
Reducing Bloat in GP with Multiple
Objectives

Stefan Bleuler, Johannes Bader, and Eckart Zitzler

Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland
[bleuler, bader, zitzler]@tik.ee.ethz.ch

Summary. This chapter investigates the use of multiobjective techniques in genetic
programming (GP) in order to evolve compact programs and to reduce the effects
caused by bloating. The underlying approach considers the program size as a second,
independent objective besides program functionality, and several studies have found
this concept to be successful in reducing bloat. Based on one specific algorithm, we
demonstrate the principle of multiobjective GP and show how to apply Pareto-based
strategies to GP. This approach outperforms four classical strategies to reduce bloat
with regard to both convergence speed and size of the produced programs on an
even-parity problem. Additionally, we investigate the question of why the Pareto-
based strategies can be more effective in reducing bloat than alternative strategies
on several test problems. The analysis falsifies the hypothesis that the small but
less functional individuals that are kept in the population act as building blocks
for larger correct solutions. This leads to the conclusion that the advantages are
probably due to the increased diversity in the population.

1 Motivation

The tendency of trees to grow rapidly during a genetic programming (GP) run is
well known [16, 26, 2, 6] and may be explained by:

• The bigger trees get, the more code they contain that does not influence the
fitness of the individuals. These so-called introns protect the individuals against
the destructive effects of the crossover and mutation operators.

• The probability of finding a big tree that achieves a high fitness is greater than
of finding a short program with the same behaviour (fitness-causes-bloat theory
[19]).

• Removing bigger subtrees is much more likely to destroy the program than re-
moving shorter ones, which leads to a bias for the preservation of long programs
(removal-bias theory [25]).

This phenomenon, which is denoted as bloating, leads to several problems:

178 Bleuler et al.

• Trees can grow quadratically [18]; this leads not only to excessive use of CPU
time and memory but also makes the evaluation of trees infeasible.

• Smaller solutions usually generalize the training data better than bigger ones
[2].

• When trees start to grow rapidly, so does the fraction of the tree constituted
of introns. The recombination of individuals therefore usually comprises an ex-
change of introns, and the fitness of the population does not improve anymore;
the GP run stagnates with high probability [2]. Moreover, when the system is
bloating, the recombination of individuals may have no effect since introns will
be usually exchanged, and this may lead to stagnation.

Therefore, normally at least, an upper limit for the program size is set manually.
Several other strategies have been developed to address the problem of bloating,
which can roughly be divided into two classes:

• Methods that modify the program structure and/or the genetic operators in
order to remove or reduce the factors that cause bloat. Some examples are Au-
tomatically Defined Functions (ADFs) [17], Explicitly Defined Introns (EDIs)
[2] and Deleting Crossover [5].

• Techniques that incorporate the program size as an additional factor in the
selection process, e.g., as a constraint (size limitation) or as a penalty term
(Parsimony Pressure [26]).

When bloating occurs, combinations of the different approaches are possible. Nev-
ertheless, both types have certain disadvantages. For methods of the first class, e.g.,
ADF, EDI or Deleting Crossover, usually knowledge of how the program structure
and the genetic operators interact with the effect of bloating is required. A difficulty
with some methods of the second class is to optimally set the parameters associ-
ated with them, e.g., by choosing an appropriate parsimony factor when applying
Constant Parsimony Pressure [26].

Pareto-based methods belong to the second class and have two advantages: They
do not rely on problem knowledge and they do not require additional parameters to
be set. The idea is to consider the program size as a second, independent objective
besides program functionality and apply a Pareto-based method to the resulting bi-
objective problem. The algorithm will then always prefer the smaller of two equally
performing programs. As an additional side effect, both small but less functional
and large but more complete programs will be kept in the population during the
evolution. This basic strategy has proved to successfully reduce bloat in several
studies [4, 9, 7, 11, 21, 3, 15]. However, it is still an open question why keeping
many non-functional small individuals in the population helps in finding small and
correct solutions quickly rather than distracting the search. A potential explanation
is the increased diversity in the population. Alternatively, small individuals may
be partial solutions to the problem, which can be combined by recombination into
compact full solutions, thus acting as building blocks.

Using the method proposed in [4] as an example, the present chapter (i) describes
how Pareto-based optimization methods can be applied to reduce code growth in
GP and (ii) investigates what mechanisms make these methods effective. In the
course of this chapter, we briefly discuss various traditional methods against bloat
(Section 2.1), give an overview of alternative multiobjective approaches to fight bloat
(Section 2.2), describe a particular method in detail (Section 3) and compare it to
traditional techniques (Section 3.2), and finally investigate possible reasons for its
effectiveness (Section 4).

Reducing Bloat in GP with Multiple Objectives 179

2 Overview of Existing Approaches

2.1 Traditional Approaches to Reduce Bloat

Towards the end of a GP run introns grow rapidly and comprise almost all of the
code while the optimization process stagnates (no fitness improvement anymore) [2].
Thus, the question is why simulated evolution favours programs with large sections
of non-functional code over smaller solutions.

One explanation is that GP crossover is inhomogeneous, i.e., it does not ex-
change code fragments that have the same functionality in both parents. Therefore,
crossover most often reduces the fitness of offspring relative to their parents by
disrupting valuable code segments or placing them in a different context. Because
crossover points are chosen randomly within an individual, the risk of disrupting
blocks of functional code can be reduced substantially by adding introns. To keep
this process from using too many machine resources, normally a limit on the tree
depth or number of nodes is set manually; when an offspring individual exceeds
this limit, one of its parents is added to the population instead. However, setting a
reasonable limit is difficult. If the limit is too low, GP might not be able to find a
solution. If it is too high, the evolution process will slow down because of the im-
mense resource usage, and the chances of finding small solutions are very low. In the
following, this setup will be named Standard GP. Here, the fitness Fi of individual i
is defined as the error Ei of an individual’s output compared to the correct solution

Fi = Ei,

where Fi is to be minimized.
Another obvious mechanism for limiting code size is to penalize larger programs

by adding a size-dependent term to their fitness; this is called Constant Parsimony
Pressure [5, 26]. The fitness of an individual i is calculated by adding the number
of edges Ni, weighted with a parsimony factor α, to the regular fitness:

Fi = Ei + α ·Ni

Soule and Foster [26] report that in some runs parsimony pressure drives the en-
tire population to the minimum possible size. With a higher parsimony pressure
the probability of a run suffering from this effect increases. This results in a lower
probability of finding good solutions.

A third approach to tackling bloat is to optimize the functionality first and the
size afterwards [12]. The formula for the fitness of an individual i depends on its
own performance. An additional parameter ε comes into play; ε is the maximum
acceptable error and can be set to zero for discrete problems. For fitness assignment
the population is divided into two groups:

1. The individuals that have not yet reached an error equal to or smaller than ε
get a fitness according to their error Ei without any pressure on the size:

Fi = Ei + 1 if Ei > ε

2. The fitness of individuals that have reached an error equal to or smaller than ε.
The new fitness is calculated using the size Ni of individual i:

Fi = 1− 1
Ni

if Ei ≤ ε.

180 Bleuler et al.

An individual with a large tree size will get a fitness near 1 while one with a
large tree size will have a fitness closer to 0.

One advantage of this method is that the GP can find good solutions without being
hampered since pressure on size is not applied until the individual has already
reached the aspired-for performance. In runs where no acceptable solution is found,
bloating will continue. Therefore it is useful to additionally set an upper limit on
the tree size. In the following we will call this setup Two Stage for to the two stages
of fitness evaluation.

Similar to this concept is a strategy called Adaptive Parsimony Pressure. Zhang
and Mühlenbein have proposed an algorithm that varies the parsimony factor α
during the optimization process [28]:

Fi(g) = Ei(g) + α(g) · Ci(g).

Ci(g) stands for the complexity of individual i at generation g. The complexity
can be defined in several ways [28], e.g., as the number of nodes in a tree or as
normalized size obtained by dividing the individual’s size by the maximum size in
the population [5]. In contrast to the Two Stage strategy, the fitness function does
not depend on the individual’s performance but on the best performance in the
population at generation g. The parsimony pressure used to calculate the fitness in
generation g is increased substantially if the best individual in generation g− 1 has
reached an error below the threshold ε:

α(g) =

{
1

T2 · Ebest(g−1)

Ĉbest(g)
if Ebest(g − 1) > ε

1
T2 · 1

Ebest(g−1)·Ĉbest(g)
otherwise.

Ebest is the error of the best performing individual in the population, T denotes the
size of the training set and Ĉbest(g) is the expected complexity of the best program
in the next generation:

Ĉbest(g + 1) = Cbest(g) + ΔCsum(g),

where Cbest stands for the complexity of the best performing individual in the pop-
ulation and ΔCsum(g) is recursively defined as

ΔCsum(g) =
1

2
(Cbest(g)− Cbest(g − 1) + ΔCsum(g − 1))

with the following starting value

ΔCsum(0) = 0.

The only parameter that has to be set manually is ε. Blickle [5] has reported results
superior to those of Constant Parsimony Pressure when applying Adaptive Parsi-
mony Pressure to a continuous regression problem, and equal results to those of
Constant Parsimony Pressure when using it on a discrete problem.

In summary we can state that traditional methods aggregate the program func-
tion and program size in terms of one objective and fix a trade-off between these
two criteria by means of a user-defined parameter.

Reducing Bloat in GP with Multiple Objectives 181

2.2 Multiobjective Approaches

Using Size as Second Objective

Naturally, most optimization problems involve multiple, conflicting objectives which
cannot be optimized simultaneously. This type of problem is often tackled by trans-
forming the optimization criteria into a single objective which is then optimized
using an appropriate single-objective method. The same is usually done when try-
ing to address the phenomenon of bloat in GP by modifying the fitness evaluation
or the selection process. Actually, there are two objectives: i) the functionality of a
program and ii) the code size. While the second objective is traditionally converted
into a constraint by limiting the size of a program, controlling the code size by
adding a penalty term (Parsimony Pressure) corresponds to weighted-sum aggre-
gation. Ranking the objectives, i.e., optimizing the functionality first and the size
afterwards (Two Stage strategy), introduces a hierarchy on the objectives which in
turn defines a total preorder on the search spaces.

Alternatively, Pareto-based methods can be applied by considering program
functionality and program size as independent objectives. In this approach, small
but functionally poor programs can coexist with large but good (in terms of func-
tionality) programs, which in turn maintains population diversity during the entire
run. It is important to note that only fitness assignment and selection is changed
when switching from single-objective to multiobjective GP, while the other opera-
tors like mutation and recombination are not influenced. In 2001, three publications
independently proposed the idea of using multiobjective methods for reducing bloat
in GP, as first mentioned in [23] but not investigated in detail, and showed promis-
ing results [4, 9, 7]. In the following years additional studies have successfully used
Pareto-based methods for bloat reduction [11, 21, 3, 15]. The remainder of this sec-
tion summarizes these approaches and the key results of the respective studies. The
method proposed in [4] serves as the basis for the analysis presented in this chapter.

Nondomination Tournament [9]

The authors propose a simple selection operator based on nondomination. In this
scheme, the selection of one individual works as follows: A comparison set is ran-
domly picked from the population and then candidate solutions are randomly cho-
sen until one is found that is not dominated by any member of the comparison set;
this individual is selected. To prevent the method from converging on small but
non-functional programs an additional bias towards larger solutions is included in
the domination criterion. Two different possibilities are compared: i) Using epsilon
dominance on the program size, i.e., depending on the fitness f an individual i may
dominate individual j even when it is larger than j (fi < fj and si < sj + ε). ii)
Redefining the size objective such that it equals a threshold value for all trees that
are smaller than this limit.

The approach is compared to standard GP on three symbolic regression problems
and on the multiplexer problem. It is demonstrated that much smaller solutions can
be found that are of similar quality. The number of fitness evaluations are similar,
but due to the smaller average program size the running times are substantially
smaller for the multiobjective method. Additionally, the preference for the different
variants of the size bias changes with the problem.

182 Bleuler et al.

FOCUS [7, 11]

Selection in the FOCUS algorithm works by discarding all weakly dominated indi-
viduals in the population. In order to promote diversity within the population, a
diversity measure is used as a third objective in the optimization. However, unlike in
most multiobjective EAs, diversity is measured in the parameter space. A distance
measure for GP trees is defined and the average distance to the other members of
the population is used as third objective function in the evaluation of a program.

This method is compared to standard GP on three instances of the parity bit
problem. The experimental results show that some kind of diversity maintenance is
necessary to keep the population from converging to small but non-functional trees.
Including the diversity objective, FOCUS was, using fewer function evaluations, able
to find correct solutions that are much smaller than those found by standard GP.

POPE-GP [3]

Another study uses NSGA-II [8] as selection operator in another overall method
named POPE-GP [3]. Like all state-of-the-art evolutionary multiobjective optimiza-
tion algorithms NSGA-II employs a diversity mechanism to distribute the individuals
in the objective space. This eliminates the problem of convergence to small but non-
functional programs. In an assessment on a classification problem, this approach
yielded smaller programs with superior generalization compared to standard GP.

Biased Multiobjective Parsimony [21]

The authors argue that in most cases it is much easier for GP to find small non-
functional programs than large correct ones, which is the reason why the evolution
process can converge to small, non-functional individuals. To avoid this, a bias to-
wards larger solutions is introduced. In contrast to the bias in [9], the user does not
specify a target size but rather the relative importance of the two objectives. This
is achieved by performing a tournament in which individuals are either compared
based on their fitness (program functionality) only or based on their nondominated
sorting rank [8]. By setting the probability p for using the fitness as criterion in the
tournament, one can adjust the influence of the program size in selection, i.e., higher
values of p lead to higher parsimony pressure.

The study uses four classical GP test problems (artificial ant, symbolic regres-
sion, multiplexer and even-parity) for comparing the proposed approach to standard
GP and to two other single-objective strategies presented in the same publication.
The results show that biased multiobjective parsimony is able to reduce the size of
the solutions significantly for all problems in comparison to standard GP. But for
higher parsimony pressure, which generates a highly significant reduction in program
size, the fitness values start to increase compared to standard GP, i.e., the program
functionality decreases. Consequently, the parsimony pressure must be carefully cho-
sen to achieve a reduction while maintaining the quality of the solutions. The two
single-objective strategies perform similarly to the multiobjective selection.

Other Related Approaches

The method presented in [15] is closely related to [9]. Here the selection consists
of picking a random set of individuals and selecting all the nondominated solutions

Reducing Bloat in GP with Multiple Objectives 183

from this set. Instead of replacing the selection operator with a multiobjective version
as in most other approaches, Smits et al. [24] propose maintaining an external set
of nondominated solutions and adapting the crossover operator to recombine one
individual from the normal population with one individual from the nondominated
set.

Methods like those presented in this section have successfully been used in several
applications [27, 14, 29, 22]. And the same basic idea has found use in areas other
than GP. In evolutionary design of classifiers, for example, the same problem with
parsimony exists and the multiobjective methods presented for bloat in GP have
effectively been applied [20, 10].

Summary of Multiobjective Approaches

Summarizing the studies discussed above, one can state that considering program
size as a second objective beside program functionality and applying a Pareto-based
optimization method has been highly successful in reducing bloat compared to stan-
dard GP. If a pure dominance-based fitness assignment scheme is used, this may
lead to convergence to small, non-functional programs, thereby reducing the chance
of finding a high-quality solution. The reason is that many more small programs ex-
ist than functional ones. Two basic strategies have been proposed to eliminate this
problem: i) the introduction of a bias against small programs [9, 21], which gives
rise to the difficult problem of correctly setting this bias or ii) the enforcement of
diversity in the population with respect to either the parameter space [7, 11] or the
objective space [4, 3].

3 A Multiobjective Approach to Reduce Bloat in Detail

This section describes how to apply a multiobjective approach to reducing bloat
based on the example of the method presented in [4]. Additionally, it provides an
empirical comparison of the multiobjective approach to four alternative strategies
for reducing bloat.

3.1 Algorithm

The approach proposed in [4] uses an improved version of the Strength Pareto Evolu-
tionary Algorithm (SPEA) for multiobjective optimization proposed in [32]. Besides
the population, SPEA maintains an external set of individuals (archive) which con-
tains the nondominated solutions among all solutions considered so far. The variant
implemented here differs from the original SPEA only in the fitness assignment. In
SPEA the fitness of an individual in the population depends on the “strengths” of
the individual’s dominators in the external set, but is independent of the number of
solutions this individual dominates or is dominated by within the population. The
potential problem arising with this scheme is illustrated in Figure 1. The Pareto-
optimal front consists of only four solutions and the second dimension is highly
discretized (as is the case for the application considered in Section 3.2, cf. Fig-
ure 11). As a consequence, the population is divided into four fitness classes, i.e.,
clusters which contain solutions having the same fitness. The fitness values only

184 Bleuler et al.

Fig. 1. A problematic situation with the original SPEA fitness assignment scheme in
the case of a highly discretized objective space. The white points represent members
of the external set while the grey points stand for individuals in the population

among clusters vary, not within clusters. Thereby the selection pressure towards
the Pareto-optimal front is reduced substantially and may slow down the evolution
process.

To avoid this situation, with the present algorithm both dominating and domi-
nated solutions are taken into account for each individual. In detail, each individual i
in the external set P and the population P is assigned a real value S(i), its strength,
representing the number of solutions it dominates:

S(i) = |{j | j ∈ P + P ∧ i ! j}|,

where | · | denotes the cardinality of a set, + stands for multiset union and the
symbol ! corresponds to the relation of weak Pareto dominance.1 The strength of
an individual is greater than or equal to 1 as each individual weakly dominates itself.
Finally, the fitness F (i) of individual i is calculated on the basis of the following
formula:

F (i) =
∑

j�i

S(j).

That is, the fitness is determined by the strengths of its dominators. Note again
that each individual weakly dominates itself and thus F (i) ≥ S(i). In contrast to
SPEA, there is no distinction between members of the external set and population
members.

It is important to note that fitness is to be minimized here, i.e., low fitness values
correspond to high reproduction probabilities. The best fitness value is 1, which
means that an individual is neither (weakly) dominated by any other individual
nor (weakly) dominates another individual. A low fitness value is assigned to those
individuals which

1 A solution weakly dominates another solution if and only if it is not worse in any
objective.

Reducing Bloat in GP with Multiple Objectives 185

i) dominate only few individuals and
ii) are dominated by only few individuals (which in turn dominate only few indi-

viduals).

Therefore, not only is the search guided towards the Pareto-optimal front but also a
niching mechanism is incorporated based on the concept of Pareto dominance. This
enhances population diversity with respect to the objective space and successfully
avoids convergence to small but non-functional programs, as will be demonstrated
in Section 3.2.

For details of the SPEA implementation we refer the reader to [30]. The clus-
tering procedure is not needed in this study because the size of the external set is
unrestricted due to the small number of nondominated solutions emerging with the
considered test problem.2

3.2 Experiments

In the following, we compare five methods — Standard GP, Constant Parsimony,
Adaptive Parsimony, Two Stage and the SPEA variant — by evolving even-parity
functions of different arities.

Methodology

The even-parity function was chosen because it is commonly used as a GP test
problem [16, 26] and the complexity (arity = number of inputs) can be easily adapted
to either the available machine resources or the performance of an algorithm. The
Boolean even-k-parity function of k Boolean arguments returns TRUE if an even
number of its Boolean arguments are TRUE, and otherwise returns NIL.

Parity functions are often used to check the accuracy of stored or transmitted
binary data in computers because a change in the value of any one of its arguments
toggles the value of the function. Because of this sensitivity to its inputs, the parity
function is difficult to learn [17]. The training set consist of all 2k possible input
combinations. The error of an individual is measured as the number of input cases
for which it did not provide the correct output value. A correct solution to the even-
k-parity function is found when the error equals zero. We will call a run successful if
it found at least one correct solution. For each setup 100 runs have been performed,
and, in the following, usually the average values over 100 runs are reported. If not
stated differently, the even-5-parity problem was used. Additionally, in a few runs
even-parity functions of higher arities have been evolved.

Parameter Settings

After some test runs with Standard GP we decided to use a population size of 4,000
and a maximum of 200 generations; this setup performed best of all, keeping the
product Generations ∗ Popsize = 800, 000 constant. All runs were processed up
to generation 200, even if they found a correct program before generation 200. We

2 The technique used here is a slight variation of the method later proposed under
the name SPEA2 [31] which contains further improvements over SPEA.

186 Bleuler et al.

set the initial depth for newly created trees to five and, in addition, restricted the
maximum allowed depth of trees to 20, which is by far enough to generate correct
solutions. It is important to note that only Standard GP and Two Stage runs (if no
pressure is applied because no correct solution has been found) are affected by this
limit. The other methods manage to keep the tree size so small that no significant
part of the population reaches tree depths close to the limit.

The terminal set consists of all inputs d0, d1, ..., dk−1 to the even-k-parity func-
tion. No numerical constants have been used. The function set consists of the fol-
lowing four Boolean functions: {AND, OR, IF, NOT}. Note that using the same
function set without IF makes the task of evolving an even-parity function con-
siderably more difficult. Preliminary tests for Constant Parsimony with different
parsimony pressures of 0.001, 0.01, 0.1 and 0.2 showed the best results for α = 0.01.
This value has been used in all following Constant Parsimony runs.

For Adaptive Parsimony several settings from [5] have been used: The maximum
acceptable error ε was set to 0.02. Ei(g) was normalized with the maximum possible
error. The best error that can be achieved is Ei(g) = 0. Ci(g) was defined as the size
Ni(g) of an individual i normalized with the maximum size in population Nmax(g).
In order to be able to use the formula given in Section 2 a constant c = 0.01 was
added to the error measure.

Table 1 summarizes the parameters used for all runs (if not stated differently).

Table 1. Global parameter setting

Population size 4000
Generations 200
Maximum depth Dmax = 20
Maximum initial depth Dinitial = 5
Probability of crossover pc = 0.9
Probability of mutation pm = 0.1
Tournamentsize T = 7
Reproduction method Tournament
Function set {AND,OR, IF,NOT}
Terminal set d0, d1, ..., dk−1

Constant Parsimony Pressure α = 0.01
Threshold (for Adaptive Pars.) ε = 0.02

Results

As expected, all methods have been able to find correct solutions in most of the 100
runs. Table 2 shows the percentage of successful runs, i.e., runs that found at least
one correct solution within 200 generations. Two Stage and Standard GP have the
same probability of solving the test problem since the fitness function is the same
for both unless the concerned individual in Two Stage already represents a correct
solution.

Reducing Bloat in GP with Multiple Objectives 187

Fig. 2. Comparison of the success rates
for the different methods relative to the
generations. 100% means that all of the
100 runs found a solution before or in
this generation

Fig. 3. Average tree size, mean of 100
runs per method

More information about how fast a method finds correct solutions can be ob-
tained by calculating the probability of a run finding a correct solution within the
first k generations. It is computed by summing over the runs that have found a cor-
rect solution by generation k. This probability is shown in Figure 2. It is interesting
that all methods have found correct solutions before generation 20 in some runs. For
all methods the probability of finding the first correct solution in the second half of
the run is low. Increasing the arity of the even-parity function from 5 to 7 makes the
problem much harder to solve. With an even-7-parity function, Standard GP did
not produce one correct solution within 31 runs of 200 generations each. Parsimony
was successful in ten and the SPEA variant in 22, out of 31 runs. This shows that
keeping smaller trees in the population not only reduces the computational effort
but also improves chances of solving the problem. For the even-9-parity function,
the SPEA variant was successful within 500 generations in 17 out of 31 runs, and
Constant Parsimony in 4 out of 31.

Table 2. Results compared for Standard GP, Two Stage, Constant Parsimony,
Adaptive Parsimony and the SPEA variant

Method Success Smallest Mean Largest
Rate Av. Av. Av.

[%] Size Size Size
Standard GP 84 324.0 643.2 1701.8
Constant Pars. 100 26.2 52.3 106.9
Adaptive Pars. 99 23.0 87.1 714.9
Two Stage 84 25.7 170.1 867.6
SPEA variant 99 16.8 21.7 37.1

188 Bleuler et al.

One of the main goals of reducing bloat is to keep the average tree size small in
order to lower the computational effort required. Figure 3 shows the mean of average
tree sizes in the population for 100 runs relative to the generation. Standard GP
shows a rapid increase of average size until a significant part of the population
reaches the maximum tree depth at about generation 20. From this point on, the
increase in size gets slower. This is clearly an effect of limiting the tree depth. Out of
ten runs where the tree depth was unlimited, none showed this saturation pattern.
In contrast, tree size grew faster and faster, reaching an average size of 9,764 edges
(average over 10 runs).

All of the other methods show common behaviour. After reaching a maximum
between generation 20 and 30 the average size is reduced and stabilizes. Around
the time when the average size reaches a maximum, the average error reaches a
minimum. Maybe it is the general behaviour of algorithms that somehow favour
small solutions, at least for discrete problems. An improvement in functionality is
first achieved by a large individual and is followed by smaller programs with the
same error. At the beginning of a run, when the average error is high, it is easy for
evolution to improve functionality and the reduction of the average error is fast. The
reduction in size mainly takes place when a lot of individuals have the same fitness.
While fitness is changing fast this is not the case. Parsimony pressure with an α
of 0.01, for example, mainly distinguishes between programs of equal performance.
An individual may be 100 nodes larger than another and compensate for this with
classifying only one additional test case correctly. Further investigations would be
needed to justify the previously mentioned assumption.

Of more practical relevance is the fact that although the average size develop-
ment shows a similar pattern for Two Stage, Constant Parsimony, Adaptive Parsi-
mony and the SPEA variant the absolute values differ very much. As can be seen in
Figure 3, the proposed SPEA variant has by far the smallest average size throughout
the whole run. In generation 200 the average number of edges is down to 21.7; this
is less than half of the second smallest average size which was attained by Constant
Parsimony. Another important aspect is the range between the highest and the low-
est final average size within all runs for one method. Table 2 lists the highest and
the lowest final average size that occurred in 100 runs. For the SPEA variant the
final average sizes vary only very little. At the other extreme is Two Stage. Some of
the Two Stage runs never found a correct solution and therefore never experienced
any pressure on tree size. These runs are exactly like Standard GP runs. Adaptive
Parsimony performed considerably worse than Constant Parsimony (unlike in [5],
where Adaptive Parsimony and Constant Parsimony achieved equal performance),
and its final average sizes fell into a large range.

The second main goal when using methods against bloat is to retrieve compact
solutions. The question is whether methods that keep the average tree size in the
population low also produce small correct solutions. Figures 4 to 8 show a bar for
each run. The height of the bar corresponds to the size of the smallest correct
solution that was found during the whole run. If no correct solution was found there
is no corresponding bar. For calculating the mean and median value only successful
runs have been taken into account. It is shown that methods with low average tree
sizes like the SPEA variant and Constant Parsimony were not only able to produce
correct solutions but also found more compact solutions than methods with a larger
average tree size. The average size of the smallest solutions for the SPEA variant
is 21.1, which is close to the minimal possible tree size (17) for a solution to the

Reducing Bloat in GP with Multiple Objectives 189

even-5-parity function using the given function set. This ideal solution was found in
22 runs. Every successful run found compact solutions; even the worst run found a
solution of size 38. Although Constant Parsimony has a high probability of finding
correct solutions within 200 generations, the size of the smallest solutions varies in
a wide range. Once again the results of Adaptive Parsimony are worse than those
of Constant Parsimony. Especially, the range of the sizes of the smallest solutions is
larger with Adaptive Parsimony Pressure.

Fig. 4. Standard GP, size of the smallest correct solution

Some insight into why the SPEA variant is more successful than Constant Par-
simony can be gained by looking at the distribution of the population in the (size,
error)-plane. Figures 9 to 12 show the distribution of the population at generation
30 and 200 both for one representative run of the SPEA variant and one Constant
Parsimony run. Each dot in the diagram represents one individual. The two runs for
the SPEA variant and Constant Parsimony have been started with the same initial
population. While the SPEA variant keeps a set of small individuals with different
errors in the population during the whole run, Constant Parsimony moves the en-
tire population towards lower errors and larger sizes. Around generation 30, when
the average size reaches a maximum value and the average error a minimum value,
parsimony pressure becomes effective and the population is moved back towards
smaller sizes. The only small programs that are constantly kept in the population
have an error of 16. Into this category also falls the smallest possible program that
results from returning one input to the output. It is possible that in the variety of
small trees that can be found in populations of the SPEA variant at all stages of
the evolution, good building blocks for correct solutions are present.

4 Investigating the Mechanisms of Multiobjective Bloat
Reduction

As demonstrated in the previous section and by all the studies described in Sec-
tion 2.2, Pareto-based multiobjective optimization is successful at reducing bloat.

190 Bleuler et al.

Fig. 5. Constant Parsimony, size of the
smallest correct solution

Fig. 6. Two Stage, size of the smallest
correct solution

Fig. 7. Adaptive Parsimony, size of the
smallest correct solution

Fig. 8. SPEA variant, size of the small-
est correct solution

While it is intuitive that maintaining a selection pressure towards smaller programs
reduces bloat, it is not obvious why the multiobjective approach is particularly effec-
tive compared to alternative strategies. The algorithm used in Section 3 maintains
a large portion of small non-functional programs in the population, as no preference
for any of the two objectives size, and functionality is applied. This strategy seems to
enhance the identification of a compact and correct solution rather than distracting
the search algorithm as one would assume. In the following, a hypothesis concerning
the cause of the observed behaviour will be presented and analysed.

4.1 Hypotheses

Figure 13 shows the hypothesized minimal-size solution found for the even-5-parity
problem with the given operator set. This program is composed of subtrees that are
themselves solutions to the parity bit problems for a lower number of inputs and that
were often found by the multiobjective approach. This observation, together with
the fact that even-parity programs can be obtained by programs for lower a number
of bits, leads to the assumption that it was composed of solutions to subproblems by
means of recombination. In this scenario, the multiobjective approach may support
the existence of such small programs that are not correct solutions but that have
relatively good functionality, as they are solutions to subproblems. So, the hypothesis

Reducing Bloat in GP with Multiple Objectives 191

Fig. 9. SPEA variant population at gen-
eration 30

Fig. 10. Constant Parsimony popula-
tion at generation 30

Fig. 11. SPEA variant population at
generation 200

Fig. 12. Constant Parsimony popula-
tion at generation 200

is that the small programs kept in the population act as building blocks for compact
and correct solutions.

Alternatively, the advantage of the multiobjective optimization may be based
on the increased genetic diversity. The existence of this effect was demonstrated in
an empirical study in [1] where single-objective optimization problems were solved
by adding objectives and applying a Pareto-based method. A closely related idea is
that adding objectives makes a problem easier by removing local optima [13].

If the building block hypothesis describes the dominating factor leading to bloat
reduction, the following can be expected to hold:

• The fitness assignment should be able to discriminate between small solutions
that are solutions to subproblems or building blocks and random programs of
the same size. If this is not the case, the EA will not prefer building blocks over
random solutions.

• Through recombinations of solutions to subproblems, the functionality of off-
spring programs should often be largely better than the parents’ functionality.

• Switching off recombination should strongly reduce the effectiveness of the mul-
tiobjective method.

In the following, the experimental results on multiple test problems for these
effects will be analysed.

192 Bleuler et al.

Fig. 13. Hypothesized minimal size solution found for the even-5-parity problem.
The marked subtrees are solutions to parity problems of lower arities

Fig. 14. Multiplexer problem (k = 6)

d3 0 d4 0 d5 0

+

output

d0 d2d1

Fig. 15. Adder problem (k = 6)

4.2 Test Problems

Besides the parity bit problem described in Section 3.2 the following test problems
are used for the analysis.

k-Multiplexer

A multiplexer is a device to select one of several data inputs and forward it to the
output, cf. Figure 14. The k-multiplexer problem has m binary control inputs and
n binary data inputs, where n = 2m and k = m + n. Thus, the feasible values for k
are k = {3, 6, 11, 20, 37, . . .}

Reducing Bloat in GP with Multiple Objectives 193

k-Hamming Distance

Here, the task is to calculate the Hamming distance between the first half and the
second half of the binary input string of length k. Obviously, k is restricted to being
even. This test problem was specifically designed to allow a stepwise buildup of
correct programs, since the solutions that calculate the correct Hamming distance
for a part of the input string have a relatively high score on the complete problem.

k-Adder

A related test problem is the k-adder where the first k
2

bits of the k binary input di

determine which of the remaining bits are added; cf. Figure 15. Thus, the output is
calculated as follows:

a =

k∑

i=0

di · di+ k
2
. (1)

Operators

The same operators as for the parity bit have been used for the multiplexer problem,
namely NOT, OR, AND, and IF . For the Hamming distance and the adder an
additional binary plus operator + was introduced.

4.3 Results

This section tests the building block hypothesis described above by analysing ex-
perimental results for the different effects that should be observed if the hypothesis
holds.

Fitness Discrimination of Small Programs

For the population to contain a significant number of small programs that are solu-
tions to subproblems, they must exhibit better fitness values than random programs
of the same size, e.g., when scored on the even-5-parity problem, a solution to the
even-3-parity problem should be preferred to a random program of the same size.
One characteristic of solutions to subproblems is that they do not use all available
inputs. Accordingly, the possible fitness ranges for programs that do not use all of
the provided inputs (as do solutions to subproblems) are plotted in Figures 16–19.
On the k-parity problem, all solutions that use less than k inputs have equal fitness
as they provide the correct result to exactly half of the test cases. Thus, solutions
to subproblems or other good building blocks for compact full solutions cannot pre-
vail in the population despite the significant portion of small programs maintained
by the Pareto-based selection. Nevertheless, the multiobjective method was highly
successful on the parity problems. This gives a first indication against the building
block hypothesis. For the other test problems the same problem does not appear,
and the Hamming distance problem and the adder problem have been specifically
designed such that solutions to subproblems score relatively well on the full problem.

194 Bleuler et al.

Fig. 16. Fitness ranges for small pro-
grams on the even-7-parity problem

Fig. 17. Fitness ranges for small pro-
grams on the 11-multiplexer problem

Fig. 18. Fitness ranges for small pro-
grams on the 8-Hamming distance prob-
lem

Fig. 19. Fitness ranges for small pro-
grams on the 10-adder problem

Fitness Changes in Recombination

If the crossover operator successfully combines solutions to subproblems or other
building blocks into a full solution, the fitness value of the offspring will be sub-
stantially better than the parents’ fitness. If such recombinations are a major origin
of good solutions, we can expect to often see large fitness increases from parents
to offspring. Figures 20–22 show the fitness differences between one parent and one
offspring appearing in all recombinations of 25 runs. Large changes in fitness are
very rare. This indicates that recombination of building blocks into good programs
is extremely rare on our test problems.

Effect of Single-Parent Variation

The hypothesis states that the multiobjective methods maintain more promising
building blocks in the population than alternative methods like Constant Parsimony.
Thus, its performance should depend more on recombination than that of constant
parsimony. Consequently, using single-parent variation, i.e., switching off recombi-
nation, should affect the SPEA variant much more than Constant Parsimony. We
have tested this on the even-7-parity problem using the parameter settings as de-
scribed in Table 1, except for the tournament size in Constant Parsimony, which was

Reducing Bloat in GP with Multiple Objectives 195

fitness difference better »

yc
neu

qerf ci
mtira

gol

-1024 -768 -512 -256 0 256 512 768 1024
10

0

10
2

10
4

10
6

10
8

Fig. 20. Fitness differences in recombi-
nation on the 11-multiplexer problem

fitness difference better »

yc
neu

qerf ci
mtira

gol

-256 -192 -128 -64 0 64 128
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Fig. 21. Fitness differences in recombi-
nation on the 8-hamming problem

fitness difference better »

yc
neu

qerf ci
mtira

gol

-1024 -768 -512 -256 0 256 512 768
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Fig. 22. Fitness differences in recombi-
nation on the 10-adder problem

set to 10. In order to compensate for the reduced variation without recombination,
the mutation rate was increased to 0.9. Figures 23 and 24 show in how many of
the 10 runs a correct solution was found for the three different settings standard
(pc = 0.9, pm = 0.1), high mutation (pc = 0.9, pm = 0.9), and no crossover (pc = 0,
pm = 0.9). For both methods the number of successful runs is similar and does not
change heavily. Another performance indicator is the speed of convergence. Here,
both algorithms take much longer to find the first correct solution, as shown in Fig-
ures 25 and 26 due to the increased mutation rate, but no significant difference in
the influence of crossover exists. Lastly, we compare the sizes of the smallest correct
solutions found by the two methods; cf. Figures 27 and 28. Again, the performance
is influenced adversely by the increased mutation rate but there is no significant in-
fluence of the recombination. In summary, the performance of the SPEA variant is
not more dependent on recombination than the performance of Constant Parsimony.

5 Summary

Bloating is a well known problem of variable-length representations, as used in ge-
netic programming, and various strategies have been proposed to address it. A recent

196 Bleuler et al.

Fig. 23. Number of successful runs for
the SPEA variant on the 7-even-parity
problem. 1) standard settings, 2) high
mutation rate, 3) high mutation rate and
no recombination

Fig. 24. Number of successful runs for
the Constant Parsimony on the 7-even-
parity problem. 1) standard settings, 2)
high mutation rate, 3) high mutation
rate and no recombination

Fig. 25. Generation of the first correct
solution for the SPEA variant on the
7-even-parity problem. 1) Standard set-
tings, 2) high mutation rate, 3) high mu-
tation rate and no recombination

Fig. 26. Generation of the first correct
solution for the Constant Parsimony on
the 7-even-parity problem. 1) Standard
settings, 2) high mutation rate, 3) high
mutation rate and no recombination

development is to explicitly use the underlying objectives of program functionality
and program size in a multiobjective optimization method. Several variants of this
approach have been proposed, all of which successfully reduced code growth com-
pared to standard GP with depth limitation, on a variety of discrete and continuous
test problems. Here, we have discussed how to apply Pareto-based multiobjective
methods to the problem of bloat on the example of the SPEA variant published
in [4]. The experimental validation on the parity-bit test problem showed that this
method not only reduces code growth compared to standard GP but also outper-
forms three alternative methods for bloat control with respect to average size of

Reducing Bloat in GP with Multiple Objectives 197

Fig. 27. Size of the smallest correct so-
lution found in each run of the SPEA
variant on the 7-even-parity problem.
1) Standard settings, 2) high mutation
rate, 3) high mutation rate and no re-
combination

Fig. 28. Size of the smallest correct so-
lution found in each run of Constant
Parsimony on the 7-even-parity prob-
lem. 1) Standard settings, 2) high mu-
tation rate, 3) high mutation rate and
no recombination

the programs, which is decisive for the overall computational effort, the size of the
smallest correct solutions and the best program functionality.

Additionally, we tried to identify the cause for these improvements as it is not ob-
vious why keeping small and non-functional programs in the population can improve
the quality of the results rather than distracting the search. We have formulated the
hypothesis that small programs may act as building blocks for compact correct solu-
tions. These building blocks could then be combined into compact correct solutions
by recombination, whereas alternative methods which do not keep small but non-
functional programs in their populations cannot profit from this effect. Several tests
revealed evidence against this hypothesis. In particular,

• the multiobjective method is also successful when the fitness of small solutions
that may act as building blocks cannot be distinguished from the fitness of
random programs of the same size,

• recombination does very rarely leads to the large improvements in fitness that
would be expected for successful combinations of building blocks, and

• switching off recombination does not seem to influence the capabilities of the
multiobjective approach.

Therefore, we conclude that the positive effects of maintaining small but non-
functional programs in the population are mainly due to increased genetic diversity,
as described in [1], or the closely related concept of changes in the fitness landscape
which induce a lower number of local optima [13]. Additional experiments will be
necessary to further verify these conclusions.

One explanation of why maintaining diversity is important with respect to small
trees is that the recombination gets more effective the smaller the trees are (as a
comparison between Figures 9 and 10 reveals).

198 Bleuler et al.

References

[1] H. A. Abbass and K. Deb. Searching under Multi-evolutionary Pressures. In
C. M. Fonseca et al., editors, Evolutionary Multi-Criterion Optimization. Sec-
ond International Conference, EMO 2003, pages 391–404, Berlin, Germany,
2003. Springer. Lecture Notes in Computer Science. Volume 2632.

[2] W. Banzhaf, F. D. Francone, R. E. Keller, and P. Nordin. Genetic Programming:
An Introduction. Morgan Kaufmann, San Francisco, CA, 1998.

[3] Y. Bemstein, X. Li, V. Ciesielski, and A. Song. Multiobjective parsimony en-
forcement for superior generalisation performance. In IEEE, editor, CEC 04,
pages 83–89, 2004.

[4] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler. Multiobjective Genetic Pro-
gramming: Reducing Bloat by Using SPEA2. In Congress on Evolutionary
Computation (CEC-2001), pages 536–543, Piscataway, NJ, 2001. IEEE.

[5] T. Blickle. Evolving Compact Solutions in Genetic Programming: A Case
Study. In H. M. Voigt et al., editors, PPSN IV, pages 564–573. Springer-Verlag,
1996.

[6] T. Blickle and L. Thiele. Genetic programming and redundancy. In J. Hopf,
editor, Genetic Algorithms within the Framework of Evolutionary Computation
(Workshop at KI-94, Saarbrücken), pages 33–38, 1994.

[7] E. D. De Jong, R. A. Watson, and J. B. Pollack. Reducing Bloat and Promoting
Diversity using Multi-Objective Methods. In L. Spector et al., editors, Genetic
and Evolutionary Computation Conference (GECCO 2001), pages 11–18. Mor-
gan Kaufmann Publishers, 2001.

[8] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization: NSGA-II.
In M. Schoenauer et al., editors, Parallel Problem Solving from Nature (PPSN
VI), Lecture Notes in Computer Science Vol. 1917, pages 849–858. Springer,
2000.

[9] A. Ekárt and S. Z. Németh. Selection Based on the Pareto Nondomination
Criterion for Controlling Code Growth in Genetic Programming. Genetic Pro-
gramming and Evolvable Machines, 2:61–73, 2001.

[10] A. Hunter. Expression Inference - Genetic Symbolic Classification Integrated
with Non-linear Coefficient Optimisation. In AISC 02, LNCS. Springer, 2002.

[11] E. D. D. Jong and J. B. Pollack. Multi-objective methods for tree size control.
Genetic Programming and Evolvable Machines, 4:211–233, 2003.

[12] T. Kalganova and J. F. Miller. Evolving More Efficient Digital Circuits by
Allowing Circuit Layout Evolution and Multi-Objective Fitness. In A. Sto-
ica et al., editors, Proceedings of the 1st NASA/DoD Workshop on Evolvable
Hardware (EH’99), pages 54–63, Piscataway, NJ, 1999, 1999. IEEE Computer
Society Press.

[13] J. D. Knowles, R. A. Watson, and D. W. Corne. Reducing Local Optima
in Single-Objective Problems by Multi-objectivization. In E. Zitzler et al.,
editors, Evolutionary Multi-Criterion Optimization (EMO 2001), volume 1993
of Lecture Notes in Computer Science, pages 269–283, Berlin, 2001. Springer-
Verlag.

[14] A. Kordon, E. Jordaan, L. Chew, G. Smits, T. Bruck, K. Haney, and A. Jenings.
Biomass Inferential Sensor Based on Ensemble of Models Generated by Genetic
Programming. In GECCO 04, LNCS, pages 1078–1089. Springer, 2004.

Reducing Bloat in GP with Multiple Objectives 199

[15] M. Kotanchek, G. Smits, and E. Vladislavleva. Pursuing the Pareto Paradigm
Tournaments, Algorithm Variations & Ordinal Optimization. In R. L. Riolo,
T. Soule, and B. Worzel, editors, Genetic Programming Theory and Practice
IV, volume 5 of Genetic and Evolutionary Computation, chapter 3. Springer,
2006.

[16] J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[17] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. MIT Press, Cambridge, Massachusetts, 1994.

[18] W. B. Langdon. Quadratic Bloat in Genetic Programming. In D. Whitley
et al., editors, GECCO 2000, pages 451–458, Las Vegas, Nevada, USA, 10-12
2000. Morgan Kaufmann. ISBN 1-55860-708-0.

[19] W. B. Langdon and R. Poli. Fitness Causes Bloat. In P. K. Chawdhry et al.,
editors, Soft Computing in Engineering Design and Manufacturing, pages 13–
22, Godalming, GU7 3DJ, UK, 1997. Springer-Verlag.

[20] X. Llorà, D. E. Goldberg, I. Traus, and E. Bernadó. Accuracy, parsimony,
and generality in evolutionary learning systems via multiobjective selection. In
Learning Classifier Systems, pages 118–142. Springer. Lecture Notes in Artifi-
cial Intelligence Vol. 2661, 2002.

[21] L. Panait and S. Luke. Alternative Bloat Control Methods. In GECCO 04,
LNCS, pages 630–641. Springer, 2004.

[22] D. Parrot, L. Xiandong, and V. Ciesielski. Multi-objective techniques in genetic
programming for evolving classifiers. In CEC 05, pages 1141–1148. IEEE, 2005.

[23] K. Rodŕıguez-Vázquez, C. M. Fonseca, and P. J. Fleming. Multiobjective ge-
netic programming: A nonlinear system identification application. In J. R.
Koza, editor, Late Breaking Papers at the 1997 Genetic Programming Con-
ference, pages 207–212, Stanford University, CA, USA, 13–16 1997. Stanford
Bookstore. ISBN 0-18-206995-8.

[24] G. F. Smits and M. Kotanchek. Pareto-Front Exploitation in Symbolic Re-
gression. In Genetic Programming Theory and Practice II, volume 8. Springer,
2005.

[25] T. Soule and J. A. Foster. Removal Bias: a New Cause of Code Growth in Tree
Based Evolutionary Programming. In 1998 IEEE International Conference
on Evolutionary Computation, pages 781–186, Anchorage, Alaska, USA, 1998.
IEEE Press. URL http://citeseer.ist.psu.edu/313655.html.

[26] T. Soule and J. A. Foster. Effects of Code Growth and Parsimony Pressure
on Populations in Genetic Programming. Evoluationary Computation, 6(4):
293–309, 1999.

[27] M. Streeter and L. A. Becker. Automated Discovery of Numerical Approxima-
tion Formulae via Genetic Programming. Genetic Programming and Evolvable
Machines, 4(3):255–286, 2003.

[28] B.-T. Zhang and H. Mühlenbein. Balancing Accuracy and Parsimony in Genetic
Programming. Evoluationary Computation, 3(1):17–38, 1995.

[29] Y. Zhang and P. I. Rockett. Evolving optimal feature extraction using multi-
objective genetic programming: a methodology and preliminary study on edge
detection. In GECCO 05, pages 795–802, New York, NY, USA, 2005. ACM
Press.

200 Bleuler et al.

[30] E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH)
Zürich, Switzerland, 1999.

[31] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto
Evolutionary Algorithm for Multiobjective Optimization. In K. Giannakoglou
et al., editors, Evolutionary Methods for Design, Optimisation and Control with
Application to Industrial Problems (EUROGEN 2001), pages 95–100. Interna-
tional Center for Numerical Methods in Engineering (CIMNE), 2002.

[32] E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Compar-
ative Case Study and the Strength Pareto Approach. IEEE Transactions on
Evolutionary Computation, 3(4):257–271, 1999.

