

Lecture Notes in Computer Science 4495
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

John Krogstie Andreas Opdahl
Guttorm Sindre (Eds.)

Advanced Information
Systems Engineering

19th International Conference, CAiSE 2007
Trondheim, Norway, June 11-15, 2007
Proceedings

13

Volume Editors

John Krogstie
Guttorm Sindre

Norwegian University of Science and Technology
Dept. of Computer and Information Science
Sem Sælands vei 7-9, 7491 Trondheim, Norway
E-mail: {krogstie, guttors}@idi.ntnu.no

Andreas Opdahl
University of Bergen
Department of Information Science and Media Studies
Fosswinckelsgate 6, 5007 Bergen, Norway
E-mail: Andreas.Opdahl@uib.no

Library of Congress Control Number: 2007928349

CR Subject Classification (1998): H.2, H.3-5, J.1, K.4.3-4, K.6, D.2, I.2.11

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-72987-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72987-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12074839 06/3180 5 4 3 2 1 0

Preface

CAiSE 2007 was the 19th in the series of International Conferences on Advanced
Information Systems Engineering. This year’s conference was located in Trond-
heim and hosted by the Norwegian University of Science and Technology, with
the aim of bringing together practitioners and researchers in the field of informa-
tion systems engineering. The CAiSE series thereby returned to the city where
the third CAiSE conference was held in 1991.

Since the first CAiSE was organized in Stockholm in 1989, CAiSE has grown
to become one of the most prestigious international conferences at the inter-
section between information systems, software engineering, database technology
and other related fields. The CAiSE conferences present basic and applied re-
search results from academia alongside keynotes and research presentations from
industry.

The special theme of CAiSE 2007 was “Ubiquitous Information Systems En-
gineering,” reflecting that modern information systems often span activities per-
formed in several organizations and at different geographical locations. They
often support the untethered mobility of their users. Already today, these sys-
tems have a large impact on the everyday life of individuals and organizations.
As we move towards ambient, pervasive and ubiquitous computing, this impact
will increase significantly.

While CAiSE 2007 invited general submissions on the development, mainte-
nance, procurement and use of information systems, submissions dealing with
aspects related to information systems engineering in ubiquitous environments
were especially welcome. The response was overwhelming. In all, 301 papers were
submitted, which is a new record for CAiSE conferences. After all submissions
had been carefully assessed by three independent reviewers, the Program Com-
mittee meeting selected 40 top-quality papers, resulting in an acceptance rate of
around 13%. Several other high-quality papers were selected for the CAiSE Fo-
rum, a tradition initiated at CAiSE 2003 in Velden to stimulate open discussions
of high-quality on-going research.

The success of CAiSE 2007 is also evidenced by the many top-quality work-
shops that were arranged as CAiSE pre-conference events. The longest running,
the REFSQ series on Requirements Engineering: Foundation for Software Qual-
ity, was organized for the 13th time in Trondheim. Over the years it has evolved
into a Working Conference, this year with its own LNCS proceedings published
by Springer. Other workshops associated with CAiSE have almost equally long
histories. The EMMSAD 2007 Workshop on Exploring Modelling Methods for
Information Systems Analysis and Design was organized for the 12th time. The
AOIS 2007 Workshop on Agent-Oriented Information Systems was organized
for the 17th time and was associated with CAiSE for the eighth time. Other
high-quality international workshops this year were BPMDS 2007 on Business

VI Preface

Process Modelling, Development, and Support, BUSITAL 2007 on Business IT
alignment and WISM 2007 on Web Information Systems Modelling.

The special theme of CAiSE 2007 was high-lighted by an additional work-
shop on Ubiquitous Mobile Information and collaboration systems, UMICS 2007,
and by three industrial keynote speeches: Ora Lassila of Nokia Research, UK,
on “Setting Your Data Free: Thoughts on Information Interoperability,” Pekka
Abrahamsson of VTT, Finland, on “Agile Software Development of Mobile In-
formation Systems” and Christen Krogh of Opera Software, Norway, with a talk
titled “40 Million Users, 300 Engineers, 40 Enterprise Customers, 7 Develop-
ment Locations, and 1 CVS - Lessons Learned Through Design, Development
and Deployment of the Opera Browser.”

Contact with industry was emphasized through two one-day industrial sem-
inars on Agile Methods in Practice (organized by Torgeir Dingsøyr) and on In-
teroperability in the Public Sector (organized by Arne-Jørgen Berre). As usual,
a doctoral consortium was also organized in conjunction with CAiSE, giving
research students an opportunity to present and discuss their PhD topics and
plans face to face with internationally leading researchers in their fields.

Last, but not least, CAiSE 2007 was also an occasion to honor one of the
founding fathers of the CAiSE series and Organizing Chair of the 1991 confer-
ence, Professor Arne Sølvberg, who celebrated his 67th birthday in 2007. This
is the usual retirement age in Norway, although Arne has promised to be work-
ing until 70 (at least)! A symposium to honor Professor Sølvberg was arranged
before CAiSE 2007 as an additional pre-conference event.

As the organizers of the CAiSE 2007 main conference, we deeply thank the
many members of the CAiSE 2007 Program Committee and the additional re-
viewers for making the reviewing process so thorough and smooth. We equally
deeply thank the Chairs and other committee members involved in the many
additional events associated with CAiSE 2007. We also want to thank Richard
van de Stadt for his excellent technical support during the various stages of eval-
uating papers and preparing the proceedings. We also wish to thank all the local
organizers at the Norwegian University of Science and Technology (NTNU) for
their hard work and devotion. Finally, we would like to thank the conference
gold sponsors Google, SINTEF and Telenor, institutional sponsor ERCIM, local
sponsors The City of Trondheim and the NTNU, as well as our collaborators,
the University of Bergen and The Norwegian Computer Society.

March 2007 John Krogstie
Andreas L. Opdahl

Guttorm Sindre

Organization

Advisory Committee Janis Bubenko Jr
Royal Institute of Technology, Sweden
Colette Rolland
Université Paris 1 - Sorbonne, France
Arne Sølvberg
Norwegian University of Science and Technology, Norway

General Chair John Krogstie
Norwegian University of Science and Technology, Norway

Program Chairs Andreas Opdahl
University of Bergen, Norway
Guttorm Sindre
Norwegian University of Science and Technology, Norway

Organization Chair Hallvard Trætteberg
Norwegian University of Science and Technology, Norway

Forum Chairs Johann Eder
University of Vienna, Austria
Stein Løkke Tomassen
Norwegian University of Science and Technology, Norway

Workshop Chairs Barbara Pernici
Politecnico di Milano, Italy
Jon Atle Gulla
Norwegian University of Science and Technology, Norway

Tutorial Chair Terje Brasethvik
Norwegian University of Science and Technology, Norway

Doctoral Consortium Moira Norrie
Chairs ETH Zürich, Switzerland

Jon Espen Ingvaldsen
Norwegian University of Science and Technology, Norway
Renate Kristiansen
Norwegian University of Science and Technology, Norway

VIII Organization

Webmasters Rune Molden
Norwegian University of Science and Technology, Norway
Lillian Hella
Norwegian University of Science and Technology, Norway

Industrial Chairs Arne Jørgen Berre
SINTEF
Torgeir Dingsøyr
SINTEF

Sponsor Chair Babak Amin Farschhian
Telenor, Norway

Program Committee

Jan Øyvind Aagedal Norway
Wil van der Aalst The Netherlands
Pär Ågerfalk Ireland
Luciano Baresi Italy
Zohra Bellahsene France
Giuseppe Berio Italy
Claudio Bettini Italy
Nacer Boudjlida France
Mokrane Bouzeghoub France
Svein E. Bratsberg Norway
Sjaak Brinkkemper The Netherlands
Silvana Castano Italy
Jaelson Castro Brazil
João Falcão e Cunha Portugal
Monica Divitini Norway
Dov Dori Israel
Eric Dubois Luxembourg
Johann Eder Austria
David Embley USA
Joerg Evermann New Zealand
Xavier Franch Spain
Paolo Giorgini Italy
Claude Godart France
Jaap Gordijn The Netherlands
Peter Green Australia
Terry Halpin USA
Manfred Hauswirth Ireland
Brian Henderson-Sellers Australia
Patrick Heymans Belgium
Matthias Jarke Germany

Organization IX

Manfred Jeusfeld The Netherlands
Paul Johannesson Sweden
Henk Jonkers The Netherlands
H̊avard Jørgensen Norway
Roland Kaschek New Zealand
Marc Lankhorst The Netherlands
Julio Leite Brazil
Michel Lemoine France
Michel Leonard Switzerland
Pericles Locoupolous UK
Kalle Lyytinen USA
Neil Maiden UK
Michele Missikoff Italy
Haris Mouratidis UK
John Mylopoulos Canada
Moira Norrie Switzerland
Andreas Oberweis Germany
Antoni Olivé Spain
Hervé Panetto France
Jeffrey Parsons Canada
Oscar Pastor Lopez Spain
Barbara Pernici Italy
Anne Persson Sweden
Michaël Petit Belgium
Yves Pigneur Switzerland
Geert Poels Belgium
Klaus Pohl Germany
Erik Proper The Netherlands
Jolita Ralyte Switzerland
Björn Regnell Sweden
Colette Rolland France
Michael Rosemann Australia
Gustavo Rossi Argentina
Matti Rossi Finland
Kevin Ryan Ireland
Motoshi Saeki Japan
Camille Salinesi France
Tony C. Shan USA
Monique Snoeck Belgium
Arnor Solberg Norway
Erlend Stav Norway
Janis Stirna Sweden
Alistair Sutcliffe UK
David Taniar Australia
Bernhard Thalheim Germany

X Organization

Aphrodite Tsalgatidou Greece
Olegas Vasilecas Lithuania
Yair Wand Canada
Roel Wieringa The Netherlands
Petia Wohed Sweden
Carson Woo Canada
Eric Yu Canada
Didar Zowghi Australia

Additional Referees

Franz Acherman
Ole Agesen
Xavier Alvarez
Davide Ancona
Joaquim Apaŕıcio
João Araújo
Ulf Asklund
Dharini Balasubramaniam
Carlos Baquero
Lúıs Barbosa
Lodewijk Bergmans
Joshua Bloch
Noury Bouraqadi
Johan Brichau
Fernando Brito e Abreu
Pim van den Broek
Kim Bruce
Luis Caires
Giuseppe Castagna
Barbara Catania
Walter Cazzola
Shigeru Chiba
Tal Cohen
Aino Cornils
Erik Corry
Juan-Carlos Cruz
Gianpaolo Cugola
Padraig Cunningham
Christian D. Jensen
Silvano Dal-Zilio
Wolfgang De Meuter
Kris De Volder
Giorgio Delzanno
David Detlefs

Anne Doucet
Rémi Douence
Jim Dowling
Karel Driesen
Sophia Drossopoulou
Stéphane Ducasse
Natalie Eckel
Marc Evers
Johan Fabry
Leonidas Fegaras
Luca Ferrarini
Rony Flatscher
Jacques Garrigue
Marie-Pierre Gervais
Miguel Goulão
Thomas Gschwind
Pedro Guerreiro
I. Hakki Toroslu
Görel Hedin
Christian Heide Damm
Roger Henriksson
Martin Hitz
David Holmes
James Hoover
Antony Hosking
Cengiz Icdem
Yuuji Ichisugi
Anders Ive
Hannu-Matti Järvinen
Andrew Kennedy
Graham Kirby
Svetlana Kouznetsova
Kresten Krab Thorup
Reino Kurki-Suonio

Thomas Ledoux
Yuri Leontiev
Cristina Videira Lopes
David Lorenz
Steve MacDonald
Ole Lehrmann Madsen
Eva Magnusson
Margarida Mamede
Klaus Marius Hansen
Kim Mens
Tom Mens
Isabella Merlo
Marco Mesiti
Thomas Meurisse
Mattia Monga
Sandro Morasca
M. Murat Ezbiderli
Oner N. Hamali
Hidemoto Nakada
Jacques Noye
Deniz Oguz
José Orlando Pereira
Alessandro Orso
Johan Ovlinger
Marc Pantel
Jean-François Perrot
Patrik Persson
Frédéric Peschanski
Gian Pietro Picco
Birgit Pröll
Christian Queinnec
Osmar R. Zaiane
Barry Redmond
Sigi Reich

Organization XI

Arend Rensink
Werner Retschitzegger
Nicolas Revault
Matthias Rieger
Mario Südholt
Paulo Sérgio Almeida
Ichiro Satoh
Tilman Schaefer
Jean-Guy Schneider
Pierre Sens
Veikko Seppänen

Magnus Steinby
Don Syme
Tarja Systä
Duane Szafron
Yusuf Tambag
Kenjiro Taura
Michael Thomsen
Sander Tichelaar
Mads Torgersen
Tom Tourwé
Arif Tumer

Ozgur Ulusoy
Werner Van Belle
Vasco Vasconcelos
Karsten Verelst
Juha Vihavainen
John Whaley
Mario Wolzko
Mikal Ziane
Gabi Zodik
Elena Zucca

XII Organization

Gold Sponsors

Institutional Sponsor

Local Sponsors

Additional Collaborators

Table of Contents

Keynote

Agile Software Development of Mobile Information Systems 1
Pekka Abrahamsson

Ontologies

Modal Aspects of Object Types and Part-Whole Relations and the
de re/de dicto Distinction . 5

Giancarlo Guizzardi

Change Detection in Ontologies Using DAG Comparison 21
Johann Eder and Karl Wiggisser

Automatic Generation of Model Translations . 36
Paolo Papotti and Riccardo Torlone

Extended Enterprises

Handling Instance Correspondence in Inter-organisational Workflows . . . 51
Xiaohui Zhao, Chengfei Liu, Yun Yang, and Wasim Sadiq

Assessing Feasibility of IT-Enabled Networked Value Constellations:
A Case Study in the Electricity Sector . 66

Zsófia Derzsi, Jaap Gordijn, Koen Kok, Hans Akkermans, and
Yao-Hua Tan

Behavioral Consistency for B2B Process Integration 81
Gero Decker and Mathias Weske

Information Integration

Declarative XML Data Cleaning with XClean . 96
Melanie Weis and Ioana Manolescu

Personalizing PageRank-Based Ranking over Distributed Collections . . . 111
Stefania Costache, Wolfgang Nejdl, and Raluca Paiu

Generic Schema Merging . 127
Christoph Quix, David Kensche, and Xiang Li

Service-oriented Architecture I

Discovering Web Services to Specify More Complete System
Requirements . 142

Konstantinos Zachos, Neil Maiden, Xiaohong Zhu, and Sara Jones

XIV Table of Contents

On ISOA: Intentional Services Oriented Architecture 158
Colette Rolland, Rim Samia Kaabi, and Naoufel Kraiem

WSXplorer: Searching for Desired Web Services . 173
Yanan Hao, Yanchun Zhang, and Jinli Cao

Strategic Alignment

e3forces : Understanding Strategies of Networked e3value Constellations
by Analyzing Environmental Forces . 188

Vincent Pijpers and Jaap Gordijn

Aligning IS to Organization’s Strategy: The InStAl Method 203
Laure-Hélène Thevenet and Camille Salinesi

Towards a Framework for Tracking Legal Compliance in Healthcare 218
Sepideh Ghanavati, Daniel Amyot, and Liam Peyton

Service-oriented Architecture II

Conceptual Modeling of Privacy-Aware Web Service Protocols 233
Rachid Hamadi, Hye-Young Paik, and Boualem Benatallah

Policies for Context-Driven Transactional Web Services 249
Zakaria Maamar, Nanjangud C. Narendra, Djamal Benslimane, and
Sattanathan Subramanian

On Automated Generation of Web Service Level Agreements 264
Cinzia Cappiello, Marco Comuzzi, and Pierluigi Plebani

Requirements I

RED-PL, a Method for Deriving Product Requirements from a Product
Line Requirements Model . 279

Olfa Djebbi and Camille Salinesi

Deciding to Adopt Requirements Traceability in Practice 294
Floris Blaauboer, Klaas Sikkel, and Mehmet N. Aydin

Designing Social Patterns Using Advanced Separation of Concerns 309
Carla Silva, João Araújo, Ana Moreira, and Jaelson Castro

Process Modelling I

Modeling Business Contexture and Behavior Using Business
Artifacts . 324

Rong Liu, Kamal Bhattacharya, and Frederick Y. Wu

Policies and Aspects for the Supervision of BPEL Processes 340
Luciano Baresi, Sam Guinea, and Pierluigi Plebani

Table of Contents XV

Goal Annotation of Process Models for Semantic Enrichment of Process
Knowledge . 355

Yun Lin and Arne Sølvberg

Requirements II

Stakeholder Identification as an Issue in the Improvement of Software
Requirements Quality . 370

Carla Pacheco and Edmundo Tovar

The Impact of Task Structure and Negotiation Sequence on Distributed
Requirements Negotiation Activity, Conflict, and Satisfaction 381

Bartel Van de Walle, Catherine Campbell, and Fadi P. Deek

Introducing Graphic Designers in a Web Development Process 395
Pedro Valderas, Vicente Pelechano, and Oscar Pastor

Process Modelling II

Communication Abstractions for Distributed Business Processes 409
Lachlan Aldred, Wil M.P. van der Aalst, Marlon Dumas, and
Arthur H.M. ter Hofstede

Questionnaire-driven Configuration of Reference Process Models 424
Marcello La Rosa, Johannes Lux, Stefan Seidel,
Marlon Dumas, and Arthur H.M. ter Hofstede

Formalization and Verification of EPCs with OR-Joins Based on State
and Context . 439

Jan Mendling and Wil van der Aalst

Method Engineering

Towards More Extensible MetaCASE Tools . 454
Vincent Englebert and Patrick Heymans

Concepts for Incremental Method Evolution: Empirical Exploration
and Validation in Requirements Management . 469

Inge van de Weerd, Sjaak Brinkkemper, and Johan Versendaal

ReeF: Defining a Customizable Reengineering Framework 485
Gemma Grau and Xavier Franch

Novel Applications

Publishing and Discovering Information and Services for Tagged
Products . 501

Christof Roduner and Marc Langheinrich

XVI Table of Contents

Automating Standard Operating Procedures in Intensive Care 516
Martin Sedlmayr, Thomas Rose, Torben Greiser, Rainer Röhrig,
Markus Meister, and Achim Michel-Backofen

Composing Data-Providing Web Services in P2P-Based Collaboration
Environments . 531

Mahmoud Barhamgi, Pierre-Antoine Champin,
Djamal Benslimane, and Aris M. Ouksel

Participative Modelling

Participative Enterprise Modeling: Experiences and
Recommendations . 546

Janis Stirna, Anne Persson, and Kurt Sandkuhl

Negotiating Models . 561
Peter Rittgen

Process-Aware Information Systems

Change Patterns and Change Support Features in Process-Aware
Information Systems . 574

Barbara Weber, Stefanie Rinderle, and Manfred Reichert

Analyzing the Dynamic Cost Factors of Process-Aware Information
Systems: A Model-Based Approach . 589

Bela Mutschler, Manfred Reichert, and Stefanie Rinderle

Author Index . 605

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 1–4, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Agile Software Development of
Mobile Information Systems

Pekka Abrahamsson

VTT Technical Research Centre of Finland,
P.O.Box 1100, FIN-90571 Oulu, Finland
pekka.abrahamsson@vtt.fi

Abstract. Agile software development methods are quickly being adopted by
the software industry. Concerns have been raised whether agile methods are
suitable for any given information systems development domain. Indeed, quite
little is known empirically about the validity of agile methods in most of the
industrial domains. Mobile information systems present no exception in this
sense. Yet, they are subject to frequent requirements changes in terms of
changing business needs and technology, and their market is highly
competitive. Moreover, most of these systems are far away from so called agile
home ground. This talk presents the need for agile methods in the focal domain,
identifies their shortcomings on the basis of three large-scale case studies from
industry. All of the cases deal with the development of mobile information
system and come from Nokia, F-Secure and Philips. The talk also discusses the
possible strategies for deploying agile solutions in practice.

Keywords: Agile software development, case study, mobile information
systems.

1 Introduction

Agile software development methods have emerged rapidly since the mid 1990’s. The
roots of agile methods are placed far beyond the last decade, however [1]. Industry
has been keen on adopting agile solutions in recent years. Large software corporations
such as Microsoft and SAP have announced publicly of their plans to adopt agile
methods. Information systems build in embedded devices such as cars, telecom
systems or consumer electronics systems present no exception to this. Large
companies such as Philips, Nokia, British Telecom, to name a few, are either already
adopting or plan to adopt agile software solutions as their means to tackle software
related challenges. A recent Forrester survey1 suggested that one out of seven
software companies already use agile methods.

Agile methods have been criticized for the lack of solid, scientifically valid
empirical data to back up their claims [2, 3]. Yet, the situation is far from unique in

1 Corporate IT Leads The Second Wave Of Agile Adoption, 30 November 2005, Forrester

Research, http://www.forrester.com/Research/Document/Excerpt/0,7211,38334,00.html

2 P. Abrahamsson

the fields of software and information systems development. Fenton [4] argued that
while software professional often seek for rational basis for making a decision about
which development method they should adopt, the basis for such rationalization is
completely missing. Fenton went as far as claiming that the “methods introduced
continue to be based on more on faith than on an empirical data”. Based on recent
industrial attention, we can suggest that the lack of data has not slowed down the
adoption of agile methods.

There is no agreed definition of agile methods in information systems or software
engineering fields. In industrial engineering science the situation is quite different.
They have proposed 17 competing definitions of the concept of agile manufacturing
[5]. In software engineering, the concept of agile software is most often related to the
elements presented in the Agile Manifesto (http://www.agilemanifesto.org). To some
extent, we can assert that it is the most accepted conceptualization of agile software
development as it has received more than 5000 independent signatories over a few
years time. This holds, however, no scientific meaning. Rather, it shows something
about the popularity of these methods. In information systems field, the concept of
agility emerged in the late 1990’s with studies about internet-speed development
[e.g., 6]. Yet, the very concept of agile development still denotes to “more formal than
hacking and less formal than traditional methods” [7, p.29].

Mobile information systems, whether they are operated as a stand alone application
in mobile terminals or as an access provider to a back end system, are restricted by
terminal constraints. Some of these constraints are screen size, keyboard, memory
constraints and the battery power. The devices, however, are developing
technologically very rapidly and most of the modern handheld devices called smart
phones have the processing power of regular computers. Thus, the restrictions that
were in place a few years ago do not hold within the next coming years. Moreover,
the mobile telecommunications industry has shown to be comprised of a highly
competitive, uncertain and dynamic environment [8]. While, so far, mobile commerce
applications have not been very successful, telecommunications companies believe a
change in short term due to the adoption of 3G technologies. This should lead to a
widespread adoption of mobile services in combination with mobile commerce
applications [9]. Rather than technology driven, mobile information systems today are
described as location-aware service providers, which bring connectivity and mobility
to a new level. This is still relatively poorly captured in contemporary mobile service
offering, which to a certain extent explains the slower-than-expected adoption of
mobile services.

Mobile information systems are growing in terms of their size and complexity.
This calls for attention in developing information systems development methods that
meet the needs of volatile business environment. Also, it can be argued, that certain
type agility is required in order to survive in global competitive marketplace. The
characteristic of agility should take place in all operational levels of a corporation or a
network of multiple corporations. This is not easily achieved and calls for broader
approaches than those that are currently available. This is not in accordance with
current development of agile software solutions, however. Agile methods
purposefully strive for a minimalist set of activities and artifacts.

It is proposed that a success factor explaining the acceptance of agile software
development methods by industry is the explicit attention to a set of concrete

 Agile Software Development of Mobile Information Systems 3

practices. At a second layer, the identification of principles, called the agile
principles, place meaningful value for these practices. They thus provide a rationale
for executing a practice rather than just imposing it as such. Also, by placing an
explicit focus on practices, the development teams are faced with an immediate
change of behavior, which is bound to lead to concrete and visible results. As an
example, this has been a key challenge in the software process improvement
literature. Software process changes do not necessarily lead to changes in the behavior
of the people executing the processes since most often the processes are not followed
as suggested [10]. A visible testimonial of this is the lack of studies addressing return-
of-investment (ROI) of software process improvements [11]. Indeed, van Soligen [11]
found only eight studies in the literature with explicit consideration of ROI in the
studied software process improvement initiatives. A literature search of IEEE
database reveals more than 1000 studies in the area. Thus, it can be argued that 0,21%
or less of published software process improvement studies have some ROI values to
present.

A series of case studies of the use of agile software development methods in the
area of mobile information systems development are presented. The case studies
come from Nokia, F-Secure and Philips. These cases provide evidence on the
applicability of agile solutions in a specific type of industrial domain, ROI impact on
the case organizations in terms of developer satisfaction, customer satisfaction,
product quality, time-to-market and development costs. The case studies also improve
our understanding of the use of different strategies that were exploited in the case
organizations to deploy agile solutions in practice.

The cases are part of ITEA-AGILE (http://www.agile-itea.org) research project,
which studied the use of agile methods in the area of embedded systems development.
The case material is presented in the House of Agile (http://www.houseofagile.org),
which is an interactive web portal for embedded agile development.

References

1. Larman, C., Basili, V.R.: Iterative and incremental development: A brief history. IEEE
Software 20, 47–56 (2003)

2. Melnik, G., Williams, L., Geras, A.: Empirical Evaluation of Agile Processes. In: Wells,
D., Williams, L. (eds.) Lecture Notes in Computer Science, vol. 2418, Springer,
Heidelberg (2002)

3. Lindvall, M., Basili, V.R., Boehm, B.W., Costa, P., Dangle, K., Shull, F., Tesoriero, R.,
Williams, L.A., Zelkowitz, M.V.: Empirical findings in agile methods. In: Wells, D.,
Williams, L. (eds.) Lecture Notes in Computer Science, vol. 2418, Springer, Heidelberg
(2002)

4. Fenton, N.: Viewpoint Article: Conducting and presenting empirical software engineering.
Empirical Software Engineering 6, 195–200 (2001)

5. Iskanius, P.: An agile supply chain for a project-oriented steel product network, in
Department of Industrial Engineering, University of Oulu, Oulu (2006)

6. Baskerville, R., Levine, L., Pries-Heje, J., Ramesh, B., Slaughter, S.: How Internet
companies negotiate quality. IEEE Computer 5, 51–57 (2001)

7. Baskerville, R., Balasubramaniam, R., Levine, L., Pries-Heje, J.: High-speed software
development practices: What works, what doesn’t. IT Professional 4, 29–36 (2006)

4 P. Abrahamsson

8. Lal, D., Pitt, D.C., Beloucif, A.: Restructuring in European telecommunications: Modeling
the evolving market. European Business Review 3, 152–156 (2001)

9. Blazevic, V., Lievens, A., Klein, E.: Antecedents of project learning and time-to-market
during new mobile service development. International Journal of Service Industry
Management 1, 120–147 (2003)

10. Truex, D.P., Baskerville, R., Travis, J.: Amethodological systems development: The
deferred meaning of systems development methods. Accounting, Management and
Information Technology 10, 53–79 (2001)

11. van Solingen, R.: Measuring the ROI of Software Process Improvement. IEEE Software 3,
32–38 (2004)

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 5–20, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Modal Aspects of Object Types and Part-Whole
Relations and the de re/de dicto Distinction

Giancarlo Guizzardi

Federal University of Espírito Santo (UFES), Vitória, Brazil
Laboratory for Applied Ontology, ISTC-CNR, Trento, Italy

guizzardi@loa-cnr.it

Abstract. In a series of publications, we have proposed a foundational system
of ontological categories which has been used to evaluate and improve the qual-
ity of conceptual modeling languages and models. In this article, we continue
this work by employing theories from Formal Ontology, Cognitive Psychology
and Philosophical Logic to systematically investigate some important modal as-
pects of the ontological categories represented in structural conceptual models.
In particular, we focus on Object Types and Part-Whole Relations, formally
characterizing some modal properties that motivate the proposal of a number of
distinctions within these categories. In addition, we show how two types of mo-
dality known in philosophical logic (de re/de dicto modality) can be used to ad-
dress some subtle issues that appear in conceptual diagrams when different sorts
of object types and part-whole relations are combined.

1 Introduction

In recent years, there has been a growing interest in the application of Foundational
Ontologies, i.e., formal ontological theories in the philosophical sense, for providing
real-world semantics for conceptual modeling languages, and theoretically sound
foundations and methodological guidelines for evaluating and improving the individ-
ual models produced using these languages. This increasing interest can be noticed by
the growth of the number of publications dedicated to the subject, including books
[13], journal issues [17] and articles published at this forum [1,6]. However, by look-
ing at these publications, one may notice that there is an issue of substantial impor-
tance in Formal Ontology but which has been given relative little attention in that
community, namely, the examination of the modal properties of the ontological cate-
gories represented in the constructs of these languages.

In this article we continue our work on developing ontological foundations for
conceptual modeling [4-6]. The objective here is to employ theories from Formal On-
tology, Cognitive Psychology and Philosophical Logic to systematically investigate
some important modal properties of structural conceptual models. In section 2, we
give a brief presentation of a system of Quantified Modal Logics used in the remain-
ing sections. In section 3, we revisit our theory of Object Types (e.g., Kinds, Roles,
States, Mixins) presented in [6] focusing on some modal aspects of these categories,
and formally characterizing these aspects with the system presented in section 2.

6 G. Guizzardi

In section 4, we revisit a theory presented in [4] elaborating on distinctions between
mereological (parthood) relations motivated by different modal properties governing
the relations between parts and wholes1. In section 5, we present the main contribu-
tion of this paper, namely, to formally elaborate on some subtle issues regarding the
distinction between de re and de dicto modality, which are manifest in conceptual dia-
grams when the categories presented in section 4 and 5 are combined. Section 6
briefly discusses related work. Finally, section 7 presents some final considerations.

2 A Brief Presentation of a System of Quantified Modal Logics

In order to present a formal characterizations of the notions discussed in this article
we make use of a language L of quantified modal logics with identity. The alphabet of
L contains the traditional operators ∧ (conjunction), ∨ (disjunction), ¬ (negation), →
(conditional), ↔ (biconditional), ∀(universal quantification), ∃ (existential quantifica-
tion), with the addition of the equality operator =, the uniqueness existential quantifi-
cation operator ∃!, and the modal operators □ (necessity) and ◊ (possibility). The fol-
lowing holds for these three latter operators: (1) ◊A =def ¬□¬A; (2) □A =def ¬◊¬A
and (3) ∃!x A =def ∃y∀x (A ↔ (x = y)).

A Model-Theoretic semantics for this language can be given by defining an inter-
pretation function δ that assigns values to the non-logical constants of the language
and a model structure M. In this language M has a structure <W,D> where W is a
non-empty set of worlds and D is a non-empty domain of objects. The domain D of
quantification is that of possibilia, which includes all possible entities independent of
their actual existence. Therefore we shall quantify over a constant domain in all pos-
sible worlds. Informally, we can state that the truth of formulas involving the modal
operators can be defined such that the semantic value of formula □A is true in world
w iff A is true in every world w’ accessible from w. Likewise, the semantic value of
formula ◊A is true in world w iff A is true in at least one world w’ accessible from w.

There are alternative interpretations regarding the ontological status of possible
worlds and a full discussion of the topic is outside the scope of this article. Here,
unless explicitly mentioned, we take worlds to represent maximal states of affairs
(states of the world) which can be factual (i.e., obtaining in reality) or counterfactual.
An alternative interpretation which also appears in the article is that of worlds as his-
tories, i.e., as causally connected sequences of world snapshots (state of affairs),
which again, can be either factual or counterfactual. Moreover, we take all worlds to
be equally accessible and therefore we omit the accessibility relation from the model
structure. As a result we have the simplest language of quantified modal logic (QS5).
For a full presentation of such a system one should refer to [2].

Finally, in order to simplify the presentation of the formulas throughout the article
we make use a restricted quantification scheme following the notation proposed in
[15]: (i) (∀S,x) A and (ii) (∃S,x) A, which can be read as for every instance of S, A
holds and there is an instance of S such that A holds, respectively. In other words, (i)

1 The theory proposed in [4] and elaborated in [5] discusses a number of other properties of

part-whole relations. Here, due to the scope and objectives of this article we focus solely on
modally related properties.

 Modal Aspects of Object Types and Part-Whole Relations 7

and (ii) are meta-linguistic abbreviations to the formulas (∀x S(x) → A) and (∃x S(x)
∧ A), respectively, i.e., they conform to the so-called Fregean analysis of restricted
quantification.

3 Modal Distinctions in a Theory of Object Types

In the practice of conceptual modeling, a set of primitives is often used to represent
distinctions in different sorts of Object Types (Kind, Role, State, Mixin, among oth-
ers). However, most conceptual modeling languages do not offer methodological sup-
port for helping their uses to decide how to represent elements that denote general
terms in a given domain (viz. Person, Student, Red Thing, Physical Thing, Deceased
Person, Customer) and, hence, modeling choices are often made in an ad hoc manner.
Additionally, an inspection of the literature shows that there has been traditionally
much disagreement on the meaning of these categories (for extended discussion on
this see [6]).

In [6], we propose a philosophically and psychologically well-founded theory of
types for conceptual modeling and a UML modeling profile based on this theory2. In
the remaining of this section we briefly revisit this theory. However, the focus here is
on the modal properties that motivate the distinctions populating this “Typology of
Object Types”, as well as on the formal characterization of these distinctions using
the system of modal logics presented in section 2. In addition, we focus here on a sub-
set of these distinctions, namely, on Kinds, Roles, Phases, and RoleMixins, which are
the most relevant ones for the purposes of this article.

The categories forming this typology that we discuss here are depicted in
Figure 1.a. As it can be observed, a fundamental distinction between Object Types is
made between Sortal and Mixin Types. Sortals are sorts of types that carry principles
of identity, individuation and counting for their instances. A principle of identity is a
principle for which we can judge whether two individuals are the same. A principle of
counting, in contrast, is one that supports individuation and counting of individuals.
To illustrate this point, let us make use of the following thought experiment. Suppose
someone is presented with a red entity (e.g., a red shirt) at time t1 and asked the fol-
lowing question: “Exactly how many red entities do you see in front of you?”. Now,
suppose that a part (e.g., one sleeve) of this red entity is extracted and destroyed at a
time t2, and an additional question is asked: “Is the red entity you are seeing now (t2)
the same you saw before (in t1)?” Notice that none of the questions can receive a de-
terminate answer (an answer with a determinate truth-value): (i) Should a red shirt be
counted as one or should the shirt, the two sleeves, and two pockets be counted sepa-
rately so that we have five reds? The problem in this case is not that one would not
know how to finish the counting but that one would not know how to start, since arbi-
trarily many subparts of a red thing are still red; (ii) How can one know if extracting
a piece of the entity alters the identity of that entity? How can one know, for example,
if having that piece is an essential property of that entity? The problem in both cases
is the type Red does not supply principles based on which these questions can be
given determinate answers. Now, notice that if (red) entity is replaced in these

2 This theory as presented in [6] can be seen as the conceptual modeling extension of the Onto-

Clean methodology [3].

8 G. Guizzardi

questions by (red) shirt, determinate answers can be given to all these questions.
Types such as Shirt (but also Person, Car, Dog, Student) are examples of Sortal
Types. In contrast, types such as Red (but also Thing, Tall, Heavy and Insured Item)
are named Characterizing Types, Attributions or Mixins, since they only attribute
properties to (characterize) individuals which have already being individuated by sor-
tal-supplied principles.

The statement that the identity of an individual can only be traced in connection
with a sortal type, which carries a principle of individuation and identity to the par-
ticulars it collects amounts to one of the best-supported theories in the philosophy of
language [10,15], and one that finds strong empirical support in cognitive psychology
[5]. Moreover, the distinction between sortals and mixins is reflected in natural lan-
guage in the distinction between common nouns and other general terms (e.g., adjec-
tives, verbs), respectively. Finally, as discussed in [3,5,6], the role of (sortal-supplied)
identity principles is explicitly defended in conceptual modeling as a method for de-
riving stable and ontologically sound taxonomic structures.

A principle of identity must apply to an individual in all possible situations. For
this reason, principles of identity must be supplied by types that are also instantiated
by their instances in all possible situations, i.e., type whose instances cannot cease to
instantiate without ceasing to exist. This meta-property of types is named Modal Con-
stancy or rigidity and can be formally characterized as in the following formula
schema:

Definition 1 (Rigidity). A type T is rigid if for every instance x of T, x is necessarily
(in the modal sense) an instance of T. In other words, if x instantiates T in a given
world w, then x must instantiate T in every possible world w’: (1). R(T) =def □
(∀x T(x) → □(T(x))). ■

We have that only rigid sortals can supply principles of identities for their instances.
A rigid sortal type that supplies a principle of identity for its instances is named here a
Substance Sortal or a Kind. This notion of Kind as presented here (also sometimes
termed Natural Kind) is associated with the notion of Essence in the philosophical lit-
erature. More specifically, a Kind is a type defining all the essential properties for the
individuals it classifies. Examples of types typically modeled as Kinds include Per-
son, Planet, Gold, Water, Lepidopteron and City.

Within the category of sortals, we also have types that apply to their instances only
contingently (i.e., possibly only in certain situations). Examples include types such as
Adolescent, Student, Employee, Philosopher, Deceased, Customer and Caterpillar.
Sortals that possibly apply to an individual only during a certain phase of its existence
are named Phased-Sortals. Contrary to kinds, phased-sortals are anti-rigid types:

Definition 2 (Anti-rigidity). A types T is anti-rigid if for every instance x of T, x is
possibly (in the modal sense) not an instance of T. In other words, if x instantiates T in
a given world w, then there is a possible world w’ in which x does not instantiate T:
(2). AR(T) =def □(∀x T(x) → ◊(¬T(x))). ■

Being anti-rigid, phased-sortals cannot supply a principle of identity for their in-
stances. However, since they are sortals, they must carry a principle of identity, which
they inherit from a Kind. Therefore, we have that every phase-sortal PS must be a
subtype of Kind such that PS inherits the principle of identity supplied by K. In other

 Modal Aspects of Object Types and Part-Whole Relations 9

words, every instance of PS is necessarily a K and, thus, obeys the principle of iden-
tity supplied by K. For example, for an individual John instance of Student, we can
easily imagine John moving in and out of the Student type, while being the same in-
dividual, i.e. without losing his identity. This is because the principle of identity that
applies to instances of Student and, in particular, that can be applied to John, is the
one which is supplied by the kind Person of which the phase-sortal Student is a
subtype.

If PS is a phased-sortal and K is the Kind specialized by PS, there is a specializa-
tion condition ϕ such that x is an instance of PS iff x is an instance of K that satisfies
ϕ [15]. A further clarification on the different types of specialization conditions al-
lows us to distinguish between two different types of phased-sortals which are of
great importance to the practice of conceptual modeling, namely, Phases and Roles.
Phases constitute possible stages in the history of a Kind. Examples include: (a) Alive
and Deceased: as possible stages of a Person; (b) Catterpillar and Butterfly of a Lepi-
dopteran; (c) Town and Metropolis of a City; (d) Boy, Male Teenager and Adult Male
of a Male Person.

Roles differ from phases with respect to the specialization condition ϕ. For a phase
Ph, ϕ represents a condition that depends solely on intrinsic properties of Ph. For in-
stance, one might say that if John is a Living Person then he is a Person who has the
property of being alive or, if Spot is a Puppy then it is a Dog who has the property of
being less than one year old. For a role Rl, conversely, ϕ depends on extrinsic (rela-
tional) properties of Rl. For example, one might say that if John is a Student then John
is a Person who is enrolled in some educational institution, if Peter is a Customer then
Peter is a Person who buys a Product x from a Supplier y, or if Mary is a Patient than
she is a Person who is treated in a certain medical unit. In other words, an entity plays
a role in a certain context, demarcated by its relation with other entities. This meta-
property of Roles is named Relational Dependence and can be formally characterized
as follows:

Definition 3 (Relational Dependence). A type T is relationally dependent on another
type P via relation R iff for every instance x of T there is an instance y of P such that x
and y are related via R: (3). R(T,P,R) =def □(∀x T(x) → ∃y P(y) ∧ R(x,y)). ■

Mixins (i.e., non-sortals) are types that classify entities that belong to different Kinds,
i.e., that obey different principles of identity. As with the category of sortals, mixins
can also be rigid or anti-rigid. One type of mixin of great interest in conceptual mod-
eling is the so-called RoleMixin. For example, take the type Insured Item. This type
can have as instances entities such as Boats, Cars, Persons, Houses, Work of Art,
among others, clearly belonging to different kinds. In addition, instances of this type
are only so contingently (an entity can be insured in one situation and not in another
one). Finally, an Insured Item is defined in a certain context that includes types such
as Insurance Policy and Insurance Agency. Thus, the type Insured Item is an example
of a role mixin, i.e., an anti-rigid and relationally dependent mixin.

The discussion of this section is summarized in figures 1.a below. In this figure, we
use the notational shortcuts R+ and R- to represent the meta-properties or rigidity and
anti-rigidity, respectively and D (-/+) to represent the meta-property of relational
(in)dependence. In summary, Kinds are rigid, independent sortals that supply a prin-
ciple of identity for their instances; Phases are independent anti-rigid sortals; Roles

10 G. Guizzardi

are anti-rigid and relationally dependent sortals, and RoleMixins are anti-rigid and
relationally dependent non-sortals. In this article, we use the stereotypes «Kind»,
«Role», «Phase», and «RoleMixin» to decorate classes in a UML conceptual model
(see figure 1.b) representing these distinctions among object types. It is important to
emphasize that UML is used here only for the sake of exemplification, and that the is-
sues addressed here are present in all major conceptual modeling languages.

Object Type

Sortal Type

RoleKind

Mixin Type

Phase RoleMixin

{R+,D-} {R-,D-} {R-,D+} {R-,D+}

Type

(a)

«kind»
Person

«phase»
LivingPerson

«phase»
DeceasedPerson

«kind»
Organization

1..* 1..*

purchases
«roleMixin»
Customer

«role»
PrivateCustomer

«role»
CorporateCustomer

«kind»
Product

(b)

Fig. 1.a (left) Ontological Distinctions among
Object Types motivated by Modal Meta-
Properties;.

Fig. 1.b Example of use of a modeling profile
based on these distinctions.

4 Modal Distinctions in Part-Whole Relations

Parthood is a relation of significant importance in conceptual modeling, being present
in practically all conceptual modeling languages (e.g., OML, UML, EER). Nonethe-
less, in many of these languages, the concepts of part and whole are understood only
intuitively, or are based on the very minimal axiomatization that these notions require,
namely, that of a strict partial order (the so-called Ground Mereology). However, an
important aspect to be addressed by any conceptual theory of parthood is to stipulate
the different status that parts can have w.r.t. the whole they compose. As discussed by
[14], many of the issues regarding this point cannot be clarified without considering
modality. One of these issues refers to the notion of separability.

In order to formally define separability, we first define some notions related to the
topic of ontological dependence. In particular, the relations of existential and generic
dependence discussed in the sequel are strongly based on those defined in [8].

Definition 4 (existential dependence). Let the predicate ε denote existence. We have
that an individual x is existentially dependent on another individual y (symbolized as
ed(x,y)) iff, as a matter of necessity, y must exist whenever x exists, or formally (4).
ed(x,y) =def □(ε(x) → ε(y)). ■

With definition 4 we can propose the concept of an essential part as follows3

Definition 5 (essential part). An individual x is an essential part of another individ-
ual y iff, y is existentially dependent on x and x is, necessarily, a part of y: EP(x,y) =def
ed(y,x) ∧ □(x ≤ y). This is equivalent to stating that EP(x,y) =def □(ε(y) → ε(x)) ∧ □

3 Following [14] we use the symbols ≤ and < to represent parthood and proper parthood, re-

spectively, and we have that (x ≤ y) =def (x < y) ∨ (x = y).

 Modal Aspects of Object Types and Part-Whole Relations 11

(x ≤ y), which is, in turn, equivalent to EP(x,y) =def □(ε(y) → ε(x) ∧ (x ≤ y)). We
adopt here the mereological continuism defended by [14], which states that the part-
whole relation should only be considered to hold among existents, i.e., ∀x,y (x ≤ y)
→ ε(x) ∧ ε(y). As a consequence, we can have this definition in its final simplifica-
tion (5). EP(x,y) =def □(ε(y) → (x ≤ y)). ■

Figures 2.a and 2.b below depict examples of essential parts. In figure 2.a, every per-
son has a brain as part, and in every world that the person exists, the very same brain
exists and is a part of that person. In figure 2.b, we have an analogous example: a car
has a chassis as an essential part, thus, the part-whole relation between car and chassis
holds in every world that the car exists. To put in a different way, if the chassis is re-
moved, the car ceases to exist as such, i.e., it looses its identity.

Person Brain

1 1

Car Chassis

0..1 1

(a)

(b)

Person Heart

1 1

Car Engine

0..1 1

(c)

(d)

Fig. 2. (a-b) Wholes and their Essential parts; (c-d) Wholes and their Mandatory parts

The UML notation used in figure 2 highlights a problem that exists in practically
all conceptual modeling languages. In order to discuss this problem, let us examine
the models represented in figures 2.c and 2.d. According to the UML semantics, the
models of figure 2.a and 2.c convey exactly the same kind of information. However,
this is not the case, in general, in this domain in reality. Typically, the relation be-
tween a person and his brain is not of the same nature as the relation between a person
and his heart. Differently from the former, a particular heart is not an essential part of
a person, i.e., it is not the case that for every person x there is a heart y, such that in
every possible circumstance y is part of x. For instance, the fact that an individual
John had the same heart during his entire lifetime is only accidental. With the advent
of heart transplants, one can easily imagine a counterfactual in which John had been
transplanted a different heart. An analogous argument can be made in the case of fig-
ure 2.d. Although every car needs an engine, it certainly does not have to be the same
engine in every possible world.

The difference in the underlying real-world semantics in the cases of figure 2.a and
2.c are made explicit if we consider their corresponding formal characterization. In
the case of fig.2.a, since it is a case of essential parthood, we have that: (figure 2.a)
□((∀Person,x)(∃!Brain,y) □(ε(x) → (y < x))), whereas in the case of figure 2.c, the
corresponding axiomatization is (figure 2.c) □((∀Person,x) □(ε(x) → (∃!Heart,y)(y
< x))). A similar distinction can be made for the case of figures 2.b and 2.d: (figure
2.b) □((∀Car,x)(∃!Chassis,y) □(ε(x) → (y < x))) and (figure 2.d) □((∀Car,x) □(ε(x)
→ (∃!Engine,y)(y < x))).

In cases such as those depicted in the specifications of figures 2.c and 2.d, an indi-
vidual is not specifically dependent of another individual, but generically dependent
of any individual that instantiates a given type. The concept of generic dependence is
defined as follows:

12 G. Guizzardi

Definition 6 (generic dependence). An individual y is generic dependent of a type
T iff, whenever y exists it is necessary that an instance of T exists. This can be for-
mally characterized by the following formula schema: (6). GD(y,T) =def □(ε(y) →
∃T,x ε(x)). ■

We name individuals such as the instances of Heart and Engine in figures 2.c and 2.d,
respectively, mandatory parts:

Definition 7 (mandatory part). An individual x is a mandatory part of another indi-
vidual y iff, y is generically dependent of an type T that x instantiates, and y has, nec-
essarily, as a part an instance of T: (7). MP(T,y) =def □(ε(y) → (∃T,x)(x < y)). ■

In order to represent the ontological distinction between essential and mandatory
parts, we propose an extension to the UML notation used in the examples for the re-
maining of this paper. We assume that the minimum cardinality of 1 in the association
end corresponding to the part represents a mandatory part-whole relation. To repre-
sent the case of an essential part-whole relation, we propose to extend the current
UML aggregation notation by defining the Boolean meta-attribute essential.

When the meta-attribute essential equals true then the minimum cardinality in the
association end corresponding to the part must also be 1. This is expected to be the
case, since essential parthood can be seen as a limit case of mandatory parthood.
When essential equals false, the tagged value textual representation can be omitted.
This extended notation is exemplified in figure 3 below.

Person Brain

1 1

Heart1

1

{essential = true}

Fig. 3. Extensions to the UML notation to distinguish between essential and mandatory parts

We emphasize that the particular examples chosen to illustrate the distinction be-
tween essential and mandatory parts are used here for illustration purposes only. For
example, when modeling brain as an essential part of persons and heart as a manda-
tory one, we are not advocating that this is a general ontological choice that should be
countenanced in all conceptualizations. Conversely, the intention is to make explicit
the consequences of this modeling choice, and to advocate for the need of explicitly
differentiating between these two modes of parthood. The choice itself, however, is
always left to the model designer and is conceptualization-dependent.

Up to this moment, we have interpreted possible worlds as maximal state of affairs,
which can be factual or counterfactual. In other words, we have assumed a branching
structure of time, and each world is taken at a time interval in a (factual or counterfac-
tual) time branch. An alternative is to interpret possible worlds as histories, i.e., as the
sum of all state of affairs in a given time branch. In this alternative conception of
worlds, we can examine the possible relations between the lifespan of wholes and
parts in different types of parthood relations. For instance, figure 4.a illustrates the
possible relations between the lifespan of a whole and one of its essential parts.

 Modal Aspects of Object Types and Part-Whole Relations 13

Time

Lifespan of an essential part

Possibilities for
the lifespan of the whole

= start of lifetime = end of lifetime

a

b

c

d

Time

Lifespan of the whole

Possibilities for
the lifespan of an
inseparable part

a

b

c

d

Fig. 4. Possible relations between the life spans of an individual whole and: (a-left) one of its
essential parts; (b) one of its inseparable parts.

This figure illustrates the true possibilities for, for instance, the relation between a
chassis and a car as depicted in figure 2.b. In this case, the lifetime of the chassis is
completely independent from the lifetime of any of the cars it happens to be a part of.
Actually, as represented in figure 2.b, a chassis does not even have to be connected to
a car (whole). This is a case of, what we term, essential part with optional whole.

Conversely, if we analyze the relation between a brain and a person, we come to
the conclusion that the lifespan (d) in figure 4.a is the only real possibility in this case.
That is to say that the lifespan of a person and her brain should necessarily coincide.
This is because, in this case, a brain is also existentially dependent on its host. When-
ever we have the situation that a part is existentially dependent on the whole it com-
poses, we name it an inseparable part:

Definition 8 (inseparable part). An individual x is an inseparable part of another in-
dividual y iff, x is existentially dependent on y, and x is, necessarily, a part of y: (6).
IP(x,y) =def □(ε(x) → (x ≤ y)). ■

The possible relations between the life spans of an inseparable part and its (essential)
whole are depicted in figure 4.b. The case of an essential and inseparable part is
shown in figure 5 below.

Time

Lifespan of the whole

Lifespan of an essential
and inseparable part

Fig. 5. Possible relations between the life spans of an individual whole and one of its essential
and inseparable parts

Figure 4.b does not represent all the possibilities for, for instance, the relation
between a heart and its bearer (figure 2.c), since the heart of person is not an
inseparable part of a person and, hence, their life spans can be completely
independent. A heart can pre-exist its bearer as well as survive its death. Nonetheless,
a heart must be part of a person, only not necessarily the same person in all possible
circumstances. For these cases, of generic dependence from the part to a whole, we
use the term parts with mandatory wholes:

14 G. Guizzardi

Definition 9 (mandatory whole). An individual y is a mandatory whole for another
individual x iff, x is generically dependent on a type T that y instantiates, and x is,
necessarily, part of an individual instantiating T: (7). MW(T,x) =def □(ε(x) →
(∃T,y)(x < y))). ■

Once more, the distinction between inseparable parts and parts with mandatory
wholes is neglected in practically all conceptual modeling languages. For this reason,
we propose to extend the current UML aggregation notation with the Boolean meta-
attribute inseparable to represent inseparable parts. When inseparable is equal to
true, the minimum cardinality constraint in the association end corresponding to the
whole type must be at least 1. If inseparable is equal to false, the tagged value textual
representation can be omitted. A UML class representing a whole type involved in an
aggregation relation with minimum cardinality constraint of at least 1 in its associa-
tion end represents a type whose instances are mandatory wholes.

5 The de re/de dicto Modal Distinction

In the previous section, we have presented a distinction between parthood relations
w.r.t. ontological dependence containing two possible subtypes: (i) essential parts:
characterized by existential dependence from the whole to a part; (ii) mandatory
parts: characterized by generic constant dependence from the whole to the type a part
instantiates.

As mentioned in the previous section, the relations between a person and her brain,
on one hand, and a person and her heart, on the other, can exemplify part-whole
relations of sort (i) and (ii), respectively. These two situations taking the human body
as an example are depicted in figure 6 together with their corresponding modal logics
formalizations. For the sake of simplicity, we formalize in this case only the axioms
w.r.t. the relation from the whole to the part. All other axioms are omitted.

«kind»Person

«kind»Brain

1

1

{essential = true}

«kind»Heart

1 1

Fig. 6. Representation of essential and mandatory parthood in a model of the human body

In all examples used in section 4, the object types representing wholes are Kinds.
Let us now investigate how these different sorts of necessary parthood relations can
be used to characterize non-rigid types, such as Roles, Phases or Role Mixins.
Suppose, for instance, the situation depicted in figure 7. The figure illustrates the

□((∀Person,x)(∃!Brain,y) □(ε(x) →(y < x)))

 □((∀Person,x) □(ε(x) →((∃!Heart,y)(y < x))))

 Modal Aspects of Object Types and Part-Whole Relations 15

relation between a Boxer and one of his hands. What the picture attempts at
representing is the statement that “every boxer must have a hand”. This relation is
certainly not one of mandatory parthood, since it is not the case that a Boxer depends
generically on the type hand but specifically on one particular hand4. It thus appears
to be the case that this relation is one of essential parthood. However, this is not true
either. If a hand were to be considered an essential part of a particular boxer then the
corresponding formula represented in figure 7 should be valid. To show that this is
not the case, suppose the following: let John be a boxer in world w and let x be John’s
hand in w. What the formula in figure 7 states is that in every world w’ in which John
exists, x must be part of John in w’. This formula is clearly falsifiable. One just have
to imagine a world w’’, in which John exists without being a boxer and without
having x as his hand (supposed that x has been tragically amputated in w’’). This
problem arises from the ambiguity of the word “must” in “every boxer must have a
hand”. Intuitively, the situation that this model intended to express is the valid
statement that “For every Person x, there is a hand y, such that in every world that x is
a Boxer, y is a hand of x”.

«role»Boxer

«kind»Hand

1

1

«kind»
Person

1..2

?

Fig. 7. Problems in the representation of specifically dependent parts for anti-rigid types

In the example of figure 7, Boxer cannot have essential properties and, in particu-
lar, cannot have essential parts, since it is an anti-rigid type. In other words, if “to be a
boxer” is consider as a property, it is not an essential property itself of any individual.
However, this situation can be understood in terms of the philosophical distinction be-
tween de re and de dicto modality. Take the following two sentences: (i) The queen of
the Netherlands is necessarily queen; (ii) The number of planets in the solar system is
necessarily odd. In the de re reading, the first sentence expresses that a certain indi-
vidual (Beatrix) is necessarily queen. This is clearly false, since we can conceive a
different world in which Beatrix decides to abdicate the throne. However, in the de
dicto reading the sentence simply expresses that it is necessarily true that in any cir-
cumstance whoever is the Dutch queen is a queen. The second sentence works in the
converse manner. In the de re reading the sentence (ii) expresses that a certain number
(9) is necessarily odd. This is indeed necessarily true. The de dicto reading of the sen-
tence however is false. It is not necessarily the case that the number of planets in the
solar system is odd. We can imagine a counterfactual situation in which the solar
system has, for instance, 8 or 10 planets. The Latin expressions de re represents a

4 We are here not considering the possibility of hand transplants. Once more, the point of the

argumentation is not the specific example.

□((∀Boxer,x)(∃Hand,y) □(ε(x) →(y < x)))

16 G. Guizzardi

modality which refers to a property of the thing itself (res), whereas de dicto repre-
sents a modality that refers to an expression (dictum). This is made explicit in the
logical rendering of the possible readings of these two expressions: (iii-a) de re
(false): ∀x QueenOfTheNetherlands(x) → □(Queen(x)); (iii-b) de dicto (true): □(∀x
QueenOfTheNetherlands(x) → Queen(x)); (iv-a) de re (true): ∀x NumberOfPlan-
ets(x) → □(Odd(x)); (iv-b) de dicto (false): □(∀x NumberOfPlanets(x) → Odd(x)).

Take now the expression “every boxer has necessarily a hand”. Once more, this
expression is true only in one of the readings, namely, the de dicto reading. Whilst it
is the case that the expression “In any circumstance, whoever is boxer has at least one
hand” is necessarily true, it is false that “If someone is a boxer than he has at least a
hand in every possible circumstance”. Figure 8, expresses a correct representation of
this situation in the de dicto modality.

We now have expressed three different types of dependency relations between
wholes and parts: (i) specific dependence with de re modality; (ii) generic dependence
with de re modality; (iii) specific dependence with de dicto modality. The remaining
option is, of course, conceivable, i.e., generic dependence with de dicto modality.
This situation can be captured by the following formula (v) □(∀A,x □(ε(x) ∧
A(x)→∃y B(y) ∧ (y < x))), in which A represents the (anti-rigid) whole and B repre-
sents the part. In this formula, the predicate B is used as what we term here a guard
predicate. Intuitively, this predicate “selects” those worlds, in which the parthood re-
lation must hold. The same holds for the predicate Boxer in figure 8.

«role»Boxer

«kind»Hand

1

1

«kind»
Person

1..2

Fig. 8. Correct representation of specifically dependent parts of anti-rigid types

We have seen that essential properties, i.e., specific dependence expressed in terms
of the de re modality, can only be expressed for rigid types. For anti-rigid types
(roles, phases, role mixins), only the corresponding de dicto modality can be applied.
Nonetheless, it is also true that for every de re statement regarding an individual x, we
can express a corresponding de dicto one, by using as guard predicate the substance
sortal that x instantiates. For instance, if it is true that “The number of planets in the
solar system (9) is essentially odd” then it is also true that “In any circumstance, if 9
is a number then 9 is odd”. We therefore could rephrase the formulas in figure 6 as
follows: (vi) □((∀Person,x)(∃!Heart,y) □(ε(x) ∧ person(x)→ (y < x))) and (vii)
□((∀Person,x) □(ε(x) ∧ person(x)→(∃!Heart,y)(y < x))). Since Person is a kind
(rigid type), everything that is person is necessarily a person. In other words, the
predicate person is modally constant, and for every object selected by the universal
quantifier, person must be true for this object in every possible world. Consequently,
(vi) and (vii) are logically equivalent to their counterparts in figure 6.

□((∀Boxer,x)(∃Hand,y) □(ε(x) ∧ Boxer(x)→(y < x)))

 Modal Aspects of Object Types and Part-Whole Relations 17

A

B

1

{immutable = true}

C

1

Fig. 9. General representation for Immutable and Mandatory parts

In order to achieve a uniform axiomatization, we therefore propose the following
formula schemas depicted in figure 9, which must hold irrespective of the type repre-
senting the whole being rigid or anti-rigid sortals. If the type A is rigid then A(x) is
necessarily true (if true) and the antecedent (ε(x) ∧ A(x)) can be expressed only by
(ε(x)). In this case, the B’s are truly essential parts of A’s. We refrain from using the
term essential part for the cases in which a mere de dicto modality is expressed.
Therefore, for the case of specific dependence from instances of anti-rigid types to
theirs part we adopt the term immutable part instead. Of course, every essential part is
also immutable. Generalization axioms analogous to those in figure 9 can be produced
for the case of inseparable and mandatory wholes. Figure 10 depicts a representation
of inseparable parts and mandatory wholes, in which guard predicates are included to
produce generalizations of the axioms in definitions 6 and 7 that are suitable for the
cases of both rigid and anti-rigid types.

A

B

1

{inseparable = true}

C

1

Fig. 10. A general representation scheme for Inseparable Parts and Mandatory Wholes

6 Related Work

Two of the works the are closest to ours in objectives w.r.t. establishing a foundation
for part-whole relations in conceptual modeling are the pioneering works of James
Odell reported in “Six Different Kinds of Composition” [11], and of Brian Henderson-
Sellers and Colleagues reported in a series of articles that includes [7, 12]. There are a

 □((∀A,x) □(ε(x) ∧ A(x) →((∃C,y)(y < x))))

□((∀A,x) (∃B,y) □(ε(x) ∧ A(x) →(y < x)))

 □((∀C,x) □(ε(x) ∧ C(x) →((∃A,y)(x < y))))

□((∀B,x)(∃A,y) □(ε(x) ∧ B(x) →(x < y)))

18 G. Guizzardi

number of important issues in which our approach differs from these two proposals
regarding a number of ontological aspects of part-whole relations (e.g., constitution
versus parthood, emergent properties, transitivity of parthood, among others). A fuller
comparison between our proposal and these two approaches (among others) can be
found in [5]. Here, we concentrate exclusively on the notions directly related to modal
aspects of part-whole modeling and, in particular, on the treatment of the notion of
separability between parts and wholes.

In his article, Odell has proposed an adaptation of the taxonomy of part-whole rela-
tions proposed by Winston, Chaffin and Herrman [16] (henceforth WCH) for the pur-
pose of modeling object-oriented systems. Following WCH, Odell employs a notion
of separability as one of the criterion for differentiating between six kinds of part-
whole relations. However, this notion employed by Odell (and inherited from WCH)
is not a modal notion, but one of physical entanglement. For instance, on page 4 of his
article, Odell proposes that the difference between place-area (e.g., Everglades-
Florida) and portion-object (e.g., slice-pie) compositions is that only the former is
constituted solely by inseparable parts. Now, if separability is taken in an ontologi-
cally meaningful modal sense, there is nothing in the place-area composition relation
that requires the parts to be inseparable. For instance, the province of Trentino-Alto
Adige is a (place-area) part of Italy, but not an inseparable part, since there are possi-
ble worlds (namely before 1921), in which it belonged to the Austrian-Hungarian
Empire.

In a different perspective, contra Henderson-Sellers and colleagues [7], we take
Lifetime dependency to be a defining feature of those part-whole relations with essen-
tial and/or inseparable parts. In this sense, we disagree with examples such as the one
used by the authors to justify the existence of parts that are separable, but share the
same destruction as the whole: “a car wheel is independent of the car but if the wheel
is in the car during the car’s destruction then it is also destroyed”. In this case, the
wheel is clearly separable from the car, it just happened to be the same event that
caused the destruction of both objects (had the wheel been separated from the car, the
car’s destruction would not propagate to the wheel; the wheel can clearly exist in pos-
sible worlds in which the car does not exist). In other words, the lifetime coincidence
of two separable objects is merely a contingent fact.

This confusion seems to be motivated by an object-oriented programming bias to-
wards conceptual modeling. Traditionally, in OO programming languages, an object
can be made responsible for the destruction of other objects as a procedure for mem-
ory de-allocation named garbage collecting. Thus, it can be warranted that an object
X should trigger the destruction of other objects coupled with X in the moment of its
destruction, even if the coupling is merely a contingent one.

Finally, it is important to highlight that none of these approaches investigate the
modal properties of Object Types. As a consequence, they also do not establish a sys-
tematic relation between the different modal properties of part-whole relations and of
the object types they are attached to. Here, in contrast, by exposing some subtle ntions
that arise when these categories are combined, we can derive practical modeling con-
straints for the construction of ontologically well-founded conceptual models.

 Modal Aspects of Object Types and Part-Whole Relations 19

7 Final Considerations

The main objective of this article is to demonstrate the importance of some modal no-
tions in capturing the real-world semantics of some of the conceptual modeling most
important constructs, namely, the ones representing the notions of object types and
part-whole relations. The article offers a new formal characterization of the modal
aspects of the theory originally proposed in [4] by using a systems of quantified mo-
dal logics. Moreover, it shows how the formal characterization of the aforementioned
ontological categories makes explicit some subtle issues regarding the de re and de
dicto modalities in conceptual modeling diagrams which are reflected in two different
modes of necessary parthood.

The different types of object types (Kind, Role, Phase and Role Mixin) and part-
whole relations (essential, immutable, inseparable and mandatory parts, and manda-
tory wholes) which result from this analysis, as well as the constraints on how they
can be combined (e.g., if a part-whole relation is of type Essential then the whole type
must be of type Kind) can be used to analyze and re-design the metamodel of current
conceptual modeling languages. An example of an ontologically well-founded lan-
guage redesigned in this manner is the version of UML proposed in [5]. An example
of similar approach towards an extension of ORM using the same ontology proposed
in [5] can be found in [9].

It is important to emphasize that the focus of this article is not on aspects of for-
malization per se but on how some philosophical issues regarding modality can be
used to: (i) illuminate the real-world semantics of conceptual modeling constructs; (ii)
justify the proposal of more elaborated extensions of these constructs capturing onto-
logical distinctions within the represented categories; (iii) provide some methodologi-
cal guidelines for helping the user of the language in choosing the most suitable con-
structs for representing the elements in the universe of discourse according to his own
conceptualization. As an example of (iii), if in a given conceptualization the concept
Person is taken to be anti-rigid (for instance, in a Legal Ontology, only a conscious
entity fully responsible for her acts may be considered to be a person), the model de-
signer knows that this concept should be modeled as a phase, not as a kind. Moreover,
since phases are always defined in a phase partition and as a subtype of kind, the de-
signer knows that there are other phases (e.g, UncounciousHumanBeing) that are sub-
sumed by the same kind (e.g., HumanBeing) that are missing in the model. Still on
this example, if we have that in two different models a concept represented by the
same lexical label (e.g., Person) but with incompatible modal meta-properties (e.g.,
Person-as-Phase and Person-as-Kind), we have a formal ground for justifying that
they are actually different concepts, and for studying what exactly is the relation be-
tween them (e.g., Person-as-Kind is equivalent to Human Being). This feature makes
an approach such as this one also relevant for the tasks of model integration and se-
mantic interoperability.

References

1. Evermann, J.: The Association Construct in Conceptual Modelling - An Analysis Using
the Bunge Ontological Model. In: Proceedings of 17th CAiSE, Portugal, pp. 33–47 (2005)

2. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Kluwer Publishers, Boston
(1999)

20 G. Guizzardi

3. Guarino, N., Welty, C.: An Overview of OntoClean. In: Staab, S., Studer, R. (eds.) Hand-
book on Ontologies, pp. 151–159. Springer, Heidelberg (2004)

4. Guizzardi, G., Herre, H., Wagner, G.: Towards Ontological Foundations for UML Con-
ceptual Models. In: Proceedings of the 1st ODBASE, USA, 2002, p. 1100-1117 (2002)

5. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models, PhD thesis,
University of Twente, The Netherlands (2005)

6. Guizzardi, G., Wagner, G., Guarino, N., van Sinderen, M.: An Ontologically Well-
Founded Profile for UML Conceptual Models. In: Proc. of the 16th CAiSE, Latvia,
pp.112–126 (2004)

7. Henderson-Sellers, B., Barbier, F.: What Is This Thing Called Aggregation? In: proceed-
ings of Technology of Object-Oriented Languages and Systems Europe’99, Nancy,
France, pp. 236–250. IEEE Computer Society Press, Washington (ISBN: 0-7695-0275-X)
(June 7-10, 1999)

8. Husserl, E.: Logical Investigations, Routledge, London, 1970 (original 1900/1901)
9. Keet, C.M.: Part-Whole Relations in Object-Role Models, International Workshop on Ob-

ject-Role Modeling (ORM’2006), Montpellier, France, pp.1116-1127 (2006)
10. McNamara, J.: A Border Dispute, the Place of Logic in Psychology. M.I.T. Press,

Cambridge (1986)
11. Odell, J.J.: Six Different Kinds of Composition. In: Advanced Object-Oriented Analysis

and Design Using UML, Cambridge University Press, New York (1998)
12. Opdahl, A., Henderson-Sellers, B., Barbier, F.: Ontological Analysis of whole-part rela-

tionships in OO-models. Information and Software Technology 43, 387–399 (2001)
13. Rosemann, M., Green, P.: Ontologies and Business Systems Analysis, IDEA, USA (2005)
14. Simons, P.M.: Parts. An Essay in Ontology. Clarendon Press, Oxford (1987)
15. van Leeuwen, J.: Individuals and sortal concepts : an essay in logical descriptive meta-

physics, PhD Thesis, University of Amsterdam (1991)
16. Winston, M.E., Chaffin, R., Herrman, D.: A taxonomy of part-whole relations. Cognitive

Science 11, 417–444 (1987)
17. Wyssusek, B.: On Ontological Foundations of Conceptual Modeling, Scandinavian Jour-

nal of Information Systems, Vol.18, No. 1, ISSN 0905-0167 (2006)

Change Detection in Ontologies

Using DAG Comparison

Johann Eder1 and Karl Wiggisser2

1 University of Vienna, Dep. of Knowledge and Business Engineering
johann.eder@univie.ac.at

2 Klagenfurt University, Dep. of Informatics-Systems
wiggisser@isys.uni-klu.ac.at

Abstract. Ontologies are shared conceptualizations of a domain. As
this domain may change over the time, the ontology has to evolve as
well. Additionally, for many applications, it is important to know which
version of an ontology was valid at a certain point in time. Several on-
tology version management systems address this problem. If a user is
confronted with different versions of an ontology it is often necessary to
identify the changes. We present an efficient graph based approach for
change detection between two versions of an ontology based on struc-
tural comparisons. The result is a change script transforming the old to
the new version. Furthermore, we present an extensive evaluation of the
prototype implementation of the change detection system.

1 Introduction

An ontology is an explicit specification of a conceptualization [1]. Ontologies
are seen as important technique for semantic data processing, and in particular
for interoperability. They represent knowledge about a certain real world do-
main. But as the real world tends to change, the ontologies have to change as
well. Knowledge about these changes is mandatory to correctly interpret data
or documents which were based on the semantics defined in the changed ontol-
ogy. Furthermore, the correct comparison of data and documents from different
points in time, based on different versions of an ontology is only possible if the
differences between these versions are known. E. g. when analyzing the develop-
ment of unemployment rate in the European Union over the last 30 years one
has to be aware that both the European Union and the formula for computing
the rates changed considerably over this period of time.

Changes between versions of an ontology might not be explicitly available.
Frequently, only the different versions are available, but a change history is
missing. To help in this situation is the ambition of the work presented here. In
particular, we focus on the following problem: Given two versions of an ontology
we want to derive an edit script, i. e. a series of change operations, which is
able to transform one version into the other. This edit script is then an explicit
representation of changes which occurred between the versions of the ontology.

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 21–35, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

22 J. Eder and K. Wiggisser

Our change detection system is based on the structure of the ontology only.
One might argue that the important changes in ontologies are changes in the
semantics. We assume that every semantic change has to be represented by a
structural change, as otherwise two identical representations will have different
semantics. There might be structural changes which are not semantic changes.
Examples for such changes are representational variations for performance in-
crease. Thus, a fast and reliable algorithm for identifying and describing struc-
tural changes is a good start for analyzing the changes in the semantics.

In this paper we present our graph based algorithm for a semiautomatic
change detection between two versions of an ontology in detail. Based on an
extensive evaluation of the algorithm (Sect. 5) we claim that it is very efficient
in terms of both speed and precision.

2 Related Work

In [2,3] we presented a graph based approach for ontology versioning. Incorpo-
rating changes in such a temporal ontology is easy if one knows all changes,
but can be a very complex task, if the differences are not previously known.
This is particularly important for users of ontologies who have access to the
latest version, but do not have a representation of the changes since their last
download. There are approaches for ontology comparison published, e. g. [4,5,6].
Among them, PromptDiff, as a part of the Protege framework [7], and On-
toView, a web based system, are the best known. However, to the best of our
knowledge, there are no evaluation figures for these systems published. Ontology
matching/alignment/merging systems like GLUE [8], Cato [9] or Chimaera [10],
although somehow related to our change-detection problem, in fact address a
different issue. They are more intended to find the semantic overlapping of two
or more different independently developed ontologies, whereas our approach is
designed to find changes in two versions of the same ontology.

In [11], we presented a brief first sketch of our concepts without detailed
description of the algorithm. It is an extension of an algorithm, successfully ap-
plied for identifying changes in dimension structures of data warehouses [12,13].
The major challenges were the far more complex (data) structure of ontologies
and the usage of ontology specific information (in particular various forms of
relationships) for further improving the accuracy of the applied heuristics.

Graph matching and graph comparison is a long known problem. Because
the graph isomorphism problem is in NP [14], there are several approaches
comparing two graphs and/or determine their edit distance using some heuris-
tics or restricting the data structure. For instance, the approaches presented in
[15,16,17,18,19,20,21] are only some of them. We evaluated these algorithms but
they all have some shortcomings which make them either completely unusable
for our purpose or at least very hard to adapt to our problem. Some of the
approaches are defined on undirected graphs and others are missing operations
essential for our purpose. If an adaption was possible, main advantages of the
algorithms would have vanished.

Change Detection in Ontologies Using DAG Comparison 23

To the best of our knowledge there is no algorithm which can easily be adapted
to calculate the edit operations between two DAGs (directed acyclic graphs)
as we need them for our ontology versioning system. So we developed a new
algorithm inspired by the tree comparison algorithm of Chawathe et al. [22].
It is built upon the same principles, but with major enhancements to support
the comparison of directed acyclic graphs. The renaming detection component
is adapted from our previous work in this area [12].

3 Ontology Graphs and Graph Operations

An ontology can be seen as a graph where the concepts are represented by
nodes and semantic relations between concepts by edges. A node consists of
an unique id, a label which represents the concept’s name, an object holding
implementation-dependent attributes (e. g. some comment or description of the
concept) and a set of slots, a concept we will describe later. The ontology’s rela-
tions are represented by edges. An edge consists of two nodes (parent and child)
and an edgetype, which represents the type of the relation. Common ontological
relations like generalization (IS-A) or aggregation (PART-OF) typically build up
a directed acyclic graph (DAG). Other relations, e. g. IS-FRIEND-OF, may also
create cycles in the graph. The user may explicitly define edge types as acyclic,
i. e. not creating cycles in the graph. All other edges are per default treated as
possibly cyclic, thus may build up cyclic graphs. For our approach, we assume
the ontology graph to be a rooted directed acyclic graph (RDAG), i. e. a DAG
with exactly one node not having any parents.

To transform an arbitrary digraph, representing an ontology version, to such
a RDAG we perform the following steps: First, we assume that there is one
single root in the graph, i. e. there is only one node in the graph, not having any
parents. If such a root is not present, we create a new node rootv , which becomes
the virtual root of the graph by creating a vroot edge from rootv to each node
x in the graph not having any parents yet. Next we eliminate cycles. For that
purpose, we assume that every node is connected to the root via a path consisting
only of edges defined to be acyclic. This will hold for many ontologies, because
they often comprise a generalization hierarchy. For all nodes x not satisfying this
requirement, we create a vroot relation from the root to x. As a last step, we
create the so called slots, representing cyclic edges. Each slot has a name and
a type. For each relation from a node parent to node child, with relation type
edgeType, where edgeType is not defined as acyclic, we add the slot with name
edgeType of type child to the node parent and remove the edge between parent
and child. With this steps we can transform any graph into a RDAG. When
we assume all relations in an ontology to be directed, i. e. we can determine the
start and the end of a relation, this transformation is lossless and unique and
can be reversed by replacing the slots of each node with the respective edge and
removing the vroot node and edges.

Figure 1 shows an example for such a transformation. On the left the original
cyclic graph is shown. The relations IS A and PART OF are defined to be acyclic.

24 J. Eder and K. Wiggisser

A

C D E

F G H I J

B

IS AIS AIS A

PART OF

PART OF

PART OF
IS A

IS A
IS A

PART OF

PART OF

USE

USED_BY K L

BELONG_TO
OWN

USE

A

C D E

F
USE : G

G
USED_BY : F

H
OWN : K

I J

B

IS AIS A
IS A

PART OF
PART OF

PART OFIS A IS A IS A

PART OF

PART OF

K
BELONG_TO : H

USE : L

L

RootV

vroot vrootvroot vroot

Fig. 1. Transformation of arbitrary graph to RDAG

All other relations may build cycles. There is no single root. In the right, the
resulting RDAG is shown. A new node Rootv is created and the nodes A and
B are attached to it with a vroot relation. Now all nodes except K and L are
connected to the root via a path, consisting only of acyclic edges. So these two
nodes are also connected with a vroot relation. For edges like use or belong to
slots are inserted to the respective nodes, e. g. K.

With the operations defined below we can transform any two RDAG into
each other. We represent the old version of an ontology with the graph vold

and a new version of the same ontology with the graph vnew. Our goal is to
find the differences between two ontology versions in terms of graph operations.
We present an algorithm which calculates a so called edit script, which is a
sequence of graph operations that transform vold into vnew. This edit script acts
as representation for the changes between the ontologies and thus enables us
to incorporate changes of the ontology into virtually any ontology versioning
system, for instance like proposed in [2]. The operations defined on the ontology
graph are:

– InsertNode(name, attributes, slots, parents) inserts a new node with the
label name, the attributes attributes, and set of slots to all parents. The
set parents holds pairs of nodes and edge types (parent, type), meaning the
edge from parent to the new node to be of type type.

– DeleteNode(node) deletes node from the graph. A node can only be deleted,
if it does not have any children. With the node, all its incident edges are
deleted as well.

– InsertEdge(parent, child, type) creates an edge of type type from parent to
child. The new edge must not close a cycle in the graph.

– DeleteEdge(parent, child) deletes the edge from parent to child.
– InsertSlot(node, slot) adds a new slot consisting of name and type to node.
– DeleteSlot(node, slot) removes the slot from the node.
– UpdateNode(node, attributes) changes the attributes of node to attributes.
– RenameNode(node, name) changes the name of node to name.
– ChangeEdgeType(parent, child, type) changes the type of the edge between

parent to child to type.

Change Detection in Ontologies Using DAG Comparison 25

4 The Comparison Algorithm

Our graph comparison algorithm is inspired by the tree comparison algorithm of
Chawathe et al. [22]. Although the algorithm works quite well on ordered trees,
it has some shortcomings for our purpose: (i) It is defined on trees and not on
RDAG structures. (ii) The renaming of nodes is not supported. (iii) It depends
on the ordering of the nodes’ children. (iv) It does not support typed edges.

Our approach is built upon the same principles, especially when calculating
the node matching between two graphs, but includes some major changes in order
to support the comparison of directed acyclic graphs. The renaming detection
component is adapted from our previous work in this area [12]. The algorithm
is based on the assumption that ontologies do not change very much from one
version to the next. This is also supported by [4].

4.1 The Longest Common Subsequence

A Subsequence of a string is any string obtained by deleting zero or more symbols
from the given string. A Common Subsequence of two strings A and B is a
subsequence of both [24]. The Longest Common Subsequence(LCS) of two strings
A and B is a common subsequence of A and B such that there is no common
subsequence of A and B which contains more symbols. Note that the LCS is not
necessarily unique, but there can be different common subsequences of maximal
length. Efficient algorithms calculating the LCS are for instance given in [24,25].

The concept of subsequences can easily be extended from strings to sequences
of objects of any type. For that purpose we also need to specify a comparison
function, which determines whether two elements stemming from either of the
sequences are equal. We define the function LCS as follows: LCS(A, B, equal),
where A and B are sequences of objects of the same type and equal(a, b) is a
function which decides the equality of the objects a and b and returns either true
or false. The function returns a sequence of object pairs 〈(a1, b1), . . . , (an, bn)〉
with the following properties: (i) ai ∈ A and bi ∈ B (ii) equal(ai, bi) = true
(iii) 〈a1, . . . , an〉 is a subsequence of A and 〈b1, . . . , bn〉 is a subsequence of B
(iv) There is no longer sequence of object pairs which fulfils (i)–(iii).

We use this LCS-function to efficiently compare sequences of graph nodes
during node matching (see Sec. 4.3).

4.2 Node Matching

The first step, when comparing two graphs is to find a good matching between
them, i. e. finding nodes which represent the same concept in both graphs.

As for ontologies the concept’s name often acts as key, we defined the node’s
name to be the primary key for matching nodes. That means two nodes cannot
match if their names differ. Furthermore, we do not expect nodes to change their
hierarchical position within the graph, i. e. leaf nodes will rarely become inner
nodes and vice versa. The third assumption we act on is that the attributes and
descendants, i. e. edges and slots, will not change very much. Thus, we define a

26 J. Eder and K. Wiggisser

function similar(x, y) returning true or false, which compares two concepts x
and y to take into account the following properties (compare [22,26]):

1. x.name = y.name: Two concepts can only match if their name is equal.
2. The function compare(x, y) compares all attributes of x and y for similarity

and returns a number between 0 (no similarity) and 1 (identical).
3. commonSlotsRatio(x, y) = commonSlots(x,y)

maxSlots(x,y) , where commonSlots(x, y) is
the number of slots appearing in both, x and y. The function maxSlots(x, y)
is the maximum number of slots of x and y. Thus, commonSlotsRatio(x, y)
returns a value between 0 and 1. If none of the nodes contains slots, the
function is defined to return 1.

4. commonLeavesRatio(x, y) = commonLeaves(x,y)
maxLeaves(x,y) , with commonLeaves(x, y)

calculating the number of common, i. e. matched, leaf descendants of x and
y and maxLeaves(x, y) gives the maximum number of leaf descendants of x
and y. So commonLeavesRatio(x, y) returns a number between 0 and 1. If
one of the nodes is a leaf, the function is defined to return 1.

The user may configure the influence for each of these similarity measures,
depending on the expected changes. For instance, if the ontology’s structure has
remained stable but the comments for many concepts changed, the administrator
can pay more attention to common slots and leaves than to attributes. Only the
criterion of equal names is mandatory. The function similar(x, y) returns true
iff the two concepts have the same name and each of the above comparison
functions returns a value greater than the user defined threshold.

4.3 Matching Algorithm

Chawathe et al.’s matching algorithm relies on the ordering of children. On-
tologies do not have such an ordering, but a defined order dramatically reduces
the complexity during the matching. Therefore, we first sort the nodes’ chil-
dren alphabetically by their name. Then, for each of the graphs we build a list
of leaves, traversing the graph from left to right. From these two node lists
we build the Longest Common Subsequence, with the function similar(x, y) as
equality check. This gives a set of matchings M. A matching is a pair of nodes
(ni, nj), with ni ∈ vold and nj ∈ vnew which represent the same concept in both
versions. We do the same for all inner nodes and add the resulting pairs to M.
As a last step during matching calculation, we build a list of still unmatched
nodes for each of the graphs and run the LCS algorithm again. The alphabetic
sorting of nodes will significantly reduce the effort for the LCS. Figure 2 shows
the pseudocode for the matching calculation.

The first run of LCS will match all similar leaves. The second run of LCS
does the matching of all similar inner nodes, which depends on the matchings of
leaves. The third run of LCS will match nodes, which can either be inner nodes
or leaves. The execution order takes into account our assumption that inner
nodes seldom will become leaf nodes and vice versa. This approach is a heuristic
one and errors may occur. Thus, in production environments, the administrator

Change Detection in Ontologies Using DAG Comparison 27

Function calculateMatching(vold, vnew)

1. Let matching set M = ∅;
2. Let Lo(Ln) be the list of leaves, when traversing vold(vnew) from left to right;
3. Let M = M ∪ LCS(Lo, Ln, similar)
4. For each unmatched node x in Lo if there is an unmatched node y in Ln with

similar(x, y): M = M ∪ {(x, y)};
5. Repeat steps 2 – 5 for inner nodes;
6. Repeat steps 2 – 5 for all still unmatched nodes;
7. Let the user acknowledge and correct M

8. Return M;

Fig. 2. Pseudocode for the calculation of the matching set

must have the possibility to modify the results of the algorithm, i. e. break up
matchings or establish matchings not detected by the system.

Of course, this matching order does not guarantee the best matching, i. e. the
matching with the minimum differences. Consider two concepts a and a′ within
the same ontology version which have the same label. They are quite similar to
each other such that similar(a, a′) returns true, but they are not equal. Now
in version 1 of the ontology, when traversing the graph, they appear in order a
and later a′ but in the traversal of version 2 they appear in order a′ and then a.
As we build the LCS of these traversal sequences and similar(a, a′) gives true,
a from version 1 will be matched to a′ from version 2 and vice versa. Thus, this
is not the best matching. But as we assume that such situations seldom occur
and the calculation a perfect matching is considered to be in NP [14], we think
the result is reasonably good with respect to the gained performance.

4.4 Renaming Detection

As the name of a concept is the primary matching criterion, all nodes that cannot
be matched could possibly have been renamed. So in the next step, we try to find
pairs of nodes, which differ in their names but are so similar with respect to their
attributes and structure that they may represent the same concept nonetheless.

Theoretically, each unmatched node from the old graph could have been re-
named to any unmatched node in the new graph. To reduce complexity, we only
consider node pairs under matched parents as possible renamings. But as this
rule may foreclose many renamings to be detected, when, for instance, a new
prefix is added to every node, in this phase we also consider possible renamed
parents as matched parents. So the renaming of node w ∈ vold to x ∈ vnew can
be detected iff there is at least one parent of w that is matched to a parent x or
possible renamed to a parent of x. Pairs of nodes, which are possibly renamed
are stored in the set possibleRenamings. We sort this set according to the hi-
erarchical position of the node such that pairs containing only leaves come first,
then the pairs containing only inner nodes, and last the mixed pairs.

Next we calculate the similarity for all possibly renamed pairs, again using the
function similar(w, x), but now of course neglecting the different node name. If
the similarity of a pair is greater than a user defined threshold, it is considered as

28 J. Eder and K. Wiggisser

Function calculateRenamings(vold, vnew , M)

1. Let edit script E = ∅; likelyRenamings L = ∅; unlikelyRenamings U = ∅
2. Let possible renamings P = {(w, x)|�(w,) ∈ M∧�(, x) ∈ M∧∃u ∈ w.parents, v ∈

x.parents : (u, v) ∈ M ∨ (u, v) ∈ P};
3. Reorder P: Leaf pairs → Inner node pairs → Mixed Pairs;
4. For all pairs (w, x) ∈ P

(a) If similar(w, x) : L = L ∪ {(w, x)};
(b) Else U = U ∪ {(w, x)};

5. Let the user acknowledge and correct the renamings;
6. For each renaming pair (x, y) the user acknowledged

(a) M = M ∪ {(w, x)};
(b) E = E ∪ {RenameNode(w, x.name)};

7. Return E;

Fig. 3. Pseudocode for the calculation of the node renamings

a likely renaming, otherwise we call it an unlikely renaming. Of course, each node
can only appear in one likely renaming. In case that a node is contained in more
than one pair with adequate similarity, the pair with the highest similarity is
chosen to be the likely renaming, all others become unlikely renamings. As each
renaming results in a matching, when comparing inner nodes, likely renamings
are treated as common leaves and contribute to the similarity of inner nodes.

This approach is a heuristic one. For instance, for a node that was renamed
and attached to totally different parents, no renaming will be detected, but
the node will remain unmatched, even after renaming detection. Thus, in pro-
duction environments, the user will have to acknowledge or correct the detected
renamings. For each acknowledged renaming (w, x), a RenameNode(w, x.name)
operation is appended to the edit script and immediately applied on vold. The
pseudocode for the renaming detection is shown in Fig. 3.

4.5 Comparing Two DAGs

After matching and renaming detection, we have all preliminaries for the change
detection algorithm. This is split into five phases, each responsible for finding
a particular set of operations. For the description of these phases, we need to
introduce the partner of a node x, which is the node y to which x is matched.
Thus x and y have to stem from different graphs. Each of the operations de-
tected during the comparison is immediately applied to vold. So, during the
comparison vold is transformed into vnew , and when finished, both graphs are
identical.

Insert Phase. Let x be the current node when traversing vnew in topological
order. If x is not matched yet, it must have been inserted. Let Y be the set
of parents of x combined with the type of the edge to x. Then Z is the set of
partners of the nodes in Y, combined with the respective edge type. As we
traverse the graph in topological order, we can be sure that every parent of
x has already been visited and thus must have a partner in vold. We now can

Change Detection in Ontologies Using DAG Comparison 29

easily create the appropriate InsertNode(x.name, x.attributes, x.slots, Z)
operation.

Update Phase. Let x be the current node when traversing vnew in topological
order and w its partner. If the attributes of x and w differ, we append an
UpdateNode(w, x.attributes) operation to the edit script.

Slot Changing Phase. Let x be the current node when traversing vnew in
topological order and w its partner. For every slot sn contained in x but
not in w, we append an InsertSlot(w, sn) to the edit script. For every slot
so contained in w but not in x, we append an DeleteSlot(w, so) to the edit
script.

Edge Changing Phase. Let x be the current node when traversing vnew in
topological order and w its partner. Let Y be the set of parents of x, V be
the set of parents of w, each of them combined with the respective edge
type from parent to child. We now have to check, whether every node in Y

has a partner in V and vice versa, and whether all edges are of the correct
edge type. For every edge e from y ∈ Y to x where the partner of y is not
in V, we append an InsertEdge(y.partner, w, e.type) to the edit script. For
every edge from v ∈ V to w where the partner of v is not in Y, we append
a DeleteEdge(v, w) to the edit script. For every edge eo from v ∈ V to w
where exists an edge en from v.partner ∈ Y to x and eo.type �= en.type we
append an ChangeEdgeType(v, w, en.type) to the edit script.

Delete Phase. Let w be the current node when traversing vold in post-order.
If w is not matched, it has been deleted. Thus, we append a DeleteNode(w)
operation to the edit script.

Complete Algorithm. Figure 4 shows the pseudocode for the complete change
detection algorithm (compare [22]). The function compareOntologies(vold, vnew)
takes two versions of an ontology as input and returns an edit script E, which
represents the differences between them. First, the Matchings and Renamings
are detected. Then, the Inserts, Updates, Edge and Slot changes can be found
during one topological graph traversal. The delete phase needs one additional
post-order traversal. Every operation that is appended to the edit script, is im-
mediately applied to vold, thus the graph is transformed to be equal to vnew .

4.6 Complexity Analysis

After having presented the complete algorithm, we now give a short complexity
analysis. Let n be the number of nodes, nl be the number leaves, ni the number
inner nodes in the graph and d the number of differences between the two version
graphs. Let p be the average number of parents of a node and c be the average
number of children of a node. Typically d � n, p � ni and c � n.

In the matching phase for each of the matching types (leaves, inner nodes,
mixed), we have to do an LCS run, which is in O(n · d) and then compare the
unmatched nodes with each other, which is in O(d2). Thus, number of node
comparisons is in O(n · d + d2). But as comparing two inner nodes requires
building the intersection of the contained leaves sets, of course similar(x, y) is

30 J. Eder and K. Wiggisser

Function compareOntologies(vold, vnew)

1. Edit script E = ∅;
2. Matching set M = calculateMatching(vold, vnew);
3. Renamings R = calculateRenamings(vold, vnew , M);
4. E = E ∪ R;
5. Let x be the current node in topological traversal of vnew ;

(a) If x has no partner
i. Z = {(p.partner, type)|(p,x, type) is an edge in vnew};
ii. E = E ∪ {InsertNode(x.name,x.attributes, x.slots,Z)};
iii. w = InsertNode(x.name,x.attributes,x.slots, Z) applied to vold;
iv. M = M ∪ {(w, x)};

(b) Else
i. Let w be the partner of x;
ii. If w.attributes 	= x.attributes E = E ∪ {UpdateNode(w,x.attributes)};
iii. If commonSlotsRatio(w, x) 	= 1

A. For each slot so in w which is not in x: E = E ∪ {DeleteSlot(w, so)};
B. For each slot sn in x which is not in w: E = E ∪ {InsertSlot(w, sn)};

iv. Let Y = {(y, type1)|(u, x, type1) is an edge in vnew};
v. Let U = {(u, type2)|(u, w, type2) is an edge in vold};
vi. For each pair (y, type1) ∈ Y with u = y.partner, (u, type2) ∈ U and

type1 	= type2: E = E ∪ {ChangeEdgeType(u,w, type1)};
vii. For each pair (y, type1) ∈ Y with u = y.partner, (u,) 	∈ U: E = E ∪

{InsertEdge(u,w, type1)};
viii. For each pair (u.type2) ∈ U with y = u.partner, (y,) 	∈ Y: E = E ∪

{DeleteEdge(u,w)};
6. Let w be the current node in a bottom-up traversal of vold;

(a) If w has no partner
i. E = E ∪ {DeleteNode(w)};
ii. Delete w from vold;

7. Return E;

Fig. 4. Pseudocode for comparing two ontology graphs

in O(nl) for the inner nodes x and y. Thus, the complete matching phase is in
O(ni · nl · d + nl · d2).

All nodes that could not be matched (bound by d) could have been renamed.
This gives at most d2 node pairs to be compared. For similarity determination
of inner nodes we again have to compare the common leaves, which is in O(nl),
thus renaming detection is in O(nl · d2).

The detection of the remaining graph differences (i. e. Inserts, Deletes, Up-
dates, Edge and Slot changes) requires at least two graph traversals (∈ O(n)).
The number of edit operations to be found here is in O(d). As for the Inserts
and Edge Changes for each node its parents have to be checked, the overall
complexity here is in O(n · p + d · p).

The overall complexity for our algorithm is the combination of matching,
renaming and difference detection and thus O(ni · nl · d + nl · d2) ∪ O(nl · d2) ∪
O(n·p+d·p). As O(nl ·d2) ⊂ O(n2 ·d+n·d2), O(n·p+d·p) ⊂ O(n2 ·d+n·d2) and
O(ni ·nl ·d+nl ·d2) ⊂ O(n2 ·d+n ·d2), the overall complexity is O(n2 ·d+n ·d2).

Change Detection in Ontologies Using DAG Comparison 31

A

C D EE

F G H I J

B

IS AIS AIS A

PART OF

PART OF

PART OF

IS A
IS A

IS APART OF

PART OF

USE

USED_BY K L

BELONG_TO
OWN

USE

IS A

M
IS A

OWN

A

C D EE

F
USE : G

G
USED_BY : F

H
OWN : K

I J
OWN : M

B

IS AIS AIS A

PART OF
PART OF

PART OFIS A IS A IS A

PART OF

PART OF

K
BELONG_TO : H

USE : L

RootV

vroot vroot
vroot vroot

L

M

IS A

IS A

Fig. 5. Graph and RDAG representing the new ontology version

1. RenameNode(E, “EE”) 2. InsertNode(“M”, attributes, ∅, (B, IS A))
3. InsertSlot(J, (OWN, M)) 4. DeleteSlot(K, (USE, L))) 5. InsertEdge(A, G, IS A)
6. RemoveEdge(D, H) 7. DeleteNode(L)

Fig. 6. Edit script between the two versions

4.7 Example Edit Script

Remember the graph and the corresponding RDAG given in Fig. 1. In Fig. 5
we give a subsequent version of this ontology, represented again by the ontol-
ogy graph and a corresponding RDAG. Elements which have been deleted be-
tween the two versions are depicted with strong grey lines. Elements which have
changed or have been inserted are depicted with strong black lines. So, when
looking at the left graph, we can see that the concept L and the generalization
between D and H were deleted. We introduced a new concept M , which is a
subconcept of B. Moreover, the concept G became a subconcept of A and a
relation of type own was introduced between J and M . Finally the concept E
was renamed to EE. The same changes can be seen in the RDAG in the right
side of Fig. 5. When applying our change detection algorithm, the edit script
shown in Fig. 6 is generated, including all differences between the two graphs.

4.8 Structure Versus Semantics

Our approach compares ontology versions solely on the syntactic level, i.e. it
performs a structural comparison. With structural comparison in this context
we address both: (1) Comparing the structure of the graph (i. e. the relations
between concepts) and (2) comparing the structure of the concepts (i. e. their
name and attributes). So we also have to discuss, whether this mere structural
comparison can provide appropriate means to detect ontology changes.

If the semantics of an ontology changes between two versions, then the struc-
ture will change as well. Otherwise, there is no representation of the semantic
changes and the changes can neither be detected by structural nor by semantic
comparison algorithms. If the structure of an ontology (i.e. its representation)
changes, then these structural changes might constitute semantic changes. There
are cases where the structure is changed without an underlying semantic change,

32 J. Eder and K. Wiggisser

e. g. for improving the representation for performance reasons, for better under-
standability, etc. So probably not all structural changes identified by our ap-
proach will also constitute semantic changes. Note that we do not compare two
independently developed ontologies but rather two different versions of the same
ontology. So the general difficulties of schema integration [27], where frequently
the same semantical concepts differ considerable in their representations do not
apply. This problem is covered by ontology matching techniques as e. g. [8,9,10].

We can conclude that every semantic change is represented by structural
changes. Since semantic comparisons are usually more complex than structural
analysis, we expect a facilitation and acceleration of identifying semantic changes
if it can be restricted to the structural changes resulting from our change detec-
tion procedure. So the edit script which is the output of our algorithm can be
input to a procedure for identifying and characterizing changes in the semantics.

5 Implementation and Evaluation

5.1 Evaluation Environment

For evaluating our approach we need two versions of an ontology to compare
them. As we do not have enough ontologies with defined differences available,
we simulated them by random DAG. The differences between two versions are
also generated randomly.

The generated graphs have the following structure: As an ontology often de-
scribes – among other relations – a sort of a taxonomy we divide the graph
into levels. A graph may have up to seven levels, depending on its size. After
creating the nodes for each level, we define hierarchical relations between them.
These hierarchical relations create a directed acyclic graphs. Each node can have
one (p = 0.7), two (p = 0.15) or three (p = 0.15) parents from the parent or
the grandparent level. Due to the layered structure of the graph, we easily can
prevent creating cycles in the graph, by only creating edges from higher levels
to lower levels. Cyclic graphs are represented by slots. About a quarter of the
created nodes get up to five slots.

The number of generated differences is given as percentage of the number of
nodes. Thus, for a graph with size 1000 and change rate of 10%, we generate
an edit script consisting of about 100 operations. Within the generated edit
script the operations are distributed as follows: Insert Node 10% Delete Node
5% Rename Node 5%, Update Node 10%, Insert Edge 15%, Remove Edge 15%,
Insert Slot 15%, Remove Slot 15%, and Change Edge Type 10%. As the graphs
are representing ontologies, and ontologies tend not to change very much [4], we
tested our algorithm with difference rates of not more than 10%.

5.2 Evaluation Results

In the evaluation of the algorithm there are two major points to look at: cal-
culation time and correctness. Figure 7 shows the average overall calculation

Change Detection in Ontologies Using DAG Comparison 33

Overall calculation time

0

2000

4000

6000

8000

10000

12000

0 5000 10000 15000 20000

Number of Nodes

Ti
m

e
(m

s) 1% Differences
5% Differences
10% Differences

Fig. 7. Overall Calculation Time

Errorrate for various degrees of difference

0

0,2

0,4

0,6

0,8

1

1,2

0 5000 10000 15000 20000

Number of Nodes

Er
ro

rr
at

e
(%

)

1% Differences
5% Differences
10 % Differences

Fig. 8. Percentage of Errors in the Result

time for the algorithm for each difference rate. As expected from the complexity
analysis, the chart shows quadratic complexity. Figure 8 shows the percentage
of errors in the detected edit scripts with respect to the generated differences.
This error rate does not only cover the absolute number of found edit opera-
tions but each operation is checked for its correctness against the differences
created before the comparison. It can be seen that the error rate grows with
the percentage of difference but does not strongly depend on the number of
nodes in the graph. We also calculated the overall average error rates which are
about 0.21% for 1% differences, 0.43% for 5% differences and 0.78% for 10%
differences.

When taking a closer look on the generated errors, we see that many of the
wrong operations are a direct result of errors in the matching and renaming
detection. Because, if the algorithm does not match two nodes which represent
the same concept or matches two nodes which do not represent the same concept,
the algorithm will produce a series of operations (insert, delete, update, change
edges and slots) for reestablishing what seems to be the correct structure. Thus,
when using this approach in a production environment, we have to ask the user to
acknowledge all detected matchings and renamings for correctness and therefore
can foreclose many of the resulting errors.

34 J. Eder and K. Wiggisser

6 Conclusion

We presented an approach for computing an edit script which explicitly repre-
sents the structural changes between two versions of an ontology. The approach
is based on an efficient graph comparison algorithm.

Our approach can be used if only snapshots of an ontology are available but
not a change history. It supports ontology administrators and ontology integra-
tors to identify which changes have taken place between the two given versions.
The result can, for an example, be applied to mark data where the underlying
semantics changed. It can also provide the input for feeding a temporal ontology
where several versions of an ontology together with the mappings between them
are represented. Also semantic change analysis can be accelerated when it has
to consider only the structural changes identified by structural comparison.

We tested the algorithm exhaustively, and honestly, we were surprised by its
good performance figures, both in terms of time and precision.

Acknowledgements

We would like to thank Mark Musen (SMI, Stanford) who provided us a version
history of the BioSTORM ontology [23] for our experiments.

The work on this project was partially supported by the project GATIB -
Genome Austrian Tissue bank within the Austrian Genome Program GEN-AU,
and by the EU Network of Excellence INTEROP.

References

1. Gruber, T.: A Translation Approach to Portable Onotology Specifications. Knowl-
edge Acquisition 5(2) (1993)

2. Eder, J., Koncilia, C.: Modelling Changes in Ontologies. In: Proc. of On The Move
- Federated Conferences. LNCS, vol. 3292, Springer, Heidelberg (2004)

3. Eder, J., Koncilia, C.: Interoperability in Temporal Ontologies. In: Proc. of the
Open Interop Workshop on Enterprise Modelling and Ontologies for Interoperabil-
ity (2005)

4. Noy, N., Musen, M.: PromptDiff: A fixed-point algorithm for comparing ontology
versions. In: Proc. of the Nat’l Conf. on Artificial Intelligence (2002)

5. Klein, M., Fensel, D., Kiryakov, A., Ognyavov, D.: Ontology versioning and change
detection on the Web. In: Knowledge Engineering and Knowledge Management.
Ontologies and the Semantic Web, 13th Int’l Conf (2002)

6. Mostowfi, F., Fotouhi, F.: Change in Ontology and Ontology of Change. In: Proc.
of Workshop on Ontology Management: Searching, Selection, Ranking, and Seg-
mentation (2005)

7. Noy, N., Kunnatur, S., Klein, M., Musen, M.: Tracking Changes During Ontology
Evolution. In: Proc. of the 3rd Int’l Conf. on the Semantic Web (2004)

8. Doan, A., Madhavan, J., Domingos, P., Halevy, A.Y.: Ontology matching: A ma-
chine learning approach. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies,
pp. 385–404. Springer, Heidelberg (2004)

Change Detection in Ontologies Using DAG Comparison 35

9. Felićıssimo, C.H., Breitman, K.K.: Taxonomic ontology alignment – an implemen-
tation. In: Workshop em Engenharia de Requisitos. pp. 152–163 (2004)

10. McGuinness, D., Fikes, R., Rice, J., Wilder, S.: An environment for merging and
testing large ontologies. In: Proc. of the 7th Int’l Conf. on Principles of Knowledge
Representation and Reasoning. pp.483–493 (2000)

11. Eder, J., Wiggisser, K.: Detecting Changes in Ontologies via DAG Comparison.
In: Proc. of the Open Interop Workshop on Enterprise Modelling and Ontologies
for Interoperability (2006)

12. Eder, J., Koncilia, C., Wiggisser, K.: A Tree Comparison Approach to Detect
Changes in Data Warehouse Structures. In: Proc. of the 7th Int’l Conf. on Data
Warehousing and Knowledge Discovery. pp.1–10 (2005)

13. Eder, J., Wiggisser, K.: A DAG Comparison Algorithm and Its Application to
Temporal Data Warehousing. In: Advances in Conceptual Modeling – Theory and
Practice, ER Workshops 2006. pp.217–226 (2006)

14. Garey, M., Johnson, D.: Computers and Intractability – A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York (1979)

15. Wang, J.T.L., Zhang, K., Chirn, G.W.: Algorithms for approximate graph match-
ing. Information Sciences 82(1-2), 45–74 (1995)

16. Zhang, K., Wang, J., Sasha, D.: On the editing distance between undirected acyclic
graphs. Int’l Journal of Foundations of Computer Science 7(1), 43–58 (1996)

17. Messmer, B., Bunke, H.: A new algorithm for error-tolerant subgraph isomorphism
detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 20, 493–505
(1998)

18. Shoubridge, P., Kraetzl, M., Ray, D.: Detection of abnormal change in dynamic
networks. In: Proc. of Information Decision and Control, IEEE Inc. pp.557–562
(1999)

19. Cordella, L., Foggia, P., Sansone, C., Vento, M.: Perfomance evaluation of the vf
graph matching algorithm. In: Proc. of the 10th Int’l Conf. on Image Analysis and
Processing. pp.1172–1177 (1999)

20. Hlaoui, A., Wang, S.: A new algorithm for inexact graph matching. In: Proc. of
the 16th Int’l Conf. on Pattern Recognition (ICPR’02) - Vol. 4 (2002)

21. Gori, M., Maggini, M., Sarti, L.: Exact and approximate graph matching using
random walks. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(7),
1100–1111 (2005)

22. Chawathe, S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change detection in
hierarchically structured information. In: Proc. of the ACM SIGMOD Int’l Conf.
on Management of Data. pp.493–504 (1996)

23. Crubzy, M., O’Connor, M., Buckeridge, D., Pincus, Z., Musen, M.: Ontology-
centered syndromic surveillance for bioterrorism. IEEE Intelligent Systems 20(5),
26–35 (2005)

24. Myers, E.: An O(N D) Difference Algorithm and Its Variations. Algorithmica 1(2),
251–266 (1986)

25. Bergroth, L., Hakonen, H., Väisänen, H.: New Refinement Techniques for Longest
Common Subsequence Algorithms. In: String Processing and Information Re-
trieval, Proceedings. pp.287–303 (2003)

26. Zhang, L.: On matching nodes between trees. Tech. Rep. 2003–2067, HP Labs
(2003)

27. Halevy, A.Y.: Structures, semantics and statistics. In: Proc. of the 13 th Int’l Conf.
on Very Large Data Bases.pp. 4–6 (2004)

Automatic Generation of Model Translations

Paolo Papotti and Riccardo Torlone

Università Roma Tre
Roma, Italy

{papotti,torlone}@dia.uniroma3.it

Abstract. The translation of information between heterogeneous rep-
resentations is a long standing issue. With the large spreading of cooper-
ative applications fostered by the advent of the Internet the problem has
gained more and more attention but there are still few and partial solu-
tions. In general, given an information source, different translations can
be defined for the same target model. In this work, we first identify gen-
eral properties that “good” translations should fulfill. We then propose
novel techniques for the automatic generation of model translations. A
translation is obtained by combining a set of basic transformations and
the above properties are verified locally (at the transformation level)
and globally (at the translation level) without resorting to an exhaustive
search. These techniques have been implemented in a tool for the man-
agement of heterogeneous data models and some experimental results
support the effectiveness and the efficiency of the approach.

1 Introduction

1.1 Goal and Motivations

In today’s world of communication, information needs to be shared and ex-
changed continuously but organizations collect, store, and process data differ-
ently, making this fundamental process difficult and time-consuming. There is
therefore a compelling need for effective methodologies and flexible tools sup-
porting the management of heterogeneous data and the automatic translations
from one system to another.

In this scenario, we are involved into a large research project at Roma Tre
University whose goal is the development of a tool supporting the complex tasks
related to the translation of data described according to a large variety of for-
mats and data models [1,2,3]. These include the majority of the formats used
to represent data in current applications: semi-structured models, schema lan-
guages for XML, specific formats for, e.g., scientific data, as well as database and
conceptual data models. In this paper, we focus our attention on the problem of
the automatic generation of “good” data model translations.

We start observing that, in general, given a data source, different translations
can be defined for the same target model. To clarify this aspect, let us consider
the example in Figure 1 where the relational schema a is translated into an XML

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 36–50, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Automatic Generation of Model Translations 37

SSN Dept

Emp

SSN Dept

Emp

DName Phone*Room

Dept

DName Phone*Room

Dept

Personnel (d)ID = constructSchema

Element

ID IDRef

Element

Element

Personnel

Emp

DeptSSN

Dept

Room PhoneDName

ElementID

(b)
Year = name

Dept

(c)

SSN

Element

IDEmp

Element

Element

Room PhoneDName

ID Element

Schema

Personnel

SSN

Element

IDEmp

Element

Element

Room PhoneDName

ID Element

Schema

Personnel

(1,N)

(1,1)

(1,N)

(1,1) (1,1) (0,1)

SSN

Element

IDEmp

Element

Element

Room PhoneDName

ID Element

Schema

Personnel

Dept

(1,N)

(1,1)

(1,N)

(1,1) (1,1) (0,1)

SSN

Element

IDEmp

Element

Element

Room PhoneDName

ID Element

Schema

Personnel

Dept

(a)

Fig. 1. The translation of a relational schema into an XML based model

based structure. Actually, several solutions are possible since it is well known
that different strategies can be followed [4]. We report just three of them.

In our example, we can choose between a nested-based (schemas c and d) and
a flat-based (schema b) structure. The latter can be easily generated, but the
schema we obtain is probably not desirable in a model with nesting capabilities.
Moreover, the question arises whether we want to force “model” constraints
like the presence of an order or the absence of duplicates. The second point
is that differences between translations are not only structural. For instance,
schemas c and d are similar but they have significant differences in the schema
semantics, since d also includes cardinality constraints on the elements. Finally,
the efficiency of the translation is clearly an issue [5,6].

In order to tackle this problem, in this paper we first identify general properties
that the translations should fulfill and investigate the conditions under which
a translation can be considered better than another. We then propose efficient
methods for the automatic generation of schema and data translations from one
model to another. We also show experimental results obtained with a tool for
the management of heterogeneous data models in which the proposed methods
have been implemented.

1.2 Related Works and Organization

The problem of model translation is one of the issues that arises when there is
the need to combine heterogeneous sources of information. Many studies can be
found on this problem. For instance, translations between specific pairs of mod-
els have been deeply investigated [4,7] and are widely supported in commercial
products. Our goal is more general: the development of a flexible framework able
to automatically translate between data models that, in principle, are not fixed
a priori. In recent years, an aspect of the translation problem that has been
deeply studied is data exchange [8], where the focus is on the translation of data
between two fixed schemas, given a set of correspondences between the elements.
Recently, the problem has been set in the general framework of model manage-
ment [9], where a set of generic operators is introduced to cope, in a uniform
way, various metadata related problems. One of them is the ModelGen operator
that corresponds to the problem tackled in this paper. An early approach to

38 P. Papotti and R. Torlone

ModelGen for conceptual data models was proposed by Atzeni and Torlone [2]
with a tool based on an internal metamodel and a library of transformations.
Following works [3] and similar approaches [10,19] has been presented in the last
years. Currently, there are two active projects working on this subject. Atzeni
et. al [1] recently provided a comprehensive solution based on a relational dictio-
nary of schemas, models and translation rules. Their approach however does not
consider the automatic generation of translations. The approach of Bernstein et
al. [11] is also rule-based and it introduces incremental regeneration of instance
mappings when source schema changes. A detailed description of their approach
has not yet appeared. Our contribution is orthogonal to both projects. In previ-
ous works of ours [3] we have focused our attention to the management of Web
information and we have proposed a general methodology for the translation of
schema and data between data models. In this paper, the focus is on the auto-
matic generation of translations based on the ranking of the possible solutions.
MOF [12] is an industry-standard framework where models can be exchanged
and transformed between different formats and provides a uniform syntax for
model transformation. Our approach is complementary: we provide methods
to automatically perform translations between models, possibly expressed in a
MOF-compliant way.

The rest of the paper is organized as follows. In Section 2 we provide the
needed background and, in Section 3, we investigate the general properties of
model translations. In Section 4 we present the algorithms for the automatic
generation of translation and, in Section 5, we provide some experimental results.
Finally, in Section 6, some conclusions are drawn and future work is sketched.

2 Background

2.1 Translations, Metamodel and Patterns

We identify four levels of abstraction: (1) data (or instances) organized according
to a variety of (semi) structured formats (relational tables, XML documents,
HTML files, scientific data, and so on); (2) schemas, which describe the structure
of the instances (a relational schema, a DTD, an XML Schema or one of its
dialects, etc.); (3) (data) models, that is, formalisms for the definition of schemas
(e.g., the relational model, the XML Schema model or a conceptual model like the
ER model), and (4) a metamodel, that is, a general formalism for the definition
of models.1

In this framework, a schema translation from a source model Ms to a target
model Mt is a function σ : S(Ms) → S(Mt), where S(M) denotes the set of
schemas of M , and I(S) the set of instances of S. If S ∈ S(Ms) then σ(S) is
called the σ−translation of S (this corresponds to the ModelGen operator [9]).
Similarly, a data translation from a source schema Ss to a target schema St is a
function δ : I(Ss) → I(St).

1 We refer to a “database” terminology; in other works (e.g., [9,12]), a schema is called
model, a model is called metamodel, and a metamodel is called metametamodel.

Automatic Generation of Model Translations 39

As others [1,2,3,10,11], our approach is based on a unifying metamodel made
of a set of metaprimitives each of which captures similar constructs of different
data models. More precisely, a metaprimitive represents a set of constructs that
implement, in different data models, the same basic abstraction principle [14].
For instance, a set of objects is represented by a class in ODL and by an entity
in the Entity-Relationship model. Clearly, metaprimitives can be combined. We
will call a specific combination of metaprimitives a pattern. In this framework,
a model is defined by means of: (i) set of primitives, each of which is classified
according to a metaprimitive of the metamodel, and (ii) a set of patterns over
the given primitives.

As an example, the table in Figure 2 describes a set of models. The first column
contains a set of possible patterns over the metaprimitives of the metamodel.
Each pattern has a metaprimitive m as root and a collection of metaprimitives
that are used as components of m (“*” means 0 or more times). In the other
columns of the table different models are defined by listing the patterns used
and the names given to them in the model. For instance, the relational model
is defined by means of a set having the table pattern (which correspond to the
metaprimitive relation) which is composed by a number of attribute constructs,
one key and, possibly, a foreign key.

relationship-relationship--RelationshipRelationship

--√--RelationshipType
√----AttributeOfObject
√----Cardinality*

-
√

√

-
-
√

-
-

-
-

ForeignKey
Cardinality

√√√--Domain

attributeattributeattribute--AttributeAttribute

√√√√√Domain
keykeykeykeykeyKeyKey

--√--Struct*
√√√-√Restriction
---√√List
----√Extension

-
-

√

√

-
-

-
-

-
-

Key
Foreign key

-
-

-
-

-
-

√

√

√

√
Key

Cardinality

-table---RelationRelation
-√---Attribute*

typetypetypetypetypeDomainDomain

…

√
√

-
-

√
√

-
-

-
-

Attribute*
Relationship

√-√--Key
entity-class--ObjectObject

---√√AttributeOfElement*
---√√Domain

---element/entityelementElementElement

ERRelationalODLDTDXmlSchema

relationship-relationship--RelationshipRelationship

--√--RelationshipType
√----AttributeOfObject
√----Cardinality*

-
√

√

-
-
√

-
-

-
-

ForeignKey
Cardinality

√√√--Domain

attributeattributeattribute--AttributeAttribute

√√√√√Domain
keykeykeykeykeyKeyKey

--√--Struct*
√√√-√Restriction
---√√List
----√Extension

-
-

√

√

-
-

-
-

-
-

Key
Foreign key

-
-

-
-

-
-

√

√

√

√
Key

Cardinality

-table---RelationRelation
-√---Attribute*

typetypetypetypetypeDomainDomain

…

√
√

-
-

√
√

-
-

-
-

Attribute*
Relationship

√-√--Key
entity-class--ObjectObject

---√√AttributeOfElement*
---√√Domain

---element/entityelementElementElement

ERRelationalODLDTDXmlSchema

Fig. 2. A set of models described by patterns

40 P. Papotti and R. Torlone

A pattern corresponds to a context free grammar that makes use of an alpha-
bet denoting the primitives of the metamodel. We call a string of this grammar
a structure. A schema can be obtained by associating names to the symbols
of a structure. For instance, the schema (b) in Figure 1 is obtained by adding
the nodes in bold to the rest of the tree, which corresponds to the underlying
structure.

2.2 A Transformational Approach

In [3], we have introduced a general methodology for model translation based
on three main steps: (1) the source schema S is first represented in terms of the
metamodel so that it can be compared with the target data model definition; (2)
source schema and target model may share some constructs (metaprimitives),
but others must be translated or eliminated to obtain a schema consistent with
the target data model. This operation is performed on S: the system tries to
translate the metaprimitives of S into metaprimitives of the target model or, if
the translation fail, it removes them; (3) a rewriting of the generated schema in
terms of the target model syntax is executed.

The translation step, which is the fundamental phase of the process, takes
as input a schema expressed in terms of (patterns of) metaprimitives. As the
number of metaprimitives is limited, it is possible to define a library of basic
and “generic” transformations that can be composed to build more complex
translations. These basic transformations implement rather standard transla-
tions between metaprimitives (e.g., from a relation to an element or from a
n-ary aggregation to a binary one). Representatives of such transformation have
been illustrated in [3].

Actually, each basic transformation b has two components: a schema transla-
tion σ and a data translation δ. Its behavior can be conveniently represented by a
signature b[Pin :Pout], that is, an abstract description of the set of patterns Pin

on which p operates and of the set of patterns Pout introduced by p. Note that
this description makes the approach independent of the actual implementation
of the various transformations. As an example, the signature of an unnesting
transformation that transforms each nested element into a set of flat elements
related by foreign keys is the following:

b[{ComplexElement(ComplexElement+, AtomicElement∗, Domain)} :
{ComplexElement(Key+, ForeignKey∗, AtomicElement∗, Domain)}]

It turns out that the effect of a transformation with signature b[Pin :Pout] over
a structure that makes use of a set of primitives P is a structure using the
primitives (P − Pin)

⋃
Pout.

3 Transformations and Translation

In this section, we first investigate general properties of basic transformations
and then introduce properties for complex translations.

Automatic Generation of Model Translations 41

3.1 Properties of the Basic Transformations

Several properties characterizing the correctness, the effectiveness and the effi-
ciency of a basic transformation can be defined, and this issue has been largely
debated in the literature (see for instance [2]). Among them, we have focused
our attention into the properties that follow.

The first property states a consistency relationship between the schema trans-
lation and the data translation which compose a basic transformation.

Definition 1. A basic transformation b = (σ, δ) is consistent if for each schema
S ∈ S(Ms) and for each instance I of S, δ(I) is an instance of σ(S).

A key aspect for a schema transformation is its “correctness”, that is, the fact
that the output schema is somehow equivalent to the input one. The equivalence
of two schemas is a widely debated topic in literature, and all the approaches
rely on the ability of the target schema to represent the same information of the
source one [15,16,17]. In other words, all data associated with the input schema
can be recovered from the data associated with the output schema. This notion
has been named equivalence preserving or information preserving and have been
formalized by means of the following properties:

– a data translation δ from Ss to St is query preserving w.r.t. a query language
L if there exists a computable function F : L → L such that for any query
Q ∈ L over Ss and any I ∈ I(Ss), Q(I) = F (Q)(δ(I));

– a data translation δ from Ss to St is invertible if there exists an inverse δ−1

of δ such that, for each instance I ∈ I(Ss), δ−1(δ(I)) = I.

In our context, the property that actually guarantees the equivalence depends
on the internal model used to represent the schemas. In [1] the internal model is
based on a relational dictionary, and it has been shown that calculus dominance
and query dominance are equivalent for relational settings [16]. In contrast, in-
vertibility and query preservation do not necessarily coincide for XML mappings
and query languages [18,15]. In the following, we will refer to a notion of “equiv-
alence preserving” that relies on query preservation.

As we have shown in the introduction, even if we assume that all the trans-
formations preserve the above properties, there are transformations that are
preferable than others. Different issues can be considered in this respect: re-
dundancy, ease of update maintenance, ease of query processing with respect to
certain workload, and so on. We therefore assume that a preference relationship
can be defined over the basic transformations according to one or more of these
aspects. One important point is that this preference relationship depends, in
many cases, on the target model. For instance, a translation to an object model
(with both relationships and generalizations) that is able to identify generaliza-
tion hierarchies between classes is preferable to a translation that only identifies
generic relationships between them. This is not true if the target is the relational
model.

First of all, we say that two basic transformations b[Pin :Pout] and b′[P′in :P′out]
are comparable if either Pin ⊆ P′in or P′in ⊆ Pin.

42 P. Papotti and R. Torlone

Definition 2. Given a set L of basic transformations and a target data model
Mt a preference relationship >Mt towards Mt is a poset over comparable trans-
formations in L. Given two comparable basic transformations b1 and b2 in L, we
say that b1 is preferable to b2 w.r.t. Mt if b1 >Mt b2.

Example 1. Let P1 be a pattern denoting an Entity, P2 be a pattern denoting a
Relationship, and P3 a pattern denoting a Generalization. Given the basic trans-
formations b1 with signature [{P3}:{P1, P2}], which translates generalizations
into entities and relationships, and b2[{P3}:{P1}], which simply translates gen-
eralizations into entities. Then, we can state that b1 >Mt b2 if Mt is a model
with entities and relationships. The rationale under this assertion is that b1 takes
more advantage than b2 of the expressiveness of the target data model.

In Section5, we will concretely specify a specific preference relationship that is
suitable for our purposes.

We finally define a property for the evaluation of the performance of a basic
transformation. The best way to measure the effective cost of a transformation
would be the evaluation of its execution at runtime. Obviously we would prefer to
not actually execute basic transformations on instances to compare their perfor-
mance. Since execution time optimization is not our primary goal, an estimation
of each basic transformation complexity is a reasonable solution. In particu-
lar, we assume that the designer provides a specification of the complexity of
the algorithm with respect to the size of the database. For instance, the com-
plexity of the unnesting transformation described in the previous is linear with
respect to the database. We denote the complexity for a basic transformation bx

with c(bx).

Definition 3. Given a set L of basic transformations an efficiency relationship
� is a total order over L such that bi � bj if c(bi) > c(bj). Given two basic
transformations bi and bj, we say that bi is more efficient than bj if bj � bi.

3.2 Properties of Translations

We have just defined some local properties of transformations, but we would like
to study also global properties of entire translations.

It has been observed that, in the transformational approach, if every transfor-
mation bi in the library is equivalence preserving, the information preservation
for the sequential application of two or more transformations is guaranteed by
construction [2,17]. The same guarantee applies for the schema validation: the
generated output schema cannot contain primitives that are not allowed in the
target data model. It turns out that a translation t = b1, . . . , bn from Ms to Mt

is consistent if each bi in σ is consistent.
We now extend the preference property to translations.

Definition 4. Given two translations t = b1, . . . , bm and t′ = b′1, . . . , b′n and a
target model Mt, t >Mt t′ if: (i) there exists a transformation bi in t such that
bi >Mt b′j, for some transformation b′j in t′, and (ii) there is no transformation
b′k in t′ such that b′k >Mt bl for some transformation bl in t.

Automatic Generation of Model Translations 43

It is easy to show that the above relationship is a poset over the set of all possible
translations.

Example 2. Assume that L contains three basic transformations: b1 with sig-
nature [{P3}:{P1, P2}], which translates generalizations (P3) in entities and re-
lationships (P1 and P2 respectively), b2 with [{P1, P2}:{P4}], which translates
entities and relationships into elements (P4), and b3[{P3}:{P1}], which translates
the generalizations into entities. Consider a target data model Mt with just the
element pattern (a subset of DTD). If we assume the preference discussed in
Example 1 (b1 >Mt b3), and consider the following translations: t1 = b3, b2,
t2 = b2, b3, and t3 = b1, b2, then we have that t3 >Mt t2 and t3 >Mt t1.

The efficiency of a translation can be defined with different levels of granularity.
In [3] we proposed a preliminary evaluation based on the length of the translation,
that is, the number of basic transformations that composed the actual solution.
We now extended the definition: the efficient solution is the translation t that
globally minimize the cost of the basic transformations b1, . . . , bn that compose t.

Definition 5. Given two schema translations t = b1, . . . , bm and t′ = b′1, . . . , b′n,
t is more efficient than t′ if maxm

j=1 c(bj) < maxn
i=1 c(b′i).

If we consider the data model translation problem (a translation of source schema
S into a target model Mt given a library L of basic transformations {b1, . . . , bn}),
it turns out that the above properties lead to two different classifications of the
possible solutions for the problem based on the orthogonal notions of efficiency
and preferability.

Definition 6. A translation t is optimal if there is no other translation that is
more preferable and more efficient than t.

Note that, in general, several optimal translations can exist. We will see in the
next section how the classification of translations can be the basis for an au-
tomatic ranking of the solutions and for an efficient algorithm that retrieves
solutions without generating all the alternatives.

4 Automatic Generation of Translation

In this section we present two approaches to the problem of the automatic gen-
eration of translations. The former is based on an exhaustive search, the latter
relies on a best-first technique and is much more efficient.

4.1 Computing and Ranking all Translations

In [3], we have proposed a basic strategy that follows a greedy approach: given a
source schema Ss, a target model Mt and a library of basic transformations L, this
method applies exhaustively the following rule over a working schema S, which
initially coincides with Ss, and an initially empty sequence of transformations t.

44 P. Papotti and R. Torlone

if (a) the S makes use of a pattern P that is not allowed in the target model,
and (b) there exists a transformation b(σ, δ) ∈ L whose effect is the removal
of P and (possibly) the introduction of patterns allowed in the target model,
then append b to t and set S to σ(S).

When condition (a) fails, the process terminates successfully and the sequence
t is a solution for the data translation problem.

This simple method can be extended to an algorithm ComputeAllSolu-
tions that generates all the possible solutions for Ss. It is possible to show that
this algorithm is complete in the sense that every valid translation from the Ss

to the target data model is in the solution set T . This algorithm is shown in
Figure 3.

Input: A schema Ss, a target model Mt and a library of basic
transformations L = {b1, . . . , bn}.
Output: A set of all translations T = {t1, . . . , tn} of Ss into Mt (each ti is a
sequence of basic transformations in L = {b1, . . . , bn}).
begin
(1) Set t to the empty translation and st to the structure of Ss;
(2) Add (t, st) to the set of possible solution Sol;
(3) while, for each s ∈ Sol, there is a pattern P

in st s.t. P is not allowed in Mt do
(4) let B denote the set of all (bp, t′, st′

i) branches under st such that:
(a) bp is a basic transformation whose input signature matches P ,
(b) t′ is a copy of the actual t,
(c) st′

i is the resulting structure after bp’s application;
(5) for each branch (bp, t′, st′

i) in B:
(6) if bp ∈ t′:
(7) then discard (bp, t

′, st′
i);

(8) else append bp to t′ and add (t′, st′
i) to Sol.

end while
(9) Add the valid translation t to the solution’s set T .
(10) Return T .
end

Fig. 3. ComputeAllSolutions algorithm

Observe that in step (3), we allow the search of a basic transformation to
consider any pattern of the input structure st. Since there could be basic trans-
formations that are commutative (the result of the translation could not depend
on the order of the basic transformations) we can have solutions that are different
but composed by the same basic transformations set. For example, translating to
the DTD data model, the basic transformation bx that removes a metaprimitive
that cannot be transformed, as the Namespace construct, can be added to the
translation at any place in the sequence: bi, bj , bx ≡ bx, bi, bj ≡ bi, bx, bj.

Automatic Generation of Model Translations 45

We can have translations in T that are equivalent, but notice that we only
have translations in which the same transformation does not appear more than
once. Consider steps 5-8: if a basic transformation has been already added to t,
we discard the branch. This choice prevents also loops in case of pairs of basic
transformations that add and remove the same metaprimitive (of a pattern of
them).

This algorithm captures all the possible valid translations, including optimal
ones. Consider now the efficiency and preferability issues. We can use them to
rank the solutions in T and expose to the user only the translations that are in the
optimal set. Given the set of solutions T = {t1, . . . , tn} we can order T according
to >Mt and according to �: we get two ordered lists of transformations. The
optimal set is the union of the top elements in these lists. We show experimentally
next that in the optimal set there are often several solutions. This is rather
intuitive: some solutions are better in terms of efficiency, others are better in
terms of preferability.

Note that, even if the solution’s generation and ranking are efficient, an ex-
haustive exploration of the search space is required. In particular, if the set of
basic transformations is large, an exhaustive search can be expensive, since the
complexity of the algorithm depends exponentially on the size of the library.
Another approach it is introduced next to overcome this limit.

4.2 Best-First Search Algorithm

The approach we have followed to limit the search is based on the A∗ strategy.
This algorithm avoids the expansion of paths of the tree that are already expen-
sive and returns as first result the best solution with respect to an appropriate
function f(n) that estimates the total cost of a solution. Specifically, the value
of f(n) for a node n is obtained as the sum of g(n), the cost of the path so far,
and the estimated cost h(n) from n to a valid solution. This function is rather
difficult to define in our context. Indeed, the A∗ search on a tree grants the best
solution only if h(n) is admissible, that is, only if for every node n, h(n) ≤ h∗(n),
where h∗(n) is the real cost to reach the solution from n. We have followed here
a practical solution: h(n) is defined as a piecewise function that returns zero if
the current structure associated with n is empty, and it is proportional to “dis-
tance” to the target, that is, the number of patterns of the current structure not
occurring in the target model when the set is not empty.

The crucial point is the identification of some heuristics able to limit the
search space and generate efficiently good solutions. For each node we consider
two properties:

– the size, l(n), that is the length of the current translation in terms of the
number of basic transformations that compose it;

– the recall, r(n), which corresponds to the number of patterns of the target
model not occurring in the current structure associated with n.

To this end, we have defined a cost function for each node n in the search tree
as the linear combination of the two functions: g(n) = w1 × l(n) + w2 × r(n).

46 P. Papotti and R. Torlone

The weights w1 and w2 have been chosen such that the recall is privileged to the
length of a translation. Intuitively, modifying the w1 and w2 we can choose a
solution with a better efficiency or a better preferability. Notice that we cannot
use the complexity values for the cost function g(n), even if it more precise than
the translation size: we must use a value that is comparable to the heuristic
h(n), that it is based on the number of patterns, since we cannot know a priori
the complexity of translation.

P1

P2

P3

P4

CurrentTranslation = {P1}
CurrentStructure = {P2, P3, P4, P5, P6, P8}
CandidateTransformations = {P2, P3, … }

CurrentTranslation = {B1, B2}
CurrentStructure= {P3, P4, P5, P6, P8,

P9, P10}
CandidateTransformations = {B3, B5, … }

CurrentTranslation = {B1, B2, B3}
CurrentStructure= {P3, P4, P5, P8, P9, P10}
CandidateTransformations= {B4, B10, … }

root
CurrentTranslation = { }
CurrentStructure = {P1, P2, P4, P5, P6}
CandidateTransformations = {B1, B4, … }

CurrentTranslation = {B1, B2, B3, B4}
CurrentStructure= {P4, P5, P7, P8, P9, P10}
CandidateTransformations = {B12, … }

…

…

…

…

AttributeOfRelationP8

KeyP9

ForeignKeyP10

….…

RelationP7

AttributeP6

OrderedSequenceP5

ChoiceP4

FlatComplexElementP3

NestedComplexElementP2

AtomicElementP1

AttributeOfRelationP8

KeyP9

ForeignKeyP10

….…

RelationP7

AttributeP6

OrderedSequenceP5

ChoiceP4

FlatComplexElementP3

NestedComplexElementP2

AtomicElementP1

{P3 }, {P7}B4

….…

{P6}, {P8}B3

{P2}, {P3, P9, P10}B2

{P1}, {P8}B1

{P3 }, {P7}B4

….…

{P6}, {P8}B3

{P2}, {P3, P9, P10}B2

{P1}, {P8}B1

……

Fig. 4. The search space for the translation

Let us introduce in Figure 4 a practical example to show, in more detail,
how the algorithm proceeds. In the example we refer to metaprimitives and pat-
terns with same notation PX, see for instance P2, that is a ComplexElement that
nests another ComplexElement. The example refers to the translation of an XML
Schema and its data set into the relational model. Each node of the tree corre-
sponds to a possible state reached by the execution of the algorithm. The first
observation is that for each node there could be many candidate transforma-
tions and so in principle, to find the optimal solution according to the properties
discussed in Section 3, all the possible alternatives should be evaluated. Each
node has associated three sets: (i) the set of PX (metaprimitives or patterns)
involved in the current structure, the current structure, (ii) the set of candidate
transformations, and (iii) the set of transformations collected in the preceding
states, that is the current translation. As we said, the current structure is initial-
ized to the metaprimitive used in the source schema. For each candidate basic
transformation b of a node n, there is a child whose structure is the effect of b

Automatic Generation of Model Translations 47

on the current structure of n. A leaf of the tree corresponds to a state in which
no candidate transformation exists: if the current structure is not valid for the
target model it is a failing state. The algorithm stops when the current struc-
ture is valid for the target model definition, this would be a successful state or
a solution. In the example at hand, a successful solution is composed by the set
of following transformations.

– Atomic elements have been changed into relational attributes.
– Nested elements have been unnested.
– XML attributes have been changed into relational attributes.
– Complex flat elements have been turned into relations with keys.
– Choices have been implemented by means of separate relations.
– Order of sequences have been coded into relational attributes.

The time complexity of the algorithm strictly depends on the heuristic. It
is exponential in the worst case, but is polynomial when the heuristic function
h(n) meets the condition |h(n)−h∗(n)| ≤ O(log h∗(n)), where h∗(n) is the exact
cost to get from n to the goal. This condition cannot be guaranteed in our con-
text, since a basic transformation could remove or transform more than just one
pattern from the input structure, but in the average case it is polynomial as we
show experimentally shortly. More problematic than time complexity can be the
memory usage for this algorithm. We have also tried variants of A∗ able to cope
with this issue, such as memory-bounded A∗(MA∗), but we never hit memory
limit even in the original implementation, since the heuristic we used removes
effectively not promising paths so that the algorithm does not expand them.

5 Testing the Approach

To evaluate the effectiveness of our approach, we have implemented the transla-
tion process within a prototype and we have conducted a series of experiments
on several schemas of different data models that vary in terms of dimension and
complexity.

In our tests, we have used a specific preference relationship. Consider again
the example in Figure 1: the output schema d takes more advantage of the
expressiveness of the target model than schemas b or c. It follows that the
translation to schema d it is preferable to the other solutions because it also
includes the information on cardinalities, which is a construct available in the
target data model. For a translation tx on an input schema S, we denote the
number of distinct valid patterns in the target schema by |tx(S)| and we assume
that t1 >Mt t2 if |t1(S)| > |t2(S)|.

The results of these experiments are summarized in Figure 5. Each row
presents quantitative results for a schema translated from a source model (first
column) to a target model (fourth column). The actual number of metaprimi-
tives occurring in the schema is in the second column |S|. The size complexity
is estimated by the number of distinct metaprimitives involved in the source
schema and it is reported in the third column |C|.

48 P. Papotti and R. Torlone

54
54
27
42
42
20
20
20
35
35
16
16

|S|

57766615.46DTD8RELATIONAL

PrefSize

2
2
3
6
4
1
4
3
1
2
4

A* First
Solution

5
1
5
1

18
1
1
2
1
5

18

Number of
optimal

sol.

1
1
1
1
2
1
2
2
1
1
2

Sol. with
min. size

67425.113ODL8RELATIONAL

5517632.5352RELATIONAL5XMLSCHEMA
44312.43DTD5XMLSCHEMA

56434.28ODL6RELATIONAL
662444.224XMLSCHEMA6RELATIONAL
551631.36DTD5RELATIONAL

8.5

0.4
1.4

3.4
2.5

Alg.
time

2

1
3

1
3

Min.
size

89

6
1

4
16

Sol. with
max.

preferabi.

5

5
5

4
4

Max.
pref.

5

5
5

4
4

121

2
8

367
384

Num.
of

sol.

XMLSCHEMA6DTD

ER5RELATIONAL
XMLSCHEMA5RELATIONAL

ER4XMLSCHEMA
ODL4XMLSCHEMA

Target Model|C|Source
Schema

54
54
27
42
42
20
20
20
35
35
16
16

|S|

57766615.46DTD8RELATIONAL

PrefSize

2
2
3
6
4
1
4
3
1
2
4

A* First
Solution

5
1
5
1

18
1
1
2
1
5

18

Number of
optimal

sol.

1
1
1
1
2
1
2
2
1
1
2

Sol. with
min. size

67425.113ODL8RELATIONAL

5517632.5352RELATIONAL5XMLSCHEMA
44312.43DTD5XMLSCHEMA

56434.28ODL6RELATIONAL
662444.224XMLSCHEMA6RELATIONAL
551631.36DTD5RELATIONAL

8.5

0.4
1.4

3.4
2.5

Alg.
time

2

1
3

1
3

Min.
size

89

6
1

4
16

Sol. with
max.

preferabi.

5

5
5

4
4

Max.
pref.

5

5
5

4
4

121

2
8

367
384

Num.
of

sol.

XMLSCHEMA6DTD

ER5RELATIONAL
XMLSCHEMA5RELATIONAL

ER4XMLSCHEMA
ODL4XMLSCHEMA

Target Model|C|Source
Schema

Fig. 5. Experimental results

The first result we report for each translation is the total number of valid
possible solutions. It turns out that even for a simple source schema (e.g. a DTD
with a few distinct metaprimitives) there are a lot of possible solutions. For in-
stance, valid translations from an XML schema into ODL, as well as into the
ER or the relational model, are hundreds. As we said, many of these solutions
differ only by the order in which basic transformations occur in the translation,
but we still want a criterium to limit the search as discussed in the previous
section. Following columns report: (i) the number of solutions with minimal size
and the corresponding size value, and (ii) the number of preferable solutions and
the corresponding value. We reported the size results instead of the complexity
ones to compare them with the A∗ results. The optimal solutions are those both
efficient and preferable. It turns out that in several cases optimal solutions do
not exists and this confirms the intuition that longer solutions may be more
“accurate”. We also report the overall time (in minutes) the exhaustive search
algorithm took to find all the possible solutions for a translation. Notice that this
value increases with the number of distinct metaprimitives of the source schema,
but in a rather irregular way, since it depends also on the library of transfor-
mations and the target model complexity. Indeed, the problem depends on the
complexity of the models involved. The required time to find all the solutions
becomes critic with models that present more than five distinct metaprimitives.
Conversely, the translations involving a restricted number of metaprimitives re-
quire a rather limited effort and increase linearly with the complexity of the
source schema. Finally, notice in the last two columns the results for the A∗

implementation. The first column reports the size of the first solution returned
and the second one its preferability. The solution coincides with the optimal for
translations between XML based models, whereas in the other cases preferability
is close or equal to the best value. We expected this result, since we have tuned
the heuristics to maximize the preferability of the solution.

We further evaluated the performance of our best-first search algorithm ag-
gregating results under four main scenarios: (i) translations between database

Automatic Generation of Model Translations 49

models (Relational, ER, ODL), (ii) between XML based models (XSD, DTD),
(iii) from XML based models to database ones and (iv) vice versa. Figure 6
shows the performance of the A∗ algorithm on the four scenarios with increasing
schema complexity on the x-axis. We ran several examples for each scenario,
using schemas with different structures, and reporting average results on the
charts. The chart with the size analysis is on the left hand side of the figure. As
expected, the number of transformations increases with the number of distinct
metaprimitives in the source schema. The linearity in (iii) and (iv) represents the
heterogeneity between the two classes of models: for almost each metaprimitive
the system uses a transformation from the library. Lines (i) and (ii), instead,
show that translations between models that share many metaprimitives require
only few basic transformations: this fact strongly depends on the quality of the
metamodel implemented in the system. The chart on the right hand side of the
figure shows the results of the preferability analysis. The algorithm scales well for
the four scenarios: the number of metaprimitives in the target schemas increases
with the increasing complexity of the input schemas. In particular, in scenarios
(i) and (iv) the system translates with almost linear results: these performances
depend on the low complexity of the considered source models, that is, it is easier
to find a preferable solution translating a schema from a database model, which
presents less constructs and less patterns than an XML data model.

Size

0

1

2

3

4

5

6

7

8

4 5 6 7 8 9

Number of distinct source constructs

N
u

m
b

er
 o

f
tr

an
sf

o
rm

at
io

n
s

(i) From DB to DB
(ii) From XML to XML
(iii) From XML to DB
(iv) From DB to XML

Preferability

0

1

2

3

4

5

6

7

8

4 5 6 7 8 9

Number of distinct source constructs

N
um

be
r

of
 ta

rg
et

 c
on

st
ru

ct
s

(i) From DB to DB
(ii) From XML to XML
(iii) From XML to DB
(iv) From DB to XML

Fig. 6. A∗ search strategy analysis

6 Conclusions

In this paper, we have presented new techniques, and supporting results, for
the automatic generation of data model translations. We have defined a number
of properties for evaluating the quality of the translations and we have exper-
imented them evaluating the translations generated by a prototype. It turned
out that the system can generate all the optimal solutions with respect to these
properties, but this usually requires significant effort. However, by adopting a
best-first search algorithm and appropriate heuristics, a solution can be retrieved
efficiently and it is usually optimal in terms of preferability.

In the future, we plan to investigate and develop supporting tools for the
design of information preserving transformations. Our work is now focusing on a

50 P. Papotti and R. Torlone

formal language to express transformation between data models definitions and
a graph-based, high-level notation to easily define them.

References

1. Atzeni, P., Cappellari, P., Bernstein, P.A.: Model-independent schema and data
translation. In: EDBT. pp.368–385 (2006)

2. Atzeni, P., Torlone, R.: Management of multiple models in an extensible database
design tool. In: EDBT, pp. 79–95 (1996)

3. Papotti, P., Torlone, R.: Heterogeneous data translation through xml conversion.
J. Web. Eng. 4(3), 189–204 (2005)

4. Fernandez, M.F., Kadiyska, Y., Suciu, D., Morishima, A., Tan, W.C.: Silkroute: A
framework for publishing relational data in xml. ACM Trans. Database Syst. 27(4),
438–493 (2002)

5. Bohannon, P., Freire, J., Roy, P., Siméon, J.: From xml schema to relations: A
cost-based approach to xml storage. In: ICDE (2002)

6. Ramanath, M., Freire, J., Haritsa, J.R., Roy, P.: Searching for efficient xml-to-
relational mappings. In: Xsym, pp. 19–36 (2003)

7. Shu, N.C., Housel, B.C., Taylor, R.W., Ghosh, S.P., Lum, V.Y.: EXPRESS: A Data
EXtraction, Processing, amd REStructuring System. ACM TODS 2(2), 134–174
(1977)

8. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and
Query Answering. TCS 336(1), 89–124 (2005)

9. Bernstein, P.A.: Applying model management to classical meta data problems. In:
CIDR. pp. 209–220 (2003)

10. Bowers, S., Delcambre, L.M.L.: The uni-level description: A uniform framework
for representing information in multiple data models. In: ER, pp. 45–58 (2003)

11. Bernstein, P.A., Melnik, S., Mork, P.: Interactive schema translation with instance-
level mappings. In: VLDB. pp.1283–1286 (2005)

12. MOF: OMG’s MetaObject Facility. http://www.omg.org/mof/ (2006)
13. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: PODS. pp. 233–246

(2002)
14. Hull, R., King, R.: Semantic database modeling: Survey, applications, and research

issues. ACM Comput. Surv. 19(3), 201–260 (1987)
15. Bohannon, P., Fan, W., Flaster, M., Narayan, P.P.S.: Information preserving xml

schema embedding. In: VLDB (2005)
16. Hull, R.: Relative information capacity of simple relational database schemata.

SIAM J. Comput. 15(3), 856–886 (1986)
17. Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: Schema equivalence in heteroge-

neous systems: bridging theory and practice. Inf. Syst. 19(1), 3–31 (1994)
18. Arenas, M., Libkin, L.: A normal form for xml documents. ACM Trans. Database

Syst. 29, 195–232 (2004)
19. Kensche, D., Quix, C., Chatti, M.A., Jarke, M.: GeRoMe: A Generic Role Based

Metamodel for Model Management. In: OTM Conferences. pp.1206–1224 (2005)

http://www.omg.org/mof/

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 51–65, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Handling Instance Correspondence in
Inter-organisational Workflows

Xiaohui Zhao1, Chengfei Liu1, Yun Yang1, and Wasim Sadiq2

1 Faculty of Information and Communication Technologies
Swinburne University of Technology

Melbourne, Victoria, Australia
{xzhao, cliu, yyang}@ict.swin.edu.au

2 SAP Research
Brisbane, Australia

wasim.sadiq@sap.com

Abstract. As business collaboration involves multiple business processes from
different participating organisations, it becomes a challenging issue to manage
the complex correspondence between instances of these business processes. Yet
very limited support has been provided by inter-organisational workflow
research. In this paper, we develop a formal method to specify instance
correspondence based on a novel correspondence Petri net model. In this
method, cardinality parameters are defined to represent cardinality relationships
between collaborating business processes at build time, while correlation
structures are designed to characterise correspondence between collaborating
business process instances at run time. Corresponding algorithms are also
developed to generate the correspondence Petri nets for collaborative business
processes, and to trace instance correlation on the fly using the generated
Petri nets.

Keywords: Inter-organisational workflow management, workflow instance
correspondence, correspondence Petri net.

1 Introduction

In recent years, organisations have been undergoing a thorough transformation
towards highly flexible and agile collaborations [1]. Organisations are required to
dynamically create and manage collaborative business processes to grasp market
opportunities [2]. A collaborative business process involves multiple parties and their
business processes, thus it inevitably brings new challenges to workflow
choreography and orchestration. One of the most pressing issues in this context is the
instance correspondence.

Complex instance correspondences may exist at both build time and run time. Here,
we characterise instance correspondences in terms of cardinality and correlations.
Thereby, we can define and represent statical and dynamic correspondence when
modelling and executing a collaborative business process.

52 X. Zhao et al.

Some research efforts were put in this field. Multiple workflow instantiation was
discussed by Dumas and ter Hofstede [3], using UML activity diagrams. Later they
extended their work to service interactions [4]. van der Aalst et al. [5] deployed
coloured Petri nets to represent multiple workflow cases in workflow patterns, and
implemented it in the YAWL system [6]. Guabtni and Charoy [7] extended the
multiple instantiation patterns and classified multiple workflow instantiation into
parallel and iterative instances. However, most of the above research focus on
interaction patterns, and sidestep the instance correspondence issue in collaborative
business processes. WS-BPEL (previously BPEL4WS) [8] uses its own correlation set
to combine workflow instances, which have same values on specified message fields.
However, WS-BPEL defines a business process in terms of a pivot organisation. This
results in that a WS-BPEL business process only represents the interaction behaviours
of the pivot organisation with its neighbouring organisations. This feature limits its
application for complex business collaborations, which are likely to include
interactions beyond neighbouring organisations.

Aiming to address this issue, this paper proposes a method to support instance
correspondences from an organisation-oriented view. In our method, cardinality
parameters are developed to characterise cardinality relationships between
collaborating business processes at build time. Besides, a correlation structure is
combined with each instance to trace dynamic workflow correlations at run time. In
addition, we formalise this method with a novel correspondence Petri net to describe
instance correspondence precisely.

The rest of this paper is organised as follows: Section 2 analyses the instance
correspondence within collaborative business processes with a motivating example. In
Section 3, we discuss workflow cardinality and correlation issues in business
collaboration context. In Section 4, we establish a novel correspondence Petri net
model with extensions on workflow cardinality and correlation as our formal method.
In Section 5, we develop algorithms to illustrate how to model collaborative business
processes and manage run time executions of business collaborations with these
special Petri nets. Section 6 concludes this paper and indicates our future work.

2 Motivating Example

Figure 1 illustrates a business collaboration scenario, where a retailer may initiate a
product-ordering process instance that orders products from a manufacturer. The
manufacturer may use a production process instance to receive orders from retailers.
Once it obtains enough orders, the production instance may start making goods in
bulk. At the same time, the manufacturer may assign several shippers to handle goods
delivery. These shippers arrange their goods transfer according to their transfer
capability and route optimisation etc. Finally, these shipping instances send goods to
the proper retailers according to these correlations.

From this collaboration scenario, we see that an instance of one business process is
likely to interact with multiple instances of another business process. For example,
one production instance may correspond to multiple product-ordering instances, and
multiple shipping instances may correspond to multiple product-ordering instances.

 Handling Instance Correspondence in Inter-organisational Workflows 53

In contrast to such complex quantitative relationship, most current workflow
modelling approaches simply assume and support a one-to-one relationship between
business process instances. Although such requirements are quite common in B2B
collaborations, they are primarily supported by enterprise applications internally and
not adequately by workflow management systems.

a1: Generate
Purchase Plans

a2: Place Order
with Manufacturer

a3: Invoice
Customer

a4: Pay Invoice

a6: Approve
Payment

a5: Receive Goods

b1: Collect Order

b2: Schedule
Production

b3: Schedule
Delivery

b4: Confirm
Delivery

b5: Make Goods

b6: Dispatch Goods

b7: Invoice Retailer

c1: Collect Order

c5: Transfer
Goods

c2: Schedule Van

c3: Confirm
Delivery

Shipment Order

Notification
of Delivery

Date

Product
Order

Notification of
Delivery Date

Invoice

Org A (Retailer) Org B (Manufacturer) Org C (Shipper)

Process A (Product Ordering) Process B (Production) Process C (Shipping)

Notification of Delivery

c4: Pick Up GoodsConsignment

Fig. 1. Motivating example

At run time, instance correspondences are subject to the correlations between
instances of different business processes. These correlations result from the
underlying business semantics of interactions. In real cases, such correlations may be
realised by real interactions (direct) or passing unique identifiers (indirect), such as
order number. Sometimes, real interactions between instances may be triggered by
time duration, external events etc. In this example, the manufacturer’s production
instance is correlated with retailers’ product-ordering instances during the real
interaction of receiving orders from retailers. Afterwards, the manufacturer contacts
shippers for booking deliveries. At the same time, the manufacturer also passes the
order numbers to proper shippers. With these order numbers, shippers’ shipping
instances are indirectly correlated with retailers’ product-ordering instances.
Following these correlations, shippers can pick up produced goods from the
manufacturer, and then transfer them to proper retailers.

From the above discussion, we see that workflow correlations combine business
interactions into a meaningful collaboration. Some existing approaches provide
primitive support for correlation handling, such as message correlations in WS-BPEL.
As discussed in Section 1, a WS-BPEL business process generated for a retailer
cannot cover the interactions between the manufacturer and shippers, not to mention
the correlations between their production and shipping instances.

54 X. Zhao et al.

3 Cardinality and Correlation Issues in Business Collaboration

In a collaborative business process, each participating organisation may play a
specific role and only care about its own interests. For this reason, participating
organisations do not wish, and may not be allowed to know the details of their partner
organisations. Therefore, each participating organisation only has a partial and
restricted view of the whole collaboration [9-12]. Due to diverse partnerships and
authorities, different organisations may view the same collaboration differently.

3.1 Workflow Cardinality

Figure 2 shows a possible instance correspondence situation of the collaborative
business process in the motivating example. In general, there are four possible
cardinality relationships between a pair of interacting business processes, viz., single-
to-single, single-to-many, many-to-single and many-to-many. In the organisation-
oriented view, we substitute the four bilateral cardinality relationships with the pair
of unidirectional cardinality relationships. For example, a single-to-many relation-
ship between business processes pB and pC can be represented by a “to-many”
relationship from pB to pC and a “to-one” relationship from pC to pB. A many-to-many
relationship between pA and pC can be represented by a “to-many” relationship from
pA to pC and a “to-many” relationship from pC to pA. In this paper, we define these two
cardinality relationships with two workflow cardinality parameters,

[:1], denotes a to-one cardinality relationship;
[:n], denotes a to-many cardinality relationship.

As process interactions are implemented in the form of messaging behaviours, we
incorporate these two cardinality parameters to message modelling. Conceptually, a
message type can be defined as follows:

Definition message type. A message type m is defined as a tuple (ρ, α, β, f, χ),
where

Process A Process B Process C
ia1 ia2 ib1 ic1 ic2 ic3

Fig. 2. Workflow cardinality of motivating example

 Handling Instance Correspondence in Inter-organisational Workflows 55

− ρ is m’s messaging direction, ‘in’ or ‘out’. These two values denote that m stands
for an incoming message or an outgoing message, respectively.

− α is a task of a business process. α represents m’s source task, if m is an outgoing
message; or it represents m’s target task.

− β is a set of tasks. This set of tasks represents m’s possible source tasks, if m stands
for an incoming message; or it represents m’s possible target tasks. Each task in β
is likely to send or receive an instance of m according to m’s direction.

− f : β → { [:1], [:n] } is a mapping from β to the two discussed cardinality
parameters.

− χ denotes the specification of the message body.

Here, α and β together represent the cardinality between business processes at type
level. Two message types are said to be a pair if they have complementary source /
target tasks and the same message body specification. The details of linking internal
business processes into a collaborative business process via message types will be
discussed in Section 5.

3.2 Workflow Correlation

Workflow correlation denotes the semantic relation between business process
instances in the same business collaboration. Instances are directly correlated, when
they “shake hands” during interactions. In addition, some instances may inherit pre-
existing correlations from their counterparts during interactions. This correlation
inheritance reflects the extending of business semantic relations.

In the scenario shown in Figure 2, firstly instances ia1 and ia2 are correlated with
instance ib1, when ib1 accepts orders from ia1 and ia2; Secondly, ib1 contacts instances
ic1, ic2 and ic3 for delivery booking. Here, suppose ib1 assigns ic1 and ic2 to transfer
products for ia1, and assigns ic2 and ic3 to transfer products for ia2. Thereby instances
ic1, ic2 and ic3 are directly correlated with ib1, and they also inherit previous
correlations from ib1. In this example, ic1 and ic2 inherit the correlation between ia1
and ib1 from ib1, while instances ic2 and ic3 inherit the correlation between ia2 and ib1
from ib1. This inheritance implies that shippers require consignees’ information to
arrange their shipping schedules. Corresponding shipping instances are therefore
indirectly correlated with retailers’ product-ordering instances. This inheritance is
realised by passing retailers’ order numbers from the manufacturer to shippers.

Based on these workflow correlations, we can derive a logical instance of a
participating business process instance in the organisation-oriented view. From a
business process instance ζ of organisation g, a so-called logical instance ξ consists of
ζ and all its related instances of business processes belonging to other organisations
through the instance correlations at run time. Here, organisation g is called host
organisation of ξ, and ζ is called base business process instance of ξ. In terms of
workflow correlations, we can define a logical instance as follows,

Definition logical instance. In the context of a collaborative business process Λ, the
logical instance for a base business process instance ζ is defined as tuple (ζ, Λ, Δ),
where Δ is the set of business process instances that are correlated with ζ in the
context of Λ.

56 X. Zhao et al.

The set of correlated business process instances evolves during the business
collaboration. For example, if we start from instance ia1, the set of correlated business
process instances for ia1 contains no instances at the beginning; while it includes
instance ib1 right after ib1 accepts its order, i.e., Δ = { ib1 }; afterwards instances ic1
and ic2 may be added after ib1 books delivery with ic1 and ic2, then Δ = { ib1, ic1, ic2 }.

4 Correspondence Representation Methodology

Petri nets were invented by Carl Petri in the sixties for modelling concurrent
behaviours of a distributed system. A Petri net is a bipartite graph whose nodes can be
distinguished in places and transitions, which are graphically represented by circles
and rectangles, respectively. A Predicate / Transition or coloured Petri net can
differentiate tokens with unique identifications or a set of colours. Each place can
contain tokens of different identifications or colours at the same time. Each arc may
be assigned with an expression to restrict what tokens and the number of tokens that
can transfer through. Therefore, a Petri net can represent multiple process executions
within one net. Now, Petri nets are widely applied in concurrency control and process
simulation [13].

4.1 Extensions to Petri Nets

To support workflow cardinality and correlation, we extend traditional Petri nets with
new parameters and functions together with special places and transitions.

1. Cardinality parameters
An auxiliary place is used to denote a message between two business processes,
which may be represented by two sub nets. In Figure 3 (a), auxiliary place p is drawn
as a shaded circle, while sub nets A and B are differentiated by white and striped
circles.

Multiple Senders

Multiple Receivers
(b) (c)

(d) (e) (f)

...

... ...

...

...

...

...

...
...

...

...
...

...

...

...

...

...

...

... ...

...

...

...

...

...

...

...

...

[:1] [:n]

...
...

...

...

A

B

t2

t1

p

(a)

Fig. 3. Cardinality parameters

 Handling Instance Correspondence in Inter-organisational Workflows 57

Transition t1 of A is an interaction requesting transition, while transition t2 of B is an
interaction responding transition. Unidirectional cardinality parameter “[:1]” on the
arc linking t1 to p denotes that A views this interaction as a “to-one” cardinality, i.e.,
each token in A interacts with one token in B from A’s view. Parameter “[:n]” on the
arc linking p to t2 denotes a “to-many” cardinality, i.e., each token in B corresponds
multiple tokens in A from B’s view. Therefore, we see that an auxiliary place
separates the cardinality views from different perspectives.

2. Multiple message senders / receivers
Particular structures are used to represent the scenarios where multiple possible
senders or receivers are instances of different business processes. In regard to multiple
senders, Figure 3 (b) shows an interaction receiving messages from two senders;
while Figure 3 (c) shows an interaction receiving one message from two senders. In
regard to multiple receivers, Figure 3 (d) shows an interaction in which one of two
receivers is expected to receive the message; while Figure 3 (e) shows an interaction
that a message is sent to both receivers. With these basic interaction schemes, we can
represent more complicated ones. For example, Figure 3 (f) shows a scenario that a
task sends a message to three receivers, and one of the three will receive it definitely,
while only one of the other two is expected to do so.

3. Special transitions
In some cases, an interaction may result in generating new instances. For example, in
the book-delivery interaction between a manufacturer and a shipper, the shipper may
generate several new shipping instances to handle it. In Petri net context, this requires
the corresponding transition to be capable of generating new tokens. In this paper, we
classify such transitions as token-generating transitions. In this way, we represent the
book-delivery interaction as the Petri net segment shown in Figure 4.

...

[:n]
[:1] B

...

...

A

t2
t1

p

x

x

x
x

x
y

y
2

x

Fig. 4. Correlation function attached structures

In Figure 4, variable x or y (x ≠ y) is labelled along an arc to denote the type of
tokens that may go through this arc. For example, the token that flows from transition
t1 to place p is different from the token that flows out of transition t2. In addition,
expression 2y is labelled along the arc linking t2 to the adjacent place, as t2 is a token-
generating transition. Thereby, this arc allows that more than one token representing
instances of the same business process to pass through at one time.

4. Correlation structures
To record the run time workflow correlation, we combine a correlation structure with
each token. A correlation structure is defined as follows:

58 X. Zhao et al.

Definition correlation structure. In a Petri net, the correlation structure for token ς is
defined as rς = { ς, D1, D2, …, Dn, R }, where
− each Di (1 ≤ i ≤ n) denotes a set of tokens, which represent correlated instances of

a business process. All tokens in D1, D2, …, Dn are correlated with ς.

− R is a binary relation defined between tokens in
i

n

i
D

1
∪
=

. Here, dxR dy, (dx, dy∈ i
i

D∪),

denotes that tokens dx and dy are correlated via token ς.

ς is called base token of this correlation structure. Token sets D1, D2, …, Di may be
dynamically updated during collaboration. For example, Figure 5 shows a part of the
collaboration scenario mentioned in the motivating example using a Petri net. Each
sub net stands for a business process, and is distinguished with different circles. The
tiny circles within places denote tokens, and each token such as ia1, ib1, ic1 stands for
a business process instance. Each transition such as ta2, tb1, tc1 stands for a task.
When ia1 and ia2 flow to transition tb1 via auxiliary place ap1, it means that the
production instance accepts the orders from two retailers. Therefore, correlation
structure rib1 at this moment is { ib1, { ia1, ia2 }, ∅ }. Tokens ia1 and ia2 may have
correlation structures ria1={ ia1, { ib1 }, ∅ } and ria2={ ia2, { ib1 }, ∅ }, respectively.

...

...

...
...

ia1
ia2

ib1

ic1, ic2,
ic3

...

x y
y

y

x

x

x

x

x

y

y

y

yy
y

z

z

[:1] [:n]

[:1][:n]

2

ta2

tb1

tc1

ap1

Fig. 5. Correlation scenario

This correlation structure accordingly evolves as the base token flows and interacts
with other tokens. When ib1 contacts ic1, ic2 and ic3 to arrange the goods delivery for
ia1 and ia2, we suppose that ib1 assigns ic1 and ic2 to serve ia1, while assigns ic2 and
ic3 to serve ia2. Thus, rib1 will change to { ib1, { ia1, ia2 }, { ic1, ic2, ic3 }, {(ia1, ic1),
(ia1, ic2), (ia2, ic2), (ia2, ic3)}}. Here, the last set denotes the correlated tokens via
ib1. As the consignee information, the order numbers from ia1 and ia2 are passed to ic1
and ic2, ic2 and ic3 by ib1, respectively. Therefore, ric1 is set as { ic1, { ib1 }, { ia1 }, ∅ },
ric2 is set as { ic2, { ib1 }, { ia1, ia2 }, ∅ } and ric3 is set as { ic3, { ib1 }, { ia2 }, ∅ }.

 Handling Instance Correspondence in Inter-organisational Workflows 59

4.2 Correspondence Petri Net

According to the above discussion, we establish a novel Petri net, called
correspondence Petri net (CorPN), by extending the traditional Place / Transition Petri
net. The definition of this CorPN is given below.

Definition Correspondence Petri net. A CorPN is represented as tuple Σ = (P, T, F,
P°, F°, D, V, G, E, C, Q, I), where

(i) (P, T, F) is a directed net, called the base net of Σ. Here, P, T and F stand for
the sets of places, transitions and arcs, respectively. P ∩T = ∅; P ∪T ≠ ∅; F ⊆ P ×T
∪T ×P ;

(ii) P°⊂P, is the set of auxiliary places, which represent the messaging relations
between business processes of a collaborative business process.

(iii) F°⊂F, is the set of arcs that connect auxiliary places, i.e., F°⊆ P°×T ∪T ×P°.
(iv) D is a set of tokens, each of which stands for a possible participating

business process instance. Here, D = D1∪D2∪…∪Dn, Di ∩ Dj = ∅, where 1 ≤ i, j ≤ n
and i ≠ j. Precisely, each Di denotes a token group, which includes instances of the
same business process. n is the number of token groups.

(v) V is a set of variables for token groups, and V = { v1, v2 …, vn }. Actually,
each element vi of V is defined on a token group, i.e., vi∈V. vi is defined on Di, where
1 ≤ i ≤ n and n is the number of token groups.

(vi) G : P →τ, where each element τi of set τ is a set of possible tokens, i.e., τi ∈ τ
and τi ∈ 2D.

(vii) E : F →σ, where σ is a set of expressions defined on V.
(viii) C : F°→ε, where ε is the set of cardinality parameters, i.e., ε = { [:1], [:n] }.
(ix) Q : D →λ, where λ is a set of correlation structures.
(x) I : P →θ, where θ is a set of possible composition of tokens defined in D.

Explanation:

(1) (P, T, F) determines the component net structures of this CorPN.
(2) P° and F° describe the messaging behaviours between the business processes of

the underlying collaborative business process.
(3) The variables in V are defined according to each token group, which represents

the instances of a business process. Thus, the variables can be used to differentiate the
instances of participating business processes and abstract the common behaviours of
each business process.

(4) Mapping G sets up the capacity of each place defined in P.
(5) Mapping E sets up the arc expressions to restrict the flowing of tokens.
(6) Mapping C maps a cardinality parameter onto each arc that connects with an

auxiliary place.
(7) Mapping Q combines a correlation structure to each token, and this evolving

correlation structure is responsible for recording tokens that correlated with the
combined token. Actually, the combined token is the base token of this correlation
structure.

(8) Mapping I denotes the initial distribution of tokens.

60 X. Zhao et al.

5 Applying Correspondence Petri Nets

5.1 Generating Correspondence Petri Nets

To generate a CorPN, we first need to collect the participating business processes of
this collaborative business process, as well as the messages to use. The conversion
from a single business process to an individual Petri net encompasses the following
steps:

(1) Build up token set D and variable set V ;
(2) Set up place capacity expression set G and arc expression set E to designate the

flowing range of tokens;
(3) In regard to token producible transitions, we mark a variable symbol 2v to

adjacent outgoing arcs to represent the possibility of all available tokens
defined for this business process.

(4) Initialise correlation set C .

After the four steps, we can obtain the tuple sets for a business process. By
incorporating all the obtained tuple sets of all business processes participating in a
business collaboration, we may obtain the tuple of a pre-processed CorPN, Σ, for the
corresponding collaborative business process. Due to the page limit, we do not
discuss this issue intensively.

Algorithm 1 formalises the procedure of assembling these individual Petri nets into
a CorPN via message types for the underlying collaborative business process. As this
CorPN is created at process level rather than instance level, messages types are
therefore used in this algorithm instead of message instances.

In Algorithm 1, function transition(Σ, t) returns the transition that stands for task t
in CorPN Σ; function link(t / p, p / t) creates an arc linking transition t to place p, or
place p to transition t, and t or p can also be set null to denote an undetermined
transition or place; function priorP / posteriorP (Σ, tr) returns the prior / posterior
place of transition tr in CorPN Σ; function priorA / posteriorA (Σ, tr) returns the
prior / posterior arc of transition tr in CorPN Σ; function relink(Σ, a / p, p / a) adjusts
a half-determined arc a to connect to / from place p in CorPN Σ.

In this algorithm, line 4 to line 10 first generates arcs for outgoing message types,
and line 12 to line 23 generates arcs for incoming message types. At this stage, these
generated arcs are half-determined ones, because we only designate one end of an arc
while leave the other end open. To keep the information of multiple receivers or
senders of a message, two mapping functions, ∏ and Ω, are used to record the
correspondence between the interaction participating transitions and the generated
half-determined arcs. Based on these two mappings, line 26 to line 35 generates
auxiliary places and re-links the open ends of those half-determined arcs to proper
auxiliary places. In this way, we can connect the individual Petri nets together
according to the messaging behaviours between participating business processes.

Following this algorithms, we can generate a CorPN as shown in Figure 6 for the
collaborative business process of the motivating example. The sub nets for different

 Handling Instance Correspondence in Inter-organisational Workflows 61

Algorithm 1. Assembling Petri nets

 Input: MSG: the set of unidirectional message types used by business processes in WP.
Σ: the tuple of the pre-processed CorPN.

 Output: Σ′: the CorPN tuple that is updated with auxiliary places, corresponding arcs
etc.

1. set Σ′ = Σ; ∏ = null; Ω = null; sendingArcs = ∅;
2. for each m∈MSG
3. if m. ρ = ’out’ then // handling for outgoing message types
4. tempT = ∅; // create a half-determined arc for each outgoing message type
5. k = link (transition(Σ′, m.α), null);
6. Σ′.F°← k;
7. for each t′∈ m.β
8. Σ′.C°← (k → m.f(t′)); tempT ← transition(Σ′, t′); sendingArcs ← k;
9. end for

10. ∏←(k→ tempT);
11. else // handling for incoming message types
12. tempA = ∅;
13. for each task t′ ∈ m.β // decompose the message-receiving transition into a
14. create transition tr; // series of transitions, please refer to Figure 6 (b)
15. k = link(priorP(transition(Σ′, m.α), tr);
16. Σ′.F°←k;
17. b = link(tr, posteriorP(transition(m.α));
18. c = link(null, tr); Σ′.F°← c; Σ′.
19. C°← (c→m.f (t′));

 /* create a half-determined arc for each potential incoming route of this
message type */

20. Ω ←(transition(Σ′, t′) → c);
21. end for
22. Σ′.T = Σ′.T - { transition(Σ′, m.α)};
23. Σ′.F = Σ′.F - { priorA(Σ′, transition(m.α)), posteriorA(Σ′, transition(m.α))};
24. end if
25. end for
26. for each k ∈ sendingArcs // link half-determined arcs with proper auxiliary places
27. create auxiliary place px;
28. relink(Σ′, k, px);
29. for each transition tr∈ ∏(a)
30. b = Ω(tr);
31. ∏←(k→(∏(k)-{ k }));
32. Ω←(tr→(Ω(tr) –{ b }));
33. relink(Σ′, px, b);
34. end for
35. end for

business processes are distinguished with different circles, and the auxiliary places are
marked as shaded circles.

Because this CorPN simulates the interaction between multiple business processes,
it may own more than one starting place and ending place.

62 X. Zhao et al.

tb1

tb3

tb7

tb5

tc4

ta3

ta2

ta1

pa0

pa2

pa1

pb5

pb2

pa6

tc3

pc5ta6

ta5

ta4

pa3

pa5

pa4

tb2

pb1

[:n]

[:1]

[:1]

pb7

px1

px2

px3

px4

px6

tc5

pc4

pb4

tb6

pb6

pb3

tb4

tc1

pc2

tc2

pc1

[:n]

[:n]

[:1]

[:1]

[:n]

[:n]

[:n]

[:1]

[:n]

[:n]
[:1]

px5

px7

pb0

pc3

x

x

x
x x

x

x

x
x

x
x

x

x

y

y

y
yy

y

y
y

yyy
y

y
y

y

y
y

y

y

y

y
x

z

z
z

z
z

z

z

z
zz

z

z

z

z

z

2 z

Fig. 6. a CorPN for a collaborative business processes

5.2 Run Time Execution

As discussed in Section 3, workflow correlations occur when business process
instances interact. During interactions, a participating instance may inherit pre-
existing workflow correlations from its counterparts in case that this interaction has
some relation with previous correlations. To update these correlations, each business
process instance needs to modify its correlation structure every time after ‘shaking
hands’ with partner business process instances.

For example, when the manufacturer contacts shippers for delivery, the
manufacturer’s production instance may update its correlation structure with the
correlations between retailers’ product-ordering instances and shippers’ assigned
shipping instances. In the meantime, these shipping instances also update their
correlation structures with the production instance and retailers’ product-ordering
instances that are to be served. As for retailers’ product-ordering instances, they may
not know these new correlations until the manufacturer notifies them of the delivery
date after booking deliveries. Actually, to timely update their correlation strictures,
retailers need to proactively trace such potential correlations rather than passively
wait for feedbacks. Thus, the correlation handling comprises two procedures, i.e., to
generate correlations after interactions and to trace existing correlations through
coupled instances.

Algorithm 2 details the procedure of updating correlation structures after
collaborating business process instances ‘shake hands’. Following the organisation-
oriented view, we classify the tokens representing the host organisation’s involved

 Handling Instance Correspondence in Inter-organisational Workflows 63

instances as local tokens, and the ones representing the involved instances of partner
business processes as foreign tokens. In this algorithm, function TYPE(setTK)
returns which token group that tokens in setTK belong to; function relatedTK(tk,
setTK, ψ) returns the set of tokens correlated with token tk from set setTK during
interaction ψ; function update(tk, setTk) updates the content of token tk’s correlation
structure with tokens in setTk. The details of function update are given at the end of
Algorithm 2.

Algorithm 2. Updating correlation structures

Input: Σ: a CorPN.
 ψ: a real interaction.
 localTK: the set of participating local tokens during interaction ψ.
 foreignTK: the set of participating foreign tokens during interaction ψ.

Output: Σ′: the updated CorPN.

1. set f = null;
2. set Σ′=Σ;
3. for each tk ∈ localTK
4. setTK´= relatedTK(tk, foreignTK, ψ);
5. update(tk, setTK´); // update the correlation structures of local tokens.
6. for each tk°∈setTK´
7. f←(tk°, tk);
8. end for
9. for each tk°∈foreignTK

10. update(tk°, f(tk°)); // update the correlation structures of foreign tokens.

// function update is given below
 update(tk, setTK)

u-1. rtk = Σ′.Q(tk);
u-2. if ∃Di, Di∈rtk (TYPE(Di)=TYPE(setTK)) then rtk.Di←setTK;
u-3. else rtk.Di←{ setTK };
u-4. for each tk1∈

i
∪rtk.Di, tk2∈setTK

u-5. if tk1 is coupled with tk2 via tk then rtk.R←(tk1, tk2);

Once an interaction occurs, each participating business process instance needs to
run Algorithm 2 to update its correlation structure. For each local token, this
algorithm searches all participated tokens for the correlated ones with this local token.
This job is done by line 3 to line 8. Line 9 and line 10 call function update to update
these correlated tokens in the correlation structures of local tokens. In addition,
function update also generates proper tuples in relation R of each participated local
token, if there exist tokens that are correlated via this local token.

Algorithm 3 describes the procedure of tracing potentially correlated tokens. An
organisation may use this algorithm to proactively detect correlated business process
instances for its own business process instance. In this algorithm, function update(tk,
setTk) is the same with the one in Algorithm 2.

64 X. Zhao et al.

Algorithm 3. Tracing correlated tokens

Input: tk°: the original token to update correlation structure.
 Σ: the CorPN.

Output: Σ′: the updated CorPN.

1. set Σ′ = Σ;
2. List = ∅;
3. oldList = ∅;
4. rtk° = Σ.Q(tk°);
5. List←

i
∪rtk°.Di; // List is used to store the tokens to check.

6. do while List ≠ ∅
7. select tk ∈ List; remove tk from List;
8. oldList ← tk; // oldList is used to store the checked tokens.
9. for each tk′∈

i
∪rtk.Di

10. if ∃(tk°, tk′) ∈rtk.R ∧ tk′ ∉ oldList then List ← tk′;
11. end while
12. update(tk°, oldList);

This tracing procedure, from line 6 to line 11, follows a depth-first strategy to
search for correlated tokens. After finding correlated tokens, the host organisation
updates the retrieved tokens to its correlation structure by invoking function update.
This correlation structure determines the logical instance of the specified business
process instance. This procedure may be called upon request by the host organisation,
for example, at a point that a retailer wants to know shippers’ details while waiting for
goods delivered by several shippers. Therefore, we do not have to derive this
correlation structure for all instances involved in a collaborative business process.

6 Discussion and Conclusion

This paper looked into the problem of instance correspondence in an inter-
organisational setting, which is of great importance to business process management
yet has not been extensively studied in the literature. By establishing a CorPN model,
we proposed a novel method to specify instance correspondences among
collaborating business processes. This method captures the dynamics and diversity of
business collaboration in terms of workflow cardinality and correlation. With this
method, an organisation can clearly track its involvement over a collaborative
business process. The detailed contributions of this paper are as follows:

(1) Unidirectional cardinality parameters and correlation structures to characterise
instance correspondence at build time and run time, respectively;

(2) A correspondence Petri net model with proposed cardinality parameters and
correlation structures etc., for inter-organisational workflow monitoring;

(3) An algorithm for assembling individual business processes into a collaborative
process;

(4) Algorithms for specifying workflow correlations and tracing workflow
correlations on the fly.

 Handling Instance Correspondence in Inter-organisational Workflows 65

Our future work is to incorporate the proposed method into Business Process
Management Notation (BPMN) or BPEL languages, and combine it with our existing
relative workflow framework [9]. This future work is expected to provide a
comprehensive solution for collaborative business process applications.

References

1. Bussler, C.: B2B Integration. Springer, Heidelberg (2003)
2. Chen, Q., Hsu, M.: Inter-Enterprise Collaborative Business Process Management. In:

Proceedings of the 17th International Conference on Data Engineering. Heidelberg,
Germany, pp.253-260 (2001)

3. Dumas, M., ter Hofstede, A.H.M.: UML Activity Diagrams as a Workflow Specification
Language. In: Proceedings of 4th International Conference on the Unified Modeling
Language, Modeling Languages, Concepts, and Tools. Toronto, Canada, pp. 76-90 (2001)

4. Barros, A.P., Dumas, M., and ter Hofstede, A.H.M.: Service Interaction Patterns. In:
Proceedings of the 3rd International Conference on Business Process Management (BPM,
Nancy, France pp. 302–318 (2005)

5. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

6. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language.
Information Systems 30(4), 245–275 (2005)

7. Guabtni, A., Charoy, F.: Multiple Instantiation in a Dynamic Workflow Environment. In:
Proceedings of 16th International Conference on Advanced Information Systems
Engineering (CAiSE, Riga, Latvia, pp. 175–188 (2004)

8. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K.,
Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process
Execution Language for Web Services (2003)

9. Zhao, X., Liu, C., Yang, Y.: An Organisational Perspective on Collaborative Business
Processes. In: Proceedings of the 3rd International Conference on Business Process
Management. Nancy, France, pp.17-31 (2005)

10. Schulz, K., Orlowska, M.: Facilitating Cross-organisational Workflows with a Workflow
View Approach. Data & Knowledge Engineering 51(1), 109–147 (2004)

11. Chiu, D.K.W., Karlapalem, K., Li, Q., Kafeza, E.: Workflow View Based E-Contracts in a
Cross-Organizational E-Services Environment. Distributed and Parallel Databases 12(2-3),
193–216 (2002)

12. Zhao, X., Liu, C.: Tracking over Collaborative Business Processes. In: Proceedings of
the 4th International Conference on Business Process Management. Vienna, Austria,
pp. 33-48 (2006)

13. Reisig, W.: A Primer in Petri Net Design. Springer, Berlin (1992)

Assessing Feasibility of IT-Enabled Networked

Value Constellations: A Case Study in the
Electricity Sector

Zsófia Derzsi1,3, Jaap Gordijn1, Koen Kok1,2, Hans Akkermans1,
and Yao-Hua Tan3

1 Free University, FEW/Business Informatics, De Boelelaan 1083a, 1081 HV
Amsterdam, The Netherlands

{derzsi, gordijn, elly}@few.vu.nl
2 ECN, Intelligent Energy Grids, PO Box 1, Petten, The Netherlands

j.kok@ecn.nl
3 Free University, FEWEB, De Boelelaan 1083a, 1081 HV Amsterdam,

The Netherlands
ytan@feweb.vu.nl

Abstract. Innovative networked value constellations, such as Cisco or
Dell, are often enabled by Information Technology (IT). The same holds
for the Distributed Electricity Balancing Service (DBS), which we
present in this case study. To explore feasibility of such constellations
while designing them, we need at least to develop a financial and tech-
nical understanding of the constellation at hand. In this paper, we take
a multiple perspective approach, by taking a business value perspective
(using e3-value) and an information system perspective (using UML-
deployment diagrams) on the case at hand. We present a novel, struc-
tured approach to relate both perspectives, thus enabling a financial and
technical feasibility assessment of the constellation, using a real-life case
study in the field of electricity supply and consumption.

1 Introduction

Companies increasingly form networked value constellations to jointly satisfy
complex needs. Well known examples include the networked business model of
Cisco Systems [17] -actually consisting of a series of well integrated companies-,
and the virtual integration of Dell Computers [11]. In a networked value constel-
lation, enterprises use each other core-competencies to offer a product or service
that each individual enterprise could not offer on its own.

Such a constellation requires more than just a few enterprises alone, co-
producing things of economic value. To coordinate their processes properly,
information and communication technology is indispensable. Actually, for the
distributed electricity balancing service case study, as to be presented in this
paper, information technology is a prerequisite.

To our consulting experience [3,7,9], one of the issues in designing a networked
value constellation is first to find a constellation (in terms of participating en-
terprises, cross-organizational processes, and interworking information systems)

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 66–80, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Assessing Feasibility of IT-Enabled Networked Value Constellations 67

that seems to be feasible. Such an explorative feasibility assessment track should
be done in a light-weight fashion, to be able to develop a comprehensive, yet
global, understanding of the constellation at hand, within a reasonable time-
frame (time-to-market is typically just a few months). Such an understanding,
while shared and agreed upon by the enterprises involved, can then provide
further direction for a more detailed and focused requirements engineering and
system design track.

In this paper, we consider two types of feasibility: (1) economic feasibility and
(2) technical feasibility. Economic feasibility refers to the question whether all
enterprises participating in a constellation can be economically sustainable over a
reasonable period of time with respect to their participation in the constellation.
It is then important to know substantial economical effects (in terms of expenses,
investments, and revenues). Technical feasibility is about the question whether
we can find an acceptable solution to put the value constellation into operation
e.g. by deploying information technology (the focus of this paper) and inter-
organizational business processes.

In this paper we combine two modeling techniques (e3-value and UML deploy-
ment diagrams) to reason about feasibility. An e3-value model has constructs
for reasoning about financial feasibility by definition; however, since important
financial effects can come from investments and expenses in IT, we feed the e3-
value model by financial annotations of a UML deployment diagram. Another
contribution of this paper is that we show that a value model and deployment
model, if correctly related, can be used to reason about scalability issues, which
are of importance while considering technical feasibility.

This paper is structured as follows. In section 2 we introduce how to explore
feasibility of networked value constellations and in section 3 we present our
case study-based research approach. A first step is to explore the networked
constellation from an economic value perspective (section 4); a second step is to
understand the information system perspective (section 5) of the case at hand.
In section 6, both perspectives are structurally related with each other. Finally,
in section 7 we present the lessons learned and conclusions.

2 Perspectives to Understand Feasibility of IT-Enabled
Networked Value Constellations

To our experience [7], to assess feasibility of networked value constellations,
multiple perspectives (e.g. strategic goals, value transfers, business processes,
and information systems) need to be considered. We consider the following per-
spectives, amongst others inspired on frameworks such as TOGAF or Zachman
[16,1]. The strategic goal perspective represents the long-term objectives of enter-
prises, such as cost leadership or differentiation of products and services (see e.g.
[15]). To explore feasible networked value constellations, it is important to know
that the individual objectives of participating enterprises are aligned, and that
no crucial conflicts exist. For the paper at hand, we do not elaborate on this
perspective; instead the reader is referred to [13,10,8,19]. The economic value

68 Z. Derzsi et al.

transfer perspective explores what enterprises offer of economic value to each
other, and request what in return. The value transfer perspective shows how
the strategy is put into operation. For feasibility understanding, this perspective
is useful to assess economic sustainability, in terms of in-going and out-going
money flows. In this paper, we employ the e3-value [7] approach for represent-
ing the value transfer perspective (see section 3.1); other possibilities are BMO,
[12], or REA [6]. The business process perspective shows how value transfers
are carried out (e.g. time ordering, parallelism), by processes, including coordi-
nating processes between enterprises. For feasibility purposes, this perspective is
usable to understand economic feasibility (since resources such as workers cost
money). In this paper, we do not explore this perspective further; the reader
is referred to [14,18]. The information system perspective presents the software
and hardware components, their communication, etc. In fact, this perspective
may contain many sub-perspectives, depending on the modeling aim, and con-
tributes to the understanding of economic feasibility (e.g. IS-components require
investments and expenses for maintenance). Additionally, the perspective may
give a clue regarding technical feasibility; whether it is possible to design an in-
formation system that satisfies the requirements expressed by e.g. the economic
value transfer and business process perspectives. In this paper, we use UML [2],
and as we will motivate later on, specifically deployment diagrams to capture
the information system perspective.

3 Research Approach

3.1 The e3-value Methodology for Economical Feasibility

To evaluate feasibility in this paper, we employ e3-value and UML-deployment
diagrams. To make this paper self-contained, we briefly introduce the e3-value
modeling concepts below as well as the e3-value way of reasoning about economic
feasibility (see for a more detailed explanation [7]). The e3-value methodology
provides modeling constructs for representing and analyzing a network of enter-
prises, exchanging things of economic value with each other. The methodology is
ontologically well founded and has been expressed as UML classes, Prolog code,
RDF/S, and a Java-based graphical e3-value ontology editor and an analysis
tool, which is available for download (see http://www.e3value.com/) [7]. In the
following text, we use an educational example (see Figure 1) to explain the
ontological constructs.

An actor is perceived by his/her environment as an economically independent
entity. The Store and Manufacturer are examples of actors. Actors exchange
value objects (e.g. Money). A value object is a service, a good, money, or even an
experience, which is of economic value for at least one of the actors. An actor uses
a value port to provide or request value objects to or from other actors. Actors
have one or more value interfaces, grouping value ports, and showing economic
reciprocity. So, in the example, Goods can only be obtained for Money and vice
versa. A value transfer is used to connect two value ports with each other. In the
example, a transfer of Good or Payment are both examples of value transfers.

Assessing Feasibility of IT-Enabled Networked Value Constellations 69

Fig. 1. Educational example

A value transaction groups value transfers that all should happen, or none at all.
A market segment composes actors into segments of actors that assign economic
value to objects equally. The Shopper is a market segment, consisting of a number
of individual shoppers. An actor performs one or more value activities. These
are assumed to yield a profit. In the example, the value activity of the Store
is Retailing. A dependency path is used to reason about the number of value
transfers as well as their economic value. A path consists of consumer needs,
connections, dependency elements and dependency boundaries. A consumer need
is satisfied by exchanging value objects (via one or more interfaces). A connection
relates a consumer need to a value interface, or relates various value interfaces
internally, of a same actor. A path can take complex forms, using AND/OR
dependency elements taken from UCM scenarios [5]. A dependency boundary
represents that we do not consider any more value transfers for the path. In
the example, by following the path we can see that, to satisfy the need of the
Shopper, the Manufacturer ultimately has to provide Goods.

An e3-value model can be attributed with (financial) numbers (e.g. the num-
ber of occurrences of consumer needs, the size (count) of a market segment,
and the valuation of objects transfered) that are used to generate Net Value
Flow Sheets (NVF) (for a free software tool see http://www.e3value.com/). Such
sheets show the net cash flow for each actor involved and are a first indication
whether the model at hand can be commercially successful for each actor. In the
example, the Store has 5 ∗ 10 = 50 transfers with the Shoppers, so the incoming
money stream = e50,-∗1 =e50,-.

It is also possible to add various kinds of expenses and investments. These are
cash-out flows that are significant, but for which it is not important to under-
stand the actor receiving the expenses. Additionally, expenses are the hook to
include financials obtained from other modeling perspectives (e.g. UML deploy-
ment diagrams) into the financial picture. In the example, the activity Retailing
has a fixed expense (meaning independent from the number of transfers handled)
of e200,-. Moreover, there is a variable expense of e0.20,- per outgoing Good
transfer (so for this case the expense is 50∗e0.20,-=e10,-. The e3-value ontology

70 Z. Derzsi et al.

is capable of assigning the expenses related to activities to the performing actor
automatically. Moreover, fixed and variable expenses can also be attributed to
actors directly. It is also possible to include investments. For this purpose, it is
important to understand that a single e3-value model represents the financial
effects for a certain timeframe, say a day, month, or year. A series of poten-
tially different e3-value models can be combined into an e3-timeseries model to
consider a number of timeframes (say many years). An investment is then actu-
ally an one-time (often upfront) expense in a specific timeframe that does not
occur in other timeframes. In this example, there is an upfront investment of
e10,000.-. Summing up the financial effects of multiple timeframes is done via
the Discounted Net Present Cash Flow (DNPC) technique [4]. This results in a,
hopefully positive, financial number representing the net financial effects for an
actor, thereby accounting properly for the time-value of money.

3.2 Explorative Case Study: Distributed Balancing Services

We explore a model-based way of assessing feasibility of networked value con-
stellations, by taking a value transfer and information system perspective (the
other perspectives are also important but simply not in the scope of this paper
due to space restrictions). Our ultimate goal is to arrive at a set of relevant,
well integrated models that allows for feasibility studies. In this paper, we use a
case-study on electricity supply and consumption (see [9]).

Due to the physical nature of electricity power, the amount of electricity
supplied to the network must be exactly equal to the amount of electricity con-
sumed, including inevitable transport losses. This balance has to be maintained
at every instance otherwise power outages will occur. This requirement is at all
time ensured by the Transmission System Operator (TSO). The TSO does so by
asking large consumers and generators for their consumption/production plans
a day ahead, matches these, and returns consumption/production plans that
ensure consumption and supply balance. However, at runtime there are always
deviations from the plans since it is impossible to precisely consume/produce
the amount of electricity as planned. Since deviation from the plans causes im-
balance, and adequate yet costly counter measures have to be taken, suppli-
ers/consumers have to pay a penalty fee for causing imbalance to the TSO, who
by default compensates for system imbalance.

The innovative idea for the case at hand is to create an IT-enabled service that
reduces real-time imbalance in a portfolio of generators and consumers by allow-
ing near-real time, distributed control over the electricity production and con-
sumption of portfolio’s participants: the Distributed Balancing Service (DBS).
In case of imbalance, actors are asked to change their level of production and/or
consumption. Because the imbalance is reduced for the portfolio, the penalties
decrease also, and thus for the suppliers/consumers participating in the portfolio.
Obviously, such near real-time control is only possible using advanced informa-
tion technology, giving the time-scale (minutes) and the number of actors.

The aim of this case-study for us is to explore financial- and technical feasibil-
ity assessment of an IT-enabled value constellation by considering an economic

Assessing Feasibility of IT-Enabled Networked Value Constellations 71

value transfer and information system perspective. We have selected this spe-
cific case-study because: (1) The constellation and the information technology
for imbalance reduction has already been built. We want to focus on the con-
ceptual constructs required to understand feasibility issues and not yet on the
process of assessment itself. (2) We have access to the financial data. (3) We
have access to the developers of the DBS case. (4) The DBS case relies heavily
on IT. (5) The case-study is of industrial strength. For the DBS case, we first
study the available materials and do interviews with the domain experts, and we
construct an e3-value model of the DBS case (see section 4). Also, we construct
a UML deployment diagram of the DBS (see section 5). By annotating the UML
deployment diagram, such that financials related to information systems can be
represented, and by structurally relating these annotations to the elements in the
value model, we derive comprehensive (discounted) net value flow sheets for both
perspectives. For relating the value and deployment perspectives, we present a
sub-ontology (see section 6). Finally, we reason about technical feasibility using
the presented models with an emphasis on scalability.

4 An e3-value Model for the Distributed Balancing
Service

Figure 2 shows an e3-value model for the DBS case study. The focus is on the
participating enterprises and what they transfer of economic value, and not on
the required soft- and hardware components yet.

There are different market segments of ‘electricity generators’ in the form
of ‘wind turbines’, ‘Combined Heat Power generators’ (CHPs) and ‘emergency
generators’. All these generators offer ‘electricity’ and request ‘money’ in return.
Different types of generators exist because, due the nature of the generator (vol-
ume of total electricity power, predictability of this volume), the pricing schemes
may be different. Additionally, they offer ‘operational flexibility’, meaning that
a portfolio holder (here the ‘supplier’) may influence the amount of electricity
production, in return for ‘money’. There are ‘consumers’ who buy ‘electricity’
and pay ‘money’ in return. Also, they offer ‘operational flexibility’ so that a
portfolio holder can influence their amount of electricity consumption, and they
request some ‘money’ in return for that. Normally, the ‘generators’ and ‘con-
sumers’ must also pay a fee to the ‘Transmission System Operator’ (TSO), if
their real-life production/consumption deviates from their forecasted produc-
tion/consumption (which is always the case). This balance-responsibility is in
the DBS e3-value model taken over by a ‘supplier’ of which we have one. The
‘generators’ and ‘consumers’ are all in the portfolio of the ‘supplier’. The ‘sup-
plier’ pays a penalty (‘money’) to the TSO for the amount of imbalance caused.
This amount can be reduced by controlling the ‘generators’ and ‘consumers’ near
real-time. Finally, there is a ‘wholesale market operator’. The role of this oper-
ator is to sell electricity to the ‘supplier’ in case of shortage or to buy electricity
from the ‘supplier’ in case of a surplus.

72 Z. Derzsi et al.

Su
pp

li
er

S
up

pl
y

an
d

T
ra

de
B

al
an

ci
ng

C
on

tr
ol

W
ho

le
sa

le
M

ar
ke

tO
pe

ra
to

r

M
ar

ke
t

M
an

ag
em

en
t

T
SO R

ea
l-

tim
e

B
al

an
ce

W
in

d
tu

rb
in

e

G
en

er
at

io
n

O
pe

ra
tio

n
C

on
tr

ol

C
on

su
m

er

C
on

su
m

pt
io

n

O
pe

ra
tio

n
C

on
tr

ol

E
le

ct
ri

ci
ty

E
le

ct
ri

ci
ty

tr
ad

e
fe

e
D

ev
ic

e
fl

ex
ib

ili
ty

C
om

pe
ns

at
io

n
fe

e

E
le

ct
ri

ci
ty

re
ta

il
fe

e

E
le

ct
ri

ci
ty

D
ev

ic
e

fl
ex

ib
ili

ty

C
om

pe
ns

at
io

n
fe

e

O
pe

ra
tio

na
l

fl
ex

ib
ili

ty

C
om

pe
ns

at
io

n
fe

e
E

le
ct

ri
ci

ty
w

ho
le

sa
le

fe
e

E
le

ct
ri

ci
ty

O
pe

ra
tio

na
l

fl
ex

ib
ili

ty

C
om

pe
ns

at
io

n
fe

e

Im
ba

la
nc

e
ca

pa
ci

ty

R
ed

uc
ed

im
ba

la
nc

e

F
ee

P
en

al
ty

fe
e

E
m

er
ge

nc
y

ge
ne

ra
to

r

O
pe

ra
tio

n
C

on
tr

ol
G

en
er

at
io

n

C
H

P

O
pe

ra
tio

n
C

on
tr

ol
G

en
er

at
io

n

C
om

pe
ns

at
io

n
fe

eO
pe

ra
tio

na
l

fl
ex

ib
ili

ty

C
om

pe
ns

at
io

n
fe

eO
pe

ra
tio

na
l

fl
ex

ib
ili

ty

D
ev

ic
e

fl
ex

ib
ili

ty

C
om

pe
ns

at
io

n
fe

e

E
le

ct
ri

ci
ty

E
le

ct
ri

ci
ty

tr
ad

e
fe

e
E

le
ct

ri
ci

ty

E
le

ct
ri

ci
ty

tr
ad

e
fe

e

E
le

ct
ri

ci
ty

E
le

ct
ri

ci
ty

w
ho

le
sa

le
fe

e

D
ev

ic
e

fl
ex

ib
ili

ty
C

om
pe

ns
at

io
n

fe
e

#1

O
C

C
U

R
R

E
N

C
E

S
=

2*
11

0
kW

O
C

C
U

R
R

E
N

C
E

S
=

10
20

kW

N
R

O
F

A
C

T
O

R
S

=
2

N
R

O
F

A
C

T
O

R
S

=
3

N
R

O
F

A
C

T
O

R
S

=
2

N
R

O
F

A
C

T
O

R
S

=
2

N
R

O
F

A
C

T
O

R
S

=
1

A
pa

th

A
pa

th

C
pa

th

O
C

C
U

R
R

E
N

C
E

S
=

2*
50

kW

O
C

C
U

R
R

E
N

C
E

=
0

kW

B
pa

th

B
pa

th

B
pa

th

B
pa

th

O
C

C
U

R
R

E
N

C
E

S
=

2*
15

kW

O
C

C
U

R
R

E
N

C
E

S
=

3*
37

0
kW

O
C

C
U

R
R

E
N

C
E

=
1

V
A

L
U

A
T

IO
N

=
0.

00
3

E
ur

o*
11

00

#2

#3

#4

#5

F
R

A
C

T
IO

N
=

3

F
R

A
C

T
IO

N
=

1

Fig. 2. e3-value model of the Distributed Balance System

Assessing Feasibility of IT-Enabled Networked Value Constellations 73

An e3-value model provides a snapshot of value transfers for a certain time-
frame; here, for 15 minutes, since it is used as a discrete interval to calculate
fees, based on the actual production/consumption. All the modeled consumer
needs occur within this timeframe.

Now, tracing through the ‘A’ dependency path, the ‘consumer’ has a need
for a certain amount of kilowatt-hours (kWh) (see Figure 2). The ‘wholesale
market operator’ has also a need for electricity. These needs are satisfied by the
‘supplier’. He buys electricity from the ‘generators’ of his portfolio, and from the
‘wholesale market operator’ in case of a shortage, as can be seen from the ‘B’
path. From the ‘C’ path it can be seen that the ‘supply & trade’ activity requires
‘balancing control’, and so control of the operation of ‘generators’ and/or ‘con-
sumers’ in terms of operational flexibility. ‘Balancing control’ operates together
with the ‘operation control’ activity, which is executed by consumers and gener-
ators. Since such a control moment is needed once per 15 minutes (timeframe of
the model), there will be precisely one occurrence, so one ‘operational flexibil-
ity’ transfer between the ‘supplier’ and the ‘generators’/‘consumers’. However,
due to the fact that market segments aggregate actors, explosion elements are
needed (fork (#2)-(#5)) in order to achieve one occurrence per actor in such a
market segment. Despite the efforts of the ‘supplier’, there will always be some
imbalance (because the ‘supplier’ can control near real-time). This is modeled
by the AND fork (#1).

The e3-value model calculates, as shown, the occurrences for each dependency
path element for the 15-minutes timeframe. We assume that investments in gen-
erators and in consumption control equipment were done earlier, so we do not
consider these. Investments related to IT are explored in section 5. If we assign
pricing schemes (valuation functions) to the model (see Figure 2 for an exam-
ple), assume an amount electricity power needed, assume a number of generators
and consumers, and assume how much required electricity power can be satis-
fied by the portfolio’s participants (and the wholesale market), we can derive for
each 15 minute timeframe net value sheets for each enterprise involved. With
e3-timeseries , it is possible to concatenate a series of e3-value model snapshots,
capturing many sequential timeframes of each 15 minutes. Then, a Discounted
Net Present Cash Flow [4] sheet per actor can be derived to judge the financial
attractiveness of the DBS, which we do not discuss in detail due to space restric-
tions. In table 1, such a sheet is (as an example) given for the ‘CHP generator’,
including both the e3-value and UML-deployment perspective.

5 IS-Perspective: A UML Deployment Diagram
Annotated with Expenses and Investments

5.1 Why a Deployment Diagram?

We now take an IS perspective on the DBS case. In this case study, we con-
sider an already up-and-running system, for which the designed IS-models are
available in UML. For our purpose, assessing economic and technical feasibility

74 Z. Derzsi et al.

(in terms of scalability), we restrict ourselves to deployment diagrams for a
few reasons. (1) Deployment diagrams show, statically, components and nodes
on which these components run. These components and nodes require invest-
ments (one-time upfront expenses) and regularly occurring fixed expenses (e.g.
for maintenance). So, for annotating UML with financials, deployment diagrams
provide sufficient handles. (2) Components themselves have interfaces which of-
fer or request services via ports. Both offering and requesting services may result
in variable expenses. ‘Variable’ means here that the expense relates to the num-
ber of service invocations; in case of a ‘fixed’ expense we have to do the expense
always -even if there are zero service invocations. Service invocations are related
to value transfers on the economic value transfer perspective (see section 6.1).
(3) Ports offering and requesting services are annotated, e.g. with the maximum
number of service invocations per timeframe. If the previously mentioned value
transfers are related to service invocations, we can reason about scalability is-
sues. (4) Deployment diagrams are sufficiently course-grained, so they are of use
in a light-weight feasibility assessment approach.

5.2 A DBS Deployment Diagram

Figure 3 shows a deployment diagram (with components) for the case at hand.
The ‘generators’ and ‘consumers’ all have the same, complex components de-
rived from the value activity ‘operation control’. They consist of several sub-
components, namely (a) a computation component, (b) a database, and (c) a
measuring&control component. The computation component computes for each
15-minute timeframe a pricing-function that can be used to calculate, given
the amount of electricity supplied/required, the price willing to obtain/pay. For
this calculation, historical data from the local database is used. The measur-
ing&control component directly influences the generation/consumption device,
e.g. by adjusting the produced/required electricity power.

The ‘supplier’ managing the portfolio operates the ‘balancing control’ compo-
nent, which consist of (a) a computation component, and (b) a database compo-
nent. These components are used to collect the forementioned pricing-functions
from each ‘generator’ and ‘consumer’. Then, supply and demand is balanced, and
the ‘generators’ and ‘consumers’ are each reported back the required/consumed
electricity power.

There are two services: (1) the generators and consumers offer a service that
returns the forementioned pricing-function, (2) the supplier offers a service that
tells the generator/consumer how much electricity they must produce/consume
the coming 15-minutes timeframe by using the above pricing functions. Effec-
tively, this controls the generator/consumer behavior.

Components are assigned to devices and eventually to nodes, being physi-
cal resources. The nodes, devices and components are classes, which have one
or more instances. So, the deployment diagram tells that one supplier node
(instance) is associated with six device nodes (instances) (consumer and gen-
erator PC’s) connected via ADSL, and with three device nodes (instances) (in
this specific case, the CHP nodes) connected via wireless-UMTS. The latter

Assessing Feasibility of IT-Enabled Networked Value Constellations 75

D
e

v
ic

e
N

o
d

e
w

it
h

A
D

S
L

<<
de

vi
ce

>>

D
e

v
ic

e
P

C

<<
de

vi
ce

>>

A
D

S
L

IP
ro

u
te

r

S
u

p
p

lie
r

N
o

d
e

<<
de

vi
ce

>>

S
u

p
p

lie
r

P
C

<<
de

vi
ce

>>

A
D

S
L

IP
ro

u
te

r

D
e

v
ic

e
N

o
d

e
C

H
P

w
it

h
U

M
TS

<<
de

vi
ce

>>

D
e

v
ic

e
P

C

<<
de

vi
ce

>>

U
M

T
S

IP
ro

u
te

r

<<
co

m
po

ne
nt

>>

O
p

e
ra

ti
o

n
co

n
tr

o
l

<<
co

m
po

ne
nt

>>
M

e
as

u
ri

n
g

an
d

co
n

tr
o

l

<<
co

m
po

ne
nt

>>
D

at
ab

as
e

<<
co

m
po

ne
nt

>>

C
o

m
p

u
ta

ti
o

n

<<
co

m
po

ne
nt

>>

O
p

e
ra

ti
o

n
co

n
tr

o
l

<<
co

m
po

ne
nt

>>

M
e

as
u

ri
n

g
an

d
co

n
tr

o
l

<<
co

m
po

ne
nt

>>
D

at
ab

as
e

<<
co

m
po

ne
nt

>>
C

o
m

p
u

ta
ti

o
n

<<
co

m
po

ne
nt

>>

B
al

an
ci

n
g

co
n

tr
o

l

<<
co

m
po

ne
nt

>>
D

at
ab

as
e

<<
co

m
po

ne
nt

>>
C

o
m

p
u

ta
ti

o
n

2,
1

K
B

yt
e

da
ta

tr
af

fic
pe

r
in

vo
ca

tio
n

=

E
xp

en
se

ca
rr

ie
r

=
O

pe
ra

tio
n

co
nt

ro
l

E
xp

en
se

ca
rr

ie
r

=
O

pe
ra

tio
n

co
nt

ro
l

E
xp

en
se

ca
rr

ie
r

=
O

pe
ra

tio
n

co
nt

ro
l

H
ar

d-
so

fw
ar

e
in

st
al

la
tio

n
=

60
0

S
of

tw
ar

e
m

ai
nt

en
an

ce
=

10
00

E
xp

en
se

ca
rr

ie
r

=
B

al
an

ci
ng

co
nt

ro
l

E
xp

en
se

ca
rr

ie
r

=
O

pe
ra

tio
n

co
nt

ro
l

E
xp

en
se

ca
rr

ie
r

=
B

al
an

ci
ng

co
nt

ro
l

H
ar

d-
so

ftw
ar

e
in

st
al

la
tio

n
=

60
0

E
xp

en
se

ca
rr

ie
r

=
O

pe
ra

tio
n

co
nt

ro
l

10
00

0
pe

r
15

m
in

ut
es

0.
.6

1

1

1

1 0.
.3

1.
.3

1

1.
.6

1

<
<u

se
>>

<<
u

se
>

>

<<
u

se
>>

<<
us

e>
>

<
<u

s
e>

>

Fig. 3. UML deployment model of the DBS case

sub-classification, based on connection technology, is motivated by the very
different expense-profiles of these technologies. The number of required instances
are derived from the e3-value model, by counting the number of generators and
consumers.

76 Z. Derzsi et al.

5.3 Annotating the Deployment Diagram for Feasibility Reasoning

Figure 3 shows various annotations to different constructs of the deployment
diagram. The financial annotations are structured along the lines of Figure 4,
as an extension to the UML 2.0 metamodel [2] and to the e3-value ontology [7].
Moreover, Figure 4 shows how the UML relates to e3-value . Figure 4 distin-
guishes various kinds of IT-expenses. Fixed expenses are expenses that occur
once per timeframe in an e3-timeseries sequence of value models; investments
occur only once per timeseries (typically these are upfront investments in equip-
ment, software, etc., to enable future cash flow). A fixed expense is for precisely
one asset, which in UML terminology is a device or a software artifact ; an asset
has one or more fixed expenses. An expense is assigned-to to one expense carrier.
An expense carrier is an e3-value actor, value activity or market segment. This
way, expenses can be assigned to business entities that create revenues to pay
these expenses.

In a UML deployment diagram ports attached to components are used to offer
and request services from the environment. Requesting or offering a service via
a port may result for each invocation in expenses themselves. The connection
between requested and offered services via ports is in UML stated as an assem-
bly connection. Such a connection is caused by one or more value transfers in
an e3-value model. Conversely, a value transfer causes one or more invocations
(as represented by an assembly connection showing the invoked and invokeed
port). This model-fragment allows for modeling variable expenses; the amount
of expense is based on the number of service invocations, which in turn depends
on the number of value transfers in the e3-value business model.

As an example consider investments. The financial annotations of Figure 3
show the hard- and software costs related to components that are, as men-
tioned before, derived from value activities. By executing value activities (i.e.
the ‘operation control’ activity) e.g. hard- and software investments (e1,000.-
and e1,000.- respectively) are required. This can be fed into the e3-value model
for the appropriate value activity (being an expense carrier). The use of wireless-
UMTS routers results in data-traffic accounted on a per KByte basis and thus

Fig. 4. Relating an e3-value model and a UML deployment diagram

Assessing Feasibility of IT-Enabled Networked Value Constellations 77

in extra variable expenses each time services (using the UMTS connection) are
invoked (see Figure 3). In this example, each invocation results in sending of 2,1
KB, resulting in an expense of e0.005,-. For this expense, an expense carrier is
identified (here the ‘operation control’ activity of the ‘CHP’).

6 Relating the e3-value and UML Deployment
Perspective

6.1 Financial Feasibility

Financial feasibility is assessed by summing up the net cash flow (revenues −
expenses − investments) for each actor involved over a series of timeframes.
From a value transfer perspective, we consider a series of e3-value models, each
describing a (here 15 minutes) timeframe, together forming an e3-timeseries .
Each e3-value model, or each timeframe, contributes revenues, expenses, and
possibly investments for each actor.

From an information system perspective, each timeframe may result in (fixed
or variable) expenses and investments. Fixed expenses and investments of IT are
directly assigned to expense carriers (along the lines of of Figure 4). Based on
the number of value transfers (per timeframe, per actor), the amount of variable
expenses is calculated that stem from IT-service invocations.

The result of the above calculation is exemplified in table 1 for the ’Oper-
ation control’ activity that is executed by a CHP. The table normally lists all
considered timeframes (here only period 0 -showing the initial investment-, and
period 1 -in which the first value transfers are done- are shown, for brevity rea-
sons). Since many sequential timeframes can be considered as equal, the number
of timeframes with different financials is often much less. For each timeframe,
first the cash transferred (both to- and from an actor) is shown as a result of
doing value transfers according to the stated e3-value model for that timeframe.
Then, expenses and investments are shown for that timeframe that result from
the information system perspective. Hereafter, the net cash is calculated for each
timeframe, just by subtracting expenses and investments from revenues. Finally,
all net cash flows for all timeframes are summed up using the Discounted Net
Present Cash Flow method [4], thereby accounting properly for the time value of
money, cost of capital, and risk associated with participating in the constellation.

6.2 Technical Feasibility

The technical feasibility assessment may contain various perspectives; here we
explore scalability only. More specifically the question is: what happens if from
an economic value transfer perspective things scale up (e.g. a significant increase
in consumers, or generators).

To facilitate such reasoning, we have annotated the port of the ‘balancing
control’ component (see Figure 3) with a maximum number of invocations per
timeframe (here 15 minutes). We have already explained that the number of
value transfers (for the economic value transfer perspective) indicates the number

78 Z. Derzsi et al.

Table 1. Net value flow sheet for ’Operation control’ activity of one CHP

Ac-
tor/Activity:

CHP- ‘Operation control’

Timeframe: period 0
Economic
Value

Total

INVESTMENT 3,870 3,870

Timeframe: period 1
Value
Interface

Value Port Value
Transfer

Occurrences Valuation Economic
Value

Total

Device flexibil-
ity,MONEY

1 0.735

out: Device
flexibility

(EXPENSES) 1 0.005 -0.005

in: MONEY
(Compensation
fee)

MONEY 1 0.002 0.74

Operational
flexibil-
ity,MONEY

1 -0.666

out: MONEY
(Compensation
fee)

MONEY 1 0.0018 -0.666

Net Cash Flow: 0.069

Timeframe: period 103,680 + 1
. . .

Discounted Net
Cash Flow:

1,715.12

of port-invocations per timeframe. If this number is larger than the maximum
number of invocations, there is a scalability issue. Perhaps it can be solved by
using different hardware, but at some point, it can be possible that an entirely
different architecture should be selected.

Given the numbers for the case at hand, problems occur if the size of a market
segment increases since it effects the number of value transfers. As an example,
let the number of consumers increase to 15,000. This results in 15,000 value
transfers and so in 15,000 port-invocations of the ‘balancing control’ component
initiated by consumers. As can be seen from the annotation of the component
port (see Figure 3), this is already larger than the maximum number of invo-
cations that can be handled by the current IS design. Obviously, this is just an
example how we can reason about scalability, but it shows that for addressing a
scalability issue, an integrated view on the value transfer and IS perspective is
useful.

7 Lessons Learned and Conclusions

In this paper, we have shown how an e3-value model, taking an economic per-
spective on networked value constellations, can be structurally related to a cor-
responding UML deployment diagram, representing a technical perspective. As
a result, a comprehensive discounted net value flow sheet can be produced for
each actor involved, for the purpose to assess economic feasibility. Additionally,

Assessing Feasibility of IT-Enabled Networked Value Constellations 79

scalability, being an aspect of the larger construct, technical feasibility, can be
be reasoned about.

While doing this case study, we experienced some learnings, of which we ar-
ticulate here two (due to space considerations). First, with respect to the notion
of time, it is important that the timeframes as considered by the different per-
spectives are indeed about the same timeframe. Specifically, if the timeframe is
determined by IT (e.g. timeframe of invocations), the e3-value model should pos-
sess the same timeframe as well. This puts certain requirements on the models
constructed. Second, we have seen that -for the purpose of feasibility assessment-,
the selection of the relevant components and nodes as distinguished by the UML
deployment diagrams are influenced by the size of expenses of these components
and nodes. We experienced that these deployment diagrams are sufficient for
our purposes; obviously, they need to be detailed if stakeholders really decide to
develop the case at hand further.

Many continuing research lines are possible. Deployment diagrams are typ-
ically constructed if information system requirements and design are already
somewhat clear. Consequently, it is important to understand how e3-value mod-
els influence other UML-type of diagrams and vice versa (i.e. use-cases, activ-
ity / state transition diagrams, class diagrams) that are usually built in an
earlier stage of requirements engineering and system design. Additionally, other
aspects, specifically of technical feasibility need to be addressed, in conjunction
with the e3-value model (think of flexibility, maintainability, etc.). Another line
of research is the development of guidelines that help to make architectural de-
cisions, which are then expressed using the integrated models we have proposed.

On the short term, we continue our research by developing a DBS to be
used in Woking/UK. As the current DBS is developed for The Netherlands, we
expect changes in the e3-value model and IS architecture for the Woking case,
due to specific UK-regulations about electricity supply. We intend to use this
case study to develop an integrated view on flexibility, by considering to what
extent the Dutch system is usable for the UK. Additionally, we will work on an
entirely different case, a ship container tracking system, to validate our proposed
model-based feasibility assessment approach for IT-intensive networked value
constellations.

Acknowledgements. This work has been partly sponsored by the EESD-IST
funded project FENIX (518272), the JACQUARD/NWO funded project VITAL
(838.003.407), and the VUA funded project VUBIS.

References

1. Togaf enterprise edition, version 8.1. accessed november (2006)
http://www.opengroup.org/architecture/togaf8-doc/arch/

2. Unified modeling language: Superstructure. accessed november (2006)
http://www.omg.org/docs/formal/05-07-04.pdf

3. Akkermans, J.M., Baida, Z., Gordijn, J., Peña, N., Altuna, A., Laresgoiti, I.:
Value webs: Using ontologies to bundle real-world services. IEEE Intelligent Sys-
tems 19(4), 57–66 (2004)

http://www.opengroup.org/architecture/togaf8-doc/arch/
http://www.omg.org/docs/formal/05-07-04.pdf

80 Z. Derzsi et al.

4. Brealey, R., Myers, S., Allen, F.: Corporate Finance. McGraw Hill Higher Educa-
tion (2005)

5. Buhr, R.J.A.: Use case maps as architectural entities for complex systems. IEEE
Transactions on Software Engineering 24(12), 1131–1155 (1998)

6. Geerts, G., McCarthy, W.E.: An accounting object infrastructure for knowledge-
based enterprise models. IEEE Intelligent Systems and Their Applications,
pp. 89–94 (1999)

7. Gordijn, J., Akkermans, J.M.: Value-based requirements engineering: Exploring in-
novative e-commerce ideas. Requirements Engineering Journal 8(2), 114–134 (2003)

8. Gordijn, J., Yu, E., Van der Raadt, B.: e-Service design using i and e3 value
modeling. IEEE Software 23(3), 26–33 (2006)

9. Gordijn, J., Akkermans, H.: Business models for distributed energy resources in
a liberalized market environment. The Electric Power Systems Research Journal,
2007. Accepted by the Electric Power Systems Research Journal. Preprint available.
doi:10.1016/j.epsr.2006.08.008

10. Gordijn, J., Petit, M., Wieringa, R.: Understanding business strategies of net-
worked value constellations using goal- and value modeling. In: Glinz, M., Lutz,
R. (eds.) Proceedings of the 14th IEEE International Requirements Engineering
Conference, pp. 129–138. IEEE CS, Los Alamitos, CA (2006)

11. Magretta, J.: The power of virtual integration: an interview with dell computers
michael dell. Harvard Business Review 76(2), 72–84 (March-April 1998)

12. Osterwalder, A., Pigneur, Y.: An ontology for e-Business models. In: Currie,
W.L. (ed.) Value Creation From e-Business Models (ch.4), pp. 65–97. Elsevier
Butterworth-Heinemann, Oxford, UK (2004)

13. Pijpers, V., Gordijn, J.: Bridging business value models and business process mod-
els in aviation value webs via possession rights. Accepted by HICSS 2007, see
(2007), http://docs.e3value.com/bibtex/pdf/PijpersBridging2007.pdf

14. Pijpers, V., Gordijn, J.: e3forces: Understanding the environment of networked
value constellations for strategic goal and business model analysis. Submitted, see
(2007), http://docs.e3value.com/bibtex/pdf/PijpersStrategy2007.pdf

15. Porter, M.E.: Strategy and the Internet. Harvard Business Review, 63–78 (march
2001)

16. Sowa, J., Zachman, J.: Extending and formalizing the framework for information
systems architecture. IBM Systems Journal 31, 590–616 (1998)

17. Tapscott, D., Ticoll, D., Lowy, A.: Digital Capital - Harnessing the Power of Busi-
ness Webs. Nicholas Brealy Publishing, London, UK (2000)

18. Weigand, H.: On the notion of value object. In: Dubois, E., Pohl, K. (eds.) CAiSE
2006. LNCS, vol. 4001, pp. 321–335. Springer, Heidelberg (2006)

19. Weigand, H., Johannesson, P., Andersson, B., Bergholtz, M., Edirisuriya, A.,
Ilayperuma, T.: Strategic analysis using value modeling - the c3-value approach.
Accepted by HICSS 2007 (2007)

http://docs.e3value.com/bibtex/pdf/PijpersBridging2007.pdf
http://docs.e3value.com/bibtex/pdf/PijpersStrategy2007.pdf

Behavioral Consistency for

B2B Process Integration

Gero Decker and Mathias Weske

Hasso-Plattner-Institute, University of Potsdam, Germany
{gero.decker,mathias.weske}@hpi.uni-potsdam.de

Abstract. Interacting services are at the center of attention in business-
to-business (B2B) process integration scenarios. Global interaction
models specify the interaction behavior of each service and serve as con-
tractual basis for the collaboration. Consequently, service implementa-
tions have to be consistent with the specifications. Consistency checking
ensures that an implemented service is compatible with other services,
i.e. that it can interact successfully with them. This is important in
order to avoid deadlocks and guarantee proper termination of a collab-
oration. Different notions of compatibility between interacting services
and consistency between specification and implementation are available
but they are typically discussed independently from each other. This pa-
per presents a unifying framework for compatibility and consistency and
shows how these two notions relate to one another. Criteria for an op-
timal consistency relation with respect to a given compatibility relation
are presented. Based on these criteria weak bi-simulation is evaluated.

1 Introduction

In the case of business-to-business (B2B) process integration different business
partners interact with each other to reach a common goal. Each partner exposes
its communication behavior as services that exchange business documents with
the other partners’ services in a certain order. Choreography languages such as
WS-CDL ([5]) and Let’s Dance ([15]) were put forward for capturing the interac-
tion behavior from a global perspective. The interaction behavior is represented
by interaction models, which serve as contractual basis for the collaboration be-
tween the partners. Interface processes, i.e. the behavioral specifications for the
individual partners, can be generated (cf. [16]). These interface processes are the
starting point for implementing new services or for adapting existing ones e.g.
using BPEL ([1]). Consequently, the behavior of a service has to be consistent
with the specified interface process. Such a consistency relation should ensure
that an implemented service is in fact compatible with the partners’ services
without needing to check compatibility between the actual implementations.
The latter is not desired since internal process details should not be revealed.
Furthermore, if there is a large number of interacting partners, the number of
possible combinations of partners that have to be checked for compatibility is so
high that the testing phase becomes complex in itself.

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 81–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

82 G. Decker and M. Weske

While different consistency relations have been reported in the literature,
overarching criteria for evaluating consistency relations for specific purposes has
not been proposed yet. This paper argues that a consistency relation can be
checked for suitability with respect to a specific compatibility relation. E.g. the
compatibility relation could allow that certain interactions never happen or that
messages sent by one service are ignored by another one. Having chosen a suit-
able compatibility relation for a given context, we provide the criteria to decide
whether a given consistency relation is optimal or not.

Existing notions of compatibility and consistency are discussed in the next
section. Section 4 provides a formal definition of what an optimal consistency
relation is with respect to a given compatibility notion. Section 5 elaborates on
possible refinements from a process specification to an implementation. Since
weak bi-simulation is a common formal basis for consistency checking, we will
investigate in Section 6 whether it is optimal for the selected compatibility no-
tions. Section 7 concludes and gives an outlook to future work.

2 Compatibility and Consistency in B2B Scenarios

Compatibility is the ability of a set of interconnected services to interact success-
fully. Consistency between a service implementation and a service specification
is given if the implementation is valid with respect to the specification. In the
literature also other names such as process inheritance are used as synonyms for
consistency (cf. [4], [2]).

This section will further explain the need for compatibility and behavioral
consistency using a B2B scenario. Figure 1 gives an overview over the partners
in that scenario: A buyer (e.g., car manufacturer) uses reverse auctioning for
procuring specially designed components. In order to get help with selecting the
right suppliers and organizing and managing the auction, the buyer outsources
these activities to an auctioning service. The auctioning service advertises the
auction, before different suppliers can request the permission to participate in
it. The suppliers determine the shipper that would deliver the components to
the buyer or provide a list of shippers with different transport costs and qual-
ity levels, where the buyer can choose from. Once the auction has started, the
suppliers can bid for the lowest price. At the end, the buyer selects the supplier
according to the lowest bid or according to other criteria. After the auction is
over, the auctioning service has to be paid for and shipment details are dealt
with. Finally, the components are delivered to the buyer and are paid for.

It is obvious that there can be several suppliers, auctioning services, shippers
and buyers. Therefore, different combinations of participants must be able to
interact successfully. Unsuccessful interaction behavior could arise e.g., if dif-
ferent message formats are used in the collaboration and one participant does
not understand the message content sent by other participants. Another source
of incompatibility, which we will mainly focus on, is behavioral incompatibility.
Imagine that a participant expects a notification at some point in a process before
it can proceed and none of the other participants ever sends such a notification.

Behavioral Consistency for B2B Process Integration 83

Supplier Shipper

Auctioning

Service

Buyer

AS1

Su1

Su100

Sh1

Sh20

AS5

B1 B200
Specification

Implementation

Compatibility

relation

Consistency

relation

Fig. 1. Participants and roles in a reverse auctioning scenario

We call this situation a deadlock. In order to avoid deadlock situations and to
ensure interoperability, the participants can agree on a certain desired interac-
tion behavior. The behavioral constraints between message exchanges would be
captured from the perspective of an ideal observer and the constraints for the
communication behavior of every participant (the interface process) could be de-
rived from such an interaction model (the choreography). This specification then
serves as contractual basis for the collaboration and violations of the interaction
contract could have legal consequences.

Figure 2 depicts a part of the collaboration specification where suppliers can
request permission to the auction. We see that the roles supplier, auctioning
service and seller take part in this collaboration. For each of these roles an
interface process is given in the form of a Petri net. The places on the border of
the dashed rectangle depict the structural interface of each role, i.e. the types
of messages a role can potentially send or receive. The control flow between
the communication actions constrains the execution. A “?” symbolizes a receive
action and “!” a send action.

The supplier places a participation request at the auctioning service. The
service formulates a recommendation whether to accept this supplier or not.
This recommendation is normally based on previous experience with the supplier
or legal requirements. The auctioning service sends the recommendation to the
buyer. The buyer is not bound to this recommendation and can freely chose
whether to accept or reject the supplier. Finally, the auctioning service forwards
the decision of the buyer on to the supplier.

This specification does not tell the individual participants how their inter-
nal behavior should look like. The auctioning service could, for instance, lookup
historical data about the supplier before coming up with a recommendation;
also the buyer could have an internal decision making process possibly span-
ning different organizational units. No matter how the internal processes look
like, we are concerned that the different participants successfully collaborate, i.e.

84 G. Decker and M. Weske

BuyerAuctioning ServiceSupplier

!participation_req ?participation_req

!rec_reject!rec_accept

pr

a

r

pr

?reject?accept !accept!reject

?rec_accept?rec_reject
rr

ra

br

ba

!reject!accept
a

r

?accept?reject

ba

br

ra

rr

!notify ?notify
n n

Fig. 2. Interface processes: Getting a participation permission

that the implementations are compatible. Ensuring compatibility is a challeng-
ing and cumbersome task when dealing with a large number of participants in
this auctioning scenario, involving e.g., 100 suppliers, 20 shippers, 5 auctioning
services and 200 buyers.

A remedy for this situation is the notion of consistency between interface
and executable processes. The interface processes are the specifications for the
different roles. Consistency between an interface process and the actual process
implementation should ensure that the given implementation can interact with
implementations for the other roles (provided that they in turn are consistent
with their respective interface process). That way, we can locally check whether
or not a participant should be allowed to be involved in the collaboration sce-
nario. Compatibility between different implementations does not need to be
checked any more.

3 Compatibility and Consistency Notions

In recent years there has been extensive work on different compatibility notions
for interacting processes. This section compares four different notions, namely
the compatibility notion by Martens [6], the compatibility notion by Canal et al.
[4], interaction soundness by Puhlmann et al. [10] and the well-communicating

Behavioral Consistency for B2B Process Integration 85

requirement used in the operating guidelines approach by Massuthe et al. [8,9].
Furthermore, this section will present different existing consistency notions.

Compatibility. First, we can distinguish between structural compatibility and
behavioral compatibility. Structural compatibility like presented as “syntactic
compatibility” in [6] demands that for every message that can be sent, the cor-
responding interaction partner must be able to receive it. Futhermore, for every
message that can be received the corresponding partner must be able to send
such a message. I.e. in the case of web service architectures the receiving ser-
vice must have a matching operation for every outgoing SOAP message of the
sending service, and for every operation a sending service must be able to send
a corresponding message. We call this notion strong structural compatibility. In
other compatibility notions, e.g. the well-communicating requirement, strong
structural compatibility is not required. This acknowledges the fact that if a
service provides a certain operation, the partners do not necessarily need to
invoke this operation. However, it is still required that for every message sent
there must be a corresponding operation. We call this weak structural compatibil-
ity. One could also think of examples where even weak structural compatibility
is too restrictive: a middleware platform might be configurable in such a way
that unprocessable messages are simply ignored. E.g. notifications that are not
necessarily needed might not be received in some process. For such scenarios
we introduce the notion of minimal structural compatibility. Minimal structural
compatibility requires that there is at least one potential message send with a
corresponding message receive by another participant.

Figure 3 presents three alternative service implementations for the buyer in
our reverse auctioning example. We see that internal actions were added in
the case of B1 and B3 (e.g. “Add to blacklist” and “Store decision”). B1 is
structurally equivalent to the buyer in Figure 2 but has a different control flow
structure. This alternative has strong structural compatibility with the Supplier
and Auctioning Service, since every message sent can be received and for every
message that can be received there is a message sent. This applies for both
incoming and outgoing messages. B2 has only weak structural compatibility,
since the Auctioning Service could receive a reject message from the buyer but
the buyer never sends one. B3 does not have weak structural compatibility with
the other participants: the notification sent by the Auctioning Service cannot
be received by the buyer. However, since there are messages sent that can be
received by the buyer, minimal structural compatibility is still given.

In contrast to structural compatibility, behavioral compatibility considers be-
havioral dependencies, i.e. control flow, between different message exchanges
within one conversation. In most approaches the interface processes of the inter-
acting partners are interconnected and reasoning is done on the resulting global
process.

Martens bases his compatibility notion on interconnected workflow modules
and requires strong structural compatibility. These modules are Petri nets with
input, output and internal places (like the examples in Figures 2 and 3). When

86 G. Decker and M. Weske

Buyer

B1

!accept!reject

?rec_accept?rec_reject

ba

br

ra

rr

?notify
n

B2

!accept

?rec_accept?rec_reject

ba

ra

rr

?notify
n

B3

!accept!reject

?rec_accept?rec_reject

ba

br

ra

rr

!accept!reject

?rec_accept?rec_reject

ba

br

ra

rr

?notify
n

add to

blacklist
Store decision

Look up

historical data

Fig. 3. Alternative implementations for the buyer

composing them, corresponding input and output places of interacting processes
are merged and a global initial place and a global final place are added. Martens
defines “weak soundness” on the global process, requiring that the final marking
must always be reachable. This ensures that the global process is free of deadlocks
and livelocks.

Canal et al. have also defined a compatibility notion for interacting
π-processes. A main advantage of using π-calculus is the availability of link
passing mobility. I.e. communication channels between interacting processes do
not need to be statically defined but can be established at runtime. In real world
settings this is called dynamic binding. E.g. a service broker passes the reference
to a provided service on to a service consumer who can then use the service.
π-interactions are atomic, i.e. sending and receiving of messages happen at the
same time. Therefore, it is not possible that one π-process sends a message which
is not consumed by the other. The compatibility notion by Canal et al. requires
that both processes complete, i.e. that no more sending or receiving action is left

Behavioral Consistency for B2B Process Integration 87

to be performed. A major drawback of the given compatibility notion is that it
is defined for bi-lateral settings only.

Interaction soundness is based on “lazy soundness” of the global process. It is
required that the process always completes, while some activities are still allowed
to run even after completion. Considering these “lazy activities” is essential for
coping with advanced control flow constructs such as Discrimators (cf. [12]) but
leads to the fact that livelocks cannot be detected in some situations. Interaction
soundness is defined for a combination of a service and its environment. We find a
mixture of strong and minimal structural compatibility between the service and
its environment: The environment must be able to send and receive all those kind
of messages that the service can receive or send. Therefore, there must be strong
structural compatibility in one direction. However, the service is not required
to send and receive all those kind of messages that the environment is able to
receive or send. Interaction soundness is defined on π-calculus. Therefore, it can
also deal with link passing mobility.

The operating guidelines approach to checking compatibility [8,9] is differ-
ent to the three previous approaches in that it does not reason on intercon-
nected interface processes. Rather an “operating guideline” can be generated for
an interface process which includes all valid interaction behavior that respects
the well-communicating requirement. This requirement includes weak structural
compatibility and the absence of deadlocks and livelocks. Operating guidelines
are annotated state machines and represent the most permissive interaction be-
havior for the interaction partners. The interface processes of the partners (also
given as state machines) must then be sub state machines of the most permissive
behavior. The main motivation behind the operating guidelines approach is to
reach a smaller computational complexity for compatibility checking. A current
limitation of operating guidelines is that only acyclic processes are allowed.

Consistency. There has been quite some research work on consistency rela-
tions between specified interface processes and process implementations com-
paring their observable behavior. Basten et al. introduce different notions of
process inheritance in [2], namely protocol inheritance, projection inheritance,
protocol/projection inheritance and life-cycle inheritance. In order to determine
whether an implementation is a subclass of a given specification, encapsulation
and abstraction mechanisms are employed. Encapsulation deletes additional ac-
tivities from the implementation before comparing it to the specification, while
abstraction re-labels certain activities as τ -actions, i.e. they are not considered
in the weak bi-simulation relation. Once encapsulation and abstraction is ap-
plied, branching bi-simulation is used to compare the two process definitions.
Bi-simulation relations were defined for different formalisms. These results are
used in the public to private approach reported in [13], where participants agree
on a global interaction model and a partitioning of this model to participants.
Using inheritance mechanisms, each partner can implement an arbitrary subclass
of their public process as a local, private implementation. The inheritance rules

88 G. Decker and M. Weske

make sure that the private implementations satisfy the interaction constraints
defined in the public model.

Other examples for (bi-)simulation relations are weak open (bi-)simulation
for π-calculus by Sangiorgi [11] and branching bi-simulation for Petri nets by
van Glabbeek and Weijland [14]. Bi-simulation in general will be discussed in
section 6. Busi et al. have introduced their own calculi for choreographies and
orchestrations in [3]. Consistency between orchestration and the specified be-
havior, which is given in the choreography, is shown through a bi-simulation-like
relation, which is also defined by the authors. Martens presents a consistency
relation in [7] where the implementation must accept at least those messages
specified and must produce at most those messages specified.

4 Optimal Consistency Relations

The previous section recapitulates different notions of compatibility and consis-
tency. Consistency is dependant on compatibility and should go hand in hand
with it. Therefore, this section introduces a means to judge whether or not a
given consistency relation is suited for a given compatibility notion. The follow-
ing two requirements for consistency relations can be identified:

1. A consistency relation should ensure compatibility. If a set of specified service
definitions are compatible and a set of implementations are consistent with
these specifications then this set must also be compatible. Figure 4 illustrates
this. If Aspec, Bspec and Cspec are compatible and Aimpl is consistent with
Aspec, Bimpl with Bspec and Cimpl with Cspec, then Aimpl, Bimpl and Cimpl

must also be compatible.
2. A consistency relation should not be too restrictive. The consistency relation

should be maximal, i.e., every possible extension to the consistency relation
must result in the violation of the previous requirement.

In the remainder of this section the abovementioned requirements are formal-
ized. To allow for reusing the definitions for arbitrary compatibility and con-
sistency notions, the formalization is independent from a particular formalism
(such as Petri nets or π-calculus). We introduce as follows:

– S is a set of service definitions,
– C ⊆ ℘(S) is the set of all compatible combinations of service definitions and
– �⊆ S × S is a binary relation on S where simpl � sspec denotes that service

definition simpl is consistent with service definition sspec.

In the example shown in Figure 4, all spefications and implementations are
service definitions: Aspec, Bspec, Cspec, Aimpl, Bimpl, Cimpl ∈ S, the set of spec-
ifications and the set of implementations are compatible, respectively: {Aspec,
Bspec, Cspec}, {Aimpl, Bimpl, Cimpl} ∈ C and the implementations are consis-
tent with their respective specifications: (Aspec, Aimpl), (Bspec, Bimpl), (Cspec,
Cimpl) ∈ �.

Behavioral Consistency for B2B Process Integration 89

Aimpl

Cimpl

BimplBspec

Aspec

Cspec

Aimpl

Bimpl

Cimpl

Fig. 4. The consistency relation must respect the compatibility notion

An auxiliary relation is introduced, �′:= {(c1, c2) ∈ ℘(S) × ℘(S) | ∀s1 ∈
c1 [∃s2 ∈ c2 (s1 � s2)] ∧ ∀s2 ∈ c2 [∃s1 ∈ c1 (s1 � s2)]: All service definitions s1

in one set are consistent with at least one service definition s2 in the other set
and there is no s2 without at least one s1 that is consistent with it.

Based on these definitions, we can formalize the two requirements for optimal
consistency relations: A consistency relation � is optimal for a compatibility
notion C if and only if

1. � respects C, i.e. ∀c1, c2 ∈ ℘(S) [(c2 ∈ C ∧ c1 �′ c2) ⇒ c1 ∈ C]
2. ∀(s1, s2) ∈ S × S [¬(s1 � s2) ⇒ ¬((� ∪ {(s1, s2)}) respects C)]

The first line states that a combination of service definitions c1 must be com-
patible, if c1 is consistent with a combination of service definitions c2 that are
compatible. We have introduced the relation respects ⊆ (S×S)×℘(S) indicating
which consistency relation respects which compatibility notion. The second line
states that adding a new tuple (s1, s2) of service definitions to the consistency
relation must result in breaking the first requirement. I.e. we must not disal-
low any implementation that would successfully interact with the other allowed
implementations.

5 Process Refinement Categories

The definition of optimal consistency relations in the previous section allows
to decide a true/false decision about the suitability of a given consistency rela-
tion. In this section we want to describe some typical process refinements, i.e.
differences between specified interface processes and process implementations.
An optimal consistency relation is expected to support all these process refine-
ments, provided that the compatibility notion is permissive enough. The list of
refinement categories allows to compare compatibility and consistency notions
with respect to engineering needs. If a consistency relation is not optimal for a
given compatibility notion it probably provides less support for at least one of
the categories. Unlike the requirements for optimal consistency relations we do
not provide formal definitions of the refinements.

90 G. Decker and M. Weske

1. Addition of internal actions. Specified interface processes indicate what
interaction behavior other participants can expect from an organization. On
the other hand, a process implementation covers all internal activities and
dependencies that are present within the organization. In other words, the
specified interface process constrains the interaction behavior of an organi-
zation while the implementation contains all details for actually executing
the process. The implementation also shows interdependencies with other
processes running within the organization. Therefore, additional internal ac-
tivities that are not visible outside the organization can be found in the
process implementation.

2. Addition of communication actions. The process implementation some-
times needs to be able to comply to the constraints given in different interface
processes. E.g. there might be different interaction contracts with upstream
and downstream partners in a supply chain scenario. In order to cope with
such a situation the process implementation contains more communication
actions with partners than specified in one interface process.

3. Deciding choices at design-time. If a partner is allowed to do choices,
e.g. an organizational unit can decide whether to send an accept or reject
message (cf. the buyer in Figure 3), the specification indicates the latest
moment where the choice can be made. However, an organization might
decide that always the same branch is taken. E.g. the buyer in the example
of the previous section might decide to always accept a supplier (cf. B2 in
Figure 3). Therefore, the choice is already done at configuration time of the
partner’s system, i.e. design-time of the process implementation.

4. Removal of communication actions. When deciding at design-time that
particular branches should be taken then this results in removing commu-
nication actions from the process that are part of the other branches. This
has an influence on structural compatibility if all communication actions for
a particular message type are deleted. Another reason for deleting receive
actions could be the knowledge that the sending party has done a design-
time decision never to take a certain branch. However, it can be argued that
such an implementation should not be allowed by the consistency relation
because such an agreement between the two partners is not reflected in the
specification.

5. Deciding choices earlier at runtime. It is also imaginable that a choice
is done sometime earlier in the process. E.g. an organizational unit decides
dependending on what message comes in sometimes earlier in the process.
B1 in Figure 3 sends an accept or reject message if a corresponding rec-
ommendation comes in. Therefore, the choice whether to send an accept or
reject message is not done right before such a message is to be sent, as it is
the case in the specification, but the choice is rather done as soon as a rec-
ommendation is received. In other cases, deciding choices earlier at runtime
does not have any visible effect for the outside world.

6. Sequentialization of communication actions. Ideally, specified interface
processes do not make any restrictions on the ordering of message production
and consumption if not absolutely necessary. E.g. once a supplier is selected,

Behavioral Consistency for B2B Process Integration 91

a buyer is required to initiate the payment for the auctioning service and
send delivery details to the designated shipper. Although there is no con-
straint in what order the buyer has to send the two messages, the process
implementation might sequentialize it. E.g. the shipper is always notified as
soon as possible while the payment is delayed for a while.

7. Reordering of communication actions. Consider a similar scenario like
the previous one: it is specified that a seller first receives payment details be-
fore he receives the delivery details from the buyer. Assuming asynchronous
communication, it might be allowed that the seller can reorder the consump-
tion of the two incoming messages for process optimization purposes: He first
processes the delivery details and initiates transport before he processes the
payment details.

6 Assessment of Bi-simulation for Consistency Checking

Section 3 has shown that weak bi-simulation is the basis for several consistency
relations. The main idea behind weak bi-simulation is that a process A can sim-
ulate the communication behavior of process B and vice-versa, while internal
actions are not considered. Therefore, if A is capable of doing some communi-
cation action c then B must also be capable of doing c and again vice-versa. In
the case of consistency checking we can therefore compare a specified interface
process with a process implementation in terms of bi-similarity.

Since two bi-simulation related processes A and B show equivalent commu-
nication behavior, it is easy to see that bi-simulation respects a wide range of
compatibility notions. The first criterion for an optimal consistency relation is
therefore given. The remainder of this section investigates whether bi-simulation
is too restrictive, i.e. if the second requirement for an optimal relation is met.

Consider an example similar to the B2B scenario introduced in Section 2. In
Figure 5 processes P1 and P2 are depicted having the same structural interface
to the environment: Messages of type a and b can be received, and messages
of type c and d can be produced. Due to this structural equivalence, a and b
have the same degree of structural compatibility with any given environment.
However, these processes show different behavior. In terms of combinations of
communication actions that are performed within one process instance, process
P1 allows ?a.!c, ?a.!d, ?b.!c! and ?b.!d. On the other hand, P2 only allows ?a.!c
and ?b.!d. In this example, P1 can simulate all behavior of P2 but P2 cannot
simulate all behavior of P1. Therefore, P1 and P2 are not bi-simulation related.

The second example (Figure 6) leads to a similar situation. In P3 no ordering
constraint between !f and !g is given, while in P4 !f always happens before !g.
P3 therefore allows ?e.!f.!g and ?e.!g.!f , while P4 only allows ?e.!f.!g. P3 and P4

are not bi-simulation related.
According to the consistency notions in [2] and [3], which are based on bi-

simulation, P2 and P4 would not be allowed as implementations for P1 and P3.
However, P2 would be compatible with all environments that P1 is compatible
with. This is due to the fact that the environment must be able to receive c and d.

92 G. Decker and M. Weske

?a

P1

!c

?b

a

b

!d

d

c

?a

P2

!c

?b

a

b

!d

d

c

Fig. 5. P1 and P2 are not bi-simulation related

P3

?e
e

!f !g

g

f

P4

e

g

f

?e

!f

!g

Fig. 6. P3 and P4 are not bi-simulation related

The environment is not allowed to do any assumptions about which message is
to be received, otherwise it would be incompatible with P1. For this reason, it
is just a special case that in P2 the choice for c or d is linked to the previously
received message. In analogy to this, we know that P4 would be compatible with
all environments that P3 is compatible with.

Therefore we can conclude that bi-simulation is too restrictive as compatibility
notion for the compatibility notions presented in section 3, since adding the
tuples (P1, P2) and (P3, P4) to the consistency relation would not result in not
respecting any of the compatibility notions presented in section 3 any longer.

These examples also show that consistency relations do not need to be sym-
metric, i.e. that if a process A is consistent with process B, B does not need to be
consistent with A. Assume a process X allowing the two combinations !a.?c and
!b.?d would be compatible with P2 but not with P1: Assume that P1 produces
a message of type d after having received a message of type a, i.e. ?a.!d, the
conversation would deadlock since X would expect a message of type c which in
turn would never be sent in that conversation. Figure 7 depicts this situation.
Since all presented compatibility notions detect such simple potential deadlocks,
incompatibility holds with respect to all these notions.

Behavioral Consistency for B2B Process Integration 93

?a

P1

!c

?b

a

b

!d

d

c

!a

X

?c

!b

?d

a

b

d

c

Fig. 7. X and P1 are not compatible

The processes in Figures 5 and 6 are examples for the process refinement
categories presented in the previous section. In P2 the choice whether a message
of type c or d is sent is made earlier than in P1, namely already as soon as a
message is consumed. P4 is an example for the sequentialization of actions.

Let us now take a look at the other categories from Section 5. Weak bi-
simulation directly supports the category addition of internal activities. The
added activities are simply treated as τ -actions and are therefore ignored. For
addition of communication actions it might be possible to re-label the added
actions as τ -actions before testing for bi-similarity. This pre-processing step is
suggested in [2]. However, it cannot be generally allowed. Especially if mes-
sage exchanges for existing message types are added, compatibility with other
processes might be affected. Removing communication actions is not supported
through bi-simulation in the case of reachable communication actions. Deciding
choices at design-time is not supported (assuming that it affects the communi-
cation behavior). When deciding choices earlier at runtime the communication
behavior is not affected in many real-world cases. Therefore, we conclude that
there is partial support for this category. Sequentialization and reordering of
communication actions are not supported through bi-simulation.

Table 1 summarizes what categories of process refinements are supported
through weak bi-simulation. A “+” denotes that there is full support, “+/–”
partial support and “–” indicates no support (including the assumptions made
in the previous paragraph). The table highlights that weak-simulation does not

Table 1. Common process refinements and support through weak bi-simulation

Process refinements Weak bi-simulation
1. Addition of internal actions +

2. Addition of communication actions +/–

3. Deciding choices at design-time –

4. Removal of communication actions –

5. Deciding choices earlier at runtime +/–

6. Sequentialization of communication actions –

7. Reordering of communication actions –

94 G. Decker and M. Weske

fully support a wide range of common process refinements and therefore has
limited suitability.

7 Conclusion

This paper motivates the need for behavioral consistency checking in B2B process
integration scenarios. Especially in choreography-driven settings such consis-
tency is of key importance. We have introduced a unifying framework for behav-
ioral compatibility and consistency of services. Two requirements for consistency
relations have been introduced for classifying whether a consistency relation pre-
serves compatibility and if it is too restrictive with respect to the compatibility
relation. It was shown that interacting partners only need to agree on a suit-
able compatibility notion for their purposes and no further discussion about the
consistency relation is required, since it can be determined whether or not a
consistency relation is optimal for the chosen compatibility notion.

Furthermore, it was shown that classical weak bi-simulation relations do not
fulfill the two requirements and refinement categories were highlighted that are
fully, partially, or not supported by weak bi-simulation.

In future work, we are going to investigate other consistency relations with
respect to corresponding compatibility notions. The consistency relation intro-
duced by Martens ([7]) is promising. It might turn out to be optimal for his
weak-soundness-based compatibility notion introduced in [6]. In addition we are
going to define optimal consistency relations for selected compatibility notions.

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services, version 1.1. Technical report, OA-
SIS, (May 2003).
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel

2. Basten, T., van der Aalst, W.M.P.: Inheritance of behavior. JLAP 47(2), 47–145
(2001)

3. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
Orchestration: A Synergic Approach for System Design. In: Proceedings 3rd In-
ternational Conference on Service Oriented Computing (ICSOC, Amsterdam, The
Netherlands, Springer (December 2005)

4. Canal, C., Pimentel, E., Troya, J.M.: Compatibility and inheritance in software
architectures. Sci. Comput. Program. 41(2), 105–138 (2001)

5. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography
Description Language Version 1.0, W3C Candidate Recommendation. Technical
report,(November 2005) http://www.w3.org/TR/ws-cdl-10

6. Martens, A.: Analyzing Web Service based Business Processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, Springer, Heidelberg (2005)

7. Martens, A.: Consistency between Executable and Abstract Processes. In: Proceed-
ings IEEE International Conference on e-Technology, e-Commerce, and e-Services
(EEE 2005), Hong Kong, China, pp. 60–67. IEEE Computer Society Press, Los
Alamitos (March 2005)

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel
http://www.w3.org/TR/ws-cdl-10

Behavioral Consistency for B2B Process Integration 95

8. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. Annals of Mathematics, Computing and Teleinformatics 1(3), 35–43 (2005)

9. Massuthe, P., Schmidt, K.: Operating guidelines - an automata-theoretic founda-
tion for the service-oriented architecture. In: Proceedings Fifth International Con-
ference on Quality Software (QSIC 2005), pp. 452–457. IEEE Computer Society
Press, Washington, DC, USA (2005)

10. Puhlmann, F., Weske, M.: Interaction Soundness for Service Orchestrations. In:
Dan, A., Lamersdorf, W. (eds.) Proceedings of the 4th International Conference on
Service Oriented Computing ICSOC 2006, LNCS, vol. 4294, pp. 302–313. Springer,
Heidelberg (2006)

11. Sangiorgi, D.: A Theory of Bisimulation for the pi-Calculus. Acta Informat-
ica 16(33), 69–97 (1996)

12. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

13. van der Aalst, W.M.P., Weske, M.: The P2P Approach to Interorganizational
Workflows. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS,
vol. 2068, pp. 140–156. Springer, Heidelberg (2001)

14. van Glabbeek, R., Weijland, W.: Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM 43(3), 555–600 (1996)

15. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: A Language for Service
Behavior Modeling. In: Proceedings 14th International Conference on Coopera-
tive Information Systems (CoopIS 2006), Montpellier, France, Springer, Heidelberg
(November 2006)

16. Zaha, J.M., Dumas, M., ter Hofstede, A., Barros, A., Decker, G.: Service Inter-
action Modeling: Bridging Global and Local Views. In: Proceedings 10th IEEE
International EDOC Conference (EDOC 2006), Hong Kong (October 2006)

Declarative XML Data Cleaning with XClean

Melanie Weis1 and Ioana Manolescu2

1 HPI für Softwaresystemtechnik GmbH
Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam
melanie.weis@hpi.uni-potsdam.de

2 INRIA Futurs
2-4, rue Jacques Monod, 91893 Orsay Cedex France

Ioana.Manolescu@inria.fr

Abstract. Data cleaning is the process of correcting anomalies in a data source,
that may for instance be due to typographical errors, or duplicate representations
of an entity. It is a crucial task in customer relationship management, data mining,
and data integration. With the growing amount of XML data, approaches to effec-
tively and efficiently clean XML are needed, an issue not addressed by existing
data cleaning systems that mostly specialize on relational data.

We present XClean, a data cleaning framework specifically geared towards
cleaning XML data. XClean’s approach is based on a set of cleaning operators,
whose semantics is well-defined in terms of XML algebraic operators. Users
may specify cleaning programs by combining operators by means of a declar-
ative XClean/PL program, which is then compiled into XQuery. We describe
XClean’s operators, language, and compilation approach, and validate its effec-
tiveness through a series of case studies.

1 Motivation

Data cleaning is the process of correcting anomalies in a data source, that may for
instance be due to typographical errors, formatting differences, or duplicate representa-
tions of an entity. It is a crucial task in customer relationship management, data mining,
and data integration. Relational data cleaning is performed in specialized frame-
works [13,20,25], or by specialized modules in modern RDBMSs [7].

With the growing popularity of XML and the large volumes of XML data becoming
available, approaches to effectively and efficiently clean XML data are needed. For ex-
ample, consider DBLP1 whose data is available in XML format. Fig. 1 shows an excerpt
of the DBLP entry of one of this paper’s authors, on which we observe several XML
data cleaning issues. First, the SIGMOD conference is represented by the conference
abbreviation, the string “Conference”, and the year of the conference, whereas VLDB is
only represented by its abbreviation and year. A second example is the representation of
author names. In the bottom publication, the first author is represented by its firstname
and lastname, whereas the second author’s firstname is abbreviated. The last inconsis-
tency is that the bottom publication has actually not been written by the same author as
the other two publications. When looking at the paper, the first author is represented as

1 http://www.informatik.uni-trier.de/ ley/db/

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 96–110, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Declarative XML Data Cleaning with XClean 97

Fig. 1. Excerpt of DBLP entry

M. Weis, and it has been falsely matched to author Melanie Weis. This problem, known
as entity resolution [4] is also part of data cleaning. This example shows that XML data
cleaning is a problem of practical relevance. Therefore, we develop XClean, a system
for declarative XML data cleaning.

In developing such a system, lessons learned from relational data cleaning clearly
apply, but have to be rethought due to the significantly different data structure.

Modularity. Data cleaning processes should be modular in order to allow the composi-
tion of such processes from a set of smaller, interchangeable building blocks. Modular-
ity brings several benefits. It facilitates reusing existing cleaning transformations, sim-
plifies the process of debugging and inspecting the data transformation process, and it
allows incremental development, maintenance and evolution of the cleaning process. To
achieve modularity, relational data cleaning systems such as [13] have defined cleaning
operators. For XClean, we also define operators, which distinguish themselves from ex-
isting relational cleaning operators because they have to deal with the nested and semi-
structured nature of XML data. For example, object properties may be multi-valued
(e.g., a publication has several authors) or missing (opposed to empty content). Fur-
thermore, crucial information describing the way XML nodes relate to one another is
given by their parent-child relationships, whereas relational data cleaning concentrates
on cleaning flat tuples of a single table. Consequently, XML data cleaning operators
need to preserve these relationships, but also have the opportunity to exploit them.

DBMS-backed data cleaning. Many transformations involved in data cleaning
are closely related to those typically applied inside database management systems
(DBMSs). Therefore, cleaning data on top of a DBMS allows taking advantage of
its functionalities, including persistence, transactions etc. but also query optimiza-
tion, which may speed up the cleaning process. Relational data cleaning’s reliance on
RDBMSs was limited by expressive power mismatches between the cleaning primitives
and SQL. Features such as user-defined aggregate functions, transitive closure compu-
tation, nested tables etc. are either not fully supported by the language, or not well
supported by existing systems. In contrast, the standard XML query language, XQuery,
is Turing-complete, raising the question whether simply writing XQuery queries may
not suffice for data cleaning? While this approach can be made to work, it amounts to
writing fresh code for every new cleaning problem, which does not agree with the last
requirement applying to relational data cleaning systems, as well as to XClean.

Declarativity. By declaratively describing the cleaning process, its logic can be de-
coupled from the actual processing and its implementation. This makes data cleaning
processes easier to write and to debug than alternative approaches, based on imper-
ative code. Declarative cleaning programs allow concentrating on the cleaning tasks,

98 M. Weis and I. Manolescu

while delegating storage and optimization issues to the underlying data management
systems. As XML cleaning operators are significantly different from relational clean-
ing operators, it is natural that declaring them is also different. In XClean, we provide a
declarative programming language, called XClean/PL to specify the cleaning process.
This program is then compiled to an XQuery, and executed using any XQuery engine.

In this paper, we present XClean, the first modular, declarative system for native
XML data cleaning. Our main contributions are (i) The definition of cleaning operators,
to be combined in arbitrary complex cleaning processes, viewed as operator graphs.
(ii) A high-level operator definition language, called XClean/PL, which is compiled
into XQuery, to be executed on top of any XQuery processor.

We outline the XClean architecture and define its operators, in Sec. 2. XClean/PL
and its compilation to XQuery are outlined in Sec. 3. We evaluate XClean’s expressive
power and ease of use on several case studies in Sec. 4, discuss related works in Sec. 5,
then we conclude.

2 XClean Overview

The XClean system described in this paper is a data cleaning system that allows declar-
ative and modular specification of a cleaning process. In this section, we first present the
overall XClean system, and then introduce the XClean operators enabling modularity.

2.1 XClean Architecture

The architecture of the XClean system is depicted in Fig. 2(a). A user specifies an
XClean program in our proposed declarative XClean/PL language (see Sec. 3). An
XClean/PL program specifies a set of XClean operators, and the way their inputs and
outputs are connected. We design XClean/PL with the goal of minimizing the cognitive
effort for the average XClean user. XClean/PL provides a custom syntax for cleaning-
specific operators, increasing the readability and ease of maintenance of cleaning pro-
grams, while being significantly more concise than the XQuery programs resulting from
the compilation of XClean/PL to XQuery.

XClean provides a function library including commonly used functions (e.g., date
formatting for scrubbing, edit distance for string similarity) which may be used in
XClean/PL programs. These functions can be defined as XQuery functions, imple-
mented either in XQuery or in an external language [27].

XQuery is a feature-rich language widely implemented by major DBMS ven-
dors (such as IBM, Oracle, Microsoft etc.) and free-source projects (e.g. Saxon,
BerkeleyDB/XML etc.), so using XQuery allows to execute the compiled XClean/PL
programs on top of any XQuery-enabled platform. XQuery execution plans can be op-
timized to make query execution more efficient. Executing the XQuery results in the
clean XML data. Note that we do not discuss XQuery optimization in this thesis, as it is
a separate research area by itself. Instead, we focus our discussion on XClean operators,
XClean/PL, and its compilation to XQuery.

Declarative XML Data Cleaning with XClean 99

Operator Goal
Candidate Selection (CS) Select elements to be cleaned.

Scrubbing (SC) Remove errors in text (typos, format, ...).
Enrichment (EN) Specify data that supports cleaning.

Duplicate filtering (DF) Filter non-duplicate element pairs.
Pairwise duplicate Classify pairs of elements as duplicates,
classification (DD) non-duplicates, ...

Duplicate clustering (DC) Determine clusters of duplicates.
Fusion (FU) Create unique representation of an entity.

XML view (XV) Create XML view of clean data.

(a) XClean architecture (b) XClean operator averview

Fig. 2. Overview of the XClean architecture and its cleaning operators

Fig. 3. Sample cleaning process overview

2.2 Operators

XClean’s cleaning operators are summarized in Fig. 2(b), and are defined over a data
model described in detail in [15], for which we only summarize features and notations
relevant for defining XClean operators’ algebra.

Any XClean operator inputs and outputs collections of (nested) tuples, having the
structure ($a1 = val1, . . . , $ak = valk), where each $ai = vali is a variable-value
pair. Variable names such as $a1, $a2 etc. are $-prefixed, following XQuery conven-
tions, and are unique within a tuple. A value may be (i) the special constant ⊥ (null),
(ii) an XML node or value, or (iii) a (nested) set, list, or bag of tuples. Given a tuple
($a1 = val1, . . . , $ak = valk) the list of names [$a1, . . . , $ak] is the tuple’s schema.

We refer to the set of all tuples as T , and denote the set of n-ary tuples Tn. We use
P(T) to denote all sets of tuples from T . Given a tuple t = (. . . $x = v . . .) we say that
$x maps to v in the context of t. We represent by t.$x the value that the variable $x maps
to in the tuple t. The notation t′ = t + ($var = v) indicates that the tuple t′ contains
all the variable-value pairs of t and, in addition, the variable-value pair $var = v. The
tuple t′′ = t + t′ contains all the variable-value pairs of both t and t′.

100 M. Weis and I. Manolescu

Fig. 3 (bottom) presents a sample XML document containing three versions of the
same real-world movie, with their respective title, year and actor sets. The labels m1,
a1 etc. uniquely identify an element and are used to reference them in our example.
Assume that the goal of the cleaning process is: (i) obtaining one representation for
each movie, including all alternative titles, one year, and all actors (but each actor
only once), and (ii) restructuring each actor element into a firstname and a lastname
element. A possible result of this process is shown at the top of Fig. 3. Using this
example, we introduce the XClean operators that define a cleaning process.

Candidate Selection. Candidate selection is used to designate elements that are subject
to the cleaning process. Candidates are designated by a set of queries q1, q2, . . . , qk, and
the effect of the CS operator is to evaluate all queries and union their results into a flow
of 1-tuples. Candidate selection is the first step in the process of cleaning, therefore, the
CS operator has no input (child) operator. Formally:

CSq1,...,qk
() = q1 ∪ . . . ∪ qk

Consider the selection of movie candidates. Let qm = $doc/moviedb/movie. Fig. 3
depicts the operator CSqm (1) and its output. Similarly, actor candidates are selected
by the operator CSqa (2) in Fig. 3, where qa = $doc/moviedb/movie/set/actor.

Scrubbing. Scrubbing is used for normalizing and standardizing formats and/or values.
We model this based on a set of scrubbing functions, which apply on (tuples of) atomic
values and produce (tuples of) atomic values. For generality, XClean scrubbing func-
tions may have one or several inputs and one or several outputs. We deliberately chose
to restrict scrubbing functions to atomic values. We argue that functions which apply
more complex object analysis and transformation for cleaning would benefit from being
decomposed in elementary steps, which help reasoning and optimization. Our frame-
work does allow to model such transformations by the XML View operator, described
later. Formally, let f : An → Am be a scrubbing function, and IN be a flow of tuples
of arity k, such that n ≤ k, and let i1, i2, . . . , in be a set of integers such that for any
1 ≤ j ≤ n, we have 1 ≤ ij ≤ k. Furthermore, let q1, q2, . . . , qn be some XML queries,
which are used to extract from the (potentially complex) input the atomic inputs of the
scrubbing function. Then:

SCf,i1,i2,...,in,q1,q2,...,qn(IN) = {t + ($b1 = vt
1, $b2 = vt

2, . . . , $bm = vt
m) |

t ∈ IN, ∃ (ut
1, . . . , u

t
n) s.t. ut

1 ∈ q1(t.$ai1), ut
2 ∈ q2(t.$ai2), . . . , ut

n ∈qn(t.$ain),
and f(ut

1, u
t
2, . . . , u

t
n) = (vt

1, v
t
2, . . . , v

t
m) }

where $b1, $b2, . . . , $bm do not appear in IN ’s schema. The definition accounts for the
general case where each XML query qi may return a sequence of results. SC semantics
requires that every combination of atomic inputs be used to call f .

To split actor names into a firstname and a lastname, we use a scrubbing function
factor : A → A2. Let qactor = ./actors/actor/text() be the query extracting the initial
actor names, and assume IN contains tuples having just one attribute, namely the actor
candidates. We apply SCfactor ,1,qactor (IN) (2.1) in Fig. 3. The second scrubbing oper-
ation is the standardization of years, performed by applying SCfyear ,1,qyear (IN) (1.2):
fyear : A → A scrubs movie year values (by normalizing them to four digits), and
qyear = ./year/text(). This time, IN contains the set of movie candidates.

Declarative XML Data Cleaning with XClean 101

Enrichment. Enrichment allows specifying which data to use for comparing two can-
didate duplicates. Let IN be a flow of tuples, $c be the name of one attribute in these
tuples, and q1, q2, . . . , qk be a set of XML queries, which may be absolute (i.e., navigate
from the root of some given document) or relative (i.e., navigate from $c). We have:

EN$c,q1,...,qk
(IN) = {t + ($a1 = q1(t.$c), . . . , $ak = qk(t.$c)) | t ∈ IN}

where $a1, $a2, . . . , $ak do not appear in IN ’s schema.
Consider a movie is described by its title and its set. Therefore, we specify qen1 = ./ti-

tle, and qen2 = ./set. Assuming as input the result of the movie candidate selection
operator CSqm , the operator EN$movie,qen1,qen2(IN) corresponds to step (1.2).

Duplicate Filtering. Duplicate filtering constructs (a subset of) the cartesian product
of a flow of candidates with itself, to be used in order to identify duplicate objects later.
If only a subset of the cartesian product is built, the operator has been used to restrict
the space of comparisons by pruning out some pairs of objects about which it can be
said with certainty that they are not duplicates. Only on the pairs of objects which
may be duplicates, other measures will later be applied to determine whether they are
duplicates indeed. The second, separate output of this operator is the set of pairs of
input tuples, which are definitely deemed to be non-duplicates. Although they will not
be used in the main cleaning process, they may be needed, e.g., for further analysis by
the user. Formally, let m be the arity of the tuples in the input IN . Let f1, f2, . . . , fk be
k functions such that fi : Tm × Tm → {true, false}. The duplicate filtering operator
DF has two outputs, denoted D(duplicates) and ND(non-duplicates), and is defined
as follows:

DFf1,...,fk
.D(IN) = {t1 + t2 ‖ t1, t2 ∈ IN, f1(t1, t2) = . . . = fk(t1, t2) = true}

DFf1,...,fk
.ND(IN) = {t1 + t2 ‖ t1, t2 ∈ IN, ∃ 1 ≤ i ≤ k s.t. fi(t1, t2) = false}

Clearly, several DF operators can be used to apply (conjunctively) several filters on
potential duplicates. More complex (not necessarily conjunctive) filtering combinations
can be devised by creating a complex function from simple ones, and using a single DF
operator based on the complex function.

Let ffirstLetter be a filter function that returns true if the string values of either
$firstname or $lastname of an actor are equal, false otherwise. Further, let fequal return
true if the $actor nodes are equal according to node identity, false otherwise. Finally,
let forder return true if the $actor node of the first tuple appears before the $actor node
of the second tuple in the document. Then, DFffirstLetter ,fequal ,forder

is the operator
labeled (2.2) in Fig. 3, and its DUP output is the table depicted right above it.

Pairwise Duplicate Detection. Duplicate detection expects input tuples that include
two possibly enriched candidates, and outputs one or more tuple classes, according to a
classifier function. If only one class of output is produced, it is understood as containing
duplicates. If more classes are produced, their semantics depend on the classifier. For
instance, one classifier may identify “certain duplicates”, “likely duplicates” on which
another duplicate detection classifier on pairs is applied, and “others”, for which human
user expertise is needed. Moreover, each tuple is annotated with a classifier-produced
data structure which may encapsulate auxiliary information about the classification re-
sult (such as the confidence in the announced score, similarity, etc.).

102 M. Weis and I. Manolescu

Formally, let fclass : T2m → {1, 2, . . . , m} × N be a classifier function return-
ing for every input tuple, the index of a class, and an auxiliary data structure, mod-
eled as an XML node. The duplicate detection operator DD has m outputs, denoted
OUT1, OUT2, . . . , OUTm, defined as follows:

DDfclass
.OUTi(IN) = {t + ($n = fclass(t).aux) | t ∈ IN, fclass(t).c = i}

where the class output of the classifier is denoted fclass.c, the auxiliary data structure
is denoted fclass.aux, and $n does not appear in IN ’s schema.

We detect duplicates in actors using a classifier dActor returning a single DUP
class. It classifies a pair of actors as duplicates if either firstname or lastname are equal
(this simple function could already have been used for filtering, but we use it here to
keep the example simple). The auxiliary information of the classifier returns the edit
distance between the names. The operator DDdActor is numbered (2.3) in Fig. 3.

Duplicate Clustering. Duplicate clustering takes as input one or several sets of poten-
tial duplicates, and outputs as many sets of duplicate clusters. A tuple in every output
has one attribute, whose value is a set of tuples from the corresponding input flow, rep-
resenting a set of candidates which represent the same real-world object. Clustering
algorithms need to examine their whole input before producing their output, therefore,
this operator is not defined on a per-tuple basis, as the previous ones. Moreover, some
clustering algorithms take advantage of candidates from one input to determine how to
cluster candidates from another input [21,10], therefore this operator has multiple inputs
and outputs. Formally, let k be an integer, and IN1, IN2, . . . , INk be some operators
such that tuples in the output of INi, 1 ≤ i ≤ k, have arity 2 ni, for some integer ni.
{INi} denote the set of tuples output by INi. Let

fclust : P(T2 n1) × . . . × P(T2 nk
) → P(P(Tn1)) × . . . × P(P(Tnk

))

be a clustering function that takes as input k whole sets of tuples, and outputs k sets of
sets of tuples (representing clusters). Let {INi} denote the set of tuples output by INi,
and OUT1, OUT2, . . . , OUTk be the outputs of DC. Then:

DCfclust
(IN1, . . . , INk).OUTi = fclust({IN1}, . . . , {INk}).i

where the i-th attribute of fclust’s output is denoted OUTi. Note that DC breaks down
every two-candidate duplicate in two, folding all duplicate tuples into a single cluster.

Consider the clustering of movies, described by their titles and actor sets. To detect
duplicates in movies, information about duplicates among their actor sets is helpful,
so we perform duplicate detection using clustering on the input INactors, consisting
of the pairs produced by actor duplicate detection (2.3), and INmovies, holding movie
pairs. In our example, the clustering operator DCfclust

(INactors, INmovies) is labeled
(3), and it produces two sets of tuples. Each tuple in the first set is a cluster of actors
considered duplicates, and each tuple in the second set is a cluster of duplicate movies.

Fusion. The fusion operator applies on clustered tuples. Its purpose is to construct a
single representative, or cleaned version, from every cluster of tuples in its input. For-
mally, let ffuse : P(T) → T be a function that, for every cluster of T tuples, returns

Declarative XML Data Cleaning with XClean 103

a cleaned tuple representing the unified cluster. Assume IN contains 1-tuple attributes,
such that every attribute value belongs to P(T). Then:

Fffuse
(IN) = {ffuse(t.$a1) | t ∈ IN}

This generalizes to IN having several attributes, one of which is a nested table.
We fuse movies by unifying all their descendant sequences, which results in a new

element denoted m′i, for the i-th tuple in the input (3.1). We fuse actors by choosing the
first actor (according to document order) as a cluster representative (3.2).

As for duplicate detection, fusion may involve more complex logic than the simple
aggregation above. E.g., when detecting duplicates in movies, and simultaneously in
actors, which are descendants of movies, the fused result of movies also depends on the
fusion of actors. Hence, information about duplicate movies and actors is required, simi-
larly as for relationship-based duplicate detection. As fusion usually requires a previous
clustering, we decide to let fusion be part of the clustering function when necessary.

XML View. During cleaning, it may be necessary at several points to apply some “ad-
justment” transformation to one operator’s output prior to sending it into another opera-
tor’s input. Furthermore, if only parts of the input data have been cleaned, an extra query
may be needed to combine the cleaned data with the document it originated from. Such
transformations can be accomplished via the XV operator, standing for XML View. Let
IN contain some tuples in Tn, and i1, i2, . . . , ik be some column indices in IN . Let
q($x1, $x2, . . . , $xk) be a parameterized XML query. Then:

XVq,i1,i2,...,ik
(IN) = {t + ($a = q(t.$ai1 , t.$ai2 , . . . , t.$aik

)) | t ∈ IN}

Actor elements need to be restructured in the final result, with 〈firstname〉 and
〈lastname〉 children. Names have been split by the scrubbing operator, we now need to
create a new representation of every candidate movie, including the complex-structure
actor names. This transformation can be specified by an XQuery qxv. Fig. 3 shows the
XVqxv (IN) operator (4) and its output.

3 XClean Programming

Having discussed the XClean architecture and the operators used to define a clean-
ing process, we present how these can be specified using the programming language
XClean/PL, and compiled to an executable XQuery.

3.1 Language Rationale and Design

The specification of a cleaning process can be decomposed in (i) choosing the spe-
cific filters, distance functions, duplicate detection algorithms, etc., and (ii) writing the
“surrounding” code necessary to implement the operator tree using these functions.

Previous experience in data cleaning [13,20,25] demonstrates that creating or choos-
ing the cleaning functions and algorithms requires a human expert, and cannot be auto-
mated. In contrast, the second task is repetitive, and amenable to automation. Based on
this observation, we designed the XClean/PL language as follows.

104 M. Weis and I. Manolescu

Table 1. Sample XClean/PL clauses

(a) XClean/PL clauses
ENRICH $m IN $scrubbedMovies
INTO $enrichedMovies
BY $m.mCand/movie/title/text() AS $title,

$m.mCand/movie/set/actor AS $set;
CLUSTER CLASSIFICATION USING

xcl:radc($actorDups,
$candMovieDups)

INTO $movieClusters
SCHEMA [$movieCluster],

$actorClusters
SCHEMA [$actorCluster];

PAIR CLASSIFICATION
PAIR $p IN $candActorDups
WITH detectActorDups($p),

eDist($p) AS $aux
INTO $actorDups IF CLASS = 1;

(b) Compiled XQuery clauses
let $enrichedMovies := for $m in $scrubbedMovies
return <tSYS>{$m/element(),

element title {$m/mCand/movie/title/text()},
element set {$m/mCand/movie/set/actor} </tSYS>

CLUSTERSSYS := xcl:radd($actorDups, $candMovieDups),
$movieClusters :=

for $VSYS in $CLUSTERSSYS/element()[1]/element()
return <tSYS>{element mClust{$VSYS/element()}}</tSYS>,

$actorClusters :=
for $VSYS in $CLUSTERSSYS/element()[2]/element()
return <tSYS>{element aClust{$VSYS/element()}}</tSYS>

$PAIRSSYS := for $p in $candActorDups return
<CLASSSYS>{ attribute CLASSSYS{detectActorDups($p)},

<tSYS>{$p/element(), element aux{eDist($p)}}</tSYS>
}</CLASSSYS>,

$actorDups := $PAIRSSYS[@CLASSSYS = ’1’]/element()

An XClean/PL program is a set of clauses, each of which defines a cleaning operator.
Operators input and output tuples from shared, global XClean/PL variables. Sample
XClean/PL clauses appear in Tab. 1(a), the full description of XClean/PL’s syntax being
provided in [1]. XClean/PL keywords appear in bold font.

The top enrichment clause defines the operator labeled (1.2) in Fig. 3. The clause
refers to two named tuple sets, globally visible in the XClean/PL program: $scrubbed-
Movies, the operator’s input, and $enrichedMovies, its output. The tuple variable $m
iterates over the input. The BY clause introduces the two enrichments: the result of each
query is added as a new variable, part of the output flow.

The cluster classification clause defines the operator labeled (3) in Fig. 3. The
classifier function xcl:radc denotes a relationship-aware duplicate clustering func-
tion (e.g.,[21]), which is one among the possible classifiers to be used here. The classi-
fication function returns two sets of clusters, one containing movies and another one
actors. The INTO keyword is used, as previously, to capture the outputs of xcl:radc,
and make them visible in the XClean program for further usage. This clause also
explicitly renames the attributes in each set of cluster’s schema, through the SCHEMA

clause.
The last clause in Tab. 1(a) defines the pairwise duplicate operator DDdActor used

for illustration in Section 2.2 (numbered 2.3 in Fig. 3). Function detectActorDups re-
turns 1 if the two actors are considered duplicates and 2 otherwise, while function eDist
is a simple edit distance. The WITH keyword is immediately followed by a call to the
classifier function, after which the (optional) function producing the auxiliary informa-
tion is invoked. The difference between the WITH keyword and the USING keyword is that
the first calls a function within an iteration, whereas the second calls a function that
takes sets of tuples as input.

3.2 Compiling XClean/PL to XQuery

An XClean/PL program is compiled based on a few principles, discussed next. Tab. 1(b)
shows XQuery snippets obtained when compiling the XClean/PL clauses of Tab. 1(a).

Declarative XML Data Cleaning with XClean 105

First, given that XQuery does not support tuples, every tuple manipulated during the
cleaning process is translated into a system-generated XML element, named 〈tSYS〉.
For every variable of an XClean tuple, the system-generated 〈tSYS〉 element has a child
element named after the variable (without the leading $), its content being variable
value. Nested tuples are translated into nested 〈tSYS〉 elements. While this element
generation is generally computationally expensive, [11] has characterized situations
when element construction can be avoided. These are the situations when the identity
of the constructed node is never used in the remainder of the same XQuery program.
Fortunately, all 〈tSYS〉 element creation done in XClean are in this situation.

Second, global XClean/PL variables are compiled in XQuery variables introduced
by let clauses, bound to the lists of 〈tSYS〉 elements.

Third, XClean/PL operators defined by iterating over input tuples (SC, EN , dDD,
FU , and XV) are compiled into for-where-return expressions, with XClean/PL’s itera-
tion variables (such as $m) compiled into XQuery for clause variables.

Finally, XClean adds an internal xcl:id identifier attributes to XML elements manipu-
lated during cleaning. One reason for this is related to XQuery semantics: when creating
an element having the value of the variable $x as a child, such as, e.g., 〈a〉{$x}〈/a〉, the
nodes associated to $x are copied, thus they are no longer equal to the original nodes.
However, the cleaning process needs to reason on the relationships between the nodes,
e.g., when de-duplicating movie candidates based on related actor duplicates. Moreover,
when re-assembling the cleaned elements (last step in Fig. 3), IDs are also needed. A
second usage of system-introduced IDs is to enable lineage tracing, i.e., discovering the
operators (and inputs) that have led to obtaining a given output (clean) element. Lin-
eage issues are often central in data cleaning processes [13,25], to help users understand
cleaning results, inspect and refine the process. To keep ID insertion and manipulation
overhead low, XClean IDs are added to cleaning candidates only.

4 Usage Report

The approach described in this paper has been implemented in our XClean Java-based
prototype ([22]) following the architecture shown in Fig. 2(a). XClean/PL programs are
compiled using the antlr tool2, into XQuery programs.

Section 4.1 reports on three use cases. Section 4.2 outlines a quantitative evalua-
tion of XClean performance. Details on use cases, sample data sets, full XClean/PL
programs, and their resulting XQueries are available at [1].

4.1 Use Cases

FreeDB Use Case. This use case concerns CD description FreeDB data3. The clean-
ing process (see Fig. 4(a)) includes correcting errors in artist names (common errors
include different capitalization schemes, Various Artists is also represented by V.A.,
Various), standardizing dates, correcting titles (e.g., the title element often includes
Artist/Title), and track titles (again, capitalization). All these operations correspond

2 http://www.antlr.org/
3 http://www.freedb.org

106 M. Weis and I. Manolescu

(a) CDDB Use Case (b) CORA Use Case

Fig. 4. CDDB and CORA use case description

to scrubbing operators. We further enrich CDs with track 〈title〉 elements obtained by
splitting the comma-separated list of track titles into individual elements. Using the en-
riched CDs, the final task is to deduplicate CDs: if both 〈artist〉 and 〈title〉 are equal,
we consider CDs to be duplicates, which is a boolean function without auxiliary in-
formation that can directly be used in the DF operator. Clustering performs transitive
closure over CD pairs and fusion creates a single representative for every CD. Dur-
ing fusion, conflicts may appear in category, genre, year, and tracks: different cate-
gories, genres, and years are concatenated, whereas sets of 〈title〉 elements are unified.
Note that the table representation has only been used for readability, the actual data is
XML.

MOVIE Use Case. This is a data integration scenario, in which movies from two
sources are first mapped to a common schema, and then de-duplicated. The sources
are the Internet Movie Database IMDB and the German Movie Repository FILMDI-
ENST4. Fig. 5(a) outlines the two source schemas and the target schema. In IMDB
titles, the possible leading “The” or “An” is separated in an 〈article〉 element. Non-
trivial correspondences between source and target types are rendered by curved ar-
rows, possibly annotated with transformation functions. For instance, IMDB names are
split into firstname and lastname, and gender is set to “m” for actors, or to “f” for
actresses.

XClean allows specifying this process in several ways, as illustrated in Fig. 5(b).
In this figure, the central tree of connected operators represents one possible cleaning
process, denoted P1. An alternative XClean operator graph for the same task, which we
denote P2, can be obtained by modifying P1, as we will shortly explain.

In P1, the operators in the shaded bottom areas are used to select and scrub the clean-
ing candidates from IMDB (left), and FILMDIENST (right). From IMDB, we extract:
aka-title, movie and name candidates. Then, title scrubbing (upper/lower case normal-
ization) is applied on the text content of aka-title elements, as well as on the text of
movie/title; actor name scrubbing separates first names from last names. FILMDIENST

4 http://www.imdb.com and http://film-dienst.kim-info.de/, respectively.

Declarative XML Data Cleaning with XClean 107

(a) Integration process (b) Alternative cleaning plans

Fig. 5. Two equivalent cleaning processes for the MOVIE Use Case

candidates are: movies, movie main titles, and movie aka-titles. Both title types undergo
scrubbing. The XV operators align the movies to the target schema as shown in Fig. 5.
The CS operators merge candidate movies (respectively, candidate actors) from both
data sources, to be used together in the rest of the process: year and prod-com scrubbing,
duplicate filtering and clustering. Note that the second duplicate clustering operator per-
forms fusion, illustrating a case of complex fusion that requires several inputs (movies
and actors). The final result is composed using an XV operator.

The second plan P2 differs from P1 in the following two ways: First, the scrub-
bing operator on year and prod-com (thick line) is pushed down below the interme-
diate XV operators. Because integration has not been performed below this point, the
scrubbing operator is split into two individual scrubbing operators, one for each source.
Second, scrubbing in P1 has been performed separately on main-titles and aka-titles in
both sources. In P2, titles of each source are scrubbed in one operation, are then en-
riched by their type and split in the corresponding title elements in the intermediate XV
operator.

This scenario illustrates the benefits of modular data cleaning: the same scrubbing
function can be used for all titles. It also demonstrates the interest of declarativity: a
given process can be specified in multiple ways, and separating its specification from
its actual implementation allows for its automatic optimization.

CORA Use Case. The CORA bibliographic data set is frequently used to evaluate du-
plicate detection algorithms [10,21]. Fig. 4 outlines an XClean operator graph (right)
as well as a sample input reference (bottom left) and its corresponding clean version
(bottom right). Colors of operator boxes indicate the bibliographic data components
on which they apply, e.g. authors, dates etc. The sample XClean process scrubs, en-
riches and restructures the dirty data (from the bottom to the upper CS). We assume
the restructured data is then fed into three parallel cleaning chains, with the purpose of
comparing their respective clean outputs.

In this example, we again scrub dates, reusing a standard function available in the
XClean function library already used in the MOVIE scenario. Also, detecting duplicates
in author names is similar to detecting duplicates in actor names, so we can reuse the

108 M. Weis and I. Manolescu

Table 2. Use Case Statistics

Use Case #Nodes #Chars Time (s) Word Savings
FreeDB 2001 36103 4.7 61%

MOVIE (P1) 3108 9666 20.4 59%
MOVIE (P2) 3108 9666 1.8 57%

CORA 1116 9705 6.1 45%

same pairwise duplicate detection function as in the MOVIE scenario, showing the
advantage of modularity.

4.2 Quantitative Aspects

We have run the XQuery programs on several freely available XML engines: XML
Spy, QizX/Open, and Saxon B5. We found the latter to be the most efficient for our
generated XQuery set. Tab. 2 provides an overview of the size of the data sets of the
three use cases, actual runtimes (averaged on 10 runs), and savings in word counts when
using XClean/PL, relative to the word count of the respective generated XQueries.

On the MOVIE use case, we observe a difference on runtime, depending on the clean-
ing plan. Indeed, the difference between the two plans for the MOVIE scenario is of an
order of magnitude. This is mainly due to the higher number of function calls and the
multiple joins performed in the intermediate XV operator of P1. Some of these joins
are avoided in P2, because candidates have already been enriched with the informa-
tion via the EN operators. This recalls the classical optimization consisting of pushing
function calls under joins, if the function call results are not cached [9]. As XQuery op-
timizers grow more efficient and include such mainstream techniques, the performance
of XClean programs translated to XQuery is likely to improve. (Admittedly, more effi-
cient XQuery processors are there today - on the Saxon website, the commercial version
of Saxon is said to be two orders of magnitude faster, on some queries, than the free
version we used.)

In the CORA use case, although the data set is quite small, the runtime is worse than
for FreeDB or MOVIE (P2), because it applies more expensive operators on pairs (DF ,
DD, DC).

Finally, we observe significant savings in the size of a XClean/PL program over
the generated XQuery, as shown in the last column of Tab. 2. This indicates that a
specialized language like XClean/PL makes the specification of cleaning tasks more
concise, thus, we believe, more convienent for the user.

5 Related Work

Due to the lack of space, we only briefly discuss selected related work. A survey on re-
lational data cleaning is made in [19], and more recent approaches include AJAX [13]
and Potter’s Wheel [20]. XClean is conceptually close to AJAX by its operator-based
approach. However, our operators consider the existence of more than one candidate
type, which can be related to each other. Relationships between candidate types are

5 http://www.altova.com, http://www.xfra.net/qizxopen/, and http://saxon.sourceforge.net/

Declarative XML Data Cleaning with XClean 109

maintained throughout an XClean process, and can be used by various algorithms,
e.g., for duplicate detection or fusion. Another difference to AJAX is that the XML
context lifts the expressive power barriers that confronted AJAX. In our context, advan-
tages of a declarative, modular approach are: ease of specification and maintenance, and
opportunities for optimization. AJAX moreover provided an exception handling mech-
anism, which we plan to consider as well in the future.

XClean is not meant to replace existing algorithms for specific cleaning tasks, such
as clustering, distance computation etc. Instead, these approaches can be plugged in
as physical implementations of specific operators, thus re-using existing results and
running code. For duplicate detection, numerous algorithms have been developed, for
relational data [14,16], XML/hierarchical data [2,18,23], and more complex graph
data [10,21,24]; a survey is provided in [26]. For similarity joins, the computation-
ally expensive part of duplicate detection, a relational operator has been proposed in
[8]. Fusion has received less attention, and all work focuses on relational data. The
authors of [6] propose an operator that extends SQL to support declarative fusion and
implemented in the HumMer system [5], and we plan to develop a similar technique for
XML data. Other solutions include TSIMMIS [17] relying on source preference in the
context of data integration, and ConQuer[12] that filters inconsistencies out of query
results.

XClean’s internal model includes tuples [1], which have made it easy to model as-
sociations between objects. Existing works suggested a controlled inclusion of tuples
in XQuery to facilitate analytic queries rich in group-by [3]. The difference is that we
include tuples as XClean internals and compile in standard XQuery, whereas [3] add
new syntactic constructs.

6 Conclusion

We presented XClean, a system for declarative XML data cleaning. Users of the sys-
tem write an XClean/PL program that reflects the desired cleaning process and which
is automatically compiled into an XQuery, that can be optimized and executed by an
XQuery engine. The result of this query is a clean version of the data. We defined sev-
eral operators that can be combined in a modular way to form a cleaning process, and
for each of which an XClean/PL clause exists. Use case based studies show that us-
ing XClean/PL to define a cleaning process is more convenient than writing a custom
XQuery, and operators can be easily reused.

However, efficiency for a given cleaning task depends on the actual cleaning plan.
The performance attained by the XQuery processors used in our evaluation could
clearly be improved; as part of our future work, we intend to investigate which (intra-
engine, external to XClean) XQuery optimizations would most help for such queries.
XClean extensions we envision in the short term are: a GUI to support the design of the
cleaning process, and exception handling (also absent from XQuery !), which is very
important since exceptions may arise from a variety of sources in a cleaning context,
and they include valuable information for the user seeking to refine the process.

Acknowldgements. This research was partly funded by a “DAAD Doktoranden-
stipendium” scholarship.

110 M. Weis and I. Manolescu

References

1. XClean, A.: system for declarative XML data cleaning.
http://www.hpi.uni-potsdam.de/∼naumann/xclean/

2. Ananthakrishna, R., Chaudhuri, S., Ganti, V.: Eliminating fuzzy duplicates in data ware-
houses. In: VLDB (2002)

3. Beyer, K., Chamberlin, D.D., Colby, L., Ozcan, F., Pirahesh, H., Xu, Y.: Extending xquery
for analytics. In: SIGMOD (2005)

4. Bhattacharya, I., Getoor, L.: A latent dirichlet model for unsupervised entity resolution. In:
SIAM Conference on Data Mining (SDM), Bethesda, MD (2006)

5. Bilke, A., Bleiholder, J., Böhm, C., Draba, K., Naumann, F., Weis, M.: Automatic data fusion
with HumMer. In: VLDB (2005)

6. Bleiholder, J., Naumann, F.: Declarative data fusion - syntax, semantics, and implementation.
In: ADBIS (2005)

7. Chaudhuri, S., Ganjam, K., Ganti, V., Kapoor, R., Narasayya, V., Vassilakis, T.: Data cleaning
in Microsoft SQL server 2005. In: SIGMOD (2005)

8. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for similarity joins in data clean-
ing. In: ICDE (2006)

9. Chaudhuri, S., Shim, K.: Query optimization in the presence of foreign functions. In: VLDB
(1993)

10. Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex information spaces.
In: SIGMOD (2005)

11. Florescu, D., Kossmann, D.: XML query processing. In: ICDE (2004)
12. Fuxman, A., Fazli, E., Miller, R.J.: ConQuer: Efficient management of inconsistent data-

bases. In: SIGMOD (2005)
13. Galhardas, H., Florescu, D., Shasha, D., Simon, E., Saita, C.: Declarative data cleaning:

Language, model, and algorithms. In: VLDB (2001)
14. Hernández, M.A., Stolfo, S.J.: The merge/purge problem for large databases. In: SIGMOD

(May 1995)
15. Manolescu, I., Papakonstantinou, Y.: An unified tuple-based algebra for XQuery. Technical

report (2005)
16. Monge, A.E., Elkan, C.P.: An efficient domain-independent algorithm for detecting approx-

imately duplicate database records. In: SIGMOD-1997 DMKD Workshop (May 1997)
17. Papakonstantinou, Y., Abiteboul, S., Garcia-Molina, H.: Object fusion in mediator systems.

In: VLDB (1996)
18. Puhlmann, S., Weis, M., Naumann, F.: XML duplicate detection using sorted neigborhoods.

In: EDBT (2006)
19. Rahm, E., Do, H. H.: Data cleaning: Problems and current approaches. IEEE Data Engineer-

ing Bulletin, Vol. 23 (2000)
20. Raman, V., Hellerstein, J.: Potter’s wheel: An interactive data cleaning system. In: VLDB

(2001)
21. Singla, P., Domingos, P.: Object identification with attribute-mediated dependences. In: Con-

ference on Principles and Practice of Knowledge Discovery in Databases (PKDD), Porto,
Portugal (2005)

22. Weis, M., Manolescu, I.: Xclean in action (4 page demo, to appear). In: CIDR (2007)
23. Weis, M., Naumann, F.: DogmatiX tracks down duplicates in XML. In: SIGMOD (2005)
24. Weis, M., Naumann, F.: Detecting duplicates in complex XML data(poster). In: ICDE (2006)
25. Widom, J.: Trio: A system for integrated management of data, accuracy, and lineage. In:

CIDR (2005)
26. Winkler, W.E.: Overview of record linkage and current research directions. Technical report,

U. S. Bureau of the Census (2006)
27. XQuery 1.0. (2006) http://www.w3.org/TR/XQuery

http://www.hpi.uni-potsdam.de/~naumann/xclean/
http://www.w3.org/TR/XQuery

Personalizing PageRank-Based Ranking

over Distributed Collections

Stefania Costache, Wolfgang Nejdl, and Raluca Paiu

L3S Research Center / University of Hanover
Deutscher Pavillon, Expo Plaza 1

30539 Hanover, Germany
{costache,nejdl,paiu}@l3s.de

Abstract. In distributed work environments, where users are sharing
and searching resources, ensuring an appropriate ranking at remote peers
is a key problem. While this issue has been investigated for federated
libraries, where the exchange of collection specific information suffices
to enable homogeneous TFxIDF rankings across the participating col-
lections, no solutions are known for PageRank-based ranking schemes,
important for personalized retrieval on the desktop.

Connected users share fulltext resources and metadata expressing in-
formation about them and connecting them. Based on which information
is shared or private, we propose several algorithms for computing person-
alized PageRank-based rankings for these connected peers. We discuss
which information is needed for the ranking computation and how Page-
Rank values can be estimated in case of incomplete information. We
analyze the performance of our algorithms through a set of experiments,
and conclude with suggestions for choosing among these algorithms.

Keywords: PageRank, distributed search, personalization, privacy.

1 Introduction

Collaborative work has become a key factor on the way to success in every
company - people do not work isolated, but rather interact with each other
by exchanging information, using tools like email clients, IM, blogs, wikis or
shared repositories. Every personal desktop thus becomes the sum of all other
desktops it interacts with. Accessing these connected information sources in such
a collaborative work environment becomes a crucial functionality, which so far
has only been partially tackled.

Personal information management [9,10] is a subject of growing interest to the
database community, and (distributed and heterogeneous) dataspaces will ex-
tend databases beyond centralized and structured information repositories [11].
The Social Semantic Desktop paradigm integrates data annotation, organization
and search on the desktop, and promises to provide collaborative work envi-
ronments through connecting all shared data resources in a work group. The

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 111–126, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

112 S. Costache, W. Nejdl, and R. Paiu

NEPOMUK1 project [2] aims to create such an infrastructure, which improves
the state of the art in online collaboration and personal data management, by
providing seamless access to all information created by single or group efforts.

Peers in the NEPOMUK context share fulltext and semi-structured infor-
mation, referring to publications, reports and other desktop documents, emails,
browsed web pages, address books, etc. These metadata represent additional
information about these resources and connect them through semantic rela-
tions, such as authorship of papers and reports, sender and recipient information
for emails or email attachments. Based on this infrastructure, advanced search-
ing and ranking capabilities can utilize both conventional Information Retrieval
(IR)-based information like term frequency in documents and collections, as well
as link-related information, the basis of PageRank-like algorithms, e.g., Object-
Rank [7,6].

Extending these ranking schemes to a distributed setup is not trivial, because
it involves (partial) sharing of possibly private information. Solutions for dis-
tributed collections in federated libraries exist, but they provide just traditional
IR-based rankings based on TFxIDF metrics through the exchange of collection
specific information. We will investigate which resources and information need
to be shared to enable personalized PageRank-based ranking among peers, and
how algorithms can take privacy constraints for these resources into account.
Specifically, we propose and evaluate new algorithms for consistently comput-
ing ObjectRank, a PageRank variant appropriate for ranking these connected
resources on the desktop.

In Section 2 we will start with the discussion of a search scenario in a dis-
tributed work group, and then discuss in detail which information needs to be
exchanged in order to achieve appropriate rankings of results. In section 3 we
propose and discuss several new algorithms for computing ObjectRank over a
set of distributed collections / semantically enabled desktops. In section 4 we
describe the experimental setup to evaluate our algorithms, present the experi-
ments we performed and analyze the results. Finally, we discuss related work in
section 5 and conclude (section 6).

2 Which Information Should We Exchange?

2.1 A Motivating Scenario

Let’s imagine Alice, working in a team with five other students for a research
project. Alice’s team uses the NEPOMUK-enabled desktop to interact and share
information. The team members share papers, project documents and group
emails, among others. Papers are annotated with bibliographic information, and
connected to the emails they have been attached to. Alice participates in other
teams as well, where she shares some of the same documents as well as other
information specific only to these other projects. The NEPOMUK infrastructure

1 This work was supported by the NEPOMUK project funded by the European Com-
mission under the 6th Framework Programme (IST Contract No. 027705).

Personalizing PageRank-Based Ranking over Distributed Collections 113

allows her to search resources on her own desktop as well as on the desktops of
her team members, to which Alice’s queries are propagated.

The importance of documents (important for the ranking of search results) is
influenced by the importance of their authors and conferences, or by the impor-
tance of team members sending the document as attachment. These factors are
not necessarily the same on each desktop, but are rather based on the confer-
ences relevant to each team member, the number of documents authored by a
given person stored on a specific desktop, or the emails connected to these doc-
uments. Part of this information (importance of conferences, papers stored on a
desktop) can be exchanged easily. Other information such as private emails, or
reports from other projects referencing specific papers, should not be exchanged
among all participants.

In general, there will be resources that Alice can make public and thus share
with everyone, there will be other resources which she will make available only to
her trusted friends or to her work mates and there are of course some resources
she will never want to share with anybody. This is also true for her contex-
tual metadata generated and stored on her computer, which connects all her
resources. Keeping (parts of) her metadata graph private, however, also means
that search result rankings at other peers will not be comparable to her own.
This unfortunately collides with Alice’s desire to get the best ranked matching
resources from all her team members connected in her NEPOMUK network (re-
member that best ranked in this case means “according to Alice’s interests / set
of resources”).

What do we need to exchange in order to provide an appropriate ranking over
all document collections Alice asks for results? Clearly, given that the metadata
graph determines Alice’s ObjectRank scores for all resources (details are de-
scribed in [7]), we have to exchange PageRank/ObjectRank-related information
in addition to the usual IR statistics. We will discuss in the next sections, what
can and should be exchanged, in order to rank results for Alice’s query on her
team members desktops in a way compatible with Alice’s ranking. We will take
into account the constraint that Alice and her team members do not want to
exchange their complete data graphs, which would provide information about
all resources they have on their machines.

2.2 Exchanging IR Related Information

Let us first look at a typical scenario in which a user is doing a full-text search
over several distributed collections, and wants to rank results according to the
usual TFxIDF measures ([4,12]). A query q will consist of several keywords, say
q1 and q2, and is posed to a broker, which forwards it to a set of m search engines
/ peers, P ′i , which will then send back to the broker their document rankings
R′i. In practice the user is only interested in the best “top-k” results, where k is
usually between 5 and 20. For this, all rankings R′i have to be merged into one
ranked list Rm and the top-k results are presented to the user. Our goal is to
achieve the same ranking in the distributed case as produced by the same search
on a single collection C containing all documents.

114 S. Costache, W. Nejdl, and R. Paiu

The ranking of the documents in a collection is based on TFxIDF weights, which
measure the significance of a word with respect to a document in a collection. The
significance of a term increases proportionally to the number of times the term
appears in the document, but decreases with the frequency of the term in the whole
collection. So, Term Frequency (TF) in the given document gives a measure of
importance of the term ti within that particular document, whereas the Inverted
Document Frequency (IDF) is a measure of the general importance of the term.
A high weight in TFxIDF is reached by a high TF (in the given document) and a
low Document Frequency (DF) of the term in the whole collection of documents.

For distributed retrieval, we want to make the distributed similarity score
equal to the similarity scores computed on a single collection C. Therefore, the
collection specific values, number of documents (N) and DF, need to be com-
puted before query time (see for example [4]), and recomputed when changes
in the collections occur (such as document additions, deletions and updates).
To exchange and aggregate them over all collections, we need to send them
to the query broker, which can compute the overall Global Inverted Document
Frequency (GIDF) value, which is then sent back to all search engines. During
query execution, all peers will rank results with comparable scores, since they
use the common GIDF, propagated together with the query. A globally ranked
list is achieved by merging the sub-result list entries in descending order of global
similarity score. Figure 1 illustrates this process in detail.

Fig. 1. Statistics propagation for results merging

1. A, B, C send to the Broker the total number of documents in the collections (NA, NB , NC)
and the DF values. 2

2. Peer A sends a query to the Broker and the Broker forwards it to B and C.
3. The Broker computes the GIDFi for each keyword qi and sends them back to all peers.
4. A, B, C find the matching results for the query and send the top-k results to the Broker sorted

by the Global Document Scores.
5. The Broker merges the results from all peers and sends back to peer A the top-k results.

2 TF values need not be exchanged since they are document-dependent and therefore
do not influence the order of the aggregated result list entries.

Personalizing PageRank-Based Ranking over Distributed Collections 115

2.3 Exchanging ObjectRank Related Information

Let us now look at PageRank / ObjectRank based ranking and which informa-
tion has to be exchanged to make such rankings on distributed peers compatible
with each other. Recall that the computation of PageRank is based on the ran-
dom surfer model, with the surfer traversing links through the graph of resources,
and sometimes jumping randomly to another resource. Then the PageRank value
of a resource represents the probability that the random surfer stays on this re-
source at a given time. If we represent the link structure between all resources
through the adjacency matrix A and the random jump through the e vector
and the dampening factor d (usually 0.85), PageRank values R are computed
through the following eigenvector computation:

R = d · A · R + (1 − d) · e (1)

For ObjectRank computation, we do not assume the same weight for each
link, but rather define link weights based on the type of the connected nodes,
through an authority transfer schema [8]. Such a schema specifies how much im-
portance (represented as a real number between 0 and 1) is transferred between
connected nodes. The weights of the links between the instances correspond to
the weights specified in the authority transfer schema divided by the number
of links of the same type. For example, 70% of the importance of a conference
node is distributed evenly to each of the publications which are presented at
this conference (see [6] for a more detailed description of the algorithm). Let us

Fig. 2. Aggregated ObjectRank computation

assume, without loss of generality, that all peers use the same authority transfer
schema as basis for the ranking computation. Each peer computes ObjectRank
scores for its collection. Since this ObjectRank computation is based on the data
graph, the adjacency matrix of each peer needs to be updated so that it reflects
the new structure created by the integration of the other peers’ resources into
its own data graph. Therefore, peers need to exchange the URIs of the resources
they are sharing, together with the links connecting them. External URIs are
integrated into each peer’s own data graph of resources. The more resources are
shared among peers, the more accurate the aggregated ranked results will be.

116 S. Costache, W. Nejdl, and R. Paiu

Figure 2 presents the necessary steps for computing the aggregated ObjectRank
scores in the ideal case, where peers share all resources they own:

1. Peer A sends a query to the Broker3 and the Broker forwards it to B and C.
2. The data graph, DGi is sent to the Broker by each peer.
3. The Broker merges DGA+DGB+DGC and sends the results to the peers.
4. Peers compute ObjectRank on DGA+DGB+DGC and send top-k results to the Broker.
5. The Broker merges the results from all peers and sends back to peer A the top-k results.

3 Information Exchange and Rank Computation

3.1 Privacy vs. Information Exchange

The discussion in the previous section assumed the ideal case, where peers share
everything they have on their machines. This is usually not the case, instead
peers will decide to share only parts of their data graphs and protect the rest.
Moreover, peers usually do not want to involve third parties in the exchange
process, because this would imply additional privacy and security issues, so they
do not want to send data through a broker. We therefore need to develop strate-
gies which do not involve a broker and which allow sending only specific parts
of the data graph to the other peers.

As we have already seen, to be able to appropriately rank resources for their
neighbors, peers need to know their corresponding data graphs, or at least parts
of them. For exchanging this information, peers have the following alternatives:

1. send all nodes in the graph
2. send some of the nodes in the graph
3. send all nodes in the graph, part of them anonymized (the items they want

to keep private have hidden URIs, e.g. “hidden 41323”)
4. send all nodes in the graph, part of them hashed - which keeps the nodes

secret if the other peer does not have them and makes them identifiable if
the other peer has them too and uses the same hashing function

5. send all nodes summarized into a world node [5] (which appropriately ag-
gregates node and link information of the graph)

Ranking computation can be based on: a) simple ObjectRank; or b) ObjectRank
with biasing [6] on the resources coming from the other peers. We will discuss
appropriate combinations of these alternatives in the following.

To describe the graphs used by the different algorithms, we will use the fol-
lowing notations: let Gi = (Vi, Ei) be the data graph of peer i, where Vi and
Ei are the corresponding sets of nodes and weighted edges, respectively. In this
context, the nodes model the desktop resources (files, emails, visited web pages,
etc.), while the edges represent the semantic relationships between them [7].
G′i = (V ′i , E′i) represents the data graph corresponding only to the shared re-
sources, where G′i ⊂ Gi, V ′i ⊂ Vi, E′i ⊂ Ei and E′i = {ejk|j, k ∈ V ′i , j �= k}.

3 We assume that the peers have already agreed on the authority transfer schema to
be used for the ObjectRank computation.

Personalizing PageRank-Based Ranking over Distributed Collections 117

Ganon
i = (V anon

i , Eanon
i) denotes the anonymized data graph of peer i, where

Ganon
i = G′i ∪ anonymized(Gunshared

i), V anon
i = V ′i ∪ anonymized(V unshared

i),
Gunshared

i = Gi G′i and Eanon
i = Ei. With Gh

i = (V h
i , Eh

i) we refer to the hashed
data graph, where Gh

i = hash(Gi), V h
i = hash(Vi) and Eh

i = Ei. An example
covering all these graphs is presented in figure 34.

3.2 Aggregating Graphs into World Nodes

One especially interesting possibility of keeping a graph private, yet provide some
information about its connections to the graphs of other peers, is to aggregate all
nodes in the graph into a world node and aggregate his connections to the other
graphs as well. An example is presented in figure 4, where P2 creates a world
node out of its nodes and connects it to the data graph of P1. Using a similar
notation as in section 3.1 we define GWN

i = (V WN
i , EWN

i), where V WN
i = WN

and EWN
i is formed as follows:

Fig. 3. Example of weighted data graphs - different setups

1. All links from nodes in the other peers’ graphs pointing to the nodes in the
graph of the peer aggregated into the world node become inlinks of the world
node.

2. All links from the nodes of the peer creating the world node pointing to
nodes of other peers become outlinks of the world node.
For a better approximation of the total authority score mass that is received
from nodes aggregated in the world node, we weigh every outlink from the
world node based on the sum of the weights aggregated into it (the links
from the world node to a node of other peers), divided by the number of
nodes summarized into the world node.

3. To represent internal links between nodes aggregated into the world node,
we create a self-loop link at the world node.
The weight of this self-loop link is given by the sum of all weights corre-
sponding to the internal links inside the world node, divided by the number
of nodes in the world node. The self-loop link represents the probability that
a random surfer remains inside the graph that was aggregated into the world
node, when following links.

4 a to f are real numbers, representing the weights of the edges.

118 S. Costache, W. Nejdl, and R. Paiu

Fig. 4. Example of world node creation

In figure 4 we defined E12 as the edges between peers 1 and 2 and EWN
12 as the

edges between P1 and the world node representing P2. An important observation
is that for being able to consistently create the world node, a peer needs to
know at least a partial structure of the graph of the other peers, otherwise it
cannot connect the world node to the other peers’ graphs. This means for our
setup in figure 4 that P1, who is sending the query, also needs to send its data
graph (either the original graph or a hashed version), or at least a part of its
graph (original / hashed), such that P2 can correctly put the corresponding
inlinks/outlinks to/from its world node.

The big advantage of aggregating everything into a world node is that this
protects all internal information about resources and their connections from
the receiving peers, while still disclosing (most) information related to external
connections and overall weights / scores of the aggregated graph.

3.3 Query Processing and Ranking

Using these notations, we can now distinguish between 8 different query process-
ing and ranking algorithms. These 8 algorithms result as appropriate combina-
tions of the 5 possibilities of exchanging information with the 2 modalities of
ranking computation (section 3.1). We eliminated several cases as they proved
to be equivalent to the remaining 8 ones. We will describe our algorithms in the
following, using 3 peers P1, P2 and P3, with P1 always sending the query to P2
and P3. In each case P1 will eventually have a ranked list of results from all
peers, including himself.

Algorithm 1 represents the ideal setup, where everything is shared among
the three peers, so that each of them can access the aggregated data graph (all
peers’ graphs merged into one). Algorithm 2 describes the situation when P1
shares all its resources, but P2 and P3 share only some parts of their data items
and anonymize the rest. So P2 and P3 will have complete information regarding
P1’s graph, but P1 will not know the exact data structures of P2 and P3.

Personalizing PageRank-Based Ranking over Distributed Collections 119

Algorithm 1.

1: P1 sends G1 to P2 and P3
2: P2 sends G2 to P1 and P3
3: P3 sends G3 to P1 and P2
4: Peers aggregate Ga = G1 ∪G2 ∪G3
5: Peers compute ObjectRank on Ga

Algorithm 2.

1: P1 sends G1 to P2 and P3
2: P2 computes ObjectRank on G2 = G1 ∪G2

P3 computes ObjectRank on G3 = G1 ∪G3
3: P2 sends Ganon

2 to P1
P3 sends Ganon

3 to P1
4: P1 aggregates Ga = G1 ∪Ganon

2 ∪Ganon
3

5: P1 computes ObjectRank on Ga

Algorithm 3.

1: P1 sends Ganon
1 to P2 and P3

2: P2 computes ObjectRank on
G2 = Ganon

1 ∪G2
P3 computes ObjectRank on
G3 = Ganon

1 ∪G3
3: P2 sends Ganon

2 and R2 = rank(G2) to P1
P3 sends Ganon

3 and R3 = rank(G3) to P1
4: P1 aggregates Ga = G1 ∪Ganon

2 ∪Ganon
3

5: P1 computes ObjectRank on Ga, biasing on
R2 and R3

Algorithm 4.

1: P1 sends G′
1 to P2 and P3

2: P2 computes ObjectRank on G2 = G′
1 ∪G2

P3 computes ObjectRank on G3 = G′
1 ∪G3

3: P2 sends Ganon
2 and R2 = rank(G2) to P1

P3 sends Ganon
3 and R3 = rank(G3) to P1

4: P1 aggregates Ga = G1 ∪Ganon
2 ∪Ganon

3
5: P1 computes ObjectRank on Ga, biasing on

R2 and R3

Algorithm 5.

1: P1 sends G′
1 to P2 and P3

2: P2 computes ObjectRank on G2 = G′
1 ∪G2

P3 computes ObjectRank on G3 = G′
1 ∪G3

P2 and P3 bias on resources from P1
3: P2 sends Ganon

2 and R2 = rank(G2) to P1
P3 sends Ganon

3 and R3 = rank(G3) to P1
4: P1 aggregates Ga = G1 ∪Ganon

2 ∪Ganon
3

5: P1 computes ObjectRank on Ga, biasing on
R2 and R3

Algorithm 6.

1: P1 sends G′
1 to P2 and P3

2: P2 computes ObjectRank on G2 = G′
1 ∪G2

P3 computes ObjectRank on G3 = G′
1 ∪G3

P2 and P3 bias on resources from P1
3: P2 sends G′

2 and R2 = rank(G2) to P1
P3 sends G′

3 and R3 = rank(G3) to P1
4: P1 aggregates Ga = G1 ∪G′

2 ∪G′
3

5: P1 computes ObjectRank on Ga, biasing on
R2 and R3

Algorithm 7.

1: P1 sends G1 to P2 and P3
2: P2 computes ObjectRank on G2 = G1 ∪G2

P3 computes ObjectRank on G3 = G1 ∪G3

3: P2 sends GWN
2 and EW N

12 to P1
P2 sends ranked results matching the query

P3 sends GWN
3 and EW N

13 to P1
P3 sends ranked results matching the query

4: P1 aggregates Ga = G1 ∪GWN
2 ∪GWN

3
5: P1 adds to Ga the edges from EWN

12 ∪ EWN
13

6: P1 computes ObjectRank on Ga

P1 merges P2 and P3 results into final list

Algorithm 8.

1: P1 sends G′
1 to P2 and P3

2: P2 computes ObjectRank on G2 = G′
1 ∪G2

P3 computes ObjectRank on G3 = G′
1 ∪G3

3: P2 sends GWN
2 and EW N

12 to P1
P2 sends ranked results matching the query

P3 sends GWN
3 and EW N

13 to P1
P3 sends ranked results matching the query

4: P1 aggregates Ga = G1 ∪GWN
2 ∪GWN

3
5: P1 adds to Ga the edges from EWN

12 ∪ EWN
13

6: P1 computes ObjectRank on Ga

P1 merges P2 and P3 results into final list

We can also bias ranking computation at P1 on the graphs sent by P2 and
P3. In Algorithm 3, P1, P2 and P3 share only parts of their resources and
anonymize their corresponding data graphs for the items they want to keep pri-
vate. P2 and P3 compute ObjectRank on the data graph resulting from merging
the anonymized data graph of P1 and their own data graph. Results are sent
back to P1, which computes ObjectRank on the graph including its own data
graph and the anonymized graphs of P2 and P3, biasing the computation on
the results coming from P2 and P3. Algorithm 4, with P1 sending a subgraph
containing only the resources it wants to share, is similar to Algorithm 3.

120 S. Costache, W. Nejdl, and R. Paiu

We can also bias ranking computation at P2 and P3 on the resources received
from P1, and then get Algorithm 5, based on Algorithm 3, and Algorithm 6,
based on Algorithm 4. Note that when peers send hashed data graphs, the results
will not differ from the case where they anonymize nodes in the private part of
their graph. This is because for hashed resources, the receiving peers can identify
all resources they share with the sending peers if they use the same hashing
function. For the resources they do not share, they will get all information about
the link structure, but with the node names unknown / anonymized.

Algorithms 7 and 8 represent the situations where P2 and P3 protect their
resources as much as possible, while still providing useful information to P1
using world node aggregation. Algorithm 7 is a special case of Algorithm 2:
P1 shares all its resources but P2 and P3 aggregate their graphs into a world
node, keeping the connections to and from P1’s graph. Algorithm 8 is similar
to Algorithm 7, only that P1 sends only part of his graph to P2 and P3. In both
algorithms, P1 will have to merge results received from P2 and P3 with its own
resources, and still keep the relative importance of the items it received, which
it can estimate through the information transmitted from P2 and P3 in form of
their world nodes, connected to the graph of P1.

All the algorithms we presented can be obviously extended to the general case
where a peer is querying in a larger network with more than 2 neighbours.

4 Experiments

4.1 Experimental Setup

To evaluate our algorithms, we gathered metadata from 9 different users (a total
of 46500 RDF triples) and partitioned them into 3 sets, the 3 peers. Metadata
were produced by a number of metadata generators integrated in Beagle++ [1],
and correspond to several types of resources: files, web pages, emails, attach-
ments, publications, persons and conferences. The data set from a single user
did not get partitioned into different peers, since we wanted to simulate real
peers, with their own profile, but metadata from some of the physical users was
copied to more than one peer to simulate different sizes of overlap between the
peers. In all considered scenarios, our peers have a common set of data, as we
are dealing with peers collaborating with each other. Figure 5 gives an overview:
a) resources residing in X are common to all peers; b) slice R contains resources
appearing only at peer 1; c) slice O contains resources only from peer 2 and d)
slice T contains private resources of peer 3. Based on the amount and type of
resources the three peers are sharing, we have three different setups:

1. P1, P2 and P3 share everything, except of some items they want to protect
from the uncommon parts, T, O and R;

2. P1, P2, P3 protect resources which can be located both in the common part
X, as well as in the uncommon parts of the graph, T, O and R;

3. We experimented with different sizes of the common part X, i.e. the overlap
among the peers: a) small; b) medium; and c) large.

Personalizing PageRank-Based Ranking over Distributed Collections 121

Fig. 5. Peers’ resource distribution

For SETUPs 1 and 2 we used Partitioning 1, having P1 with 40264 triples, P2
with 7700, P3 with 1786 and a size of the overlap of 1624 triples. For SETUP
3 (Partitioning 2) we used a different partitioning: for the big overlap case we
divided the set into 45512, 45434, 45584 triples for P1, P2 and P3 respectively
and 45015 triples the size of the overlap; for medium overlap 6815 (P1), 44715
(P2), 7120 (P3) and 6075 triples the overlap. The small overlap was simulated
with a partitioning of 1215 (P1), 6785 (P2), 38780 (P3) and 140 common triples.

In all our algorithms P1 initiates the query, thus we observe the rank evolu-
tion for P1. For all three setups and each algorithm described in section 3, we
investigated how the scores of the resources evolve. We compared the Object-
Rank scores using 2 similarity metrics between the ObjectRank scores obtained
in different algorithms and the ideal case for P1, defined as follows (see also [13]):
1. OSim indicates the degree of overlap between the top n elements of two

ranked lists τ1 and τ2. It is defined as

|Topn(τ1) ∩ Topn(τ2)|
n

(2)

2. KSim is a variant of Kendall’s τ distance measure. Unlike OSim, it measures
the degree of agreement between the two ranked lists. If U is the union of
items in τ1 and τ2 and δ1 is U\τ1, then let τ ′1 be the extension of τ1 containing
δ1 apearing after all items in τ1. Similarly, τ ′2 is defined as an extension of
τ2. Using these notations, KSim is defined as follows:

KSim(τ1, τ2) =
|(u, v) : τ ′1 and τ ′2 agree on order

(u,v), and u �= v
|

|U | · |U − 1| (3)

4.2 Results and Analysis

For all three setups we computed KSim and OSim measures (tables 1-5), com-
paring the ObjectRank results we obtained for algorithms 2-6/2-8 (column 2)
against algorithm 1 (column 1), representing the ideal situation, where all peers
share everything they have. We analyzed the top 5, 10, 20, 50 and 1005 ranked
results for each algorithm.
5 ObjectRank is not query dependent, which means that the rankings for specific

queries will be a combination between the ObjectRank values and TFxIDF and
therefore the matching results can be located beyond top-20.

122 S. Costache, W. Nejdl, and R. Paiu

Table 1. SETUP 1 - OSim, KSim

SETUP 1
Vs. Top 5 Top 10 Top 20 Top 50 Top 100

Algorithm Algorithm OSim KSim OSim KSim OSim KSim OSim KSim OSim KSim
1 2 1.0 1.0 0.9 0.927 1.0 0.926 1.0 0.977 1.0 0.991
1 3 0.4 0.607 0.6 0.582 0.9 0.670 1.0 0.909 0.96 0.936
1 4 0.4 0.607 0.6 0.582 0.9 0.670 1.0 0.909 0.96 0.936
1 5 0.4 0.607 0.4 0.5 0.55 0.586 0.98 0.805 0.94 0.897
1 6 0.2 0.472 0.3 0.448 0.55 0.534 0.98 0.755 0.91 0.871

Partitioning 1. In SETUP 1 (Table 1), the peers protect resources located
only in the non-shared parts, R, O, or T. Given this restriction and the way the
world node is constructed we do not need to perform simulations for algorithms
7 and 8, since they yield the same results as in setup 26. In terms of both KSim
and OSim, the second algorithm performs best: P1 integrates into its own data
graph the anonymized data graphs of P2 and P3, but since P1 is dominating from
the point of the number of triples in the graph, this does not have any significant
impact on the final scores of P1. Algorithm 6, when every peer biases on the
resources received from the others and when only the subgraphs containing the
shared resources are sent through the network, performs worst. The reason is
that P1 is dominant and the final result will be too much biased on the shared
resources of P1. Algorithms 3 and 4 perform the same, as P1 receives the same
data graphs in both algorithms.

SETUP 2 (Table 2) differs from SETUP 1 by the fact that the peers can keep
private resources from any parts of the graph, X, R, O, or T. When looking
at the top-5 ranked results, algorithm 2 still performs good, but as we increase
top-k, algorithm 6 gets considerably better. If we consider a small value for k,
then for P1 it is better to send part of its data graph containing only the shared
resources rather than anonymizing the graph, because anonymization introduces
errors (peers are not able to identify what the anonymized resources represent
and therefore can introduce duplicates - the resource itself and its anonymized
copy). For algorithm 6 with increasing k, biasing on both P2/P3’s and P1’s side
significantly improves the results. Algorithms 7 and 8, using the world node-
based approach, perform best, both in terms of OSim and KSim. Evaluating
these last two algorithms is done as follows (remember that the list of results
contains all nodes of P1 plus the world nodes representing P2 and P3): We
merged into the list of P1 (without the world nodes) the lists that P2 and P3
computed after integrating the resources of P1. The way we construct the world
node and determine the weights of its outlinks and of the self-loop link models
with high fidelity the internal structure of the original graph. Even if the receiving
peers do not know the graph structure residing at the other peers - that is the

6 In algorithm 7 P1 sends all his graph, so that no anonymization is involved which
makes SETUP 1 and SETUP 2 exactly the same. For algorithm 8 in SETUP 2,
the resources that P1 does not share from X (common part) will still appear in the
graphs of P2 and P3, therefore this setup is the same as SETUP 1.

Personalizing PageRank-Based Ranking over Distributed Collections 123

Table 2. SETUP 2 - OSim, KSim

SETUP 2
Vs. Top 5 Top 10 Top 20 Top 50 Top 100

Algorithm Algorithm OSim KSim OSim KSim OSim KSim OSim KSim OSim KSim
1 2 0.8 0.6 0.7 0.705 0.9 0.757 0.88 0.873 0.75 0.827
1 3 0.4 0.607 0.6 0.626 0.9 0.701 0.86 0.855 0.81 0.836
1 4 0.6 0.666 0.6 0.648 0.95 0.647 0.8 0.853 0.74 0.806
1 5 0.4 0.607 0.3 0.573 0.65 0.581 0.86 0.8 0.86 0.835
1 6 0.4 0.607 0.4 0.558 0.65 0.581 0.92 0.796 0.89 0.853
1 7 1.0 0.9 0.8 0.893 1.0 0.815 0.96 0.923 0.94 0.929
1 8 1.0 0.9 0.8 0.893 1.0 0.815 0.98 0.923 0.93 0.912

Table 3. SETUP 3 - Small Overlap

SETUP 3 - Small Overlap
Vs. Top 5 Top 10 Top 20 Top 50 Top 100

Algorithm Algorithm OSim KSim OSim KSim OSim KSim OSim KSim OSim KSim
1 2 1.0 0.9 1.0 0.977 1.0 0.989 0.84 0.934 0.87 0.834
1 3 0.6 0.761 0.7 0.666 0.9 0.744 0.88 0.906 0.8 0.835
1 4 0.4 0.607 0.6 0.582 0.85 0.683 0.88 0.883 0.87 0.869
1 5 0.6 0.761 0.7 0.666 0.9 0.740 0.82 0.879 0.86 0.846
1 6 0.6 0.666 0.4 0.616 0.6 0.658 0.86 0.780 0.9 0.822
1 7 1.0 1.0 0.6 0.824 1.0 0.7 0.9 0.888 0.88 0.841
1 8 1.0 1.0 0.6 0.824 1.0 0.7 0.9 0.878 0.85 0.817

peer does not disclose any sensible information - the authority transfer among
the peers is captured within this model.

Partitioning 2. In SETUP 3 (Tables 3-5) we experimented with 3 different
sizes of the overlap.

If the overlap is small or medium, algorithm 2 still performs best for the top-
10 and 20 results. If the overlap is big, algorithm 7 performs best for all top-k
we consider, followed by algorithm 8 with really small differences. In this case,
world nodes (algorithms 7, 8) are strongly connected to the rest of the graph
and can therefore very accurately model the influence of the hidden parts of the
graph. When looking at top-5 in all variants, algorithms 7 and 8 are the best
ones. Algorithms 3 and 4 now perform differently, the biggest difference being
for the top-5 ranked results.

Table 4. SETUP 3 - Medium Overlap

SETUP 3 - Medium Overlap
Vs. Top 5 Top 10 Top 20 Top 50 Top 100

Algorithm Algorithm OSim KSim OSim KSim OSim KSim OSim KSim OSim KSim
1 2 1.0 0.8 1.0 0.955 1.0 0.984 0.88 0.944 0.77 0.828
1 3 0.6 0.714 0.3 0.625 0.75 0.623 0.86 0.818 0.82 0.797
1 4 0.6 0.714 0.5 0.628 0.7 0.68 0.84 0.829 0.76 0.814
1 5 0.4 0.642 0.5 0.590 0.75 0.68 0.88 0.801 0.82 0.805
1 6 0.4 0.678 0.5 0.638 0.75 0.686 0.96 0.811 0.89 0.846
1 7 1.0 1.0 0.6 0.824 1.0 0.736 0.9 0.881 0.88 0.847
1 8 1.0 1.0 0.6 0.824 1.0 0.7 0.9 0.878 0.86 0.832

124 S. Costache, W. Nejdl, and R. Paiu

Table 5. SETUP 3 - Big Overlap

SETUP 3 - Big Overlap
Vs. Top 5 Top 10 Top 20 Top 50 Top 100

Algorithm Algorithm OSim KSim OSim KSim OSim KSim OSim KSim OSim KSim
1 2 0.8 0.6 0.6 0.692 0.85 0.664 0.86 0.864 0.8 0.818
1 3 0.8 0.866 0.6 0.703 0.95 0.661 0.86 0.865 0.8 0.830
1 4 0.6 0.761 0.5 0.619 0.95 0.628 0.86 0.874 0.81 0.845
1 5 0.8 0.866 0.5 0.704 0.8 0.673 0.94 0.828 0.86 0.881
1 6 0.4 0.678 0.5 0.561 0.6 0.648 0.96 0.779 0.89 0.844
1 7 1.0 1.0 0.7 0.884 1.0 0.784 1.0 0.935 0.98 0.981
1 8 1.0 0.9 0.7 0.846 1.0 0.684 1.0 0.902 0.92 0.931

5 Related Work

In the last two years researchers have investigated how to compute PageRank
in a distributed manner. [15] proposes a distributed search engine framework, in
which every web server answers queries over its data, and results from multiple
web servers are merged into one ranked list. Each web server constructs a web
link graph based on its own pages to compute a Local PageRank vector, then
they exchange their inter-server link information and compute a ServerRank
vector, which is used to refine their Local PageRank vectors. Similarly, [16] com-
putes SiteRank, based on applying PageRank to the graph of Web sites, i.e., the
Web graph at the granularity of Web sites instead of Web pages. Aggregating
the rankings from multiple sites produces results similar to the true PageRank
scores. Both approaches aim to distribute the PageRank computation using sev-
eral servers and iterations, such that the computational load is reduced, but still
the final scores are similar enough with the ones obtained from a global compu-
tation. Our goal is to ensure a personalized view over heterogeneous collections,
distributed over several desktops, using exchange of appropriate collection/link
information before the computation.

[5] was the first paper to introduce the concept of “world node”, to incremen-
tally compute a good approximation of PageRank as links evolve. They identify
a small portion of the web graph in the vicinity of changes and model the rest of
the Web as a single node in this small graph, onto which they compute a version
of PageRank and suitably transfer back the results to the original graph. Build-
ing on this work, [14] describes a P2P search engine architecture where peers
are autonomous, crawl Web fragments and index them locally, but collaborate
for query routing and execution. Each peer computes the PageRank scores for
the pages it has in its local index. Peers meet and exchange information, and
then recompute their PageRank scores. Their original local graph G is extended
by adding a special node W, world node, representing all pages in the network
that do not belong to G. Their algorithm assumes that URLs of pages in the
world node are known, only their content is not known (not yet crawled). In our
scenario, peers do not know the URIs of the external resources and therefore
need to send at least part of their data graph to the other peers so that these
can create the world node for them. As our world node is used to keep link and

Personalizing PageRank-Based Ranking over Distributed Collections 125

node information private, no inner structure is known. Moreover, all other ap-
proaches perform ranking computation on graphs containing only web pages and
hyperlinks, while in our case we have different types of links among the nodes,
based on their type and on the desktop ontology.

The idea of how communities influence each other is investigated in [3]. They
introduce the interesting notion of “energy” of communities, which they define
for subsets of the global graph. A community can be viewed as a set of pages
on a given topic and the corresponding energy is a measure of the community’s
authority. The “energy” concept is also applicable in our case, since we are
investigating how peers influence each other through the data they are sharing.
However, their formulas assume all information about the graph at one location is
known, which is not the case in our scenario. It will be interesting to find suitable
formulas for approximating energy level and flow for our scenarios, where we have
only partial information about the whole graph.

6 Conclusions

An important functionality in distributed work environments is to provide
searching and ranking capabilities over collections distributed over the desktops
of a work group. In this paper we introduced several algorithms for retrieving
resources over a network of such desktops, which rely on the exchange of col-
lection specific information between the participating peers in order to achieve
appropriate ranking using PageRank-based algorithms. All our algorithms take
privacy into account, i.e. peers want to exchange only certain parts of their desk-
top content, a constraint which has been neglected so far in all previous work
on distributed PageRank computation.

We analyzed in detail how our algorithms perform in several setups of resource
sharing. In particular, we experimented with different sizes of data sets residing
on the peers’ desktops and with different dimensions of the overlapping infor-
mation. Our experiments show that we can compute appropriate ObjectRank
values even if the peers do not share everything they have. Specifically, algo-
rithms aggregating node and link information into one ”world node“ proved to
be the best tradeoff between privacy and quality. They offer the best way of pro-
tecting resources, since peers do not reveal any of their nodes or the way they
are interconnected, approximate ObjectRank values very well, and guarantee
the smallest network load. In future work we will extend these algorithms with
methods to estimate the potential of peers to influence results of other peers,
and come up with incremental update schemes when peer content changes.

References

1. Beagle++. (2006) http://beagle.kbs.uni-hannover.de/
2. NEPOMUK - The Social Semantic Desktop. (2006)

http://nepomuk.semanticdesktop.org
3. Bianchini, M., Gori, M., Scarselli, F.: Inside pagerank. ACM Trans. Inter.

Tech. 5(1), 92–128 (2005)

http://beagle.kbs.uni-hannover.de/
http://nepomuk.semanticdesktop.org

126 S. Costache, W. Nejdl, and R. Paiu

4. Callan, J.P., Lu, Z., Croft, W.B.: Searching distributed collections with inference
networks. In: Proc. of the Intl. Conf. on Research and Development in Information
Retrieval (SIGIR) (1995)

5. Chien, S., Dwork, C., Kumar, S., Sivakumar, D.: Towards exploiting link evolution.
In: Unpublished manuscript (2001)

6. Chirita, P.A., Costache, S., Nejdl, W., Paiu, R.: Beagle++: Semantically enhanced
searching and ranking on the desktop. In: Proc. of the European Semantic Web
Conf. (ESWC) (2006)

7. Chirita, P.A., Ghita, S., Nejdl, W., Paiu, R.: Semantically enhanced searching and
ranking on the desktop. In: Proc. of the Semantic Desktop Workshop held at the
Intl. Semantic Web Conf (2005)

8. Damian, A., Nejdl, W., Paiu, R.: Peer-sensitive objectrank: Valuing contextual
information in social networks. In: Proc. of the Intl. Conf. on Web Information
Systems Engineering (2005)

9. Dong, X., Halevy, A.Y.: A platform for personal information management and
integration. In: Proc. of Conf. on Innovative Data Systems Research (CIDR) (2005)

10. Dong, X., Halevy, A.Y., Nemes, E., Sigundsson, S.B., Domingos, P.: Semex: To-
ward on-the-fly personal information integration. In: Proc. of the Workshop on
Information Integration on the Web (2004)

11. Franklin, M., Halevy, A.Y., Maier, D.: From databases to dataspaces: a new ab-
straction for information management. SIGMOD Rec. 34(4), 27–33 (2005)

12. Green, N., Ipeirotis, P.G., Gravano, L.: SDLIP + STARTS = SDARTS a pro-
tocol and toolkit for metasearching. In: ACM/IEEE Joint Conference on Digital
Libraries, pp. 207–214 (2001)

13. Haveliwala, T.: Topic-sensitive pagerank. In: Proc. of the Intl. WWW Conf (2002)
14. Parreira, J.X., Donato, D., Michel, S., Weikum, G.: Efficient and decentralized

pagerank approximation in a peer-to-peer web search network. In: Proc. of the
Intl. Conf. on Very Large Data Bases (VLDB) (2006)

15. Wang, Y., DeWitt, D.: Computing pagerank in a distributed internet search sys-
tem. In: Proc. of the Intl. Conf. on Very Large Databases (VLDB) (2004)

16. Wu, J., Aberer, K.: Using siterank for decentralized computation of web document
ranking. In: Proc. of Intl. Conf. on Adaptive Hypermedia and Adaptive WebBased
Systems (2004)

Generic Schema Merging

Christoph Quix, David Kensche, and Xiang Li

RWTH Aachen University, Informatik V (Information Systems), 52056 Aachen, Germany
{quix,kensche,lixiang}@i5.informatik.rwth-aachen.de

Abstract. Schema merging is the process of integrating several schemas into a
common, unified schema. There have been various approaches to schema merg-
ing, focusing on particular modeling languages, or using a lightweight, abstract
metamodel. Having a semantically rich representation of models and mappings is
particularly important for merging as semantic information is required to resolve
the conflicts encountered. Therefore, our approach to schema merging is based
on the generic role-based metamodel GeRoMe and intensional mappings based
on the real world states of model elements. We give a formal definition of the
merged schema and present an algorithm implementing these formalizations.

1 Introduction

Management of models is an important activity in the design of complex information
systems. The availability of data sources and the need to analyze the existing data in
an integrated way, has led to applications which are able to integrate and present data
from various sources in a uniform way. The integration of the models of data sources
into a unified schema of the integrated information system is a prerequisite to build
such applications. Schema integration (or schema merging) is the process of integrating
several schemas into a common, unified schema. This problem is also addressed in
Model Management [3], which aims at defining an algebra for models and mappings.
Merge is one of the proposed operators in this algebra and addresses the problem of
generating a merged model given two input models and a mapping between them. The
merged model should contain all the information contained in the input models and the
mapping; it should dominate the inputs in terms of information capacity [8,15].

A mapping is not just a simple set of 1:1 correspondences between model elements;
it might have itself a complex structure and is therefore often regarded also as a mapping
model. A mapping model is necessary because the models to be merged also have com-
plex structures, which usually do not correspond to each other [16] (e.g. the address of
a person is represented in one ER model as a complex attribute, in another model as a
separate entity type with a relationship type to person). These structural heterogeneities
are one class of conflicts which occur in Merge. Other types of conflicts are seman-
tic conflicts (model elements describe overlapping sets of objects), descriptive conflicts
(the same elements are described by different sets of properties; this includes also name
conflicts), and heterogeneity conflicts (models are described in different modeling lan-
guages) [19]. The resolution of these conflicts is the main problem in Merge.

Schema integration has been addressed for various metamodels, such as variants of
the ER metamodel [19], relational and conceptual models in the context of data ware-
houses [5], graph-based models [18], or a simple generic metamodel [16]. In these

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 127–141, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

128 C. Quix, D. Kensche, and X. Li

works, it has also been argued, that a semantically rich representation of the models and
mappings simplifies schema integration, as semantic information is required to resolve
the conflicts. Our work is therefore based on the semantically rich generic metamodel
GeRoMe [10]. It provides a generic, but yet detailed representation of models originally
represented in different metamodels. Therefore, an implementation of the Merge opera-
tor based on GeRoMe can merge models from different metamodels (e.g. XML Schema
and Relational). It is not always possible to represent the result of Merge in one of the
input metamodels. For instance, merging a column with a table yields a model with
a composite attribute that is not allowed in the relational model. Therefore, GeRoMe
enables the representation of such results. The transformation of the merge result into a
specific metamodel is the task of other model management operators: ModelGen trans-
forms the modeling constructs which are not allowed in the target model, and Export
translates the GeRoMe representation into the representation in a native metamodel.

Another important aspect is the representation of mappings between models. As ar-
gued before, the mapping is itself a model and contains information required for Merge.
In contrast to recent approaches to mapping composition and executable mappings
[7,13], which focus on the extensional relationships between models for data trans-
lation, the mappings here represent the intensional relationships of model elements.
These mapping definitions often overlap, but are not necessarily identical. This distinc-
tion between intensional and extensional relationships has also been made in [5].

In this work, we present a merge algorithm which is based on the intensional re-
lationships between models. The contributions of this paper are (1) a definition of the
intensional semantics of models, (2) a mapping model representing intensional relation-
ships, (3) a formal characterization of the desired merged model, and (4) an algorithm
implementing these formalizations using GeRoMe, thereby enabling the integration of
models represented in different modeling languages.

The paper is structured as follows. The next section discusses existing work on model
and mapping representation. Section 3 introduces a real world semantics, that we use
to define the semantics of merging, and the mapping representation. In section 4 we
describe our algorithm for merging GeRoMe models given a mapping between them.
Section 5 compares our approach to some existing works on schema merging. The last
section concludes the paper and gives an outlook.

2 Background

Considerable research has already been done in the fields of model management and
data integration. The Merge operator in model management receives two models and
a mapping as inputs. Hence, besides existing algorithms, the representation of models
and mappings are particularly important prerequisites in the context of schema merging.

Mapping Representations. Depending on the application area, such as data transla-
tion, query translation or model merging, schema mappings come in different flavors.
The first step in specifying a mapping between two schemas is usually the automatic
derivation of informal correspondences between elements of the two respective
schemas, called schema matching [17]. These simple binary correspondences, often

Generic Schema Merging 129

called morphisms [14], state only informally that the respective model elements are sim-
ilar. Thus, relationships between model elements must be represented more accurately,
but morphisms are usually the starting point for specifying more formal mappings.

Formalization of mappings is done in form of view definitions or as correspondence
assertions. These will be called in the following extensional and intensional mappings,
respectively. Extensional mappings are defined as local-as-view (LAV), global-as-view
(GAV), source-to-target tuple generating dependencies (tgds) [12,13], second order tu-
ple generating dependencies (SO tgds) [7], or similar formalisms. These are pairs of
queries with an implication or equivalence operator in between. Each of these classes
has certain advantages and disadvantages when it comes to properties such as compos-
ability, invertibility or execution of the mappings.

Extensional mappings are used for tasks such as data translation or query rewriting
but they are inappropriate for ontology alignment and schema merging. Schema merg-
ing is about integrating models according to their intensional semantics. It has the goal
to construct a duplicate free union of two input models and a mapping in between. The
union is “duplicate free” with respect to the real world concepts described by the model
elements. So, the mappings interrelate the intensions of model elements. The integrated
model describes each real world concept only once. On the other hand, if mappings are
to be executed by using them for query rewriting or data translation, intensional map-
pings are not useful. Thus, these are two options of mapping representation, each of
which has certain advantages with respect to the goal of the mapping.

Model Representations. Any system that allows the usage of different native meta-
models should employ some generic schema representation. Most model management
systems either refrain from providing a generic representation and instead require some
operators to be implemented for different combinations of native metamodels or employ
very lightweight metamodels [14,16]. However, some model manipulation operations
require much more information about the schemas than is expressable in such light-
weight languages. Resolving conflicts in model integration is eased by additional infor-
mation about the schemas to be merged [16,19]. This particular challenge of providing
a generic model representation [3] has been adressed in particular in [1,2,10].

The metamodel that we use for our implementation of Merge is the generic role based
metamodel GeRoMe [10,9]. In GeRoMe each model element of a native model (e.g. an
XML Schema or a relational schema) is represented as an object that plays a set of roles
which decorate it with features and act as interfaces to the model element.

Figure 1 shows in the left part a simple EER model for a “Customers ordering
Products” scenario. It contains a relationship type with two attributes and two entity
types, the attributes of which we omitted from the example. The right part of the fig-
ure presents the equivalent representation in our generic metamodel (we omitted some
details of the model for clarity of the presentation). Each entity type, attribute, and rela-
tionship type is represented by an individual model element (shown as grey rectangles).
Every GeRoMe model element plays a number of roles depending on the features of
the source element that it represents. The date element plays an Attribute role (Att) as
it represents an EER attribute, the entity types play ObjectSet roles (OS) since their
instances have object identity (as opposed to the instances of a relational table) and
Aggregate roles (Ag) as they are aggregates of attributes (not shown here). The orders

130 C. Quix, D. Kensche, and X. Li

Ag
Att

orders

As

orderedBy OE OE OSOS

AgAg

ordered
ProductCustomer

Att

date

qty

Product

Customer

Product

orders
ordered
Product

ordered
By

date

qty

0,n

0,n

min,max: 0,n min,max: 0,n

Fig. 1. A small EER model and its representation in GeRoMe

element is represented similarly. It plays the role of an Association which connects to
two ObjectAssociationEnds (OE) (orderedBy and orderedProduct). The ObjectAssoci-
ationEnds specify also the cardinality constraints. Other features of native models can
be represented in a similar fashion in GeRoMe. The same role classes are used to de-
scribe models in different metamodels, thereby providing a common datastructure for
the polymorphic implementation of model management operators.

It is important to emphasize that this representation is not to be used by end users.
Instead, it is a representation employed internally by model management applications,
with the goal to generically provide more information to model management operators
than the usual graph based model.

3 Semantics of Models and Mappings

Mappings between the models to be merged are an important source of information for
Merge. In order to define the semantics of the mappings in a clear and formal way, we
first need to specify the semantics of the models and their elements which are going to
be related. As discussed in the previous section, mappings in the form of view defini-
tions are not useful for schema integration, as they usually specify many-to-many (or at
least many-to-one) relationships between model elements. Such relationships cannot be
used to detect elements in two models which have the same semantics. Relationships
must be based on the intended semantics of the model elements rather than extensional
relationships. For example, consider the schemas of two universities, each represent-
ing the students of that university. The extensions of the databases are disjoint, but the
concept “student” should be merged if the schemas are going to be integrated.

Therefore, we need relationships between model elements which are based on their
real world semantics, i.e. the set of real world objects a model element represents. Only
with respect to this semantics, we can decide whether two elements should be merged.
Such an approach based on real world semantics has also been taken in [11,19]. In con-
trast to these previous approaches, our definition of real world objects is more detailed,
i.e. it aims at making this abstract concept more concrete so that it is possible to use it
in an implementation of the Merge operator.

In the following, we will first define model elements with respect to their real world
semantics, then explain how this representation is related to our generic metamodel
GeRoMe, and finally define the mapping model which we will use to express intensional
relationships between models.

Generic Schema Merging 131

Model Elements. To define the semantics of a model element, we first define the real
world objects it should represent.

Definition 1 (Real World Object). A real world object (RWO) is defined as a vector
in the feature space with some arity. Each dimension is called an axis. The universe U
is defined as the set of all RWOs. A projection of a real world object o wrt. one axis α,
πα(o), is ε, a literal or RWO, a set of literals or RWOs, or a tuple of literals or RWOs.
A projection wrt. a tuple of axes is a tuple of which each component is the projection
wrt. the corresponding axis: πα1,...,αn(o) =< πα1(o), . . . , παn(o) >.

When a projection wrt. one axis is ε, this means that the RWO is not defined over this
axis. The empty set denotes that the RWO is defined for that axis, but it has no value.
For each axis α, we denote all the RWOs over which the axis α is defined as Uα.

Definition 2 (Model Element and Real World Set). A model element m consists of
a tuple of axes, denoted by axes(m) = {α1, . . . , αn}. The real world set (RWS) of
a model element m is a subset of the RWOs for which all the axes of m are defined:
RWS(m) ⊆ Uα1 ∩ . . . ∩ Uαn , if axes(m) = {α1, . . . , αn}.

Relationship to GeRoMe. These definitions characterize the real world semantics of a
model element. In [10], we defined also a formal semantics for GeRoMe models which
characterizes the structure of their instances. In GeRoMe, there are four different roles
for which the corresponding model elements can have instances. These roles are Do-
main, ObjectSet, Aggregate, and Association. Elements playing a Domain role are a
special case; these model elements cannot play any of the other roles. Their instances
are just sets of literal values. However, ObjectSet, Aggregate, and Association roles can
be combined. The instances of model elements playing at least one of these roles are
specified by a triple which has the following components: (i) an object identifier, if it
plays an ObjectSet role, (ii) a tuple of object identifiers, denoting the participating ob-
jects in an association (one for each association end), if it plays an Association role, and
(iii) a tuple of literal value sets (one for each attribute), if it plays an Aggregate role.

Thus, a RWO can be easily mapped to a GeRoMe instance. The axes having a literal
value or a set of literal values correspond to the third component of a GeRoMe instance
which specifies the attribute values. The axes referring to RWOs are mapped to the
second component which expresses associations to other objects.

Based on this relationship between the real world semantics and GeRoMe, we can
later use the mapping model defined in the following to specify mappings between
GeRoMe models. The transition from the real world semantics to GeRoMe makes this
definition useful for the implementation of a model management system.

Mappings. A mapping specifies how the two models will be merged. In [16], the
mapping model is a nested structure consisting of mapping elements; each mapping
element is related to at least one model element. The mapping elements can specify, that
the related model elements are either equivalent or similar. A similarity mapping states
that the elements are related by a complex expression which is not further specified.

132 C. Quix, D. Kensche, and X. Li

A richer set of relationships between model elements is defined in [19], which is also
based on the real world semantics of model elements. Possible relationships are equiv-
alence, inclusion, intersection and exclusion. However, only equivalence relationships
are used in the integration rules. A simple form of nesting of elements can be specified
using the “with corresponding attributes” clause for two related model elements.

Our approach is a combination of the ideas of both approaches: a nested mapping
model with rich semantic relationships based on the RWS of model elements. In addi-
tion, all this information will be used in the Merge algorithm as we will see in section
4. We will first define how model elements can be related at the top-level.

Definition 3 (Element Mapping). An element mapping φ between two model elements
m and m′ is an expression mθm′ with θ ∈ {=, ⊆, ∩, �=}. The semantics of the mapping
is defined by the RWS of the model elements:

1. mθm′ with θ ∈ {=, ⊆} implies that RWS(m)θRWS(m′).
2. m ∩ m′ states that RWS(m) and RWS(m′) have a non-empty intersection.
3. m �= m′ specifies that RWS(m) and RWS(m′) are disjoint, but there is some m′′

with RWS(m) ⊆ RWS(m′′) and RWS(m′) ⊆ RWS(m′′).

The disjointness of elements is useful for a case where two model elements have a
common super-type (cf. the example of fig. 4 in sec. 4). In GeRoMe, element mappings
are only allowed between model elements playing either the ObjectSet or the Aggregate
role, as they have instances. Associations may also have instances, but this information
is already covered by the axes representing AssociationEnds. In addition to this simple
type of mapping, a complex mapping represents 1:N relationships between elements.

Definition 4 (Complex Mapping). A complex mapping φ between a set of model ele-
ments is an expression mθf(m1, . . . , mn) with θ ∈ {=, ⊆} for some function f . The
semantics of this mapping is defined by applying the corresponding operations to the
RWS of the model elements.

This enables us to represent that a model element in one model is represented by a
combination of model elements in the other model, e.g. Parent = Mother ∪ Father.
This also subsumes the definition of paths as defined in [19] as functions can specify
arbitrary relationships between model elements.

A nested mapping is a mapping between axes of model elements. It must be nested
into an element or complex mapping, so that a context for this mapping is given, i.e. we
need to know the model elements of which the axes are mapped.

Definition 5 (Nested Mapping). A nested mapping under a mapping φ between model
elements m and m′ is an expression (i) αθβ with θ ∈ {=, ⊆} and RWS(m) ∪
RWS(m′) ⊆ Uα ∩Uβ . The semantics is ∀o ∈ RWS(m)∪RWS(m′) : πα(o)θπβ(o);
(ii) α = f(α1, . . . , αn) with RWS(m) ∪ RWS(m′) ⊆ Uα ∩ Uα1 ∩ · · · ∩ Uαn . The
semantics is ∀o ∈ RWS(m) ∪ RWS(m′) : πα(o) = f(πα1(o), . . . , παn(o)).

The functional relationships between axes are necessary to represent complex relation-
ships between axes (as before between model elements). Examples are amounts repre-
sented in different currencies or aggregations (e.g. salary=base salary+bonus).

Generic Schema Merging 133

Ag
Att

orders

As

orderedByOE OE

OSOS

AgAg

ordered
Product

Customer
Att

Product

AgAtt places

As

OE OE OSOS AgAg

lineItemCustomer Product

hasLine

As

AttAg

Order

OS

orderedBy

=

=

OE

placed
Order

=

OE

order

=
M1

M2

date

qty

qtydate

Fig. 2. Mapping including complex and nested mappings

In GeRoMe, nested mappings can be applied to model elements playing the Attribute
or AssociationEnd roles. Fig. 2 shows an example of a mapping including a nested map-
ping. The upper model M1 is as in section 2, the lower model M2 reifies the orders rela-
tionship as entity type and has therefore two relationship types places and hasLine. The
mapping relates the corresponding Customer and Product entity types. The mappings
of the ObjectAssociationEnds are nested within these mappings. The example contains
also a complex mapping (not shown in the figure), as the attributes of the orders rela-
tionship are distributed over two relationships in M2. Therefore, the complex mapping
orders ⊆ f(places, Order, hasLine) needs to be defined in which f performs a join over
these elements. In addition, mappings for the attributes date and qty will be nested into
this mapping.

As a consequence of this mapping, the Merge algorithm will produce M2 as result, as
it contains “more detailed” information than M1: the entity types are represented by the
corresponding entity types in M2; the same holds for the ObjectAssociationEnds; the
orders association is represented by a combination of elements in M2 and its attributes
are also present in M2. The difficult question in the definition of Merge is, what does
it exactly mean when we say that a model contains “more detailed” information than
another model, and how can we verify that M2 is a correct result of the Merge operator
in this example. These issues will be addressed in the following section.

4 Model Merging

In this section we first provide a definition of the concept of a merged model using our
previously defined real world semantics. Then, we explain our solution to the problem
of merging of schemas represented in GeRoMe.

Definition of Merged Model. Our definition of schema merging is closest related to
that of [19] as it also defines the problem of schema integration with respect to the real
world sets described by the input schemas. The difference is that we use our real world
sets to define the notion of a merged model. In addition, we relate the real world sets to
information capacity [15] and, in doing so, enrich this notion with meaning.

The following definition introduces successively more general concepts of subsump-
tion ending with a definition of when a model element is subsumed by a set of other
elements. This means that all the information represented by the model element is also
represented by combinations of the properties of the other model elements.

134 C. Quix, D. Kensche, and X. Li

Definition 6 (Subsumption (�)).

a. Given two axes α and β, we say α is subsumed by β wrt. a RWO o (α �o β) if
these two axes are defined over o and πα(o) ⊆ πβ(o).

b. an axis α is subsumed by a set of axes A = {β1, . . . , βn} wrt. a RWO o (α �o A)
if the axes A ∪ α are defined over o and πα(o) ⊆ πβ1(o) ∪ . . . ∪ πβn(o) or more
general ∃f : πα(o) ⊆ f(πβ1(o), . . . , πβn(o)).

c. an axis α is subsumed by a set of axes A wrt. a set of RWOs R (α �R A) if
∀o ∈ R : α �o A.

d. an axis α of model element m is subsumed by a set of model elements
M (α �RWS(m) M) if ∀o ∈ RWS(m), ∃m1, . . . , mn ∈ M : o ∈ RWS(m1) ∩
. . . ∩ RWS(mn) ∧ α �o axes(m1) ∪ . . . ∪ axes(mn).

e. a model element m is subsumed by a set of model elements M (m � M) if ∀α ∈
axes(m) : α �RWS(m) M.

By defining RWS(M) =
⋃

m∈MRWS(m), the definition is extended to a definition
for subsumption of models, which is used to define the upper bound of two models.

Definition 7 (Subsumption and Upper Bound Models). Let M and M′ be two mod-
els. We say M � M′ if RWS(M) ⊆ RWS(M′) ∧ ∀m ∈ M : m �RWS(M) M′. A
model MUB is an upper bound model of two models M1 and M2 if M1 � MUB ∧
M2 � MUB .

An upper bound model is a model that represents the same (or a larger) set of real world
objects and that does not lose any properties of the two models. However, this definition
allows that subclasses that add no axes are removed from the models. Therefore, we
need the following definition of granularity.

Definition 8. A model element m is retained in granularity by a model M if (i) ∃m′ ∈
M such that RWS(m) = RWS(m′), and (ii) ∀α ∈ axes(m) ∃m1, . . . , mn ∈ M :
α �RWS(m) {m′, m1, . . . , mn}.

The first condition requires that M must include a model element m′ that represents
exactly that same set of real world objects that m represents. The second condition states
that each axis of each object in the set represented by m, is either explicitly represented
in M or can be computed from some of its axes. This also includes any notion of
inheritance between the model elements in M. This is because it is not required that
the axes representing α are axes of m′ but they may be inherited as well, whereas the
object itself must be in m′ and all the other model elements.

A model M′ subsumes a model M while retaining all its model elements in granu-
larity, if it represents the same (or a larger) set of RWOs and of all objects represented
by M it represents the same (or more) information either explicitly or by means of some
functional relationship. Also, we do not want a model to be redundant. The last defini-
tion before we can define the notion of a merged model is that of duplicate-freeness:

Definition 9 (duplicate-free). A model M is duplicate-free if (i) for each model ele-
ment m ∈ M there is no other model element m′ ∈ M that represents the same set of
real world objects, and (ii) for each axis α of any model element in M there exists no
other axis β that represents the same property of the model element.

Generic Schema Merging 135

Definition 10 (Merged Model). Let M1 and M2 be two input models and let M be a
mapping between M1 and M2. A model G is the result of Merge < M1, M2, M >
(a merged model), if it satisfies the following properties:

– G is an upper bound model of M1 and M2.
– G is duplicate-free.
– G retains granularity of all model elements in M1 and M2.
– G contains all constraints of the input models and the mapping, and in case of

conflicting constraints, the least restrictive constraint.
– There is no other model G′ with G′ � G, which fulfills these conditions.

Informally, given two models and a mapping, merging these models means to create a
model that contains no duplicate model elements or axes and only structural elements
from any of the two input models. However, derivations or constraints may be added to
the integrated model in order to relate these model elements to each other. The infor-
mation necessary for adding such elements stems from the mapping model.

Constraints of the input models and the mapping should be retained in G. If there
is a conflict between constraints, the least restrictive constraint is represented in G. For
instance, given two cardinality constraints (0, 1) and (1, n), G contains (0, n).

This definition may be relaxed such that the resulting model is allowed to represent
axes that can be derived from other represented axes. These are, for instance, derived
attributes in an EER model or methods in an object oriented model that compute values
from member variables. Such an extension would necessitate to partition the axes of the
models into two kinds of axes and define subsumption only with respect to one of these
classes. This extension is straightforward and adds only little information.

The definitions of subsumption and merged models can also be related to the notion
of relative information capacity of schemas [15].

Definition 11. An information capacity preserving mapping between the instances of
two schemas S1 and S2 is a total, injective function f : I(S1) → I(S2). If such a
mapping exists S2 dominates S1 via f , denoted S1 � S2.

A common criticism about this definition is that it allows the models and the function
to be arbitrary, given only that such a function can be constructed. By using our rela-
tionship to real world sets, we add some meaning to this definition.

Theorem 1. If M � M′ then M � M′ and the domain of discourse of M′ encom-
passes the domain of discourse of M (RWS(M) ⊆ RWS(M′)).

Proof. The last part of the theorem (RWS(M) ⊆ RWS(M′)) follows directly from
the definition of subsumption between models. To show that M′ dominates M, we
have to construct an information capacity preserving mapping. Instances of the models
in our context are sets of RWOs. According to the definition of subsumption, the axes
of M are represented in M′, either directly or they can be computed by some function
f . Thus, each RWO in RWS(M′) is represented in more detail than in RWS(M).
This means that there are no RWOs o1, o2 ∈ RWS(M), such that both correspond to
the same RWO in RWS(M′). As the RWS of M′ is a superset of the RWS of M, the
information capacity preserving mapping is the identity function on the RWOs.

136 C. Quix, D. Kensche, and X. Li

Input: Two models M1, M2, and a mapping M
Output: Merged model G according definition 10

1. Group equivalent model elements transitively. For each group, introduce a corresponding
model element in G. Each of the new model element is created as follows:
(a) Singletons are copied with no linking axes to other model elements.
(b) Collapse groups into one model element with a union of all properties and roles.
(c) Conflicts are resolved according to the strategy described below.

2. Introduce all the classification relationships (IsA) and constraints (Disjoint) from both the
input models and the mapping. Remove redundant or cyclic IsA links.

3. Insert in G a most specific supertype for model elements connected by ∩ or �=.
4. The singleton side of complex mappings are removed from the merged model if all of its

axes are related in the nesting mappings.
5. For all axes nested under model elements connected by element mappings

(a) Equally related axes are collapsed and pulled up to their most specific supertype.
(b) ⊆ related axes will lead to a partition of the subsumer axes.
(c) Axes related by functions are handled depending on configuration: leaving only the

inputs, the output or both.
(d) The remaining axes are retained at the corresponding element in G.

6. All links between model elements are handled as follows:
(a) duplicate links are only introduced once;
(b) conflicting links such as multiple types for one attribute are resolved according to the

strategy described below.
7. Check “local” constraints and resolve possible conflicts as described below.
8. Check “global” conflicts that can not detected locally, e.g. recursion of complex attribute.

Fig. 3. Merge Algorithm

Our definition of a merged model has the following consequences with respect to infor-
mation capacity preserving mappings: (i) G
 M1 and G
 M2 because it retains each
element m ∈ M1∪M2 in granularity, and (ii) RWS(G) = RWS(M1)∪RWS(M2).
This adds some meaning to the notion of information capacity as now outright ab-
surd functions are not possible. Please note that it is not necessarily the case that
M1 ∪ M2
 G because the mapping may add relationships to the models.

Merge Algorithm. Most previous algorithms are rule-like [11,19] operational proce-
dures or semi-automatic procedures [16]. The first type usually goes through a con-
tinuous pattern-transformation procedure. The latter type first collapses all equivalent
elements and then introduce links between the grouped elements.

Our merging algorithm consists of several steps described in fig. 3. In the first step,
all model elements equally related in the mapping are grouped transitively. Groups of
equivalent model elements are collapsed into one element. This might cause conflicts
which must be resolved as described below. The second and third steps deal with IsA,
Overlapping, and Disjoint relationships and introduce helper elements as necessary.

Step 4 deals with complex mappings. For the orders-example in section 3 the orders
element M1 is removed as it can be represented by combination of other elements. The
next step addresses the axes of elements. If we state that α ⊆ β, then we will keep α and
introduce a new element “β − α” for the remaining part of β (e.g. father ⊆ parent
is replaced by father and mother). The handling of axes connected by functions

Generic Schema Merging 137

depends on the setting; it may be useful to keep the inputs, the output, or both. In step
6, redundant and conflicting links introduced by Merge are removed.

The remaining steps deal with conflicts and constraints; these must be handled by
specific procedures as described below. Due to space constraints, we can only sketch
them briefly. The general rule is, first to check whether it is solvable by an existing au-
tomatic resolution strategy depending on the given configuration. Please note that our
merge algorithm can be configured with several parameters which allow to fine tune the
algorithm for a given situation. The general context can be specified (database vs. view
integration), or the handling of the inputs and outputs of functions. For instance, given
two equivalent attributes with a simple type and a complex type, respectively, this is a
structural conflict which can be resolved by chosing the more detailed representation
(e.g. the complex type). Then, try to resolve the conflict using the mapping or preferred
model. If the conflict cannot be resolved with the given information, the user has to be
involved. The handling of conflicts is often done on a case-by-case basis; for each spe-
cific problem an individual conflict resolution strategy must be found. Often, different
strategies have to be applied to different scenarios (e.g. view integration vs. database
integration). However, as we based our implementation on GeRoMe, these resolution
strategies have to be implemented only once for GeRoMe and can then be applied to
several merge scenarios involving different modeling languages.

Constraints Integration. Several types of constraints are represented in GeRoMe ex-
plicitly (such as keys, references, derivation, and type constraints) and can therefore be
addressed in Merge. Each type of constraint requires individual methods for merging
and conflict resolution. Even worse, conflict resolution might depend on the scenario.
A non-null constraint on an axis not represented in one input model might be removed
if we insist that the integrated schema should host all data instances of the input models
for database integration, while in view integration we would better retain it.

Key constraints are handled in Merge in the following way. A key is a set of axes
of an element. Assume there are two elements with different keys. As the key of one
model element might not be unique within the other model element, we can only in-
troduce a uniqueness constraint over the union of the keys by default. If a new key
is required, different strategies are possible: using the union as a new key (if it is the
smallest key), introducing an artificial key or asking the user for a key. All foreign keys
are rechecked after integration of keys, and the key components are updated to match
the new keys. Other constraints such as default values for attributes and sequences (or-
dered attributes/associations) cannot be handled by a reasonable integration strategy.
They can only be merged by preferring one input model, or asking the user.

Conflicts in Merging. In general, the types of conflicts caused by merging schemas
are determined by the nature of the target metamodel. For example, we have several
options of names for one model element in the merged model. In the relational model,
this leads to a name conflict, while in OWL multiple labels for one model element are
allowed and thus there is no conflict at all. As we represent our models in GeRoMe, such
metamodel conflicts have to be addressed by the ModelGen operator, as this operator
translates constructs not supported by a target metamodel. Please note that in general
the task of the ModelGen operator is to translate a model from one metamodel to another

138 C. Quix, D. Kensche, and X. Li

metamodel (e.g. EER to Relational). The use of a generic metamodel allows us to reuse
the functionality of this operator in the context of schema merging.

However, there are still conflicts which might also occur in GeRoMe, e.g. multiple
roles of the same type for one model element, an attribute with more than one type, or
recursion in the types of complex attributes. Resolution of conflicts is ad-hoc, there is
usually no universal way to solve all of them [16].

We handle conflicts in a multi-level procedure. Firstly, we take an automatic resolu-
tion strategy if possible. The information to resolve the conflicts might be given by the
parameters of the merge algorithm (e.g. view vs. database integration), the input mod-
els and mapping, or the metamodel. For example, if we have two conflicting roles for
one model element, we keep the more general one (e.g. if a key reference is in conflict
with an association, we keep the association). Secondly, metamodel heterogeneity con-
flicts are resolved by taking the most flexible construct. For example, conflicts among
foreign keys, complex attributes and associations lead to a representation as an asso-
ciation. Thirdly, explicitly encoded choices (e.g. prefer one input model) are taken for
mutually excluded properties such as name of the element or default values.

The final fallback is to ask the user for a resolution. It has to be noted that the prob-
lem of schema merging will remain an activity which requires human intervention as
schema merging is a design activity. Some of the conflicts addressed in [16] are solved
by having a complex mapping model as input. However, this input needs to be defined
by some user. Our current on-going implementation of the mapping editor and merge
algorithm integrates the process of mapping definition and merging in an interactive
way, i.e. while defining the mapping, the user will be notified about conflicts during
merging the schemas.

An Application of the Merge Algorithm. Fig. 4 depicts an example of two models
to be merged with our algorithm. The models are the partial GeRoMe representations
of two models showing courses with the students assisting in these courses. Schema
M1 is the representation of an XML Schema. It shows a Course complex type with a
nested element hasAssistant of type CSStudent. The XML Schema element is repre-
sented in GeRoMe as an Association with an anonymous ObjectAssociationEnd (OE)
and a CompositionEnd (CE) due to the fact that in an XML document students must be
nested into courses. For the same reason, the association end linking to the CSStudent
type has a cardinality constraint of min = max = 1; whenever a CSStudent occurs
in a document it must be nested into a Course via this element link. Schema M2 is
the representation of an object oriented model, e.g. a UML object model. Again, we
have two classes Course and GradStudent with the same relationship in between. The
CourseStud element represents an association class which has an attribute hours. Also,
the association ends in this relationship are both named and do have more relaxed car-
dinality constraints as the used metamodel is not constrained to define tree structures.
Students’ names are represented as an attribute with a composite type instead of two
simple attributes and the class adds an attribute program.

The mapping between the models equates the Course types, the associations, their
association ends, and the the firstname and lastname attributes (not shown in the figure).
The GradStudent and CSStudent are declared overlapping, as each graduate student that
studies computer science is also a computer science student.

Generic Schema Merging 139

Att OE CE OSOS AgAg

CSStudent
Att

Course

Ag

Att

OSOS AgAg

GradStudent CourseCourseStud

As

=

OE

assistant

=

OE

assistsIn

=

M1

M2

FName

LName

hours

Att

Att

fName

lName

hasAssistant

As

Ag Att

name

=∩∩

min,max: 1,n

OS

OS

min,max: 0,n

min,max: 1,1 min,max: 1,n

Attprogram

Fig. 4. Merging GeRoMe representations of an XML Schema and an OO model

The merging procedure first copies all elements that are not mapped to the merged
model. This includes the hours, program, and name attributes and the anonymous type.
Then, equally related model elements that are not attributes are collapsed. This involves
collapsing the Course types, the associations and the association ends. When collapsing
the association ends, conflicts between constraints will be resolved by using the least
restrictive constraints. That is, G will contain two association ends with cardinality con-
straints (0, n) and (1, n) respectively. The corresponding element in G to assistsIn will
play an ObjectAssociationEnd as in M2 which is less restrictive than the Compositio-
nEnd in the XML Schema. During collapsing these elements, unmapped axes of the
elements will be linked to their types in G. The hours attribute will be an attribute of
the merged association. The same applies to the program attribute and GradStudent. As
CSStudent and GradStudent are overlapping, a most specific supertype of the two types
will be introduced. According to step 5 of the merge algorithm the new type will have
a composite attribute name that results from merging the original attributes.

It must be emphasized that, although one of the input schemas was an XML Schema,
the merge result is not an XML Schema. This is because merging has destroyed the
nesting structure of the XML element hasAssistant and the result contains an attribute
with composite type, which is not allowed in XML Schema. The only requirement in
our approach is that the result is a valid model in the generic metamodel GeRoMe.

5 Comparison with Other Approaches

Most existing work on schema merging deals with integration of models in one partic-
ular metamodel and rarely considers integration across various metamodels. In Rondo,
the Merge operator is implemented using morphisms and simple graph representations
of models [14]. In [16] a nested mapping model is utilized for merging of simple ob-
ject oriented models. However, as the generic metamodel is relatively simple, some
constraints cannot be described and hence cannot be used by the merging algorithm.

One result of [16] is a list of generic merge requirements. Our Merge solution satis-
fies all but two of these requirements which can be adapted to our mapping representa-
tion: extraneous item prohibition and property preservation demand that no new model
elements are added and that a model element in the merged model has a property if
and only if one of the corresponding source elements had that property. In [16] there
are only two types of mappings allowed, namely similarity and equality. Therefore,
the main operations are collapsing of elements declared equal and nesting of similar

140 C. Quix, D. Kensche, and X. Li

elements under a helper element that is given in the mapping model. Our mapping
model allows more kinds of assertions such as disjointness, overlap, and subset rela-
tionships. In the example in the last section a new element Student has been added as
a common superclass of the original elements GradStudent and CSStudent, due to the
overlap of these elements. In the same example the common properties of these over-
lapping, (but unequal) elements have also been “pulled up” to the new supertype (repre-
senting their union). Because the two requirements demand all elements and properties
in the merged model to be given in either of the input models or the mapping model,
an element such as the superclass and its relationship to the original elements must be
defined in the mapping. This amounts to giving the result of merging in the input of
merging. In our case it suffices to declare the elements as overlapping to achieve the
same result.

Another approach to merging is that of [19] which also presents a comprehensive
taxonomy of schema integration conflicts. Like ours, their work is based on the real
world sets of model elements. We have used our extended notion of real world sets to
define mappings and the merged model formally. Our solution does not only allow a
metamodel independent specification of mappings but also the merging algorithm itself
is independent of native modeling languages. We provide just one solution for merging
models represented in our generic metamodel [10]. The Merge algorithm can therefore
be applied polymorphically. Other approaches [4,19] use also generic metamodels, but
these are not as detailed as our generic metamodel GeRoMe.

While a variety of integration approaches exist in database practices [6,16,19], theo-
retical aspects of merging are first covered in Buneman et al [4]. The authors introduce
the notion of a least upper bound for merging. We extend their work to accommodate
more complex mappings using real world semantics and allow configuration options for
different scenarios or requirements instead of one single solution.

6 Conclusion and Outlook

By giving formal definitions of models, mappings, and merging based on their inten-
sional semantics and relating this to the notion of information capacity we formal-
ized the term “duplicate-free union” that is usually used informally to describe the
merge result. We also gave a Merge algorithm that uses accurate intensional mappings.
Strategies for solving conflicts in schema merging are highly case based. This prob-
lem is aggravated by the number of metamodels. Our merge solution contributes to
solving such heterogeneity conflicts [19] as it is based on the rich generic metamodel
GeRoMe which makes it possible to apply resolutions polymorphically for different
metamodels.

In the future we will develop generic conflict resolution strategies for a representative
set of structural conflicts, and we will investigate the question how intensional mappings
can be derived from extensional mappings (cf. section 2) and vice versa.

Acknowledgements. The work is supported by the Research Cluster on Ultra High-
Speed Mobile Information and Communcation UMIC (www.umic.rwth-aachen.de).

www.umic.rwth-aachen.de

Generic Schema Merging 141

References

1. Atzeni, P., Cappellari, P., Bernstein, P.A.: A Multilevel Dictionary for Model Management.
In: Proc. Conf. Conceptual Modeling(ER 2005), LNCS, vol. 3716, pp. 160–175. Springer,
Heidelberg (2005)

2. Atzeni, P., Torlone, R.: Management of Multiple Models in an Extensible Database Design
Tool. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057,
pp. 79–95. Springer, Heidelberg (1996)

3. Bernstein, P.A., Halevy, A.Y., Pottinger, R.: A Vision for Management of Complex Models.
SIGMOD Record 29(4), 55–63 (2000)

4. Buneman, P., Davidson, S., Kosky, A.: Theoretical Aspects of Schema Merging. In: Pirotte,
A., Delobel, C., Gottlob, G. (eds.) EDBT 1992. LNCS, vol. 580, pp. 152–167. Springer,
Heidelberg (1992)

5. Calvanese, D., Giacomo, G.D., Lenzerini, M., Nardi, D., Rosati, R.: Description Logic
Framework for Information Integration. Proc. KR, pp. 2–13 (1998)

6. Euzenat, J.: State of the art on ontology alignment. Deliv. D2.2.3, KnowledgeWeb (2004)
7. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema mappings: Second-order

dependencies to the rescue. ACM Trans. Database Syst. 30(4), 994–1055 (2005)
8. Hull, R.: Relative Information Capacity of Simple Relational Database Schemata. SIAM

Journal of Computing 15(3), 856–886 (August 1986)
9. Kensche, D., Quix, C.: Transformation of Models in(to) a Generic Metamodel. Proc. BTW

Workshop on Model and Metadata Management, pp. 4–15 (2007)
10. Kensche, D., Quix, C., Chatti, M.A., Jarke, M.: GeRoMe: A Generic Role Based Metamodel

for Model Management. Journal on Data Semantics VIII, 82–117 (2007)
11. Larson, J.A., Navathe, S.B., Elmasri, R.: A Theory of Attribute Equivalence in Databases

with Application to Schema Integration. IEEE Trans. Software Eng. 15(4), 449–463 (1989)
12. Lenzerini, M.: Data Integration: A Theoretical Perspective. Proc. PODS, pp. 233–246 (2002)
13. Melnik, S., Bernstein, P.A., Halevy, A.Y., Rahm, E.: Supporting Executable Mappings in

Model Management. In: Proc. SIGMOD Conf, pp. 167–178. ACM Press, New York (2005)
14. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: A Programming Platform for Generic Model

Management. In: Proc. SIGMOD, pp. 193–204. ACM, New York (2003)
15. Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: The Use of Information Capacity in Schema

Integration and Translation. In: Proc. VLDB, pp. 120–133. Morgan Kaufmann, Washington
(1993)

16. Pottinger, R., Bernstein, P.A.: Merging Models Based on Given Correspondences. In: Proc.
VLDB, pp. 826–873. Morgan Kaufmann, Washington (2003)

17. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. VLDB
Journal 10(4), 334–350 (2001)

18. Sabetzadeh, M., Easterbrook, S.: View merging in the presence of incompleteness and in-
consistency. Requirements Engineering 11(3), 174–193 (2006)

19. Spaccapietra, S., Parent, C., Dupont, Y.: Model Independent Assertions for Integration of
Heterogeneous Schemas. VLDB Journal 1(1), 81–126 (1992)

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 142–157, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Discovering Web Services to Specify More Complete
System Requirements

Konstantinos Zachos, Neil Maiden, Xiaohong Zhu, and Sara Jones

Centre for HCI Design, City University, London
kzachos@soi.city.ac.uk, n.a.m.maiden@city.ac.uk,
x.zhu@soi.city.ac.uk, s.v.jones@city.ac.uk

Abstract. Service-centric systems pose new challenges and opportunities for
requirements processes and techniques. This paper reports new techniques
developed by the EU-funded SeCSE Integrated Project that enable service dis-
covery during early requirements processes and exploit discovered services to
enhance requirements specifications. The paper describes the algorithm for dis-
covering services from requirements expressed using structured natural lan-
guage, and demonstrates it using an automotive example. The paper also reports
a first evaluation of the utility of the environment that implements this algo-
rithm when improving the specification of requirements with retrieved services.

1 Developing with Web Services

Web and software services are operations that users access via the internet through a
well-defined interface independent of where the service is executed [15]. Service-
centric systems integrate software services from different providers seamlessly into
applications that discover, compose and monitor these services. Developments in
service-centric computing have been rapid. Leavitt [3] reports that worldwide spend-
ing on web services-based software projects will reach $11 billion by 2008. However,
there has been little reported software engineering research to address how to engi-
neer service-centric systems.

One consequence of service-centric systems is that requirements processes might
change due to the availability of services. Discovering candidate services can enable
analysts to increase the completeness of system requirements based on available ser-
vice features. However, for this to happen, new tools and techniques are needed to
form service queries from incomplete requirements specifications – tools and tech-
niques developed in the EU-funded SeCSE Integrated Project.

SeCSE’s mission statement is to create new methods, tools and techniques for re-
quirements analysts, system integrators and service providers that support the cost-
effective development and use of dependable services and service-centric applications
in the European automotive and telecommunication sectors [12]. The four-year
research project covers four main activity areas – service engineering, service discov-
ery, service-centric systems engineering, and service delivery. In this technical re-
search paper we describe new tools and algorithms for discovering services to use to
make requirements specifications more complete.

 Discovering Web Services to Specify More Complete System Requirements 143

Sections 2 and 3 describe SeCSE’s service-centric requirements process and two
research challenges that it generates. Sections 4 and 5 describe our response to these
challenges – SeCSE’s environment and service discovery algorithm. The algorithm
extends information retrieval techniques to overcome these two challenges. Section 6
reports a first evaluation of the usefulness of the environment and algorithm when
specifying requirements for service-centric systems. The paper ends with a discussion
of future work to extend the environment and its algorithms.

2 Discovering Services in SeCSE

In previous SeCSE work we report an iterative and incremental requirements process
for service-centric systems [2]. Requirements analysts form queries from a require-
ments specification to discover services that are related to the requirements in some
form. Descriptions of these discovered services are retrieved and explained to stake-
holders, then used to refine and complete the requirements specification to enable
more accurate service discovery, and so on.

Service
queries

Service
registry

Changed
requirements

Discovered
services

Service query(s)

Requirements
specification

Requirements
analysts
+ service

consumers

Requirements analysts
+ service consumers

Fig. 1. SeCSE’s Requirements Process

Relevance feedback, as it is known, has important advantages for the requirements
process. Stakeholders such as service consumers will rarely express complete re-
quirements at the correct levels of abstraction and granularity to match to the descrip-
tions of available services. Relevance feedback enables service consumers and ana-
lysts to specify new requirements and re-express current ones to increase the likeli-
hood of discovering compliant services. Furthermore, accurate relevance feedback
provides information about whether requirements can be satisfied by available ser-
vices, to guide the analysts to consider alternative build, buy or lease alternatives or
trade-off whether requirements can be met by the available services.

The process has 2 important features. Firstly, to ensure its widespread industrial
uptake, the process uses established specification techniques based on structured natu-
ral language. For example, to specify system behaviour the process uses UML use
case specifications. To specify the required properties in a testable form for generat-
ing service monitoring policies it uses the VOLERE requirements shell [6]. As such
the process extends the Rational Unified Process (RUP) without enforcing its use or
mandating unnecessary specification or service querying activities.

144 K. Zachos et al.

Secondly, the process uses services that are discovered from service registries to
support requirements processes in different ways [2]. During early requirements proc-
esses it uses services to challenge system boundaries and discover new requirements.
For example, if no services are found with an initial query, SeCSE provides advice on
how to broaden the query to find services that, though not exactly matching the needs
of the future system, might provide a useful basis for further specification. During late
requirements processes it uses services to decompose and refine requirements and
restructure them to enable more effective service monitoring. Service descriptions
provide the requirements team with important quality-of-service information, for
example about likely system performance and reliability, used to specify measurable
fit criteria for requirements [6].

3 Two Research Challenges for SeCSE

To deliver the SeCSE requirements process we need two new capabilities that over-
come common characteristics of natural language requirement specifications – ambi-
guity and incompleteness. These capabilities are designed to generate queries that will
discover services using requirements that are ambiguous and incomplete. Consider the
requirement for a car’s route planning system: the system shall provide the driver with
directions to a chosen destination by the most direct route. It is incomplete because it
does not state what the directions are and what direction information is needed. It is
also ambiguous because it does not define what is the sense of the “most direct” route.
There are several possible meanings of direct. Does the analyst mean direct in spatial
dimensions; proceeding without deviation or interruption; straight and short, or does
s/he mean having no intervening persons or agents?

To handle incompleteness and ambiguity when discovering services we have de-
signed and implemented the two capabilities listed in Table 1. We extend query ex-
pansion techniques previously only applied to WSDL service specifications [16] to
incomplete statements of requirement to generate more complete service queries. And
we apply term disambiguation techniques from information retrieval [9] to ambiguous
statements of requirement to generate unambiguous service queries. The claimed
innovation is to import research from related disciplines and extend it to handle prob-
lems specific to requirements engineering and service discovery.

Table 1. SeCSE’s two new querying capabilities

Requirements SeCSE querying capabilities
Incompleteness Expansion of service query with terms that have similar meanings
Ambiguity Disambiguation of query terms using pre-defined term senses

In SeCSE we adopted an engineering paradigm and prototyped a requirements-
based service discovery environment, reported in the next section, that implemented
these new capabilities as proof of concept and to enable evaluation of their usefulness
with our industrial partners.

 Discovering Web Services to Specify More Complete System Requirements 145

4 SeCSE’s Service Discovery Environment

The environment has three main components: (i) UCaRE, a module to document
requirements and generate service queries; (ii) EDDiE, the service discovery engine;
(iii) the service registries. We describe these 3 components in turn.

4.1 SeCSE’s Service Registries

The environment discovers services from federated SeCSE service registries that store
both the service implementation that applications invoke and one or more facets that
specify different aspects of each service. Current service registries such as UDDI are
inadequate for discovering services using criteria such as cost, quality of service and
exception handling. Therefore SeCSE has defined 6 facets of a service – signature,
description, operational semantics, exception, quality-of-service, cost/commerce, and
testing [8] – that specify features that are important when discovering services. Each
facet is described using an XML data structure. The requirements-based service dis-
covery reported in this paper uses the description and quality-of-service facets. The
quality-of-service facet is used to refine selection once services are discovered.

Figure 2 presents an example of part of the description facet for a service called
YNavigation, which finds the location of a reseller of some commodity. Again, to
facilitate industrial take-up, SeCSE assumes that service providers describe each facet
of a service using structured natural language, due to the excessive effort needed to
document services more formally. For example the ServiceGoal attribute describes
the purpose of the service as an end-state expressed in structured natural language.
The ShortServiceDescription atribute describes the service’s behaviour using a short
paragraph similar to a use case précis, whilst the LongServiceDescription attribute
describes this behaviour in more detail using structured English similar to a use case
normal course. Service providers specify and publish services in SeCSE registries
using SeCSE’s service specification tool reported at length in [8].

Owner: FIAT
Service goal: A reseller for a commodity to purchase is found
Short service description: This service helps you to find the nearest location where you could
talk with our reseller. Calculates the arrival time on the basis of the current car position, road
preferences and car features.
Service rationale: Car drivers this service to find the commodity.

Fig. 2. Example of part of one service with SeCSE’s description facet

SeCSE’s service registries are implemented using eXist, an Open Source native
XML database featuring index-based XQuery processing, automatic indexing. The
EDDiE service discovery engine queries these registries using XQuery, a query lan-
guage designed for processing XML data and data whose structure is similar to XML.
Generated queries are transformed into XQueries that are fired at the service descrip-
tion facets of services in the SeCSE service registries.

4.2 The UCaRE Requirements Module

Analysts express requirements for new applications using UCaRE, a web-based
.NET application. UCaRE supports tight integration of use case and requirements

146 K. Zachos et al.

specifications – a requirement expressed using VOLERE can describe a system-wide
requirement, a requirement on the behavior specified in one use case, or a requirement
on the behavior expressed in one use case action. UCaRE allows analysts to create
service queries from use case and requirements specifications.

At the start of the requirements process, analysts work with future service consum-
ers to develop simple use case précis that describe the required behaviour of a new
system. Figure 3(a) shows a use case précis expressed in UCaRE, taken from our
industrial automotive partners, to specify what a driver might want from an in-car
route planner. The précis is repeated in a readable form in Figure 4. Figure 3(b) shows
a simple requirement, also from these partners, associated with the précis expressed
using the UCaRE VOLERE shell. An analyst can specify functional and qualities
requirements such as the two also shown in Figure 4.

(a)

(b)
(c)

Fig. 3. Specification of a use case (a) and requirement (b) in UCaRE, and selection of use case
and requirements attributes to generate service queries (c)

Precis: A driver is driving his car. The driver wants to find out how long it will take him to get
from his current location to a specified destination. The driver activates the onboard
trip management service. He selects a destination and requests an estimate of the
time it will take him to arrive at that location from the current location.

FR1: The trip management service will provide the driver with route information at different
levels of detail.

PR1: The trip management service will provide the driver with route information within 10
seconds.

Fig. 4. A simple use case précis and requirements for an in-car route planner application, which
are used to formulate queries with which to discover services

The analyst then uses the simple tick-box feature shown in Figure 3(c) to select at-
tributes of use cases and requirements to include in a service query. Each service
query is formed of one or more elements of a pre-defined type such as a requirement

 Discovering Web Services to Specify More Complete System Requirements 147

description or rationale, or a use case précis, pre-condition or action. UCaRE maps
these element types to service query elements to deliver the seamless integration of
service querying with requirements specification that we believe is important for
industrial uptake of UCaRE. These integration features are described at length in [18].
The analyst then uses additional UCaRE features described in the next section to
refine each generated service query.

An analyst using UCaRE can generate one or more service queries from the speci-
fication of a system. Each query is a structured XML file containing structured natural
language statements. Because these statements are derived from requirements and use
cases, each is potentially ambiguous and incomplete. Each query is then passed to
EDDiE, the service discovery engine.

5 SeCSE’s Service Discovery Algorithm

The main function of the service discovery algorithm is to discover descriptions of
candidate services expressed using the service description facet shown in Figure 1
with service queries composed on the structured natural language statements. Non-
functional requirement types fulfil important roles during service selection once dis-
covered, but their use is not described further in this paper.

The algorithm implements SeCSE’s two new capabilities:

1. Query expansion – the addition of terms in the service query that have the
same or similar meaning to existing query terms, to make the query more
complete;

2. Term disambiguation – selecting the meaning, or sense of each term in the
query to enable query expansion, thus making the query unambiguous.

The algorithm has the 4 key components shown in Figure 5. In the first the service
query is divided into sentences, then tokenized and part-of-speech tagged and modi-
fied to include each term’s morphological root (e.g. driving to drive, and drivers to
driver). Secondly, the algorithm applies procedures to disambiguate each term by
defining its correct sense and tagging it with that sense (e.g. defining a driver to be a
vehicle rather than a type of golf club). Thirdly, the algorithm expands each term with

M
atching engine

SeCSE
service
registry

Pre-
processed

terms

T
erm

 expander

W
ord sense

disam
biguator

N
atural language

processor

SeCSE
service query

WordNet

Local glossary

Sense-
tagged
terms

Expanded
terms

Matched
terms

Sense-tagged
glossary terms

Stemmer Senses Semantic
relations

Service
query
terms

Retrieved
services

Fig. 5. SeCSE service discovery algorithm

148 K. Zachos et al.

other terms that have similar meaning according to the tagged sense, to make it more
complete and increase the likelihood of a match with a service description (e.g. the
term driver is synonymous with the term motorist which is also included in the
query). In the fourth component the algorithm matches all expanded and sense-tagged
query terms to a similar set of terms that describe each candidate service, expressed
using the service description facet, in the SeCSE service registry. Query matching is
in 2 steps: (i) XQuery text-searching functions to discover an initial set of services
descriptions that satisfy global search constraints; (ii) traditional vector-space model
information retrieval, enhanced with WordNet, to further refine and assess the quality
of the candidate service set. This two-step approach overcomes XQuery’s limited
text-based search capabilities.

The WordNet on-line lexicon fulfils an important role for three of the algorithm’s
components. WordNet is a lexical database inspired by current psycholinguistic theo-
ries of human lexical memory [5]. It has two important features. Firstly it divides the
lexicon into four categories: nouns, verbs, adjectives and adverbs. Word meanings,
called senses, for each category are organized into synonym sets (synsets) that repre-
sent concepts, and each synset is followed by its definition or gloss that contains a
defining phrase, an optional comment and one or more examples. Secondly WordNet
is structured using semantic relations between word meanings that link concepts.
Relationships between concepts such as hypernym and hyponym relations are repre-
sented as semantic pointers between related concepts [5]. A hypernym is a generic
term used to designate a whole class of specific instances. For example, vehicle de-
notes all the things that are separately denoted by the words train, chariot, dogsled,
airplane, and automobile, and is therefore a hypernym of each of those words. On the
other hand, a hyponym is a specific term used to designate a member of a class, e.g.
chauffeur, taxidriver and motorist are all hyponyms of driver. A semantic relation
between word meanings, such as a hypernymy, links concepts.

WordNet is an essential component of SeCSE’s two new capabilities. WordNet’s
word senses and definitions provide the data with which to disambiguate terms in
service queries. WordNet’s semantic relations link terms to other terms with similar
meanings with which to make service queries more complete.

EDDiE implements the WordNet.Net library, the .Net Framework library for
WordNet [10]. The library provides public classes that can be accessed through public
interfaces. For example, to look up a word to see if it is in the dictionary, the follow-
ing code sample achieves this using one of the public classes:

if(WNDB.is_defined(word,pos).NonEmpty) where word is a string, pos is a
part-of-speech. The next sections describe in more detail how the algorithm exploits
WordNet to discover service descriptions from service queries.

5.1 Natural Language Pre-processing

This component prepares the structured natural language service query for sense dis-
ambiguation and term expansion. In the first step the text is split into sentences and
word tokens. For example, when using white space as the delimiter for splitting the
sentence the engine is misfiring, we get the following tokens: the, engine, is, misfir-
ing. In the second step the algorithm identifies complex nominals (e.g. the term auto-
motive highway) based on domain-specific terms defined within a glossary (see 5.2.1)

 Discovering Web Services to Specify More Complete System Requirements 149

and term definitions in WordNet. In the third step the algorithm identifies and re-
moves all terms defined in a list of stop words (e.g. prepositions and pronouns). Next,
all terms are tagged with their corresponding part-of-speech (e.g. singular common
noun, comparative adjective, etc.) and classified accordingly using an improved ver-
sion of the Brill Tagger [1]. In the fifth step each term is converted to its morphologi-
cal root (e.g. driving to drive). Finally, all duplicate occurrences of a term are re-
moved so that each term is stored only once with its cardinality, as reported in [16].

Returning to our example of the service query generated for requirements shown in
Figure 3, the algorithm produces the first version of the XML service query, showing
only the noun terms (e.g. driver, car, location, destination, service, etc) processed
from the use case précis element in Figure 4. The next section describes how EDDiE
determines the correct sense of each term.

5.2 Word Sense Disambiguation

Assigning the correct sense to a word in context requires syntactic, semantic and
pragmatic knowledge about the word itself, its part of speech, and its context [13].
The pre-processing described in section 5.1 adds syntactic and semantic information
to query terms through part-of-speech tagging and WordNet. With this component the
algorithm completes disambiguation by iteratively using context knowledge from the
project glossary, requirements analyst and other terms in the service query through 7
procedures. Word sense ambiguity is problematic in information retrieval with small
queries [14]. However requirements-based service discovery uses larger queries that
offer more terms with which to disambiguate. Each procedure is increasingly costly to
apply. The first, the cheapest, exploits prior analysis work that the analyst normally
undertakes with UCaRE. The next 5 are applied automatically. The seventh, the most
expensive, demands analyst input. The 7 procedures are: (i) defining the glossary; (ii)
defining single term senses; (iii) defining synonyms; (iv) defining hypernyms; (v)
frequency-based senses; (vi) context-based senses, and; (vii) user selection.

For each term T the algorithm determines its sense S using one of 7 procedures that
are applied in order. If Procedure i does not provide any positive result, then Proce-
dure i+1 will be applied. In a generic iteration of the algorithm the input is a list of
pre-processing terms T = [ti,…,tn], and a list of associated senses S = [Sti,…,Stn]. T
represents all terms to be disambiguated and S represents the semantic meaning of T,
where Sti is either the chosen sense for ti or the empty set, i.e. the term is not yet dis-
ambiguated. A set of ambiguous terms A = {ti| Sti = ∅} is also maintained. T is initial-
ized with the empty set T = {} and A with the list formed by all terms parsed from the
Natural Language Processor. The output is the updated list S of senses associated with
the input terms T.

The disambiguation procedures are described below.

Procedure 1: Defining the Glossary. This procedure minimizes ambiguity in the
original service query. During SeCSE’s requirements process UCaRE maintains a
project glossary. Terms in the requirement and use case specification are defined in an
interactive glossary that accesses WordNet directly to offer one or more pre-defined
senses that the analyst selects and assigns to the term. Figure 6 shows a UCaRE
screenshot in which the analyst selects the correct sense #1 for driver and tags it in the
project glossary, i.e. a vehicle carrying many passengers; used for public transport.

150 K. Zachos et al.

Hence, the term driver is stored in the glossary with the sense #1. If the term driver
appears in the list T, this procedure finds the term in the glossary and marks it as hav-
ing sense #1 in S.

Procedure 2: Defining Single-Sense Terms. This procedure exploits the existence of
terms with only one sense in WordNet, called monosenous terms, and tags them
automatically with that sense. For example, the compound noun motor vehicle has
one sense defined in WordNet and is tagged with that sense #1.

Procedures 3&4: Defining Synonyms and Hypernyms. Procedure 3 finds query
terms that are semantically connected to already-disambiguated terms (i.e. terms with
a tagged sense) and for which the connection distance is 0 as computed using Word-
Net hierarchies. A semantic distance of 0 between two terms defines that both belong
to the same synset, and therefore the new term is tagged with the same meaning as the
connected term. For example consider the terms passenger and rider in T. The noun
passenger is a monosemous word disambiguated with Procedure 2. One of the senses
of the noun rider, sense #4 (a traveler riding in a vehicle (a boat or bus or car or
plane or train etc) who is not operating it), appears in the same synset with passenger
#1, so the procedure tags rider with sense #4.

Fig. 6. Sense definition during requirements specification with UCaRE

Procedure 4, defining hypernyms, works in a similar way. It finds query terms that
are semantically connected to already disambiguated terms but for which the connec-
tion distance is the maximum 1 as computed using WordNet hierarchies. A semantic
distance of 1 between two words indicates that both belong to the same hy-
pernymy/hyponymy relation and therefore the new term is tagged with the same
meaning as the connected term.

Procedure 5: Frequency-Based Senses. This procedure assigns the most frequent
sense to a term irrespective of its context [17]. This heuristic has been used to base-
line supervised word sense disambiguation systems [4]. Its high performance is due to
the skewed frequency distribution of word senses. WordNet has a 200,000-word sam-
ple of hand-tagged senses through the SemCor project [5]. However, infrequent words
can lead to sense bias. Therefore our solution is to constrain the use of this procedure
to terms that achieve both a threshold on the frequency of the predominant sense, and
a threshold on the ratio between the first sense and the next.

If both are satisfied, the term is tagged with sense #1 from WordNet. Consider the
noun location appearing in T. The term has 3 senses and all senses have appeared in

 Discovering Web Services to Specify More Complete System Requirements 151

the semantically tagged corpora. The first sense has 992 semantic tags, the second and
third senses have both 2 tags. As this scenario satisfies the condition described earlier,
sense #1 (a point or extent in space) is selected for location.

Procedure 6: Context-based Senses. The SemCor bigrams method forms two pairs,
one with the previous word, the other with the next word, and searches for these pairs
in SemCor corpus [5]. If in all of the occurrences of these pairs, the given word has
the same sense, and the number of occurrences is bigger than a preferred threshold,
then we assign that sense to the word. For example the term approval in T has the
query context committee approval of. The pairs formed are committee approval and
approval of. There are no occurrences of the first pair but four occurrences of the
second, more than the set threshold 3, and in all these occurrences the sense of ap-
proval is sense #1 (the formal act of approving), hence this sense is tagged.

Procedure 7: User Selection. In this most costly procedure the analyst selects the
sense for any term that could not be disambiguated using the 6 previous procedures.
All pre-defined senses (represented through the gloss) for the term are presented to
the analyst to select and assign. Reliance on the other 6 procedures means that user
selection should only be needed for a small number of terms. Consider the ambiguous
noun direction in T. The analyst can select the correct sense #1 for direction and tags
it in the definition window, i.e. a line leading to a place or point.

If a term ti could not be disambiguated through any procedure, then Sti becomes 0,
i.e. the term is still ambiguous. A term tj which is not included in WordNet and de-
fined in the project glossary, Stj becomes -1.

Now let us return to our automotive service query after all 7 procedures have been
applied. The partial XML service query in Figure 7 shows the noun terms processed
from the use case précis. For example, the term car is tagged with sense #1, i.e. 4-
wheeled motor vehicle; usually propelled by an internal combustion engine, whilst
the term destination is tagged with sense #3 i.e. written directions for finding some
location; written on letters or packages that are to be delivered to that location.

<SingleTerm>
<Term termID="1" occur="1" pos="NN" wnsn=”-1”>onboard trip management </Term>
<Term termID="2" occur="1" pos="NN" wnsn=”1”>car</Term>
<Term termID="3" occur="3" pos="NN" wnsn=”1”>driver</Term>
<Term termID="4" occur="1" pos="NN" wnsn=”1”>estimate</Term>
<Term termID="5" occur="1" pos="NNS" wnsn=”1”>request</Term>
<Term termID="6" occur="2" pos="NN" wnsn=”3”>destination </Term>
<Term termID="8" occur="3" pos="NN" wnsn=”-1”>location</Term>
<Term termID="11" occur="1" pos="NN" wnsn=”2”>time</Term>

</SingleTerm>

Fig. 7. An extract of the XML service query after word sense disambiguation, showing the
sense number (wnsn) of different nouns in use case précis elements

5.3 Query Expansion

Word mismatches are a fundamental problem to overcome in service discovery. Sim-
ply stated, it means that service consumers and providers use different words to ex-
press their requirements and service descriptions [11]. The severity of the problem
decreases as queries get longer and the likelihood of words co-occurring in the query

152 K. Zachos et al.

and service descriptions increases. Through query expansion in EDDiE, the query is
expanded using words or phrases with similar meaning to those in the query so that
the chance of matching words in relevant service descriptions is increased. Query
expansion techniques from information retrieval are essential for effective require-
ments-based service queries. More formal ontologies for most requirements domains
are not available, so synonym-based query expansion using ontological information in
WordNet is one of the few viable options.

Elsewhere Wang & Stroulia [16] report a web service discovery technique that
combines WordNet with matching on the structure of the WSDL service specification
to expand queries with semantically similar words. However, it is limited to formal
representations in WSDL. Our innovation is to expand service queries to handle re-
quirements expressed in natural language and compatible with established processes.

EDDiE uses ontological information from WordNet to extract semantically related
terms for query terms. As such prior disambiguation is essential to ensure that term
expansion uses the correct sense, otherwise queries are expanded incorrectly. Hence
only disambiguated terms are considered. EDDiE uses 3 expansion methods:

• Synset expansion: terms are replaced by their synsets, for example the term car is
replaced with its synset for sense #2 [car, auto, automobile, machine, motorcar].

• Hypernym expansion: terms are augmented by their WordNet direct hypernyms,
for example the hypernym of car is motor vehicle.

• Gloss words expansion: terms are augmented with the terms in their glosses, for
example the sense #1 definition of the term garage is a 4-wheeled motor vehicle;
usually propelled by an internal combustion engine. Hence motor vehicle and en-
gine are extracted.

Continuing with our example, Figure 8 shows an extract of the XML service query
after query expansion. Two terms – car and estimate – have been expanded with
synonyms, hypernyms and gloss terms. For example the query now also contains
terms that include auto, automobile, motorcar and vehicle as well as car, and ap-
proximation, thus increasing the likelihood of discovering relevant service descrip-
tions. All other terms in Figure 5 are expanded in the same manner, creating a larger
query composed of more terms with similar meanings.

<SingleTerm>
<Term termID="2" occur ="1" pos="NN" car</Term>
<Term termID="4" occur ="1" pos="NN" wnsn=”1”>estimate</Term>
…
<Term termID="13" pos="NN" refTerm="2" expType="synonym">auto</Term>
<Term termID="14" pos="NN" refTerm="2" expType="synonym">automobile</Term>
<Term termID="16" pos="NN" refTerm="2" expType="synonym">motorcar</Term>
<Term termID="15" pos="NN" refTerm="4" expType="synonym">estimation</Term>
<Term termID="15" pos="NN" refTerm="4" expType="synonym">approximation</Term>
…
<Term termID="31" pos="NN" refTerm="2" expType="hypernym"> motor vehicle</Term>
 <Term termID="32" pos="NNS" refTerm="4" expType="hypernym">calculation</Term>
 ...
<Term termID="32" pos="NNS" refTerm="2" expType="gloss">vehicle</Term>

</SingleTerm>

Fig. 8. The same extract of XML service query after query expansion, showing synonyms,
hypernyms and gloss terms for original terms car and estimate

 Discovering Web Services to Specify More Complete System Requirements 153

5.4 Query Matching

The expanded query is transformed into one or more XQueries that are fired at the
service description facets of services in SeCSE service registries. Once an initial set
of service descriptions has been retrieved using XQueries, a traditional vector-space
[7] model information-retrieval step, enhanced with WordNet, is applied to refine and
extract the most similar services from the set. As reported earlier, SeCSE’s service
description facet in Figure 2 is structured using attributes that facilitate matching with
the elements of the service query. For example, expanded terms describing use case
actors in the query are matched to terms that describe service consumers, expanded
terms from the use case précis are matched to terms in the short service description,
and expanded terms in normal course actions of the use case specification are
matched to terms describing atomic service operations.

In the traditional vector-space model, documents and queries are represented as T-
dimensional vectors, where T is the total number of distinct words in the document
collection after pre-processing. Each term in the vector is assigned a weight that re-
flects the importance of a word in the document. This value is proportional to the
frequency a word appears in a document and inversely proportional to number of
documents in which this word appears [7]. The WordNet vector-space model involves
the maintenance of vectors for each service description property and corresponding
expanded query elements, atomic and compound terms, where compound terms con-
sist of multiple atomic terms, for example nearest location. We employ the WordNet
vector space model to retrieve services that are most similar to the input description
on the respective vectors. Corresponding vectors from service description properties
and expanded query elements are matched to provide similarity scores. Matching
scores of original terms are assigned twice the weight as matching scores of expanded
terms (synonyms, hypernyms, gloss terms). A higher overall score indicates a closer
similarity between the source and target specifications.

Figure 9 describes part of XML service match between part of the example ex-
panded query and an extract of the XML service description facet for a service that
calculates the arrival time on the basis of the current car position shown in Figure 8. It
shows that expanded terms – for example calculation (a hypernym of estimate) and
journey (a gloss term of trip) are needed to match the service because these terms
were missing from the original query. Without such expansion of disambiguated
terms, retrieval of this service would not be possible. The match values shown in
Figure 7 represent the computed semantic distance between the terms calculation and
journey. These match values are used to compute an overall score for the match be-
tween the service query and description. Use of these overall scores is demonstrated
in the next section.

<SingleTerm>
<QueryTerm QId="11" QueryTerm="trip">

<MatchTerm MId="12" MatchValue="0.543" Expansion Type="gloss">journey</MatchTerm>
</QueryTerm>
<QueryTerm QId="16" QueryTerm="estimate">
<MatchTerm MId="17" MatchValue="0.368" ExpansionType="hypernym">calculation</MatchTerm>

</QueryTerm> …
</SingleTerm>…

Fig. 9. An extract of the XML service match for the service YNavigation with the expanded
service query

154 K. Zachos et al.

6 Evaluating UCaRE and EDDiE

We evaluated UCaRE and EDDiE with SeCSE’s industrial partners. Rather than in-
vestigate traditional measures of precision and recall properties of the EDDiE algo-
rithm itself we investigated the utility of algorithm in a requirements workshop. More
specifically we explored whether discovered services were sufficient to trigger speci-
fication of requirements that had not been specified prior to service discovery. Our
assumption underlying this strategy was that high levels of precision and recall were
not essential for service discovery – service specifications with lower similarity scores
might still enable analysts to discover new requirements.

Four experienced practitioners from SeCSE industrial partners – 2 from Fiat, one
from DaimlerChrysler and one from CA, discovered and documented requirements
for the in-car route planner system reported throughout the paper. Three of them had
extensive experience with such automotive applications. Two of the authors ran the
workshop – one facilitated requirements discovery whilst the scribe operated UCaRE.

The workshop was in 2 stages. In the first the facilitator walked the practitioners
through the use case précis then normal course to discover requirements for the in-car
route planner application that the scribe documented in UCaRE. This process contin-
ued until the practitioners were unable to discover more requirements. The scribe then
generated a service query from the use case précis and searched a SeCSE-enabled
registry containing 112 services for applications that included weather reporting and
flight booking as well route planning taken from existing public UDDI registries. The
query expanded all term types with possible synonyms, hypernyms and gloss terms.

In the second stage UCaRE displayed each discovered service description as
shown on the left-hand side of Figure 10. The practitioners selected which service
descriptions to retain as pertinent to the route planner application. The facilitator then
walked the practitioners through each service to discover additional route planner
requirements from the retained services that the scribe also documented in UCaRE.
The facilitator took care to avoid bias and use the same prompts and guidelines before
and after service discovery. After the workshop each practitioner completed a ques-
tionnaire that ranked each requirement documented during the workshop for its im-
portance and novelty on a simple scale of 1 to 3.

2.92.32.21.7Stage2

2.41.62.01.3Stage1

2.21.92.12.3Stage2

2.62.02.52.7Stage1

PSMRPracti -
tioner

Novelty
rating

Importance
rating

Fig. 10. Discovered service descriptions shown in the SeCSE environment (on left), and aver-
age importance and novelty ratings for requirements discovered before and after service re-
trieval (on right)

 Discovering Web Services to Specify More Complete System Requirements 155

The workshop took place as planned. The first stage lasted 60 minutes, during
which the practitioners discovered 27 requirements that were documented in UCaRE.
The service query then retrieved 11 services, 8 of which the practitioners retained as
relevant. The second stage lasted 50 minutes and led to a further 20 requirements
from services that were ranked with high and low similarity scores.

At the end of the workshop each practitioner completed the questionnaire (the or-
dering of the requirements was pseudo-randomized), and their average ratings of the
importance and novelty of the 47 requirements are shown on the right-hand side of
Figure 8. Results revealed a clear pattern – each practitioner ranked requirements
specified prior to service discovery as more important than requirements documented
after service discovery, but requirements specified from discovered services were
more novel, suggesting that the retrieved services complemented walkthroughs by
discovering requirements unlikely to be considered during the requirements process.

To explore how requirements were generated from retrieved services, we under-
took a post-workshop analysis to reveal the generation patterns reported in Table 2.

Table 2. Identified patterns of requirements discovery from services

Service-requirement pattern Number occurrences
Requirements expressed new system features that were a conse-
quence of an application that implemented the retrieved service

7

Requirements were expression of a refinement of the features of the
discovered service applied to the system under analysis

4

Requirements expressed required inputs to an application that invoked
the discovered service

2

Requirements expressed a function that has the potential to satisfy
service qualities described in the service description

1

Requirements were associated with the preceding requirement gener-
ated from a service description

3

Requirements and services shared concepts that were deeper than the
above input, output and consequence relations

2

Requirements and services had no discernible similarities 1

Several patterns, such as the first, suggest that the practitioners would implement a
service-centric application. Other patterns represent good practice that we will vali-
date and reinforce in SeCSE’s requirements process.

To conclude the workshop, although limited by the coverage of services in the reg-
istry, revealed that EDDiE is capable of discovering services deemed relevant from
first-cut requirements and a use case specification specified in a one-hour workshop.
Furthermore 8 of the discovered services with different similarity scores enabled the
experienced practitioners to specify new requirements that they deemed more novel
than the earlier requirements, thus providing evidence that EDDiE and UCaRE can
deliver SeCSE’s iterative and incremental requirements process.

7 Discussion and Future Work

This paper reports a research-based software environment for constructing service
queries from natural language requirements specifications, disambiguating query

156 K. Zachos et al.

terms using 7 procedures then expanding them with defined senses, and retrieving
discovered services from service registries. An evaluation of the environment re-
vealed that experienced practitioners used retrieved services with a range of similarity
scores to generate new requirements that were later ranked as more novel than re-
quirements discovered using traditional use case walkthrough techniques. This posi-
tive outcome supports our fundamental claim – that candidate services can enable
analysts to increase the completeness of requirements. It suggests the potential to use
services that the final application might not invoke to inform later architecture design,
service composition and implementation tasks. We encourage researchers to think
more innovatively about how to use web services in information systems engineering.

Acknowledgements

SeCSE is funded by the EU 511680 Integrated Project.

References

[1] Brill, E.: A simple rule-based part of speech tagger. In: Proc. Third Conference on Ap-
plied Natural Language Processing, ACL, Trento, Italy (1992)

[2] Jones, S.V., Maiden, N.A.M., Zachos, K., Zhu, X.: How Service-Centric Systems
Change the Requirements Process. In: Proceedings REFSQ’2005 Workshop,
CaiSE’2005, pp.13–14, Porto (2005)

[3] Leavitt, N.: Are Web Services Finally Ready to Deliver? IEEE Computer 37(11), 14–18
(2004)

[4] McCarthy, D., Koeling, R., Weeds, J., Carroll, J.: Using Automatically Acquired Pre-
dominant Senses for Word Sense Disambiguation. In: Proceedings of the ACL 2004 Sen-
seval-3 Workshop Barcelona, Spain (2004)

[5] Miller, K.: Introduction to WordNet: an On-line Lexical Database Distributed with
WordNet software (1993)

[6] Robertson, S., Robertson, J.: Mastering the Requirements Process. Addison-Wesley-
Longman, Redwood City (1999)

[7] Salton, G., Wong, A., Yang, C.S.: A vector-space model for information retrieval. In:
Journal of the American Society for Information Science. vol.18, pp. 13–620. ACM
Press, New York (1975)

[8] Sawyer, P., Hutchinson, J., Walkerdine, J., Sommerville, I.: Faceted Service Specifica-
tion. In: Proceedings SOCCER (Service-Oriented Computing: Consequences for Engi-
neering Requirements) Workshop, at RE’05 Conference, Paris (August 2005)

[9] Schutze, H., Pedersen, J.: Information retrieval based on word senses. Proceedings of the
Symposium on Document Analysis and Information Retrieval 4, 161–175 (1995)

[10] Simpson, T.: (2005) opensource.ebswift.com/WordNet.Net
[11] Singhal, A., Pereira, F.: Document expansion for speech retrieval. In: Proceedings of

ACM SIGIR, pp. 34–41, Berkeley, CA, USA (1999)
[12] SeCSE 2005, secse.eng.it
[13] Stevenson, M., Wilks, Y.: The Interaction of Knowledge Sources in Word Sense Disam-

biguation. Computational Linguistics 27(3), 321–349 (2001)

 Discovering Web Services to Specify More Complete System Requirements 157

[14] Stokoe, C.M, Oakes, M.J, Tait, J.I: Word Sense Disambiguation in Information Retrieval
Revisited. In: Proceedings of the 26th ACM SIGIR. pp. 159 – 166 Toronto, Canada
(2003)

[15] Tetlow, P., Pan, J., Oberle, D., Wallace, E., Uschold, M., Kendall, E.: Ontology Driven
Architectures and Potential Uses of the Semantic Web in Software Engineering, W3C
(2005)

[16] Wang, Y., Stroulia, E.: Semantic Structure Matching for Assessing Web-Service Similar-
ity, First International Conference on Service Oriented Computing, Trento, Italy
(December 15-18 (2003)

[17] Wilks, Y., Stevenson, M.: The grammar of sense: Is word-sense tagging much more than
part-of-speech tagging? Sheffield Department of Computer Science, Research Memo-
randa (1996)

[18] Zachos, K., Zhu, X., Maiden, N., Jones, S.: Seamlessly Integrating Service Discovery
into UML Requirements Processes. In: Proceedings 2006 International Workshop on
Service-Oriented Software Engineering (SoSE’2006), Shanghai, China, ACM Press,
New York (2006)

[19] Zhu, H., Maiden, N.A.M., Jones, S.V., Zachos, K.: Applying Patterns in Service Discov-
ery.In: Proceedings SOCCER (Service-Oriented Computing: Consequences for Engi-
neering Requirements) Workshop, at RE’05 Conference, Paris (August 2005)

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 158–172, 2007.
© Springer-Verlag Berlin Heidelberg 2007

On ISOA: Intentional Services Oriented Architecture

Colette Rolland1, Rim Samia Kaabi1, and Naoufel Kraiem2

1 Université Paris1 Panthéon Sorbonne, 90, rue de Tolbiac, 75013 Paris, France
2 Ecole Nationale des Sciences de l’Informatique, 2035 Manouba, Tunis, Tunisia

rolland@univ-paris1.fr, rim-samia.kaabi@malix.univ-paris1.fr,
Naoufel.Kraiem@ensi.rnu.tn

Abstract. Despite the growing acceptance of SOA, service-oriented computing
remains a computing mechanism to speed-up the design of software
applications by assembling ready-made services. We argue that it is difficult for
business people to fully benefit of the SOA if it remains at the software level.
The paper proposes a move towards a description of services in business terms,
i.e. intentions and strategies to achieve them and to organize their publication,
search and composition on the basis of these descriptions. In this way, it
leverages on the SOA to an intentional level, the ISOA. We present ISM, the
model to describe intentional services, and to populate the service registry. We
highlight its intention driven perspective for service description, retrieval and
composition. Thereafter, we propose a methodology to determine intentional
services that meet business goals. Finally, we introduce agent architecture to
support model driven execution of intentional services.

Keywords: Service-oriented computing, service-oriented architecture, inten-
tional service-oriented architecture, intentional service modelling, intention-
driven service composition.

1 Introduction

Service-Oriented Computing (SOC) is the computing paradigm that utilizes services
as fundamental elements for developing software applications [1][2]. SOC relies on
the Service-Oriented Architecture (SOA) [3] that is a way of reorganizing a portfolio
of previously developed applications into services that are self-describing, platform
agnostic computational elements performing functions, accessible through standard
interfaces and that can be assembled in complex compositions based on standard
messaging protocols. As shown in Fig.1, the basic SOA defines an interaction
between three kinds of software agents [4], namely, the service provider, the service
client and the service registry involving the publish, find and bind operations.
Services are offered by service providers that procure the service implementations
and supply their descriptions to a service registry. The service registry publishes
services by making their descriptions. The service client uses the find operation to
retrieve the service description matching his functional needs and uses it to bind with
the service provider and invoke the service.

 On ISOA: Intentional Services Oriented Architecture 159

Service
provider

Service client
Service
registry Find

BindPublish

Fig. 1. Function-driven SOA

SOA is a way of designing a software system that is function-driven. Services
perform functions implemented in software, wrapped with formal documented
interfaces which provide the mechanism by which services can communicate with one
another in compositions to perform higher level functions. The service interface (that
provides the signatures of the available operations) is central to the SOA view as it is
the only thing, which is exposed to the client to invoke the function.

However, it shall be noticed that interface descriptions are low level, technical
statements (cf. WSDL statements [5]) that are understandable by software
professionals but far to be comprehensible by business people. At the same time, the
notion of a service is familiar to the management world [6] and with the growing
acceptance and popularity of SOA, computing systems now aim to extend far beyond
the firewall to automate enterprise-wide business processes, covering sales, supply
chain, manufacturing, delivery, payment, human resources, and more. To attain this, it
is necessary to adapt SOA to a mainstream practitioners’ level and bridge the gap
between high level business services and low level software services [7], [8].

The position adopted in this paper is to suggest a move from the function-driven
SOA to intention-driven SOA. Whereas the former lies on a functional view of
services, the latter proposes to spell out the purpose, the intention behind a service. As
a consequence, interfaces of these services will bring out the business goal that the
service allows to fulfil instead of defining the signatures of basic operations that can
be invoked on class objects. This will avoid the current mismatch of languages
between low level services expressions such as WSDL statements and business
perceived services. We refer to these services as intentional services and present in
this paper ISM, a model for intentional service modelling.

While complying with the SOA model, our model, the intentional SOA, ISOA is a
proposal for leveraging the 3-SOA tuple <Publish, Find, Bind> to an intentional level
matching the business mainstream needs. In adapting the roles and operations of the
SOA model, the ISOA (Fig. 2) introduces two main departures:

(i) in the interaction, business agents replace software agents,
(ii) intentional service descriptions replace functional software service descriptions.

The ISOA implies that business centric organizations offering e-business services
shall describe their services in an intentional manner, and publish them to an e-
business service registry that makes these descriptions available in an intentional
service registry. Business agents who are searching for services use an intention
matching mechanism to retrieve service descriptions fitting their needs and use them
to bind to the e-business provider.

160 C. Rolland, R.S. Kaabi, and N. Kraiem

E-business
provider

Business
agent

Intentional
service
registry Goal Driven Find

Bind
and Adapt

Objectify
and Publish

Fig. 2. Intention-driven SOA

In this paper, we use the three roles mentioned in the ISOA architecture to
structure the discussion on ISOA. For the registry, we introduce the notion of
intentional service, highlight its relationship with software services and present ISM,
a model for intentional service modelling. We show that an intentional service
description shall include variability, i.e. propose alternative variations of a given
component service. The model gives to us the capability to populate the intentional
service registry. This is the subject of section 2.

It is for the e-business provider to define the services that are to be provided in the
business. We propose to represent business intentions in a graphical representation
called Map. This Map takes the form of an intention/strategy graph with intentions as
nodes and strategies to achieve them as edges. The e-business provider derives the
services that can be published from a map following a set of guidelines. This role of
the provider is considered in section 3.

Finally, in carrying out his role, the business agent must be provided with the
appropriate execution architecture particularly to handle variability. In section 4, we
outline an agent architecture for service execution.

2 Populating the Registry with Intentional Services

In this section we consider the Intentional Service Registry. The aim is to develop a
model that defines the contents of the Registry. Towards this end, we clarify the
notion of an intentional service and present the Intentional Service Model, ISM, to
model different types of intentional services.

2.1 Intentional Service Model

An intentional service is a service captured at the business level, in business
comprehensible terms and described in an intentional perspective, i.e. focusing on the
intention it allows to achieve rather than on the functionality it performs. Fig. 3
presents ISM using UML notations. As shown by the colors used in the Figure, there
are three different aspects in the description of an intentional service, namely the
service interface, the service behavior and the service composition. We describe the
three in turn.

First, central to the Figure is the fact that a service permits the fulfillment of an
intention, given an initial situation and terminating in a final situation. These three
elements constitute the interface of an intentional service; the intention replaces the

 On ISOA: Intentional Services Oriented Architecture 161

- Code
- Commentary

Final Situation

Initial Situation

Post-condition

Atomic

Variant Composite

1..*

Pre-condition1
0..*

0..*

0..*

0..*

Intention

1..*
1..*

0..* 0..*
11

0..*

1

1..*

1..*

0..*

satisfies

Class

-Attribute

Class

-Attribute

Service Interface

Service Behavior

Service Composition

Legend
Service Interface

Service Behavior

Service Composition

Legend

Service

State

Aggregate

Relation

Fig. 3. Intentional Service Model

operations that are part of a typical software interface whereas the initial and final
situations are the input and output parameters structured as business object classes.

We view an intention in the same sense as a goal. A goal is ‘an optative’ statement
[9], that expresses what is wanted i.e. a state that is expected to be reached or
maintained. Thus, Make Room Booking is the intention to make a reservation for
rooms in a hotel. The achievement of this intention leaves the system in the state,
Booking made. If Accept Payment is the intention of a service then the initial situation
refers to the booking and customer classes whereas the final situation comprises the
payment class in addition.

Second, the behavior of the service is specified through its pre and post conditions
that are the initial and final sets of states characterizing the initial and the final
situation respectively. In the Accept Payment service example, <booking.state =‘OK’
∧ customer.status=‘registered’> and <booking.state=‘paid’ ∧ payment.status = ‘done’
> are the pre and post-conditions respectively.

Finally, services are classified as aggregate or atomic. The former are composed
of other services whereas the latter are not. Atomic services have intentions that are
fulfilled by SOA level functional services. In contrast aggregate services have high-
level intentions that need to be decomposed in lower level ISOA services till atomic
intentional services are found. Therefore, it can be understood that aggregate
intentional services lie on an intention-driven composition that is necessary to bridge
the gap between the actual functionality (captured in the atomic service) and the high
level perception of business executives for a service fulfilling their strategic/tactical
intentions.

Fig. 3 shows that aggregate services are further refined. Aggregation of services
can involve variants, i.e. services which are alternative to the others or result from
simple composition, leading to composite services.

Composite services reflect the precedence/succession relationship between their
intentions. For example, in the room booking case, Make Room Booking must precede

162 C. Rolland, R.S. Kaabi, and N. Kraiem

Accept Payment. The composition of this two services leads to the satisfaction of the
intention Make Confirmed Booking. This form of composition is grounded on the
AND goal decomposition as used in goal modelling [10].

The composition is denoted “•” when there is a sequential order between
component services and “//” when they can run in parallel. Every service in a
composition can be executed repeatedly, this is denoted by the “*” symbol. Thus, the
composite service to fulfil the Make Confirmed Booking intention is defined as
follows:

S Make Confirmed Booking = • (S Make Room Booking, S Accept Payment)

Introduction of variability in intentional service modelling is justified by the need
to introduce flexibility in intention achievement and adaptability in intentional service
execution. There are three types of variants in ISM, namely alternative, choice and
multi-path.

An alternative variation corresponds to an XOR relationship between the service
intentions involved. For example, assume that Accept Payment can be achieved in
exclusively one of the following ways, By electronic transfer or By credit card or By
cash. This leads to define the service S Accept Payment as a variant aggregate with three
alternative components. We use the symbol “⊗” to denote alternative and therefore:

S Accept Payment = ⊗ (S Accept Payment by electronic transfer, S Accept Payment by credit card, S Accept

Payment by cash)

A choice variation corresponds to an OR relationship between the service
intentions involved. For example, assume that Investigate Candidate Booking can be
achieved either On the Internet or By visiting a travel agent or by both. The aggregate
service S Investigate Candidate Booking is therefore defined as variant with two components S
Investigate Candidate Booking on the Internet and S Investigate Candidate Booking by visiting a travel agent. We use the
symbol “ν” to denote the choice variation and therefore:

S Investigate Candidate Booking = ν (S Investigate Candidate Booking on the Internet, S Investigate Candidate Booking

by visiting a travel agent)

Finally a multi-path variation occurs when several compositions of an intentional
service allow to achieve the same intentional service. Let us assume in our example
that it is possible that the customer gets a booking as a reward for loyalty to the hotel
chain. Thus, there are two paths to providing the intentional service Make a
Confirmed Booking: one by achieving the sequence of intentional services Make a
Booking, Accept payment and the other one Get a Rewarded Booking. The multi-path
is denoted “∪” and the multi-path service S Make Confirmed Booking is defined as follows:

S Make Confirmed Booking = ∪ (• (S Make Room Booking, S Accept Payment), S Get a Rewarded Booking)

The foregoing demonstrates that services are defined recursively; an aggregate
service being possibly composed of other aggregate services; besides, components of an

aggregate service can be related directly through composition links (., //, *) or in a more
complex manner through relationships (∪,⊗,ν). Relationships between intentional
services introduce variability in the composition. Overall, services are defined in an
intention-driven manner focusing on the ‘whys’ of the functionality provided by the

 On ISOA: Intentional Services Oriented Architecture 163

underlying SOA level software service. Moreover, composition is itself intention-driven
and grounded in XOR, OR, AND relationships among intentional services. Thus,
whereas the service interface exhibits the ‘whys’ of the service, its actual implemented
functionality is embedded in the related atomic services.

Now, consider the issue of populating the Intentional Service Registry. Evidently,
every service must be available in the Registry. That is, every atomic and aggregate
service is kept here. For an aggregate, information about composition links and
relationships is kept. This enables (Fig. 2) retrieval of complete aggregate services,
their binding and adaptation to conform to the task at hand. Retrieval is based on
intention matching and thereafter on situation and condition matching. That is, given
the need to find a service with intention I, the registry is searched to retrieve a service
with the same or similar intention. Once such a service is found, one drills down to
assure oneself that the pre and post conditions match. Finally, the initial and final
situations yield the input and output parameters.

3 Discovering Services for Publication

We believe that the services that populate the Registry arise in the business of
organizations. Services to be provided relate to business objectives and, indeed, help
to achieve these. This requires that a model of the business can be developed using
which the E-business provider (Fig. 2) discovers services for publication. In this
section, we propose the use of the Map formalism [11] to represent businesses in
intentional terms and provide guidelines to determine services from this
representation. We use Materials Management (MM) to illustrate service publication
(see [11] for full details of the MM map).

3.1 Capturing Business Intentionality in Maps

Map is a representation system that was originally developed to represent a process
model expressed in intentional terms. It provides a representation mechanism based
on a non-deterministic ordering of intentions and strategies. We will use it here as a
means for modelling intention-driven composition of services.

A map is a labelled directed graph with intentions as nodes and strategies as edges.
An edge enters a node if its strategy can be used to achieve the intention of the node.
There can be multiple edges entering a node.

An intention is a goal that can be achieved by the performance of a process. For
example, the MM map in Fig. 4 has Purchase Material and Monitor Stock as
intentions. Furthermore, each map has two special intentions, Start and Stop, to
respectively start and end the process.

A strategy is an approach, a manner to achieve an intention. In Fig.4, By reorder
point planning is a manner to place an order to Purchase Material, any time the stock
of this material falls under the reorder point.

A section is the key element of a map. It is a triplet as for instance <Start,
Purchase Material, Manual Strategy> which couples a source intention (Start) to a
target intention (Purchase Material) through a strategy (Manual strategy) and
represents a way to achieve the target intention Purchase Material from the source
intention Start following the Manual Strategy.

164 C. Rolland, R.S. Kaabi, and N. Kraiem

Sections in a map are related to each other by four kinds of relationships namely
multi-thread, bundle, path and multi-path relationships.

Bundle relationship: Several sections having the same pair of source and target
intention, which are mutually exclusive are in a bundle relationship. For example in
Fig.4, the Planning strategy is a bundle consisting of the Reorder point strategy and
Forecast based strategy. Similarly, the Inventory balance strategy is a bundle of
periodic, continuous and sampling strategies.

Multi-thread relationship: It is possible for a target intention to be achieved from a
source intention in many different ways. Each of these ways is expressed as a section
in the map and these sections are in a multi-thread relationship with one another. In
Fig.4 the Planning strategy and the Manual strategy are in a multi-thread
relationship. The difference between a multi-thread and a bundle relationship is that
of an exclusive OR of sections in the latter versus an OR in the former.

Path relationship: This establishes a precedence/succession relationship between
sections. For a section to succeed another, its source intention must be the target
intention of the preceding one. For example the two sections, <Start, Purchase
Material, Manual strategy >, <Purchase Material, Monitor Stock, Out-In strategy >
constitutes a path.

Multi-path: Given the three previous relationships, an intention can be achieved by
several combinations of sections. Such a topology is called a multi-path. In general, a
map from its Start to its Stop intentions is a multi-path and contains multi-threads. For

Stop

Planning
strategy

Start

Purchase
Material

Monitor
Stock

Out-In
strategy

Bill for
expenses
strategy

Quality
inspection
strategy

Inventory
balance
strategy

Valuation
strategy

In-In strategy

Manual
strategy

Payment
control
strategy

Reorder Point
strategy

Forecast
based
strategy

Continuous
Sampling

Periodica

b
c

d

1

2
3

1

1

2

1

3

4 6

5

Stop

Planning
strategy

Start

Purchase
Material

Monitor
Stock

Out-In
strategy

Bill for
expenses
strategy

Quality
inspection
strategy

Inventory
balance
strategy

Valuation
strategy

In-In strategy

Manual
strategy

Payment
control
strategy

Reorder Point
strategy

Forecast
based
strategy

Continuous
Sampling

Periodica

b
c

d

1

2
3

1

1

2

1

3

4 6

5

Start

Stop

Accept
delivery

Enter goods
In stock

Reconciliation by
PO recovery

Okay
strategy

Recon-
ciliation
of unit
difference

Reconciliation
of under/over

delivery

Rejection strategy

Completeness
strategy

Out-in direct
consumption strategy

Out-in storage
based strategy

a 1

2

3

2

1

1
1

4

b
c

d

Fig. 4b. Map refining bc1 section

Fig. 4a. The Material Management Map

Fig. 4. The Material Management Map (Fig. 4a) and the Map refining bc1 section (Fig. 4b)

 On ISOA: Intentional Services Oriented Architecture 165

example, there is a multi-path to achieve the intention Purchase Material; either the
path from Start to Monitor Stock via Purchase Material can be followed or the direct
path from Start to Monitor Stock can be used.

Finally, it is possible to refine a section of a map into an entire map at a lower level
of abstraction. For example, Fig. 4 shows the refinement of the section <Purchase
Material, Monitor Stock, Out-in strategy> as a map (Fig. 4a). This refinement
mechanism leads to model business intentionality as a hierarchy of maps.

3.2 Deriving Intentional Services from Maps

Having represented business intentionality as maps, we now proceed to determine
services and their composition according to the ISM. We propose three key
guidelines1 to do this:

1- associate every section to an atomic service,
2- calculate all the paths of a map using an adaptation of the MacNaughton and

Yamada’s algorithm [12],
3- determine the aggregate services using the following correspondences

between sections relationships in maps and service composition operators in
ISM <path – composite>, <bundle – alternative>, <multi-thread – choice>,
<multi-path – multi-path>. Since the entire map is, in general, a multi-path, it
corresponds to an aggregate service.

We consider the three steps in turn and illustrate them with the MM map.

3.2.1 Associating Map Sections to Atomic Services
The first step consists of associating every section of a map to an atomic service. This
correspondence leads in the case of the MM example, to services shown in Table1 in

Table 1. Services of the MM map

MM map sections Intentional Services
ab1 S Purchase Material with reorder point strategy
ab2 S Purchase Material with forecast strategy
ab3 S Purchase Material Manually
bc1 S Receive stock of purchased material
ac1 S Receive stock by bill for expenses
cc1 S Move stock
cc2 S Evaluate value of stock
cc3 S Inspect stock
cc4 S Conduct Physical Inventory continuously
cc5 S Conduct Physical Inventory by sampling
cc6 S Conduct Physical Inventory periodically
cd1 S Verify invoice against delivery

1 For sake of clarity, we deal here with guidelines for one single map whereas the entire process

must deal with a hierarchy of maps. Rule 1 above needs then to be adapted (non refined
sections are associated to atomic services) and an iteration step for every refined map shall be
added.

166 C. Rolland, R.S. Kaabi, and N. Kraiem

correspondence with each of the 12 sections of the MM map. For sake of conciseness
we use an abbreviated notation to refer to a section. We refer to each intention by a
letter and to each strategy between a pair of intentions by a digit starting from 1 (see
Fig. 4). Therefore, ab3 is the reference of section <Start, Monitor Stock, Manual
strategy> between the source intention Start, the target intention Monitor Stock, with
the Manual strategy coded 3.

It can be seen that the name of each service reflects the business intention that can
be achieved as well as the strategy to achieve it.

3.2.2 Calculating all Paths
We sketch an algorithm that automatically generates paths in the map and therefore,
allow us to determine aggregate services as well as their nature, composite or variant.
This algorithm is an adaptation of the MacNaughton and Yamada’s algorithm [12] to
calculate paths in a graph. This algorithm uses the different types of relationships
between sections in a map that we introduced earlier.

The MacNaughton’s algorithm is based on the two following formula:
Let s and t be the source and target intentions, Q the set of intermediary intentions

including s and t and P the set of intermediate intentions excluding s and t.
The initial formula Ys,Q,t used to discover the set of all possible paths using the

three operators that are the union (“∪”), the composition operator (“.”) and the
iteration operator (“*”) is:

Ys, Q, t= • (X*s, Q\{s}, s, X .s, Q\{s, t}, t, X*t, Q\{s, t}, t)

And given a particular intention q of P, the formula Xs,P,t applied to discover the set
of possible paths is:

Xs,P,t= ∪ (Xs, P\{q}, t , •(Xs, P\{q}, q, X*q, P\{q}, q, Xq, P\{q}, t))

We specialize the Xs,P,t into paths, multi-paths, multi-threads and bundle
relationships that we note as follows:

Bundle relationship between two intentions k and l is denoted Bkl = ⊗(kl1, kl2
…kln) where the kli are the exclusive sections related by the bundle relationship. In
Fig. 4, the bundle of planning strategies is Bab =⊗(ab1, ab2).

Multi-thread relationship between two intentions k and l is denoted MTkl =∨ (kl1
kl2, kln) where the kli are the sections related by the multi-thread relationship. Thus,
the multi-thread between Start and Purchase Material in Fig. 4 is MTab =∨ (Bab, ab3).

Path relationship between two intentions k and l is denoted Pk,Q,l where Q designates
the set of intermediary intentions used to achieve the target intention l from the source
intention k. A path relationship is based on the sequential composition operator “.”
between sections and relationships of any kind. As an example, the path relationship in
Fig. 4 between Start and Monitor Stock is denoted Pa,{b},c = •(MTab, bc1).

Multi-path relationship between two intentions k and l is denoted MPk,Q,,l where
Q designates the set of intermediary intentions used to achieve the target intention l
from the source one k. A multi-path relationship is based on the union operator “∪”
between alternative paths. Thus, the multi-path in Fig. 4 between Start and Stop is
denoted MPa,{b},c= ∪ (ac1, Pa,{b},c}).

 On ISOA: Intentional Services Oriented Architecture 167

The initial formula generating all the paths between the intentions a and d of Fig. 4
map, is:

Ya,{a,b,c,d},d= •(X*a,{b,c,d},a, Xa,{b,c},d, X*d,{b,c},d)

The identified paths are summarized in Table 2.

Table 2. List of sections relationships

Type of relationship Identified relationships
Path Pa,{b},c= • (MTab, bc1)

Pa,{b,c},d= • (MPa,{b},c, MTcc
*, cd1)

Multi-Path MPa,{b},c= ∪ (ac1, Pa,{b},c})
Bundle Bab= ⊗(ab1, ab2)

Bcc= ⊗(cc4, cc5, cc6)
Multi-Thread MTab= ∨(Bab, ab3)

MTcc= ∨(cc1, cc2, cc3, Bcc)

3.2.3 Determine Aggregate Services
Now, we establish a correspondence between section relationships in the map and
aggregate service types. This correspondence is as follows: <path – composite>,
<bundle – alternative>, <multi-thread- choice>, <multi-path- multi-path>. Table 3
presents the variant and composite services associated to the MM map. These are
expressed with the set of variant and composite operators, namely ∨, ⊗, ∪, •, *
introduced earlier in section 2.

Table 3. Components of the aggregate service S Satisfy Material Need Efficiently

Aggregate Types Services
Variant services S Purchase Material Planning strategy = ⊗ (S PM reorder point strategy, SPM with forecast strategy)

S Conduct Physical Inventory = ⊗ (S CPI continuously, S CPI by periodically, S CPI by sampling)
S Purchase Material = ∨ (S Purchase Material Manually, S Purchase Material Planning Strategy)
S Monitor Stock = ∨ (S Conduct physical inventory, S Inspect stock, S Move stock, S Evaluate value of

stock)
S Receive stock = ∪ (S Receive stock by bill for expenses, S Receive stock normally)

Composite
services

S Satisfy Material Need Efficiently = • (S Receive stock, S Monitor Stock*, S Verify invoice against

delivery)
S Receive stock normally = • (S Purchase material, S Receive stock of purchased material)

It is to be noted that the entire MM map is associated to a composite service S Satisfy

Material Need Efficiently having the intention Satisfy Material Need Efficiently. This
aggregate service is a composition of three services, S Receive stock, S *Monitor Stock, and S
Verify invoice against delivery. The first one of these is a multi-path with the intention to
Receive Material in stock. The second is a set of variant services to achieve the
intention Monitor Stock. The third one is an atomic service intended to Verify invoices
against delivery.

168 C. Rolland, R.S. Kaabi, and N. Kraiem

4 Adapting Services

Since an aggregate service captures a full range of variants to achieve the root service
intention, when the business agent (Fig. 2) desires to use the service he has selected
there is an adaptation issue. The issue of adaptation is that of determining which
variant services and which combination of variant services are relevant to the
situation at hand.

We again believe that adaptation must be driven by business intentions and
identified two different ways in which adaptation can be done:

− Design time adaptation permits a selection of a combination of variants that might
result in only one composite service; i.e. one path from Start to Stop in the map.

− Run time adaptation allows to leave a large degree of variability in the adapted
aggregate service and the desired variant services can then be selected
dynamically at enactment time.

This section describes how the different combinations of services in an ISM
aggregate service can be mapped to an agent architecture that monitors the navigation
through service relationships and thus allows dynamic service selection at run time.

4.1 The Agent Architecture

In order to monitor the navigation among the composition of services and offer to the
business agent the choice of variants he/she wants to execute, we build a hierarchy of
agents to managing service relationships and handing over the execution of atomic
services. The hierarchy is composed of two kinds of agents: control and executor agents.

− An executor agent is a self-contained unit that implements an atomic service; this
can be done by handing over the control to a traditional service composition
engine such as the BPEL4WS engine [13].

− A control agent controls the selection and execution of a given composition, i.e. a
path in a map (executors or/and other control agents). We distinguish four kinds of
control agents for each of the four operators “∪” (multi-path), “.” (path), “∨”
(thread) and “⊗” (bundle) control agents. They respectively control the selection
and execution of the paths related by multi-path, path, multi-thread and bundle
relationships.

In order to build the hierarchy, we defined mapping rules that are briefly sketched
in the following. We first introduce one executor for each atomic service. As can be
seen in Fig. 5, there is a one to one correspondence between atomic services and
executors. For example, the service ab1 is mapped to an executor having the same
name. Executor agents are the leaves of the hierarchy.

Higher levels correspond to control agents. There is a kind of control agent for
each kind of service relationship. For example, in Fig. 5, the multi-thread relationship
MTab (see Table 2) is associated to a multi-thread control agent having the same
name. We first identify control agents using a one-to-one correspondence and then,
make some simplifications, for example, a path relationship composed of one atomic
service in not mapped to a control agent.

 On ISOA: Intentional Services Oriented Architecture 169

Stop

Planning
strategy

Start

Purchase
Material

Monitor
Stock

Quality
inspection
strategy

Inventory
balance
strategy

Valuation
strategy

In-In strategy

Manual
strategy

Payment
control
strategy

Reorder Point
strategy

Forecast
based
strategy

Continuous
Sampling

Periodic

a

b

c

d

1

2
3

2

1

3

4 6

5
Bill for
expenses
strategy

1

Pa,{b,c},d

MPa,{b},c

MTcc

ac1

Pa,{b},c

MTab

ab3

Bab

ab1 ab2 bc1 cc1 cc2 cc3

Bcc

cc4 cc5 cc6 cd1

1

Out-In
strategy

Executor level

b level

c level

d level

Fig. 5. Agent architecture

Control agents are organized at different levels. Each level is responsible for the
achievement of a service intention. The top level of the hierarchy corresponds to the
Stop intention and is responsible of the achievement of the goal of the whole
aggregate service (map). The next level is related to the intention preceding the Stop
intention. The bottom level of the hierarchy is composed of the executor agents. The
hierarchy of Fig. 5 is composed of four levels related to the intentions of the MM
map. The control agents of each level control children agents belonging to the same
level or to the levels below.

4.2 Service Agent Support

Clearly, the ISOA departs from the usual SOA binding mechanism in providing an
enactment mechanism that permits dynamic selection of services at run time. This is
compatible with the business-oriented view of the ISM and the need for business
agents to adapt decision making ‘on the fly’. We believe that it is possible for
business people to perform this adaptation. This is because knowledge of the business
characteristics and an analysis based on these is enough to make the adaptation
decision.

5 Related Work

Generally speaking, research on service description, composition and adaptation is
relevant for our work [3].

Typical descriptions of services are based on finite state formalisms, e.g., in [14]
[15] services are represented as state charts, in [16] services are modeled as Mealy
machines and in [17], services are represented as finite state machines. The ISM
shares with these approaches the need to describe service to ease their retrieval but

170 C. Rolland, R.S. Kaabi, and N. Kraiem

departs from their function driven perspective to propose an intention drive of service
description. As a consequence, ISM service descriptions will bring out the business
intention that the service allows to fulfill and pre and post conditions instead of
defining the signatures of operations that can be invoked on class objects. We believe
that this contribute to avoid the current mismatch of languages between low level
services descriptions such as WSDL statements and business perceived services.

Our description of intentional services has some similarities with semantic
descriptions as found in [18][19][20]. Annotations which provide these semantic
descriptions are compared to ontology elements in order to enrich usual retrieval
mechanism. However, none of these semantic descriptions seem to be based on goal
matching.

Our approach borrows from goal driven approaches in Requirements Engineering
[21][22] the idea of goal decomposition and goal refinement through AND/OR
graphs. This leads to an intention driven service composition: an ISM aggregate
service has a high level, strategic intention as its key characteristic and its
composition is reflecting the intention decomposition into sub-intentions that can be
themselves fulfilled thanks to a composition of lower level sub-intentions etc. till
operational intentions related to atomic services are found. By contrast most proposals
are based on the idea of flow-composed services in which services are black boxes
exchanging input/output parameters [23][17][24].

A large body of research work [25][26][14][15][16] deals with service execution:
(i) the peer-to-peer architecture in which the individual service interact among
themselves and with the client directly, and (ii) the mediated architecture in which the
control over the available services is centralized. Our approach fits best to the peer-to-
peer perspective but needs specific mechanism to cope with the adaptation issue.

From a methodological viewpoint, our proposal is close to [27] as both share the idea
to capture service needs from exploring business goals. In [27] a revised Tropos design
process is used to support service discovery and composition by offering a roadmap that
relates stakeholder goals to collections of services available in different directories.

6 Conclusion

In this paper we introduced the notion of intentional service as one described in terms
of the business goal it allows to fulfill. We also showed that ISOA service
composition is intention driven and reflects business needs. This is in accordance with
our view that business executives must be provided with a description of services
available in a service portfolio that is adapted to their own perceived needs.

The paper considered in some detail the three roles of our ISOA architecture:

− E-business provider, who looks at a business, identifies its intentions, derives
and publishes services in the intentional service registry.

− Intentional service registry where services are available. The descriptors of
services and the typology of services being kept are modeled in the ISM.

− Business agent who retrieves services from the registry and dynamically
navigates through aggregate services composition graphs using the agent
architecture. The appropriate aggregate variant is thus available for execution.

 On ISOA: Intentional Services Oriented Architecture 171

Whereas the three roles of ISOA correspond to the service provider, registry and
client roles of the SOA, it is to be noted that ISOA services, aside from supporting
business intentions, are also more complex than SOA ones. This is because of
aggregate variants that provide flexibility to the business agent in performing the task
at hand. In contrast SOA services are fixed and are available on a ‘take it or leave it’
basis.

The proposed approach is still work in progress. Current research aims at
developing (a) an intention driven search mechanism for the selection of services on
the basis of the business goal they allow to fulfil and (b) a software tool to guide the
discovery of aggregate service through maps.

References

1. Papazoglou, M-P., Giunchiglia, F., Kraemer, B., Traverso, P.: Service Oriented
Computing Network, The new computing paradigm for the network world (2003)

2. Papazoglou, M-P.: Service-Oriented Computing: Concepts, Characteristics and Directions,
WISE’03, Rome, Italy (2003)

3. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. In: Concepts, Architectures
and Applications, Springer, Heidelberg (2004)

4. Papazoglou, M-P., Georgakopoulos, D.: Service-Oriented Computing. Communication of
the ACM, 46(10) (2003)

5. W3C Web Service Description Language (WSDL) Version 1.2. W3C Working Draft 3,
(2003) http://www.w3.org/TR/wsdl12/

6. Piccinelli, G., Emmerich, W., Williams, S-L., Stearns, M.: A Model-Driven Architecture
for Electronic Service Management Systems. In: Orlowska, M.E., Weerawarana, S.,
Papazoglou, M.M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 241–255.
Springer, Heidelberg (2003)

7. Arsanjani, A.: Service-oriented modelling and architecture. (November 2004) http://www-
128.ibm.com/developerworks/webservices/library/ws-soa-design1/

8. Zimmermann, O., Krogdahl, P., Gee, C.: Elements of Service-Oriented Analysis and
Design (2004)

 http://www-128.ibm.com/developmentworks/webservices/library/ws-soad1/
9. Jackson, M.: Software Requirements and Specifications. In: A lexicon of practice,

principles and prejudices, p. 256. Addison-Wesley, New York (August 1995)
10. Rolland, C., Souveyet, C., Ben Achour, C.: Guiding Goal Modelling using Scenarios.

IEEE Transactions on Software Engineering, Special Issue on Scenario
Management 24(12), 1055–1071 (1998)

11. Rolland, C., Prakash, N.: Bridging the gap between Organizational needs and ERP
functionality. Requirement Engineering Journal (2000)

12. MacNaughton, R.: Yamada: Regular expressions and state graphs for automata. IEEE
transactions on electronic computers EC-9, 39–47 (1960)

13. Andrews, T., Curbera, F., Dholakia, H.: Microsoft, IBM, and SAP. BPEL4WS version 1.1,
(2003) http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

14. Mecella, M., Pernici, B., Craca, P.: Compatibility of e-Services in a Cooperative Multi-
Platform Environment. In: Proc. VLDB-TES (2001)

15. Fauvet, M-C., Dumas, M., Benatallah, B., Paik, H.: Peer-to-Peer Traced Execution of
Composite Services.In: Proc. of VLDB-TES (2001)

172 C. Rolland, R.S. Kaabi, and N. Kraiem

16. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation Specification : A New Approach to
design and analysis of E-Service Composition. In: Proc. of the WWW’03 Conference
(2003)

17. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic
Composition of e-Services that Export their Behavior. In: Proc. of WES 2003 (2003)

18. DAML-S Defense Advanced Research Projects Agency: DARPA agents markup
language- Services (DAML-S). http://www. Daml.org/services/

19. Sirin, E., Parsia, B.: Planning for semantic web services in Semantic web services
workshop at ISWC’04. (2004) http://www.mindswap.org/papers/SWS-ISWC04.pdf

20. Horrocks, I., van Harmelen, F., Patel-Schneider, P., Berners-Lee, T., Brickley, D.,
Connoly, D., Dean, M., Decker, S., Fensel, D., Hayes, P., Heflin, J., Hendler, J., Lassila,
O., McGuinness, D., Stein, L.A.: DAML+OIL (2001)

 http://www. Daml.org/2001/03/daml+oil-index.html
21. Van Lamsweerde, A., Dairmont, R., Massonet, P.: Goal Directed Elaboration of

Requirements for a Meeting Scheduler: Problems and Lessons Learnt. In: Proc. Of RE’95,
pp. 194–204. IEEE, New York (1995)

22. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. In: Proceedings of the 3rd IEEE Int. Symp. On RE’97. pp. 226-235
Washington D.C., USA (January 6-8 1997)

23. Yang, J., Papazoglou, M-P.: Service Components for Managing the Life-Cycle of Service
Compositions. Information Systems Journal (2003)

24. Dijkman, R-M.: A Basic Design Model for Service-Oriented Design,
ArCo/WP1/T1/D2/V1.00, (2003)

25. Casati, F., Shan, M.: Dynamic and Adaptive Composition of e-Services, Information
Systems, 6(3) (2001)

26. McIltraith, S., Son, T., Zeng, H.: Semantic web services, IEEE Intelligent Systems, 16(2)
(2001)

27. Perini, A., Susi, A., Mylopoulos, J.: Tropos Design Process for Web Services, 1st
Int. Workshop on SOC: Consequences for Engineering Requirements, Paris
(2005)

WSXplorer: Searching for Desired Web Services

Yanan Hao1, Yanchun Zhang1, and Jinli Cao2

1 School of Computer Science and Mathematics, Victoria University
PO Box 14428, Melbourne, VIC 8001, Australia

{haoyn, yzhang}@csm.vu.edu.au
2 Department of Computer Science and Computer Engineering, La Trobe University

Bundoora, VIC 3086, Australia
j.cao@latrobe.edu.au

Abstract. With the rapid development of e-commerce over Internet,
web services have attracted much attention in recent years. Nowadays,
enterprises are able to outsource their internal business processes as ser-
vices and make them accessible via the Web. Then they can dynami-
cally combine individual services to provide new value-added services. A
main problem that remains is how to discover desired web services. In
this paper, we propose WSXplorer, a novel scheme for identifying po-
tentially relevant web services given a textual description of services. In
particular, we propose a new schema matching algorithm for supporting
web-service operations matching. The matching algorithm catches not
only structures, but even better semantic information of schemas. Based
on service operations matching, the concept of attribute closure is intro-
duced to identify associations between web-service operations. We also
propose a ranking strategy to satisfy a user’s top-k requirements. Exper-
imental evaluation shows that our approach can achieve high precision
and recall ratio.

1 Introduction

A web service is programmatically available application logic exposed over
Internet. It has a set of operations and data types. The current set of web ser-
vice specifications defines how to specify reusable operations through the Web-
Service Description Language(WSDL), how these operations can be discovered
and reused through the Universal Description, Discovery, and Integration(UDDI)
API, and how the requests to and responses from web-service operations can be
transmitted through the Simple Object Access Protocol API(SOAP).

With the rapid development of e-commerce over Internet, web services have
attracted much attention in recent years. Nowadays, enterprises are able to out-
source their internal business processes as services and make them accessible
via the Web (see, e.g.,[1,2,3,4,5]). Then they can combine individual services
into more complex, orchestrated services. A main problem that remains is how
to discover desired web services. To find a service in UDDI, a user needs to
input some keywords about the required service and then to browse the rele-
vant UDDI category to locate relevant web services. Considering a large amount

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 173–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

174 Y. Hao, Y. Zhang, and J. Cao

of service entries, this process is time consuming and frustrating. Furthermore,
this method does not provide a mechanism assisting users in selecting relevant
services and composing with them. Since a web service is usually used as part
of an application, users often would like to know relevant services as much as
possible. For example, consider the examples shown in Fig. 1. A user searching
for a CreateOrder service may also be interested in a TransportOrder service.
There is an association between these two services, in which the output of Cre-
ateOrderService, Order, is also the input of TransportOrderService. This form of
association potentially involves more web services. It is particularly useful and
challenging in service composition.

WS1: Web Service: CreateOrderService
Operation: OrderBuilder
Input: UserID DataType: int
Output: ProductsList DataType: Order

WS2: Web Service: OrderGeneration
Operation: GetOrder
Input: UserName DataType: String
Output: MyProducts DataType: PurchaseOrder

WS3: Web Service: TransportOrderService
Operation: ShippingOrder
Input: Cargo DataType: Order
Output: PickupTime DataType: TimeLimit

Fig. 1. Sample web-service operations

level 0

level 1

level 2

level 3

level 4

O rde r

O rde rID [,] P roduc tP a r ts Expe c te dShipD a te

Custom e rN a m e Custom e rConta c ts [m , n]

[|] P a rt

Te le phone e m a il P a r tN a m e P a rtP r ic e P a r tQ ua ntity

Fig. 2. XML schema tree of Order type

To address the problems above in searching for web services, we propose
WSXplorer (Web Services eXplorer), a novel scheme for identifying potentially
relevant web services given a textual description of services. The contribution of
the work reported here is summarized as follows:

1. We propose algorithms for supporting web-service operations matching. The
key part of our algorithms is a schema tree matching algorithm, which em-
ploys a new cost model to compute tree edit distances. Our new schema tree
matching algorithm can not only catch structures, but also the semantic
information of schemas.

2. Based on service operations matching, an approach to identify associations
between web-service operations is presented. This approach uses the concept
of attribute closure to obtain sets of operations. Each set is composed of
associated web-service operations.

3. We also introduce a ranking strategy to satisfy a user’s top-k requirements.
Experimental evaluation shows that WSXplorer can achieve acceptable re-
sult with high performance.

The rest of this paper is organized as follows. Section 2 reviews the related
work. Section 3 gives an overview of WSXplorer. Section 4 describes a web-
service operation matching algorithm, in which a new cost model and some XML
schema transformation rules are defined. In section 5 we present how to cluster
web-service operations and how to find associations between them. Section 6
describes our experimental evaluation. Section 7 gives some concluding remarks.

WSXplorer: Searching for Desired Web Services 175

2 Related Work

Finding similar web-service is closely related to software components matching.
In [6], signatures are used to describe a component’s type information (which is
usually statically checkable), and formal specifications are defined to describe the
component’s dynamic behaviour. Two components match if their signatures and
specifications match. However, the formal specifications used there are function’s
post conditions, which are not available in web services.

Several approaches use text or structural matching to find similar web services
for a given web service. The earlier technique tModel presents an abstract inter-
face to enhance service matching process. But the tModel needs to be defined
while authors publishing in UDDI [7]. In [8], the authors propose a SVD-Based
algorithm to locate matched services for a given service. This algorithm uses
characteristics of singular value decomposition to find relationships among ser-
vices. But it only considers textual descriptions and can not reveal the semantic
relationship between web services. Wang etc. [9] discover similar web services
based on structure matching of data types in WSDL. The drawback is that sim-
ple structural matching may be invalid when two web-service operations have
many similar substructures on data types.

Recently, some methods have been proposed to annotate web services with
additional semantic information. These annotations are used to match and com-
pose services. For example, in [10] the authors extended DAML-S to support
service specifications, including behavior specifications of operations; The Web
Service Modeling Ontology (WSMO) [11] is a conceptual model for describing
Web services semantically, and defines the four main aspects of semantic Web
service, namely Ontologies, Web services, Goals and Mediators. However, cur-
rently, most of existing web services use WSDL specifications, which do not
contain semantics. Annotating the collection of services requires much effort,
and it is infeasible in our case. [12] formally defines a behaviour model for web
service by automata and logic formalisms. However, the behaviour signature and
query statements need to be constructed manually, which can be very hard for
common users.

Woogle [13] develops a clustering algorithm to group names of parameters of
web-service operations into semantically meaningful concepts. Then these con-
cepts are used to measure similarity of web-service operations. It relies too much
on names of parameters and does not deal with composition problem however. In
our previous work [14] we use schema to find web services, but the associations
between services are not considered. In [15] the authors propose a syntactic ap-
proach to web service composition, given only the input-output types of web ser-
vices available in their WSDL descriptions. Discover [16,17] and DBXplore [18]
operate on relational databases and facilitates information discovery on them by
allowing users to issue keyword queries without any knowledge of the database
schema. They return sets of tuples that are associated by joining on their pri-
mary and foreign keys. Inspired by these methods, we model each web-service
operation as a dependency (schema) according to its data types (attributes),
and then find associations between web-service operations.

176 Y. Hao, Y. Zhang, and J. Cao

3 Overview of WSXplorer

The goal of WSXplorer is to find relevant web-service operations given a nat-
ural language description of desired web services and WSDL specifications of all
available services published through UDDI. The WSDL files consist of textual
description of web-service operations. Thus, firstly we use traditional IR tech-
nique TF (term frequency) and IDF (inverse document frequency) [19] to find
service operations that are most similar to the given description. We call these
operations candidate operations. To do this, we extract words from web-service
operation descriptions in WSDL. These words are pre-processed and assigned
weight based on IDF. According to these weights, the similarity between the
given description and a web-service operation description can be measured. A
higher score indicates a closer similarity. For more details on measuring similar-
ity among documents interested readers are referred to see [20]. After obtaining
candidate operations, we employ a schema-match based method to measure sim-
ilarity among them. Then based on the matching result the candidate operations
are clustered into some operation sets. Each operation set contains a group of
similar operations. Finally, all associations between operation sets are generated
using the concept of type closure. Operations involved in one association are
considered as a search result. Since each candidate operation has a score, we can
rank search results simply by accumulating the score of operations. In the fol-
lowing sections we describe the models and algorithms underlying WSXplorer,
in particular we show how to measure similarity between web-service operations
based on schema matching.

4 Web-Service Operation Matching

4.1 Web-Service Operation Modelling

Definition 1. A web service is a triple ws = (TpSet, MsgSet, OpSet), where
TpSet is a set of data types; MsgSet is a set of messages(parameters) conforming
to the data types defined in TpSet; OpSet = {opi(inputi, outputi)|i = 1, 2, ..., n}
is a set of operations, where inputi and outputi are parameters(messages) for
exchanging data between web-service operations.

Figure 1 gives three web-service operations used as examples in this paper.
According to definition 1, a web service can be briefly described as a set of
operations.

Definition 2. Each web-service operation is a multi-input-multi-output func-
tion of the form f : s1, s2, ..., sn → t1, t2, ..., tm, where si and tj are data types
in according with XML schema specification. We call f a dependency and si/tj
a dependency attribute.

A dependency attribute can be a complex data type or a primitive data type.
Complex data types, such as Order and PurchaseOrder in Fig. 1, define the
structure, content, and semantics of parameters, whereas primitive data types,

WSXplorer: Searching for Desired Web Services 177

like int and string, are typically too coarse to reflect semantic information. Since
parameters usually can be regarded as data types, we can convert primitive
data types to complex data types by replacing them with their corresponding
parameters. For example, in Fig. 1 string is converted into UserName type while
int is converted into UserID type. Both UserName and UserID are considered
as complex data types with semantics. Thus, each data type defined in a web-
service operation carries semantic meaning. An XML schema can be modelled
as a tree of labelled nodes. We categorize a node n by its label:

1. Tag node: Each tag node n is associated with an element type T. T is also
the tag name of node n.

2. Constraint node:
- Sequence node: A sequence node indicates its children are an ordered

set of element types. We use [,] to denote a sequence node.
- Union node: A union node represents a choice complex-type, that is,

the instance of which can only be one of the children types in accordance
with the XML Schema specification. We use [|] to denote a union node.

- Multiplicity node: Each node may optionally have a multiplicity mod-
ifier [m, n] indicating that in the instance, its occurrence is between m
and n. This corresponds to the minOccurs and maxOccurs constraints
in XML Schema. We use [m, n] to denote a multiplicity node.

As an example, the schema tree of data type Order is shown in Fig. 2.
As we can see, data types defined in web-service operations carry semantic

information. Intuitively, we consider two web-service operations similar if they
have similar input/output data types. Thus the problem of web-service operation
matching is converted to the problem of schema tree matching.

4.2 Tree Edit Distance

Many works have been done on the similarity computation on trees. Among
them tree edit distance is one of the efficient approaches to describe difference
between two trees. We introduce tree edit operations first. Generally, the tree
edit distance operations include: (a) node removal, (b) node insertion, and (c)
node relabelling. Such a set of operations can be represented by a mapping with
minimum cost between the two trees. The concept of mapping is formally defined
as follows [21]:

Definition 3. Let Tx be a tree and let Tx[i] be the ith node of tree Tx in a pre-
order traverse of the tree. A mapping between a tree T1 and a tree T2 is a set M of
ordered pairs (i, j), satisfying the following conditions for all (i1, j1),(i2, j2) ∈ M

1. i1 = i2 iff j1 = j2;
2. T1[i1] is on the left of T1[i2] iff T2[j1] is on the left of T2[j2];
3. T1[i1] is an ancestor of T1[i2] iff T2[j1] is an ancestor of T2[j2].

Figure 3 gives an example of tree mapping. This mapping also shows the way of
transforming the left tree to the right one. A dotted line from a node of T1 to a

178 Y. Hao, Y. Zhang, and J. Cao

R

T1 T2

A C

D E

B G

A E

R

Fig. 3. Example of tree mapping

node of T2 indicates that the node of T1 should be changed if the corresponding
nodes are different, remaining unchanged otherwise. Nodes of T1 not connected
by dotted lines are deleted, and nodes of T2 not connected are inserted. Each of
these operations is assigned a cost. The tree edit distance between two trees is
defined as the minimal set of operations to transform one tree into the other.

Our schema matching algorithm is based on tree edit distance. However, the
problem in our case is more complex than the traditional tree edit distance for
the following reasons:

1. The labels of an XML Schema tree can carry complex type information (e.g.,
union, multiplicity) which makes simple relabelling operations inapplicable.
For instance, let T1 and T2 be the schema trees of Order and PurchaseOrder
respectively. Let us imagine there exits a mapping M between T1 and T2,
and there are two node-mapping pairs (i1, j1),(i2, j2) ∈ M , where T1[i1]
=[telephone|email], T2[j1] =email, T1[i2]=price, and T2[j2]=quantity. The
edit operation of (i1, j1) should have less cost than that of (i2, j2). But the
existing work consider all tree edit operations to have same unit distance.

2. The labels of nodes carry semantic information. So a relabelling from one
node to another unrelated node will have more cost than to a semantic
related node. For example, relabelling part to item is less costing than rela-
belling price to email.

3. We argue that tree edit operations on low-level nodes of a tree should have
more influence than operations on high-level nodes. For example, in Fig. 2,
node Order is more important than node PartPrice, because Order denotes
broader semantics information than PartPrice. So, if a PartPrice node of the
first tree is mapped into an Order node of the second tree, the edit operation
cost should not be zero. But the traditional works on tree edit distance do
not consider the difference and assign each edit operation unit cost.

In the next section, we present a new cost model to compute the cost of tree
edit operation, as a consequence, the tree edit distance of two schema trees.

4.3 Cost Model

Measuring similarity between two XML schema trees equals to finding a mapping
with minimum cost. So, the cost of each edit operation involved in the mapping
needs to be computed first. [22] proposed a algorithm for fast computing tree

WSXplorer: Searching for Desired Web Services 179

edit distance, but it assigned the same cost for each unit edit operations on all
nodes and overlooked nodes difference. Authors in [23] introduced a summary
structure for computing structural distance and took weight information into
account for nodes in distance computation, but it did not consider the semantic
difference or similarity. In this section we introduce a new cost mode based on
tree edit distance presented in [22,23]. The new cost model integrates weights of
nodes and semantic connections between nodes. Let T1,T2 be two schema trees
and let n, node1 and node2 be tree nodes. Formally, the cost model is defined as

cost(ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

weight(n)/W (T1, T2), ifρ = insert(n)
weight(n)/W (T1, T2), ifρ = delete(n)
α × wd(node1, node2) ifρ relabels
+β × sd(node1, node2) node1 to node2

(1)

where ρ indicates a tree edit operation. weight(n) shows the weight of node n,
which is defined in definition 6. wd(node1, node2) and sd(node1, node2) give the
weight and semantic difference of node1 and node2, respectively. α and β are
weights of wd and sd, satisfying α + β = 1. W (T1, T2) is defined as W (T1, T2) =
weight(T1)+weight(T2), where weight(Ti) is the sum of all node weights of tree
Ti(i = 1, 2). wd(node1, node2) is defined as

wd(node1, node2) =
‖weight(node1) − weight(node2)‖

W (T1, T2)
(2)

where node1 ∈ T1 and node2 ∈ T2 .
In equation 1, weight(n)/W (T1, T2) explains the cost of inserting or deleting

node n. For the relabel operation, both weight and semantics of node1 and node2

can be different, so we use the combination of weight and semantic difference as
the relabel cost. All the costs are normalized by W (T1, T2), i.e. the sum of all
nodes weights of tree T1 and T2.

In the next two sections, we propose a set of schema-tree transformation rules
and a semantic similarity measure to compute wd and sd, i.e. the weight and
semantic difference of nodes.

4.4 XML Schema Tree Transformation

Definition 4. The tag name of a node is typically a sequence of concatenated
words, with the first letter of every word capitalized (e.g., ExpectedShipDate).
Such a set of words is referred to as a word bag. We use π(n) to denote the
word bag of node n.

Definition 5. Two word bags π(n1) and π(n2) are said to be equal, only if they
have same words.

Two nodes are considered different if they have different word bags. The word
bag reflects semantic meaning of a node. As we shall see later, using word bags
we can measure the semantic similarity between two schema-tree nodes.

180 Y. Hao, Y. Zhang, and J. Cao

Definition 6. Let level(n) denote the level of node n in schema tree T . The
weight of node n is defined by a weight function:

weight(n) = 2depth(T)−level(n)(∀n ∈ T) (3)

The weights of all nodes fall in the range of [2, 2depth(T)]. Each weight reflects
the importance of a node in schema tree T .

From section 4.2, it can be seen that traditional tree-edit-distance algorithm
is not suitable for XML schema trees. It does not deal with constraint nodes. We
propose three transformation rules to solve this problem. These rules are used to
transform constraint nodes, specifically, sequence nodes, union nodes and multi-
plicity nodes to tag nodes. At the same time, the weights of nodes are reassigned.

O rd er

[,]

P ro d u ctParts

C u s to merN ame

[m, n]

PartC u s to merC o n tacts Telep h o n e

[|]

C u s to merC o n tacts

email

25

23

24

23

25

24

Pro d u ctParts

PartTelep h o n e, email

C u s to merC o n tacts

(a) Se que nc e node tra nsform a tion (c) M ultiplic ity node tra nsform a tion(b) U nion node tra nsform a tion

24

24

23

22

24

23

22

2 2

23

23C u s to merN ame C u s to merC o n tacts

O rd er

23*(m + n)/2

Fig. 4. XML Schema tree transformation

1. split : This rule is applied to sequence nodes. A sequence node l = [l1, l2, ..., ls]
is split into an ordered list of nodes l1, l2, ..., ls, where li(i = 1, 2, ..., s) is a
child node of the sequence node l. After the split process, each sequence node
is replaced by its child nodes. Each child node li inherits the weight of its
parent node l as a new weight. Figure 4(a) gives an example of the split rule.

2. merge: This rule is applied to union nodes. After the merge process, each
union node is replaced by all its option nodes, i.e. all its child nodes. All
child nodes of the union node l = [l1|l2|...|ls] are merged into a new node l∗,
while the union node l is deleted. The weight of node l∗ is s times the weight
of l. Each li’s(i = 1, 2, ..., s) word bag is also merged into a new word bag.
Formally, we have weight(l∗) = weight(l) × s. Figure 4(b) gives an example
of the merge rule.

3. delete: This rule is applied to multiplicity nodes. We delete a multiplicity
node l = [m, n](m, n ∈ N) and scale up the weight of each of its child nodes
li. After the deletion process, each multiplicity node is replaced by its child
nodes. We have weight(li) = weight(l) × (m + n)/2. Figure 4(c) gives an
example of the delete rule.

Note that the definition of complex types can be nested according to XML
schema specification. Thus, given a schema tree, we apply the three transfor-
mation rules to its nodes level by level, from bottom to top. This process is
formally

WSXplorer: Searching for Desired Web Services 181

input : schema tree T
output: transformed schema tree T∗

d = GetDepth(T);1

for i ← d to 0 do2

foreach node p ∈ leveli do3

if p is a sequence node then4

weight(each of p’s child nodes)=weight(p);5

add p’s child nodes to p’s parent’s child list;6

delete p;7

end8

if p is a union node with s options {li|i = 1, ..s} then9

merge p’s child nodes into a new node q;10

add q to p’s parent’s child list;11

weight(q) = weight(p) × s;12

π(q) =
s�

i=1
π(li) ;

13

delete p;14

end15

if p is a multiplicity node [m, n] then16

add p’s child node to p’s parent’s child list;17

weight(p’s child node)=weight(p) × (m + n)/2;18

delete p;19

end20

end21

end22

Algorithm 1. Bottom-up-transformation

described as the bottom-up-transformation algorithm (see Algorithm 1). The
time complexity of Bottom-up-transformation is O(n), where n is the number of
nodes in the XML schema tree.

4.5 Semantic Measurement Between Schema-Tree Nodes

After the bottom-up transformation, schema tree T is converted into a new
schema tree T∗. Each node n of T∗ is a tag node, whose word bag may come
from two or more word tags because of nodes merge by the merge rule. Formally,
node n can be regarded as a vector (W, B), where W is the weight of node
n and B is the word bag of node n. As we can see, after transformation the
weight difference between two nodes can be computed by the new cost model.
In this section, we present a strategy to determine the semantic similarity of two
schema-tree nodes, i.e. the semantic distance between two word bags.

WSXplorer relies on a hypothesis that two co-occurrence words in a WSDL
description tend to have same semantics. We exploit the co-occurrence of words
in word bags to cluster them into meaningful concepts. To improve accuracy of
semantic measurement, a pre-processing step is carried out first before words
clustering. Pre-processing includes word stemming, removing stop words and
expanding abbreviations and acronyms into the original forms.

182 Y. Hao, Y. Zhang, and J. Cao

Let I = {w1, w2, ..., wm} be a set of words. These words come from word bags
of all schema-tree nodes to which similarity measurement is applied. Let D be
a set of candidate web-service operation descriptions available in WSDL files.
We introduce association rules to reflect the notion of word co-occurrence. An
association rule is an implication of the form wi → wj , where wi, wj ∈ I. The
rule wi → wj holds in the descriptions set D with support s and confidence c,
where s is the probability that wi occurs in an web-service operation description;
c is the probability that wj occurs in an operation description, given wi is known
to occur in it. All association rules can be found by the A-Priori algorithm [24].
We are only interested in rules that have confidence above a certain threshold t.

We use the agglomeration algorithm [24] to cluster words set I = {w1, w2, ...,
wm} into concept set C = {C1, C2, ...}. There are three steps in the clustering
process. It begins with each word forming its own cluster and gradually merges
similar clusters.

1. Set up a confidence matrix Mm×m. Mij is a two-dimensional vector (sij , cij),
where sij and cij are the support and confidence of association rule wi → wj ,
respectively.

2. Find the two-dimensional vector Mij = (sij , cij) with the largest cij in the
confidence matrix M . If, for both of them, cij > t and sij > t then merge
these two clusters and update M by replacing the two rows with a new row
that describes the association between the merged cluster and the remaining
clusters. The distance between two clusters is given by the distance between
their closest members. There are now m − 1 clusters and m − 1 rows in M .

3. Repeat the merge step until no more clusters can be merged.

Finally, we get a set of concepts C. Each concept Ci consists a set of words
{w1, w2, ...}. To compute semantic similarity between schema-tree nodes, we re-
place each word in word bags with its corresponding concept, and then use
the TF/IDF measure. After schema-tree transformation and semantic similarity
measure, the tree edit distance can be applied to match two XML schema trees
by the new cost model.

4.6 Web-Service Operations Matching

As it has been mentioned before, we use tree edit distance to match two schema
trees. It is equivalent to finding the minimum cost mapping. Let M be a mapping
between schema tree T1 and T2, let S be a subset of pairs (i, j) ∈ M with distinct
word bags. Let D be the set of nodes in T1 that are not mapped by M , and I be
the set of nodes in T2 that are not mapped by M . The mapping cost is given by
C = Sp+Iq+Dr, where p, q and r are the costs assigned to the relabel, insertion,
and removal operations according to the cost model proposed in section 4.3. We
call C the match distance between T1 and T2, denoted as C = ED(T1, T2).
Match distance reflects semantic similarity of two schema trees.

Now let us see how to match web-service operations. Given two web-service op-
erations op1 : s1, s2, ..., sn → t1, t2, ..., tm and op2 : x1, x2, ..., xl → y1, y2, ..., yk,

WSXplorer: Searching for Desired Web Services 183

for each schema tree of op1, we find its corresponding schema tree of op2 with the
minimum match distance. We simply identify all possible matches between two
lists of schema trees, and return the source-target correspondence that minimizes
the overall match distance between the two lists. It does not depends on whether
the number of parameters in the same or not between the two operations. We
omit the algorithm details because of space limit.

5 Finding Associated Web-Service Operations

5.1 Clustering Web-Service Operations

Suppose OP = {op1, op2, ..., opq} is a set of web-service operations and each
pair of operations opi and opj (i, j = 1, 2, ..., q) match with the distance of zij .
We classify OP into a set of clusters {opc1, opc2, ...}. The clustering algorithm is
described as below. It begins with each operation forming its own cluster and
gradually merges similar clusters.

1. Set up a match matrix Mq×q. Mij is the match distance of operation opi

and opj .
2. Find the smallest Mij in the match matrix M . If Mij < threshold δ then

merge these two clusters and update M by replacing the two rows with
a new row that describes the association between the merged cluster and
the remaining clusters. The distance between two clusters is given by the
distance between their closest members. There are now q − 1 clusters and
q − 1 rows in M .

3. Repeat the merge step until no more clusters can be merged.

Finally, a set of clusters {OPC1, OPC2, ...} is obtained. Given a cluster OPCi

and an operation OPCik ∈ OPCi, OPCik is called a pivot of OPCi if i t min-
imizes the sum of match distances to all the other operations in OPCi. We
consider all operations in OPCi as instances of OPCik.

For example, in Fig. 1 we give a clustering result. There are two clusters of
web-service operations. One is {WS1, WS2}, and the other is {WS3}. In cluster
{WS1, WS2} the pivot is GetOrder and the instrances of GetOrder are GetOrder
and OrderBuilder. In cluster {WS3} the pivot is ShippingOrder, which is also
an instance of itself.

5.2 Identifying Associations

A set of web-service operations is said to be associated if they potentially con-
tribute to a user’s web-service composition. Clearly, given two web-service op-
erations op1 and op2, if the output attributes of op1 are similar to the input
attributes of op2 then op1 and op2 may participate in a user’s service compo-
sition together. The objective of this step is to find all associations between
web-service operations. To do this, we first find associations among clusters
{OPC1, OPC2, ...}. Let OPCik, say x1, x2, ..., xk → y1, y2, ..., yj be a pivot of

184 Y. Hao, Y. Zhang, and J. Cao

OPCi. Let X = {x1, x2, ..., xk} and Y = {y1, y2, ..., yj}.We first compute the
attribute closure X+ with respect to X , which is the set of attributes A such
that X → A can be inferred by transitivity. At the same time, a pivot set PS
associated with OPCik is computed. The overall process is shown as algorithm 2.
We perform a worst case time analysis of algorithm 2. The repeat loop is exe-
cuted as most |S| times, where |S| is the total number of pivots corresponding
to all clusters. The calculation of q takes time |S| − |T |, where T is the number
of pivots in the pivot set PS. Hence the total execution time takes in the worst
case time O(S2).

input : A pivot p : x1, x2, ..., xk → y1, y2, ..., yj

output: A pivot set PS containing associated pivots

X = {x1, x2, ..., xk}; Y = {y1, y2, ..., yj};1

Closure = X;2

PS = {X → Y };3

repeat4

if there is a pivot q : U → V such that the match distance of U and5

Closure is less than threshold δ then
set Closure = Closure

�
V ;6

set PS = PS
�

q;7

end8

until there is no change ;9

Algorithm 2. Algorithm for computing attribute closure and pivot set

We first choose a pivot OPCik for each cluster OPCi. For each pivot, we
compute a pivot set. We eliminate duplicate pivot sets. If two pivots are in a
same pivot set, then their corresponding instances are associated.

Each pivot set PS = {p1, p2, ..., pk, ...} can generate a set of operation groups
in the form of {p′1, p

′
2, ..., p

′
k, ...}, where p′i is an instance of pi. Operations in a

same group are associated. To obtain an operation group, we simply replace each
pivot pi in PS with one of its corresponding instances. All possible operation
groups are outputted as search results.

For example, a pivot set for the clusters given in Fig. 1 is {GetOrder, Shippin-
gOrder}. It can generate two search results, one is {GetOrder, ShippingOrder}
and the other is {OrderBuilder, ShippingOrder}.

Recall that each candidate web-service operation is assigned a score indicating
similarity to the given description. Thus, each operation group acquires a group
score by counting the sum of operation scores in it. A higher group score indicates
a more desirable search result, so the user’s top-k requirements can be satisfied.

6 Experiments and Evaluations

We have implemented a prototype system, called WSXplorer, and conducted
some experiments to evaluate the effectiveness and efficiency. The data set used

WSXplorer: Searching for Desired Web Services 185

in our tests is a group of web services collected from [25,26,27]. Their WSDL
specifications are available so we can obtain the textual descriptions and XML
schemas of input/output data types. The data contains 223 web services includ-
ing 930 web-service operations. We chose 7 web-service operations from three
domains: order(3), travel(2) and finance(2). Each operation description was used
as the basis for desired operations.

We used recall and precision ratio to evaluate the effectiveness of our ap-
proach. The precision(p) and recall(r) are defined as p = A

A+B , r = A
A+C where

A stands for the number of returned relevant operations, B stands for the num-
ber of returned irrelevant operations, C stands for the number of missing rele-
vant operations, A + C stands for the total number of relevant operations, and
A+B stands for the total number of returned operations. Specially, the top 100
search results were considered in our experiments for each web-service operation
search.

We first evaluated the efficiency of WSXplorer by comparing the recall and
precision of operation search with three other methods: keyword searching
method, structure matching [9] and Woogle [13]. We computed the recall/
precision ratio manully and plotted them in Fig. 5(a) and Fig. 5(b), respectively.
As can be seen, the precisions of WSXplorer are 92%, 87% and 78% respectively,
almost always outperforming that of keyword, structrure and Woogle. The preci-
sion is higher on order operations but lower in finance operations because order
operations have more complex structures and richer semantics in input/output
data types. This indicates that, by combining structural and semantic informa-
tion, the precision of WSXplorer improves significantly, compared to the results
obtained with structural or semantic information only. It is also can be seen
that by keyword method the precision is rather low whereas the recall is rather
high. This demonstrates textual description of operations contain much useful
information but also much noise at the same time.

Then, we labeled the associated web-service operations in data set manually.
The average recall/precision curve is used in Fig. 5(c) to evaluate the perfor-
mance of WSXplorer on identifying associated operations. This figure illustrates
that WSXplorer can achieve good recall and precision by integrating structural
and semantic measurements.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Order Travel Finance

R
ec

al
l

Keyword search Structural matching
Woogle WSExplore

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

P
re

ci
si

o n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Order Travel Finance

P
re

ci
si

o
n

Keyword search Structural matching
Woogle WSExplore

(a) (b) (c)

Fig. 5. Performance of WSXplorer

186 Y. Hao, Y. Zhang, and J. Cao

7 Conclusions

In this paper we have presented WSXplorer, a novel method to retrieve de-
sired web-service operations of a given textual description. The concept of tree
edit distance is employed to match web-service operations. Meanwhile, some
algorithms are proposed for measuring and grouping similar operations. The
proposed matching algorithm catches not only structures, but even better se-
mantic information of schemas. We also introduced attribute closure for iden-
tifying associations between web-service operations. Our approach can be used
for web-service searching tasks with top-k requirements.

As part of on-going work, we are interested in improving efficiency of the
web-service operation matching algorithm in terms of running time, since the
computation of extended tree edit distance is costly. Our proposed technique
assumes structures of XML schema are trees. However, their structures may also
be graphs and contain cycles. In the future, we plan to extend our algorithm to
support graph matching. In order to further understand the semantics of web
services descriptions and integrate more semantic information to our system, we
also plan to use WordNet to handle word stems and synonyms to improve the
precision of our algorithm.

References

1. Wang, H., Zhang, Y., Cao, J., Varadharajan, V.: Achieving secure and flexible M-
services through tickets. IEEE Transactions on Systems, Man, and Cybernetics,
Part A. 33(6), 697–708 (2003)

2. Bhiri, S., Perrin, O., Godart, C.: Ensuring required failure atomicity of composite
Web services. In: Proc. of WWW Conference. pp.138–147 (2005)

3. Wang, H., Cao, J., Zhang, Y.: A Flexible Payment Scheme and Its Role-Based
Access Control. IEEE Transactions on Knowledge and Data Engineering 17(3),
425–436 (2005)

4. Limthanmaphon, B., Zhang, Y.: Web Service Composition Transaction Manage-
ment. In: Proceedings of Australasian Database Conference (ADC). pp.171–179
(2004)

5. Limthanmaphon, B., Zhang, Y.: Web Service Composition with Case-Based Rea-
soning. In: Proceedings of Australasian Database Conference (ADC). pp.201–208
(2003)

6. Zaremski, A.M., Wing, J.M.: Specification Matching of Software Components.
ACM Trans. Softw. Eng. Methodol. 6(4), 333–369 (1997)

7. Booth, D., Haas, H., McCab, F., Newcomer, E., Champion, M., Ferris, C., Orchard,
D.: Web Services Architecture. (2004) http://www.w3.org/TR/ws-arch/

8. Sajjanhar, A., Hou, J., Zhang, Y.: Algorithm for Web Services Matching. In: Proc.
of Asia-Pacific Web. Conference (APWeb) 3007, 665–670 (2004)

9. Wang, Y., Stroulia, E.: Flexible Interface Matching for Web-Service Discovery.
In: Proc. of International Conference on Web Information Systems Engineering
(WISE) (2003)

10. Sycara, K.P., Widoff, S., Klusch, M., Lu, J.: Larks: Dynamic Matchmaking Among
Heterogeneous Software Agents in Cyberspace. Autonomous Agents and Multi-
Agent Systems 5(2), 173–203 (2002)

WSXplorer: Searching for Desired Web Services 187

11. Roman, D., Lausen, H., Keller, U.: Web Service Modeling Ontology (WSMO).
WSMO Final Draft 10 (2005)

12. Shen, Z., Su, J.: Web service discovery based on behavior signatures. In: Proc. of
International Conference on Services Computing (SCC) 1, 279–286 (2005)

13. Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., Zhang, J.: Simlarity Search
for Web Services. In: Proc. of International Conference on Very Large Data Bases
(VLDB). pp. 372–383 (2004)

14. Hao, Y., Zhang, Y.: Web Services Discovery Based on Schema Matching. In: Pro-
ceedings of Australasian Computer Science Conference (ACSC) (2007)

15. Pu, K., Hristidis, V., Koudas, N.: Syntactic Rule Based Approach to Web Service
Composition. In: Proc. of International Conference on Data Engineering (ICDE).
vol.31 (2006)

16. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-Style Keyword
Search over Relational Databases. In: Proc. of VLDB. pp.850–861 (2003)

17. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword Search in Relational
Databases. In: Proc. of VLDB). pp.670–681 (2002)

18. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: A System for Keyword-Based
Search over Relational Databases. In: Proc. of International Conference on Data
Engineering (ICDE) (2002)

19. Salton, G.: The SMART Retrieval System - Experiments in Automatic Document
Processing. Prentice-Hall, Inc, Upper Saddle River, NJ, USA (1971)

20. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing.
Communications of the ACM (CACM) 18(11), 613–620 (1975)

21. Reis, D.D.C., Golgher, P.B., d.Silva, A.S., Laender, A.H.F.: Automatic web news
extraction using tree edit distance. In: Proc. of WWW Conference. pp.502–511
(2004)

22. Zhang, K., Shasha, D.: Simple Fast Algorithms for the Editing Distance Between
Trees and Related Problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

23. Xie, T., Sha, C., Wang, X., Zhou, A.: Approximate Top-k Structural Similarity
Search over XML Documents. In: Proc. of Asia-Pacific Web. Conference (AP-
Web) 3841, 319–330 (2006)

24. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley, New York (1990)

25. http://www.xmethods.org. (XMethod)
26. http://www.bindingpoint.com. (BindingPoint)
27. http://www.webservicelist.com. (WebServiceList)

e3forces : Understanding Strategies of

Networked e3value Constellations by Analyzing
Environmental Forces

Vincent Pijpers and Jaap Gordijn

Free University, FEW/Business Informatics,
De Boelelaan 1083a, 1081 HV Amsterdam, The Netherlands

(v.pijpers, gordijn)@few.vu.nl

Abstract. Enterprises increasingly form networked value constellations;
networks of enterprises that can jointly satisfy complex consumer needs,
while still focusing on core competencies. Information technology and
information systems play an important role for such constellations, for
instance to coordinate inter-organizational business processes and/or to
offer an IT-intensive product, such as music or games. To do successful
requirements engineering for these information systems it is important
to understand its context; being here the constellation itself. To this
end, business value modeling approaches for networked constellations,
such as e3value , BMO, or REA, can be used. In this paper, we extend
these business value modeling approaches to understand the strategic
rationale of business value models. We introduce two dominant schools
on strategic thinking: (1) the “environment” school and (2) the “core
competences” school, and present the e3forces ontology that considers
business strategy as a positioning problem in a complex environment.
We illustrate the practical use and reasoning capabilities of the e3forces
ontology by using a case study in the Dutch aviation industry.

1 Introduction

With the rise of the world wide web, enterprises are migrating from partici-
pation in linear value chains [15] to participation in networked value constel-
lations, which are sets of organizations who together create value for their en-
vironment [17]. Various ontologically founded modeling techniques have been
developed to analyze and reason about business models of networked value con-
stellations. Worth mentioning are: e3value , developed by Gordijn and Akker-
mans, showing how objects of value are produced, transferred, and consumed in
a networked constellation [8, 9]; BMO, developed by Osterwalder and Pigneur,
expressing the business logic of firms [14]; and finally, REA, developed by Geerts
and McCarthy, taking an accounting view on the economic relationship between
various economic entities [7].

All three techniques are able to analyze the business model of a networked
value constellation and are able to link the business model to the constella-
tions IT infrastructure (eg. [6]). But, although the importance of strategy on

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 188–202, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

e3forces : Understanding Strategies of Networked e3value Constellations 189

business models and IT and IT on strategy has been stressed by multiple authors
(eg. [2, 11]), these techniques do not consider strategic motivations of organiza-
tions underpinning the networked value constellation [18]. The mentioned tech-
niques mainly provide a (graphical) representation of how a constellation looks
like in terms of participating enterprises and what these enterprises exchange of
economic value with each other, but do not show why a business model is as
it is. By looking at strategic dependencies and strategic rationales of actors in
a constellation, i* (eye-star), developed by Yu and Mylopoulos, does take the
“why” into consideration [19,21]. The i* concepts of “strategic dependency” and
“strategic rationale” are however grounded in quite general agent -based theories
and not in specific business strategy theories. To put it differently, well known
basic business strategy concepts such as “core competences”, “competitive ad-
vantage” and “environment” are not considered in i* explicitly.

Our contribution is to add to the existing business model ontologies (which
formalize theory on networked value constellations, thereby enabling computer-
supported reasoning about these) a business strategy ontology. This business
strategy ontology is based on accepted business strategy theories. An important
requirement for such an ontology is that it represents a shared understanding [4].
By using accepted theories we conceptualize a shared understanding of “business
strategy” as such. In a multi-enterprise setting, as a networked value constella-
tion is, a shared understanding is obviously essential to arrive at a sustainable
constellation. Shared and better understanding of strategic motivations under-
pinning a networked value constellation is not only important from a business
perspective, but also from an IT perspective (see eg. [2, 11]).

There are at least two distinctive, yet complementary, schools on “business
strategy”. One school considers the environment of an organization as an im-
portant strategic motivator; the other school focuses on internal competences
of an organization. The first school originated from the work of Porter [15, 16],
and successors [17]. It believes that forces in the environment of an organization
determine the strategy the organization should chose. An organization should
position itself such that competitive advantage is achieved over the competition
and threats from the environment are limited. The second school considers the
inside of an organization to determine the best strategy. This school is rooted
in the belief that an organization should focus on its unique resources [3] and
core competences [12]. Core competences are those activities which with an or-
ganization is capable of making solid profits [12]. According to this school, the
best path to ensure the continuity of the organization is to focus on the unique
resources and core competences the organization posses.

In this paper Porter’s five-forces model [15, 16] will be used to create an on-
tology, named e3forces , which provides a graphical and semi-formal model of
environmental forces that influence actors in a networked value constellation.
The e3forces ontology will provide a means to reason about strategic consider-
ations (the “why”) of a business model in general, and specifically an e3value
model [8,9]. So, the e3forces ontology bridges Porter’s five forces framework and

190 V. Pijpers and J. Gordijn

Fig. 1. Educational example

the e3value ontology by representing how environmental forces influence a busi-
ness value model.

The paper is structured as follows. First, to make the paper self-contained, we
briefly present the e3value ontology. Second, an industrial strength case study
will be introduced, which is used to develop and exemplify the e3forces ontol-
ogy. Then we present the conceptual foundation of the e3forces ontology. Sub-
sequently, we show, using the ontological construct, how the environment of a
constellation may influence actors in this constellation for the case at hand,
and we show how to reason with the e3forces ontology. Finally, we present our
conclusions.

2 The e3value Ontology

The aim of this paper is to provide an ontologically well founded motivation
for business value models of networked value constellations in terms of busi-
ness strategies. Since we use e3value to model such constellations, we summarize
e3value below (for more information, see [9]). The e3value methodology provides
modeling constructs for representing and analyzing a network of enterprises, ex-
changing things of economic value with each other. The methodology is ontologi-
cally well founded and has been expressed as UML classes, Prolog code, RDF/S,
and a Java-based graphical e3value ontology editor as well as analysis tool is
available for download (see http://www.e3value.com) [9]. We use an educational
example (see Fig. 1) to explain the ontological constructs.

Actors (often enterprises or final customers) are perceived by their environ-
ment as economically independent entities, meaning that actors can take eco-
nomic decisions on their own. The Store and Manufacturer are examples of
actors. Value objects are services, goods, money, or even experiences, which are
of economic value for at least one of the actors. Value objects are exchanged by
actors. Value ports are used by actors to provide or request value objects to or
from other actors. Value interfaces, owned by actors, group value ports and show
economic reciprocity. Actors are only willing to offer objects to someone else, if
they receive adequate compensation in return. Either all ports in a value inter-
face each precisely exchange one value object, or none at all. So, in the example,

e3forces : Understanding Strategies of Networked e3value Constellations 191

Goods can only be obtained for Money and vice versa. Value transfers are used
to connect two value ports with each other. It represents one or more potential
trades of value objects. In the example, the transfer of a Good or a Payment are
both examples of value transfers. Value transactions group all value transfers
that should happen, or none should happen at all. In most cases, value transac-
tions can be derived from how value transfers connect ports in interfaces. Value
activities are performed by actors. These activities are assumed to yield profits.
In the example, the value activity of the Store is Retailing. Dependency paths
are used to reason about the number of value transfers as well as their economic
values. A path consists of consumer needs, connections, dependency elements
and dependency boundaries. A consumer need is satisfied by exchanging value
objects (via one or more interfaces). A connection relates a consumer need to a
value interface, or relates various value interfaces internally, of a same actor. A
path can take complex forms, using AND/OR dependency elements taken from
UCM scenarios [5]. A dependency boundary represents that we do not consider
any more value transfers for the path. In the example, by following the path we
can see that, to satisfy the need of the Shopper, the Manufacturer ultimately
has to provide Goods.

3 Case Study: Dutch Aviation Constellation

To develop and test the e3forces ontology we conducted a case study at the Dutch
aviation industry, in which multiple organizations cooperate to offer flights to,
from, and via the Netherlands. From the large number of actors in the Dutch
Aviation constellation we have chosen only key players for further analysis. The
key players were identified with the help of a “power/interest matrix” [12]. Power
is defined as the capability to influence the strategic decision making of other ac-
tors [12]. An actor can do so when s/he is able to influence the capacity or quality
of the products/services offered by others to the environment. Interest is defined
as the active attitude and amount of activities taken to influence the strategic
choices of other actors. The matrix axis’ have the value high and low. Actors
with high interest and high power are considered key players [12]. As a result,
we identified the following key actors: (1)Amsterdam Airport Schiphol, hereafter
referred to as “AAS”, is the common name for the organization NV Schiphol
Group, who owns and is responsible for the operations of the actual airport
Schiphol. “AAS” ’s core business activity is to provide infrastructural services,
in the form of a physical airport and other necessary services, to various other
actors who exploit these facilities. (2)AirFrance-KLM, hereafter referred to as
“KLM”, This hub carrier is a recent merger between “AirFrance” and “KLM”.
Because one of the home bases of “KLM” is Amsterdam, they are part of the
Dutch aviation industry. “KLM” is responsible for the largest share of flights to,
from and via “AAS”. The core business of “KLM” is to provide (hubbed) air
transportation to customers such as passengers and freight transporters. (3) Air
Traffic Control, hereafter referred to as “ATC”, is responsible for guiding planes
through Dutch airspace, which includes the landing and take-off of planes at

192 V. Pijpers and J. Gordijn

Fig. 2. The Dutch Aviation Constellation

“AAS”. This service is called “Air Traffic Management”, which is the core busi-
ness activity of “ATC”.

Fig. 2 shows an introductionary e3value model for the Dutch aviation constel-
lation. “AAS” offers infrastructural services (e.g. baggage handling) plus landing
and starting slots to “KLM”, who pays money for this. In addition, “AAS” of-
fers to “ATC” infrastructural services (e.g. control tower), and gets paid for in
return (and also gets landing and starting capacity). Finally, “ATC” provides
“KLM” with “Air-Traffic Management”, and gets paid in return. We will use this
baseline value model to develop and demonstrate e3forces , motivating the value
model at hand. A more comprehensive model, with the environmental forces,
can be found in Fig. 6.

4 The e3forces Ontology

The e3forces ontology extends existing business value ontologies by modeling
their strategic motivations that stem from environmental forces. Because an
ontology is a formal specification of a shared conceptualization, with the pur-
pose of creating shared understanding between various actors [4], most con-
cepts are based on broadly accepted knowledge from either business literature
(eg. [15, 13, 12]) or other networked value constellation ontologies (eg. [8, 21]).

Although the e3forces ontology is closely related to the e3value ontology, with
the advantage that consistency is easily achieved and both models could be partly
derived from one another, they significantly differ. The focus of e3value is on
value transfers between actors in a constellation and their profitability. Factors,
other then value transfers, that influence the relationship between actors are
not considered in the e3value ontology. In contrast the e3forces ontology does
consider factors in the environment which influence the constellation. Instead
of focusing on value transfers, e3forces focuses on the strategic position of a
constellation in its environment. Below, we introduce e3forces ’s constructs (due
to lack of space, we do not show the ontology in a more formal way, such as in
RDF/S or OWL):

Constellation. A constellation is a coherent set of two or more actors who co-
operate to create value to their environment [17]. As in e3value , actors are
independent economic (and often also legal) entities [13,12]. Obviously, we need
a criterion to decide whether an actor should be in a constellation or not. For
each of the actors in the constellation it holds that if the actor would seize its

e3forces : Understanding Strategies of Networked e3value Constellations 193

core business, then all other actors would not be able to execute a certain share
(roughly 50% or more) of their core business or a certain share would no longer
be valuable. The required share expresses the supposed coherence in the constel-
lation. For example, “AAS”, “KLM” and “ATC” form a constellation because
if one of the actors would seize its activities the other actors would not be able
to perform their core business, or their core business would loose its value. In
an e3forces model the constellation itself shows up as a dashed box that sur-
rounds the actors it consists of. The actors are related using value transfers, cf.
e3value [8, 9].

Market. A constellation operates in an environment [12, 15] consisting of mar-
kets. Markets are sets of actors in the environment of the constellation (modeled
as a layered rectangle). The actors in a market 1) are not part of the constel-
lation 2) operate in the same industry as the constellation 3) are considered as
peers ; they offer similar or even equal value objects to the world 4) are in terms
of e3value value transfers cf. [8] (in)directly related to actors in the constella-
tion [15]. For instance carriers form a market, because they include all carriers
not part of the Dutch aviation constellation, have economic relationships with
actors in the constellation, are in the same industry and, carriers offer similar
value objects to their environment. Note that although “KLM” is a carrier they
are not part of the “Carrier” market, because they are already part of the con-
stellation. The organizations are grouped in a market because by considering
sets of organizations, we abstract away from the individual and limited [15] in-
fluence on actors in the constellation of many single organizations. Therefore,
the notion of “market” is motivated by the need to reduce modeling and analysis
complexity. By doing so, we consider forces between actors in the constellation
and specific markets in the environment, rather than the many forces between
actors in the constellation and each individual actor in the environment.

Dominant Actor. A market may contain dominant actors. Such actors have a
power to influence the market and thus actors in the constellation. If a market is
constructed out of a single large organization and a few small organizations, then
it is the large organization who determines the strength of a market and is it less
relevant to consider the small organizations. Usually dominant actors posses a
considerable large share of the market. What is “considerable large” depends on
the industry in which the analysis is performed. For instance in the market of
operation systems Microsoft (over 70% market share) is a dominant actor, while
Toyota can be considered a dominant actor in the automotive industry with only
13% market. Dominant actors are modeled as a rectangle within an market.

Submarket. It is possible to model submarkets of a market. A submarket is a
market, but has a special type of value object that is offered or requested from
the constellation. For instance, low cost carriers are a submarket of the carrier
market. A submarket is shown in the interior of a market.

Industry. An industry unites all actors shown in an e3forces model. So, the
actors of the constellation, and actors in a (sub)market are all in an industry.

194 V. Pijpers and J. Gordijn

Force. Markets in the environment of a constellation influence actors in the
constellation, by exercising a force, this is expressed by a “strength” arrow.
Such an arrow is shown near an e3value value transfer. In the following sections,
we illustrate specific forces, as derived from Porter’s five forces model [15].

5 Modeling Porter’s Five Forces Using e3forces

Using the e3forces ontology, we model various forces between actors and markets.
Porter distinguishes five kinds of forces [12,15,16]: bargaining power of suppliers,
bargaining power of buyers, competitive rivalry among competitors, threat of new
entrants and threat of substitutions.

5.1 Bargaining Power of Suppliers

Suppliers are those organizations which are part of the environment of a con-
stellation (because they do not satisfy the previously discussed “coherence” cri-
terion) and provide value objects to actors in the constellation [12]. For the case
at hand, suppliers are e.g. “Airplane Manufacturers”. Suppliers influence actors
in a constellation by threatening to alter the configuration of goods/services, to
increase the price or to limit availability of products [12, 15]. These are changes
related to the value objects and/or their transfers between actors and their en-
vironment. So, a first step is to elicit (important) suppliers for each actor part of
the constellation. Suppliers are identified by finding organization which provide
value objects to the constellation, but who are not part of the constellation.

Next the strength of the bargaining power of the suppliers in relationship to
the actors in the constellation must be analyzed. According to [15], five factors
determine the strength of a supplier market: 1) The concentration of (dominant)
suppliers. Suppliers are able to exert more influence if they are with few and when
buyers are fragmented. 2) The necessity of the object provided by the suppliers.
If the value object is essential then the actors in the constellation can make less
demands. 3) The importance of actors in the constellation to the suppliers. If
actors in the constellation are not the supplier market’s main buyer, then the
supplier is stronger. 4) The costs of changing suppliers. If the costs are high, then
actors in the constellation are less likely to choose another supplier, which give
the supplier more strength. 5) Threat of taking over an actor in the constellation.
The supplier might plan to take over an actor in the constellation to strengthen
its position in the environment.

Using these questions, the relative strength of the power of a supplier market
is determined for each transfer (connected to an actor in the constellation), and
is shown as a strength arrow along the lines of the connected value transfers
(which are the transfer of the value object provided by the supplier market to
the actor in the constellation and the transfer of the value object provided as a
compensation (e.g. money)). Note that since we model the power the supplier
market exercises over an actor in the constellation, the strength arrow always
points from the supplier’s interface of the market toward the buyer interface of

e3forces : Understanding Strategies of Networked e3value Constellations 195

Fig. 3. e3forces :Suppliers

the actor in the constellation. The relative strength of the arrow is based on the
analysis of the supplier market given above. Also note that a market can be a
supplier market, a buyer market, a competition market or any combination, since
markets can have supplier interface(s) and/or buyer interface(s), depending on
the role. A supplier interface is, via value transfers, connected to a buyer interface
of an actor in the constellation.

Fig. 3 demonstrates some supplier forces for the case at hand. For example
“Airplane Manufacturers” is a supplier market to “KLM”, having two dominant
actors: “Boeing” and “Airbus”. This market exercises a power of high strength
because: a) there is a concentration of dominant suppliers, b) the value object
is essential to “KLM”, and c) “KLM” is only one of many buyers. Due to lack
of space, we can not explain each power relation in a more detailed way.

5.2 Bargaining Power of Buyers

Buyers are environmental actors that acquire value objects from actors in the
constellation [12]. Buyers can exercise a force because they negotiate down prices,
bargain for higher quality, desire more goods/services and, try to play competi-
tors against each other [15, 16]. All this is at the expense of the profitability of
the actors in the constellation [15, 16]. Buyer markets have value transfers with
actors in the constellation similar to supplier markets.

After eliciting possible buyer markets, the strength of the power they exercise
is analyzed. According to [15], seven factors determine the strength of buyer
markets: 1) The concentration of (dominant) buyers. If a few large buyers ac-
quire a vast amount of sales, then they are very important to actors in the
constellation, which gives them more strength. 2) The number of similar value
objects available. A buyer market is stronger, if there is a wide range of suppliers
from which the buyer market can chose. 3) Alternative resources of supply. If the
buyer market can chose between many alternative value objects then the buyer
market is powerful. 4) Costs of changing supplier. If costs are low, then buyers
can easily choose another supplier, which gives the buyer market strength. 5)

196 V. Pijpers and J. Gordijn

Fig. 4. e3forces : Buyers

The importance of the value object. If the value object is not important to the
buyer market, it is harder for actors in the constellation to maintain an economic
feasible relationship. 6) Low profits. The actors in the constellation have to sell
large volumes to make profits, giving the buyer market more bargaining power.
7) Threat of taking over an actor in the constellation. A buyer is willing and ca-
pable to purchase an actor in the constellation, which the purpose to strengthen
its own position.

Similar to supplier markers, by using these questions, the relative strength of
the power of a buyer market is determined for each transfer (connected to an
actor in the constellation), and is shown as a strength arrow along the lines of
the connected value transfer.

In Fig. 4, two actors of the constellation are given: “AAS ”and “ATC”. One
buyer market (carriers) is modeled, in which two submarkets are present (“Hub
Carriers” and “Low Cost Carriers”). “ATC” provides a service to the entire
carrier market, resulting in a low strength. “AAS” provides “Infrastructural
Service” to “Carriers”, but these services slightly differ for “Hub Carriers” and
“Low Cost Carriers”. Consequently, both submarkets are connected to the buyer
interface of the entire market. This buyer market is in turn connected to the
supplier interface of the “AAS”.

5.3 Competitive Rivalry Among Competitors

An additional force is exercised by competitors ; actors that operate in the same
industry as the constellation and try to satisfy the same needs of buyers by
offering the same value objects to buyer markets as the constellation does [12].
Competitors are a threat for actors because they try to increase their own market
share, influence prices and profits and influence customer needs; in short: they
create competitive rivalry [15, 16].

So far, forces exercised by markets on actors in the constellations have been
expressed along the lines of direct value transfers between markets and actors.
Such a representation can not be used anymore for modeling competitive ri-
valry. In case of competitive rivalry, (competitive) markets aim to transfer same
value objects to the same buyer markets as the actors in the constellation do.
Consequently, competitive rivalry is represented as: a) value transfers of a con-
stellation’s actor to a buyer value interface of a (buyer) market, and b) competing

e3forces : Understanding Strategies of Networked e3value Constellations 197

Fig. 5. e3forces : Competitors

transfers of a competition market to the same buyer interface of the market. The
extent of competitive rivalry is expressed by incorporating a strength arrow that
points from the competition market toward the buyer market. This is because
competitive rivalry, as expressed by the strength arrow, is located at the buyer
market, and not at the actor in the constellation [15]. The buyer interface of a
market for which competition occurs is called the “competition” interface, and is
explicitly stated. Also, it is worthwhile to show dominant actors for a competitive
market; these are considered the most important competitors.

To decide upon the strength of the competitive force, seven factors are used
[15]: 1) The balance between competitors. If competitors are equal in size, strength
and market share, then it is harder to become a dominant actor, which leads to
more rivalry. 2) Low growth rates. If industry growth rates are low then competi-
tors have to make more effort to increase their own growth rates, which leads
to higher competitive rivalry. 3) High fixed costs for competitors. This can result
in price-wars and low profit margins, which increase competitive rivalry. 4) High
exit barriers. In this case competitors cannot easily leave the market. To remain
profitable they will increase their effort to increase or maintain their market
share. 5) Differentiation between competitors. If there is no difference between
value objects offered by competitors, then it is harder to sell value objects to cus-
tomers. 6) Capacity augmented in large increments. This can lead to recurring
overcapacity and price cutting. 7) Sacrificing profitability. If actors are willing
to sacrificing profitability to increase market share and achieve strategic goals,
other organization have to follow; leading to more competition. [15].

Fig. 5 shows that the constellation “KLM”, has two buyer markets; “Freight
Transport” and “Passengers”. In the competition market “Carriers” a submarket
is modeled and a dominant actor. The submarket “Hub Carriers” is connected
with its own supplier interface, and via an interface of the total market, to
the buyer market “Freight Transport”. This indicates that this submarket is
responsible for the competitive rivalry at the buyer market and not the entire
carrier market. Furthermore, the dominant actor modeled, “EasyJet”, is connect
to the “Passengers” buyer market. This indicates that this particular actor is
responsible for a large amount of the competitive rivalry at the “Passengers”
buyer market.

198 V. Pijpers and J. Gordijn

5.4 Threat of New Entrants

Potential entrants are actors who can become competitors, but who are currently
not, or who do not exist yet [12, 15]. Consequently, we consider new entrants as
a future competitive market. To determine the threat of a potential entrant, the
following aspects need to be analyzed [15]: 1) The economics of scale needed to
become profitable. 2) The capital required to facilitate the entry in an industry.
3) The extent of access to distribution channels are accessible. 4) The experi-
ence and understanding of the market of the new entrant. 5) The possibility of
retaliation by existing organizations in an industry, with the goal to force new
entrants out of the industry. 6) Legal restraints which place boundaries on po-
tential entrants. 7) The difficulty of differentiating from existing organizations.

Potential entrants are modeled (as rounded squares) within a competitive
market and labeled after the potential entrant. Furthermore, the potential en-
trant has a supplier interface which is connected to the relevant supplier interface
of the competition market. The threat of a potential entrant is expressed by a
strength arrow, which originates at the potential entrant and point toward the
supplier interface of the entire competition market. The strength of the arrow is
based on the analysis of potential entrants given above.

5.5 Threat of Substitutions

Actors may offer substitutions, so different value objects, to a buyer market, yet
satisfy the same need of the buyers [12,15]. Substitution markets are seen as com-
petitive markets who offer different value objects, as an alternatives to objects
offered by actors in the constellation, to the same buyer markets. Substitution
markets are modeled in the same way as competition markets, but value objects
of actors in the constellation and of the substitution markets differ. In brief, the
strength of the arrow is determined by the likelihood that the substitution will
reduce the market share of the constellation for this buyer market [15, 16].

6 An e3forces Model for the Dutch Aviation Industry

Fig. 6 shows an e3forces model for the Dutch aviation constellation. It first
shows how the key actors are internally and externally connected in terms of
e3value value transfers. Furthermore, the strengths of the forces that influence
the (actors in the) constellation are shown. A number of small suppliers, who
have low strength, are grouped into “supplier” markets for space purposes.

At a first glance, the model shows that environmental forces have the least
impact on “ATC”. Moreover, “ATC” does not have any competitors. Second, the
model shows that “AAS” mostly acts as a provider and that environmental forces
have a low impact on “AAS”: most forces have low strength. The third actor,
“KLM”, has to deal with the strongest forces. This is due to the competitive
rivalry at the buyer markets of “KLM”.

e3forces : Understanding Strategies of Networked e3value Constellations 199

Fig. 6. e3forces : Complete

6.1 Reasoning with e3forces and Practical Use for Information
Systems

The aim of the e3forces ontology is to understand strategic considerations of
actors in a constellation in terms of environmental forces. Is this possible? With
the aid of the e3forces model we are able to understand that: (1) As a result of
the high competitive rivalry at “KLM” ’s buyer markets (See Fig. 6), “KLM”
needs to reduce costs per unit through economics of scale (eg. increase capac-
ity) to remain profitable [15]. For achieving this goal “KLM” partly depends
on services provided by “AAS” and “ATC”, as seen by the dependency rela-
tions between the actors, which we have introduced in the model to facilitate
dependency-tracing reasoning (see e.g. i* [21,19] and e3value [9] for examples of
such reasoning). This motivates “KLM” desire for improved inter-organizational
operations. (2) “AAS”, although in a constellation with “KLM”, provides value
objects to competitors of “KLM”; possibly leading to conflicts. Furthermore, due
to the high rivalry between carriers and their medium strength, there is pressure
on the profits margins of the value objects offered by “AAS” to the carriers (See
Fig. 6). Therefore “AAS” is also exploiting other buyer markets (eg. “Renters”)
to generate additional profits. Finally, “AAS” partly depends on “ATC”, which

200 V. Pijpers and J. Gordijn

motivates their desire for better inter-organizational operations. (3) “ATC” is
dependent on by “AAS” and “KLM” , but is in a luxury position due to the
monopoly it possesses. “ATC” however only has one buyer: “AAS” (See Fig. 6).
Therefore “ATC” is willing to cooperate with “AAS” and “KLM” to improve
operations and increase profits.

In addition, ontologies such as e3value , i* and e3forces are most relevant for
the early phases of requirements engineering [20]. Information system analysts
can use such analysis methods for better understanding their organization and
designing processes and IT accordingly [18]. For instance, it is understood that
“electronic marketplaces” can be exploited for strategic purposes [1], but e3forces
aids in understanding where (eg. which markets) and how (eg. limitations en-
forced by forces) electronic marketplaces can be exploited. It is also possible to
use e3forces model to analyze changes in the environment of the constellation
when for instance an electronic marketplace is introduced. To illustrate we use
the well known e-ticket system. Introducing the e-ticket system has enabled car-
riers to sell tickets directly to passengers, meaning that mediators are no longer
necessary. In this new situation carriers are no longer dependent on mediators.
Furthermore the relationship between carriers and passengers is now direct. The
application of IT has thus changed the environment of the constellation. For
information system developers it is important to understand that users of the e-
ticket system are primarily passengers and secondary mediators (assuming here
that passengers have different needs for the e-ticket system than mediators).

An e3forces model can also be used for reasoning about the sustainability of
competitive advantage achieved by exploiting IT. If for instance “KLM” would
introduce an electronic marketplace for the freight market they would create
competitive advantage over the competition (assuming lower costs for “KLM”).
Due to the high competitive rivalry at this market, as seen in the model, it is
important for organizations to maintain a profitable market share [15]. Therefore
competitors will also invest in electronic marketplaces, thereby reducing the
competitive advantage of “KLM”. IS developers can use this information to
understand that the IS will only generate additional profits in the early phase
of its life cycle and that additional or new innovations need to be developed to
sustain competitive advantage.

7 Related Work

Closely related to this research is the work performed by Weigand, Johannesson,
Andersson, Bergholtz, Edirisuriya and Ilayperuma [18]. They propose the c3-
value approach in which the e3value ontology [8,9] is extended to do competition
analysis, customer analysis and to do capabilities analysis. They, however, do
not provide a complete set of constructs or methodologies for the three models.
Therefore the models are currently quite abstract and give rise to both modeling
and conceptual questions. Furthermore, the authors seem to focus more on the
composition of value objects (in terms of second order value transfers), than on
the strategic motivation for a business value model.

e3forces : Understanding Strategies of Networked e3value Constellations 201

Also related to this research is the work done by Gordijn, Yu and Van der
Raadt [10]. In this research, the authors try to combine e3value and i*, with
the purpose to better understand the strategic motivations for e-service business
models. The e3value model is used to analyze the profitability of the e-services; i*
is used to analyze the (strategic) goals of the participants offering/requesting the
e-services. The e3forces ontology adds a specific vocabulary on business strategy,
which is lacking in both e3value and i*.

8 Conclusion

With the aid of an industrial strength case study we were able to create an on-
tology for modeling and analyzing the forces that influence a networked value
constellation. By using the e3value ontology and Porter’s Five Forces framework
as a basis, we used existing and accepted knowledge on networked value con-
stellations and environmental influences on business strategies to create a solid
theoretic base for the e3forces ontology. This solid theoretic base enabled us
to reason about the configuration of networked value constellations; as demon-
strated by the case study. In this study we presented a clear model of 1) the
value transfers within the constellation, but more important: 2) the value trans-
fers between actors in the constellation and markets in the environment of the
constellation and, 3) the strength of forces, created by the markets, which influ-
ence actors in the constellation. Via this model and strategy theories we were
able to use semi-formal reasoning to explain dependencies between actors. In
addition we were able to analyze the position and roles of the actors in the con-
stellation. This enabled use to reason about the configuration of the networked
value constellation by considering the question of “Why”.

The e3forces ontology is a step to arrive at a more comprehensive e3strategy
ontology which can be used to capture the business strategy goals of organi-
zations in networked value constellation. In future research, we complement
e3strategy with a more internal competencies-oriented view on the notion of
business strategy.

Acknowledgments. The authors wish to thank Paul Riemens, Hans Wreken-
horst and Jasper Daams from Air-Traffic Control The Netherlands for providing
case study material and for having many fruitful discussions. This work has been
partly sponsored by NWO project COOP 600.065.120.24N16.

References

1. Bakos, J.Y.: A strategic analysis of electronic marketplaces. MIS Quarterly 15(3),
295–310 (September 1991)

2. Bakos, J.Y., Tracy, M.E.: Information technology and corporate strategy: A re-
search perspective. MIS Quarterly 10(2), 107–119 (June 1986)

3. Barney, J.B.: The resource-based theory of the firm. Organization Science 7(5),
131–136 (1994)

202 V. Pijpers and J. Gordijn

4. Borst, W.N., Akkermans, J.M., Top, J.L.: Engineering ontologies. International
Journal of Human-Computer Studies 46, 365–406 (1997)

5. Buhr, R.J.A.: Use case maps as architectural entities for complex systems. Software
Engineering 24(12), 1131–1155 (1998)

6. Derzsi, Z., Gordijn, J., Kok, K., Akkermans, H., Tan, Y.H.: Feasibility of it-enabled
networked value constellations: A case study in the electricity sector.(2007) (Ac-
cepted at CAISE (2007))

7. Geerts, G., McCarthy, W.E.: An accounting object infrastructure for knowledge-
based enterprise models. IEEE Intelligent Systems and Their Applications,
pp. 89–94 (July- August 1999)

8. Gordijn, J., Akkermans, H.: E3-value: Design and evaluation of e-business models.
IEEE Intelligent Systems 16(4), 11–17 (2001)

9. Gordijn, J., Akkermans, H.: Value based requirements engineering: Exploring in-
novative e-commerce idea. Requirements Engineering Journal 8(2), 114–134 (2003)

10. Gordijn, J., Yu, E., Van Der Raadt, B.: E-service design using i* and e3value
modeling. IEEE Software 23(3), 26–33 (2006)

11. Hidding, G.J.: Sustaining strategic advantage in the information age. In: Pro-
ceedings of the 32nd Hawaii International Conference on System Sciences, IEEE,
Orlando (1999)

12. Johnson, G., Scholes, K.: Exploring Corporate Strategy. Pearson Education Lim-
ited, Edinburgh, UK (2002)

13. Mintzberg, H.: The Structur of Organizations. Prentice-Hall, New York (1979)
14. Osterwalder, A.: The Business Model Ontology - a proposition in a design science

approach. PhD thesis, University of Lausanne, Lausanne, Switzerland (2004)
15. Porter, M.E. (ed.): Competetive Strategy. Techniques for analyzing industries and

competitors. The Free Press, New York (1980)
16. Porter, M.E. (ed.): Competitive advantage. Creating and sustaining superior per-

formance. The Free Press, New York (1985)
17. Tapscott, D., Ticoll, D., Lowy, A.: Digital Capital - Harnessing the Power of Busi-

ness Webs. Harvard Business School Press, Boston, MA (2000)
18. Weigand, H., Johannesson, P., Andersson, B., Bergholtz, M., Edirisuriya, A.,

Ilayperuma, T.: Strategic analysis using value modeling - the c3-value approach.
In: Proceedings of the 32nd Hawaii International Conference on System Sciences,
IEEE, New York (2007)

19. Yu, E.: Models for supporting the redesign of organizational work. In: COCS
’95: Proceedings of conference on Organizational computing systems, pp. 226–236.
ACM Press, New York (1995)

20. Yu, E.: Towards modelling and reasoning support for early-phase requirements en-
gineering. In: Proceedings of the 3rd IEEE Int. Symp. on Requirements Engineering
(RE’97), pp. 226–235 (1997)

21. Yu, E., Mylopoulos, J.: An actor dependency model of organizational work -
with application to business process reengineering. In: COCS ’93: Proceedings of
the conference on Organizational computing systems, pp. 258–268. ACM Press,
New York (1993)

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 203–217, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Aligning IS to Organization’s Strategy: The INSTAL
Method

Laure-Hélène Thevenet1,2 and Camille Salinesi1

1 Université Paris 1 - Panthéon Sorbonne, CRI, 90 rue de Tolbiac
75013 Paris, France

2 BNP Paribas, Système d’Information Groupe, 41 rue de Valmy
93100 Montreuil Sous Bois, France

Laure-Helene.Thevenet@malix.univ-paris1.fr,
Camille.Salinesi@univ-paris1.fr

Abstract. Aligning Information Systems (IS) to organization’s strategic
business objectives is one of organizations’ top preoccupations. Misalignment
is considered as a reason of IT’s failure to improve organizational performance.
If strategic alignment is relatively simple to understand, it is not so easy to
implement. Our experience showed us that organizations are not really able to
systematically evaluate whether there is alignment, mainly because of the lack
of documentation on strategic alignment. This paper intends to deal with this
issue by proposing an approach to describe organizations’ strategic objectives
and its IS, in order to document and analyze strategic alignment, i.e. how the IS
contributes to strategic objectives satisfaction. The proposed method, called
INSTAL (Intentional Strategic Alignment), reuses organization documents as a
basis to formalize strategic alignment. INSTAL was created following the
principles of an action research approach, which consists in developing the
approach while exploring issues raised by the case study.

Keywords: Alignment, Strategic Alignment Documentation, Organization
strategy, Requirements Engineering.

1 Introduction

As [1] [2] [3] [4] or [5] already showed, aligning Information Strategy (IS) and
business objectives has been considered as a top priority by CIOs and IT executives
since several years.

There is a large corpus of empirical and theoretical evidence that alignment
improves organizational performance (e.g. [6], [7], [8], [9]). Indeed this latter depends
on structures and capabilities that support the successful realizations of strategic
decisions. Furthermore, studies highlight the lack of alignment as a major cause for
business processes failure in providing return on investments.

Although it is admitted that alignment is impacted by the changing environment, it
is still unclear how to achieve and sustain strategic alignment over time. IS and
business processes must support the strategy, i.e. the organization’s strategic business
objectives. Therefore, IS/IT must be deployed to help meeting those objectives.

204 L.-H. Thevenet and C. Salinesi

However, strategic alignment, i.e. the synergy between the strategic level
(organization strategy) and the operational level (BP/IS), must also be controlled and
maintained over time despite possible evolutions of IS/IT, of the organization strategy
and of the environment.

According to [10], a crucial issue when dealing with strategic alignment lies in the
lack of common understanding and communication between the strategy and IS
worlds. In fact, actors who define organization strategies, like enterprise executives,
(a) do not speak the same language as operational actors (e.g. IS engineers) and (b) do
not have the same vision of the organization. The consequence is that IT does not
provide the expected value to the organization.

Our method, named INSTAL (INtentional STrategic ALignment), proposes to
consider organizations at two levels: (i) the strategic level, which includes the
decision-makers’ strategy and high level requirements, and (ii) the operational level,
which comprises the IS/IT. Based on the observation that documentation usually
exists at the two levels while correspondence is seldom systematically documented
with the degree of formality needed to support systematic analysis, INSTAL was
designed to reuse the two levels’ documentation in order to create a third kind of
document that describes the synergy between the two levels (i.e. strategic alignment)
and the existing links with organization elements such as IT applications, business
processes, strategic documentation, etc.

For the organization, the outcomes expected from considering and documenting
strategic alignment as a unified view of the strategic and operational levels are: (i) to
improve the enterprise agility – its capability to respond to unexpected environmental
changes, (ii) to reduce resistance to change, as IS users get a better view on design
rationales and on the IS contribution to their own performance, (iii) to improve the
visibility of top managers on the IS ROI, in terms of cost savings but also in terms of
added value, and on its capacity to answer organization needs, and (iv) to help
improve performance evaluation.

On the IS management side, the goals are: (i) to improve the IS flexibility, (ii) to
better trace IS evolutions, (iii) to better manage project portfolio, by identifying which
IS components are obsolete and redundant and which ones deliver value (needed for
arbitration), and (iv) to facilitate impact analysis of evolution requirements.

With these goals in mind, our requirements for a good strategic alignment
documentation were to: (i) be formalized using modeling rules, (ii) reflect the
complexity of strategic alignment while being able to represent the strategic
alignment in a simple manner (using a black box/white box approach), (iii) show
alignment as well as mis-alignment (iv) be scalable to real-world organization sizes,
(v) deal with strategy and IS on different levels of granularity, and (vi) ensure
interoperability with the tools that are already used in organizations.

INSTAL was created using the principles of an action research approach. Basic
principles of the method were identified based on bibliography research, then the
Seven Eleven Japan (SEJ) case study was explored and the method was constructed
each time a new kind of strategic alignment-related issue was encountered.

This paper is structured as follows. Section 2 gives an overview of the INSTAL
method, and reports its development with the SEJ case study. Section 3 describes the
process model into more detail. Section 4 compares our approach with related works.
Our conclusions on this research are given in section 5.

 Aligning IS to Organization’s Strategy: The INSTAL Method 205

2 Overview of the INSTAL Method: Principles, and Alignment
Meta-Model Developed with the Case Study

The INSTAL method is presented in the next section, followed by its development
using the SEJ case study and the resulting meta model.

2.1 The INSTAL Method

Usually, documents about strategy definition and IT components are already present
in the organization. For instance business plans, annual reports, strategic reports,
performance indicators and scorecards are part of the strategic documentation. IT
components, legacy system, IT functionalities, business process are most often
documented by specifications. These documents can easily be reused and referenced.
However, whereas organization strategies are defined in terms of goals, actors and
performance indicators, systems are specified using concepts such as objects, events
and functions. This conceptual mismatch results in a difficulty to draw links between
them.

One way to obviate this issue is to express both the strategic and operational levels
in terms of requirements and with the same language. This approach, recommended
by the TOGAF in the context of Enterprise Architecture, allows expressing alignment
in a straightforward manner. A review of the RE literature shows that goal-centred
languages seem to be the most adequate for this purpose, as they explicitly capture the
why and how of both system functionality and organization businesses [11] [12] [13].
Goal modeling has several advantages: goals subsume different concepts such as
systems functionalities, business processes or organizational objectives, goals can be
refined and therefore be defined at different levels, they can handle the scalability by
abstraction mechanisms, and they can be considered as ambivalent as they can
integrate different perspectives.

As Fig. 1 shows, the basic principle of the INSTAL method stands in documenting
strategic alignment by (i) using a goal-oriented model representing both strategic and
operational levels and (ii) defining links between this model and the existing
organization’s strategic and operational components. Indeed documenting strategic
alignment can lead to a network of links between multiple artifacts. For this reason,
we use MAPs as an intermediate formalism rather than linking elements directly: they
provide a unified and purposeful view on strategic alignment. MAPs sections can be
used as a starting point to focus on one particular aspect of alignment based on the
purpose we want to deal with. The resulting maps, called Strategic Alignment Maps
(SAMs), capture the organization strategy through formalization and the operational
level through abstraction. Contribution links are defined between organization’s
elements and the SAMs and between organization’s operational elements and the
SAMs. This approach was chosen because we observed in previous experiences that
using the MAP formalism to represent both the IS level and the Business Process
level is an efficient way to deal with complex problems at multiple levels of
granularity and under multiple perspectives ([13]).

Several questions were addressed while exploring the case study: (i) is the MAP
technique adapted? Are extensions needed?, (ii) is it well-suited to model both

206 L.-H. Thevenet and C. Salinesi

Organization
Strategy

System
/ Process

Formalization

Abstraction

Contribution
Links

Strategic Level

Organizational Level

Organization
Formalism

MAP
Formalism

Strategic mapStrategic map

Strategic

Alignment

MAP
Formalism

Organization
Formalism

Contribution
Links

Fig. 1. Overview of the INSTAL method

organization strategy (non functional items) and functional items in the same model?,
(iii) what are the types of links needed between SAMs and existing organization’s
elements?, and (iv) what is the process to apply the INSTAL method?

2.2 Description of the SEJ Case Study

The SEJ case study was already well described in the literature (e.g. [14]). This
particular case study was chosen to develop INSTAL because it is a real case study
(and not a toy example), a large amount of data is available, and more importantly, it
had already been used to evaluate another strategic alignment approach [15] [16].

SEJ is the largest chain in the Japanese convenience retailing industry. The
enterprise has franchise contracts with local shops all over Japan and supplies
exclusive products and services to franchisees. The distribution centers, that distribute
these products and services to shops, are also independent proprietors.

The SEJ supply chain is complex and implies several partners like suppliers,
distributors, logistics providers, and franchise stores.

SEJ’s major asset is information rather than physical properties. Indeed, SEJ’s
strategy is to use information to meet customer’s demands, so that they can always
find “what they need when they need it” in SEJ franchised stores. Coupled with an
effective delivery service, this strategy helps in increasing sales, lowering the number
of unsold items, and reducing the need for storage space, which is important in Japan
where space is rare.

Having the right product at the right time calls for gathering very diverse
information: purchasing habits, the store’s neighborhood from both social and
environmental perspectives, weather, local events, etc. All this data is analyzed in
real-time in order to forecast what the customer might need at the exact time they
shall need it.

 Aligning IS to Organization’s Strategy: The INSTAL Method 207

Several information sources are available for the strategy and the IS. We
particularly used annual reports1. The analysis of these documents allowed identifying
the following strategic objectives: (i) Get better value of SEJ stores by answering to
any client’s needs (“To meet customer needs, products must be delivered just in time
and only when needed”), (ii) Live in harmony with the local communities and (iii)
Respect the environment.

As defined earlier, a primary concern was to create a unified model of these
strategic objectives that would also provide a view on SEJ's IS. This task was
undertaken using the MAP formalism, which was adapted at the same time to achieve
the actual goal of documenting strategic alignment.

2.3 The MAP Formalism

A map is an oriented graph where nodes are goals (or intentions) and edges are
strategies. A map is composed of sections that contribute to achieving a high level
goal. A section is a triplet <Gi, Gj, Sij> and represents a way to achieve the target goal
Gj following the strategy Si taking into account that the goal Gi should have already
been achieved. Maps organize goals and strategies to represent a flow of decisions.

Indeed, a section has for source a goal when its achievement is a precondition to
undertake the strategy. The other way round, as soon as a goal is achieved, any
section that starts from it can be undertaken at anytime.

Each map has two special goals, Start and Stop. The Start goal corresponds to the
entry point of the process. Sections containing this goal can always be undertaken.
The Stop intention allows to specify sections that aim at completing the goal
described by the map. A more detailed definition of MAP can be found in [17].

2.4 Documenting Strategic Alignment Using MAP

Fig. 2 shows an example of two SAMs that were described to document the strategic
objective “Get better value of SEJ stores by answering to any client’s needs” and part
of the IS that supports it. The study of SEJ values and aspirations (visibility,
availability towards customers, innovation, anticipation etc), made emerge two main
goals in the high-level SAM: Ensure the Control of resources (such as time, space,
stores, products) and Increase sources of value (such as customers, products quality
and organization efficiency). These two goals are ambivalent, they can represent the
organization strategy, but also tackle the operational level. Besides the strategies
attached to these goals can be refined. Therefore, goals can be defined at different
levels of abstraction and a collection of goals can be structured in a goal graph.

These goals can be attained in different ways (strategies in MAP formalism). The
M1 map describes sections composed of goals and strategies. The latter details how
SEJ can attain its strategic goals in accordance with its organization strategy. For
example, one way to increase sources of value is by having the lowest prices, but as
we can see with strategies between start and (c) Increase the sources of value, this
option has not been retained by SEJ. SEJ chose to develop quality products/services
and to have the right products rather than having only basic products at a lower price.

1 SEJ website: http://www.sej.co.jp/english/

208 L.-H. Thevenet and C. Salinesi

By coordinating
logistics of products

By anticipating
problems

By answering
quickly to store

requests

By providing
organizational efficiency

By rationalizing the
organization

By availability towards
customers and in storesBy being visible by

customers

By guarantying
product quality

By cooperation
with allies and
partner

Stop (i.e. change
strategic objective)

By shareholders
By

organizational
change

d

(3)

(2)

(1)

(1)

(1)

(1)
(2)

(3)

(4)

(1) (2)

Start

Stop

Define
offers

(3) By creating
partnerships

Supervise the
stores

(3) By stock
optimization

(2) By sales
monitoring

(1) By catalogue
construction

(1) By tutorial
system

(1) By
adjustment/
training

(1) By withdrawal
of a geographical
zone

Maintain
the image

(1) By marketing
(promotions)

(1) By installing the
communication
equipment

(1) By definition of
the communication
policy

(1) By
advertising
campaign

a

b

c

d

e

Part of the map (M2) that refines
sections to attain the intention (c)

Ensure the
control of resources

Start
a

b

Increase the sources of value

c

(2) By
geographical
development

Strategic
Level

Operational
Level

Fig. 2. Part of Strategic alignment maps representing the strategic objective: “Get better value
of SEJ stores by answering any client’s needs”

The second map M2, describes, using a black box / white box approach, details on
how SEJ addresses the strategic goal (c) Increase the sources of value. Goals present
in M2 are: “Define Offers”, “Supervise the stores” and “Maintain the image”. The
goal “Define Offers” can be attained by three strategies that detail what SEJ must do
to offer product and services in accordance with the organization strategy (have the
right product at the right time, have products/services of quality etc.) which includes:
(i) to define the catalogue of products and services (adapted to the customers’ needs),
(ii) to develop partnerships with suppliers, organizations (e.g. to allow clients to pay
electricity bills), transport companies etc., and (iii) to develop its sites: stores and
warehouses. These strategies contribute to increase the sources of value (customers,
sales etc.) by availability (in catalogue, in stores), by visibility (network of stores),
and by developing quality (products in catalogue and logistics for fresh products).

We designed the M2 map by focusing on goals that are important to SEJ without
dealing with their operational details. For example, the goal “Define offers” presents

 Aligning IS to Organization’s Strategy: The INSTAL Method 209

an important goal for SEJ that relies on the operational goal “define catalogue”, which
can appear in the MAP refining the strategy ab1.

Developing the maps presented in Fig. 2 revealed that it is possible to represent
both the strategic and operational level in a single map with an abstract view, and that
the black box/white box approach could be used to deal with complex problems.

However, while the map was developed using strategic documentation and
specifications of IS components, the links between all these documents were still not
explicit and even sometimes unclear. For example, sections of the high-level map M1

can be linked to some strategic documents like business plans, annual reports and
internal documents. The set of SAMs describe the AS IS based on strategic
documentation and IS components and the AS Wished that can for example highlights
manual processes or processes to redesign. The refined map M2 is, by construction,
mostly related to IS components. For example the section <Start, Define offers, By
catalogue construction> was identified by analyzing IS features. If we refine this
section, we can see systems (i) that analyze customers’ profiles from questionnaires
about their marital status, activities when visiting stores, their proximity with the store
in POS (Point of sale) and others (ii) to analyze purchases hour by hour and product
by product. These clearly correspond to items to include in strategic alignment
documentation as they are needed to anticipate sales, to optimize store storage and so
to contribute to having the right product at the right time.

While creating the SAMs, we were lead to reason about the links between strategy
and the IS, and discovered that there are a number of different links and that these
links can be combined in complex constructions. The different types of link
discovered during this analysis are presented in the next section.

2.5 Resulting Alignment Meta Model

Fig. 3 presents the product meta model associated to the INSTAL method using the
UML formalism. As the meta model shows, strategic alignment is documented by
contribution links defined between the strategic alignment map (SAM) and the
strategic components on the one hand, and operational components on the other hand.

The SAM meta model reuses the basic concepts of the MAP formalism except for
the refinement mechanism which is handled differently. Indeed, in SAMs, several
sections can be refined in one SAM, while in the traditional MAP meta model,
refinement is a one-to-one relationship between a section and a finer grain map.

As shown in Fig. 3, contribution links are defined between an element and one or
several strategic or operational components. An element is either a SAM section or
a formula, a formula being defined as a set of SAM sections separated by logic
AND/OR operators. For example, (ab1 AND ab2) is a formula composed of two
members (in this case two SAM sections) separated by the AND operator. Components
refer to any organization documents: strategic components are for example business
plans or annual reports. Operational components can be application specifications,
models (e.g. UML use case diagrams) or business processes. Links are oriented from
the components to the SAM. They can also be defined in the other direction. For
example, specifying that a component “is necessary to” achieve a section of a SAM is
equivalent to specifying that the SAM section “requires” the component.

210 L.-H. Thevenet and C. Salinesi

Formula

Member Operator
2 1

Section

Type

Attribute

Composed
Link

Contribution
Link

Atomic Link
1..*1

Organizational
component

Organization
Strategic

Component

Necessary UsefulSufficient Constrained Contradictory

Organization
Formalism

1..*

Strategy*

Goal

Strategic
Alignment

Map

Organization
objective

1..*

0..1
Refined in >
0..*

1
11

T
arget

S
ource

1..*

1

1*

< Formalizes in

* : strategy in the context of MAP formalism corresponds to the manner to attain a
target intention from a source intention

OR AND

Has for
target v1

0..*

Element

Has for
source >

Component

IS/BP
Documentation

Strategy
Documentation

0..*

Fig. 3. Strategic Alignment Meta model

Five types of atomic links were identified while exploring the SEJ case study: “is
necessary to”, “is sufficient to”, “is useful to”, “is constrained by” and “is
contradictory with”. Contribution links can also be composed. The valid composition
of contribution link types are: “necessary and sufficient”, “useful and sufficient”,
“useful and constrained by”. As the definition of contribution links is not an easy task,
quite subjective, attributes related to contribution links have been defined in the meta
model as a date of last revision; percentage of trust and associated metrics/measures.

Let C be a component (strategic or operational) and M an element of a SAM, the
atomic links defined between C and M are defined as follows.

Is Necessary To: C is necessary to M (equivalent to M requires C) means that the
fulfillment of a map element M cannot occur if that of the strategic or operational
component C is not performed.

If evolution impacts C or M, it is inevitable to verify that the link is preserved, and
if not, that the choice is intentional. If M or C evolves, either the necessary link is
preserved or it is modified, the latter implying the update of the link type and the
verification that there is still one or more links of necessary type going to M. In the
SEJ case study, the strategic document that describes the SEJ’s objective to answer
any clients’ needs is necessary to the section ab1: <Start, Define offers, by catalogue
construction>. In the same way, the three IT applications that allow managing
catalogue (OC1), having the suppliers catalogue (OC2) and having the result of sales
by different criteria (OC3) (e.g. by products, by stores, by geographical zone) in real
time are necessary and sufficient to the section ab1. It means that OC1 is necessary to
M, OC2 is necessary to M, OC3 is necessary to M and (OC1 and OC2 and OC3) are
necessary and sufficient to M. If OC3 evolves and is no more able to provide sales
report in real-time, the system regresses for this functionality. So either it is a choice
to be less reactive but to have others gains (e.g. more cross information, reports), or it

 Aligning IS to Organization’s Strategy: The INSTAL Method 211

is not and so the link between OC3 and M is no more of type necessary, and the set of
OC1, OC2 and OC3 is no more necessary and sufficient to M.

Is Useful To: C is useful to M (equivalent to M draws part of C) indicates a
dependency of a weaker nature than the “is necessary to” link. This link specifies that
the strategic or operational component C helps in realizing/satisfying the element M,
but is not in any way mandatory.

In the case study, the applications that allow managing the best practices catalogue,
reporting past problems and giving an overview of sales and purchases by annual
period are useful to the section ab1: <Start, Control the resources, By anticipating
problems> because they help supervising the shops, but they are not sufficient. For
example, the analysis of some data (e.g. sales by shop, sales by product, and sales by
geographical zone) is necessary to better help and advice stores.

If several components are useful to an element, it means that these components can
be complimentary or alternative. It is interesting to study them to examine if there is
some redundancy in the IS. For example, the best practice management and the past
problem report might be in the same system, in particular if these two systems are
used by the same users and if there is some possible consolidation. It might have an
application that proposes best practices with some of them based on real problems
that occurred in the past.

Is Sufficient To: C is sufficient to M (equivalent to M satisfies by C) means that
realizing the strategic or operational component C is enough to satisfy the fulfillment
of the element M. The study of the other types of links (necessary and useful) allows
to highlight some redundant and obsolete systems which don’t provide added value
and so that should be replaced or deleted.

Is Constrained By: C is constrained by M (equivalent to M constraints C) (e.g. the
realization of M is influenced or limited by those of C). This type of link means that
the strategic or operational components have more capabilities than what they are
referenced for in the SAM. It is interesting to analyze these types of link to either
update the SAM to integrate these opportunities, or to document this link with a
justification. For example, an ERP can have more possible functionalities than the
ones implemented in the organization.

Is Contradictory With: C is contradictory with M (equivalent to M excludes the
realization of C in a certain context) indicates that a strategic or operational
component C can be contradictory with an element. This link puts in perspective the
cases where alignment is not assured or outlines conflicting decisions.

3 The INSTAL Process Model

Fig. 4 provides an overview of the process that was used to apply the INSTAL method
in the SEJ case study. The process model is formalized with the traditional MAP
formalism so as to focus on methodological goals and supports to achieve these goals
rather than on process details such as sequences of activities.

Three methodological goals are addressed by the method: (b) Identify Strategic/
Operational Items, (c) Construct a SAM and (d) Define link between section and
Strategic/Operational components.

212 L.-H. Thevenet and C. Salinesi

start

stop

Identify
Strategic/Operational Items

(2) By challenges
analysis (from doc)

(3) By value analysis
(from doc)

(1) By abstracting IS components

(1) By
completeness of
doc and model
exploration

Construct a strategic
alignment map

Define link
between sections and
Strategic/Operational

components

(2) By
generalization

(2) By bundling
challenges into
goals

(1) By
merge

(2) By
analyzing
consistency

(3) By
matching
values to
challenges

(1) By similarity analysis

(2) Manually (1) By
completeness
validation

(1) By consistency
validation

(1) By completeness
analysis

(1) By bundling values
into strategies

a

b

c
d

e

(2) By refinement

(3) By
extension

(4) By
refinement

(1) By
complementary

(1) By
combination

Fig. 4. Process model to document strategic alignment

“Items” is the general term used to address strategic and operational items. They
are identified from documents and interviews and contribute to define the sections of
SAMs. Once items are identified, they are used to define the SAMs.

Once the SAMs are specified, it is possible to link elements (i.e. SAM sections or
formula) with strategic or operational components already present in the organization.
The SEJ experience revealed that several strategies could be used to identify items,
construct a SAM, define contribution links and terminate the process.

3.1 INSTAL Strategies to Achieve the Goal (b) Identify Strategic/Operational
Items

The goal (b) Identify Strategic/Operational Items can be achieved through three
strategies originating from (a) Start: (1) by abstracting IS components, (2) by
challenges analysis from strategic documents and (3) by value analysis from strategic
documents, and from two reflexive strategies (1) by complementarity and (2) by
refinement. As the SAM is ambivalent, the map definition is based on both the
operational and strategic elements. In the strategy (1) the IS components are
abstracted to have high level functionalities, in strategies (2) and (3) strategic
documents are analyzed to find organization’s challenges and values. Challenges are
finally expressed as elements that should not be lost to increase benefits. In the SEJ
case study, examples of challenges are: clients, space, stores, market share, time,
organization’s quality, suppliers, products quality. Values are high level qualities
chosen by the organization to address the challenges. Examples of values in the SEJ
case study are: availability, visibility, products’ quality, coordination, speed,
rationality, and anticipation.

The two reflexive strategies allow finding complementary and more detailed items.

 Aligning IS to Organization’s Strategy: The INSTAL Method 213

3.2 INSTAL Strategies to Achieve the Goal (c) Construct a Strategic Alignment
Map

The strategic goal (c) Construct a strategic alignment map can be attained from the
source goal (b) Identify Strategic/Operational Items by two strategies (1) By bundling
values into strategies and (2) By bundling challenges into goals. Two categories of
challenges were defined in the SEJ case study: (i) challenges related to resources, and
(ii) challenges related to the sources of values that should be increased. The former
leads to the strategic goal “ensure the control of the resources” (time, space, stores,
products and services). The latter leads to the goal “increase the sources of values”
(market share, client, products’ and services’ quality, and organization’s quality).
Several strategies to reach these goals were specified by studying SEJ values. The
strategic goal “Increase the sources of value” can be attained by four strategies. These
are based on different values such as availability, visibility, quality, coordination and
cooperation (see sections ac1, ac2, ac3 and ac4 in Fig. 2).

Four recursive strategies on the goal (c) Construct a strategic alignment map, are
proposed: (1) by merge, (2) by analyzing consistency, (3) by matching values to
challenges and (4) by refinement. These strategies allow to improve a SAM or to
define other SAM by refinement of section(s).

From a SAM it is possible to identify strategic and operational items (1) by
completeness analysis and (2) by refinement. For example, the section ab1 (Fig. 2) in
M2: <Start, Define offers, By construction catalogue> can be refined in an other map
to describe how SEJ defines offers, for example by analyzing the customers’ needs
from sales, local events, weather forecasting etc. New items might be identified to
construct the refined map.

3.3 INSTAL Strategies to Achieve the Goal (d) Define Link Between Sections and
Strategic/Operational Components and to Stop the Process

Once all items have been identified and used to define the set of SAMs, it is possible
to stop the process (1) by completeness of documentation and model exploration.
Besides, further exploration of the case study revealed several different kinds of links
between strategic or operational components, and SAM’s section which have been
defined previously. The strategies used to achieve this task are (1) by similarity
analysis and (2) manually. Searching in components’ documentation about a part of a
goal or a strategy can help finding the automatic link between a section and a
component. Manual link means interviewing the person in charge of the component
(e.g. top-managers, functional architect) or using documentation to define the
appropriate type(s) of link and define a new link.

The recursive strategy (1) by combination allows to define formula (several
sections with OR/AND links) and a link between this set of sections and components.

It is possible to stop the process from the goals: (b) Identify Strategic/operational
Items (1) by completeness of documentation and model exploration, (c) Construct a
strategic alignment map (1) by consistency validation and (d) Link items with
Strategic/Operational components (1) by completeness validation.

214 L.-H. Thevenet and C. Salinesi

4 Related Works

4.1 Goal Modeling in RE

Different approaches have been developed in the Requirements Engineering (RE)
community to express high level requirements for IS. The goal modeling approaches
allow defining the purpose of the system from an external point of view, in particular
from a user perspective. Among the best known methods, there are i* [18], CREWS-
L’Ecritoire [19], and KAOS [20].

I* is a method that aims at modeling the relationships between actors and their
goals. Bleistein et al. [15] [16] have adapted i* to model both strategic and
operational goals. The authors uses i* representation (adapted using the BRG-Model
conceptual framework) to represent the strategy then the context diagram from
Jackson’s Problem Frames to model the IT context of strategy achievement. The
approach represents the business strategies and the IS description in the same model,
with the same formalism and relates them through simple and mono-typed
contribution links. One issue with this approach relates to the i* notation, which does
not use the black box/white box strategy and produces complex models when the
number of goals increases. Indeed the main difficulties with i* is that it lacks (i)
systematic goal refinement mechanisms (all goals are in the same model), and has no
(ii) goal-strategy couple to help clarifying the multiple ways in which a goal can be
achieved. Besides, our experience with the MAP formalism showed us that MAPs are
particularly adapted to dealing with multi purpose systems, which helps managing
complex situations, whereas it has been clearly demonstrated that i* models find their
limit when the situation gets complex.

CREWS-L’Ecritoire combines goal modeling and scenario analysis to guide the
elicitation of user goals. Scenario are not used in the INSTAL method, nevertheless the
CREWS-L’Ecritoire uses pre-defined levels that could be reused to better guide the
application of the black box / white box paradigm.

In KAOS goal models, goals are linked through AND/OR decomposition links.
This allows refining high-level goals into finer grain goals down to concrete system
requirements. Refinement cannot be separated from OR decomposition and AND
decomposition which introduces artificial complexity in the goal hierarchy, while the
main issue is to sort goals according to their level of abstraction and relate goals when
they belong to the same level of abstraction.

As Bleistein et al show [15][16], although some aspects of the organization
strategy can be taken into account with these goal models, none of them (except for
Bleistein's adaptation of i*) really addresses the issue of strategic alignment.

4.2 Research on IS Alignment

Different kinds of concepts are involved in strategic alignment depending on authors.
A well known model is Henderson's and Venkatraman's Strategic Alignment Model
[21] that inspired numerous models such as [22] [23] [24]. The Strategic Alignment
Model defines the interrelationship between business strategies and IT strategies in a
clear way. However, it does not provide a practical framework to document strategic
alignment. Luftman [22] and Maes [23] define alignment between organization

 Aligning IS to Organization’s Strategy: The INSTAL Method 215

strategy and IT people. However, they do not propose a method for designing the
strategy. Other authors focus on alignment of software architecture and business
process architecture [25], [26], or on alignment between system and business
processes [27] [28] [29] [30]. These approaches concern the improvement of
alignment. However, alignment is not considered as a concept by itself that can be
documented and therefore used to support systematic reasoning.

Salinesi [31] showed that a systematic method should use a notation to document
and reason on IS alignment. This view is also supported by EA approaches [32] [33].

Notations for documenting alignment are considered in [31] [34] [35] and [36], but
not at the strategic level, which is different by nature from the operational level.

5 Conclusions

This paper has described the INSTAL method for IS strategic alignment, which was
developed using the principles of an action research approach that consists in
exploring the SEJ case study. The paper has shown that (i) MAP formalism is adapted
to document models both at the strategic and operational levels, and that (ii) complex
links can be defined to document organization’s strategic and operational components
involvement in strategic alignment. A process model was also presented.

The experience revealed some limitations in our approach:

- Only research documents, articles and SEJ’s annual reports were used in the case
study. No SEJ internal documents or interviews were used, which could be
considered as a bias of the case study with respect to real world situation.

- Our exploration of the SEJ case study did not consider the entire company. This is
a bias towards validating the scalability of the approach. Besides, different kinds of
problems might have arisen if the study had been complete.

- No quantitative evaluation is proposed. Our only validation stands in the SEJ case
study which was addressed as an empirical and subjective experiment.

- We did not use a tool to systematically check the degree of completeness and
consistency of the documentation of strategic alignment.

Our current works concern the development of a technique to analyze SAMs and
contribution links with the aim of improving strategic alignment. We also believe that
a more complete validation should be undertaken using empirical evaluations, and
interviews of experts to explore the usability of the SAMs and the effectiveness of the
INSTAL method. Last, our experience at BNP-Paribas and our participation in
industrial workgroups showed us that organizations face different alignment-related
problems such as: difficulty to maintain legacy systems that would be replaced if
sufficient benefit had justified the high cost of change, difficulty for top managers to
acquire visibility on the IS results and on strategic alignment to determine priorities
for investment etc. To meet these needs, we think that it is essential to explore further
extension of the INSTAL method in the following directions:

− Facilitate traceability between high-level requirements and IS components in order
to support impact analysis and to systematically examine how new projects
contribute to the organization strategy and to the strategic alignment.

216 L.-H. Thevenet and C. Salinesi

− Support IS redundancy analysis: IS can be huge and lack good documentation, so it
happens that two systems that have similar functionalities are developed in two
different departments, which generates double costs. We believe the analysis of
strategic alignment documentation could highlight this kind of redundancy and
either avoid new developments or at least trace its rationale.

− Measures are essential to analyze strategic alignment and answer the concrete
preoccupations of top managers, it would be interesting to study the possibility of
associating measures and metrics to contribution links.

− Document To-Be SAMs and support comparative analysis between the AS-IS and
To-Be SAMs so as to develop a better vision of what must be addressed in the
target and the path to reach it (using contribution links). Any project could show
how it contributes to the target strategic alignment.

References

1. Luftman, J., Maclean, E.R.: Key issues for IT executives. MIS Quarterly Executive 4(2),
89–104 (2004)

2. Reich, B.H., Nelson, K.M.: In Their Own Words: CIO Visions About the Future of In-
House IT Organizations. The DATA BASE for Advances in ISs 34, 28–44 (2003)

3. Tallon, P.P., Kraemer, K.L.: Executives’ Perspectives on IT: Unraveling the Link between
Business Strategy, Management Practices and IT Business Value. ACIS2002, USA (2002)

4. Watson, R.T., Kelly, G.G., Galliers, R.D., Brancheau, J.: Key issues in information
systems management: an international perspective. Journal of Management ISs 13, 91–115
(1997)

5. Brancheau, J.C, Janz, B., Wetherbe, J.C.: Key issues in information systems management.
1994-95. SIM Delphi results. MIS Quarterly 20, n°(2), 225–242 (1996)

6. Chan, Y.E., Huff, S.L., Copeland, D.G., Barclay, D.W.: Business Strategic Orientation,
Information Systems Strategic Orientation and Strategic Alignment. Information Systems
Research 8(2), 125–150 (1997)

7. Kefi, H., Kalika, M.: Survey of Strategic Alignment Impacts on Organizational
Performance in Int. European Companies, Hawaii Int. Conf. on System Sciences (2005)

8. Chan, Y.E.: Why haven’t we mastered alignment? The importance of the informal
organization structure, MIS Quarterly Executive 1, 97–112 (2002)

9. Croteau, A.M., Bergeron, F.: An information technology trilogy: business strategy,
technological deployment and organizational performance. Journal of Strategic
Information Systems 10, 77–99 (2001)

10. Luftman, J.: Assessing Business-IT Alignment Maturity. Communications of the
Association for Information Systems 4, n°(14), 1–50 (2000)

11. Yu, E.: Agent Orientation as a Modelling Paradigm. Wirtschaftsinformatik. Vol.43 (2)
(2001)

12. Van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour, Invited
Paper, Int. Symposium on Requirements Engineering (RE), pp.249-263 Toronto, Canada
(2001)

13. Rolland, C., Salinesi, C.: Modeling Goals and Reasoning with Them, Engineering and
Managing Software Requirements (EMSR), Aurum, A., Wohlin, C. Springer Verlag
(2005)

14. Bensaou, M.: Seven-Eleven Japan: Managing a Networked Organization, INSEAD
EuroAsia Centre, Case Study (1997)

 Aligning IS to Organization’s Strategy: The INSTAL Method 217

15. Bleistein, S., Aurum, A., Cox, K., Ray, P.: Strategy-Oriented Alignment in Requirements
Engineering: Linking Business Strategy to Requirements of e-Business Systems using the
SOARE approach. Journal of Research and Practice in IT 36, 259–276 (2004)

16. Bleistein, S., Cox, K., Verner, J., Phalp, K.: B-SCP: a requirements analysis framework for
validating strategic alignment of organisational IT based on strategy, context and process.
Information and Software Technology 46, 846–868 (2006)

17. Rolland, C., Prakash, N.: Matching ERP System Functionality to Customer Requirements.
RE01, Canada pp. 66-75 (2001)

18. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. RE97 Washington D.C., USA pp. 226-235 (1997)

19. Rolland, C., Souveyet, C., Ben Achour, C.: Guiding goal modelling using scenarios. IEEE
Transactions on Software Engineering vol. 24(12) (1998)

20. Dardenne, A., Lamsweerde, A., Fickas, S.: Goal-directed Requirements Acquisition.
Science of Computer Programming 20, 3–50 (1993)

21. Henderson, J.C., Venkatraman, N.: Strategic alignment: Leveraging information
technology for transforming organizations. IBM Systems Journal 32(1), 4–16 (1993)

22. Luftman, J.N.: Competing in the Information Age. Oxford University Press, Oxford
(1996)

23. Maes, R.: A Generic Framework for Information Management. Prime Vera Working
Paper, Universiteit Van Amsterdam (1999)

24. Goedvolk, H., van Schijndel, A., van Swede, V., Tolido, R.: The Design, Development
and Deployment of ICT Systems in the 21st Century: Integrated Architecture Framework
(IAF). Cap Gemini Ernst and Young (2000)

25. Aerts, A.T.M., Goossenaerts, J.B.M., Hammer, D.K., Wortmann, J.C.: Architectures in
context: On the evolution of business, application software, and ICT platform
architectures. Information and Management 41, N°(6), 781–794 (2004)

26. Wieringa, R.J., Blanken, H.M., Fokkinga, M.M., Grefen, P.W.P.J.: Aligning application
architecture to the business context, CAiSE03, Austria, pp.209–225 (2003)

27. Bodhuin, T., Esposito, R., Pacelli, C., Tortorella, M.: Impact Analysis for Supporting the
Co-Evolution of Business Processes and Supporting Software Systems. BPMDS04, Latvia

28. Arsanjani, A., Alpigini, J.: Using Grammar-oriented Object Design to Seamlessly Map
Business Models to Component-based Software Architectures. Int. Symposium of
Modelling and Simulation, USA, pp.186–191 (2001)

29. Giaglis, G.M.: On the Integrated Design and Evaluation of Business Processes and
Information Systems. Communications of the AIS, Vol 2, N°5, July (1999)

30. Kardasis, P., Loucopoulos, P.: Aligning Legacy Information Systems to Business
Processes, CAiSE98, Italy, pp. 25-40 (1998)

31. Salinesi, C., Rolland, C.: Fitting Business Models to Systems Functionality Exploring the
Fitness Relationship. CAiSE03, Austria (2003)

32. Zachman, J.A.: A framework for Information Systems architecture. IBM Systems
Journal 26, N°(3), 276–292 (1987)

33. Longépé, C.: The Enterprise Architecture IT Project: The Urbanisation Paradigm. Elsevier
Health Sciences, New York (2005)

34. Etien, A., Rolland, C.: A Process for Generating Fitness Measures, CAISE05, pp. 277–
292. Springer, Portugal (2005)

35. Wegmann, A., Regev, R., Loison, B.: Business and IT Alignment with SEAM, REBNITA,
RE05, France (2005)

36. Soffer, P.: Fit Measurement: How to Distinguish Between Fit and Misfit, note for
BPMDS’04, Latvia (2004

Towards a Framework for Tracking Legal

Compliance in Healthcare

Sepideh Ghanavati, Daniel Amyot, and Liam Peyton

SITE, University of Ottawa, Canada
{sghanava,damyot,lpeyton}@site.uottawa.ca

Abstract. Hospitals strive to improve the quality of the healthcare they
provide. To achieve this, they require access to health data. These data
are sensitive since they contain personal information. Governments have
legislation to ensure that privacy is respected and hospitals must comply
with it. Unfortunately, most of the procedures meant to control access to
health information remain paper-based, making it difficult to trace. In
this paper, we introduce a framework based on the User Requirements
Notation that models the business processes of a hospital and links them
with legislation such as the Ontario Personal Health Information Privacy
Act (PHIPA). We analyze different types of links, their functionality,
and usefulness in complying with privacy law. This framework will help
health information custodians track compliance and indicate how their
business processes can be improved.

Keywords: Business Process, Compliance, Health Information Custo-
dian, Privacy Legislation, Requirements Engineering.

1 Introduction

Hospitals strive to improve the quality of the healthcare they provide. To achieve
this, they require access to health data. These data are sensitive since they
contain personal information. Disclosing this information accidentally, may affect
negatively the individual’s life. To prevent such situations, governments have
established legislation to ensure that patient privacy is respected and hospitals,
as health information custodians, must comply with it. For example, the Personal
Health Information Privacy Act (PHIPA) protects electronic patient information
from being disclosed to unauthorized third-parties in the Canadian province
of Ontario [1]. Our objective is to provide health information custodians with
tools that will allow them to protect patient data and track their compliance to
legislation like PHIPA.

This paper describes a requirement management framework which connects
privacy laws to business processes and helps health information custodians to
ensure their business processes comply with these laws. This framework has
been developed iteratively based on a case study. This framework uses the User
Requirements Notation (URN) [2,3] to model both the business processes of a
health information custodian and the applicable privacy legislation. Links are

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 218–232, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Towards a Framework for Tracking Legal Compliance in Healthcare 219

created between the two models to track the custodian’s compliance to the law.
To provide this traceability, we use a commercial requirements management sys-
tem (Telelogic DOORS) [4] combined with an Eclipse-based URN modeling tool
(jUCMNav) [5]. With these tools we are able to specify a variety of link types
that connect the two models, each providing a different function. For instance,
traceability links are used to handle compliance with the non-functional require-
ments defined in legal documents while compliance links are used to handle
exceptions and constraints. Using these link types, we are able to find missing
goals, special constraints, and discrepancies in the responsibilities of the various
entities involved in a case study of The Ottawa Hospital (TOH).

Our technical framework will enable health information custodians to evaluate
their business processes in terms of their compliance with privacy legislation. It
will also allow them to make decisions about how they will remain compliant as
business processes and legislation evolve over time.

2 Background and Related Work

2.1 Personal Health Information Privacy Act (PHIPA)

PHIPA [1] is legislation specific to healthcare in the Canadian province of On-
tario within the framework of the federal Personal Information Protection and
Electronic Documents (PIPEDA) act [6]. PIPEDA has been recognized by the
European Commission as being compliant with the European Union’s Data Pro-
tection [7]. In the United States, there is similar legislation for healthcare in the
form of the Health Insurance Portability and Accountability Act (HIPAA) [8].

PHIPA is divided into seven parts with a total of 75 sections. It establishes
a set of rules pertaining to the collection, use, and disclosure of personal health
information with the goal of protecting the privacy of the individual (e.g., the
patient). These rules specify that health information custodians (e.g., hospitals)
obtain data with consent; that they use it only for the purposes stated; and
that they do not disclose the data without the consent of the individual. The
health information custodian must also provide the individual with access to
his/her data with the capability to amend it if desired. Individuals must also
be allowed an avenue for an independent review with respect to the handling of
their personal information and remedies must be provided if it is deemed that
the information was handled inappropriately.

2.2 User Requirements Notation (URN)

The User Requirements Notation is a draft ITU-T standard that combines goals
and scenarios in order to help capture, model, and analyze user requirements in
the early stages of development [2]. It can be applied to describe most kinds of
reactive and distributed systems as well as business processes.

URN is composed of two complementary notations: Goal-oriented Require-
ment Language (GRL) and Use Case Maps (UCM) [9]. These notations to-
gether connect goals and business processes. GRL models business objectives,

220 S. Ghanavati, D. Amyot, and L. Peyton

rationales, tradeoffs, and non-functional aspects (the “why” aspects) while UCM
focuses more on architectures and functional or operational aspects of business
processes (the “who”, “what”, “where”, and “when” aspects).

GRL combines a subset of the Non-Functional Requirements (NFR) [10] and
the i∗ [11] frameworks. The main concepts (e.g., actors, intentional elements,
and links) are borrowed from i∗ supplemented with the NFR framework’s eval-
uation mechanism (i.e., qualitative labels associated to lower-level intentional
elements used to compute the satisfaction degree of high-level intentional ele-
ments.) GRL’s intentional elements include goals, softgoals (which can never be
fully satisfied), and tasks (solutions). Such elements can contribute positively
or negatively to each other and be decomposed in an AND/OR graph. In ad-
dition, they can be allocated to actors, who as a result may have conflicting
concerns. See Figure 1 (left side) for an overview of the main notation elements
and Figure 3 for an example.

Fig. 1. Main elements of the GRL and UCM notations

The UCM notation is used to model related scenarios and use cases. As il-
lustrated in Figure 1 (right side) and in Figure 4, scenario paths connect start
points (preconditions and triggering events), end points (post-conditions and
resulting events), and responsibilities. Responsibilities indicate where actions,
transformations, or processing is required. They can be performed in sequence,
concurrently, or as alternatives.

Complex scenario maps can be decomposed using path elements called stubs.
Sub-maps in stubs are called plug-in maps. Stubs have identified input and out-
put segments that can be connected to the start points and end points in the
plug-in, hence ensuring scenario continuity across various levels of details. Dy-
namic stubs are used to specify alternative maps in the same location. The path
elements (and especially responsibilities) can be allocated to components, which
can represent actors, roles, software modules, sub-systems, etc. Components can
also be decomposed recursively with sub-components.

2.3 URN for BPM and Requirements Management

Business Process Modeling (BPM) is used by an organization to represent its
current and planned business processes as a basis for improving the mechanisms

Towards a Framework for Tracking Legal Compliance in Healthcare 221

used to achieve business goals while taking into consideration the interests of
the various stakeholders [12,13]. In [3], the authors illustrate how URN can be
effective in modeling business processes and goals while including stakeholders
in the modeling process. GRL helps to model the risks and benefits for different
alternative business processes as well as the dependencies between participants,
and allow refinements of business goals into high-level tasks and/or low-level
UCM responsibilities, scenarios, and plug-ins.

In [5,14], the authors have introduced a metamodel which defines URN models
and combines them with external requirements documents in a Requirement
Management System (RMS), namely Telelogic DOORS. We reuse and extend
this approach to implement a generic framework to track compliance between
two URN document-based models.

2.4 Related Work

Darimont et al. describe an approach where one of the main goal-oriented re-
quirements engineering methodologies (called KAOS) is used to model regula-
tions [15]. They explain how to incrementally transform regulation documents
into three models for goals, objects, and threats while maintaining a level of
traceability from the source document to the models. This method, however,
does not combine the three models into one integrated model. The integration
of the models would help exploit traceability in a more effective manner. A mod-
eling language such as URN has the capacity to represent high-level goals, actors,
and tasks (activities) in one model. It employs different strategies to illustrate
conflicting intentions and their impact on the main high-level objectives and
scenarios of the system.

He et al. introduce the Requirement-based Access Control Analysis and Policy
Specification (ReCAPS) method [16], which integrates components of access con-
trol analysis, improves software quality, and ensures policy- and requirements-
compliant systems. It emphasizes traceability and compliance between different
policy levels, requirements, and system designs. ReCAPS includes a set of process
descriptions and heuristics to help analysts derive and specify access control poli-
cies (ACPs) and establish traceability from source documents to these ACPs.
This approach is presented in the context of the software development process
and thus applies less generally than what we propose in this paper. Our method
provides traceability for a compliance mechanism between business processes
and legal documents, with consideration for how they evolve.

In [17], the authors apply goal-based modelling on the implementation of a
financial system to ensure that it complies with Basel II regulations. In this
method, the organization and its business processes are divided with respect to
different organizational layers. The objectives, strategies, policies, and indicators
(based on the definition of a goal model) are defined for each layer and provide
a structure for the design of a regulation-compliant financial system. However,
this method does not provide a traceability mechanism that highlights situations
of non-compliance for the goals and business processes of the organization.

222 S. Ghanavati, D. Amyot, and L. Peyton

3 Compliance Framework

The framework we introduce here demonstrates how compliance can be tracked
by defining and managing external links between two models: a model of the
health information custodian’s policies and business processes in terms of GRL
and UCM notations, and a model of privacy legislation in terms of GRL notation.

As shown on the left-hand side of Figure 2, we use GRL to capture the policies
of a health information custodian and UCM to represent the business processes
that implement them. The figure further serves to illustrate the types of links
that connect the different levels of the health information custodian model. We
identify two types of links, namely:

– Source Links : These are the links between actual policies and procedure
definitions in the original textual documents and the hospital GRL or UCM
model elements.

– Responsibility Links : Each GRL element can be linked to one or more UCM
elements. Softgoals and goals can be linked to maps of the UCM business
processes that realize them while tasks and actors can be linked to UCM
elements like responsibilities and agents.

On the right-hand side of Figure 2, we show how GRL is used to model
privacy legislation in terms of softgoals, goals, tasks and actors. Since privacy
legislation usually includes few or no operational procedures, it is usually not
worth investing in UCM models for such legislation. The only link type here is:

– Source Links : Similar to source links for the health information custodian,
these are the links between the actual legislative documents and the privacy
legislation GRL elements.

After developing the health information custodian model and the privacy leg-
islation model, we can establish links between them. Since we have two dif-
ferent ways of representing legal documents (textual document format, and

Fig. 2. Modeling compliance of health information custodian to privacy legislation

Towards a Framework for Tracking Legal Compliance in Healthcare 223

GRL model), we can construct different sets of links from these representations
between the health information custodian and privacy legislation. These links
can be added depending on the functionality desired. The links defined in our
framework are shown in Figure 2:

1. Traceability Links: between health information custodian GRL elements and
privacy legislation GRL elements (softgoals, goals, tasks, and actors).

2. Compliance Links : between health information custodian GRL elements and
the actual text of the law and legislative documents.

3. Responsibility Links : between health information custodian UCM elements
and privacy legislation GRL elements.

These links can be used to highlight the difference between what is imple-
mented in business processes and what is required by privacy legislation. Miss-
ing and unnecessary elements in the business processes can be addressed and
compliance can be tracked and managed.

4 Application to a Teaching Hospital and PHIPA

In our example, we study the business process that is in place to control access to
a major teaching hospital’s data warehouse in Ontario. This hospital is interested
in improving the effectiveness and the efficiency of its healthcare and its support
of health services research. Its plan for achieving these goals includes making its
data more readily accessible to its stakeholders, including doctors, researchers,
other hospitals, and patients. However, due to the existence of legislation pro-
tecting the use of health information, the hospital has established policies and
heavy procedures to control the access to the data warehouse. Anyone requesting
access to the data warehouse must follow this process.

4.1 Hospital Model

The hospital GRL model was derived from the hospital’s data warehouse poli-
cies and guidelines document [18]. The process that controls access to the data

Fig. 3. Partial hospital’s GRL model

224 S. Ghanavati, D. Amyot, and L. Peyton

Fig. 4. Partial hospital’s UCM model

warehouse is modeled with the UCM notation. We then used jUCMNav to cre-
ate the GRL and UCM elements as well as the links between them. jUCMNav
is an open source Eclipse-based graphical editor and analysis tool for the User
Requirements Notation [5].

The hospital must ensure that stakeholders get the required information while
protecting the privacy, confidentiality, and security of health data. Therefore, the
partial GRL diagram of Figure 3 contains a softgoal called Protect Privacy, Con-
fidentiality and Security of Hospital Data. Other goals contribute positively to this
objective, such as Ensure Accountability of Data User, Prevent Unauthorized Use
and Disclosure and Patient Determination on Access to His Data. In addition, this
GRL diagram allocates the general goals and concerns to their respective actors:
Research Ethic Board (REB), Data Warehouse Administrator (DW Admin), and
Privacy Officer (CPO). GRL tasks are used to operationalize the parent softgoals
or goals and they can correspond to responsibilities in the UCM model.

This GRL diagram illustrates some of the necessary business process scenarios
and some of the activities required in the corresponding UCMs. To model how the

Towards a Framework for Tracking Legal Compliance in Healthcare 225

goal Prevent Unauthorized Use and Disclosure would be operationalized, we built
a top-level UCM diagram (Figure 4(a)) and six sub-maps. This diagram shows
how a researcher who needs personal health information (PHI) interacts with
the hospital. This map contains Request for PHI and Review Request sub-maps,
also shown in the figure. The Review Request sub-map also includes three stubs
containing a Privacy Officer Review sub-map (CPO Review), a Research Ethics
Board Approval sub-map (REBApproval), and a Review Request Technically
sub-map (technicalReview).

Each part of these UCM diagrams potentially corresponds to a GRL element.
Therefore, there are some links between them, i.e., responsibility links. Some of
the links can be created manually inside jUCMNav (indicated by a � triangle next
to the label). In this example, we created links between GRL actors and UCM
components, and between GRL tasks and UCM responsibilities. In Figure 4(c),
the link labeled privacyOfficer:Hospital is a link from a UCM component to the
GRL actor CPO in Figure 3. Also, UCM responsibility checkForContentFeasibility
is linked to GRL task Check Type of Requested Data in Figure 3.

4.2 Privacy Legislation Model

The relevant sections of the PHIPA legislation were also modeled with URN.
Figure 5 shows a partial GRL diagram that highlights PHIPA’s major softgoal:
Satisfy Privacy Regulations and Protect Confidentiality. This softgoal has many
other softgoals, not shown here, that contribute to its satisfaction. Such softgoals
can be broken down into goals such as Limiting the Collection of Data, Limiting
the Use of Data, Secure Transfer, and Limiting the Disclosure of Data.

This GRL diagram also contains tasks that operationalize several goals. For
example, for the goal Limiting the Disclosure of Data, four tasks have to be per-
formed. One of them (Ask for REB Approval) is also decomposed into Check
for Adequate Safeguards and Check Ethical Issues in Research Plan subtasks ([1],
Chapter 3, Schedule A, s.44).

4.3 Model Linking

The dependencies and links that exist between PHIPA documentation, hospital
documentation, GRL elements, and UCM elements were managed using Telelogic
DOORS [4]. DOORS is used to collect, organize, and link requirements in a
database as well as to trace, analyze, and manage changes to information in order
to ensure compliance to the specified requirements and standards. jUCMNav
has a filter that can be used to export GRL and UCM elements to DOORS
(including internal links) so that they can be maintained [5,14]. In DOORS, we
establish links between the PHIPA and hospital models and look for situations
of non-compliance or any areas that require modification. In addition, we test
the different types of links (described in the previous section) and determine
which ones are best in terms of functionality, precision, quantity of manual links,
difficulty, and completeness. A portion of the framework, along with its defined
links, is illustrated in Figure 6. This figure provides a high-level overview of what

226 S. Ghanavati, D. Amyot, and L. Peyton

Fig. 5. Partial PHIPA GRL model

exists in DOORS and describes the different types of links that exist between
elements of the hospital and PHIPA models.

After establishing manual and automatic links in DOORS, we analyze each
type of link to find potential non-compliance issues. Figure 7 shows a partial
overview of traceability links as they exist between the hospital GRL elements
and the PHIPA GRL elements. For example, there is a link between softgoals
Protect Privacy and Confidentiality of Hospital Data and Satisfy Privacy Regulations
and Protect Confidentiality. We also find links between tasks Get to an Agreement
with Data User and Ask for Compliance Agreement as well as between actors
REB and REB Committee. These links illustrate that the hospital is trying to be
compliant with PHIPA.

On the other hand, by studying these traceability links, it is obvious that there
are some elements in PHIPA which do not have any corresponding element in
the hospital model. For example, the PHIPA goal Secure Transfer is not linked
to any task or goal at the hospital. This is however of critical importance to the
hospital. It shows that the hospital may not comply with PHIPA thoroughly.
As a result, the hospital may need to add this goal or a task to its model and
ensure that processes are implemented to support it.

Moreover, a more detailed analysis of these links reveals further areas of po-
tential non-compliance. From Figure 7, we can identify that there are some tasks,
which are currently performed by a specific actor in the hospital model which
have to be done by a different actor in the PHIPA model. For example, the
task Check for Adequate Safeguards is handled by the REB committee but at the
hospital the Data Warehouse Administrator is in charge of it. These discrepancies

Towards a Framework for Tracking Legal Compliance in Healthcare 227

DW Administrator: TOH

in1 verifyFeasibility checkTechnicalCompetency checkSafeguards

deliverData

Reject

Approved

rejectRequest

keepRecord[Infeasible]

[Feasible]

[NotAcceptable]

grantingAccess

[Acceptable]

givePaperRecord

giveUserID&Password

giveFile

keepRecord

determineDeliveryMethod

Satisfy Privacy
Regulations

Protect
Confidentiality

Prevent Unautho-
rized Disclosure

Ask for
Compliance
Agreement

Check
Research

Plan

Check
Adequate

Safeguards

Check
Ethical
Issues

HIC

And

And

Ask for
REB

Approval

REB Committee

Limit Disclosure
of Data

Satisfy Privacy
Regulations

Satisfy Privacy
Regulations

Protect
Confidentiality

Protect
Confidentiality

Prevent Unautho-
rized Disclosure

Prevent Unautho-
rized Disclosure

Ask for
Compliance
Agreement

Ask for
Compliance
Agreement

Check
Research

Plan

Check
Research

Plan

Check
Adequate

Safeguards

Check
Adequate

Safeguards

Check
Ethical
Issues

Check
Ethical
Issues

HIC

And

And

Ask for
REB

Approval

Ask for
REB

Approval

REB Committee

Limit Disclosure
of Data

Limit Disclosure
of Data

Protect Privacy and
Confidentiality of

Hospital Data

Protect Privacy and
Confidentiality of

Hospital Data

Prevent
Unauthorized Use

and Disclosure

Prevent
Unauthorized Use

and Disclosure

Ensure
Accountability
of Data User

Ensure
Accountability
of Data User

Check
Ethical
Issues

Check
Ethical
Issues

Get to An
Agreement

with Data User

Get to An
Agreement

with Data User

Review User’s
Technical

Competency

Review User’s
Technical

Competency

Check with Privacy
and Confidentiality

Legislations

Check with Privacy
and Confidentiality

Legislations

Check
Users

Safeguards

Check
Users

Safeguards

DW Administrator

REB Privacy Officer

Hospital Policy Document

- All requests for data from data warehouse
will be evaluated based on technical
feasibility, data availability, resource
availability and REB approval for research.

-Policy 2…

PHIPA Document
-HIC: Person or organization who has custody of PHI.
- A research plan must be in writing and must set out,

(a) the affiliation of each person involved in the
research

(b) the nature and objectives of the research and the
public or scientific benefit of the research that the
researcher anticipates;

…

so
ur
ce

so
ur
ce

so
ur
ce

resp

traces

complies

re
sp

resp

resp

Fig. 6. Example of privacy compliance links in the hospital model

may lead to changes in the hospital model and clarification of the processes that
implement the tasks.

The next links established are compliance links as they exist between the
hospital GRL elements and the PHIPA document. This link set illustrates the
details of PHIPA, the exceptions, and certain definitions that cannot be modeled
using URN. An example is the goal Prevent Unauthorized Disclosure, for which the
REB needs to check the ethical issues of the request. In PHIPA such a request is

Fig. 7. Link set between hospital GRL and PHIPA GRL models

228 S. Ghanavati, D. Amyot, and L. Peyton

DW Administrator: Hospital

in1 verifyFeasibility checkTechnicalCompetency checkSafeguards

deliverData

Reject

Approved

rejectRequest

keepRecord[Infeasible]

[Feasible]

[NotAcceptable]

grantingAccess

[Acceptable]

givePaperRecord

giveUserID&Password

giveFile

keepRecord

determineDeliveryMethod

Satisfy Privacy
Regulations

Satisfy Privacy
Regulations

Protect
Confidentiality

Protect
Confidentiality

Prevent Unautho-
rized Disclosure

Prevent Unautho-
rized Disclosure

Ask for
Compliance
Agreement

Ask for
Compliance
Agreement

Check
Research

Plan

Check
Research

Plan

Check
Adequate

Safeguards

Check
Adequate

Safeguards

Check
Ethical
Issues

Check
Ethical
Issues

HIC

And

And

Ask for
REB

Approval

Ask for
REB

Approval

REB Committee

Limit Disclosure
of Data

Limit Disclosure
of Data

resp

resp

Non-Compliance!

Fig. 8. Link set between hospital UCM and PHIPA GRL models

called the “Research Plan” and it has some requirements that cannot be defined
with softgoals, goals, or tasks. In PHIPA, Chapter 3, Schedule A, s.44 (2), it
is written that “A research plan must be in writing and must set out, (a) the
affiliation of each person involved in the research, (b) the nature and objectives of
the research and the public or scientific benefit of the research that the researcher
anticipates; and (c) all other prescribed matters related to the research.” As a
result the task Check Ethical Issues in the hospital model is linked to this text to
ensure that the research plan satisfies the PHIPA requirements (Figure 6).

The last link set is concerned with responsibility links. These links are created
between responsibilities, components, and maps in the hospital UCM model and
tasks, actors, goals, and softgoals in the PHIPA GRL model. Figure 8 shows
some responsibility links (represent as “resp”) between a UCM (ReviewRequest
Technically map) element and the partial PHIPA GRL model. This link type is
similar to the traceability type in terms of utility.

As explained before, the task Check for Adequate Safeguards should be per-
formed by the Research Ethics Board (REB) according to PHIPA. However, as
seen in Figure 8, the corresponding responsibility checkSafeguards in the map
ReviewRequestTechnically indicates that it is the Data Warehouse Administrator
who is responsible for it. In order to address this example of non-compliance,
the UCM model has to be revised and the checkSafeguards responsibility needs
to be moved to a different part of the process.

5 Analysis

In this section we analyze the four types of links based on the following criteria:
functionality, precision, number of manual links, difficulty, and importance of
completeness.

Traceability Links: This link type is found between the HIC GRL elements and
the privacy legislation GRL elements. It shows what is missing or unnecessary

Towards a Framework for Tracking Legal Compliance in Healthcare 229

in terms of the hospitals’ goals and tasks (and consequently in their processes)
and who is in charge of what activity. A missing softgoal, goal, or task can be
a strong indication that the hospital does not completely comply with the law.
Therefore, this link set is quite precise and it can help hospitals to measure their
compliance very accurately. Traceability links are created manually. However,
establishing this link set is not very difficult since both models are expressed at
the same level of abstraction.

Compliance Links : This set differs from the first one in that instead of using
GRL elements to model the privacy legislation document, we use the document
itself. In practice, this set only contains those links between HIC GRL elements
and the special constraints and exceptions in the text documents that cannot
be modeled in the privacy GRL model. Therefore, this set is very precise and
provides hospitals with additional information in order to define or improve their
processes in terms of legal compliance. Creating this link set manually needs
much effort but the number of manual links is fairly small and most of the links
can be created through jUCMNav’s auto-completion mechanism.

Responsibility Links : The main difference between these links and traceability
links is that the hospital UCM model is linked directly to the privacy legislation
GRL model. This link set is very precise since it includes fine-grained details of
the business processes, so the traceability between processes and privacy legisla-
tion GRL is much easier than with the other links. However, its functionality is
similar to the traceability links. Thus, it is often only necessary to create one of
these two alternatives. In addition, as with traceability links, this link set needs
to be complete and the number of links involved is high. However, most of these
links can be created automatically by transitivity.

We evaluated each of these link sets based on the criteria mentioned above.
Table 1 shows the summary of our analysis. As seen in this table, traceability

Table 1. Evaluation of Different Link Types

Criteria
Links

Traceability Link Compliance Link Responsibility Link

Granularity Softgoals, Goals,
Tasks, and Actors

Legislative Text Responsibilities,
Components (Ac-
tors), Maps (Opera-
tional Processes)

Functionality Handles Traceability
of Non-Functional
Requirements and
Tasks

Handles Exceptions
and Constraints

Handles Traceability
of Business Processes

Quantity of Manual
Links

Many Few Few

Precision Precise Very Precise Very Precise

Difficulty Moderate Difficult Moderate

Importance of Com-
pleteness

Very Important Not Important Very Important

230 S. Ghanavati, D. Amyot, and L. Peyton

and responsibility links are very similar in what they achieve and the amount
of effort required. In particular, they both require complete coverage in order
to be useful. Responsibility links are a bit more specific and precise but there is
much overlap in the content they communicate, namely the mapping of roles and
tasks or actors and processes at the HIC to the GRL elements in the privacy
legislation model. It would only make sense for one or the other of these two
types of links to be used in order to track the legal compliance. Responsibility
links are a bit more specific but either set is adequate for the job.

Finally, if the HIC wants to ensure that their processes comply thoroughly
with the legislation and laws, it would be necessary to use compliance links as
well. These links can be used to highlight exceptions and specific constraints
that are not captured in GRL or UCM models but which are critical for ensur-
ing compliance. They can be difficult and time consuming to define, since they
require direct reference to legal text, but it is only necessary for specific critical
parts of the privacy legislation documents. It is likely that a privacy expert or
a lawyer would highlight relevant HIC document passages that should be linked
to the privacy model.

6 Conclusions

In this paper we have presented a framework that helps health information cus-
todians analyze and improve their business processes in order to comply with
relevant privacy legislation. A case study involving a major teaching hospital
in Ontario and PHIPA privacy legislation was used to illustrate the framework.
The User Requirement Notation (URN) was used to model the goals and busi-
ness processes related to the access of confidential information stored in a data
warehouse. Links were then made between this model and a model of the PHIPA
privacy legislation in a requirements management system (DOORS). Different
types of links were used at different levels and their functionality and accuracy
were analyzed. In doing so, discrepancies were discovered that indicated possi-
ble instances of non-compliance with PHIPA legislation that would need to be
addressed.

Both privacy legislation and the business processes of health information cus-
todians are continually evolving in the face of changing technology and greater
public awareness. Therefore, we will study how changes to a section of legislation
will affect the goals and processes of the organization (and vice-versa) and how
our framework can help guarantee that the processes will still comply with the
legislation.

Finally, modeling legislation is not a new problem and our approach could ben-
efit from recent work in that domain. For instance, Breaux et al. describe how to
apply semantic parameterization to HIPAA privacy rules to extract rights and
obligations from HIPAA text [19]. This approach could facilitate the extraction of
our privacy GRL goal model. We also expect to extract generic goal and scenario
models for privacy laws that could be used as patterns to kick start this process
in multiple environments (PHIPA, HIPPA, PIPEDA, U.S. Sarbanes-Oxley Act,

Towards a Framework for Tracking Legal Compliance in Healthcare 231

etc.), as was done for the software architecture domain [20]. In addition, in the
privacy domain, GRL models could benefit from the privacy goal catalogues and
patterns suggested in [21], which also focus on the Canadian healthcare sector.
This work could accelerate the creation of the models and help determine suitable
operationalizations that must be found in the related business processes. More-
over, in terms of transforming privacy policies into business process, Antón et al.
provide a taxonomy for classifying privacy goals, and examining privacy policies
in order to extract system requirements using goal-mining techniques [22]. In
other words, they introduce a set of guidelines for requirement engineers and
policy makers to follow when they analyze and evaluate privacy policies.

Acknowledgments. This work was supported by the Ontario Research Net-
work for Electronic Commerce. We thank Jason Kealey and Jean-François Roy
for their help with jUCMNav and Alan Forster for his insights into hospital
processes. Telelogic provided us with the latest release of DOORS.

References

1. Government of Ontario: Personal health information protection act (2004) (Ac-
cessed March 2007)
http://www.e-laws.gov.on.ca/DBLaws/Statutes/English/04p03 e.htm

2. ITU-T: User Requirements Notation (URN) – language requirements and frame-
work. ITU-T Recommendation Z.150. Geneva (February 2003)

3. Weiss, M., Amyot, D.: Business process modeling with URN. International Journal
of E-Business Research 1(3), 63–90 (2005)

4. Telelogic AB: Doors. (Accessed March 2007)
http://www.telelogic.com/products/doors/doors/

5. Roy, J.F., Kealey, J., Amyot, D.: Towards integrated tool support for the User Re-
quirements Notation. In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS, vol. 4320,
pp. 198–215. Springer, Heidelberg (2006)

6. Government of Canada: Health information custodians in the province of Ontario
exemption order. (Accessed March 2007)
http://canadagazette.gc.ca/partII/2005/20051214/html/sor399-e.html

7. European Union: Directive on privacy and electronic communication (2002)
(Accessed March 2007) http://eur-lex.europa.eu/LexUriServ/site/en/oj/
2002/l 201/l 20120020731 en00370047.pdf

8. US Dept. of Health and Human Services: Medical privacy - national standards
to protect the privacy of personal health information. (Accessed March 2007)
http://www.hhs.gov/ocr/hipaa/

9. Amyot, D.: Introduction to the User Requirements Notation: learning by example.
Computer Networks 42(3), 285–301 (2003)

10. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Formalizing Functional Require-
ments in Software Engineering. Kluwer Academic, Dordrecht, USA (2000)

11. Yu, E.: Towards modelling and reasoning support for early-phase requirements
engineering. In: RE’97. Proc. 3rd IEEE Int. Symp. on Requirements Engineering,
pp. 226–235. IEEE Computer Society Press, Los Alamitos (1997)

http://www.e-laws.gov.on.ca/DBLaws/Statutes/English/04p03_e.htm
http://www.telelogic.com/products/doors/doors/
http://canadagazette.gc.ca/partII/2005/20051214/html/sor399-e.html
http://eur-lex.europa.eu/LexUriServ/site/en/oj/2002/l_201/l_20120020731 en00370047.pdf
http://eur-lex.europa.eu/LexUriServ/site/en/oj/2002/l_201/l_20120020731 en00370047.pdf
http://www.hhs.gov/ocr/hipaa/

232 S. Ghanavati, D. Amyot, and L. Peyton

12. Caetano, A., Silva, A.R., Tribolet, J.: Using roles and business objects to model
and understand business processes. In: SAC 2005. LNCS, ACM Press, New York,
USA (2005)

13. Staccini, P., Joubert, M., Quaranta, J.F., Fieschi, D., Fieschi, M.: Modelling health-
care processes for eliciting user requirements: a way to link a quality paradigm
and clinical information system design. International Journal of Medical Informat-
ics 64(2-3), 129–142 (2001)

14. Kealey, J., Kim, Y., Amyot, D., Mussbacher, G.: Integrating an Eclipse-based
scenario modeling environment with a requirements management system. In:
CCECE06: IEEE Canadian Conf. on Electrical and Computer Engineering,
Ottawa, Canada, pp.2432–2435 (2006)

15. Darimont, R., Lemoine, M.: Goal-oriented analysis of regulations. In: REMO2V06:
Int. Workshop on Regulations Modelling and their Verification & Validation, Lux-
emburg June 2006 (2006)

16. He, Q., Otto, P., Antón, A.I., Jones, L.: Ensuring compliance between policies,
requirements and software design: A case study. In: WIA 2006. Fourth IEEE Int.
Workshop on Information Assurance, pp. 79–92. IEEE Computer Society Press,
Washington, USA (2006)

17. Rifaut, A., Feltus, C.: Improving operational risk management systems by formal-
izing the Basel II regulation with goal models and the ISO/IEC 15504 approach.
In: REMO2V06: Int. Workshop on Regulations Modelling and their Verification &
Validation, Luxemburg (2006)

18. Fairfield, D.: The Ottawa Hospital data warehouse - governance and operation
procedures - phase 1 research. Technical report, The Ottawa Hospital (2004)

19. Breaux, T.D., Vail, M.W., Antón, A.I.: Towards regulatory compliance: Extracting
rights and obligations to align requirements with regulations. In: RE’06: Proc. 14th
Int. Conf. on Requirements Engineering, pp. 46–55. IEEE Computer Society Press,
Washington, USA (2006)

20. Amyot, D., Mussbacher, G., Weiss, M.: Formalizing patterns with the User Re-
quirements Notation. In: Taibi, T. (ed.) Design Pattern Formalization Techniques,
Idea Group Publishing, Hershey, USA (2007)

21. Webster, I., Ivanova, V., Cysneiros, L.M.: Reusable knowledge for achieving pri-
vacy: A canadian health information technologies perspective. In: WER’05: Work-
shop em Engenharia de Requisitos, pp. 112–122 (2005)

22. Antón, A.I., Earp, J.B., Reese, A.: Analyzing website privacy requirements us-
ing a privacy goal taxonomy. In: RE’02: Proc. 10th Int. Conf. on Requirements
Engineering, pp. 23–31. IEEE Computer Society Press, Washington, USA (2002)

Conceptual Modeling of Privacy-Aware

Web Service Protocols

Rachid Hamadi, Hye-Young Paik, and Boualem Benatallah

School of Computer Science and Engineering
The University of New South Wales, Sydney NSW 2052, Australia

{rhamadi,hpaik,boualem}@cse.unsw.edu.au

Abstract. Internet users are becoming increasingly concerned about
their personal information being collected and used by Web ser-
vice providers. Since the privacy policies are mainly developed and
maintained separately from the business process that collects and
manipulates data, it is hard to perform analysis and management
of the processes in terms of privacy policies. We propose a formal
technique with which Web service providers describe the use and
storage of requesters’ personal data. The description is integrated with
a Web service protocol using an extended state machine model. Having
such a conceptual model will enable model-driven development and
management of Web service protocols with respect to their privacy
aspects such as collection, disclosure, and obligation.

Keywords: Web services, privacy policies, conceptual modeling.

1 Introduction

More and more Internet users are concerned about their personal information.
The fact that modern business applications are extremely complex and often
involve interactions with many other autonomous and heterogeneous partner
systems makes the task of preserving privacy more complicated.

Web services are emerging as a promising technology for the effective automa-
tion of inter-organizational interactions [1]. Despite their growing popularity, the
development of technologies addressing privacy issues in Web services has not
kept the same pace. For example, the customers of Amazon.com use a uniform
interface provided by the company, however, the actual processing of an order,
delivery, analysis of sales data, and personalised services may involve passing
the customer’s personal data to third parties (e.g., the individual second-hand
booksellers). In the midst of these business operations, it is not clear where and
how the statements in the privacy policies apply to the activities and whether
they will be enforced or not.

One of the problems is that there is no proper modelling technique for captur-
ing the privacy aspects for a Web service. That is, no current Web service mod-
elling technologies offer a simple way to state a privacy requirement (e.g., “The

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 233–248, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

234 R. Hamadi, H.-Y. Paik, and B. Benatallah

intended recipient of this message is a delivery service and the data should be
removed after the delivery is completed”) in a Web service model.

So far, online companies have dealt with privacy issues largely by publish-
ing privacy policies. Privacy policies describe the organisation’s general business
practices based on the criteria set by government rules and regulations. How-
ever, they do not discuss the behaviour of individual business applications within
the organisation that actually collect, analyse, and distribute personal data. This
makes the enforcement of the policies difficult. We argue that a model-driven ap-
proach, where privacy policies are modelled explicitly as part of the Web service
behaviour, can contribute to making the privacy policies explicit and enforce-
able. Having such a conceptual model will enable model-driven development and
management of Web service protocols with respect to their privacy policies.

In this paper, we propose a Web service modeling technique purposely de-
signed to capture privacy abstractions while describing the behaviour of a Web
service. We use Web service protocols [2,3] to represent the way Web services
interact with others. Our contributions are as follows:

• We identify common privacy abstractions in Web service protocols by study-
ing publicly available privacy policies in Web portals.

• We propose an extended state machine as a conceptual model that incor-
porates the privacy abstractions into a Web service protocol model. In the
model, we introduce the concept of states with multiple privacy properties
and reflect the consequence of a state transition in terms of privacy proper-
ties such as access, disclosure and retention.

This paper is organized as follows. Section 2 introduces privacy and the re-
lated terminology. Section 3 discusses the privacy policies in Web services and
gives some observations. Section 4 introduces the proposed conceptual model.
Section 5 describes the tool supporting the model proposed as well as the appli-
cation of privacy-aware Web service protocols. Finally, Sect. 6 reviews related
work and concludes the paper.

2 Overview of Privacy Policies

Before we discuss the modelling of privacy in Web services, we first introduce
the main issues and terminology in privacy policies in general.

What kind of privacy aspects are addressed or declared in a privacy policy may
be different depending on the rules and regulations. However, studying privacy
policies of the online companies tells us that there are some standard elements
that commonly appear in all privacy policies. In the following, we summarise the
gist of privacy policies.

Personal data. This identifies personal data collected by a Web site. The state-
ments may differentiate information collected expectedly (e.g., user account
registration and payment account information) and automatically such as
cookies. It may also declare information collected from other sources (e.g.,
credit history from credit bureaus).

Conceptual Modeling of Privacy-Aware Web Service Protocols 235

Purpose. This states the purpose of using the personal data. The statement
may not refer to the specific data and we may only see generic purposes such
as “to fulfill your request” or “to customise advertising”.

Recipient. This identifies the recipient(s) of the personal data. Unless stated
otherwise, the intended recipient of the data is the organisation itself.

Disclosure. This declares any business partners that may share the data.
Data retention. This states how long the collected data are retained by the or-

ganisation. More than often, data may be retained indefinitely, unless stated
otherwise.

Access to data. Some of the retained personal data can be accessed by the
owner for correction or update purposes. It is noted that, as explained, the
term “Access to data” refers to the right of the data owner to access her/his
personal data after it is collected. It does not refer to access by third parties.

Opt in/out. A company may provide services that users can choose to receive
or not to receive. This feature of privacy policy is often referred to by the
research community as user consent management.

Although majority of the publicly accessible privacy policies are written in
plain English, there are standard languages designed for encoding the various
aspects of privacy policies such as P3P (Platform for Privacy Preferences) [4]
which is designed for Web site operators and EPAL (Enterprise Privacy Autho-
rization Language) [5] which is designed for inter-organisational privacy policies.

Our work does not make any assumption about the choice of the language in
which the policies are written. They could be in plain English or in one of the
standard languages. What we would like to focus on is to encode such policies into
Web service modelling process. If the policies are written in a standard language
(e.g., P3P), of course, some of the encoding process can be done automatically
by “reading” in the policies into the tool we provide.

3 Web Services and Privacy Policies

The model we use to describe the behaviour of a Web service is based on the
concept of “Web service protocol” [2,3]. A Web service protocol model is under-
stood as the set of acceptable message exchanges and the order in which they
should occur when interacting with the service. In the model, a Web service
protocol is described by a set of states and transitions. States are labeled with a
logical name, such as Logged or Ordered. Transitions are labeled by either input
or output messages (or service operations), i.e., messages sent by the requester
(input) or by the provider (output). We use the notation m(+) (respectively,
m(-)) to denote an input (respectively, an output) message.

In our previous work, we observed that there are cases in which transitions
occur without an explicit invocation by requesters [2,3]. We refer to them as
implicit transitions. The majority of implicit transitions are due to timing issues
(i.e., deadline expirations). To characterise this observation, we use timed tran-
sitions. We will use the term timed Web service protocol (or protocol for short) to

236 R. Hamadi, H.-Y. Paik, and B. Benatallah

denote a Web service protocol whose definition contains timed transitions. We
also use the term protocol schema to denote the specification of a protocol, while
the term protocol instance will refer to an individual execution of a protocol
between a service provider and a service requester.

3.1 A Running Example: Snowy.com

We have constructed a running example which is largely based on the behaviour
of the Amazon.com Web site and its privacy policy [6]. We have simplified and
modified the actual behaviour and policy to make it easier to illustrate our
approach throughout the paper. We named the fictitious book-selling company
Snowy.com.

Canceled
Purchase

CancelableOrdered

Delivery
Requested

Shipped

Logged

Selection
Book

T1: Login(+)

T2: SearchBook(+)

T4: SearchBook(+)

T5:RemoveFromCart(+)

T3:AddToCart(+)

T6:OrderBook(+)

Start

Legend:
Explicit Transition

Implicit Transition

Initial State

Final State

T7:CancelPurchase(+)T8

2 days

T9:RequestDelivery(−)

T10:ShipBook(−)

Fig. 1. The behaviour of Snowy.com as a timed Web service protocol

The Scenario. Figure 1 presents an example of a protocol schema. According
to the model, once the user is logged in, s/he can search books, add/remove
books to/from a shopping cart and order the books. Once the user has ordered
the books, s/he will have two days to cancel the order. Otherwise, the ordered
books are shipped, which completes the scenario. Note that T8 is a timed (i.e.,
implicit) transition.

Let us assume that Snowy.com has the following key elements in its privacy
policy. For ease of understanding, we use plain English to specify the policies
instead of P3P or other language:

As a result of actions such as OrderBook, you supply us with name, address,
phone numbers, and credit card number which we expectedly collect. Some
data may be collected automatically such as login id, password, your order
history, and products you added/removed to/from your shopping cart.

We share your name, address, and phone numbers with our delivery service
partners. This enables us to update your delivery status in a prompt manner.

Conceptual Modeling of Privacy-Aware Web Service Protocols 237

We use your personnel information for purposes such as responding to your
requests, customizing future shopping for you, and improving our stores. We also
use your order history data in our market analysis.

We retain the collected data for the following periods: the shopping
cart history data for 6 months, login data for 2 months, and order detail for
3 months. However, it is assured that in case you cancel your order, we delete
the order detail from your order history immediately. As long as the data are
retained with us, you will be able to access the following data through our
user management system: login id, password, payment information, and or-
der history.

Applying the Policies to the Scenario. Although studies suggest that people
feel more comfortable with the Web sites that have privacy policies, only a small
number of people actually read them [7]. Even if one fully understands the
policies, it will not be easy to be on alert for every step of the way while s/he
interacts with a Web site.

According to the policies above, when a customer visits the Web site, quite a
lot of data about her/him are collected through automatic means. For example,
let us consider when and how the policies should apply to Joe (the customer)
when he interacts with Snowy.com. We will examine some of the transitions and
see whether any part of the privacy policies are relevant to them.

The first transition is via T1:Login which carries a message that is likely to
contain login id and password of Joe. A statement in the policies says login id and
password are collected. It is reasonable to think that the purpose of collecting
the data is to process Joe’s login request. Once Joe is logged in, he may try
to search some books (T2:SearchBook). The message should contain the search
terms. We do not see any claim in the policy about collecting search terms, so
transition T2 seems to bear no privacy concern.

However, data associated with activities such as adding/removing an item
to/from the shopping cart are collected. This means the data involved in T3 and
T5 will be retained by the company and, according to the policy, they will be
used for “possibly” purposes such as responding to your requests, customizing
future shopping for you, and improving our stores.

The statement also claims that in the case of cancellation, the order details
will be deleted from Joe’s order history. That is, an obligation for the company is
to make sure that the data are not retained after cancellation. If Joe places any
order and receives the goods, he should be able to access the details of the order
through the user management system, as the policy states. Also, the collected
data are retained for three months.

3.2 Discussions and Observations

In this section, we discuss the main lessons learned during the analysis of privacy
policies and Web portals.

238 R. Hamadi, H.-Y. Paik, and B. Benatallah

Privacy statements need to have clear semantics. Although policies in-
clude the standard elements that are required by the rules and regulations, it is
often difficult to extract information about a particular action (i.e., a transition
in a protocol schema) due to informality of the language used. For the policies
to be enforceable, we need to be explicit about the identification of data and
purpose of using them. This information should be explicitly expressed in the
model without ambiguity.

Explicit transitions and their privacy implication. Most transitions
between states occur due to explicit operation invocations (i.e., message ex-
changes). We refer to these transitions as “explicit” transitions. We showed in
the running example that some transitions in a protocol schema may have asso-
ciated privacy aspects which are identified from the privacy policies. We argue
that for such transitions, one should consider any privacy implications generated
by them. For example, a privacy implication of the transitions T2:SearchBook
or T3:AddToCart is that after they are fired, some personal data are collected;
or a consequence of firing T9:RequestDelivery is that some personal data will
be disclosed to a third-party service (i.e., the delivery service). The proposed
model should be able to express these implications.

Obligations. Some of the privacy implications could mean more than collection
or disclosure of personal data. They may lead to an action that the organisa-
tion is obligated to implement. Consider two of the privacy elements discussed
in Sect. 2: data retention and access to data. First, the organisation must im-
plement an action that will remove the data from their system to honour the
data retention obligation. For example, when T7:CancelPurchase is fired, the
privacy implication is (according to the policy) that the data collected during
T6:OrderBook (i.e., order history) should be deleted immediately. Second, ac-
cess to data ensures that the personal data owner can check and verify that the
data are up-to-date. This means that the organisation is obligated to provide a
user interface and operations for the users to access/update their personal data.
For example, T6:OrderBook will collect payment information and order history.
The privacy implication is that the data should be viewable by the owner. The
proposed model should be able to express these obligations.

4 Conceptual Modelling of Privacy-Aware Web Service
Protocols

In this section, we introduce the proposed conceptual model for privacy-aware
Web service protocols. The proposed model will allow service providers to de-
scribe the use and storage of requesters’ personal data. The description is inte-
grated with a Web service protocol using an extended state machine model. We
use state machines although other analogous models are possible.

To cater for privacy policies, states (and consequently transitions) are ex-
tended beyond the traditional timed state machine model [3]. We generalize the

Conceptual Modeling of Privacy-Aware Web Service Protocols 239

T1: Login(+)

T2: SearchBook(+)

T4: SearchBook(+)

T3:AddToCart(+)

Start

2 days

T8

Logged

Selection
Book

Cancelable
Purchase

Ordered Canceled

Requested
Delivery

Shipped

C1 A1 R1

C1,2,3 A1,2 R1,2,3

C1,2 A1 R1,2

C1,2,3 A1,2 R1,2,3

C1,2,3 A1,2 R1,2,3 D1

C1,2,3 A1,2 R1,2,3 T7:CancelPurchase(+) C1,2,3 A1,2 R1,2,4

6 months
0, 3 months,

2 months, 3 months,
6 months

T9:RequestDelivery(−)
T10:ShipBook(−)

T5:RemoveFromCart(+)

T6:OrderBook(+)

T11

T12

C

Legend:

D

A

R

Collection

Disclosure

Access

Retention

Fig. 2. The augmented protocol of Snowy.com with privacy properties

approach by enabling the association of several privacy properties with states to
characterize when a privacy property enforcement should occur and what are its
implications (e.g., destroy information when retention period expires). Having
such a conceptual model will enable analysis of privacy aspects such as data
collection, disclosure, access, and retention.

Figure 2 represents Snowy.com of Fig. 1 as an extended state machine aug-
mented with privacy properties. Some extra implicit transitions, as they are not
caused by explicit operation invocations, are added. They represent the implica-
tion of data retention, that is, deleting the collected data when their retention
period is expired. The symbol Ci (respectively, Di, Ai, and Ri), i ∈ N

+, within
states means Collection (respectively, Disclosure, Access, and Retention) privacy
property.

4.1 States with Multiple Privacy Properties

In this section, we will describe the states of our privacy-aware protocol model.
We discuss a list of privacy properties that can be used to capture privacy
policies described in Sect. 2. These privacy properties consist of an initial set of
privacy abstractions that are commonly needed in practical situations, namely
collection, disclosure, and obligation privacy properties. The model is extensible
in the sense that other privacy properties may be defined and used.

The conceptual model shown in Fig. 3 represents a UML static model for
the different components that constitute the privacy properties of a state. Each
privacy property is described using a set of attributes. The model is also open
to the extension of the definitions of privacy properties by adding new domain-
specific attributes. The remainder of this section gives details about the identified
state privacy properties, namely collection, disclosure, and obligation.

240 R. Hamadi, H.-Y. Paik, and B. Benatallah

Domain Specific Extensions
Recipient
Purpose

 Name
 Type

Domain Specific Extensions
Partner

Name

Data

 Type
Transition

Data
Transition

NameName

Period
Domain Specific Extensions

Period
Domain Specific Extensions

 Type

Transition

Domain Specific Extensions
Data

 Name

 Disclosure

 Collection

Composition

Aggregation

Legend:

0..n 0..n
 Obligation

0..10..1

 Access Retention

0..n

State

Fig. 3. UML conceptual model for privacy properties

Collection Privacy Property. In the extended state machine model, besides
the fact that a state has a name, a collection privacy property expresses that data
(or group of data) have been collected by the service provider when invoking an
operation such as T6:OrderBook (see Fig. 2). More precisely, it specifies that
the data are either automatically or expectedly collected. Hence the collection
type is either automatic (Type="automatic") or expected (Type="expected").
The attribute Transition is the name of the triggered transition. The attribute
Data specifies the data or group of data collected, Purpose specifies the purpose
of the data, and Recipient expresses the recipient of the data. It is important to
note that the collection privacy property will be carried over by the subsequent
states until the collected data are deleted (see obligation privacy property below).
In this case, if there are n collection privacy properties C1,C2,..,Cn within a
state, they will be represented as C1,2,..,n.

We use XPath [8] to express queries and conditions since privacy-aware pro-
tocol objects and requester profiles are represented using XML.

Let us consider the description of the collection privacy property C1 (respec-
tively, C3) of the state Logged (respectively, PurchaseCancelable) (see Fig. 2).
The following XML codes represent the description of the collection privacy
properties C1 and C3:

<state name="Logged">
<collection name="C1", type="automatic", transition="T1",

data="/user[@login_data]", Purpose="", Recipient=""/>
</state>
<state name="PurchaseCancelable">

<collection name="C3, "type="expected", transition="T6",
data="/user[@order_data]", Purpose="", Recipient=""/>

</state>

Disclosure Privacy Property. The disclosure privacy property of a state S
declares that data (or group of data) are shared with service partners when

Conceptual Modeling of Privacy-Aware Web Service Protocols 241

invoking an operation that leads to S. Similarly to collection privacy property,
this privacy property specifies that the data are either automatically or expect-
edly disclosed. The other attributes of this property are the disclosure privacy
property name (Name), the name of the triggered transition (Transition), the
data disclosed (Data), and the service partner to which the data have been dis-
closed (Partner). Since the disclosure privacy property has no implications, it
will not be carried over by the subsequent states. The only purpose is to annotate
the states in which data have been disclosed.

The following XML code represents the description of the disclosure privacy
property D1 of the state DeliveryRequested (see Fig. 2):

<state name="DeliveryRequested">
<disclosure name="D1", type="expected", transition="T9",

data="/user[@delivery_data]", partner="Delivery Service Partner"/>
</state>

Obligation Privacy Property. This privacy property models data retention
and data access. We distinguish the following types of the obligation privacy
property:

• Access to denote that some collected personal data are accessible by its owner
for a specific period of time or indefinitely. We use Ai, i ∈ N

+, to annotate
this type of obligation privacy property.

• Retention to denote that certain requester’s collected data are retained for
a specific period of time or indefinitely. We use Ri, i ∈ N

+, to annotate this
type of obligation privacy property.

The obligation attribute Type indicates whether some collected data are re-
tained (Type="R"), can be accessed (Type="A"), or both (type="mixed"). The
other attributes of this property are data accessed and/or retained (Data), the
name of the triggered transition (Transition), the obligation privacy property
name (Name), and the period of time the data are accessed or retained (Period).
The implications of this property are the implicit transitions Access and/or
Retention.

When an obligation privacy property contains an Access transition as impli-
cation, that is when Type="A" or Type="mixed", the privacy property will be
carried over by the subsequent states until the expiration of the access period. A
state S carrying an Ai, i ∈ N

+, annotation expresses that an implicit transition,
for which S is both source and target state, is created. This means certain per-
sonal data are accessible by the requester from S. The time associated with this
implicit transition is equal to Period the first time Ai appears and will decrease
in subsequent states as the execution of the business process progresses. For clar-
ity of presentation, we omitted the representation of these implicit transitions
in Fig. 2.

When an obligation privacy property contains a Retention transition as im-
plication, that is when Type="R" or Type="mixed", the privacy property will be
carried over by the subsequent states until the expiration of the retention period.

242 R. Hamadi, H.-Y. Paik, and B. Benatallah

A state S carrying an Ri, i ∈ N
+, annotation expresses that an implicit transi-

tion is created for each final state F of the extended state machine for which F is
both source and target state. The time associated with these implicit transitions
is equal to Period the first time Ri appears and will decrease as the execution
of the business process progresses. When the retention period expires, the cor-
responding retained data will be deleted (and its annotation removed from the
final state).

The definition of temporal constraints uses XPath[8] time functions (e.g.,
current-time()). The following XML code represents the description of the
obligation privacy property R2 of the state BookSelection (see Fig. 2):

<state name="BookSelection">
<obligation type="R", data="/user[@cart_data]", transition="T3">
<retention name="R2", period="6 months"/>

</obligation>
</state>

The obligation privacy property R2 specifies that the data will be removed
after a period of six months according to the associated Retention transition.
But there is no Access transition associated with it.

The following XML code represents the description of the obligation privacy
properties A2 and R3 of the state PurchaseCancelable (see Fig. 2):

<state name="PurchaseCancelable">
<obligation type="mixed", data="/user[@order_data]", transition="T6">
<access name="A2", period="3 months"/>
<retention name="R3", period="3 months"/>

</obligation>
</state>

This obligation privacy property contains an Access transition A2 as implica-
tion which states that requesters are allowed to access their personal data. This
access data privacy property will be carried over by the subsequent states.

Finally, the following XML code represents the description of the obligation
privacy properties R4 of the state Canceled (see Fig. 2):

<state name="Canceled">
<obligation type="R", data="/user[@order_data]", transition="T7">
<retention name="R4", period="0"/>

</obligation>
</state>

The obligation privacy property R4 expresses that the order data collected
by the service provider must be deleted immediately if the requester cancels
her/his purchase of the books. This will override the obligation privacy property
R3 which states that the same order data will be deleted after three months.
Hence, R3 will not be carried over from the state PurchaseCancelable to the
state Canceled but instead will be replaced by R4.

Conceptual Modeling of Privacy-Aware Web Service Protocols 243

4.2 Privacy-Aware Protocol Formal Model

Formally, a timed Web service protocol can be modelled as a finite state machine
as follows:

Definition 1 (Timed Web Service Protocol).
A Timed Web Service Protocol is a tuple P = (S, O, T, s0, �) where:

– S is a finite set of states,
– O is a set of operation names,
– T ⊆ S × (O ∪ {(ε, t) | t ∈ R

+}) × S is a finite set of transitions. Implicit
transitions will be given the empty operation name ε and a time t ∈ R

+,
– s0 ∈ S is the initial state of P,
– � : S → SN is a naming function where SN is a set of state names. �

The state machine of Snowy.com timed Web service protocol (see Fig. 1) is
defined as P = (S, O, T, s0, �) where:

– S = {s1, ..., s8},
– T = {t1, ..., t10},
– t1 = (s1, Login, s2), t2 = (s2, SearchBook, s3),

t3 = (s3, AddToCart, s3), t4 = (s3, SearchBook, s3),
t5 = (s3, RemoveFromCart, s3), t6 = (s3, OrderBook, s4),
t7 = (s4, CancelPurchase, s5), t8 = (s4, (ε, 2 days), s6),
t9 = (s6, RequestDelivery, s7), and t10 = (s7, ShipBook, s8),

– s0 = s1,
– �={(s1, Start), (s2, Logged), (s3, BookSelection), (s4, PurchaseCancelable),

(s5, Canceled), (s6, Ordered), (s7, DeliveryRequested), (s8, Shipped)}.

The multiple privacy properties of a state are formally defined as follows:

Definition 2 (State Privacy Properties).
Let Col (respectively, Dis and Obl) be a set of all Collection (respectively,
Disclosure and Obligation) privacy properties. Given a Web Service Protocol
P = (S, O, T, s0, �). The privacy properties of a state s ∈ S are defined as a
triple (C, D, O) where:

– C ∈ P(Col) denotes the set of collection privacy properties, each with:
• Name is the name of the collection privacy property,
• Type ∈ {expected, automatic} denotes the collection type,
• Transition is the triggered transition,
• Data are the data or group of data collected,
• Purpose specifies the purpose of the data, and
• Recipient is the recipient of the data.

– D ∈ P(Dis) denotes the set of disclosure privacy properties, each with:
• Name is the name of the disclosure privacy property,
• Type ∈ {expected, automatic} denotes the disclosure type,
• Transition is the triggered transition,
• Data are the data or group of data disclosed, and
• Partner is the service partner to which the data have been disclosed.

244 R. Hamadi, H.-Y. Paik, and B. Benatallah

– O ∈ P(Obl) denotes the set of obligation privacy properties, each with:
• Type ∈ {A, R, mixed} denotes the disclosure type which can be A (Ac-

cess), R (Retention), or mixed meaning both Access and Retention,
• Transition is the triggered transition,
• Data are the data accessed and/or retained,
• Access = (Name, Period) specifies the implication of the access data

obligation privacy property where:
– Name is the name of the access obligation privacy property,
– Period is the period of time the collected data are accessed,

• Retained = (Name, Period) specifies the implication of the retention
obligation privacy property where:
– Name is the name of the retention obligation privacy property, and
– Period is the period of time the collected data are retained. �

The extended state machine that models the privacy-aware Web service protocol
is defined as follows:

Definition 3 (Privacy-Aware Service Protocol).
A Privacy-Aware Service Protocol is a tuple PP = (S, O, T, P, s0, �) where:

– S is a finite set of states,
– O is a set of operation names,
– T ⊆ S × (O ∪ {(ε, t) | t ∈ R

+}) × S is a finite set of transitions. Implicit
transitions will be given the empty operation name ε and a time t ∈ R

+,
– P : S → P(Col) × P(Dis) × P(Obl) is the state privacy property function,
– s0 ∈ S is the initial state of PP,
– � : S → SN is a naming function where SN is a set of state names. �

Having such a formal model will help, for instance, in replaceability analysis
which is concerned with verifying whether two privacy-aware protocols, e.g., of
two different service providers, are equivalent. That is, if they can support the
same set of privacy policies. Replaceability analysis also involves finding the
subset of privacy policies that both Web services can support if they are not
equivalent.

5 Tool Support and Application of Privacy-Aware Web
Service Protocols

In this section, we present the implementation of the tool supporting the model
proposed as well as possible applications of privacy-aware Web service protocols.

To simplify the entire service development and management lifecycle, we need
to consider the following [9]:

(1) Models and languages. Users should have at their disposal protocol models
that are easy to understand and use. The key is to include frequently needed pri-
vacy aspects, but avoid overloading the model with too many features. Another

Conceptual Modeling of Privacy-Aware Web Service Protocols 245

Fig. 4. Privacy-aware service protocol editor as part of ServiceMosaic

important aspect is that the privacy-aware protocol model should be formal
enough to allow automated analysis and code generation.

(2) Tools. In the end what users really need and work with are tools. Hence,
models and languages need also to be developed by considering how tools can
leverage the concepts to provide concrete benefits to developers.

We have developed a privacy-aware Web service protocol tool to facilitate the
creation, management, and analysis of privacy-aware Web service protocols. It
is implemented as part of the ServiceMosaic model-driven framework for Web
services lifecycle management. A description of ServiceMosaic framework can
be found in [10]. The privacy-aware Web service protocol tool assists designers
creating privacy-aware protocol definitions. A privacy-aware protocol definition
is edited through a visual interface (see Fig. 4), and translated into an XML
document. The visual interface offers an editor for describing an extended state
machine diagram of a privacy-aware protocol. It also provides means to describe
the privacy properties of states.

Our future objectives of this research is to provide developers with a privacy-
aware Web service development environment. We are currently considering the
following applications of our privacy-aware Web service protocol model:

246 R. Hamadi, H.-Y. Paik, and B. Benatallah

• Automated code generation. Privacy-aware protocols can support Web
service implementation by enabling the automated generation of code skele-
tons. They can also be leveraged to verify whether an existing service im-
plementation can support the privacy-aware protocol as declared.

• Automated exception handling. Privacy-aware protocol specifications
enable the development of generic tools that read protocol specifications and
verify at runtime that the interaction is occurring in compliance with the
specification, raising an exception otherwise (e.g., returning a fault message
when an “illegal” use of personal data is detected).

• Development-time analysis. During service development, protocols of
clients and providers can be analyzed to identify which part of the protocols
are compatible with respect to privacy policies, therefore suggesting possible
areas of modifications to increase the level of compatibility with a desired
service.

• Auditing and compliance. A privacy audit has the objective of discover-
ing whether records of personal information are being maintained in accor-
dance with the service provider’s privacy policies. Having a formal model will
help in developing an auditing framework. Furthermore, privacy-aware proto-
cols analysis and management provide opportunities to understand whether
the service is compliant with certain organisations’ privacy policies or guide-
lines.

• Change management. Web services operate autonomously within poten-
tially dynamic environments. As a result, their privacy policies may evolve,
e.g., because of changes to laws and regulations and changing business strate-
gies. Consequently, services may fail to invoke required operations when
needed.

6 Related Work and Conclusions

Although many research projects are looking into various aspects of privacy and
computing, to the best of our knowledge, there is no other work done in terms
of embedding privacy concerns during the modelling of Web services. However,
there are some alternative approaches which are discussed here.

For example, [11] suggested the Integrated Privacy View system, in which
privacy policy “anchors” are attached to each element of the HTML Forms.
The anchors are used to link each Form element to the relevant part of P3P
statements and to visualise them. This helps users easily identify how and where
privacy policies apply to the Web site. However, the approach is ad-hoc in nature
and involves augmenting the HTML code. Also, it is limited to HTML pages
which do not represent business processes. Our approach deals with Web service
protocols that depict business processes. Therefore, it is possible to formally
analyse any conflicts and violation that might occur during the execution of the
process.

There are database-centric approaches. The concept of Hippocratic databases
is introduced in [12]. The core idea is to protect access to the personal data inside

Conceptual Modeling of Privacy-Aware Web Service Protocols 247

databases using SQL rewriting to include privacy policy evaluation. [13] presents
another approach to authorised privacy data access in Web services. The actual
prevention of inappropriate disclosure happens at the database component of the
architecture via query rewriting. Similar to the database-centric approach, [14]
proposed a framework that adds privacy enforcement to existing applications.
The work considers the entire lifecycle of personal data (i.e., collection, use,
disclosure and deletion) by attaching a policy statement, that needs to be tracked
and enforced, to the data. The drawback of these approaches is that they focus on
the database level (relational databases in particular). We believe that a higher-
level view (i.e., business process and orchestration) consideration is required
to cater for the privacy concerns that may span across different systems and
different types of data repositories.

A model-driven approach described in [15] is developed for security applica-
tions. From UML models, suitable access control infrastructures for server-based
applications are derived. Although the privacy aspects are not discussed in their
work, similar principles can apply to build privacy enforcement mechanisms with
proper consideration for the privacy concerns we discussed.

To conclude, we proposed a conceptual model for privacy-aware Web service
protocols. The description of the use and storage of personal data is integrated
with a Web service protocol using an extended state machine model. This concep-
tual model enables model-driven development and management of Web service
protocols with respect to their privacy aspects such as data collection, disclo-
sure, access, and retention. A tool support has been implemented, as part of
ServiceMosaic, to let designers model privacy aspects within the Web service
protocol. Currently, we are further extending our prototype to include support
for automatic BPEL [16] skeleton code generation. As future work, we will add
a provision for analysis of conflicts between Web service protocols in terms of
privacy policies and storage and analysis of personal data usage logs for auditing
purpose.

References

1. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Un-
raveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI.
IEEE Internet Computing 6(2), 86–93 (2002)

2. Benatallah, B., Casati, F., Toumani, F., Hamadi, R.: Conceptual Modeling of Web
Service Conversations. In: Proc. of the 15th Int. Conf. on Advanced Information
Systems Engineering, CAiSE 2003, LNCS, vol. 2681, pp. 449–467. Springer, Hei-
delberg (2003)

3. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: On Temporal Abstractions of
Web Service Protocols. In: CAiSE’05 Short Paper Proceedings, Porto, Portugal
(2005)

4. Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M., Reagle, J.: The
Platform for Privacy Preferences 1.0 (P3P1.0) Specification. W3C Recommenda-
tion (2002)

248 R. Hamadi, H.-Y. Paik, and B. Benatallah

5. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise Privacy
Authorization Language (EPAL 1.1) Specification. IBM Research Report. (2003)
http://www.zurich.ibm.com/security/enterprise-privacy/epal

6. Amazon.com: Amazon.com Privacy Notice. (2006)
http://www.amazon.com/gp/help/customer/display.html?nodeId=468496

7. Cranor, L.F.: Web Privacy with P3P. O’Reilly (2002)
8. Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0. (1999)

http://www.w3.org/TR/xpath
9. Benatallah, B., Casati, F., Toumani, F.: Representing, Analysing and Managing

Web Service Protocols. Data and Knowledge Engineering 58(3), 327–357 (2006)
10. Benatallah, B., Casati, F., Toumani, F., Ponge, J., Motahari Nezhad, H.: Service

Mosaic: A Model-Driven Framework for Web Services Life-Cycle Management.
IEEE Internet Computing 10(4), 55–63 (2006)

11. Levy, S., Gutwin, C.: Improving Understanding of Website Privacy Policies with
Fine-Grained Policy Anchors. In: Proc. of the 14th Int. World Wide Web Confer-
ence, Chiba, Japan, pp. 480–488. ACM, New York (2005)

12. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic Databases. In: Proc. of
the 28th Int. Conf. on Very Large Data Bases, pp. 143–154. Morgan Kaufmann,
Washington (2002)

13. Rezgui, A., Ouzzani, M., Bouguettaya, A., Medjahed, B.: Preserving Privacy in
Web Services. In: Proc. of the 4th Int. Workshop on Web Information and Data
Management, Virginia, USA, pp. 56–62. ACM, New York (2002)

14. Berghe, C.V., Schunter, M.: Privacy Injector - Automated Privacy Enforcement
Through Aspects. In: Proc. of 6th Workshop on Privacy Enhancing Technologies.
pp. 99–117 (2006)

15. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: From UML to access
control infrastructures. ACM Trans. Soft. Eng. Methodol. 15(1), 39–91 (2006)

16. Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Thatte, S., Weer-
awarana, S.: Business Process Execution Language for Web Services (BPEL4WS).
(2002) http://dev2dev.bea.com/techtrack/BPEL4WS.jsp

http://www.zurich.ibm.com/security/enterprise-privacy/epal
http://www.amazon.com/gp/help/customer/display.html?nodeId=468496
http://www.w3.org/TR/xpath
http://dev2dev.bea.com/techtrack/BPEL4WS.jsp

Policies for Context-Driven Transactional Web Services

Zakaria Maamar1, Nanjangud C. Narendra2, Djamal Benslimane3,
and Sattanathan Subramanian4

1 Zayed University, U.A.E
zakaria.maamar@zu.ac.ae
2 IBM India Research Lab, India
narendra@in.ibm.com

3 Claude Bernard University, Lyon, France
djamal.benslimane@liris.cnrs.fr

4 IMRU-FUNDP, University of Namur, Belgium
subramanian.sattanathan@fundp.ac.be

Abstract. This paper presents an approach that uses policies to manage context-
driven transactional Web services. Context feeds policies with details on Web
services like current status, which permits aligning the behavior of these Web
services to the transactional properties they need to satisfy. Context refers here to
any information on the interactions a Web service initiates with peers and exter-
nal environment. Three types of transactional properties are used namely pivot,
compensatable, and retriable. Each property satisfaction calls for a set of policies
that are specified with a policy language like WSPL. This paper also presents
the adaptation strategy that supports developing context-driven transactional Web
services. A prototype that implements this strategy is discussed in the paper, too.

Keywords: Adaptation, Context, Policy, Transaction, Web service.

1 Introduction

For the W3C, a Web service ”is a software application identified by a URI, whose in-
terfaces and binding are capable of being defined, described, and discovered by XML
artifacts and supports direct interactions with other software applications using XML-
based messages via Internet-based applications”. Though this definition highlights the
potential and multiple uses of Web services, it does not stress the obstacles that hinder
Web services execution and the way these obstacles could be first, identified prior to
execution and second, overcome as part of the exception handling strategy. Guidelines
backing the correct execution of a Web service need to be stated and checked prior ex-
ecution. To this end we suggest mapping these guidelines onto transactional properties
to be associated with a Web service. The role of a transactional property is to define the
acceptable behavior of a Web service. For example the failure of a Web service could be
tolerated in one scenario but not in another one. Different transactional properties are
reported in literature and different specifications exist (e.g., Web Services Transaction1,
Web Services Transaction Management2). In this paper the focus is on pivot, retriable,

1 dev2dev.bea.com/pub/a/2004/01/ws-transaction.html
2 developers.sun.com/techtopics/webservices/wscaf/wstxm.pdf

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 249–263, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

250 Z. Maamar et al.

and compensatable transactional properties. A Web service is defined as retriable if it
can be retried one or more times after failure. A Web service is defined as compen-
satable if it offers mechanisms to undo its effects. Finally, a Web service is defined as
pivot if once it successfully completes, its effects remain unchanged for ever and cannot
be semantically undone. Additionally, a pivot Web service cannot be retried following
failure, and thus, will need to be aborted.

Exceptions altering a Web service’s behavior need to be monitored so, appropri-
ate corrective actions for satisfying the transactional properties of this Web service are
taken. We propose to run the monitoring operation upon a structure, which receives,
refines, and stores the necessary information for this operation. We refer to this struc-
ture as context. Context ”... is not simply the state of a predefined environment with a
fixed set of interaction resources. It is part of a process of interacting with an ever-
changing environment composed of reconfigurable, migratory, distributed, and multi-
scale resources” [5]. In this paper, context not only supports the operation of monitor-
ing a Web service execution, but supports also a Web service in making decisions based
on the status of the surrounding environment [8]. The environment could be related to
users (e.g., stationary user, mobile user), computing resources (e.g., fixed device, hand-
held device), time of day (e.g., in the afternoon, in the morning), physical locations
(e.g., shopping center, movie theater), etc.

Satisfying the transactional properties of a Web service happens through mecha-
nisms, which we specify and implement as policies. In [7], we used policies to support
the behavior flexibility of a Web service, so this latter can align its capabilities to users’
requirements and resources’ constraints. In this paper we motivate behavior flexibility
because of the multiple execution situations a Web service encounters. Indeed a Web
service has to consider its internal execution status, has to know how to perform excep-
tion handling in case it gets disrupted, etc. In this paper as well, policies not only permit
checking the satisfaction of the transactional properties of a Web service, but permit
also a clear separation between the functionality of a Web service and the different
cases that make up the acceptable behavior of a Web service.

In this paper we discuss our approach for using policies to develop context-driven
transactional Web services. Context feeds policies with details required for their execu-
tion prior to claiming the satisfaction of the transactional property of a Web service in
that specific context. Section 2 presents an illustrative scenario and some related works.
Section 3 discusses the approach to develop context-driven transactional Web services
using policies. Section 4 presents the adaptation strategy that accommodates these Web
services’ features and requirements. Prior to concluding and highlighting future work
in Section 6, prototype of the approach is presented in Section 5.

2 Background

Illustrative scenario. It is about Amin who travels to Trondheim in Norway to meet
his friend Melissa. One day they agree to meet in a coffee shop, not far from Melissa’s
office. Amin has two options to reach the meeting place: by taxi or by bus. A speci-
fication of Amin scenario using state chart diagrams and service chart diagrams [9] is
illustrated with Fig. 1. The component Web services of this specification are: trip (TP),

Policies for Context-Driven Transactional Web Services 251

SCD-BS-WS
(Bus Schedule)SCD-LO-WS

(LOcation)

SCD-IT-WS
(ITinerary)

SCD-WE-WS
(WEather)

SCD-TA-WS
(TAxi)

SCD-TC-WS
(TraffiC)

ye
s

no

[confirmed (bad weather)]

(SCD: Service Chart Diagram, WS: Web Service, : Abortion dependency)

Fig. 1. Specification of Amin scenario

weather (WE), location (LO), taxi (TA), bus schedule (BS), and traffic (TC). Amin sce-
nario specification could be done with BPEL for example, without any changes in the
various policies and strategies that will be defined later.

At his hotel, Amin browses some Web sites about transportation in Trondheim. A
site has Itinerary WS that proposes routes between two specific places like Amin’s hotel
and the coffee shop. The proposed routes are subject to weather forecasts: cold weather
results in recommending taxis, otherwise public transportation like tramways and buses
are recommended. Parallel to checking weather forecasts with Weather WS, Itinerary
WS requests details about the origin and destination places using Location WS. Amin
appreciates using Location WS as he is not familiar with the city.

In case Weather WS forecasts bad weather, a taxi booking is made using Taxi WS
upon Amin’s approval. Otherwise, i.e., pleasant day, Amin uses public transportation.
The location of both Amin’s hotel and coffee shop are submitted to Bus Schedule WS,
which returns for example the bus numbers Amin has to take. Potential traffic jams
force Bus Schedule WS to regularly interact with Traffic WS that monitors the status
of the traffic network. This status is fed into Bus Schedule WS so adjustments to bus
numbers and correspondences between buses can occur.

From a transactional perspective the designer of Amin scenario needs to pay atten-
tion among other things to (i) the Web services that are critical to the successful com-
pleteness of this scenario, (ii) the failure details that hinder Web services execution, and
(iii) how much these failures impact Web services’ and composite Web service’s com-
pleteness. Hereafter, we list some cases the designer will look into: (i) ensure that either
Taxi WS or Bus Schedule WS completes their execution; (ii) ensure that Weather WS
successfully completes its execution; and (iii) compensate Taxi WS in case the meeting
is canceled so the taxi booking is canceled, too.

Related Work. Compared to traditional transactions that comply with the Atomicity,
Consistency, Isolation, and Durability (ACID) model, Verma and Deswal discuss the
non-suitability of this model for Web services because of the following reasons [14]:
transactions may be of a long duration (sometimes lasting hours, days, or more), par-
ticipants may not allow their resources to be locked for long durations, some of the
ACID properties are not mandatory, a transaction may succeed even if only some of
the participants choose to confirm and others choose to cancel, transactions that have to
be rolled back have the concept of compensation, etc. Interesting to emphasize here the
overall success of a transaction despite the failure of some of this transaction’s portions.

252 Z. Maamar et al.

Bhiri et al. propose a transactional approach to guarantee the failure atomicity of
a composite Web service [4]. They use the accepted termination states property as a
means for guaranteeing this atomicity. The correctness criterion associated with a com-
posite Web service execution varies from one designer to another. Bhiri et al. claim that
this criterion defines the transactional behavior of a composite Web service. This be-
havior needs to be consistent with the transactional properties that are associated with
the component Web services of this composite Web service.

For Younas et al., specifications and protocols developed for Web services trans-
actions such as WS-Transactions, OASIS Business Transaction Protocol (BTP), and
Business Transaction Framework are mainly based on the database transaction models
such as ACID and extended/advanced transaction models [15]. Although these specifi-
cations and protocols have been useful in various domains, they are inappropriate for
long running business activities like the ones involving Web services. Younas et al. sug-
gest a new set of transactional properties that are specifically devoted to Web services
namely Semantic Atomicity, Consistency, Resiliency, and Durability (SACReD) and
are extensively explained in [16]. For instance, semantic atomicity allows the unilateral
commit of component service transactions regardless of the commits of their sibling
component service transactions.

Pires et al. discuss how to build reliable Web services compositions [10]. Unlike
components in traditional business processes, the building task of these compositions
is much more difficult due to Web services heterogeneity and autonomy. To face both
obstacles, Pires et al. suggest WebTransact framework, which is implemented with
a multi-layered architecture associated with an XML-based language named Web Ser-
vices Transaction Language (WSTL) and a transaction model. Some components that
populate this architecture include composite mediator services and remote services.

An interesting perspective on exception handling during process activity failures is
built upon forward recovery strategies. This is reported in [3] where Bassil et al. claim
that not all failures can be dealt with using roll-back mechanisms such as undoing or
compensating activities. Examples of such failures include an already accomplished
surgery or a vehicle transporting containers that breaks down. Bassil et al.’s solution
suggests a set of factors that may influence the right choice of a forward recovery solu-
tion. Two of these factors include knowing the current data context of a failed activity
and knowing how far process execution has progressed.

3 Context and Transactional Web Services

3.1 Design and Operation

Achieving transactional Web services using the information that context provides led
us to identify the following four levels: composition, component, instance, and state
([9] explains how these levels get deployed). The composition level shows the com-
posite Web services that are developed according to users’ needs. The component level
shows the Web services that providers develop and advertise so, users’ needs are sat-
isfied. The participation of Web services in composite Web services occurs thanks to
the instance level [9]. This level shows the Web service instances that are created upon
composition participation acceptance. Finally the state level shows the behavior of a

Policies for Context-Driven Transactional Web Services 253

Web service instance using an UML state chart diagram. Each level is associated with
a specific type of context: C-context for Composite Web service, W-context for Web
service, I-context for Web service Instance, and S-context for State chart diagram
of a Web service instance. The W-context of a Web service returns information on
the participations of this Web service in different compositions. These participations
happen according to the Web services instantiation principle [9]. The C-context of a
composite Web service is built upon the W-contexts of its component Web services
and permits overseeing the progress of a composition. The I-context of a Web service
instance records the progress of the execution of this instance, including the states it
takes on during execution. Details on the state information of a Web service instance
are later recorded in its S-context. Fig. 2 illustrates our proposed context-driven three-
level approach for transactional Web services. Not represented in this figure are the
composition level and its respective C-context. Interesting to note the S-context of a
state chart diagram. S-context tracks the states that permit claiming the satisfaction of
the transactional properties of a Web service instance. We recall that composite Web
services are made up of Web service instances and not of Web services. In Fig. 2, active
means the state that a Web service instance takes now on. Passive means the opposite.

State chart diagram

W-context

Web service

I -context

Web service
instance 1

Web service
instance 2

I -context

State chart diagram 1 State chart diagram 2

Instantiation

S -context S -context

Legend

Passive state

Active state

Fig. 2. Context-driven approach for transactional Web services

The operation of this approach concerns Web services of type instance. This opera-
tion is about first, context assessment and policy triggering and second, the way context
and policy permit meeting the transactional properties of a Web service instance. In this
paper context assessment is excluded. Initially the designer associates a Web service, to
be deployed later as a Web service instance, with a set of transactional properties like
pivot and compensatable. This association per Web service depends on the business
logic that underpins the composition scenario. As discussed earlier, the failure of a Web
service can be tolerated in one scenario but not in another one.

At run-time, the Web service instance gets triggered according to the specification
of the composite Web service. The Web service instance takes on various states like
activated, failed, and suspended, which form its state chart diagram. This diagram is
context-aware since it has an S-context. As a result tracking the various states that a
Web service instance binds to, is now possible. Fig. 3 shows that the monitoring of a

254 Z. Maamar et al.

Web service
(instance)

3. Execution
output Policy engine

Repository
of policies

2. Triggering

Context
1. Extratction0. Monitoring

Fig. 3. Operation of the approach

Web service instance is continuous so, relevant details are collected and fed into the
context. Additional details are collected as well from the respective contexts of the Web
service and composite Web service. All these details are submitted to the policy engine
that next, consults the repository of policies. Currently we only assume that one policy
executes so conflicts between policies’ outcomes are avoided. Execution means making
the Web service instance transitions to a new state (active as in Fig. 2), which could
allow this Web service instance to satisfy its transactional property. For example if a
Web service instance is declared as pivot, then the various policies have to guarantee
that this Web service instance only gets aborted in case of execution failure, i.e., no
compensation actions are tolerated. We assume in this paper that a Web service does not
take on any state that is not included in the acceptable states of its state chart diagram.

We recall that three types of context were defined: S-context, I-context, and W-
context. For this paper’s requirements the emphasis is on the contexts of state and
Web service instance. Each context type has a set of arguments that permit feeding
the policy engine with the necessary details for triggering the appropriate policies as
depicted in Fig. 3. S-context’s arguments include: StateIdentifier: Identifier of current
state; StateLabel: not-activated, activated, suspended, done, compensated, aborted; Pre-
viousState: name of previous state from which the Web service instance has transitioned
to current state; NextEffectiveState: name of next state that the Web service instance has
effectively transitioned to; TransitionIn: name of transition that permitted transiting the
Web service instance to current state; and TransitionOut: name of transition that permit-
ted transiting the Web service instance to next effective state; I-context’s arguments
include: WSIdentifier: name of Web service instance; CurrentState: not-activated, acti-
vated, suspended, done, compensated, aborted; TransactionalProperty: null, pivot, re-
triable, compensatable; MaximumNumberOfRetries: maximum number of times that
the failed execution is authorized to be retried; and CurrentNumberOfRetries: current
number of times that the Web service instance execution has been retried.

3.2 Transactional Properties and Web Services Modeling

As per Bhiri et al.’s transactional properties namely pivot, compensatable, and retriable
(that could be combined as well) [4], we bind to the same properties. We show in the rest
of this section how a Web service’s behavior is continuously aligned, by using policies,
in order to meet the requirements of its associated transactional property. To represent a
Web service’s behavior we use UML state chart diagram. Since we selected three trans-
actional properties we developed three separate state chart diagrams for clarity reasons.
In addition for each state chart diagram we provide a discussion on the role of context

Policies for Context-Driven Transactional Web Services 255

Not activated ActivatedStart
S -context S -context

Commit Done
S -context

Failure Aborted
S -context

Fig. 4. State chart diagram for a pivot Web service

in feeding the policies with the information that permits achieving the associated trans-
actional property. We recall that the following description applies to Web services of
type instance. For illustration purposes we show how a rule is mapped onto WSPL (its
syntax is based on the OASIS eXtensible Access Control Markup Language) [2]. The
selection of this policy specification language is based on our previous research [7]. In
addition, we only detail the pivot transactional property. Fig. 4 shows the acceptable
state chart diagram of a pivot Web-service. The key state in this diagram is activated
from which the Web service could transition to either done or aborted. We present here-
after the policies that describe the acceptable behavior of a pivot Web service. All the
necessary details for policy specification exist in S/I-contexts.
WS-Pivot.Policydone states that a pivot Web service transitions from activated

state to done state if-and-only-if the transactional property is pivot, the current state is
activated, the previous state is not activated, and the transition name that was success-
fully fired is commit. This policy is shown below in WSPL.

Policy (Aspect="PivotPolicyDone") {
<Rule xmlns="urn:oasis:names:tc:xacml:3.0:generalization:policy:schema:wd:01"
RuleId="PivotPolicyDoneWS">
<Condition>
<Apply FunctionId="and">
<Apply FunctionId="equal" DataType="boolean">
<SubjectAttributeDesignator AttributeId="TransactionalProperty" DataType="string"/>
<AttributeValue DataType="string"/> "pivot" </AttributeValue> </Apply>
<Apply FunctionId="equal" DataType="boolean">
<SubjectAttributeDesignator AttributeId="CurrentState" DataType="string"/>
<AttributeValue DataType="string"/> "activated" </AttributeValue> </Apply>
<Apply FunctionId="equal" DataType="boolean">
<SubjectAttributeDesignator AttributeId="PreviousState" DataType="string"/>
<AttributeValue DataType="string"/> "notactivated" </AttributeValue></Apply>
<Apply FunctionId="equal" DataType="boolean">
<SubjectAttributeDesignator AttributeId="TransitionOut" DataType="string"/>
<AttributeValue DataType="string"/> "commit" </AttributeValue></Apply>

</Apply>
</Condition>
<Conclusions> <TrueConclusion PivotPolicyDone = "Permit"/> </Conclusions>

</Rule>}

WS-Pivot.Policyaborted states that a Web service transitions from activated
state to aborted state if-and-only-if the transactional property is pivot, the current state
is activated, the previous state is not activated, and the transition name that was suc-
cessfully fired is failure.

Similar state chart diagrams and their related policies are defined for the retriable
and compensatable cases. The retriable case will contain an additional Suspended state
between Activated and Aborted states. The compensatable case will extend the retri-
able case with an additional Compensated state between Done and Not-Activated states.

256 Z. Maamar et al.

In addition, the compensatable case will not contain the Aborted state; rather, it will
contain a transition from Suspended to the Compensated state.

We discuss hereafter the dependencies among transactional Web services. In partic-
ular, we comply with the dependencies suggested by Bhiri et al. in [4], namely ac-
tivation, abortion, and compensation. We recall that dependencies become effective
at the Web service instance level. It is expected that the multiple policies that imple-
ment the dependencies will feed also the repository of policies of Fig. 3. Later we will
show how these dependencies are used during adaptation (Section 4). In this paper,
we expose the transactional properties of the peers of a Web service using two argu-
ments available in I-context: TransactionalPropertyPerPreviousWebServiceInstance(s)
and TransactionalPropertyPerNextWebServiceInstance(s). For illustration purposes, we
present only the compensation dependency. There is a compensation dependency from
WSx to WSy if the compensation of WSx fires the compensation of WSy (or abor-
tion of WSy , in case WSy is retriable or pivot). This dependency is reported using
WSx.PolicyCompensation(WSy) and is defined as follows:

If WSx .I-context.CurrentState(Aborted⊕Compensated) &
WSy .I-Context.CurrentState(Done⊕Suspended) &
WSy .S-context.TransitionOut(CompensateAfterCommit⊕AbortAfterFailedRetries)

Then WSy .S-context.NextEffectiveState=Aborted⊕Compensated &
WSy .I-context.CurrentState=WSy.S-Context.NextEffectiveState&
WSy .I-context.CurrentPolicyForNextState=WSx.PolicyCompensation(W Sy)

Note:⊕ stands for exclusive or.

4 Context-Driven Transactional Web Services Adaptation

In this section, we discuss the adaptation of context-driven transactional Web services
during exception handling. Our strategy is to modify the composition specification with
minimal disruption to the previously run or already running Web service instances. An
exception occurs if a Web service instance execution fails due for example to lack of
resources [12]. Exception handling for the Web service instance, called WS.Ifailed,
tightly depends on its transactional property. If it is pivot, then the entire composite
Web service will fail, since the effects of the Web service instance cannot be undone.
If it is retriable or compensatable, its failure needs to be propagated to the affected
Web service instances because of the failure’s side effects. These affected Web service
instances are defined later, but are classified into two types according to their execution
order to WS.Ifailed:

1. Post-affected Web service instances are yet to be performed. This requires a for-
ward adaptation strategy.

2. Pre-affected Web service instances are either concurrently executing (perhaps there
exists an abortion or compensation dependency from WS.Ifailed to some of these
Web service instance) or have already executed. This requires a backward adapta-
tion strategy. This strategy is not discussed in this paper.

4.1 Some Definitions

From now on, we assume that the failed Web service instance WS.Ifailed is either retri-
able or compensatable. Before we describe our forward adaptation strategy, some basic

Policies for Context-Driven Transactional Web Services 257

definitions are needed. We first, assume that the composition specification like the one
in Fig. 1 is mapped onto a graph. The graph’s nodes and edges correspond to the Web
service instances and the dependencies between these Web service instances, respec-
tively. The dependencies, derived from workflow models [11], are modeled as follows:

– We define the graph of the composition specification as G = (V,E), where V is the
set of nodes representing Web service instances, and E is the set of edges depicting
dependencies between the Web service instances. Each edge is a tuple of the form
¡WSi,WSj¿, where the edge is directed from WSi to WSj . The graph also has two
unique nodes: START (has no predecessors) and END (has no successors). The
graph is supposed to meet two basic conditions: (a) every node in the graph is
directly or indirectly reachable from START node, and (b) END node is reachable
from every node in the graph.

– Forward edge ¡WSi→WSj¿ depicts the activation dependency between a Web ser-
vice instance and one of its direct, successor Web service instances in the graph.

– Backward edge ¡WSi←WSj¿ depicts an edge from a Web service instance to one
of its direct, predecessor Web service instances in the graph. This edge depicts
repeated execution within a loop, and represents a backward activation dependency.

– Abortion/compensation dependency edges - as described earlier in Section 3.2.

4.2 Forward Adaptation Strategy

In any exception situation, forward adaptation is always preferable, due to its minimal
impact on the already executed or currently running Web service instances. The for-
ward adaptation strategy consists of two main steps: (1) determination of the set of the
affected Web service instances, and (2) forward adaptation itself.

Determination of the affected Web service instances. Two types of Web service
instances are affected by the failed Web service instance WS.Ifailed: currently execut-
ing Web service instances that have an abortion or compensation dependency starting
from WS.Ifailed, and yet to start executing Web service instances that are connected
to WS.Ifailed with forward edges. We extend the former category to include those
Web service instances that have abortion/compensation dependencies pointing to the
currently executing Web service instances, and so on, in a recursive manner. In other
words, the former category of Web service instances includes now all those Web ser-
vice instances that are directly or indirectly dependent on WS.Ifailed. The determina-
tion algorithm of the set of affected Web service instances is given in Fig. 5 and can be
described as follows:

1. Mark all Web service instances that are either currently executing or are yet to
execute, in the graph of the composition specification, as ”not-visited”.

2. For each abortion/compensation dependency pointing from WS.Ifailed, perform a
backward traversal marking all visited Web service instances as ”visited”, until a
Web service instance is reached to which no abortion/compensation dependency
edge points.

258 Z. Maamar et al.

PROC FS(wsif,G)
Input: wsif WebServiceInstanceFailed, G graph
Output: fs SetOfWebServiceInstances
Auxiliary: S, T, K, L
Begin

� fs represent the Web service instances that are directly or indirectly dependent on wsif
fs← ∅
WSI← WEBSERVINST(G)
� WebServInst(G) is a function which returns the whole Web service instances of the graph G
for wsi∈WSI do

if CURRENTSTATE(wsi) ∈ {activated, not− activated} then
wsi.tag← not visited

end if
end for
� abortion(x) and completion(x) are two functions which return the set of Web service instances
� that have an abortion (respectively a completion) dependency with a Web service instance x.
S← ABORTION(wsif)

�
COMPLETION(wsif)

T← ∅
while S�= ∅ do

for wsx∈S do
wsx.tag← visited
T←T

�
ABORTION(wsx)

�
COMPLETION(wsx)

S←S−{wsx}
fs←fs

�{wsx}
end for
S←T
T← ∅

end while
K← FORWARD ALL(wsif)
� forward all is a function which returns the set of all Web service instances directly connected to
� wsif by a forward edge leading out of wsif and its successors.
L← ∅
while K �= ∅ do

for wsx∈K do
wsx.tag← visited
L←L

�
ABORTION(wsx)

�
COMPLETION(wsx)

K←K−{wsx}
fs←fs

�{wsx}
end for
K←L
L← ∅
M← IN-LOOP(wsif)
� if wsif belongs to a loop, this returns the set of instances in the loop. Otherwise, it returns an empty set.
if M �= ∅ then

wsx←wsif
while M �= ∅andwsx�=M.first do

� M.first is the beginning instance in the loop
wsx← PREDECESSOR(wsx)
wsx.tag← visited
fs←fs

�{wsx}
M←M−{wsx}

end while
wsx.tag← visited

end if
end while
return fs

End

Fig. 5. Forward sphere calculation

3. Starting at WS.Ifailed, move to each Web service instance along individual forward
edges from WS.Ifailed by marking it as ”visited”. Continue doing this until the
end of the composition specification graph is reached, i.e., END node. In case of
multiple forward edges leading out of WS.Ifailed, this step should be implemented
in parallel for each forward edge.

Policies for Context-Driven Transactional Web Services 259

4. If WS.Ifailed belongs to a loop, then traverse the composition specification graph
backward from WS.Ifailed, until the beginning of the loop is reached, marking all
the visited Web service instances as ”visited”. The semantics of the loop dictates
that such a case needs to be considered, since control flow in a loop could flow via
backward edges also.

5. The collection of Web service instances labeled ”visited” constitute now the for-
ward sphere for WS.Ifailed.

PROC FA(wsif,G)
Input: wsif WebServiceInstanceFailed, G graph
Output: -
Begin

for wsx∈ fs(wsif,G) do
� suspend all the Web service instances that are in the forward sphere
if TransactionalProperty(wsx) = retriable then

executeWS − Retriable.Policysuspended(wsx)
else executeWS − Compensatable.Policysuspended(wsx)
end if

end for
while CurrentNumberOfRetries(wsif) < MaximumNumberOfRetries(wsif)orCurrentState(wsfi) �= done do

Retryexecutionofwsif
IncrementationofCurrentNumberOfRetriesofwsif
� The CurrentState of wsif is automatically updated after each execution

end while
if CurrentState(wsif) = done then

resumetheexecutionofeachwsxfs(wsif,G)
else if TransactionalProperty(wsif) = Retriable then

executeWS − Retriable.Policyaborted(wsif)
else if TransactionalProperty(wsif) = Compensatable then

executeWS − Compensatable.Policycompensated(wsif)
end if
for wsx∈ fs(wsif,G) do

if TransactionalProperty(wsx) = retriable then
executeWS − Retriable.Policyaborted (wsx)

end if
if TransactionalProperty(wsx) = compensatable then

executeWS − Compensated.Policycompensated(wsx)
end if

end for
end if

end if
End

Fig. 6. Forward strategy algorithm

Forward adaptation. Once the forward sphere for WS.Ifailed is calculated, the for-
ward adaptation algorithm given in Fig. 6 is executed. It consists of the following:

1. While WS.Ifailed is being retried, all currently, running Web service instances in
the forward sphere are to be suspended using either WS-Retriable.Policysuspended

or WS-Compensatable.Policysuspended, as the case maybe.
2. Retry executing WS.Ifailed until one of the following happens: (i) maximum num-

ber of retries is reached without success, or (ii) one of the retries succeeds.
3. If one of the retries of WS.Ifailed succeeds, then WS.Ifailed execution will be re-

sumed as well as the execution of the currently running Web service instances in
the forward sphere.

4. In case the retry of WS.Ifailed fails, or the maximum number of retries without suc-
cess is reached, WS.Ifailed will be either aborted via WS-Retriable.Policyaborted,
or compensated via WS-Compensatable.Policycompensated followed by WS-
Compensatable.Policynot−activated, as per its transactional property.

260 Z. Maamar et al.

4.(a) If WS.Ifailed is either aborted or compensated, the Web service instances in
the forward sphere are then aborted (respectively, compensated) if they are
retriable (respectively, compensatable) in the reverse order in which they were
executed. This is implemented via the pairwise abortion (respectively, compen-
sation) dependency between consecutively aborted (respectively, compensated)
Web service instances, as listed in Section 3.2.

4.(b) Execution control now returns to the state before the occurrence of the excep-
tion. The composite Web service designer can redesign the rest of the speci-
fication composition by taking into account the changed situation after all the
aborts and compensations.

4.3 Illustration of the Forward Strategy Using Amin Scenario

Let us assume that Location WS has failed, so its forward sphere consists of {Bus Sched-
ule WS, Traffic WS, Taxi WS, Weather WS}.

If Location WS can be retried successfully, the execution will then proceed nor-
mally. If not, Location WS needs to be aborted. While it is being retried, Weather WS is
kept suspended, until Location WS either succeeds or fails. In case Location WS fails,
Weather WS should also be aborted, as per the abortion dependency between Loca-
tion WS and Weather WS (Section. 3.2). This will lead to a redesign of the composition
specification starting from Itinerary WS. Perhaps, during redesign, Location WS is as-
sociated with another Web service to be offered from within the hotel itself. This extra
Web service will be triggered as per an alternate dependency policy.

5 Implementation

Our prototype is developed with the use of JDK1.4.2 as a high level language, W3C DOM
for processing XML information, XACML for transactional policies, SWT for GUI, and
Eclipse 3.2 as a development environment. Fig. 7 shows the initial I-context and
S-context values of Weather-Instance1 and Location-Instance1 when Itinerary WS gets
requested. In Fig. 7 (a), it can be seen that Weather-Instance1 has got retriable as transac-
tional property with 2 as MaximumNumberOfRetries, and its successor Web services are
Taxi WS or Bus Schedule WS whose transactional properties are compensatable and re-
triable, respectively. In Fig. 7-(c) details on the state chart diagram of Weather-Instance1

are given. For instance, the current state is activated while the transition in is start. Fi-
nally, Fig. 7-(b,d) show the initial I-context and S-context values of Location-Instance1.
In Fig. 7-(c,d) it is shown the same S-context for both Weather-Instance1 and Location-
Instance1. This is due to the following reasons: both have got the same transactional
property namely retriable; both are getting activated at the same time since they are to
be executed in parallel.

For prototyping purposes, we assume that Location-Instance1 gets failed in the
middle of execution. As a result, S/I-context’s arguments get updated as per WS-
Retriable.Policysuspended. i.e., S-context.NextEffectiveState gets changed to suspended
and I-context.CurrentState gets changed to suspended, too. Following the failure
of Location-Instance1, Weather-Instance1 gets also suspended as per the adaptation
strategy of Section 4.2. Since Location-Instance1 has got retriable as transactional

Policies for Context-Driven Transactional Web Services 261

 (a) (b)

(c) (d)

Fig. 7. I/S-contexts of Weather-Instance1 and Location-Instance1

 (a) (b)

Fig. 8. Updated I/S-contexts of Location-Instance1 after successful retry

property, it gets retried with WS-Retriable.Policyactivated transactional policy. Luckily
the first attempt of retry itself is successful. Fig. 8 shows Location-Instance1’s I/S-
contexts with focus on NextEffectiveState, CurrentState, and CurrentNumberOfRetries
arguments.

Next, Fig. 9 shows the further updated I/S-contexts of Location-Instance1. For S-
context (Fig. 9-(a)), the state identifier, state label, previous state, next expected state,
and transition out values are modified with respect to the current state, i.e., Activated.
Same comment is made for I-context’s arguments (Fig. 9-(b)).

Once Location-Instance1 gets activated, Weather-Instance1 is also retried and
successfully activated. Its respective I/S-contexts are updated with respect to its
WS-Retriable.Policyactivated policy. Eventually, both Weather-Instance1 and Location-
Instance1 successfully complete execution. Finally, after the completion of Weather-
Instance1, Bus-Schedule-Instance1 invoked, which in turn invokes Traffic-Instance1

for obtaining traffic information. Eventually, both Bus-Schedule-Instance1 and Traffic-
Instance1 successfully complete execution.

262 Z. Maamar et al.

(a)

(b)

Fig. 9. Further updated (as per Activated state) I/S-contexts of Location-Instance1

6 Conclusion

In this paper, we presented an approach to develop context-driven transactional Web
services. We defined transactional properties on Web services that permit them to be
composed together, and their joint execution managed, via policies. We also discussed
how this approach helps handle exceptions, via the application of an adaptation strategy.

Our future work concerns a more thorough experimentation and evaluation activ-
ity to compare our approach against some other approaches presented in the litera-
ture [1,3,4,6,14,15]. In particular, we plan to demonstrate the feasibility of our approach
on larger examples. Another interesting future work concerns the definition of a com-
posite Web services framework that can manage transactional properties and ensure
substitution mechanisms. This substitution can play an important role, mainly for pivot
Web services. Some preliminary results are already reported in [13]. Finally, we plan to
study how some fault tolerance concepts of distributed systems can be adapted to the
requirements of transactional Web services.

References

1. Alrifai, M., Dolog, P., Nejdl, W.: Transactions Concurrency Control in Web Service
Environment. In: Proceedings of The 4th IEEE European Conference on Web Ser-
vices (ECOWS’2006), Zurich, Switzerland (2006)

2. Anderson, A.H.: An Introduction to The Web Services Policy Language (WSPL). In: Pro-
ceedings of The 5th IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY’2004), New-York, USA (2004)

3. Bassil, S., Rinderle, S., Keller, R., Kropf, P., Reichert, M.: Preserving the Context of Inter-
rupted Business Process. In: Proceedings of The 7th International Conference on Enterprise
Information Systems (ICEIS’2005), Miami, USA (2005)

4. Bhiri, S., Perrin, O., Godart, C.: Ensuring Required Failure Atomicity of Composite
Web Services. In: Proceedings of The Fourteenth International World Wide Web Confer-
ence (WWW’2005), Chiba, Japan (2005)

5. Coutaz, J., Crowley, J.L., Dobson, S., Garlan, D.: Context is Key. Communications of the
ACM, 48(3) (March 2005)

6. Fauvet, M.-C., Duarte, H., Dumas, M., Benatallah, B.: Handling Transactional Properties
in Web Service Composition. In: Proceedings of The 6th International Conference on Web
Information Systems Engineering, (WISE’2005), New-York, USA (2005)

7. Maamar, Z., Benslimane, D., Anderson, A.: Using Policies to Manage Composite Web Ser-
vices. IEEE IT Professional, 8(5) (September/October 2006)

Policies for Context-Driven Transactional Web Services 263

8. Maamar, Z., Benslimane, D., Narendra, N.C.: What Can Context do for Web Services? Com-
munications of the ACM, 49(12) (December 2006)

9. Maamar, Z., Mostéfaoui, S.K., Yahyaoui, H.: Towards an Agent-based and Context-oriented
Approach for Web Services Composition. IEEE Transactions on Knowledge and Data Engi-
neering, 17(5) (May 2005)

10. Pires, P.F., Benevides, M.R.F., Mattoso, M.: Building Reliable Web Services Compositions.
In: Proceedings of The International Workshop on Web Services Research, Standardization,
and Deployment (WS-RSD’2002), Erfurt, Germany (2002)

11. Reichert, M., Dadam, P.: ADEPTflex - Supporting Dynamic Changes of Workflows without
Losing Control. Journal of Intelligent Information Systems, 10(2) (1998)

12. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Exception Handling Patterns.
In: Process-Aware Information Systems. Technical report, BPM Center Report BPM-06-04,
BPMcenter.org. (2006)

13. Taher, Y., Benslimane, D., Fauvet, M.-C., Maamar, Z.: Towards an Approach for Web Ser-
vices Substitution. In: Proceedings of The 10th International Database Engineering & Appli-
cations Symposium (IDEAS’2006), Delhi, India (2006)

14. Verma, M., Deswal, P.: Approaching Web Services Transactions. Technical report, Sec-
ond Foundation Inc., February 2003. Visited (February 2005) http://www-128.ibm.com/
developerworks/webservices/library/ws-tranart

15. Younas, M., Chao, K.M., Lo, C.C., Li, Y.: An Efficient Transaction Commit Protocol for
Composite Web Services. In: Proceedings of The IEEE 20th International Conference on
Advanced Information Networking and Applications (AINA’2006), Vienna, Austria (2006)

16. Younas, M., Eaglestone, B., Chao, K.M.: A Low Latency Resilient Protocol for E-Business
Transactions. International Journal of Web Engineering and Technology, 1(3) (2004)

http://www-128.ibm.com/developerworks/webservices/library/ws-tranart
http://www-128.ibm.com/developerworks/webservices/library/ws-tranart

On Automated Generation of Web Service Level

Agreements

Cinzia Cappiello, Marco Comuzzi, and Pierluigi Plebani

Dipartimento di Elettronica e Informazione – Politecnico di Milano
Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
{cappiello,comuzzi,plebani}@elet.polimi.it

Abstract. Before a service invocation takes place, an agreement
between the service provider and the service user might be required.
Such an agreement is the result of a negotiation process between the two
parties and defines how the service invocation has to occur. Consider-
ing the Service Oriented Computing paradigm, the relationship among
providers and users is extremely loose. Traditional agreements are likely
to concern long term relationships and to be manually performed. In this
paper, we propose a model to generate service level agreement on-the-fly.
Just before the invocation commences, the quality of the service is nego-
tiated in order to generate a service level agreement tied to that specific
invocation. Such an approach relies on a quality model that supports
both users requirements and providers capabilities definition.

1 Introduction

Organizations are increasingly exporting their services as Web services [1]. Such
a proliferation increases the likelihood that users may find several services sat-
isfying their functional requirements [2,3,4]. When users can choose among a
set of functionally equivalent services, non-functional requirements become the
driver for Web service selection. As a consequence, we need to define and manage
Service Level Agreements (SLAs) between service providers and users [5].

In Service Oriented Computing paradigm, an SLA is defined as a binding con-
tract which formally specifies user expectations about the solution and tolerances.
SLA is a collection of service level requirements that have been negotiated and mu-
tually agreed upon by the information providers and the information consumers.
Usually, providers define some service levels as a fixed combination of their spe-
cific capabilities on a set of quality dimensions, and users must choose one these
levels. Reasonable service levels that meet user requirements can be achieved by
increasing the flexibility of the SLA definition. We argue that this could be ob-
tained by allowing parties, i.e., users and providers, to re-examine and to nego-
tiate defined levels. It is worth noting that identifying attainable service levels is
a time consuming activity for the providers. Adding negotiation features creates
further overhead during SLA definition activity. For these reasons, our approach
does not identify service levels in advance. Providers only clarify their capabilities

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 264–278, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Automated Generation of Web Service Level Agreements 265

and service levels will be identified on-the-fly considering the users expectations.
Service levels negotiation is also performed on-the-fly to reduce its overhead.

The discussion of mechanisms for on-the-fly generation of the SLA will be
tied to a running example. We focus on a TrafficMonitoring service example.
The TrafficMonitoring Web service provides up-to-date information about local
traffic to business and retail customers across the US. The quality of such a
service is defined by two classes of quality dimensions: technical and domain
dependent.

Technical quality dimensions refer to technical aspects of service provisioning.
Quality dimensions belonging to this class can be associated with any Web ser-
vice, and do not explicitly depend on a characterization of the domain in which
a Web service operates. For the sake of simplicity, we consider three quality di-
mensions, that is, availability, data encryption, and response time. Readers may
refer to [6,7] for an extensive review of Web service technical quality. Availabil-
ity refers to the expected percentage of time the system is up and accessible.
Data encryption refers to the algorithms adopted for protecting data from ma-
licious accesses. Eventually, response time refers to the expected delay between
the moment in which a request is sent and the moment in which results are
received [6].

Domain dependent quality dimensions strongly rely on the type of Web ser-
vice that is under consideration. For the TrafficMonitoring example, we consider
the covered area, routes set, and detail level dimensions. The covered area di-
mension characterizes the extensiveness of the area over which the service is able
to provide traffic information. A service, for instance, may provide information
only on national highways, while other ones may also consider interstate or local
routes and downtown traffic conditions. Similarly, the detail level of traffic infor-
mation provided by a service may also vary. A service may provide information
on accidents and traffic jams, while other ones may also provide information
about closed routes, detours, and predictions about future conditions of local
traffic.

The paper is organized as follows. Section 2 presents a model to describe
Web service quality, provider capabilities, and user requirements. Section 3 de-
scribes the negotiation model by which SLAs can be obtained on-the-fly. Section
4 discusses related work, while conclusions are finally drawn in Section 5.

2 Quality Model

A negotiation process occurs whenever both a user and a provider are able to
define the documents specifying the requirements and the capabilities, namely.
In a Web service environment, where users and providers might not know each
others in advance, these documents must rely on the same language. In [8], a
model able to express the quality of a Web service is discussed. The same model,
discusses in the following, will be adopted in this work as well.

266 C. Cappiello, M. Comuzzi, and P. Plebani

eavailability
K=5
pc1=[0,0.3)
…
pc5=[0.7,1]

0.5

1

10.3
qd1.V

0.2
0.4

0.6
0.8

0.6 0.7

(a) Availability

edata_encryption
pc1={AES -128} K=3
pc2={AES -192}
pc3={AES -256}

qd2.V

1

AES128 AES192 AES256

(b) Data Encryption
NE NW S W

ecovered_area

qd3.V

NOT-NEG OTIABLE

S E

1

(c) Covered area

Fig. 1. Evaluation functions and primitive service classes for availability, data encryp-
tion, and covered area

The quality of a Web service is defined by a set of quality dimensions1 each
of them associated to a given quality aspect. More formally, we define a quality
dimension qdi as:

qdi = 〈name, V, ef(V), PC〉 i = 1, . . . , I. (1)

The name uniquely identifies the quality dimension. The element V corre-
sponds to either categorical or interval admissible values. In the former case, the
admissible values will be included in a specific vector V = {vh} (h = 1, . . . , H),
while, in the latter case V will be defined by its extremes, i.e., V = [vmin, vmax].
The function ef : V → [0..1] represents the quality evaluation function, i.e.,
how the quality increases or decreases with respect to the admissible values: 0
means lowest quality, 1 highest quality. The trend of ef is usually defined by an
utility function, e.g., linear, logarithmic, exponential, sigmoidal. The admissible
value set V is organized in disjoint primitive service classes PC = {pck} (k =
1, . . . , K) and are obtained as follows:

– In case of categorical values, the primitive service classes coincide with the
values that the dimension may assume: i.e, qdi.PC ≡ qdi.V , H = K.

– In case of interval values, primitive service classes are obtained by split-
ting V = [vmin, vmax] into K intervals, so PC = {pck = [pckmin ; pckmax]}
where pckmax = pc(k+1)min

, pc1min = vmin, pcKmax = vmax. pck ranges are
obtained as follows: let divide qdi.ef(V) in K ranges {[ekmin ; ekmax]}, then
pkmin = qdi.ef

−1(ekmin) and pdkmax = qdi.ef
−1(ekmax).

Figure 1(a) and 1(b) show, respectively, this methodology applied to the avail-
ability and data encryption dimensions in the running example. The definition
of primitive service classes is exploited by the negotiation algorithms described
in Section 3. We assume that additional elements, such as measurement units
or metrics, are also defined. We do not explicitly include them in qdi since they
are not relevant for our approach.
1 In the literature, quality dimensions are also named quality attributes or quality

parameters.

On Automated Generation of Web Service Level Agreements 267

Given a Web service, its quality is defined by the set QD = {qdi}. As
mentioned break above, negotiation takes place only if both requirements and
capabilities are expressed on the same quality dimensions set. For this reason we
assume that a third party, called community, is in charge of identifying the set of
relevant quality dimensions. In this way, the quality dimensions included in QD
will be used (i) by the provider to express the offered quality, i.e., capabilities C
and (ii) by the user to define the required quality, i.e., user requirements UR.

As defined in [9], a community is a group of people which aims at proposing
a specification for a group of objects with some relevant common characteris-
tics. More generally, given an application domain, we suppose that a community
exists and produces the set of relevant quality dimensions. Sometimes, the com-
munity can be easily identified since it is explicitly constituted (e.g., tourism
community, financial community). Most of the times the community associated
with an application domain does not explicitly exist. For example, if we want
to buy a laptop then everyone can list the set of relevant quality dimensions
which the evaluation of the laptop quality relies on, e.g., CPU, memory, HD
capacity, screen resolution, and so on. Roughly speaking, the agreement on QD
between providers and users definitely exists but it is implicit. In some way,
introducing the actor community means to make explicit this implicit common
understatement.

Table 1 shows the quality dimensions included in QD for the TrafficMonitoring
example. Once the community decides to include a qdi in QD, the community
also defines the range of admissible values, the related evaluation function qdi.ef ,
and the primitive service classes qdi.PC. In Table 1, all the qdi ∈ QD are
described. In some case (e.g., covered area), the community cannot state which
are the best and worst values, since they depend on the user preferences. So, the
evaluation function always returns 1. This kind of dimensions, as explained in
Section 3, are non-negotiable.

It is worth noting that the range of admissible values has been identified
regardless of a specific Web service implementation. So, we assume that all the
existing Web services, given a quality dimension, can only offer a subset of the

Table 1. Quality parameters for Traffic Monitoring example

name V ef P

availability [0,1] sigmoidal {[0, 0.3); [0.3, 0.5);
(see Figure 1(a)) . . . ; [0.7, 1]}

data encryption [AES-128;AES-192;. . .] linear [AES-128;AES-192;. . .]

response time [0,10] inverse linear {[0.2, 1], . . . , [9, 10]}
covered area [SouthEast;SouthWest; 1 ∀vh ∈ V [SouthEast;. . .]

NorthEast;NorthWest] (see Figure 1(c))

routes set [Highways;interstate; 1 ∀vh ∈ V [Highways;interstate;
local;. . .] local;. . .]

detail level [jams; detours; 1 ∀vh ∈ V [jams; detours;
toll;. . .] toll;. . .]

268 C. Cappiello, M. Comuzzi, and P. Plebani

admissible values defined by the community. In addition, users will customize
the quality dimensions accordingly to their preferences.

Starting from the QD defined by the community, Sections 2.1 and 2.2 describe,
respectively, how the capabilities and the requirements can be defined.

2.1 Capabilities

Capabilities reflect the quality offered by a Web service provider. Focusing on
the service description, the provider before publishing its Web service will define
a document expressing the functional aspects. About this, WSDL represents the
de-facto standard that identifies the set of available operations and exchanged
messages. Along with the functional aspects, the service provider also needs to
attach a document in which the offered quality is described. At this stage, the
literature does not include a language for quality description with the same
consensus as WSDL does for the functional aspects. Anyway, we think that the
capabilities as introduced in the following can be simply expressed according to
languages such as WSOL [10] or WS-Policy [11].

We define a capability c(qdi) as a restriction on the range of admissible values
of the quality dimension qdi. More precisely:

c(qdi) = 〈qdi.name, offering, qdprice(offering)〉, (2)

where offering ⊆ qdi.V represents the restriction on the range of admissible
values. In this way, the provider defines, given a quality dimension, which are
the actual values the provider is able to support. In addition, the provider also
defines qdprice function which maps the dependency between the offered values
and the price per user associated with such a provisioning.

According to this model, the provider during the publication process of a
Web service, will attach a document C collecting all the supported capabilities.
In particular:

C = {c(qdi)} ∀qdi ∈ QD. (3)

In other words, a capability document must include all the quality dimensions
previously identified by the community. Table 2 lists the capabilities of a hypo-
thetical TrafficMonitoring service provider. For instance, the offered availability
is included in the range [0.5, 1.0] and the price for such a provisioning is given by
a fixed amount (e.g., 30$) and a variable one that varies according to the actual
value of the availability (e.g., availability*5$). Similarly, different prices will be
associated to different covered area. Since US NorthEast is more populated than
US NorthWest then the price varies accordingly (e.g., 5$ rather than 3$).

2.2 Requirement Model

Similarly to the capabilities, the user requirements are expressed on the basis
of the quality dimensions identified by the community. In particular, for each
qdi ∈ QD users operate a restriction on the admissible range of values. With this

On Automated Generation of Web Service Level Agreements 269

Table 2. Capabilities for TrafficMonitoring service

qd offering qdprice

availability [0.5,1.0] 30$+(availability*5$)

data encryption [AES-128] 500$

response time [1,2] 3$*(5$/timeliness)

covered area [NorthEast;NorthWest] 5$-NE;3$-NW

route set [interstate;local] 5$-interstate;10$-local

detail level [detours] 10$

operation, the users state which is the required quality. Hence, a user requirement
R that will be compared to the capabilities C during to the negotiation process
is defined as:

UR = 〈{ur(qdi)}, budget〉, (4)

where the {ur(qdi)} represents the user requirements of a specific qdi and budget
is the amount of money that the user is willing to pay for the service. In detail:

ur(qdi) = 〈qdi.name, request, w〉. (5)

Here request ∈ qdi.V represents the restriction on the range of admissible values.
This restriction corresponds to the values required by the user for the given
quality dimension.

The element w in ur represents the weight that identifies how much the related
quality dimension qdi influences the overall quality of the service. It is worth
noting that the weight assignment activity is a crucial point of the method.
It can be performed in different ways. The simplest way could be to let users
associate with each quality dimension a weight to express the importance that
the dimension has for the specific user class. In this case the only constraint is
that the sum of the weights associated with all the dimensions has to be equal to
1. This method is difficult to apply, since the absolute relevance of a dimension on
the total quality is hardly identifiable. For this reason, in this model we assume
that the weight assignment is driven by the AHP (Analytic Hierarchy Process)
approach, a decision making technique developed by T.L. Saaty [12]. This is a
qualitative approach in which the user only states if a sub-dimension is more
influent than another one on the overall quality. We assume that all the quality
dimensions are independent. AHP is a decision-making technique that assigns to
each sub-dimension a score that represents the overall performance with respect
to the different parameters. AHP is suitable for hierarchical structures as the
quality model described previously and proposes to user pairwise comparisons
between sub-dimensions.

Considering the difficulty that some users have in the requirements specifica-
tion, we assume that the community supports them by preliminarily identifying
their profile. We borrow the profiling concept from the Web Information Systems

270 C. Cappiello, M. Comuzzi, and P. Plebani

(WIS) literature in which it is used for the personalization of content to user
expectations. Profiling is the technique through which data are collected and
manipulated with the goal of identifying and describing the profile of an entity,
such as a user, an object, a product, or a process [13]. A profile is a source of
user requirements, in fact it is a structured representation of the information that
describes users and their preferences along the services that they require. This
information can be obtained by suitable architectures and modules operating
along with the Web service infrastructure.

In the requirement model proposed in this paper, users are characterized by
a profile and assigned to users classes. Each class contains users with similar
characteristics. Formally, our model considers a set U = {uy} of user and a set
UC = {ucz} of users classes. In particular, we assume that:

∀uy ∈ U ∃!ucz ∈ UC | uy ∈ ucz. (6)

A class of user ucz corresponds to the requirements suitable for the users
belonging to the class. According to our model:

ucz = {urz(qdi)}. (7)

We assume that the community is in charge of defining such requirements,
therefore, of identifying the users classes. In this way, users of a class UC have a
sort of template of requirements that can be customized with respect to specific
requirements to produce a specific UR.

Given a class of users, the user class requirements urz represents the quality
of service usually required by the user belonging to that given class. Users take
inspiration from these requirements defined by the community to express their
specific user requirements. User requirements can be more or less selective than
class requirements. Table 3 shows possible user requirements given by a user
for the TrafficMonitoring service. For example, if class requirements for the
availability dimensions are the values included in the range [0.5, 1.0], the user can
be more selective by specifying a quality limit greater than 0.7 or, alternatively,
decrease the relevance of the data quality dimension by accepting a range such
as [0.7, 0.99].

Table 3. User requirements for TrafficMonitoring service

qd request w

availability [0.5,1.0] 0.4

data encryption [AES-128] 0.025

response time [0.5,1] 0.3

covered area [SouthEast;NorthEast] 0.1

route set [highways;local] 0.15

detail level [jams;detours] 0.025

On Automated Generation of Web Service Level Agreements 271

3 Negotiation Model

Before negotiation taking place, we need to state if the offerings satisfy the user
requirements. So, we have to verify the following statement:

∀qdi ∈ QD isec (c(qdi), ur(qdi)) = c(qdi).offerings∩ur(qdi).request �= ∅. (8)

The service level negotiation occurs within the quality values identified by
isec (c(qdi), ur(qdi)).

Automated negotiation is usually defined by three elements: the negotiation
protocol, the participants decision models [14], and the negotiation objects. We
adopt a very simple negotiation protocol where, the user for each qdi starts
considering the primitive class in qdi.PC which also belongs to the calculated
intersection and which corresponds to the lowest quality. Then, as long as the
budget is not fully exploited, the user will consider the primitive class with higher
quality. In this mechanism, the decision model controls the way in which the
budget is split across the quality dimensions. Finally, negotiation objects refer
to the elements over which negotiation is performed. We argue that only the QoS
dimension associated to a non-constant evaluation function qdi.ef are negotiable.
For dimensions characterized by a constant evaluation function, e.g., covered area
in our running example, we hypothesize that the user’s requirements are non-
negotiable. If, for instance, the user identifies NE and NW as required values
for the covered area dimensions, the user requests can be fulfilled only when the
service provides traffic information on NE and NW . We hypothesize that it is
not possible to negotiate on this kind of dimensions, since the community is not
able to define an evaluation function that orders their values. Therefore, the set
QD is split in two sets: the set NQD of negotiable quality dimensions, and the
set NNQD of non-negotiable quality dimension. More formally:

QD = NQD ∪ NNQD, NQD ∩ NNQD = ∅
NQD = nqdl l = 1, . . . , L

NNQD = nnqdm m = 1, . . . , M

For each negotiable quality dimension nqdl, we formally define the negotiation
objects as:

negobjl (c(nqdl), ur(nqdl)) = 〈nqdl.name, NPC, ur(nqdl).w〉 l = 1, . . . , L.
(9)

As mentioned above, for each quality dimensions we calculate the intersection
of related capabilities and user requirements. Since qdi is divided by definition
into K primitive classes, then only a subset of them will be included in the
intersection as well. Such a subset is named NPC (negotiation primitive classes)
and defines, for each quality dimension nqdl, the set of negotiation service classes
nscj , j = 1, . . . , J included in the intersection (J ≤ K). The set NPC includes
also the price price(npcj) associated by the service provider to each negotiation
service class:

NPC(nqdl) = {〈npcj, price(npcj)〉} j = 1, . . . , J l = 1, . . . , L. (10)

272 C. Cappiello, M. Comuzzi, and P. Plebani

AES -128AES -192AES -256

edata_encryption K=3
pc1={AES -128}
pc2={AES -192}
…

(a) Primitive service classes

edata_encryption
isec={AES -192;AES -256}
npc1={AES -192} J=2
npc2={AES -256}

AES -128AES -192AES -256

(b) Negotiation service classes

Fig. 2. Defining negotiation service classes for data encryption

eavailability K=5
pc1=[0,0.3)
…
pc5=[0.7,1]

1

0.2
0.4

0.6
0.8

0.5 10.3 0.6 0.7

(a) Primitive service classes

eavailability
isec=[0.5,1]
J=3
npc1=[0.5,0.6]
npc2=[0.6,0.7]
npc3=[0.7,1]

1

0.2
0.4

0.6
0.8

0.5 10.3 0.6 0.7

(b) Service classes for negotiation

Fig. 3. Defining negotiation service classes for availability

The methodology for defining service classes npcj and their price differs with
respect to the nature of the negotiable quality dimension nqdl.

As reported in Section 2, when considering a dimension nqdl that assumes
categorical values, the primitive service classes nqdl.PC coincide with the values
nqdl.V identified by the community. Figure 2 shows the methodology to obtain
negotiation service classes for the data encryption dimension. In this case, the
price associated with a service class npcj is directly obtained from the price
information in the provider capabilities. A negotiation service class npcj includes,
in fact, one single value vh̄ ∈ V , hence:

price(npcj) = c(nqdl).qdprice(nqdl.vh̄). (11)

The definition of negotiation service classes npcj for continuous nqdl de-
rives from the restriction operated on primitive service classes nqdl.PC over
isec (c(nqdl), ur(nqdl)). How to obtain service classes for the availability dimen-
sion is graphically reported in Figure 3. Let us refer to min(npcj) and max(npcj)
as, respectively, the left and right boundaries of the negotiation service class npcj .
The price price(npcj) associated with a service class npcj is the average between
the price associated with its left and right boundaries, that is:

price(npcj) =
c(nqdl).qdprice[min(npcj)]) + c(nqdl).qdprice[max(npcj)])

2
.

(12)

On Automated Generation of Web Service Level Agreements 273

The algorithm adopted to assign a price to a service class can be more general
and it is usually defined by the community.

Once having defined negobjl (c(nqdl), ur(nqdl)), ∀l, l = 1, . . . , L, we define
the basic quality level QLbase of the Web service, which is constituted, for
each negotiable quality dimension, by the lowest quality negotiation service class
negobjl.npc1. Then, it will be:

QLbase = {negobj1.npc1, . . . , negobjL.npc1} . (13)

The objective of the negotiation is to obtain a negotiated quality level QLneg

which improves the quality of the basic level. The user exploits the declared
budget ur(nqdl).budget to configure the basic quality level and increase the ex-
pected quality of the Web service. The price P (QLbase) associated to the basic
quality level is:

P (QLbase) =
L∑

l=1

price(npc1(nqdl)). (14)

Let us define Pnn as the price associated with the quality values assumed by
non-negotiable dimensions in isec (c(nnqdm), ur(nnqdm)). In the running exam-
ple, the community may assume that covered area, routes set, and detail level
are non-negotiable (M = 3). Let us consider a user requirement that specifies
highways and local as required values for the routes set dimension. A SLA be-
tween a service provider and the user can be generated only if the provided Web
service gives traffic information on highways and local routes. If we assume that
the user has also required jams and NE for, respectively, detail level and covered
area, it will be:

Pnn = c(nnqd1).qdpricecovered area(NE) + (15)
+ c(nnqd2).qdpricedetail level(jams) +
+ c(nnqd3).qdpriceroutes set(highways) +
+ c(nnqd3).qdpriceroutes set(local).

We can now define the extra budget EB of the user as:

EB = budget − [P (QLbase) + Pnn] . (16)

If EB < 0, then the service is not going to be provisioned because the user
is not able to cover with the budget the total price of the service, that is, the
sum of the price associated with the basic quality level for negotiable dimensions
and the price of non-negotiable dimensions. In case EB = 0, then the service
will be provisioned with the basic quality level QLbase for negotiable quality
dimensions. The negotiation does not take place. The negotiation is executed
only if EB > 0. Two strategies are available to the user to decide how to split
EB across the different negotiable quality dimensions, that we name the vertical
and the horizontal strategies.

274 C. Cappiello, M. Comuzzi, and P. Plebani

01 define ΔEBl = 0, ∀l //Fraction of EB allocated to the
//improvement of nqdl

02 define ΔEB = 0 //Exploited fraction of the extra budget
03 while(END==FALSE)
04 select l:max(nqdl.w) = wl //select the current nqd with

//highest priority
05 wl = wl − 0.01 //decrease the priority of the selected nqd
06 ΔEBl = price(npcj+1) − price(npcj) //update EB allocation

//on nqdl

07 npcj(nqdl) = npcj+1(nqdl) //update the nqdl level
08 ΔEB = ΔEB + ΔEBl //update the EB allocation
09 if (ΔEB > EB) //Cannot price increase be covered by EB?
10 npcj(nqdl) = npcj−1(nqdl) //restore old nqdl value
11 ΔEB = ΔEB − ΔEBl //restore EB allocation
12 END=TRUE //Exit condition, negotiation stops
13 endif
14 if (wl == 0) //Exit condition, negotiation stops
15 END=TRUE
16 endwhile

Fig. 4. Horizontal negotiation strategy

When adopting the vertical strategy, the user has the objective to maximize
the quality associated to the highest priority dimension nqdl̄. When the quality
of this dimension is maximized, that is, when the remaining extra budget exceeds
the price of the negotiation service class npcJ(nqdl̄), then the algorithm switches
to the maximization of the quality of the second highest priority dimension. The
horizontal strategy is adopted when the user wants to split the extra budget
on the negotiable quality dimensions proportionally to the priorities ur(nqdl).w,
∀l ∈ [1, . . . , L]. The horizontal and vertical strategies follow respectively, the
algorithms reported in Figure 4 and 5.

Let us refer to P as the total price of a service after quality negotiation:

P = P (QLneg) + Pnn. (17)

The result of the negotiation is a service level agreement SLA, generated
on-the-fly for Web service, that has the following structure:

SLA = 〈QLneg, P, isec (c(nnqdm).ur(nnqdm))〉 , (18)

where QLneg reports the service class for negotiable quality dimensions obtained
from the execution of negotiation, P is the total price associated with the Web
service with negotiated quality. Last term refers to the values of the non nego-
tiable quality dimensions.

On Automated Generation of Web Service Level Agreements 275

01 define ΔEBl = 0, ∀l //Fraction of EB allocated to the
//improvement of qdi

02 define ΔEB = 0 //Exploited fraction of the extra budget
03 while(END==FALSE)
04 select l:max(nqdl.w) = wl //select the current nqd with highest

//priority
05 wl = wl − 0.01 //decrease the priority of the selected nqd
06 STOP=FALSE //starting configuration of nqdl

07 while (STOP==FALSE)
08 ΔEBl = price(npcj+1) − price(npcj) //update EB allocation on

//nqdl

09 npcj(nqdl) = npcj+1(nqdl) //update the nqdl value
10 ΔEB = ΔEB + ΔEBl //update the EB allocation
11 if (ΔEB > EB) //Cannot price increase be covered by EB?
12 npcj(nqdl) = npcj−1(nqdl) //restore old nqdl value
13 ΔEB = ΔEB − ΔEBl //restore EB allocation
14 STOP=TRUE //end nqdl negotiation
15 END=TRUE //exit condition, negotiation stops
16 endif
17 if((j = J)OR(wl == 0))
18 STOP=TRUE //end nqdl configuration
18 endwhile
19 endwhile

Fig. 5. Vertical negotiation strategy

4 Related Work

This paper presents a model to support the automatic generation of a service
level agreement by considering user requirements and provider capabilities. To
mediate between these two standpoints, we introduce the community as the
actor able to provide a shared knowledge about the quality of a service in a
specific application domain. The community defines which relevant aspects of a
service can be used as search discriminants in service discovery. In the paper, the
community organizes dimensions by using a tree-based structure. This approach
for defining service quality has been inspired by [15] and [16], which recognize the
correlation among several dimensions. In particular, [15] also refers dimensions
to different layers (i.e. system level, resource level, and application level).

The set of dimensions identified by the community is also used as a guideline
by the providers to describe the capabilities of the offered service. In fact, a
complete service description is an important requirement for users who aim at
searching the most suitable Web service. Besides the functional description, for
which WSDL represents the most adopted specification, non functional specifi-
cations have to be modeled. In [17] a complete comparison of the current quality
description languages is presented. Among all the identified contributions, for

276 C. Cappiello, M. Comuzzi, and P. Plebani

our work it is important to consider proposed languages for offers and contracts
and languages for policies. As regards the former category, WSOL [10], WSLA
[18], and WS-Agreement [19] provide some description models that our work
can exploit to express quality dimensions. These contributions are particularly
relevant, since they also address the definition and monitoring of quality lev-
els. WSOL is suitable for the definition of quality dimensions, their metrics and
quality constraints. The language does not formalize the contract terms between
user and provider defining service levels but it contains constructs to define sim-
ple quality constraints on each quality dimension. A support for the definition
and monitoring of Service Level Agreements is, instead, provided by the WSLA
language. It allows providers to define quality dimensions and to describe eval-
uation functions. Furthermore, it provides monitoring of the parameters during
operations and invocation of recovery actions when contract violations occur.
Similarly, WS-Agreement provides constructs for advertising the capabilities of
providers and for creating agreements based on creational offers, and for moni-
toring agreement compliance at runtime. The latter category includes WS-Policy
[11] that can be adopted as a language for defining capabilities and requirements.
WS-Policy definitions are independent of any specific quality descriptions. Using
this language, users may describe services by using self-defined quality attributes.

Once that the service capabilities description is provided, the selection of
the most suitable service is enabled by the definition of the user requirements.
In this area, notations and languages to express users requirements have been
defined in NoFun [20] and QML [21]. There are also contributions in which
quality requirements are expressed by means of standard sentences or linguistic
patterns in natural language [22].

In this paper, the automatic generation of a service level agreement is en-
abled by the use of negotiation mechanisms. In the literature, the only examples
that propose policies for automated quality negotiation of Web services can be
found in [23,24]. In general, research on SLA management has been carried out
in the past couple of years and it has been mainly focused on the SLA specifica-
tion and on the definition of languages for SLA creation, operation, monitoring,
and termination. Examples of SLA management frameworks are WS-agreement
[19], WS-negotiation [25], and the Service Negotiation and Acquisition Proto-
col (SNAP) [26]. However, while these standards are still evolving, they present
some limitations. Generally, frameworks for SLA management only define the
format and types of messages that can be used in the negotiation, but they do
not provide the strategies through which negotiation is performed. In this paper,
besides a characterization of negotiation messages built on the underlying Web
service quality model, we also define the users’ strategies to be adopted in the
negotiation.

5 Conclusions and Future Work

This paper proposed a framework for the on-the-fly generation of Web service
SLAs. The contribution of the paper is twofold. First, we introduced a quality

On Automated Generation of Web Service Level Agreements 277

model for Web services that is exploited by providers and users to define, re-
spectively, their capabilities and requirements. Secondly, we provided users with
a mechanism to negotiate among the set of service classes at the intersection
between capabilities and requirements.

From the quality model definition perspective, future work should deal with
an extended multi-level hierarchical model that considers composite dimensions,
such as, for instance, security defined as a combination of data encryption, au-
thentication, non-repudiation, and data integrity. Concerning negotiation, this
paper focused on SLA generation involving only one provider and one user. Fu-
ture work should also investigate how negotiation of quality aspects can be used
to select a service among a set of functionally equivalent services. In this way,
we will be able to add on-the-fly SLA generation capabilities to the common
frameworks dealing with service discovery.

Acknowledgment

The work has been partially supported by the Italian MIUR-FIRB TEKNE
Project and by the European WS-DIAMOND Project.

References

1. Papazoglou, M.P., Georgakopolous, G.: Service Oriented Computing: Introduction.
Communications of the ACM 46(10), 1–5 (2003)

2. Bianchini, D., De Antonellis, V., Pernici, B., Plebani, P.: Ontology-based method-
ology for e-service discovery. Information Systems 31(4-5), 361–380 (2006)

3. Bernstein, A., Klein, M.: Towards High-Precision service retrieval. In: Proc. Int.
Semantic Web Conference, ISWC’02 (2002)

4. Stroulia, E., Wang, Y.: Structural and semantic matching for assessing web-service
similarity. Int. J. Cooperative Inf. Syst. 14(4), 407–438 (2005)

5. Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring ser-
vice level agreements for Web services. Journal of Network and Systems Manage-
ment 11(1), 57–81 (2003)

6. Ran, S.: A model for Web services discovery with QoS. ACM SIGCOM Ex-
change 4(1), 1–10 (2003)

7. Mani, A., Nagarajan, A.: Understanding quality of service for Web services. Tech-
nical report, IBM, (2002)
http://www-128.ibm.com/developerworks/library/ws-quality.html

8. Fugini, M., Plebani, P., Ramoni, F.: A user driven policy selection model. In:
ICSOC ’06: Proceedings of the 4th international conference on Service oriented
computing. To appear (2006)

9. Marchetti, C., Pernici, B., Plebani, P.: A quality model for multichannel adaptive
information. In: WWW Alt. ’04: Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters, ACM Press, New York (2004)

10. Tosic, V., Ma, W., Pagurek, B., Esfandiari, B.: Web Service Offerings Infrastruc-
ture (WSOI) - a management infrastructure for XML Web services. In: Net-
work Operations and Management Symposium, 2004. NOMS 2004. IEEE/IFIP 1,
817–830 (2004)

http://www-128.ibm.com/developerworks/library/ws-quality.html

278 C. Cappiello, M. Comuzzi, and P. Plebani

11. Vedamuthu, A., Orchard, D., Hondo, M., Boubez, T., Yendluri, P.: Web Services
Policy 1.5 - Primer. (2006)
http://www.w3.org/TR/2006/WD-ws-policy-primer-20061018

12. Saaty, T.L.: The Analytic Hierarchy Process. Mc Graw Hill, New York (1980)
13. Olson, J.: Data Quality: The Accuracy Dimension. Morgan Kaufmann, San Fran-

cisco (2002)
14. Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Wooldridge, M., Sierra, C.:

Automated negotiation: Prospects, methods and challenges. Group Decision and
Negotiation 10(2), 199–215 (2001)

15. Sabata, B., Chatterjee, S., Davis, M., Sydir, J., Lawrence, T.: Taxonomy for QoS
Specifications. In: Object-Oriented Real-Time Dependable Systems, 1997. Proceed-
ings. Third International Workshop on. pp.100–107 (1997)

16. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers, Boston (2000)

17. Ruckert, J., Paech, B.: Web Service Quality Descriptions for Web Service con-
sumers. In: CONQUEST2006. Proceedings (2006)

18. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Technical Report RC22456(W0205-171), IBM
Research Division, T.J. Watson Research Center (2002)

19. GRAAP Working Group: WS-Agreement Framework. (2003)
https://forge.gridforum.org/projects/graap-wg

20. Franch, X.: Systematic formulation of non-functional characteristics of software. In:
3rd International Conference on Requirements Engineering (ICRE ’98). pp.174–181
(1998)

21. Frølund, S., Koistinen, J.: Quality-of-service specification in distributed object sys-
tems. Distributed Systems Engineering Journal 5(4) (1998)

22. Duran, A., Bernardez, B., Toro, M., Corchuelo, E., Ruiz, A., Perez, J.: Expressing
customer requirements using natural language requirements templates and pat-
terns. In: Proceedings of the third Conference on Circuits, Systems, Communica-
tions and Computers (CSCC ’99) (1999)

23. Lamparter, S., Agarwal, S.: Specification of policies for Web service negotiations.
In: Proc. Semantic Web and Policy Workshop (2005)

24. Gimpel, H., Ludwig, H., Dan, A., Kearney, R.: PANDA: Specifying policies for au-
tomated negotiations of service contracts. In: Proc. 1st Int. Conf. Service Oriented
Computing, ICSOC’03, pp. 287–302 (2003)

25. Rahwan, I., Kowalczyk, R., Pham, H.H.: Intelligent agents for automated one-
to-many e-commerce negotiation. In: Computer Science 2002, Twenty-Fifth Aus-
tralasian Computer Science Conference (ACSC2002). pp.197–203 (2002)

26. Czajkowski, K., Foster, I.T., Kesselman, C., Sander, V., Tuecke, S.: Snap: A proto-
col for negotiating service level agreements and coordinating resource management
in distributed systems. In: Job Scheduling Strategies for Parallel Processing, 8th
International Workshop, JSSPP 2002, pp. 153–183 (2002)

http://www.w3.org/TR/2006/WD-ws-policy-primer-20061018
https://forge.gridforum.org/projects/graap-wg

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 279–293, 2007.
© Springer-Verlag Berlin Heidelberg 2007

RED-PL, a Method for Deriving Product Requirements
from a Product Line Requirements Model

Olfa Djebbi1,2 and Camille Salinesi1

1
 CRI, Université Paris 1 – Sorbonne, 90, rue de Tolbiac, 75013 Paris, France
2
 Stago Instruments, 136 avenue Louis Roche, 92341 Gennevilliers, France

olfa.djebbi@malix.univ-paris1.fr,
Camille.Salinesi@univ-paris1.fr, odjebbi@stago.fr

Abstract. Software product lines (SPL) modeling has proven to be an effective
approach to reuse in software development. Several variability approaches were
developed to plan requirements reuse, but only little of them actually address
the issue of deriving product requirements. Indeed, while the modeling
approaches sell on requirements reuse, the associated derivation techniques ac-
tually focus on deriving and reusing technical product data.

This paper presents a method that intends to support requirements deriva-
tion. Its underlying principle is to take advantage of approaches made for reuse
PL requirements and to complete them by a requirements development process
by reuse for single products. The proposed approach matches users' product re-
quirements with PL requirements models and derives a collection of require-
ments that is (i) consistent, and (ii) optimal with respect to users' priorities and
company's constraints. The proposed methodological process was validated in
an industrial setting by considering the requirement engineering phase of a
product line of blood analyzers.

Keywords: Requirements, Derivation, Product Line.

1 Introduction

As defined by the Software Engineering Institute (SEI), “a software product line
(SPL) is a set of software-intensive systems that share a common, managed set of
features satisfying the specific needs of a particular market segment or mission and
that are developed from a common set of core assets in a prescribed way”.

Software Product Line Engineering is rapidly emerging as a viable and important
software development paradigm allowing companies to realize order-of-magnitude
improvements in time to market, cost, productivity, quality and flexibility.

These new outcomes can be attributed to strategic software reuse. Software prod-
uct line techniques explicitly capitalize on commonality and formally manage the
variations among products in the product line. As a result, the main effort to design a
product from the product line is due to the variations and the impact of the choices
made for the required product.

Compared with conventional techniques, companies that manage a software prod-
uct line report success stories in which they decreased their time-to-market for new

280 O. Djebbi and C. Salinesi

products by factors of 2 to 50, reduced defect rates as high as 96% and multiplied
productivity by a factor of 2 to 3 [1].

As Fig. 1 shows it, software products are developed, in the context of product line
engineering, according to a two-stage process: the domain engineering stage and the
application engineering stage [2]. Domain engineering involves implementing com-
monalities between product family members through a set of shared software arti-
facts, while preserving at the same time the ability to vary the products. During appli-
cation engineering, individual products are derived from the product family, i.e. con-
structed using a subset of the shared software artifacts.

Domain

Analysis

Domain

Design

Domain

Realization

Domain

Testing

Requirement Architecture
Components T

t

Domain
tif t

Product

Analysis

Product

Design

Product

Realization

Product

Testing

Requirement Architecture
Components T

t

Product I

Product N

D
o

m
ai

n

E
n

g
in

ee
ri

n
g

P
ro

d
u

ct

E
n

g
in

ee
ri

n
g

New requirements

Fig. 1. Requirements Engineering challenges in a Software Product Line context (SEI)

In this particular context, Requirements Engineering (RE) processes have two
goals: to define and manage requirements within the product line and to coordinate
requirements for the single products. To achieve the latter goals, product requirements
must be elicited by matching the product line requirements with customers' initial
requirements (fig.1).

Some recommendations can be found to manage requirements in the context of
SPL, but they always need to be customized [3] [4] [5] [6] [7]. Existing approaches
rely on a requirements variability modeling process followed by a requirements selec-
tion process to retrieve a requirements collection specifying the single product to
build.

Our experience showed us that, as stated by [8] [9], this way of working has sev-
eral limits:

• Requirements are solution-driven: the selection among pre-defined product line
requirements models that most often correspond to features already imple-
mented in existing products, can influence stakeholders and skew their choices.
They will naturally establish links between their problem and the existing solu-
tions, adopt features with marginal value, and naturally forget about important

 RED-PL, a Method for Deriving Product Requirements 281

requirements that are not present in the PL requirements model. As a result, the
focus is on model elements that implement the solution rather than on the ex-
pression of actual needs.

• Customer dissatisfaction: the customer requirements can be different from the
ones identified in the PL requirements models. Selecting among existing
requirements can lead to miss out important requirements.

• Innovation damping: the RE process is inherently characterized by insight-
driven evolution episodes. It fosters opportunistic exploration of the conceptual
space and promotes creative thinking within the system requirements. On the
opposite, selecting among predefined requirements restricts considerably
creativity and search for innovative ways to deal with problems, hence reducing
the added value of the new products to be developed.

• Lack of guidance: customers and marketing people are most often on their own
to elicit the requirements for new products. Existing approaches provide little
guidance (notation, process, rules …) to assist them in eliciting consistent
product requirements, neither are developers guided in adding new requirements
to the PL requirements model.

• Customer training: interactions between customers and variable requirements
models imply that users should make an additional effort to understand the PL
models and to seek their requirements in these models.

• Customer overwhelm: customers should not have to consider the complete
collection of PL requirements as they are only interested in the requirements for
a current product. Overwhelmed by a huge amount of data, customers lose track
of the initial mission and are naturally lead to inquire about, comment, and even
ponder over “requirements” that do not correspond to real needs.

These limits engendered by the requirements selection processing have many im-
pacts on the project processes and artifacts, namely:

• Quality of the requirements documents: when stakeholders select requirements
from the PL models, the resulting documents consist in a copy of a PL
requirements model extract. When, on the contrary, stakeholders come up with
new requirements, specifying these independently from the PL requirements
model is inefficient. We believe, there is a need for guiding the merge between
variability requirements specifications with requirements documentation for
single products. Furthermore, product requirements specifications can be
inconsistent since PL RE methods do not propose processes to verify the
consistency and the compatibility of the new requirements with the older ones.

• Quality of the resulting product: it is quite well documented that the outcomes
of projects with poor requirements management drive to poor product quality.
This applies to products developed in the context of PL as for any other kinds of
products even though reuse is facilitated.

• Project management: training customers to understand the PL requirements
models and to discuss about them is a waste of time and creates an ambiguity
between the roles of analysts and customers that inevitably leads to conflicts.
This, associated with poor requirements definition in early project phase,
generates rework in later phases of the project, extra costs, deadlines overrun,
and difficult project management.

282 O. Djebbi and C. Salinesi

• Strategic objectives of the company: stopping innovation and market
anticipation with new products may harm the company strategic objectives.
Besides, applied methods leading to customer dissatisfaction may even threaten
the survival of the company.

To overcome these shortcomings of existing methods, we believe there is a
need for a product requirements derivation approach that satisfies the following
characteristics:

• Requirements oriented: customers should be able to express their real needs, and
the built product should answer to these needs.

• Product line based: the developed product should take advantage of the PL
platform and reuse elaborated requirements that are already linked, traced and
validated.

• Unified into the whole product line development cycle: it should provide means
to ensure traceability with the remainder development phases for both the
product line and the single product being developed.

• Easy to apply
• Supported by a CASE tool that is integrated into existing toolkits: appropriate

tool support is mandatory to facilitate automate handling of the method
processes and artifacts, and hence his large adoption by developers’ community.

• Scalable: the method should allow modeling large-scale systems.

This paper presents a method that intends to support the requirements listed above.
The study was undertaken with the collaboration of the AFIS1 association and the
method was developed by application to a product line of a French company named
Stago -a medical company that produces blood analyzers [10]. The experience con-
sisted in gradually introducing basic PL management principles while meeting practi-
cal issues in the RE phases of a new product creation project. The selection of these
basic principles resulted from extensive bibliography research. Based on this
experience, we developed a method, named RED-PL (Requirements Elicitation &
Derivation for Product Lines) that guides the elicitation of product requirements by
derivation from the PL requirements specification. The approach takes into account
both the company’s environmental and technical constraints and the specific product
requirements as expressed by customers.

RED-PL is based on already existing PL requirements notations. The originality of
the RED-PL method is that (i) it is user-oriented and (ii) it guides product require-
ments elicitation as a decision making activity. Indeed, RED-PL makes it possible to
users to express their needs using classic requirements engineering techniques. Then,
mechanisms are used to convert these needs and match them with the PL require-
ments specification. Negotiation and arbitration are finally supported in RED-PL to
elicit optimal product requirements while maximizing reuse.

The paper is organized as follows. Section 2 outlines the challenges faced by Stago
and the problems encountered while performing RE activities within its SPL man-
agement context. Section 3 presents the RED-PL method which was developed to

1 French Association on Systems Engineering, affiliated to INCOSE (International Council on

Systems Engineering) http://www.afis.fr/

 RED-PL, a Method for Deriving Product Requirements 283

meet these challenges. The methodological process is illustrated using the Stago data
that were initially used to develop it. Section 4 provides an overview of existing
methods and discusses how they deal with these challenges. Finally, conclusions are
given in section 5.

2 Problem Statement in Stago’s Context

Stago Instruments [10] is a company that produces analytical instruments for the
haemostasis diagnosis. These instruments are embedded and real-time systems. They
are used in hospitals and laboratories in the context of routine analysis or biologic
researches.

The automatons produced by the company fit into a product line: all of them share
the same core part with the main blood analysis functionalities. Each automaton has
also its own characteristics and differs from the others. These variable parts can be as
simple as color, weight or user interface of the machine; or more advanced such as
biological processes, capacity in term of number of tubes handled, or mechanical and
electronic technologies.

In general, instruments make tests on patients’ products (total blood, plasma) and
return results that are then interpreted by doctors.

In order to make tests, biologists load tubes of patients’ products as well as reagent
tubes in the instrument. While loading, tubes have to be identified. The biologist must
then choose an analysis methodology and launch the tests. A methodology is a series of
steps that simulate corpus reactions. Methodologies differ following test types (TP,
TCA, etc.), but comprise necessarily a mix step and an incubation step. They may also
use mixing and heating steps. Researchers can compose their own methodologies.

The instruments treat tubes, accomplish analyses according to specified method-
ologies, make measurements, and return the results to the biologist.

Products are loaded by batch. Nevertheless, the instrument is able to interrupt cur-
rent tests in order to load and treat urgent tubes. Before launching tests, tubes must be
treated to separate their constituents. Two processes of separation exist: centrifugation
and micro-filtration. All instruments are able to implement theses processes however
only one of them is implemented at a time in a given instrument.

There are three kinds of measurements: chronometric, colorimetric and immu-
nologic. Instruments can implement several measure techniques, but an instrument
that implements micro-filtration should not implement the photometric measure.

Test results are provided to the biologists in gross unit (Sec, D.O/min, Δ D.O), as
well as in calculated unit (INR, μg/ml, UI/ml). To establish correspondences between
units, the instrument must support calibrations. Besides, the instrument can view
results on the screen, print them, and/or transfer them to the hospital or laboratory’
host and put them into the patient case historic.

During projects, Stago teams manage in parallel the requirements documentation
for the product line (common requirements) and for the single products (variable
requirements).

Fig. 2 presents a model that was developed to document the most important re-
quirements of the Stago instruments product line. The PL requirements are modeled
using a Feature-oriented notation.

284 O. Djebbi and C. Salinesi

The figure shows a tree in which nodes are the features that correspond to PL
requirements and links describe feature decomposition. There are three types of re-
quirements: mandatory (e.g ‘Load products’), optional (e.g. ‘Separate constituents’)
and alternative (e.g. ‘Centrifuge’ and ‘Micro-filter’). A mandatory requirement is
common to the PL and must be included in every product of the PL. An optional
requirement may, or not, be chosen for the considered product. Alternative require-
ments are collections of requirements from which some can be selected and others
not. A UML-cardinality is associated to the collection to indicate the minimum and
maximum number of requirements to be chosen. Additional dependency links
between requirements, namely the ‘requires’ and the ‘mutex’ relationships, can be
defined to specify additional constraints in requirements selection.

Diagnose thrombosis/haemostasis

Identify failing factor Interpret results

Analyze

Set products to analyze and reagents

Calibrate

Set up analysis
methodology

Obtain analysis results

Avoid contamination Ensure traceability

Measure reaction

Load reagents Recuperate
products

Identify
products

By
RFID By

barcode

By identificator

Load
products

For
urgent

test

By batch

FIFO

By test type By patient

Separate
constituents

Micro-
filter

Centrifuge

Mix

Agitate

Incubate

Heat

Photometric

Immunologic

Chronometric

Manual By extern
system

In the
screen

By listing

In the patient
case history

FIFO

By test type

By patient

By id By RFID

By printing on tubes

Clean

Evacuate waste
1..*

« requires »

1

Colorimetric

« mutex »

Fig. 2. Requirements model of Stago’s product line

Since users are free in their way to express requirements, it happens that some re-
quirements already exist in the PL requirements documentation, but with a different
form. Users also insist on some requirements and ignore their impacts on other ones,
or on the project progress itself. Users also often forget about important requirements
and ignore opportunities offered by the product line.

In this context, Stago raised priority questions namely: (i) how to ensure the satis-
faction of the real user's needs? and (ii) how to derive an optimal and consistent
collection of product requirements that meet users needs and that cost little to the
company? The RED-PL approach was developed and tried out on a Stago project to
answer these questions.

 RED-PL, a Method for Deriving Product Requirements 285

3 The RED-PL Approach

In contrast to the traditional ‘Selection’ approach, requirements derivation for PLs
must take into account stakeholders’ original needs. As depicted in Fig. 3, RED-PL
consists of:

• eliciting user requirements,
• matching users’ requirements with PL requirements. This activity leads to

establish the set of requirements that the PL subsumes and that satisfy users’
needs. They correspond to a set of possible products to build.

• deriving the optimal set of product requirements, taking into account users’ and
company’s constraints.

These processes are respectively described in the three following sub-sections.

Product Line

Product 1

Product 2

Product N

Domain Engineer

User

Product Requirements
Engineer

Requirements
Elicitation + Constraints

Company

Constraints

Match requirements
+ Generate products

Capitalize

Arbitrate

Fig. 3. Processes of the RED-PL approach

3.1 The Matching Process

The matching process is an iterative process that consists in interpreting users’
requirements in terms of the PL requirements. It results in a collection of require-
ments that shall be implemented in the product (named 'product requirements'). The
matching process aims at: (i) eliciting new users’ requirements, (ii) avoid missing
possible requirements, (iii) refining progressively the final product requirements, and
(iv) updating the PL assets.

In the matching process, users’ needs can be elicited using classical methods.
Then, rules must be applied to construct a valid (i.e. unambiguous, consistent, trace-
able and verifiable) collection of product requirements. Once this is achieved, users’
requirements can be fetched and marked in the PL model.

If users’ requirements can not be found in the PL requirements model, then either
(i) they are new requirements and they should be added to the PL model as well as
links among them and in relation with old requirements, or (ii) they are the same
requirements expressed differently, and then consensus should be made on the
requirement formulation.

286 O. Djebbi and C. Salinesi

Requirements’ matching is guided by using similarity analysis techniques. Two
kinds of similarity analysis techniques can be used: surface level and deep level. First
techniques are based on lexical similarity where two requirements are considered
similar when they use the same term or the same linguistic structures. Conversely,
deep level techniques use a structural and a semantic proximity. These techniques
need more sophisticated tools such as dictionaries and linguistic parsers. Our similar-
ity analysis approach also uses refinement, as suggested by goal modeling, to progres-
sively improve the quality of the matching and to focus on requirements that are con-
sidered more important [11].

Our approach exploits the 30 generic similarity metrics adapted to Dice, Jaccard
and Cosine’s ratios. As shown below, similarity can be automatically computed by
applying a weighted ratio between a number of similarities found between two re-
quirements and the number of elements that define these requirements.

[] []
{ } { }BA

B
BA

A
A

BA
B

m
D TermesTermes

TermesTermesSIMMAXTermesTermesSIMMAX
BAS

+

+
=

∑∑),(),(
),(

(Formula 1) Adapted Dice ratio

After similarity study, marked requirements and all the associated requirements can
then be retrieved from the PL model. This collection of requirements should corre-
spond to a fragment of the PL requirements model, i.e. a sub-tree of requirements that
satisfy users’ requirements. However, the PL requirements model also contains re-
quirements that are not yet marked. These requirements may be either (i) undesired,
they must then be explicitly marked as such, (ii) mandatory then they must be consid-
ered in the collection of product requirements, or (iii) variable (optional/ alternative).
As long as the tree contains unmarked optional and alternative requirements, a deci-
sion must be made on which additional PL requirements to select for the product.
Arbitrations must therefore be investigated and discussed with users, as explained in
the next sub-section.

3.2 The Arbitration Process

The output of the matching process consists in a PL requirements model composed of
wanted/unwanted mandatory, optional and alternative requirements. The model frag-
ment composed of desired requirements represents a set of possible releases as it can
also contain optional and alternative requirements.

Only wanted optional and alternative requirements are considered in the following
to express preferences since mandatory requirements must anyway be included in the
collection of product requirements.

Preferences can be expressed by users under the form of weights associated to op-
tional and alternative requirements. A 0 weight means that the requirements should
not be selected, a 1 weight means that it should be included in the product require-
ments collection. The sum of weights of a bunch of alternative requirements must be
equal to 1. Implicitly, each mandatory requirement has a 1 value weight.

Users can indicate their constraints on each requirement in terms of costs and bene-
fits. Likewise, managers can state their development constraints on each requirement
in terms of human resources, revenues, costs, and implementation/integration time.
Although we knew they are important, other constraints such as skills of development

 RED-PL, a Method for Deriving Product Requirements 287

teams, team transfers, deadline extension, external resources, were voluntarily ignored
because they were too difficult to evaluate and we didn't know if they would really
influence arbitration significantly.

Once requirements, priorities and constraints are completely defined, they are for-
malized using an Integer Linear Programming (ILP) notation. The Akkar approach
[12] was selected and adapted to solve the problem at hand. The adapted version al-
lows to define the subset of requirements that composes the optimal release while
doing a what-if analysis on a dashboard. The ILP approach generates a collection of
requirements that satisfies the constraints values, and is optimal with respect to the
optimization criterion.

The following presents our proposal for modeling PL requirements dependencies
using Akkar’s approach. In Akkar’s approach, a requirement xa∈{0,1} with xa=1 if xa
is selected, and xa=0 otherwise. Five kinds of dependencies can be considered: com-
position, requires, optional composition, exclusion, and alternative. While the four
former dependencies were already considered in Akkar's approach under the names
‘combination’, ‘implication’ and ‘exclusion’, the fifth kind had to be created to deal
with the specific semantics of PL requirements modeling notations.

Requires. If requirement xb is selected, then requirement xa must be selected too. In
the ILP model, it must be ensured that: xb=1 => xa=1

The ILP model is extended by the linear inequality xb ≤ xa (xa cannot be implemented
without implementing xb). In Akkar's initial approach, the corresponding dependency
was ‘implication’. In terms of PL requirements modeling, “requires” dependencies can
be found from the alternative, the optional and the requires relationships.

xb ≤ xa (1)

Composition. If two requirements xa and xb cannot be implemented separately, then it
must be ensured that xa = xb. Composition dependencies can be found in the PL re-
quirements models from composition relationships. In Akkar's terms, it corresponds
to the combination dependency.

xa = xb (2)

Exclusion. If Ra and Rb cannot both be selected, in the ILP model then the inequality:
xa + xb ≤ 1 must be verified. In the PL modeling, exclusion dependencies can be found
from “mutex” relationships.

xa + xb ≤ 1 (3)

Alternative. In PL engineering, a requirement can be realized by one or more re-
quirements among a set. It is partly ensured by the implication relationship from a
requirement xa to its sub-requirements xb.. xk, but needs to be more detailed to model
the relationship between sub-requirements themselves. So, the alternative dependency
(which does not exist in Akkar's model) is defined in ILP model by the following
inequality:

xa*Cardmin ≤ xb+..+xk ≤ Cardmax (4)

288 O. Djebbi and C. Salinesi

The following table summarizes the mathematical formulae used to develop the
ILP model.

Table 1. Recapitulation of requirements dependencies and their representation in the ILP

Dependency
relationship

Explication Mathematical
formula

(composition)

If a requirement is selected then all mandatory
requirements composing it must be selected
 Ra = 1 ⇒ Rb = 1 Ra = 0 ⇒ Rb = 0
 Rb = 1 ⇒ Ra = 1 Rb = 0 ⇒ Ra = 0

Ra = Rb

(Combination)

(option)

If a requirement is selected then its optional sub-
requirements may be selected
 Ra = 1 ⇒ Rb ∈ {0,1} Rb = 1 ⇒ Ra = 1
 Ra = 0 ⇒ Rb = 0 Rb = 0 ⇒ Ra ∈ {0,1}

Rb ≤ Ra

(implication)

(alternative)

If a requirement is selected then alternative sub-
requirements must be selected respecting the speci-
fied cardinality
 Ra = 1 ⇒ Rb..d ∈ {0,1} and

 Rb + Rc + Rd ≤ Cardmax and
 Rb + Rc + Rd ≥ Cardmin

 Ra = 0 ⇒ Rb..d = 0
 Rb..d = 1 ⇒ Ra = 1
 Rb..d = 0 ⇒ Ra ∈ {0,1}

Rb..d ≤ Ra

(implication)

Ra*Cardmin ≤
Rb+..+Rd ≤ Card-

max

(alternative)

(requires)

If a requirement is selected then all required re-
quirements must be selected
 Ra = 1 ⇒ Rb = 1 Rb = 1 ⇒ Ra ∈ {0,1}
 Ra = 0 ⇒ Rb ∈ {0,1} Rb = 0 ⇒ Ra = 0

Ra ≤ Rb

(implication)

(mutex)

If a requirement is selected then all requirements
that are mutually exclusive with it must not be
selected
 Ra = 1 ⇒ Rb = 0 Rb = 1 ⇒ Ra = 0
 Ra = 0 ⇒ Rb ∈ {0,1} Rb = 0 ⇒ Ra ∈ {0,1}

Ra + Rb ≤ 1

(exclusion)

The ILP modeling approach presented in the former section was tested in a Stago

project with satisfying results. The experience is reported in the next section.

Ra

Rb

Ra

Rb

Ra

Rb Rc Rd

Card

Ra

Rb

« requires »

Ra

Rb

« mutex »

 RED-PL, a Method for Deriving Product Requirements 289

3.3 The Case Study

Once user requirements elicited, they were matched with PL requirements as recom-
mended in the RED-PL matching process. The resulting requirements collection is a
subset of the PL requirements model. The matching process revealed that users were
decided neither on the measurement technique nor on whether the instrument to build
should enable indoor constituents separation. Decisions had to be made to generate
the optimal collection of requirements for a complete product. The arbitration process
presented in section 3.2 was thus used to solve this problem.

First, the PL requirements model was analyzed and a ILP model was developed as
defined in section 3.1. All the constraints were recorded in a Microsoft Excel spread-
sheet, and analyzed with the Microsoft Excel solver (Fig. 4).

Two criteria were used to guide arbitration, namely cost and revenue. Revenue was
evaluated by enquiring salespeople about the perceived value of the functionalities
implementing the requirements. Cost evaluations were made by the engineering team
who was asked to consider development and integration costs, need for resources
(material and human), management costs, test costs, maintenance cost, and installa-
tion costs. These evaluations are an ordinary activity of salespeople and engineers, e.g
in the context of risk analysis while elaborating the feasibility of the project. Several
methods can be used to do this. Our approach does not focus on a particular one as it
considers these evaluations as an input.

For confidentiality reasons, revenue and cost are defined in the next figure as rela-
tive values rather than under the form of the absolute values that were actually defined.

Optimal

requirements

set

Mini

mal cost

Maxim

al revenue

Cost and

dependencies

constraints

Fig. 4. Screenshot of Stago ILP problem after solving

290 O. Djebbi and C. Salinesi

Two goals were considered for optimization: either minimize cost while consider-
ing minimal revenue, or maximize revenue taking into account a global cost limita-
tion. Sales and engineer teams agreed to focus on the second goal which is closer to
their daily concerns. The collection of requirements generated by the solver using
these parameters was found realistic in the sense that the resulting products did corre-
spond to products already developed at Stago. Besides, the product did respond to the
users’ expressed at the beginning of the project and did correspond to products al-
ready identified as being of low cost. It was however difficult to assess if the gener-
ated product did really correspond to an optimal product or not.

Some difficulties were observed too while applying the method. First, the matching
process was difficult to handle due to a lack of precision in the formulation of users’
requirements. The difficulty was due not only to terminology, but also to a conceptual
mismatch between users’ requirements and the PL requirements (different levels of
abstractions, different views). Besides, the ILP technique seemed to be not scalable to
large systems, and is limited to optimization requests. We believe that this approach
can be replaced by more adequate, flexible and scalable technique such as Constraint
Programming. Further applications to other industrial projects are planed to enhance
the method and favor its repeatability.

4 Related Works

Many different methods interested in constructing SPL assets are available in litera-
ture [13] [14] [15] [16] [17] [18]. Product derivation methodologies are on the con-
trary rather scarce [4] [19] [20]. Besides, while derivation affects the whole product
line artifacts, from requirements to code, the derivation issues are mainly addressed in
terms of design and implementation [4] [6].

At the requirement engineering level, how to create the right requirements assets of
the PL and dependencies among them to develop the right products have been exten-
sively studied [7] [21] [22] [23] [24] [25], but understanding the derivation process
itself has received little attention.

In existing approaches, the derivation of the product architecture, code or test arti-
facts from the product and the PL specifications is performed using the following
techniques:

• Model transformation: static and dynamic models are instantiated for products
from the PL models, using a model transformation language [4] [26] [27] [28].

• Design patterns: for instance the method introduced by Jezequel which consists
in using the ‘Abstract Factory’ pattern as interface to create objects of each
product in the product line [29] [30].

• Variability bounding: generative approaches (e.g. Generative Programming
approach [19]) suggest automatic derivation by code generation. Selecting
desired product features is sufficient to allow assembling correspondent SPL
elementary reusable components and generate the application code. Other
approaches introduce aspect programming techniques to assemble components
by waving features [31] [32].

Mostly, derivation methods consider as input a collection of PL requirements se-
lected from the SPL requirements model. However, industry experience suggests that
simply having the right assets is not sufficient to facilitate its selection and assembly.

 RED-PL, a Method for Deriving Product Requirements 291

So some works tried to propose guidelines to select the appropriate set of assets, but
they are still reduced to technical levels.

Namely, the specific assets needed could be specified in a production plan which
describes how the core assets are used to develop products [33]. Hunt considers
software components and studies the optimal organization proceedings to facilitate
finding and selecting them [34]. [35] discusses automating component selection using
artificial intelligence techniques. [3] [5] provide a framework of terminology and
concepts regarding product derivation as well as a generic software derivation
process. It is organized on iterative phases in order to determine the final
configuration of the derived product. Once again, the derivation process has by
default as input a subset of requirements that originate from customers, legislation,
hardware and product family organization. Details about how these requirements are
aggregated are not given. [4] also establishes a derivation framework. It indicates that
the product requirements derivation is made through a decision process. But, it does
not include more details about this process.

Nevertheless, a necessary step in product derivation is to determine the set of
requirements to use in order to build the particular product out of the possible
products in the product line. This requires some description of the customer needs that
allows it to be distinguished from others in the SPL. This description provides a set of
product requirements. Someone must then find and select the assets that are needed to
meet the product requirements. As presented in the existing approaches, it is often the
product developer that makes these decisions as the product is assembled. The role of
the user is dumped and mistreated.

While the focus provided by scoping develops mechanisms handling technical
derivation, we are interested in instructing requirements derivation processes that
originate from users needs, and involve users choices while tacking decisions; which
is not typically available in general derivation approaches.

5 Conclusions and Future Work

A major addition to existing reuse approaches since the 1990s are software product
lines that have been the long standing notion to solve the cost, quality and time-to-
market issues associated with development of related software applications.

Over the past few years, domain engineering has received substantial attention
from the software engineering community. Most of the researches, however, fail to
provide detailed derivation processes namely for deriving requirements, which has
been restricted to the selection of a requirements subset.

The idea behind the proposed approach is that the user, the main stakeholder to
whom the final product is intended, should be involved in specifying product
requirements, in a way that efforts expended in constructing the reusable requirements
in domain engineering are outweighed by the benefits in deriving the right individual
products that satisfy their mission.

RED-PL includes two processes that are the matching and the arbitration
processes. The first establishes the set of possible requirements that meet users’
needs. The latter, arbitrate on these requirements in order to derive a consistent
requirements set that is optimal for a defined set of users and company constraints
(e.g. revenue, cost, resources, time, etc.).

292 O. Djebbi and C. Salinesi

We have thought these processes (namely the mathematical model) based on
feature models. But, it is obvious that it may be applied for the different PL modeling
languages (Use cases, goals, UML, aspects). That is because these types of
dependencies represent fundamental concepts that are implemented by all existing
variability languages. Only visual representation is different depending on the
language constructs (use cases, classes, etc.) and stereotypes. Besides, the approach
viability was tested on real projects developing blood analyzers within a French
company named Stago. Obtained results were verified and appreciated.

Further research will focus on the refinement of the approach processes. We aim at
defining matching and arbitration processes of variable requirements in correlation
with variable PL physical architecture. It is worthwhile in Stago context since it
produces instruments where technical requirements impact heavily the decision on
functional requirements depending on technology costs and revenues.

We intend next to implement a tool support that interfaces with existing modeling
tools and enables such a matching and arbitration processes.

Moreover, the repeatability of the approach will be studied. The purpose is to
define a systematic process allowing modeling PLs and deriving products suitable to
different companies’ contexts. We are confident that if the Integer Linear
Programming is not scalable to large systems, it can be replaced by another more
adequate Multi Criteria Decision Making method.

References

1. SEI Product Line Hall of Fame web page, http://www.sei.cmu.edu/productlines/plp_
hof.html.

2. Linden, F.: Software Product Families in Europe: The Esaps & Café Projects (2002)
3. Deelstra, S., Sinnema, M., Bosch, J.: Product derivation in software product families: a

case study. The Journal of Systems and Software, pp.183–204 (2004)
4. Haugen Ø., Møller-Pedersen B., Oldevik J., Solberg A.: An MDA®-based framework for

model-driven product derivation. Software Engineering and Applications, USA (2004)
5. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J., COVAMOF,: A Framework for Modeling

Variability in Software Product Families. The 3rd Software Product Line Conference (2004)
6. Lee, J., Kang, K.C.: A Feature-Oriented Approach to Developing Dynamically Recon-

figurable Products in Product Line Engineering. SPLC (2006)
7. Halmans, G., Pohl, K.: Communicating the variability of a software-product family to cus-

tomers. In: Proceedings of the Software and Systems Modeling. vol. 2, Springer, Heidel-
berg (2003)

8. Maiden, N., Gizikis, A., Robertson, S.: Provoking Creativity: Imagine What Your Re-
quirements Could Be Like. IEEE Software 22(5), 68–75 (2004)

9. Michael, G., Kang, K.C.: Issues in Requirements Elicitation. Technical Report (1992)
10. www.stago.fr. Diagnostica Stago Web page
11. Salinesi, C., Etien, A., Zoukar, I.: A Systematic Approach to Express IS Evolution Re-

quirements Using Gap Modelling and Similarity Modelling Techniques. CAiSE Confer-
ence, Riga, Latvia. Springer Verlag, Heidelberg (2004)

12. van den Akker, M., Brinkkemper, S., Diepen, G., Versendaal, J.: Flexible Release Plan-
ning Using Integer Linear Programming. In: Proceedings of REFSQ, pp.257-272 (2005)

13. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-
based Software Architectures. Addison Wesley Object Technology Series (2004)

 RED-PL, a Method for Deriving Product Requirements 293

14. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., DeBaud, J.-M.:
Pulse: a methodology to develop software product lines. In: Proceedings of the SSR (1999)

15. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns. Addison
Wesley Professional (2001)

16. Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, H., Pohl, K.: Variability Issues in
Software Product Lines. The International Workshop on Product Family Engineering (2001)

17. Dobrica, L., Niemelä, E.: UML Notation Extensions for Product Line Architectures Mod-
eling. Australasian Workshop on Software and System Architectures, Australia (2004)

18. Robak, S., Franczyk, B., Politowicz, K.: Extending the UML for modelling variability for
system families. International Conference on Algorithmic Mathematics and Computer Sci-
ence, pp. 295–308 (2002)

19. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applica-
tions. Addison Wesley, New York (2000)

20. Sinnema, M., Deelstra, S., Hoekstra, P.: The COVAMOF Derivation Process. In: Proceed-
ings of the 9th International Conference on Software Reuse (2006)

21. Thompson, J., Heimdahl, M.: Structuring Product Family Requirements for n-Dimensional
and Hierarchical Product Lines. Requirements Engineering Journal, vol-8(1) (2002)

22. Streitferdt, D.: Family-Oriented Requirements Engineering. PhD Thesis, Technical Uni-
versity Ilmenau (2003)

23. Kang, K., Lee, K., Lee, J.: Concepts and Guidelines of Feature Modeling for Product Line
Software Engineering. In: Proceedings of the 7th International Conference on Software
Reuse: Methods, Techniques, and Tools, pp. 62 - 77 (2002)

24. Gibson, J.P.: Feature Requirements Models: Understanding Interactions. In: Feature Inter-
actions, in Telecommunications IV, Montreal, Canada, IOS Press, Amsterdam (1997)

25. Buhne, S., Lauenroth, K., Pohl, K.: Modelling requirements variability across product
lines. In 14th IEEE International Conference on Requirements Engineering (2005)

26. Perez Garcia, J., A. Laguna, M., Gonzalez-Carvajal, Y. C., Gonzalez-Baixauli, B.: Re-
quirements variability support through MDD and graph transformation. International
Workshop on Graph and Model Transformation, Tallinn, Estonia, pp.171-183 (2006)

27. Ziadi, T.: Manipulation de Lignes de Produits en UML. PhD thesis, Université de Rennes
1, équipe IRISA-TRISKELL, directeur Jean-Marc Jézéquel (2004)

28. Ziadi, T., Hélouët, L., Jézéquel, J-M.: Towards a uml profile for software product Lines.
In: the Fifth Internationl Workshop on Product Familly Engineering, Springer Verlag,
Heidelberg (2003)

29. Jézéquel, J-M.: Reifying configuration management for object-oriented software. In: Pro-
ceedings of the 21th international conference on Software engineering, pp.250–259 (1998)

30. Jézéquel, J-M.: Reifying variants in configuration management. ACM Transaction on
Software Engineering and Methodology, pp.294–305 (1999)

31. Jansen, A., Smedinga, R., van Gurp, J., Bosch, J.: First class feature abstractions for prod-
uct derivation. Special issue on Early Aspects: Aspect-oriented Requirements Engineering
and Architecture Design, IEE Proceedings Software, pp.197-207 (2004)

32. Mezini, M., Ostermann, K.: Variability Management with Feature Oriented Programming
and Aspects. Foundations of Software Engineering, ACM SIGSOFT (2004)

33. Chastek, G., McGregor, J. D.: Guidelines for developing a product line production plan.
Software Engineering Institute, Technical Report CMU/SEI-2102-TR-006 (2002)

34. Hunt, J.M.: Organizing the asset base for product derivation. In 10th SPLC (2006)
35. Asikainen, T., Mnnist, T., Soininen, T.: Using a configurator for modelling and configur-

ing software product lines based on feature models. Software Variability Management for
Product Derivation - Towards Tool Support at International Workshop of SPLC (2004)

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 294–308, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Deciding to Adopt Requirements Traceability in Practice

Floris Blaauboer1, Klaas Sikkel2, and Mehmet N. Aydin3

1 Accenture, System Integration & Technology, The Netherlands
2 University of Twente, Faculty of Electrical Engineering, Mathematics and Computer Science,

PO Box 217, 7500 AE Enschede, The Netherlands
3 University of Twente, School of Management and Governance,

PO Box 217, 7500 AE Enschede, The Netherlands
floris.blaauboer@accenture.com, {k.sikkel,m.n.aydin}@utwente.nl

Abstract. The use of requirements traceability for information systems devel-
opment (ISD) projects is not very common in practice despite its often
mentioned advantages in the literature. We conducted a case study in a large IT
company to identify the factors that are relevant for the decision whether or not
to adopt traceability in an ISD project. Five dominant factors emerged: devel-
opment organization awareness, customer awareness, return on investment,
stakeholder preferences, and process flow. It turned out that the majority of the
software development project leaders we interviewed were not aware of the
concept of traceability – with the obvious result that using traceability in soft-
ware project is not even considered. This fact has possibly been underestimated
in the present literature of requirements engineering.

Keywords: requirements traceability, decision-making, requirements engineering.

1 Introduction

Requirements are a measurable statement of intent about something that a product
must do; or a property that a product must have; or a constraint on a system [1]. They
are the formal basis for software development. Requirements traceability refers to the
ability to describe and follow the life of a requirement, in both a forward and back-
ward direction, ideally through the whole systems life cycle [2].

Despite the fact that many scholars have studied requirements traceability from
various perspectives, there is a lack of empirical studies showing if and how it is actu-
ally practiced in information systems development (ISD) projects. Most studies, as
discussed later on, focus on the execution of requirements traceability and its advan-
tages. Value added aspects of traceability are widely recognized throughout literature,
and quality standards and techniques in relation to requirements traceability have been
studied. However, some scholars including [3] mention that it is not a concept which
is applied in every project. This was also the situation in the organization where we
conducted a case study. That is, the claim about advantages and practicing of re-
quirements traceability has been present in the case organization, yet few projects in
the research environment have actually adopted traceability explicitly into their

 Deciding to Adopt Requirements Traceability in Practice 295

development process. The exact reason for this has been unclear, which is the motiva-
tion of this study.

In line with this motivation, the goal of this study is to understand how practitio-
ners go about deciding to adopt requirements traceability. More specifically, this
study is aimed to identify the dominant factors influencing the decision making on
adoption of requirements traceability in development projects. In contrast to other
studies looking into the adoption of traceability, such as [4], [5], which look at the
adoption by a development organization after this decision has been made, this study
looks at the preceding stage, where the decision to apply the concept of traceability is
to be explicitly made. Whereas other literature focuses on the implementation aspects
and the technical aspects of the concept, this study focuses on the factors that influ-
ence the decision of applying traceability in a project from a management point of
view.

For this study we adopted an explorative research approach. As an empirical analy-
sis we have conducted a case study in a large IT development and management con-
sulting company in the Netherlands that we’ll refer to as “ITCC”. Since the present
literature on requirements engineering and information systems development does not
provide theoretical underpinnings, accounts, models or alike, the adopted research
approach is found to be appropriate to the nature of subject matter and research goal.

2 Traceability

There are many different definitions of traceability [5]. We follow Gotel and Finkel-
stein [2]: “Traceability refers to the ability to describe and follow the life of a re-
quirement, in both a forwards and backwards direction (i.e., from its origins, through
its development and specification, to its subsequent deployment and use, and through
all periods of on-going refinement and iteration in any of these phases).” In our em-
pirical study we speak of traceability if a conscious effort has been made to record
traceability links between different products in the software development life cycle.
This implies that some record has been made. It doesn’t have to be with a special tool,
it could be, say, in MS-Word and Excel. However, if such links exist only in the
minds of software developers (conceivable on a small project), they still may be able
to describe them, satisfying the definition of Gotel and Finkelstein, but we do not call
that traceability.

The main value added by requirements traceability is twofold. First of all, there is
the aspect of change management. Through requirements traceability, changes in the
context of an application (changing requirements) can easily be analyzed for their
impact on the code and test cases and vice versa, which heavily shortens the time
required for software maintenance. On the other hand, increased accountability sim-
plifies the verification of a system to its requirements and allows better monitoring of
the process. However, establishing and maintaining requirements traceability is an
expensive and politically sensitive endeavor. Various techniques [6] and tools [7]
have been proposed to support the realization of requirements traceability for systems
development projects.

Despite these advantages, traceability is often still just an advocated desirable
property of a software development process [8]. Several problems were identified in

296 F. Blaauboer, K. Sikkel, and M.N. Aydin

literature with regard to the implementation of traceability. A central problem is the
fact that many developers see traceability as an optional activity, for which there are
too few resources available and of which they see too little direct benefits [9], [1]. The
reason of this limited amount of resources lies not with the developers, but should be
sought one level higher, with project management. They have to release the resources
required in the form of time, tooling and training [10].

Though traceability is involved with every effort in development from requirement
elicitation to testing, as advocated by most ISD methods, the decision to adopt it
should take place at an early stage. According to RUP and PRINCE 2, during both the
startup and initiation processes of a project, the project team determines the way in
which the work should be performed. The third process involved is the directive proc-
ess. It is this process in which decisions on accepting or rejecting a project plan are
made by a project board, whereas the contents of this plan is determined by others.

All these approaches, methods, techniques and tools proposed for requirements
traceability are useful as long as its adoption decision is present preferably at the early
stages of a project. However, this subject is undertheorized and calls for studying
what underpins the execution of requirements traceability. That is, we need to under-
stand how the decision on requirements traceability is made and which factors influ-
ence adoption of traceability. In the following, we present the conceptual treatment of
these questions, which eventually provide us with a theoretical lens to examine this
adoption in a systematic manner.

3 Research Framework and Approach

In this study we adopt the viewpoint that adopting traceability is essentially a matter
of choice. One can either make a choice to trace or choose not to trace during devel-
opment. A decision is a choice made from available alternatives, which is exactly
what is happening when adopting traceability or not [11]. This definition is somewhat
lacking depth, however. Matheson and Howard [12] define a decision as an irrevoca-
ble allocation of resources that is revocable only at a cost in some resource, such as
time or money.

Several different schools of decision making have arisen in the recent years. The
classical decision making theory is a normative theory, which stipulates how deci-
sions should be made on a normative basis and what the best outcome would have
been [13]. This study adopts Classical Decision Making (CDM), and specifically the
Stanford school of decision making of which Howard is one of the most prominent
authors [14]. The theory as discussed by Howard identifies a process by which a deci-
sion is structured and should be structured for that matter. The goal of this study,
however, is not to define what decision should be made, but how this decision is
reached. The model is therefore not used in a normative way, but in a way of describ-
ing the process. It is not intended to be followed to see how a decision should be
made, but to identify the aspects involved with making this decision.

Howard [14] approaches the decision making process by modeling it as a shift
from a real decision problem to a real action, including all the actions required to
create this shift. This is a process of elicitation and analysis, leading to clarification of
the actual problem in a way that it can be acted on in a logical way. Three phases are
distinguished: formulate, evaluate, and appraise a decision problem, along with any

 Deciding to Adopt Requirements Traceability in Practice 297

actions appropriate for dealing with the problem. A decision problem goes through
one or more iterations of the three phases. When the decision maker is content with
the outcome of the process, meaning that he sees no need for another iteration and no
further information available, he will decide how to tackle a problem and take real
action.

Central in the decision making process is the decision basis. It is established during
the “formulate” phase, where the required information is elicited and structured as
needed. With this basis, the different solutions can be evaluated and appraised, after
which, if required, another iteration of the cycle is performed. This entire cycle is
based on the decision basis. The decision basis consists of three parts:

• Choice. There are different alternative solutions for the decision problem.
• Information. In order to judge the alternative solutions, information is needed. In

Howard’s theory information consists of models and probability assignments.
• Preferences. Personal preferences do play a role in decision making. These com-

prise personal values, time preferences and risk preferences.

Before a problem is subject to the formulate-evaluate-appraise cycle, however, a
problem must have been identified as a decision problem – otherwise there is no cy-
cle. When the problem has been identified, an elicitation process yields input to the
decision basis.

Howard’s theory was used as a structuring principle to identify possible factors in-
fluencing the decision to adopt traceability. All relevant factors for the decision to
adopt traceability that were found in the literature could be subsumed by categories
form Howard’s theory. The theoretical framework itself suggested some other factors.
For example, the fact that awareness of traceability is needed in order to make any
decision. This is self-evident, and for that reason not mentioned in the technical litera-
ture. Yet it proved to be a most relevant.

3.1 Relevant Factors Identified

To identify existing factors that are considered as relevant, we have reviewed those
studies concerned with project management, software engineering process, informa-
tion systems development, and requirements engineering and structured them using
Howard’s framework, as elaborated above. Here we elaborate these factors with their
descriptions, rationale and the way to examine in empirical setting.

Problem Identification
Development organization awareness. The choice whether or not to adopt traceability
is made in the development organization. If this organization is not aware of the con-
cept, it will never adopt traceability. Several roles within the development organiza-
tion can create this awareness with the decision maker (the project manager). This
factor is measured by checking whether or not it was discussed with the project man-
ager during the project’s initial phases. Precondition is that those that were aware did
take this effort.

Customer Awareness. Traceability can also be a demand of the customer. The cus-
tomer should be seen in a broader sense here, not just as the manager. Acceptance

298 F. Blaauboer, K. Sikkel, and M.N. Aydin

criteria [15] are examples of concrete demands of the customer on traceability. This
factor is measured by checking whether or not any demands with regard to traceabil-
ity from the customer were known with the project manager.

Elicitation
Sources of Influence. Literature offers little insight into the roles of members of a
project team involved with the creation of the project plan. From the project board the
senior user, who represents both the end-user and the IT-management department, is
an important source of information required [16].

Decision Basis – Choice
Technological Possibilities. To make sure that the alternatives are realistic, the tech-
nical support has to be adequate for the concept to be applied. For this decision, the
decision maker has to be under the impression that the technical support is sufficient.
This factor is measured by discovering whether or not the project manager feels the
option is realistic.

Decision Basis – Information
Return on Investment. In business, every decision can be approached as an investment
decision. The costs of adopting traceability are often apparent, lying in the resources
required for each registered traceability relation. Many researchers have found that
one of the main problems, if not the main problem, with regard to adopting traceabil-
ity in practice is the lack of perceived benefit with management, leading to a dimin-
ished support from management [3], [4]. This factor is measured by examining
whether or not the project manager is aware of the advantages and drawbacks of
traceability in the economic sense

Quality Standards. As discussed before, both CMM and ISO 9000 demand the use of
traceability in development projects [17], [18]. When an organization wishes to ad-
here to these standards, in the case of CMM at the level where traceability is required
(2 and beyond), adopting traceability is required. The organization can be both the
development organization and the customer organization. This factor is measured by
looking at certification of the organization.

Compliance. Besides quality standards such as ISO and CMM, there are also legal
standards which companies have to adhere to. One of these standards is the Sarbanes-
Oxley Act of 2002 which applies to all companies tradable on the NYSE [19]. This
standard demands traceability from all systems in use in order to ensure transparency.
This factor is measured by looking at the required adherence to legal standards in the
customer organization.

Project Complexity. When the complexity of a project increases, it also becomes
harder to comprehend the system for developers. This complexity has to do with the
familiarity of the development organization with the technology used. Traceability
links between code and other deliverables aid in both the bottom-up and top-down
comprehension of code by programmers, increasing their productivity through being
able to both derive code from the preceding products and to place chunks of code in
perspective [20]. Project complexity can be judged from high to low by the project
manager.

 Deciding to Adopt Requirements Traceability in Practice 299

Development Method. The characteristics of a method influence, amongst other
things, the amount of changes that occur during the development project itself. Incre-
mental and iterative development methods lead to more changes on already developed
parts of the system during the development project, therefore increasing the value of
adopting traceability. Besides simply adding to the total increase of value, the fact that
these benefits lie in the development stage also improve the likeliness of the adoption.

Product Life Expectancy. The main financial benefit lies in the heavy reduction of the
time required for impact analysis when changes occur. The longer that a system is in
use, the higher the number of changes that occur during its lifespan, therefore again
leading to a higher return on investment. The expected lifespan of the system is often
stated at the start of a project.

Dynamics of the Environment. The frequency of risks is determined by the amount of
changes in its environment. These changes in the environment can consist of changing
interfaces, changes in business process layouts, changes in organizational structures,
and many other matters. The more dynamic the environment of a system, the higher
the amount of changes which is to be expected and the higher the expected return on
investment for adopting traceability. This factor is measured based on the project
manager’s perception of it.

Decision Basis – Preferences
Stakeholder Preferences. The outcome of a project influences many different parties.
Each of these parties might have an influence on the outcome of the decision, which
they would want to turn in their own favor. The manager of an IT department might
be bound by a tight budget, which means that the solution has to be within that
budget, whereas adopting traceability might mean exceeding the budget. This way,
what is best for the customer organization is not necessarily what is best for individu-
als involved. Daft defines this as politics, where in this context power is exercised to
influence the decision to strive for a self-serving purpose [11].

Process Flow. Adopting traceability increases the workload for those involved with it.
It creates additional tasks which are to be performed during the work in development,
which are often seen as extra and optional [21]. This factor is measured by discover-
ing the attitude of the project manager towards the influence of traceability on the
development process.

Benefits Outside Project Scope. The profit of traceability comes along when the links
are used in change processes that occur later on in the systems life. The benefits lie
not with the development project. Possibly a main driver for using traceability is
the customer, in this case the IT management department. First of all, this information
has to be made available. Second, the development organization has to be willing to
supply what the other party wants, when the investment is of limited benefit to the
development organization [3, 4].

3.2 The Conduct of Case Study

The case study took place in 2006 at ITCC, an IT consulting company in the Nether-
lands with about 4600 employees and a yearly turnover of around M€€ 450. Within the

300 F. Blaauboer, K. Sikkel, and M.N. Aydin

requirements business unit of ITCC, one of the current topics is the professionaliza-
tion of the service provided and especially the professionalization of the requirements
process. One of the issues that has arisen, and not just in the requirements unit, is the
notion that changes within a system can be performed a lot faster, and therefore less

Table 1. The profiles of respondents

Respond-
ent I II III IV V VI
Experience
as PM 10 Years 8 Years 10 Years 8 Years 15 Years 2 Years
Experience
with ISD 24 Years

21
Years 17 Years 8 Years 23 Years 12 Years

Work Ex-
perience

technical
automation

 ISD
projects

7 years IT-
consultant

 IT
strategy

Developer,
Designer,
Analyst

Functional De-
signer, Team
Leader, Architect

Product
Forum
Application

Call
Centre MIS

ERP
system

1st Line
Support
System

Batch Conver-
sion System

Project
Length

6
Months

4
Months

9
Months

18
months

24
Months

8
Months

Team Size 3 12 17 6 24 14
Traceability
Applied? Yes No Yes Yes Yes Yes

Table 2. The opinions of respondents and informants on the relevance of factors

Respondent Informant
Factor I II III IV V VI I II III IV VI

Development Organization Awareness E E E E E E D D D D D
Customer Demand + – – – – – + N/A + N/A +
Technological Possibilities E E E 0 E E + N/A N/A N/A N/A
Return on Investment + – 0 + + + + + + + N/A
Quality Standards E – 0 0 0 0 N/A N/A N/A + N/A
Compliance 0 0 0 0 0 0 N/A N/A N/A N/A N/A
Project Complexity 0 0 0 0 0 0 N/A N/A N/A N/A 0
Development Method 0 – 0 0 0 0 0 N/A + N/A N/A
Product Life Expectancy 0 0 0 0 + 0 N/A N/A N/A N/A +
Dynamics of the Environment 0 0 0 0 + 0 N/A N/A N/A N/A +
Stakeholder Preferences 0 – + – 0 0 N/A – N/A 0 –
Process Flow E – E 0 E E 0 N/A + N/A –
Benefits Outside Project Scope – – 0 – – – – – 0 – –
Time Pressure N/A – 0 – – 0 N/A – – + –
Contract Type N/A – + – 0 0 N/A – – N/A –

Respondents: those who are aware of traceability; Informants: those who are not aware
+ : this factor positively influenced the decision to adopt traceability
– : this factor negatively influenced the decision to adopt traceability
0 : this factor did not weigh in on the decision to adopt traceability
E : this factor was seen as an enabler for the adoption of traceability
D : this factor was a disabler for the adaptation of traceability

N/A this factor is not applicable to the discussed project

 Deciding to Adopt Requirements Traceability in Practice 301

expensive, when the entire process is performed in a repeatable, but more specifically,
traceable, way. So, the need for the conduct of this study was immediate for the or-
ganization, and the researchers got access to whatever data sources they needed.

The unit of analysis in this case study is the person who is responsible for decision
making for requirements traceability. At ITCC this is the project manager (we did
verify this during the case study). There are project managers with different ranks and
with different levels of experience. To get a good sample of the project managers at
ITCC, first we have selected eight managers with experience with different kinds of
projects. It turned out that only three of them knew about requirements traceability. In
some cases traceability techniques were used, but the interviewee was not familiar
with the term “traceability”. So we operationalized “being aware of traceability” as
recognizing it after our concept of traceability (as formulated in the first paragraph of
section 2) had been explained.

Awareness about traceability is a precondition for making decision about it. Hence,
we expanded the selection and conducted in-depth interviews with in total six manag-
ers who are already aware of traceability. Five of them adopted traceability in their
projects, but one of them had never adopted it in any project he had been in charge of.
Table 1 summarizes their profiles. In addition, interviews were conducted with the
five managers in the first sample who had no knowledge of traceability and therefore
did not make any decision with regard to its adoption. The interviews with these pro-
fessionals were a valuable addition, due to their estimated impact of traceability on
their work.

The data collection started by performing a pilot interview, as suggested by [22]. A
random project manager was selected (with the known prerequisites) and the inter-
view was performed with a focus that lied more on the process than the product. Only
minor details were adapted in the interview protocol after the pilot, hence we consid-
ered it OK to keep the pilot in the data set. The interviews took place at various
locations; half of them were at customer locations and the other half at ITCC head-
quarters. The data from the interview protocols are summarized in Table 2. The 6
managers with awareness about traceability are referred to as “respondents”; they
were interviewed about a project they were currently involved in. The 5 other manag-
ers were asked for their opinion after the concept was explained. They are referred to
as “informants”.

Two factors, contract type and project size, were not on our list in Section 3.2 but
came up in the interviews as being relevant.

4 Findings and Discussion

Based on the conducted in-depth interviews we have reorganized the factors as shown
in Table 3. Obviously there are dependencies between the different factors. We identi-
fied five dominant factors and clustered the other ones with the factor they are most
related to, yielding the 5 categories shown in Table 3. The five dominant factors are:
awareness of the development organization; awareness of the customer organization;
the perceived return on investment by the project manager; personal preferences of
stakeholders; the way traceability influences the process during the development
project. We will discuss each factor and its empirical justification.

302 F. Blaauboer, K. Sikkel, and M.N. Aydin

Table 3. Classification of factors for adopting requirements traceability (dominant factors in
italics)

Development Organization
 Development Organization Awareness
 Sources of Influence
 Quality Standards
Customer Organization
 Customer Awareness
 Quality Standards
 Compliance
Financial factors
 Return on Investment
 Dynamics of the Environment
 Project Size
 Product Life Expectancy
Political factors
 Stakeholder preferences
 Contract Type
 Benefits Outside Project Scope
Operational consequences
 Process flow
 Technological Possibilities
 Time Pressure

Development Organization
Development Organization Awareness. Awareness of traceability in the development
organization was identified as a prerequisite for the existence of the decision to adopt
traceability. Where this factor might seem trivial, its validation showed not only that it
was definitely an influencing factor but also that it was a quite important factor. From
the first eight interviews that were planned, five interviewees had no knowledge about
traceability as a concept that could be applied in systems development. Although it is
not possible to draw any quantitative conclusions from this study on how many pro-
ject managers do and do not know what traceability is, awareness of project managers
is quite an important factor because without this awareness it is impossible to make
this decision. In the five interviews with informants (i.e. those interviewees not aware
of traceability) we could see that they all show development organization awareness
as a disabling factor.

In only one of the cases did anybody ever discuss traceability with the project
manager before the development started. This was an architect. The fact that the in-
formants did not know anything of the concept also shows that nobody ever bothered
them with it, although this might seem like a logical move. Parts of the development
organization might be aware of the existence of traceability and its advantages or
drawbacks, but these were never communicated to the relevant roles in the project
except for the case of one respondent.

Sources of Influence within the development organization. In half of the projects men-
tioned did anyone other then the project manager have an influence on the decision to

 Deciding to Adopt Requirements Traceability in Practice 303

adopt traceability. Informants only mentioned the program manager as a potential
influence once, whereas he was an influence in one of the cases, but the architect was
seen as a large potential influence.

Quality Standards at the development organization. It was often found that (unofficial)
quality standards did not demand traceability which meant that this negatively influ-
enced the decision; it did not have to be adopted. Organizations which do work through
certification such as CMM at level 2 or higher would have this influencing the deci-
sion, since traceability is a must in this case. This was not found in any of the cases,
but is indispensable for organizations which have regular audits on their CMM level.

Customer Organization
Customer Awareness. Besides the influence and knowledge of the development or-
ganization, the customer also has quite an important influence on the decision to
adopt traceability. Almost all project managers stated that if a customer demanded
traceability, he would adopt it. However, very few customers actually demanded
traceability. Whereas the IT management organization of the customer, be this an in-
house department or with outsourced IT management, would most likely be the party
demanding traceability, this party is often not involved in the initiating phases of a
project. Few of the interviewees had contact with this party, and if acceptance criteria
were given, they almost never included traceability. The interviewees regarded cus-
tomer awareness as a causal factor. If the customer demanded traceability, he would
perform this (as long as any required budget for this was created). On the other hand,
if the customer did not demand it, it made things easier not to adopt it, enforcing the
negative decision on this subject. The latter was mostly the case in this study, as can
be seen in Table 2.

Quality Standards at the customer organization. Only one case was found where the
respondent was subjected to an ISO 9000 certified process, but this did not demand
traceability. If traceability was performed however, there were strict guidelines with
regard to review processes which influenced traceability in a negative way.

Compliance. What applies to quality standards is somewhat similar to what applies to
compliance. Regulations and laws such as the Sarbanes-Oxley Act and Basel II de-
mand from organizations that they develop their systems in a traceable way. In the
empirical study, no cases were found where this was demanded yet, although this
would be expected in projects in the financial sector. In this case, it would become
part of the customer demand: not as a demand from the IT management department,
but from the risk management department as one interviewee remarked.

Financial factors
Return on Investment. As stated in the CDM theories, the decision to adopt traceabil-
ity could in practice be approached as an investment decision, and this is exactly what
was found in practice. Although not all respondents performed a quantitative analysis
of the costs and benefits involved with adopting traceability, they did weigh the pros
and cons in a financial sense. This happened mainly because, in the end, they were
responsible for finishing the project within budget. This led to the question whether or
not adopting traceability would aid in reaching this goal in several of the cases, in

304 F. Blaauboer, K. Sikkel, and M.N. Aydin

which it was answered as true in most cases. What some project managers, in this
case two informants, showed as missing in their toolkit was being able to determine
whether or not traceability was worth performing at all, especially in their project.
The perceived financial benefits of traceability were different for each case. Often, the
verification of traceability was seen as a lot more important then the main benefit
mentioned in theory, being the simplified impact analysis. Steering the project with
better management information, both with respect to the development progress and
the correctness of the product was seen as the main financial advantage by one re-
spondent, whereas one person also saw the reduction of tests required as an advantage
and only one person performed traceability mainly for the impact analysis advantages.

Dynamics of the Environment. As stated, in only one case did the project manager
identify impact analysis as an advantage of traceability. The others did not take the
dynamics of the environment, and the correlated amount of changes, into account.
One respondent considered the environment not very dynamic, hence it didn’t have
much weight; another was involved in a project where the overriding concern was to
get out a system, irrespective of quality, in a very short time frame. This factor is
related to ‘benefits outside the project scope’ discussed below.

Project Size. A factor that was not on our list, but did come forward in several inter-
views, is that of project size. Many of the project managers who were acquainted with
the concept of traceability stated that they applied it mainly in larger projects. The
longer a project lasts, the larger the benefits. Where the factor “product life expec-
tancy” looks at the life of the product, the life expectancy of the project also matters
with regard to the amount of changes found. For a project manager, larger projects are
harder to keep track of, to keep a good overview. Traceable development offers more
management information. When looking at the adoption of traceability by the respon-
dents, there was also a trend which could be found with regard to the size of projects.
Traceability was seldom adopted in small projects, but in larger projects this percent-
age got a lot higher. This study looked into the factor of project complexity, which
focused on the technology used and the familiarity with this. Project size also contrib-
utes to complexity. The interviews indicated that size, rather than complexity, is rec-
ognized as a factor.

Product Life Expectancy. Only one respondent was aware of taking the expected
period of use of the system under development into account with regard to the deci-
sion on adopting traceability. He felt this weighed in the cost/benefit analysis, which
is also what the theory prescribed. Whereas the other respondents did perform a
cost/benefit analysis, they often did not see the advantage in the form of the improved
impact analysis, so this factor did not apply to them. When one were to recognize this
as an advantage of traceability the informants felt that life expectancy of the product
would matter. On the other hand, the life expectancy has to do with matters which
occur outside of the scope of the project, which is limited to just the development of
the system.

Political factors
Stakeholder Preferences. The different stakeholders involved in the decision could
have personal motives with respect to the outcome of the decision which weighed in,

 Deciding to Adopt Requirements Traceability in Practice 305

and several of these were identified. In many of the interviews, budgets came forward
as very important issues. The form of contract available was something discussed
very often. If a project manager remains further within budget, this provides him a
larger bonus after the project is finished. For many project managers, this was an
influence on the decision to adopt traceability, especially in the case where traceabil-
ity was not adopted. This factor turned out to be quite an important influence in the
different interviews. It is closely related to the view the respondent has on the return
on investment of traceability however, since for project managers it is often all about
the money, the final number is what counts. If he feels traceability will not lead to
many extra costs, this factor will not necessarily be of influence, whereas it becomes
quite important if he feels there are additional costs involved.

Contract Type. The type of contract, to our knowledge, isn’t mentioned anywhere in
the technical literature as a relevant factor. Yet this was identified by several inter-
viewees as quite important. Following Lauesen [23], we identify two types of contract
for software development projects: fixed price and time-material based. The first type
is based on a quotation provided by the supplier. This can be a response to a tender,
where a request for proposal was sent out by the customer, or because the customer
directly approached the supplier. A fixed price is determined for the project, any addi-
tional costs are for the supplier, but any savings with respect to the agreed price are
also for the supplier. In the second type of contract, a registration of hours is kept and
the price paid by the customer is determined by the actual time and materials used in
the development project. What is important here, however, is the decision maker’s
impression of the return on investment of traceability in the development project
itself. If he feels traceability will add costs to a fixed price development project, this
will negatively influence his decision.

Benefits Outside Project Scope. A factor which was not necessarily quite clear in
theory became all the more apparent in practice. The scope of a project, as defined by
PRINCE2, is limited to the development and does not involve the use of the product
[16]. The satisfaction of the customer is only checked at the completion of the project,
the project manager is generally not responsible for any aftercare. As one of the inter-
viewees remarked, this is quite important commercially however. A customer who
remains satisfied, even after the delivery of the product, is a customer who returns to
the company. Many of the project managers did not automatically think of traceability
as something that had an improved impact analysis as the main advantage. For them,
the fact that most of the benefits generally lie in the IT maintenance phase was irrele-
vant, they were very clear that all that mattered to them was the project itself and not
anything beyond this. Four out of five informants also felt that any benefits obtained
beyond from the development project itself were irrelevant and would not be taken
along in the decision, therefore negatively influencing this decision.

Operational consequences
Process Flow. The flow of the process was definitely regarded as an influencing fac-
tor by the different project managers. In one case the project manager perceived the
adoption of traceability as a negative influence on the process, traceability making the
operational processes more complicated. In most other cases, however, the contrary
was found. The project managers did not perceive the adoption of traceability as a

306 F. Blaauboer, K. Sikkel, and M.N. Aydin

problem with respect to the flow of the process. In the end, this factor again has to do
with the perception of the decision maker of its impact and can only be influenced by
experience and demonstration.

Technological Possibilities. Technology that supports traceability is something that is
quite important to the project managers. If there is insufficient support for traceability
in the opinion of the decision maker, this would influence the decision in a negative
way. Nearly all of the respondents felt, however, that the technical support of trace-
ability is quite adequate. For this reason, this positively influenced their decision to
perform traceability, although it was not really a decisive argument. Technological
possibilities were more seen as an enabler of the process. The use of text processors
and spreadsheets was always seen as enough support, although tools were deemed as
interesting by several respondents. In the case of the adoption of tools the issue of
return on investment would become a lot bigger though according to them, a more
thorough cost/benefit analysis would have to be performed.

Time Pressure. A very clear issue which came forward during one of the first inter-
views was time pressure. In this specific case, the project had a very strict deadline
and the project manager had the feeling that implementing traceability would increase
the time required to develop the system. This last thing is quite important; again it
has to do with the perception of the project manager on how traceability would influ-
ence the project. If time pressure is an issue in a project, it therefore leads to a nega-
tive influence on the adoption of traceability. Many informants also stated that trace-
ability would probably be one of the first things that were dropped as soon as time
pressure became an issue and a small form of panic appeared. “Quality issues” such
as documentation and traceability are seen as a lot less important then functional
development, which is critical to the project.

Discarded Factors
Two factors identified from the literature were not found to be relevant by the inter-
viewees and therefore discarded from the above list.

Project Complexity. The interviewed project managers could not relate to this factor.
Note, however, that they did mention project size, as discussed above. An explanation
for not perceiving technical complexity as a factor could be that the project manager
operates at a higher level of abstraction. According to Antoniol [20], it does play a
role for those performing the operational development work.

Development Method. This factor has not played a significant role in the practice
examined. Although it did influence the decision once, and one informant felt it might
influence his decision. This factor was seen as hardly relevant.

5 Conclusions

In this study we have investigated how practitioners (project managers) go about
making a decision on adopting requirements traceability. From a literature review
in requirements engineering, software engineering and information systems develop-
ment and Howard’s theory of Classical Decision Making we identified factors

 Deciding to Adopt Requirements Traceability in Practice 307

relevant for making a decision about traceability. We validated these factors in a case
study conducted in a large software development and management consulting com-
pany. As most important factors, in the view of project managers, we found develop-
ment organization awareness, customer awareness, return on investment, stakeholder
preferences, and process flow. Some factors from the literature (development method,
project complexity) were not considered important, while some factors not mentioned
in the literature (contract type, time pressure) were important for project leaders for
making a decision about requirements traceability.

In this company, the majority of software development project leaders are not
aware of the concept of traceability – hence using traceability is not even considered.
This raises the question whether this company (which has not a bad reputation) is
exceptional or whether this awareness is too easily taken for granted.

What stands out in this company as the most prominent reason not to adopt trace-
ability, apart from awareness, is the organizational separation of development projects
from the later phases of the software life cycle. Project managers are motivated by
and rewarded for achieving the goal for which they are held accountable, which is
delivering the right project on time and within budget. There is little incentive to use
traceability when most of the benefits are outside the project.

Tender projects in which the supplier is to quote a fixed price are less likely to
adopt traceability from a financial perspective – unless the client explicitly requires it.

The technical means for traceability exist. In our case study, the two big obstacles
are a lack of awareness and the way software development projects contracted and
organized. The latter is more difficult to change than the former. The expected im-
plementation of Sarbanes-Oxley is a chance to change something for the better and to
get traceability accepted at a larger scale.

This study adopted an explorative research approach. The findings resulting from
one case study should be considered as our contribution to the understanding of deci-
sion making on requirements traceability by means of the conceptual articulations and
practical insights for the subject matter. To enhance this basic understanding, follow-
up research is suggested to test the proposed categories, factors and their relationships
in other organizations. We recommend to including different roles, such as software
architect, in follow-up studies. Too little is known about their influence on the proc-
ess. Another interesting topic might be the influence of a development method, but
then in the sense of it already proposing the use of traceability, therefore contributing
to development organisation awareness. Once the foundation of decision making for
requirements traceability is established, one can suggest the appropriate approaches,
tools, techniques for adopting and implementing requirements traceability.

References

1. Robertson, J., Robertson, S.: Mastering the Requirements Process. Addison-Wesley, New
York (1999)

2. Gotel, O., Finkelstein, A.: An Analysis of the Requirements Traceability Problem. Int.
Conf. on Requirements Engineering (ICRE’94) pp. 94–101 (1994)

3. Arkley, P., Riddle, S.: Overcoming the Traceability Benefit Problem. 13th IEEE Int. Conf.
on Requirements Engineering (RE’05) 385–389 (2005)

308 F. Blaauboer, K. Sikkel, and M.N. Aydin

4. Ramesh, B.: Factors influencing Requirements Traceability Practice. Communications of
the ACM 41(12), 37–44 (1998)

5. Ramesh, B., Jarke, M.: Towards Reference Models for Requirements Traceability. IEEE
Transactions on Software Engineering 27(1), 58–93 (2001)

6. Hull, E. et al.: Requirements Engineering, 2nd edn. Springer, Heidelberg (2005)
7. INCOSE. INCOSE Requirements Management Tools Survey. International Council on

Software Engineering, Retrieved March 6th 2006, from http://www.paper-
review.com/tools/rms/read.php. (2006)

8. Lindvall, M., Sandahl, K.: Practical Implications of Traceability. Software – Practice and
Experience 26(10), 1161–1180 (1996)

9. Stout, G.A.: Requirements Traceability and the Effect on the Systems Development Life-
cycle. Revere Group whitepaper (2001)

10. Dorfman, M., Chardon, R.: Early Experience with Requirements Traceability in an Indus-
trial Environment. Industrial presentation, 5th IEEE International Symposium on Re-
quirements Engineering (ISRE’01) (2001)

11. Daft, R.L.: Management. 5th Edition, Dryden Press, Fort Worth, TX, (2000)
12. Matheson, J.E., Howard, R.A.: An Introduction to Decision Analysis. In: Howard, R. A.,

Matheson, J. E. (eds.) Readings on the principles and applications of decision analysis I.
Strategic Decisions Group, Menlo Park, CA, pp. 17–55 (1983)

13. Aydin, M.N.: Decision-Making and Support for Method Adaptation, Ph.D. Thesis, Uni-
versity of Twente, Enschede, the Netherlands (2006)

14. Howard, R.A.: The Evolution of Decision Analysis. In: Howard, R.A., Matheson, J.E.
(eds.) Readings on the principles and applications of decision analysis. Strategic Decisions
Group, Menlo Park, CA, pp. 5–16 (1983)

15. Rational, Rational Unified Process, version 2003.06.15, IBM (2006)
16. OGC Managing Successful Projects with PRINCE2. The Stationary Office, London, 4th

Edition (2005)
17. ISO 9000-1 Quality systems – Model for Quality Assurance in Design, Development, Pro-

duction, Installation and Servicing. International Organization for Standardization (1994)
18. Carnegie Mellon SEI, The Capability Maturity Model, Guidelines for Improving the Soft-

ware Process. Addison Wesley, Reading, Massachusetts. (1999)
19. US Congress Sarbanes-Oxley Act of 2002. Washington, USA, Congress of the United

States of America (2002)
20. Antoniol, G.: Recovering Traceability Links between Code and Documentation. IEEE

Transactions on Software Engineering 28(10), 970–983 (2002)
21. Jarke, M.: Requirements Traceability. Comm. of the ACM 41(12), 32–36 (1998)
22. Yin, R.K.: Case Study Research; Design and Methods, 2nd edn. Sage Publciations, Thou-

sand Oaks (1994)
23. Lauesen, S.: Software Requirements: Styles and Technique. Pearson Education Ltd (2002)

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 309–323, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Designing Social Patterns
Using Advanced Separation of Concerns

Carla Silva1, João Araújo2, Ana Moreira2, and Jaelson Castro1

1 Centro de Informática, Universidade Federal de Pernambuco, 50732-970, Recife, Brazil
{ctlls, jbc}@cin.ufpe.br

2 Dept. Informática, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
{ja, amm}@di.fct.unl.pt

Abstract. This paper proposes an approach to support separation and modulari-
zation of crosscutting concerns in multi-agent systems (MAS). Crosscutting
concerns are properties that do not align well with the decomposition criteria of
the chosen approach and, therefore, cannot be modularized. Aspect-Oriented
Software Development offers mechanisms to encapsulate such properties in
separate modules, the aspects. Aspects are used as abstractions to capture social
patterns concerns that cut across functional modules in MAS. To achieve this,
we propose a technique to describe social patterns in an aspect-oriented context
and a systematic way for using them in MAS design.

1 Introduction

Tropos [1] has defined a set of design patterns, called social patterns [2], focusing on
social and intentional features which are recurrent in cooperative and multi-agent
systems (MAS). Although both application core and design patterns concerns are
independent from each other [3], the current use of patterns can lead to the scattering
and tangling of their concerns with the application functional modules. As a conse-
quence, application core becomes dependent on patterns [3], which do not fully meet
quality requirements, such as understandability, maintainability, evolvability and
reusability. Thus, design patterns concerns can be called crosscutting concerns, since
they cut across the functional modules concerns, decreasing the system reusability
and maintainability. These crosscutting concerns can be better addressed by adopting
aspect-oriented software development (AOSD) techniques [4]. The purpose of this
new technology is to localize crosscutting concerns, avoiding their scattering or tan-
gling through software artifacts [5].

Although many languages for multi-agent systems modeling have been proposed in
the last few years, such as AUML [6] and MAS-ML [7], they do not consider the
separation of crosscutting concerns. On the other hand, some languages for modeling
separation of crosscutting concerns have been proposed, such as aSideML [8] and
AODM [9], but they do not address MAS directly. In this context, we propose a nota-
tion to describe social patterns using abstractions and mechanisms provided by aspect
orientation to support the separation of crosscutting concerns in MAS. To achieve
this, we need to: (i) specialize the agency metamodel [10] by using the concept of

310 C. Silva et al.

model roles [11] used in Pattern Specifications (PSs) technique [12]; (ii) attach notes
to the structural model of the social pattern to capture some abstractions of aspect
orientation; and (iii) suggest guidelines to map the proposed notation to the constructs
of AspectJ [4] and JADE [13] environments. We have used an integration of JADE
and AspectJ to implement our approach. This integration is not difficult as both im-
plementation environments are based on Java, facilitating the combination of JADE
and AspectJ code in the same program.

This paper is organised as follows: Section 2 presents some background on Social
Patterns, UML-based MAS notation and PSs technique. Section 3 presents the cross-
cutting nature of social patterns through a motivation example. Section 4 introduces
our notation to describe social patterns in an aspect-oriented context. Section 5 exem-
plifies the use of our approach. Section 6 presents some related work. Finally,
section 7 summarises our work and points out to future work.

2 Background

The purpose of this work is to propose a description of social patterns using advanced
separation of concerns. This description is achieved using model roles [11] to special-
ize the agency metamodel introduced in [10]. The concept of model roles has been
used to specialize the UML metamodel [14], in the PSs technique [12], to specify
what model elements must participate in the pattern. Thus, in this section we intro-
duce the social patterns, the agent oriented notation and the PSs technique.

2.1 Social Patterns

Tropos is a requirements-driven framework aimed at building software that operates
within a dynamic environment. To promote an efficient development of MAS, Tropos
supports five phases of software development: Early Requirements, Late Require-
ments, Architectural Design, Detailed Design and Implementation. In this work we
will concentrate on the late phases.

The Detailed Design phase is intended to introduce additional detail for each archi-
tectural component of a system. Designers can be guided by a catalogue of multi-
agent patterns which offer a set of standard solutions. In particular, Tropos has
defined a set of design patterns, called social patterns [2], focusing on social and
intentional aspects that are recurrent in multi-agent and cooperative systems. They are
inspired by the federated patterns introduced in [15] [16]. Examples of social patterns
are booking, subscription, monitor, broker, mediator, wrapper and matchmaker (to be
used to illustrate the approach). The Matchmaker pattern involves an intermediary
agent (matchmaker) that receives requests from service Providers to sub-
scribe/unsubscribe its services into the Yellow Pages maintained by it. A Client may
need a specific service provided by an unknown Provider. The Matchmaker also re-
ceives requests from Clients to locate some Providers which offer a specific service.
If there is some Provider for the requested service, the Matchmaker informs that Pro-
vider’s identification to the Client which, in turn, can directly interact with it [17].

 Designing Social Patterns Using Advanced Separation of Concerns 311

2.2 UML-Based MAS Notation

In this section, we present the MAS architectural diagram specified according to the
agency metamodel introduced in [10] and reflecting the client-server pattern [18]
that we have tailored for MAS. We define the MAS architectural diagram (Fig. 1) in
terms of AgentRoles and organizational architectural features which include: Goal,
MacroPlan, ComplexAction, OrganizationalPort, AgentConnector, Dependum, De-
pendee and Depender. A Dependum defines an “agreement” of service offer between
two agent roles that also play the roles of Depender and Dependee. Thus, the
AgentRole responsible for providing the service is the Dependee. The AgentRole that
requests the service provided is the Depender. A Dependum can be of four types:
goals, softgoals, tasks and resources [19]. AgentRoles need to exchange signals
through an AgentConnector to accomplish the contractual agreement of service pro-
viding between them. An OrganizationalPort specifies a distinct interaction point
between the AgentRole and its environment (depicted as a white square attached to
the «AgentRole» class). A Goal is a condition or state of affairs in the world that the
actor (Agent or AgentRole) would like to achieve. How the goal is to be achieved is
not specified, allowing alternatives to be considered [20]. A MacroPlan encapsulates
the recipe for achieving some goal. A ComplexAction determines the steps to perform
a MacroPlan.

Fig. 1. MAS Architectural Diagram

For example, in Fig. 1 we have the Provider AgentRole which is responsible for
performing the service defined in the Dependum. This AgentRole aims at achieving
the ServicePerformed goal by executing the PerformPlan MacroPlan, which, in turn,
consists of performing the service() ComplexAction. The Client AgentRole aims at
achieving the ServiceRequested goal by executing the RequestPlan MacroPlan,
which, in turn, consists of performing the request() ComplexAction. Therefore, the
Client AgentRole is responsible for requesting the service defined in the Dependum.
Both the message for requesting the service execution and the message for confirming
whether the service was successfully concluded are sent through the AgentConnector.

2.3 Pattern Specifications

Pattern Specifications are introduced in [12] as a way of formalizing the structural
and behavioral features of a pattern. The notation for PSs is based on the Unified

312 C. Silva et al.

Modeling Language (UML). The abstract syntax of UML is defined by a UML
metamodel [14]. PSs specialize this metamodel by specifying what model elements
must participate in the pattern and is defined in terms of roles. Each element in the
specification of the patterns is a role, that is, a metaclass specialized by additional
properties that any element fulfilling the role must possess. A PS can be instantiated
by assigning UML model elements to the roles in the PS. A model conforms to a PS if
its model elements that play the roles of the PS satisfy the properties defined by the
roles. An example of a PS for class diagram and a conforming UML class diagram is
given in Fig. 2. Roles are identified by preceding them with a vertical bar, “|”.

Fig. 2. A PS class diagram (right) and a conforming UML class diagram (left). (From [12])

The PS model is a specialization of the metamodel for UML class diagrams but is
presented graphically so that it resembles a class diagram not the metamodel. The
right-hand side of Fig. 2 is a PS model defining the structure of a general Observer
pattern [21]. The left-hand side shows a UML model that conforms to the PS model –
Kiln plays the role of |Subject, TempObs plays the role of |Observer, currTemp plays
the role of |ObserverState, AttachTempObs plays the role of |Attach, and so on. Note
that the definition of conformance allows other model elements to appear in the con-
forming model as long as the original role constraints remain satisfied.

In the next section we present a motivation example for the separation of the social
patterns concerns in MAS.

3 The Crosscutting Nature of the Matchmaker Pattern

Several design patterns for multi-agent systems have been proposed [2, 15, 16] to
describe recurring problems and solutions in software design and, therefore, improv-
ing software reusability and maintainability. However, current software development
paradigms cannot avoid that application core becomes dependent on patterns, decreas-
ing possibilities of reuse [3]. In order to show the crosscutting nature of the Match-
maker pattern, let us consider the implementation of each pattern participant concern

 Designing Social Patterns Using Advanced Separation of Concerns 313

(i.e., Client, Matchmaker and Provider concerns) provided by the JADE’s [13] API
(Application Programming Interface). JADE is a suitable agent platform to support
the implementation of MAS. In JADE, a behavior represents a task that an agent can
carry out.

Important features that JADE provides are the ability of agents to communicate with
each other and the DF (Directory Facilitator) agent, which implements the behavior of
the main participant of the Matchmaker pattern [2] i.e., the Matchmaker agent. It pro-
vides a Yellow Pages service by means of which an agent (Client) can find other
agents providing the services it requires in order to achieve its goals. An agent wishing
to publish one or more services (Provider) must provide the DF with a description
including its Agent Id (AID) and the list of its services. The services provided by the
DF agent (Matchmaker) are usually used by all agents of a MAS implemented in
JADE. Thus, all agents who need to register or unregister its services in the Yellow
Pages of the DF agent will implement the Provider’s concern (Fig. 3 and Fig. 4).

 DFAgentDescription dfd = new DFAgentDescription();
 dfd.setName(genericAgent.getAID());
 ServiceDescription sd = new ServiceDescription();
 sd.setType(genericAgent.getServiceType());
 sd.setName(genericAgent.getServiceName());
 dfd.addServices(sd);
 try { DFService.register(genericAgent, dfd); }

Fig. 3. Code to register the service in the yellow pages

try { DFService.deregister(genericAgent); }

Fig. 4. Code to unregister the service in the yellow pages

Similarly, all agents who need to find a specific provider agent in the Yellow Pages
will implement the Client’s concern (Fig. 5).

DFAgentDescription template = new DFAgentDescription();
ServiceDescription sd = new ServiceDescription();
sd.setType(genericAgent.getServiceType());
template.addServices(sd);
try { DFAgentDescription[] result =
DFService.search(genericAgent, template);
 for (int i = 0; i < result.length; ++i) {
 genericAgent.getProviders()[i] = result[i].getName(); }

Fig. 5. Code to search in the yellow pages the agent which provides a service

Generally, the Yellow Pages Provider and Yellow Pages Client concerns (hence-
forth YPProvider and YPClient concerns, respectively) are going to be implemented
by several agents involved in the Matchmaker pattern. Consequently, the YPProvider
and YPClient concerns become tangled with the concerns of these agents (i.e., appli-
cation core functionality) and scattered in the system. To solve this issue, we can use
aspect-oriented abstractions both in the design and implementation phases.

314 C. Silva et al.

Observe that the concern of the Matchmaker participant, i.e. the Yellow Pages
service concern, is implemented inside the DF agent and its implementation is hidden
in the JADE’s API. Thus, the Matchmaker participant concern will not crosscut the
application functional modules.

Next section presents a notation to describe social patterns using advanced separa-
tion of concerns.

4 A Standard Technique for Social Pattern Specification

To describe social patterns we propose an approach that specializes the agency meta-
model for MAS architectural diagram [10] by using the concept of model roles [11].
In fact, the concept of model roles was used in the Pattern Specifications technique
[12] to specialize the UML metamodel for specifying which model elements must
participate in a pattern. The work presented in [22] uses the Pattern Specifications
(PS) technique [12] to address aspect modeling. Analogously, we can use PSs to pro-
mote the separation of social patterns concerns in MAS design.

The following sub-sections describe the template used to specify a social pattern
(section 4.1) and the respective structural specification (section 4.2). These are illus-
trated by the Matchmaker pattern. The communication specification describes a pat-
tern of communications and can be found in [23].

4.1 Pattern Template

The template used to describe social patterns (with a subset of GoF’s template [21])
was introduced in [17] to illustrate the Matchmaker pattern. Its main attributes are
Name, Intent, Applicability, Motivation example, Problem, Solution and Participants.

4.2 Structural Agent Pattern Specification

A structural agent pattern specification (SAPS) defines the part of the pattern meta-
model that characterizes MAS architectural diagram views of pattern solutions. It
defines subtypes of agency metaclasses describing MAS architectural diagram ele-
ments (e.g., agency metaclasses AgentRole, AgentConnector) and specifies semantic
pattern properties using constraint templates (see Fig. 6). A SAPS consists of a struc-
ture of pattern roles [12], where a role specifies properties that a MAS model element
must have if it is to be part of a pattern solution model. Formally, a role defines a
subtype of an agency metaclass. The metaclass is called the base of the role. For ex-
ample, a role that has the metaclass AgentConnector as its base specifies a subset of
MAS agent connectors. A MAS model element conforms to (or plays) a role if it
satisfies the properties defined in the role, that is, the element is an instance of the
subtype defined by the role. A role in a SAPS can be a classifier or a relationship role.
A role that has the base Classifier or a base that is a subtype of Classifier (e.g.,
AgentRole, Dependum) is a classifier role. A relationship role is any role that has the
base Relationship or a base that is a subtype of Relationship (e.g., AgentConnector).

 Designing Social Patterns Using Advanced Separation of Concerns 315

Fig. 6. Matchmaker Structural Agent Pattern Specification

Fig. 6 shows a SAPS that specifies solutions for the Matchmaker pattern [2]. This
SAPS is described using the client-server architectural pattern (Fig. 1). The Match-
maker pattern has to provide three services (i.e. dependums): Locate Provider,

316 C. Silva et al.

Perform Service and Subscribe Yellow Pages. For example, the shaded area of Fig. 6
represents the classes involved in the |Locate Provider service defined in a Dependum
class. When the |Client AgentRole executes the Request Provider Identification
MacroPlan by performing the requestProviderID ComplexAction to achieve the Pro-
vider Identified Goal, it triggers a request to the |Matchmaker AgentRole to perform
the |Locate Provider Service. The |Matchmaker AgentRole performs the requested
service because it does not conflict with the achievement of the Yellow Pages Service
Provided Goal. A conflict is detected when the service requested to an agent playing a
specific agent role, can cause the failure of some of its goals. So, both the requested
service and the goal achievement are accomplished by means of the Yellow Pages
Server MacroPlan. The description of the |Perform Service and Subscribe Yellow
Pages services is achieved in a similar way.

Here we will use the idea proposed in [22] for using model roles only in the ele-
ments of the pattern that will vary from one application to another, since when the
pattern is applied to a specific application, these roles will be instantiated to model
elements of the application. For example, the SAPS in Fig. 6 consists of only five
model roles: three for AgentRole metaclass (Client, Provider and Matchmaker) and
two for Dependum metaclass (|Locate Provider and |Perform Service). The roles
define subtypes (specializations) of metaclasses in the Agency metamodel. For
example, the Client role defines a subtype of metaclass AgentRole in the Agency
metamodel. The AgentRole roles indicate that conforming architectural diagrams
must have at least one AgentRole that conforms to the Client role (as indicated by
the 1..* realization multiplicity in the first compartment of the AgentRole role), at
least one AgentRole that conforms to the Provider role, and at least one AgentRole
that conforms to the Matchmaker role. An AgentRole that conforms to the Match-
maker role (referred to as a Matchmaker class) must have exactly one goal that
conforms to the Yellow Pages Service Provided role and exactly one MacroPlan
that conforms to the Yellow Pages Server role. The same rationale can be applied
to the other roles which are subtypes of metaclass AgentRole in the Agency
metamodel.

Moreover, we have the model roles present in the notes which describe the Agen-
tRoles’ points affected by the aspects encapsulating the Matchmaker pattern’s con-
cerns (each aspect will encapsulate the concern of one pattern participant). For
example, let us consider the note attached to the |Client AgentRole. It represents
that the execution of the requestProviderID(), which is part of the RequestProvider-
Identification, is going to affect the client participant of the Matchmaker pattern
before the execution of some of its actions, which is part of some of its plans. To
determine who are the client participant in the application and its affected action,
we need to instantiate each model role present in the SAPS (e.g., |Client, |action,
|plan, etc.) to design elements present in the MAS architectural design. Thus, we
weave the aspects with the AgentRoles resulting in the application of the pattern to
the system.

In the sequel we propose some mapping guidelines to enable the implementation of
social patterns concerns separately from agents concerns through the integration of
JADE and AspectJ implementation environments.

 Designing Social Patterns Using Advanced Separation of Concerns 317

4.3 Towards Implementation in JADE and AspectJ

To implement our approach we use the integration of JADE and AspectJ environ-
ments. AspectJ [4] is a practical aspect-oriented extension to the Java programming
language. This section provides some guidelines to map our notation to represent
MAS (Fig.1) and social patterns (Fig. 6) in constructs of JADE and AspectJ, respec-
tively. In the affected Architectural Diagram: (i) each «MacroPlan» becomes a Be-
havior in JADE; (ii) each «ComplexAction» becomes a simple method; (iii) each
«AgentRole» becomes an Agent in JADE, since JADE does not support the concept
of agent roles played by agents; (iv) the goal element is not mapped to any JADE
construct, as JADE does not support the implementation of cognitive agents.

In the SAPS: (i) each «MacroPlan» presented in Fig. 6 becomes an Aspect in As-
pectJ; (ii) each «ComplexAction» becomes an Advice in the aspect it belongs to; (iii)
each «AgentRole» is a module affected by an aspect; (iv) each note attached to an
AgentRole becomes a Pointcut and also defines the rule to compose the aspect with
the agent; (v) the goal is not mapped to any AspectJ construct.

5 An Example

To illustrate our approach, we consider the domain of Newspaper Office introduced in
[24]. The e-News system (Fig. 7) enables a user to read news by accessing the news-
paper website maintained by a Webmaster AgentRole which is responsible for updat-
ing the published information. The information to be published is provided by the
Chief Editor AgentRole. The Chief Editor AgentRole depends on the Editor Agen-
tRole to have the news of a specific category. For example, an Editor may be respon-
sible for political news, while another one may be responsible for sports news. Each
Editor contacts one or many Photographers-Reporters which can find the news of
specific categories (e.g., about sport news). The Chief Editor then edits the Editor’
news and forwards them to the Webmaster to publish them.

The following sub-sections describe the architectural diagram (section 5.1), the
choice and application of social patterns (section 5.2) and the partial AspectJ code
(section 5.3) for the e-News system.

5.1 Architectural Diagram

We start by proposing the architectural solution for the e-News problem (Fig. 7) by
using the MAS architectural pattern (Fig. 1). The e-News system is composed of four
AgentRoles: Editor, Webmaster, Chief Editor and Photographer-Reporter. For exam-
ple, in Fig. 7 the shaded area corresponds to the interaction between the Editor and
Photographer-Reporter to achieve the service Produce News Article of Specific Sub-
ject. The Editor intends to achieve the News of Specific Category Edited goal by
means of the Edit News of Specific Category MacroPlan. However, to edit the news
the Editor has to request the Photographer-Reporter to perform the Produce News
Article of Specific Subject service. The Photographer-Reporter performs the requested

318 C. Silva et al.

service because it does not conflict with the achievement of the News Article Pro-
duced goal. Hence, both the requested service and the goal achievement are accom-
plished by means of the Contact News Agencies MacroPlan.

Fig. 7. MAS Architectural Diagram for the e-News System

5.2 Social Pattern Selection and Application

The last step in the detailed design phase is to select and apply social patterns to re-
fine the architectural design of the e-News system (Fig. 7). One of the key challenges
is to choose the proper social pattern to be applied to a system architectural design.
One can analyze the template (e.g. [17]) that describes several features of each social
pattern to address a specific requirement. For example, the e-News System has the
Availability requirement, i.e., the system has to ensure easier recovery of the system if
some agent in the system stops running. This requirement could not be shown in the

 Designing Social Patterns Using Advanced Separation of Concerns 319

case study because we did not present the requirements models of the e-News System.
However, the interested reader can find it in [23].

Analyzing the template of several patterns, we have concluded that the most
suitable pattern to address the Availability requirement is the Matchmaker, since it
enables the search for another agent to replace the one that has stopped. To apply a
social pattern, we need to weave the Matchmaker pattern with the architectural design
of e-News system. To achieve this we need to instantiate each model role present in
the structure of the pattern (e.g., |Client, |Provider). For example, the following bind-
ings represent the instantiations of the model roles present in the Matchmaker SAPS
(Fig. 6) for the e-News system:

1. Bind |Client to Editor
2. Bind |Provider to Photographer-Reporter
3. Bind |Perform Service to Produce News Article of Specific Subject
4. Bind |Provider|plan.|action to Photographer-Reporter.ContactNewsAgencies

.getGuideline
5. Bind |Client.|plan.|action to Editor.EditNewsSpecificCategory. provideSpecific-

SubjectGuideline
6. Bind |Provider.|plan.|action to Photographer-Reporter.ContactNewsAgencies.

produceNewsArticle
7. Bind |Locate Provider to Locate Photographer-Reporter
8. Bind |Matchmaker to Directory Facilitator

Observe that the Matchmaker role has been instantiated to Directory Facilitator
because we have chosen JADE as the target agent implementation environment.

Instantiating the model roles of the pattern (Fig. 6) for the e-News model elements
(Fig. 7), we obtain the pattern applied to the problem (Fig. 8). Thus, we applied the
structure of the pattern to the architectural diagram of the e-News System through
model roles instantiation (the bindings shown above), which can be easily automated
by a CASE tool. Note that the Matchmaker pattern is refining the Editor and Photog-
rapher-Reporter AgentRoles by adding the pattern-specific concerns (ports, connec-
tors, dependums, goals, plans). Thus, an agent playing the Editor AgentRole can
search for a Photographer-Reporter at run time, as well as an agent playing the Pho-
tographer-Reporter AgentRole can publish its services in the DF’s Yellow Pages. It
ensures the decoupling among agents, because if a Photographer-Reporter contacted
by an Editor stops running, for example, the Editor may replace that Photographer-
Reporter by requesting to the DF to locate another one in his yellow pages.

5.3 The Partial AspectJ Code for the e-News System

In this section we show how the Matchmaker Pattern introduced in Fig. 6 can be codi-
fied using the AspectJ environment. To achieve this, we use the mapping guidelines
presented in section 4.3. According to these guidelines, the MacroPlans Register
Services and Request Provider Identification become aspects in AspectJ. The Com-
plexActions to subscribe, unsubscribe and requestProviderID become advices in its
corresponding aspects. The AgentRoles |Provider and |Client are the agents affected
by the aspects, i.e., the Photographer-Reporter and Editor agents. The notes become
pointcuts and composition rules in their corresponding aspects.

320 C. Silva et al.

Fig. 8. MAS Architectural Diagram weaved with the SAPS

For example, in Fig. 9 we present the RegisterServices aspect weaved with the Pho-
tographerReporter agent in the e-News System. The code after the comments “// Regis-
ter…” and “// Unregister…” are the ones presented in Fig. 3 and Fig. 4, respectively.

 Designing Social Patterns Using Advanced Separation of Concerns 321

public aspect RegisterServices {
 pointcut subscribe() : call (void Photographer-
Reporter.linkToNewsAgencies());
 pointcut unsubscribe() : call (void Photographer-
Reporter.produceNewsArticle ());
 before() : subscribe() {
 Photographer-Reporter genericAgent = (Photographer-
Reporter) thisJoinPoint.getThis();
//Register the PhotographerReporter service in the yellow pages...}
 after() : unsubscribe() {
 Photographer-Reporter genericAgent = (Photographer-
Reporter) thisJoinPoint.getThis();
//Unregister from the yellow pages...}

Fig. 9. AspectJ Code for RegisterServices Aspect

Fig. 10 presents the RequestProviderIdentification aspect weaved with the Editor
agent in the e-News System. The code after the comments “// Update…” is the one
presented in Fig. 5. Due to lack of space we could not illustrate the use of the map-
ping guidelines for the JADE environment, which can be found in [23].

public aspect RequestProviderIdentification {
 pointcut requestProviderID() : call (void
Editor.provSpecSubjGuide(..));
 before() : requestProviderID() {
 Editor genericAgent = (Editor) thisJoinPoint.getArgs()[0];
// Update the list of PhotographerReporter agents...)

Fig. 10. AspectJ Code for RequestProviderIdentification Aspect

6 Related Work

Aspect-oriented modeling requires the use of a higher-level aspect model that ad-
dresses the aspect-oriented programming concepts at a preliminary design stage
(avoiding language specific details), and allows the designer to work at a more ab-
stract level during software construction and evolution. Aspect-Oriented Design
Model (AODM) [9] enhances the existing UML specification with aspect-oriented
concepts that reproduces the crosscutting characteristics of the AspectJ language. The
aSideML [8] is an aspect-oriented modeling language based on the UML that pro-
vides notation, semantics and rules for specifying aspects and crosscutting at the de-
sign level of OO systems. Composition patterns [25] is an approach that handles
crosscutting concerns at design level by means of templates. However, these ap-
proaches do not address MAS directly.

It is argued in [26] that the design and implementation of agent internal architec-
ture concerns (e.g. interaction, adaptation, autonomy, knowledge, collaboration, roles,
learning and mobility) tend to affect or crosscut many classes of the system design
and code, including those representing the basic agent functionality. To address this
issue, [26] proposes an aspect-oriented approach to support the separate handling and
modularization of MAS specific concerns. The proposed approach encourages the
separate handling of agent properties, and provides a disciplined scheme for their
composition. In our approach, we are concerned with the separation of social patterns

322 C. Silva et al.

concerns since we consider the agents already built-in (with the agent properties, such
as autonomy, interaction, etc.) and supported by some agent implementation platform.

In [17], we have extended the aSideML [8] to incorporate agency features to be
used in both the separation of crosscutting concerns in MAS and its latter weaving
with the system agents. However, this approach becomes a little complex because we
extended the aSideML by using agency features, architectural features and model
roles. On the other hand, our current work is much simpler since to model crosscut-
ting concerns of social patterns in MAS, we have created an agency metamodel and
specialize it by using model roles.

7 Conclusion and Future Work

This work presents an approach to separate crosscutting concerns in MAS. The con-
tribution is threefold: (i) a notation to describe the social patterns concerns separately
from MAS functional modules (i.e. agent roles); (ii) a systematic way for weaving the
social patterns concerns with the agent roles concerns; and (iii) guidelines to imple-
ment a system specified according to our approach using the integration of JADE and
AspectJ. In doing so, we envisage several benefits for MAS design and implementa-
tion, such as improving concerns modularity, since social patterns concerns are
localized into aspects while the application concerns are localized into agent roles.
Consequently, this improves software reusability and maintainability.

Future work includes performing an empirical evaluation of the benefits of using
aspects in the implementation of social patterns. Firstly, we need to implement MAS
using only JADE, then we use the integration of JADE and AspectJ. Finally, we assess
the degree of modularity of MAS in each case and compare the results. Moreover, we
intent to develop a tool to support both the proposed notation and the generation code
for JADE and AspectJ, as well as to apply our approach in other case studies.

Acknowledgements

This work was supported by several research grants (CNPq Proc. 142248/2004-5 &
CAPES/GRICES Proc. 129/05).

References

1. Giorgini, P., Kolp, M., Mylopoulos, J., Castro, J.: Tropos: A Requirements-Driven Meth-
odology for Agent-Oriented Software. In: Agent-Oriented Methodologies pp. 20-45 (2005)

2. Kolp, M., Do, T., Faulkner, S., Hoang, H.: Introspecting Agent Oriented Design Patterns.
In: Advances in Soft. Eng. and Knowledge Engineering, Vol. III. World Publishing (2005)

3. Noda, N., Kishi, T.: Implementing Design Patterns Using Advanced Separation of Con-
cerns. In: OOPSLA’01, Workshop on ASoC in OO Systems, USA (2001)

4. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin, J.:
Aspect-Oriented Programming. In: ECOOP’97, Finland, Springer, Heidelberg (1997)

5. Elrad, T., Filman, R., Bader, A.: Aspect-Oriented Programming: Introduction. In: Com-
munications of the ACM 44(10), 29–32 (2001)

 Designing Social Patterns Using Advanced Separation of Concerns 323

6. Odell, J., Parunak, H., Bauer, B.: Extending UML for agents. In: AOIS’00 at the 17th
National Conference on AI, Austin, TX, USA, pp. 3 – 17, iCue Publishing (2000)

7. Silva, V., Lucena, C.: From a Conceptual Framework for Agents and Objects to a Multi-
Agent System Modeling Language. In: JAAMAS’04, vol. 9(1-2), pp. 145–189. Kluwer,
Dordrecht (2004)

8. Chavez, C., Garcia, A., Kulesza, U., Sant’Anna, C., Lucena, C.: Taming Heterogeneous
Aspects with Crosscutting Interfaces. In: J. of the Brazilian Computer Society 12, 1 (2006)

9. Stein, D.: An Aspect-Oriented Design Model Based on AspectJ and UML. Master Thesis.
University of Essen (2002)

10. Silva, C., Araújo, J., Moreira, A., Castro, J., Tedesco, P., Alencar, F., Ramos, R.: Model-
ing Multi-Agent Systems using UML. In: SBES’06, Brazil, pp. 81 – 96 (2006)

11. Kim, D., France, R., Ghosh, S., Song, E.: Using Role-Based Modeling. Language (RBML)
as Precise Characterizations of Model Families. In: IEEE ICECCS’02, USA (2002)

12. France, F., Kim, D., Ghosh, S., Song, E.: A UML-Based Pattern Specification Technique.
In: IEEE Transactions on Software Engineering 30(3), 193–206 (2004)

13. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE - A White Paper. In: Special is-
sue on JADE of the TILAB Journal EXP (2003)

14. OMG: Unified Modeling Language (UML): Superstructure. Version 2.0, Available:
(2005) www.omg.org/docs/formal/05-07-04.pdf

15. Hayden, S., Carrick, C., Yang, Q.: Architectural design patterns for multiagent coordina-
tion. In: Agents’99, Seattle, USA (1999)

16. Woods, S., Barbacci, M.: Architectural Evaluation of Collaborative Agent-Based Systems.
Technical Report, CMU/SEI-99-TR-025, Carnegie Mellon University, USA (1999)

17. Silva, C., Castro, J., Araújo, J., Moreira, A., Alencar, F., Ramos, R.: Separation and Modu-
larization of Crosscutting Social Patterns in Detailed Architectural Design. In: CAiSE’06
Forum, Tudor, Luxembourg (2006)

18. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, Englewood Cliffs (1996)

19. Yu, E.: Modelling Strategic Relationships for Process Reengineering. Ph.D Thesis, De-
partment of Computer Science, University of Toronto, Canada (1995)

20. Mylopoulos, J., Kolp, M., Castro, J.: UML for agent-oriented software development: The
Tropos proposal. In: UML’01, Toronto, Canada (2001)

21. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, London (1995)

22. Araújo, J., Whittle, J., Kim, D.: Modeling and Composing Scenario-Based Requirements
with Aspects. In: RE’04, Kyoto, Japan (2004)

23. Silva, C.: Agent Pattern Specifications. Technical Report, Available:
cin.ufpe.br/~ctlls/APS.pdf

24. Silva, C., Castro, J., Tedesco, P., Silva, I.: Describing Agent-Oriented Design Patterns in
Tropos. In: Brazilian Symposium of Software Engineering (SBES’05), Brazil. pp. 10-25
(2005)

25. Clarke, S., Walker, R.: Composition Patterns: An Approach to Designing Reusable As-
pects. In: ICSE’01, Toronto, Canada. pp. 12 – 19 (2001)

26. Garcia, A.: From Objects to Agents: An Aspect-Oriented Approach. PhD Thesis, Com-
puter Science Department, PUC-Rio, Rio de Janeiro, Brazil (2004)

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 324–339, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Modeling Business Contexture and Behavior Using
Business Artifacts

Rong Liu, Kamal Bhattacharya, and Frederick Y. Wu

IBM T.J. Watson Research Center
19 Skyline Dr. Hawthorne, NY 10532, USA
{rliu, kamalb, fywu}@us.ibm.com

Abstract. Traditional process modeling approaches focus on the activities
needed to achieve a business goal. However, these approaches often pose
obstacles in consolidating processes across an organization because they fail to
capture the informational structure pertinent to the business context or
contexture. In this paper, we discuss business artifact-centered operational
modeling. Artifacts capture the contexture of a business and operational models
describe how a business goal is achieved by acting upon the business artifact.
Business artifacts, such as Purchase Order or Insurance Claim, provide business
analysts an additional dimension to model their business. With operational
models, they can describe how a business operates by processing business
artifacts and adding business value to the artifacts. This approach has been
successfully employed in a variety of customer engagements. We summarize
our best practices by describing nine operational patterns. Furthermore, we
develop a computational model for operational models based on Petri Nets to
enable formal analysis and verification thereof.

Keywords: Business contexture, business behavior, business artifacts,
operational modeling, operational patterns.

1 Introduction

Business process modeling is an essential tool for organizations to formalize and
reason about how to reach business objectives. A business process model describes
actions taken by business (human or system) actors using the resources of an
organization to achieve a strategic or operational goal. Business process models
convey business intent and serve as the basis of communication amongst a variety of
stakeholders in a business, from business management, analysts, process owners,
down to system developers. Enterprises of today have often grown through mergers
and acquisitions which frequently lead to process redundancies and inconsistencies.
Process consolidation efforts when implemented successfully can lead to significant
operational improvements and cost savings. In reality, business process consolidation
across a large organization is arduous. Part of the problem is cultural, i.e.
disagreement over the unified process itself, as the same business process is often
implemented in different ways in different organizations. This typically leads to
complications in measuring efficiency of business processes and also in setting
balanced incentive targets for the process owners.

 Modeling Business Contexture and Behavior Using Business Artifacts 325

One may argue that process consolidation is difficult because different
stakeholders employ different process modeling languages, and that transforming
from one to another is prone to semantic ambiguities and leads to skewed
representations of business intent. We believe, however, that the actual problem of
communicating intent using business process models is much more fundamental and
independent of modeling semantics. In a variety of client engagements across various
industry verticals we have noticed that standardizing the representation of business
process models does not necessarily facilitate stakeholder agreement on processes.
We find that traditional process models often inhibit consolidation of business
operations. Business stakeholders face problems in agreeing on a unified process
simply because a business process can be executed in different ways and still achieve
the same goal. Agreeing on one process versus another is often a matter of taste.

We propose a different approach to understanding and representing business intent
using what we call business artifacts (or simply artifacts) [6,11,15]. The idea behind
business artifacts is the following. Traditional process models like workflows [8]
focus on the actions taken to achieve a certain goal (often referred to as "verb-
centric"). Hence, business stakeholders describe their business by stating "first we do
A, then B, then C, and while doing C we also do D." We propose to focus on what is
acted upon, thus describing business operations by first identifying business artifacts,
the things that matter to their business (e.g. Purchase Order, Insurance Claim), and
second how these artifacts are processed to achieve a certain goal. Business artifacts
are so vital to a business that it stops functioning without processing them. Modeling
business operations using artifacts is thus a “noun-centric” approach. In our
engagements we found it relatively easy for stakeholders to agree on business
artifacts. This agreement on the artifacts leads more naturally to consolidating
business operations across organizational boundaries.

Business processes describe how work is coordinated to achieve operational and
strategic business goals. In Hammer’s framework of the Seven Dimensions of Work
[9] Hammer requires that business process design respect all seven dimensions to
successfully drive operational innovation. Based on our noun-centric modeling
approach we re-examined Hammer's framework and separated the classification into
two parts, dimensions related to information in the work context and dimensions
related to the behavioral aspects of work. We refer to these two different sub-spaces
as the contextural space and behavioral space. The contexture of a business is
manifested in the business artifacts themselves; the behavior of a business is
manifested in all the activities the business performs. In traditional process modeling,
the emphasis is on the behavioral space; the contextural aspects are defined as the
data attribute inputs and outputs of the work activities. In operational modeling,
contextural and behavioral aspects are given equal emphasis; each work task is
defined with respect to the business artifact(s) on which the task operates.

Over the past few years we have conducted over a dozen case studies with internal
and external clients. A recent case study illustrates the operational approach and the
value it demonstrated in consolidating business operations. A major health insurance
company was struggling to keep the database of physicians in its provider networks
up-to-date. The company has to process large volumes of data coming from
physicians, such as requests to become an approved physician, requests to update
physician information (e.g. a new address or phone number), and requests to be

326 R. Liu, K. Bhattacharya, and F.Y. Wu

terminated from networks (e.g. retiring or relocating). Processing these requests
frequently requires contacting physicians to ensure the completeness and accuracy of
data, and in some cases requires verification of physicians' credentials. These requests
are processed at numerous offices across its geographic service areas, and eventually
update a centralized provider database.

Table 1. Dimensions of Work and Process Modeling Approaches

Dimensions of Work Scope
What results the work delivers
What information the work employs
How thoroughly the work is performed

Contexture of business

Who performs the work
Where the work is performed (i.e., by which tasks)
When the work is performed (e.g., before or after which tasks)
Whether the work is performed

Behavior of business

The company had grown by acquisition, and each office had a different method
and set of ad hoc tools for handling these requests. The main problem faced by this
company was that some requests were taking many months to complete, delaying the
processing of claims filed by those physicians. Although operations management had
attempted to institute monitoring systems to identify problems, the lack of process
consistency led to unintelligible measurements from the various regional offices.
Management saw an opportunity to consolidate the processes into one standard set,
and thus had asked each regional office to model their provider management
processes. The result was a set of drawings that appeared to be very different,
although all the representatives agreed that they were doing essentially the same
thing. However, none of these models could be accepted as a standard one. For
example, offices may have different credentialing requirements. One office requires
site visits, but another may need other types of credentials. In addition, these models
lacked consistent activity granularity, which complicated matters with respect to
identifying fundamental business activities.

We approached the problem by asking the business stakeholders to describe the
key business documents used to manage their operations. The stakeholders quickly
agreed on four such documents (or artifacts): Enrollment Request, Credentialing
Request, Update Request, and Termination Request. These four business artifacts are
request types that capture all information to manage the on-boarding, updating and
terminating of providers. The second step was to identify how these requests are
processed. The resulting business operational models describe the lifecycles of these
artifacts. These operational models formed an agreeable basis for all stakeholders in
all geographies and were further used to implement a business process management
system to monitor the performance of request handling.

The remainder of the paper is organized as follows. Section 2 reviews the graphical
notation used for operational modeling. Section 3 gives an overview of operational
patterns that have been identified by analyzing a wide range of operational models.
Operational patterns are a means for modelers to quickly identify a suitable modeling
construct for a given business scenario. Section 4 introduces a computational model
for business operational modeling based on Petri Nets. Applying Petri net analysis

 Modeling Business Contexture and Behavior Using Business Artifacts 327

ensures model correctness against several unique correctness criteria. We will
describe the automatic transformation from operational models to their Petri net
representations. Section 5 compares the operational modeling with other process
modeling approaches. Section 6 concludes with a brief description of future work.

2 Business Operational Modeling Using Business Artifacts

The goal of operational modeling is to identify business artifacts and describe the
lifecycle of artifacts from creation to archiving. A business operational modeling
engagement typically consists of two main steps, first, business artifact discovery and
second, modeling the lifecycle of the discovered artifacts.

2.1 Business Artifact Discovery

As in any business consulting engagements, operational modeling starts with
discussions with different business stakeholders to understand the overall business
problem and define the modeling scope. Two types of questions are typically asked:

(1) Scoping: What are you in the business of producing? What is the outcome of
your process?

(2) Evaluation: How do you measure that you are doing what you want to do?

The scoping questions aid in understanding the boundaries of the business
operations in terms of the actual product produced by the business actors and the
input required for successful production. All of this needs to be captured in
information terms.

Once the scope is established the evaluation phase will reveal how business
stakeholders keep track of their business, i.e. information shared amongst different
roles and information recorded within the established scope. Note that the evaluation
phase is not about the activities taken to achieve the business goal but about the
information managed and maintained to produce the end product. Frequently one can
identify physical documents used in the business as candidate business artifacts, such
as Purchase Orders, Insurance Claims, Invoices. Sometimes one encounters business
stakeholders who have developed spreadsheets, templates, or paper forms as their
means of recording relevant information. For example, in a study conducted with
Bayer Pharmaceuticals, each lab head uses a specific type of document, which
contains a protocol that encodes operational specifications to execute experiments, a
placeholder for results and a list that shows the efficacy of a chemical applied against
the biological target. We used this document as the basis for designing a business
artifact called experiment record (or EXP for short). The details of artifact discovery
can be found in [6, 15]. Next, we briefly review some fundamental properties of
business artifacts and define the semantics for operational modeling.

A business artifact is an identifiable, self-describing unit-of-information through
which business stakeholders add value to the business [15]. An artifact has an id
which identifies itself uniquely within a given enterprise. This uniqueness property
has the most important consequence that an artifact cannot be split in two. For
example, the experiment record artifact can be worked on by only one role at a time,
meaning the unique artifact cannot be split in two.

328 R. Liu, K. Bhattacharya, and F.Y. Wu

A business artifact is self-describing in the sense that its attributes are so named
that its use in a given business domain is apparent. Information contained in the
artifact can be listed as name-value pairs. Therefore, artifacts are not business objects,
a technical notion from object oriented techniques [15], as artifacts are, in principle,
self-describing pure instances without predefined classes. However, during
implementation, the information model of an artifact can be modeled using any
suitable information modeling approach such as an ER diagram or an XML Schema.

2.2 Modeling the Lifecycle of the Discovered Artifacts

Next, we explain the various modeling primitives used in operational models. Their
graphical notations are shown in Fig. 1. These primitives mainly mimic physical
locations storing artifacts during their lifecycles, as operational models are understood
and used by users at the business level.

Artifact name

Task name

Repository

name

Input port
Output port

Artifact Task Repository Port Connector

Fig. 1. Graphical Notations of Modeling Primitives

A business task (or simply task) describes the work acting upon an artifact by
which a business role adds measurable business value to this artifact. We require a
task to generate business value and hence, require an update of an artifact. This
condition is necessary in our modeling approach and helps in defining the granularity
of a task or the task boundaries. Imagine a simple scenario where two tasks, T1 and
T2 work on an artifact consisting of ten name-value pairs. A business stakeholder
could determine that the completion of T1 will require update of, say attributes 2-5 of
the artifact and T2 requires update of attributes 6-10. Therefore, adding business
value in this case can be clearly defined by the business stakeholder who thereby
determines the boundaries of a task.

Notice that the condition of an artifact update is necessary from a modeling
perspective, but not sufficient to truly determine the task boundaries. In the example
above, the fact that attributes 2-5 are updated in task T1 is a business decision made
by the analyst based on his insight into the work, and may be reflected in a condition
that guards completion of T1. The artifact-centered approach does not prescribe this
in any way, nor does it support modeling the execution of the task. The main reason
to enforce artifact updates in tasks is that artifact-centered modeling is designed for
creating accountability of work. Any work conducted should be traceable and hence
be accounted for in a chunk of information in one or more artifacts.

Ports are the entry and exit points of tasks. We distinguish between input and
output ports. A port can be associated with only one artifact type. Ports can have
queues attached to them where artifacts wait to be read in or sent out. A port lives in
the context of a task and an input port can have a trigger condition that instantiates the
task. Usually a task is instantiated by an external (e.g. human) agent or a message.

A repository describes a waiting shelf or a buffer for an artifact. Tasks can push an
artifact into a repository and pull it out of the repository. A connector connects an
output port to an input port (task-task) or connects an output port to a repository

 Modeling Business Contexture and Behavior Using Business Artifacts 329

(task-repository). Task-task connectors carry artifacts or simple messages. We support
the use of messages mostly to allow for triggering of tasks by external agents, but do
not encourage modeling message flows, as messages are not persistent entities and
hence violate the design paradigm for accountability. Task-repository connectors
carry artifacts when a task pushes an artifact into a repository. A task can either pull
an artifact from a repository or read the content of an artifact in the repository.

3 Building Operational Models Using Patterns

3.1 Operational Patterns

During our practice with operational modeling, we designed nine operational patterns,
which describe most common behaviors of business artifacts. These patterns are not
exhaustive, but our customer engagements in the past five years convinced us that
they are expressive enough to serve as the basic modeling constructs.

Pattern 1 (Pipeline Pattern): In a pipeline pattern, tasks are executed in sequence.
An artifact is transported directly from an output port of a task to an input port of
another. In this pattern, information processed by all sequential tasks is encapsulated
by the same artifact. No new artifacts should be created within or from this pattern.
An example of this pattern is shown in Fig. 2. In this example, task T3 "Analyze
Results" is triggered right after the receipt of an artifact following the completion of
task T2 "Perform Experiment". Each task updates the experiment record artifact (or
EXP for short) and thus is considered to be a milestone in this artifact's lifecycle.

Pattern 2 (Repository Pattern): In a repository pattern, tasks are in sequence but
execution is decoupled. After being processed by a task, an artifact is sent to a
repository. The repository can respond to requests for this artifact. An example of this
pattern is shown in Fig. 3. The main difference of this pattern from a pipeline pattern
is that task T1 "Design Experiment" does not directly trigger the subsequent task T2
"Perform Experiments". Rather, task T2 is triggered asynchronously upon accessing
artifacts from the repository for pending experiments.

Fig. 2. Pipeline Pattern

T1: Design
Experiment Pending

Experiments

T2: Perform
Experiment

EXPEXP

Fig. 3. Repository Pattern

Pattern 3 (Branch Pattern): A branch pattern describes more than one option to
process an artifact. Fig. 4 shows an example of this pattern. In this example, the
results of an experiment are analyzed by task T3 "Analyze Results". Depending on the
analysis result, one of the following three tasks can be executed: (1) T4 "Clone
Experiment" (i.e., the experiment is repeated to test the reproducibility of the results),
(2) task T5 "Update Protocol", and (3) task T6 "Modify Experiment". These options
are exclusive and only one can be chosen, as required by the fact that each artifact is a
unique entity and thus cannot be split to more than one location at any time.

Pending
Experiments

T2: Perform
Experiment

T3: Analyze
Results

EXP EXP T6: Modify
Experiment

EXP

330 R. Liu, K. Bhattacharya, and F.Y. Wu

Pattern 4 (Convergence Pattern): In a convergence pattern, a task or a repository
can accept an artifact which may arrive from different sources. In general, a
convergence pattern always happens together with branch patterns. When branch
patterns create multiple possible ways to process an artifact, this artifact can follow
different paths and then arrive at a common task through a convergence pattern. An
example of this pattern is shown in Fig. 5. In this example, the artifact follows either
the sequence: task T3 "Analyze results" task T6 "Modify Experiment", or another
sequence: task T3 "Analyze Results" task T5 "Update Protocol" task T6
"Modify Experiment", two exclusive paths to reach task T6.

T5: Update
Protocol

T3: Analyze
Results

EXP T6: Modify
Experiment

T4: Clone
Experiment

EXP

EXP

EXP

Fig. 4. Branch Pattern

T5: Update
Protocol

T3: Analyze
Results

EXP T6: Modify
Experiment

EXP

EXP

Fig. 5. Convergence Pattern

Pattern 5 (Project Pattern): A project pattern is useful in collaborative scenarios
where an artifact is worked on by many role players in an arbitrary order. An example
is shown in Fig. 6. In this example, task T1 first creates an experiment and stores it in
a repository. Then tasks T2 "Order Raw Material" and T3 "Request Supplies" are
done in any order by pulling the artifact from and replacing it into the repository. T2
and T3 can be executed in an arbitrary order but while, e.g. T2 is working on the
artifact, T3 has to wait for T2 to release the artifact back into the repository. Task T4
"Start Experiment" can be executed only after both T2 and T3 are completed, which
would typically be realized by an appropriate guard condition on the input port of T4.

Pattern 6 (Creation Pattern): A creation pattern, as shown in Fig. 7, considers the
correlation between different types of artifacts. Through a creation pattern, at least
one new artifact is created. In Fig. 7, while an HTS (Candidate High Throughput
Screening Protocol) artifact is processed through task T1 "Design Experiment", new
EXP artifacts are created. In general, these two types of artifacts are correlated in
some way. For example, an EXP artifact can have references to the HTS artifact.

Pending
Experiment

T 1 : Create
Experiment

T2: Order
Raw Material

T 4 : Start
Experiment

T3: Request
Supplies

EXP
EXP

EXP
EXP

EXP

EXP

Fig. 6. Project Pattern Fig. 7. Creation Pattern

Notation:
 : Artifact
 : Task
 : Input port
 : Output port
 : Repository
 : Connector
EXP : Experiment
 record artifact
HTS : Candidate HTS
 protocol artifact

T1: Design
Experiment

start

Pending
Experiments

EXP

Protocol
Records

HTSHTS

 Modeling Business Contexture and Behavior Using Business Artifacts 331

Pattern 7 (Synchronization Pattern): A synchronization pattern considers the
coordination between different types of artifacts. Through this pattern, a task acts on
more than one artifact. The information content of one artifact is updated based on
other artifacts. One example is shown in Fig. 8. In this example, the analysis of
experiment results may indicate that the HTS protocol needs to be modified.
Therefore, completing task T5 "Update protocol" requires two artifacts: an HTS
artifact and an EXP artifact. After task T5, these two artifacts are synchronized and
the updated HTS artifact is sent back to the repository. If multiple experiments are
created, the HTS artifact may synchronize with each of them. Another example is
shown in Fig. 9. When changes are made to a service order, a new artifact RFC
(Request for Change) is created through task T2. Task T3 "Approve RFC" needs both
the service order artifact and the RFC artifact as inputs. After T3, the service order is
updated accordingly. In this example, synchronization happens only once.

T3: Approve
RFC

Ready for
Fulfilment

Service
Order

RFC

T1: Determine
Change

T2: Create
Request for

Change (RFC)

Service
Order

Approved
RFC

RFC

Service
Order

Fig. 8. Synchronization Pattern (Example 1) Fig. 9. Synchronization Pattern (Example 2)

Pattern 8 (Rework Pattern): A rework pattern is, in general, a loop. In this pattern,
an artifact circulates in a set of tasks until an exit condition is satisfied. An example of
such a pattern is shown Fig. 10. In this figure, after an experiment is performed and
analyzed, if the results cannot be confirmed, the experiment needs to be repeated.
Therefore, the experiment is cloned, sent to the repository "Pending Experiments",
and then performed again.

Pattern 9 (Disposal Pattern): In some situations, an artifact may become
unnecessary, for instance because of exceptions, and it drops from its lifecycle. An
example is shown in Fig. 11. In this scenario, multiple experiments are created and
each experiment is performed independently. When desirable results are achieved, all
remaining pending experiments are disposed and sent to a repository, say "Disposed
Artifacts", because there is no need for them.

T1: Design
Experiment Pending

Experiments

T2: Perform
Experiment

T3: Analyze
Results

EXP EXP T6: Modify
Experiment

T4: Clone
Experiment

EXP

EXP

EXP

EXP

Fig. 10. Rework Pattern

T1: Design
Experiment

Pending
Experiments

EXP

Dispose
Experiment

Disposed
Artifacts

EXP

Fig. 11. Disposal Pattern

Protocol
Records

T5: Update
Protocol

T2: Perform
Experiment

T3: Analyze
Results

T6: Modify
Experiment

HTS

EXP

EXP

HTS

EXP

332 R. Liu, K. Bhattacharya, and F.Y. Wu

3.2 Putting Patterns Together – An Example

Having given nine operational patterns, next we continue the case study of Bayer
pharmaceutical research and show how to use these patterns to build an operational
model for industrializing drug discovery processes [6].

A drug discovery process starts with identifying and isolating the biological target–
the biological structure associated with a specific disease. A very large number of
chemical compounds that have the potential of inhibiting or neutralizing the
malignant biological behavior of this target are selected during a procedure called
high throughput screening (HTS). Experiments are conducted to further test chemical
characteristics (ease of synthesis, solubility, reactivity, etc.) and biological
characteristics (selectivity, toxicity, etc.) of these compounds. A HTS protocol gives
precise and detailed instructions of performing these experiments. The protocol is
evaluated and perhaps updated through a series of experiments. The target of this
process is to generate an optimal HTS protocol which has maximum signal strength in
the HTS apparatus in order to obtain unambiguous results. Two business artifacts,
candidate HTS protocol (HTS) and experiment records (EXP), are identified.

Next, we describe business operation scenarios which create, process and archive
the artifacts. Each scenario can be mapped to one or more operational patterns. Some
matching patterns have been shown as examples in the previous section. We give the
names of matching patterns at the end of each scenario.

(1) Design experiment: A lab head creates a candidate HTS protocol along with
experiments. The protocol is stored in a repository and experiments are sent to the
pending experiment repository (Creation Pattern (see Fig. 7)).

(2) Perform experiment: A lab technician performs an experiment from the pending
experiment repository. Consecutively, the results are analyzed (Repository
Pattern (see Fig. 3), Pipeline Pattern (see Fig. 2)).

(3) Analyze results: The lab technician and the lab head analyze the experiment results
to determine one of the following options as the next step: (1) the experiment
needs to be cloned and rerun; (2) the experiment needs to be modified and rerun;
and (3) the protocol needs to be updated (Branch Pattern (see Fig. 4)).

(4) Update protocol: If a protocol needs to be updated, the protocol is retrieved from
the protocol record repository, synchronized with experiment results, and sent
back to this repository. After the update, either the experiment is determined to be
complete and stored in a repository or to be modified and rerun (i.e. option (2) of
Scenario (3)). Therefore, after the result analysis, the experiment can be modified
directly or modified after the protocol update (Synchronization Pattern (see
Fig. 8), Branch Pattern, Convergence Pattern (see Fig. 5)).

(5) Rerun experiment: a rerun experiment is first stored in repository "Pending
experiments" and then processed as a new one (Rework Pattern (see Fig. 10)).

(6) Prepare candidate protocol: With experiment results, the lab head evaluates the
protocol and archives completed experiments. Later, the lab head prepares to
finalize the candidate protocol, requests pre-run, and stores it in a repository
called "Candidate protocols". (Synchronization Pattern, Pipeline Pattern).

(7) HTS lab: The HTS lab retrieves the candidate HTS protocol for review. It may
return the protocol and suggest further validation. Otherwise, the protocol is
finalized and stored in an HTS Protocol repository (Branch Pattern).

 Modeling Business Contexture and Behavior Using Business Artifacts 333

(8) Initiate additional experiments: If further validation is needed, the lab head
updates the candidate HTS protocol and creates additional experiments to the
pending experiment repository (Creation Pattern, Rework Pattern).

It is very straightforward to formulate these scenarios after identifying their
matching patterns. We can get a complete operational model shown in Fig. 12.
Although an operational model is targeted at users at business levels, it also lends
itself to formal analysis, verification, and simulation to ensure successful process
execution. Next, we describe how to verify an operational model through Petri nets.
We start with a brief introduction to Petri nets.

T1: Design
Experiment

start

Pending
Experiments

EXP

Protocol
Records

T5: Update
Protocol

T2: Perform
Experiment

T3: Analyze
Results

EXP EXP T6: Modify
Experiment

HTS

T4: Clone
Experiment

EXP

HTS

EXP

EXP

HTS

EXP

Notation:
 : Artifact
 : Task
 : Input port
 : Output port
 : Repository
 : Connector
EXP : Experiment
 record artifact
HTS : Candidate HTS
 protocol artifact

HTS
Completed

Experiments

EXP

EXP

Dispose
Experiment

Disposed
Artifacts

EXP

T7: Evaluate
Protocol

T8: Prepare
HTS Protocol

T9: Request
Pre-run

T10: Initiate
Additional

Experiments

HTS
Protocol

T11: HTS
Lab

HTS HTS

HTS

HTS EXP
Archived

Experiments

Candidate
Protocol

HTSHTS

EXP

EXP

EXP

HTS

HTS

HTS

Fig. 12. Operational Model of Drug Discovery Process

4 Verifying Operational Models Using Petri Nets

4.1 Petri Net Preliminaries

Petri nets are a powerful tool for modeling the state transitions of systems in a variety
of domains. A Petri net is a directed graph consisting of two kinds of nodes called
places and transitions. In general, places are drawn as circles and transitions as boxes.
Directed arcs connect transitions and places either from a transition to a place or from
a place to a transition. Arcs are labeled with positive integers as their weight (the
default weight is 1). Places may contain tokens. In Fig. 13(b), place P1 has a token,
shown as a small disc. The firing rules of Petri nets are as follows [13]: (1)A
transition t is enabled if each input place of t contains at least w(p,t) tokens, where
w(p,t) is the weight of the arc from p to t; and (2) The firing of an enabled transition t
removes w(p,t) tokens from each input place p of t, and adds w(t,p) tokens to each
output place p of t, where w(t,p) is the weight on the arc from t to p.

In classical Petri nets, tokens are indistinguishable. A colored Petri net (CPN) is
extended from the classical kind by tagging tokens with data values (i.e. colors) [10].
Moreover, in a colored Petri net, each place is associated with a type of data values

334 R. Liu, K. Bhattacharya, and F.Y. Wu

(i.e., color set). For example, in Fig. 13(b), EXP is a color set and each color in this set
stands for an experiment record artifact. In addition, each arc is attached with an arc
expression specifying the tokens removed or added to a place. In Fig. 13(b), variable
"exp" means that a token from color set EXP is required to fire transition T1 and after
firing, the same token is put into place P3. The details of CPN can be found
in [10,16].

4.2 Representing Operational Models as Petri Nets

We can transform operational models into colored Petri nets easily following several
rules. First, each artifact type can be represented as a color set. For example, EXP in
Fig. 13(b) is a color set for EXP artifacts. Accordingly, each artifact is represented as
a token with a unique color in a color set. Second, a repository is transformed into a
place tagged with a color set since it stores a particular type of artifacts. Third, each
task is transformed into a transition and each of its output ports is represented as a
place. Finally, each connector is converted to an arc and its associated artifact
becomes a variable as an arc expression. Fig. 13 shows a transformation example.
However, there are three exceptions to these general rules as follows.

 T1: Design
Experiment

start

Pending
Experiments

EXP

Protocol
Records

T2: Perform
Experiment

EXP

HTS

EXP

HTS

(a)

P3: Pending
Experiments

EXP

P1: Start

HTS

T1: Design
Experiment

hts exp

P2: Protocol
Records

hts

HTS

∈

Note:
 EXP: color set for experiment artifacts
 HTS: color set for candidate HTS
 protocol artifacts
 exp: variable, exp EXP

 hts : variable, hts HTS∈

(b)

Fig. 13. An Operational Model and its Petri Net Representation

(1) An output port is connected to a repository. For example, task T1 is connected to
the protocol record repository in Fig. 13(a). No Petri net representation for this
port is needed. In Fig. 13(b), an arc directly connects transition T1 to place P2,
which represents the repository.

(2) Branch pattern. The output ports of the branch task should be transformed into
only one place, as shown in Fig. 14(b). After transition T5, a token is put into
place P9 and it can fire either transition T6 or T12. If an output port is connected
to a repository, a dummy transition, for example T12 in Fig. 14(b), is added in
between two places.

T5: Update
Protocol

T6: Modify
Experiment

EXP

Completed
Experiments

EXP

(a)

T5: Update
Protocol

P9: Updated
Protocol

T6: Modify
Experiment

exp exp

P7: Completed
Experiments

T12

exp
exp

(b)

Fig. 14. Petri Net Representation of Branch Pattern

 Modeling Business Contexture and Behavior Using Business Artifacts 335

(3) Convergence pattern. The convergence task, for example T6 in Fig. 15(a), is
duplicated so that each of its input ports belongs to one copy. Its Petri net
representation is shown in Fig. 15(b).

Pending
Experiments

T5: Update
Protocol

T3: Analyze
Results

EXP T6: Modify
Experiment

EXP

EXP

(a)

T5: Update
Protocol

P9: Updated
Protocol

T6: Modify
Experiment

T3: Analyze
Results

P5: Analyzed
Experiments

T6': Modify
Experiment

(Copy)

P3: Pending
Experiments

exp exp

exp exp

exp

exp

(b)

Fig. 15. Petri Net Representation of Convergence Pattern

Following these rules, the operational model of Fig. 12 can be transformed to a
Petri net shown in Fig. 16. Next, we describe how to analyze and verify operational
models using Petri nets.

4.3 Operational Model Verification

Operational models emphasize the uniqueness of business artifacts. Therefore, the
objective of verification is to ensure the following important properties of artifacts:
(1) Persistence: once created, an artifact cannot disappear; (2) No split: a business
artifact can be at only one place at a time; and (3) Reachability: an artifact can reach
any of its states (i.e. tasks or repositories in the operational model of this artifact).

These properties can be verified using a Petri net reachability graph [13]. A
reachability graph shows the development of markings of a Petri net from an initial
marking. A marking is denoted by a vector M, where M(p) denotes the tokens in place
p. For example, the initial marking of Fig. 13(b) is: M0(P1)=1`"hts1" and M0(P2) =
M0(P3) = M0(P4) = 0 as only P1 has a token (denoted as "1`") with a color "hts1".

Fig. 16. Petri Net Representation of Operational Model in Fig. 12

336 R. Liu, K. Bhattacharya, and F.Y. Wu

After transition T1 fires, a new marking, say M1, is generated: M1(P2) = 1`"hts1",
M1(P3) =1`"exp1" (i.e., "exp1" is the new experiment created), M1(P1) = M1(P4) = 0.

Since an operational model describes an artifact’s lifecycle and all artifacts of a
type have exactly the same lifecycle, to verify the above artifact properties, imagine
that we put one token of each color set (i.e., one artifact of each type) into its Petri net
representation to play the token game. If the operational model is correct, for every
marking M in the reachability graph of this Petri net, there is no more than one token
in any place p, i.e., this Petri net is safe [13]. Moreover, since an artifact can be at

only one state at a time, the maximum number of markings is ∏ in , where ni is the

number of states of artifact type i. Therefore, the verification is very efficient. The
artifact properties can be verified using reachability graphs as shown in Table 2.

Therefore, using the algorithm in [13], we can get a reachability graph, shown in
Fig. 17, for the Petri net of Fig. 16. Note, the transition from node "P10, P12" to "P2,
P3" shows a new experiment is initiated by task T10. The existing experiment has
reached its final state and is removed. Minor modifications have been made to this
algorithm to accommodate such a situation. Obviously, we can verify that these four
artifact properties are guaranteed in this operational model.

Table 2. Verifying Artifact Properties Using Reachability Graphs

Artifact
Properties Properties of Reachability Graph

Persistence Any token in a marking must exist in all of its subsequent markings
No split Places of a marking cannot have tokens with the same color

Reachability
Each transition is fireable, and for each place p, there exists at least a marking
M such that |M(p)|=1.

In addition, Petri nets allow simulation and other formal analyses. Simulation can
be done using CPN Tools [16]. Moreover, we can perform theoretical analysis to
study the performance of an operational model, such as artifact lifecycle length and
throughput. The detailed analysis techniques are outside the scope of this paper.

P1

P2, P3

P2, P4

T1

T2

P2, P6

T3

T6 T4

P2, P9

T5

T6'

P2, P7
T12

P5, P12

T7

P8, P12

T8

P10, P12

T9

P11, P12

T11 T14

P13, P12
T13

Note: A simple marking notation is
used here. For example,
denotes the marking where only
places P1 and P2 each have a
token with the right color. If a place,
say P1, contains more than one
token, we use P1(2) to denote it.

P2, P3

T10

Fig. 17. Reachability Graph of Petri Net Representation of Fig. 16

5 Discussion and Related Work

Business operational modeling incorporates the contexture of a business as a first-
class modeling primitive as manifested in business artifacts. The behavior of a

 Modeling Business Contexture and Behavior Using Business Artifacts 337

business, described in the context of artifacts, models how business roles process
artifacts to produce measurable business results. We found that the operational
modeling approach can reduce the complexity of business problems significantly for
two reasons. First, the artifact dimension tends to be manageable because there are
typically just a few artifacts in any given business process. For example, we analyzed
how IBM manages financial contracts, from the signing of a deal through creating and
managing the contract. In spite of the complexity of IBM’s business, we identified
only 7 distinct artifacts. Second, the complexity of business processes is often
exacerbated by a lack of guidelines for the granularity of activities. Standard process
modeling approaches provide no criteria that prevent business analysts from including
execution details. This lack of guidelines also leads to inconsistent granularity of
activities, with some very detailed activities and some large chunks of the process
represented by a single activity. Business artifacts, on the other hand, provide a
context for the scope of a business task, which should be a distinct functional entity
that updates one or more artifacts and produces a measurable business result.

We have shown the fundamental difference between operational modeling and
traditional activity-centric process modeling, mainly workflow approaches with a
focus on control flows [1,5,8], throughout this paper. Besides control-flow based
workflows, recently, data-flow driven workflows have attracted increasing attention
[12, 17]. The data-flow driven approach concerns the dependencies between data used
by activities and derives control flows based on such dependencies. However, often
the dependency information is insufficient for the generation of process models [12].
Moreover, it could be difficult to determine the dependencies of a large number of
data objects. Operational modeling provides a framework to group data logically into
a few unique entities and the modeling complexity is then greatly reduced.

Accordingly, operational patterns are also different from workflow patterns [2],
which describe styles of control flows in workflow tools. Operational patterns should
be understood as the styles of artifact behavior. We introduced several operational
patterns, such as the creation and project patterns, which are unique in the context of
operational modeling. Also, it is easy to understand that some workflow patterns such
as "parallel split" cannot happen in operational models since an artifact is undividable.

 Another related thread of work is the product-driven case handling approach [3],
which addresses many concerns of workflows similar to ours especially with respect
to the treatment of process context or data. A business artifact and a case are similar
in many respects. Case-handling, however, details the structure of the case using data
objects that can be managed and updated independently in various activities in the
context of the case. Our approach treats business artifacts as unique entities that are
updated within each task. To maintain proper granularity of business operations, we
do not detail the data objects comprising artifacts and the activities that update these
data objects. With significantly reduced complexity, operational models clearly omit
execution details which are in the scope of case handling. Another interesting state-
flow approach [4] uses process states as a means of driving a process towards its
predefined objectives. Although it also emphasizes control over a process with respect
to its business intent, this approach lacks an effective formalism for process goals and
states. Rather, our approach clearly specify business intents as manifested in business
artifacts and process objectives are achieved through business operations, which each
make artifacts reach milestones in their lifecycles.

338 R. Liu, K. Bhattacharya, and F.Y. Wu

6 Conclusion and Future Work

In this paper, we presented the business artifact-centered operational modeling.
Artifacts capture the contexture of a business, and operational models describe how a
business goal is achieved by acting upon the business artifacts. We also showed how
this approach fundamentally differs from traditional activity-centric process
modeling.

This approach has been tested by a number of successful customer engagements.
We summarized our best practices as nine operational patterns. These patterns can
serve as basic constructs for developing operational models. Further, we transform
operational models into colored Petri nets and verify the correctness of operational
models through Petri net reachability analysis. Using operational models, a company
is able to develop business process management IT solutions that are well aligned
with its business intent. The MDBT Toolkit [14], which automatically generates IT
solutions from operational models has been developed and tested in practice. In
addition, a verification and analysis tool based on Petri nets is also under
development.

As a future exercise, we plan to explore how operational models enable
organizations to develop solutions based on Services-Oriented Architecture (SOA)
[7]. Today's enterprises recognize the importance of SOA but struggle with the
methodologies to implement SOA solutions. Operational models can provide insights
into defining business relevant services at the appropriate level of granularity.

References

1. van der Aalst, W.M.P.: The application of Petri nets to workflow management. The
journal of Circuits, Systems and Computes 7(1), 21–66 (1997)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barro, A.P.: Workflow
patterns. Distributed and Parallel Databases 14(3), 5–51 (2003)

3. Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm for business
process support. Data and Knowledge Engineering 53, 129–162 (2005)

4. Andersson, T., Andersson-Ceder, A., Bider, I.: State Flow as a Way of Analyzing Business
Processes-Case Studies. Logistics Information Management 15(1), 34–45 (2002)

5. Basu, A., Kumar, A.: Workflow Management Issues in e-Business. Information Systems
Research 13(1), 1–14 (2002)

6. Bhattacharya, K., Guttman, R., Lyman, K., Heath III, F.F., Kumaran, S., Nandi, P., Wu,
F., Athma, P., Freiberg, C., Johannsen, L., Staudt, A.: A model-driven approach to
industrializing discovery processes in pharmaceutical research. IBM Systems Journal,
44(1): 145–162

7. Ferguson, D.F., Stockton, M.L.: Service-oriented architecture: programming model and
product architecture. IBM Systems Journal archive 44(4), 753–780 (2005)

8. Georgakopoulos, D., Hornick, M., Sheth, A.: An Overview of Workflow Management
From Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel
Database 3, 119–153 (1995)

9. Hammer, M.: Deep Change: How Operational Innovation can transform your Company,
Havard Business Review, pp. 84-93 (2004)

 Modeling Business Contexture and Behavior Using Business Artifacts 339

10. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,
vol. 1. Springer, Heidelberg (1996)

11. Kumaran, S.: Model Driven Enterprise, Proceedings of Global Integration Summit 2004,
Banff, Canada (2004)

12. Müller, D., Reichert, M.U., Herbst, J.: Flexibility of Data-driven Process Structures. In:
Eder, J., Dustdar, S. (eds.) Business Process Management Workshops. LNCS, vol. 4103,
pp. 179–190. Springer, Heidelberg (2006)

13. Murata, T.: Petri Nets: Properties, Analysis and Application. In: Proceedings of the
Institute of Electrical and Electronics Engineers 77(4), 541–580 (1989)

14. Nandi, P., Kumaran, S.: Adaptive Business Objects - A new Component Model for
Business Integration. In: Proceedings of the Seventh International Conference on
Enterprise Information Systems (ICEIS 2005), Miami, USA (2005)

15. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification.
IBM Systems Journal 42(3), 428–445 (2003)

16. Ratzer, V.A., Wells, L., Lassen, M.H., Laursen, M., Qvortrup, F.J., Stissing, S.M.,
Westergaard, M., Christensen, S., Jensen, K.: CPN Tools for Editing, Simulating, and
Analysing Coloured Petri Nets. In: ICATPN 2003. LNCS, vol. 2679, pp. 450–462.
Springer, Heidelberg (2003)

17. Sun, S., Zhao, J.L., Nunamaker, J.: On the Theoretical Foundation for Data Flow Analysis
in Workflow Management, Americas Conference on InformationSystems 2005, Omaha,
Nebraska, USA (2005)

Policies and Aspects for

the Supervision of BPEL Processes

Luciano Baresi, Sam Guinea, and Pierluigi Plebani

Dipartimento di Elettronica e Informazione – Politecnico di Milano
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

{baresi,guinea,plebani}@elet.polimi.it

Abstract. The execution of business processes with BPEL relies on ex-
ternal Web services, which are not necessarily managed by the process
owner. This implies the need to constantly verify the correctness of the
interactions between the involved parties. This paper proposes a design
process model for the definition of supervised processes, in which super-
vision rules are automatically generated starting from the policies that
characterize the external services. These policies exploit WSCoL as a
language for describing constraints on the messages exchanged with the
business process. In addition, we also present a new version of Dynamo:
a prototype of an aspect oriented execution environment that conjugates
a BPEL engine and a supervision framework.

1 Introduction

The Service Oriented Computing paradigm is driving the development of a new
generation of applications. Here, Web services expose their application logic and
interoperate relying on XML-based protocols, such as SOAP, and descriptions,
such as WSDL. A central node usually coordinates the interactions according to
a predefined process specification in which Web services are used to perform the
activities. BPEL represents the de-facto standard for specifying such processes.
Among other things, BPEL processes specify when a Web service should be
invoked and the data that must be exchanged; they do not, however, specify
how the interaction occurs: i.e., if security needs to be considered, transactions
enforced, or if messaging should be conducted reliabily.

Since the execution of a BPEL process relies on external Web services, not
necessarily managed by the process owner, we need to constantly verify the
corectness of the interactions among the invoked services. Moreover, if something
goes wrong during the process execution, suitable recovery strategies must be
performed. To this end, we propose policies as the means to specify how the
interaction with external Web services must occur.

BPEL provides specific compensation handlers, but the supplied features —in
their current version— are limited. In particular, all compensation activities are
performed using a snapshot of the process state, which precludes the modifica-
tion of “live” variables. Moreover, the decision to perform a compensation is a

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 340–354, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Policies and Aspects for the Supervision of BPEL Processes 341

business-guided decision which, in contrast, must be hard-coded at design time
and must be suitably implemented within the BPEL process.

At this stage, a number of monitoring approaches [1,2] have been proposed,
to realize if a failure occurs during the invocation of the external Web services.
Other approaches focus on the recovery problem with the goal of supporting
self-healing processes [3]. However, no global solution (i) includes both moni-
toring and recovery, and (ii) considers design-time specification and run-time
management.

The goal of this paper therefore is twofold. On the one hand, we propose a
design process model for the definition of supervised BPEL processes. Supervi-
sion rules are automatically generated starting from the policies attached to the
external Web services and defined by WS-Policy. Both policies and supervision
rules exploit WSCoL (Web Service Constraint Language): a domain indepen-
dent language to state monitoring assertions. We also introduce WSReL (Web
Service Recovery Language) as the language to define the reaction strategy. On
the other hand, we propose a new version of Dynamo (Dynamic Monitoring) [4]:
an AOP-based framework for executing supervised BPEL processes, to monitor
the execution and enact recovery strategies in case anomalous interactions take
place. In this scenario, possible failures arise when: the service is not reachable,
the service is down, or the service returns incorrect data. Analogously, possible
recovery strategies could be to require a retry, a rollback, or a notification to the
process manager.

To better clarify our approach, we introduce a running example. The example
takes place in the field of automotive services. The business process, in fact, is
intended to be executed on an automobile’s onboard device. It provides users
with the possibility to integrate a service for searching for parking lots with their
navigation system.

When the on-board device is launched, it automatically retrieves —from the
navigation system— the coordinates of the destination the user is driving to-
wards, and the coordinates of the current position. We assume that the co-
ordinates are given using the UTM (Universal Transverse Mercator) coordinate
system1. The system also asks the user to define a maximum radius within which
to look for parking lots. Once the system has obtained all the required data, it
uses them to call an ActiveBPEL implementation of the process. We assume
that the process interacts with a service similar to Microsoft’s Landmark service
to obtain the parking lots the user can choose from. Informally we can state
that the Map Point service exposes the following policy: “The service promises
to provide a list of parking lots that are less than x meters from a position indi-
cated using UTM coordinates”. How this policy is defined service-side in WSCoL
will be shown in Section 3, while how it is used client-side to define monitoring
and recovery will be demonstrated in Section 4.

The paper is structured as follows. Sections 2 discusses the actors and activ-
ities required to design a supervised BPEL process. Sections 3 and 4 detail the

1 http://en.wikipedia.org/wiki/Universal Transverse Mercator coordinate
system

http://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
http://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system

342 L. Baresi, S. Guinea, and P. Plebani

approach at the service and the process side, respectively. Section 5 illustrates an
aspect-oriented prototype environment.Finally, Section 6 compares our approach
with existing ones, and Section 7conludes the paper.

2 Design Process Model

When defining a BPEL process, designers typically follow a standard design
model. First, they search for partner services capable of guaranteeing the func-
tionality and QoS needed to implement their systems. This is typically done by
looking in UDDI-based service registries, where designers can find service de-
scriptions that also contain policies that regulate how the interactions with that
service have to take place. Common examples are directives regarding security
(i.e., authentication, encryption, etc.).

Once the designer has found all the required services, the second step is to
define the business logic itself, using the constructs offered by BPEL. In our
process design model, the responsibility then passes over to to the deployer.
This actor’s main goal is to provide the business process with a valid descrip-
tor for deployment. This role is usually played by a more tech-savvy person,
someone who knows how the BPEL engine will have to be configured to comply
with the policies attached to the services chosen by the designer. For example,
ActiveBPEL uses its deployment descriptor to specify how the engine should be-
have when trying to contact certain endpoints, and how the message it intends
to send them must be built (e.g., a message might need to be encrypted). The
last step consists in deploying the process onto the execution engine.

In this paper we present a new kind of policy assertion, which can be used to
define the functional and non-functional behavioral contract the client and the
provider will have to comply with. We also present a client-side management
framework that can be used in conjunction with a standard BPEL engine to
monitor these policies and to react when they are not satisfied.

This leads to some necessary modifications in the standard process design
model we just presented (see Figure 1). The first step still consists in searching
for appropriate services in a UDDI registry (Step 1). The only difference is that
we assume that the service specifications are augmented with our behavioral
contracts specified using WSCoL (Web Service Constraint Language) [4]. In
practice, the language is here used to define constraints on the messages the
client and the service will exchange. Similarly to what happens in classical design
by contract [5], the service provider promises a certain behavior (specified using
post-conditions), if the client complies with certain requirements (specified using
pre-conditions). If the client does not comply with the pre-conditions then the
service will raise an exception. In contrast, if the service does not respect the
post-conditions then the client should identify the violation and react properly.

Once a designer has evaluated the behavioral specifications, and chosen the
partner services to use, the next step is to design the BPEL process (Step 2).
(Step 3) consists in the deployer configuring the execution environment so that
it can interact correctly with the service. This is achieved semi-automatically by

Policies and Aspects for the Supervision of BPEL Processes 343

WSDLWSDLWSDL

UDDI Registry

Service
Policy

A

Service
Policy

C

Service
Policy

B

Designer

1. Search for
services

2. Design the
BPEL Process

3. Extend Service Policy
w/Recovery Strategies

4. Deploy package
into Execution Environment

BPEL
Engine

Dynamo Supervision
Framework

Execution Environment

AOP

Deployer

Supervision
DescriptorBPEL

Process

Deployment
Package

Fig. 1. Process Design Model

feeding the execution environment with an appropriate descriptor, containing a
declarative specification of (1) the policies the system will monitor client-side,
and (2) the recovery strategies the system will try to undertake in case of invalid
interactions. This can happen for two reasons: it can be the process’ fault (i.e.,
the pre-condition is not verified), or it can be the service’s fault (i.e., the post-
condition is not verified). The descriptor is created by extending the service-side
policy definition. We currently only allow for two kinds of extensions. In the
first, the designers can modify the conditions obtained from the service-side
policy by strengthening the pre-condition and/or weakening the post-condition.
Such modifications are considered acceptable, since they ensure that the partner
service will receive a message which is compatible with the requirements it has
expressed. In the second kind of extensions, the designer can define appropriate
recovery strategies (Step 4). These strategies are performed client-side in case
a pre-condition is violated (in this case the actions are performed prior to the
interaction with the partner service), or in case a post-condition is violated. At
this stage, we are only able to consider a set of recovery strategies that are
related to a well-defined set of possible failures.

This approach results in a process that clearly separates the business logic
(defined in BPEL) from the supervision activities (derived from the specified
policy). This provides for greater flexibility, since both the recovery strategies
and the modules enacting them can be customized without affecting the business
process.

3 Service-Side Policies and WSCoL

According to the BPEL terminology and to the design process model introduced
in the previous section, partners are Web services capable of performing one or
more activities included in the process. These Web services are usually described

344 L. Baresi, S. Guinea, and P. Plebani

by WSDL documents that define the operations, messages, and data-types in-
volved during the invocation are defined. In this work, we aim at extending such
a description by considering pre- and post-conditions on the incoming and outgo-
ing messages. WSDL, indeed, cannot define, given a input parameter, which are
the admissible values. In the same way, given an output parameter, the service
client is not aware of the possible returning values.

For this reason, we assume that —along with the WSDL document— a WS-
Policy document is provided. WS-Policy is a machine-readable language for rep-
resenting the capabilities and requirements of a Web service. According to this
specification both the service provider and the service user are able to argue
about the behavioral aspects of a Web service. Briefly, a WS-Policy document is
a composition of assertions, each of them representing an individual preference,
requirement, capability or other property of the Web service. Assertions are or-
ganized according to two main operators: ExactlyOne and All. Given a set of
assertions, the ExactlyOne operator states that only one assertion must hold at
the same time, whereas, with the All operator, each assertion must hold.

WS-Policy is a part of the Web Services Policy Framework [6]. This framework
also includes WS-PolicyAttachment [7] that specifies how a policy document
can be attached to WSDL documents, UDDI entries, and generic XML files.
In addition, the framework includes the guidelines for defining domain specific
assertions. As listed in [8], some domain-specific assertions are now available to
describe capabilities and requirements as security, reliable messaging, transac-
tionality, and more. At this stage, no efforts have been done to describe pre- and
post-conditions. For this reason, we aim at proposing such an assertions set, and
to use WSCoL in a way that complies with the guidelines defined in [6]. These
guidelines state that policy assertions representing opt-in, shared, and visible
behaviors are useful pieces of metadata. In our case, pre- and post-conditions
predicate on the incoming and outgoing messages of the Web services that are
partners of our process (the client-side of the interaction). Pre-conditions oblig-
ate the service client to send correct data if it aims at obtaining useful results.
In the same way, post-conditions make the service client aware of the range of
possible values the Web service can send as a valid invocation response. There-
fore, pre- and post-conditions defined in WSCoL affect the interaction among
the parties. This means that WSCoL complies with the WS-Policy guidelines.

WSCoL has been previously introduced in [9] to express monitoring policies. In
this work we aim at including an improved version of WSCoL to be used server-
side. As discussed in the next section, the WSCoL expressions defined server side
will inspire the supervision we provide with our client-side framework. WSCoL
was originally intended for the monitoring of BPEL processes. It defines what
should be monitored and how to collect the data required for such monitoring.
WSCoL uses three different ways of collecting data: internal variables are part
of the state of the running process, external variables are obtained externally by
means of specific constructs for getting data from any remote component, which
exposes a WSDL interface, and historical variables are obtained from previous
process executions.

Policies and Aspects for the Supervision of BPEL Processes 345

<wsp:Policy xml:base="http://www.microsoft.com/policies"

 wsu:Id="MapPointPolicy"

 xmlns:wsp="..."

 xmlns:wsu="...">

 <wsp:All xmlns:wscol="...">

 <wscol:MonitoredItems xmlns:wscol="...">

 <wscol:MonitoredItem type="precondition"

 path="//definitions/message[@name='parkingLotRequest']">

 <wscol:Expression>

 let $zone = "//definitions/message[@name='parkingLotRequest']

 /part[@name='UTMZone']";

 let $northing = "//definitions/message[@name='parkingLotRequest']

 /part[@name='UTMNorthing']";

 let $easting = "//definitions/message[@name='parkingLotRequest']

 /part[@name='UTMEasting']";

 $zone >= 1 && $zone <= 60 &&

 $northing.ends-with("N") &&

 $easting.ends-with("E");

 </wscol:Expression>

 </wscol:MonitoredItem>

 <wscol:MonitoredItem type="postcondition"

 path="//definitions/message[@name='parkingLotResponse']">

 <wscol:Expression>

 let $parkings = "//definitions/message[@name='parkingLotResponse']

 /part[@name='parking']";

 let $radius = "//definitions/message[@name='parkingLotRequest']

 /part[@name='radius']";

 (forall $parking in $parkings;

 ($parking/UTMEasting-$easting)^2 +

 ($parking/UTMNorthing-$northing)^2 <= $radius^2);

 </wscol:Expression>

 </wscol:MonitoredItem>

 </wscol:MonitoredItems>

 </wsp:All>

</wsp:Policy>

Fig. 2. Landmark Ws-Policy example

When using WSCoL to define service-side policies, however, a few consid-
erations must be made. First of all, instead of predicating on BPEL internal
variables, we predicate on the messages being received and sent by the service.
Secondly, both external and historical data are only considered at the client-side,
to effectively monitor and enforce the constraints defined at the server-side.

To check whether collected data comply with defined constraints, WSCoL
offers the typical boolean operators, such as && (and), || (or), ! (not), => (im-
plies), and <=> (if and only if), relational operators, such as <, >, ==, <=, and
>=, and mathematical operators such as +, −, ∗, /, and %. The language also
supports predicate on sets of values through the use of universal and existential
quantifiers, and other constructs, such as max, min, avg, sum, and product.

Considering our running example, Figure 2 shows the WS-Policy document
attached to the Landmark Web service2. As pre-condition, the policy requires
a valid UTM coordinate. A UTM coordinate is composed of three main infor-
mation: zone, easting, and northing. Zone is a number from 1 to 60. Northing
is a string consisting of six digits and an ending ‘N’ character. Finally, easting
is similar to northing except it ends with an ‘E’. The post-condition guarantees

2 In this paper, for the sake of clarity, we use a simplified WSDL.

346 L. Baresi, S. Guinea, and P. Plebani

that the parking lots found are no more than x meters away from the specified
UTM location.

4 Client-Side Descriptors and WSReL

As previously stated, the client-side descriptor that instructs the Dynamo Su-
pervision Framework is built as an extension of the service-side policies defined
by the service provider. Two possible extensions are possible. In the first, the
designer can take the policy defined in WSCoL and strengthen the pre-condition
or weaken the post-condition. This guarantees run-time conformance to the orig-
inal policy. In the second, the designer can add client-side recovery strategies to
be performed if either the client or the service is not complying with the joint-
behavioral contract. Due to lack of space we will not consider the first kind of
extension but concentrate on how recovery is defined in WSReL.

4.1 Recovery Strategies

The recovery strategies in WSReL are based around the definition of a finite (but
extensible) set of Atomic Actions. These actions are considered the building
blocks we want to mix and match to define complex strategies. Our way of
intending recovery is that these atomic actions work on a single process instance.
They do not have access to the process definition. Therefore, the performed
recovery is only valid for the life-span of a single process instance3. Moreover,
the recovery strategies are performed synchronously (i.e., while the process is
momentarily blocked).

The current set of Atomic Actions comprises: ignore, to simply ignore the
anomaly, notify, to communicate to a user that something wrong happened, halt,
to stop the process execution, retry, to impose that the system retry to execute
the invocation a user-defined number of times, rebind, to indicate that the cur-
rently used Web service must be substituted with another service. At this stage
we assume that the designer of the recovery strategy must indicate the endpoint
of an equivalent service. For example, [10,11] discuss approaches for QoS-based
Web service selection and Web service substitution with different interfaces are
discussed. Additional Atomic Actions are: changeSupervisionRules, to modify
how supervision is achieved and therefore to relax or tighten some constraints,
changeParams, to modify the parameters associated with the considered super-
vision rule, changeProcessParams, to modify the parameters associated with the
executing process, call, to call an external Web service, and processCallback, to
directly invoke one of the event handlers supplied by the BPEL process.

Complex Recovery Strategies are not direct aggregations of atomic actions.
Instead they are defined as multi-step processes, in which each step (i.e., each

3 This allows us to have different client-side monitoring and recovery specifications
for different stake-holders. However, it could be interesting to investigate recovery
strategies, defined by the process provider itself, that have access to the process
definition.

Policies and Aspects for the Supervision of BPEL Processes 347

Recovery Step) attempts to fix the problem before giving up and passing on to
the next. If a step is unsuccessful, it is rollbacked so that the next step can be
attempted. If a step is successful, the system skips the others. A single step is
defined as a conjunction of atomic actions that have to be executed. The way the
system knows if a step was successful depends on the actions it contains. Some
of the actions, in fact, require monitoring to be re-performed, while others are
always successful (e.g., the ignore action). Another thing to keep in mind is that
these actions have the power to modify the set of monitoring data being used,
and the monitoring and recovery specifications themselves. Therefore, every time
a step terminates unsuccessfully, all values are reverted to the original situation,
as if no recovery had been attempted. This way, we deal with possible severe
situations where the failure is not cause by the process to be monitored. On the
other hand, the error might come by other software, such as operating systems,
application servers, or BPEL engines.

WSReL allows more than one recovery strategy to be defined for a given
erroneous situation. In fact, each strategy is always accompanied by a condi-
tion expressed in WSCoL and specified by the designer. Strategies also have an
implicit prioritization, given by the order in which they are defined. The first
strategy that can be applied is executed and the others are ignored. This is a
simple way to avoid problems with multiple strategies enabled at the same time
and to relax the constraint that conditions must be mutually exclusive.

4.2 Example Descriptor

Figure 3 illustrates an example of a client-side monitoring and recovery descrip-
tor. It illustrates what is defined client-side for the server-side post-condition.
First of all, the supervision rule contains the same WSCoL post-condition in-
cluded in the server-side policy. This defines what the client-side framework will
look out for.In case the post-condition fails, the strategies included in the de-
scriptor are considered. Specifically, each strategy has a <strategyCondition>
expressed in WSCoL. If the related expression holds then the specified <step>s
are successively performed, until one of them results in an effective recovery. The
number attribute indicates the order in which the steps are performed. In the
example, there are two recovery strategies. The first, which is performed when
the request is considered urgent by the user, consists of three recovery steps. The
framework first tries to re-invoke the service, and then tries to dynamically bind
to an equivalent service (i.e., to a service with the same WSDL interface). If nei-
ther is successful, its last resort is to notify the process provider via e-mail and
halt the process execution. With the <defaultstrategy> we define a recovery
strategy to be performed when all previous conditions do not hold. In this case,
this strategy consists of only one step, which is to immediately notify the prob-
lem to the process provider and halt the execution. For the sake of simplicity,
the strategy conditiosn are reported informally. Corresponding WSCoL expres-
sions predicate on user context variables, which are external variables, stating
the urgency of the request.

348 L. Baresi, S. Guinea, and P. Plebani

<wssup:SupervisionRule>
 <wssup:postcondition>
 <wscol:Expression id="postcond_1">
 let $parkings = "//definitions/message[@name='parkingLotResponse']
 /part[@name='parking']";
 let $radius = "//definitions/message[@name='parkingLotRequest']
 /part[@name='radius']";
 (forall $parking in $parkings;
 ($parking/UTMEasting-$easting)^2 +
 ($parking/UTMNorthing-$northing)^2 <= $radius^2);
 </wscol:Expression>
 </wssup:postcondition>
 <wssup:strategy>
 <wssup:strategycondition id="strategycond_1">
 <wscol:Expression>``Urgent request''</wscol:Expression>
 </wssup:strategycondition>
 <wssup:step number="1">
 <wssup:retry times="1"/>
 </wssup:step>
 <wssup:step number="2">
 <wssup:rebind url="http://..."/>
 </wssup:step>
 <wssup:step number="3">
 <wssup:notify>
 <wssup:message>...</wssup:message>
 <wssup:address>...</wssup:address>
 </wssup:notify>
 <wssup:halt/>
 </wssup:step>
 </wssup:strategy>
 <wssup:defaultstrategy>
 <wssup:step number="1">
 <wssup:notify>
 <wssup:message>...</wssup:message>
 <wssup:address>...</wssup:address>
 </wssup:notify>
 <wssup:halt/>
 </wssup:step>
 </wssup:defaultstrategy>
</wssup:MonitoringRule>

Fig. 3. WSReL example

5 Prototype

The prototype implementation we present in this section is based on AOP tech-
niques. Its main goals are to provide BPEL process providers with the tools they
need to deploy and manage processes that are aware of the kind of supervision
rules presented in Section 4.

In this solution, business logic and supervision policy enforcement are defined
and treated separately, since we advocate that separation of concerns facilitates
both the design itself and later management. In this architecture, we augment
—using AOP technology [12] (i.e., AspectJ [13])— a standard BPEL engine (i.e.,
ActiveBPEL) with notions on how to verify monitoring expressions and how to
perform recovery. Business processes go unmodified and are deployed as usual,
while supervision policies are deployed to a persistent component where they
await activation.

Policies and Aspects for the Supervision of BPEL Processes 349

Configuration
Manager

Recovery
Manager

WSCoL
Data Analyzer

Monitoring
Manager

Invoker

Storage
Component

(AspectJ)

(JBoss Rules)

(Schematron)

(persistent EJB)

(Jax-WS)

(persistent EJB)

AOPActiveBPEL
Engine

Fig. 4. The Architecture of the Dynamo Prototype

Figure 4 illustrates the overall design of the prototype. It is made up of seven
main components.

1) The ActiveBPEL Engine is the BPEL engine we have chosen for our proto-
type, due to the fact that it is currently the most mature open-source engine
available. Its implementation revolves around the run-time visit (using the Vis-
itor pattern [14]) and management of an internal tree-based representation of
the process. A thorough study of the platform led us to define our pointcuts4 as
(1) after the engine visits a Receive node, (2) before and after it visits an Invoke
node, and (3) before and after it visits a Pick node. These were chosen since
they represent the points in which the process interacts with the outside world.
2) The Monitoring Manager represents the main advice, that is to say the com-
ponent that is weaved into the execution environment. The result is that —after
the weaving— this component has direct access to the internal representation
of the process in execution, and to its state (i.e., the set of instantiated BPEL
variables). This allows it to collect data from the process itself, and provide them
for analysis. This component is also responsible for managing all the steps in the
monitoring process. We will defer a more in depth analysis of its behavior to
Section 5.1.
3) The Configuration Manager is a persistent component in which we store
all the supervision descriptions that have been devised, and that are waiting
to be activated. The Monitoring Manager can query its contents by specifying
the process it is executing, the unique id of the user of the business process,
and the Receive, Invoke, or Pick activity being executed. As the reader can
see, these allow the system to distinguish between different supervision policies
for different users, and to guarantee personalized supervision. 4) The WSCoL
Data Analyzer is the component responsible for actually verifying the monitoring
expressions. The component takes the data collected from within the process, and
the monitoring rules extracted from the Configuration Manager, and provides a
monitoring result. If it needs extra data to perform its analysis (e.g., external or

4 This term indicates —in the standard AOP terminology— the points in which we
are interested in inserting our cross-cutting concern. In our case, it indicates the
points in which we want to activate supervision.

350 L. Baresi, S. Guinea, and P. Plebani

Data SourceWeb Service Invoker

WSCoL
Analyzer

Configuration
Manager

ActiveBPEL
Engine

Monitoring
Manager

1: Ask for
monitoring rule

6 & 13: Monitoring
Result

5 & 12: Perform
Data Collection

8: Invoke
Service

3 & 10: Send data

Storage
Component

Get/set Historical
Variables

2 & 9: Get Internal
Variables

4 & 11:Get External
Variables

7 & 14: Proceed with
Execution

Fig. 5. Monitoring pre- and post-conditions

historical WSCoL variables), it can interact directly with the Invoker component
to obtain data from external data sources, or with the Storage Component to
obtain data pertaining to previous supervision activities.
5) The Recovery Manager is responsible for the execution of recovery strategies
when monitoring has signaled an anomaly. It is based on the ECA rules par-
adigm [15] (i.e., event-condition-action), and was built using JBoss Rules [16]
(formerly known as Drools). The event is implicit and consists in the anomaly
itself being signaled. The condition consists of a two-level nesting of if-then-else
clauses that allow the system to distinguish between different actions depending
on the extent to which a monitoring expression is unverified. Both the clauses
are expressed in WSCoL. The former reply the pre- or post-condition included in
the service-side policy. The latter allows us to distinguish aong different reaction
strategies. Finally, the action is a recovery strategy, as defined in Section 4.
6 and 7) The Invoker and the Storage Component are utility modules. The former
allows to dynamically bind and invoke any Web service. The latter is used to
store data collected during previous activations of the supervision framework.

5.1 Monitoring Manager

Figure 5 illustrates how all the aforementioned components come together to
provide supervision. When the process execution is intercepted and the Mon-
itoring Manager is activated, the first thing it does is to obtain the proces-
sID, the userID, and the invokeID needed to query the Configuration Manager.
All these data are automatically provided by the execution engine, except for
the userID which is provided by the user in the SOAP message that instantiates
the process5. In our current implementation, the userID must be provided by
the user when a new instance of the process is requested. However, in the future,
the ID could be provided automatically by the system through authentication.

5 This is the only modification that needs to be performed on the process definition
to enable supervision.

Policies and Aspects for the Supervision of BPEL Processes 351

The Configuration Manager is then queried for supervision rules that have
been defined by that user, for that process, and in particular for that activ-
ity (Step 1). If none are found the execution is immediately returned to the
engine.

However, if a rule exists, and it defines a pre-condition, the Monitoring Man-
ager reads the monitoring expression to see what WSCoL internal variables have
been defined, and need to be collected (Step 2). This is simplified by the fact
that, thanks to the AOP weaving, the Monitoring Manager lives in the same
execution space where the ActivbeBPEL variables are stored. Once all the data
collection has been achieved, the data is formatted into XML and sent to the
WSCoL Analyzer together with the monitoring expression itself (Step 3). The
WSCoL Analyzer proceeds to finish data collection (external and historical vari-
ables) and perform verification. Once it has finished, the monitoring result is
returned to the Monitoring Manager (Steps 4, 5, 6). At this point, if no error
has been discovered the framework returns control to the execution engine which
performs the service invocation (Steps 7, 8). When the supervision framework
is re-activated, after completing the execution of the Invoke activity, it checks
whether there is a post-condition. Its data collection and analysis are performed
in the same way as for the pre-condition (Steps 9, 10, 11, 12, 13).

5.2 Recovery Manager

The current version of the recovery manager has been implemented using the
JBossRules ECA rule engine. We use data collected during monitoring, and the
monitoring results themselves, to produce JBoss rules that will “fire” according
to the WSCoL strategy conditions in WSReL.

In order to guarantee the correct activation order for the recovery strategies,
defined explicitly by the WSCoL conditions associated with the single strategies
and implicitly by prioritization, we make use of: (1) the concept of salience, an
integer value that gives a rule a certain priority (higher priority rules are executed
before lower priority ones, while rules with the same priority are executed in a
LIFO manner), (2) the concept of activation-group, a value which groups rules
into sets in which only one rule can be activated, and (3) the concept of agenda-
group, which allows the engine to discriminate between rule sets, and to execute
only those actions that belong to the agenda-group that is said to be in “focus”
(this can be set programmatically).

In our example we have two recovery strategies (see Figure 6). They are
defined with the same agenda-group, meaning that the rule engine will try to
activate them at the same time. However, they have two different salience values,
meaning that strategy 1 will be considered first. An activation-group is made
explicit since the two strategies are mutually exclusive. If the first fails to “fix”
the problem, then the second is activated.

Finally, the recovery manager performs the single recovery strategies by
invoking a Java application (recov strategy 1() and recov strategy 2())
which contains the strategy steps and their atomic actions. In addition, the
Monitoring Manager is also responsible for re-evaluating monitoring to see if

352 L. Baresi, S. Guinea, and P. Plebani

rule "Strategy_1"
 salience 2;
 agenda-group="postcond_1"
 activation-group="ag1"
 when
 strategycond_1
 then
 recov_strategy_1();
end

rule "Strategy_2"
 salience 1;
 agenda-group="postcond_1"
 activation-group="ag1"
 when
 strategycond_2
 then
 recov_strategy_2();
end

Fig. 6. JBoss rules example

recovery was successful. Monitoring being re-evaluated also translates into a
complete cleansing of the JBoss Rules working space.

6 Related Work

Much work has been accomplished in the field of the specification and monitoring
of service level agreements for Web services. Keller and Ludwig [17] advocate the
need for a framework that can provide tools for the specification, measurement,
and monitoring of QoS parameters. Ludwig et al. also present a revisitation of
their work in [1], in which they adopt WS-Agreement [18] as their agreement
language. They propose Cremona (Creation and Monitoring of Agreements) as
an architecture that can facilitate the design and management of agreements
through the use of templates. The architecture is mainly composed of two parts:
an Agreement Protocol Role Management component, intended to help create
and access agreements at run-time, and an agreement Service Role Management
component, required to trigger agreement-driven provisioning of a service and to
monitor their compliance. With respect to Cremona, which concentrates on QoS,
our approach can be used to define more general properties. This guarantees a
more widespread solution which can be adapted to many different needs.

Spanoudakis and Mahbub [2] have also developed a framework for monitoring
requirements of BPEL-based service compositions. Their approach uses event-
calculus for specifying the requirements that must be monitored. Requirements
can be behavioral properties of the coordination process or assumptions about
the atomic or joint behavior of the deployed services. The system observes sys-
tem events during execution, and stores them in a database. Run-time checking
is then interpreted as integrity constraint checking in a temporal deductive data-
bases. Like our approach, they also provide reactive monitoring since erroneous
situations can be found only after they have occurred. It is a less intrusive ap-
proach that proceeds in parallel to the execution of the business process. This
leads to a lesser impact on performance but also to a lesser responsiveness in
discovering run-time erroneous situations.

In our work, pre- and post-conditions are expressed using WSCoL since it
provides compatibility with the rest of the proposed solution. Nevertheless, the
policies can include conditions expressed according to different languages such

Policies and Aspects for the Supervision of BPEL Processes 353

as OCL (Object Constraint Language) or specific logics (e.g. temporal or de-
scriptive). Even if some work, such as OWL-S [19] and WSDL-S [20], include
pre- and post-conditions directly into the functional specification, we prefer to
exploit WS-Policy. This way, we separate the technical details of the invocation
from the constraints on exchanged data.

7 Conclusions and Future Work

In this paper we have presented an approach to supervise BPEL processes by
exploiting policies and aspects. Policies are involved at design-time, when the
process owner selects the external Web services to be invoked during the process
execution. WS-Policy has been adopted as the language for expressing the behav-
ioral aspects of the external Web services in term of pre- and post-conditions. In
particular, WSCoL inspires a new set of assertions compliant with the WS-Policy
framework. Policies also drive the process deployer during the configuration of
the BPEL process. Using a WSReL descriptor the process is instructed to check
the pre- and post-conditions during the service invocation and to properly react
in case of violation. The descriptor is semi-automatically generated by starting
from the policies attached to the external services. Finally, we present an AOP-
based prototype, which is responsible for the execution of the business logic, and
for its monitoring and recovery.

References

1. Ludwig, H., Dan, A., Kearney, R.: Cremona: an architecture and library for cre-
ation and monitoring of ws-agreements. In: Proceedings of the 2nd International
Conference on Service Oriented Computing, pp. 65–74. ACM, New York (2004)

2. Mahbub, K., Spanoudakis, G.: A framework for requirents monitoring of service
based systems. In: Proceedings of the 2nd International Conference on Service
Oriented Computing, pp. 84–93. ACM, New York (2004)

3. Modafferi, S., Mussi, E., Pernici, B.: SH-BPEL: a self-healing plug-in for Ws-
BPEL engines. In: 1st workshop on Middleware for Service Oriented Computing
(MW4SOC ’06), Melbourne, Australia pp. 48–53 (2006)

4. Baresi, L., Guinea, S.: Towards dynamic monitoring of ws-bpel processes. In: Be-
natallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
269–282. Springer, Heidelberg (2005)

5. Meyer, B.: Applying design by contract. IEEE Computer 25(10), 40–51 (1992)
6. Vedamuthu, A., Orchard, D., Hondo, M., Boubez, T., Yendluri, P.: Web Services

Policy 1.5 - Primer (2006)
http://www.w3.org/TR/2006/WD-ws-policy-primer-20061018

7. Sharp, C. (ed.): Web Services Policy 1.2 - Attachment (WS-PolicyAttachment)
(2006) http://www.w3.org/Submission/WS-PolicyAttachment/

8. VV.AA.: Web Service Policy Framework (2006) http://www-128.ibm.com/
developerworks/library/specification/ws-polfram/

9. Baresi, L., Guinea, S., Plebani, P.: WS-Policy for Service Monitoring. In: Bussler,
C., Shan, M.-C. (eds.) TES 2005. LNCS, vol. 3811, pp. 72–83. Springer, Heidelberg
(2005)

http://www.w3.org/TR/2006/WD-ws-policy-primer-20061018
http://www.w3.org/Submission/WS-PolicyAttachment/
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/

354 L. Baresi, S. Guinea, and P. Plebani

10. Antonellis, V.D., Melchiori, M., Santis, L.D., Mecella, M., Mussi, E., Pernici, B.,
Plebani, P.: A layered architecture for flexible web service invocation. Softw. Pract.
Exper. 36(2), 191–223 (2006)

11. Fugini, M., Plebani, P., Ramoni, F.: A user driven policy selection model. In: Dan,
A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 427–433. Springer,
Heidelberg (2006)

12. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.,
Irwin, J.: Aspect-oriented programming. In: ECOOP. pp. 220–242 (1997)

13. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements
of reusable object-oriented software. Addison-Wesley Longman Publishing Co.,
Boston (1995)

15. McCarthy, D., Dayal, U.: The architecture of an active database management sys-
tem. In: Proceedings of the 1989 ACM SIGMOD international conference on Man-
agement of data pp. 215–224 (1989)

16. Proctor, M., Neale, M., Lin, P., Frandsen, M.: Drools documentation. Technical
report, JBoss.org (2006)

17. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal of Network and Systems Manage-
ment 11(1), 57–81 (2003)

18. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-
Agreement). Global Grid Forum GRAAP-WG, Draft (August 2004)

19. Martin, D. (ed.): OWL-S: Semantic Markup for Web Services. W3C Submission
(2004) http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

20. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.T., Shet, A., Verma,
K.: Semantic Annotations for WSDL (2005)
http://www.w3.org/Submission/WSDL-S/

http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.w3.org/Submission/WSDL-S/

Goal Annotation of Process Models for Semantic
Enrichment of Process Knowledge

Yun Lin and Arne Sølvberg

Dept. of Computer and Information System, Norwegian Univ. of Sci. &Tech.
Sem Sælands vei 7-9, NO-7491, Trondheim, Norway

{yunl,asolvber}@idi.ntnu.no

Abstract. A semantic annotation framework has been proposed to tackle the
semantic heterogeneity problem of distributed process models in our earlier work.
The goal annotation as part of the framework is further developed, in which goal
ontology is annotated to process models to indicate the objectives or the capability
of models. In the paper, we introduce a way to represent goal ontology, build
relationships between goals and process models, and develop a goal annotation
approach to process models. As an illustration, a case study is deployed with
the proposed annotation approach. The results of the goal annotation enrich the
semantics of process knowledge from stakeholders perspective in a cooperative
goal-oriented manner. The ontology and the annotation results also facilitate the
ontology-based queries for the semantic discovery and the reuse of heterogenous
process models.

1 Introduction

As process knowledge, the distributed process models should be accessible and reusable
when requesting them for achieving the cooperative business goals. However, those
process models were originally created for achieving enterprises local goals. The lo-
cal goals might be variously presented or even not presented explicitly which causes
semantic heterogeneity problem in the goal representation. We need the consensual
representations to specify the semantics of goals for the distributed process models, and
to enable the machine to interpret and match them to the goal-oriented queries.

The process models involved in this research are the distributed enterprise models
on the conceptual level, in which the semantic heterogeneity problem usually occurs.
An ontology-based semantic annotation framework is developed to manage the seman-
tic heterogeneity of process models in our previous work [1]. We have provided the
approaches and strategies to deal with the semantic heterogeneity of meta-models and
model contents. In this paper, the goal annotation based on goal ontology will be re-
fined to complement the semantic annotation framework for facilitating the semantic
management of process knowledge.

Goal annotation of process models is annotating process models and model frag-
ments with goal ontology to specify the objectives of processes. Goal ontology is a set
of concepts and relationships of semantic definitions about goals. Since the purpose
of using goal ontology is to align the semantic representation of goals in a machine-
understandable way, the goals should be represented formally in the goal ontology.

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 355–369, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

356 Y. Lin and A. Sølvberg

Based on our objectives and the investigation of several goal modeling methods ap-
plied in requirements engineering and process modeling, we propose a representation
of goal ontology serving goal-oriented semantic management of process knowledge.
Therefore the principles of designing our goal ontology are i) the goal ontology should
be process-achievable on the conceptual level, i.e. the goal can be targeted through
the process modeling; ii) the corresponding relationships between goal ontology and
process model should be easily built to facilitate the goal annotation; iii) the semantics
of the goal ontology should be understandable and manipulable for both human and
machine.

Goals have been used as an important mechanism for connecting requirements to
design and supporting reuse [2]. Goal-driven search of design components [3] and dis-
covery of services [4] uses such kind of mechanism, in which selecting the components
or services capable of fulfilling the desired goals (requirements). The goal annotation
is a pre-procedure to organize and define the process knowledge with goal ontology,
i.e. building relationships between process models and pre-defined goal concepts. The
definitions of those relationships are major tasks of the goal annotation, which indicate
what relationships are supported in the annotation and how the annotation can be im-
plemented. Consequently, the goal annotated models can be queried for the reuse in a
goal-driven method with the goal ontology. The objective of the semantic annotation
is to facilitate the knowledge management of heterogenous models via the semantic
interoperability.

The goal annotation is accomplished together with other semantic annotations (pro-
file annotation, meta-model annotation and model annotation). Thus, this research work
on goal annotation of process models is presented as follows in this paper: we first
present our semantic annotation framework to provide the research background of this
work; our representation of goal ontology is introduced in section 3; then the corre-
sponding relationships between process models and goal ontology are defined in section
4; the procedure of goal annotation accompanied with meta-model and model annota-
tion is described in section 5; and a case study is deployed to illustrate the procedures
of goal ontology building and the goal annotation; finally, we conclude the paper and
outline the future work.

2 The Semantic Annotation Framework

Four main annotation sets constitute the framework: namely, profile annotation, meta-
model annotation, model annotation and goal annotation. In the profile annotation, a set
of metadata specify the significant characteristics of process models. In the meta-model
annotation and the model annotation, we use ontologies to relate constructs across dif-
ferent modeling languages, as well as to align domain specific terminology used in
models. Furthermore, the goal annotation is to specify the capacities of process models
using a goal ontology. In this way we are able to solve semantic heterogeneity in model
management.

A GPO (General Process Ontology) (see Figure 1) is proposed for annotating the
process modeling languages in the meta model annotation. Applying the GPO in the
meta model annotation, a process model is then described in a PSAM (process semantic
annotation model).

Goal Annotation of Process Models for Semantic Enrichment of Process Knowledge 357

Fig. 1. The GPO

The model annotation and the goal annotation will be employed on the PSAM. The
domain ontology and the goal ontology for a certain domain is built or selected by do-
main experts for the model annotation and the goal annotation respectively. Therefore,
a PSAM contains concepts of GPO, domain specific ontology and goal ontology and is
defined as follows.

PSAM = (AV, AR, AF, WP, I, O, Θpre, ΘposE, PD, PG)

Where AV is a set of activities composing a process, AR is a set of actor-roles in-
teracting with a process, AF is a set of artifacts participating in a process, WP is a
set of workflow patterns, and each workflow pattern denotes an ordering of activities.
I is a set of input parameters, O is a set of output parameters, Θpre is pre-conditions
when a process starts, Θpos is post-conditions when a process ends, E is a set of pos-
sible exceptions occurring during a process. PD is a subset of domain ontology (D)
concepts, i.e. PD ⊆ D, including static ontology concepts and task ontology concepts.
PG is a subset of goal ontology (G), i.e. PG ⊆ G. Since Activity is the main con-
cern in the goal annotation procedure, we provide the annotated activity structure as
follows.

AVi = (id, model fragment, name, alternative name, has Actor − role,

has Artifact, has Input, has Output, is in WorkflowPattern of,

has Precondition, has Postcondition, has Exception, subActivity of,

same as, different from, kind of, superConcept of, phase of,

compositionConcept of, achieves Goal)

We use id and modelfragment to locate the annotated model and the original
model respectively. The same as, different from, kind of , superConcept of ,
phase of , compositionConcept of are to annotate the activities with domain on-
tology, i.e. using semantic relationships mapping an activity with concepts defined
in domain ontology. As the goal annotation, the goal ontology is referenced through
achieves Goal. More details refer to [1].

358 Y. Lin and A. Sølvberg

3 Goal Ontology for Semantic Annotation

A process model represents how to do things not why to do things. Although a process
must achieve certain goals, the relationships between goals and processes are not ex-
plicitly represented in many process models. With few process modelling language,
goals can be modelled and linked to elements of process models, e.g. EEML process
and goal models [5]. However, the representations of the goals and the relationships
between goals and processes are variously presented in different models. In this work,
goal ontology is applied to specify the capability of processes in a consensual way. The
focus in this section is modeling goal ontology. We consider three principles to design
goal ontology:

– The goal ontology should be process-achievable on the conceptual level, i.e. the
goal can be targeted through the process modeling. Thus, the research will not in-
clude the goals related to technical factors such as the usage of computing resources
or financial aims like reaching a certain amount of gross profit.

– The corresponding relationships between goal ontology and process model should
be easily built to facilitate the goal annotation. The process modeling language con-
structs (e.g. actor, task, resource, ect.) are found overlapped in most existing goal
modeling languages such as KAOS [6], i* [7], GBRAM [8] and etc. Accordingly,
those goal modeling approaches could be referred to model goal ontology.

– The semantics of the goal ontology should be understandable and manipulable for
both human and machine. We use Semantic Web technology — OWL to represent
goal ontology. When they are well modeled in OWL Classes and OWL Properties,
the model can be interpreted through OWL interpreters.

3.1 Semantic Representations of the Goal Ontology

Following the principles, we make a meta-model of the goal ontology considering the
semantic expressivity of OWL as Figure 2. In this meta-model, goal ontology are de-
fined based on the goal category and the goal target.

In general, goals can be classified into hard goals and soft goals [9]. Hard goals re-
late to functional requirements and they are obviously supported by process. Soft goals
relate to non-functional requirements (colloquially ”-ilities”) which are about global
qualities of a system. Soft goals are satisfied when there is sufficient positive and little
negative evidence for this claim [9]. As the goal category, Hard Goal and Soft Goal are
two upper level classes for the goals in all domains. Since hard goals are functional, for
different domains they are described domain-specifically. Soft goals can be described
generally in a set of ”-ilities” (which are regarded as soft goal category), and then spec-
ified according to domains.

Checking the literatures of goal definitions, a goal is a condition or state of affairs
in the world that stakeholders would like to achieve [10]. Pnina Soffer et al. defines a
goal is a set of stable states in [11]. In [12], state of a thing is described as the vector of
values for all property functions of a thing. In the context of process modeling, states
must be represented as values for the properties of the process and the properties of
the objects involved in the process. That is to say, a goal can be expressed as states of

Goal Annotation of Process Models for Semantic Enrichment of Process Knowledge 359

Fig. 2. The meta-model of the goal ontology

activities or states of artifacts. The goal target could be Activity or Artifact. Usually the
’accomplished’ is regarded as the goal state of an activity, whilst the state of an artifact
has to be specified for different goals. Goal is an organizational concept and goals are
held by stakeholders. ’Actor’ is defined to represent the goal owner in GRL and ’Agent’
is applied in KAOS when analyzing the potential goal realizer. Actor-role is therefore
the goal target in the goal ontology as well. In KAOS, goals are non-operational ob-
jectives and constraints are operational objectives. Although constraints are not goals,
goals can be operated by constraints [6]. In this sense, Constraint is also the goal target.
The relationships between Goal and those targets are simply defined because the pur-
pose of the goal ontology is not to analyze the goal like those existing goal modeling
methods. The targets show the different perspectives of viewing a goal. These targets
are represented same as the concepts in the PSAM, which disclose the potential links
between goal ontology and process models.

Decomposition relation – an important characteristic found in most goal analysis
should be specified in the goal ontology. However, OWL does not provide any built-
in primitives for part-whole relations (as it does for the subclass relation), but con-
tains sufficient expressive power to capture most, but not all, of the common cases
[13]. We therefore apply the simple part-whole relationship to represent the decom-
position of goal concepts. The ’part’ goals contribute the impacts to the ’whole’ goal.
The logic connections (OR, AND, XOR) between the parts are not considered in the
goal ontology due to two reasons. One is the representation limits of OWL. The other
one is that the concrete goal analysis mechanism is not necessary for a goal ontol-
ogy. The goal ontology should be general to applications and how to decompose a
goal depends on the specific applications. The goal ontology is more like a taxonomy
of goal concepts serving for the semantic-aligned goal representation. The subsump-
tion relationship (owl:subClass) represents the goal category hierarchy. The sim-
ple part-whole relationship provides the goal components hierarchy. The terminology
presenting goal concepts in the goal ontology should be normalized. Further seman-
tics of a goal are specified through the relationships (owl:objectProperty and
owl:dataProperty) with the goal perspectives.

360 Y. Lin and A. Sølvberg

4 Relations Between Process Models and Goal Ontology

We study the relations between process models and goal ontology based on the PSAM
model. As we have defined in the GPO in [14], an activity may be an atomic activity or a
composite activity which is a synonym of process from this sense. We say that a process
model comprises a set of activities (AV) and an activity can be decomposed into sub-
activities. The activities are related to each other through flows according to our GPO
definition [1]. If an activity in a process model is not an atomic activity 1 and it is also
composed by a set of related activities, it is regarded as a process model fragment in this
context. A goal can be linked to a whole process model or to a process model fragment.
We assume that the process models are already organized into a decomposable activity
hierarchy according to the task ontology in the model annotation phase. Each level
activities in a process model can be considered as goal annotation targets.

Definition 1. In the semantic annotation framework, a process model (PM) can be
partitioned into several process model fragments (PMF). Each PMF comprises a set
of hierachically organized and decomposable AV .

Definition 2. Any goal concept (g) in the goal ontology (G) is possibly related to an
activity (av) in a PM or PMF :

∀(g, av)goalRelated(g, av) (a)

– if the property targetActivity (av′) of the g is same or synonymic with av:

∃(av′)targetActivity(g, av′)
∧

av′ = av (b)

– if the property targetArtifact (af ′) of the g is related to the output of av and the
State (s’) of af ′ is the value of the Output (o) of the Artifact (af):

∃(af, s′, o)targetArtifact(g, af ′)
∧

hasState(af ′, s′)
∧

s′ = o ⊃ hasOutput(av, o)
∧

af ′ = af ⊃ relatedTo(o, af) (c)

– if the property targetRole (ar′) of the g is related to an Actor-role(ar) involved in
av:

∃(ar′)targeRole(g, ar′)
∧

ar′ = ar ⊃ hasActor − role(av, ar) (d)

– if the targetConstraint (c′) expressed in the g is involved in (involvedIn) preCondi-
tion (pre), postCondition (post) or Exception (e) of av:

∃(c′, pre, post, e)targetConstraint(g, c′)
∧

(involvedIn(c′, pre) ⊃
hasPrecondition(av, pre)

∨
involvedIn(c′, post) ⊃

hasPostcondition(av, post)
∨

involvedIn(c′, e) ⊃
hasException(av, e)) (e)

Therefore,

(a) ≡ (b)
∨

(c)
∨

(d)
∨

(e)

1 Note: An atomic activity can not be decomposed, but it is not an event either.

Goal Annotation of Process Models for Semantic Enrichment of Process Knowledge 361

Checking above cases through matching algorithms can automatically provide a list
of possible goal annotations. The decisions of the desired goal annotations are left to
annotators.

Definition 3. In the goal ontology (G), the hard goal set is notated as Gh and the soft
goal set is notated as Gs.

The relations are further specified by the annotator based on the context of the process
models and the goal ontology. We define two relations as follows:

Definition 4. Hard goals can be achieved by an activity or activities. I.e. the relation
between the activity (av) and the hard goal (gh) is achieves(av, gh).

Definition 5. Soft goals can be positively or negatively satisfied by an activity
or activities. I.e. the relation between the activity (av) and the soft goal (gs) is
positivelySatisfies(av, gs) or negativelySatisfies(av, gs).

Since the activities in the process models are decomposable, the relation between goals
and a composite activity could be inferred based on the relations between goals and
component activities.

Definition 6. If an activity (av) is a component of another activity (av′) in a process
model/model fragment, av is the subactivity of av′, i.e. subActivityOf(av, av′). av′ is a
Composite Activity in that model.

Usually the effects of hard goals achieved by a subActivity can contribute to its com-
posite activity. That is,

Definition 7. If av is the subactivity of av′ and av achieves gh, av′ achieves gh:

(∀(av, gh)∃av′)subActivityOf(av, av′)
∧

achieves(av, gh)
−→ achieves(av′, gh)

However, the effects of soft goals can not be simply passed in the same way as hard
goals. To a composite activity, the contribution of a soft goal from a subactivity might
be enhanced or reduced by other subactivities which positively or negatively satisfy the
same soft goal. The contribution could be calculated if the effects of soft goals are quan-
tified. This issue is only simply considered in our current work by simple contribution
calculation rules. All effects of soft goals are regarded same. The contribution of soft
goals to a composite activity is determined by comparing the numbers of subactivities
which positively satisfy and negatively satisfy the same soft goals. That is,

Definition 8. Let a gs is positively satisfied by N subactivities, and is negatively satis-
fied by M subactivities in a composite activity av′,

– if N > M , positivelySatisfies (av′, gs)
– if N = M , then the effect of gs is counteracted for av′.
– if N < M , negativelySatisfies (av′, gs)

The relations between goals and activities defined in this section will be applied to build
annotation links between goal ontology and process models in the goal annotation.
That is to say, the meta data schema of the goal annotation for process models is:

362 Y. Lin and A. Sølvberg

ActivityID

<achieves|positively satisfies|negatively satisfies>

GoalOntologyID

5 Goal Annotation Procedure

In the goal oriented requirements engineering, the goal analysis and modeling is a top
to bottom procedure — decomposing high level goals down to lower level goals and
operational activities. The goal annotation is a bottom to top procedure — first anno-
tating low level subactivities and then annotating higher level activities and the whole
process model with goal ontology. The goal annotation is employed based on the do-
main annotated PSAM models.

After the profile annotation, the PSAM is initially structured after the meta-model
annotation, and then it is gradually filled with domain ontology in the model annotation.
The goal annotation is employed as the final step of the whole annotation procedure, i.e.
filling the PSAM with goal ontology. The semantic annotation procedure is illustrated
in Figure 3.

Fig. 3. The semantic annotation process based on PSAM

As the goal annotation, we update the PSAM with the goal annotation relations
achieves Goal/positively satisfies Goal/negatively satisfies Goal . Applying
the psam as markup annotation language, an example of annotating a process model
fragment with the goal ontology by representing an activity achieves a hard goal as
follows:

<psam:Activity rdf:ID="ID">

<psam:model fragment rdf:resource="&MODEL NAMESPACE#MODEL ID">

...

<psam:achieves rdf:resource="&GOAL ONTOLOGY#GOAL ONTOLOGY CONCEPT"/>

We have discussed that the goal annotation of the process models and the model
fragments is to link goal ontology to the activities identified in the models. Focusing
on the activity, we describe the goal annotation procedure accompanied with the meta
model annotation and the model annotation in a UML activity diagram in Figure 4.

Through the meta model annotation, activities are identified by the markup Activity
in a PSAM. In the model annotation phase, if the domain task ontology is available

Goal Annotation of Process Models for Semantic Enrichment of Process Knowledge 363

Fig. 4. The goal annotation procedure

as the activity references, the identified activities is annotated with the task ontology
references via the semantic relations such as same as, different from, kind of ,
superConcept of , phase of , and compositionConcept of . If the domain goal on-
tology is available, the possible links between the activities and the goal ontology can be
checked based on the relations described in section 4. We employ the annotation from
the component activities to the composite activities. The contributions of the goals an-
notated to the low level component activities can be passed to or calculated for their
upper level composite activities.

6 Case Study

In this section, we provide a case study to illustrate the goal ontology representation
and the goal annotation procedure. For the sake of the brevity, we assume the models
have already processed by the meta model annotation and the model annotation. Con-
sequently, the goal annotation is employed on the PSAM model. We set our example
in an industrial enterprise with supply-chain management systems. The SCOR (Sup-
ply Chain Operations Reference-model) [15] is applied as the domain ontology in this
example. The goal ontology is also derived from the SCOR.

6.1 The TelCo Case Study

TelCo company is specialized in telecommunications, in the production and distribu-
tion of batteries, as well as in retail sales of everyday technology products. TelCo does
not have its own warehouse but uses the services of logistics company Orbit Ltd. But

364 Y. Lin and A. Sølvberg

Fig. 5. TelCo item receiving process

Fig. 6. Decomposition of the check items

TelCo has its logistics department who is responsible for items receiving and delivering.
Thus the functions of logistics department are to order and control Orbit. The following
main business processes of the logistics are items receiving, returns, orders from shops
and franchisees, orders from dealers and inventories. In this case, we take the items
receiving process as the annotation example. The process model of the items receiving
is initially made in EEML. A simplified model mainly from the task viewpoint is dis-
played in Figure 5. The logistics department receives a report for expected quantities
of items according to the order to the supplier, and prepares to receive the items. After
receiving the items, the logistics department checks items. Sub-tasks are included in
some tasks because there are three types of items receiving — regular orders to local
suppliers, consignment and import. The process details are described in the decompo-
sition of the task check import items in Figure 6. After checking the items, the received
items will be transferred to Orbit. Meanwhile the department sends a report to Orbit in
order to inform them what to expect.

The meta model annotation is to map the EEML meta model and the model structures
to the GPO. Hereby, all the tasks in the EEML model are annotated as Activity in the
PSAM. For the model annotation and the goal annotation, the SCOR is referenced as
the domain ontology including the domain tasks and the domain goals.

Goal Annotation of Process Models for Semantic Enrichment of Process Knowledge 365

6.2 The SCOR as Reference Ontology

The SCOR is a process reference model that has been developed and endorsed by the
Supply-Chain Council as the cross-industry standard diagnostic tool for supply-chain
management. The SCOR-model describes the business activities associated with all
phases of satisfying a customer’s demand.

For this case, we apply ”S1 Source Stocked Product” model as task ontology for the
item receiving process. The SCOR-model is depicted in Figure 7. Each process element
is a task ontology concept which is referenced by the Activity in the model annotation
(e.g. the Activity check items is annotated with the task ontology Verify Product).
The inputs and outputs are the domain object concepts as ontology to annotate the Ar-
tifacts in the PSAM (e.g. the Artifact product item is annotated with the domain object
ontology Sourced Product On Order). The details of the model annotation are
not specified in this paper due to the space limitation.

Fig. 7. S1 Source Stocked Product

The goal ontology in this domain is also from the SCOR. Usually the hard goals
are derived from the level 3 process elements [15] and their inputs and outputs. The
performance attributes defined in SCOR are General Soft Goal Category (generally in a
set of ”-ilities”) such as Reliability,Responsiveness, Flexibility, Cost, and Assets. The
domain specific soft goals are derived from the metrics of the performance attributes
[11]. By analyzing the goal targets, we can identify the following goals derived from
S1 (Table 1).

366 Y. Lin and A. Sølvberg

Table 1. Goal ontology derived from SCOR

Goal Type Goal Target SCOR Goal Ontology

Hard Goal
targetActivity sourced products are transferred; sourced products are verified.
targetArtifact and state sourced products on order; scheduled receipt; available inventory.
targetRole payment is authorized to supplier

Soft Goal
targetConstraint improve supplier delivery to date performance

(Responsiveness); invoices processed without error
(Reliability).

targetArtifact improve delivery quantity performance (Assets); decrease % de-
fective supplied (Reliability).

targetActivity reduce verification costs (Costs); reduce receiving & storage
costs (Costs).

6.3 Goal Annotation for Semantic Enrichment of Process Knowledge

Having a set of goal ontologies in the Sourced Stocked Product domain, we annotate
the TelCo logistics department’s item receiving process model. We consequently have
the following annotation results listed in Table 2.

The orginial EEML tasks are listed in the first column. After the meta-model and the
model annotation, each task is represented as a PSAM:Activity and is linked to SCOR
domain ontology through the semantic relationships (refer to the second column). The
goal annotation is to build a link from the goal ontology to the PSAM activities. The
annotation relations in third column are defined in section 4. SCOR goal ontology in
the fourth column from table 1.

Table 2. Goal annotation results

EEML Tasks PSAM Activities (Model annota-
tion with SCOR domain ontology)

Goal Annotation
Relations

SCOR Goal Ontology

get the order to supplier phase of Activity:Schedule Product
Deliveries

achieves sourced product on order

get the order to supplier phase of Activity:Schedule Product
Deliveries

positively satisfies reduce receiving & storage
costs

check imported items kind of Activity:Verify Product positively satisfies improve delivery quantity per-
formance; decrease % defec-
tive supplied

check imported items kind of Activity:Verify Product negatively satisfies reduce verification costs
check consignment
items

kind of Activity:Verify Product positively satisfies reduce verification costs

transfer items to Orbit kind of Activity:Transfer Product achieves available inventory
issue the invoice; issue
an export invoice

phase of Activity:Authorize Sup-
plier Payment

achieves payment is authorized to sup-
plier

issue the invoice; issue
an export invoice; issue
an invoice to insurance
company

phase of Activity:Authorize Sup-
plier Payment

negatively satisfies invoices processed without er-
ror

The EEML task get the order to supplier can be regarded as a phase of the ac-
tivity ontology Schedule Product Deliveries from SCOR. When annotating
goals, we find two goals in the domain goal ontology related to this activity. It can
achieve a hard goal sourced product on order and also positively satisfy a
soft goal reduce receiving & storage costs. Three kinds of items receiv-
ing are checked through the activity check items. The procedure of check imported items

Goal Annotation of Process Models for Semantic Enrichment of Process Knowledge 367

is a little more complicated compared with the other two kinds of items receiving be-
cuase it includes issuing deficit protocols and an invoice to insurance company. It there-
fore negatively satisfies the soft goal reduce verification costs. However,
this check procedure can improve the delivery quantity performance and the deficit
check can ensure the low % defective supplied. The consignment can simplify the
check and item receiving procedure, so it positively satisfies the soft goal of reduce
verification costs. To transfer items to Orbit is a procedure of Transfer
Product and the result of the procedure is an available inventory. Issuing
invoices are steps of Authorize Supplier Payment, in which issue the invoice
to local suppliers and issue an export invoice are to authorize payment to suppliers. The
soft goal of invoices processed without error will be risked by different
invoice issue procedures.

After annotating the low level activity elements, the goal contributions can be cal-
culated to the upper level activities. Taking the example of the composite activity
check items, we have annotated its component activities with hard goals and soft
goals. Check imported items negatively satisfies reduce verification costs
and check consignment items positively satisfies reduce verification costs,
so the effects are counteracted for the composite activity check items if we ap-
ply the simple contribution calculation rules. Without negative counteraction, the
soft goals improve delivery quantity performance and decrease %
defective supplied contribute themselves to check items. The hard goals anno-
tated to issue the invoice and issue an export invoice are also simply passed to check
items. The soft goal invoices processed without error are negatively sat-
isfied by check items and the effects are enhanced due to three component activities
negatively satisfy this soft goal.

6.4 Process Knowledge Discovery and Reuse Based on the Semantic Annotation

Before the semantic annotation, the local process models are represented in EEML and
the model contents are described with the concepts and terms locally defined, such as
’items’, ’supplier’, ’check items’. The EEML might not be acquainted to other users
who want to reuse the model. The users who want to search the model do not know the
exact concepts and terms used in the model, if applying the keyword search. Usually,
users want to find the model which can realize their goals. However, the goals usually
do not be specified in the local process models or specified in the modeling languages
strange to users.

The proposed semantic annotation approach makes the process knowledge of TelCo
logistics department explicit and open to the third party who is interested in the model
exchange, system integration and business cooperation in the SCOR domain. An ex-
ternal party would like to get the knowledge from the existing models, which include
this EEML model and other heterogenous models in different modeling languages. She
can make search based on the SCOR goal and domain ontology. If she provides a busi-
ness goal which is represented in the SCOR goal ontology, the query will be matched
to the goal annotated process models. For example, the user would like to check the
existing models/model fragments which impact the soft goal reliability in the deliv-
ery process. In the goal ontology, the soft goal concept ’Reliability’ has some

368 Y. Lin and A. Sølvberg

sub-classes such as ’Improve Delivery Performance’, ’Improve Fill
Rates’ and ’Improve Perfect Order Fulfillment’. The user might de-
cide to only take the goal ’Improve Delivery Performance’ as the query.
The mechine makes the match and the semantic inference between the query and
the goal annotation in the process models. In the query results, we find not only the
process model fragments annotated with the goal concept ’Improve Delivery
Performance’, also those annotated with the goals ’Improve supplier
delivery to date performance’ and ’Improve delivery quantity
performance’, because the goals ’Improve supplier delivery to date
performance’ and ’Improve delivery quantity performance’ are
part goals of ’Improve Delivery Performance’ in the SCOR goal ontology.
The models/model fragments annotated with the corresponding goal ontology will be
returned to the user as a result.

The returned results include the original models and the annotation information. Sup-
pose the users do not know EEML, but they know the GPO. Compared with a certain
modeling language, GPO provides much simpler structures but enough core process se-
mantics. The meta-model annotation provides the mapping relations between the EEML
and the GPO. Also from the PSAM of a model, users can read the mapping between
the local concepts in the original model and the domain ontology concepts. We assume
that users well know the domain ontology as the domain standard. Consequently, the
model annotation helps the users to understand the local concepts, which is required in
the later model reuse and model transformation.

7 Conclusions and Future Work

As part of the semantic annotation framework, a goal annotation approach is elaborated
in this paper. The semantic annotation framework is designed for managing the seman-
tic heterogeneity of distributed process models on the conceptual level. The approach
is based on the domain ontology, which provides common semantic representations of
domain concepts. The semantic annotation framework aligns the semantic heterogene-
ity of models from different perspectives. The purposes of the goal annotation are two:
1) to enrich the semantics of the objectives of processes; 2) to provide a way to find
the process knowledge based on business goals. Goal ontology is necessary for the goal
annotation as the common semantic representations of process objectives. Based on the
existing goal modeling methods, we proposed a way to describe the semantics of goals
for the process model annotation purpose. We also discuss the relations and rules be-
tween process models and goal ontologies. The formulization of the relations can be
implemented to facilitate the automatic or semi-automatic goal annotation procedure
in practice. The proposed approaches are examined through a case study. Main work
includes the establishment of a domain goal ontology from SCOR and the execution of
the goal annotation based on the relations and rules. The possible applicability of the
annotation result is also briefly presented.

The proposed goal ontology semantics and goal annotation relations can be further
elaborated. More semantics are not explicitly represented and enriched, for instance,
the contribution relationships between goals (’support’, ’conflict’, etc.), and the impact
degree between activity and goal (’partially impact’, ’totally impact’). The tools for the

Goal Annotation of Process Models for Semantic Enrichment of Process Knowledge 369

automatic annotation and the visualization of annotated models are also the challenges
in this research.

Acknowledgement

This work is partially supported by the Norwegian Research Foundation in the frame-
work of Information and Communication Technology (IKT-2010) program. Also thanks
the INTEROP project for the case study.

References

1. Lin, Y., Strasunskas, D., Hakkarainen, S., Krogstie, J., Sølvberg, A.: Semantic annotation
framework to manage semantic heterogeneity of process models. In: Dubois, E., Pohl, K.
(eds.) CAiSE 2006. LNCS, vol. 4001, pp. 433–446. Springer, Heidelberg (2006)

2. Yu, E., Mylopoulos, J.: Why goal-oriented requirements engineering. In: Proc. of the 4th
of International Workshop on Requirements Egnineering: Foundations of Software Quality
(1998) http://www.cs.toronto.edu/pub/eric/REFSQ98.html

3. Hummel, K.A., Jochum, W., Leitich, S., Schandl, B.: Supporting meetings with a goal-driven
service-oriented multimedia environment. In: MSC ’05: Proceedings of the first ACM inter-
national workshop on Multimedia service composition, pp. 55–65. ACM Press, New York
(2005)

4. Lin, M., Guo, H., Yin, J.: Goal description language for semantic web service automatic com-
position. In: Proc. of IEEE/IPSJ International Symposium on Applications and the Internet
(SAINT 2005), 31 January - 4 February 2005, Trento, Italy. pp. 190–196 (2005)

5. Krogstie, J., Jørgensen, D.: Interactive models for supporting networked organisations. In:
Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 550–562. Springer, Heidel-
berg (2004)

6. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci-
ence of Computer Programming 20, 3–50 (1993)

7. Yu, E.: i*:an agent-oriented modelling framework (2006)
http://www.cs.toronto.edu/km/istar/

8. Anton, A.I.: Goal based requirements analysis. In: Proc. Second Int. Conference on Require-
ments Engineering, ICRE 96. pp. 136–144 (1996)

9. Mylopoulos, J., Chung, L., Yu, E.: From object-oriented to goal-oriented requirements analy-
sis. Commun. ACM 42, 31–37 (1999)

10. Grl, G.R.L.: ontology (2007) http://www.cs.toronto.edu/km/GRL/
11. Soffer, P., Wand, Y.: On the notion of soft-goals in business process modeling. Business

Process Management Journal 11, 663–679 (2005)
12. Wand, Y., Weber, R.: On the deep structure of information systems. Information System

Journal 5, 203–223 (1995)
13. W3C: Simple part-whole relations in owl ontologies (2005) http://www.w3.org/

2001/sw/BestPractices/OEP/SimplePartWhole/index.html
14. Lin, Y., Strasunskas, D.: Ontology-based semantic annotation of process models. In: Proc. of

10th CAiSE/IFIP8.1/EUNO International Workshop on Evaluation of Modeling Methods in
System Analysis and Design (EMMSAD05) Porto, Portugal (June 2005)

15. SCOR: Scor model (2006) http://www.supply-chain.org/page.ww?section=SCOR+Model&
name= SCOR+Model

http://www.cs.toronto.edu/pub/eric/REFSQ98.html
http://www.cs.toronto.edu/km/istar/
http://www.cs.toronto.edu/km/GRL/
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/index.html
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/index.html

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 370–380, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Stakeholder Identification as an Issue in the
Improvement of Software Requirements Quality

Carla Pacheco and Edmundo Tovar

Languages and Informatics Systems and Software Engineering Department
Faculty of Computer Science, Polytechnic University of Madrid. Spain

cpacheco@zipi.fi.ump.es, etovar@fi.upm.es

Abstract. Stakeholder identification together with its needs and expectations
has been poorly realized in software projects. This is probably because the
process is mistakenly viewed as a self-evident task in which direct users and the
development team are the only stakeholders. It could also be due to the fact that
the identification area can be substituted by opinions or knowledge from other
more accessible sources of information. This paper provides a review of
stakeholder identification literature and an overview of the state-of-the-art in
methods for that purpose, which leads to a number of issues that are important
in further research (e.g. developing a methodology). The paper findings are
presented from two points of view: firstly, the impact of stakeholder
identification on software requirements quality, and secondly, practices
developed to carry out this task. Also, the present paper aims to describe the
studies analyzed uniformly and show their contributions in this field.

Keywords: Stakeholder Identification Process, software process, effective
practices, software requirements, elicitation.

1 Introduction

Requirements Engineering (RE) as a discipline was developed when the quality of
requirements was recognized as a key factor in preventing many of the causes leading
to software failure. Measures taken at an early stage of a project can have great
repercussions, and they are also more beneficial than those taken at later stages. The
problem of the “software crisis”1 has, to a great degree, shifted to the area of
requirements. Is there, then, some aspect of the requirements area that deserves
particular attention? If so, this aspect should be taken into account at the initial stage
of RE. Such is the case in requirements elicitation activities in which the problem to
be solved is identified, and more importantly, the stakeholders must be identified.
Relationships and ways of communicating between the development team and the
customer are thereby established [1].

1 The notion of a software crisis emerged at the end of the 1960s [24]. The term refers to

difficulties in writing correct, intelligible and verifiable computer programs. The roots of the
software crisis hinge around complexity, expectations, and change. Conflicting requirements
have always been a hindrance to the software development process.

 Stakeholder Identification as an Issue 371

However, identification of stakeholders as well as their needs and expectations are
poorly done in software projects [2], probably because this process2 is mistakenly
viewed as a self-evident task in which direct users, clients, and the development team,
are the only stakeholders. It could also be due to the fact that the identification area
can be obviated or substituted by opinions or knowledge obtained from other more
accessible sources of information. In the short term, this would create less conflict of
interests resulting from different points of view.

The findings in the problem statement are presented from two points of view:
firstly, the impact of stakeholder identification on software requirements quality, and
secondly, practices developed to carry out this task. So far, there has not been any SIP
framework or uniform description. In view of this, the present paper we offers a
uniform description of SIP as a first step towards developing a methodology that
would cover all necessary aspects of stakeholder identification. Hence, at this stage,
the present paper does not represent a technical solution.

2 What Are the Consequences of Incorrect Stakeholder
Identification on the Quality of Software Requirements?

To answer the question raised, it is necessary to consider what Software Requirement
Specification Quality (SRSQ) involves. The IEEE Standard 830 [3] gives a summary
of the properties that should ideally be part of software requirement specification.
Any identification process that mistakenly recognizes someone as a stakeholder will
probably include requirements which do not correspond to any real need (a feature of
“Correctness” of the standard). On the other hand, when the identification task fails to
detect participants who are needed for the software project, requirement specifications
are no longer “Complete” due to the omission of relevant requirements for project
success, and this could give rise to inconsistent specifications. Failing to obtain these
properties can create risks that could affect the project. Completeness, correctness and
consistency in the RSQ can be ensured by applying proper elicitation techniques such
as scenarios, use cases, etc. All of these, however, require a previous Stakeholder
Identification Process (SIP).

The review of relevant initiatives from the field of Software Engineering (SE)
and Information Systems (IS), referred to in Section 3 “Stakeholder identification as
seen in previous studies of Software Engineering”, confirms how all of these
distinguish different types of stakeholders involved in software development, each
type having different priorities and interests. To the same extent, all initiatives take
stakeholder identification for granted and confine their task to indicating “who”
they can be. They do not, however, clarify “how” the SIP process must be carried
out to ensure getting correct stakeholders and thereby obtain accurate and complete
requirements.

The implications of SIP on the quality of requirements are evident. This has not
gone unnoticed, not even by those who have created standards or done studies that
have been used as guidelines for software improvement processes. The comparison of

2 The CMMi model [2] defines a process as a set of activities that can be recognized as

implementations of practices.

372 C. Pacheco and E. Tovar

development studies shows that authors such as Wiegers [4] are more interested in
identifying and applying effective practices3 than in obtaining complete solutions for
project development.

There have been calls for different initiatives based on collections of data and
experiences with proposals for effective practices that successfully meet users’ needs.

The CMMi [2] does not explicitly mention any specific stakeholder identification
practice. According to the CMMi, stakeholder needs are fundamental in determining
customer requirements. These needs must be analyzed together with stakeholders’
expectations, constraints, interfaces, operational concepts, and product concepts and
be harmonized, refined, and transformed into a set of customer requirements. This
goal includes specific practices such as collecting basic needs and also eliciting
unarticulated needs. This involves the previous specification of stakeholders.

Does the lack of mention of a specific stakeholder identification practice imply a
lack of precision in the description of the standard, or does it imply that the
importance of stakeholder identification with respect to the problem is reduced? To
answer this question, other proposals of effective practices will now be analyzed in
detail.

2.1 Effective Practices Recommended for Performing SIP and the Benefits of
Proper Stakeholder Identification

• Hoffman’s [5] studies identify some RE effective practices. These practices
measure the effectiveness of a software project and are organized according to the
different factors which have an impact on their objective. Within all of these
practices, the ones related to SIP (that is, Identify and consult all likely sources of
requirements) are framed within the knowledge factor under the argument that
stakeholders should meet demands in terms of experience and expertise for effective
team work. It’s a question, then, of a) carefully selecting team members who are
skilled in the application domain, IT, and RE processes, b) always assigning
experienced, capable project managers to RE, and c) consulting domain experts and
stakeholders at an early stage of the process to increase and validate the team’s
knowledge.

• Wiegers [4] identifies a group of effective practices related to the elicitation task.
One of these practices (namely, Identify user classes and their characteristics)
emphasizes the need for stakeholder identification. There may, in fact, be many
groups of customers who use the product, and these can be classified in terms of
frequency of use of the product, use characteristics, levels of privileges, or levels of
skills. Since each type of project (for example, commercial applications, integrated
systems, web developments, etc.) requires different experts, proper selection of
stakeholders is recommended. This selection involves previous assessment of
stakeholders in terms of risk and cost, and also taking into account standard types of

3 Effective practices are activities that people with recognized expertise in a particular area have

identified from experience as making significant contributions to project success.
Approximating effective practices enables us to create a kit with a variety of practices that can
be applied to different problems [23].

 Stakeholder Identification as an Issue 373

communication between users and developers. Communication, for example, in
which developers can talk directly to potential users is more effective because it
avoids loss of information generated by using intermediaries.

• Another approach to the specification of effective practices is the development of
techniques and strategies which improve the RE processes. The REAIMS Project
(8649) [6] set out to develop a maturity model for the RE similar to the SEI’s CMM,
that is, in terms of the scope to which an organization has defined the RE process
based on effective practices. In this project, a set of basic guidelines is recommended
for organizations that are at an initial stage of maturity. The guideline entitled
“Identify and consult with the stakeholders of the system” recommends making a very
specific list of stake-holders at an early stage of the RE process. It proposes a method
of following the guidelines that ensures that only appropriate stakeholders are
identified within each category of proposed stakeholder classifications. It is further
suggested that an explicit list of stakeholders be drawn up and reasons given why the
requirements will probably be important.

In summary, there is general agreement about the need to find effective practices
relating to stakeholder identification in industry. So far, these practices have only de-
fined different types of stakeholders on the basis of small groups of typical users and
representatives of other people involved in the development of the project.

The benefits are evident: a proper selection of stakeholders improves the coverage
of requirements, avoids overlapping of requirements in the user community, and
allows for a more rational organization of requirements (Figure 1). In this way, people
get involved more easily, and are less reluctant to implement the system and give
information relating to requirements. However, effective practices, or standards such
as CMMi, have the following limitations: they do not explain how to define the entire
set of stakeholders. Furthermore, this process is not always self evident, and so the
organization must be analyzed in order to encounter all possible stakeholders. Hence,
the application of a stakeholder identification method sometimes becomes
indispensable. This is developed in the following section.

3 Stakeholder Identification in Previous Software Engineering
Studies

Software engineers need to identify, characterize, and handle all viewpoints of the
different types of stakeholders [7]. Stakeholders, meaning all those involved in a
project and have some interest in the software to be developed, may vary from one
project to another. It is, therefore, always necessary to carry out an adaptation
assessment of stakeholders’ contributions and their vested interests in a project. In
spite of the importance of identifying all the relevant parts (stakeholders) involved in
a software project, the SIP area has received less attention than others in the SE.

Some of the main initiatives of SE recognize the existence of different types of
stakeholders and who therefore need to be identified in each project.

374 C. Pacheco and E. Tovar

Stakeholders meet
Experience and expertise

Stakeholders’ risk and cost
previous evaluation

INDUSTRY’S
BEST SIP PRACTICES

Characteristics
of a good SRS

SIP TECHNIQUES

What Practices?

Improve

How the practices
must be carried out

Search stakeholders among
categories

Others

Correct

Complete

Consistent

Others

Fig. 1. Impact on the SIP effective practices on SRSQ

• The “Software Engineering Body Of Knowledge” (SWEBOK), emphasizes the
description of the tasks related to each one of the proposed fields of knowledge,
principally in what are called Requirements. For the SWEBOK, the process of
requirements elicitation is a human activity in which stakeholders and relationships
established between the development team and the client must be identified. [1]. RE is an
interdisciplinary process in which all actors must become involved. Ignoring this can lead
to the development of inappropriate systems. SWEBOK assigns the role of negotiator to
the requirements engineer while other stakeholders are not taken into account.

• In an SEI Technical Report [8], stakeholders are identified at the requirements
elicitation stage. They come from at least five communities involved in software
development: clients/sponsors, users, developers, quality personnel, security
personnel and the requirements analyst. The SEI’s Capability Maturity Model
Integration (CMMi- SW) [2] specifically proposes that stakeholders be selected from
among customers, final users, developers, producers, test staff, suppliers, marketing
staff, maintenance staff, and anyone who may affect or be affected by the software
process and the final product. The CMMi defines two process areas related to RE:
Requirements Management and Requirements Development. In each one of these
areas, the different stakeholders involved are classified, and their different roles are
defined on the basis of activities performed.

• In the standards developed by ISO and IEC, the ISO/IEC 12207 (software life
cycle processes) provides a specific guideline to define the roles and responsibilities
of some stakeholders in the life cycle of a software project, or product, or service.
Some of the stakeholders mentioned are customers, quality personnel, software
developers, etc. [9]

 Stakeholder Identification as an Issue 375

• Ian Sommerville [10] situates the identification of stakeholders within the stages of
obtaining and analyzing the software requirements. Among the identified stakeholders
are the final users who will interact with the system, and also anyone inside the
organization who will be affected by such a system. Stakeholders also include
engineers who develop or support other related systems, for example, business
managers, the IT specialist, workers’ representatives, etc.

• Roger S Pressman argues that stakeholders must be identified in the beginning of
the RE process because many different participants are involved at this stage.
Pressman identifies the following stakeholders as being the most common: business
managers, brand managers, marketing staff, external and internal customers,
consultants, product engineers, software engineers, sup-port and maintenance
engineers, etc. [11].

• In the Rational Unified Process (RUP) within the SE process, stakeholder
identification is carried out at the management requirements processing stage. The
most obvious stakeholders in a software project are: the final user, the software
developer, the purchaser, the project director, and anyone strongly interested in the
project or those who need the project to solve their needs [12].

The aforementioned studies confirm the variety of existing stakeholders involved
in software development, each having different priorities and interests. All of these
studies take SIP for granted and don’t go beyond indicating “who” the stakeholders
may be. They do not mention “how” the process must be carried out to properly
identify stakeholders as a prerequisite to obtaining exact and complete requirements.

4 What Is the Scope of Approximations in SIP Studies?

So far, we have explained how each software project may have different types of
stakeholders, and how selecting them appropriately has a strong impact on software
requirements quality, and consequently, on the success of the software project itself.
The studies reviewed could give the impression that many attempts have been made
to define and give detailed explanations of how the SIP is done. This, however, is not
the case. Currently, stakeholder identification methods are few and since the process
is described by each author the SIP lacks a common framework of study and a
uniform description. The studies described so far in this paper seem to only partially
solve the issue of stakeholder identification.

Based on RE literature relating to stakeholder identification processes, we propose
to group them into three categories. Section 4.1 gives the first category of studies
which limit themselves to only proposing a list of possible stakeholders. Section 4.2
presents the second category of studies which not only indicate who the stakeholders
can be, but also studies their interactions. The third category, in section 4.3, deals with
studies that include an assessment of stakeholders.

4.1 Studies That Exclusively Characterize Stakeholders

These studies provide a list of potential stakeholders from which it is possible to
determine which ones are really relevant and how each one may be contacted. These,
however, are incomplete because they only provide a helpful guide to establish a final
list of stakeholders. What must not be overlooked is that stakeholders will normally

376 C. Pacheco and E. Tovar

have to contribute their effort, time and/or money, and they must therefore know what
benefits can be gained in return. Potential stakeholders must therefore be
characterized by gathering relevant information about them. This information may
also be useful for evaluating a set of identified stakeholders, and for obtaining new
and more appropriate configurations. Some examples are:

• Lauesen [13] only summarizes this information from responses to just three
questions: what goals do they identify for the system? Why would they like to
contribute? Or, what risks and costs do they envisage?

• Robertson’s VOLERE template [14] is used during the whole requirements process
for other purposes such as assessing quality and specifying business requirements.
The template is a tool that helps to discover the difference between a stakeholder’s
wish and a real need, and helps to establish the range of a system. This fundamental
aspect of the process ensures that all stakeholders know what is and what is not within
their domain. However, it can also be used to get a general idea about the stakeholders
who are participating in the development of a system. This method only differentiates
between the client and the buyer, and thereby ignores other stakeholders. Other
stakeholders may be found in the following categories: users, sponsors, test staff,
business analysts, technology experts, system designers, marketing experts, legal
experts, IT specialists, usability experts, representatives of external associations, etc.
Each of the stakeholders taken into account is identified in terms of who he/she is and
what role he/she will play. They are selected from a list of stakeholders initially
proposed and on the basis of knowledge which may be necessary for the project.

In general, these studies cannot be regarded as identification of stakeholders
because they only provide information that makes it easy to identify them. They do
not ensure that all the necessary stakeholders are detected.

4.2 Studies Focusing on Interaction Between Stakeholders

Once we have an idea of who the main stakeholders are, the basic interactions
between these actors should be identified. This enables stakeholders to clarify which
part of the problem falls within each one’s scope. The following range of studies deal
with this aspect.

• Smith [15] proposes a context diagram to enable stakeholders to see what is
happening in the system. This starts with a brainstorming activity in which all
stakeholders must be taken into account. At the center of the diagram, an oval
represents the project itself and a horizontal line divides the stakeholders. The upper
section contains stakeholders who belong to the organization such as clients,
functional departments, team members, etc. The lower part contains external staff
such as advertising agencies (press, radio and television), competitors, citizens,
government organizations or representatives.

• Coakes and Elliman [16] develop a method to identify stakeholders and their
different viewpoints in a computer information system using a legacy system. The
authors use a web that has a system of classification and stakeholders are grouped by
using a holistic view of the situation. This facilitates an understanding and
identification of agreements between stakeholder interests. The web not only

 Stakeholder Identification as an Issue 377

identifies stakeholders, it is also used to analyze relationships between activities
which must be performed by the stakeholders and the members of the new system,
with a view to prioritizing the proposed requirements. The system must be defined in
terms of different boundaries: automation, technical, and total or human boundaries.
Each boundary represents a wider view of the system and its impact. These limits are
very generic and provide a general guideline as to who may be found within each
limit. Stakeholder identification is a process that explores the web plane looking for
interested parties. If stakeholders are identified, they are added to the web and thereby
groups of stakeholders, needs and interests can be recognized.

• Sharp, Galal and Finkelstein [17] propose an approach to discover all stakeholders
in the development of a specific software project. This identification is carried out by
establishing a set of “baseline” stakeholders. From these, the “supplier” stakeholder
(who provides information or supporting tasks to the baseline stakeholders) can be
recognized, and also the “client” stakeholder (who examines products). Other
stakeholders called “satellites” inter-act in various ways with the baseline
stakeholders. “Interaction” may involve communicating, reading a set of rules or
guidelines, searching for information, etc. Roles are assigned on the basis of an
analysis of the interactions that can exist between different stakeholders and between
the stakeholder and the system. Only the baseline stakeholder, however, is identified.
The roles that they can perform are: users, developers, legislators, and decision
makers.

• Preiss and Wegmann [18] adopt some fundamental principles of Systems Science
to provide a generic, scientifically recognized basis that can aid stakeholder
identification and classification. This method provides a framework that theoretically
guarantees the identification of a complete set of relevant, abstract concepts and also
all the stakeholders. The authors propose a generic stakeholder classification that is
based on three principles: two systems, two viewpoints and two domains of enquiry.
The software development life-cycle is divided into two stages: creation and
operation, or in more concrete terms, the system creation stage (which includes
conception, design and implementation), and the system operation stage (which
includes system application in a real environment). Using this generic scheme,
external and internal stakeholders can be identified.

4.3 Studies That Include Assessment of Stakeholders

• Mitchell, Agle and Wood [19] developed a theory of stakeholder identification
based on the premise that identification is realized through an analysis of ‘what’ and
‘who’ affects the organization and also taking their salience into account. This
identification is performed by analyzing stakeholders’ interests in the project and
considering three dynamic qualities, a) the power that the stakeholder has to propose
requirements within the organization, b) legitimacy of the actions which a person
performs within a certain social sys-tem constructed with the definition of norms, and
c) urgency – meaning the degree of attention that a stakeholder claims from the
project manager. Afterwards, possible stakeholders are grouped into three classes
based on the degree of requirements priority: (a) latent or low salience, (b) expectant
or moderate salience, and (c) definitive or high salience. Any stakeholder can become
a definitive stakeholder by acquiring the missing attributes. Finally, the project

378 C. Pacheco and E. Tovar

manager determines who will be the ‘feasible’ stakeholder to include in the project,
by analyzing a variety of existing stakeholder classes.

• The aim of the Method Engineering with Stakeholder Input and Collaboration,
MEWSIC [20] (Young, McDonald, Edwards and Thompson), was to provide
software developers with a practical tool to identify stakeholders. The method groups
all the people involved in a project depending on the priorities of their interests. In
stakeholder analysis, the MEWSIC approach suggests the identification of people
related to the project and an assessment of their relevance to the project being
developed to determine if he/she should or should not be taken into account.
Appropriate stakeholders are those who have not only relevant knowledge and skills
but also have suitable attitudes towards the process; some stakeholders, for example,
are not suitable for negotiating. For this reason, this method proposes the use of
personality tests to complement stakeholder analysis and make it possible to achieve
an adequate fit between the stakeholder, the system context, and the characteristics of
the development project. Furthermore, the method introduces group dynamics to
observe stakeholder behavior within groups and how this affects a member’s
performance.

• McManus’ approach analyzes the guide proposed by the World Bank (WB) model
in 1996 for stakeholder identification [21]. The goal of this stakeholder analysis is to
identify stakeholder categories using a WB questionnaire, to develop a strategic view
of the situation and the relationship between different stakeholders and identified
objectives, and to explain stakeholder interests and roles. The questionnaire results
should provide information about stakeholders and their interests, the relationship
between them, their motivations, and their ability to influence outcomes. The WB
model proposes four groups of stakeholders. Primary stakeholders include those who,
because of power, authority, responsibilities or claims over the resources, are
primordial for any project initiative. Secondary stakeholders are those who have an
indirect interest in the outcome. External stakeholders come from outside the project
and expect something from the project team. And finally, the Extended stakeholders
may often be of help to primary and secondary stakeholders to reach a unified vision
and develop feasible plans of action. The roles of the four groups are established by
means of the following activities: collecting and analyzing information, defining
priorities and establishing goals, assessing available resources, project planning,
designing strategies to implement these programs and dividing responsibilities among
participants who manage a project, monitor progress, and evaluate results and
impacts. However, since the identified stakeholders may not have enough capacity to
participate in the project, each one’s strengths and weaknesses is identified in order to
form collaboration groups.

5 Conclusions

During software requirements elicitation we decide what exactly is to be produced. At
this stage, the appropriate identification of stakeholders is vitally important as a
means of understanding the environment in which the software project will be
developed and operated, and also to identify which stakeholders will participate in the
project. This is a key aspect in the process of obtaining the expected quality

 Stakeholder Identification as an Issue 379

requirements specifications, in the sense that they must be appropriate, complete, and
free of contradictions. This means that all stakeholders need to have appropriate
knowledge and none stakeholder can be omitted. Good interaction is vital during the
requirements-gathering process, and also between all stakeholders and the system to
avoid conflicts and problems of communication arising from different points of view.

The state-of-the-art of SIP referred to in the present paper shows different
interpretations of the scope of this process. All of the software initiatives referred to
assume a way of contributing to the improvement of the software process by
implementing a set of good industry practices for RE that have been identified,
acknowledged, and disseminated, however they have not explained how to carry out
the SIP. Some initiatives provide numerous examples of who can be stakeholders by
establishing generic categories into which they may be grouped.

Other studies analyzed are more ambitious. However, the studies mentioned in this
paper are not standardized and consequently the SIP is not standardized either. Not all
of them, however, cover the same aspects and are not applicable to the same
situations. This makes it difficult to select a correct stakeholder identification method
be-cause some methods only characterize stakeholders but without assigning a stake-
holder’s role in a specific project (Lauesen [13] and Robertson’s VOLERE template
[14]); others like Smith [15], Coakes and Elliman [16], Sharp, Galal and Finkelstein
[17] and Preiss and Wegmann [18] analyze stakeholder interaction but they do not
cover human aspects of stakeholder identification (e.g. personality tests, human be-
havior). Only a few methods include stakeholder assessment (Mitchell, Agle and
Wood [19], MEWSIC [20] and McManus [21]). Furthermore, not all the studies
analyzed take into account aspects such as when and how we know that the
stakeholders identified are sufficient for the project, and how all the information
collected will be documented.

The SIP must take into account the impact of personality types and the roles they
may play. Stakeholders are assessed in terms of their characteristics, the knowledge
needed, their influence on a project, and the relationships between stakeholders. SIP
must also develop schemes to characterize and evaluate appropriate relationships
between all stakeholders. For example, labels such as "one person is in charge of",
"this person is an assistant to", "he/she is crucial for", "he/she provides the
information for" could be used.

Up to now, the SIP continues receiving very little attention from the different
existing initiatives in software development (for example, CMMi, SWEBOK, the
IEEE Standard 830), despite the fact that success in software products depends to a
great deal on proper stakeholder identification in requirements specification.
Therefore, on the basis of this literature survey, as further research we propose:

• The validation of all empirical studies analyzed in a specific project; this will
enable us to determine its effectiveness.

• The development of a guide which would recommend the use of a specific method
of stakeholder identification based on the particular characteristics of the project to be
developed.

• Develop a new methodology to adequately perform the SIP by covering the
shortcomings found in the methods analyzed in this paper.

380 C. Pacheco and E. Tovar

References

1. International of Electrical and Electronics and Electronics Engineers. Guide to the
Software Engineering Body of Knowledge. New York (2004) www.swebok.org

2. Software Engineering Institute, Capability Maturity Model® Integration (CMMI®).
Version 1.1, CMMI-SE/SW/IPPD/SS V1.1. Technical Report CMU/SEI-2002-TR-011 or
ESC-TR-2002-011. Software Engineering Institute. Pittsburg, PA (March 2002)

3. IEEE. Guide to Software Requirements Specification, IEEE Std. 830-1998. IEEE Press.
Piscataway, NJ (1998)

4. Wiegers, K.E.: Software Requirements. Microsoft Press. ISBN 0-7356-0631-5 (1999)
5. Hofmann, H.F., Lehner, F.: Requirements Engineering as a Success Factor in Software

Projects. IEEE Software, July/August 2001 (2001)
6. Sommerville, P.S.: Requirements Engineering. A Good Practice Guide. J. Wiley & Sons

Ltd. ISBN 0 471 97444 7 (1997)
7. Kotonya, G., Sommerville, I.: Requirements Engineering: process and techniques. John

Wiley and Sons, New York (2000)
8. Software Institute Requirements Engineering Project. Issues in Requirements Elicitation.

Technical Report CMU/SEI-92-TR-012 or ESC-TR-92-012. Software Engineering
Institute, Pittsburg, PA (September 1992)

9. Lawson, H.W.: Defining Stakeholder Relationships. IEEE Computer Society, Washington
(1999)

10. Sommerville, I.: Ingeniería de Software. In: 6a Edición, Addison-Wesley, London (2002)
11. Pressman Roger, S.: Software Engineering: A Practicioner’s Approach, 6th edn. Mc Graw

Hill, New York (2005)
12. Kruchten, P. (ed.): The Rational Unified Process an Introduction, 3rd edn. Addison

Wesley, London (2003)
13. Lauesen, S.: Software Requirements: Styles and Techniques. In: Pearson Education, ISBN

0 201 74570 4, Addison-Wesley, London (2002)
14. Robertson, S., James, R.: Mastering the requirements process. Addison-Wesley, London

(1999)
15. Smith, L.W.: Project clarity through stakeholders analysis. The Journal of Defense Software

Engineering. Issue (December 2000) http://stsc.hill.af.mil/crosstalk/2000/12/smith.html
16. Elayne, C., Tony, E.: The role of the stakeholder in managing change. Communications of

AIS, vol. 2, Article 4 (July 1999)
17. Sharp, H., Galal, G.H., Finkelstein, A.: Stakeholder Identification in the Requirements

Engineering Process. In: Database & Expert System Applications, IEEE Press, New York
(1999)

18. Preiss, O., Wegmann A.: Stakeholder Discovery and Classification Based on Systems
Science Principles. Quality Software, 2001. IEEE Proceedings. Second Asia-Pacific
Conference On, December 10-11, 2001. pp. 194–198 (2001)

19. Mitchell, R.K., Agle, B.R., Wood, D.J.: Toward a Theory of Stake-holder Identification
and Salience: Defining the Principle of Whom and What Really Counts. Academy of
Management Review. vol. 22(4) (1997)

20. Young, M., McDonald, S., Edwards, H.M., Thompson, J.B.: Quality & People in the
Development of Situationally Specific Methods. Quality Software. 2001, Proceedings
IEEE. Second Asia-Pacific Conference On December 10-11, 2001, pp. 199–203. (2001)

21. McManus, J.A: Stakeholder Perspective within Software Engineering Projects. In:
Engineering Management Conference on Proceedings, IEEE International, October 18-21,
2004, vol. 2. pp. 880–884 (2004)

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 381–394, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Impact of Task Structure and Negotiation
Sequence on Distributed Requirements Negotiation

Activity, Conflict, and Satisfaction

Bartel Van de Walle1, Catherine Campbell2, and Fadi P. Deek2

1 Department of Information Systems and Management, Tilburg University, The Netherlands
2 College of Computing Sciences, New Jersey Institute of Technology, USA

bartel@uvt.nl, {campbell, fadi.deek}@njit.edu

Abstract. This paper reports the findings of an experimental study of web-
based negotiations among a group of distributed stakeholders involved in the
design of a complex information system. Using a web-based communication
system, the stakeholders had to reach agreement on a common set of software
requirements taking into account their individual preferences as well as overall
constraints of available time and budget. To support such complex negotiations,
the objective of our study was to analyze the impact of providing structured task
and explicit negotiation sequence support to the negotiating group with respect
to their activity, conflict and satisfaction. Our results show that groups
following a structured task are more active than groups lacking such structure.
However, the absence of negotiation sequence and structured task support leads
to greater satisfaction.

Keywords: distributed negotiation; software requirements; negotiation process
support; group work; distributed group support systems.

1 Introduction

According to Weigand et al. [41], in a negotiation “there are two or more participants
in a situation of some kind of interdependence, each having some individual goals
which may be partially incompatible, and in some form of the negotiation process,
alternatives are investigated, of which one is mutually agreed upon as the acceptable
outcome of the process.” In today’s global economy, distances between businesses’
physical locations, possibly located in different time zones, often leave business
partners no alternative but to conduct distributed negotiations over the internet,
typically supported by dedicated software [19]. The use of software to support
communication among distributed groups has been studied since a long time. Hiltz
and Turoff were among the first to conduct empirical research on the use of
computer-mediated communication systems for distributed groups [20], and the use of
Decision Support Systems for negotiators was proposed around the same time [35].
These pioneering developments later evolved into dedicated Negotiation Support
Systems (NSS) to aid negotiators, for instance by generating alternatives based on
knowledge of the negotiators’ preferences and utility functions [22]. NSS often draw

382 B. Van de Walle, C. Campbell, and F.P. Deek

from models and approaches in multi-criteria decision making, preference analysis or
game theory [32, 33, 38].

Computer-mediated Communication (CMC) for software design teams has been
investigated by Ocker and co-workers since the late 1990s [29, 30]. Ocker found that
the creative task of deciding upon the initial specifications for the design of a software
system can benefit from asynchronous CMC. Groups using CMC were found to be
considerably more creative in their designs; the quality of the designs was also judged
to be higher, though not significant [29]. In recent research on computer-mediated
distributed software requirements engineering, Damian and co-workers studied the
role of a facilitator in distributed group discussions. Faciliated meetings can help
resolve disagreements among the group members, yet Damian found that “a reduced
richness of social behaviors in computer-mediated group settings made the
groupfacilitation problematic” [9]. Clearly, due to the nature of mediated
communication in asynchronous interaction, it is relatively more difficult to
coordinate distributed groups, and as an alternative to human faciliation, specific
coordination structures must be arranged to overcome these difficulties. Kim, Hiltz
and Turoff have examined the effect of system restrictiveness of coordination
structures in an asynchronous environment. Their study found that less restrictive
coordination structures are more appropriate to support asynchronously interacting
distributed groups [26].

We continue in this paper along the lines of the CMC research on the impact of
structured interaction, and introduce two types of interaction structures: a structured
negotiation task, and a structured negotiation sequence. The effect of these structures on
group activity, the group’s satisfaction with the negotiation process, and conflict within
the negotiating group is the focus of our investigation. Activity, satisfaction and conflict
are key variables in Group Support Systems (GSS) research (see [14] for a detailed
survey on experimental research in GSS, with an exhaustive list of experimental
variables). We in particular focus on negotiations that take place during the phase of
system requirements definition. Negotiation is typically needed in this phase to address
and resolve conflicting system requirements which have been articulated by the
different stakeholders at, or prior to, the start of the system design process [23].

In the following section, Section 2, we provide a concise theoretical overview of
negotiation research and negotiation models on which we base our experimental study.
We also introduce electronic negotiation systems (ENS) which provide information,
communication and decision support to the negotiating members of a distributed
group. In Section 3, we present our research model and formulate our research
hypotheses. The experiment we have designed is presented in detail in Section 4, and
the results of our experiment are given in Section 5. These results are discussed in
Section 6, followed by our conclusions and a discussion of the limitations of this study
in Section 7 where we also suggest avenues for future research.

2 Negotiation Research and Negotiation Support Systems

2.1 Negotiation Research

Drawing from a wide area of disciplines, in particular cognitive psychology and
behavioral decision research, negotiation researchers have come to view participants

 The Impact of Task Structure and Negotiation Sequence 383

in a negotiation as interdependent decision makers whose behavior is a result of
choices based on often conflicting judgments about the negotiation situation [1]. In
negotiated decisions, conflict and interdependence are indeed two key aspects.
Conflicts may arise during negotiations because of the participants having different
goals, yet conflict can also result from participants having common goals but different
ideas on how to achieve them [31]. Decision makers in a negotiation are also
interdependent, as one participant reaching his or her objective is influenced by others
agreeing to it, and vice versa. In case the negotiation involves multiple participants,
conflict among the participants can add considerable complexity and confusion as
each participant has only limited information or knowledge about the other
participants’ preferences [34, 39]. According to the process model of negotiations first
proposed by Gulliver [17] and later expanded by Kersten [23], the phases and
activities of multiple participants during negotiations can be described as follows:

• Search for arena and selection of the communication mode: reaching agreement on
where the decision process will take place. This can be a face-to-face or virtual
meeting space for synchronous or asynchronous exchange of information.

• Agenda setting: agreeing to the issues and, if possible, partial problem
representation and categorization.

• Exploring the field: further problem specification and analysis where parties try to
establish limits, formulate best alternatives, assess their opponents, and decide on
initial negotiation strategies.

• Narrowing the differences and search for integration: through exchange of
information, the participants learn of the limitations of others, their aspirations and
objectives, and knowledge about efficient solutions and their outcomes.

• Search for agreement and improvements: identify critical issues and areas of
disagreement, try to develop joint proposals to come up with a limited number of
acceptable compromises.

2.2 Distributed Group Support Systems and Electronic Negotiation Systems

The use of computer technology may help overcome constraints that are experienced
in either face-to-face (same time – same place) or distributed negotiation situations.
Group support systems (GSS) are designed to support decision makers in complex
negotiation tasks, and have been proven to benefit the exchange of information among
participants [11, 28]. It was found that groups interacting using a GSS exchanged
about 50% more information than those interacting only verbally [11] or exchanged
more unique, unshared information [34]. GSS structures or tools can be combined
with basic communication support to enable decision making by groups distributed in
space and time [7, 12] – a group support technology referred to as Distributed Group
Support Systems (DGSS) [36]. Negotiation Support Systems (NSS) are GSS that
specifically focus on negotiations and provide decision support to each negotiator [22,
27]. More advanced NSS feature group process structuring techniques, mediator
support, and documentation of the negotiations [10, 15]. Electronic Negotiation
Systems (ENS) in general employ the internet and computing technologies to support
decision makers during negotiations, and have one or more of the following
characteristics [24, 25]:

384 B. Van de Walle, C. Campbell, and F.P. Deek

• Supports decision and concession making;
• Suggests offers and agreements;
• Assesses and criticizes offers and counteroffers;
• Structures and organizes the process;
• Provides information and expertise;
• Facilitates and organizes communication;
• Aids agreement preparation, and
• Provides access to negotiation knowledge, experts, mediators, or facilitators.

ENS range from straightforward web-based communication systems to
sophisticated intelligent systems actively contributing to the negotiation process by
assessing what is being negotiated while interacting with participants and providing
offer assessment and critiques of counteroffers.

3 Distributed Software Requirements Negotiation: Research
Model and Hypotheses

3.1 Software Requirements Negotiation Engineering

Negotiating conflicting requirements is an important part of the requirements phase of
the software engineering life cycle [2, 8, 16]. Many studies have found that clear,
consistent, and traceable requirements result in more robust, maintainable information
systems [5, 6]. In order to provide this quality, consistency, and traceability, conflicts
between users, analysts, and managers must be resolved during this important phase
of software design and development [21]. Conflict in and of itself is not a negative
activity at this stage of software development. Actually, conflict and its resolution at
an early stage in the development process can have the result of saving both time and
money further along in the development life cycle [18]. One of the most commonly
known and studied approaches to resolving conflict and reaching agreement in
requirements design is the spiral model proposed by Boehm and colleagues [3].
Boehm’s spiral approach focuses on stakeholder collaboration and negotiation to
achieve so-called ‘win-win’ software requirements where all stakeholders are winners
in the negotiations. Boehm's model facilitates the uncovering and resolution of
problems before they reach the implementation stage and therefore save time and
money while at the same time enhancing software quality and reliability [4].

3.2 Research Model and Hypotheses

To support the negotiation process of groups whose members are distributed in space
and time, an ENS can provide various levels of support to the negotiating group
members. In this research, we focus on two basic types of support that the ENS can
make available to negotiating parties: structured task and negotiation sequence
support. We consider an ENS to provide structured task support when the ENS
provides the negotiating group with clearly outlined specific steps on how to address
their task, so that their discussions can proceed in a well-structured manner. In the
absence of such a specific support within the ENS, we will consider the negotiation
task as unstructured. Similarly, we consider the ENS to provide negotiation sequence

 The Impact of Task Structure and Negotiation Sequence 385

support when the ENS provides the negotiating group with guidance on how to
approach their negotiation, for instance by following the negotiation steps proposed
by Gulliver and Kersten as described in Section 2.1 above. The objective of our
research is to investigate how the presence or absence of structured negotiation task
and negotiation sequence support in the ENS affects the activity during a distributed
negotiation, as well as the satisfaction and conflict among participants.

Within GSS research, group effectiveness and productivity have often been
measured in terms of number of ideas, alternatives or comments generated.
Fjermestad and Hiltz identify not less than 167 productivity measures in their
comprehensive review of about 200 experimental GSS studies published until 1998
[14]. Negotiation strategies, such as sequencing, can contribute to more collaboration
and the convergence of different perspectives [3]. We therefore hypothesize:

H1a. Groups provided with negotiation sequence support will be more active
compared to groups with no negotiation sequence support.

H1b. Groups provided with structured task support will be more active compared
to groups with no structured task support.

Since structured task, as well as negotiation sequence support, provides guidance to
the negotiating groups, we can hypothesize that their use in the ENS will reduce
conflict in negotiating distributed groups:

H2a. Groups provided with negotiation sequence support will exhibit less conflict
in their negotiations compared to groups without this support.

H2b. Groups provided with structured task support will exhibit less conflict in
their negotiations compared to groups without this support.

Research on group decision making also investigates how satisfied groups are with
the process to arrive at a decision. It has been shown that technology-supported
groups can produce more democratic (individuals participating with equal value) or
more fairly distributed decision-making processes [12, 40], which in turn leads to
more satisfaction with the outcome. The more democratic the process, the more
satisfying the group process and outcomes will be [13]. We therefore hypothesize:

H3a. Groups provided with negotiation sequence support will show more
satisfaction with their negotiation process compared to groups with no negotiation
sequence support.

H3b. Groups provided with structured task support will show more satisfaction
with their negotiation process compared to groups with no structured task support.

4 Research Methodology

4.1 Experimental Design – Independent Variables

The independent variables in our experimental study are ‘Structured Task’ and
‘Negotiation Sequence’, leading to the 2 X 2 experimental design as shown in Table 1,
which also lists the number of groups that were assigned to each experimental
condition. Groups assigned in the ‘structured task’ condition are provided by the ENS
with clearly outlined specific steps on how to approach their task. Groups assigned to

386 B. Van de Walle, C. Campbell, and F.P. Deek

the ‘negotiation sequence’ condition are aided through their negotiation by the ENS
with guidelines according to the Gulliver and Kersten negotiation process [17, 23].

Table 1. Experimental design with number of groups and subjects per condition

Task Structure Support
CONDITION With Without Total

With 8 Groups
N = 43

8 Groups
N = 46

16
Groups

N = 89

N
eg

ot
ia

ti
on

Se

qu
en

ce
 S

up
po

rt

Without 8 Groups
N = 39

8 Groups
N = 46

16
Groups

N = 85

Total

16 Groups
N = 82

16 Groups
N = 92

32
Groups

N = 174

4.2 Dependent Variables and Measures

Three dependent variables are studied: Activity, Conflict, and Process Satisfaction.
Conflict and Process Satisfaction are measured by a post-task questionnaire; the items
used are listed in Table 2. All items are measured on a 7 point Likert-type scale with
anchors from “Strongly disagree” to “Strongly agree”. The questionnaire included
items worded with proper negation and a shuffle of the items to reduce monotony of
questions measuring the same construct. Activity is directly measured by the number
of messages posted by the group.

Table 2. Conflict and Process Satisfaction question items used in the study

Dependent
variables

Post-task questionnaire items

Conflict 1 To what extent did the group experience conflict?
 2 Did the group handle conflict effectively?
Process

Satisfaction
3 How efficient would you describe your group’s

problem solving process?
 4 How coordinated would you describe your group’s

negotiation process?
 5 How fair would you describe your group’s

negotiation process?
 6 How understandable would you describe your

group’s negotiation process?
 7 How satisfying would you describe your group’s

negotiation process?

 The Impact of Task Structure and Negotiation Sequence 387

4.3 Experimental Task

The experimental task offers a hypothetical scenario in which a distributed group of
stakeholders is asked to negotiate the design requirements for a new information
system. The information system described in the task is an Emergency Response
Information System (ERIS) that is to be developed for use in a (fictitious) US County,
and the stakeholders are organizations in the County which would use or rely on the
ERIS in case of an emergency [37]. Five distinct roles were presented in the task: law
enforcement, fire containment, public works, public health, and state home/civil
defense unit liaison. Each participant in the experiment was provided with a specific
role description according to the stakeholder organization he or she represented, and a
set of organization-specific requirements the organization would like to see
implemented in the ERIS. Participants only knew their personal requirements and
were not informed of the requirements of the other stakeholders. Some requirements
were common to all stakeholders while others were unique to the respective
organizations, yet either unique or common requirements could only be ‘disclosed’
through the negotiation. The task description indicated that state and local
government funds had been obtained to actually implement the ERIS, a task which
was to be carried out by an independent software firm. However, since the funding
was insufficient to implement all and everyone’s requirements, the stakeholders were
asked to negotiate to agree on a subset of requirements that will go forward for
implementation in ERIS and would satisfy, in some way, the stakeholders most
pressing needs. The stakeholders were told that the software firm’s Project Manager
would join their negotiations, whose role was described as to supply costs and
resources to the group, to chair the meetings, and to provide facilitation.

4.4 Participants and Roles

The subjects for this study were graduate students enrolled in Systems Analysis and
Design and Software Engineering courses at the New Jersey Institute of Technology.
Demographics were collected with an online background questionnaire. The
distribution by major was Computer Science 36%, Information Systems 15%,
Engineering 44 %, Management 2%, and Other 3 %. The population included 51
females and 136 males. The education level of the students was 3.7 % undergraduate
seniors, 39 % Information System Masters, 59% Computer Science Masters, 1%
MBA, 2% PhD students, and 13% Other. The ages of the participants ranged from
under 23 to over 40 with the majority in the 23-30 age range.

Subjects were randomly assigned to roles in groups of six, i.e., the five stakeholder
roles and one Project Manager. The task was given to the students as part of their
course work and they were graded individually on their participation. Initial
participant training was completed in the classroom in a one-hour face-to-face
training session. During this session the subjects were introduced to the domain topic
and the general task to be completed, given a brief background of requirements
engineering (this was covered in depth by their current or previous coursework), and
introduced to the project roles and what was expected of them.

388 B. Van de Walle, C. Campbell, and F.P. Deek

4.5 Electronic Negotiation Environment

The commercially available WebBoard software (a product of Akiva Corporation) is
used as the web-based collaboration environment in which the distributed groups are
conducting their negotiations. Although WebBoard is not specifically designed as an
ENS, and does not have any standard negotiation support tools built-in, it does allow
for an easy configuration of its group communication structures (threaded discussion
forums) so that negotiations can take place as threaded discussions. WebBoard has a
proven track record within education and corporate environments to create virtual
classrooms, for internal project collaboration, for establishing standards and best
practices and for customer support applications. The WebBoard interface was
customized for the experimental conditions to accommodate for the presence or
absence of structured task and negotiation sequence support.

4.6 Experimental Procedures

The experiment was conducted over two consecutive semesters during the academic
year 2003-2004 at the New Jersey Institute of Technology (NJIT). During the fall
2003 semester, a pilot study was run to test the technology, group roles and
interactions, task, and experimental procedures. Based on the results of the pilot
study, some changes were made for the formal experiment which was run with
graduate students in spring 2004. In the formal experiment in spring 2004, there
were 32 Groups with eight groups per condition. The total subject population
participating at the start of the experiment was 192; as a result of drop-out during the
time of the experiment, the total number of participants was 174. After completion of
a training task, the subjects were allowed to start the negotiations which were to be
conducted during five consecutive days. At the end of the negotiations, the groups
had four days to complete and comment on the final report before uploading it to
WebBoard. Upon completion of the negotiations, the subjects were directed to a
post-task online questionnaire. The subjects were encouraged to complete the
questionnaire as soon as possible after they finished negotiating or by the sixth day
of the experiment at the latest. Upon completion of the experiment and submission of
all required documentation, each instructor was given a suggested grade for
participation of each subject. Subjects were invited to an online debriefing
conference which detailed the experimental design, procedures, and a brief
theoretical background for the research.

5 Analysis of the Results

5.1 Negotiation Activity

Negotiation Activity variable was measured directly by analyzing the WebBoard
conferences in which the group conducted their discussions, and count the number of
messages posted by the groups.

 The Impact of Task Structure and Negotiation Sequence 389

Table 3. The ANOVA on messages posted

Source d.f. MS F Significance
Negotiation

Sequence Support
1 195.031 .248 .623

Task Structure
Support

1 4117.781 5.226 .030

Negotiation
Sequence Support *
Task Structure
Support

1 1116.281 1.417 .244

Error 28 787.942

Of the 32 groups that participated in the experiment, 29 did reach consensus on
the list of requirements to be implemented. 21 groups reached consensus within 6
days. 11 groups took six days, 5 groups took seven days and one group each took
eight and nine days respectively. 4 groups that did not have a negotiation sequence
or task structure reached agreement within five days, with the most groups reporting
consensus within that time. A two–way between-groups analysis of variance was
conducted to explore the impact of negotiation sequence and task structure support
on the group activity as measured by the number of messages generated by each
group. From Table 3, it follows that there was a statistically significant effect for
task structure (p = .030). Therefore, H1a is supported. The main effect for
negotiation sequence (p = .623) did not reach statistical significance. Therefore
Hypotheses H1b is not supported. There was no statistically significant interaction
effect (p = .244).

5.2 Conflict

The Conflict variable was measured by the two different post-task questionnaire
items given in Table 2. For both items, a one–way between-groups analysis of
variance was conducted, the results of which are shown in Table 4. For the first
item, “To what extent did the group experience conflict?”, no statistical
significant effect was found (F = 1.253, p = 0.292). For the second item “Did the
group handle conflict effectively?”, a significant statistical effect was found (F =
2.656, p = 0.05) for the ‘no negotiation sequence support’ and ‘no task structure
support’ conditions, meaning the groups in those conditions handled conflict the
most effectively. The effect size, calculated using Eta Squared, was .04, and
therefore the actual difference in means scores between the groups is quite small.
Therefore, neither Hypothesis H2a (groups provided with negotiation sequence
support will exhibit less conflict in their negotiations compared to groups without
this support) nor Hypothesis H2b (groups provided with structured task support will
exhibit less conflict in their negotiations compared to groups without this support)
are supported.

390 B. Van de Walle, C. Campbell, and F.P. Deek

Table 4. ANOVA on Conflict

Conflict Measure 1: To what extent did the group experience conflict?

 Sum of
Squares df

Mean
Square F Significance

Between Groups 10.342 3 3.447 1.253 .292
Within Groups 467.566 170 2.750

Conflict Measure 2: Did the group handle conflict effectively?
 Sum of

Squares
df

Mean
Square

F Significance

Between Groups 14.335 3 4.778 2.656 .050
Within Groups 305.854 170 1.799

5.3 Process Satisfaction

The Process Satisfaction variable was measured in the post-task questionnaire by
questions 3-7 as given in Table 2. Chronbach's alpha of the process satisfaction scale
is 0.89 which indicates that this measure is valid. The questions are summed and
averaged to achieve a scale measure for this variable. Significance was tested using a
two-way Analysis of Variance test. There was no main effect for negotiation sequence
(p = .46). There was a statistically significant main effect for task structure (p = .00).
The interaction effect (p = .13) did not reach statistical significance.

Table 5. ANOVA on process satisfaction

Source d.f. MS F Significance
Negotiation

Sequence Support
1 26.355 .560 .455

Task Structure
Support

1 855.697 18.176 .000

Negotiation
Sequence Support *
Task Structure Support

1 110.112 2.339 .128

Error 170 47.078

The ANOVA results in Table 5 show that the Negotiation Sequence Support was
not significant as a main effect (F = 0.560, p = 0.455). Therefore, Hypothesis H3a
(groups provided with negotiation sequence support will show more satisfaction with
their negotiation process compared to groups with no negotiation sequence support) is
not supported. Structured Task Support on the other hand is significant as a main
effect (F = 18.17, p = 0.000): those groups that did not follow a task structure had
significantly higher process satisfaction than those that did. This implies that
Hypothesis H3b (groups provided with structured task support will show more
satisfaction with their negotiation process compared to groups with no structured task

 The Impact of Task Structure and Negotiation Sequence 391

support) also is not supported. There is no significant interaction effect between
Negotiation Sequence Support and Structured Task Support (F = 2.339, p = 0.128).

6 Discussion

The negotiation activity variable produced a significant effect for task structure. The
groups using a task structure were significantly more active than those that were not
provided with this structure. Negotiation sequence support however does not produce
a significant effect, and the corresponding hypothesis is not supported. Also, there
was no interaction effect for groups following a structured task and negotiation
sequence. Using the task structure provided in the ENS may have helped the subjects
focus on the task at hand and make the groups aware of all requirements available,
leading to an increased communication activity.

The results of the items measuring the conflict experienced within the group show
that the least conflict was in the groups that used no task structure and no negotiation
sequence; this was a statistically significant finding. Therefore no conflict hypotheses
were supported and our findings actually indicate the reverse of the experimental
hypotheses for this variable. This may be explained by the fact that the lack of any
support with respect to the task at hand and the negotiation process did allow the
group members to communicate wherever and whenever they pleased within the
electronic conference space. Since there was no guidance provided – no rules of the
game – group members could not rely on ‘objective’ arguments to argue against this
type of ‘free’ communication behavior. As such, the absence of structure may have
lessened the pressure group members experience when participating in the
negotiation. Conversely, it can be argued that the very presence of the structure and
negotiation sequence support descriptions may have provided too much information
for the students, leading to information overload.

The process satisfaction variable measured the negotiation and problem solving
process as efficient, coordinated, fair, understandable, or satisfying. Satisfaction with
the negotiation process of choosing a set of optimal requirements was found to be best
when the groups did not follow either a negotiation sequence or structured task.
Groups not following a structured task showed a significant result and felt the most
satisfaction with their process, regardless of their negotiation support mode. Again,
the absence of structure allowed the students to post freely, creating their own group
process and communication structures in the WebBoard negotiation space. Subjects
may prefer this type of communication mode and therefore may have felt less
restricted in their group interactions. This perception may have been strengthened by
most subjects’ familiarity with the WebBoard software, which they have used for
other purposes without task or negotiation support structures in place.

7 Conclusions and Limitations

Requirements negotiation has been well studied by several researchers, but to our
knowledge this is the first study to address the negotiation of software requirements in
an asynchronous and distributed communication mode. With global software

392 B. Van de Walle, C. Campbell, and F.P. Deek

engineering becoming the norm rather than the exception, interest in this area is
increasing. Research interest has focused on the downstream phases of the software
engineering process where workloads can more easily be partitioned and
compartmentalized for distribution to different organizations or groups. The
requirements engineering process has traditionally been conducted face-to-face. With
the growth of global business and e-commerce, stakeholders are increasingly
distributed, ensuring the contribution of all stakeholders is a crucial part of the
requirements engineering process in order to obtain the most robust requirements for
the proposed system. This research can contribute to encouraging and enabling
distributed stakeholder groups to actively participate in the requirements process. The
contribution of this research consists of a detailed analysis of two communication
coordination mechanisms, the structured task and negotiation sequence. The results
from our experiments were however less indicative than the authors had hoped for,
which could be due to several limitations of this study.

Although there was an extensive pilot study prior to the formal experiment, several
limitations still can be identified. Foremost perhaps, the experimental subjects were
graduate students - a common experimental limitation that has affected several areas
of the study. Most of the subjects were unfamiliar with the complex task domain of
emergency response and therefore prior to participating, needed rather extensive
training to participate in a meaningful manner. Subjects had to read and comprehend
the roles and task; if these were not clear, it was difficult to negotiate from a position
of strength and other stakeholders would be able to sway them more easily. In
addition, many of the subjects had English as their second language, which also may
have impacted their task and role comprehension. Another limitation of this study is
the restrictive communication imposed on the participants, who could only
communicate through the ENS (WebBoard). Nowadays, in most working
environments, multiple modes of communication are concurrently used, such as chat
or internet telephony. The single communication mode imposed by this experimental
study may have been experienced as too rigid and restrictive by those subjects who
had a more flexible experience in the work place.

These limitations also give us important directions for future research. The authors
intend to conduct a follow-up experiment with professional emergency responders as
subjects. Obviously, several restrictions regarding subject availability and ENS
training and use have to be overcome. Preparations for this follow-up experiment are
currently under way.

Acknowledgments. The first author’s research is supported by the European
Commission under the Sixth Framework Programme through a Marie Curie Intra-
European Fellowship. We thank four anonymous referees for their helpful comments.

References

1. Bazerman, M., Carroll, J.S.: Negotiator cognition. Research in Organizational Behavior 9,
247–288 (1987)

2. Blackburn, J., Scudder, C., Van Wassenhove, L.: Concurrent software development.
Communications of the ACM 43(11), 200–214 (2000)

 The Impact of Task Structure and Negotiation Sequence 393

3. Boehm, B., Bose, P., Horowitz, E., Lee, M.J.: Software Requirements Negotiation and
Renegotiation Aids: A Theory-W Based Spiral Approach. Communications of the ACM,
pp. 243–253 (1995)

4. Boehm, B., Abi-Antoun, M., Port, D., Lynch, A.: Requirements Engineering, Expectations
Management, and the Two Cultures. Center for Software Engineering, Technical Report,
USC (1998)

5. Bray, I.K.: An Introduction to Requirements Engineering. Addison-Wesley, Essex, UK
(2002)

6. Brooks, F.: No silver bullet: essence and accidents of software engineering. In: Kugler,
H.J. (ed.) Information Processing, Elsevier Science Publishers, North-Holland (1986)

7. Bui, T., Jarke, M.: Communications requirements for group decision support systems.
Journal of Management Information Systems 2(4), 8–20 (1986)

8. Conboy, K., Lang, M., Barry, C.: An investigation of the use of requirements prioritization
in web-based information systems development. In: O’Toole et al. (eds.) Proceedings of
5th Irish Academy of Management Conference (2002)

9. Damian, D.E., Eberlein, A., Shaw, M.L.G., Gaines, B.R.: An Exploratory Study of
Facilitation in Distributed Requirements Engineering. Requirements Engineering Journal
8(1) (2003)

10. Delaney, M.M., Foroughi, A., Perkins, W.C.: An empirical study of the efficacy of a
computerized negotiation support system. Decision Support Systems 20, 185–197 (1997)

11. Dennis, A.R., Valacich, J.S., Connolly, T., Wynne, B.: Process structuring in electronic
brainstorming. Information Systems Research 7(2), 268–277 (1996)

12. DeSanctis, G., Gallupe, R.B.: A foundation for the study of group decision support
systems. Management Science 33(5), 589–609 (1987)

13. Dufner, D.: Effects of group support (listing and voting tools) and sequential procedures
on group decision making using asynchronous computer conferences. Ph.D. Dissertation.
Rutgers, The State University of New Jersey (1995)

14. Fjermestad, J., Hiltz, S.R.: An assessment of group support systems experimental research:
methodology and results. Journal of Management Information Systems 15(3), 7–149
(1999)

15. Foroughi, A.: Minimizing negotiation process losses with computerized negotiation
support systems. Journal of Applied Business Research 14(4), 15–26 (1996)

16. Grünbacher, P., Hofer, C.: Complementing XP with requirements negotiation. In:
Proceedings of the 3rd International Conference on eXtreme Programming and Agile
Processes in Software Engineering, pp. 105–108 (2002)

17. Gulliver, P.H.: Disputes and Negotiations: a Cross-Cultural Perspective. Academic Press,
Orlando, Florida (1979)

18. Hall, T., Beecham, S., Rainer, A.: Requirements problems in twelve software companies:
an empirical analysis. In: IEEE Proceedings of the Conference on Empirical Assessment in
Software Engineering, pp.7–42 (2002)

19. Herbsleb, J.D, Moitra, D.: Global software development, IEEE Software, pp. 16–20
(March/June 2001)

20. Hiltz, S.R., Turoff, M.: The Network Nation: Human Communication via Computer. MIT
Press, Cambridge (1993)

21. In, H., Roy, S.: Issues of visualized conflict resolution. In: Proceedings of the International
Symposium on Requirements Engineering, Toronto, Canada, 10–15 (2001)

22. Jelassi, M.T., Foroughi, A.: Negotiation Support Systems: An Overview of Design Issues
and Existing Software. Decision Support Systems 5, 167–181 (1989)

394 B. Van de Walle, C. Campbell, and F.P. Deek

23. Kersten, G.E.: Support for group decisions and negotiations, an overview. INTERNEG
Working Paper, pp.332–246 (1997)

24. Kersten, G.E.: Modeling Distributive and Integrative Negotiations. Review and Revised
Characterization. Group Decision and Negotiation 10(6), 493–514 (2001)

25. Kersten, G.E.: E-negotiation systems: Interaction of people and technologies to resolve
conflicts. INTERNEG Research paper presented at UNESCAP Third Annual Forum on
Online Dispute Resolution, Melbourne, Australia (2004)

26. Kim, Y., Hiltz, S.R., Turoff, M.: Coordination Structures and System Restrictiveness in
Distributed Group Support Systems. Group Decision and Negotiation 11(5), 379–404
(2002)

27. Lim, L.H., Benbasat, I.: A theoretical perspective of negotiation support systems. Journal
of Management Information Systems 9(3), 27–44 (1992)

28. Nunamaker, J.F., Dennis, A.R., Valacich, J.S., Vogel, D.R., George, J.F.: Electronic
meeting systems to support group work. Communications of the ACM 34(7), 40–61
(1991)

29. Ocker, R., Fjermestad, J., Hiltz, S.R., Johnson, K.: Effects of Four Modes of Group
Communication on the Outcomes of Software Requirements Determination. Journal of
Management Information Systems 15(1), 99–118 (1998)

30. Ocker, R., Hiltz, S.R., Turoff, M., Fjermestad, J.: The effects of distributed group support
and process structuring on requirements development teams: results on creativity and
quality. Journal of Management Information Systems 12(3), 127–153 (1996)

31. Pruitt, D.G., Carnevale, P.J.: Negotiation in Social Conflict, Open University Press (1993)
32. Raiffa, H., Richardson, J.: Negotiation Analysis. In: The Science and Art of Collaborative

Decision Making, Harvard University Press, Cambridge (2003)
33. Rosenschein, J.S., Zlotkin, G.: Rules of Encounter. The MIT Press, Cambridge (1994)
34. Rutkowski, A.-F., Van de Walle, B., Van Den Eede, G.: The effect of group support

systems on the emergence of unique information in a risk management process: a field
study. In: Proceedings of the 39th Hawaii International Conference on System Sciences
HICSS39 (2006)

35. Sprague, R.H., Carlson, E.D.: Building effective decision support systems. Prentice-Hall,
Englewood Cliffs (1982)

36. Turoff, M., Hiltz, S.R., Baghat, A.N.F., Rana, A.R.: Distributed group support systems.
MIS Quarterly, pp. 399–417 (1993)

37. Turoff, M., Chumer, M., Van de Walle, B., Yao, X.: The design of emergency response
information systems. Journal of Information Technology Theory and Application 5(4),
1–36 (2004)

38. Van de Walle, B., Faratin, P.: Fuzzy preferences for multi-criteria negotiation. Position
Paper for the American Association of Artificial Intelligence Fall, Symposium, Boston
MA. Technical Report FS-01-03 (2001), pp. 116–119 (2001)

39. Van de Walle, B.: A relational analysis of decision makers’ preferences. International
Journal of Intelligent Systems 18, 775–791 (2003)

40. Watson, R.T.: A Study of Group Decision Support System Use in Three and Four-person
Groups for a Preference Allocation Decision. Ph.D. Dissertation. University of Minnesota
(1987)

41. Weigand, H., Schoop, M., de Moor, A., Dignum, F.: B2B Negotiation Support: The Need
for a Communication Perspective. Group Decision and Negotiation 12, 3–29 (2003)

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 395–408, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Introducing Graphic Designers in a
Web Development Process

Pedro Valderas, Vicente Pelechano, and Oscar Pastor

Department of Information System and Computation.
Technical University of Valencia, Spain

Cami de Vera s/n 46022
{pvalderas, pele, opastor}@dsic.upv.es

Abstract. Web development teams include not only software engineers but also
graphic designers. In this work, we extend the OOWS method in order to
introduce graphic designers into its development process. To do this, we extend
the automatic code generation strategy of the OOWS method to obtain code that
provides users with the information and functionality captured in the
requirements model but without considering any kind of aesthetic aspect. We
also propose a strategy to define domain-independent presentation templates.
These templates can be applied to any web application developed by the OOWS
method. These extensions allow us to define a web development process where
graphic designers work together with analysts with a high degree of
independence from each other but always in a coordinated way.

1 Introduction

When the Web Engineering was introduced at the beginning of the current decade
[18], one of the problems that were presented to be solved was the multidisciplinary
nature of Web development. This problem is related to the fact that Web applications
handle information in its myriad forms (text, graphics, video, and audio) and it is very
often published for worldwide access, publishing paradigm, and legal, social and
ethical issues have to be taken on board. In this context, a correct understanding of
additional disciplines such as usability, graphic design or information architecture is a
key factor in the development of Web applications. As Powell [2] comments, web
applications “involve a mixture between print publishing and software development,
between marketing and computing, between internal communications and external
relations, and between art and technology”.

In this work, we present a first step in the definition of a whole multidisciplinary
web development process. Taking into account the Powell’s comment, we have
started by considering the mixture between “art and technology” which led us to our
central research question: “How can a coordinated work between graphic designers
and analysts be achieved during the development of a Web application?”

As an answer to this research question we propose an approach that is based on the
Web engineering method OOWS [8] [9]. OOWS follows the principles defined by the
Model-Driven Development (MDD) [10] and it allows us to automatically obtain

396 P. Valderas, V. Pelechano, and O. Pastor

fully operative web application prototypes from a requirements specification. Then,
considering that code can be automatically obtained, we extend the OOWS code
generation strategy to obtain code which provides users with the information and
functionality captured in the requirements model but without considering any kind of
aesthetic property. We also propose a strategy to define domain-independent
presentation templates which can be applied to any web application developed by the
OOWS method.

Thus, the web development process that we propose introduces techniques and
tools that (1) allow analysts to create a requirements model that precisely captures the
user’s needs and (2) allow graphic designers to define the look and feel of the web
application (by means of domain-independent presentation templates) according to
user preferences. These activities are performed with a high degree of independence
between web professionals (analysts and graphic designers), but always in a
coordinated way and directly interacting with the user. The OOWS code generation
strategy is a key factor in achieving this. It allows us to automatically obtain code
from the requirements model defined by analysts. This code is generated by following
a strategy that allows us to associate it to the domain-independent presentation
templates defined by graphic designers.

The main contributions of this work are:

- We propose a web engineering method that properly takes into account graphic
designers in its development process.

- We clearly determine which activities each web professional (analysts and
graphic designers) must perform.

- We provide web professionals with the techniques and tools needed to perform
their tasks.

In order to develop this research work we have followed the research method
described in [24]. This method is divided in five steps: (1) awareness of the problem,
(2) suggestion, (3) development, (4) evaluation and (5) conclusion. The first step has
been described in this section. Section 2 and 3 describe the second step. In these
sections, we present first the related work and next we suggest a solution for the
proposed research problem. This solution is a web development process based on the
OOWS method. Sections 4, 5 and 6 support the third step in the research process:
Section 4 presents the techniques and tools that support analysts in the performance of
their activities. Section 5 introduces the OOWS method and the extended code
generation strategy. Section 6 presents the techniques and tools that support graphic
designers in the achievement of their activities. Section 7 evaluates the proposed
solution by introducing the lessons learned after applying our approach in the
development of several cases of study. Finally, conclusions and further work are
presented in Section 8.

2 Related Work

Many web engineering methods, some partly or fully based on UML [3] (see e.g.
OOHDM [4], UWE [7], WSDM [5], WebML [6], OOH [12]) and others based on
formal foundations (see e.g. Schewe et al. [13]), have been proposed in order to give
support to the development of Web applications. They provide solutions to both

 Introducing Graphic Designers in a Web Development Process 397

capture web application requirements and define web applications at conceptual level.
Most of them also propose techniques to define the look and feel of web applications
(OOHDM uses abstract data views, UWE uses presentation classes and framesets,
WSDM uses an implementation model, WebML uses style sheets and OOH uses an
abstract presentation diagram). Other approach to be considered in the field of Web
engineering is the GX WebEngineering Method [22]. In this work, an assembly-based
situational method engineering approach is used to develop a new Web engineering
method by assembling elements of other three development methods: an old version
of GX, UWE and the Unified Process. In all these cases, the published research works
do not explicitly explain how these methods must be used by multidisciplinary web
development teams. That is, its development processes are presented without
considering the possibility that different web professionals work together in order to
develop the Web application. In this context, the aim of our proposal is to
complement current approaches by determining which tasks each professional
(analysts and graphic designers) should achieve; which techniques and tools each
professional should use; and how they should collaborate with each other.

In the context of Human-Computer Interaction, several approaches such as
Campos et al. [15] or Granollers [16] take into account the multidisciplinary nature of
web development. However, these approaches mainly focus on provide techniques
that allow both graphic designers and experts in usability to correctly collaborate with
end-users in order to design a usable web interface. Computer analysts who are in
charge of the system functionality are not considered enough by these approaches.

To conclude, we want to mark that our work is a first step in the definition of a
whole multidisciplinary web development process which follows the essence of
methodologies such as Constantine et al. [14] but providing a more pragmatic
solution.

3 The Web Development Process

In this section, we introduce a web application development process that takes into
account development teams made up of analysts and graphic designers. To present
this process, we use the notation and terms defined in the Software Process
Engineering Metamodel (SPEM) proposed by the OMG [11]. First, we present the
Disciplines that define our process as well as the Activities, WorkProducts, and
ProcessRoles that are included in each Discipline. Next, we present the Sequencing of
Activities that defines the development process.

3.1 Process Disciplines

According to the SPEM, an Activity is a piece of work performed by one ProcessRole
in order to obtain a WorkProduct. A Discipline partitions the Activities within a
process according to a common “theme”. The process that we propose is defined from
three disciplines: Requirements Gathering, Graphic Design, and Code Generation.

3.1.1 Requirements Gathering
This discipline includes those activities that are related to the handling of the user
requirements. There are two of these activities: (1) elicit the user requirements and (2)

398 P. Valderas, V. Pelechano, and O. Pastor

specify requirements. The activities must be performed by analysts. The WorkProduct
that analysts obtain after performing the activities is a requirements model.

Thus, the process proposes that analysts should interact with users and analyse
their needs (activity 1). Then, analysts should accurately specify the users’ needs into
a requirements model (activity 2). In this context, analysts work on the problem
space. They do not consider aspects related to implementation or graphic design.

3.1.2 Graphic Design
This discipline includes those activities that are related to the design of the look and
feel of the web application. There are three of these activities: (1) interview the user,
(2) design the look and feel and (3) associate the look and feel to code. The activities
must be performed by graphic designers. The WorkProduct that they obtain is a
presentation template.

Graphic designers work on the solution space. They design presentation templates
(activity 2) that define aesthetic issues such as screen layout, colours, and font usage
(the look and feel of the web application). To do this, they must interview the users
(activity 1) in order to know their aesthetic preferences. Finally, graphic designers
may be in charge of associating the presentation template to the code that implements
the structural and behavioural aspects of the web application (activity 3). This activity
is optional as explained in section 3.2.

3.1.3 Code Generation
This discipline includes those activities that are related to the automatic
implementation of code. In order to define these activities we have based on both the
development process of the OOWS method and its strategy of automatic code
generation. OOWS is a web engineering method that allows us to automatically
obtain web applications from a requirements model by following the principles
defined by MDD (See [8] and [9] for detailed information). Thus, there are two
activities for this discipline: (1) define a conceptual schema and (2) automatic code
implementation. The activities must be performed by the OOWS method. The
WorkProduct that the OOWS method obtains after performing these activities is
either a web prototype or the final web application. We have defined the OOWS
method as the ProcessRole due to the automation of its development process.

First, the OOWS method defines the web conceptual schema of the web
application (from the requirements model defined by analysts, which is explained in
the next subsection). To do this a model-to-model transformation is automatically
applied [9]. Next, it generates code from the conceptual schema. To do this, a set of
transformation patterns are applied [8] by means of the use of a generator tool [21].
This code implements either a web application prototype (if aesthetic aspects are not
considered in the code generation activity) or the final web application (if code has
been generated taking into account the aesthetic aspects). Aesthetic aspects are taken
into account if graphic designers have defined a presentation template.

3.2 Sequencing of Activities

In order to define the sequencing of activities of a web development process, SPEM
proposes the use of activity diagrams. Figure 1 shows the activity sequencing of the

 Introducing Graphic Designers in a Web Development Process 399

web development process proposed in this work. According to this figure, it is defined
as follows: On the one hand, analysts create a requirements model after analyzing the
user needs, and graphic designers define the look and feel of the web application (by
means of a presentation template) after interviewing the users and determining their
aesthetic preferences. As Figure 1 shows, there are no dependencies between the
activities of the analysts and the activities of the graphic designers.

Fig. 1. Activity Sequencing

On the other hand, the OOWS method automatically creates the conceptual schema
of the web application from the requirements model defined by the analysts. Then,
OOWS can generate code in two ways: (1) If a presentation template is already
defined, OOWS generates code and automatically associates the template to this code.
Then, the final web application is obtained. (2) If a presentation template is not
already defined, the code generated by the OOWS method implements a web
application prototype. This prototype provides the user with the information and
functionality captured in the requirements model but without any aesthetic properties
(that is, in plain text). The aesthetic aspects of the web application prototype are
defined in a later activity, where graphic designers associate a presentation template
to the generated code.

4 Supporting the Activities of the Analyst

In this section, we present the techniques and tools that allow analysts to perform the
activities included in the requirements discipline: elicit and specify requirements.

400 P. Valderas, V. Pelechano, and O. Pastor

4.1 Requirements Engineering Techniques

In order to allow analysts to elicit web application requirements, we have defined an
approach to interview the user by means of a wizard. We have defined several
ontologies that characterize web applications of different types (e.g. e-commerce
applications, web portals, directories, etc.). The wizard queries users to know the type
of web application that they want to develop. Next, by following a question-guided
process, the wizard queries users and prunes the proper ontology in order to obtain the
user requirements. See [1] for further information.

In order to allow analysts to specify web application requirements we propose a
technique that is based on the concept of task. This technique allows specifying not
only requirements related to the structural and behavioural aspects (typical
requirements of non-Web systems) but also requirements related to the navigational
aspect (encouraged by Web applications). To do this, analysts must first define a task
taxonomy for each kind of user that can interact with the web application. A task
taxonomy specifies, in a hierarchical way, the tasks that a kind of user should perform
when interacting with the web application.

Once the task taxonomy is defined, each leaf task is described by analyzing the
interaction that users require from the web application. To do this, a strategy based on
activity diagrams is proposed. Each activity diagram is defined from system actions
(nodes depicted by dashed lines) or interaction points (nodes depicted by solid lines)
that represent the moments during a task where the system and the user exchange
information.

Finally, we must specify a set of information templates where the information that
the system must store is described. We also use these templates to describe the
information exchanged in each interaction point in detail. See [19] for more detailed
information about the task-based requirements model.

4.2 Tool Support

In this section, we present a tool that supports analysts in the requirements
specification of web applications. This tool is the Task Modeller. Figure 2 shows
several snapshots of it.

Fig. 2. The Task Modeller

 Introducing Graphic Designers in a Web Development Process 401

Figures 2A and 2B show the main window of the task modeller. This window is
divided into two frames: (1) The browse frame, which allows analysts to browse
users and their associated task taxonomies (see upper side of Frame 1), tasks and their
descriptions based on activity diagrams (see centre side) and information templates
(see lower side). (2) The modelling frame, which allows analysts to define either a
task taxonomy if a user is selected in the browse frame (see Figure 2A) or an activity
diagram if a task is selected in the browse frame (see Figure 2B).

Furthermore, if analysts select an information template from the browse frame,
they access a window such as the one shown in Figure 2C. This window allows
analysts to define the information that the system must store as well as the
information exchanged between the user and the system in each interaction point.

Once the analysts have built the task-based requirements model, the Task Modeller
stores it in a XML document. According to the activity sequencing in Figure 2, the
OOWS method takes this document as input in order to transform it into a web
conceptual schema. Then, code is generated from the conceptual schema. The next
section explains it.

5 Supporting the Activities of the OOWS Method

In this section, we present an overview of the OOWS method. Section 5.1 introduces
the OOWS development process. Section 5.2 explains the code generation strategy.

5.1 The OOWS Development Process

As commented above, the OOWS method allows us to automatically obtain a web
application from a requirements model. First, a model-to-model transformation is
performed to derive the web application conceptual schema from the requirements
model. In order to define this transformation we have first identify the set of mapping
that allow us to obtain the elements of the OOWS conceptual model from the task-
based requirements model (presented in section 4.1.1). Next, these mappings have
been defined by following a strategy based on graph transformations. In order to
automatically apply these transformations we use the AGG tool [23]. More
information about the model-to-model transformation can be found in [9].

The OOWS conceptual schema is defined from several models that describe the
different concerns of a web application: The system static structure and the system
behaviour are described in three models (class diagram and dynamic-and functional
models) that are borrowed from an object-oriented software production method called
OO-Method [20]. The navigational aspects of a Web application are described in a
navigational model [8].

Then, a strategy of automatic code generation is applied to the web conceptual
schema in order to obtain a web application. This strategy implements web
applications by following a three-tier architecture. The information and functionality
(Application and Persistence tier) of the web application is generated by the
OlivaNova tool [21] from the OO-Method models (structural and behavioural model).
The navigational structure (Presentation tier) of the web application is generated by
the OOWS case tool following directives specified in design templates [8].

402 P. Valderas, V. Pelechano, and O. Pastor

Olivanova provides us with transformation engines for different platforms such as
Visual Basic, .Net or Java. The OOWS case tool provides us with the generator
engine that is next presented. If we have requirements concerning to the generated
code we need to modify the transformation engine. This is not a difficult task if we
consider that code is generated by applying transformation patterns. We just need to
modify the code associated to each pattern in order to satisfy the requirements of the
user. The generation strategy that we use is the same.

5.2 Implementing the Presentation Tier

OOWS generates web pages that provide users with specific information and
functionality (according to the user’s needs captured in the requirements model) but
without any kind of aesthetic aspects. The information and functionality are obtained
by requesting them to the Application and Persistent tiers (generated by the
OlivaNova Tool). The aesthetic aspects are incorporated by means of presentation
templates. To facilitate this, OOWS implements a web page as an aggregation of a set
of logical content areas (see Figure 3A). Each logical content area provides a specific
piece of data. Several areas are proposed by considering some aspect of usability
defined in [17]:

− Information area (see Figures 3A, zone number as 1): presents the data and the
functionality that users can access.

− Navigation area (see zone 2): provides links to the web pages that are available to
users.

− Location area (see zone 3): shows the situation of the users. It indicates the page
that is currently being shown and the navigational path that has been followed to
reach the page.

− Application area (see zone 4): provides user facilities such as a link to the home
page or access to the login form that are common to most web applications.

− Access-Structure area (see zone 5): provides users with mechanisms such as search
engines or information indexes, which facilitates the access to the information.

− Corporative area (see zone 6): provides information about the organization such as
the name, the e-mail, the logo, etc.

Figure 3A shows a page that provides information about a movie. Figure 3B shows
the code that implement the information area of page in Figure 3A. This code is based
on the <div> label. As we can see, this code does not include any kind of aesthetic
aspect1. Each content area is defined by means of a div block. Each div block is also
divided into sub-blocks in order to provide web designers with greater control for the
definition of the web application aesthetics aspects (which is explained in the next
section). The information_area block in Figure 3B is divided into two sub-blocks: data,
which provides the properties of a selected movie; and operations, which provides
users with the operations that they can activate. Each property is defined by two kinds
of div blocks: img_att, which define a graphical property; and txt_att, which define a
textual property. This distinction (according to the data type) provides web designers

1 We have associated a default presentation template (similar to the IMDb web site) to the web

page in Figure 3A in order to better visualize it.

 Introducing Graphic Designers in a Web Development Process 403

with the possibility of defining different aesthetic properties for different data types.
Finally, each property is implemented by means of two blocks: one that defines the
property alias (e.g. “Year”) and the other that defines the property value (e.g. “1960”).
We explain next how graphic designers incorporate the aesthetic aspects.

Fig. 3. Web page areas

6 Supporting the Activities of the Graphic Designer

In this section, we support graphic designers in the performance of the activities
included in the graphic design discipline: interview the user; design the look and feel
of the web application; and associate this template to the web application prototype.

In order to design the look and feel of a web application, graphic designers need to
define a presentation template that is associated to the div-based code (presented in
Section 5.2). Since this code is defined by means of the area-based strategy, graphic
designers can define general-presentation templates. The general-presentation
templates are templates whose presentation styles are defined without taking into
account any specific web application domain. Styles are not defined by means of
domain-specific terms such as CD, client, or invoice. Styles are defined by means of
area-based terms such as information area, data, or operations. Then, these
presentation templates can be applied to any web application developed following the
OOWS method (without considering the Web application domain). This allows
graphic designers to define presentation templates without having to take into account
the requirements captured by analysts, providing thereby the desired level of
independence between web professionals (see Section 3.2). For instance, graphic
designers define the aesthetics properties of the information_area block and its sub-
blocks. They do not need to consider whether the information provided in this area is
related to books, clients or movies. Furthermore, because of these templates do not
depend on a specific domain: (1) they do not need to be redesigned if requirements
change (the code that supports new requirements will be also based on the <div>
label) and (2) they can be reused in the development of several web applications (web
applications are all implemented from the same areas).

Sections 6.1 and 6.2 present the technique proposed to define general-presentation
templates and a tool that allows graphic designers to easily define these templates as

404 P. Valderas, V. Pelechano, and O. Pastor

well as to reuse predefined ones. Section 6.3 introduces a strategy that is based on the
tool presented in Section 6.2 to perform the first activity (interviewing the user.

6.1 Defining General-Presentation Templates

In this section, we introduce a technique that allows graphic designers to define
general-presentation templates. This technique is based on Cascading Style Sheets
(CSS). General presentation templates are defined by creating a CSS style for each
div block that implements a content area.

Figure 4B shows the CSS styles that define the aesthetic properties of the web page
information area in Figure 4A. For instance, the information_area style defines the
size, position and margin of the div block that implements this area as well as the font
properties. The rest of CSS styles define properties for the sub-blocks defined inside
the block that implements the information area. Thus, they inherit the aesthetic
properties of the information_area style and only add or replace some properties.
These aesthetic aspects are directly incorporated to the HMTL code by the Web
browser. When the user accesses to a Web page the Web browser receives both the
area-based HTML code and the area-based CSS styles. Then the browser composes
both codes to create a Web page.

Fig. 4. Example of a general presentation template

Figure 4A shows a web page from a web site of a university department that
provides information about a teacher. As we can see, this page presents the same look
and feel design that the page in Figure 3A (which provide information about a
different domain, movies): Content areas are located in the same places, and they
share aesthetic properties such as colours, sizes, or font properties. Both pages share
the same look and feel design because they are implemented by means of an area-
based code and because they are associated to the same general-presentation template
(this one that is partially presented in Figure 4B).

6.2 Tool Support

In this section, we present a tool that helps graphic designers in the definition and the
reuse of general presentation templates. This tool also allows graphic designers to
associate a presentation template to a specific web application prototype generated by
the OOWS method. This tool is the Look and Feel Designer. It has two modes of

 Introducing Graphic Designers in a Web Development Process 405

work: (1) a basic mode that allows graphic designers to reuse general templates and
(2) an advanced mode that allows graphic designers to define new templates.

Figure 5A shows a snapshot of the Look and Feel Designer in the basic mode. The
tool is divided into three frames. Frame 1 shows the page tool. This tool provides
users with the list of web pages (depicted by rectangles with the file name) that make
up the loaded web application. To load a web application, the home page is selected
from the file menu. The tool reads this file, and then follows the defined links to load
the rest of web pages. Frame 2 shows the template tool. This tool provides users with
the list of general-presentation templates that are stored in a repository. We have
defined several general-presentation templates in order to provide graphic designers
with default look and feel designs. However, as explained below, graphic designers
can define their own general presentation templates, which are stored in the repository
in order to allow their reuse in further developments. Frame 3 is the rendering zone.
In this zone, graphic designers can see the page selected in the page tool with the
aesthetic aspects defined in template selected in the template tool.

Graphic designers can reuse an already designed look and feel design as follows:
(1) They load the new web application into the Look and Feel Designer. (2) They
select the available pre-designed presentation templates from the template tool. To see
the look and feel of each web page, they can select it from the page tool. (3) Once the
graphic designers have decided on a presentation template, the tool automatically
associates it to each web page. Figure 5B shows a web page, which provides a list of
movies, with different look and feel designs.

To define new general presentation templates, graphic designers must use the
advanced mode of the Look and Feel Designer. When this mode is selected, the
rendering zone shows the main areas in which the web page (selected in the page tool)
is divided. Graphic designers can click upon each area, and then a window for the
definition of the aesthetic properties of the selected area is shown. This window
provides an intuitive interface where graphic designers can define the CSS style
associated to the selected area. For each area analysts can define properties such as
visibility, position, size, margins, colors, etc. In this sense, graphic designers can
define a new template by: (1) taking an existent general template and then modifying
it to create a new one, or (2) selecting an empty template in order to create a new one
from scratch.

Fig. 5. Look and Feel Designer

406 P. Valderas, V. Pelechano, and O. Pastor

6.3 Interviewing the User

In the previous section, we introduced the Look And Feel Designer, which allows
graphic designers to define general-presentation templates and associate them to a
web application. This tool can also be used to facilitate the interview with the user.
Graphic designers can use this tool in two ways, depending on the moment in which
users are interviewed:

- After generating the web application prototype. If a web application prototype has
been generated, graphic designers can load it into the Look And Feel Designer.
Then, graphic designers can apply the set of pre-defined templates to the
prototype. This can guide users by allowing them to see the desired web
application with different look and feel designs. In this sense, users can decide on
a look and feel by directly seeing it on the final web application.

- Before generating the web application prototype. If code has not yet been
generated, graphic designers can use the Look and Feel Designer in order to show
the predefined presentation templates which are applied to a default web
application. Thus, users can decide on a look and feel by seeing it in a real web
application. Although this application is not the web application under
development, the aesthetic properties will be applied in the same way (due to the
area-based styles that define the presentation templates).

7 Lessons Learned

As a proof of concept, our approach has been successfully put into practice in the
development of small and medium-size web applications, including the DSIC
Department Web Site (http://www.dsic.upv.es), a rent a car company (http://www.
rentacar-denia.com/), and a drinking water company (http://www.aguasdelbullent.
com). We played the role of analysts and we asked to graphic designers of a software
development company (CARE Technologies [21]) to collaborate with us. They were
educated about our area-based implementation strategy and they were asked to define
domain-independent presentation templates.

In the first two projects, Web applications are divided into two parts: (1) a public
part which provides users with the information related to the specific domain and (2)
a private part which provides administrators with a set of management tools. In these
cases, we are a group of four analysts and we have to work in collaboration with a
group of three graphic designers. In the last project, the Web application to be
developed is a corporative site. In this case, we are two analysts and we have to work
with one graphic designer.

The use of our approach provide us with several benefits: On the one hand, from
the analyst perspective, clients got excited when we provide them with a software
product (the prototype generated by the OOWS method and associated to a default
presentation template) that partially supports their needs only one or two days after
the first interview. This fact improves our interaction with clients and makes them to
be more implicated in the development process. Furthermore, the fact that clients
interact with a software product facilitated them to validate that requirements had
been correctly captured. In the three web applications clients detected requirements

 Introducing Graphic Designers in a Web Development Process 407

that had not been correctly understood; changed their mind about some requirements
when they saw the implementation; or added new requirements that arose interacting
with the prototype. On the other hand, graphic designers could design several look
and feel designs without interacting with us (analysts). Because of graphic designers
are professionals which are familiarized with the CSS technology they have no
problems to work with our presentation templates. Furthermore, they were very
grateful with the fact that they just needed to focus on design activities. They did not
need to make the effort of understanding the Web application domain. Graphic
designers also found very useful the possibility of reusing presentation templates. For
instance, in the first development project, the user selected a predefined presentation
template and then graphic designers had not to create a new one. In the other projects,
graphic designers just needed to personalize a predefined template to fit the user
preferences. This made them to save a lot of time and effort.

Finally, we know that some drawbacks need to be improved: for instance, non-
functional requirements such as usability or legal and social aspects are not properly
considered. As commented at the introduction, our approach constitutes a first step in
the definition of a whole multidisciplinary development process. We need to extend it
in order to correctly introduce other web professionals such as usability experts,
lawyers or domain specialists.

8 Conclusions and Further Work

We have presented a web development process which takes into account the
multidisciplinary nature of web development teams. It has been defined by extending
the OOWS method.

First, we have clearly identified and delimitated the tasks that each web
professional must perform during the development of a web application. Then, we
support web professionals in the development of these tasks by: (1) extending the
automatic code generation strategy of the OOWS method in order to obtain code that
gives support to the client’s needs but without considering any kind of aesthetic
property and (2) proposing a strategy to define general-presentation templates that can
be applied to any web application developed by the OOWS method. These extensions
allow web developers (analysts and graphic designers) to work with a high degree of
independence from each other but in a coordinated way.

As further work, we want to extend this approach in order to take into account
aspects related to personalized contents or designs. We also want to extend the
generation code strategy in order to support new technologies such as Flash or Ajax.

References

1. Valderas, P., Pelechano, V., Pastor, O.: Towards an End-User Development Approach for
Web Engineering Methods. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001,
pp. 528–543. Springer, Heidelberg (2006)

2. Powell, T.A.: Web Site Engineering: Beyond Web Page Design. Prentice Hall, Englewood
Cliffs (1998)

408 P. Valderas, V. Pelechano, and O. Pastor

3. Object Management Group. Unified Modeling Language (UML) Specification Version 2.0
(2003) www.omg.org

4. Schwabe, D., Rossi, G., Barbosa, S.: Systematic Hypermedia Design with OOHDM. In:
ACM Conf. on Hypertext, USA (1996)

5. De Troyer, O., Leune, C.: WSDM: A User-centered Design Method for Web sites. In:
Proc. of the 7th WWW, pp. 85-94 (1997)

6. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
intensive Web Applications. Morgan Kaufmann, Washington (2002)

7. Koch, N.: Software Engineering for Adaptive Hypermedia Applications. PhD thesis,
Ludwig-Maximilians-University, Munich, Germany (2000)

8. Fons, J., Pelechano, V., Albert, M., Pastor, O.: Development of Web Applications from
Web Enhanced Conceptual Schemas. In: Song, I.-Y., Liddle, S.W., Ling, T.-W.,
Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, Springer, Heidelberg (2003)

9. Valderas, P., Fons, J., Pelechano, V.: Transforming Web Requirements into Navigational
Models: An MDA Based Approach. In: Delcambre, L.M.L., Kop, C., Mayr, H.C.,
Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, Springer, Heidelberg (2005)

10. Mellor, S.J., Clark, A.N., Futagami, T.: Model-driven development-Guest editor’s intro.
IEEE Software 20(5), 14–18 (2003)

11. Software Process Engineering Metamodel, version 1.1. Object Management Group.
http://www.omg.org/technology/ documents/formal/spem.htm

12. Gomez, J., Cachero, C., Pastor, O.: Conceptual Modelling of Device Independent Web
Applications. IEEE Multimedia Special Issue on Web Engineering, pp. 26–39, 04 (2001)

13. Schewe, K.-D., Thalheim, B.: Conceptual modelling of web information systems. Data
and Knowledge Engineering 54(2), 147–188 (2005)

14. Constantine, L.L., Biddle, R., Noble, J.: Usage-Centered Design and Software
Engineering: Models for Integration. In: Proc, ICSE (2003)

15. Campos, P.F., Nunes, N.J.: CanonSketch: A User-Centered Tool for Canonical Abstract
Prototyping. In: Bastide, R., Palanque, P., Roth, J. (eds.) Engineering Human Computer
Interaction and Interactive Systems. LNCS, vol. 3425, Springer, Heidelberg (2005)

16. Granollers, T.: User Centred Design Process Model. Integration of Usability Engineering
and Software Engineering. INTERACT ‘ 03

17. Olsina, L., Rossi, G.: Measuring Web application quality with WebQEM. IEEE
Multimedia Magazine 9(4), 20–29 (2002)

18. Deshpande, Y., Murugesan, s., Ginige, A., Hansen, S., Schwabe, D., Gaedke, M., White,
B.: Web Engineering. Journal of Web. Engineering 1(1), 3–17 (2002)

19. Valderas, P., Fons, J., Pelechano, V.: Developing E-Commerce Application From Task-
Based Descriptions. In: Bauknecht, K., Pröll, B., Werthner, H. (eds.) EC-Web 2005.
LNCS, vol. 3590, pp. 65–75. Springer, Heidelberg (2005)

20. Pastor, O., Gomez, J., Insfran, E., Pelechano, V.: The OO-Method Approach for
Information Systems Modelling: From Object-Oriented Conceptual Modeling to
Automated Programming. Information Systems 26 (2001)

21. Olivanova Model Execution System. Care Technologies www.care-t.com
22. Van de Weerd1, I., Brinkkemper, S., Souer, J., Versendaal, J.: Situational Implementation

Method for Web-based Content Management System-applications: Method Engineering
and Validation in Practice. SPIP (2006)

23. Attribute Graph Grammar System. http://tfs.cs.tu-berlin.de/agg/
24. Vaishnavi, V., Kuechler, W.: Design Research in Information Systems (2004)

Communication Abstractions for Distributed

Business Processes

Lachlan Aldred1, Wil M.P. van der Aalst1,2, Marlon Dumas1,
and Arthur H.M. ter Hofstede1

1 BPM Group, Queensland University of Technology, Australia
{l.aldred,m.dumas,a.terhofstede}@qut.edu.au

2 Department of Mathematics and Computer Science, Eindhoven University of
Technology, The Netherlands
w.m.p.v.d.aalst@tue.nl

Abstract. Languages for business process definition generally suffer
from myopic approaches to capturing communication between distrib-
uted processes. Effective communication between processes requires:
support for conversations involving interrelated interactions spread
over time; ability to select and group messages based on their content,
regardless of format and transport technology; and resolving contention
between processes or tasks for common sets of messages. This paper
presents a set of communication abstractions that provide a “glue”
between the process layer and the middleware. The paper also reports on
an implementation of these abstractions and an experimental evaluation.

Keywords: Business process integration, correlation patterns.

1 Introduction

At present, the definition of business processes that interact with one another in
a distributed environment is hampered by a number of factors. Firstly, these
processes are required to run on top of mainstream communication middle-
ware which often does not support key features needed by applications in gen-
eral [4,10,12,11], and process-oriented applications in particular. For instance
message selectors in JMS1 cannot filter messages based on their body. Secondly,
there exist conceptual problems with state-of-the-art business process defini-
tion languages in regards to process-to-process communication abstractions. To
receive message batches for example, Business Process Management Systems
(BPMSs) force designers to incorporate dedicated code into the same scope as
business process logic. Finally, apart from correlation mechanisms for routing
messages to process instances, BPMSs accept messages sent to them without
filtering, thus forcing unnecessary amounts of message selection code into the
process definition. In summary, the distinction between process abstractions and
communication abstractions is blurred in existing approaches.

1 Java Message Service: java.sun.com/products/JMS accessed November 2006.

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 409–423, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

java.sun.com/products/JMS

410 L. Aldred et al.

This paper motivates and defines a set of communication abstractions at a
layer in-between the business process and the middleware, that simplify the def-
inition of interactions between distributed processes. The proposed abstractions
have been implemented on top of a communication API, namely JCoupling [5],
that abstracts away from the underlying middleware and protocols. Using this
implementation, we have conducted preliminary experiments to compare this ap-
proach with respect to the approach embodied in the business process execution
languages for Web services (WS-BPEL) [7].

The next section presents motivating scenarios and requirements for process-
to-process communication. Section 3 introduces a communication model for dis-
tributed business processes addressing these requirements. Section 4 discusses
the implementation and experimental evaluation of a prototype that implements
these abstractions. Section 5 discusses related work and Section 6 concludes.

2 Motivating Requirements

Implementing interactions between business processes brings new issues on top of
the traditional requirements found in distributed systems implementation (e.g.
coupling over time and space [4,12], guaranteed delivery, encryption). In this
section we distill some of these specialised requirements. These requirements
are drawn from two studies on patterns in the area of integration of enterprise
applications: the Enterprise Integration Patterns by Hohpe and Woolf [14], and
the Correlation Patterns by Barros et. al. [9].

The correlation patterns described by Barros et. al. review conversation and
message consumption patterns for distributed business processes. Most of those
patterns led to requirements motivating our proposals. From Hohpe and Woolf
we categorised the patterns into (1) Patterns forming requirements for a BPM
messaging solution, (2) Patterns that are supported by most middleware, (3) Pat-
terns composable from any data-aware, message-aware system, (4) Patterns con-
cerning deployment and administration. The communication abstractions pro-
posed in this paper focus on the first category. The technical report version of
this paper [6] contains further details on this categorisation.

In the remainder of this section, we discuss the different requirements. For
each requirement we cite the related patterns from [9,14].

Conversations. Support for conversations is necessary when business processes
need to exchange more than one related message, and in particular when the
processes are stateful, or execute over long periods. Furthermore typical process
deployments, require many instances to share common channels and conversa-
tions enable messages finding their way to the correct instance. The technical
report version of this paper [6] lists four forms of correlation. However this pa-
per focuses on the most technically challenging – Property-based correlation –
which assumes that many process instances share the same channel. Messages
get routed to the appropriate instance by applying process-defined functions
to incoming messages and then by matching the results to process instance
values.

Communication Abstractions for Distributed Business Processes 411

Related to: Key Based Correlation, Property Based Correlation, Reference
Based Correlation, Conversation Overlap, Hierarchical Conversation, Initiator,
Follower [9], Correlation Identifier [14].
Scenario 1: Purchase Order A purchase order is received. The process sends sep-
arate queries to different suppliers for each line item. Each response is correlated
over the purchase order identifier, and over the line item number. This example
demonstrates the need for nested conversations.

Property-Based Message Selection. Property-based message selection helps
a process pick the best message off a channel. This significantly reduces the
complexity logic within the process designed to iterate through an internal array
of messages. There should be simpler abstractions for this.
Related to: Message Filter, Selective Consumer [14].
Scenario 2: Line Items A parts buyer wants to proceed with the best quote.

Atomic Multiple Source Consumption. When messages need to be joined,
from more than one source, atomic multiple source consumption greatly reduces
complexity in the process model. This is because the messages from each source
may need to match over a certain field or property, and packaging them together
removes the need to do this in the process. Furthermore it is much simpler to
design exception handling if there is only one point of failure in the process. To
demonstrate this, consider the possible outcomes of consuming them separately:
(1) both message arrived, or (2) one failed to arrive, or (3) both failed to arrive,
or (4) they both arrived however there was a property mismatch, or (5) there
were two processes and each consumed only one message.
Related to: Atomic Consumption [9].
Scenario 3: Purchase processing Task “ship-goods” will not begin until there is
a confirmation of credit from the accounts department, and all line items have
been notified as being “in stock”.

Aggregated Consumption. Consuming messages in one “pass” of a process
loop greatly reduces complexity. There is no need to iterate through a set of
receive actions, or to encode loop stop-conditions, which can often be a little
arbitrary if the intent is to consume all available messages. Furthermore it may
be necessary to choose messages only if their properties, taken collectively, satisfy
certain criteria.
Related to: Aggregator [14].
Scenario 4: Shipping Company When at least 100 items have arrived destined
for the same district, and a truck is available, the truck gets dispatched.

Aggregated Consumption involving Time. Business processes are in many
cases very time sensitive, for example the hours of business (9am to 5pm, Monday
to Friday, EST). Thus there exists the need to include the notion of time into
the process layer, for example by allowing message selection based on temporal
constraints. Temporal constraints can typically be either absolute or relative i.e.
“15 – 20 November, 2006”, or “within the last 7 days”. Both styles are necessary
with the latter being more challenging due to the group of eligible messages
being in a continual state of flux with the passage of time.

412 L. Aldred et al.

Related to: Time-Based Correlation, Moving Time Window Correlation [9]
Scenario 5: Time If, over the last five working days, more than five percent of
the incoming messages that arrive at the department contain complaints then
an emergency quality control process gets launched.

Contention. Contention, or competition, for the same resources, is a natural
phenomenon. For instance, auctions and goods tendering rely on contention be-
tween competitors. Messages, unlike auction items, have little or no intrinsic
value and therefore contention over messages may not seem compelling. How-
ever, contention over messages is an enabling technique for load balancing of
message consumption; wherein many instances of the same process share the
workload by only consuming messages/events when they are ready.
Related to: Competing Consumers [14].
Scenario 6: Competing Processes Copies of a process are distributed onto differ-
ent hosts. The first process instance to claim the message provides the service,
thus distributing the processing workload.

Interaction Cancelation. The ability to cancel incomplete interactions.
Related to: Transactional Client [14], Cancelation [2].
Scenario 7: Cancelation A supplier having posted a receive purchase order re-
quest, discovers that the warehouse needs to be replenished first, and conse-
quently cancels its earlier receive-request.

Summary. These requirements, being drawn from the respective patterns stud-
ies, ought to be supported by most state of the art solutions, however we found
that this was not the case. For instance, despite WS-BPEL being possibly the
most widely accepted standard in this domain, it only provides support for the
first requirement. We also found some other motivating requirements in this
domain. These include event handling, channel passing, and garbage collection.
These are discussed in the technical report version of this paper [6]. It is one
thing to support a wide range of problems in communicating business processes,
however the language constructs exposed to the creators of these processes need
to be suitable to their purpose, and they should be as intuitive, or conceptually
aligned to their purpose as is possible.

3 Communication Model for Business Processes

In this section we introduce a model supporting interactions between processes
addressing the requirements outlined above. In the proposed model, instances
of a process model are hosted in a process container. The container uses a set of
channels that are referred to by the process model. The channels are hosted in
some form of message-oriented middleware. Channels can be used by a process
container to send messages (outbound channel), receive messages (inbound chan-
nel), or perhaps both directions (bi-directional channel).

Outbound channels are composed of a unique name, possibly a type and/or
an endpoint descriptor (the latter may be determined only at runtime). The
proposed model abstracts away from the specific language used to describe

Communication Abstractions for Distributed Business Processes 413

message types. A particular embodiment of the concept of channel is one where
message types are captured in XML Schema (or WSDL). Individual messages
sent through the channel are then validated against its XML schema (or WSDL
message type definition). Similarly, we abstract away from the mechanism used
to describe destination endpoints. If using HTTP as a transport protocol for
example, an endpoint can be described as a URL, while if using SOAP/HTTP,
it can be described as a WSDL operation binding. Outbound channels support
a range of message sending primitives which are described in detail in [5]. In the
rest of the paper however, we focus on inbound channels.

Inbound channels have the same components as outbound ones but they ad-
ditionally have a set of properties. A property is a function that takes as input a
message and produces a literal value. This is similar to the concept of property
alias defined in BPEL. However, as shown later, the scope of applicability of
properties in our model is wider than that of BPEL. In BPEL, property aliases
(and their composition in the form of correlation sets) are only used to correlate
pairs of outbound and inbound messages. In contrast, in our model, properties
can be used to perform other forms of message selection and aggregation.

A relation (i.e. a database table) is created for each inbound channel used
in any process model. Each relation contains two predefined attributes: one of
type message identifier and the other of type timestamp. Additionally, the
relation contains one attribute (column) per property associated to the channel.

Properties are used to define filters. A filter is a function that is evaluated
against the set of messages available for consumption over one or multiple chan-
nels. When the evaluation of a filter returns a non-empty set of messages, we
say that the filter matches these messages. Filters can fulfill two purposes: (i)
garbage-collecting filters are registered by a business process to discard unwanted
or unnecessary messages over inbound channels; (ii) message consumption filters
are used to consume one or multiple messages from one or multiple channels.
Orthogonally, filters may be one-off or persistent. A one-off filter is immediately
withdrawn after it has matched a message or set of messages, while persistent
filters are preserved until explicitly withdrawn.

A filter is represented as a query over the relations(s) associated with the
channel(s) it refers to. These queries are always constrained to produce a relation
wherein each tuple contains message identifier attributes.

When a message arrives onto a channel, a tuple is inserted into the relation
associated with that channel. This tuple always contains message identifier
and timestamp attribute values, as well as attribute values obtained by applying
each of the channel’s properties to the incoming message. The inserted tuple
represents the incoming message for the purpose of evaluating message filters.
After being abstracted as a tuple, the incoming message is either:

– Immediately routed to a message receipt action if one has registered a filter
that matches the messsage (possibly in combination with other messages).

– Discarded if the message matches any of the garbage-collecting filters regis-
tered for that channel.

– Queued until it matches a garbage-collecting or message consumption filter.

414 L. Aldred et al.

Conceptually, a filter is re-evaluated every time that a new message arrives
to any of the channels it refers to (or continuously in the case of filters whose
query depends on the current time). In practice however, the evaluation can be
made incrementally and only when required.

Primitives for registering and withdrawing filters are provided as part of the
communication framework. Registration and withdrawal of filters can be initi-
ated either by the process container or by individual process instances. When a
message consumption filter is registered, the filter is run once against the set of
messages available in the channels referenced by the filter. If the filter matches
one or several messages, these are removed atomically from their channel(s) and
given back to the process container or process instance that registered the filter.
If the filter is one-off, it is withdrawn. Should no match between a filter and
the existing set of messages be found upon registration of the filter, the filter
is maintained and re-evaluated whenever required as explained above, until the
filter is either explicitly withdrawn or it matches a message (or set of messages).
Once a match is found, the message(s) are routed to the corresponding process
container or instance and the filter is removed.

Garbage-collecting filters work similarly: when registered, the filter is evalu-
ated against the contents of the channels targeted by the filter. If a match is
found, the matched message(s) are discarded. If the filter is one-off, it is with-
drawn otherwise, it is preserved and it is re-evaluated when required.

[matches(
 messageBuffer,filter)]

filter

messageBuffer

match((reqID,filter),
messageBuffer)

messageBuffer

addToDB(
channel,
message,
messageBuffer)

(channel,
message)

(reqID,filter)removeMatching
(filter,
messageBuffer)

messageBuffer

collect
garbageput

match

matched
messages

Out
REQIDxMESSAGELIST

incoming
message

In
CHANNELxMESSAGE

message
consumption

filters
I/O
REQIDxFILTER

garbage
collecting

filters
I/O

FILTER

[] I/O

I/O

In

Out

message
buffer

MESSAGE_DATABASE

removeMatching(
filter,
messageBuffer)

Fig. 1. Petri net capturing the treatment of inbound messages

The proposal is formally captured as a Coloured Petri net in Fig. 1. The net
shows how inbound messages are stored and matched against filters. A token in
place “incoming message” represents a message received by the communication
layer. A transition called “put” moves tokens from this place to a place called
“message buffer”. This latter place holds a single token containing a list of all
unmatched messages over all channels. Two of the places “garbage collecting
filters” and “message consumption filters” are meant to contain one token per
active filter. Transition “collect garbage” fires when there is a garbage-collecting
filter that matches at least one of the messages in the message buffer. This
transition puts back a modified message buffer in which all messages matching

Communication Abstractions for Distributed Business Processes 415

the garbage-collecting filter have been removed. Similarly, transition “match”
fires if there is a consumption filter matching at least one message in the buffer.
This transition also puts back a modified message buffer in which the matched
messages are removed. In addition, it produces a tuple containing the filter and
the set of matched messages into output place “matched messages”. These tokens
can then be routed to the process container or process instance that registered
the filter in question. The latter is identified by a request identifier (“reqID”).
For simplicity, the net only captures the case of “persistent filters”, but it is easy
to extend the net to deal with one-off filters: the only difference being that such
filters should not be put back by transitions “collect garbage” and “match”.

The proposed communication model abstracts away from the way channels
and filters relate to business process activities or events. This way, the model
can be integrated into a wide range of process definition languages. In BPEL, for
example, inbound communication actions appear in two forms: as a standalone
receive activity type and as the second leg of activities of type invoke, where the
first leg corresponds to an outbound communication action. Thus, BPEL can be
extended with the proposed communication primitives by enabling receive and
invoke activities to refer to channels and filters as defined above. Channels can
then be linked to partner links and operations in BPEL.

Similarly, the proposed model can be used to extend the YAWL process defi-
nition language to support a richer set of communication patterns. For example,
we can define a type of message receipt task in YAWL such that: (i) upon en-
ablement, the task registers a one-off message consumption filter defined as part
of a task decomposition; (ii) the task then waits until the filter returns a match;
(iii) should the task be cancelled before a match is found, the filter is withdrawn.
Also, we can allow message consumption filters to be attached to the initial con-
dition of a YAWL process model, to capture scenarios such as: “a new process
instance should be started whenever a given type of message (or combination
of messages) has been received.” An integration of the proposed communication
primitives into YAWL is left as future work.

4 Implementation and Evaluation

The implementation builds on a middleware service, and API, called JCoupling
(available from www.sourceforge.net/projects/jcoupling). JCoupling sup-
ports a superset of the communication styles supported by mainstream com-
munication middleware. It also abstracts away from transport protocol details,
thus allowing us to concentrate on the core aspects of our proposal. It supports
uni- and bi-directional communication, time, space, and synchronisation decou-
pling, and provides support for fault propagation. JCoupling can operate over
open-JMS2 and is able to use XML/HTTP or XML/TCP for message transport.

Figure 2 presents an architectural diagram of the prototype. It shows proper-
ties and filters being used during a simple interaction between two process tasks.
In Fig. 2: (1) A message is sent by task “T1” over channel “Ch1” (denoted by
2 Open JMS www.openjms.sourceforge.net accessed November 2006.

www.sourceforge.net/projects/jcoupling
www.openjms.sourceforge.net

416 L. Aldred et al.

arrows labelled “1” going from the engine to the controller). (2) Properties “P1”
and “P2” are used to extract values from the message. Next the message is put
onto JCoupling (3.a), and a new tuple (row) is added to the relation (table)
for channel “Ch1” (3.b). (4) The receiver task “T2” posts a filter over channel
“Ch1”. (5) Using the filter, the controller performs a query, over the relation
for channel “Ch1”. That query produces a tuple and the matching message is
extracted from JCoupling (6). The callback to “T2” contains the message (7).

T2
T1

JCoupling Communicator JCoupling Communicator

Workflow Engine

1

Middleware
Host

Ch 1

Ch 2

P1

P2

P3

4 7

4
1

Proc. InstanceProc. Instance

2

3.b
5

3.a

7Filters Controller

Ch2Ch1

2

6

Workflow Engine

Postgres DB

Properties

JCoupling

Fig. 2. Architecture of the proposal

This section gives further details on the implementation of properties, inter-
actions and filters, and reports on an experimental evaluation of the prototype.

4.1 Implementing Properties

The prototype implementation contains an interface called Property. This inter-
face and three implementing classes are presented in Fig. 3. A complete listing of
this interface, and an explanation it’s concrete classes is provided in the technical
report [6]. Instances of Property extract various scalar values from messages.

We envision a configuration tool for creating property instances such that
process designers do not need to write Java code. For example if the process
designer wishes to create an XPath property, to extract “PurchaseOrderID’s”
from messages then it would only be necessary to supply a property name, a
channel binding, an XPath expression, and a Type (e.g. ‘PurchaseOrderId’,
‘PO_Chann’, ‘/order/@po-id/text()’, ‘Text’).

As each new message arrives the prototype adds a tuple to the property rela-
tion for that message’s channel using a PostgreSQL3 database. As mentioned
3 The PostgreSQL database system www.postgresql.org (accessed February 2007).

www.postgresql.org

Communication Abstractions for Distributed Business Processes 417

+accessValue(in message) : Object

-name : String
-xpathExpr : String
-type : Type

XPathProperty

-Text = Text
-Numeric = Numeric
-Timestamp = Timestamp

«enumeration»
Type

+accessValue(in : Message)
+getName() : String
+getDBColumnType() : Type

Property

:T

+accessValue(in : Message) : Date

Timestamp

:Date

+accessValue(in : Message) : String

-propname : String

Header

:String

<<interface>>

. . .

Fig. 3. UML of the property Interface

in Sect. 3, each channel’s property relation has two default attributes (columns):
messageid and timestamp. Table 1 presents a relation for channel QuotesCh.

Table 1. Relation corresponding to channel QuotesCh

QuotesCh
messageid timestamp quote amount

C0000M0001 2006-11-15 16:35:50 4000 1100
C1111M0002 2006-11-16 18:12:20 3000 1000
C2222M0001 2006-11-16 20:42:53 2500 1001
C3333M0003 2006-11-17 16:57:21 2000 999

4.2 Resolving Contention

A process may have to wait days before an appropriate message can be received.
Hence, the prototype stores send/receive requests and performs callbacks when
the interactions are complete. Indeed requests to send/receive, have their own
lifecycle, including interaction cancelation (i.e. when process state change makes
unnecessary an incomplete interaction). A race condition between two receive
tasks is a perfect example of this. For example, a task “receive-bill-payment”
and a task “receive-purchase-order-cancelation” operate such that the comple-
tion of one disables the other. The first message to arrive will make the other
message unnecessary. This is a “pick” activity in BPEL, or a “deferred choice” in
YAWL [1]. Accordingly the prototype (being a control layer between a process
and the message layer), exposes a ‘withdraw’/‘cancel’, primitive for send and
receive interactions – also implementing the cancelation requirement (Sect. 2).

Another form of contention occurs where two tasks both want the same mes-
sage/s. Contention may be a requirement (for example load balancing, Sce-
nario 6), or it may be accidental, or perhaps even unavoidable due to the nature
of the business process. Regardless contention, being a natural and sometimes
necessary phenomenon, mandates a graceful approach to handling it4.
4 This is a distinguishing point from WS-BPEL, which throws runtime exceptions

when contention between two receive-tasks occurs. Also, WS-BPEL’s greedy routing
of messages to process instances precludes the possibility to support contention.

418 L. Aldred et al.

To overcome the problems of contention within the context of our proposal
we adopted the following algorithm in the prototype.

1. The receive request, containing its messages filter, is stored in the prototype.
2. Once the filter produces a non empty set (Ω) of message-identifiers, it is

locked to ensure that the receiver (task) cannot withdraw the request.
3. Then the message engine attempts to lock every message in Ω.
4. If all messages were successfully locked, then for each message-id in Ω, that

property tuple is deleted, and each corresponding message gets removed from
the buffer and sent to the requestor in a callback.

5. Finally the request filter is withdrawn from the engine.

Should the receiver be unable to lock the filter at step 2 the prototype with-
draws the filter. At step 3, should any of the messages in Ω be already locked
then the filter locked during step 2 is unlocked, and the filter is rescheduled.
Hence the first locker of the message succeeds.

4.3 Implementing Filters

This section shows how the extensions to JCoupling outlined above, support the
motivating requirements of Sect. 2. Property relations, abstracting from message
content, enable the use of restricted SQL queries to produce relations containing
message identifiers. The primary restriction we place over the queries is that
their outer projections must only be over attributes of the domain messageid.
i.e. for all attributes of a relation produced by applying any query to the property
relations, the domain of that attribute must be messageid.

A single property, or combinations of properties can be used to select mes-
sages. We envision that the process modeller would have a library of config-
urable filter templates, each containing semi-complete queries. The filter tem-
plates would also allow a “design time” binding to process variables, enabling
runtime data to be inserted into parameterised SQL. Alternatively, for those
situations requiring sophisticated aggregate operations, or complex joining ex-
pressions, the process designer may instead write their own SQL.

Property Based Selection. Scenario 2 captured the need to select and proceed
with the best quote, which is an example of selecting messages based on property
values. The query in Listing 1 uses two properties defined over the channel
“QuotesCh” (see Table 1). These are “price” and “quantity”. When a receive
request containing a query is invoked over the prototype, it will apply the query
– returning messages in a callback to the requestor when results are found.

Listing. 1. This query combines ‘price’ and ‘quantity’ to find the best value offer

1 SELECT messageid
2 FROM QuotesCh
3 WHERE quantity >= 1000
4 AND price/quantity =
5 (SELECT min (CostPerUnit)
6 FROM (SELECT price/amount AS CostPerUnit
7 FROM QuotesCh) AS Q1)

Communication Abstractions for Distributed Business Processes 419

Conversations. Scenario 1 outlined the need to correlate messages to an outer
conversation for “purchase-order-ID” and an inner (nested) conversation for
“line-item-id”. Messages will only be correlated to a nested conversation if they
satisfy correlation filters for the inner conversation, and all parent conversations.
To achieve this we append an AND-Clause to the query. The following query (see
Scenario 1) extracts runtime data from two process variables visible to the receive
task: namely PurchaseOrderID and LineItemID.

Listing. 2. Achieving nested correlation through querying correlation properties

1 SELECT messageid
2 FROM PoResponseCh
3 WHERE PoID = $PurchaseOrderID$
4 AND ItemID = $LineItemID$

We envision that the process layer will generate queries for conversations from
a “conversation” construct in the process model. This construct would declare
which message properties are to be used for correlation, and whether each com-
munication task involved initialises the conversation, or follows it. Furthermore
if any task involved in the conversation wants to apply message filters we may
have the task append more AND clauses to the generated query.

Atomic Multiple Source, and Aggregate Consumption. Achieving a com-
bination of atomic multiple source consumption and aggregate consumption is
possible by applying a query to two or more property relations. For example Sce-
nario 4 required aggregate consumption of 100 packages destined for the same
area, and a truck availability message from another channel. Listing 3 extracts
runtime data from a process level variable called deliveryDistrict. The query
either returns at least 100 tuples, or returns nothing.

Listing. 3. This query produces a relation of messageid’s wherein the attribute

(Pack.messageid) refers to messages from Channel Packages, and the attribute

Truck.messageid refers to a message on Channel TruckWaiting. Related messages

are linked, thus removing the need to relate messages in the process.

1 SELECT Pack.messageid, Truck.messageid
2 FROM Packages As Pack, (SELECT messageid FROM TruckWaiting LIMIT 1) AS Truck
3 WHERE Pack.deliveryDistrict = ’$deliveryDistrict$’
4 AND 100 <= (SELECT count(*)
5 FROM Packages
6 WHERE deliveryDistrict = ’$deliveryDistrict$’)

Aggregated Selection Involving Time. Scenario 5 sought to find if at least
5% of messages that are less than 7 days old contain complaints; drawing on
solutions to both time and aggregated selection. Additionally complaints were
sought on all channels. A join between property relations will not work as every
tuple from each relation represents one discrete event that needs to be considered
separately. So unlike Listing 3, the result relation will have one attribute. A view
over the union of source channels (property relations), solves this. In Listing 4
this view is named “Merged”. It combines properties (messageid, timestamp,
and complaint) from each of the source property relations.

420 L. Aldred et al.

Listing. 4. Using union and view to combine input sources for aggregate operations

1 CREATE VIEW Merged AS (
2 SELECT messageid, timestamp, complaint
3 FROM CustomerCh
4 UNION SELECT messageid, timestamp, complaint
5 FROM PartnerCh)

Using the above view, aggregate calculations over the messages, taken collec-
tively, becomes feasible. Listing 5 demonstrates this. Lines 5 – 12 produce false
unless 5%, or more, of the messages are complaints. Lines 3, 8, & 12 show the
use of relative time expressions over the timestamp property. In cases like this
we imagine that the process creator would write Listings 4 and 5 manually.

Listing. 5. This query, adapted from a continuous query in [8], produces a non-empty

result of messageid’s when 5%, or more, of last week’s messages contain complaints

1 SELECT messageid
2 FROM Merged
3 WHERE timestamp > (CURRENT_TIMESTAMP - INTERVAL ’7 days’)
4 AND complaint = true
5 AND (SELECT count(*)
6 FROM Merged
7 WHERE complaint = true
8 AND timestamp > (CURRENT_TIMESTAMP - INTERVAL ’7 days’)
9) >= (

10 SELECT 0.05 * count(*)
11 FROM Merged
12 WHERE timestamp > (CURRENT_TIMESTAMP - INTERVAL ’7 days’)
13)

4.4 Performance Evaluation

To compare our correlation approach with that of WS-BPEL, we conducted
experiments where up to ten thousand interactions were executed over our pro-
totype and over a WS-BPEL simulator. Each experiment involved creating, in
random order, at fixed intervals, a set of XML messages, all identical except for
the value of one element which was mapped to a property. Receiving processes
were spawned in the same way, each of which waited for one of the created mes-
sages. The code for the experiments is released with the JCoupling distribution.

The WS-BPEL correlation simulator was built using the same middleware as
our prototype. This simulator receives messages off a designated channel. Each
time a message arrives, an XPath expression is evaluated against it to extract
a property value (this is called a propertyAlias in WS-BPEL). The extracted
property value is then stored in a hash table together with the corresponding
message identifier.5 Concurrently, the simulator handles requests to consume
incoming messages based on property values. When the simulator finds a match
between a receive request and a message, the corresponding entry is deleted from
the hash table, symbolising that the message has been correlated.

The test results are presented in Table 2. The table shows that our approach
slightly underperforms that of WS-BPEL for small numbers of messages. This
5 In the interest of fairness, each entry is written to disk after being added to the

in-memory hash table, as our prototype stores property values in persistent tables.

Communication Abstractions for Distributed Business Processes 421

Table 2. Results of performance tests

Number of Interactions 50 100 250 500 1000 2500 5000 10000

Time (ms)
Proposed Approach 611 951 2230 5064 9003 25276 71409 234211
WS-BPEL Approach 524 938 2103 4046 7825 20506 44204 133933

Performance Difference 14% 1% 6% 20% 13% 19% 38% 43%

difference grows for larger numbers of messages. The accentuated difference can
be explained by the fact that in the implementation of our approach, queries
to match uncorrelated messages with pending receive requests are run against
a persistent database, whereas in the WS-BPEL simulator, the corresponding
lookup is done in-memory6. For larger numbers of messages, this leads to a per-
formance penalty due to database cache management. A more consistent perfor-
mance could be achieved by using an in-memory database system to implement
our approach. Indeed, it is not necessary to make the correlation data structures
persistent, only the messages themselves need to be persistent. In future, we plan
to implement a more refined version of our approach and run a fairer and more
detailed comparison against the WS-BPEL approach.

The performance penalty of our approach should be weighed against the ad-
ditional functionality that it brings in. Indeed, our approach supports aggregate
messaging, multi-source consumption and message contention. Moreover, as pre-
viously mentioned, there are opportunities to optimise the brute-force approach
used in our implementation through incremental query evaluation.

5 Related Work

Communication in the context of distributed business processes has tradition-
ally been researched from the perspective of protocol or contract definition.
For example, the CrossFlow system [13] enables process designers to define
contracts governing the communication between multiple workflows, possibly
distributed across organisational boundaries. These contracts can be statically
checked for consistency. Similarly, [3] proposes a method for capturing inter-
workflow communication protocols and detecting deadlocks that can arise when
inter-connecting processes with incompatible communication protocols. This
body of work is complementary to our proposal, as we do not deal with sta-
tic analysis, but rather with the routing of messages to processes at runtime.

WS-BPEL exhibits strong support for conversations with the exception of
Instance Channels, which are not supported because WSDL ports are not gen-
erated during process execution. WS-BPEL, does not support the selection of
messages based on their properties despite the use of properties in correlation
sets. Nor does it support atomic-batched consumption. Contention over messages
is not supported as messages are greedily consumed off channels and allocated to
process instances immediately. Time-based message selection is not supported
either. A WS-BPEL process consumes everything sent to it, thus forcing the
modeller to select and throw away unwanted messages, as part of the core process
6 Although entries are written to disk, lookups over the hash table are done in-memory.

422 L. Aldred et al.

logic. WS-CDL [15] has some distinguishing features, with respect to WS-BPEL,
such as abstractions for channel passing and a global viewpoint over all actors
in a choreography. However, in terms of the motivating requirements outlined in
this paper, WS-CDL has very similar strengths and weaknesses to WS-BPEL.

Widom et al. [8,16] propose an approach to optimising the evaluation of
continuous queries over one or many data streams. They address some of the
problems associated with scalability of such queries and propose incremental
evaluation techniques based on the type of query. We plan to apply some of
their findings to enhance and optimise the evaluation of filters used in our
proposal.

6 Conclusion

This paper proposed an inter-workflow communication and control layer, to lie
between traditional workflow and messaging layers – providing an isolated area
for the description and execution of communication. This would provide relief
from using “spaghetti” solutions to achieve non-trivial interactions. The proposal
is based on a strong and relatively simple set of abstractions – namely channels,
properties, property relations and filters. Channels abstract from middleware
topics, and queues. Properties abstract from message content and format, while
property relations provide the foundation for property filters. Filters abstract
from the business level requirements for choosing and selecting messages. These
enable all forms of correlation, message selection, aggregated message consump-
tion, and time based message consumption, over a single or multiple channels
evaluated collectively. The possibility of contention between process/task in-
stances is overcome by locking messages, and filter requests. The proposal has
been implemented on top of a communication API, namely JDecouple, that
abstracts away from the underlying middleware and communication protocols.

Future work will aim at integrating the proposed communication abstractions
into process definition languages. Specifically, we aim to extend YAWL with the
ability to attach communication actions to various elements of the notation.

Acknowledgements. This work is funded by ARC Discovery GrantDP0451092.
The third author is funded by a Queensland Smart State Fellowship.

References

1. van der Aalst, W., ter Hofstede, A.: YAWL: Yet Another Workflow Language.
Information Systems 30(4), 245–275 (2005)

2. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Distributed and Parallel Databases 14(3), 5–51 (2003)

3. van der Aalst, W., Weske, M.: The P2P approach to Interorganizational Workflows.
In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068,
pp. 140–156. Springer, Heidelberg (2001)

Communication Abstractions for Distributed Business Processes 423

4. Aldred, L., van der Aalst, W., Dumas, M., ter Hofstede, A.: On the Notion of Cou-
pling in Communication Middleware. In: In Proceedings of the 7th International
Symposium on Distributed Objects and Applications (DOA). Agia Napa, Cyprus,
November 2005, pp. 1015–1033. Springer, Heidelberg (2005)

5. Aldred, L., van der Aalst, W., Dumas, M., ter Hofstede, A.: Understanding the
challenges in getting together: The semantics of decoupling in middleware. Tech-
nical Report BPM-06-19, Business Process Management Center, Brisbane, Qld,
Australia, 2006 ((February 2007), http://www.bpmcenter.org accessed

6. Aldred, L., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Abstrac-
tions for communication between distributed business processes. Technical Report
BPM-06-28, Business Process Management Center, Brisbane, Qld, Australia, 2006,
accessed (February 2007) www.bpmcenter.org

7. Alves, A., Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N.,
Liu, C., König, D., Marin, M., Mehta, V., Thatte, S.,van der Rijn, D., Yendluri,
P., Yiu, A.: Web Services Business Process Execution Language. Initial Draft of
standards proposal by OASIS, June 2006, accessed (July 2006)
http://www.oasis-open.org/apps/org/workgroup/wsbpel/

8. Babu, S., Widom, J.: Continuous queries over data streams. SIGMOD
Record 30(3), 109–120 (2001)

9. Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation Patterns in Service-
Oriented Architectures. In (FASE). Proceedings of the 10th International Confer-
ence on Fundamental Approach to software Engineering, Braga, Portugal, March
2007, pp. 245–259. Springer, Heidelberg (2007)

10. Beugnard, A., Fiege, L., Filman, R., Jul, E., Sadou, S.: Communication Ab-
stractions for Distributed Systems. In: Buschmann, F., Buchmann, A.P., Cilia,
M.A. (eds.) Object-Oriented Technology. ECOOP 2003 Workshop Reader. LNCS,
vol. 3013, pp. 17–29. Springer, Heidelberg (2004)

11. Cypher, R., Leu, E.: The semantics of blocking and nonblocking send and receive
primitives. In: Siegel, H (ed.) Proceedings of 8th International parallel processing
symposium (IPPS), pp. 729–735 (April 1994)

12. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.: The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

13. Grefen, P., Aberer, K., Hoffner, Y., Ludwig, H.: CrossFlow: Cross-organizational
Workflow Management in Dynamic Virtual Enterprises. International Journal of
Computer Systems, Science, and Engineering 15(5), 277–290 (2001)

14. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, Boston (2003)

15. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.:
Web Services Choreography Description Language Version 1.0. Candidate Recom-
mendation, (November 2005) http://www.w3.org/TR/ws-cdl-10/

16. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over
distributed data streams. In: SIGMOD ’03: Proceedings of the 2003 ACM SIG-
MOD international conference on Management of data, pp. 563–574. ACM Press,
New York (2003)

http://www.bpmcenter.org
www.bpmcenter.org
http://www.oasis-open.org/apps/org/workgroup/wsbpel/
http://www.w3.org/TR/ws-cdl-10/

Questionnaire-driven Configuration of

Reference Process Models

Marcello La Rosa, Johannes Lux, Stefan Seidel, Marlon Dumas,
and Arthur H. M. ter Hofstede

BPM Group, Queensland University of Technology, Australia
{m.larosa,j.lux,s.seidel,m.dumas,a.terhofstede}@qut.edu.au

Abstract. Reference models are a widely accepted means to facilitate
reusable information system and organizational design. At present, be-
sides domain knowledge, the configuration of a reference model requires
a thorough understanding of the notation it is captured in. This hin-
ders the involvement of domain experts without specialized modeling
background, in the configuration of reference models. In this paper, we
propose a questionnaire-driven approach to reference model configura-
tion which abstracts away from the modeling language. For illustration,
we show how this approach can be applied to reference process models
captured in the Configurable EPC notation. To demonstrate its applica-
bility, the proposal has been implemented as a toolset that guides users
through the configuration process by means of a form-based interface.

1 Introduction

A reference process model is a model of day-to-day operations in a given domain
such as supply chain management, logistics, human resource management or film
production. Reference process models are intended to be configured in a specific
context (e.g. for a given organization or project) leading to individualized process
models. A major benefit of configuring a reference process model for a given
project, as opposed to building a new model from scratch, is the ability to reuse
and build upon proven practices [5].

Reference process models in commercial use, such as the IT Infrastructure Li-
brary (ITIL) [18] or the Supply Chain Operations Reference model (SCOR) [17],
lack a representation of configuration alternatives, configuration decisions, and
relationships between these decisions and alternatives. This hinders the config-
uration of these models. Notations for representing configuration alternatives in
process models have been put forward to address this shortcoming. An example
is the Configurable Event-driven Process Chains (C-EPCs) notation [13] which
extends EPCs, a generic process modeling notation, with the ability to capture
variation points, constraints that restrict the allowed variations and guidelines
for configuring variation points.

However, these approaches suffer from two major limitations. Firstly, in nota-
tions such as C-EPCs, which are designed to capture individual variation points,
it is difficult to understand which of these points are affected by a high-level

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 424–438, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Questionnaire-driven Configuration of Reference Process Models 425

configuration decision. Secondly, these approaches require that the stakeholders
involved in the configuration of a reference process model have a thorough un-
derstanding of both the application domain and the process modeling notation.
While it is normal to assume that the stakeholders who produce the reference
process model itself are familiar with the notation in question, it is less realis-
tic to assume that those who provide input for configuring these models (e.g. a
logistics expert) are sufficiently proficient with the notation.

To address these shortcomings, we propose a questionnaire-driven approach to
reference model configuration that directly captures configuration choices and
their dependencies. Via so-called facts that represent answers, questions are
linked to variation points in reference models. Questions are expressed in natural
language and can be answered by domain experts without extensive knowledge
of the underlying reference model. The only major assumption made is that
questions have a finite or discretized domain of possible answers. This assumption
is reasonable, given that the number of configuration alternatives in a reference
process model (e.g. in a C-EPC) is also finite. This assumption allows the models
to be efficiently analyzed to prevent the user from entering inconsistent answers.

In this paper, we show how the proposed questionnaire-driven configuration
approach can be applied to reference process models defined as C-EPCs. We also
illustrate how this approach, linked with C-EPCs, can be applied to a reference
process model with non-trivial interdependencies. We also show how the con-
figuration process can be supported by a toolset that guides users through the
configuration questions by means of a form-based interface.

The rest of the paper is organized as follows. In the next section we briefly
describe C-EPCs. We then introduce a working example and demonstrate how
the formalized approach to questionnaire-driven configuration can be applied.
We further show how the automated configuration has been implemented in-
cluding the mapping between C-EPC and interactive questionnaires. The paper
concludes with related work and an outlook including our future research agenda.

2 Background: Configurable Event-driven Process Chains

Event Driven Process Chains (EPCs) [6] are a widely used modeling language
whose main components are events, functions, connectors and arcs linking these
elements. Events represent triggers or conditions, functions correspond to tasks,
and connectors denote splits and joins of type AND, OR or XOR.

C-EPCs extend EPCs by providing a means to represent variability in EPC
reference process models. This is achieved by identifying a set of variation points
(configurable nodes) in the model, to which possible values (alternatives) can be
assigned, as well as constraints to restrict the combination of allowed values. By
configuring each variation point to exactly one value among the ones allowed, it
is possible to derive an EPC model from the starting C-EPC.

Variation points are nodes of type function or connector, highlighted in bold
in the model. Configurable functions can be set as included (ON), excluded

426 M. La Rosa et al.

(OFF) or conditionally skipped (OPT). The first two alternatives allow one
to decide a priori whether to keep or permanently discard the function; the
last option permits the deferral of this choice to run-time, where the execution
of the function can be skipped on an instance-by-instance basis. Configurable
connectors can only be mapped to equally or less expressive connector types.
Consequently, a configurable AND-connector can only be mapped to a regular
AND-connector. A configurable XOR can be set to a regular XOR or to an
outgoing/incoming sequence SEQn of events and functions (where n is the node
starting the sequence). A configurable OR can be mapped to a regular OR, XOR,
AND or to a single sequence. Moreover, configuration requirements formalize
constraints over the values of variation points, whilst configuration guidelines
express advices and industry best practices to aid the configuration process.
They are both expressed in the form of logical predicates and depicted as notes
attached to the variation points involved. Only requirements are mandatory and
must hold for a configuration to be valid. Finally, a partial order over variation
points can be defined as a suggested order for configuring the nodes of the model.

The following definitions formalize the above concepts and closely follow [13]:

Definition 1 (Configurable EPC). A configurable EPC is a ten-tuple C-EPC
= (E, F, C, l, A, FC , CC , OC , RC , GC) where:

– E, F, C, l and A refer to standard EPC sets of events, functions, connectors,
a mapping to define a label AND, XOR, or OR for each connector, and arcs,

– FC ⊆ F is the set of configurable functions,
– CC ⊆ C is the set of configurable connectors,
– OC ⊆ (FC ∪CC)× (FC ∪CC) is a partial order over the configurable nodes,
– RC is the set of configuration requirements,
– GC is the set of configuration guidelines.

Definition 2 (Partial Order for Connectors). The partial order ≤C is de-
fined on CT ∪ CTS where CT = {AND ,OR,XOR} is the set of connector
types and CTS = {SEQn | n ∈ E ∪ F ∪ C} is the set of sequence operators.
≤C= {(n, n) | n ∈ CT} ∪ {(XOR,OR), (AND ,OR)} ∪ CTS × {XOR,OR}.

The partial order ≤C is used to determine, by restriction, the set of values each
configurable connector can be mapped to. For example XOR ≤C OR implies the
second configurable connector type can be mapped to the first connector type.

A configuration is a mapping that links a configurable node to an allowed
value, according to the node type. It also ensures that a sequence can be chosen
as value, only if it is an incoming branch for a configurable join-connector, or an
outgoing branch for a configurable split-connector.

Definition 3 (Configuration lC). Let C-EPC = (E, F, C, l, A, FC , CC , OC ,
RC , GC) be a configurable EPC. The mapping lC ∈ (FC → {ON ,OFF ,OPT})∪
(CC → CT ∪ CTS) is a configuration of C-EPC iff for each c ∈ CC :

– lC(c) ≤C l(c),
– if c ∈ CJ and lC(c) = SEQn for some n ∈ E ∪F ∪C, then (n, c) ∈ A, where

CJ is the set of join connectors,

Questionnaire-driven Configuration of Reference Process Models 427

– if c ∈ CS and lC(c) = SEQn for some n ∈ E ∪F ∪C, then (c, n) ∈ A, where
CS is the set of split connectors.

When the above requirements are met, we write validC−EPC (lC), or simply
valid(lC) if from the context the C-EPC involved is clear.

3 Working Example

As part of a research effort focusing on business process management for the
Post-Production phase in the screen business, we developed a C-EPC reference
process model [15]. An extract of this model is presented in Fig. 1 and will be
used as working example throughout the paper.

>

>

>
>

>

>

=
=

=

==

=

=

=

=
=

=

Fig. 1. The Post-Production reference process model example

428 M. La Rosa et al.

Post-Production aims at the edit and technical completion of a screen business
project and encompasses three main steps: pre-edit, edit and post-edit. In the
first phase the footage arriving from the shooting is prepared for editing by
synchronizing audio and video. The shooting format can be tape, film, or both
media. Of the two, film results in a more costly operation as special treatments
are required for making it visible and permanent. The choice of the medium is
modeled in the C-EPC example via configurable connector OR1, which can be
set to the value SEQ1a for tape, SEQ1b for film, or AND for both.

The first activity of the edit phase is the Offline (function Offline in the
model), where the main creative editing part is carried out on a low resolution
medium. This is followed by the cut stage, where the editing decisions previously
taken are committed in a high quality format. The cut can be Film-based or car-
ried out in an Online Suite, according to the format of the shooting media. This
variability is achieved in the model by configuring OR2 and OR3 to just one of
the two branches (SEQ2a,SEQ2b) or to their parallel execution (AND). How-
ever, the film-based variant can be selected only if at least parts of the project
were shot on film. This is enforced by Req. 1, while Req. 2 ensures OR3 to be
configured the same way as OR2, since they share the same incoming/outgoing
branches. As a result, we can impose requirements only on the split, as the
join connector will be configured accordingly. Note that we could have defined
(OR2,OR3) ∈ OC to specify that OR2 should be configured before OR3. How-
ever the partial order is just a suggestion, and does not compel OR3 to behave
as OR2. Therefore Req. 2 is needed.

In post-edit, the project is finished for delivery on tape, film, new media or any
combination of these formats. The overall finishing process varies on the basis of
the delivery media and may involve further tasks, according to the configuration
choices made before. A Film-based cut is an expensive activity. Therefore, if
performed, it must lead at least to a Film finish. This is guaranteed by Req.
3 attached to connector OR4. In fact, if the Film-based branch is enabled by
OR2, then function Film finish will be executed either if OR4 is equal to AND
or SEQ4b. However, if the cut has been done only in the online suite, then a
further task, modeled by configurable function Record Digital Film Master, is
needed to transfer the editing results to the so-called ‘film master’. This is stated
in Req. 4. Analogously, Telecine transfer is used only if the cut is film-based and
if at least a finish on tape or new media is expected. This behavior is enforced
by Req. 5, attached to configurable functions Tape finish and New media finish.
These two functions belong to the outgoing branch SEQ4a of OR4; thus Req. 6
ensures that SEQ4a is activated if at least one of these two functions has been
set to ON . Req. 7 guarantees that at least one finish medium is selected, as
New media Finish must be set to ON , if no film nor tape finish is desired (i.e.
if OR4 = SEQ4a). Finally, Req. 8 imposes OR5 to take the same value as OR4.

For simplicity’s sake we did not consider those configuration alternatives in-
volving run-time choices (XOR,OR,OPT) and implied the existence of further
requirements to avoid such alternatives. Nonetheless, this is an example of how
interdependencies over configurable nodes can be complex and intricate when

Questionnaire-driven Configuration of Reference Process Models 429

the model refers to a real configuration scenario. In such cases, model-based
configurations may turn out to be unacceptably arduous. Moreover, domain ex-
perts – supposed to be in charge of the configuration – are likely to be unaware
of business process notations, as in the screen business case. In order to tackle
these issues, in the next section we propose a new approach to configuration.

4 Approach

4.1 Questionnaire-Driven Configuration

We propose to represent choices independently of specific notations or languages,
by means of a set of facts, representing the space of possible answers to a set
of questions. Questions can be answered solely requiring domain expertise, via
an interactive questionnaire that guides the configuration, by posing only the
relevant questions in an order consistent with the interdependencies.

Making a choice corresponds to setting a fact within a question. Facts are
simply statements such as “tape shooting” or “film finish”. Initially they are
unset while at run-time they can be asserted or negated by setting their value
to true, resp. false. For example, setting “tape shooting” = false, would mean
that we are not interested in shooting on tape. Each fact features a default value
and can be marked as ‘mandatory’ if it needs to be set explicitly. Under certain
restrictions, a non-mandatory fact can be left unset at configuration-time. In
this case its default value is used instead.

Facts are grouped in questions according to their content, so that all the facts
of the same group can be set at once by answering the associated question. Each
question features at least one fact and the set of questions must cover all the
facts. Although a fact can appear in more than one question, its value can be
set only the first time, and must be preserved in all the subsequent questions
that contain it. However, the value of a fact previously set can still be changed
by rolling back the question.

A facts setting is any combination of facts values such that all the facts have
been set, either explicitly by answering questions or by using their default.

Fig. 2 depicts a possible structure of questions/facts for representing vari-
ability in Post-Production. All questions and facts are assigned a unique id and
a description. For example, facts f1 to f3 refer to typical budget ranges for a
Post-Production project, so they all are grouped in question 1 asking for the
estimated project budget. Also, these facts are mandatory as we want users to
explicitly answer q1. Indeed, the choice of budget is rather important as it affects
the Post-Production phase overall. Default values have been assigned in order to
reflect the typical choices made in a medium budget project, pitched for cinema
and home video distribution. Hence, f2 in q1 has default value equal to true
as well as f4 and f6 in q2, which relates to the primary distribution channels,
and so on for the other facts. Other questions would allow users to choose the
shooting media (q3) and the shooting format (q6, q7), the type of cut (q4) and
the expected deliverables (q5).

430 M. La Rosa et al.

q7: What Film format has
been shot?

f19: 16mm film

f20: 35mm film

f21: 65mm film

q4: How is the Picture Cut to
be performed?

f12: Film-based cut

f11: Online cut

q5: Which are the expected
deliverables?

f13: Tape finish

f14: Film finish

f15: New Media finish

q1: What is the allocated
budget for the project?

f1: Low (≤ 250,000 US)

f2: Medium (250,000 US, ≤ 1.5mil US)

f3: High (1.5mil US)

q2: What are the primary
distribution channels?

f4: Cinema

f5: TV

f6: Home

f7: Mobile

f8: Internet

q3: Which shooting media
have been used?

f10: Film shooting

f9: Tape shooting

q6: What Tape format
has been shot?

f16: Analogue tape

f17: SD digital tape

f18: HD digital tape

T M

M

M

T

T

T

M

T M

T M

M

T M

T

x y
x y

T

M mandatory fact
fact true by default

x simply depends on y
x strictly depends on y

mapping question-fact
fact
question

>

>

Fig. 2. A possible structure of questions/facts for the Post-Production example

Questions can be connected via two different types of dependencies. Depen-
dencies determine a partial order for posing questions to users, and can be ar-
bitrary as long as undesired cycles are avoided. A simple dependency (dashed
arrow in Fig. 2) is used when a question “may” depend on another, whilst a
strict dependency (plain arrow) is used to model a compulsory order over two
questions. For example in Fig. 2, q3 allows users to choose the shooting media
between tape (f9) and film (f10). This question “simply” depends on q1 and
q2, viz., it can be posed only after answering at least one of q1 and q2. On the
other hand, q6 – where the tape format is determined – strictly depends on
q3, as it is reasonable to make this choice only after deciding on the shooting
media which includes tape as possible alternative (f9). Although not shown in
this example, dependencies can also be defined over facts, by following the same
rules.

Dependencies provide a means for ordering questions but do not affect facts
values. Answering a question in a given way may restrict the allowed answers to
subsequent questions, and not all combinations of answers may lead to valid facts
settings. We model interdependencies over facts values as a set of constraints in
propositional logic, used to restrict the number of possibilities. A facts setting
is thus a configuration if and only if it complies with the constraints.

The following constraints, drawn from an analysis of the parameters leading
to variations in the Post-Production reference process model, are defined over
the facts identified in Fig. 2:1

1 ∨̇ indicates the exclusive disjunction (XOR), a commutative and associative relation.

Questionnaire-driven Configuration of Reference Process Models 431

C1: f1 ∨̇ f2 ∨̇ f3 C2: f1 ⇒ ¬(f10 ∨ f14) C3: f2 ⇒ ¬f10

C4: f4 ∨ f5 ∨ f6 ∨ f7 ∨ f8 C5: f4 ⇒ f14 C6: f5 ⇒ f13

C7: f6 ⇒ (f13 ∨ f15) C8: (f7 ∨ f8) ⇒ f15 C9: f9 ∨ f10

C10: f11 ∨ f12 C11: ¬f10 ⇒ ¬f12 C12: f13 ∨ f14 ∨ f15

C13: (f16 ∨̇ f17 ∨̇ f18) ⇔ f9 C14: ¬(f16 ∨ f17 ∨ f18) ⇔ ¬f9 C15: f12 ⇒ f14

C16: (f19 ∨̇ f20 ∨̇ f21) ⇔ f10 C17: ¬(f19 ∨ f20 ∨ f21) ⇔ ¬f10.

For example, C1 ensures that exactly one fact is asserted in q1, as a project places
itself only in a specific budget range. On the other hand, due to C4, more than
one distribution channel can be selected in q2, as it makes sense for a project to
have multiple releases (e.g. TV and Home).

We said that due to the costs involved, a film-based cut would be worthwhile if
it implied a subsequent finish on film. This is captured by C15, affecting the way
q4 and q5 can be answered. In truth, as per C2, a low budget choice (f1 = true)
implies no shooting on film nor release on film is possible (f10, f14 = false). As
a result, for low budgets a film-based cut is not allowed either (C11).

Dependencies and constraints are not overlapping concepts. They rather com-
plement each other, as shown by C11 over f10 and f12. These two facts occur
in q3 resp. q4, but the questions do not depend on each other. Thus, by setting
f10 to false, f12 is forced to false too, although we could have already negated
the latter by answering q4 before q3. In this case, only a constraint is used to
achieve the desired behavior. On the other hand, as per C13, (exactly) one tape
format can be chosen in q6, if and only if tape has been selected as shooting
medium in q3 (f9 = true). Otherwise, no tape format can be specified (C14).
Anyhow, q6 cannot be answered before q3. In such a case, dependencies and con-
straints work together to ensure the shooting format being decided only after
the shooting medium, and according to its type.

It is not in the scope of this paper to provide a method for identifying a
set of dependencies and constraints such as the above ones. Rather, the focus
is on defining a (meta-)model for capturing questions, facts, constraints and
dependencies, and then linking facts to variation points in a C-EPCs.

4.2 Formal Definition of Configuration Models

Due to space limitations, this section presents only a reduced definition of Con-
figuration Model (CM), which is the formal underpinning to our approach. The
complete definitions, technical details and proofs can be found in [7].

Definition 4 (Reduced Configuration Model). A reduced configuration
model is a six-tuple rCM = (F, FD , FM , Q,mapQF ,CS) where:

– F is a finite, non-empty set of facts where a fact is a boolean variable,
– FD ⊆ F is the default setting, i.e. the set of facts whose default is asserted,
– FM ⊆ F is the set of mandatory facts,
– Q is a finite (non-empty) set of questions,
– mapQF ∈ Q → P(F) \ {∅} is a function mapping questions onto sets of

facts, such that
⋃

q∈Q mapQF (q) = F ,2

2 P indicates a power set.

432 M. La Rosa et al.

– CS ⊆ P(F) is the set of the allowed settings of the facts in F , such that
FD ∈ CS, i.e. the default setting is always allowed.

Elements of CS are those facts settings that satisfy all the constraints, where only
the facts asserted are present in each element. Hence, if a fact is not contained
in a clause of CS , it follows that the fact is negated in that setting. Also, as
the default setting must be always allowed, set CS is non-empty. The definition
of set CS has been used to construct a set of functions for detecting possible
conflicts over facts constraints at design-time, and for dynamically restricting
the space of available configurations at run-time. Those definitions can be found
in [7]. An implementation of these concepts is discussed in Section 5.

A configuration σ of CM is thus a facts setting whose true values form exactly
an element of CS , i.e. a facts setting that does not violate the constraints.

4.3 Mapping C-EPCs to Configuration Models

We propose a simple method to define a mapping between a C-EPC and a
questionnaire-driven configuration model. The idea is to assign a boolean func-
tion over the facts of the configuration model, to each configuration a variation
point can assume in the C-EPC. For example, the first configurable node in the
C-EPC process of Fig. 1, OR1, according to the type of shooting medium, can
be set to AND (for both tape and film), SEQ1a (for tape only) and SEQ1b (for
film only). In the configuration model of Fig. 2 this would correspond to answer
q3 (Which shooting media have been used?) with both f9, f10 = true in the first
case, with only f9 = true in the second case, and with only f10 = true in the
third (where f9 is Tape shooting and f10 is Film shooting). This is equivalent to
checking whether f9 ∧f10, or f9 ∧¬f10, or ¬f9 ∧f10 holds against a given config-
uration over facts, obtained by answering the questions shown in Fig. 2. Thus,
we assign each of these functions to the corresponding configuration of OR1.
The remaining configuration alternatives of OR1, not allowed by the model (i.e.
OR,XOR), are simply given a false function.

A requirement for a mapping between a C-EPC and configuration model to be
unambiguous is that, for any facts configuration, exactly one boolean function
should evaluate to true for each variation point in the model. This way we avoid
a facts configuration that may lead to zero or more than one alternative for a
variation point. In the above example this is enforced by C9, which excludes the
fourth combination ¬f9 ∧¬f10 as a possible condition of facts values. Once each
variation point has been configured with a proper configuration value, an action,
attached to that value, has to be performed on the C-EPC net so as to reflect
the values chosen for facts. A formalization of the mapping is given below.

Definition 5 (CF-Mapping, Valid CF-Mapping, Actions, CA-
Mapping). Let C-EPC = (E, F, C, l, A, FC , CC , OC , RC , GC) be a configurable
EPC, lC ∈ (FC → {ON ,OFF ,OPT}) ∪ (CC → CT ∪CTS) a configuration of
C-EPC, and let rCM = (F, FD , FM , Q, mapQF ,CS) be a reduced configuration
model. For each configurable node cn ∈ CC ∪ FC :

Questionnaire-driven Configuration of Reference Process Models 433

– Lcn = {lC(cn) | valid (lC)} is the set of all the configurations of C-EPC for
a given cn,

– mapcn
CF ∈ Lcn → BF is a CF-Mapping, i.e. a function mapping a configura-

tion of cn to a boolean function defined over F ,
– ϕ ≡

∨
v∈CS (

∧
f∈v f ∧

∧
f∈F\v ¬f) is a boolean function evaluating to true

if there exist constraints over F ,
– valid(mapcn

CF) holds iff, under the assumption that constraints over F ex-
ist, for every configurable node exactly one configuration holds, i.e. iff
ϕ ⇒

∨̇
e∈Lcn (mapcn

CF (e)) is a tautology,
– Act is a finite set of actions, corresponding to modifications in the C-EPC

model in order to reflect choices made over facts,
– mapcn

CA ∈ Lcn → Act is a function assigning an action to each configuration
lC of cn.

Given a configuration σ of CM , for each configurable node cn of C-EPC, an
action a related to a configuration lC of cn is performed if the boolean function
associated to lC evaluates to true given the values assigned to facts in σ. As
functions exclude each other, only one action per variation point is executed.

The following table shows for each configurable node in the C-EPC example
of Fig. 1, the associated boolean function defined over the facts of Fig 2.

We can see that some facts have a 1-1 mapping with C-EPC variation points
(e.g. f13, f15). In general though, a fact can have a wider impact on the process
model (1-N). Consider for example f1 (low budget). Although this fact does
not appear in any function in the above table, if asserted, it would affect a
number of configuration nodes due to C2 and C11. Namely all the variation
points whose boolean functions feature ¬f10, ¬f12, ¬f14. This would lead to the
following configuration: OR1 = SEQ1a,OR2 = OR3 = SEQ2a,OR4 = OR5 =
SEQ4a, where all the branches of the C-EPC model involving an activity related
to film have been denied.

In general, the more impact a fact has on successive facts, the more variation
points in the process model are likely to be affected. This depends on the way
both constraints over facts and boolean functions have been defined.

Facts 16 to 21 – regarding the shooting formats for tape and film – are the only
ones that do not affect any variation point, neither directly nor indirectly. Thus,
they do not appear in any boolean function of Tab. 1. Indeed these facts influence
those variation nodes occurring in the sub-processes of functions Prepare Tape
for edit and Prepare Film for edit, that are not shown in Fig. 1.

5 Tool Support

With the purpose of validating our questionnaire-driven approach from a practi-
cal perspective, we implemented a set of tools during the course of this research.
Each tool is a stand-alone application responsible for specific tasks in the config-
uration process. However, when combined, the tools provide end-to-end support
for reference process model configuration, from the collection of the answers via

434 M. La Rosa et al.

Table 1. Mapping configuration alternatives for the Post-Production example

Configurable node Configuration Boolean function
cn lC(cn) mapcn

CF (lC(cn))

OR1

AND f9 ∧ f10

SEQ1a f9 ∧ ¬f10

SEQ1b ¬f9 ∧ f10

OR false
XOR false

OR2

AND f11 ∧ f12

SEQ2a f11 ∧ ¬f12

SEQ2b ¬f11 ∧ f12

OR false
XOR false

OR3 same as OR2

OR4

AND (f13 ∧ f14) ∨ (f12 ∧ ¬f13 ∧ f15)
SEQ4a (f13 ∧ ¬f14) ∨ (¬f13 ∧ ¬f14 ∧ f15)
SEQ4b (¬f13 ∧ f14 ∧ ¬f15) ∨ (¬f12 ∧ ¬f13 ∧ f14)
OR false

XOR false
OR5 same as OR4

Telecine transfer
ON (¬f11 ∧ f13) ∨ (¬f11 ∧ f15)
OFF ¬((¬f11 ∧ f13) ∨ (¬f11 ∧ f15))
OPT false

Record Digital Film Master
ON ¬f12 ∧ f14

OFF ¬(¬f12 ∧ f14)
OPT false

Tape finish
ON f13

OFF ¬f13

OPT false

New media finish
ON f15

OFF ¬f15

OPT false

questionnaires, to the release of a configured process model. So far we only sup-
port the C-EPC language, but the architecture is such that new modules for new
configurable process notations can be easily plugged in. Due to space limitations
we just present an overview of the architecture, without entering into the details
of the implementation.3 Fig. 3 depicts the architecture.

The Quaestio tool takes an XML serialization of a configuration model as
input and guides the configuration interactively by posing only the relevant
questions in an order consistent with the interdependencies. Questions can be
answered by users or automatically by the system (using defaults), and they
can be rolled back. To deal with the complexity of dynamically checking propo-
sitional logic constraints, Quaestio embodies a propositional constraint solver4

3 Downloadable from http://sky.fit.qut.edu.au/∼dumas/ConfigurationTool.zip
4 Downloadable from http://www-verimag.imag.fr/∼raymond/tools/bddc-manual

http://sky.fit.qut.edu.au/~dumas/ConfigurationTool.zip
http://www-verimag.imag.fr/~raymond/tools/bddc-manual

Questionnaire-driven Configuration of Reference Process Models 435

based on Shared Binary Decision Diagrams (SBDDs) [10]. It has been proven
that algorithms based on SBDDs can efficiently deal with systems made up of
around one million of possibilities [10]. Accordingly, Quaestio can scale with
configuration scenarios made up of thousands of facts and around one million of
possible configurations.

Configuration
(.xml)

C-EPC mapping
(.cmap)

C-EPC model
(.epml)

Configured C-EPC
(.epml)

EPC
(.epml)

Quaestio tool

answers

CM-Mapping tool Configuration Performer tool

Post-processing tool

Configuration Model
(.cml)

Fig. 3. The software architecture of the tools implemented

The CM-Mapping tool allows designers to define boolean functions over the
facts of a configuration model, and to link them to the variation points of a
C-EPC net, whose EPML5 serialization is taken as input. This tool uses the
SBDD calculator to check whether the constraints over the facts are consistent,
and whether the functions assigned to the configuration values of each variation
point are in mutual exclusion, so as to generate only valid mappings.

The Configuration Performer tool takes as input a configuration over facts
generated by Quaestio, the EPML of the C-EPC model, and the mapping link-
ing the C-EPC to the corresponding configuration model. It gives as output
an EPML representation of a configured C-EPC, where each configurable node
has been marked with a configuration value, according to the EPML syntax for
C-EPC presented in [8]. This artifact is then post-processed by a tool imple-
menting the derivation algorithm presented in [9]. The output of the latter is a
syntactically correct EPC model.

Fig. 4 depicts the EPC model resulting from the application of configuration
σ = {f1, ¬f2, ¬f3, ¬f4, ¬f5, ¬f6, f7, f8, f9, ¬f10, f11, ¬f12, ¬f13, ¬f14, f15, ...} to
the Post-Production C-EPC model.6 This configuration corresponds to a low
budget project shooting on tape, performing an online cut and releasing on
the new media Mobile and Internet. According to the mapping of Tab. 1,
the C-EPC variation points assume the following configuration values: OR1 =
SEQ1a,OR2 = OR3 = SEQ2a,OR4 = OR5 = SEQ4a,Telecine transfer = OFF ,
Record Digital Film Master = OFF , Tape finish = OFF , New media finish
= ON .

5 http://wi.wu-wien.ac.at/∼mendling/EPML
6 The model is shown in EPC Tools, http://wwwcs.upb.de/cs/kindler/Forschung/
EPCTools

http://wi.wu-wien.ac.at/~mendling/EPML
http://wwwcs.upb.de/cs/kindler/Forschung/EPCTools
http://wwwcs.upb.de/cs/kindler/Forschung/EPCTools

436 M. La Rosa et al.

Fig. 4. The EPC for low-budget Post-Productions, obtained from the C-EPC of Fig. 1

6 Related Work

Conceptual support for adapting reference models is not prevalent in the field of
IS. Existing approaches exhibit a heterogenous set of methods for reusing refer-
ence models but do not provide formalized support to abstract from the model
during the configuration process. Process alternatives are depicted as process
specializations in [16]. For their activation, these specializations are linked to
conditions expressed in questions. However, dependencies and constraints be-
tween questions cannot be expressed. Following a domain engineering approach,
[12] defines so-called stereotypes to specify the multiple appearance of model
elements. The model instantiation is not supported by any abstraction from the
actual model. There are also no means to depict dependencies and constraints.

Reference model adaptation mechanisms have been introduced in [3]. Among
others, these include logical terms and attributes that are linked to model ele-
ments to indicate which sections are not relevant for a specific application sce-
nario and have to be removed. The approach supports the configuration apart
from the actual model. However, it does not address the definition of manage-
ment questions and their dependencies. Consequently, existing approaches to
reference model adaptation support configuration but still require users to be
model experts in order to perform it. However, as we shown in this paper, there
are scenarios where this is unfeasible, due to the complexity of interdependen-
ciesof configuration decisions and the degree of variability.

Questionnaire-driven Configuration of Reference Process Models 437

Our work is also related to questionnaire systems. A range of commercial
products supports the creation of online questionnaires. They rely on the notion
of question flows and support dependencies among questions but lack support to
capture constraints among them [11]. Form definition languages like XForms [4]
support both dependencies and constraints but are unfit for our purpose as they
rely on first-order logic constraints which can not be efficiently analyzed.

The field of Software Configuration Management deals with models and lan-
guages to capture how a collection of available options impact the way a software
system is built from a set of components. For a comparison between our proposal
and existing work in this area, refer to [7].

7 Conclusion

In this paper we showed how a questionnaire-driven model configuration can be
applied to the configuration of reference process models. We do not claim that
questionnaire-driven configuration will substitute configurable reference models.
Rather, we suggest the combined use of both. While languages for configurable
reference modeling such as C-EPCs support the specification of variation points
and alternatives, interactive questionnaires provide a front-end allowing users
to configure these models by reasoning directly in terms of the concepts of the
domain in question (e.g. film production). To demonstrate this, we have imple-
mented a toolset that generates interactive questionnaires for model configura-
tion, and a mapping between C-EPCs and facts gathered by these questionnaires.

Future research has to show that our approach can be applied to other mod-
eling languages as well. As an example, we are developing a configurable process
definition language based on the YAWL environment [1]. This is a suitable area
to apply the results of our research, due to YAWL’s comprehensive support for
the workflow control-flow patterns [2]. Also, there is an opportunity in future to
apply the questionnaire-driven approach beyond the realm of reference process
models, e.g. to configure data models.

The need for abstracting the configuration from actual models can be argued
as follows. First, the model user is not required to have extensive knowledge of
both the domain and the reference model. Second, when variation points are
added to a model, configuration complexity increases dramatically and, thus,
configuring the model without any means of abstraction gets close to unman-
ageable. Regarding this research, some limitations have to be pointed out. First,
the actual impact of questionnaire-based configuration on the modeling process
has not been empirically investigated. To this end we are conducting focus groups
and surveys with a selected group of screen business experts, so as to evaluate
the perceived usefulness and ease of use of the approach. Second, in this paper
we have not elaborated on the relationship between the construction of config-
urable reference models and the construction of interactive questionnaires. The
question still remains whether the questionnaire or the reference model should
be constructed first. Alternatively, this could be an iterative process in which
the reference model construction influences the questionnaire and vice versa.

438 M. La Rosa et al.

Acknowledgments. The authors wish to thank Wil van der Aalst, Florian
Gottschalk and Michael Rosemann for their valuable feedback.

References

1. van der Aalst, W.M.P., Aldred, L., Dumas, M., ter Hofstede, A.H.M.: Design and
Implementation of the YAWL System. In: Persson, A., Stirna, J. (eds.) CAiSE
2004. LNCS, vol. 3084, pp. 142–159. Springer, Heidelberg (2004)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

3. Becker, J., Delfmann, P., Knackstedt, R.: Adaptive Reference Modeling: Integrat-
ing Configurative and Generic Adaptation Techniques for Information Models. In:
Reference Modeling Conference 2006, Passau (2006)

4. Boyer, J., Landwehr, D., Merrick, R., Raman, T., Dubinko, M., Klotz, L.: XForms
1.0 se, W3C Recommendation (2006) http://www.w3.org/MarkUp/Forms

5. Fettke, P., Loos, P.: Classification of reference models: a methodology and its ap-
plication. Information Systems and e-Business Management 1(1), 35–53 (2003)

6. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Processmodellierung auf der
Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des Insti-
tuts für Wirtschaftsinformatik, University of Saarland, Saarbrücken (1992)

7. La Rosa, M., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Gottschalk,
F.: Generating Interactive Questionnaires From Configuration Models (2006)
Available at QUT ePrints http://eprints.qut.edu.au/archive/00006325

8. Mendling, J., Recker, J., Rosemann, M., van der Aalst, W.M.P.: Towards the In-
terchange of Configurable EPCs. In: EMISA, pp. 8–21 (2005)

9. Mendling, J., Recker, J., Rosemann, M., van der Aalst, W. M. P.: Generating
correct EPCs from configured C-EPCs In: Proc. of the 2006 ACM (SAC), April
23-27, 2006, France, pp. 1505–1510 (2006)

10. Minato, S., Ishiura, N., Yajima, S.: Shared Binary Decision Diagram with Attributed
Edges for Efficient Boolean function Manipulation. In: DAC, pp. 52–57 (1990)

11. Morton, K., Carey-Smith, C., Carey-Smith, K.: The QUEST Questionnaire Sys-
tem. In: Proc. of the 2nd ANNES, pp. 214–217. IEEE Computer Society,
Washington (1995)

12. Reinhartz-Berger, I., Soffer, P., Sturm, A.: A Domain Engineering Approach to
Specifying and Applying Reference Models. In: Desel, J., Frank, U. (eds) Workshop
EMISA, LNI vol. 75, pp. 50–63. German Informatics Society (2005)

13. Rosemann, M., van der Aalst, W.M.P.: A Configurable Reference Modelling Lan-
guage. Information Systems 32(1), 1–23 (2007)

14. Scheer, A.-W., Nüttgens, M.: ARIS Architecture and Reference Models for Business
Process Management. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Busi-
nessProcessManagement.LNCS,vol. 1806, pp. 376–389. Springer,Heidelberg (2000)

15. Seidel, S., Rosemann, M., ter Hofstede, A.H.M., Bradford, L.: Developing a Busi-
ness Process Reference Model for the Screen Business - A Design Science Research
Case Study. In: 17th ACIS, Adelaide (2006) www.screenbusiness.org

16. Soffer, P., Golany, B., Dori, D.: ERP modeling: a comprehensive approach. Infor-
mation Systems 28(6), 673–690 (2003)

17. Stephens, S.: The Supply Chain Council and the SCOR Reference Model. Supply
Chain Management - An International Journal 1(1), 9–13 (2001)

18. Taylor, C., Probst, C.: Business Process Reference Model Languages: Experiences
from BPI Projects. In: Proc. of INFORMATIK, pp. 259–263 (2003)

http://www.w3.org/MarkUp/Forms
http://eprints.qut.edu.au/archive/00006325
www.screenbusiness.org

Formalization and Verification of EPCs with

OR-Joins Based on State and Context

Jan Mendling1 and Wil van der Aalst2

1 Vienna University of Economics and Business Administration
Augasse 2-6, 1090 Vienna, Austria
jan.mendling@wu-wien.ac.at

2 Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

w.m.p.v.d.aalst@tue.nl

Abstract. The semantics of the OR-join in business process modeling
languages like EPCs or YAWL have been discussed for a while. Still, the
existing solutions suffer from at least one of two major problems. First,
several formalizations depend upon restrictions of the EPC to a sub-
set. Second, several approaches contradict the modeling intuition since
the structuredness of the process does not guarantee soundness. In this
paper, we present a novel semantical definition of EPCs that addresses
these aspects yielding a formalization that is applicable for all EPCs and
for which structuredness is a sufficient condition for soundness. Further-
more, we introduce a set of reduction rules for the verification of an EPC-
specific soundness criterion and present a respective implementation.

1 Introduction

The Event-driven Process Chain (EPC) is a business process modeling language
for the represention of temporal and logical dependencies of activities in a busi-
ness process (see [1]). EPCs offer function type elements to capture the activities
of a process and event type elements describing pre- and post-conditions of func-
tions. Furthermore, there are three kinds of connector types (i.e. AND, OR,
and XOR) for the definition of complex routing rules. Connectors have either
multiple incoming and one outgoing arc (join connectors) or one incoming and
multiple outgoing arcs (split connectors). As a syntax rule, functions and events
have to alternate, either directly or indirectly when they are linked via one or
more connectors. Control flow arcs are used to link elements.

The informal (or intended) semantics of an EPC can be described as follows.
The AND-split activates all subsequent branches in a concurrent fashion. The
XOR-split represents a choice between exclusive alternative branches. The OR-
split triggers one, two or up to all of multiple branches based on conditions.
In both cases of the XOR- and OR-split, the activation conditions are given in
events subsequent to the connector. Accordingly, splits from events to functions
are forbidden with XOR and OR since the activation conditions do not become
clear in the model. The AND-join waits for all incoming branches to complete,

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 439–453, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

440 J. Mendling and W. van der Aalst

then it propagates control to the subsequent EPC element. The XOR-join merges
alternative branches. The OR-join synchronizes all active incoming branches,
i.e., it needs to know whether the incoming branches may receive tokens in
the future. This feature is called non-locality since the state of all (transitive)
predecessor nodes has to be considered.

Since the informal description cannot be directly translated into proper se-
mantics (see [2]), EPCs arguably belong to those process modeling languages
for which state based correctness criteria such as soundness are not directly ap-
plicable. Instead, several authors have proposed to consider structuredness of the
process graph as an alternative criterion for correctness (see e.g. [3,4,5]). Essen-
tially, in a structured process model each split connector matches a join connector
of the same type and loops have one XOR-join as entry and one XOR-split as
exit point. These building blocks can be nested and extended with sequences of
functions and events. The structuredness of a process model can be tested by
repeatedly applying reduction rules that collapse several nodes of the respective
building blocks. If the reduction yields a single node for the whole process, the
model is structured. While structuredness represents a sufficient condition for
soundness of Petri nets (see [6,7]), the application of reduction rules to EPCs
such as proposed in [5] rather represents a heuristic. Figure 1 gives an example
of a structured EPC that can be reduced to a single node by first collapsing the
two OR-blocks, the AND-block, and then the loop. The EPC of Figure 2 extends
this model with two additional start events e4 and e5. Due to the introduction
of the OR-joins c9 and c10, there are only two structured blocks left between
c3 and c4 and between c5 and c6. Still, if we assume that the start event e1 is
always triggered, there is no problem to execute this unstructured EPC. If the
start event e4 is triggered, it will synchronize with the first loop entry at c1.

Against this background, we present a novel EPC semantics definition that has
the following qualities. First, it is applicable for all EPCs that are syntactically

e1

c1

e3

f1 f2e2

c3

c2

c4

c7

c8

f3 f4

c5

c6

Fig. 1. A structured EPC with two OR-
blocks c2 − c5 and c3 − c4 on a loop

e1

c1

e3

f1 f2e2

c3

c2

c4

c7

c8

e4

c9

f3 f4

c5

c6

e5

c10

Fig. 2. An unstructured EPC with one
OR-block c3 − c4 and an OR loop entry

Formalization and Verification of EPCs 441

correct while several existing proposals restrict themselves only to a subset.
Second, for this new semantics structuredness is a sufficient condition for sound-
ness. This aspect is of central importance both for the intuition of the semantics
and for the efficient verification based on reduction rules. The remainder of this
paper is structured as follows. In Section 2 we use the EPCs of Figures 1 and
2 as a running example to discuss related work on process modeling languages
with OR-joins, i.e. EPCs and YAWL, in particular. This discussion reveals that
none of the existing formalizations captures both the complete set of syntacti-
cally correct EPCs and at the same time supports the intuition that structured
models are sound. In Section 3 we give an EPC syntax definition and present
our novel EPC semantics definition based on state and context. In Section 4 we
elaborate on the relationship of structuredness and soundness showing that a
structured EPC is indeed sound according to the new semantics. This is an im-
portant result that makes the semantics also a candidate for the formalization of
YAWL nets without cancellation areas. Section 5 concludes the paper and gives
an outlook on future research.

2 Related Research

The transformation to Petri nets plays an important role in early EPC formal-
izations. A problem of these approaches is their restriction to a subset of EPCs.
The first concept is presented by Chen and Scheer [8] who define a mapping
of structured EPCs with OR-blocks to colored Petri nets. A similar proposal is
repeated by Rittgen [9]. Yet, while these first Petri net semantics provide a for-
malization for structured EPCs such as in Figure 1, it does not provide semantics
for OR-joins in unstructured EPCs.

The transformation approach by Langner, Schneider, and Wehler [10] maps
EPCs to Boolean nets, a variant of colored Petri nets whose token colors are 0
(negative token) and 1 (positive token). A connector propagates both negative
and positive tokens according to its logical type. This mechanism is able to cap-
ture the non-local synchronization semantics of the OR-join similar to dead-path
elimination (see [11]). A drawback is that the EPC syntax has to be restricted:
arbitrary structures are not allowed. If there is a loop it must have an XOR-join
as entry point and an XOR-split as exit point which are both mapped to one
place in the resulting Boolean net. As a consequence, this approach does not
provide semantics for the unstructured EPC in Figure 2.

Van der Aalst [12] presents an approach to derive Petri nets from EPCs.
While this mapping provides clear semantics for XOR- and AND-connectors
as well as for the OR-split, it does not cover the OR-join. Dehnert presents an
extension of this approach by mapping the OR-join to a Petri net block [13]. Since
the resulting Petri net block may not necessarily synchronize multiple tokens
at runtime (i.e., a non-deterministic choice), its state space is larger than the
actual state space with synchronization. Based on the so-called relaxed soundness
criterion it is possible to check whether a join should synchronize (cf. [13]).

Nüttgens and Rump [14] define a transition relation for EPCs that addresses
also the non-local semantics of the OR-join, yet with a problem: the transition

442 J. Mendling and W. van der Aalst

relation for the OR-join refers to itself under negation. Van der Aalst, Desel, and
Kindler show, that a fixed point for this transition relation does not always exist
[15]. They present an example to prove the opposite: an EPC with two OR-joins
on a circle waiting for each other. This vicious circle is the starting point for the
work of Kindler towards a sound mathematical framework for the definition of
non-local semantics for EPCs [2]. The technical problem is that for the OR-join
transition relation R depends upon R itself in negation. Instead of defining one
transition relation, he considers a pair of transition relations (P, Q) on the state
space Σ of an EPC and a monotonously decreasing function R. Then, a function
ϕ((P, Q)) = (R(Q), R(P)) has a least and a greatest fixed point. P is called
pessimistic transition relation and Q optimistic transition relation. An EPC is
called clean, if P = Q. For most EPCs, this is the case. Some EPCs such as the
vicious circle EPC are unclean since the pessimistic and the optimistic semantics
do not coincide. The EPC of Figure 2 belongs to the class of unclean EPCs.

Van der Aalst and Ter Hofstede define a workflow language called YAWL [16]
which also offers an OR-join with non-local semantics. The authors propose a
definition of the transition relation R(P) with a reference to a second transition
relation P that ignores all OR-joins. A similar semantics that is calculated on
history-logs of the process is proposed by Van Hee et al. in [17]. Mendling,
Moser, and Neumann relate EPCs to YAWL by the help of a transformation
[18]. Even though this definition provides semantics for the full set of models,
it yields a deadlock if the OR-joins c4 and c6 are activated. In cases of chained
OR-joins, there might be a lack of synchronization (see [19]). Motivated by these
problems Wynn et al., present a novel approach based on a mapping to Reset
nets. Whether an OR-join can fire (i.e. R(P)) is decided depending on (a) a
corresponding Reset net (i.e. P) that treats all OR-joins as XOR-joins and (b)
a predicate called superM that hinders firing if an OR-join is on a directed
path from another enabled OR-join. In particular, the Reset net is evaluated
using backward search techniques that grant coverability to be decidable (see
[21,22]). A respective verification approach for YAWL nets is presented in [23].
The approach based on Reset nets provides interesting semantics but in some
cases also leads to deadlocks, e.g. if the OR-joins c4 and c6 are activated.

Table 1 summarizes existing work on the formalization of the OR-join. Several
early approaches define syntactical restrictions such as OR-splits to match corre-
sponding OR-joins or models to be acyclic (see [8,10]). Newer approaches impose
little or even no restrictions (see [2,16,23]), but exhibit unexpected behavior for
OR-block refinements on loops with further OR-joins on it.

In the following section, we propose a novel semantics definition that provides
soundness for structured EPCs without restricting the set of models based on
the concepts reported in [19]. For verification we follow a reduction rules ap-
proach similar to the one proposed in Sadiq & Orlowska [3]. Unfortunately, the
verification algorithm presented in [3] turned out to be incorrect since the set of
reduction rules provided was shown to be incomplete [24,7]. In [24] there was an
attempt to repair this by adding additional reduction rules. In [7] it was shown
that the considered class of process models coincides with the well-known class

Formalization and Verification of EPCs 443

Table 1. Overview of OR-join semantics and their limitations

OR-join semantics Restricted to Correctness of structured models

Chen et al. [8] structured EPCs correct
Langner et al. [10] structured EPCs correct
Kindler [2] clean EPCs correct (no proof available)
van der Aalst et al. [16] no restriction potential deadlock, lack of synchronization
Wynn et al. [23] no restriction potential deadlock

of free-choice nets for which a compact and complete set of reduction rules exist
[6]. Moreover, using the well-known Rank Theorem for free-choice nets it is pos-
sible to find any errors in polynomial time for the class of workflow considered
in [3] extended with loops. A set of reduction rules for EPCs was first mentioned
in van Dongen, van der Aalst, and Verbeek [5]. Still, their reduction rules are
not related to a semantics definition of EPCs, but rather given as heuristics. In
this paper, we extend this work by relating reduction rules to EPC soundness
and provide specific rules to deal with multiple start and end events.

3 EPC Syntax and Semantics

3.1 EPC Syntax

There is not only one, but there are several approaches towards the formalization
of EPC syntax because the original paper introduces them only in an informal
way (see [1]). The subsequent syntax definition of EPCs is an abbreviation of a
more elaborate definition given in [19] that consolidates prior work.

Definition 1 (EPC Syntax). A flat EPC = (E, F, C, l, A) consists of four
pairwise disjoint and finite sets E, F, C, a mapping l : C → {and, or, xor}, and
a binary relation A ⊆ (E ∪ F ∪ C) × (E ∪ F ∪ C) such that

– An element of E is called event. E �= ∅.
– An element of F is called function. F �= ∅.
– An element of C is called connector.
– The mapping l specifies the type of a connector c ∈ C as and, or, or xor.
– A defines the control flow as a coherent, directed graph. An element of A is

called an arc. An element of the union N = E ∪ F ∪ C is called a node.

In order to allow for a more concise characterization of EPCs, notations are
introduced for incoming and outgoing arcs, paths, and several subsets.

Definition 2 (Incoming and Outgoing Arcs, Path). Let N be a set of
nodes and A ⊆ N × N a binary relation over N defining the arcs. For each
node n ∈ N , we define the set of incoming arcs nin = {(x, n)|x ∈ N∧(x, n) ∈ A},
and the set of outgoing arcs nout = {(n, y)|y ∈ N ∧ (n, y) ∈ A}. A path a ↪→ b
refers to a sequence of nodes n1, . . . , nk ∈ N with a = n1 and b = nk such
that for all i ∈ 1, . . . , k holds: (n1, n2), . . . , (ni, ni+1), . . . , (nk−1, nk) ∈ A. This
includes the empty path of length zero, i.e., for any node a : a ↪→ a.

444 J. Mendling and W. van der Aalst

Definition 3 (Subsets). For an EPC, we define the following subsets of its
nodes and arcs:

– Es = {e ∈ E | |ein| = 0} being the set of start-events,
Eint = {e ∈ E | |ein| = 1 ∧ |eout| = 1} being the set of intermediate-events,
Ee = {e ∈ E | |eout| = 0} being the set of end-events.

– As ⊆ {(x, y) ∈ A | x ∈ Es} as the set of start-arcs,
Aint ⊆ {(x, y) ∈ A | x /∈ Es ∧ y /∈ Ee} as the set of intermediate-arcs, and
Ae ⊆ {(x, y) ∈ A | y ∈ Ee} as the set of end-arcs.

In contrast to other approaches, we assume only a very limited set of constraints
for a EPC to be correct. For an extensive set of constraints see e.g. [19].

Definition 4 (Syntactically Correct EPC). An EPC = (E, F, C, l, A) is
called syntactically correct, if it fulfills the requirements:

1. EPC is a directed and coherent graph such that ∀n ∈ N : ∃e1 ∈ Es, e2 ∈ Ee

such that e1 ↪→ n ↪→ ee

2. |E| ≥ 2. There are at least two events in an EPC.
3. Events have at most one incoming and one outgoing arc.

∀e ∈ E : |ein| ≤ 1 ∧ |eout| ≤ 1.
4. Functions have exactly one incoming and one outgoing arcs.

∀f ∈ F : |fin| = 1 ∧ |fout| = 1.
5. Connectors have one incoming and multiple outgoing arcs or multiple in-

coming and one outgoing arc. ∀c ∈ C : (|cin| = 1 ∧ |cout| > 1) ∨ (|cin| >
1 ∧ |cout| = 1). If a connector does not have multiple incoming or multiple
outgoing arcs, it is treated as if it was an event.

3.2 EPC Semantics Based on State and Context

In this subsection, we introduce a novel formalization of the EPC semantics. The
principal idea of these semantics lends some concepts from Langner, Schneider,
and Wehler [10] and adapts the idea of Boolean nets with true and false tokens in
an appropriate manner. The reachability graph that we will formalize afterwards
depends on the state and the context of an EPC. The state of an EPC is basically
an assignment of positive and negative tokens to the arcs. Positive tokens signal
which functions have to be carried out in the process, negative tokens indicate
which functions are to be ignored. In order to signal OR-joins that it is not
possible to have a positive token on an incoming branch, we define the context
of an EPC. The context assigns a status of wait or dead to each arc of an
EPC. A wait context indicates that it is still possible that a positive token
might arrive; a dead context status means that no positive token can arrive
anymore. For example, XOR-splits produce a dead context on those output
branches that are not taken and a wait context on the output branch that
receives a positive token. A dead context at an input arc is then used by an
OR-join to determine whether it has to synchronize with further positive tokens
or not.

Formalization and Verification of EPCs 445

Definition 5 (State and Context). For an EPC = (E, F, C, l, A) the map-
ping σ : A → {−1, 0, +1} is called a state of an EPC. The positive token
captures the state as it is observed from outside the process. It is represented by
a black circle. The negative token depicted by a white circle with a minus on it
has a similar semantics as the negative token in the Boolean nets formalization.
Arcs with no state tokens on them have no circle depicted. Furthermore, the
mapping κ : A → {wait, dead} is called a context of an EPC. A wait context is
represented by a w and a dead context by a d next to the arc.

In contrast to Petri nets we distinguish the terms marking and state: the term
marking refers to state σ and context κ collectively.

Definition 6 (Marking of an EPC). For a syntactically correct EPC the
mapping m : A → {−1, 0, +1} × {wait, dead} is called a marking. The set of all
markings M of an EPC is called marking space with M = A × {−1, 0, +1} ×
{wait, dead}. The projection of a given marking m to a subset of arcs S ⊆ A is
referred to as mS . If we refer to the κ- or the σ-part of m, we write κm and σm,
respectively, i.e. m(a) = (σm(a), κm(a)).

The propagation of context status and state tokens is arranged in a four phase
cycle: (1) dead context, (2) wait context, (3) negative token, and (4) positive
token propagation. Whether a node is enabled and how it fires is illustrated in
Figure 3. A formalization of the transitions for each phase is presented in [25].

1. In the first phase, all dead context information is propagated in the EPC
until no new dead context can be derived.

2. Then, all wait context information is propagated until no new wait context
can be derived. It is necessary to have two phases (i.e., first the dead context
propagation and then the wait context propagation) in order to avoid infinite
cycles of context changes (see [25]).

3. After that, all negative tokens are propagated until no negative token can be
propagated anymore. This phase cannot run into an endless loop (see [25]).

4. Finally, one of the enabled nodes is selected and propagates positive tokens
leading to a new iteration of the four phase cycle.

In order to set the start and the end point of the four phases, we define the
initial and the final marking of an EPC similar to the definition in Rump [26].

Definition 7 (Initial Marking of an EPC). For an EPC I ⊆ M is defined
as the set of all possible initial markings, i.e. m ∈ I if and only if 1:

– ∃as ∈ As : σm(as) = +1,
– ∀as ∈ As: σm(as) ∈ {−1, +1},
– ∀as ∈ As: κm(as) = wait if σm(as) = +1 and

κm(as) = dead if σm(as) = −1, and
– ∀a ∈ Aint ∪ Ae : κm(a) = wait and σm(a) = 0.

1 Note that the marking is given in terms of arcs.

446 J. Mendling and W. van der Aalst

(c)

(e)

(a) (b)d

d

d

d

d

d

d

(g) d

d

d

(d) d d

(f) d

d

(h)

d

d

d d

d

dd

d

d

d

w w

w w

w

w

w

w

ww

w

w

w

w

w

w

w

w

(a)

(b)

(c)

(d)

d d

d

d

d

(a)

(b)

(f)w

d

w

w

w

d

w

w

(c) w w

wd

(e) w

d

w

w

(d) w

s

w

w

w

w

d

w

w

w

w

d

w

w

w

d

w

w

w w

wd

(a)

(b)

d

w

d

d

d

w

d

d

(c) d d

dw

(d) d

w

d

d

d

w

d

d

d d

dw

1) Dead Context Propagation

2) Wait Context Propagation

4) Positive State Propagation

3) Negative State
Propagation

Fig. 3. Propagation of context and state in four phases

Formalization and Verification of EPCs 447

Definition 8 (Final Marking of an EPC). For an EPC O ⊆ M is defined
as the set of all possible final markings, i.e. m ∈ O if and only if:

– ∃ae ∈ Ae: σm(ae) = +1 and
– ∀a ∈ Aint ∪ As : σm(a) ≤ 0.

Initial and final markings are the start and end points for calculating the reach-
ability graph of an EPC. In this context a marking m′ is called reachable2 from
another marking m if and only if after applying the phases of dead and wait
context and negative token propagation on m, there exists a node n whose firing
in the positive token propagation phase produces m′. Then, we write m

n→ m′,
or only m → m′ if there exists some node n such that m

n→ m′. Furthermore, we
write m1

τ→ mq if there is a firing sequence τ = n1n2...nq−1 that produces from
marking m1 the new marking mq with m1

n1→ m2, m2
n2→ ...

nq−1→ mq. If there
exists a sequence τ exists such that m1

τ→ mq, we write m1
∗→ mq. Accordingly,

we define the reachability graph RG as follows.

Definition 9 (Reachability Graph of an EPC). RG ⊆ MRG → N × MRG

is called the reachability graph of an EPC if and only if:

(i) ∀i ∈ I : i ∈ MRG.
(ii) ∀m, m′ ∈ RG : (m, n, m′) ⇔ m

n→ m′.

e1

c1

e3

f1 f2e2

c3

c2

c4

c7

c8

e4

c9

f3 f4

c5

c6

e5

c10

e1

c1

e3

f1 f2e2

c3

c2

c4

c7

c8

e4

c9

f3 f4

c5

c6

e5

c10

e1

c1

e3

f1 f2e2

c3

c2

c4

c7

c8

e4

c9

f3 f4

c5

c6

e5

c10

w w w

w

w

w

w

w

w

w

w

w
w

w

w

w

w
w

w

w w w
d d w

w

w

w

w

w

w

w

w

w
w

w

w

w

w
w

w

w w w
d d d

w

w

w

d

w

w

w

d

w
w

w

w

w

w
w

w

w w w

Fig. 4. Applying the Transition Relations

Based on the previous definitions we can discuss the behavior of the unstructured
example EPC of Figure 2. This EPC and three markings are depicted in Figure 4.
The first marking shows the example EPC in an initial marking with all start
arcs carrying a positive token represented by a black circle. In this marking only
the XOR-join c1 is allowed to fire – the other OR-joins have a wait context on
one of their incoming arcs; therefore, they are not allowed to fire. In the second
marking a token is propagated from c1, via synchronizing with the second token
at c9, to the AND-split c2. The context of the start arcs has changed to dead, but

2 A formalization of reachability is given in [25].

448 J. Mendling and W. van der Aalst

the arcs between the connectors c1−c9 and c9−c2 are still in wait since a token
may arrive here via e2 on the loop. In order to arrive at the third marking, first
the connector c10 has to fire. After that both OR-splits c3 and c5 are activated
and fire a positive token to the left branch and a negative token to the right
branch. After passing functions f1 to f4 we achieve the current marking with
the OR-joins c4 and c6 being activated since both input arcs carry a token (a
positive and a negative). After this marking, the two positive tokens generated
by c4 and c6 synchronize at the AND-join c7. Then the loop can be run again,
or the end arc can be reached. The loop can be executed without a problem
since both OR-joins c9 and c10 have a dead context on the arcs coming from the
start events. Therefore, the OR-join can fire using the last transition rule of (h)
in positive state propagation.

Fig. 5. Reachability Graph for the unstructured example EPC

We have implemented the reachability graph calculation as a conversion plug-
in for the ProM framework [27]. Figure 5 displays the reachability graph of
the unstructured example EPC that we used to illustrate the behavioral se-
mantics. It can be seen that this graph is already quite complex for a small
EPC. The complexity of this example basically stems from three facts. First,
there are seven different initial markings. Second, parts of the loop can be ex-
ecuted in concurrency. Third, there are two OR-splits that both can activate
either one or the other or both output arcs. Similar to the state explosion in
Petri nets, the calculation of the reachability (or coverability) graph can turn
out to be very inefficient for verification. Therefore, we discuss an EPC-specific
variant of soundness and it verification using reduction rules in the following
section.

Formalization and Verification of EPCs 449

4 EPC Verification Based on Reduction Rules

Soundness is an important correctness criterion for business process models in-
troduced in [28]. The original soundness property is defined for a Workflow net,
a Petri net with one source and one sink, and requires that (i) for every state
reachable from the source, there exists a firing sequence to the sink (option to
complete); (ii) the state with a token in the sink is the only state reachable from
the initial state with at least one token in it (proper completion); and (iii) there
are no dead transitions [28]. For EPCs, this definition cannot be used directly
since EPCs may have multiple start and end events. Based on the definitions
of the initial and final marking of an EPC, we define soundness of an EPC
analogously to soundness of Workflow nets.

Definition 10 (Soundness of an EPC). An EPC is sound if there is a set
of initial markings I such that:

(i) For each start-arc as there exists an initial marking i ∈ I where the arc
(and hence the corresponding start event) holds a positive token. Formally:
∀as ∈ As : ∃i ∈ I : σi(as) = +1

(ii) For every marking m reachable from an initial state i ∈ I, there exists a
firing sequence leading from marking m to a final marking o ∈ O. Formally:
∀i ∈ I : ∀m ∈ M (i ∗→ m) ⇒ ∃o ∈ O (m ∗→ o)

(iii) The final markings o ∈ O are the only markings reachable from a marking
i ∈ I such that there is no node that can fire. Formally:
∀m ∈ M : �∃m′(m → m′) ⇒ m ∈ O

Given this definition, the EPCs of Figures 1 and Figure 2 are sound, and any
initial marking of the second must include the state σi(e1, c1) = +1 for all i ∈ I.

Related to this soundness definition, we identify a set of reduction rules that
is soundness preserving. A reduction rule T is a binary relation that transforms
a source EPC1 to a simpler target EPC2 that has less nodes and/or arcs (cf.
e.g. [6]). A reduction rule is bound to a condition that defines for which arcs and
nodes it is applicable. The reduction rules for sound EPCs include (1) Sequence
Elimination, (2) Block Reduction, (3) Simple Loop Reduction, (4) Join Reduc-
tion, (5) Split Reduction, (6) Start-Join Reduction, and (7) Split-End Reduction
(see Figure 6). Some of these rules (i.e.,1-5) were defined in previous work by
[5]. In the following we sketch why these rules are soundness preserving for the
given EPC semantics definition.

(1) Sequence Elimination: An element n with one input and one output arc
can be eliminated. This rule is applicable for functions and intermediate events,
but also connectors with such cardinality can be produced by the other rules. As
mentioned before in Def. 4, these connectors are treated as if they were events.
The idea for proving that the rule preserves soundness can be sketched as follows.
Based on the soundness of the unreduced EPC1 we have to show that the reduced
EPC2 is also sound. In order to meet (i) we consider I2 = I1 of EPC1. For (ii)
we consider the node x that enables n, i.e. m1

x→ m2, and the firing of n, i.e.

450 J. Mendling and W. van der Aalst

1) Sequence Elimination

2) Block Reduction

c1

c2

6) Start-Join Reduction

7) Split-End Reduction

c1

c2

c1

c2

c1

c2

3) Simple Loop Reduction

4) Join Reduction

c1

c2 c2

5) Split Reduction

c1

c2

c1

l(c1)=l(c2) l(c1)=l(c2)

l(c1)=xor
l(c2)=xor

l(c1)=l(c2)

Fig. 6. Soundness preserving reduction rules for EPCs

m2
n→ m3 of EPC1. Obviously, in EPC2 every marking that corresponds to m3

is reachable from m1 by firing x. Therefore, still for all markings that can be
reached from some initial marking, some final marking is reachable. Since no
new transitions are introduced, the final markings are still the only markings
that meet (iii). Therefore, EPC2 is also sound.

(2) Block Reduction: Multiple arcs from split- to join-connectors of the same
type can be fused to a single arc. This might result in connectors with one input
and one output arc. The above argument also holds for this reduction, but it
must be adapted to cover all states that might be produced by firing c1.

(3) Simple Loop Reduction: The arc from an XOR-split to an XOR-join
can be deleted if there is also an arc from the join to the split. This rule might
produce connectors with one input and one output arc. The above argument
also holds for this rule.

(4) Join Reduction: Multiple join connectors having the same label are merged
to one join. The above argument on soundness can be adapted here.

(5) Split Reduction: Multiple split connectors are reduced to one split. The
above argument can be adapted for this rule.

(6) Start-Join Reduction: Multiple start events that are merged to one start
event. We replace the two joined start events of EPC1 in each initial marking
by the merged start event such that (i) is met for EPC2. Since any marking
that is reachable by firing the join in EPC1 is also reachable directly from the
start event in EPC2, but no additional marking is reached, (ii) and (iii) hold
respectively for EPC2. Therefore, EPC2 is sound.

Formalization and Verification of EPCs 451

Fig. 7. Examples from the SAP reference model

(7) Split-End Reduction: Splits to multiple end events can be reduced to one
end event. The above argument can be adapted for this rule.

Based on these reduction rules, it can be shown that the structured EPC of
Figure 1 is indeed sound. Beyond that, we have implemented the reduction rules
for EPCs that are available as ARIS XML files. Figure 7 shows two EPCs from
the SAP reference model [29]. Both these models were analyzed with an existing
verification approach based on the relaxed soundness criterion [13]. Even though
they are relaxed sound, they still have structural problems. Using reduction rules
we found that the EPCs are not sound according to the definition reported in
this paper. In both models there are OR-splits that are joined with an XOR. The
website http://wi.wu-wien.ac.at/epc offers an interface to the implementation of
the reduction rules. Uploading an ARIS XML file generates an error report such
as shown in Figure 7.

5 Contribution and Limitations

In this paper we presented a novel semantics definition for EPCs covering also
the behavior of the OR-join. In contrast to existing semantical proposals for
business process modeling languages with OR-joins, our definition provides se-
mantics that are (1) applicable for any EPC without imposing a restriction on the

452 J. Mendling and W. van der Aalst

syntax, and (2) intuitive since structuredness of the process model yields sound
behavior. This is an important finding because there is up to now no solution
reported that covers both aspects (1) and (2) in a formalization of the OR-join.
Furthermore, the reduction rules that we presented and their implementation
as a web interface are a useful tool for the verification of EPCs. In particular,
the start-join and the split-end reduction rule directly address the definition of
a soundness notion for EPCs. Moreover, they provide a novel solution for the
problem of multiple start and end events in an EPC which is not appropriately
covered by existing approaches so far. Still, our approach has a limitation with
respect to the completeness of the reduction rules. While for free-choice Petri
nets there is a complete set of reduction rules, this completeness is not achieved
by the seven rules for EPCs. In future work, we aim to enhance our set by adding
further rules in order to provide for an efficient verification of EPC soundness.

References

1. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Prozessmodellierung auf
der Grundlage Ereignisgesteuerter Prozessketten (EPK). Heft 89, Institut für
Wirtschaftsinformatik, Saarbrücken, Germany (1992)

2. Kindler, E.: On the semantics of EPCs: Resolving the vicious circle. Data Knowl.
Eng. 56, 23–40 (2006)

3. Sadiq, W., Orlowska, M.E.: Applying graph reduction techniques for identifying
structural conflicts in process models. In: Jarke, M., Oberweis, A. (eds.) CAiSE
1999. LNCS, vol. 1626, pp. 195–209. Springer, Heidelberg (1999)

4. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On structured workflow mod-
elling. In: Wangler, B., Bergman, L. (eds.) CAiSE 2000. LNCS, vol. 1789, pp.
431–445. Springer, Heidelberg (2000)

5. van Dongen, B., van der Aalst, W., Verbeek, H.M.W.: Verification of EPCs: Using
reduction rules and petri nets. In: Pastor, Ó., Falcão e Cunha, J.F. (eds.) CAiSE
2005. LNCS, vol. 3520, pp. 372–386. Springer, Heidelberg (2005)

6. Esparza, J.: Reduction and synthesis of live and bounded free choice petri nets.
Information and Computation 114, 50–87 (1994)

7. van der Aalst, W., Hirnschall, A., Verbeek, H.: An Alternative Way to Analyze
Workflow Graphs. In: Banks-Pidduck, A., Mylopoulos, J., Woo, C., Ozsu, M. (eds.)
CAiSE 2002. LNCS, vol. 2348, pp. 535–552. Springer, Heidelberg (2002)

8. Chen, R., Scheer, A.W.: Modellierung von Prozessketten mittels Petri-Netz-
Theorie. Heft 107, Institut für Wirtschaftsinformatik, Saarbrücken (1994)

9. Rittgen, P.: Paving the Road to Business Process Automation. In: Proc. of ECIS
2000. pp. 313–319 (2000)

10. Langner, P., Schneider, C., Wehler, J.: Petri Net Based Certification of Event driven
Process Chains. In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420,
Springer, Heidelberg (1998)

11. Leymann, F., Altenhuber, W.: Managing business processes as an information re-
source. IBM Systems Journal 33, 326–348 (1994)

12. van der Aalst, W.: Formalization and Verification of Event-driven Process Chains.
Information and Software Technology 41, 639–650 (1999)

13. Dehnert, J., Rittgen, P.: Relaxed Soundness of Business Processes. In: Dittrich,
K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 151–170.
Springer, Heidelberg (2001)

Formalization and Verification of EPCs 453

14. Nüttgens, M., Rump, F.J.: Syntax und Semantik Ereignisgesteuerter Prozessketten
(EPK). In: Desel, J., Weske, M. (eds.): Promise’02. Vol. 21 of LNI. pp. 64–77 (2002)

15. van der Aalst, W., Desel, J., Kindler, E.: On the semantics of EPCs: A vicious
circle. In: Nüttgens, M., Rump, F. J. (eds.): Proc. of EPK’02. pp. 71–79 (2002)

16. van der Aalst, W., ter Hofstede, A.: YAWL: Yet Another Workflow Language.
Information Systems 30, 245–275 (2005)

17. Hee, K., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve, M.: Workflow model
compositions perserving relaxed soundness. In: Dustdar, S., Fiadeiro, J.L., Sheth,
A. (eds.) BPM 2006. LNCS, vol. 4102, pp. 225–240. Springer, Heidelberg (2006)

18. Mendling, J., Moser, M., Neumann, G.: Transformation of yEPC Business Process
Models to YAWL. In: Proc. of ACM SAC, 2, 1262–1267 (2006)

19. Mendling, J., van der Aalst, W.: Towards EPC Semantics based on State and
Context. In: Nüttgens, M., Rump, F. J., Mendling, J. (eds.): Proc. of EPK’06 pp.
25–48 (2006)

20. Wynn, M., Edmond, D., van der Aalst, W., ter Hofstede, A.: Achieving a General,
Formal and Decidable Approach to the OR-join in Workflow using Reset nets. In:
Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 423–443.
Springer, Heidelberg (2005)

21. Leuschel, M., Lehmann, H.: Coverability of reset petri nets and other well-
structured transition systems by partial deduction. In: Palamidessi, C., Moniz
Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv,
Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 101–115. Springer,
Heidelberg (2000)

22. Finkel, A., Schnoebelen, P.: Well-structured Transition Systems everywhere! The-
oretical Computer Science 256, 63–92 (2001)

23. Wynn, M., van der Aalst, W., ter Hofstede, A., Edmond, D.: Verifying Workflows
with Cancellation Regions and OR-joins: An Approach Based on Reset Nets and
Reachability Analysis. In: Dustdar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006.
LNCS, vol. 4102, pp. 389–394. Springer, Heidelberg (2006)

24. Lin, H., Zhao, Z., Li, H., Chen, Z.: A novel graph reduction algorithm to identify
structural conflicts. In: Proc. of HICSS. 289 (2002)

25. Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models.
Ph.D. Thesis, Vienna University of Economics and Business Administration (2007)

26. Rump, F.J.: Geschäftsprozessmanagement auf der Basis ereignisgesteuerter Pro-
zessketten - Formalisierung, Analyse und Ausführung von EPKs. Teubner (1999)

27. van Dongen, B., Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.: The
ProM framework: A New Era in Process Mining Tool Support. In: Ciardo, G.,
Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Hei-
delberg (2005)

28. van der Aalst, W.: Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.)
ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

29. Keller, G., Teufel, T.: SAP(R) R/3 Process Oriented Implementation: Iterative
Process Prototyping. Addison-Wesley, London (1998)

Towards More Extensible MetaCASE Tools

Vincent Englebert and Patrick Heymans

University of Namur
Computer Science Department

PRECISE Research Center in Information Systems Engineering
Rue Grandgagnage 21, B-5000 Namur, Belgium

Abstract. In this paper, we suggest a solution to several limitations
of current metaCASE technology: (i) the limited number of modelling
levels, (ii) the rigid separation between those levels, (iii) the limited boot-
strapping possibilities, (iv) the hardcoding of various types of informa-
tion (e.g. GUI related information), and (v) the inability to record links
between semantically related (e.g. referrentially redundant) constructs.

Our proposal is centered around a 2-layer metamodelling language
called MetaL. MetaL is characterised by ubiquitous reflexivity (meta-
circularity) and extended reification capabilities. The language is pre-
sented and applied to illustrative examples. Its pros and cons are
discussed and an on-going prototypical metaCASE implementation is
reported.

1 Introduction

Conceptual modelling languages (CML) have long been recognized as powerful
means to reduce complexity during the development of information systems (IS).
CMLs are usually supported by CASE (computer-assisted software engineering)
tools primarily used to edit, browse and record models. CASE tools can also
have a broad range of additional features: code generation, model analysis, doc-
umentation generation, traceability, version control, etc. Nowadays, CASE tools
have become essential assets in IS development projects, especially with the MD*
(MDA, MDD, MDE,. . .) initiatives. MD* advocates the pervasive use of mod-
els and CASE tools in order to automate the generation of runtime artefacts
(programs, databases, interfaces, etc.).

The ubiquity of models goes together with an increased need for flexibility.
The users of CMLs (e.g. UML) often want to turn them into, or complement
them with, domain specific languages (DSL) designed for a specific usage and/or
technological domain. Unfortunately, the CML adaptation support offered by the
large majority of CASE tools is very limited. For example, the most one can ex-
pect from a UML tool is usually support for profiles, i.e. using stereotypes, tagged
values and constraints to alter the UML notation. Profiling is widely recognized
as a very poor extension mechanism which only enables to superficially change
some aspects of the syntax of CMLs [10] . Metamodel and semantics changes are
out of its scope.

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 454–468, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Towards More Extensible MetaCASE Tools 455

Specific support is therefore needed to define DSLs and quickly obtain sup-
porting tools. A technical solution to those problems has been explored during
the last twenty years with metaCASE technology [1,6,11,26,14,19,16]. Meta-
CASE tools allow method engineers (a) to define new metamodels, (b) to define
concrete notations (either textual or graphical) and (c) to edit, browse and record
the models. They also sometimes feature import/export facilities or accomodate
plugins (e.g., for specific model analyses).

In more recent works, the term “domain specific modelling (DSM) environ-
ment” has emerged. Newer proposals [3,17] are based on the same ideas as meta-
CASE but show an emphasis on model transformations and code generation, in
accordance with the MD* vision. One of the ideas is that more effective code
generation can be devised from DSLs than from general purpose languages. DSM
environments should thus enable the quick and iterative development of DSLs
and transformations.

To define DSLs, both metaCASE and DSM environments rely on metamod-
elling languages (MMLs) such as EBNF, MOF [23], Kermeta [21], OWL [20],
GOPPRR [18], or KM3 [17]. Unfortunately, each of them faces at least one of
the following limitations:

– the inability or difficulty to record links between semantically related (e.g.
referrentially redundant [24]) constructs in different (meta)models,

– the limited number of editable modelling levels (or M-levels), usually re-
stricted to M2 (metamodel) and M1 (model)1,

– the rigid separation between M-levels, i.e. the impossibility for relationships
to traverse them, which is known as strict metamodelling [2,12],

– the hardcoding of various types of information, including the MML itself,
parts of concrete syntax, the tool’s GUI, version control (if any), etc.

For now, we illustrate the first and third limitations with a small example
taken from [24]. In Section 3, we make the case for the other limitations.

Fenris : Mainfra...

+shutdown()

Mainframe

<<instanceOf>>

Fenris Machina
<<Ethernet>>

+name [1]
+typeOfServer [1]

ApplicationServer

deployedOn

10..* 10..*

name = backoffice

typeOfServer = EJB

Instance : ApplicationSer...

<<instanceOf>>

Fig. 1. Implicit referrential redundancy between UML diagrams (adapted from [24])

The example is about a mainframe called “Fenris”, modelled both as a node
in a UML deployment diagram, and as an object in a UML object model (see
Fig. 1). We assume that the modeller is using an editing environment generated
1 We refer to the standard OMG 4-layer architecture.

456 V. Englebert and P. Heymans

by a metaCASE tool to support the two languages. If she now wants to change
the name of the mainframe from “Fenris” to “George” while editing the object
diagram, what will happen? Typically, the name of the object will change, but
the modification will not be propagated to the deployment diagram. This is
because the two pieces of information are not formally linked within the tool.
The reason for this usually lies in the limitations of the MML. Without multiple
specialisation or multiple instantiation, it is difficult to cope with the sharing
of properties between instances of constructs in different metamodels [24]. But
another complication appears: the two name properties (of deployment nodes
and objects, respectively) belong to distinct abstraction levels. This is impossible
in most tools (with notable exceptions, see Section 5).

This example illustrates the need for more flexible MMLs. Similar prob-
lems are acknowledged by other authors [2,24,16,12] who also suggested solu-
tions. In this paper, we introduce a new MML called MetaL. It integrates and
extends ideas from these authors and from existing languages (RDF-Schema
[4], Telos [22] and GXL [13]) to provide enhanced flexibility: besides multiple
instantiation and multiple specialisation, it supports meta-circularity (reflex-
ity of instantiation), non-strict metamodelling, and adaptable granularity of
constructs. As we will see, these features yield reification capabilities beyond
current state of the art, which allow for elegant and powerful bootstrapping
mechanisms.

The structure of the paper goes as follows. Section 2 describes MetaL1 and
MetaL2, the two fundamental layers of MetaL. Section 3 illustrates the benefits
of MetaL based on examples. Section 4 outlines the features and architecture of
a metaCASE tool based on MetaL currently under development. A comparison
with related approaches appears in Section 5. The limitations and future works
are discussed in Section 6, before Section 7 concludes the paper.

2 The MetaL Language

MetaL consists of two distinct layers (see Fig. 2) — not to be confused with
M-levels, although these are supported too. The first layer, MetaL1, is a for-
mally defined minimal kernel language that serves to give the second layer,
MetaL2, a formal foundation. This way, both languages are given unambigu-
ous definitions, and can be interpreted by tools. Of the two, MetaL2 is the only
language to be manipulated directly by end-users (metamodellers or method
engineers). Therefore it proposes abstractions familiar to them: ‘metamodel’,
‘metaobject’, ‘metaproperty’, etc. The end-users can structure the (meta)models
into ‘compartments’, e.g. to reflect M-levels. However, an important character-
istic of MetaL2 is that it does neither enforce a strict separation between levels,
nor is it limited to a fixed number of levels (as illustrated in Fig. 2).

The formal definition of MetaL1 and MetaL2 can be found in [9]. In
Section 2.1, we briefly introduce the main concepts of MetaL1 and provide graph-
ical representation conventions, also used for MetaL2. MetaL2 is described in
Section 2.2. The reader should understand that MetaL2 is not necessarily the
terminal, nor the only, user language that will be defined on top of MetaL1. New

Towards More Extensible MetaCASE Tools 457

Fig. 2. Overview of MetaL1 and MetaL2

modelling purposes, or experience gained in using MetaL2, are likely to lead us
to define new or improved MMLs on top of MetaL1.

2.1 Layer 1: The MetaL1 Language

We consider a metaCASE tool’s repository to contain dataitems (items, for
short). This set of items is called D. Every item is either an object (from O), a
property (from P), or both: D = O ∪P , where O and P are not disjoint. Graph-
ically, we will represent objects by rectangles and properties by ovals (see Fig. 2,
3, 4, 5 and 6). When an item is both an object and a property, we represent the
item by superimposing the two shapes (like for MetaRole, transition or wp�1
in Fig. 4).

Ot, a subset of O, denotes the set of object types. Similarly, Pt, a subset of P ,
denotes the set of property types. Dt = Ot ∪Pt is the set of types. When an item
is a type, this is represented by thickening the border of its shape. Hence, bold
rectangles (e.g. ω in Fig. 3) denote object types and bold ovals (e.g. π in Fig. 3)
denote property types. An item that is both an object and a property needs not
necessarily be a type in these two roles (e.g. wp�1 in Fig. 4).

Every item must have at least one type. Properties have exactly one. We thus
allow multiple instantiation for object types. This is recorded by the instanceOf
relations: instanceOf O ⊆ O × Ot and instanceOf P : P → Pt. instanceOf re-
lations are depicted with dashed arrows drawn from the instance to the type.
Specialisation happens through the isa relation (graphically, a thick arrow) de-
fined between object types: isa ⊆ Ot × Ot. Unlike common practice in similar
languages, e.g. [22], we do not require isa to be acyclic, not to forbid multiple
specialisation. However, we have the usual constraint that instantiation is closed
by specialisation: ∀x ∈ O · ∀a, b ∈ Ot · (x, a) ∈ instanceOf O ∧ (a, b) ∈ isa ∗ ⇒
(x, b) ∈ instanceOf O, where isa ∗ denotes the transitive closure of isa .

A property possesses a domain and a range which are both objects: dom, ran :
P → O. Graphically, the domain and the range of a property can be identified
by a plain line arrow originating from the domain, crossing the property, and
ending at the range (see e.g. π from ω to ω in Fig. 3, or wp�2 from transition to
statechart in Fig. 4). In the case of a property type, the domain and the range
are object types: ∀p ∈ Pt · dom(p) ∈ Ot ∧ ran(p) ∈ Ot. For a given property,
a type of its domain (resp. range) must necessarily be the domain (resp. range)

458 V. Englebert and P. Heymans

ω π
instance−of

t
N

0

t

isa

t
B

false

t
S

ε

domain

range

isa
isa

instance−of

instance−of instance−of instance−of

instance−of

Fig. 3. The seminal items of MetaL1

of its type: ∀p ∈ P · ∀pt ∈ Pt · (p, pt) ∈ instanceOf P ⇒ (dom(p), dom(pt)) ∈
instanceOf O ∧ (ran(p), ran(pt)) ∈ instanceOf O.

The repository is initialized with some seminal items such as the object type ω,
and the property type π. Object type t is an instance of ω. t is the super type of all
elementary types such as tB (booleans), tN (natural numbers), and tS (strings of
characters)2. All instances of tB are in OB (OB = {b | (b, tB) ∈ instanceOf O}). OB

is the subset of O representing the boolean value objects. Similarly, all instances
of tN are in ON, and so on. For each value object, the function val returns a
value: val : (OB → B) ∪ (ON → N) ∪ (OS → S) ∪ . . .

A major difference between MetaL and other similar MMLs is its full-fledged
support for reification. This is intended, among other things, to counter two
usual limitations: the fixed number of levels and the strict separation between
them. This is also intended to open the way for powerful bootstrapping mech-
anisms discussed further in this paper. In MetaL1, reification is materialized
mainly by (i) the non disjointness of P and O (see above), (ii) the absence of
too rigid axioms (for example, there is no non-acyclicity axiom for isa), (iii)
multiple instantiation of objects, and, most prominently, (iv) the reflexivity of
the instanceOf relation for the seminal items. In clear: every seminal item is an
instance of itself. For the elementary types, this entails that they should all be
both object types and values objects (i.e. tB ∈ OB, tN ∈ ON, tS ∈ OS, etc.). To
this end, we also need to give them default values: val(tB) = false, val(tN) = 0,
and val(tS) = ε3 (Fig. 3).

2.2 Layer 2: The MetaL2 Language

In the second layer, we define a metametamodel on top of MetaL1 to provide
appropriate abstractions to metamodellers and method engineers. The most

2 We only present the types that are used in the remainder for this paper.
3 ε denotes the empty string.

Towards More Extensible MetaCASE Tools 459

important constructs are presented here and illustrated in the left compartment
of Fig. 4. A more complete description can be found in [9].

The core construct is the MetaObject object type. It is characterized by
a name (a property type between MetaObject and tS). A metaobject has a
MetaProperty, an object type that is also a subtype of MetaObject. Metaprop-
erties are characterized by a type (the generic type t) and a cardinality (cardP).
The second subtype of MetaObject is MetaRole, an object- and property type.
As a property type, MetaRole takes MetaObject both as its domain and its range.
As an object type, it possesses a cardinality property (type), cardR, indicating
whether the metarole denotes a one-to-many, a many-to-many,. . . relationship4.

The MetaModel object type is yet another subtype of MetaObject and denotes
an aggregate composed of other metaobjects. The wp (whole-part) object- and
property type defines this aggregation. As an object type, wp is the domain for
three other property types (not shown in Fig. 4):
– rename (with range tS) allows us to name a metaobject differently for each

aggregate it pertains to. For instance, the class metaobject could be re-
named entity-type within the ER metamodel, or table within the rela-
tional metamodel;

– canNotBeShared (with range tB) specifies whether the instances of the
metaobject at the model level can be shared. For example, can a class belong
both to a UML class diagram and an ER model?

– notDependentOn (with range tB): can the aggregate still exist if one of its
components is removed5.

2.3 MetaL2 Example

The metametamodel is to be used to create metamodels. The compartement in
the middle of Fig. 4 represents a portion of a metamodel of statecharts in MetaL2.
statechart is a metamodel defined as the aggregation of the metaobjects state
and transition (the latter being a metarole). Both state and transition
possess names. Not shown is that, as an aggregate, a statechart is not dependent
on these components (wp.notDependentOn=true), and that these components
can be shared with other models (wp.canNotBeShared=false).

In turn, the statechart metamodel can be used as a ‘pattern’ to create con-
crete models such as the coffeemachine statechart (see right compartment in
Fig. 4). This concrete model is created as an instance of the statechart meta-
model. It is an aggregate consisting of concrete objects such as states idle and
busy, and the transition going from the former to the latter.

The graphical conventions used in Fig. 4 and throughout this paper to repre-
sent the items in a MetaL repository are by no means prescriptive of the concrete
syntax of the metamodelling environment. This is still an open question. Cur-
rently, only a Java API is available to create items (see Section 4).
4 A special value in tN is used to encode cardinality values: 1 for one-to-many, 2 for

many-to-many, etc.
5 If set to true, it makes wp semantically equivalent to composition (strong aggregation)

in UML class diagrams.

460 V. Englebert and P. Heymans

Me
taP

rop
ert

y

Me
taO

bje
ct

ha
s

typ
e

Me
taR

ole
ca
rd
R

ca
rdP

t

t N
0

st
at
e

tra
ns
iti
on

ca
rdR

#1

ca
rdP

#1
1

ma
ny
-t
o-
ma
ny

st
at
e
na
m
e

t S typ
e#
1

ha
s#
1

t S
na
me

"t
ra
ns
it
io
n"

"s
ta
te
"

"s
ta
te
 n
am
e"

na
me

#1

na
me

#2

na
me

#3

ins
tan

ce
 of

isa

st
at
e#
1

st
at
e#
2

"id
le"

"bu
sy
"

st
at
e
na
m
e#
1

st
at
e
na
m
e#
2

tra
ns
iti
on
#1

ha
s#
1.a

ha
s#
1.b

typ
e#
1.a

typ
e#
1.b

M
et
aM

et
aM

od
el
 L
ev
el

M
et
aM

od
el
 L
ev
el

M
od
el
 L
ev
el

ε

ε

Me
taM

od
el

wp

st
at
ec
ha
rt

na
me

#4

wp
#3
.a

wp
#1
.a

wp
#1
.b

wp
#3
.b

wp
#2

wp
#1

co
ffe
em

ac
hi
ne

wp
#2
.a

isa

isa
isa

wp
#3

"s
ta
te
ch
ar
t"

Fig. 4. MetaL applied to statecharts, with 3 M-levels: the metametamodel (M3), the
statechart metamodel (M2), and a concrete statechart model (M1). (Not all items
appear).

Towards More Extensible MetaCASE Tools 461

3 Benefits

This section presents the main benefits of a metaCASE based on MetaL. We
first expose the general benefits through an illustrative example (Section 3.1).
We then focus on the reification capabilities (Section 3.2).

3.1 General Benefits

The example from [24] used in the introduction motivated the need for maintain-
ing explicit links between (meta)models. Thus, if the same concept
(e.g., “mainframe”) is represented in several (meta)models, these referential re-
dundancies are explicitely recorded and (meta)models can be kept easily in-sync
at all times. How one can achieve this in MetaL is illustrated in Fig. 5. Three
metamodels are defined: one for deployment diagrams (Deployment), one for
class diagrams (Static), and one for a new kind of diagram (or DSL) suppos-
edly defined by the user (Infrastructure).

As in Fig. 4, metamodels (i.e. instances of the MetaModel object type) are
shown as (coloured) panes. The same convention is used for models and the
metametamodel. The fact that an item is graphically represented within a pane
stands for an instance of the wp property type between the (meta(meta))model
and the item. Moreover, some panes overlap. Items found at the interesection of
panes are those shared (though wp) between (meta)models. For convenience, we
have numbered some items in Fig. 5. These numbers are used in the following
text to help identify items more quickly.

For instance, the metaobjects Deployment.node(1) and Static.class(2) have
been defined to share the same metaproperty (name(3)). Deployment is instanti-
ated into a model(4) that contains a node(5) whose name is “Fenris” (6). Static
is instantiated into a model(7) that denotes a class(8) named “Mainframe” which
owns a method named “shutdown”. A new metamodel(9) is also created to model
infrastructures. It borrows the mainframe class(8) from the static diagram, and
promotes it as a metaobject which can have a specific name. An infrastructure
model(10) is created, that borrows Mainframe Fenris(5) from the deployment
model. It defines its infrastructure name(11) as the same value as its name(12) in
the deployment model, but another name could be used.

The above repository exploits several features of MetaL to counter the usual
limitations of meta-repositories:

– First, since their aggregations are not necessarily disjoint, (meta)models
can overlap: Deployment MetaModel and Static MetaModel share the name
metaproperty; Deployment Model #1 and Infrastructure Model #1
share the Mainframe Fenris concept but with distinct types; and finally
Static Model #1 and Infrastructure MetaModel share the Mainframe
item.

– Second, sharing between (meta)models can be arbitrarily fine-grained : the el-
ementary units of sharing are metaobjects. Since every item is a metaobject,
the language allows great flexibility: one of more (meta)objects, (meta)roles,

462 V. Englebert and P. Heymans

no
de
 :
M
et
aO

bj
ec
t

na
m
e
: M

et
aP

ro
pe
rty

S
tri
ng
 :
t

1
1

M
ai
nf
ra
m
e
: c
la
ss
, M

et
aO

bj
ec
t

M
ai
nf
ra
m
e
Fe

nr
is
:n
od
e,
m
ai
nf
ra
m
e

sh
ut
do
w
n
: m

et
ho
d

"F
en
ris
"
: S

tri
ng

"M
ai
nf
ra
m
e"
 :
S
tri
ng

"s
hu
td
ow

n"
 :
S
tri
ng

fe
nr
is
 :
na
m
e

M
et
aP

ro
pe
rty

M
et
aO

bj
ec
t

ha
s

ty
pet

m
ai
nf
ra
m
e
: n
am

e

1

na
m
e
: M

et
aP

ro
pe
rty

S
tri
ng
 :
t

cl
as
s
: M

et
aO

bj
ec
t

m
et
ho
d
; M

et
aP

ro
pe
rty

*

S
ta
tic
 M
et
aM

od
el

D
ep

lo
ym

en
t M

et
aM

od
el

D
ep
lo
y-

m
en
t

M
od
e
l #
1

S
ta
tic
 M
od
el
 #
1

In
fra

st
ru
ct
ur
e
M
et
aM

od
el

In
fra

st
ru
ct
ur
e

M
od

el
 #
1

Th
e
M
et
aM

et
aM

od
el

instance of

in
s
ta
n
c
e
 o
f

in
s
ta
n
c
e
 o
f

instance of

in
s
ta
n
c
e
 o
f

1

2

4

3

5

6
7 8

9

10

11

12

Fig. 5. Crosscutting models and metamodels in MetaL. (Not all items appear).

Towards More Extensible MetaCASE Tools 463

(meta)properties, or even (meta)models can be shared. Moreover, the shar-
ing of a(n) (meta)object does not entail the sharing of its (meta)properties
or (meta)roles.

– Third, an object can be an instance of several object types, i.e. we have mul-
tiple instantiation. In the example, Mainframe Fenris(5) is both a node and
a mainframe. Multiple instantiation is not supported by many tools, but it
is a powerful means of implementing overlapping modelling views. It can be
used for example to approximate the facet language imagined in [25] (see
Section 5).

– Fourth, the language is freed from the instance/type delimitation and rela-
tionships can cross M-levels. In the example, this allows node and mainframe
to share the same property (fenris) although they belong to distinct M-
levels. Most approaches (with the notable exceptions of [2,16,12]) do not
allow cross-level (non instance-of) relationships, a.k.a. strict metamodelling.

– Fifth, since metamodels are metaobjects, the same item can be either con-
sidered as an atomic concept (a metaobject) or a complex aggregate (a meta-
model). In the latter case, distinct definitions (sets of member items) can
even be possible. For instance, the mainframe can be modelled as a node;
this node could in turn be a model which decomposition would show its inner
parts (e.g. motherboard, chip, devices, . . .); the same node could be decom-
posed according to another type that would show its software components
(process, libraries, . . .). Because of space limitations, this aspect could not
be illustrated in Fig. 5.

– Finally, another benefit that we cannot show here is metamodel refinement.
Since they are metaobjects, metamodels can also specialise each other. For
example, a metamodel m1 could be defined as a specialisation of m2. So, m1
can inherit from the constructs previously defined in m2, but possibly rename
them, add new constructs, and propagate refinements to lower levels, e.g. to
models. This type of metamodel refinement is much more powerful than
profile-based customization.

3.2 Reification, Meta-circularity and Bootstrapping

The definition of MetaL2 on top of MetaL1, and the fact that every MetaL1

item is an instance of itself (see Fig. 3), allow for a reflexive definition of the
metametamodel. This opens the way for elegant and powerful bootstrapping, an
example of which is found in Fig. 6.

Being a reflexive object type, MetaObject (see Fig.4) possesses at least one in-
stance at the metamodel level: itself. The same happens with the other elements
of the metametamodel (MetaProperty, MetaModel, MetaRole, etc.).

With this reflexivity, we can reify some previously ‘hardcoded’ constructs. As
an example, consider the property type name found in the metametamodel of
Fig.4. Being a metaobject, MetaObject can have a metaproperty, e.g. P point-
ing to tS. If we further instantiate MetaObject into itself, at the model level
MetaObject can now be linked to P1, an instance of P leading to the string
“MetaObject”. The old name property type has thus become obsolete.

464 V. Englebert and P. Heymans

MetaProperty

MetaObject

has

value

t

MetaProperty

MetaObject

P

t
S ε

has#1

value#1

MetaRole IdentifiedBy

state

P
3

has#1.a

value#1

"name"

IdentifiedBy#1

MetaMetaModel Level MetaModel Level Model Level

MetaObject

MetaProperty

P
2

P
1

"MetaProperty" "MetaObject"

value#1.a

value#1.b

has#1.b

has#1.c

Fig. 6. An excerpt of the metametamodel with explicit reflexive instanceOf relations
allowing reification of the name property type into a first-class metaproperty P

The conceptual elegance of reflexivity is relatively unimportant wrt to its
ability to bootstrap advanced features into the MML. Fig. 6 illustrates this
possibility with the addition of the metarole IdentifiedBy between MetaObject
and MetaProperty, making it possible now for metaobjects such as state to be
identified by a subset of their metaproperties (P3 in this case). A similar process
can be followed to enrich the (meta)languages with integrity constraints, version
control, traceability, etc. among many others. This could not be illustrated here
because of space limitations.

4 The metaCASE Architecture

A metaCASE prototype based on MetaL is currently being implemented as a
Java application. At this stage, we have completed the implementation of a
transactional repository whose architecture is presented in Fig. 7. It has been
made independent from a specific persistence technology and is able to manage
several projects at the same time in different formats: JDO, RDF, XML,. . . The
programme is currently 20 KLOC and offers an API as well as some basic input
forms to create and edit dataitems, both in MetaL1 and MetaL2.

The general philosophy of the metaCASE tool we are building on top of this
repository is to be completely model-driven. That is, every aspect of the tool
is a model compliant with some metamodel. Thus, all the dimensions of its
observable characteristics are editable, refinable and extensible. We will do so
for the GUI (menus, look-and-feel, etc.), the specification of the concrete user
notations, version management, collaborative aspects, etc.

For a previous metaCASE tool, we developed GRASYLA [8], a powerful
declarative language for describing the concrete syntax of metamodel items
(metaobjects, metaproperties, etc.) through equations and symbolic expressions
on these items. Taking advantage of the bootstrapping capabilities of the reposi-
tory, GRASYLA is being redefined as a metamodel. This way, not only arbitrar-
ily many graphical representations could be associated to the same metamodel

Towards More Extensible MetaCASE Tools 465

JDO_Factory

JDO_DataItem

<<instantiate>>

JDO_repository

JDO_Factory

<<instantiate>>

JDO_DataItem

<<instantiate>>

<<Interface>>
Object

<<Interface>>
Property domain0..* 10..* 1

range0..* 10..* 1

-value

<<Interface>>
ObjectString

-kindBehaviour
-name

<<Interface>>
PropertyType

instanceOf_P

1

0..*

1

0..*

-name

<<Interface>>
ObjectType

isa

0..*

0..*

0..*

0..*

instanceOf_O

1..*

0..*

1..*

0..*

<<singleton>>
<<Interface>>
TypeString

<<singleton>>
<<Interface>>
TypeBoolean

<<Interface>>
Common

-name {unique}

+createDataItem()

<<Persistent>>
Project

+createProject()

<<singleton>>
Repository 1 0..*1 0..*

<<Persistent>>
DataItem1 0..*1 0..*

+createDataItem()
+deleteDataItem()

<<interface>>
FactoryDataObject

<<use>>

<<instantiate>>

<<instantiate>>

-value

<<Interface>>
ObjectBoolean

Metal2

Grasyla

+runBoostrapping()

<<interface>>
Bootstrap

<<enumeration>>
TypeFacets

<<interface>>
FactoryProject

<<use>>

<<instantiate>>

<<instantiate>>

...

...

Fig. 7. Class diagram of the repository. A project holds a set of dataitems and has a
specific persistence manager. A dataitem implements a set of interfaces as described in
Section 2.

items, but it will also be possible to generate graphical editors for all languages,
at any level, including the MML and GRASYLA themselves.

5 Related Work

The current de facto industry standards for modelling and MD* are UML and
its supporting CASE tools. Unfortunately UML’s extensibility mechanisms are
based on the MOF [23] and therefore very limited. These limitations are being
tackled by metaCASE tools and metamodelling frameworks. A complete survey
is impossible in to fit in here, so we concentrate on the approaches that are the
closest in spirit, and we address only the characteristics discussed in this paper.

In the tool arena, the closest are MetaEdit+ [26], Metis [16], ConceptBase
[15] and GME [19]. MetaEdit+ allows the sharing of properties between objects,

466 V. Englebert and P. Heymans

and the sharing of objects between models, but does not allow them to span
several of its 3 M-levels (M1 to M3, where M3 is fixed). Metis circumvents this
limitation with a fully reflexive metamodelling facility. However, the absence
of technical details on the MML [16] make it hard to evaluate Metis’ limits.
ConceptBase supports Telos [22], a very flexible MML. It has unlimited M-
levels and non strict metamodelling, but has more rigid axioms (see Section 2.1)
and graphical limitations wrt GRASYLA. A notable strength of ConceptBase
is a declarative language for constraints, rules and queries. GME [19] is also
a fulfledged metaCASE tool but, like MOF, imposes disjoint metatypes (e.g. a
classifier can not be a package) which prevents adequate treatment of referrential
redundancy, and is limited to 3 M-levels.

We also find related approaches in metamodelling frameworks. MMF [5] pro-
poses a reflexive MML with constructs similar to ours. In [2], the concept of
‘clabject’ (half-class, half-object) is introduced to circumvent strict metamod-
elling. This approach is extended with the concept of powertype in [12]. We
support these views (all our elementary and metamodel items are ‘clabjects’ or
reflexive) but extend them with multiple instantiation, generalized reflexivity
and unlimited M-levels.

6 Limitations and Future Work

Despite their enhanced flexibility, our language and tool currently suffer several
limitations.

First, although we build on the experience of previous prototypes [7,8], we
are still at a relatively early (re)development stage. The features we currently
support are quite basic: a format-independent transactional repository based on
MetaL, with an API and basic input forms (see Section 4). Nevertheless, we are
confident that bootstrapping will significantly accelerate the development of the
remaining features, and especially the re-implementation of GRASYLA.

A concrete user syntax for MetaL still needs to be defined. The one used in
this paper is not prescriptive but could be a default. Another could be based on
class diagrams. Editors will be bootstrapped with GRASYLA.

By definition, the extension possibilities of a metaCASE tool are endless, so
we cannot hope to enumerate them here. However, additional features that we
envisage to bootstrap are version control, traceability and process integration.
The flexibility of the tool makes it possible to develop or tune those features
at later times without the need to reconsider architectural decisions, which is
a great advantage. An uncertainty is the performance that the full tool will
have since the cost of flexibility is the multiplication of indirection layers. The
current results obtained by manipulating metamodels such as those of various
UML diagrams are very satisfactory, but performance will need to be carefully
evaluated for advanced usages.

A missing feature, and a major advantage of ConceptBase over our approach,
is a declarative high-level language for constraints, rules and queries. At the
moment, the high-level API can be used for this, but entails using Java. Again,

Towards More Extensible MetaCASE Tools 467

bootstrapping might be an elegant way to introduce such a language. This option
will be explored in future work.

Finally, our objectives and design will have to be validated in the light of
empirical results. When the maturity of the tool will allow, experimentation
with users will be carried out.

7 Conclusion

The need for customizable and extensible CASE environments has become ubiq-
uitous. Despite the progress made by metaCASE tools, some limitations may
continue to discourage their use. In this paper, we recalled some problems and
proposed an integrated solution: MetaL. MetaL is a formal, fine-grained meta-
modelling language with relaxed axioms and enhanced reflexivity. It allows to
easily master referrential redundancy, to span abstraction levels, and to escape
the three layers limit. Moreover, its meta-circularity allows metametamodel ex-
tension and virtually infinite bootstrapping of additional features.

References

1. Alderson, A.: Meta-CASE technology. In: Endres, A., Weber, H. (eds.) Software
Development Environments and CASE Technology. LNCS, vol. 509, pp. 81–91.
Springer, Heidelberg (1991)

2. Atkinson, C., Kühne, T.: Meta-level independent modeling. In: International Work-
shop Model Engineering (in Conjunction with ECOOP’2000). Cannes, France
(June 2000)

3. Atkinson, C., Kühne, T.: The role of meta-modeling in mda. In: Bezivin, J., France,
R. editors, Workshop in Software Model Engineering (2002)

4. Brickley, D., Guha, R.V.: RDF vocabulary description language 1.0: RDF Schema.
Technical report, W3C (February 2004)

5. Clark, T., Evans, A., Kent, S.: Engineering modelling languages: A precise meta-
modelling approach. In: FASE. LNCS, vol. 2306, pp. 59–173. Springer, Heidelberg
(2002)

6. Ebert, J., Süttenbach, R., Uhe, I.: Meta-CASE in practice: a case for KOGGE. In:
Olivé, A., Pastor, J.A. (eds.) Advanced Information Systems Engineering. In: 9th

International Conference CAiSE’97, Barcelona, Catalonia, Spain. LNCS, vol. 1250,
pp. 203–216. Springer, Heidelberg (1997)

7. Englebert, V., Hainaut, J.-L.: DB-MAIN: A next generation meta-CASE. Informa-
tion Systems (Special issue on meta-modelling and methodology engineering) 24(2),
99–112 (1999)

8. Englebert, V., Hainaut, J.-L.: GRASYLA: Modelling CASE tool GUIs in Meta-
CASEs. In: Vanderdonckt, J., Puerta, A. (eds.) Proceedings of the 3rd International
Conference on Computer-Aided Design of User Interfaces (CADUI’99), Louvain-
la-Neuve, Kluwer, Dordrecht (1999)

9. Englebert, V., Heymans, P.: MetaL: a formal specification. Technical Report
PRECISE-06-01, University of Namur - PRECISE Research Centre, Rue grandgag-
nage 21, 5000 Namur, Belgium (2006)

468 V. Englebert and P. Heymans

10. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-driven development
using uml 2.0: Promises and pitfalls. em Computer 39(2), 59–66 (2006)

11. Froehlich, G., Tremblay, J.-P., Sorenson, P.: Providing support for process model
enaction in the Metaview metasystem. In: 7th International Workshop Computer-
Aided Software Engineering (CASE’95), Toronto, Ontario, Canada, IEEE Com-
puter Society Press, Washington (1995)

12. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based metamodelling
framework. Software and System Modeling 5(1), 72–90 (2006)

13. Holt., Schürr., Sim., Winter.: GXL: A graph-based standard exchange format for
reengineering. Science of Computer Programming 60(2), 149–170 (2006)

14. Honeywell. DOME Guide, Version 5.2.1 (1999)
15. Jeusfeld, M.A., Quix, C.: Meta modeling with conceptbase. In: Proceedings 1st

Workshop on Meta-Modelling and Corresponding Tools (WoMM’05), Essen, Ger-
many (7-8 March 2005)

16. Jørgensen, H.D., Karlsen, D., Lillehagen, F.: Collaborative modeling and meta-
modeling with the enterprise knowledge architecture. Enterprise Modeling and In-
formation Systems Architectures, An International Journal, 1(1) (2005)

17. Jouault, F., Bézivin, J.: KM3: A DSL for metamodel specification. In: Gorrieri,
R., Wehrheim, H. (eds.) FMOODS, Bologna, Italy. LNCS, vol. 4037, pp. 171–185.
Springer, Heidelberg (2006)

18. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+: A Fully Configurable Multi-User and
Multi-Tool CASE and CAME Environment. In: Constantopoulos, P., Mylopoulos,
J., Vassiliou, Y. (eds.) Proceedings of the 8th International Conference CAiSE’96
on Advanced Information Systems Engineering, Heraklion, Crete, Greece. LNCS,
vol. 1080, pp. 1–21. Springer, Heidelberg (1996)

19. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G.: The generic modeling environment.
In: WISP’2001, Budapest, Hungary, IEEE Computer Society Press, Washington
(2001)

20. Mcguinness, D.L., van Harmelen, F.: OWL web ontology language overview (Feb-
ruary 2004)

21. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving executability into object-
oriented meta-languages. In: Kent, S., Briand, L. (eds.) Proceedings of MOD-
ELS/UML’2005, Montego Bay, Jamaica. LNCS, vol. 3713, pp. 264–278. Springer,
Heidelberg (2005)

22. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing knowl-
edge about information systems. Information Systems 8(4), 325–362 (1990)

23. OMG. Meta Object Facility (MOF) 2.0 Core Specification, ptc/04-10-15 edition
(2004)

24. Opdahl, A.L., Henderson-Sellers, B.: A unified modelling language without refer-
ential redundancy. Data Knowl. Eng. 55(3), 277–300 (2005)

25. Opdahl, A.L., Sindre, G.: Facet modelling: An approach to flexible and integrated
conceptual modelling. Information Systems 22(5), 291–323 (1997)

26. Rossi, M., Kelly, S.: Construction of a CASE tool: The case for MetaEdit+.
In: First International Symposium on Constructing Software Engineering Tools
(CoSET’99), Los Angeles, USA (May 1999)

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 469–484, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Concepts for Incremental Method Evolution:
Empirical Exploration and Validation in Requirements

Management

Inge van de Weerd, Sjaak Brinkkemper, and Johan Versendaal

Department of Information and Computing Sciences
Utrecht University, Utrecht, The Netherlands

{i.vandeweerd, s.brinkkemper, j.versendaal}@cs.uu.nl

Abstract. Product software companies are confronted with performance
failures in their processes for which standard theories on situational method
engineering need to be revisited. By developing a knowledge infrastructure, we
support these companies with their method evolution by increasing the maturity
of their processes incrementally. We first identify and formalize general method
increments that are found in an exploratory case study. Then, we formalize
common process needs, by developing a root-cause map for software product
management and by identifying the root causes and process alternatives that are
related to them. We validate the formalized method increments, and process
needs by applying them to an extensive case study conducted at Infor Global
Solutions. The results show that the formalized method increment types cover
all increments that were found in the exploratory case study, and that the root-
cause map is a useful technique to model the root causes encountered in product
software companies.

Keywords: method engineering, meta-modeling, software process improvement,
incremental method evolution, root cause analysis.

1 Introduction: Incremental Method Evolution

Many organizations are struggling with the evolution of their information systems
development methods [6]. To control this, several software process improvement
methods have been proposed (e.g. [8] [14]), which can be implemented in different
ways and which are evolutionary in nature. In our research, we focus on such an
evolutionary approach instead of a mere revolutionary approach for several reasons:
a) it is a fundamental way to reduce risk on complex improvement projects [10]; and
b) we observe in practice that this is the natural way for method evolution [26] [27].

This evolutionary approach has been subject of research in various scientific
studies: methods have been developed to measure and to increase a company’s
maturity [8] [14]; studies have been carried out to find the best approach to instigate a
process improvement [17] [22]; and research has been done on the key success factors
that influence software process improvement [15]. However, in 2002, it was estimated
that still 70% of software process improvement projects failed [21].

470 I. van de Weerd, S. Brinkkemper, and J. Versendaal

In this work, we choose to take the existing research on software process
improvement a step further. Our aim is to develop a knowledge infrastructure that
supports product software (PS) companies that build off-the-shelf software products
for a market [28] in the incremental evolution of their methods, by dealing with their
process needs and guiding them to higher maturity levels. We keep the increments
local (i.e. one process at a time is changed) and small (in comparison to existing
incremental approaches with larger increments like CMM [14] and SPICE [8]).

In the next section, we describe our research approach, introduce process-
deliverable diagrams for modeling methods, and describe the context of this research.
In section 3, we define and formalize the process needs. In section 4, we validate the
formalized method increments by carrying out a case study at Infor Global Solutions.
Finally, in section 5, we describe our conclusions and future research.

2 Research Approach

Our aim is to support PS companies in their method evolution, by improving parts, or
fragments, of their existing methods in an automated way. Method engineering [3]
has been used successfully to engineer (parts of) methods for specific situations [1]
[16]; to serve as an instrument in software process improvement [27]; and to use as an
approach to manage evolutionary method development by integrating formal meta-
models with an informal method rationale [19].

For scoping reasons we limit our research to the software product management
domain of PS companies, covering requirements management, release planning,
product roadmapping, and portfolio management. In industry, software product
management is a clearly defined function, but in science research is fragmented [24].

2.1 Research Question and Methodology Outline

We define the following research question:

“How can product software companies improve their software product
management methods in an evolutionary way, using method fragment increments?”

We address this question by applying method engineering theory. Incremental
method engineering has been subject to research by e.g. [10] and [23]. However, a
definition of method increment seems not to be available. Therefore, we define a
method increment as: a method adaptation, in order to improve the overall
performance of a method. Note that adaptation can mean insertion, editing or removal
of method fragments.

Actual method increments in industry are explored in an explorative case study at a
HRM software vendor (from now on: HRM case study), in order to derive a list of
method increment types that occur during the evolution. By formalizing and
generalizing the increments, we model incremental evolution of a product software
company’s processes. The formalized increments are then validated in an ERP case
study. Using Root Cause Analysis (RCA, [18]) techniques we determine an initial set
of root causes of process needs that PS companies may encounter in the software
product management domain. RCA has been applied to process improvement and
incident prevention in software and non-software industries; see for example [11].

 Concepts for Incremental Method Evolution 471

With respect to the HRM case study we determine an initial set of root causes that
may lead to process improvement alternatives. This set and our RCA application are
also validated in the ERP case study.

2.2 Meta-modeling with Process-Deliverable Diagrams

For the analysis of method increments, we use process-deliverable diagrams (PDDs),
a meta-modeling technique that is based on UML activity diagrams and UML class
diagrams [25]. The resulting PDDs model the processes on the left-hand side and
deliverables on the right-hand side (see Figure 1). Examples of PDDs can be found in
Figure 5 and 6.

Fig. 1. Process-data diagram

We follow standard UML [13] conventions, but some minor adjustments have been
made for modeling development processes. Firstly, deliverables can be simple or
compound. Simple deliverables do not contain any sub deliverables and are
visualized with a rectangle. Compound deliverables contain one or more sub
deliverables. Compound deliverables can be open, visualized with an open shadow, to
indicate that it contains sub deliverables. The sub deliverables can be shown in the
same diagram, by using aggregation, or in another diagram (for example for space
saving). Closed compound deliverables, visualized with a closed shadow, indicate
that that sub deliverables exist, but are not relevant in this context. Similarly, open en
closed activities are used in the diagram. The dotted arrows indicate which
deliverables result from the activities. More details on this modeling technique can be
found in [25] and [27].

472 I. van de Weerd, S. Brinkkemper, and J. Versendaal

The PDD, visualized in Figure 1, is called a snapshot, a model of the process as it
was at a certain moment in time [27]. The evolution of a method over time exists of a
number of these snapshots. By comparing snapshots, method increments can be
analyzed. In Figure 1, we marked sub activity 4 and its corresponding concept. We
use this notation to show the method increment of this snapshot compared to a
snapshot earlier in time.

2.3 A Knowledge Infrastructure for Incremental Method Evolution

The context in which we want to support PS companies with the incremental
evolution of their processes is described in [27], where we propose the Product
Software Knowledge Infrastructure (PSKI, [27]). Several knowledge repositories for
software development methods have been proposed and developed (e.g. the OPEN
Process Framework [9]). However, the PSKI is not only a knowledge repository, but
it also analyzes the process need of a company in order to deliver meaningful advice.
In Figure 2, the PSKI is illustrated as well as the PS company that interacts with it.
The PSKI contains a method base, in which method fragments, situational factors,
maturity capabilities and assembly rules are stored.

Fig. 2. Product Software Knowledge Infrastructure

Analysis of need and situational indicators
The first step is the analysis of the process need and situational indicators. The
process need is analyzed using Root Cause Analysis, (RCA). Through RCA the root
causes of a process need are determined using the following sequence, see also [11]
and [18]: 1) which process difficulties actually occur; 2) what are the so-called causal
factors of the difficulties; and 3) what are the actual root causes per causal factor,

 Concepts for Incremental Method Evolution 473

using a root cause map designed for PS companies. We define a root cause as (one of)
the underlying reasons of a process need, solving one or more causal factors, and
relating to one or more actors, activities and deliverable concepts (referring to
figure 1). Situational indicators contain information about the process and the
company. Examples are company size, development platform and sector.

Selection of process alternatives
Once the root causes are known for a process need, directions for software process
improvement can be sought taking into account situational factors. For this, the
method base is used. Links between maturity capabilities and root causes are
available in the method base in order to identify possible process improvement
alternatives. Examples of maturity capabilities are listed in [26]. We define a process
alternative as a method fragment of a particular maturity capacity that settles one or
multiple root causes of the process need.

Embedding of process advice
The last step is embedding the process advice in the company’s existing processes. A
process advice, which contains a process description, templates and examples, is sent
back to the company. The person responsible for process improvement at the
company will then start the organizational deployment of the process advice. This
roll-out process also includes the insertion of the increment in the existing processes.

3 Definition and Formalization

This section defines and formalizes method increments and the development
problems that lead to these increments. The rationale for this formalization is twofold:
First, we use it to analyze the method increments that we found in the HRM case
study (see Section 4.4). Secondly, the formalization is used as a first step to develop a
formal structure for the method base of the PSKI in which method fragments can be
edited. Firstly, we define method evolution, snapshot and method increments. Then,
based on the meta-meta model of PDDs we present a list of all possible increment
types with some method fragment insertion rules. Thirdly, we analyze problems that
lead to the method increments and develop a root cause map for software product
management (RCM for SPM).

3.1 Definitions of Incremental Method Evolution

As the PDD technique is based on UML, we can utilize the available formalizations in
the literature. There appears to be two kinds of formalizations: those based on the
formal language Z, e.g. [5] and [20] and those using first order predicate logic, e.g.
[2], of which we chose the latter due to its concise presentation.

We start the formalization with the assumption that there is some kind of universe
of consistent methods, called M. We assume furthermore, that these methods in M can
be executed by project members, i.e. the method descriptions are available, complete,
and consistent. The evolution of the method in a particular company can then be seen

474 I. van de Weerd, S. Brinkkemper, and J. Versendaal

as a series of methods m1, m2, …, mn ∈ M . For reasoning about time we introduce the

time dimension T. The set of method fragments is called F.

Definition 3.1. The mapping method: T → M, where m = method(t) means that the

method m∈ M is the valid method at time t.

The methods change in the course of time, and this allows us to define the notion of
snapshot of a method.

Definition 3.2. A method adaptation time is a point of time where the method has
been adapted. Let T be the set of method adaptation times, i.e. T = {t1,t2,t3, …, tn}

such that ∀i ∀t: method(ti) = method(t) ≠ method(ti+1).

Definition 3.3. A method snapshot is a method m∈M that was valid at a particular
time, i.e. ∃ti ∈ T; m = method(ti).

Definition 3.4. A method evolution is a set S ⊆ M consisting of the method

snapshots, i.e. S = {method(ti)| ti ∈Ť}. So S is the set of methods that have been
valid in the course of time.

We are now able to define method increments. As in common method engineering
practices a method is seen as being composed of method fragments or method chunks
[3] [16]. Such a method is consistently created using well-formedness rules of process
composition and deliverable configuration. These rules are not elaborated here, as
they can be found in [4].

Definition 3.5. The predicate contains: F x S : contains(f,s) ≡ fragment f is
contained in snapshot s.

Then we can define an method increment as a method fragment that is part of
method(ti) but not in method(ti-1).

Definition 3.6. A method increment is a method fragment f∈F such that ∃i
contains(f,method(ti)) ∧ ¬contains(f,method(ti-1))

This means that the method increments are a collection of method fragments that have
been introduced in the method during the method adaptations between ti and ti-1. In the
following section we will then formalize the various types of increments

3.2 Formalization of Method Increments

In Figure 3 the meta-meta model of PDD is given, denoted in (again!) a UML Class
diagram.

The meta-meta model is a simplified view of the full UML definition of Class
diagrams and Activity diagrams [13] with special emphasis on the adaptations
discussed in Section 2.2 and the definitions in 3.1. Figure 3 shows that a method
consists of method fragments, that we distinguish as process fragments for the process
part of a method and deliverable fragments similarly. Note that the creation of
deliverables is modelled in the association edits between Activities and Concepts.

 Concepts for Incremental Method Evolution 475

Fig. 3. Meta-meta model of PDD

The structure of the meta-meta-model and the earlier case studies [27] to method
evolution revealed that 18 elementary increment types can be distinguished:

• insertion of a concept, property, relationship, activity node, transition, role
• modification of a concept, property, relationship, activity node, transition, role
• deletion of a concept, property, relationship, activity node, transition, role

The complete method increments from one snapshot to another can then be seen as
a composition of elementary increment types.

The UML formalization of [2] postulates the existence of unary predicates for each
class in a class diagram, e.g. concept(c) means that c is a concept in the model.
However, in our research we require evolution of methods over the various snapshots,
so we enhance these unary predicates to binary predicates with the method as an
additional parameter. So concept(c,m) means that c is a concept in the method m.
Method increments can now be defined as polymorphic mappings on the set of
method fragments and methods.

Definition 3.7. The mapping insert: F x M → M: insert(f,m1) = m2 means that the
method fragment f has been inserted in the method m1 resulting into method m2.

Definition 3.8. The mapping modify: F x F x M → M: modify(f1,f2,m1) = m2 means
that the method fragment f1 in the method m1 has been modified to the fragment f2 in
method m2.

Definition 3.9. The mapping delete: F x M → M: delete(f,m1) = m2 means that the
method fragment f has been deleted from the method m1 resulting into method m2.

476 I. van de Weerd, S. Brinkkemper, and J. Versendaal

The rules for the elementary increments can then be formulated. For the sake of
brevity we list the rules for the insertion of concepts and properties. Both rules are
illustrated with an example that is taken from the increment example in Section 4.3.

Rule 3.1. Insertion of concepts:

insert(c,mi) = mi+1 ⇒ ¬concept(c,mi) ∧ concept(c,mi+1)

Rule 3.1 states when a concept has been inserted into method mi to get method mi+1.
So, for instance:

insert(RELEASE TABLE,BaanIncr2) = BaanIncr3 ⇒ ¬concept(RELEASE

TABLE,BaanIncr2) ∧ concept(RELEASE TABLE,BaanIncr3)

This means that when the concept RELEASE TABLE is inserted into BaanIncr2
resulting into BaanIncr3, then RELEASE TABLE is not a concept present in
BaanIncr2 and is present as concept in BaanIncr3.

Rule 3.2. Insertion of properties:

insert(p,mi) = mi+1 ∧ property(p,mi+1) ⇒ [∀c: concept(c,mi) ∧
¬contains(p,c)] ∧ [∃1c: concept(c,mi+1) ∧ contains(p,c)]

Rule 3.2 tells that when property p is inserted into snapshot mi resulting into snapshot
mi+1, then p is not a property of any concept in mi and there is just one concept in mi+1
of which p is the property. So, for instance:

insert(topic,BaanIncr2) = BaanIncr3 ∧ property(topic,BaanIncr3) ⇒ [∀c:
concept(REQUIREMENT,BaanIncr2) ∧ ¬contains(topic,REQUIREMENT)] ∧ [∃1c:
concept(REQUIREMENT,BaanIncr3) ∧ contains(topic,REQUIREMENT)]

This means that when the property topic is inserted into snapshot BaanIncr2,
resulting into BaanIncr3, then topic is not a property of any concept in BaanIncr2
and there is just one concept, namely REQUIREMENT, in BaanIncr3 of which is topic
the property.

Analogously, rules for the other 16 elementary method increments can be
formulated, while taking the method assembly rules in [4] into account. Based on our
earlier work on method assembly this formalization is extremely straightforward and
will support the construction of the PSKI currently under development.

3.3 Root Cause Analysis for Product Software

Based on the general Root Cause Map (RCM) [18], the reference framework for
software product management (SPM) [24], and the HRM case study [27], we are able
to construct an initial RCM for SPM, as is depicted in Figure 4.

During the interviews conducted in the HRM case study, two major process
difficulties for requirements management were recognized:

A. Customers do not see that their required features and software improvement
wishes are implemented in new releases.

B. The company finds its requirements gathering process for new features not
productive.

 Concepts for Incremental Method Evolution 477

Fig. 4. The explorative case root-cause map

When we apply RCA to these process difficulties, we identify a number of causal
factors: To communicate a suggestion for improvement, a customer can contact the
sales representative; in some cases the sales representative replies that suggestions
should be posted to the helpdesk; in other cases the sales representative forwards the
suggestion to the helpdesk; and some suggestions are not logged at all.

As for the second process difficulty, when a new release is defined, the helpdesk,
the development manager and the software engineers are consulted. Rather arbitrary,
but fitting a defined planning schedule, the development of a new release is triggered.
Consequently, we identify three causal factors:

C1. Customers have difficulty in making their wishes known
C2. Customer requirements are not registered effectively
C3. Scoping of releases is rather arbitrary

The following root causes can be identified (indicated are the corresponding causal
factors):

R1. Requirement logging is less than adequate (LTA) (root cause for C1 & C2)
R2. Requirements are not available (root cause for C3)
R3. Criteria for requirements prioritization are unclear (root cause for C1 & C3)
R4. Criteria for requirements selection are unclear (root cause for C3)

In [27] a threefold solution for the two major process difficulties(A & B) is
described:

S1. Introduction of a separate activity for receiving and logging new requirements;
S2. Introduction of a wish list (requirements database) with wishes (requirements)
 containing a priority attribute;
S3. Introduction of a separate activity for prioritizing wishes.

When we map this process on the PSKI, this threefold solution would be described
in a process advice, containing process descriptions, templates and examples. Note
that RCA was not the basis for the solution finding at the HRM case study. However,
if we do take into account the RCA and the resulting root causes we find that solution
S1 addresses R1 and R2, solution S2 addresses R2 and partly R3, solution S3
addresses R3. Note that R4 has not been properly addressed in the solution. We

478 I. van de Weerd, S. Brinkkemper, and J. Versendaal

conclude that in the HRM case study, RCA was a useful approach for finding process
improvements alternatives. This will be further validated in Section 4.

4 ERP Case Study

We carried out a case study at Infor Global Solutions (specifically the former Baan
company business unit), a vendor of ERP (Enterprise Resource Planning) software
(see for example [12]). The goal of the ERP case study is to validate the increment
types defined in Section 3.3 and the root-cause map in Section 3.4. In 1978, Baan was
established as a book-keeping consulting company. Over the years, the company
changed from a consultant company to a software developer for businesses. Baan was
quoted on the Nasdaq stock exchange as an independent company from 1995 to 2000.

4.1 Case Study Design

Different sources are used to collect information. Firstly, several interviews have been
conducted with six former employees of Baan. Two explorative 3-hour interviews
were conducted with the Process Engineer of Baan. Based on this interview, the
method evolution between 1997 and 2002 was modeled. This information was cross-
checked by conducting 2-hour follow-up interviews with five other employees of
Baan, consisting of two former (Senior) Product Managers, a Director ERP
Development, a Manager ERP Product Ownership and a Software Engineering
Process Group Manager for Baan Development. In these interviews, also the
snapshots of 1994, 1996, 2003, 2004 and 2006 were identified and modeled.

Secondly, a document study was carried out. Documentation provided by the
Process Engineer was used to complement and validate the results from the
interviews. This documentation consisted of process descriptions, templates and
examples of methods and work products used at Baan in the period 1997 until 2006.
From the period before 1997 no documentation was available. We focused on the
following case study questions, related to software product management:

− Which snapshots can you identify in the method evolution?
− Which methods were used per stage? Which activities can be distinguished?
− Which deliverables resulted from these methods?
− Which process difficulties arose in this stage? Why was an increment needed?

With the information gathered in the case study, we modeled 14 snapshots in
PDDs, each representing a method that was used in a particular moment in time [26].

4.2 Method Snapshots

We analyzed 14 snapshots of the evolution of the software development process at
Baan, with emphasis on product management activities. The time period that is
covered in the ERP case study ranges from 1994 to 2006.

Note that, although some method increments entail the removal of a method
fragment, we still describe them as increments, as described in Section 2.1. In the

 Concepts for Incremental Method Evolution 479

Table 1. Overview of method increments at Baan

Increment Date
0 Introduction requirements document 1994
1 Introduction design document 1996
2 Introduction version definition 1998, May
3 Introduction conceptual solution 1998, November
4 Introduction requirements database, division market and

business requirements, and introduction of product families
1999, May

5 Introduction tracing sheet 1999, July
6 Introduction product definition 2000, March
7 Introduction customer commitment process 2000, April
8 Introduction enhancement request process 2000, May
9 Introduction roadmap process 2000, September
10 Introduction process metrics 2002, August
11 Removal of product families & customer commitment 2003, May
12 Introduction customer voting process 2004, November
13 Introduction master planning 2006, October

following section, one of these increments, namely the increment between snapshot 2
and 3, is further elaborated on. The other increments are described in [26].

4.3 Increment Example: Introduction of the Conceptual Solution

In Figure 5, increment # 2 of the ERP case study is visualized. Looking at the process-
side of the diagram, we can distinguish one main activity, i.e. ‘Requirements’, and
three sub-activities.

Fig. 5. Snapshot of increment #2

480 I. van de Weerd, S. Brinkkemper, and J. Versendaal

The first sub-activity, ‘Write draft version definition’, results in the concepts
VERSION DEFINITION and REQUIREMENT. The latter is connected to VERSION DEFINITION by
means of aggregation. Both have a number of attributes, and finally, a REQUIREMENT is
owned by a GROUP, that has the responsibility for this REQUIREMENT. The next sub-
activity is to review the VERSION DEFINITION. If the approval is obtained, the next
activity can be started; otherwise the VERSION DEFINITION has to be reviewed again.

In Figure 6, increment #3 is visualized. In this snapshot, one extra activity is
included. Note, however, that this activity is open, i.e. this activity contains further
sub activities that are elaborated elsewhere. Due to space limitations, the elaboration
on this activity is not included in this paper.

owns
1..*

1..*

Requirements

Write draft version definition

Review version definition

Get version definition approval

[approved]

[else]

Program Manager

REQUIREMENT

BR number
topic
description
functional deficiency
priority
development theme
source
objectives
scope
dependencies
contact person

name
manager
location

GROUP

0..1

0..*

release name
total nr requirements
total workload
owner

RELEASE TABLE

1

1

refers to0..1
1..*

document number
document group
document title
author
status
product group
location
month modified
purpose
motivation

CONCEPTUAL SOLUTION

0..1

1 is elaborated in

CAPACITY

mandays1..*

1..*

1

1
requires

document number
date
state
release name
release project name
document purpose
scope
overview
release purpose

VERSION DEFINITION

has

Create conceptual solutionsCreate conceptual solution

Fig. 6. Snapshot of increment #3

 4.4 Root Cause Analysis of Method Increments

In increment 3 (Figure 6) we distinguish the following increment types, based on the
formalization in Section 3.2:

I1. Insertion of an activity node, i.e. ‘Create conceptual solution’
I2. Insertion of a concept, i.e. RELEASE TABLE, CONCEPTUAL SOLUTION and CAPACITY
I3. Insertion of a property, i.e. the properties added to REQUIREMENT
I4. Insertion of a relationship, i.e. the relationships connecting the introduced

concepts to the existing concepts

Now we focus on RCA. The increments are included to solve one or more
problems. Based on the interviews, several process needs were identified in the
snapshot of increment #2. The most important ones were:

 Concepts for Incremental Method Evolution 481

A. Development managers find it hard if not impossible to determine a VERSION

DEFINITION that is feasible with available resources, and consequently makes sub-
optimal scoping decisions. In detail: signals from the market, as well as from
internal stakeholders, indicate that a new release should be developed. The
development managers ask the program managers and architects to establish the
version definition for the different software modules. The program managers and
architects collect, with some difficulty, the features and requirement from different
sources. They select a set of features to be developed according to their own
opinions. The program managers and architects discuss the draft version definition
with the development managers, and make changes to the selection of features.

B. Software engineers find it hard to read the VERSION DEFINITION in order to built what
is requested, and consequently do not build the precise features that were intended
to be build. In detail: in the version definition each new software product
REQUIREMENT is elaborated by the program manager and/or product architect. They
describe dependencies with other REQUIREMENTS in the text associated with a
requirement. The software engineers read the (often badly written) requirements,
interpret requirement texts, possibly asking their program managers and architects
for explanations. Subsequently, the requirements are built in the software product.

We identify the following causal factors:

C1. Requirement collection is difficult
C2. Text elaborations of requirements have different authors
C3. Requirements dependency descriptions are unstructured
C4. Interpretation of requirement is ambiguous

If we apply the earlier constructed root cause map for product software to this
particular increment we choose to extend it accordingly in order to address all
identified causal factors (see Figure 7). Note that, although we had to extend the root
cause map with the (bold) root causes, it fits the constructed structure as derived in
Section 3 very well.
The root causes of the four identified causal factors are fourfold:

R1. Requirements are scattered throughout the company in different documents (root
cause for C1 & C2)

Fig. 7. Baan increment extended root cause map for product software

482 I. van de Weerd, S. Brinkkemper, and J. Versendaal

R2. Some requirements are written in a solution-oriented way (root cause for C2 &
C4)

R3. Requirements are too complex (root cause for C4)
R4. Requirements are written in unstructured text (root cause for C3 & C4)

R2 and R3 led to the introduction of the CONCEPTUAL SOLUTION in increment #3.
This document was used to write a solution on conceptual level for the particular
REQUIREMENT. In this way, solution-oriented texts are also kept out the requirements
themselves. R4 partly led to the decomposition of the VERSION DEFINITION and
REQUIREMENTS. A RELEASE TABLE is used, in which information on the separate
REQUIREMENTS is summarized. No (full) solution is implemented for R1 and R4. These
are taken into account in the subsequent increment, which is described in [26].

We note that the RCM for SPM has been extended on the lowest level, but that
higher levels were untouched, indicating that for two different companies, the RCM
for SPM is a useful tool. We conclude that RCA can be used in software development
improvements (as in [8]) and more specifically software product management. The
root causes showed in the RCM for SPM provide means for the PSKI to determine
process improvement alternatives.

4.5 Validity Threats

In exploratory research, three types of validity are important [29]. Firstly, construct
validity concerns the validity of the research method. We satisfy this type of validity
by using multiple sources of data (interviewees and documents) and by maintaining a
chain of evidence. Furthermore, we had key informants review the draft case study
report. Secondly, the external validity concerns the domain to which the results can be
generalized. We carried out the case study in the software product management
domain in PS companies. The same protocol is followed as in earlier case studies in
PS companies. Finally, to guarantee the reliability of the case study, all information
should be recorded. This is done by maintaining a case study database which contains
all relevant information used in the case study. This case study database consists of
interview notes, documentation and process-data diagrams of all modelled methods.

5 Conclusion

By presenting a formal approach to incremental process improvement, we provided
PS companies with an instrument to improve their software product management
methods in an evolutionary way. Firstly, we formalized the method increments that
occur during method evolution. Doing this provided insight in the evolution process,
which can be used when assembling a method advice. Secondly, we presented an
approach for the structural analysis of process needs, by using root cause analysis. By
applying this analysis in a case study, we found that this approach and the
corresponding root cause map can be of great value in the support of incremental
method evolution.

Currently, we are working on the realization of the PSKI. We aim to further
integrate the root cause analysis approach in the PSKI in order to map root causes to
maturity capabilities and method fragments. The formalization of method increments

 Concepts for Incremental Method Evolution 483

is used to implement assembly rules. In the future, we plan to fill the method base
with situational factors, method fragments and assembly rules. Finally, we plan to test
the PSKI at PS companies of different sizes and in different sectors, in order to test
the mapping between situational factors, maturity capabilities and method fragments.

References

1. Aydin, M.N., Harmsen, F.: Making a Method Work for a Project Situation in the Context
of CMM. In: Proceedings of the 14th International Conference on Product Focused
Software Process Improvement, Rovaniemi, Finland, pp. 158–171 (2002)

2. Berardi, D., Cali, A., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artificial Intelligence 168, 70–118 (2005)

3. Brinkkemper, S.: Method Engineering: Engineering of Information Systems Development
Methods and Tools. In: Information and Software Techn, vol. 38, pp. 275–280. Elsevier,
Amsterdam (1996)

4. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modelling Based Assembly Techniques
for Situational Method Engineering. Information Systems 24(3), 209–228 (1999)

5. Clark, T., Evans, A., Kent, S.: The Metamodelling Language Calculus: Foundation
Semantics for UML. In: LNCS, vol. 2029, pp. 17 –31Springer, Heidelberg (2001)

6. Conradi, R., Fernström, C., Fuggetta, A.: A Conceptual Framework for Evolving Software
Processes. In: ACM SIGSOFT Software Eng. Notes 18(4), 26–35 (1993)

7. Cronholm, S., Ågerfalk, P.J.: On the Concept of Method in Information Systems
Development. In: Proceedings of the 22nd Information Systems Research Seminar in
Scandinavia 1, 229–236 (1999)

8. El, E.K., Melo, W., Drouin, J.-N. (eds.): SPICE: The Theory and Practice of Software
Process Improvement and Capability Determination. IEEE Computer Soc. Press, Los
Alamitos (1997)

9. Henderson-Sellers, B.: Process Metamodelling and Process Construction: Examples Using
the OPEN Process Framework (OPF). Annals of Software Eng. 14, 341–362 (2002)

10. Krzanik, L., Simila, J.: Is my Software Process Improvement Suitable for Incremental
Deployment? 8th International Workshop on Software Technology and Engineering
Practice (STEP’97) p. 76 (1997)

11. Leszak, M., Perry, D.E., Stoll, D.: A Case Study in Root Cause Defect Analysis, ICSE
p. 428 (2000)

12. Natt och Dag, J., Gervasi, V., Brinkkemper, S., Regnell, B.: Speeding up Requirements
Management in a Product Software Company: Linking Customer Wishes to Product
Requirements through Linguistic Engineering. In: Proceedings of the 12th IEEE
International Requirements Engineering Conference pp. 283–294 (2004)

13. Object Management Group: UML 2.0 Superstructure Specification. Technical Report
ptc/04-10-02 (2004)

14. Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability Maturity Model for
Software (Version 1.1) (SEI/CMU-93-TR-24, ADA263403). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University (1993)

15. Rainer, A., Hall, T.: Key Success Factors for Implementing Software Process
Improvement: a Maturity-Based Analysis. Journal of Systems and Software 62(2), 71–84
(2002)

484 I. van de Weerd, S. Brinkkemper, and J. Versendaal

16. Ralyté, J., Rolland, C.: An Assembly Process Model for Method Engineering. In:
Advanced Information Systems Engineering. In: CAiSE 2001. LNCS, vol. 2068, pp.
267–283. Springer, Heidelberg (2001)

17. Richardson, I., Ryan, K.: Software Process Improvements in a Very Small Company.
Software Quality Professional 3(2), 23–35 (2001)

18. Root Cause Analysis Handbook: A Guide to Effective Incident Investigation, ABS Group
Consulting, Inc, Houston, TX (1999)

19. Rossi, M., Ramesh, B., Lyytinen, K., Tolvanen, J.-P.: Managing evolutionary method
engineering by method rationale. Journal of the Association for Information Systems 5(9),
356–391 (2004)

20. Saeki, M.: Toward Formal Semantics of Meta Models. In: International Workshop on
Model Engineering, Nice, France (2000)

21. SEI: Process maturity profile of the software community. Software Engineering Institute,
Carnegie Mellon University (2002)

22. Stelzer, D., Mellis, W.: Success Factors of Organizational Change in Software Process
Improvement. In: Software Process: Improvement and Practice, vol. 4(4), pp. 227–250.
John Wiley & Sons, New York (1998)

23. Tolvanen, J.-P.: Incremental method engineering with modeling tools: theoretical
principles and empirical evidence. Jyväskylä Studies in Computer Science, Economics and
Statistics 47, University of Jyväskylä, PhD Dissertation thesis (1998)

24. Weerd, I., van de Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.: Towards
a Reference Framework for Software Product Management. In: Proc. of the 14th
International Requirements Engineering Conference, Minneapolis, Minnesota, USA
pp. 312-315 (2006)

25. Weerd, I., van de Brinkkemper, S., Souer, J., Versendaal, J.: A Situational Implementation
Method for Web-based Content Management System-applications. In: Software Process:
Improvement and Practice. Vol. 11(5), pp. 521–538. John Wiley & Sons, New York
(2006)

26. Weerd, I., van de Brinkkemper, S., Versendaal, J.: Incremental Method Evolution in
Requirements Management: A Case Study at Baan 1994-2006. Institute of Computing and
Information Sciences, Utrecht University. Technical report UU-CS-2006-057 (2006)

27. Weerd, I., van de Versendaal, J., Brinkkemper, S.: A Product Software Knowledge
Infrastructure for Situational Capability Maturation: Vision and Case Studies in Product
Management. In: Proceedings of the 12th Working Conference on Requirements
Engineering: Foundation for Software Quality (REFSQ’06), Luxembourg (2006)

28. Xu, L., Brinkkemper, S.: Concepts for Product Software. To appear in: European Journal
of Information Systems (2007)

29. Yin, R.K.: Case study research: Design and methods (3rd edn.). Beverly Hills, CA: Sage
Publishing (2003)

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 485–500, 2007.
© Springer-Verlag Berlin Heidelberg 2007

ReeF: Defining a Customizable Reengineering
Framework

Gemma Grau and Xavier Franch

Universitat Politècnica de Catalunya (UPC)
c/ Jordi Girona 1-3, Barcelona E-08034, Spain

{ggrau, franch}@lsi.upc.edu

Abstract. During their life span, organizations must adapt continuously to an
always evolving context and so have to do their Information Systems and the
processes around them. The scope of these changes ranges from small-scale
maintenance modifications or the redefinition of some business processes to the
full deployment of a new system. In all cases, the resulting Information System
will seldom be built from the scratch; as even when deploying it for the first
time, we may consider that it starts from the description of the current human
processes. For that reason, we may consider Information System development
and its evolution as a reengineering process. In this paper, we present a
framework that defines the generic activity of reengineering using Method
Engineering techniques. The framework is built upon existing reengineering
methods from different disciplines and provides six generic phases that can be
instantiated with the purpose of defining new reengineering methods.

Keywords: Method Engineering, Reengineering Framework, Business Process
Reengineering, Software Process Reengineering, i* Modelling and Analysis.

1 Introduction

Information Systems (IS) are in continuous change for various reasons. Changes that
affect the system over time include requirements, technology and business processes
[30]. All these changes are diverse in nature and may require different treatments
according to their impact over the IS. On the one hand, the current software may have to
be rebuilt, in order to create a product with added functionality, better performance and
reliability, and improved maintainability [26]. On the other hand, if the changes on the
business are too profound, a new IS may have to be deployed by adapting an already
existing legacy system or by building a new one. Therefore, in all these situations, there
are processes, artefacts and knowledge that can be taken as a starting point.

According to [31], traditional reengineering activities include: identifying,
delineating, and modelling the existent process; analysing it for deficiencies;
proposing new solutions; and implementing the new design in terms of new technical
systems and new organizational structures. It is possible to observe that most of the
methods proposed for the specification, development or acquisition of IS already
support some of these activities. For instance, some IS methods explicitly mention the
term reengineering in their proposal, as in [1], [2], [3], [4], [20], [21], [26], [30], [32].

486 G. Grau and X. Franch

On the other hand, some other methods not defined in the reengineering context,
tackle with some of those activities, among them we mention [7], [8], [10], [11], [16],
[17], [19], [24], [28]. Therefore, we may consider that changes on ISs are all part of a
reengineering activity, which supports our claim of IS development being treatable
similarly to IS reengineering.

An observation that can be made is that each above-mentioned reengineering-
related approach focuses on a particular discipline: business processes [2], [20];
software architectures [3], [26]; or software platforms [4], [32]. Despite of this
diversity, there are a lot of similarities when the methods are deeply analysed.
Actually, some of the differences lie more in the detail (e.g., using this or that
technique) than in the rationale or the rough reengineering process. However, in some
proposals, some of the reengineering activities and artefacts are not mentioned and the
lack of a generic framework makes difficult to apply them through a complete
reengineering process.

In order to address this problem, we propose ReeF, a customizable Reengineering
Framework which is based on the principles of Method Engineering [5], [23], [25],
[28] with the aim of assisting on the construction of new processes based on the
existing ones. ReeF has been built in two steps: first, abstracting the phases and
method artefacts from the existing method PRiM, a Process Reengineering i* Method
[13], by using the Approach for Method Reengineering [28]; and second, generalizing
the obtained phases and method artefacts by analysing other existing reengineering
techniques from different domains [1], [2], [3], [4], [7], [20], [21], [26], [30], [32].
Once obtained and validated, we show an example of framework customisation by
defining SARiM, a method for software architectures reengineering based on i*.

The benefits resulting from this process are twofold. In the one hand, the definition
of ReeF may help to understand, reconcile, and analyse existing reengineering
methods, and also to formulate new specific ones. With this aim, ReeF clearly
establishes the reengineering phases and the method artefacts involved in each phase
(techniques needed, modelling languages used, tool support provided, and roles). On
the other hand, the abstraction and generalization mechanisms used for abstracting
and generalizing ReeF from other methods (such as PRiM), may be applied to
generate other customizable frameworks based on a different development point of
view (as we have done with process reengineering).

The rest of the paper is organized as follows. In section 2 we outline the research
method followed to define the framework. The PRiM method, upon which ReeF is
based, is presented in section 3. The proposed framework is detailed in section 4 and
customized in section 5 for obtaining SARiM. Finally section 6 presents the
conclusions and future work.

2 Research Method

The main purpose of this research is to define a generic framework in which existing
reengineering techniques can be reconciled, adapted and analysed. As a result, new
reengineering methods in different disciplines and domains can be created by
derivation and combination of reusable fragments. As a result, this work is related
with Method Engineering, which is the discipline that constructs new methods from

 ReeF: Defining a Customizable Reengineering Framework 487

parts of existing methods [5]. There are several proposals that address Method
Engineering [5], [23], [25], [28], among which we remark:

 The OPEN Process Framework (OPF) [25] is a generic framework that provides a
repository with a wide range of Method Components, which are different parts of
existing methods described at different levels of detail that can be used for defining
other methods in different domains. A Method Component can be specialized into
Endeavour, Language, Producer, Stage, Work Product or Work Unit, which, in
turn, can all be specialized forming a complete hierarchy of elements. The OPF
repository of Method Components is very complete, thus enabling the selection of
those components more suitable for the specific purposes of the method.

 The Approach for Method Reengineering [28] proposes a bottom-up process for
transforming already existing methods into several pieces of method chunks which
are stored in a method base. From the stored method chunks, assembly-based
construction of methods is done by applying the following three steps [23]: method
requirements specification, method chunks selection and method chunks assembly.

We have considered using the OPF approach for generating ReeF; more precisely
we have studied the customizations for a Business Reengineering Project and for a
Framework Project. However, in both cases, the level of detail provided in OPF is too
broad for our purposes. For instance, the OPF reengineering phase description
includes aspects such as management, quality, and testing; but does not include all the
basic activities that we have identified in reengineering methods. Because of that, we
decided to use another approach for defining our reengineering framework, but we
still using OPF for assessing the analysis of existing reengineering methods, as a kind
of classification schema. On the other hand, method chunks are specific of the method
reengineered and, so, its granularity level is too detailed for being part of the generic
framework. However, we can observer that it is possible to abstract and generalize the
concepts of the specific method chunks into a set of generic method chunks. There are
several approaches on how to document, store and reuse the different method parts
[4], [5], [23], [25], [27], [28] that could be used to define and customize ReeF.
However, as we use method chunks during the definition of the method, we keep on
using them for illustrating its customization, as it is done in [23], [27], [28].
Consequently, we assume that method chunks are stored in a method base.

Taking those aspects into account, we have adopted a research method that, given
an existing reengineering method, abstracts and generalizes its method chunks. As a
result we have ReeF, a generic reengineering framework, which can be further
customized by using other method chunks previously stored in the method base.

In order to abstract the initial set of method chunks using method Reengineering,
we analyse PRiM, a Process Reengineering i* Method [13]. We consider this method
adequate as starting point because, as detailed in Section 3: 1) it is constructed after a
rigorous state of the art of business process reengineering techniques; 2) it makes use
of widespread techniques and artefacts in its definition instead of proposing ad-hoc
ones; 3) some of the underlying ideas are applicable to contexts other than business
process reengineering; 4) as authors, we have experience in applying the method and,
so, access to all the components that we want to abstract onto the customizable
framework which is an information sometimes difficult to obtain whilst analysing
other methods.

488 G. Grau and X. Franch

The definition of ReeF is done in two steps: abstraction and generalization.
Abstraction is the process of extracting common features from specific examples,
whereas generalization is the process of formulating general concepts by abstracting
common properties of instances. During the abstraction process, the phases of PRiM
are analysed in order to synthesize its method chunks, following the principles given
in [28]. PRiM is a method specific for the process reengineering domain. Thus, for
obtaining a generic framework, we need to apply a generalization process over other
reengineering methods from different domains. As a result, a new set of method
chunks is obtained, with the particularity that the method artefacts (namely, the
techniques, modelling languages, tool support and roles involved) are specified by
stating its generic definitions instead of their particular ones. Also, special emphasis is
given on the generic intention (the goal) that each method chunk pursues. The generic
framework is then defined by analysing and reconciling all the obtained elements.

The customization of ReeF is done by applying the following steps: refinement,
operationalization and combination. During refinement, the generic definitions stated
in the method chunks of ReeF, are refined into specific ones for the domain of
application. During the operationalization step, the refined statements of ReeF are
used for selecting from the method base those method chunks that better accomplish a
certain purpose. In order to facilitate this step, the method chunks can be classified
according to a set of criteria [23], [27]. Finally, during combination, the selected
method chunks are combined in order to obtain the new method. As we have
mentioned, these steps can also be done by using other methods [5], [25].

Fig.1 presents an overview of the research method. We observe that the validation
of ReeF is twofold. On the one hand, the proposed research method used for the
definition of ReeF ensures that the different reengineering methods analysed can be
successfully defined as instances of the framework. On the other hand, we define a
new method for the domain of software architectures with the objective of validating
its customization. The new method, called SARiM, is then defined by customizing

Fig. 1. Overview of the Research Method used for defining ReeF

 ReeF: Defining a Customizable Reengineering Framework 489

ReeF, and combines method chunks from existing reengineering methods with
specific techniques from the software architectures domain.

3 PRiM: A Process Reengineering i* Method

In our previous research we defined PRiM [13], a Process Reengineering i* Method
that addresses the specification of Information Systems from the process
reengineering perspective. The i* framework [31] is a well consolidated goal-oriented
approach that allows to model Information Systems in a graphical way, in terms of
actors and dependencies among them. The use of the i* framework in this context
provides an appropriate milieu where the current process rationale is modelled by
means of intentional concepts and the evaluation of the alternatives is done by
analyzing the rationale behind the modelled intentional concepts.

Analysis and evaluation of i* models is commonly done in a qualitative manner by
using the analysis capabilities provided by the Strategic Rational Model. Instead, a
goal of PRiM is to address the evaluation of alternatives from a quantitative point of
view by applying structural metrics over the i* models as proposed in [10], [11].
According to [9], one of the problems of the i* framework is the repeatability when
constructing the models. As repeatability is a fundamental property when applying
structural metrics and it is not ensured by other i* modelling techniques [14], the main
motivation behind PRiM definition has been to ensure this property. Because of that,
during the definition of PRiM we analysed several well-known business process
reengineering and requirements engineering methods [12] in order to incorporate in
the new method the adequate techniques, roles and artefacts. We highlight these
included elements in the description of the method provided below, and summarize
them in Table 1. We also remark that PRiM is defined upon the business process
reengineering phases presented in [31] but adding a first preliminary phase for
obtaining the information of the current processes.

The first phase of PRiM involves capturing and recording the information about
the current process in order to inform further phases. The approach adopted is based
on the RESCUE method [19] and, as a result, requirements engineers produce Human
Activity Models (hereafter, HAM). During the second phase, the i* model is build. In
order to ensure repeatability when constructing the models, PRiM provides concrete
guidelines that transform the information in Detailed Interaction Scripts (hereafter,
DIS) to i* elements. Thus, one of the activities the first phase is to adapt the
information on the HAM to DIS. As both approaches share a common structure,
simple transformation rules are provided in order to do it, and consistency checks are
defined latter on the method for checking that they have been correctly applied.

In the second phase, the i* model is built in two differentiated steps in order to
distinguish the functionality performed by the stakeholders from their strategic
intentionality. This approach is based on the semantically distinction of descriptive
goals and prescriptive goals given in [2]. Therefore descriptive goals are modelled on
the operational i* model by using the information in the DIS, and prescriptive goals
are modelled on the intentional i* model. As a result of this process a complete i*
model of the current process is obtained.

490 G. Grau and X. Franch

The first activity of the third phase is to obtain the goals of the new process, which
is done by using the complete i* model of the current process and applying KAOS [8]
for analysing it. As KAOS and i* are both goal-oriented, the acquired goals are added
to the complete i* model, yielding to the enriched i* model. With the aim of satisfying
these goals, several process alternatives are systematically generated by adding new
i* actors (which are mainly human, software or hardware), removing some of the
existing ones and reallocating the responsibilities between them. This process is
guided by the aim to satisfy the different new goals on the enriched i* model, which is
done by applying the techniques proposed in [20]. As a result, several alternative i*
models are produced.

In the fourth phase, the different alternative i* models are evaluated by applying
structural metrics over them [10], [11]. Trade-off analysis is needed in order to select
the most suitable solution. Finally, in the fifth phase, PRiM proposes the generation of
the new Information System specification from the i* model of the chosen alternative
which follows the work proposed by [29].

Table 1. Phases of PRiM, detailing the techniques, activities, inputs and outputs involved

Phase Activity Input Techniques Roles Output
Phase 1: Analysis of the current process

Analysis of the
current process

Current process Observation Process analyst
Human Activity
Diagrams (HAM)

Phase 2: Construction of the i* model of the current process
Transformation HAM Transformation rules i* modeller DIS
Actor Identification
and modelling

DIS Analysis of HAM i* modeller i* model actors

Building the
Operational i* model

DIS
Transformation
Rules

i* modeller
Operational i*
model

Building the
Intentional i* model

Operational i*
model

Provided Guidelines Process analyst
Intentional i*
model

Checking the
Complete i* model

Intentional i*
model

Consistency checks i* modeller
Complete i*
model

Phase 3: Generation of alternatives for the new process
Reengineering the
current process

Complete i* model
Requirements
Elicitation Patterns

Requirements
engineer

Enriched i* model

Adding new actors
to the process

Enriched i* model
Analysis of the
market

Process
designer

Actors for an i*
alternative (one)

Reallocating
responsibilities

Enriched i* model,
Actors

Provided Guidelines
Process
designer

Alternative i*
model (one)

Checking the
consistency

Alternative i*
models (all)

Consistency Checks i* modeller
Consistent i*
alternatives

Phase 4: Evaluation of alternatives for the new process
Choosing suitable
properties

Extended i* model
Observation of needs
from model

Process analyst Properties

Defining property
metrics

Properties Definition guidelines Process analyst Property metrics

Evaluating
alternative models

Consistent i* alt.
Metrics

Evaluation principles i* modeller
Evaluation
Results

Evaluation Trade-
off analysis

Evaluation results Trade-off analysis Process analyst
Suitable i* model
solution

Phase 5: Specification of the new Information System

Specification of the
new IS.

Suitable i* model
solution

Transformation
guidelines

i* and Use Case
modellers

Use Case model
of new IS.

 ReeF: Defining a Customizable Reengineering Framework 491

The PRiM method is based on an exhaustive state-of-the-art on business process
reengineering methods [12] complemented with well established requirements
engineering techniques such as KAOS [8]. The use of these techniques provides an
additional strength to all the phases defined on the method, and they have facilitated
the development of J-PRiM [15], a tool that supports the application of the method.
These are arguments that support using PRiM as starting point for formulating the
framework.

Also we would like to remark the benefits of the use of i* in PRiM. On the one
hand, i* supports all the phases of the method, allowing an assembly of methods by
association [23], because no connection between the product models has to be done
when combining the different method chunks. Actually, this also facilitates the
substitution of most of the techniques applied on the phases for other i* techniques
with the same aims, without great modifications and without altering the result (e.g.,
the generation of alternatives can be done by using the organizational patterns
proposed in [22]). On the other hand, as i* is goal-oriented and agent-oriented, it
allows reasoning at the goal and agent levels, which aligns with the strategic nature of
reengineering processes. Consequently, in the assembly of methods by integration
[23], goal-oriented and agent-oriented method chunks are easily adapted to represent
the concepts in a unique i* model (e.g., in phase 3, KAOS goals are represented in the
i* model).

4 Defining ReeF, a Customizable Reengineering Framework

In this section we explain the construction of ReeF in two differentiated processes,
abstraction and generalization, starting from the PRiM method.

4.1 The Abstraction Process

In the Abstraction process we extract common reengineering features from the
specific method PRiM. Thus, we use the Approach for Method Reengineering
proposed in [28] over PRiM for achieving the proposed four main intentions: Define a
section, Define a guideline, Identify a method chunk, and Define a method chunk. Due
to the lack of space, we present directly the application of the method in our context; a
complete description of the foundations can be found in [27], [28].

The PRiM method has a well defined process model and, so, in order to identify its
sections we use the functional strategy in order to establish the method map sections
from its phases. The intentions (or goals) of each phase of PRiM are identified and
documented using the Method Reengineering suggested notation, as follows: Analyse
the current process using Human Activity Modelling; Conceptualize the current
process into an i* model, Elicit requirements for the new process and explore
different process alternatives based on them; Assess the generated process alternatives
using evaluation techniques; and Create the specification of the new Information
System.

When reviewing the guidelines associated to these intentions, we realize that the
section “Elicit requirements for the new process and explore different process
alternatives based on them” contains two different products that could be treated

492 G. Grau and X. Franch

independently. Thus, we apply the progression discovery strategy and, as a result, the
section is divided into two different ones: “Elicit requirements for the new process
using a goal-oriented approach” and “Explore new process alternatives using process
generation heuristics”. Once the sections are defined, the guidelines indicating how to
proceed to achieve the objective of each identified section are also defined by
applying Method Reengineering. For instance, the method chunk “Explore new
process alternatives using process generation heuristics” has the strategic guideline
that it is shown at the bottom of Fig. 2.

The method chunks are identified by using a section-based discovery strategy. We
consider that each of the identified sections represents a method chunk because they
can be reused separately outside its original method. Actually, as PRiM does so, we
do not consider to apply any other strategy to identify more method chunks. Therefore
we may define them already. At the top of Fig. 2 we present the descriptor for the
method chunk “Explore new process alternatives using process generation heuristics”.

Situation:

Intention:
Origin:
Objective:

Type:
Aggregates:

Application Domain: Information systems, Business process reengineering
Design Activity: Discover system requirements
Explore new process alternatives using process generation heuristics
PRiM method
To help the process designer to explore different process candidate actors and generate
the process alternatives that takes into account these actors.
Atomic
<(Problem description), Explore a process alternative solution modelled in i*>

<(Problem description),
Explore a process alternative solution with reallocating responsibilities between actors strategy>

<(Problem description),
Identify an Actor>*

<(Problem description), Explore
reallocation of responsibilities>

Begin

End

Identify an actor
Explore

reallocation of
responsibilities

Check
consistency

between
alternatives

c2 c5

c3 c4
c1

c1: NOT all actors have been
identified
c2: all actors have been
identified
c3: an alternative has been
generated
c4: NOT all the responsi-
bilities have been reallocated
c5: all the alternatives have
been generated.

Fig. 2. Method chunk “Explore new process alternatives using generation heuristics”

Once all the PRiM method chunks are identified, we abstract their intentions and
the method artefacts used and, as a result, we obtain a set of abstract method chunks.
Table 2 shows the results of these abstractions, where we can observe that the
intentions of the PRiM method chunks are written in an abstract manner in order to
help further customization of the method. This is done by substituting the PRiM
specific artefacts (techniques, modelling languages, tool support and roles) for its
equivalent generic artefacts, which are written between the symbols <>. The flow of
the artefacts involved in the abstracted method chunks shows that they are treated in a
specific order, hence establishing that they are sequential. In the fourth abstracted
method chunk of Table 2, we show how the abstracted method artefacts are
documented by stating a description and some of the examples of the analysis
techniques, modelling languages, tool support and roles involved. The rest of the
method artefacts abstraction is straightforward. A more formal documentation of the

 ReeF: Defining a Customizable Reengineering Framework 493

framework could be stated by using [6]. A complete catalogue of method artefacts can
be found at the OPF repository [25].

Table 2. Generic notation for the intentions of the abstracted method chunks (abridged as amc)

amc 1: Analyse [source] <domain artefact> using <analysis techniques> obtaining <analysed artefact>
amc 2: Conceptualize <analysed artefact> into <model artefact>
amc 3: Elicit <requirements artefact> for the [final] <domain artefact> using <elicitation techniques>
amc 4: Explore [candidate] <domain artefact> using <generation techniques> obtaining [generated]

<domain artefact>
Techniques: Techniques and heuristics used to explore candidate solution artefacts (e.g.,
application of organizational patterns, application of architectural patterns, heuristics and
guidelines for the generation of alternatives).
Modelling language: Formalisms used to conceptualize the candidate solution artefacts (e.g.,
business process reengineering models, conceptual models, scenarios, architecture description
languages, goal hierarchies, actor-dependency models such as i*)
Tool Support: Tools that aims at supporting the exploration of candidate solutions using an
specific formalism (e.g., scenario generation tools, generation of alternative architectures tools)

Roles Involved: Analyst, which is domain expert, responsible of exploring the solution artefacts
(e.g., process analyst, software architectures analyst, systems analyst).

amc 5: Assess [generated] <domain artefact> using <evaluation techniques>
amc 6: Create [final]<specification artefact> for the [new] <domain artefact> using <model

transformation techniques>

4.2 The Generalization Process

During the generalization process we formulate general concepts by analysing the
common properties of other reengineering methods. Once the initial set of method
chunks are identified, we apply again the Approach for Method Reengineering [28] to
analyse more reengineering methods in order to obtain a generalization of the process.
The undertaken review includes the methods used in the definition of PRiM (now
studied from a Method Reengineering perspective) [2], [20]; business process
reengineering methods [1], [24]; architecture reengineering methods [3], [21]; and
platform reengineering methods [4], [32]. As a result, we obtain the method chunks of
these processes. In Table 3 we present an excerpt of it by showing the intentions
obtained from analysing the Scenario-based Software Architecture Reengineering
method [3]. We observe that each intention corresponds to an abstracted method
chunk with only one exception: after the elicitation of the functional requirements, the
method assesses the current software architecture.

Table 3. Intentions proposed by the Scenario-based Software Architecture Reengineering [3]

Method Scenario-based Software Architecture Reengineering [3]
amc 1:
amc 2:

These method chunks are not defined, as the method establishes as its input: the source <software
architecture> conceptualized into <scenarios>

amc 3: Elicit <functional requirements> for the final <software architecture>
amc 5: Assess <current software architecture> using <scenario-based evaluation>
amc 4: Explore candidate <software architecture> using <QA-optimizing architecture transformations>
amc 5: Assess generated <software architecture> using <scenario-based evaluation>
amc 6: This method chunk is not defined. The output of the method is: <improved architecture design>

494 G. Grau and X. Franch

When analysing the method chunks obtained from applying Method Reengineering
over all the previously mentioned reengineering methods, we observe the following:

 The analysed methods chunks present intentions that can be considered equivalent
to the abstracted method chunks. For instance, all the methods share the intention
of “Explore new solution artefacts”, although they propose different guidelines to
satisfy it.

 Not all the analysed methods present a sequential instantiation of the abstracted
method chunks, as most of them omit some intentions. We remark that usually the
omitted phases are the ones at the beginning or at the end of the process. For
instance, in [3], [7], [21], the first two intentions are not mentioned as they assume
that the information of the current situation is already studied and modelled for
their purposes, but they all generate and evaluate candidate software architectures.

 Some of the studied methods propose a preliminary evaluation of the modelled
process before the elicitation of new requirements. For instance, [3], [24], [32].

 Some of the methods allow iteration between the phases, allowing eliciting new
requirements, exploring new solutions and evaluating them several times before
choosing the final solution [3], [4], [7], [24].

 All the analysed methods have the abstracted method chunks for exploring and
assessing the solution artefacts. However, in some of the methods the assessment
is implicit in the exploration of the solutions as if it were a cycle between both
phases. For instance, in [4] and [21] the designer generates the solutions according
to its own criteria, which means an implicit evaluation of the current solution.

 All the studied methods have their intentions executed in the sequential order
established by the abstracted method chunks. An extreme example of this is the
work proposed in [24] where different reengineering processes can be generated
from applying a set of map strategies, and the generated methods are compliant
with ReeF.

 The method artefacts obtained in the studied method chunks are equivalent to
those abstracted in ReeF and, although the proposed techniques come from
different domains, their intentions and roles are an instance of the ones abstracted.

 All the methods use a modelling language for communicating between its phases.
The common modelling languages are visual models (e.g., Use Case Maps [7],
enterprise business process models [24]) and structured text (e.g., scenarios [3]).

Taking those considerations into account, we generalize the abstracted method chunks
obtained in ReeF and we establish the following restrictions:

 There is a sequential order within the different abstracted method chunks, but it is
possible to omit the ones at the beginning or at the end, as some methods do.

 It is possible to assess the source artefact after it is modelled, in order to inform
the elicitation of requirements.

 It is possible to iterate between the phases: the evaluation of alternatives can
inform a new elicitation of requirements; new alternatives are generated and
evaluated; and so on and so forth, until a final solution is found.

As a result, the ReeF framework is composed by six phases, which are shown in
Fig. 3. The blue arrows show the sequence of execution of the phases according to the
abstracted method chunks allowing the diversions and iterations previously
mentioned. The framework defines, for each of these phases, the work products

 ReeF: Defining a Customizable Reengineering Framework 495

needed (inputs) and produced (outputs) during the phases, the techniques (including
the activities for obtaining the work products, the transformations between models
and the tool support used) and the roles that are involved. As the framework is
generic, customization has to be applied in order to instantiated it. We remark that
during customization it is possible to define the new method by using different
techniques for each of its iterations if needed.

Fig. 3. Phases, inputs, outputs, techniques and roles abstracted in ReeF

5 Customizing ReeF into SARiM

As an example of application of the framework we propose the definition of SARiM,
a Software Architecture Reengineering i* Method. The aim of SARiM is to adapt the
experience in using PRiM to the domain of software architectures. The use of i* as a
modelling language has several advantages. On the one hand, i* allows to represent
functional and non-functional requirements as well as business goals at the same
level, thus bridging the gap that is usually found between requirements and
architectures [16]. On the other hand, i* has already been successfully used for the
representation of software architectures [18]. As a result, the customization strategy
followed in the SARiM case has prioritized operationalization over refinement and
combination (see Fig. 1).

Refinement. The generic intentions (or goals) defined in the abstract method chunks
of ReeF are refined for the particular domain of software architecture in order to
establish the main objectives to be satisfied in the new method, see Table 4. We
observe that only the desired artefacts are refined and that the precise technique may
still be undefined. As we do in PRiM, we do not consider the evaluation of the current
software architecture before the elicitation of the new requirements.

Operationalization. Once the intentions are defined, we search into the method base
those method chunks that better accomplish the intention. We propose to classify the
method chunks in the database according to three dimensions: intention they support,

496 G. Grau and X. Franch

domain they are designed for, and modelling language used. The reason for taking
considering the modelling language is that, if the method chunks do not share the
same modelling language, a transformation technique has to be applied between them,
so it is recommended to take this aspect into account in order to facilitate further
steps. However, other classification criteria for the method base can be used [3], [23].

Based on the refined intentions, the search for the appropriate method chunks in the
method base is facilitated, as the set of candidate elements is delimited. We remark
that the method base is not complete and not all the method chunks required may be
found there. If this is the case, a study of other suitable methods has to be done and
the resulting method chunks have to be added into the method base. This study may
include reengineering methods but also well-know requirements engineering methods
or guidelines for the application of patterns that, although not being defined as
reengineering methods, may support some of the proposed phases.

In the third column of Table 4 we show whether the method chunks available in the
method base are supported or not by PRiM. In the example presented in Table 3 we
show the intentions of the method chunks for the Scenario-based Software
Architecture Reengineering Method [3]. There, the fourth method chunk is scenario-
based and proposed a set of architecture transformation guidelines based on quality
attributes. As this intention satisfies the one we have refined in SARiM, we use it.

The other phases that are not supported by PRiM are the analysis of the current
software architecture and the elicitation of requirements for the future one. As there
are no method chunks in the method base to support those phases, we analyze other
methods for doing it. More precisely, we have searched in the field of requirements
engineering and we have selected the Architecture Reconstruction Method [17] for
the recovery and analysis of the current architecture, and the CBSP method [16] to be
adapted to the i* notation for the elicitation of the new requirements.

Combination. Once the method chunks are selected, method engineering techniques
for assembling can be applied [5], [23], [25], [27], [28] in order to obtain the final
method. The combination of the method chunks is out of the scope of this work, as it

Table 4. Refinement step, customazing ReeF in the domain of Software Architectures

Generic Intention in ReeF Refinement into SARiM Method chunks Operationalization
Analyse [source] <domain
artefact> using <analysis
techniques> obtaining
<analysed artefact>

Analyze source software
architecture using
<architecture analysis
technique>

Not supported by PRiM:
operationalized by the Architecture
Reconstruction Method.

Conceptualize <analysed
artefact> into <model artefact>

Conceptualize the software
architecture into an i* model

Supported by PRiM: needs previous
transformation of the results into DIS

Elicit <requirements artefact>
for the [final] <domain artefact>
using <elicitation techniques>

Elicit quality requirements for
the final software architecture
using <elicitation technique>

Not supported by PRiM:
operationalized by the CBSP
method.

Explore [candidate] <domain
artefact> using <generation
techniques>

Explore candidate software
architectures using
<generation techniques>

Not supported by PRiM: use of the
Scenario-based Software
Architecture Reengineering Method.

Assess [generated] <domain
artefact> using <evaluation
techniques>

Assess generated software
architecture using i* structural
evaluation techniques.

Supported by PRiM: needs the
generated architectures to be
represented as i* models.

Create [final]<specification
artefact> for the [new] <domain
artefact> using <model
transformation techniques>

Create final specification for
the new software architecture
using i* to use cases
transformation techniques.

Supported by PRiM: can be applied
directly from the previous phase.

 ReeF: Defining a Customizable Reengineering Framework 497

has already been addressed in [23], [27]. We just remark that, following the criteria in
[23] all the method chunks are combined following the established order and using the
assembly by association, where transformation techniques are applied in order to
transform i* models to scenarios. In the method chunks for requirements elicitation
and architectures generation, we apply an assembly by integration, as the tight link
between i* and requirements engineering techniques, facilitates it.

6 Conclusions and Future Work

In this paper we have argued that the evolution of Information Systems very often
leads to a reengineering activity. There are a lot of methods proposed in the literature
at different levels (business processes, software processes, software architectures,
etc.). This methods support reengineering both consciously, by applying the term
reengineering in its proposal; and unconsciously, by mentioning the phases that
characterize reengineering. However, as far as we know, there is not a common
framework to reason about reengineering and this has been the motivation of our
proposal. ReeF has been defined following the principles of Method Engineering
because this technique is specially well-suited when defining new methods based on
existing ones. As a result, the advantage of applying the framework is twofold:

 It provides a common umbrella under which the different existing reengineering
proposals may be analysed, compared for possible adoption, customized to
particular contexts and even composed to deal with reengineering at different
levels. In particular, an existing method could be enlarged to deal with some
activity not covered in its definition, or some technique may be changed with
some other identified as similar.

 It allows formulating new reengineering approaches starting from that framework,
not only facilitating that task, but also providing an ontology of reference and the
possibility of reusing methods, techniques, models and tools from a common
experience base.

ReeF is not intended to deliver an exhaustive catalogue with all the possible phases
and techniques, but instead it serves as a generic, customizable framework, which
provides, among other things, different levels of abstraction and the possibility of
choosing between different characteristics. More precisely, we argue that the
framework satisfies the following guiding principles proposed by the OPF [25]:

 Flexibility. In order to allow maximum flexibility when customizing, the phases
of ReeF provide: atomicity, in the way that the activities it proposes are related to
only one concept of the reengineering activities; optionality, certain phases can be
avoided if the customization requires so; and iteration, in those methods that
require several iterations of some of the phases.

 Standardization. Reef uses the most common terminology in the business
process reengineering field. For techniques, roles and activities it uses the already
standardized terminology and concepts coming from the OPF.

 Completeness. ReeF is complete in the sense that it includes all the elements that
may be needed in a reengineering process. Although it not provides a complete

498 G. Grau and X. Franch

repository of elements for instantiate the framework, it provides techniques for
constructing this repository.

 Openness. ReeF remains open in the sense that there is not a closed list of
elements and also because it is not necessary to instantiate all those elements,
allowing the method engineer to customize them accordingly to its goals.

 Reengineering Best Practices. ReeF is based on the abstraction and
generalization of well-know reengineering methods and related requirements
engineering techniques.

 Usability. ReeF facilitates usability by providing guidelines for its customization,
as it is shown in the customization of ReeF into SARiM.

 Reuse. The framework supports reuse of methods providing the context where to
customize the method and a set of elements as examples.

Further work will involve the application of ReeF on the combination of
reengineering methods that work in different domains (e.g., business process
reengineering and architecture reengineering). This includes the definition of more
method chunks and method artefacts into the method base and how to document and
classify them in order to facilitate their customization. We are mainly interested in the
use of i* and the method chunks proposed in PRiM as a basis for this process and we
want to adapt J-PRiM [15] in order to provide tool support for the whole process.

Acknowledgements

This work has been partially supported by the CICYT programme, project TIN2004-
07461-C02-01. Gemma Grau work is supported by an UPC research scholarship.

References

1. van der Aalst, W.M.P., van Hee, K.M.: Framework for Business Process Redesign. In:
Proceedings of the Fourth Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pp. 36–45 (1995)

2. Antón, A.I., McCracken, W.M., Potts, C.: Goal Decomposition and Scenario Analysis in
Business Process Reengineering. In: Proceedings of CAiSE 1994. LNCS, vol. 811, pp. 94–
104. Springer, Heidelberg (1994)

3. Bengtsson, P., Bosch, J.: Scenario-based Software Architecture Reengineering. In:
Proceedings of the 5th International Conference on Software Reuse, pp. 308–317 (1998)

4. Bouillon, L., Vanderdonckt, J., Chow, K.C.: Flexible Re-engineering of Web Sites. In:
Proceedings of the 9th International Conference on Intelligent user interface (2004)

5. Brinkkemper, S., Saeki, M., Harmsen, F.: Assembly Techniques for Method Engineering.
In: Proceedings of CAiSE 1998. LNCS, vol. 1413, pp. 381–400. Springer, Heidelberg
(1998)

6. Brinkkemper, S., Saeki, M., Harmsen, F.: A Method Engineering Language for the
Description of Systems Development Methods. In: Proceedings of CAiSE 2001. LNCS,
vol. 2068, pp. 473–476. Springer, Heidelberg (2001)

7. de Bruin, H., van Vliet, H.: Scenario-based Generation and Evaluation of Sofware
Architectures. In: Proceedings of the Third International Conference on Generative and
Component-Based Software Engineering, LNCS, vol. 2186, pp. 128–139. Springer,
Heidelberg (2001)

 ReeF: Defining a Customizable Reengineering Framework 499

8. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed Requirements Acquisition.
Science of Computer Programming 20(1-2), 3–50 (1993)

9. Estrada, H., Martínez, A., Rebollar, O., Pastor, J.: An Empirical Evaluation of the i* in a
Model-Based Software Generation Environment. In: Proceedings of CAiSE 2006. LNCS,
vol. 4001, pp. 513–527. Springer, Heidelberg (2006)

10. Franch, X.: On the Quantitative Analysis of Agent-Oriented Models. In: Proceedings of
CAiSE 2006. LNCS, vol. 4001, pp. 495–509. Springer, Heidelberg (2006)

11. Franch, X., Grau, G., Quer, C.: A Framework for the Definition of Metrics for Actor-
Dependency Models. In: Proceedings of RE 2004, pp. 348–349

12. Grau, G.: State of the Art for the Systematic Construction and Analysis of i* Models for
assessing COTS-Based Systems Development. Research Report LSI-06-38-R. Available
at: http://www.lsi.upc.edu/ techreps/files/R06-38.zip

13. Grau, G., Franch, X., Maiden, N.A.M.: A Goal Based Round-Trip Method for System
Development. In: Proceedings of REFSQ 2005, pp. 71–86 (2005)

14. Grau, G., Cares, C., Franch, X., Navarrete, F.J.: A Comparative Analysis of i* Agent-
Oriented Modelling Techniques. In: Proceedings of SEKE 2006, pp. 657–663 (2006)

15. Grau, G., Franch, X., Ávila, S.: J-PRiM: A Java Tool for a Process Reengineering i*
Methodology. In: Proceedings of RE 2006, pp. 352–353 (2006)

16. Grünbacher, P., Egyed, A., Medvidovic, N.: Reconciling software requirements and
architectures with intermediate models. Software and Systems Modeling 3(3), 235–253
(2004)

17. Guo, G.Y., Atlee, J.M., Kazman, R.: A Software Architecture Reconstruction Method. In:
Proceedings of WICSA 1999, pp. 15–34 (1999)

18. The i* wiki at: http://istar.rwth-aachen.de/ Last Accessed : November 2006
19. Jones, S., Maiden, N.A.M.: RESCUE: An Integrated Method for Specifying Requirements

for Complex Socio-Technical Systems. Book chapter in Requirements Engineering for
Sociotechnical Systems, Idea Group Inc. (2004)

20. Katzenstein, G., Lerch, F.J.: Beneath the Surface of Organizational Processes: A Social
Representation Framework for Business Process Redesign. ACM Transactions on
Information Systems 18(4), 383–422 (October 2000)

21. Kim, M., Lee, J., Kang, K.C., Hong, Y., Bang, S.: Re-engineering Software Architecture
of Home Service Robots: A Case Study. In: Proceedings of ICSE 2005, pp. 505–513
(2005)

22. Kolp, M., Giorgini, P., Mylopoulos, J.: Organizational Patterns for Early Requirements
Analysis. In: Proceedings of CAiSE 2003. LNCS, vol. 2681, pp. 617–632. Springer,
Heidelberg (2003)

23. Mirbel, I., Ralyté, J.: Situational method engineering: combining assembly-based and
roadmap-driven approaches. Requirements Engineering, 11(1) (2005)

24. Nurcan, S., Rolland, C.: A multi-method for defining the organizational change.
Information and Software Technology 45(2), 61–82 (February 2003)

25. The OPEN Process Framework (OPF) at: www.opfro.org. Last accessed: November 2006.
26. Pressman, R.S.: Software Engineering: a Practitioner’s Approach. In: International

Edition, 6th edn. McGraw-Hill, New York (2005)
27. Ralyté, J.: Ingénierie des méthodes par assemblage de composants. Thèse de doctorat en

informatique de l’Université Paris 1 (Janvier 2001)
28. Ralyté, J., Rolland, C.: An Approach for Method Reengineering. In: ER 2001. LNCS,

vol. 2224, pp. 471–484. Springer, Heidelberg (2001)
29. Santander, V.F.A., Castro, J.F.B.: Deriving Use Cases from Organizational Modeling. In:

Proceedings of RE 2002, pp. 32–39 (2002)

500 G. Grau and X. Franch

30. Smith, J.D., Hybertson, D.: Implementing Large-Scale COTS Reengineering within the
United States Department of Defense. In:Proceedings of ICCBSS 2002. LNCS, vol. 2255,
pp. 243–256. Springer, Heidelberg (2002)

31. Yu, E.: Modelling Strategic Relationships for Process Reengineering, PhD. thesis,
University of Toronto (1995)

32. Zhang, W., Jarzabeg, S., Loughran, N., Rashid, A.: Reengineering a PC-based System into
the Mobile Device Product Line. In: Proceedings of the 6th International Workshop on
Principles of Software Evolution, pp. 149–160 (2003)

Publishing and Discovering Information and

Services for Tagged Products

Christof Roduner and Marc Langheinrich

Institute for Pervasive Computing, ETH Zurich, 8092 Zurich, Switzerland
roduner@inf.ethz.ch, langhein@inf.ethz.ch

Abstract. Radio frequency identification (RFID), and more recently
the development of Near Field Communication (NFC) technology, have
popularized the idea of linking real-world products with online informa-
tion and services. Apart from early prototypes, however, the benefits
of such automated identification technologies have so far been mostly
available to industry, rather than consumers. With the next generation
of mobile phones capable of reading both traditional bar codes through
their integrated cameras, as well as RFID tags using the NFC stan-
dard, end-users themselves could take full advantage of such ubiquitous
identification labels, given novel information architectures that go be-
yond simple web pages or industrial enterprise resource planning (ERP)
systems. This paper presents an open lookup infrastructure that allows
commercial, public, and private entities to easily provide information and
services associated with tagged items, thus facilitating the rapid devel-
opment and deployment of applications based on everyday products.

1 Introduction

The idea of linking information and services to physical objects has been in-
vestigated in many research projects, either using printed markers [1,2,3,4,5],
embedding RFID tags [6,7,8], or even by attaching small infrared beacons [9].
In its simplest form, product identification technology has been widely used as
early as in the mid-1970s, when bar code labels began to speed up the checkout
process in supermarkets. Today, bar codes have become truly ubiquitous, form-
ing the backbone of many automated processes, such as in airline ticketing and
baggage handling, in libraries and video rental shops, in hospitals, and – most
of all – in industrial supply chain management.

During the past few years, radio frequency identification (RFID) labels have
gradually begun to replace traditional bar code labels, as they offer two dis-
tinct advantages: Firstly, RFID labels do not require a line of sight between a
reader and a tag, thereby allowing large numbers of tags to be read quickly. Sec-
ondly, traditional one-dimensional product bar codes (so-called EAN or UPC
bar codes)1 can only be used to identify products at class-level, while RFID
1 EAN stands for European Article Number, UPC for Universal Product Code. They

represent the official product identification codes for European and North American
products, respectively.

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 501–515, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

502 C. Roduner and M. Langheinrich

tags allow the identification of individual items (as RFID offers more digits in a
smaller area), thus allowing for more detailed product tracking capabilities.

However, so far the benefits of such identification technologies – be it bar
codes or RFID tags – have mainly been limited to industry, i.e., manufacturers,
distributors, wholesalers, and retailers, who were able to automate many of their
logistical processes. This situation may change in the near future, as modern
mobile phones are increasingly able to directly read identification tags found on
consumer products: Mobile phones equipped with a Near Field Communication
(NFC, see www.nfc-forum.org) module are already able to read specific types of
RFID tags, while recent camera-equipped models can easily decode traditional
EAN or UPC bar code symbols found on virtually all consumer goods [10].

While the above-cited projects certainly offer a wide variety of applications
for tagged products, they nevertheless assume monolithic, centrally adminis-
trated services – such as calling up an online dictionary when putting a bound
dictionary on the desk [8], opening a product’s web page [9], or launching an
application-specific user interface [4]. However, the general availability of infor-
mation tags and corresponding reader devices opens up the possibility for novel
and innovative applications that cannot be planned for. Having to install and
run separate applications and infrastructures for each of the potentially available
services for a product (e.g., a price comparison service, allergy warnings, a calorie
calculator, or warranty information) would soon overburden users, application
developers, and system administrators.

Ideally, an open service infrastructure would allow any party, e.g., manufac-
turers, consumer interest groups, governmental agencies, or even enthusiastic
end-users, to dynamically add services to a specific product or product group,
which could then be presented to and selected by consumers right when they
scan a product. This paper presents our open lookup infrastructure for tagged
items, which allows

1. manufacturers, third-parties, and individuals to publish product-specific re-
sources (i.e., information and services), and

2. consumers to dynamically find and use these resources.

We begin by describing a set of envisioned scenarios and an analysis of the
corresponding requirements for our lookup infrastructure in Section 2. The over-
all architecture of our system is presented in Section 3, with implementation
details given in Section 4. Section 5 concludes with a discussion of three proto-
type applications that we built on top of our infrastructure, demonstrating the
value and feasibility of our approach.

2 Application Scenarios and Requirements

Augmenting physical products for end-user lookup is an attractive option, espe-
cially for manufacturers. A frozen food company could for example differentiate
its frozen spinach by providing an instant “recipe of the week”-suggestion, which
customers would be able to access simply by pointing their mobile phone at the

www.nfc-forum.org

Publishing and Discovering Information and Services for Tagged Products 503

product. At the same time, a consumer interest organization could provide back-
ground information about the product’s health benefits, e.g., praising it for the
organic fertilizer that was used for it, or maybe warning consumers of geneti-
cally modified ingredients. Another example scenario for end-user lookup could
be a faulty appliance, such as a printer or a coffee maker, which would provide
a diagnostic code over an integrated NFC interface. By touching the appliance
with a mobile phone, users could pick up this diagnostic information and receive
instructions on how to resolve the problem. Alternatively, a list of nearby repair
centers could be displayed. For missing consumables (e.g., printing paper, coffee
capsules, or filter units), third party stores could offer users one-click reordering
options. Last but not least, tagged products could also provide machine-readable
instructions for other appliances, which would, e.g., allow a microwave oven to
prepare a frozen meal, or a washing machine to warn users when the wrong
temperature for a certain garment is selected.

Based on these scenarios, we can derive a number of high-level requirements
for an infrastructure that should facilitate the discovery of resources (i.e., infor-
mation and services) associated with a physical product.

Publication, search, and retrieval of resources. In general, many resources
may be linked to a single tagged product at the same time. Our infrastructure
must therefore provide mechanisms to store and find these resources. At the same
time, an application might want to limit or focus the resources returned when
looking up information and services associated with a given tagged product.
Such search restrictions could be based on certain topics (e.g., “health aspects”)
or certain types of resources to look up (e.g., “expiration date”). Furthermore,
the concept of context [11] (e.g., the location or status of the appliance the user
interacts with) should be supported as a search criterion.

Openness. As the example scenarios illustrate, a range of stakeholders could
have a potential interest in associating resources with a product. We therefore
want to allow both product manufacturers and third-parties (such as advocacy
organizations, competitors, or individuals) to be able to publish resources for a
particular product. Similarly, our system should also allow the sharing of publicly
available resources. In line with Lessig’s “Creative Commons” approach [12],
we expect the general availability of resources and a supporting infrastructure
to prompt the development of numerous innovative applications, as is the case
with current Web 2.0 mashups.

Extensibility. In our application scenarios above, resources can be of very dif-
ferent types. Our infrastructure should thus not try to define a limited set of
foreseen resource types and their uses. Rather, it should provide extension points
that allow third-parties, be it individuals or industries, to come up with their
own resource types that can be shared using our system. Additionally, it must
be possible to easily integrate existing information systems, such as enterprise
resource planning (ERP) systems, to make their data accessible as resources.

Lightweight and secure architecture. Most of the discussed applications run
on either mobile devices or embedded systems. Due to the resource constraints

504 C. Roduner and M. Langheinrich

Resource Consumers

Resource
Repository

Resource
Repository

Resource
Repository

Resource
Repository

Manufacturer
Resolver Service

Manu-
facturer

Third Party

Third Party

S
e

a
rc

h
 S

e
rv

ic
e

Fig. 1. Open lookup infrastructure. The center of our architecture are resource reposi-
tories containing resource descriptions. In order to find one or more repositories, given
a particular product tag, mobile devices or stationary appliances either access a known
repository (e.g., of their favorite consumer interest group), use the manufacturer re-
solver service, or query generic search services.

typically found on these platforms, we need to employ lightweight protocols in
our lookup infrastructure. The open nature of our system mandates the use of
security mechanisms. For example, in certain applications users must be able to
determine the authenticity of a party providing a resource.

Resource discovery, i.e., finding resources by specifying a set of desired at-
tributes in a distributed environment, has been an active field of research. While
many of the protocols in this domain, such as Jini [13], UPnP [14], SLP [15], and
Konark [16], focus on ad-hoc networks and do not scale beyond single commu-
nities, our application scenarios span larger networks (i.e., the Internet). While
INS/Twine [17] seems to be well suited for large networks, it gives resource
providers no control over where their resources are stored, which would be a
problem for tagged product resolving, as it gives resource providers no control
over service quality and cost sharing. UDDI [18] is a discovery service used in the
domain of web services, so it should in principle scale well and offer finer control
options. However, UDDI is not well suited for the lightweight lookup of simple
and small bits of information. Very much related to our work is EPCglobal’s
EPCIS [19] – a standard for sharing product related information. However, its
applicability is limited to the logistics domain. In summary, none of these exist-
ing solutions meet our requirements as discussed above.

3 Architecture

In this section, we discuss the architecture and four core concepts of our lookup
service: resources and their descriptions, resource registries, a manufacturer re-
solver service, and search services (see Figure 1).

3.1 Resources and Resource Descriptions

Resources are at the core of our system. They offer information on, or services for,
a physical product. Typical examples for resources range from a simple website

Publishing and Discovering Information and Services for Tagged Products 505

to complex web services. Resources can be provided by the original product
manufacturer or any other party. Resource consumers can be product owners,
business partners, or appliances. For every resource, a resource provider must
create a resource description that specifies all the metadata that is needed to
consume the information or service.

Figure 2 shows an example of a resource description. A resource description
includes the following main elements:

– The resource ID element is a pseudo-random value that serves as a globally
unique identifier (GUID) for the resource.

– The tag ID element denotes the identifiers of those tags on physical prod-
ucts that a resource is associated with. The tag ID can specify a product
at an item- or class-level. Different numbering schemes, such as EPC2 and
EAN/UPC, are supported. Note that a resource can carry several tag IDs
and thus apply to several products. This can be helpful, e.g., when the same
(or similar) product is sold under different identifiers.

– The profile element can be used to express that the resource adheres to the
syntax and semantics that are defined in a certain profile. Typically, a profile
will be defined by an industry (e.g., in a standardization group). The food
industry could, for example, specify in a profile how the expiration date of a
product is to be represented in a resource. Profiles are essential in cases where
a resource is not interpreted by humans, but processed by an appliance.3

– The url element points to the actual resource (e.g., a website). Alternatively,
the resource can be stored directly in the data element if it is relatively
small (e.g., a product’s expiration date), which avoids an additional round-
trip. The syntax and semantics of the data available via either the url or
data element are defined by the resource’s profile as indicated in the profile
element.

– If specified, the context field defines in which situation the resource is rele-
vant. In order to enable interoperability, we predefined the following context
elements that can be used to restrict a resource’s applicability: time (date,
time, weekday), location (coordinates, city, country), and status (expressed
as a simple string) of the appliance the user interacts with. Note that this
list is easily extensible by resource providers. Exact values, value ranges, and
regular expressions are supported for each context element.

– The title and description elements describe the resource in natural language.
– Finally, the resource provider can digitally sign the resource description using

the optional signature element.

Figure 2 shows an example of a resource description, in this case describing
the expiration date of a particular bottle of milk. Notice that the example is
2 EPC stands for Electronic Product Code and is the designated, global successor to

both the EAN and UPC numbering scheme. It is administered by EPCglobal.
3 Note that this element does not actually contain a syntactical or semantical descrip-

tion, but merely serves as an identifier for a format agreed upon by participants,
similar to the Content-Type field in HTTP.

506 C. Roduner and M. Langheinrich

resource id: f5f7305bf097af39c68b790d817d7889f788f222
tag id: urn:ean.ucc:7610200337481

profile: http://foodindustry.org/profiles/expiration-date/
url: (empty)
data: 2007-05-31

context: (empty)
title: Expiration date

description: Expiration date for OrganicMilk, 1 liter
signature: (empty)

Fig. 2. Example resource description. Descriptions can be expressed in various formats,
e.g., XML or even binary, depending on the particular communication and storage
needs of a product (example given in an abstract format).

given in a generic format, which in practice can be instantiated in a number
of formats, such as XML or even binary form, depending on the particular use
case. Also, resource descriptions for food products might equally well be entire
data sets (e.g., expiration date, allergy information, country of origin) instead
of just a single data item (e.g., expiration date) as in the above example – this
can be standardized as needed by the various standard bodies.

3.2 Resource Repository

The resource repository is responsible for storing resource descriptions and mak-
ing them available to resource consumers. Resource repositories can be deployed
by any party interested in offering resources, such as a manufacturer or an ad-
vocacy group. In this way, a single resource repository typically contains the
descriptions of resources that are thematically related. Operators can flexibly
configure access restrictions to their resource repositories. For example, a man-
ufacturer will in most cases run a read-only repository, while a community-
operated product reviews repository might allow anyone to add or even update
resource descriptions (very much like today’s Wikis). The same applies to the
querying side, where a consumer reviews publisher might limit access to its
repository to paying customers only.

The three basic operations offered by a repository are RegisterResource,
which is used to publish a resource description, RemoveResource to delete a
published description, and LookupResource, which returns the descriptions of
those resources matching the query conditions provided by the caller. A query
can consist of up to four elements:

– The tag ID element must be provided to denote the product for which re-
sources are looked up. A lookup can be performed at both class- and item-
level.

– A profile element can be indicated to only fetch resources adhering to it.
– A search term element can be specified to restrict the resulting resources

based on their textual description.

Publishing and Discovering Information and Services for Tagged Products 507

tag id: urn:epc:id:sgtin:0652642.800031.400
profile: http://appliances.org/troubleshooting-hints/

search term: (empty)
context: status=E683[hint]

Fig. 3. Example lookup request sent to a resource repository. Based on a particular
printer status (as sent through the printer’s NFC interface), a user could query directly
for information on a particular printer in the context of a “status=E683” code.

– Using the context element, the caller can specify an arbitrary number of con-
text values. Each value must be marked as either a hint (favoring resources
with a matching context element) or a requirement (excluding resources with
no matching context element).

An typical lookup request is shown in Figure 3. It shows a request as it could,
for example, be sent to a printer manufacturer’s resource repository in order
to obtain troubleshooting instructions when the printer is in a malfunctioning
state. The printer’s status code is read by the mobile phone’s NFC module and
used as context information to narrow down the lookup.

A resource repository can also be configured to allow user feedback on re-
sources. The incorporation of feedback allows community-based applications
where the quality of content is controlled by users submitting confidence val-
ues for resources. At the moment, we only provide the SendBinaryFeedback
operation, which can be called by users to express their approval or disapproval
of a resource. The order in which resource descriptions are returned by the repos-
itory depends on these ratings. Finally, the resource repository can be configured
to synthesize resource descriptions of a specific profile using custom-built wrap-
pers. Wrappers can be used to integrate existing information systems, such as
an ERP, into the lookup infrastructure.

Note that resource repositories are in principle no different from traditional
Web servers. Therefore, the same well-established mechanisms for achieving se-
curity, reliability, and scalability can be used. For example, a repository could
be replicated and made accessible through a load-balancer that routes traffic
according to the individual repositories’ availability and load.

3.3 Manufacturer Resolver Service and Search Service

In order to make use of resource descriptions, users must be able to locate the
resource repositories containing them. This is the task of the manufacturer re-
solver services and search service. They connect a product EPC or EAN/UPC
to a resource repository where this product’s resource descriptions can be found.

The use cases in which the various deployed resource repositories are accessed
by potential resource consumers can be divided into four groups. In the first
group, only the product manufacturer’s repository is of interest. An example for
such a case is a washing machine that checks the handling instructions of every

508 C. Roduner and M. Langheinrich

piece of clothing put into it. In the second group, there is a single repository
that is used for every lookup. An example for this case is an application that
allows a user to check prices offered by other dealers for a physical product at
hand. In the third group, a lookup is performed in several repositories at the
same time. An example for such a case is a browser application that lets users
specify a number of repositories operated by interest groups (e.g., environmental,
political, etc.) they care about. The browser would then, for example, display all
reviews regarding a product that can be found in the repositories relevant to the
user’s interests. We envision repository directories similar to the Dmoz Open
Directory Project (www.dmoz.org) from which users can pick the repositories
they find interesting. In the fourth group, a user wants to search all repositories
for resources associated with a given product. This case comes into play when no
relevant resources can be found in the repositories the user has registered in his
or her browser. In this case, the consumer would simply query his or her favorite
search service for relevant repositories. It is clear from these considerations that
the architecture needs to include both a manufacturer resolver service that links
a tag ID to the manufacturer’s resource repository and a search service to find
resources across the boundaries of single repositories.

Why is there only a resolver service for manufacturers? Why not for distrib-
utors, vendors, or consumer interest groups? After all, the example scenarios in
Section 2 above illustrated that a wide variety of parties might want to offer
their descriptions to consumers, each for an equally valid reason. The question
of who gets to supply information to a product, i.e., who gets to “define” its
properties, is actually highly political. Our system uses a pragmatic approach,
inspired both by technology and legal realities. Manufacturers already play a
special role in the life of a product. They are responsible for its safety, they
supply manuals, organize warranties and repairs, and often also handle its re-
cycling. In many scenarios, manufacturers thus will be legally the main, if not
the only, authoritative source for information. From a technical point of view,
manufacturers are also much easier to localize, given their (industrial) ID. This
is because the current EPC standard (and, to some extent, also the EAN/UPC
standard) contain special mechanisms to quickly identify a product’s manufac-
turer from an EPC or EAN/UPC code. Our manufacturer resolver service makes
use of this mechanism (see Section 4 below for details), thus ensuring that users
can always locate the repository of a product’s manufacturer.

All other information and service providers are harder to identify and find.
While one could conceive a central registry where all repositories would be reg-
istered, this would violate our openness and extensibility principles set forth in
Section 2. Instead, we decided to complement our manufacturer resolver with
an orthogonal, decentralized, search-based approach, building on existing web
search technology. Just as today’s web spiders and robots, specific resource search
services would crawl repositories, create an index, and answer search queries. A
query passed to a search service’s Search operation consists of the same four
elements (tag ID, profile, search term, context – see above) as a LookupResource

www.dmoz.org

Publishing and Discovering Information and Services for Tagged Products 509

request sent to a single resource repository.4 Of course, users can also directly
access repositories, e.g., of their favorite product review magazine, by manually
entering its address, by receiving the address via Bluetooth or SMS, or by finding
it in a directory of resource repositories.

3.4 Deployment and Use

How would these architectural parts be used to deploy and/or make use of indi-
vidual product descriptions? This depends on the individual stakeholder.

A manufacturer would begin with setting up a public, read-only resource
repository, e.g., using an add-in to a standard web server. It would then create
resources for each of its products – either informational resources such as web
pages or user manuals, or service resources, such as a recipe service or a diag-
nostics program – and prepare corresponding resource descriptions for each of
these resources. These would be entered into its resource repository, which in
turn would be registered with the manufacturer resolver service.5

A third-party wishing to provide information for a certain product (e.g., an
advocacy organization or even a governmental agency) would start out similarly.
After setting up a repository, creating a number of resources and publishing their
descriptions in the repository, however, a third party would need to advertise
this repository to potential users (as it cannot make use of the manufacturer
resolver service). Instead, it would register its resource repository with a search
service or repository directory (similar to Yahoo or the Dmoz Open Directory
Project), and/or communicate its repository URL to end-users through tradi-
tional advertising, e.g., TV, SMS, and print media.

Without any special configuration, end-users can always contact the manu-
facturer’s resource repository, which can be found via the manufacturer resolver
service, in order to retrieve a list of “official” resources offered for a product. Sim-
ilarly, they can use a search service to find resources available from third parties
that have registered their repository with the search service. Alternatively, they
can manually configure resource repositories that they find especially interesting,
using the above mentioned out-of-band advertising mechanisms.

As with the World Wide Web, the cost of running our infrastructure is borne
by those publishing resources. Parties interested in participating must either
set up their own resource repository (i.e., a dedicated machine with a 24/7
Internet connection), or find someone to do so on their behalf (e.g., a hosting
company). Just like the Web, our repository infrastructure can be built gradually
and without central coordination.

Since anyone can publish arbitrary resources, data quality will become an
issue. Until sophisticated search engines that can provide ranked results are

4 While this mechanism could in principle be also applied to the manufacturer’s repos-
itory, thus eliminating the need for a special manufacturer resolver, we decided to
make use of existing resolution mechanisms in order to guarantee users that at least
the manufacturer information can be located.

5 See Section 4 for details on how the manufacturer’s resolver service is registered.

510 C. Roduner and M. Langheinrich

available, we expect that word-of-mouth recommendation and independent edi-
torial review (e.g., popular press) will lead to the emergence of a set of resource
repositories that are known to provide quality content. Just as it has become
standard with websites today, manufacturers and third parties will eventually
run and advertise their repositories in both print and electronic media, treating
them as yet another means for differentiating their products and services.

Given these characteristics, our approach differs from automatic service dis-
covery as implemented in, e.g., UDDI [18] or E-Speak [20]. In the scenarios ad-
dressed by these technologies, selecting the right services is a matter of semantic
description and automated matching. In the use cases presented above, however,
selecting resources is simpler, as the search scope is limited to entries linked to a
certain physical product at hand. We therefore believe that the adoption process
for our infrastructure would be considerably faster.

4 Implementation

Based on the concepts described above, we implemented a prototype of our
resource lookup infrastructure. For each of its three building blocks, the imple-
mentation is reviewed in this section.

Resource Repository. Resource repositories are implemented using Java
Servlets and a relational database for resource, feedback, and user management.
Fulltext search capabilities are implemented using the Apache Lucene search
engine. The implementation provides bindings to SOAP, XML-RPC, and REST
[21]. Optionally, TLS can be used for increased security.

Manufacturer Resolver Service. Resolving the manufacturer’s resource
repository is implemented using the Object Naming Service (ONS) [22]. ONS
is a global infrastructure that is used as part of EPCglobal’s EPC Network
to find the EPCIS6 of a product’s manufacturer. It resolves a product’s iden-
tifier (its EPC number) to a URL pointing to the corresponding EPCIS by
leveraging the existing Domain Name System (DNS) infrastructure. The basic
principle of ONS is to append “.sgtin.id.onsepc.com” to the EPC’s string repre-
sentation. Using standard DNS infrastructure, the resulting domain name (e.g.,
000024.0614141.sgtin.id.onsepc.com) is then queried for “NAPTR” records
(a type of record as defined by the DNS specifications), which contain the URL
to the manufacturer. We use a custom value (EPC+ResRep) in the service field
of the NAPTR record in order to distinguish our URLs pointing to the manufac-
turer’s resource repository from other data in the ONS (typically URLs pointing
to an EPCIS).

Search Service. We believe that indexing of resource repositories is a task
that could be best done by already existing web search services such as Google.
In our prototype system, we developed a simple search service based on the
6 EPCIS stands for EPC Information Services and is an integral part of the EPC

Network. The EPCIS holds logistical information on a product in the EPC-enabled
industrial supply chain.

Publishing and Discovering Information and Services for Tagged Products 511

Apache Lucene search engine. Our search service crawls all registered resource
repositories, creates an index, and can be queried using the Search operation.

In addition to this, we extended our search service implementation beyond
crawling resource repositories. The Internet is full of standard web pages con-
taining information that pertain to physical products. Such information range
from product reviews to user guides and blog entries. If we consider such stan-
dard web pages as potential resources linked to physical products, we can easily
build a search service for these particular resources. Similarly to the
Technorati blog search service, we use an empty anchor-tag (i.e., an <a/> HTML-
element) to mark a web page as being a resource belonging to a certain
physical product. A weblog author could for example link a posting to a phys-
ical product with EAN number 7610200337481 by including the element into the
HTML source code.7 As most search engines support a link operator to find
all web pages linking to a given URL, it is possible to leverage these systems to
easily find pages marked with such an <a/> element. Our original intention was
to implement the search service around one of the large Internet search engines.
However, as this turned out not to work reliably, we again used Apache Lucene
as the underlying search technology. When the search service receives a Search
request, it internally queries the Lucene search engine, converts the search re-
sults into resource descriptions with the profile element set to “webpage” and the
url element set to the respective web page’s address, and returns these resource
descriptions to the caller.

Depending on the client’s request, matching resource descriptions found in
resource repositories and synthesized from web pages are returned either sep-
arately or aggregated. Our search service implementation provides bindings to
both XML-RPC and REST.

5 Prototype Applications

To illustrate the value that our lookup infrastructure offers to the development
of applications around tagged products, and to validate our architectural design
choices, we built three demonstrator applications. All prototypes were imple-
mented as Java MIDlets on a Nokia 3220 mobile phone. The MIDlets use the
REST binding to connect to both the resource repositories and the search ser-
vice. XML parsing of service responses is implemented using kXML, a lightweight
parser for J2ME with minimal memory footprint. Our demonstrators rely on the
Nokia 3220’s integrated NFC reader, even though conventional EAN/UPC bar-
code symbols could be equally used as tagging technology.

5.1 Calorie Tracker

The first demonstrator allows users to track their daily calorie intake (see
Figure 4). Calorie information on products is fetched from a user-extendable
7 Notice how this link does not enclose any text, which is how traditional hyperlinks

work. Instead, this singular anchor indicates that this entire page applies to the
referenced resource.

http://tagged.example.org/tagid/ean/7610200337481

512 C. Roduner and M. Langheinrich

(a) Results overview (b) Rate (c) Add resource

Fig. 4. “Calorie Tracker” application. An example for a community-built and -
maintained product repository.

resource repository. The application demonstrates the possibility of a
community-built and -maintained resource repository, by creating new resources
and adding feedback to them directly on a mobile phone. To ensure basic quality
control, we borrow a concept from community websites and let users approve or
disapprove resources created by other users. For every resource, the number of
positive and negative votes is recorded and taken into account when resources
are ranked in response to a query. If there are no entries for a product, or if a user
does not agree with any of the returned values, a new resource can be created.
When a user touches a product with the NFC phone, a LookupResource request
with the acquired tag ID is performed on the “calories repository”. The result
contains a list of resource descriptions, consisting of the textual description, the
calorie number, and feedback, as partly shown in Figure 4(a). While browsing
through the results, the user has the possibility to rate a result. Figure 4(b)
shows the form for entering a rating for a resource. If none of the suggestions
are correct, the user can add a new resource as shown in Figure 4(c).

5.2 Shopping Assistant

A second example application provides users with background information on
products. Upon scanning a tagged product, the “shopping assistant” contacts
3 resource repositories: First, the manufacturer to obtain allergy information
according to the “allergy” profile that we assume has been defined by the food
industry. Second, a repository implementing a wrapper to the product’s price
information at Amazon.com. Third, a repository offering information on envi-
ronmental issues of a given product. Based on the resources obtained from these

Table 1. Resource repository queries. Three examples for a shopping assistant (see
Section 5.2), trying to find information pertaining to an identified product.

Repository LookupResource elements
manufacturer tagid=urn:ean.ucc:9783540240037, profile=allergy
price information tagid=urn:ean.ucc:9783540240037, profile=price
env. information tagid=urn:ean.ucc:9783540240037, profile=review

Publishing and Discovering Information and Services for Tagged Products 513

<resDescriptions repository =" http :// repos.allergy.org/">
<item resId =" b5fe3a5bf077af32c68b790d817d7339f724f209">

<profile >allergy </profile > <title >Allergy Information </title >
<data ><almonds/></data >

</item >
</resDescriptions >

<resDescriptions repository =" http :// repos.envprot.org/">
<item resId ="73 cd125bf097af69c64b790d817d7899f788ffa7">

<profile >review </profile > <title >Environmental Information </title >
<data >Acme Crop. has repeatedly distributed its toxic waste ...</data >

</item >
</resDescriptions >

Fig. 5. Responses from resource repositories. These (abbreviated) replies illustrate po-
tential replies to the queries shown in Table 1.

repositories, the assistant informs the user if the product conflicts with his or her
allergy profile, if it is available from Amazon and for what price, and if there are
any environmental issues with it. Table 1 shows queries for an example product
sent to the 3 repositories, while Figure 5 illustrates two received responses. All
results are aggregated and displayed as shown in Figures 6(a) and 6(b). The
Amazon book price resources are automatically created by a custom wrapper
that leverages the Amazon Web Services to fetch the current price of books.

5.3 Appliance Support

Our last application uses context in the form of a status code obtained from
a malfunctioning appliance, such as a printer, to find information that can
help solve the problem. We use the search service to locate web pages, blog
entries, or other sources of information that are marked as relevant to the prod-
uct at hand in the status encountered. Figure 6(c) shows an overview of the
results found for a printer in a certain status. By selecting “Goto”, the user
can launch the device’s web browser and open the web page (Figure 6(d)).
The two special links that mark the pages that were found as relevant for a
product with EAN tag ID “6420256000052” and context “status=3762” were
<a href="http://tagged.example.org/tagid/ean/6420256000052"/〉 and <a
href="http://tagged.example.org/context/status/3762"/〉, respectively.

(a) Assistant (b) Details (c) Printer Help (d) Help Details

Fig. 6. “Shopping Assistant” and “Appliance Support” applications

href="http://tagged.example.org/tagid/ean/6420256000052"/>
href="http://tagged.example.org/context/status/3762"/>

514 C. Roduner and M. Langheinrich

6 Conclusion

The idea of linking information and services with physical objects is a powerful
concept, especially when we are able to augment millions of everyday products
with such resources. Realizing the vision of every product being augmentable
raises the question of how interested parties can flexibly associate information
and services with a product. We address this issue by presenting the concept
and architecture of an open lookup infrastructure for resource descriptions that
fulfills the requirements derived from a range of example application scenarios.
We validated the infrastructure by implementing its key components prototypi-
cally. We also implemented three demonstrator applications to illustrate how it
facilitates the development of novel applications involving digitally augmented,
tagged products. In a corresponding user study [23], our demonstrators received
very positive reviews from our test subjects. In summary, our open lookup in-
frastructure offers four key benefits to the various stakeholders involved. Firstly,
it allows users to find out what information and services are available for a
physical product. Secondly, it gives resource providers access to potential con-
sumers. Thirdly, it enables manufacturers to increase the value of their products
by adding information and services to them. And finally, it provides application
developers with concepts and services that facilitate the implementation of novel
applications.

References

1. Ishii, H., Ullmer, B.: Tangible Bits: Towards Seamless Interfaces between People,
Bits and Atoms. In: CHI ’97: Proc. of the SIGCHI conference on Human factors
in computing systems, pp. 234–241. ACM Press, New York (1997)

2. Ljungstrand, P., Redström, J., Holmquist, L.E.: WebStickers: Using Physical To-
kens to Access, Manage and Share Bookmarks to the Web. In: DARE ’00: Proc. of
DARE 2000 on Designing augmented reality environments, pp. 23–31. ACM Press,
New York (2000)

3. Rekimoto, J., Nagao, K.: The World through the Computer: Computer Augmented
Interaction with Real World Environments. In: UIST ’95: Proc. of the 8th annual
ACM symposium on User interface and software technology, pp. 29–36. ACM Press,
New York (1995)

4. Rohs, M., Bohn, J.: Entry Points into a Smart Campus Environment – Overview of
the ETHOC System. In: IWSAWC ’03: Proc. of the 23rd International Conference
on Distributed Computing Systems, pp. 260–266. IEEE Computer Society Press,
Los Alamitos (2003)

5. Smith, M.A., Davenport, D., Hwa, H., Turner, T.: Object AURAs: A Mobile Retail
and Product Annotation System. In: EC ’04: Proc. of the 5th ACM conference on
Electronic commerce, ACM Press, pp. 240–241. ACM Press, New York (2004)

6. Lampe, M., Metzger, C., Fleisch, E., Zweifel, O.: Digitally Augmented Collectibles.
In: Adjunct Proc. of 8th Annual ACM Symposium on User Interface Software and
Technology (UIST), Seattle (2005)

7. Römer, K., Schoch, T., Mattern, F., Dübendorfer, T.: Smart Identification Frame-
works for Ubiquitous Computing Applications. Wireless Networks 10(6), 689–700
(2004)

Publishing and Discovering Information and Services for Tagged Products 515

8. Want, R., Fishkin, K.P., Gujar, A., Harrison, B.L.: Bridging Physical and Virtual
Worlds with Electronic Tags. In: CHI ’99: Proc. of the SIGCHI conference on
Human Factors in Computing Systems, Pittsburgh, PA, USA, pp.370–377 ((1999)

9. Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P., Gopal,
G., Frid, M., Krishnan, V., Morris, H., Schettino, J., Serra, B., Spasojevic, M.:
People, Places, Things: Web Presence for the Real World. Mob. Netw. Appl. 7(5),
365–376 (2002)

10. Adelmann, R., Langheinrich, M., Floerkemeier, C.: Toolkit for Bar Code Recogni-
tion and Resolving on Camera Phones – Jump Starting the Internet of Things.
In: Informatik 2006 workshop on Mobile and Embedded Interactive Systems
(MEIS’06) (2006)

11. Dey, A.K.: Understanding and Using Context. Personal Ubiquitous Comput. 5(1),
4–7 (2001)

12. Lessig, L.: The Future of Ideas: The Fate of the Commons in a Connected World.
Random House Inc., New York, USA (2001)

13. Sun Microsystems: Jini Architectural Overview (1999)
www.sun.com/software/jini/whitepapers/architecture.pdf

14. UPnP Forum: UPnP Device Architecture (2000) www.upnp.org
15. Guttman, E.: Service Location Protocol: Automatic Discovery of IP Network Ser-

vices. IEEE Internet Computing 3(4), 71–80 (1999)
16. Helal, S., Desai, N., Verma, V., Lee, C.: Konark - A Service Discovery and Delivery

Protocol for Ad-Hoc Networks. In: IEEE Wireless Communications and Network-
ing Conference (WCNC 2003) vol.3, pp. 2107–2113 (2003)

17. Balazinska, M., Balakrishnan, H., Karger, D.: INS/Twine: A Scalable Peer-to-Peer
Architecture for Intentional Resource Discovery. In: Proc. of the First International
Conference on Pervasive Computing. LNCS, vol. 2414, pp. 195–210. Springer, Hei-
delberg (2002)

18. UDDI: UDDI Technical White Paper (2000)
www.uddi.org/pubs/Iru UDDI Technical White Paper.pdf

19. EPCglobal: EPCglobal Architecture Framework Version 1.0 (2005)
20. Kim, W., Graupner, S., Sahai, A., Lenkov, D., Chudasama, C., Whedbee, S., Luo,

Y., Desai, B., Mullings, H., Wong, P.: Web E-Speak: Facilitating Web-Based E-
Services. IEEE MultiMedia 9(1), 43–55 (2002)

21. Fielding, R.T., Taylor, R.N.: Principled Design of the Modern Web Architecture.
ACM Trans. Inter. Tech. 2(2), 115–150 (2002)

22. EPCglobal: Object Naming Service (ONS) Specification Version 1.0 (2005)
23. Roduner, C., Langheinrich, M., Floerkemeier, C., Schwarzentrub, B.: Operating

Appliances with Mobile Phones – Strengths and Limits of a Universal Interaction
Device. In: Proc. of Pervasive 2007. LNCS, Springer, Heidelberg (2007)

www.sun.com/software/jini/whitepapers/architecture.pdf
www.upnp.org
www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

Automating Standard Operating Procedures in

Intensive Care

Martin Sedlmayr1, Thomas Rose1,2, Torben Greiser1, Rainer Röhrig3,
Markus Meister3, and Achim Michel-Backofen3

1 Fraunhofer FIT, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
martin.sedlmayr,thomas.rose@fit.fraunhofer.de

2 Informatik V, RWTH Aachen University, 52056 Aachen, Germany
3 Department of Anaesthesology, Intensive Care Medicine, Pain Therapy,

Justus-Liebig-University Giessen, 35392 Giessen, Germany
rainer.roehrig@chiru.med.uni-giessen.de

Abstract. Supporting medical processes is among the most difficult
endeavors. In contrast to uniform and unvaried workflows, the complex-
ity and dynamics of patient treatment processes prevents the application
of standard methodologies and tools, such as workflow systems. Despite
long-term research in flexible and adaptive workflows as well as com-
puterized clinical guidelines there are hardly any applications used in
clinical routine. However, Standard Operation Procedures are a key ele-
ment for any hospital to continuously improve their processes with regard
to quality of patient care as well as resources required. Based on a three-
level representation of know-how about patient care and treatment, we
present a methodology for a stepwise formalisation and automation of
clinical guidelines embedded into a patient data management system.

1 Introduction

Patient care and treatment certainly constitutes a knowledge intensive endeavor.
Knowledge about indications and treatment options is overwhelming and each
member of an intensive care unit is confronted with a continuous and dynamic
flow of information about the patient [1]. Increasing numbers of implementations
of quality management procedures in addition to cost pressure foster the applica-
tion of best practices according to evaluated standards [2]. Hence, a methodology
for capturing the know-how about processes and the use of this know-how for
process guidance is an essential ingredient for any hospital management.

Several knowledge and process management approaches have been proposed.
A clinical pathway describes a complete diagnosis and treatment plan during
hospitalization of a patient related to a diagnosis or a symptom [2]. Such struc-
tured care plans are aimed to reduce variability, to reduce cost and to increase
quality of care by describing essential steps in the care of patients with a spe-
cific clinical problem while each step may be formalized in terms of a Standard
Operating Procedure (SOP).

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 516–530, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Automating Standard Operating Procedures in Intensive Care 517

Clinical practice guidelines are ”systematically developed statements to assist
practitioner decisions about appropriate health actions for specific clinical cir-
cumstances” (Field/Lohr, Institute of Medicine, 1990). In Germany, ”Leitlinien”
are medical and scientific recommendations for medical treatment in specific sit-
uations. They are issued by national and medical associations. Notably, they do
not deal with any economic issues and have no legal implications such as liability
(http://www.bda.de).

This body of information about patient care and treatment is increasing due
to its promotion by organizations around the world: Internet portals such as
http://www.guidelines.gov and http://www.leinlinien.de offer access to guide-
line repositories in text format such as HTML, Microsoft Word or PDF.

Once providing a uniform modeling methodology, repositories of formalized
clinical and medical processes will establish reference processes and hence en-
able the reuse of evidence-based knowledge. Thus, health care providers can
share their knowledge about treatment eventually leading to the establishment
of standards across hospitals.

However, formal representations of this know-how are scarce and often lim-
ited to well structured processes such as the treatment of chronic diseases [3,4].
However, there is little support in complex and dynamic cases.

To start with, one first has to reach a consensus among clinical experts about
best practices. From a technology point of view, there are four major obstacles
for a formalisation and automation of guidelines [5]:

– Diversity of different control patterns for structuring activities, i.e. some
follow well defined paths whereas others need to be re-arranged on the fly
according to the patient’s status;

– Representation of ad-hoc decisions that are based on personal experience
rather than on text-book knowledge;

– Monitoring of the patient’s state of health (in terms of a patient data man-
agement system);

– Integration into an operational environment.

Project OLGA (Online Guideline Assist) has been conducted as an interdisci-
plinary endeavor of physicians and computer scientists to develop a methodology
for the capture of processes in the clinical domain and the utilization of these
processes for online assistance in terms of guidelines. The pivotal objective of
OLGA is the translation of mainly text-based guidelines into executable work-
flow (fragments) with a full-fledged integration into patient data management
systems (PDMS). In the course of this translation GLIF (Guideline Interchange
Format) [6] is employed as intermediary between medical and technical spec-
ifications. Moreover, awareness concepts are included in the PDMS to make
physicians aware of recommendations for treatment or any change of a patient’s
condition.

This paper is organized as follows. Section 2 reviews the state-of-the-art of
computerized support for medical processes. Then, section 3 presents our ap-
proach for online guideline assistance for hospitals with a focus on intensive care
units, which can be characterized by their high level of process complexity and

518 M. Sedlmayr et al.

vitality. A particular focus will be put on workflow support that builds upon
an existing PDMS. Section 4 describes the implementation of our system at
the level of executable guidelines, while section 5 concludes with an outlook on
future services that are enabled by our core implementation.

2 State of the Art: Process Support

Research on the support of medical processes can be traced back as early as the
70s when expert systems offered support in the execution of clinical guidelines
such as ONCOCIN [7]. At that time, those systems were standalone expert shells
requiring manual input of patient data due to a lack of electronic patient records.
In addition, as stand-alone tools they were not integrated into the clinical work-
flow, but external applications that required massive user attendance.

Today, recent patient data management systems (PDMS) offer electronic ac-
cess to the complete dataset of a patient, enabling the development of online
support systems.

On the one hand, workflow management approaches are moving to the med-
ical domain. Flexible solutions are investigated and some have been applied to
the medical applications. On the other hand, experts in the medical domain
studied computerized clinical guidelines, yet rather independently from classical
workflow management.

2.1 Workflow Management

For many years, automating office and production processes has fostered the de-
velopment of various kinds of workflow systems. A model of processes, activities
and resources is specified which is interpreted by a runtime engine to distribute
tasks and data among users and applications. Numerous standards exist (see
e.g. www.ebpml.org or www.bpm-guide.de), which differ by support for different
standards, products, vendors or domains [8].

Workflow systems come to their full potential when standardized, fixed process
flows exist. However, in many cases and domains this condition is not met, be-
cause processes cannot be fully specified a-priori (complexity) or too many con-
text specific dependencies alter the flow (dynamics) [9]. Thus, means to increase
flexibility in workflows are a topic of intensive research including:

– Workflow models are changed during execution: the runtime engine reacts on
pre-defined events and conditions and alters the process according to a list
of rules. Well known representatives of this approach are Event Condition
Action rules (ECA) used e.g. by AgentWork [10];

– Generic place-holder processes will be replaced during runtime by frag-
ments from a repository of alternative implementations (e.g. Worklets in
YAWL [11]);

– Instead of using a fixed, predefined process model a set of process fragments
are combined during runtime according to rules and constraints [12,13] or
its configuration is interactively supported [14];

Automating Standard Operating Procedures in Intensive Care 519

– The case handling approach replaces the explicit model of activity flow by
implicit routing, i.e. activities are enabled if its preconditions are met. Con-
ditions are based on the data of the process [15,16].

Flexibility is mainly achieved by two techniques [17], viz flexibility by selection
or flexibility by adaptation. Selection is supported for example by the Worklet
approach [11] and allows to build a hierarchical repertoire of alternative process
implementations which are selected during runtime based on the specific context
of the executing instance. This allows to modify and extend alternatives inde-
pendently from the overall process specification even during runtime. However,
this kind of selection is useful mainly when the requirements for flexibility in
the workflow process can be identified in advance. In other cases, flexibility by
adaptation is needed. Adaptation means the modification of either the work-
flow schema or the current instance. This adaptation can be based for example
on rules [10], constraints [13] or user decisions [14]. However, current enterprise
workflow standards and engines do not have broad support for this kind of
flexibility.

Besides the many approaches for making classical workflows more flexible
by techniques such as ECA rules, innovative approaches, such as case handling
and ad-hoc workflows, exist. However, despite naming the medical domain as a
model environment, the mapping of clinical guidelines to classical or adaptive
workflows still needs further research.

2.2 Computerized Clinical Guidelines

A number of methods have been developed during the last decade to support
the computerization of guidelines [3,18]. These vary from XML-based document
formats over rule-based decision support systems to workflow-like execution sys-
tems (see http://www.openclinical.org for a comprehensive list).

The intention in which a guideline modeling system has been developed sig-
nificantly influences the scope of the model: support for

– different types of guidelines,
– different modes of use,
– adaptation of guidelines for local use,
– integration with institutional systems,
– revision tracking, and
– managing complexity.

Hence, different representation formalisms and computational techniques, such
as rule-based, logic-based, networke-based and workflow-like, are used and each
system puts a specific emphasis only on certain aspects such as specification of
intentions or formal languages [6].

Despite differences in the technical realization, each approach models care
delivery as a process, a chain of activities over time, decisions and condition
states.

520 M. Sedlmayr et al.

In the end, the process and decision models shall be automatically executable
by execution engines. However, existing execution engines are mainly proprietary
implementations by the authors of the models as a proof-of-concept and only
a few have been commercialized (e.g. PROForma [19]). None of the guideline
systems except GUIDE [20] has been built on top of enterprise standards or
tools.

The authors of GLIF and PROforma investigated an approach of Guideline
Execution by Semantic Decomposition of Representation (GESDOR) [21]: while
developing a common standard modeling language for guideline specification
seems to be impractical, the various models share common tasks and elements
on an implementation level in an execution engine.

Primitive tasks such as data collection, decision making, branching, and syn-
chronization as well as auxiliary tasks, such as criterion evaluation and event
management, are common to all models. Each of these tasks can be described
by a set of input and output elements, subtasks and constraints. As such, the
GLIF and PROforma models have been mapped to these generic tasks. The
GESDOR engine – which is based on GLEE (see below) – was able to success-
fully execute guidelines of either models. However, no attempt has been made
to map these execution primitives to standard workflow concepts.

Clinical guidelines and SOPs do not represent process models as defined by
workflow management. They are a set of rules that gather knowledge about pa-
tient care and medical treatment. Only some of them include process fragments.
Most projects focus on the modeling of expert knowledge. In doing so, the models
are used for planning tasks or certain analysis [22]. So far, hardly any considers
an automated execution of a guideline in terms of a workflow system.

Recent approaches take workflow systems into account but abandon the top-
down specification of guidelines. Instead, activities will be triggered by events
in the workflow system (bottom up) [23]. However, typical workflow properties
such as reliability, security and scalability, are still out of consideration although
they are of importance for any operational system.

3 Our Approach

Our approach is distinguished from related projects in two regards:

– online access to patient data in the course of process execution; and
– interdisciplinary translation of text-based guidelines into workflows that can

be executed on top of PDMS.

It is founded in the HL7-centric patient data management system (PDMS)
ICUdata (http://www.imeso.de) that is operational in Giessen since 1999. GLIF
is employed as intermediary language for capturing know-how about medical
processes.

OLGA obeys a three-step approach towards the capture of know-how for
the automation of clinical guidelines. Figure 1 depicts the different degrees of
formalisation and presents the process of stepwise translation from text-based
representations towards an executable workflow representation.

Automating Standard Operating Procedures in Intensive Care 521

Fig. 1. Stepwise formalization of guidelines in OLGA

1. First, a consensus has to be reached on the medical process flow. The defini-
tion is to be based on relevant literature and knowledge sources and has to be
adapted to the specific settings in the ward by experienced domain experts.
This consensus process yields simple flowcharts and textual descriptions.
This first step is in line with guideline definition procedures in the medical
domain.

2. Second, these charts and texts have to be formalized, i.e. have to be trans-
lated into a process modeling language. We use GLIF as an intermediary
language between medical and technical specifications since GLIF is an ac-
knowledged format for guideline modeling.

3. Third, the formal GLIF model is translated into executable workflow lan-
guages with the help of mapping assistants. These workflows then can be
executed by workflow engines like YAWL or JBPM. Despite differences of
the modeling languages in expressiveness, control constructs and the like, the
mapping process shares the same issues: not all domain relevant concepts can
unambiguously be mapped to workflow elements.

3.1 Formalization

In Germany, the Society of German Anesthetists (Bund Deutscher Anästhesisten,
BDA) and the Society of Anesthesiology and Intensive Care (DGAI) operate a
SOP exchange platform in the Internet. We have analyzed 23 SOPs from this
repository according to formalization in GLIF and automation [24].

Even the most detailed treatment procedures require additional annotations if
they are to be automatically executed. Often the description of temporal aspects
and priorities of steps in the care process are too vague, taking interpretation by
the human expert user for granted. For example, the diagnosis of a heart stroke
depends not on a single event but on a complex combination of findings which
have a certain temporal relationship.

Looking into the control patterns of the guideline models, one can find se-
quences, loops and the like as in any other process models [5]. The expressiveness
of Event-driven Process Chains (EPC) has been compared with process samples
collected in hospitals and concludes with the open issues of expressing intuitive,
non-deterministic decisions, modeling the inner dynamics of the patient and its

522 M. Sedlmayr et al.

effect on the process flow, the complexity of time relations of activities and the
many kinds of iterations. These issues go beyond the possibilities of many process
languages [25].

The Guideline Interchange Format GLIF has been developed as a joint effort of
research groups at Columbia, Stanford, and Harvard (Intermed Collaboratory)
and was first published in 1998 [6]. Its main purpose has been the sharing of
guidelines across institutions. GLIF models are not limited to knowledge about
the treatment process, but also include applicability criteria, strength of rec-
ommendation (for scientific assessment), links to further knowledge sources and
authoring maintenance information.

Specifications of guidelines take place on three layers of abstraction in GLIF.
At the conceptual level, a guideline is drawn as flowchart to catch the generic
chain of activities without having to concentrate on details. These details, e.g.,
data definition, decision criteria and control flow, are specified at the computable
level. The mapping of tasks and data to any institutional system is represented
at the implementable level (which has not yet been defined in GLIF).

The flowchart graph contains nodes for actions, decisions, routing (branch
and synchronization), and patient states. The data model uses the HL7 Ref-
erence Information Model (RIM, see http://www.hl7.org). The expression lan-
guage GELLO [26] is based on the Object Constraint Language (OCL) and has
become an accepted standard by HL7 and ANSI.

The ontology editor Protege (http://protege.stanford.edu) is used as stan-
dard editor for GLIF guidelines. A number of add-ons such as the GraphWiz
for the flowchart or the InstanceTree for editing are available. GLIF guidelines
for vaccination and chronic cough treatment have been executed and evaluated
with about 2000 patient cases using by the GLIF Guidelines Execution Engine
(GLEE) [27].

3.2 Automation and Support

We have been looking into implementation options based on workflow tech-
niques and tools after deciding to support GLIF in OLGA. Two options exist
for automating the formalized guidelines: direct execution by a kind of GLIF
interpreter or indirect execution by mapping GLIF models into another process
language.

For direct execution, a runtime engine such as the Guideline Execution En-
gine (GLEE) for GLIF [27] manages execution states of the model elements
(Guideline Steps) such as active, prepared, started and finished and allows for
user-defined schedules between the states. Such a proprietary implementation
allows developers to concentrate on the automatable subset of the modeling
standard, but is bound to it. GESDOR [21] introduced an interesting approach
by aiming at a kind of virtual machine for guideline execution engines providing
common functions of GLIF and PROforma.

Indirect execution – by translating a GLIF guideline into another workflow
format – allows for utilization of established business standards. It may utilize
already existing infrastructure and inter-operate with other applications. Though

Automating Standard Operating Procedures in Intensive Care 523

not all concepts of GLIF can be directly mapped to standard workflow elements
(e.g. events, see below), careful selection and modeling of guidelines can prevent
the usage of not-mappable structures. This approach has been chosen for the
implementation of OLGA.

4 Implementation

OLGA provides tools and services for supporting care providers in the selection
and execution of guidelines. These are integrated into the patient data man-
agement system (PDMS) at the anaesthesiological intensive care unit of the
university hospital in Giessen. Next to each of the 14 beds on the ward is a
terminal showing the electronic patient chart.

The PDMS uses HL7 messages to communicate among clients and the server.
The OLGA execution engine filters relevant messages and triggers activities in
the guideline repository. Activities and recommendations are communicated back
using HL7 and become part of the electronic health record. Visualisation towards
the user is inside the PDMS as part of the patient’s chart.

4.1 System Design

The patient data management system PDMS used in the ICU in Giessen sup-
ports modular information processing. Data are exchanged through HL7 mes-
sages routed by master services between modules [28]. Any change to patient
data is propagated to the database as well as to all clients that operate on
this patient’s data (event-based communication). The communication network
and event mechanism is open not only to PDMS modules but also to external
applications.

The OLGA execution engine implements such an external module. It uses the
notification services to listen to HL7 messages and filters relevant data to trig-
ger guideline execution. Automatically generated advise, recommendations and
request for further input (observations) are sent as HL7 messages and become
part of the patient record. There is no direct interaction between the OLGA
tools and the end-user: medical recommendations as result of a guideline exe-
cution are part of the patient record shown in the user interface of the PDMS
(see Figure 3). Therefore, OLGA integrates with the normal tools and work-
flow of physicians and nurses and does not appear as another tool on top to
handle.

Two options exist for the architecture of OLGA: client/bed-side installation
or as central server. Bed-side terminals have the most complete and current
record of patient data. If the network communication fails, new data about
the patient arrives from manual interaction with the chart and from connected
devices (ventilator, patient monitor). This means, guidelines can be executed
locally even if there is no connection with the network. Synchronization with
the database and other clients is handled by the local communication master.
Therefore, client-side seems advantageous with respect to reliability, safety and
scalability and hence has been chosen for the implementation of OLGA.

524 M. Sedlmayr et al.

4.2 Formalization Using GLIF

We have modeled several guidelines in GLIF using Protege. The guidelines com-
prise weaning from long-term ventilation, SIRS/sepsis therapy, acute coronary
syndrome and scoring. The examples ought to cover all kinds of control struc-
tures, interaction patterns and data patterns. Our experience using GLIF needs
to be distinguished between GLIF itself and the modeling tool Protege.

Fig. 2. Simplified weaning protocol modelled in GLIF

Using a flowchart at the conceptual layer is perceived very well among users.
It is an intuitive graphical representation of the flow of activities. The simple flow
can be successively orchestrated by events, conditions and decision rules. How-
ever, it is not easy to decide which should go on either level. In our experience,
users tend to put as much as possible on the graphical level: for example decision
criteria are modeled as a chain of Decision Steps instead of a single decision
containing a set of rules. It is argued that although the flowchart becomes more
complex, the reasoning about the algorithm as well as comprehension is felt to
be better.

Partly, the confusion is caused by the Protege modeling tool. While Protege
is a well known and often used tool for modeling ontologies, it offers little sup-
port specific to GLIF modeling. Its generic view on ontologies as classes, slots
and instances makes editing more complicated. Usually more than ten windows
are open when modeling a GLIF decision criterion. In addition, some functions
seem to misbehave, for example the arrows in the graphical widget and the cor-
responding attributes in the model (next step, branches) are not synchronised
leaving the model prone to constraint errors.

As a consequence, we decided to build a graphical editor for OLGA guidelines
more focused on the medical end-user. While being inspired by GLIF, Protege
and other workflow editors will allow us for more flexibility towards visualization,
simulation and advanced modeling features not yet specified [25].

Automating Standard Operating Procedures in Intensive Care 525

4.3 Workflow Mapping

We have implemented a mapping assistance tool to be used by the knowledge
engineer to translate GLIF models into jPDL to be executed by jBPM. The
JBoss Business Management Framework jBPM by Jboss is a flexible and ex-
tensible open-source environment for executing workflows specified in the jBPM
Process Definition Language jPDL (http://www.jbpm.org). The graph oriented
programming model can be easily extended by own node types and therefore
looks promising for implementing GLIF execution. Further, jBPM can easily be
integrated with the leading Jboss application server as well as the rule engine
Drools (for rule-based decision support).

Based on the Protege API, OLGA reads the GLIF model and translates step-
by-step to jPDL. In principle, each guideline step maps to a node in the workflow
model and relations are mapped to transitions. Advanced concepts such as in-
terpretation of decision rules are delegated to specific classes (implementations
of the interface Action Handler in jBPM). Also, task specifications in GLIF
(Action Specification) are mapped to Action Handlers in jBPM. It can be
observed, that it is the first of the three conceptual layers in GLIF (conceptual
layer) that is mapped straight forward to the workflow whereas the details on
layer two and three are implemented by extensions to the workflow engine. A
more in-depth discussion on the mapping can be found in [29].

The following excerpt shows the beginning of the weaning protocol mapped
to jPDL workflow language in XML. The workflow is used to implement the
transitions between action states whereas the implementation of the action is
delegated to external action handlers (e.g. GetInputAction to read the re-
sult of the spontaneous breathing test (parameter sbt status) of the current
patient).

...
<node name="order SBT">

<action class="jpdl.handler.WriteOrderAction">
...

</action>
<transition to="wait for SBT" />

</node>
<node name="wait for SBT">

<action class="jpdl.handler.GetInputAction">
<parameter>sbt_status</parameter>

</action>
<transition to="SBT ok?"/>

</node>
<decision name="SBT ok?">

<transition name="no" to="wait 4h"/>
<transition name="yes" to="order sedation reduction">
<condition>#{sbt_status == "ok"}</condition>

</transition>
</decision>
...

526 M. Sedlmayr et al.

The converter was tested successfully first for process-oriented test cases spec-
ified in GLIF and then using simpflified clinical guidelines. Guideline Steps,
Action Specifications and decision conditions are mapped whereas iterations
and events are to be done.

4.4 Automation

The current state of the implementations allows for the automation of the se-
lected guidelines. For example, a simplified version of the SOP for weaning of a
patient from automated ventilation has been formalized and converted into an
executable workflow.

Whenever a ventilated patient arrives on ward, the guideline/workflow is trig-
gered. It enters an order into the chart for additional findings such as ”Is patient
status ok?” and ”Is patient awake?”, if not already present in the record, to
trigger the next steps (”reduce sedation”, ”extubate”).

Fig. 3. Patient chart of the PDMS showing an order entry triggered by the weaning
protocol

In Figure 3 one can see the entry to reassess the state of ventilation of the
patient as entered by the automated workflow. The order was triggered by the
patient being intubated and ventilated afterwards (”orale Intubation”).

Although rather simple in its current state, the process shows all patterns of
[5]. Whereas activities in each of the ventilation and sedation threads are sequen-
tial, both threads happen in parallel. Exceptions occur, if a patient extubates

Automating Standard Operating Procedures in Intensive Care 527

himself. Advanced iteration specification is necessary, because patients should
not be extubated or woken up (sedation) during night time.

Our tools will implement a framework that will allow us to try various ap-
proaches of process mapping to overcome the described problems based on real
patient data in a PDMS. The iterative, bottom-up approach starting with sim-
plified guidelines enables early and continuous feedback by having operational
guidelines applied in daily routine.

5 Conclusion

Computerized support of medical processes has surfaced as challenging research
question. This challenge is founded in the fact, that process management con-
cepts appear beneficiary for process improvements for hospitals at first glimpse.
However, once leaving the domain of administrative processes (where hospitals
currently witness a widespread deployment of EPC-based modelling) and the
domain of well-definable chronic diseases, one is confronted with an increased
complexity and flexibility of medical processes. Although the process manage-
ment community has developed an array of concepts for more flexible workflows,
such approaches still fell short for accurately representing medical processes. On
the other hand, the medical community has developed knowledge representa-
tion languages for the capture of medical processes without accounting for the
execution of processes. Such languages merely allow for the representation of
medical know-how, but they do not support the execution of processes. Our
approach strives to bridge this gap by an interdisciplinary development method-
ology. This methodology allows a stepwise formalization of medical processes
from flowchart-oriented representations in GLIF, via mapping assistants towards
executable process fragments for workflow management systems.

Our approach contributes to two research issues:

1. Formalization of clinical guidelines – Our formalization of medical processes
is based on the knowledge representation language GLIF, which is dedicated
to the capture of processes by medical experts. Various interaction tools
support medical experts in the capture and maintenance of their know-how.
Due to the ambiguous semantics of representations concepts, mapping as-
sistants have been implemented for the translation of GLIF specifications
into workflow specifications.

2. Automation of medical workflows – Once translated into a workflow specifi-
cation, the PDMS hosts the workflow processes. Rather than interacting with
a workflow management system, the physician uses the PDMS as interface
to the workflow system.

Currently OLGA supports the specification and execution of medical processes
on top of an operational PDMS. Until now, the system has been developed in
a testbed environment. Once a reasonable number of medical pathways have
been specified and operationalized, field trials will be conducted in a hospital
environment to evaluate system performance and acceptance. OLGA will be

528 M. Sedlmayr et al.

tested in daily routine on the ICU ward in Giessen. The permission of the ethics
commission and experience of the personnel in using research prototypes for
electronic patient records make this rare opportunity possible.

In addition, awareness and notification concepts have been studied to explore
options on how to make physicians aware of incoming messages, alerts and cer-
tain changes in a patients record [30]. The primary design goal is to stick with
the interface of the PDMS for workflow interaction.

Future work will address the topics of:

– Evidence-based medicine – Once medical pathways have been used in daily
routine, the electronic patient records managed by the PDMS serve as valu-
able source for data- and process mining of patient care and treatment. Thus,
impacts of specific medical pathways can be traced and evaluated leading to
evidence about medical processes.

– Control patterns – Control patterns have until now only been studied for
business processes [8]. Medical processes have given birth to new types of
control patterns, yet more research is needed to identify typical control pat-
terns and design appropriate means for interaction and support. Initial ex-
periences with the GLIF environment have unveiled such control patterns,
but corresponding workflow counterparts have to be designed.

Acknowledgements. Thiswork is partly supportedby theDeutscheForschungs-
gemeinschaft within the scope of project Online Guidance Assist (RO3053/1-1;
RO2030/2-1).OLGA is a joint project of Fraunhofer FIT, Germany, and the Klinik
für Anästhesiologie, Intensivmedizin, Schmerztherapie und Palliativmedizin,
Universitätsklinikum Giessen und Marburg, Standort Giessen, Germany.

References

1. Imhoff, M., Webb, A., Goldschmidt, A.: of Intensive Care Medicine. ESCIM, E.S.:
Health informatics. Intensive Care Med. 27(1), 179–186 (January 2001)

2. Campbell, H., Hotchkiss, R., Bradshaw, N., Porteous, M.: Integrated care path-
ways. BMJ 316(7125), 133–137 (January 1998)

3. Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R.A., Hall, R., Johnson,
P.D., Jones, N., Kumar, A., Miksch, S., Quaglini, S., Seyfang, A., Shortliffe, E.H.,
Stefanelli, M.: Comparing computer-interpretable guideline models: a case-study
approach. J Am. Med. Inform. Assoc. 10(1), 52–68 (2003)

4. Shahar, Y., Young, O., Shalom, E., Galperin, M., Mayaffit, A., Moskovitch, R., Hes-
sing, A.: A framework for a distributed, hybrid, multiple-ontology clinical-guideline
library, and automated guideline-support tools. J Biomed. Inform. 37(5), 325–344
(2004)

5. Sarshar, K., Dominitzki, P., Loos, P.: Einsatz von Ereignisgesteuerten Prozessket-
ten zur Modellierung von Prozessen in der Krankenhausdomme - eine empirische
Methodenevaluation. In: Nttgens, M., Rump, F., (eds.) Proceedings of EPK 2005,
Hamburg, Germany, CEUR Workshop Proceedings, vol. 167, pp. 97–116 (2005)

6. Peleg, M., Boxwala, A.A., Tu, S., Zeng, Q., Ogunyemi, O., Wang, D., Patel, V.L.,
Greenes, R.A., Shortliffe, E.H.: The InterMed approach to sharable computer-
interpretable guidelines: a review. J Am. Med. Inform. Assoc. 11(1), 1–10 (2004)

Automating Standard Operating Procedures in Intensive Care 529

7. Shortliffe, E.H., Scott, A.C., Bischoff, M.B., Campbell, A.B., van Melle, W., Ja-
cobs, C.D.: ONCOCIN: An Expert System for Oncology Protocol Management.
In: Proceedings of the 7th International Joint Conference on Artificial Intelligence,
pp. 876–881(1981)

8. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14, 5–51 (2003)

9. Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K., Teschke, M.: A comprehensive
approach to flexibility in workflow management systems. SIGSOFT Softw. Eng.
Notes 24(2), 79–88 295675 79-88 (1999)

10. Müller, R., Greiner, U., Rahm, E.: AGENT WORK: a workflow system supporting
rule-based workflow adaptation. Data & Knowledge Engineering 51(2), 223–256
(2004)

11. Adams, M., ter Hofstede, A., Edmond, D., van der Aalst, W.: Facilitating Flexi-
bility and Dynamic Exception Handling in Workflows through Worklets. In: The
17th Conference on Advanced Information Systems Engineering-CAiSE Short Pa-
per Proceedings. CEUR Workshop Proceedings vol.161 (2005)

12. Deng, S.G., Yu, Z., Wu, Z.H., Huang, L.C.: Enhancement of workflow flexibility
by composing activities at run-time. In: Proceedings of the 2004 ACM symposium
on Applied computing, pp. 667–673 (2004)

13. Mangan, P.J., Sadiq, S.: A Constraint Specification Approach to Building Flexible
Workflows. Journal of Research and Practice in Information Technology 35(1),
21–39 (2002)

14. Rupprecht, C., Peter, G., Rose, T.: Ein modellgestuetzter Ansatz zur kontextspez-
ifischen Individualisierung von Prozessmodellen. Wirtschaftsinformatik 41(3),
226–236 (1999)

15. Schuschel, H., Weske, M.: Fallbehandlung: Ein Neuer Ansatz zur Unterstützung
Prozessorientierter Informationssysteme. In: Desel, J., Weske, M., eds.: Prozessori-
entierte Methoden und Werkzeuge für die Entwicklung von Informationssystemen
- Promise. vol.21, pp.52–63 Potsdam, GI (2002)

16. van der Aalst, W.M.P., Weske, M., Grunbauer, D.: Case Handling: A New Par-
adigm for Business Process Support. Data. and Knowledge Engineering 53(2),
129–162 (2005)

17. Halliday, J., Shrivastava, S., Wheater, S.: Flexible workflow management in the
OPENflow system. In: Enterprise Distributed Object Computing Conference, 2001.
EDOC ’01. Proceedings. Fifth IEEE International (September 4-7, 2001) pp. 82–92
(2001)

18. Wang, D., Peleg, M., Tu, S.W., Boxwala, A.A., Greenes, R.A., Patel, V.L.,
Shortliffe, E.H.: Representation primitives, process models and patient data in
computer-interpretable clinical practice guidelines: a literature review of guideline
representation models. Int. J. Med. Inform. 68(1-3), 59–70 (2002)

19. Sutton, D.R., Fox, J.: The syntax and semantics of the PROforma guideline mod-
eling language. J. Am. Med. Inform. Assoc. 10(5), 433–443 (2003)

20. Quaglini, S., Stefanelli, M., Lanzola, G., Caporusso, V., Panzarasa, S.: Flexible
guideline-based patient careflow systems. Artif. Intell. Med. 22(1), 65–80 (2001)

21. Wang, D., Peleg, M., Bu, D., Cantor, M., Landesberg, G., Lunenfeld, E., Tu, S.W.,
Kaiser, G.E., Hripcsak, G., Patel, V.L., Shortliffe, E.H.: Gesdor - a generic execu-
tion model for sharing of computer-interpretable clinical practice guidelines. AMIA
Annu Symp Proc. pp. 694–698 (2003)

22. Peleg, M., Tu, S., Manindroo, A., Altman, R.B.: Modeling and analyzing bio-
medical processes using workflow/Petri Net models and tools. Medinfo. Journal.
Article. 11(Pt 1), 74–78 (2004)

530 M. Sedlmayr et al.

23. Tu, S., Musen, M., Shankar, R., Campbell, J., Hrabak, K., McClay, J., Huff, S., Mc-
Clure, R., Parker, C., Rocha, R.: Modeling Guidelines for Integration into Clinical
Workflow. Medinfo. 11, 174–178 (2004)

24. Meister, M., Michel-Backofen, A., Jost, A., Röhrig, R., Junger, A., Hempelmann,
G.: Evaluation der Abbildbarkeit und Automatisierbarkeit von Standard Operating
Procedures mit dem Guideline Interchange Format (GLIF). In: 53. Jahrestagung
der DGAI, Leipzig, Abstraktband DAC 2006 (2006)

25. Sedlmayr, M., Rose, T., Röhrig, R., Meister, M., Michel-Backofen, A.: Ansatz zur
Automatisierung klinischer Guidelines in GLIF mit Workflow Techniken. In: 51.
Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie
und Epidemiologie (GMDS). Klinische Forschung vernetzen. 10.-14. September
2006. Leipzig: Universität Leipzig (2006)

26. Sordo, M., Boxwala, A.A., Ogunyemi, O., Greenes, R.A.: Description and status
update on GELLO: a proposed standardized object-oriented expression language
for clinical decision support. Medinfo. 11(Pt 1), 164–168 (2004)

27. Wang, D., Peleg, M., Tu, S.W., Boxwala, A.A., Ogunyemi, O., Zeng, Q., Greenes,
R.A., Patel, V.L., Shortliffe, E.H.: Design and implementation of the GLIF3 guide-
line execution engine. J. Biomed. Inform. 37(5), 305–318 (2004)

28. Michel-Backofen, A., Demming, R., Röhrig, R., Benson, M., Marquardt, K.,
Hempelmann, G.: Realizing a Realtime Shared Patient Chart using a Universal
Message Forwarding Architecture. Stud. Health. Technol. Inform. 116, 509–514
(2005)

29. Sedlmayr, M., Rose, T., Röhrig, R., Meister, M., Michel-Backofen, A.: Formal-
isierung und Automatisierung von SOPs in der Intensivmedizin. In: 8. Interna-
tionale Tagung Wirtschaftsinformatik; Karlsruhe, Germany (2007)

30. Röhrig, R., Meister, M., Michel-Backofen, A., Sedlmayr, M., Uphus, D., Katzer,
C., Rose, T.: Online Guideline Assist in Intensive Care Medicine - Is the login-
authentication a sufficient trigger for reminders? Stud. Health. Technol. In-
form. 124, 561–568 (2006)

Composing Data-Providing Web Services in

P2P-Based Collaboration Environments

Mahmoud Barhamgi1, Pierre-Antoine Champin1, Djamal Benslimane1,
and Aris M. Ouksel2

1 LIRIS Laboratory, Claude Bernard Lyon1 University
69622 Villeurbanne, France

{mahmoud.barhamgi,pierre-antoine.champin,djamal.benslimane}@liris.cnrs.fr
2 The University of Illinois at Chicago

Depts. Of Information and Decision Sciences and Computer Science
aris@uic.edu

Abstract. P2P Data Management Systems (PDMSs) have tradition-
ally focused on the integration of data sources to support information
processing on the Web. Recent trends suggest that the same problem
may be viewed through the lens of data-providing Web services instead.
In this paper, we propose a method to supplement current PDMSs with
capability to handle data sources exposed as services. In our solution,
Data-Providing services are modeled as RDF parameterized views. An
algorithm is devised to compute those data-providing services’ compo-
sitions that are capable of answering a given query. The conducted ex-
periments, though preliminary, show encouraging results, the algorithm
scales up to 100 views in 6 seconds. Our data-driven composition ap-
proach applies special data treatment techniques between the composed
services prior to query. This may include, merging, differencing and in-
tersecting the returned results of two or more of Data-Providing services.

keywords: Data-Driven Services composition, Data Integration, Views.

1 Introduction

The advent of Web services technology has increasingly enabled to expose in-
formation resources as services reachable to partners engaged in e-collaboration
applications (e.g., e-Gov, e-Entreprise, e-Health ...etc). This is motivated by the
need to circumvent proprietory implementations when accessing and retrieving
data items from autonomous and heterogeneous collaborating systems, regard-
less of the proprietary systems employed. Thus, peers have access to each others’
set of data-providing services. Data-Providing Services, henceforth referred to as
DP services, are different from Effect-Providing services (e.g. fulfilling a car reser-
vation, charging a credit card,...etc) in that their invocation only returns data
without changing the state of the system. In the eHealth domain, for example,
Data-Providing services could involve one or more of the processes: 1). A health-
care peer may require data from several legacy applications, sensors and devices
equipped with proprietary interfaces. Web services provide a means to bridge

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 531–545, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

532 M. Barhamgi et al.

the proprietary data sources during integration. 2). Health-care peers may out-
source the management of their own data to other peers. For example, a hospital
may rely on an independent laboratory to manage some information about its
patients. The outsourcing peer, the hospital in this example, may then be able
to access its data via a set of data Web services provided by the peer recipient
of outsourcing, which in the case is the laboratory. 3). Peers often support may
only a limited set of queries (modeled as services) over their schema to constrain
the way data is accessed (by the partners) because of privacy constraints [9,17].
4). Access rights (e.g. a doctor has an access right higher than a nurse) are fairly
simple to implement with Web services. Readers are referred to [5] for further
information on the use of Web services in the eHealth domain.

Obviously, a query issued at a peer, say peer P1 (see figure 1), which requests
information about a patient admitted at P1, may use local DP services at P1

as well as DP services offered by its partners. For example, a query posted at a
hospital will invoke services at other peers, such as laboratories, to whom all or
partial management patient data was outsourced.

Fig. 1. Data sharing via Data-Providing Web services in a loosely coupled environment

Data management and integration in loosely coupled P2P-based information
systems have been investigated intensively in recent years. Several systems and
architectures have been proposed, including for example, Edutella [11], Piazza[8],
PEPSEINT[3], SEWASIE[1], Hyperion [18], PeerDB [14], SDQNET [19], and
SCOPES [15]. However, in these systems, without exception, data at peers is
presented either in a syntactic form (XML) or in semantic forms, a combination
of OWL instances and inferencing capabilities. Queries are applied directly to
data answers. None of the systems has examined query processing in environ-
ments, where Web services are increasingly being adopted to share data. Data
accessibility in this case postpones direct access to data until query execution,
as data is hidden by the services. Query resolution necessitates a priori rewriting
of the query in terms of available services in a way that guarantees successful
execution of the query. This may require coordination of the query to insure
desirable outcome.

In this paper we propose an approach for supporting service-accessed data
sources (or DP services) in e-collaboration environments. Our approach relies
on modeling DP Web services as RDF Parameterized Views over the domain

Composing Data-Providing Web Services 533

ontology. In comparison with the standards of semantic web services like OWL-
S1 and WSDL-S2, our description permits to represent the semantic relationship
between In/Out of described services. Individual peers in this environment de-
scribe their services and exchange these descriptions with one another. Upon
receiving a query, a peer makes use of its stored RDF PVs (for its local services,
or remote services) in the query resolution process. A query is resolved by a
composition of DP services that would satisfy fully the query.

Observe that this is different from the traditional Web services composition
[12] in two ways. First, the traditional composition is “task-driven” since com-
posed services collaborate to achieve a more complex task (or functionality), e.g.
a full-package journey reservation service out of hotel, plane and car reservation
Web services. In our framework, the composition is “data-driven” (it does lead
to an augmented functionality), where composed services collaborate to achieve
as much complete answer as possible. Second, while in traditional composition a
composite service is defined and implemented to run in sustainable way, in our
framework a composition serves only to answer a received query.

Thus, the key contribution in this paper is a novel approach, which enables
peer-to-peer systems to handle the case where data portions are behind services
(they are not readily available). To our knowledge this was not addressed yet
in these systems. In addition, in our system, peers which still expose their data
in forms such as (OWL, RDFS instances) can still inter-operate with the others
since our queries are issued in SPARQL3, a standard query language suited for
querying data in the semantic Web.

The main contributions of this paper are: 1). A new approach for answering
queries using Data-Providing services, this includes modeling services as RDF
parameterized views, and a service-based query rewriting algorithm that is ca-
pable to compute the possible services compositions answering a given query.
2. A P2P system (under development) that supports the needs encountered in
e-Systems that make an extensive use of Data-Providing Web services.

The rest of the paper is organized as follows. In section 2 we model DP
services as RDF views over the domain ontology. Section 3, is devoted to the
query rewriting in terms of services (or DP services composition). In section 4 we
present the implementation status of our approach. In section 5 we review related
works. Finally, in section 6 we conclude the paper and present our future works.

2 Modeling Data-Providing Web Services as Views

This section is devoted to model both our queries and DP Web services. Based
on this modeling we devise an algorithm to rewrite queries in terms of services.

2.1 Motivation Example

This example is extracted from the healthcare domain. Assume a physician con-
ducting a research study about the harmful effects of some medications. In this
1 http://www.w3.org/Submission/OWL-S/
2 http://www.w3.org/Submission/WSDL-S/
3 http://www.w3.org/TR/rdf-sparql-query/

534 M. Barhamgi et al.

task, the physician needs to examine the test results for patients who have been
administered the studied medication. The phisician can express his query as Q1:
what are the tests performed by patients who have been administered a medica-
tion termed as “Some Stuff”?. Also suppose that the peer holding the query has
references to the services shown in table 1 (both local and remote services). In

Table 1. Local and remote services

Service Location Service Description

remote WS1 retrieves Test A (specialization of Test (see figure2))

remote WS2 retrieves Test B (specialization of Test (see figure2))

local WS3 returns the medications list taken by a given patient

local WS4 returns patients (their names) who have been administered
a given medication

order to answer Q1, several services should be composed, they are in particular
WS1, WS2 and WS4 (local and remote services). Notice that it does not suffice
to rely on the services’ inputs and outputs to decide whether they can answer
the query or not, rather the semantic relation between the service’s input and
output must be taken in consideration. In section (2.3), we capture this relation
by modeling a service as a RDF parameterized view. Queries are rewritten in
terms of services by exploiting these views.

Fig. 2. An example of OWL ontology modeling the peer’s local data items and the
items provided by its partners

2.2 Queries

OWL has became the de facto standard for modeling Web resources. OWL
primitives include classes, properties and Datatypes. Properties break up in two
types; Object properties relating classes and Datatype properties relating classes
to datatypes.

Definition 1. In our context an OWL ontology O is a 6-tuple (C, L, DP, OP,
SC, SP) where:

Composing Data-Providing Web Services 535

1. C is the set of classes.
2. L is the set of datatypes.
3. DP is the set of datatype properties. Each datatype property has a domain

in C and a range in L.
4. OP is the set of object properties. Each object property has its domain and

range in C.
5. SC is a relation over C × C, representing the sub-class relationship between

classes.
6. SP is a relation over OP×OP ∪ DP×DP, representing the sub-property re-

lationship between homogeneous properties.

Materialized instances of an OWL ontology form a graph where nodes are labeled
by a class (instance nodes) or a datatype (literal nodes), and edges are labelled
by a property consistent with the linked nodes’ labels. Users in our framework
are allowed to issue queries on that graph.

Given the previous definition, a query on the instance graph has the following
definition.

Definition 2. A query on the instance graph of an ontology O is a 3-tuple
(Backbone, Ct, Out) such that:

1. Backbone is a sequence of the form:
?c1(C1).Ψ.p1.2.?c2(C2).Ψ.p2.3 ... Ψ.pn−1.n.?cn(Cn), where
– ?ci is a variable of type Ci, and Ci is a class of the ontology.
– pi.j are object properties holding between ?ci (1 ≤ i ≤ n).
– Ψ is a linking operator and it is used when one variable ?ci is linked to

more than one other variable such that each of these variables pose a
condition on the selection of ?ci. The semantics of this operator is that
instances of ?ci must satisfy all of the conditions specified by the Ψ ’s
outgoing paths.

2. Ct is the constraints set imposed on datatype properties of ?ci:1→n.
3. Out is the output set, it comprises output variables (and their projected

datatype properties).

We implement this form of queries with SPARQL query language. This form is
suitable when matching queries against the services as we shall see next. In the
spirit of this definition our query became:

Q1:

Backbone=
?T1(type:Test) . [Has − Test]−1 . ?P1(type:Patient) . [Take-Medication] . ?M1(type:Medication)
Ct= {$M1(Name=“Some Stuff”)},
Out= {?T1(Result)},

2.3 DP Services as Views

Web services are usually modeled with the de facto standard for service de-
scription OWL-S. In particular, OWL-S’s Service Profile permits to model the

536 M. Barhamgi et al.

service’s effect (operation in terms of WSDL), inputs and outputs. On the other
hand, Data Providing Services have no explicit effects, instead, the semantic
relation holding between their inputs and outputs must be captured. Therefore
OWL-S may not be the best choice for describing them since it does not allow
to capture this relation. We model Data-Providing Services in our approach as
RDF Parameterized Views (PVs) over OWL ontology as they necessitate a par-
ticular set of inputs (the parameters values) for their invocation and return a
particular set of outputs. Initially a parameterized view is a technique that has
been used to describe content and access methods in the widely used Global-as-
View (GaV) integration architectures [7], and also recently to describe privacy
constraints in [17].

Each PV is a predicate WSi(ci):- 4-tuple <Backbone, Ct, In, Out>
where, WSi(ci) is called the view head and it comprises the name of corre-
sponding service and its returned results. The rest is called the view body and it
has the following contents:

1. Backbone it comprises both the variables set C (of classes types) linking the
input and the output of the service, and the object properties set OP relating
the different variables in C.

2. Ct is the constraints set imposed on the datatype properties of C without
being required inputs of the service.

3. In is the necessary literals for the service invocation.
4. Out is the output literals.

According to this definition, the parameterized views for our example have
the form presented in figure 3. Concretely we establish these views with RDF
triples as showed in figure 9 (in the appendix)

Fig. 3. The defined Parameterized Views for the DP services in the running example

Notice that the parameterized view not only indicates the output and the
input of the service, but also how they are semantically related with respect
to the underlying ontology. Schematic representations of our services’ PVs are
shown in figure 4, where circles, triangles and squares represent respectively
variables of types defined by the ontology classes, mandated inputs (literals) for
the service invocation process, and the literals returned by the services.

Composing Data-Providing Web Services 537

Fig. 4. The schematic representations of services’s parameterized views PVs

3 Composing DP Web Services

Note that peers do not expose data portions as OWL instances, rather data
is behind services. Thus queries cannot be applied squarely to data, instead
the targeted peer must analyze both the received query and the defined PVs
to settle on services whose composition (data-driven composition) can return
relevant results. However, before proceeding with the composition process, the
defined views must be preprocessed.

3.1 Preprocessing the Defined RDF Parameterized Views

Before the rewriting process, the parameterized views should be preprocessed.
This preprocessing includes the following steps.

Step 1. Extending the obtained PVs to reflect OWL “explicit” sub-
classing statements. For those peers which have not the capability to apply
some reasoning while matching the query with available PVs, obviously a query
making reference to the concept “Test” cannot be answered with a PV if this
makes reference to another concept to define the same data item (e.g. the con-
cept “TestA”, a specialization of Test) although this PV (or service) returns
relevant information. To remedy this, there are two possible solutions. The first
is to include in the algorithm the capability to verify whether a concept is a su-
per/sub class of another (based on the ontology definition) while matching both
query and services backbones. This is expensive in terms of the time necessary
for the rewritings computation with large ontologies. The other solution is to
extend previously defined PVs with the constraints subClassOf, subPropertyOf
that are explicitly declared in the ontology. For example in (figure 10, case A) a
new triple was added to the PV of WS1 indicating that an instance of “TestA”
is also an instance of “Test”.

Step 2. Skolemizing triples. Variables denoting classes in PVs need to be
skolemized [2], that is to replace each variable by a skolem function helpful

538 M. Barhamgi et al.

to merge instances stemming from different services, e.g. the variable ?Patient
(of type Patient) is replaced by the function SF1(Name), that is to say if two
instances have the same name then they are considered as being denoting the
same entity and thus can be merged. An example of a skolemized PV is shown
in (figure 10, case B). The properties of a skolem function for a particular class
are chosen by the domain expert.

Fig. 5. Matching query’s schema and Web Services’ parameterized views (For simplic-
ity, properties labels were left out)

3.2 Composing DP Services Based on Their Views

For formal discussion assume a query Q (backboneQ, CtQ, OutQ) and a set
of services, each has a PVi(backboneSi, Cti, Ini, Outi). In order to satisfy Q,
backbones union of selected services has to cover the query’s backbone and the

Composing Data-Providing Web Services 539

final output of the composition satisfies OutQ. As can be seen in the figure 5,
several cases may occur while the query rewriting process; they are as follows:

1. Case (1). The union of the services’ backbones covers backboneQ, all of the
requested data items (datatypes) are provided (depicted as “r” in the figure),
and the Q’s constraints list CtQ is satisfied with the union of Cti. In this case
services fully satisfy Q and thus their combination returns a valid rewriting.

2. Case (2). The union is larger than the query backbone with provision to all
of the asked outputs. In this case it should be verified whether the addi-
tional concepts (e.g. the variable Z in figure 5) pose additional constraints
(thus returning more specific results) or if they have a corresponding input
parameter necessary for the service invocation (in the last case the service
cannot be invoked as a necessary input will not be available).

3. Case (3). The union provides a partial result as some literals do not appear
in the output. Herein if one of the missing outputs is mandated then the
combination of these services will be considered as an invalid rewriting.

4. Case (4). The union of the services’ backbones covers backboneQ but a con-
straint in the CtQ was dropped (e.g. patient gender must be male). Here
if dropped constraints were mandated then these services will be rejected.
Otherwise these constraints can be enforced on data flow between services.

5. Case (5). The union of the services backbones covers backboneQ, but with
enforcing an additional constraint that was not specified in the query’s CtQ.
Herein obtained results will be specific, however they are still relevant ones.

6. Case (6). The union of the services backbones covers backboneQ, but there
is a conflicting constraint between Q and one of the services (e.g. the gender
property has conflicting values male vs. female). The rewriting here is invalid.

7. Case (7). The union of the services backbones does not cover the query
backbone. In this case these services must be rejected even if they return
similar outputs to the demanded ones (e.g. in (figure 5, case (7)) the first
service returns the doctors names who have prescribed a medication, and the
second returns the test results which were verified by a particular doctor).

All of these observations were dealt with in our Web services-based query
rewriting algorithm presented next.

Query resolution algorithm.

Inputs:
-A query Q < Qbackbone, CtQ, OSQ >.
-The service List L, where each service Si∈ L has a PVi(Seri backbone, Cti, Ini, Outi).
1. Populate the list RSL (Relevant Services List) where Si ∈ RSL iff (∃ ?ci ∈ Outi,

∧ ∃ ?cj ∈ OSQ) such that both ?ci and ?cj ∈ O : ci

2. for each Si ∈ L do
3. for each variable ?ci ∈ OSQ where ci is its corresponding type class in O do
4. if ci appears in the Outi then
5. Add Si to RSL
6. else if ci is a subclass to one or more of used classes in OSQ then
7. //Si returns generic result.

Reject Si unless otherwise specified by the user.
8. else if ci is a superclass to one or more of used classes in OSQ then
9. Add Si to RSL
10. if RSL is not empty then

540 M. Barhamgi et al.

11. for each Si in RSL do
//If Serbackbone i contains a variable vi of type not used in

Qbackbone such that vi poses a constraint in the Cti ∪ Ini then reject
Si;

12. Construct the types schema (sub graph of O) QTS used in Q;
13. Construct the types schema (sub graph of O) STS used in Si;
14. if ∃ci such that ci ∈ STS and ci /∈QTS then
15. if∃ ?v ∈ ci such that ?v poses a constraint in Cti ∪ Ini then
16. Reject the service
17. //Verify if the Si’s backbone is covered by Q’s backbone

Take the backbones of Si and the Q
Let ?c1 be the common output variable between Si and Q
Let ?cin be a variable enclosing some literals necessary for
the service’s invocation
Let ?ci be a variable varying from ?c1 till ?cin in the service backbone

18. for (?ci=?c1 till ?ci=?cin) in Si’s backbone do
Let O : ci be the corresponding class type of ?ci

Let O : cj be the corresponding class type of ?cj , where
?cj is ?ci’s analogous variable in Q’s backbone

19. if (¬(ci ≡ cj) or ¬(ci subclass cj))then
20. Reject Si

21. Let CtS and CtQ are the constraints sets pertaining
to variables involved in compared backbones

22. if exist a conflicting constraint between CtS and CtQ then
23. Si is rejected
24. else if CtS > CtQ then
25. //Si returns more restricted results, the user has

the choice to whether or not accept specific results
26. else if CtS < CtQ then

Si returns more general results, the user
has the choice to whether or not accept general results.

27. if Si is not rejected yet then
28. Insert the service predicate in the query
29. Eliminate the service backbone from the query backbone
30. Eliminate the service output from the query output
31. Insert the service’s inputs in the Q’s outputs and mark
32. them as mandated ones
33. if Q:OS is not satisfied with the Q:Ct then
34. Repeat the algorithm on the new Query
35. else
36. Q cannot be resolved
Output: The rewritings list.

The possible rewritings of our query (in the running example) are shown
in figure 6. Our algorithm starts with looking for services which provide at
least one of the asked outputs. It finds that two services do provide relevant
results (WS1 and WS2) since these services return the results of “TestA” and
“TestB” respectively (subclasses of “Test” (subClassing constraints are added
in the views definitions)). Each of these services corresponds to an independent
rewriting. The backbones of WS1 and WS2 match part of Q’s backbone, and
their constraints lists satisfy the involved constraints in the query’s Ct. Next, in
each rewriting the algorithm eliminates the service’s backbone from the query’s
backbone and its provided output from the Q’s output set. Then, it inserts
the needed inputs for the service invocation as mandated outputs in the new
query Q’s OS (Output List). The obtained result after this iteration is shown in
figure 6. Then the same algorithm is applied again on the new yielded query in
each rewriting. This time, it turned out that WS4 satisfies the new query as it

Composing Data-Providing Web Services 541

Fig. 6. The query rewriting process for the running example. There were two yielded
rewritings for Q.

provides the required outputs, its backbone matches exactly the query backbone,
and its inputs are satisfied with query constraints list.

3.3 The Composition Execution

The previous algorithm yields a certain number of query rewritings (set of DP
services compositions). These compositions encode the invocation order of the
combined services. Before executing these compositions, we apply an extra al-
gorithm (this was left out for space limitation) in order to superimpose these
compositions (if possible). The intent of this algorithm is to avoid the duplicate
invocation of the same service across several compositions. For instance, instead
of invoking WS4 twice, it suffices to invoke it one time and then to use the
obtained results to invoke both of WS1 and WS2 (see figure 7, case a). In our
system the results of each service invocation are automatically transformed in
the form of OWL instances (skolem functions are exploited during this process)
before being used to invoke subsequent services or sent to the requester . This
helps in merging and aggregating results stemming from different services and
enable us to detect, if needed, data inconsistences (between services) based on
some semantic reasoners (e.g. two instances of patient with the same value of a
functional property (e.g. national ID) but with different names, probably mis-
spelled, are detected).

We need to apply extra treatment and processing over data flow among com-
bined services. In general, three semantic operators can be applied. They are as
follows.

– Semantic Union (WSi ∪ WSj): This operator is used to semantically com-
bine the outputs (OWL instances) of the services WSi, WSj . The outcome
includes the disjoint instances provided by WSi and WSj and the semanti-
cally equivalent instances provided by both only once. For example suppose
that there is a second service (WS*) equivalent to WS4 (depicted with doted

542 M. Barhamgi et al.

lines in figure 7, case b). In this case, obtained results of both WS* and WS4

must be combined with the union operator before invoking the subsequent
services.

– Semantic Intersection (WSi ∩ WSj): This operator can be used to return
the semantically equivalent instances provided by both WSi and WSi.

– Semantic Difference (WSi � WSj): It can be used to return the instances
provided by WSi excluding the equivalent instances provided by WSj.

Note that treatments on data flow are applied in the execution time of the
composition. Returning back to our example, the execution of the compositions
is done as follows. First, WS4 is invoked with medication name. The returned
patients’ information is put automatically in the form of OWL instances. Then,
for each obtained instance of patient we invoke both WS1 and WS2 and the
results are materialized as OWL instances then sent to the requester.

Fig. 7. Data flow in Data driven Web services composition

4 Implementation

We are focusing on integrating our framework for supporting DP services within
a P2P-based data management system that is being developed for the purpose
of integrating proprietary data resources of some private health centers. In this
system, each peer has its own proper ontology, and it maps it to the neighboring
ontologies (in a pair-wise manner) via OWL mapping constructs. When a peer
receives a query from neighboring peers (or from the peer’s user) it tries to
resolve it by composing its DP services. We have implemented our algorithm
using Jena Framework [6]. Currently we are conducting some experimental tests
on our algorithm to measure the impact of PVs number and the ontology volume
on the rewritings computation time. Figure 8 shows some preliminary results of
our experimentation. The algorithm can scale up to 100 views under 6 seconds.
This test was conducted in the following context: 1). The used ontology contains
32 classes and 223 properties. 2). Test performed on a PC with a single 3.06
GHz and 512MB RAM.

5 Related Works

The work presented in this article is closely related to research in several areas.
Previous research works in P2P data integration and interoperation have fo-

cused on traditional data sources (with a direct data accessibility) and overlooked

Composing Data-Providing Web Services 543

Fig. 8. Preliminary results of evaluating the performance of the algorithm as a function
of the PV number

an enormous number of data sources exposed as Web services (or Data-Providing
services) in the P2P environment. We cite for example P2P systems like Hype-
rion [18], Piazza [8], Edutella [11] PEPSINT [3], SEWASIE [1]. These systems
attempt to integrate relational databases in the environment by establishing ei-
ther mapping tables [18] or GaV/LaV-based mappings [10] among the different
data sources. Some other recent systems like [19,4] suppose that data sources
are fully transformed into forms like (OWL or RDFS) before applying, in a sub-
sequent step, queries to data in these forms. In general, queries in these systems
are forwarded from peer to another and applied to data on each site then results
are sent to the requester. In our system, results can be obtained in two ways.
Either queries are matched with DP services on each peer and then matched
services are sent back to the requester, or matched services are composed on
each site then executed before sending the final result to the requester. In ad-
dition, our queries are formulated against OWL instances before being resolved
in terms of services, consequently any peer that still exposes its resources in
the traditional way can participate and respond to the others’ requests in the
collaboration environment.

Another interesting research area is the combination of Publish/Subscribe
mechanisms and P2P systems [21,13]. In these systems individual peers estab-
lish their acquaintances groups based on a subscription/publication model. Peers
describe their data as publications and express their needs as subscriptions, then
while subscriptions are forwarded from peer to another they get matched against
publications. Matched publications are sent back to the original peer along with
information about their hosting peers which will become part of the original
peer’s acquaintances group. We intend to employ this paradigm in advertising
and matching DP services. The RDF views of DP services will be encapsulated
within publications then disseminated on the network. Also, several algorithms
for publications/subscriptions matching were proposed. Notably the one pro-
posed in [16] for checking whether or not a subscription is covered by a set of
similar subscriptions can be used to check whether or not a composition of DP
services satisfies the constraints set of the treated query. In the near future, we
intend to incorporate this algorithm in our framework.

Previous works in the area of web services composition have focused on con-
structing a composite service fulfilling a sophisticated task (or functionality) out

544 M. Barhamgi et al.

Fig. 9. The Parameterized views defined for the running example’s services

Fig. 10. An extended PV for WS1. A new triple was added to reflect the relation
between Test and Test A.

of a set of primitive services fulfilling simpler tasks each. For example authors in
[20], describe a SHOP2 based system to automatically compose Web services. In
addition to the input and output constraints, their system can also handle web
services with preconditions and effects. The key difference between Web services
composition here and the composition in our work is that while composition in
these approaches is task-driven, it is data-driven in our work. That is to say, the ul-
timate objective of the composition is to provide as much complete answer as pos-
sible to the user queries. Also in our composition we need to apply extra treatment
on data flow between services (data aggregation, redundancy elimination...etc).

6 Conclusions and Future Works

In this paper we have modeled Data-Providing services as RDF parameterized
views over the domain ontology. When individual peers get interrogated, they
resolve their received queries in terms of the available Data-Providing services.
In the near future, we intend to incorporate some efficient algorithms [16] for
constraints satisfaction checking while composing DP services. Also we need to
deal with the efficiency issues of the composition. Another research direction, is
to include data-mediating services in our algorithm (to convert data values if a
conversion is needed e.g. the conversion of a measurement unit).

Composing Data-Providing Web Services 545

References

1. Bergamaschi, S., Fillottrani, P.R., Gelati, G.: The sewasie multi-agent system. In:
AP2PC, pp. 120–131 (2004)

2. Chen, H., Wu, Z., Wang, H., Mao, Y.: Rdf/rdfs-based relational database integra-
tion. In: ICDE, p. 94 (2006)

3. Cruz, I.F., Xiao, H., Hsu, F.: Peer-to-peer semantic integration of xml and rdf data
sources. In: AP2PC, pp. 108–119 (2004)

4. Dimitrov, D.A., Heflin, J., Qasem, A., Wang, N.: Information integration via an
end-to-end distributed semantic web system. In: International Semantic Web Con-
ference, pp. 764–777 (2006)

5. Dogac, A., Laleci, G., Kirbas, S., Kabak, Y., Sinir, S., Yildiz, A., Gurcan, Y.:
Artemis: Deploying semantically enriched web services in the healthcare domain.
Information Systems Journal (Elsevier) (2006)

6. Jena Framwork. http://jena.sourceforge.net/
7. Halevy, A.Y.: Answering queries using views: A survey. VLDB J. 10(4), 270–294

(2001)
8. Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The

piazza peer data management system. IEEE Trans. Knowl. Data Eng. 16(7),
787–798 (2004)

9. LeFevre, K., Agrawal, R., Ercegovac, V., Ramakrishnan, R., Xu, Y., DeWitt, D.J.:
Limiting disclosure in hippocratic databases. In: VLDB, pp. 108–119 (2004)

10. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233–246
(2002)

11. Löser, A., Siberski, W., Wolpers, M., Nejdl, W.: Information integration in schema-
based peer-to-peer networks. In: CAiSE, pp. 258–272 (2003)

12. Maamar, Z., Benslimane, D., Ghedira, C., Mrissa, M.: Views in composite web
services. IEEE Internet Computing 9(4), 79–84 (2005)

13. Muthusamy, V., Jacobsen, H.-A.: Small scale peer-to-peer publish/subscribe. In:
P2PKM (2005)

14. Ooi, B.C., Shu, Y., Tan, K.-L.: Relational data sharing in peer-based data man-
agement systems. SIGMOD Record 32(3), 59–64 (2003)

15. Ouksel, A.M.: In-context peer-to-peer information filtering on the web. SIGMOD
Record 32(3), 65–70 (2003)

16. Ouksel, A.M., Jurca, O., Podnar, I., Aberer, K.: Efficient probabilistic subsumption
checking for content-based publish/subscribe systems. In: Middleware, pp. 121–140
(2006)

17. Rizvi, S., Mendelzon, A.O., Sudarshan, S., Roy, P.: Extending query rewriting
techniques for fine-grained access control. In: SIGMOD Conference, pp. 551–562
(2004)

18. Rodŕıguez-Gianolli, P., Garzetti, M., Jiang, L., Kementsietsidis, A., Kiringa, I.,
Masud, M., Miller, R.J., Mylopoulos, J.: Data sharing in the hyperion peer database
system. In: VLDB, pp. 1291–1294 (2005)

19. Spyropoulou, E., Dalamagas, T.: Sdqnet: Semantic distributed querying in loosely
coupled data sources. In: ADBIS, pp. 55–70 (2006)

20. Wu, D., Parsia, B., Sirin, E., Hendler, J.A., Nau, D.S.: Automating daml-s web
services composition using shop2. In: International Semantic Web Conference, pp.
195–210 (2003)

21. Yang, J., Papazoglou, M.P., Krämer, B.J.: A publish/subscribe scheme for peer-
to-peer database networks. In: CoopIS/DOA/ODBASE, pp. 244–262 (2003)

http://jena.sourceforge.net/

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 546–560, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Participative Enterprise Modeling: Experiences and
Recommendations

Janis Stirna1, Anne Persson2, and Kurt Sandkuhl1

1 Jönköping University, PO Box 1026, SE-551 11, Jönköping, Sweden
{janis.stirna,kurt.sandkuhl}@ing.hj.se

2 University of Skövde, P.O. Box 408, SE-541 28 Skövde, Sweden
anne.persson@his.se

Abstract. The objective of this paper is to report a set of experiences of
applying participative enterprise modeling in different organizational contexts.
While the authors have successfully applied the approach in many
organizations, the paper primarily concentrates on three cases. On the basis of
these experiences the paper presents a set of generic principles for applying
participative enterprise modeling.

Keywords: Enterprise modeling, participative modeling.

1 Introduction

Enterprise Modeling (EM) is an activity where an integrated and commonly shared
model describing different aspects of an enterprise is created. An Enterprise Model
comprises a number of related “sub-models”, each focusing on a particular aspect of
the problem domain, such e.g. processes, business rules, concepts/information/data,
vision/goals, and actors. EM is often used for developing organization’s strategies,
business process restructuring, business process orientation, communication of work
procedures, eliciting information system requirements, etc. More about the
applicability of EM is available in [1]. In all these activities the development team
addresses frequent challenges of how to discover the domain knowledge, how to
consolidate different stakeholder views, and how to represent this knowledge in a
coherent and comprehensive model. Additionally, there is a need to ensure that the
decisions made and reflected in the models are taken-up and implemented in reality.
Addressing these challenges by the traditional consulting approach of fact gathering,
analysis and then delivering an expert opinion is not efficient when dealing with “ill-
structured” or “wicked” problems [2] typically occurring in organizations. As a result
participative EM, i.e. modeling in facilitated group sessions, has been established as a
valuable and practicable instrument for solving organizational design problems (c.f.,
e.g. [3, 4, 5, 6, 7]).

Therefore, the objective of this paper is to report a set of experiences of applying
participative enterprise modeling in different organizational contexts. While the
approach has been successfully applied in many organizations this paper primarily
concentrates on three cases, namely a healthcare organization, a firm developing

 Participative Enterprise Modeling: Experiences and Recommendations 547

components for the automotive industry, and a municipality. On the basis of these
experiences we also present a set of generic participative EM principles.

The research approach is conceptual and argumentative based on a number of case
studies that were carried out in public and private organizations [8, 9, 10] and an
interview study with experienced practitioners [11].

The remainder of the paper is organized as follows. In section 2 we provide a
background to EM methods and ways of working. Section 3 presents three case
studies, namely, Kongberg Automotive, the Riga City Council and Skaraborgs
Sjukhus. Section 4 presents a set of best practices of participative EM. The
recommendations are illustrated using the three cases. Conclusions and future work
are, finally, discussed in section 5.

2 Background to Enterprise Modeling

In Scandinavia, Business or Enterprise Modeling were initially developed in the
eighties by Plandata, Sweden [12], and later refined by the Swedish Institute for
System Development (SISU). A significant innovation in this strand of EM was the
notion of business goals as part of an Enterprise Model, enriching traditional model
component types such as entities, and business processes. The SISU framework was
further developed in the ESPRIT projects F3 – “From Fuzzy to Formal” and
ELEKTRA – “Electrical Enterprise Knowledge for Transforming Applications”. The
current framework is denoted EKD – “Enterprise Knowledge Development” [4, 6].
Apart from the “Scandinavian” strand of EM, a variety of other methods have been
suggested (c.f., e.g. [13], [14], [15], [16], [17], [18]).

[1] show that EM can be used for two main types of objectives – (1) developing the
business, e.g. developing business vision, strategies, redesigning the way the business
operates, developing the supporting information systems, or (2) ensuring the quality
of the business, e.g. sharing the knowledge about the business, its vision, the way it
operates, or ensuring the acceptance of business decisions through committing the
stake-holders to the decisions made.

2.1 EKD

EKD – Enterprise Knowledge Development method [6] is a representative of the
Scandinavian strand of EM methods. It defines the modeling process as a set of
guidelines for participative way of working and the modeling product in terms of six
sub-models each focusing on a specific aspect of an organization (see table 1).

The ability to trace decisions, components and other aspects throughout the
enterprise is dependent on the use and understanding of the relationships between the
different sub-models addressing the issues in table 1. When developing a full
enterprise model, these relationships between components of the different sub-models
play an essential role. E.g. statements in GM allow different concepts to be defined
more clearly in the CM. A link is then specified between the corresponding GM
component and concepts in CM. In the same way, goals in the GM motivate the
existence of processes in the BPM. Links between models make the model traceable.
They show, for instance, why certain rules, processes and information system
requirements have been introduced.

548 J. Stirna, A. Persson, and K. Sandkuhl

Table 1. Overview of the sub-models of the EKD method

 Goals Model
(GM)

Business
Rules Model
(BRM)

Concepts
Model (CM)

Business
Process Model
(BPM)

Actors and
Resources
Model (ARM)

Technical
Component &
Requirements
Model(TCRM)

Focus Vision and
strategy

Policies and
rules

Business
ontology

Business
operations

Organizational
structure

Information
system needs

Issues What does
the organi-
zation want
to achieve or
to avoid and
why?

What are the
business
rules, how do
they support
organiza-
tion’s goals?

What are the
things and
“phenomena”
addressed in
other sub-
models?

What are the
business
processes? How
do they handle
information and
material?

Who are
responsible for
goals and
process? How
are the actors
interrelated?

What are the
business
requirements to
the IS? How are
they related to
other models?

Com-
po-
nents

Goal, prob-
lem, external
constraint,
opportunity

Business rule Concept,
attribute

Process,
external proc.,
information set,
material set

Actor, role,
organizational
unit, individual

IS goal,
IS problem,
IS requirement,
IS component

2.2 C3S3P

C3S3P is based on work in several EU projects from the area of networked and
extended enterprises. An extended enterprise is a dynamic networked organization,
which is created ad-hoc to reach a certain objective using the resources of the
participating cooperating enterprises. In order to support solutions development for
extended enterprises, the EXTERNAL project [19] developed a methodology for
extended enterprise modeling [20], which initially was named SGAMSIDOER based
on the abbreviations of the different modeling steps proposed: Scoping of the
extended enterprise, Gather existing partner information, Analyze extended enterprise
potential, Model extended enterprise, Simulate and analyze model scenarios,
Implement Model, Deploy extended enterprise, Operate, as well as Evaluate, Re-
engineer extended enterprise. This methodology was further developed towards a
complete customer delivery process denoted C3S3P, which is used in the ATHENA1
and MAPPER2 projects. C3S3P, like SGAMSIDOER, aims at executable solutions
based on visual EM. The seven C3S3P phases are:

− Concept Testing: pre-studies are performed to investigate whether EM is a suitable
and accepted way of developing executable solutions for the networked enterprise

− Scaffolding aims at creating shared knowledge and understanding among the
participants of the project about the scope and challenges of the project.

− Scenario Modeling: creation of executable models supporting the networked
enterprise in the defined scope including all relevant dimensions required, like
process, product, organization or IT-systems

− Solutions Modeling: refining the scenario model by integration personnel, product
structures, document templates and IT systems required for using the enterprise
model in an actual project

− Platform Configuration: configure the solution models for use in the networked or
extended enterprise by connecting the enterprise model to the platform used

1 http://www.athena-ip.org/
2 http://mapper.troux.com/

 Participative Enterprise Modeling: Experiences and Recommendations 549

− Platform Delivery: encompasses the roll-out of model-configured solutions
− Performance Improvement by capturing indicators for process and product quality

and using adequate management instruments.

3 Cases of Applying Participative EM in Practice

This section presents three EM application cases at Kongberg Automotive, the Riga
City Council and Skaraborgs Sjukhus.

3.1 Participative EM at Kongsberg Automotive (KA)

Kongsberg Automotive is a first tier supplier to the worldwide automotive industry
developing and manufacturing gearshift controls and seat comfort systems. EM at KA
was performed during the EU FP6 project MAPPER, which aims at supporting
collaboration between different actors in the automotive supply chain by using
reconfigurable enterprise models and providing an infrastructure with collaboration
services and for executing these models. The enterprise models developed follow the
POPS* approach [21]; they include dimensions like processes, organization
structures, product structures, IT-systems and any other dimension relevant for the
modeling purpose in one single visual enterprise model.

The development of enterprise models roughly followed the C3S3P approach
(section 2.2) and was developed in different phases. In this paper we focus on the
scaffolding phase, aiming to create a joint understanding in the modeling team about
current situation, challenges and way of working of the modeling team. The group
consisted of 3 to 7 employees from KA representing different roles (material
specialist, electrical engineer, product manager, etc.), 3 to 4 participants from research
organizations and 1 or 2 experts from the developer of the modeling tool used. All
modeling sessions added to 6 days of work for the team. During the first modeling
workshop the team agreed to use the following roles:

− Process owner being responsible for establishing the modeling activity within the
enterprise, selecting the right personnel resources, arranging meetings, etc.

− Facilitator providing expertise in using the selected modeling process and tool as
well as providing supports the modeling process and model development by
coaching the modelers. This role facilitates model construction and development.

− Modeling expert having in-depth knowledge in the modeling method and tools.
− Tool operator responsible for documenting the enterprise models in the

computerized tool during the modeling process
− Domain expert providing knowledge about the domain under consideration, which

is basis for modeling.

The work was done during joint modeling workshops with about 10 participants.
We used the visual EM tool METIS3. All aspects of modeling were jointly performed
in a model projected on a large screen. Each modeling workshop started with defining
objectives of the session. The scaffolding focused on the case under discussion – the

3 Information about the METIS product is available at http://www.trouxmetis.com/

550 J. Stirna, A. Persson, and K. Sandkuhl

process of innovation at KA. The main task was to establish a process for creating
new and innovative products in the advanced engineering department.

After the workshops, the produced models were consolidated by the facilitator.
This task aimed at improving the visual structure of the model, completing textual
descriptions of the model elements and identifying open questions, inconsistencies
and needs for refinement. The workshops that followed always started with a walk-
through of the current model version, in order to update all partners about the current
status, introduce changes that have been made as well as raise issues for discussion.

The use of a visual modeling language supported the participatory approach
providing a means for instant discussion of the modeling results, checking accuracy,
and correcting potential shortcomings. It also helped updating all partners on the
current status after a period of offline work. Visual modeling was equally efficient
and useful in the initial sessions devoted to brainstorming and in final modeling
sessions used for refining models. While the participative approach might have
appeared to consume a lot of resources it gave the desired result of stakeholder
involvement and correctness of the model. With a facilitator and tool operator
managing the modeling tool skillfully the delays for updating the model were rather
small. We have to recognize that with increasing level of detail, the visual models
became quite complex and large, which makes it difficult to provide paper-based
versions for stakeholders preferring to work with paper printouts. In our case there
was no such stakeholder, but in other projects this would have been a likely situation.

3.2 Paticipative EM at the Riga City Council (RCC)

Riga City Council (RCC) is a municipality responsible for administration of public
affairs of the city of Riga. In the past ten years the RCC has developed a large amount
of information systems supporting its various functions. However, these systems did
not address the growing need for managing RCC’s organizational knowledge and
competence. To answer this challenge RCC participated in FP5 IST project
“Hypermedia and Pattern Based Knowledge Management for Smart Organizations”
with the objective of developing and adopting a system for collecting and
disseminating knowledge regarding strategic issues of capital importance for decision
making at different levels in the city's administration [10].

The initial phase of the project was devoted to setting the Knowledge Management
(KM) strategy, KM processes, and requirements for KM systems. We used
participative EM and the EKD method. The way of working consisted of:

− Interviews about the current state and future vision for KM with ca 50 high ranking
politicians and managers working in various committees and departments of the
RCC. The additional intangible effect of these interviews was increased awareness
about and popularity of the project.

− Two modeling sessions with the top level management of the RCC in order to
decide the KM vision and outline the KM adoption process

− Selecting three KM pilot applications – at the Riga Drug Abuse Prevention Centre,
at the School Board of Riga City, and at the Traffic Department.

 Participative Enterprise Modeling: Experiences and Recommendations 551

− A series of modeling sessions in each pilot area targeting specific issues of these
departments. In total the sessions at this stage added to ca 10 days of work for
several modeling teams of 5-10 participants. Each session started with a review of
the work previously done.

− One modeling session about integrating the pilot cases and developing overall KM
processes for the RCC.

The roles of participants were similar to the ones described in section 3.1. During
the modeling sessions we used a large plastic wall and post-it notes to document the
model. This approach proved to be useful because it does not require the modeling
participants to “channel” their input to the model through an operator of a
computerized tool, which often slows down the creative process. After the modeling
session the facilitator documented the resulting models in the Visio tool. At the final
stages of the project the modelers refined models by using the tool directly.

The participants accepted the participative way of working because it was apparent
to them that it helps them to discuss issues openly and to agree on decisions. The role
of facilitator was appreciated. In the beginning of the project the method providers
acted as modeling facilitators, but as the project progressed the two people from the
RCC developed the competency of facilitation and took over this role.

3.3 Participative EM at Skaraborgs Sjukhus (SKaS)

Skaraborgs Sjukhus (SKaS) is a cluster of hospitals in Western Sweden working
together with primary care centers and municipal home care to provide high-quality
healthcare to the citizens in the region within which they act. Some medical
specialties have a higher degree of collaboration between the hospital, primary care
centers and municipalities than others. An example of this is the treatment and
prevention of leg ulcers. To decrease the healing time for various types of leg ulcers
e.g. with diabetic patients large efforts are made by all actors involved to e.g. develop
new and more efficient treatment methods and care routines. To address the challenge
of efficient knowledge sharing among various actors in the healthcare process (e.g.
nurses in primary care and municipal home care) all three healthcare organizations
participated in a project to build a knowledge repository for learning and sharing of
best practices with regard to treatment and prevention methods for leg ulcers [8].

In the project, participative EM has mainly been used as a means to develop a
knowledge map that describes the content and structure of the knowledge repository.
The knowledge map is in the form of an EKD concepts model. The roles of
participants were similar to the ones described in section 3.1 and 3.2. The domain
experts in this case were doctors and specialist nurses at the hospital. An initial
version of the model was developed early on in the project using the “plastic wall”
approach described in section 3.2. iGrafx Flowcharter was used to document the
model. Throughout the project the model was refined a number of times as the
understanding of the problem domain improved, among all actors involved. Changes
to the model were made directly in the computer tool. In this case the concepts model
functioned as a detailed “blueprint” for creating the knowledge repository. Therefore,
particular attention was given to developing a model that was precise and correct.

552 J. Stirna, A. Persson, and K. Sandkuhl

4 Recommendations of Using Participative EM

This section presents our recommendations for conducting participative EM in
practice. While in the course of discussion we will refer to the three application cases
outlined in section 3, the knowledge is also grounded into application cases in
organizations such as e.g. British Aerospace (UK), Capital Bank (UK), Public Power
Corporation (Greece), Sema Group (France), Telia (Sweden), Vattenfall (Sweden),
Volvo (Sweden), Verbundplan (Austria), RRC College (Latvia). It is also built on an
interview study mainly targeting experienced practitioners [11].

4.1 Assess the Organizational Context

In any project, understanding the organization’s power and decision-making structure
is essential. It is within the boundaries of these structures that the stakeholders create
their Enterprise Model. Having access to and having the trust of the relevant decision-
makers is especially critical for participative EM project managers when it comes to
obtaining enough effort from domain experts. The planning of participative EM
sessions will openly reveal that the stakeholders involved will need to allocate their
time and effort to modeling work. If participative EM is relatively new to the
organization, the amount of man-hours will seem unnecessarily large, which may
cause some reluctance with decision-makers. If other activities in the organization at
any time are given a higher priority than the EM project, the resources allocated for
modeling sessions will most likely be reduced. This will have a strong negative
impact on the modeling result.

In the SKaS case the project had high priority with management and this priority
was not changed during the project. Management also seemed to trust the judgments
of project management. The group of domain experts and method experts was stable
for the duration of the project. Certain days were allocated for the project in the
domain experts’ weekly schedules, which made it easy to plan for modeling sessions.

Organizational culture has significant impact on the results and effects of
participative EM [1, 11]. In fact, it seems that failure to properly understand the
culture of an organization is perhaps one of the most critical risks in participative EM.
Participative EM requires that the participants consider themselves authorized to state
their opinions and to suggest solutions. This approach is therefore only suitable in
consensus-oriented organizations. In authoritative cultures, it will be extremely
difficult to achieve consensus-driven participation in the modeling groups.

Official documents/systems (policy documents, strategy documents, internal
instructions, web-site etc.) often reveal some of the organizational culture. Ask direct
questions about how the organization looks upon the concepts of responsibility, co-
operation and participation. This will give an idea of the management philosophy in
the organization. Also, ask questions about how people in the organization will be
informed about the project. If very strong restrictions are put on the involvement of a
circle of people outside the modeling group, this may either indicate an authoritative
culture or a hidden agenda. Ask questions about how any additional stakeholders may
be contacted and involved. A strong enforcement of the official decision-making
structure indicates that the modeling team will not be free to contact people without
talking to their superiors. This may also indicate an authoritative culture.

 Participative Enterprise Modeling: Experiences and Recommendations 553

Attitudes towards participation are often revealed in the way people talk about the
problem at hand, other people in the organization, etc. Observe how people act when
talking with each other and with the method provider. Look for attitudes towards
different types of actors (superiors, subordinates, opposite sex, etc.). E.g. in a group of
people, it can be observed by looking at the faces of people whether or not they agree
with what is said or whether they approve of another person or not. Exaggerated
agreement with a superior may indicate a need to always express opinions that are in
line with those of a superior. This may also indicate an authoritative culture.

In a consensus-oriented culture subordinates can question superiors, the dialogue
between levels of the organization is open and direct and reward systems encourage
initiatives from all levels of the organization. In an authoritative culture management
is by directives only, the dialogue is indirect, and where there are no reward systems
for initiatives from different levels of the organization. Note that in an organization,
different types of cultures can reside in departments, divisions, subsidiaries etc. This
mixed organizational culture may be an effect of mergers between organizations.
Note also that organizational culture may be amplified by the official decision-making
structure. If the organizational culture seems to be authoritative, do not use the
participative approach to EM. Try other approaches such as e.g. interviewing.

If the organizational culture is undecided, try to negotiate that modeling will be
done in two steps. The first step will function as an initial test of whether or not a
participative approach is suitable. If active participation is not achieved in the
modeling team, use traditional interviewing for the remainder of the project. If the
culture is mixed, use the participative approach for work in the consensus-oriented
part of the organization and some non-participative approach in the more authoritative
parts of the organization. However, do not mix the two groups of people.

The organizational culture at KA is characterized by distributed working groups
from different cultures as design and manufacturing facilities around the world
require an awareness of how to integrate different ways of working. This formed an
excellent basis for a consensus oriented way of working where inclusion of different
opinions and equality regarding expressing contradictory viewpoints was accepted as
a natural way of working. In the RCC the culture was mixed. Some organizational
units had an authoritative culture and some had a consensus oriented culture. For the
trial applications we chose three with consensus oriented culture.

In the SKaS case the culture was mixed. In general, the sense of hierarchy between
different professions such as doctors and nurses in a healthcare organization is very
strong. However, in the modeling group, where both doctors and nurses were
represented, the culture was consensus oriented. This could be explained by the strong
common dedication to solve the problem at hand.

Hidden agendas will decrease the possibility of achieving the project goals, since
different stakeholders will try to steer the project towards their own goals. The project
definition states the official goals of the project. It serves as important input to
detecting hidden agendas. If the organization has hidden agendas, it may be reluctant
to give the necessary authority to stakeholders, which could be “suspected” of
jeopardizing that agenda. There can be hidden agendas as a part of a project, and the
whole project itself could be a hidden agenda. The latter is the most fatal one.

Interviews with stakeholders before starting the project may reveal hidden agendas,
but in that case they need to be carried out by an experienced person with good social

554 J. Stirna, A. Persson, and K. Sandkuhl

skills. Questions about how the project was initiated, how the project is anchored in
the organization and how the result will be used afterwards are useful as probes.
Hidden agenda may also and will often surface during the project, which calls for
open discussions with the customer.

In RCC the project itself did not have hidden agendas, but on the other hand it
dealt with an issue – knowledge sharing – which related to some hidden agendas
mostly concerning reluctance of information sharing. We identified these issues
during interviews and as a result prepared modeling objectives addressing them.

In the SKaS case there were no hidden agendas since all stakeholders had complete
agreement with regard to both the problem definition and the problem solution.

4.2 Assess the Problem at Hand

There are two views among practitioners when it comes to defining the problem at
hand. Some stress the importance of obtaining a clear problem definition and seem to
believe that it is possible to acquire such a clear definition. Others, often the most
experienced practitioners, claim that clearly defined problems in most cases are
illusions and that they rather are detected as the project progresses. The objective of
the project is negotiated with the customer or process/project owner. There are two
main approaches to this end – (1) interview the key decision maker(s) on the customer
side about the objective, or (2) conduct short participative EM session to identify the
objective, preferably involving other stakeholders than the key decision maker(s).
Approach (2) can be used when it is difficult for the customer to pinpoint the
problem, which normally means that the customer is uncertain about what exactly
she/he wants to achieve. If the uncertainty still remains after the short EM session,
this may indicate that the problem at hand is a “wicked problem”.

Assessing the complexity of a problem definition is an essential part of the project
negotiation. Problem complexity influences the project planning in terms of activities
and resources. For resources, the complexity of the problem influences the
requirements of the actor/s responsible for carrying out the EM project. Three types of
problems can be observed:

− Fairly “simple” problems have a clear definition and a perceivable solution, and
which do not require the co-ordination of a large number of different
preconditions, activities, actors and resources.

− “Complex” problems have a fairly clear definition and a perceivable solution, but
which require the co-ordination of a large number of different preconditions,
activities, actors, and resources.

− “Wicked problems” are ill-structured problems, which have no clear problem
definition and where there is no way of measuring that the problem is solved.

For “simple” and “complex” problems, proceed to the planning phase. If the
problem is considered to be “complex”, ensure that a highly skilled person will lead
the project. If the problem is considered to be “wicked”, negotiate that the project will
be carried out in three steps:

1. A pre-study phase where modeling is the approach to obtaining agreement to the
main scope of the project.

 Participative Enterprise Modeling: Experiences and Recommendations 555

2. A negotiation phase, where the actual project is negotiated and planned. Since a
“wicked” problem comprises many unknown factors, the customer must be made
aware of this. Preferably, the project planning should contain a number of
evaluation steps, where the results of the project are evaluated and new decisions
are made regarding the continuation of the project.

3. A completion phase, where the defined problem is solved as best can be done.

In the KA case, interviews with the project owner and the manager of the
department under consideration gave a good impression of the problem at hand: the
process of innovation had to be refined and probably restructured. As the complexity
of this task even after the interviews was not fully clear, the decision was made to
conduct several EM phases addressing different scopes and levels of detail. The
selected C3S3P approach supported this intention quite nicely. However, it has to be
noted that time plan and budget of the EU project MAPPER provided adequate frame
conditions in terms of resources. In a commercial project, the frame conditions would
have been subject of negotiation after every phase.

In the RCC case the project was initially seen as complex and the problem as
unclear. After pre-interviewing (see section 3.2) the overall vision of KM at RCC and
project’s focus was modeled in two sessions with top management representatives.
Based on the outcome of these sessions we planned the pilot cases.

In the SKaS case the problem was perceived to be fairly “simple” at the outset of
the project. This assumption was not changed during the project. Hence, there was no
need for re-planning.

4.3 Assign Roles in the Modeling Process

We recommend assigning the typical roles used in project management such as
project owner, steering group and quality manager and in addition the following roles
specifically related to participative EM projects.

The modeling facilitator is responsible for choosing the modeling language used in
the sessions, conducting modeling sessions, assisting the modeling participants to
discuss, capture and structure ideas, as well as helping to develop the model during
the session. The facilitator is only there to moderate the problem solving process
among the domain experts, not to solve the problem. The ownership of a problem and
its solution should always remain with the stakeholders. We recommend using two
modeling facilitators if possible. Two facilitators should always be used if the
modeling group is larger than 8 people and/or if the duration is planned for more than
6 hours. In smaller projects the modeling facilitator may also act as tool operator.

The tool operator is responsible for drawing the model into a computerized tool.
This can be done either after the modeling session or during the session. In the latter
case the tool operator has to work in tandem with the facilitator to ensure that all the
ideas and wishes of all participants are reflected in the model correctly.

The modeling participants, also called domain experts, are responsible for
providing correct knowledge about the problem domain and making sure that it is
reflected in the model. They are the problem solvers.

Allocating the relevant domain competency profiles to the project is a task that
should not be taken lightly, since domain knowledge is the most critical resource in an
EM project. One way of ensuring that the participating domain experts will contribute

556 J. Stirna, A. Persson, and K. Sandkuhl

their knowledge in the modeling sessions is to interview them in advance. They also
need to be prepared for what will happen during the sessions. This is particularly
critical in organizations where the employees are not used to modeling in general and
particularly to modeling in a group. Before the modeling session each participant has
to: (1) understand the objective of the modeling session, (2) agree upon the
importance of this objective, (3) feel personally capable to contribute to a positive
result, and (4) be comfortable with the rest of the team (including the facilitator).

The best way of preparing the participants is to carry out individual interviews. In
general, experienced facilitators do not face problems to get the customer to accept
interviewing the modeling participants in advance as part of the project. In contrast,
the less experienced claim that they seldom are given the opportunity to carry out
interviews. They are in general aware of the importance of interviews and say that
they need to improve their ability to negotiate the resources to carry them out.

At KA, interviews with the participants were done in a series of meetings with 2-3
persons. In these meetings, the area under consideration was discussed in order to
prepare for the EM sessions and to investigate whether additional stakeholders should
contribute specific domain knowledge. One result of these meetings was a textual
description of the issues addressed. Furthermore, all participants of the EM sessions
got basic training in the visual modeling language used and in the modeling tool.

In the RCC case the modeling participants were interviewed before the modeling
session, which allowed us to plan the session, e.g. identify specific objectives, select
participants, questions, and plan the course of the seminar.

In the SKaS case the participants in the modeling group were used to participative
modeling from a previous project and stated positive experiences from that. The
previous project had the same modeling facilitator. The participants in the group had
all been involved in defining the project. Therefore, the project leader decided that
interviewing the participants was not necessary. The positive outcome of the project
supported this view.

The competency of the others than domain experts is equally critical. Three aspects
of the project determine the needed EM competency in the team of method experts:

1. The degree of problem complexity. A wicked problem will need a more
experienced and skilled modeling team than a simple problem.

2. The degree of creativity needed for the solution. Designing the future state or
radically changing the current state needs more method competency than
describing the current state.

3. The size of the project and the needed co-ordination effort. A large modeling
project will need a leader and experienced and skilled method expert with a holistic
view. Furthermore, a large project might also require someone being responsible
only for documenting and managing the modeling results.

In the RCC case the problem was complex and the problem definition was abstract
allowing many alternative solutions involving different stakeholder types. To answer
these challenges three pilot projects addressed the problem from different
perspectives. They each had a pilot owner, a modeling facilitator and a tool operator.
The owner of the whole project at RCC coordinated the efforts of the pilot cases. In
summary the complexity and the size of the project required experienced modeling
facilitators with project management skills.

 Participative Enterprise Modeling: Experiences and Recommendations 557

In the SKaS case the problem was fairly “simple” and the project definition gave
very little need for creativity. The size of the project when it comes to modeling
activities was rather small. Since the project leader and facilitators were experienced
the project was carried out in a very controlled manner.

4.4 Acquire Resources for the Project in General and for Preparation Efforts in
Particular

One important insight that characterizes experienced EM practitioners is that it is
unprofessional to assume responsibility for a project without the necessary resources
[11]. A professional attitude, although drastic, is to refuse projects without the proper
resources. This seems in fact to be part of the professional ethics of expert
practitioners.

Management support is essential for a project to be successful. It is a critical
precondition for obtaining the necessary resources and for motivating stakeholders to
commit to the modeling work. It will also facilitate the involvement of skilled method
experts even if it may be costly. Management should also give the modeling team the
authority to act and make decisions within the boundaries of the project. A critical
issue is the persistence with which management keeps supporting the project even if
more resources are needed later on, or if the project runs into other types of problems.
This is particularly important if the project is larger than 1-2 modeling sessions.

The KA case is an excellent example for the positive effects of full management
support. After having made the decision to conduct the project, which was based on a
clear description of goals and the planned process, the responsible manager did not
only arrange for the required personnel resources and facilities, but also promoted the
project in the organization and opened all desirable information sources.

In the RCC case management provided enough resources to carry out the pilot
applications. On the other hand the top management representatives sometimes
canceled their participation at a modeling seminar or sent a replacement instead.

In the SKaS case support from management was strong. The modeling team was
given the needed modeling resources and the authority to carry out the project as they
deemed fit. This shows that management had great confidence in the team and that the
priority of the project was high.

Our case studies and interview study indicate that the effort spent on preparation is
in direct relation to the quality of the project results. Experienced practitioners claim
that they do not accept projects where the resources for preparation are too small,
while the inexperienced report severe problems that are related to lacking preparation.
We suggest distributing effort in a modeling project according to: preparations
(assessing the organization, project definition, interviews, etc) ~40%, modeling
seminars ~30%, and documenting and reporting ~30% of the total effort. The figures
are mainly based on interviews with practitioners with 10-30 years of participative
EM experience. This distribution of resources is only given as an indication;
depending on the project aim and duration they may actually vary within ca 10%. E.g.
some very short projects might not require extensive documentation.

The KA and RCC cases followed this distribution of effort in general. In the SKaS
case the distribution of effort was, however, different. The need for preparation was
much smaller due to the fact that the problem was simple and well defined and that

558 J. Stirna, A. Persson, and K. Sandkuhl

the modeling team knew each other from before. Also, the domain experts in the
modeling group were involved in defining the project.

4.5 Conduct Modeling Sessions

Carrying out a modeling session needs concentration and dedication from all
participants involved. A detailed discussion about how a session should be managed
is beyond the scope of this paper. However, we consider the following issues to be of
utmost importance for the quality of the outcome of a modeling session:

− Each modeling session should have set clear objectives of practical value to the
organization.

− Use a modeling notation that everyone understands. Participation will be severely
hampered if too much attention is put into understanding the notation used. If the
participants are not used to modeling, use a relatively simple and intuitive notation.

− Do not “train” the modeling participants in method knowledge. It is the
responsibility of the modeling facilitator that the chosen method/notation is
correctly used. Too much attention to the method/notation used will distract the
modeling participants from solving the problem at hand. Our experience is that
hands-on practice is the best way of becoming acquainted with a method/notation.

− Keep everyone involved and focused on the problem at hand. Avoid side
discussions that will distract attention from the problem at hand.

− Do not accept unknown participants in the modeling session. In the best case they
will keep silent and leave early, because they do not have the background
knowledge that allows them to participate efficiently. In the worst case they might
try to sabotage the modeling effort, to fulfill their own agenda – something that
should have been discovered in the pre-interviewing stage.

− The problem owner and/or the insiders of the problem area should not dominate
the seminar – the point of having a broader modeling group is to extend the view.

− Establish a common vocabulary – developing a CM might help to achieve this.
− Develop models in parallel – e.g. decide on a business goal, then switch to

modeling a business process that would fulfill the goal, and then model the
necessary roles performing and being responsible for the process. How to shift the
group’s attention between the sub-models depends on the project objectives, the
situation in the organization, and the findings in the pre-interviews. More guidance
about this is available in [6] and [11].

− Make concrete decisions in the session – attach roles and responsibilities to goals,
processes and change actions.

− The same model might need to be improved in several modeling sessions because
the group’s understanding of the modeling issue tends to change during the project.

− The result of the session, the model, should deliver a solution – a common situation
is that the model is too “polite”, addressing only general and well known issues
without tackling some of the hard problems of the organization.

− Make sure that everyone knows what will happen after the seminar – and whether
they should carry out some of the actions decided and documented in the model.

 Participative Enterprise Modeling: Experiences and Recommendations 559

In the RCC case we followed these guidelines. On a few occasions of top level
managers sent replacements to modeling seminars. These people were either unable to
contribute and left early or started to investigate how is this project related to other
projects which they knew.

In the SKaS case modeling successfully proceeded according to the above
recommendations. Since the participants were familiar with modeling from before,
there was need to train them. In the previous project they were involved, however,
there was a conscious decision to train the participants by hands on experience, which
proved successful. The EKD notation was perceived to be easy to understand by the
participants, even if they had no previous experience from modeling. The modeling
team was stable throughout the project, which facilitated the constant refinement of
the EKD concepts model, which was at the center of the modeling activities.

5 Concluding Remarks

This paper has presented a number of generic recommendations for carrying out
participative EM in diverse organizational contexts. The main elements of EM are the
notation and the modeling process. In participative EM, most of the critical success
factors pertain to the modeling process. The positive effects of participative EM are:
(1) Enhanced quality of the Enterprise Model, (2) Consensus among stakeholders, and
(3) Acceptance and commitment to the modeling result [11]. However, to achieve
these effects substantial knowledge and understanding of the modeling process is
needed, as well as experience and skills with regard to managing people in a modeling
session. Hence, successfully carrying out participative EM is a task that is far from
trivial, which requires skillful and experienced professionals both when it comes to
the roles of facilitator and project manager. In summary, this emphasizes the need for
developing effective training programmes for facilitators and EM project managers.

References

1. Persson, A., Stirna, J.: An explorative study into the influence of business goals on the
practical use of Enterprise Modelling methods and tools. In: Proceedings of the 10th
International Conference on Information Systems Development (ISD 2001), Kluwer,
London (2001)

2. Rittel, H.W.J., Webber, M.M.: Planning Problems are Wicked Problems. In: Cross (ed.)
Developments in Design Methodology, John Wiley & Sons, Chichester (1984)

3. F3-Consortium. F3 Reference Manual, ESPRIT III Project 6612, SISU, Sweden (1994)
4. Loucopoulos, P., Kavakli, V., Prekas, N., Rolland, C., Grosz, G., Nurcan, S.: Using the

EKD Approach: The Modelling Component, UMIST, Manchester, UK (1997)
5. Nilsson, A.G., Tolis, C., Nellborn, C. (eds.): Perspectives on Business Modelling:

Understanding and Changing Organisations. Springer-Verlag, Heidelberg (1999)
6. Bubenko, J.A., j., P.A., Stirna, J.: User Guide of the Knowledge Management Approach

Using Enterprise Knowledge Patterns, IST Programme project Hypermedia and Pattern
Based Knowl-edge Management for Smart Organisations, no. IST-2000-28401, KTH,
Sweden, (2001) http://www.dsv.su.se/~js/ekd_user_guide.html

560 J. Stirna, A. Persson, and K. Sandkuhl

7. Niehaves, B., Stirna, J.: Participative Enterprise Modelling for Balanced Scorecard
Implementation. In: 14th European Conference on Information Systems (ECIS 2006),
Gothenburg, Sweden (2006)

8. Stirna, J., Persson, A., Aggestam, L.: Building Knowledge Repositories with Enterprise
Modelling and Patterns - from Theory to Practice. In: proceedings of the 14th European
Conference on Information Systems (ECIS), Gothenburg, Sweden (June 2006)

9. Carstensen, A., Högberg, P., Holmberg, L., Johnsen, S., Karlsen, D., Lillehagen, F.,
Lundqvist, M., Ohren, O., Sandkuhl, K., Wallin, A.: Kongsberg Automotive Requirements
Model, deliverable D6, MAPPER, IST proj. no 016527 (2006)

10. Mikelsons, J., Stirna, J., Kalnins, J.R., Kapenieks, A., Kazakovs, M., Vanaga, I., Sinka, A.,
Persson, A., Kaindl, H.: Trial Application in the Riga City Council, deliverable D6, IST
Programme project Hypermedia and Pattern Based Knowledge Management for Smart
Organisations, project no. IST-2000-28401. Riga, Latvia (2002)

11. Persson, A.: Enterprise Modelling in Practice: Situational Factors and their Influence on
Adopting a Participative Approach, PhD thesis, Dept. of Computer and Systems Sciences,
Stockholm University, No 01-020, (2001) ISSN 1101-8526

12. Willars, H.: Handbok i ABC-metoden. Plandata Strategi (1988)
13. Bajec, M., Krisper, M.: A methodology and tool support for managing business rules in

organisations. Information Systems 30(6), 423–443 (2005)
14. Castro, J., Kolp, M., Mylopoulos, J.: A Requirements-Driven Software Development

Meth-odology. In: CAiSE 2001. LNCS, vol. 2068, pp. 108–123. Springer, Heidelberg
(2001)

15. Dobson, J., Blyth, J., Strens, R.: Organisational Requirements Definition for Information
Technology. In: Proceedings of the International Conference on Requirements
Engineering 1994, Denver/CO (1994)

16. Fox, M.S., Chionglo, J.F., Fadel, F.G.: A common-sense model of the enterprise. In:
Proceedings of the 2nd Industrial Engineering Research Conference, Institute for Industrial
Engineers, Norcross/GA (1993)

17. Yu, E.S.K., Mylopoulos, J.: From E-R to A-R - Modelling Strategic Actor Relationships
for Business Process Reengineering. In: Proceedings of the 13th International Conference
on the Entity-Relationship Approach, Manchester, England (1994)

18. Zorgios, Y., (ed.): Enterprise State of the Art Survey, Part 3, Enterprise Modelling
Methods, DTI ISIP Project Number 8032, AIAI, The University of Edinburgh (1994)

19. Krogstie, J., Jørgensen, H.D.: Interactive Models for Supporting Networked
Organizations. In: Proceedings of CAiSE’2004. LNCS, Springer, Heidelberg (2004)

20. Krogstie, J., Lillehagen, F., Karlsen, D., Ohren, O., Strømseng, K., Thue Lie, F.: Extended
Enterprise Methodology. Deliverable 2 in the EXTERNAL project, available at (2000)
http://research.dnv.com/external/deliverables.html

21. Lillehagen, F.: The Foundations of AKM Technology. In: Proceedings 10th International
Conference on Concurrent Engineering (CE), Madeira, Portugal (2003)

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 561–573, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Negotiating Models

Peter Rittgen

School of Business and Informatics, University College of Borås, 501 90 Borås, Sweden
peter.rittgen@hb.se

Abstract. We investigate the process of collaborative modeling by analyzing
conversations and loud thinking during modeling sessions and the resulting
models themselves. We discovered the basic activities of the modeling teams on
the social, pragmatic, semantic and syntactic levels and derived a schema for
the pragmatic level. Our main conclusion is that team-based modeling can be
characterized as a negotiation process. Drawing on these results we suggest a
tool support for modeling.

1 Introduction

With the abundance of literature on modeling one would expect that the process of
modeling itself, i.e. how models are actually created, is well understood. And indeed,
methods for developing, e.g., business process models can be found with ease [1-9].
Most of these methods operate on a coarse-grain level by specifying in which order
diagrams should be developed, for example. Some provide also guidelines on how to
create a specific diagram, especially in object-oriented modeling [10]. But in practice
the use of a method is often reduced to the use of its notation as the former is fraught
with principal problems [11]. We therefore claim that there is a need to study the
modeling process from a descriptive rather than from a prescriptive perspective to
find out what actually happens when people model. The ultimate aim is to support
these activities with appropriate tools.

Descriptive approaches to understanding the modeling process are scarce. Only a
few deal with collaborative modeling (see section 2). The others assume a scenario
where a single expert modeler creates a formal model of some part of a business
[12-15]. These studies identify sets of general heuristics for successful modeling
without going down to the level of the concrete steps that are performed in creating
models. Their results are hardly applicable to business modeling in general for a
number of reasons. Firstly, a business model is rarely developed by an expert alone
but rather by a team involving representatives of the respective business(es) and
externals. Secondly, the problem domain of general business modeling is often less
well-structured and formal languages are of limited use. Thirdly and last, the goal of
providing tool support for collaborative modeling requires the identification of
detailed steps.

The objective of this paper is to discover the elementary activities and the structure
of the modeling process, i.e. a meta-model of the modeling process. This is done by
studying, in a descriptive way, the work performed by small groups of modelers that
were assigned the same task: To develop business process models for a hospital based

562 P. Rittgen

on a detailed description of the processes in natural language. The group members
were homogeneous concerning their modeling experience and their roles, i.e. there
was no a-priori assignment of a group leader or modeling expert. The scope of this
research is therefore limited to text-based modeling.

2 Related Research

Collaborative modeling processes have been studied by [16-20]. In [16] modeling
involves domain experts, modeling mediators and model builders. It is viewed as a
form of information gathering dialogue where knowledge is elicited from the domain
experts. This view can be challenged because modeling is a social and communicative
process where much of the information is created by and through the process rather
than gathered from domain experts. We have therefore studied a situation where the
participants had no a priori roles but all started from a similar position of having very
little domain knowledge and collectively tried to make sense of the case described in
a text document. [16] goes on developing meta model-based strategies which are of a
prescriptive nature. Contrary to that and as outlined above our aim is to investigate
what is actually done during modeling, i.e., we take a descriptive approach.

[17] emphasizes the importance of natural language as the primary medium and
identifies two principal activities and associated roles: the domain expert who
concretizes an informal model and a system analyst who abstracts a formal model. A
detailed process model of both activities is given that again aims at prescribing steps
to be performed to achieve a “good” analysis model. [18] distinguishes between an
elicitation and a formalization dialogue and develops a modeling procedure by
generalizing existing procedures for specific modeling languages. The authors claim
that these procedures are descriptions of the modeling process (i.e., “documented
procedures”) but the focus is again clearly on prescription (see, e.g., their use of the
term “guidebook”). In this sense all other approaches can also be seen as descriptive
but we use this term in a more direct sense, i.e. meaning the direct observation of
modeling behavior with the purpose of getting a richer and more detailed description
of the modeling process.

[19] acknowledges that modeling is not only a knowledge elicitation process but
also a knowledge creation and dissemination process. It is viewed as a structured
conversation where sub-conversations are associated with goals and strategies (the
latter are elaborated in [16]). We fully agree that modeling is a conversation but we
claim that it is a specific type of conversation, namely a negotiation. This idea is
implicitly present in [19] where the dialogue structure contains negotiation elements
such as propose and accept. We elaborate this point in the following sections and
deliver a more detailed negotiation model. [19] also advocates the use of controlled
language and validation. We consider the latter as problematic as it has often been
observed that domain experts falsely agree with a model not being fully aware of all
its implications.

[20] studies the influence of situational factors on modeling (in particular,
enterprise modeling). The author’s aim is to create an environment that facilitates and
supports participative modeling.

 Negotiating Models 563

3 Research Method

Keeping this background in mind, we set out to study a situation where groups of
modelers worked on a textual description of a business case with the purpose of
deriving business process models. To understand the modeling process, we assumed
that two factors are predominant in model creation:

• The internal mental processes of each modeler, and
• The conversations between modelers and within the group.

To get access to the former we used a think-aloud process-tracing methodology
[13, 21] where the observants speak out what they are currently thinking. The
utterances were then transcribed yielding the think-aloud protocols. The same is done
with the conversations. In addition to that we also considered the product of the
modeling process, the models themselves, to fill the gaps in the protocols and to help
with interpreting ambiguous phrases in them. Open issues that could not be dealt with
in this way were marked on the coding scheme and clarified by ex-post interviews
with the respective groups.

To develop a preliminary coarse-grain categorization we turned to theories in the
pertinent literature, particularly in organizational semiotics. We used the upper four
‘rungs’ of the semiotic ladder [22]: syntactic, semantic, pragmatic, and social. They
refer to the structure of sign systems (e.g., a language), the meaning of the signs, their
use, and the norms of a community, respectively. An initial coding phase within this
framework revealed that the syntactic and semantic levels, which together make up
the language level, are divided into the natural language domain and the modeling
language domain depending on the kind of language used to describe the business.

The activities on the pragmatic level were classified as ‘Understanding’ and
‘Organizing the Modeling Process’. The former term was then further refined into
‘Undestanding the language’ and ‘Understanding the text’, the latter can be divided
into ‘Setting the agenda’ and ‘Negotiation’. The social level consists of rules for
acceptance and rejection in the negotiation. A detailed discussion of these categories
can be found in the respective sections. The results are summarized in fig. 1.

Fig. 1. Levels and domains

564 P. Rittgen

We conducted 3 experiments that involved a total of 26 groups of 2-3 students in
informatics over a period of 3 years. The students were provided with a textual
description of four business processes in a hospital. They were asked to model these
processes with the help of two different modeling languages that they could choose
freely from a set of four languages: ARIS-EPC [8], FMC-Petri nets [23], UML [24,
25], and DEMO [26]. Based on the results of these experiments we derived a layered
meta-model of the modeling process that includes a model of the negotiation process.

4 Results

We carried out the main coding of the material within the framework stipulated by
fig. 1. Examples of that procedure are shown in the respective section. The results are
presented here in the order of the levels from top to bottom.

4.1 Social Level

The social norms within a modeling team are mainly made up of rules for determining
whether a proposal is accepted or rejected. We observed that these rules do not have
to be logical complements which allows for situations where a proposal can be neither
rejected nor accepted but requires further convincing to decide one way or the other.
A termination rule was applied occasionally to force a decision if a negotiation got
stuck, i.e., when there were no more changes in the individuals’ convictions over an
extended period of time. We witnessed two types of rules:

• Rules of majority, where a certain number of group members had to support or
oppose a proposal in order for the whole group to accept or reject it (e.g., more
than half). A tie-break rule was sometimes specified (e.g., for the case of an equal
number of supporters and opponents). The tie-break could involve seniority issues.

• Rules of seniority, where the weight of a group member’s support or opposition
was related to his or her status within the group. This status could be acquired (e.g.,
by experience) or associated with a position to which the member was appointed.
A frequent example of this was the case of a more experienced modeler who was
considered as the leader by the group and took decisions on their behalf. The other
members filled the role of consultants in such a case.

These rules were sometimes set up explicitly before the group began their work, or
in an early phase of this work. But in most cases they rather emerged as the result of
each member’s behavior. Individuals making regular contributions of high quality
were likely to acquire seniority. In homogeneous teams majority rules were used more
often.

4.2 Pragmatic Level

On the pragmatic level we discovered two distinct types of behavior, each of which
can be classified in two sub-categories (the abbreviations of the categories are used as
indices of the respective coded terms later on):

 Negotiating Models 565

• Understanding, which concerns the text of the case description (index UT) or the
(modeling) language (index UL), and

• Organizing the modeling process, which involves two types of activities: setting
the agenda (index SA) and negotiation (index N).

Understanding was established by questions and answers. If the respondent could
not provide clarification, an assumption was made. For details see table 1.

Agendas have been used by the participants in our study as an instrument for
roughly structuring the modeling session. They were introduced in the beginning and
then adapted during the session if necessary. On the whole most groups started by
reading the case description completely and then organized their work around the
flow of the text. For further details refer to table 1.

Table 1. Generic activities on the pragmatic level

Activity Coding Example
Modeler m makes proposal p. proposeN (m, p) “I suggest that …”
Modeler m withdraws his/her
proposal p.

withdrawN (m, p) “My idea does not work; let us
forget it.”

Modeler m expresses consent to
proposal p.

supportN (m, p) “I agree with that.”

Modeler m expresses objection
to proposal p.

challengeN (m, p) “I think you are wrong.”

Modeler m delivers argument a
to support p.

argue_forN (m, p, a) “Yes, because that’s an
operation you do, so that must
be a transaction.”

Modeler m delivers argument a
to challenge p.

argue_againstN (m, p, a) “We cannot do this because an
and-connector cannot have
two inputs and two outputs at
the same time.”

Modeler m proposes p' instead of
p.

counterN (m, p, p') “We should have the records
after the evaluation and not at
the same time.”

Modeler m needs clarification on
issue q.

askUT/UL (m, q) “Does the patient just come to
the hospital?” (UT)

Modeler m provides a possible
answer a to question q.

assumeUT/UL (m, q, a) “I think the sticky labels are
required for tests.”

Modeler m gives a definite
answer a to question q.

clarifyUT/UL (m, q, a) “An XOR connector cannot
follow an event.” (UL)

Add activity a to the agenda as
item number n.

addSA (a, n) “First we will read the case
completely.”

Perform next activity on agenda. performSA “Next is patient care”

The majority of the activities on the pragmatic level were associated with

negotiation, though (see also table 1). This is surprising as modeling is typically rather
pictured as an intuitive act that is largely the product of a creative brain (e.g., a
consultant) that possibly receives some input from other stakeholders in the modeling
process (e.g., domain experts from the respective departments).

566 P. Rittgen

From these results we can draw interesting conclusions for the design of a system
that supports modeling (see section “Architecture of a Modeling Support System”.
This concludes the pragmatic level. The next section proceeds with the semantic level.

4.3 Semantic Level

The semantic level is concerned with the concepts of the modeled domain, in our case
business processes. It is therefore also called the conceptual level. These concepts are

Table 2. Generic activities and concepts on the semantic level

Activity/concept Coding Example
Phrase t1 is considered
equivalent to phrase t2.

interpretAP (t1, t2) “An anamnesis is the same as a
case history of the patient.”

Phrase t is considered an
instance of foundational
concept c.

classifyCC (t, c) “The ‘nurse’ is an actor.”

Actor x performs action a. performCC (x, a) “The nurse treats the patient.”
Action a is triggered by the
conjunction of events e1, e2, …

wait-forCC (a, e1, e2, …) “When the certificate of dis-
charge and the transfer report
are ready, the nurse copies the
transfer documents.”

Event e is raised by all of the
actions a1, … being finished.

defineCC (e, a1, …) “A document is ready when it
has been filled in and signed.”

Action a is triggered by any of
the events e1, e2, …

mergeCC (a, e1, e2, …) “If the patient is new or the
treatment is ineffectual, the
physician examines him.”

Event e is raised by any of the
actions a1, a2, … being
finished.

mergeCC (e, a1, a2, …) “If the nurse has recorded the
patient’s data or the clerk has
registerered him, the patient is
admitted.”

Actions a1, … are triggered by
event e simultaneously.

triggerCC (e, a1, …) “The arrival of the patient starts
the admission process.”

Action a2 follows action a1. afterCC (a1, a2) “First, the nurse hands the
physician the admission papers,
then he performs the admission
examination.”

The completion of action a
raises any of the events e1, e2,
…

branchCC (a, e1, e2, …) “The nurse determines whether
the admission time is before 3
p.m. or not.

The completion of action a
raises all of the events e1, e2, …

forkCC (a, e1, e2, …) “When the examination has
been completed, the tentative
diagnosis is available and lab
tests are requested.”

Action a creates info object o. createCC (a, o) “During registration a patient’s
data is recorded.”

Action a removes info object o. removeCC (a, o) “Discharge implies deletion of
the entry in the bed register.”

Action a uses info object o. useCC (a, o) “To assign a bed the nurse
consults the bed register.”

Action a changes info object o. updateCC (a, o) “The ward books are updated.”

 Negotiating Models 567

often closely linked to the ones that are found in the language used for modeling the
domain. The modeler expresses the perceived or constructed reality in terms of the
concepts that the language provides, be it a natural language or a modeling language.
This implies that the chosen language both enables and restricts the modeler in having
and expressing certain thoughts. To prevent that these restrictions affect the number
and types of concepts we identified in the modeling language domain (= Classifying
Concepts, index CC) we treated them regardless of the language they were expressed
in. As a consequence the results of the coding are not divided by language. Not all of
the generic concepts are found in all languages, though. The foundational concepts
are: actor, action/function, event and (information) object. Between them relational
concepts are defined. They are listed in table 2 without the surrounding classify
activity, for convenience. By phrase we mean a text fragment (e.g., from the case
description). The index AP refers to Analyzing Phrases, the main activity of the
natural language domain).

This completes the activities on the semantic level. The next section deals with the
syntactic level.

4.4 Syntactic Level

On the syntactic level we distinguish again between the natural language and the
modeling language domain. In the latter the diagrams of the respective language are
built (Transforming Diagrams, TD). They consist of nodes, edges that connect them,
and labels attached to both. In general the foundational concepts are represented by
nodes and the relational concepts by edges but this is not necessarily true for all
languages (e.g., Petri nets). In the natural language domain the text is segmented into
useful units for the analysis on the semantic level (Segmenting the Text, ST). The
generic activities on this level are listed in table 3.

Table 3. Generic activities on the syntactic level

Activity Coding Example
Text fragment t is used as the
unit of analysis. The fragment
can be: text, section, sentence,
nominal phrase, verbal phrase or
word.

focusST (t) “What does this sentence
mean?”

Introduce a new node n of type t. introduceTD (n, t) “We insert an ellipse for the
nurse.”

Attach label l to node n. labelTD (n, l) “The function is called ‘Trans-
port patient’.”

Remove node n. removeTD (n) “This place is not needed.”
Connect node n1 to node n2 with
edge e of type t.

connectTD (n1, n2, e, t) “We need a dashed line from
‘Nurse’ to ‘Update ward
books’.”

Attach label l to edge e at place
p.

labelTD (e, l, p) “Write ‘Before 3 p.m.’ on the
arrow.”

Remove edge e. removeTD (e) “The arrow should not point
that way.”

568 P. Rittgen

This completes the list of levels. In the following section we show an example of
how a part of a model is negotiated.

5 Example

Somewhere in the middle of the modeling session concerning the admission process
of the hospital, group B encountered a difficult situation. They were just focusing the
following sentence in the case description (the part in square brackets is intended for
the reader and was not present in the case text):

“The lab results are evaluated and the results [of the evaluation] are put in the
medical record.”

Table 4 shows the associated discussion of the group and the respective coding.
The members of this group are called A and B. We have left out the syntactic level for
convenience.

Table 4. An example discussion

Utterance Coding
A: “I think we should introduce a function
‘Evaluate lab results’ first.”

p1 = proposeN (A, classifyCC (‘Evaluate lab
results’, function))

B: “O.K.” supportN (B, p1), accept (p1)
B: “And then another function ‘Put results in
medical record’.”

p2 = proposeN (B, classifyCC (‘Put results in
medical record’, function))

A: “Wait! Is that not rather an output of the
first function?”

p3 = counterN (A, p2, classifyCC (‘Medical
record’, object) + updateCC (Evaluate lab
results, Medical record))

B: “You are right! That makes more sense.” supportN (B, p3), accept (p3), reject (p2)

This small example is supposed to give an impression of how the modeling process

is structured. In the next section we discuss a potential tool support for this process.

6 Tool Support for the Modeling Process

Our analyses of the modeling sessions showed us that modeling is a complex process
involving issues such as collective sense-making, negotiations and group decisions. It
is therefore worthwhile to consider tool support for this process. This is particularly
true in an interorganizational setting where participants are often geographically
distributed. The tool we envision helps group members in understanding the modeling
situation, creating and discussing modeling alternatives, and deciding on the best one,
all in a shared internet-based environment. The following paragraphs elaborate on the
components that such a tool should provide.

According to our results modeling is a relatively well-structured process. It consists
of a limited number of well-defined activities on all levels of the semiotic ladder. We
are aware that further research will reveal more activities but from the experience of
the three experiments that yielded a decreasing number of new ones, we are confident
that the total number of activities will converge with respect to a given domain, e.g.,

 Negotiating Models 569

business processes. The activities identified so far can therefore be assumed to be
relatively stable in that domain. To a certain extent this is even true across different
business process modeling languages, although the terminology of concepts may vary
and not every concept is realized in each of the languages. But the findings will not
carry over to another domain due to the domain specificity of the language level. The
other levels are likely to work, though.

An analysis of the workflows on the pragmatic level revealed a structure that goes
beyond the mere identification of generic activities. We found out that the negotation
process actually follows a certain pattern. This pattern is shown in fig. 2.

Fig. 2. Negotiation pattern

It consists of an initial and reject state at the top, a state where acceptance is
favored (upper left-hand corner), a state where rejection is favored (upper right-hand
corner), a recursive sub-state for negotiating a counter-proposal (lower right-hand
corner) and an accept state (lower left-hand corner). Each of the states allows for a set
of certain pragmatic activities that take the negotiation to a different state. We have
left out the parameters concerning the modeler who performs the activity and the
argument (if present). In general any modeler can perform any activity but there are a
few rules to be observed. A modeler making a proposal is implicitly assumed to
support it. He is the only one who may withdraw it. A counter-argument is brought up
by a different modeler but a counter-proposal can also be made by the proponent of
the original proposal, e.g., to accommodate counter-arguments. With the help of the
pattern of fig. 2 we can control the negotiation component of a modeling support
system. On the other levels we were not able to discover an equally strong pattern of
activities. This will affect the kind of support a tool can provide at the language level.

The architecture of a modeling support system, i.e., a system that supports a group
in developing models, is still under investigation. Some authors have suggested

570 P. Rittgen

groupware systems that help teams in collective sense-making [18, 27-29] which is an
important part of the modeling process. [29] reports on an approach, Compendium,
that is the result of 15 years of experience. Compendium combines three different
areas: meeting facilitation, graphical hypertext and conceptual frameworks. To make
them work, facilitation is viewed as essential to remove the cognitive overhead for the
group members, i.e., the necessity to develop hypertext literacy, which cannot be
assumed in all participants. On the technology side, the critical elements are question-
based templates, metadata and maps. They allow participants to move freely between
different levels of abstraction and formalization as the need dictates. The question-
based templates guide the process by supplying relevant questions, the answers to
which will lead the group towards a better understanding of the problem and towards
the development of appropriate solutions (e.g., models). The metadata is used to
provide additional information that is also considered relevant but was not anticipated
in the templates or lies at the intersection of templates. The maps have a hierarchical
structure and the same concept can appear in different maps so that its use in different
contexts can be understood. This feature is called transclusion.

Groupware systems for collective sense-making, as the one mentioned, address an
important issue in collaborative modeling. They can therefore be used as the core of a
modeling support system (MSS). So far these systems are typically tailored for
specific modeling languages though (in the case of Compendium, World Modeling
Framework and Issue-Based Information System). For an MSS they need to be more
modular so that any modeling language can be “plugged in” (e.g., other enterprise or
information systems modeling languages). In addition, there is also the need for a
negotiation component that facilitates structured arguments and decisions regarding
modeling choices. The model shown in Fig. 2 can function as an initial workflow
template controlling such a negotiation component. Once instantiated the actual
workflow can then be adjusted to the concrete modeling situation.

7 Conclusions

We studied group modeling sessions in detail, both regarding conversations between
the group members and the mental processes within each individual. By doing this we
derive a sub-categorization of the upper four levels of the semiotic ladder, generic
activities of business process modeling at all of these levels and a negotiation pattern
at the pragmatic level. On the basis of these results we suggest a tentative architecture
of a system that supports group modeling. Our aim with this research is two-fold. On
the one hand we want to develop a better understanding of the modeling process that
has been largely neglected by researchers so far. Such an improved understanding can
lead to better modeling methods and thereby ultimately to higher quality of models.

On the other hand we are also interested in providing computer support to those
modelers that work in a group environment. Modeling is a highly demanding task that
is further complicated by the dynamics of group work. Effective support is therefore
essential, especially if some of the group members are inexperienced as is often the
case in business modeling sessions, where typically a majority of the participants does
not have any modeling background. But it is precisely this latter type of participant
that contributes most to the actual design of the model with his or her knowledge of
the relevant business domain. Both the speed and quality of the models can therefore

 Negotiating Models 571

benefit tremendously if we can manage to involve these people directly as modelers
instead of relying on the bottleneck of the modeling expert for all communication
within the group. The suggested tool support can accommodate this by giving the
expert seniority (i.e., the right to make the final decision) and turning the domain
experts into effective consultants that make proposals (thereby reversing the
traditional roles in IT consulting).

The modeling support system can also be seen as a special kind of group decision
support system (GDSS, [30]) if we consider that the accept and reject decisions in the
negotiation process are the key to model design. There is significant empirical support
for the claim that GDSS are beneficial [30-39], particularly for larger groups and/or
complex tasks. Many of these benefits carry over to modeling support systems, e.g.,
reduced meeting time, higher quality of the decisions, broader involvement of all
participants, higher effectiveness of decisions, etc.

Our research studied text-based modeling only. This is not a realistic scenario for
practical modeling situations. We are confident though that our results are relevant for
real-world modeling to some extent. The social level is fairly independent of the way
in which a modeling alternative was derived (text-based or other) as the decision rule
rather depends on the alternatives themselves. The same is true for the language level
as we can safely assume that natural language and modeling languages will play an
important role in any modeling endeavor. We therefore expect differences primarily
on the pragmatic level, and here especially in the areas “setting the agenda” and
“understanding”. Whether modelers just interpret a text or communicate with domain
experts will have considerable impact on the way the agenda is determined. Likewise
the issue of understanding has to be extended to cover forms of communication other
than analyzing text.

So far we have only looked at business process modeling. Other domains in the
business and information systems areas remain to be explored. It should also be noted
that our study has been performed in a contrived setting albeit with a realistic case.
Further confirmation, and especially consolidation, is therefore required, preferably
by means of a field study. In addition to this it seems reasonable to build a prototype
of a modeling support system, and to test it in a realistic modeling scenario. We are
confident that these measures will contribute to a better understanding of the process
of modeling, both from a cognitive and a collaborative perspective, and they will
eventually help us to better support modelers in their challenging task.

References

1. AMICE: CIMOSA: Open System Architecture for CIM, 2nd revised and extended version.
Springer, Berlin (1993)

2. Barker, R.: CASE*Method: Entity-Relationship Modelling. Addison-Wesley, Wokingham
(1990)

3. Bernus, P., Nemes, L.: A Framework to Define a Generic Enterprise Reference Architecture
and Methodology. Computer Integrated Manufacturing Systems 9, 179–191 (1996)

4. Goldkuhl, G., Röstlinger, A.: Joint elicitation of problems: An important aspect of change
analysis. In: Avison, D.E., Kendall, J.E., DeGross, J.I. (eds.) Human, organizational and
social dimensions of Information systems development. North-Holland, Amsterdam,
pp. 107–125 (1993)

572 P. Rittgen

5. Menzel, C., Mayer, R.J.: The IDEF Family of Languages. In: Bernus, P., Mertins, K.,
Schmidt, G. (eds.) Handbook on Architectures for Information Systems, pp. 209–241.
Springer, Berlin (1998)

6. Ould, M.: Business Process Management: A Rigorous Approach. Meghan-Kiffer Press,
Tampa, FL (2005)

7. Roboam, M., Zanettin, M., Pun, L.: GRAI-IDEF0-Merise (GIM): integrated methodology
to analyse and design manufacturing systems. Computer-Integrated Manufacturing
Systems 2, 82–98 (1989)

8. Scheer, A.-W.: ARIS - Business Process Modeling. Springer, Berlin (1999)
9. Williams, T.J.: The Purdue enterprise reference architecture. Computers in Industry 24,

141–158 (1994)
10. Bennet, S., McRobb, S., Farmer, R.: Object-Oriented Systems Analysis and Design.

McGraw-Hill, Maidenhead (1999)
11. Introna, L.D., Whitley, E.A.: Against method: exploring the limits of method. Logistics

Information Management 10, 235–245 (1997)
12. Morris, W.T.: On the Art of Modeling. Management Science 13, B-707–B717 (1967)
13. Srinivasan, A., Te´eni, D.: Modeling as Constrained Problem Solving: An Empirical Study

of the Data Modeling Process. Management Science 41, 419–434 (1995)
14. Willemain, T.R.: Insights on Modeling from a Dozen Experts. Operations Research 42,

213–222 (1994)
15. Willemain, T.R.: Model Formulation: What Experts Think about and When. Operations

Research 43, 916–932 (1995)
16. Bommel, P., Hoppenbrouwers, S.J.B.A., Proper, H.A.E., Weide, T.P.v.d.: Exploring

Modelling Strategies in a Meta-modelling Context. In: Meersman, R., Tari, Z., Herrero, P.
(eds.) On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops - OTM
Confederated International Workshops and Posters, AWESOMe, CAMS, COMINF, IS,
KSinBIT, MIOS-CIAO, MONET, OnToContent, ORM, PerSys, OTM Academy Doctoral
Consortium, RDDS, SWWS, and SebGIS, Proceedings, Part II. vol.4275, pp. 1128–1137.
Springer, Berlin, Germany (2006)

17. Frederiks, P.J.M., Weide, T.P.v.d, Weide, T.P.v.d.: Information Modeling: the process and
the required competencies of its participants. Data. & Knowledge Engineering 58, 4–20
(2006)

18. Hoppenbrouwers, S.J.B.A., Lindeman, L., Proper, H.A.: Capturing Modeling Processes -
Towards the MoDial Modeling Laboratory. In: Meersman, R., Tari, Z., Herrero, P. (eds.)
On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops - OTM
Confederated International Workshops and Posters, AWESOMe, CAMS, COMINF, IS,
KSinBIT, MIOS-CIAO, MONET, OnToContent, ORM, PerSys, OTM Academy Doctoral
Consortium, RDDS, SWWS, and SebGIS, Proceedings, Part II. vol.4275, pp. 1242–1252.
Springer, Berlin, Germany (2006)

19. Hoppenbrouwers, S.J.B.A., Proper, H.A., Weide, T.P.: v.d.: Formal Modelling as a
Grounded Conversation. In: Goldkuhl, G., Lind, M., Haraldson, S. (eds.) Proceedings of
the 10th International Working Conference on the Language Action Perspective on
Communication Modelling (LAP‘05), Kiruna, Sweden. Linköpings Universitet and
Högskolan i Borås, Linköping and Borås, pp. 139-155 ((2005)

20. Persson, A.: Enterprise Modelling in Practice: Situational Factors and their Influence on
Adopting a Participative Approach. Department of Computer and Systems Sciences,
Stockholm University (2001)

21. Ericsson, K., Simon, H.: Protocol Analysis: Verbal Reports as Data. MIT Press, Boston
(1993)

 Negotiating Models 573

22. Stamper, R.: The Semiotic Framework for Information Systems Research. In: Nissen, H.,
Klein, H., Hirschheim, R. (eds.) Information Systems Research: Contemporary
Approaches and Emergent Traditions. North-Holland, Amsterdam, pp. 515-517 (1991)

23. Keller, F., Wendt, S.: FMC: An Approach Towards Architecture-Centric System
Development. In: Keller, F., Wendt, S. (eds.) 10th IEEE Symposium and Workshop on
Engineering of Computer Based Systems, pp. 173–182. IEEE Computer Society,
Pasadena, CA (2003)

24. OMG: UML 2.0 Superstructure Specification. OMG, Needham, MA (2004)
25. OMG: Unified Modeling Language: Infrastructure. OMG, Needham, MA (2006)
26. Dietz, J.L.G.: Understanding and modeling business processes with DEMO. In: Akoka, J.,

Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) Proceedings of the 18th
International Conference on Conceptual Modeling ER ’99, pp. 188–202. Springer, Berlin
(1999)

27. Boehm, B., Grunbacher, P., Briggs, R.O.: Developing Groupware for Requirements
Negotiation: Lessons Learned. IEEE Software 18, 46–55 (2001)

28. Briggs, R.O., de Vreede, G.J., Nunamaker, J.: Collaboration Engineering with Thinklets to
Pursue Sustained Success with Group Support Systems. Journal of MIS 19, 31–63 (2003)

29. Conklin, J., Selvin, A., Buckingham Shum, S., Sierhuis, M.: Facilitated Hypertext for
Collective Sensemaking: 15 Years on from gIBIS. In: Weigand, H., Goldkuhl, G., de
Moor, A. (eds.) Proceedings of the 8th International Working Conference on the
Language-Action Perspective on Communication Modeling (LAP’03), Tilburg, The
Netherlands (2003)

30. Aiken, M., Vanjani, M., Krosp, J.: Group decision support systems. Review of
Business 16, 38–42 (1995)

31. Bamber, E.M., Watson, R.T., Hill, M.C.: The effects of group support system technology
on audit group decision-making. Auditing: A Journal of Practice & Theory 15, 122–134
(1996)

32. Benbasat, I., Lim, L.H.: The effects of group, task, context, and technology variables on
the usefulness of group support systems: A meta-analysis of experimental studies. Small
Group Research 24, 430–462 (1993)

33. Bidgoli, H.: A new productivity tool for the 90’s: Group support systems. Journal of
Systems Management 47, 56–62 (1996)

34. Burke, K., Chidambaram, L., Lock, J.: Evolution of relational factors over time: A study
of distributed and non-distributed meetings.In: Proceedings of the Twenty-Eighth Hawaii
International Conference on System Sciences vol. 4, pp. 14–23 ((1995)

35. Cass, K., Heintz, T.J., Kaiser, K.M.: Using a voice-synchronous GDSS in dispersed
locations: A preliminary analysis of participant satisfaction. In: Proceedings of the
Twenty-Fourth Hawaii International Conference on System Sciences vol. 3, 555-563
(1991)

36. Chudoba, K.M.: Appropriations and patterns in the use of group support systems.
Database for Advances in Information Systems 30, 131–148 (1999)

37. Fjermestad, J., Hiltz, S.R.: An assessment of group support systems experiment research:
Methodology and results. Journal of Management Information Systems 15, 7–149
(1998/1999)

38. Jackson, N.F., Aiken, M.W.V., Mahesh, B.H., Bassam, S.: Support group decisions via
computer systems. Quality Progress 28, 75–78 (1995)

39. Townsend, A.M., Whitman, M.E., Hendrickson, A.R.: Computer support system adds
power to group processes. HRMagazine 40, 87–91 (1995)

Change Patterns and Change Support Features

in Process-Aware Information Systems

Barbara Weber1,�, Stefanie Rinderle2, and Manfred Reichert3

1 Quality Engineering Research Group, University of Innsbruck, Austria
Barbara.Weber@uibk.ac.at

2 Inst. Databases and Information Systems, Ulm University, Germany
stefanie.rinderle@uni-ulm.de

3 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@cs.utwente.nl

Abstract. In order to provide effective support, the introduction of
process-aware information systems (PAIS) must not freeze existing busi-
ness processes. Instead PAIS should allow authorized users to flexibly
deviate from the predefined processes if required and to evolve busi-
ness processes in a controlled manner over time. Many software ven-
dors promise flexible system solutions for realizing such adaptive PAIS,
but are often unable to cope with fundamental issues related to process
change (e.g., correctness and robustness). The existence of different
process support paradigms and the lack of methods for comparing exist-
ing change approaches makes it difficult for PAIS engineers to choose the
adequate technology. In this paper we suggest a set of changes patterns
and change support features to foster systematic comparison of existing
process management technology with respect to change support. Based
on these change patterns and features, we provide an evaluation of se-
lected systems.

1 Introduction

Contemporary information systems (IS) more and more have to be aligned in a
process-oriented way. This new generation of IS is often referred to as Process-
Aware IS (PAIS) [1]. In order to provide effective process support, PAIS should
capture real-world processes adequately, i.e., there should be no mismatch be-
tween the computerized processes and those in reality. In order to achieve this,
the introduction of PAIS must not lead to rigidity and freeze existing business
processes. Instead PAIS should allow authorized users to flexibly deviate from
the predefined processes as required (e.g., to deal with exceptions) and to evolve
PAIS implementations over time (e.g., due to process optimizations or legal
changes). Such process changes should be enabled at a high level of abstraction
and without affecting the robustness of the PAIS [2].

The increasing demand for process change support poses new challenges for
IS engineers and requires the use of change enabling technologies. Contemporary
� This work was done during a postdoctoral fellowship at the University of Twente.

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 574–588, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Change Patterns and Change Support Features 575

PAIS, in combination with service-oriented computing, offer promising perspec-
tives in this context. Many vendors promise flexible software solutions for realiz-
ing adaptive PAIS, but are often unable to cope with fundamental issues related
to process change (e.g., correctness and robustness). This problem is further ag-
gravated by the fact that several competing process support paradigms exist,
all trying to tackle the need for more process flexibility (e.g., adaptive processes
[3,4,5] or case handling [6]). Furthermore, there exists no method for system-
atically comparing the change frameworks provided by existing process-support
technologies. This, in turn, makes it difficult for PAIS engineers to assess the
maturity and change capabilities of those technologies. Consequently, this often
leads to wrong decisions and misinvestments.

During the last years we have studied processes from different application
domains and elaborated the flexibility and change support features of numerous
tools and approaches. Based on these experiences, in this paper we suggest a
set of changes patterns and change support features to foster the comparison
of existing approaches with respect to process change support. Change patterns
allow for high-level process adaptations at the process type as well as the process
instance level. Change support features ensure that changes are performed in a
correct and consistent way, traceability is provided, and changes are facilitated
for users. Both change patterns and change support features are fundamental to
make changes applicable in practice. Finally, another contribution of this paper
is the evaluation of selected approaches/systems based on the presented change
patterns and change support features.

Section 2 summarizes background information needed for the understanding
of this paper. Section 3 describes 17 change patterns and Section 4 deals with
6 crucial change support features. Based on this, Section 5 evaluates different
approaches from both academia and industry. Section 6 discusses related work
and Section 7 concludes with a summary.

2 Backgrounds

A PAIS is a specific type of information system which allows for the separation
of process logic and application code. At run-time the PAIS orchestrates the
processes according to their defined logic. Workflow Management Systems (e.g.,
Staffware [1], ADEPT [3], WASA [5]) and Case-Handling Systems (e.g., Flower
[1,6]) are typical technologies enabling PAIS.

For each business process to be supported a process type represented by a
process schema S has to be defined. In the following, a process schema is repre-
sented by a directed graph, which defines a set of activities – the process steps
– and control connections between them (i.e., the precedence relations between
these activities). Activities can either be atomic or contain a sub process (i.e.,
a reference to a process schema S′) allowing for the hierarchical decomposition
of a process schema. In Fig. 1a, for example, process schema S1 consists of six
activities: Activity A is followed by activity B in the flow of control, whereas C
and D can be processed in parallel. Activities A to E are atomic, and activity
F constitutes a sub process with own process schema S2. Based on a process

576 B. Weber, S. Rinderle, and M. Reichert

schema S, at run-time new process instances I1, . . . , In can be created and ex-
ecuted. Regarding process instance I1 from Fig. 1a, for example, activity A is
completed and activity B is activated (i.e., offered in user worklists). Generally,
a large number of process instances might run on a particular process schema.

PAIS must be able to cope with change. In general, changes can be triggered
and performed at two levels – the process type and the process instance level
(cf. Fig. 1b) [2]. Schema changes at the type level become necessary to deal with
the evolving nature of real-world processes (e.g., to adapt to legal changes). Ad-
hoc changes of single instances are usually performed to deal with exceptions,
resulting in an adapted instance-specific process schema.

BA

C

D

E F

Process Type Level

Process Schema S1 F1 F2 F3

Process Instance Level

Process Instance I1 Process Instance I2 Process Instance I3

(Sub-)Process Schema S2

Changes at the Process Instance Level

X

Y

dI5

X

Y

dI4

X

Y

dI1

BA

C

D

E F

Changes at the Process Type Level

S1‘

BA

D

E FX

Y

d

C X

Y

dI5

X

Y

dI4

X

Y

dI1

change
propagation

schema
evolution

S1

I1

Instance
change

W
it

h
o

u
t

C
h

an
g

e
(a

)
W

it
h

 C
h

an
g

e
(b

)

completed

activated

Fig. 1. Core Concepts

3 Change Patterns

In this section we describe 17 characteristic patterns we identified as relevant
for control flow changes (cf. Fig. 2). Adaptations of other process aspects (e.g.,
data or resources) are outside the scope of this paper. Change patterns reduce
the complexity of process change (like design patterns in software engineering
reduce system complexity [7]) and raise the level for expressing changes by pro-
viding abstractions which are above the level of single node and edge operations.
Consequently, due to their lack of abstraction, low level change primitives (add
node, delete edge, etc.) are not considered to be change patterns and thus are
not covered in this section.

As illustrated in Fig. 2, we divide our change patterns into adaptation pat-
terns and patterns for predefined changes. Adaptation patterns allow modify-
ing the schema of a process type (type level) or a process instance (instance
level) using high-level change operations. Generally, adaptation patterns can be

Change Patterns and Change Support Features 577

applied to the whole process schema or process instance schema respectively;
they do not have to be pre-planned, i.e., the region to which the adaptation pat-
tern is applied can be chosen dynamically. By contrast, for predefined changes,
at build-time, the process engineer defines regions in the process schema where
potential changes may be performed during run-time.

For each pattern we provide a name, a brief description, an illustrating ex-
ample, a description of the problem it addresses, a couple of design choices, re-
marks regarding its implementation, and a reference to related patterns. Design
Choices allow for parametrization of patterns keeping the number of distinct
patterns manageable. Design choices which are not only relevant for particular
patterns, but for a whole pattern category, are described only once at the cat-
egory level. Typically, existing approaches only support a subset of the design
choices in the context of a particular pattern. We denote the combination of
design choices supported by a particular approach as a pattern variant.

CHANGE PATTERNS

ADAPTATION PATTERNS (AP)

Pattern Name Scope Pattern Name Scope

AP1: Insert Process Fragment(*) I / T AP8: Embed Process Fragment in Loop I / T

AP2: Delete Process Fragment I / T AP9: Parallelize Process Fragment I / T

AP3: Move Process Fragment I / T AP10: Embed Process Fragment in Conditional Branch I / T

AP4: Replace Process Fragment I / T AP11: Add Control Dependency I / T

AP5: Swap Process Fragment I / T AP12: Remove Control Dependency I / T

AP6: Extract Sub Process I / T AP13: Update Condition I / T

AP7: Inline Sub Process I / T

PATTERNS FOR PREDEFINED CHANGES (PP)

Pattern Name Scope Pattern Name Scope

PP1: Late Selection of Process Fragments I / T PP3: Late Composition of Process Fragments I / T

PP2: Late Modeling of Process Fragments I / T PP4: Multi-Instance Activity I / T

I… Instance Level, T … Type Level
(*) A process fragment can either be an atomic activity, an encapsulated sub process or a process (sub) graph

Fig. 2. Change Patterns Overview

3.1 Adaptation Patterns

Adaptation patterns allow to structurally change process schemes. Examples
include the insertion, deletion and re-ordering of activities (cf. Fig. 2). Fig. 3
describes general design choices valid for all adaptation patterns. First, each
adaptation pattern can be applied at the process type or process instance level
(cf. Fig. 1b). Second, adaptation patterns can operate on an atomic activity, an
encapsulated sub process or a process (sub-)graph (cf. Fig. 3). We abstract from
this distinction and use the generic concept process fragment instead. Third,
the effects resulting from the use of an adaptation pattern at the instance level
can be permanent or temporary. A permanent instance change remains valid
until completion of the instance (unless it is undone by a user). By contrast, a
temporary instance change is only valid for a certain period of time (e.g., one
loop iteration) (cf. Fig. 3).

578 B. Weber, S. Rinderle, and M. Reichert

Design Choices for Adaptation Patterns
A. What is the scope of the respective pattern?

1. The respective pattern can be applied at the process instance level
2. The respective pattern can be applied at the process type level

B. Where does a respective change pattern operate on? (*)

1. On an atomic activity
2. On a sub process
3. On a process sub-graph

C. What is the validity period of the change?
1. The change can be of temporary nature
2. The change can be of permanent nature

(*) Design Choice B is only valid for AP1-AP10

Process Instance I

Temporary Change

B

C

D

E

B D E

B

C

D

E

1st loop iteration

2nd loop iteration
BA

C

D

E

F

Process Instance I
F1 F2 F3

Sub Process

G

X Z
X

Atomic Activity
Sub Graph

Design Choice B Design Choice C

Fig. 3. Design Choices for Adaptation Patterns

We describe four selected adaptation patterns in more detail. These four pat-
terns allow for the insertion, deletion, movement, and replacement of process
fragments in a given process schema. The Insert Process Fragment pattern (cf.
Fig. 4a) can be used to add process fragments to a process schema. In addition
to the general options described in Fig. 3, one major design choice for this pat-
tern (Design Choice D) describes the way the new process fragment is embedded
in the respective schema. There are systems which only allow to serially insert
a fragment between two directly succeeding activities. By contrast, other sys-
tems follow a more general approach allowing the user to insert new fragments
between two arbitrary sets of activities [3]. Special cases of the latter variant
include the insertion of a fragment in parallel to another one or the association
of the newly added fragment with an execution condition (conditional insert).
The Delete Process Fragment pattern, in turn, can be used to remove a process
fragment (cf. Fig 4b). No additional design choices exist for this pattern. Fig.
4b depicts alternative ways in which this pattern can be implemented.

The Move Process Fragment pattern (cf. Fig. 5a) allows to shift a process frag-
ment from its current position to a new one. Like for the Insert Process Fragment
pattern, an additional design choice specifies the way the fragment can be em-
bedded in the process schema afterwards. Though the Move Process Fragment
pattern could be realized by the combined use of AP1 and AP2 (Insert/Delete
Process Fragment), we introduce it as separate pattern as it provides a higher
level of abstraction to users. The latter also applies when a process fragment has
to be replaced by another one. This change is captured by the Replace Process
Fragment pattern (cf. Fig. 5b).

We have only described the most relevant adaptation patterns. Additional
patterns we identified are: swapping of activities (AP5), extraction of a sub
process from a process schema (AP6), inclusion of a sub process into a process
schema (AP7), embedding of an existing process fragment in a loop (AP8),

Change Patterns and Change Support Features 579

a) Pattern AP1: Insert Process Fragment
Description: A process fragment is added to a process schema.
Example: For a particular patient an allergy test has to be added due to a drug incompatibility.
Problem: In a real world process a task has to be accomplished which has not been modeled in
the process schema so far.
Design Choices (in addition to the ones in Fig. 3):

D. How is the additional process fragment X embedded in the process schema?
1. X is inserted between 2 directly succeeding activities (serial insert)
2. X is inserted between 2 activity sets (insert between node sets)

a) Without additional condition (parallel insert)
b) With additional condition (conditional insert)

X

A B

serialInsert

XA B A B C

X

A B C

X

parallelInsert

A B

X

conditionalInsert

x>0

else

X

A B

If x>0

Implementation: The insert adaptation pattern can be realized by transforming the high level
insertion operation into a sequence of low level change primitives (e.g., add node, add control
dependency).

b) Pattern AP2: Delete Process Fragment
Description: A process fragment is deleted from a process schema.
Example: For a particular patient no computer tomography is performed due to the fact that he
has a cardiac pacemaker (i.e., the computer tomography activity is deleted).
Problem: In a real world process a task has to be skipped or deleted.

BA

C

D

E F BA D E F

Implementation: Several options for implementing the delete pattern exist: (1) The fragment is
physically deleted (i.e., corresponding activities and control edges are removed from the process
schema), (2) the fragment is replaced by one or more null activities (i.e., activities without
associated activity program) or (3) the fragment is embedded in a conditional branch with
condition false (i.e., the fragment remains part of the schema, but is not executed).

Fig. 4. Insert (AP1) and Delete (AP2) Process Fragment patterns

a) Pattern AP3: Move Process Fragment
Description: A process fragment is moved from its current position in the process schema to
another position.
Example: Usually employees are only allowed to book a flight, after getting approval from the
manager. For a particular process instance the booking of a flight is exceptionally done in
parallel to the approval activity (i.e., the book flight activity is moved from its current position to
a position parallel to the approval activity).
Problem: Predefined ordering constraints cannot be completely satisfied for a set of activities.

BA

C

D E B

C

D EA

Design Choices:
D. How is the process fragment X embedded in the process schema?

1. X is inserted between 2 directly succeeding activities (serial move)
2. X is inserted between 2 activity sets (move between node sets)

a) Without additional condition (parallel move)
b) With additional condition (conditional move)

Implementation: This adaptation pattern can be implemented based on Pattern AP1 and AP2
(insert / delete process fragment).
Related Patterns: Swap adaptation pattern (AP5) (not detailed in the paper)

b) Pattern AP4: Replace Process Fragment
Description: A process fragment is replaced by another process fragment.
Example: Instead of the computer tomography activity, the X-ray activity shall be performed for
a particular patient.
Problem: A process fragment is no longer adequate, but can be replaced by another one.

BA

C

D E BA

X

D E

X

Implementation: This adaptation pattern can be implemented based on Pattern AP1 and AP2
(insert / delete process fragment).

Fig. 5. Move (AP3) and Replace (AP4) Process Fragment patterns

580 B. Weber, S. Rinderle, and M. Reichert

parallelization of process fragments (AP9), embedding of a process fragment in
a conditional branch (AP10), addition of control dependencies (AP11), removal
of control dependencies (AP12), and update of transition conditions (AP13). A
description of these patterns can be found in [8].

3.2 Patterns for Predefined Changes

The applicability of adaptation patterns is not restricted to a particular process
part a priori. By contrast, the following patterns predefine constraints concern-
ing the parts that can be changed. At run-time changes are only permitted
within these parts. In this category we have identified 4 patterns, Late Selection
of Proces Fragments (PP1), Late Modeling of Process Fragments (PP2), Late
Composition of Process Fragments (PP3) and Multi-Instance Activity (PP4) (cf.
Fig. 6). The Late Selection of Process Fragments pattern (cf. Fig. 7) allows to
select the implementation for a particular process step at run-time either based
on predefined rules or user decisions. The Late Modeling of Process Fragments
pattern (cf. Fig. 8a) offers more freedom and allows to model selected parts of
the process schema at run-time. Furthermore the Late Composition of Process
Fragments pattern (cf. Fig. 8b) enables the on-the fly composition of process
fragments (e.g., by dynamically introducing control dependencies between a set
of fragments).

In case of Multi-Instance Activities the number of instances created for a par-
ticular activity is determined at run-time. We do not consider multi-instance
activity patterns in detail as they constitute some of the workflow patterns
described in [9]. Multi-instance activities enable the creation of a particular
process activity during run-time. The decision how many activity instances
are created can be based either on knowledge available at build-time or on
some run-time knowledge. We do not consider multi-instances of the former
kind as change pattern since their use does not lead to change. For all other
types of multi-instance activities the number of instances is determined based
on run-time knowledge which can or cannot be available a-priori to the exe-
cution of the multi-instance activity. While in the former case the number of
instances can be determined at some point during run-time, this is not pos-
sible for the latter case. We consider multi-instance activities as change pat-
terns too, since their dynamic creation works like a dynamic schema
expansion.

4 Change Support Features

So far, we have introduced a set of change patterns, which can be used to accom-
plish changes at the process type and/or process instance level. However, simply
counting the number of supported patterns is not sufficient to analyze how well a
system can deal with process change. In addition, change support features must
be considered to make change patterns useful in practice (cf. Fig. 9). Relevant
change support features include process schema evolution and version control,

Change Patterns and Change Support Features 581

Process

Instance

Level

Process

Type

Level

Process

Instance

Level

S1

B

C

D

E FA

I1

Process

Type

Level

S1
B C

D

E FA

I1 How should the execution
of instance I1 proceed?

Pattern PP4Pattern PP3

S1

B

C

D

E FA

X Y Z

VU

S T R

Pr. Fragments for
Implementation of F

selection based on rules of
user decisions

IF …. THEN
ELSE IF
ELSE …

Pattern PP1 S1

B

C

D

E FA

I1 How to realize step B for
process instance I1?

Pattern PP2

D

E FA

?

I1

Fig. 6. Patterns for Predefined Changes (Overview)

Pattern PP1: Late Selection of Process Fragments
Description: For particular activities the corresponding implementation (activity program or sub
process model) can be selected during run-time. At build time only a placeholder is provided,
which is substituted by a concrete implementation during run-time (cf. Fig. 6).
Example: For the treatment of a particular patient one of several different sub-processes can be
selected depending on the patient’s disease.
Problem: There exist different implementations for an activity (including sub-processes), but for
the selection of the respective implementation run-time information is required.
Design Choices:

A. How is the selection process done?
1. Automatically based on predefined rules
2. Manually by an authorized user
3. Semi-automatically: options are reduced by applying some predefined rules; user

can select among the remaining options
B. What object can be selected?

1. Atomic activity
2. Sub process

C. When does late selection take place?
1. Before the placeholder activity is enabled
2. When enabling the placeholder activity

Implementation: By selecting the respective sub process or activity program, a reference to it is
dynamically set and the selected sub-process or activity program is invoked.
Related Patterns: Prerequisite for Pattern Late Modeling of Process Fragment (PP2)

Fig. 7. Late Selection of Process Fragments (PP1)

change correctness, change traceability, access control and change reuse1. As
illustrated in Fig. 9 the described change support features are not equally im-
portant for both process type level and process instance level changes. Version
control, for instance, is primarily relevant for changes at the type level, while
change reuse is particularly useful at the instance level [10].

4.1 Schema Evolution, Version Control and Instance Migration

In order to support changes at the process type level, version control for process
schemes should be supported (cf. Fig. 9). In case of long-running processes, in

1 Again we restrict ourselves to the most relevant change support features. Additional
change support features not covered in this paper are change concurrency control
and change visualization.

582 B. Weber, S. Rinderle, and M. Reichert

a) Pattern PP2: Late Modeling of Process Fragments
Description: Parts of the process schema have not been defined at build-time, but are modeled during
run-time for each process instance (cf. Fig. 6). For this purpose, placeholder activities are provided,
which are modeled and executed during run-time. The modeling of the placeholder activity must be
completed before the modeled process fragment can be executed.
Example: The exact treatment process of a particular patient is composed out of existing process
fragments at run-time.
Problem: Not all parts of the process schema can be completely specified at build time.
Design Choices:

A. What are the basic building blocks for late modeling?
1. All process fragments (including activities) from the repository can be chosen
2. A constraint-based subset of the process fragments from the repository can be chosen
3. New activities or process fragments can be defined

B. What is the degree of freedom regarding late modeling?
1. Same modeling constructs and change patterns can be applied as for modeling at the

process type level (*)

2. More restrictions apply for late modeling than for modeling at the process type level
C. When does late modeling take place?

1. When a new process instance is created
2. When the placeholder activity is instantiated
3. When a particular state in the process is reached (which must precede the instantiation

of the placeholder activity)
D. Does the modeling start from scratch?

1. Late modeling may start with an empty template
2. Late modeling may start with a predefined template which can then be adapted

Implementation: After having modeled the placeholder activity with the editor, the fragment is
stored in the repository and deployed. Finally, the process fragment is dynamically invoked as an
encapsulated sub-process. The assignment of the respective process fragment to the placeholder
activity is done through late binding.
Related Patterns: necessitates Late Selection of Process Fragments (PP1) of the dynamically
modified fragment
(*) Which of the adaptation patterns are supported within the placeholder activity is determined
by the expressiveness of the used modeling language.

b) Pattern PP3: Late Composition of Process Fragments
Description: At build time a set of process fragments is defined out of which a concrete process
instance can be composed at run time. This can be achieved by dynamically selecting fragments and
adding control dependencies on the fly (cf. Fig. 6).
Example: Several medical examinations can be applied for a particular patient. The exact
examinations and the order in which they are performed are defined for each patient individually.
Problem: There exist several variants of how process fragments can be composed. In order to reduce
the number of process variants to be specified by the process engineer during build time, process
instances are dynamically composed out of fragments.

Fig. 8. Late Modeling (PP2) and Late Composition of Process Fragments (PP3)

Change Support Features
Change Support Feature Scope Change Support Feature Scope

2. By change primitives F1: Schema Evolution, Version Control and
Instance Migration

T

F3: Correct Behavior of Instances After Change I + T

No version control – Old schema is overwritten F4: Traceability & Analysis I + T

1. Running instances are canceled 1. Traceability of changes

2. Running instances remain in the system 2. Annotation of changes

Version control 3. Change Mining

3. Co-existence of old/new instances, no instance migration F5: Access Control for Changes I+T

4. Uncontrolled migration of all process instances 1. Changes in general can be restricted to authorized users

5. Controlled migration of compliant process instances 2. Application of single change patterns can be restricted

F2: Support for Ad-hoc Changes I 3. Authorizations can depend on the object to be changed

1. By change patterns F6: Change Reuse I

T … Type Level, I … Instance Level

Fig. 9. Change Support Features

addition, controlled migration of already running instances, from the old process
schema version to the new one, might be required. In this subsection we describe
different existing options in this context (cf. Fig. 10).

Change Patterns and Change Support Features 583

If a PAIS provides no version control feature, either the process designer can
manually create a copy of the process schema (to be changed) or this schema is
overwritten (cf. Fig. 10a). In the latter case running process instances can either
be withdrawn from the run-time environment or, as illustrated in Fig. 10a, they
remain associated with the modified schema. Depending on the execution state
of the instances and depending on how changes are propagated to instances
which have already progressed too far, this missing version control can lead to
inconsistent states and, in a worst case scenario, to deadlocks or other errors
[2]. As illustrated in Fig. 10a process schema S1 has been modified by inserting
activities X and Y with a data dependency between them. For instance I1 the
change is uncritical, as I1 has not yet entered the change region. However, I2
and I3 would be both in an inconsistent state afterwards as instance schema and
execution history do not match (see [2]). Regarding I2, worst case, deadlocks or
activity invocations with missing input data might occur.

By contrast, if a PAIS provides explicit version control two support features
can be differentiated: running process instances remain associated with the old
schema version, while new instances will be created on the new schema ver-
sion. This approach leads to the co-existence of process instances of different
schema versions (cf. Fig. 10b). Alternatively a migration of a selected collec-
tion of process instances to the new process schema version is supported (in
a controlled way) (cf. Fig. 10c). The first option is shown in Fig. 10b where
the already running instances I1, I2 and I3 remain associated with schema S1,
while new instances (I4-I5) are created from schema S1′ (co-existence of process
instances of different schema versions). By contrast, Fig. 10c illustrates the con-
trolled migration of process instances. Only those instances are migrated which
are compliant2 with S1′ (I1). All other instances (I2 and I3) remain running
according to S1. If instance migration is uncontrolled (as it is not restricted to
compliant process instances) this will lead to inconsistencies or errors. Never-
theless, we treat the uncontrolled migration of process instances as a separate
design choice since this functionality can be found in several existing systems
(cf. Section 5).

4.2 Other Change Support Features

Support for Ad-hoc Changes: In order to deal with exceptions PAIS must
support changes at the process instance level either through high level changes
in the form of patterns (cf. Section 3) or through low level primitives. Although
changes can be expressed in both ways, change patterns allow to define changes
at a higher level of abstraction making change definition easier.

Correctness of Change: The application of change patterns must not lead
to run-time errors (e.g., activity program crashes due to missing input data,
deadlocks, or inconsistencies due to lost updates or vanishing of instances).

2 A process instance I is compliant with process schema S, if the current execution
history of I can be created based on S (for details see [2]).

584 B. Weber, S. Rinderle, and M. Reichert

Process

Type

Level

Process

Instance

Level
X

Y

d

?

d

B

C

D

E F

X Y
dS1

I1 I2 dI3

A

Process

Type

Level

Process

Instance

Level

BA

C

D

E F

S1 S1‘

BA

D

E FX

Y

d

C

X

Y

dI5

Process

Type

Level

Process

Instance

Level

BA

C

D

E F

S1 S1‘

BA

D

E FX

Y

d

C

X

Y

dI5

S
ch

em
a

is
 o

ve
rw

ri
tt

en
(a

)

C
o

-e
xi

st
en

ce
 o

f
p

ro
ce

ss

in
st

an
ce

s
o

f
d

if
fe

re
n

t
sc

h
em

a
ve

rs
io

n
s

(b
)

In
st

an
ce

 M
ig

ra
ti

o
n

(c
)

Instances I2 and I3 are in inconsistent sates

X

Y

dI4

X

Y

dI4

X

Y

dI4

X

Y

dI1

?

Type change overwrites S1

Type change results

in a new schema
version S1’

Instances created from S1

I3
I2

I1

Instances created from S1’

Non-compliant instances

Type change results

in a new schema
version S1’

and the
migration of
compliant

instance I1

old instances
remain with

S1

I3
I2

Fig. 10. Version Control

Different criteria (see [2]) have been introduced to ensure that instances can
only be updated to a new schema if they are compliant with it.

Traceability and Analysis: To ensure traceability of changes, they have to
be logged. For adaptation patterns the applied changes have to be stored in
a change log as change patterns and/or change primitives. While both options
allow for traceability, change mining [11] becomes easier when the change log
contains high-level information about the changes as well. Regarding patterns for
predefined changes, an execution log is usually sufficient to enable traceability.
In addition, logs can be enriched with more semantical information, e.g., about
the reasons and context of the changes [10]. Finally, change mining allows for
the analysis of changes (e.g., to support continuous process improvement) [11].

Access Control for Changes: The support of change patterns leads to in-
creased PAIS flexibility. This, in turn, imposes security issues as the PAIS be-
comes more vulnerable to misuse. Therefore, the application of changes at the
process type and the process instance level must be restricted to authorized
users. Access control features differ significantly in their degree of granularity.
In the simplest case, changes are restricted to a particular group of people (e.g.,
to process engineers). More advanced access control components allow to define
restrictions at the level of single change patterns (e.g., a certain user is only
allowed to insert additional activities, but not to delete activities). In addition,
authorizations can depend on the object to be changed, e.g., the process schema.

Change Reuse: In the context of ad-hoc changes ”similar” deviations (i.e.,
combination of one or more adaptation patterns) can occur more than once. As

Change Patterns and Change Support Features 585

it requires significant user experience to define changes from scratch change reuse
should be supported. To reuse changes they must be annotated with contextual
information (e.g., about the reasons for the deviation) and be memorized by the
PAIS. This contextual information can be used for retrieving similar problem
situations and therefore ensures that only changes relevant for the current situa-
tion are presented to the user [12,10]. Regarding patterns for predefined changes,
reuse can be supported by making historical cases available to the user and by
saving frequently re-occurring instances as templates.

5 Change Patterns and Change Support in Practice

In this section we evaluate approaches from both academia and industry regard-
ing their support for change patterns as well as change features. For academic
approaches the evaluation has been mainly based on literature. In cases where it
was unclear whether a particular change pattern or change feature is supported
or not, the respective research groups were additionally contacted. The evalu-
ated academic approaches are ADEPT[3], WIDE [13], Pockets of Flexibility [14],
Worklets/Exlets [4,15], CBRFlow [12,10], MOVE [16], HOON [17], and WASA
[5]. In respect to commercial systems only such systems have been considered
for which we have hands on experience as well as a running system installed.
This allowed us to test the change patterns and change features. As commer-
cial systems Staffware [1] and Flower [6] were considered. Evaluation results are
summarized in Fig. 11. A detailed description of the evaluated approaches can
be found in [8].

If a change pattern or change support feature is not supported at all, the
respective table entry will be labeled with ”-”. Otherwise, it describes the exact
pattern variants as supported by listing all available design choices. In case
no design choices exist for a particular change pattern, which is supported, the
respective table entry is simply labeled with ”+”. Partial support is labeled with
”◦”. As an example take change pattern PP1 of the Worklet/Exlet approach
[4,15]. The string ”A[1,2], B[1,2], C[2]” indicates that design choices A, B and
C are supported. Further, it shows for every design choice the exact options
available (e.g., for design choice A, Options 1 and 2 are supported).

In particular an adaptation pattern will be only considered as being provided,
if the respective system supports the pattern directly, i.e., based on one high-level
change operation. Of course, adaptation patterns can be always expressed by
means of a set of basic change primitives (like add node, delete node, add edge,
etc.). However, this is not the idea behind adaptation patterns. Since process
schema changes (at the type level) based on these modification primitives are
supported by almost each process editor, this is not sufficient to qualify for
pattern support. By contrast, the support of high-level change operations allows
introducing changes at a higher level of abstraction and consequently hides a
lot of the complexity from the user. Therefore changes can be performed in a
more efficient and less error prone way. In addition, in order to qualify as an
adaptation pattern the application of the respective change operations must not
be restricted to predefined regions in the process.

586 B. Weber, S. Rinderle, and M. Reichert

Several of the adaptation patterns (e.g., AP3 or AP4) can be implemented by
applying a combination of the more basic patterns AP1, AP2, AP10 and AP11.
However, a given approach will only qualify for a particular adaptation pattern,
if it supports this pattern directly (i.e., it offers one respective change operation).

Note that missing support for adaptation patterns does not necessarily mean
that no run-time changes can be performed. As long as feature F2 is supported
ad-hoc changes to running process instances are possible (for details see [8]). In
general, if a respective approach provides support for predefined change patterns
like for instance late modeling of process fragments (PP1) or late selection of
process fragments (PP2) the need for structural changes of the process schema
can be decreased making feature F3 less crucial.

The evaluation of selected approaches shows that there exists no single system
which supports all changepatterns and features (cf.Table 11). Inparticular, noneof
the approachesprovides both adaptation patterns and predefined change patterns,
which would allow addressing a much broader process spectrum. While predefined
change patterns allow to reduce the need for structural changes during run-time by
providing more flexible models, adaptation patterns allow for structural changes
which cannot be pre-planned. In addition, they make changes more efficient, less
complex and less error-prone through providing high-level change operations.

Change Patterns and Change Support

Academic Commercial
Pattern/
Feature ADEPT /

CBRFlow WIDE
Pockets of
Flexibility

Worklets /
Exlets MOVE HOON WASA Staffware Flower

Change Patterns

Adaptation Patterns

AP1
A[1, 2],

B[1,2,3], C[1,2],
D[1, 2]

A[2], B[1],
C[2], D[1,2] – – – – – – –

AP2 A[1, 2],
B[1,2,3], C[1,2]

A[2], B[1],
C[2] – – – – – – A[2], B[1],

C[2]

AP3
A[1, 2],

B[1,2,3], C[1,2],
D[1, 2]

– – – – – – – –

AP4 – A[2], B[1],
C[2] – A[1], B[2],

C[1,2] – – – – –

Preplanned Change Patterns

PP1 – – – A[1,2],
B[1,2], C[2] – A[1,2],

B[1,2], C[2] – A[1,2],
B[1,2], C[2] –

PP2 – – A[1,2], B[2],
C[2], D[1,2] – A[1], B[1],

C[3], D[1,2] – – – –

PP3 – – – – – – – – –

PP4 – + – – – – – + +

Change Features

F1 3, 5 3, 5 – 3 – – 3, 5 3, 4 1, 2, 3

F2 1 – 2 2 2 2 2 2 1

F3 + + + ° + + + – –

F4 1, 2, 3 1 1 1 1 1 1 1 1

F5 1, 2, 3 1, 3 1, 2, 3 1, 2, 3 1, 3 1, 2, 3 1 1, 2, 3 1, 2, 3*

F6 + – + + – – – – –
(*) Flower supports Option 2 and 3 of feature F4 only for process instance changes, but not for process type changes

Fig. 11. Change Patterns and Change Support Features in Practice

Change Patterns and Change Support Features 587

6 Related Work

Patterns were first used to describe solutions to recurring problems by Ch.
Alexander, who applied patterns to descibe best practices in architecture [18].
Patterns also have a long tradition in computer science. Gamma et al. applied
the same concepts to software engineering and described 23 patterns in [7].

In the area of workflow management, patterns have been introduced for an-
alyzing the expressiveness of process modeling languages (i.e., control flow pat-
terns [9]). In addition, workflow data patterns [19] describe different ways for
modeling the data aspect in PAIS and workflow resource patterns [20] describe
how resources can be represented and utilized in workflows. The introduction
of workflow patterns has significant impact on the design of PAIS and has con-
tributed to the systematic evaluation of PAIS and process modeling standards.
However, to evaluate the powerfulness of a PAIS regarding its ability to deal
with changes, the existing patterns are important, but not sufficient. In addi-
tion, a set of patterns for the aspect of workflow change is needed. Further,
the degree to which control flow patterns are supported provides an indica-
tion of how complex the change framework under evaluation is. In general,
the more expressive the process modeling language is (i.e., the more control
flow and data patterns are supported), the more difficult and complex changes
become.

In [21] exception handling patterns which describe different ways for coping
with exceptions are proposed. In contrast to change patterns, exception han-
dling patterns like Rollback only change the state of a process instance (i.e., its
behavior), but not its schema. The patterns described in this paper do not only
change the observable behavior of a process instance, but additionally adapt the
process structure. For a complete evaluation of flexibility, both change patterns
and exception handling patterns must be evaluated.

7 Summary and Outlook

In this paper we proposed 17 change patterns (and described 8 of them in detail)
and 6 change support features, which in combination allow to assess the power
of a particular change framework. In addition, we evaluated selected approaches
and systems regarding their ability to deal with process changes. We believe that
the introduction of change patterns complements existing workflow patterns and
allows for more meaningful evaluations of existing systems and approaches. In
combination with workflow patterns the presented change framework will enable
(PA)IS engineers to choose process management technologies

Future work will include change patterns for aspects other than control flow
(e.g., data or resources) and patterns for more advanced adaptation policies
(e.g., the accompanying adaptation of the data flow when introducing control
flow changes) as well as the evaluation of additional systems and approaches.

588 B. Weber, S. Rinderle, and M. Reichert

Acknowledgements. We would like to thank S. Shadiq, M. Adams, M. Weske
and Y. Han for their valuable feedback and the many fruitful discussions, which
helped us to significantly improve this paper.

References

1. Dumas, M., ter Hofstede, A., van der Aalst, W. (eds.): Process Aware Information
Systems. Wiley Publishing, Chichester (2005)

2. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Engineering 50, 9–34 (2004)

3. Reichert, M., Dadam, P.: ADEPTflex – supporting dynamic changes of workflows
without losing control. JIIS 10, 93–129 (1998)

4. Adams, M., ter Hofstede, A.H.M., Edmond, D., v.d.Aalst, W.M.: A service-oriented
implementation of dynamic flexibility in workflows. In: Coopis’06 (2006)

5. Weske, M.: Workflow management systems: Formal foundation, conceptual design,
implementation aspects. University of Münster, Germany, Habil Thesis (2000)

6. van der Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for
business process support. Data and Knowledge Engineering. 53, 129–162 (2005)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, New York (1995)

8. Weber, B., Rinderle, S., Reichert, M.: Identifying and evaluating change patterns
and change support features in process-aware information systems. Technical Re-
port Report No. TR-CTIT-07-22, CTIT, Univ. of Twente, The Netherlands (2007)

9. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14, 5–51 (2003)

10. Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating process learning and
process evolution - a semantics based approach. In: BPM 2005, pp. 252–267 (2005)

11. Günther, C., Rinderle, S., Reichert, M., van der Aalst, W.: Change mining in
adaptive process management systems. In: CoopIS’06, pp. 309–326 (2006)

12. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling adaptive workflow manage-
ment through conversational cbr. In: ECCBR’04, Madrid, pp. 434–448 (2004)

13. Casati, F.: Models, Semantics, and Formal Methods for the design of Workflows
and their Exceptions. PhD thesis, Milano (1998)

14. Sadiq, S., Sadiq, W., Orlowska, M.: A framework for constraint specification and
validation in flexible workflows. Information Systems 30, 349–378 (2005)

15. Adams, M., ter Hofstede, A.H.M., Edmond, D., v. d. Aalst, W.M.: Dynamic and
extensible exception handling for workflows: A service-oriented implementation.
Technical Report BPM Center Report BPM-07-03, BPMcenter.org (2007)

16. Th. Herrmann, A.-W., Scheer, H.W. (eds.): Verbesserung von Geschftsprozessen
mit flexiblen Workflow-Management-Systemen - Verffentlichungen des Forschung-
sprojektes MOVE. Bd. 1 - 4. Physica Verlag, Heidelberg (1998)

17. Han, Y.: Software Infrastructure for Configurable Workflow Systems. PhD thesis,
Univ. of Berlin (1997)

18. Alexander, C., Ishikawa, S., Silverstein, M. (eds.): A Pattern Language. Oxford
University Press, New York (1977)

19. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow data pat-
terns. Technical Report FIT-TR-2004-01, Queensland Univ. of Techn. (2004)

20. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow resource
patterns. Technical Report WP 127, Eindhoven Univ. of Technology (2004)

21. Russell, N., van der Aalst, W.M., ter Hofstede, A.H.: Exception handling patterns
in process-aware information systems. In: CAiSE’06 (2006)

Analyzing the Dynamic Cost Factors of Process-Aware
Information Systems: A Model-Based Approach

Bela Mutschler1,2, Manfred Reichert2, and Stefanie Rinderle3

1 DaimlerChrysler Group Research, P.O. Box 2360, 89013 Ulm, Germany
bela.mutschler@daimlerchrysler.com

2 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@utwente.nl

3 Institute Databases and Information Systems, University of Ulm, Germany
stefanie.rinderle@uni-ulm.de

Abstract. Introducing process-aware information systems (PAIS) in enterprises
is usually associated with high costs. It is therefore crucial to understand those
factors that determine these costs. Though software cost estimation has received
considerable attention during the last decades, it is difficult to apply existing ap-
proaches to PAIS. This difficulty particularly stems from the inability of these
techniques to deal with the dynamic interactions of the many technological, orga-
nizational and project-driven cost factors which specifically arise in the context of
PAIS. Picking up this problem, this paper presents an approach to investigate the
complex cost structures of PAIS engineering projects based on evaluation models.
We present a formalism to design such evaluation models, discuss one character-
istic evaluation model and its derivation in detail (based on the outcome of an
empirical study), and introduce the notion of value-based evaluation patterns to
enable the reuse of evaluation models.

1 Introduction

Process-aware information systems (PAIS) separate process logic from application code
[1], and orchestrate the processes at run-time according to their defined logic [2]. For
implementing PAIS, numerous process support paradigms (e.g., workflow management,
service flows, case handling), process modeling standards (e.g., WS-BPEL, BPML),
and tools (e.g., ARIS Toolset, Tibco Staffware) have been introduced [3].

While the benefits of PAIS are typically justified by improved process performance
[4,5] and cheaper process implementation [6], there exist no approaches for systema-
tically analyzing related costs. Though software cost estimation has received consider-
able attention during the last decades and has become an essential task in information
system engineering, it is difficult to apply existing approaches to PAIS. This difficulty
stems from the inability of these approaches to cope with the numerous technological,
organizational and project-driven cost factors which have to be considered in the con-
text of a PAIS (and which do only partly exist in data- or function-centered information
systems) [7]. As an example consider the costs for redesigning processes. Another chal-
lenge deals with the dependencies between these factors. Activities for business process
redesign [8], for example, can be influenced by intangible impact factors like process

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 589–603, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

590 B. Mutschler, M. Reichert, and S. Rinderle

knowledge or end user fears. These dependencies result in dynamic economic effects
which influence the overall costs of a PAIS engineering project. Existing techniques [9]
are typically not able to deal with such dynamic effects as they rely on static models
based upon snapshots of the considered software system.

What is needed is a comprehensive approach that enables engineers to model and
investigate the complex interplay between the cost and impact factors that arise in the
context of PAIS. For this purpose, this paper1 introduces a sophisticated and practically
approved, model-based methodology to better understand and systematically investi-
gate the complex cost structures of PAIS engineering projects. We present a formalism
to design qualitative evaluation models and discuss one characteristic evaluation model
and its derivation in detail (based on the outcome of an empirical study). In response to
the problems observed during the exploratory use of our methodology in practice, we
additionally introduce the notion of value-based evaluation patterns.

The remainder of this paper is organized as follows. Section 2 describes our quali-
tative cost analysis methodology. Section 3 introduces value-based evaluation patterns.
Section 4 discusses related work, and Section 5 concludes with a summary.

2 The EcoPOST Cost Analysis Methodology

This section describes the main steps of our approach for modeling, analyzing and
understanding those factors and their complex interplay that determine the dynamic
costs of PAIS engineering projects. Section 2.1 describes the terminology used in our
approach. Section 2.2 introduces the notation of our evaluation models. Section 2.3
gives an illustrating example. Section 2.4 motivates the use of simulation for analyzing
the dynamic implications as described by our evaluation models. Section 2.5 deals with
the specification of simulation models. Finally, Section 2.6 summarizes major lessons
learned from a (pilot) case study in the automotive domain.

2.1 Terminology

Basically, we distinguish between different kinds of evaluation factors. Static Cost Fac-
tors (SCF) represent costs that can be precisely quantified in terms of money. The value
of a SCF does not considerably change during a PAIS engineering project (except for
its time value, which is not further considered in this paper). Thus, the value of a SCF
can be considered as constant. As typical examples of SCF consider software license
costs, hardware costs, or costs for external consultants.

Dynamic Cost Factors (DCF), in turn, represent costs that are determined by activ-
ities related to a PAIS engineering project. The (re)design of business processes prior
to the introduction of PAIS, for example, constitutes such an activity. These activities
cause measurable efforts, which, as they are influenced by other, often intangible fac-
tors, can vary. A DCF ”Costs for Business Process Redesign”, for instance, may be
influenced by an intangible factor ”Willingness of Staff Members to support Redesign

1 Our research has been conducted in the EcoPOST project [7,10] which deals with the devel-
opment of an evaluation framework for analyzing PAIS from a value-based perspective (see
http://is.ewi.utwente.nl/research/).

Analyzing the Dynamic Cost Factors of Process-Aware Information Systems 591

Activities”. Obviously, if staff members do not contribute to a redesign project by pro-
viding needed information (e.g., about process details), any redesign effort will be in-
effective and will increase costs. If staff willingness is additionally varying during the
redesign activity (e.g., due to a changing communication policy), the DCF ”Costs for
Business Process Redesign” will be subject to more complex effects. In our framework,
intangible factors like ”Willingness of Staff Members to support Redesign Activities”
can be represented by so called impact factors.

Impact Factors (ImF) are intangible evaluation factors that influence DCF, i.e., the
activities underlying a DCF. In particular, ImF lead to the evolution of DCF, which, in
turn, makes the estimation and analysis of DCF a difficult task to accomplish. As exam-
ples consider factors such as ”End User Fears”, ”Availability of Process Knowledge”,
or ”Ability to redesign Business Processes”. Opposed to SCF and DCF, the values of
ImF are not quantified in monetary terms, but in a qualitative manner. ”End User Fears”,
for example, can be quantified by means of a ”Degree of End User Fears” (which can
be ”low” or ”high”). Also, ImF can be either static or dynamic. The value of a static
ImF (ImFS) does not considerably evolve during a PAIS engineering project and can be
considered as constant (like the value of a SCF). The value of a dynamic ImF (ImFD),
by contrast, may be changing. Like the evolution of DCF, the evolution of dynamic ImF
is caused by (both static and dynamic) ImF.

2.2 Evaluation Models

To better understand the evolution of DCF in PAIS engineering projects as well as
DCF interference through ImF, we utilize evaluation models. In particular, each DCF is
represented and analyzed by exactly one evaluation model. These models are specified
using the System Dynamics [11,12] notation2 (cf. Fig. 1A) [7].

Model Notation. An evaluation model comprises a set of model variables which are
denoted as evaluation factors. In our context SCF, DCF, and ImF correspond to evalu-
ation factors. Different types of variables exist. State variables can be used to represent
dynamic factors, i.e., to capture changing values of DCF (e.g., the ”Costs for Business
Process Redesign”; cf. Fig. 1B) and dynamic ImF (e.g., a certain degree of ”Process
Knowledge”). A state variable is graphically denoted as rectangle (cf. Fig. 1B), and its
value at time t is determined by the accumulated changes of this variable from starting
point t0 to present moment t (t > t0); similar to a bathtub which accumulates – at a
defined moment t – the amount of water which has been poured into it in the past. Each
state variable needs to be connected to at least one source or sink. Both sources and
sinks are graphically denoted as cloud-like symbols (cf. Fig. 1B).

2 We decided to use System Dynamics based on a literature review of potential modeling for-
malisms. Out of the investigated formalisms, System Dynamics (SD) and Bayesian Networks
(BN) promised to be of particular usefulness in our context. Both formalisms allow to explic-
itly model networks of evaluation factors. However, BN deal with uncertainty and focus on
determining probabilities of events. SD, by contrast, neglects the issue of ”(un)certainty” and
deals with the analysis of dynamic effects which occur in networks of interacting factors. As
we can typically determine whether a certain factor is relevant in a given scenario, we decided
to use SD.

592 B. Mutschler, M. Reichert, and S. Rinderle

Values of state variables change through inflows and outflows. Graphically, both
flow types are depicted by twin-arrows which either point to (in the case of an inflow)
or out of (in the case of an outflow) the state variable (cf. Fig. 1B). Picking up again the
bathtub image, an inflow is a pipe that adds water to the bathtub, i.e., inflows increase
the value of a state variable. An outflow, by contrast, is a pipe that purges water from
the bathtub, i.e., outflows decrease the value of a state variable. The DCF ”Costs for
Business Process Redesign” shown in Fig. 1C, for example, increases through its inflow
”Cost Increase” and decreases through its outflow ”Cost Decrease”.

Returning to the bathtub image, we further need ”water taps” to control the amount
of water flowing into the bathtub, and ”drains” to specify the amount of water flowing
out. For this purpose, a rate variable is assigned to each flow (graphically depicted by
a valve; cf. Fig. 1B).

B) State Variables & Flows

Costs for
Business
Process

Redesign

Controls
the Inflow

Controls
the Outflow

DCF

Cost
Increase

Cost
Decrease

A) Notation

Flows

Auxiliary Variables
Rate Variables

Dynamic Cost Factors

Links

Sources and Sinks

Dynamic Impact Factors

[Text]

[+|-]

Static Cost Factor [Text]

Static Impact Factor [Text]

C) Using Auxiliary Variables as Intermediate Variables

Business Process
Redesign CostsCost Increase Cost Decrease

Process
Definition

Costs

Process
Knowledge

Domain
Knowledge

-

-

+

Costs per
Week+

Water
Tap

Water
Drain

SCF1

SCF2

ImFS

Intermediate
Variable

+
+
-Ability to redesign

Business
Processes

-

Fig. 1. Evaluation Model Notation and initial Examples

Besides state variables, evaluation models may comprise constants and auxiliary
variables (which are both graphically represented by their name). Constants are used
to represent static evaluation factors, i.e., SCF and static ImF in our context. Auxil-
iary variables, in turn, represent intermediate variables. As an example consider the
auxiliary variable ”Process Definition Costs” in Fig. 1C. Both constants and auxiliary
variables are integrated into an evaluation model with links (not flows), i.e., labeled
arrows. A positive link (labeled with ”+”) between x and y (with y as dependent vari-
able) indicates that y will tend in the same direction if a change occurs in x. A negative
link (labeled with ”-”) expresses that the dependent variable y will tend in the opposite
direction if the value of x changes. Relationships as expressed by links either can be
linear or non-linear (cf. Section 2.5 for details). Altogether, we can define:

Definition (Evaluation Model). A graph EM = (V, F, L) is called evaluation model, if
the following holds:

– V := S ∪̇ X ∪̇ R ∪̇ C ∪̇ A is a set of model variables with
• S is a set of state variables,
• X is a set of sources and sinks,
• R is a set of rate variables,
• C is a set of constants,
• A is a set of auxiliary variables,

Analyzing the Dynamic Cost Factors of Process-Aware Information Systems 593

– F ⊆ ((S × S)∪ (S × X)∪ (X × S)) is a set of edges called flows,
– L ⊆ ((S × A × Lab)∪ (S × R × Lab)∪ (A×A×Lab)∪ (A ×R×Lab)∪

(C × A × Lab)∪ (C× R × Lab)) is a set of edges called links with
Lab := {+,−} being the set of link labels, where

• (qi,q j,+) ∈ L with qi ∈ (S ∪̇ A ∪̇ C) and q j ∈ (A ∪̇ R) denotes a positive link,
• (qi,q j,−) ∈ L with qi ∈ (S ∪̇ A ∪̇ C) and q j ∈ (A ∪̇ R) denotes a negative link.

Model Correctness. For defining evaluation models we introduce additional constraints
(model design rules) to be taken into account: (1) DCF and dynamic ImF have to be
represented by state variables, (2) SCF and static ImF must be represented as constants,
(3) every state variable v must be connected to at least one source or sink q, i.e., ∀v ∈ S :
∃(q,v) ∈ F ∨∃(v,q) ∈ F with q ∈ X , (4) every model variable must be used in at least
one binary relation, i.e., ∀v,q ∈ (S ∪̇ X) : ∃(v,q) ∈ F ∨∃(q,v) ∈ F and ∀q ∈ (A ∪̇ C)∧
∀v ∈ (A ∪̇ R) : ∃(q,v, [+|−]) ∈ L, (5) every rate variable of the evaluation model is
influenced by at least one link, i.e., ∀v ∈ R∧q ∈ (S ∪̇ A ∪̇ C) : ∃(q,v, [+|−]) ∈ L, and (6)
there exist no cycles solely consisting of auxiliary variables, i.e., ¬∃ < q0,q1, ...,qr >∈
Ar+1 with q0 = qr and qk
= ql for k, l = 1, . . . ,r;k
= l.

Rules for the correct use of flows and links are illustrated in Fig. 2A and Fig. 2B.
By contrast, Fig. 2C - Fig. 2H show examples of incorrect models. DCF and ImFD, for
example, may be only influenced by flows, and not by links as shown in Fig. 2C. Flows
may be only connected to DCF and ImFD, but not to auxiliary variables or constants as
depicted in Fig. 2D. Links pointing to constants (e.g., SCF, ImFS) as denoted in Fig. 2E
and Fig. 2F are also not valid. Finally, flows and links connecting DCF to ImFD (and
vice versa) are also not considered as correct (cf. Fig. 2G and Fig. 2H).

B) Use of Links

SCF
DCF
ImFD

ImFS

A

A R

In
de

pe
nd

en
t

Va
ria

bl
e

Dependent Variable

SCF DCF ImFD ImFS X

x xxx x
x xxx x
x xxx x
x xxx x
x xxx x

xcorrect links incorrect links

A) Use of Flows

DCF
ImFD

X

SCF DCF

In
de

pe
nd

en
t

Va
ria

bl
e*

Dependent Variable

ImFD ImFS X

xxx x
xxx

x xxx

xcorrect flows incorrect flows

A R

x x
x

x

C) Incorrect LinkNotation

Flows

Auxiliary Variables

Rate Variables

Dynamic Cost Factors

Links

Sources and Sinks

Dynamic Impact Factors

[Text]

[+|-]

Static Cost Factor [Text]

Static Impact Factor [Text]

D) Incorrect Flow E) Incorrect Link

F) Incorrect Flow G) Incorrect Flow H) Incorrect Link

* SCF, ImFS, A and R do not have to be considered here. Flows are only con-
nected to dynamic evaluation factors (i.e., DCF and ImFD) and Sources/Sinks.

DCF

SCF
+ Auxiliary

Variable

ImFS

ImFD

ImFS + ImFD DCF

ImFDDCF

ImFD DCF

ImFDDCF +

+

DCF

SCF
+

Fig. 2. Model Design Rules and Examples of Incorrect Modeling

594 B. Mutschler, M. Reichert, and S. Rinderle

Model correctness does not only presume compliance with existing model design
rules. It also deals with the development of models that are suitable to represent real-
world settings. Therefore, we accomplished user surveys and case studies (see below).

2.3 Illustrating Example

Fig. 3 shows a model which describes the influence of the dynamic ImF ”End User
Fears” on the DCF ”Costs for Business Process Redesign”. More specifically, this
model reflects the assumption that the introduction of a PAIS may cause end user fears,
e.g., due to a high degree of job redesign and due to changed social clues. Such end
user fears can lead to emotional user resistance. This, in turn, can make it difficult to
get support from the users while introducing a PAIS. Such models are of significant
value for PAIS engineers, e.g., due to their suitability to serve as a conscious-raising
tool about basic economic effects in PAIS engineering projects.

Model Details. Basic to this evaluation model is a cyclic structure connecting the four
ImF ”End User Fears”, ”Emotional Resistance”, ”Ability to acquire Process Knowl-
edge”, and ”Ability to redesign Business Processes”. Their arrangement (cf. Fig. 3)
illustrates the following coherence: Increasing end user fears result in increased emo-
tional resistance of end users. This dependency is represented by a positive link from
the ImF ”End User Fears” to the ”Resistance Growth Rate” (which controls the inflow
of the ImF ”Emotional Resistance”). An increasing emotional resistance of end users,
in turn, results in a decreasing ability to acquire process knowledge. Reason is that an
increasing emotional resistance makes profound process analysis (e.g., based on in-
terviews with process participants) a difficult task to accomplish. This dependency is
represented by a negative link from the ImF ”Emotional Resistance” to the rate variable
”Decreasing Ability to acquire Process Knowledge” (which, in turn, controls the inflow
of the ImF ”Ability to acquire Process Knowledge”).

A decreasing ability to acquire process knowledge results in a decreasing ability to
redesign business processes. Again, this dependency is represented by a positive link.
Finally, an increasing ability to redesign business processes can even enforce end user
fears since end users often consider business process redesign activities as a potential

NotationIllustrating Example: The Impact of „End User Fears“ on „Costs for Business Process Redesign“

Flows

Auxiliary Variables
Rate Variables

Dynamic Cost Factors

Links

Sources and Sinks

End User
Fears

Emotional
Resistance

Fear
Growth

Rate

Resistance
Growth Rate

Ability to redesign
Business ProcessesDegree of Job

Redesign

Social Clue and
Interactions
BEFORE

Impact due to
Job Redesign

Impact due to Changes
concerning Social Clue

and Interactions

+
+
+

Social Clue and
Interactions

AFTER Change of
Social Clue and

Interactions
+

+

+
Decreasing Ability to
redesign Business

Processes

+

Communication

Communication
Growth RateFear Reduction

Rate
+

Ability to acquire
Process

Knowledge

Increasing Ability
to acquire
Process
Knowledge

-+

Costs for Business
Process Redesign

Cost Rate

+

Dynamic Impact Factors

[Text]

[+|-]

-

Static Cost Factor [Text]

Static Impact Factor [Text]

Fig. 3. Dealing with the Impact of End User Fears

Analyzing the Dynamic Cost Factors of Process-Aware Information Systems 595

threat for their own job. This dependency is represented by another positive link. Note
that the ”Fear Growth Rate” is not only biased by this link. It is also influenced by the
”Degree of Job Redesign” and the ”Change of Social Clue and Interactions” (which is
calculated from the social clues and interactions before and after the business process
redesign). Finally, ”Communication” is considered as well. This ImF deals with the
information of end users about the goals of introducing a PAIS.

Empirical Validation. To empirically confirm our assumptions as represented by this
evaluation model (and the many other ones we have developed for PAIS engineers)
we conducted an online survey3 among 70 business process management experts. Re-
garding the above example, we have analyzed the ImF ”End User Fears” and the ImF
”Communication” in more detail. First, we asked for the relevance of the factor (Ques-
tion 1). Second, we asked whether there are potential dependencies between this factor
and other ones (Question 2). Only those survey participants who confirmed the exis-
tence of dependencies were directed to two additional questions which dealt with the
further specification of the confirmed dependency. Question 3 addressed the semantic
specification of the dependency, whereas Question 4 asked for the strength of the de-
pendency. Note that we interpret our survey results from a qualitative viewpoint, i.e.,
our results do not allow for precise quantifications of the investigated effects.

0

5

10

15

20

25

A B C D E
0
5

10
15
20
25
30
35
40
45

A B C D E F
Question #3: What is the direction of such a relationship?

ab
so

lu
te

 n
om

in
at

io
ns

Question #4: How strong is the specified impact of this relationship?

ab
so

lu
te

 n
om

in
at

io
ns

A:21
B:23
C:03
D:00
E:02

(42.86%)
(46.94%)
(06.12%)
(00.00%)
(04.08%)

very strong
strong
weak
very weak
don’t know

0

5

10

15

20

25

30

35

A B C D E
Question #1: How critical are end user fears for the success

of a BPM project / for introducing BPM technology?

ab
so

lu
te

 n
om

in
at

io
ns

A:20
B:32
C:06
D:04
E:08

(28.57%)
(45.71%)
(08.57%)
(05.71%)
(11.43%)

very critical
critical
negligible
not critical
don’t know

0

10

20

30

40

50

A B C
Question #2: Does there exists a relationship between end user fear

and the users' emotional resistance against BPM technology?

ab
so

lu
te

 n
om

in
at

io
ns

A:49
B:06
C:15

(70.00%)
(08.57%)
(21.43%)

yes
no
don’t know

A:41
B:02
C:03
D:00
E:02
F:01

(83.67%)
(04.08%)
(06.12%)
(00:00%)
(04.08%)
(02.04%)

increasing UF increasing ER
increasing UF decreasing ER
increasing ER increasing UF
increasing ER decreasing UF
don't know
there is another relationship

UF = End User Fears
ER = Emotional Resistance

Fig. 4. Validating the Impact of End User Fears

Consider Fig. 4. The majority of 74.28% of the survey participants considers end
user fears as ”very critical” (28.57%) or ”critical” (45.71%) for the overall success of

3 We have summarized the complete results of this survey in [13].

596 B. Mutschler, M. Reichert, and S. Rinderle

business process management (BPM) projects (cf. Question 1 in Fig. 4). More specif-
ically, 70% of the survey respondents confirm that there is a relationship between end
user fears and the emotional resistance of end users against BPM technology (cf. Ques-
tion 2 in Fig. 4). This particularly confirms the positive link connecting these two vari-
ables in Fig. 3. Out of these respondents, 83.67% share the opinion that increasing end
user fears result in increasing emotional resistance (cf. Question 3 in Fig. 4). Finally,
89.8% of the respondents state (cf. Question 4 in Fig. 4) that the impact of end user
fears on emotional resistance either is ”very strong” (42.86%) or ”strong” (46.94%).

The evaluation model shown in Fig. 3 also considers the ImF ”Communication”.
The majority of 92.86% of the survey participants consider communication between a
BPM project’s stakeholders as an ”essential” (47.14%), ”very important” (35.71%) or
”important” (10%) factor. Furthermore, 78.57% of the respondents confirm that there
is a relationship between communication and end user fears (cf. Fig. 3). Out of these,
74.55% share the opinion that an increasing communication results in decreasing end
user fears. Finally, 85,45% of the respondents state that the impact of communication
on end user fears either is ”very strong” (29.09%) or ”strong” (56.36%).

2.4 Investigating the Evolution of DCF and Dynamic ImF Through Simulation

The change of DCF and dynamic ImF is caused by the interplay between the different
elements of an evaluation model, i.e., by the complex interdependencies between dy-
namic and static evaluation factors, flows, and links. In this context, feedback loops are
of particular importance. A feedback loop is a closed cycle of causes and effects. Within
this cycle, past events (like the change of a DCF or dynamic ImF) are utilized to control
future actions (like another change of the same evaluation factor). In other words, if a
change occurs in a model variable, which is part of a feedback loop, this change will be
propagated around the loop [12]. As an example consider the feedback loop depicted in
Fig. 3 (cf. Section 2.3).

We distinguish between two types of loop polarities. First, positive (or self-reinfor-
cing) loops generate growth of DCF and dynamic ImF (cf. Fig. 5A). Second, nega-
tive (or self-correcting) loops counteract and oppose growth (cf. Fig. 5B). If evaluation
models contain both positive and negative feedback loops, more complex effects may
emerge (cf. Fig. 5C and Fig. 5D).

It is important to mention that the dynamic effects which are caused by feedback
loops are typically not easy to understand [14]. For this reason, we investigate the effects
of feedback loops by simulating [15] respective evaluation models.

A) Exponential Growth B) Goal-seeking Behavior C) Oscillation D) S-shaped Growth

Evolution
of a DCF

time

C
os

ts

Evolution of
a dynamic ImF

time

Maximum Degree

D
eg

re
e

of
 Im

F

C
os

ts

time

Evolution
of a DCF

C
os

ts

time

Evolution
of a DCF

x1I

Fig. 5. Feedback in Evaluation Models: Overview of potential dynamic Effects

Analyzing the Dynamic Cost Factors of Process-Aware Information Systems 597

2.5 Specifying Simulation Models

In our EcoPOST framework, a simulation model consists of a number of algebraic
equations — one for each model variable (i.e., dynamic and static evaluation factors as
well as rate variables and auxiliary variables). The basic components of these algebraic
equations are the model variables. In our approach, we use different types of algebraic
equations for the different variables of an evaluation model (cf. Fig. 6A):

– Static Evaluation Factors: Static evaluation factors (i.e., SCF and static ImF) are
specified using a numerical value in a constant equation (e.g., ”Business Process
Redesign Costs = 1000 $/Week”). A specific variant of a constant equation is
an initially computed constant. In fact, it will often become necessary to specify
a constant in terms of another constant if the former depends on the latter and the
former should change in any simulation run where the latter is given a new value
[14]. As an example consider the following equation: Process Redesign Costs
= 1000 $/Week * Risk Factor. Note that initially computed constants need to
be evaluated only once at the beginning of a simulation.

– Dynamic Evaluation Factors: Dynamic evaluation factors (i.e., DCF and dynamic
ImF) are specified by integral equations in our approach [14]. Such equations spec-
ify the accumulation of a dynamic evaluation factor from a starting point t0 to the
present moment t (cf. Fig. 6B). More specifically, DCF and dynamic ImF integrate
their net flow. The net flow during any interval [t1,t2] is the area bounded by the
graph of the net rate between the start and the end of the interval (cf. Fig. 6C).
Thus, the value of a dynamic evaluation factor at t2 can be calculated as the sum of
its value at t1 and the area under the net rate curve between t1 and t2. In Fig. 6C, the
value at t1 is S1. Adding the area under the net rate curve between t1 and t2 increases
the value to S2. The net flow is determined by one or several rate variables.

B) Specifying Dynamic Evaluation FactorsA) Elements of a Simulation Model

DCF*
Inflow Outflow

∫ +−=
t

t

tDCFdssOutflowsInflowtDCF
0

)()]()([)(0

where
 - Inflow(s) represents the value of the inflow at any time s
 between between the initial time t0 and the current time t.
 - Outflow(s) represents the value of the outflow at any time s
 between between the initial time t0 and the current time t.
 - DCF(t0) represents the initial value of DCF at t0.

C) Graphical Integration (DCF & dyn. ImF)

Change of the
DCF = Grey Area

Change
of the DCF

S2

S1

t1 t2

N
et

 R
at

e
Va

lu
e

of
 a

 D
C

F

0

time

time

Constant
Equations

Integral
Equations

Rate
Equations

Auxiliary
Equations

Equation-based Simulation Model

Step-by-Step Execution * also valid for dynamic ImF

Set of
Equations

Fig. 6. Integration of Flows for Dynamic Evaluation Factors

– Rate Variables: Are expressed by rate equations. Rate equations specify the change
of DCF or dynamic ImF between two computed conditions. Flows connected to
DCF are specified by rate equations describing the amount of costs flowing to,
from, or between DCF. Rate equations for flows connected to dynamic ImF specify
the impact flowing to, from, or between dynamic ImF. In any case, a rate equation
uses information (i.e., values) from other model variables (SCF, DCF, dynamic ImF,

598 B. Mutschler, M. Reichert, and S. Rinderle

and auxiliary variables) to calculate a specific change. In the context of a specific
rate variable, the relevant information is represented by those model variables that
are connected to the rate variable by links (cf. Section 2.2).

– Auxiliary Variables: Are specified by auxiliary equations. Constituting elements
of these equations may be SCF, DCF, ImF, rate variables, and auxiliary variables.
Note that auxiliary equations are evaluated after the integral equations on which
they depend, and before the rate equations of which they are part.

Often, an ImF has a nonlinear impact on DCF. Such nonlinearities have to be repre-
sented in our simulation models as well. For this purpose, we use a specific kind of
auxiliary equation (implying that nonlinearities require the introduction of additional
auxiliary variables in our evaluation models). Specifically, we use table functions trans-
ferring an input value (e.g., a certain degree of process knowledge) into a corresponding
output value (e.g., expressing a specific effect on a DCF) through a lookup function f
[16]. Linear interpolation is used for values lying between the specified table values.
Fig. 7, for example, shows typical table functions. Dependent on the degree of an ImF
a specific impact rating is derived. An impact rating less than 1 results in decreasing
costs (cf. Fig. 7A). A rating equal to 1 neither does increase nor decrease costs. A rating
larger than 1 results in increasing costs (cf. Fig. 7B and Fig. 7C). Quantifications based
on such impact ratings are also known from software cost models like COCOMO [17].

0

0

1

1

Im
pa

ct
 D

ue
 t

o
Im

pa
ct

 F
ac

to
r

Degree of Impact Factor (normalized)

IR = f (x) with x, IR in [0,1]

Impact

Impact
Rating
(IR) < 1

0

1

2

1

Im
pa

ct
 o

n
D

CF
 d

ue
 to

 Im
p

ac
t F

ac
to

r

Degree of Impact Factor (normalized) 0

1

2

1

Im
pa

ct
 o

n
D

CF
 d

ue
 to

 Im
p

ac
t F

ac
to

r

Degree of Impact Factor (normalized)

IR = f(x) with x in [0,1] and IR in [1,2] IR = f(x) with x in [0,1] and IR in [1,2]

Impact Impact

Impact
Rating
(IR) > 1

Impact
Rating
(IR) > 1

A B C

Fig. 7. Table Functions for quantifying Impact Factors

For the design of our evaluation models as well as their simulation existing System
Dynamics modeling and simulation tools can be used (e.g., Vensim [18]). To support
administrative tasks related to our framework, we have implemented the EcoPOST Cost
Benefit Analyzer. Among other things, this tool comprises a knowledge base module
for storing and managing VBEP as well as entire evaluation scenarios and a module for
visualizing EcoPOST evaluations.

2.6 Using the Methodology in Practice - Lessons Learned

We have applied our methodology in an exploratory case study in the automotive do-
main. In this case study, we have analyzed cost overruns observed during the introduc-
tion of a large PDM system for the integrated support of engineering processes.

Analyzing the Dynamic Cost Factors of Process-Aware Information Systems 599

The initial business case for this project comprised seven major cost categories. In
our case study, we analyzed three of them in more detail: process management costs,
IT system realization costs, and specification and test costs. In particular, we analyzed
whether the observed cost overruns in these cost categories could have been predicted
using our cost analysis method. Based on real project data, interviews with project
members, two user surveys, and practical experiences, we developed a set of evalua-
tion models using our methodology and analyzed the effects described by these models
using simulation. Taking our evaluation models, we were able to explain the observed
cost overruns. Moreover, our models helped project members to better understand the
complex cost structure of the analyzed project.

Our case study has also revealed several difficulties. In particular, it has turned out
that the design of evaluation models constitutes a complex and time-consuming task.
Evaluation models tend to become rather complex due to the large number of potential
SCF, DCF, ImF and causal dependencies between them, and each evaluation model had
to be designed from scratch. This resulted in the loss of valuable modeling experiences.
In response to these issues the following section introduces the notion of value-based
evaluation patterns (VBEP).

3 Value-Based Evaluation Patterns (VBEP)

The introduction of PAIS in production environments often exhibits similarities. Pick-
ing up these similarities by means of customizable generic evaluation patterns would
be a useful step to simplify the use of our methodology and to increase model reuse.
Therefore, we introduce a VBEP as a predefined, but customizable evaluation model.

Characterization. Basically, VBEP use the same elements as introduced in Section
2, i.e., they consist of an evaluation model and an associated simulation model. More
precisely, each VBEP constitutes a template for specific sets of DCF and/or ImF we
encounter when introducing PAIS.

Our approach distinguishes between primary and secondary VBEP. A primary VBEP
describes a particular DCF, and a secondary VBEP describes an ImF. Characteristic
VBEP are summarized in Table 1 (primary VBEP) and Table 2 (secondary VBEP).

Table 1. Primary VBEPs

Name Description

Process
(Re)Design

This VBEP deals with the costs of business process redesign activities prior to and during the develop-
ment of a PAIS. Such a redesign may become necessary for several reasons, e.g., to increase the degree
of automated process activities or to eliminate process performance flaws.

Organizational
Change

This VBEP deals with the costs of changing an organization due to the introduction of a PAIS. As
examples consider the adaptation of organizational structures like team structures and single jobs.

Process
Evolution

This VBEP deals with the costs caused by the adaptation of business process changes. In fact, many busi-
ness processes are continuously changing due to evolving business requirements. Any process change
necessitates the adaptation of the supporting PAIS.

Enterprise
Architecture

This VBEP deals with the costs caused by preparing an enterprise architecture for the introduction of a
PAIS (e.g., costs for implementing interfaces to other legacy systems).

Work Profile
Change

This VBEP deals with the costs related to changes in work profiles of end users of a PAIS. In particular,
costs are caused by simultaneously holding up the new and the old work profile for some time.

600 B. Mutschler, M. Reichert, and S. Rinderle

Table 2. Secondary VBEPs

Name Description

Process
Knowledge

This VBEP deals with the effects of process knowledge, e.g., about data and control flows. Acquiring
process knowledge causes efforts, e.g., for conducting interviews with process participants. However,
process knowledge can also have a positive impact on other activities such as business process redesign.

Domain
Knowledge

This VBEP deals with the impact of domain knowledge, e.g., of the experience of project members, on
the costs of introducing a PAIS. Acquiring domain knowledge causes efforts, e.g., for the time needed to
understand a complex domain. However, domain knowledge can also have a positive impact.

Process
Ownership

This VBEP deals with the effects of a clear or unclear ownership of the business processes to be supported
by a PAIS. The definition of explicit process ownerships typically implies efforts. However, clear process
ownerships will have a positive impact if they are well-defined.

Process
Transparency

This VBEP deals with the effects of process transparency during the introduction of a PAIS. A high
process transparency has a positive impact on other activities such as the redesign of business processes.

End User
Fears

This VBEP deals with the impact of end user fears on the ability to redesign business processes. We have
already discussed this VBEP (cf. Fig. 3) in Section 2.3.

All these VBEP have been systematically derived based on the results of case stud-
ies we conducted in several information system engineering projects in the automotive
domain (e.g., in projects dealing with the introduction of PDM and ERP systems). Fur-
thermore, we rely on results of several online surveys. However, we do not claim for
completeness here, and we are continuously working on the extension of our pattern
collection.

Generally, VBEP enable the reuse of historical evaluation data. This reduces the need
for designing evaluation models from scratch. Moreover, VBEP are useful as a means
to increase the awareness for cost effects in PAIS engineering projects.

Customization. Customization becomes necessary as VBEP are applied in different
evaluation context. Thereby, we distinguish between the customization of the evaluation
model (Step I in Fig. 8) and the simulation model (Step II in Fig. 8) of a VBEP. The
former always requires the subsequent adaptation of the underlying simulation model,
while the latter is also possible without adapting the assigned evaluation model.

Step I: Customization of
the Evaluation Model

Step II: Customization of
the Simulation Model

1a) Identification of new
Modeling Elements

to be introduced

1b) Separate Integration of
each new Modeling Element

(Variable & Edges) 3) Test of
syntactical

Correctness
5) Adaptation of existing

Simulation Functions

6) Model
Testing

Need for
Customization

4) Definition of new
Simulation Functions

2a) Identification of exist-
ing Modeling Elements

to be removed

2b) Removal of existing
Modeling Element
(Variable & Edges) Customization

completed

Not completed

completed
Not completed

completed

Fig. 8. Step-by-Step Customization of VBEP

Adapting an evaluation model can be achieved by adding or removing model vari-
ables, flows, or links (Step 1a/b and Step 2a/b in Fig. 8). The VBEP ”End User Fears”
(cf. Fig. 3), for example, could be customized by introducing an ImF ”Management
Commitment” to take into account the impact of this factor on end user fears. Therefore,
the new ImF ”Management Commitment” is connected to the ImF ”End User Fears”.

Analyzing the Dynamic Cost Factors of Process-Aware Information Systems 601

In our example this can be achieved with a negative link to denote that increasing ma-
nagement commitment results in decreased user fears. The correctness of a customized
VBEP is ensured through the design rules discussed in Section 2.2.

Customizing a simulation model, by contrast, requires adaptations of the equations
of the simulation model (Step 4 and Step 5 in Fig. 8). As examples of potential cus-
tomizations consider changes of SCF values or adaptations of rate functions.

Merging VBEP. Customization becomes also necessary when VBEP are merged. As-
sume, for example, that an ImF ”End User Fears” (cf. Fig. 9B) has to be considered
in the context of a DCF ”Costs for Business Process Redesign” (cf. Fig. 1C). This can
be realized by merging a secondary VBEP (specifying the additional ImF) with a pri-
mary VBEP (specifying the DCF). Regarding our evaluation models, this merge can
be (partially) automated. As input, a respective algorithm needs two evaluation models
EM1 and EM2. The merge of EM1 and EM2 is then accomplished through a systematic
comparison of all model variables from EM1 with all model variables from EM2. If a
model variable from EM1 (e.g., a DCF) has the same name and type as a model variable
from EM2, both variables (and their links) will be merged.

Applying this algorithm requires that the evaluation models to be merged exhibit
some overlap, i.e., both models have to contain at least one identical model variable.
In our example, the ImF ”Ability to Redesign Business Processes” has been the mixing

B) Secondary VBEP: Impact of „End User Fears“

End User
Fears

Emotional
Resistance

Fear
Growth
Rate

Resistance
Growth Rate

Ability to redesign
Business Processes

+
Decreasing Ability to
redesign Business

Processes

+

Communication

Communication
Growth RateFear Reduction

Rate
+

Ability to acquire
Process

Knowledge

Increasing Ability
to acquire
Process Knowledge-+

A) Primary VBEP: Costs for BPR

C) Merging the primary VBEP „Costs of Business Process Redesign“ with a secondary VBEP „End User Fears“

Process
Knowledge

Domain
Knowledge

Cost

Business
Process

Redesign
Cost Increase

Process
Definition

Costs

+

-
- Ability to redesign

Business Processes
End User

Fears

Fear Growth
Rate

Decreasing Ability to
redesign Business

Processes

-

Primary VBEP Secondary VBEP

...

JOINT VARIABLE

ADDITIONAL LINK
+

+

+

Notation

Flows

Auxiliary Variables
Rate Variables

Dynamic Cost Factors

Links

Sources and Sinks

Dynamic Impact Factors

[Text]

[+|-]

Static Cost Factor [Text]

Static Impact Factor [Text]

see Fig. 1C

Process Knowledge
Ability to acquire

Fig. 9. Combining primary and secondary VBEP

602 B. Mutschler, M. Reichert, and S. Rinderle

point (cf. Fig. 9C). If there exist no identical variables, evaluation models can be merged
manually. Besides, any merge typically requires an additional editing of the newly de-
rived model (regardless whether the merge has been automatically conducted or not).
In Fig. 9), for example, we introduce an additional link between the ImF ”Ability to
acquire Process Knowledge” and the ImF ”Process Knowledge”.

4 Related Work

Boehm et. al [19] propose a classification of cost estimation techniques into six ma-
jor categories. In particular, they distinguish between model-based approaches (e.g.,
COCOMO, SLIM), expertise-based approaches (e.g., the Delphi method), learning-
oriented approaches (using neural networks or case based reasoning), regression-based
approaches (e.g., the ordinary least squares method), composite approaches (e.g., the
Bayesian approach), and dynamic-based approaches (which explicitly acknowledge
that cost factors change over the duration of the system development). Picking up this
classification, our methodology can be considered as an example of a dynamic-based
approach (the other five categories rely on static analysis models).

The use of patterns has been widely discussed since the advent of computer science
research. At present, the software community is using numerous variations of patterns
largely for software architecture (conceptual patterns), design (design patterns), pro-
gramming (XML schema patterns, J2EE patterns, etc.), as well as for software devel-
opment processes. Recently, the idea of using patterns has been also applied to more
specific domains like workflow management [20] or inter-organizational control [21].

Regarding the reuse of (System Dynamics) models, one has to distinguish between
two basic directions. On the one hand, authors like Senge [22], Eberlein and Hines [23],
Liehr [24], and Myrtveit [25] introduce predefined generic structures (with slightly dif-
ferent semantics). All these approaches satisfy the capability of defining ”components”.
On the other hand, Winch [26] proposes a more restrictive approach which is only based
on the parameterization of generic structures (without providing standardized modeling
components). Our approach picks up ideas from both directions, i.e. we address both
the definition of generic components and customization.

5 Summary

This paper has presented a qualitative cost analysis methodology to investigate the com-
plex dependencies and interactions of those factors that determine the costs of PAIS
engineering projects. We have presented a formalism to design evaluation models and
exemplarily discussed one evaluation model and its derivation based on the results of
an empirical study. Finally, we have introduced the notion of value-based evaluation
patterns (VBEP) as a means to enable the reuse of evaluation data in different context.

Note that the expressiveness of simulation always depends on the plausibility and
resilience of the underlying simulation models. Therefore, we have additionally ac-
complished various empirical and experimental research activities (e.g., software ex-
periments, online surveys, case studies) in order to put the quantifications gained from
our simulation models on a more reliable basis (cf. [27] for examples).

Analyzing the Dynamic Cost Factors of Process-Aware Information Systems 603

References

1. Dehnert, J., van der Aalst, W.: Bridging the Gap between Business Models and Workflow
Specification. Int’l. Journal of Cooperative Information Systems (2004)

2. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive Process Management with
ADEPT2. Proc. 21th ICDE, pp.1113-1114 (2005)

3. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H. (eds.): Process-aware Information Sys-
tems: Bridging People and Software through Process Technology. Wiley, Chichester (2005)

4. Reijers, H.A., van der Aalst, W.M.P.: The Effectiveness of Workflow Management Systems
- Predictions and Lessons Learned. Int’l. J. of Inf. Manag. 25(5), 457–471 (2005)

5. Choenni, S., Bakkera, R., Baetsa, W.: On the Evaluation of Workflow Systems in Business
Processes. Electronic Journal of IS Evaluation (EJISE) vol.6(2) (2003)

6. Kleiner, N.: Can Business Process Changes Be Cheaper Implemented with Workflow-
Management-Systems?. In: Proc. IRMA 2004, pp. 529–532 (2004)

7. Mutschler, B., Reichert, M., Bumiller, J.: Designing an Economic-driven Evaluation Frame-
work for Process-oriented Software Technologies. In: Proc. 28th ICSE, pp. 885–888 (2006)

8. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD Thesis, University
of Toronto (1995)

9. Mutschler, B., Zarvic, N., Reichert, M.: A Survey on Economic-driven Evaluations of Infor-
mation Technology. Technical Report, TR-CTIT-07, University of Twente (2007)

10. Mutschler, B., Reichert, M., Bumiller, J.: An Approach for Evaluating Workflow Management
Systems from a Value-Based Perspective. In: Proc. 10th IEEE EDOC, pp. 477–482 (2006)

11. Richardson, G.P., Pugh, A.L.: System Dynamics - Modeling with DYNAMO (1981)
12. Ogata, K.: SD. Prentice-Hall, Englewood Cliffs (2003)
13. Mutschler, B., Reichert, M.: A Survey on Evaluation Factors for Business Process Manage-

ment Technology. Technical Report, TR-CTIT-06-63, University of Twente (2006)
14. Forrester, J.W.: Industrial Dynamics. Productivity Press, Cambridge, London (1961)
15. Vangheluwe, H., de Lara, J., Mosterman, P.J.: An Introduction to Multi-Paradigm and Simu-

lation. In: Proc. AIS 2002, pp. 9–20 (2002)
16. Mutschler, B., Reichert, M.: Simulation Models for Analyzing the Dynamic Costs of

Process-aware IS. Technical Report, TR-CTIT-07-14, University of Twente (2007)
17. Boehm, B., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R.,

Reifer, D., Steece, B.: Software Cost Estimation with Cocomo 2. Prentice-Hall, Englewood
Cliffs (2000)

18. Vensim: Ventana Systems (2006) http://www.vensim.com/
19. Boehm, B., Abts, C., Chulani, S.: Software Development Cost Estimation Approaches - A

Survey. Technical Report, USC-CSE-2000-505 (2000)
20. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Advanced

Workflow Patterns. In: Proc. 7th CoopIS, LNCS 1901, pp. 18–29 (2000)
21. Kartseva, V., Hulstijn, J., Tan, Y.H., Gordijn, J.: Towards Value-based Design Patterns for

Inter-Organizational Control. In: Proc. 19th Bled Electronic Commerce Conference (2006)
22. Senge, P.M.: The 5th Discipline: The Art and Practice of the Learning Organization (1990)
23. Eberlein, R.J., Hines, J.H.: Molecules for Modelers. In: Proc. 14th System Dyn. Conf. (1996)
24. Liehr, M.: A Platform for SD Modeling – Methodologies for the Use of predefined Model

Components. In: Proc. 20th System Dynamics Conf. (2002)
25. Myrtveit, M.: Object-oriented Extensions to SD. In: Proc. 18th System Dynamics Conf.

(2000)
26. Winch, G.: User-parameterized generic Models: A Solution to the Conundrum of Modelling

Access for SMEs? SD Review 18(3), 339–357 (2003)
27. Mutschler, B., Reichert, M., Bumiller, J.: Why Process-Orientation is Scarce: An Emp. St.

of Process-oriented IS in the Automotive Industry. In: Proc. 10th IEEE EDOC, pp. 433–438
(2006)

http://www.vensim.com/

Author Index

Aalst, Wil M.P. van der 409, 439
Abrahamsson, Pekka 1
Akkermans, Hans 66
Aldred, Lachlan 409
Amyot, Daniel 218
Araújo, João 309
Aydin, Mehmet N. 294

Baresi, Luciano 340
Barhamgi, Mahmoud 531
Benatallah, Boualem 233
Benslimane, Djamal 249, 531
Bhattacharya, Kamal 324
Blaauboer, Floris 294
Brinkkemper, Sjaak 469

Campbell, Catherine 381
Cao, Jinli 173
Cappiello, Cinzia 264
Castro, Jaelson 309
Champin, Pierre-Antoine 531
Comuzzi, Marco 264
Costache, Stefania 111

Decker, Gero 81
Deek, Fadi P. 381
Derzsi, Zsófia 66
Djebbi, Olfa 279
Dumas, Marlon 409, 424

Eder, Johann 21
Englebert, Vincent 454

Franch, Xavier 485

Ghanavati, Sepideh 218
Gordijn, Jaap 66, 188
Grau, Gemma 485
Greiser, Torben 516
Guinea, Sam 340
Guizzardi, Giancarlo 5

Hamadi, Rachid 233
Hao, Yanan 173
Heymans, Patrick 454
Hofstede, Arthur H.M. ter 409, 424

Jones, Sara 142

Kaabi, Rim Samia 158
Kensche, David 127
Kok, Koen 66
Kraiem, Naoufel 158

La Rosa, Marcello 424
Langheinrich, Marc 501
Li, Xiang 127
Lin, Yun 355
Liu, Chengfei 51
Liu, Rong 324
Lux, Johannes 424

Maamar, Zakaria 249
Maiden, Neil 142
Manolescu, Ioana 96
Meister, Markus 516
Mendling, Jan 439
Michel-Backofen, Achim 516
Moreira, Ana 309
Mutschler, Bela 589

Narendra, Nanjangud C. 249
Nejdl, Wolfgang 111

Ouksel, Aris M. 531

Pacheco, Carla 370
Paik, Hye-Young 233
Paiu, Raluca 111
Papotti, Paolo 36
Pastor, Oscar 395
Pelechano, Vicente 395
Persson, Anne 546
Peyton, Liam 218
Pijpers, Vincent 188
Plebani, Pierluigi 264, 340

Quix, Christoph 127

Reichert, Manfred 574, 589
Rinderle, Stefanie 574, 589
Rittgen, Peter 561
Roduner, Christof 501

606 Author Index

Röhrig, Rainer 516
Rolland, Colette 158
Rose, Thomas 516

Sadiq, Wasim 51
Salinesi, Camille 203, 279
Sandkuhl, Kurt 546
Sedlmayr, Martin 516
Seidel, Stefan 424
Sikkel, Klaas 294
Silva, Carla 309
Sølvberg, Arne 355
Stirna, Janis 546
Subramanian, Sattanathan 249

Tan, Yao-Hua 66
Thevenet, Laure-Hélène 203
Torlone, Riccardo 36
Tovar, Edmundo 370

Valderas, Pedro 395

Van de Walle, Bartel 381

Versendaal, Johan 469

Weber, Barbara 574
Weerd, Inge van de 469

Weis, Melanie 96

Weske, Mathias 81
Wiggisser, Karl 21

Wu, Frederick Y. 324

Yang, Yun 51

Zachos, Konstantinos 142

Zhang, Yanchun 173

Zhao, Xiaohui 51
Zhu, Xiaohong 142

	Title
	Preface
	Organization
	Table of Contents
	Agile Software Development of Mobile Information Systems
	Introduction
	References

	Modal Aspects of Object Types and Part-Whole Relations and the de re/de dicto Distinction
	Introduction
	A Brief Presentation of a System of Quantified Modal Logics
	Modal Distinctions in a Theory of Object Types
	Modal Distinctions in Part-Whole Relations
	The de re/de dicto Modal Distinction
	Related Work
	Final Considerations
	References

	Change Detection in Ontologies Using DAG Comparison
	Introduction
	Related Work
	Ontology Graphs and Graph Operations
	The Comparison Algorithm
	The Longest Common Subsequence
	Node Matching
	Matching Algorithm
	Renaming Detection
	Comparing Two DAGs
	Complexity Analysis
	Example Edit Script
	Structure Versus Semantics

	Implementation and Evaluation
	Evaluation Environment
	Evaluation Results

	Conclusion

	Automatic Generation of Model Translations
	Introduction
	Goal and Motivations
	Related Works and Organization

	Background
	Translations, Metamodel and Patterns
	A Transformational Approach

	Transformations and Translation
	Properties of the Basic Transformations
	Properties of Translations

	Automatic Generation of Translation
	Computing and Ranking all Translations
	Best-First Search Algorithm

	Testing the Approach
	Conclusions

	Handling Instance Correspondence in Inter-organisational Workflows
	Introduction
	Motivating Example
	Cardinality and Correlation Issues in Business Collaboration
	Workflow Cardinality
	Workflow Correlation

	Correspondence Representation Methodology
	Extensions to Petri Nets
	Correspondence Petri Net

	Applying Correspondence Petri Nets
	Generating Correspondence Petri Nets
	Run Time Execution

	Discussion and Conclusion
	References

	Assessing Feasibility of IT-Enabled Networked Value Constellations: A Case Study in the Electricity Sector
	Introduction
	Perspectives to Understand Feasibility of IT-Enabled Networked Value Constellations
	Research Approach
	The e^3-value Methodology for Economical Feasibility
	Explorative Case Study: Distributed Balancing Services

	An e^3-value Model for the Distributed Balancing Service
	IS-Perspective: A UML Deployment Diagram Annotated with Expenses and Investments
	Why a Deployment Diagram?
	A DBS Deployment Diagram
	Annotating the Deployment Diagram for Feasibility Reasoning

	Relating the e^3-value and UML Deployment Perspective
	Financial Feasibility
	Technical Feasibility

	Lessons Learned and Conclusions

	Behavioral Consistency for B2B Process Integration
	Introduction
	Compatibility and Consistency in B2B Scenarios
	Compatibility and Consistency Notions
	Optimal Consistency Relations
	Process Refinement Categories
	Assessment of Bi-simulation for Consistency Checking
	Conclusion

	Declarative XML Data Cleaning with XClean
	Motivation
	XClean Overview
	XClean Architecture
	Operators

	XClean Programming
	Language Rationale and Design
	Compiling XClean/PL to XQuery

	Usage Report
	Use Cases
	Quantitative Aspects

	Related Work
	Conclusion

	Personalizing PageRank-Based Ranking over Distributed Collections
	Introduction
	Which Information Should We Exchange?
	A Motivating Scenario
	Exchanging IR Related Information
	Exchanging ObjectRank Related Information

	Information Exchange and Rank Computation
	Privacy vs. Information Exchange
	Aggregating Graphs into World Nodes
	Query Processing and Ranking

	Experiments
	Experimental Setup
	Results and Analysis

	Related Work
	Conclusions

	Generic Schema Merging
	Introduction
	Background
	Semantics of Models and Mappings
	Model Merging
	Comparison with Other Approaches
	Conclusion and Outlook

	Discovering Web Services to Specify More Complete System Requirements
	Developing with Web Services
	Discovering Services in SeCSE
	Two Research Challenges for SeCSE
	SeCSE’s Service Discovery Environment
	SeCSE’s Service Registries
	The UCaRE Requirements Module

	SeCSE’s Service Discovery Algorithm
	Natural Language Pre-processing
	Word Sense Disambiguation
	Query Expansion
	Query Matching

	Evaluating UCaRE and EDDiE
	Discussion and Future Work
	References

	On ISOA: Intentional Services Oriented Architecture
	Introduction
	Populating the Registry with Intentional Services
	Intentional Service Model

	Discovering Services for Publication
	Capturing Business Intentionality in Maps
	Deriving Intentional Services from Maps

	Adapting Services
	The Agent Architecture
	Service Agent Support

	Related Work
	Conclusion
	References

	WSXplorer: Searching for Desired Web Services
	Introduction
	Related Work
	Overview of WSXplorer
	Web-Service Operation Matching
	Web-Service Operation Modelling
	Tree Edit Distance
	Cost Model
	XML Schema Tree Transformation
	Semantic Measurement Between Schema-Tree Nodes
	Web-Service Operations Matching

	Finding Associated Web-Service Operations
	Clustering Web-Service Operations
	Identifying Associations

	Experiments and Evaluations
	Conclusions

	e3forces : Understanding Strategies of Networked e3value Constellations by Analyzing Environmental Forces
	Introduction
	The e^3value Ontology
	Case Study: Dutch Aviation Constellation
	The e^3forces Ontology
	Modeling Porter's Five Forces Using e^3forces
	Bargaining Power of Suppliers
	Bargaining Power of Buyers
	Competitive Rivalry Among Competitors
	Threat of New Entrants
	Threat of Substitutions

	An e^3forces Model for the Dutch Aviation Industry
	Reasoning with e^3forces and Practical Use for Information Systems

	Related Work
	Conclusion

	Aligning IS to Organization’s Strategy: The INSTAL Method
	Introduction
	Overview of the INSTAL Method: Principles, and Alignment Meta-Model Developed with the Case Study
	The INSTAL Method
	Description of the SEJ Case Study
	The MAP Formalism
	Documenting Strategic Alignment Using MAP
	Resulting Alignment Meta Model

	The INSTAL Process Model
	INSTAL Strategies to Achieve the Goal (b) $Identify Strategic/OperationalItems$
	INSTAL Strategies to Achieve the Goal (c) $Construct a Strategic Alignment Map$
	INSTAL Strategies to Achieve the Goal (d) $Define Link Between Sections and Strategic/Operational Components$ and to Stop the Process

	Related Works
	Goal Modeling in RE
	Research on IS Alignment

	Conclusions
	References

	Towards a Framework for Tracking Legal Compliance in Healthcare
	Introduction
	Background and Related Work
	Personal Health Information Privacy Act (PHIPA)
	User Requirements Notation (URN)
	URN for BPM and Requirements Management
	Related Work

	Compliance Framework
	Application to a Teaching Hospital and PHIPA
	Hospital Model
	Privacy Legislation Model
	Model Linking

	Analysis
	Conclusions

	Conceptual Modeling of Privacy-Aware Web Service Protocols
	Introduction
	Overview of Privacy Policies
	Web Services and Privacy Policies
	A Running Example: Snowy.com
	Discussions and Observations

	Conceptual Modelling of Privacy-Aware Web Service Protocols
	States with Multiple Privacy Properties
	Privacy-Aware Protocol Formal Model

	Tool Support and Application of Privacy-Aware Web Service Protocols
	Related Work and Conclusions

	Policies for Context-Driven TransactionalWeb Services
	Introduction
	Background
	Context and Transactional Web Services
	Design and Operation
	Transactional Properties and Web Services Modeling

	Context-Driven Transactional Web Services Adaptation
	Some Definitions
	Forward Adaptation Strategy
	Illustration of the Forward Strategy Using Amin Scenario

	Implementation
	Conclusion

	On Automated Generation of Web Service Level Agreements
	Introduction
	Quality Model
	Capabilities
	Requirement Model

	Negotiation Model
	Related Work
	Conclusions and Future Work

	RED-PL, a Method for Deriving Product Requirements from a Product Line Requirements Model
	Introduction
	Problem Statement in Stago’s Context
	The RED-PL Approach
	The Matching Process
	The Arbitration Process
	The Case Study

	Related Works
	Conclusions and Future Work
	References

	Deciding to Adopt Requirements Traceability in Practice
	Introduction
	Traceability
	Research Framework and Approach
	Relevant Factors Identified
	The Conduct of Case Study

	Findings and Discussion
	Conclusions
	References

	Designing Social Patterns Using Advanced Separation of Concerns
	Introduction
	Background
	Social Patterns
	UML-Based MAS Notation
	Pattern Specifications

	The Crosscutting Nature of the Matchmaker Pattern
	A Standard Technique for Social Pattern Specification
	Pattern Template
	Structural Agent Pattern Specification
	Towards Implementation in JADE and AspectJ

	An Example
	Architectural Diagram
	Social Pattern Selection and Application
	The Partial AspectJ Code for the e-News System

	Related Work
	Conclusion and Future Work
	References

	Modeling Business Contexture and Behavior Using Business Artifacts
	Introduction
	Business Operational Modeling Using Business Artifacts
	Business Artifact Discovery
	Modeling the Lifecycle of the Discovered Artifacts

	Building Operational Models Using Patterns
	Operational Patterns
	Putting Patterns Together – An Example

	Verifying Operational Models Using Petri Nets
	Petri Net Preliminaries
	Representing Operational Models as Petri Nets
	Operational Model Verification

	Discussion and Related Work
	Conclusion and Future Work
	References

	Policies and Aspects for the Supervision of BPEL Processes
	Introduction
	Design Process Model
	Service-Side Policies and WSCoL
	Client-Side Descriptors and WSReL
	Recovery Strategies
	Example Descriptor

	Prototype
	Monitoring Manager
	Recovery Manager

	Related Work
	Conclusions and Future Work

	Goal Annotation of Process Models for Semantic Enrichment of Process Knowledge
	Introduction
	The Semantic Annotation Framework
	Goal Ontology for Semantic Annotation
	Semantic Representations of the Goal Ontology

	Relations Between Process Models and Goal Ontology
	Goal Annotation Procedure
	Case Study
	The TelCo Case Study
	The SCOR as Reference Ontology
	Goal Annotation for Semantic Enrichment of Process Knowledge
	Process Knowledge Discovery and Reuse Based on the Semantic Annotation

	Conclusions and Future Work

	Stakeholder Identification as an Issue in the Improvement of Software Requirements Quality
	Introduction
	What Are the Consequences of Incorrect Stakeholder Identification on the Quality of Software Requirements?
	Effective Practices Recommended for Performing SIP and the Benefits of Proper Stakeholder Identification

	Stakeholder Identification in Previous Software Engineering Studies
	What Is the Scope of Approximations in SIP Studies?
	Studies That Exclusively Characterize Stakeholders
	Studies Focusing on Interaction Between Stakeholders
	Studies That Include Assessment of Stakeholders

	Conclusions
	References

	The Impact of Task Structure and Negotiation Sequence on Distributed Requirements Negotiation Activity, Conflict, and Satisfaction
	Introduction
	Negotiation Research and Negotiation Support Systems
	Negotiation Research
	Distributed Group Support Systems and Electronic Negotiation Systems

	Distributed Software Requirements Negotiation: Research Model and Hypotheses
	Software Requirements Negotiation Engineering
	Research Model and Hypotheses

	Research Methodology
	Experimental Design – Independent Variables
	Dependent Variables and Measures
	Experimental Task
	Participants and Roles
	Electronic Negotiation Environment
	Experimental Procedures

	Analysis of the Results
	Negotiation Activity
	Conflict
	Process Satisfaction

	Discussion
	Conclusions and Limitations
	References

	Introducing Graphic Designers in a Web Development Process
	Introduction
	Related Work
	The Web Development Process
	Process Disciplines
	Sequencing of Activities

	Supporting the Activities of the Analyst
	Requirements Engineering Techniques
	Tool Support

	Supporting the Activities of the OOWS Method
	The OOWS Development Process
	Implementing the Presentation Tier

	Supporting the Activities of the Graphic Designer
	Defining General-Presentation Templates
	Tool Support
	Interviewing the User

	Lessons Learned
	Conclusions and Further Work
	References

	Communication Abstractions for Distributed Business Processes
	Introduction
	Motivating Requirements
	Communication Model for Business Processes
	Implementation and Evaluation
	Implementing Properties
	Resolving Contention
	Implementing Filters
	Performance Evaluation

	Related Work
	Conclusion

	Questionnaire-driven Configuration of Reference Process Models
	Introduction
	Background: Configurable Event-driven Process Chains
	Working Example
	Approach
	Questionnaire-Driven Configuration
	Formal Definition of Configuration Models
	Mapping C-EPCs to Configuration Models

	Tool Support
	Related Work
	Conclusion

	Formalization and Verification of EPCs with OR-Joins Based on State and Context
	Introduction
	Related Research
	EPC Syntax and Semantics
	EPC Syntax
	EPC Semantics Based on State and Context

	EPC Verification Based on Reduction Rules
	Contribution and Limitations

	Towards More Extensible MetaCASE Tools
	Introduction
	The MetaL Language
	Layer 1: The MetaL_1 Language
	Layer 2: The MetaL_2 Language
	MetaL_2 Example

	Benefits
	General Benefits
	Reification, Meta-circularity and Bootstrapping

	The metaCASE Architecture
	Related Work
	Limitations and Future Work
	Conclusion

	Concepts for Incremental Method Evolution: Empirical Exploration and Validation in Requirements Management
	Introduction: Incremental Method Evolution
	Research Approach
	Research Question and Methodology Outline
	Meta-modeling with Process-Deliverable Diagrams
	A Knowledge Infrastructure for Incremental Method Evolution

	Definition and Formalization
	Definitions of Incremental Method Evolution
	Formalization of Method Increments
	Root Cause Analysis for Product Software

	ERP Case Study
	Case Study Design
	Method Snapshots
	Increment Example: Introduction of the Conceptual Solution
	Root Cause Analysis of Method Increments
	Validity Threats

	Conclusion
	References

	ReeF: Defining a Customizable Reengineering Framework
	Introduction
	Research Method
	PRiM: A Process Reengineering i* Method
	Defining ReeF, a Customizable Reengineering Framework
	The Abstraction Process
	The Generalization Process

	Customizing ReeF into SARiM
	Conclusions and Future Work
	References

	Publishing and Discovering Information and Services for Tagged Products
	Introduction
	Application Scenarios and Requirements
	Architecture
	Resources and Resource Descriptions
	Resource Repository
	Manufacturer Resolver Service and Search Service
	Deployment and Use

	Implementation
	Prototype Applications
	Calorie Tracker
	Shopping Assistant
	Appliance Support

	Conclusion

	Automating Standard Operating Procedures in Intensive Care
	Introduction
	State of the Art: Process Support
	Workflow Management
	Computerized Clinical Guidelines

	Our Approach
	Formalization
	Automation and Support

	Implementation
	System Design
	Formalization Using GLIF
	Workflow Mapping
	Automation

	Conclusion

	Composing Data-Providing Web Services in P2P-Based Collaboration Environments
	Introduction
	Modeling Data-Providing Web Services as Views
	Motivation Example
	Queries
	DP Services as Views

	Composing DP Web Services
	Preprocessing the Defined RDF Parameterized Views
	Composing DP Services Based on Their Views
	The Composition Execution

	Implementation
	Related Works
	Conclusions and Future Works

	Participative Enterprise Modeling: Experiences and Recommendations
	Introduction
	Background to Enterprise Modeling
	EKD
	C3S3P

	Cases of Applying Participative EM in Practice
	Participative EM at Kongsberg Automotive (KA)
	Paticipative EM at the Riga City Council (RCC)
	Participative EM at Skaraborgs Sjukhus (SKaS)

	Recommendations of Using Participative EM
	Assess the Organizational Context
	Assess the Problem at Hand
	Assign Roles in the Modeling Process
	Acquire Resources for the Project in General and for Preparation Efforts in Particular
	Conduct Modeling Sessions

	Concluding Remarks
	References

	Negotiating Models
	Introduction
	Related Research
	Research Method
	Results
	Social Level
	Pragmatic Level
	Semantic Level
	Syntactic Level

	Example
	Tool Support for the Modeling Process
	Conclusions
	References

	Change Patterns and Change Support Features in Process-Aware Information Systems
	Introduction
	Backgrounds
	Change Patterns
	Adaptation Patterns
	Patterns for Predefined Changes

	Change Support Features
	Schema Evolution, Version Control and Instance Migration
	Other Change Support Features

	Change Patterns and Change Support in Practice
	Related Work
	Summary and Outlook

	Analyzing the Dynamic Cost Factors of Process-Aware Information Systems: A Model-Based Approach
	Introduction
	The EcoPOST Cost Analysis Methodology
	Terminology
	Evaluation Models
	Illustrating Example
	Investigating the Evolution of DCF and Dynamic ImF Through Simulation
	Specifying Simulation Models
	Using the Methodology in Practice - Lessons Learned

	Value-Based Evaluation Patterns (VBEP)
	Related Work
	Summary

	Author Index

