. 

Procedure 1: Defining the Glossary. This procedure minimizes ambiguity in the 
original service query. During SeCSE’s requirements process UCaRE maintains a 
project glossary. Terms in the requirement and use case specification are defined in an 
interactive glossary that accesses WordNet directly to offer one or more pre-defined 
senses that the analyst selects and assigns to the term. Figure 6 shows a UCaRE 
screenshot in which the analyst selects the correct sense #1 for driver and tags it in the 
project glossary, i.e. a vehicle carrying many passengers; used for public transport. 
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Hence, the term driver is stored in the glossary with the sense #1. If the term driver 
appears in the list T, this procedure finds the term in the glossary and marks it as hav-
ing sense #1 in S. 

Procedure 2: Defining Single-Sense Terms. This procedure exploits the existence of 
terms with only one sense in WordNet, called monosenous terms, and tags them 
automatically with that sense. For example, the compound noun motor vehicle has 
one sense defined in WordNet and is tagged with that sense #1. 

Procedures 3&4: Defining Synonyms and Hypernyms. Procedure 3 finds query 
terms that are semantically connected to already-disambiguated terms (i.e. terms with 
a tagged sense) and for which the connection distance is 0 as computed using Word-
Net hierarchies. A semantic distance of 0 between two terms defines that both belong 
to the same synset, and therefore the new term is tagged with the same meaning as the 
connected term. For example consider the terms passenger and rider in T. The noun 
passenger is a monosemous word disambiguated with Procedure 2. One of the senses 
of the noun rider, sense #4 (a traveler riding in a vehicle (a boat or bus or car or 
plane or train etc) who is not operating it), appears in the same synset with passenger 
#1, so the procedure tags rider with sense #4. 

 

 

Fig. 6. Sense definition during requirements specification with UCaRE 

Procedure 4, defining hypernyms, works in a similar way. It finds query terms that 
are semantically connected to already disambiguated terms but for which the connec-
tion distance is the maximum 1 as computed using WordNet hierarchies. A semantic 
distance of 1 between two words indicates that both belong to the same hy-
pernymy/hyponymy relation and therefore the new term is tagged with the same 
meaning as the connected term. 

Procedure 5: Frequency-Based Senses. This procedure assigns the most frequent 
sense to a term irrespective of its context [17]. This heuristic has been used to base-
line supervised word sense disambiguation systems [4]. Its high performance is due to 
the skewed frequency distribution of word senses. WordNet has a 200,000-word sam-
ple of hand-tagged senses through the SemCor project [5]. However, infrequent words 
can lead to sense bias. Therefore our solution is to constrain the use of this procedure 
to terms that achieve both a threshold on the frequency of the predominant sense, and 
a threshold on the ratio between the first sense and the next.  

If both are satisfied, the term is tagged with sense #1 from WordNet. Consider the 
noun location appearing in T. The term has 3 senses and all senses have appeared in 



 Discovering Web Services to Specify More Complete System Requirements 151 

the semantically tagged corpora. The first sense has 992 semantic tags, the second and 
third senses have both 2 tags. As this scenario satisfies the condition described earlier, 
sense #1 (a point or extent in space) is selected for location.  

Procedure 6: Context-based Senses. The SemCor bigrams method forms two pairs, 
one with the previous word, the other with the next word, and searches for these pairs 
in SemCor corpus [5]. If in all of the occurrences of these pairs, the given word has 
the same sense, and the number of occurrences is bigger than a preferred threshold, 
then we assign that sense to the word. For example the term approval in T has the 
query context committee approval of. The pairs formed are committee approval and 
approval of. There are no occurrences of the first pair but four occurrences of the 
second, more than the set threshold 3, and in all these occurrences the sense of ap-
proval is sense #1 (the formal act of approving), hence this sense is tagged. 

Procedure 7: User Selection. In this most costly procedure the analyst selects the 
sense for any term that could not be disambiguated using the 6 previous procedures. 
All pre-defined senses (represented through the gloss) for the term are presented to 
the analyst to select and assign. Reliance on the other 6 procedures means that user 
selection should only be needed for a small number of terms. Consider the ambiguous 
noun direction in T. The analyst can select the correct sense #1 for direction and tags 
it in the definition window, i.e. a line leading to a place or point.  

If a term ti could not be disambiguated through any procedure, then Sti becomes 0, 
i.e. the term is still ambiguous. A term tj which is not included in WordNet and de-
fined in the project glossary, Stj becomes -1. 

Now let us return to our automotive service query after all 7 procedures have been 
applied. The partial XML service query in Figure 7 shows the noun terms processed 
from the use case précis. For example, the term car is tagged with sense #1, i.e. 4-
wheeled motor vehicle; usually propelled by an internal combustion engine, whilst 
the term destination is tagged with sense #3 i.e. written directions for finding some 
location; written on letters or packages that are to be delivered to that location. 

<SingleTerm> 
<Term termID="1" occur="1" pos="NN" wnsn=”-1”>onboard trip management </Term> 
<Term termID="2" occur="1" pos="NN" wnsn=”1”>car</Term> 
<Term termID="3" occur="3" pos="NN" wnsn=”1”>driver</Term> 
<Term termID="4" occur="1" pos="NN" wnsn=”1”>estimate</Term> 
<Term termID="5" occur="1" pos="NNS" wnsn=”1”>request</Term> 
<Term termID="6" occur="2" pos="NN" wnsn=”3”>destination </Term> 
<Term termID="8" occur="3" pos="NN" wnsn=”-1”>location</Term>  
<Term termID="11" occur="1" pos="NN" wnsn=”2”>time</Term> 

</SingleTerm> 

Fig. 7. An extract of the XML service query after word sense disambiguation, showing the 
sense number (wnsn) of different nouns in use case précis elements 

5.3   Query Expansion 

Word mismatches are a fundamental problem to overcome in service discovery. Sim-
ply stated, it means that service consumers and providers use different words to ex-
press their requirements and service descriptions [11]. The severity of the problem 
decreases as queries get longer and the likelihood of words co-occurring in the query 
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and service descriptions increases. Through query expansion in EDDiE, the query is 
expanded using words or phrases with similar meaning to those in the query so that 
the chance of matching words in relevant service descriptions is increased. Query 
expansion techniques from information retrieval are essential for effective require-
ments-based service queries. More formal ontologies for most requirements domains 
are not available, so synonym-based query expansion using ontological information in 
WordNet is one of the few viable options. 

Elsewhere Wang & Stroulia [16] report a web service discovery technique that 
combines WordNet with matching on the structure of the WSDL service specification 
to expand queries with semantically similar words. However, it is limited to formal 
representations in WSDL. Our innovation is to expand service queries to handle re-
quirements expressed in natural language and compatible with established processes. 

EDDiE uses ontological information from WordNet to extract semantically related 
terms for query terms. As such prior disambiguation is essential to ensure that term 
expansion uses the correct sense, otherwise queries are expanded incorrectly. Hence 
only disambiguated terms are considered. EDDiE uses 3 expansion methods: 

• Synset expansion: terms are replaced by their synsets, for example the term car is 
replaced with its synset for sense #2 [car, auto, automobile, machine, motorcar]. 

• Hypernym expansion: terms are augmented by their WordNet direct hypernyms, 
for example the hypernym of car is motor vehicle. 

• Gloss words expansion: terms are augmented with the terms in their glosses, for 
example the sense #1 definition of the term garage is a 4-wheeled motor vehicle; 
usually propelled by an internal combustion engine. Hence motor vehicle and en-
gine are extracted. 

Continuing with our example, Figure 8 shows an extract of the XML service query 
after query expansion. Two terms – car and estimate – have been expanded with 
synonyms, hypernyms and gloss terms. For example the query now also contains 
terms that include auto, automobile, motorcar and vehicle as well as car, and ap-
proximation, thus increasing the likelihood of discovering relevant service descrip-
tions. All other terms in Figure 5 are expanded in the same manner, creating a larger 
query composed of more terms with similar meanings. 

<SingleTerm> 
<Term termID="2" occur ="1" pos="NN" car</Term> 
<Term termID="4" occur ="1" pos="NN" wnsn=”1”>estimate</Term> 
… 
<Term termID="13" pos="NN" refTerm="2" expType="synonym">auto</Term> 
<Term termID="14" pos="NN" refTerm="2" expType="synonym">automobile</Term> 
<Term termID="16" pos="NN" refTerm="2" expType="synonym">motorcar</Term> 
<Term termID="15" pos="NN" refTerm="4" expType="synonym">estimation</Term> 
<Term termID="15" pos="NN" refTerm="4" expType="synonym">approximation</Term> 
… 
<Term termID="31" pos="NN" refTerm="2" expType="hypernym"> motor vehicle</Term> 
 <Term termID="32" pos="NNS" refTerm="4" expType="hypernym">calculation</Term> 
 ... 
<Term termID="32" pos="NNS" refTerm="2" expType="gloss">vehicle</Term> 

</SingleTerm>  

Fig. 8. The same extract of XML service query after query expansion, showing synonyms, 
hypernyms and gloss terms for original terms car and estimate 
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5.4   Query Matching 

The expanded query is transformed into one or more XQueries that are fired at the 
service description facets of services in SeCSE service registries. Once an initial set 
of service descriptions has been retrieved using XQueries, a traditional vector-space 
[7] model information-retrieval step, enhanced with WordNet, is applied to refine and 
extract the most similar services from the set. As reported earlier, SeCSE’s service 
description facet in Figure 2 is structured using attributes that facilitate matching with 
the elements of the service query. For example, expanded terms describing use case 
actors in the query are matched to terms that describe service consumers, expanded 
terms from the use case précis are matched to terms in the short service description, 
and expanded terms in normal course actions of the use case specification are 
matched to terms describing atomic service operations.  

In the traditional vector-space model, documents and queries are represented as T-
dimensional vectors, where T is the total number of distinct words in the document 
collection after pre-processing. Each term in the vector is assigned a weight that re-
flects the importance of a word in the document. This value is proportional to the 
frequency a word appears in a document and inversely proportional to number of 
documents in which this word appears [7]. The WordNet vector-space model involves 
the maintenance of vectors for each service description property and corresponding 
expanded query elements, atomic and compound terms, where compound terms con-
sist of multiple atomic terms, for example nearest location. We employ the WordNet 
vector space model to retrieve services that are most similar to the input description 
on the respective vectors. Corresponding vectors from service description properties 
and expanded query elements are matched to provide similarity scores. Matching 
scores of original terms are assigned twice the weight as matching scores of expanded 
terms (synonyms, hypernyms, gloss terms). A higher overall score indicates a closer 
similarity between the source and target specifications. 

Figure 9 describes part of XML service match between part of the example ex-
panded query and an extract of the XML service description facet for a service that 
calculates the arrival time on the basis of the current car position shown in Figure 8. It 
shows that expanded terms – for example calculation (a hypernym of estimate) and 
journey (a gloss term of trip) are needed to match the service because these terms 
were missing from the original query. Without such expansion of disambiguated 
terms, retrieval of this service would not be possible. The match values shown in 
Figure 7 represent the computed semantic distance between the terms calculation and 
journey. These match values are used to compute an overall score for the match be-
tween the service query and description. Use of these overall scores is demonstrated 
in the next section. 

<SingleTerm> 
<QueryTerm QId="11" QueryTerm="trip"> 

<MatchTerm MId="12" MatchValue="0.543" Expansion Type="gloss">journey</MatchTerm>  
</QueryTerm> 
<QueryTerm QId="16" QueryTerm="estimate"> 
<MatchTerm MId="17" MatchValue="0.368" ExpansionType="hypernym">calculation</MatchTerm>  

</QueryTerm> … 
</SingleTerm>… 

Fig. 9. An extract of the XML service match for the service YNavigation with the expanded 
service query 
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6   Evaluating UCaRE and EDDiE 

We evaluated UCaRE and EDDiE with SeCSE’s industrial partners. Rather than in-
vestigate traditional measures of precision and recall properties of the EDDiE algo-
rithm itself we investigated the utility of algorithm in a requirements workshop. More 
specifically we explored whether discovered services were sufficient to trigger speci-
fication of requirements that had not been specified prior to service discovery. Our 
assumption underlying this strategy was that high levels of precision and recall were 
not essential for service discovery – service specifications with lower similarity scores 
might still enable analysts to discover new requirements. 

Four experienced practitioners from SeCSE industrial partners – 2 from Fiat, one 
from DaimlerChrysler and one from CA, discovered and documented requirements 
for the in-car route planner system reported throughout the paper. Three of them had 
extensive experience with such automotive applications. Two of the authors ran the 
workshop – one facilitated requirements discovery whilst the scribe operated UCaRE. 

The workshop was in 2 stages. In the first the facilitator walked the practitioners 
through the use case précis then normal course to discover requirements for the in-car 
route planner application that the scribe documented in UCaRE. This process contin-
ued until the practitioners were unable to discover more requirements. The scribe then 
generated a service query from the use case précis and searched a SeCSE-enabled 
registry containing 112 services for applications that included weather reporting and 
flight booking as well route planning taken from existing public UDDI registries. The 
query expanded all term types with possible synonyms, hypernyms and gloss terms. 

In the second stage UCaRE displayed each discovered service description as 
shown on the left-hand side of Figure 10. The practitioners selected which service 
descriptions to retain as pertinent to the route planner application. The facilitator then 
walked the practitioners through each service to discover additional route planner 
requirements from the retained services that the scribe also documented in UCaRE. 
The facilitator took care to avoid bias and use the same prompts and guidelines before 
and after service discovery. After the workshop each practitioner completed a ques-
tionnaire that ranked each requirement documented during the workshop for its im-
portance and novelty on a simple scale of 1 to 3. 

2.92.32.21.7Stage2

2.41.62.01.3Stage1

2.21.92.12.3Stage2

2.62.02.52.7Stage1

PSMRPracti -
tioner

Novelty
rating

Importance
rating

 

Fig. 10. Discovered service descriptions shown in the SeCSE environment (on left), and aver-
age importance and novelty ratings for requirements discovered before and after service re-
trieval (on right) 



 Discovering Web Services to Specify More Complete System Requirements 155 

The workshop took place as planned. The first stage lasted 60 minutes, during 
which the practitioners discovered 27 requirements that were documented in UCaRE. 
The service query then retrieved 11 services, 8 of which the practitioners retained as 
relevant. The second stage lasted 50 minutes and led to a further 20 requirements 
from services that were ranked with high and low similarity scores. 

At the end of the workshop each practitioner completed the questionnaire (the or-
dering of the requirements was pseudo-randomized), and their average ratings of the 
importance and novelty of the 47 requirements are shown on the right-hand side of 
Figure 8. Results revealed a clear pattern – each practitioner ranked requirements 
specified prior to service discovery as more important than requirements documented 
after service discovery, but requirements specified from discovered services were 
more novel, suggesting that the retrieved services complemented walkthroughs by 
discovering requirements unlikely to be considered during the requirements process. 

To explore how requirements were generated from retrieved services, we under-
took a post-workshop analysis to reveal the generation patterns reported in Table 2. 

Table 2. Identified patterns of requirements discovery from services 

Service-requirement pattern Number occurrences 
Requirements expressed new system features that were a conse-
quence of an application that implemented the retrieved service 

7 

Requirements were expression of a refinement of the features of the 
discovered service applied to the system under analysis 

4 

Requirements expressed required inputs to an application that invoked 
the discovered service 

2 

Requirements expressed a function that has the potential to satisfy 
service qualities described in the service description 

1 

Requirements were associated with the preceding requirement gener-
ated from a service description 

3 

Requirements and services shared concepts that were deeper than the 
above input, output and consequence relations 

2 

Requirements and services had no discernible similarities 1 

Several patterns, such as the first, suggest that the practitioners would implement a 
service-centric application. Other patterns represent good practice that we will vali-
date and reinforce in SeCSE’s requirements process. 

To conclude the workshop, although limited by the coverage of services in the reg-
istry, revealed that EDDiE is capable of discovering services deemed relevant from 
first-cut requirements and a use case specification specified in a one-hour workshop. 
Furthermore 8 of the discovered services with different similarity scores enabled the 
experienced practitioners to specify new requirements that they deemed more novel 
than the earlier requirements, thus providing evidence that EDDiE and UCaRE can 
deliver SeCSE’s iterative and incremental requirements process. 

7   Discussion and Future Work 

This paper reports a research-based software environment for constructing service 
queries from natural language requirements specifications, disambiguating query 
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terms using 7 procedures then expanding them with defined senses, and retrieving 
discovered services from service registries. An evaluation of the environment re-
vealed that experienced practitioners used retrieved services with a range of similarity 
scores to generate new requirements that were later ranked as more novel than re-
quirements discovered using traditional use case walkthrough techniques. This posi-
tive outcome supports our fundamental claim – that candidate services can enable 
analysts to increase the completeness of requirements. It suggests the potential to use 
services that the final application might not invoke to inform later architecture design, 
service composition and implementation tasks. We encourage researchers to think 
more innovatively about how to use web services in information systems engineering. 
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