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Preface

To those unfamiliar with the field of evolutionary computation (EC), its
problem-solving achievements must seem as magical, nearly, as the products
of natural evolution itself. Air traffic control in four dimensions and robot
teams that perform co-operative navigation; billion-transistor microchips and
expert-level poker playing: these are not the future, but just some of the past
trophies of the computer scientist’s version of descent with modification.

Of course, behind these achievements lurks some human ingenuity, and
liberal amounts of human perspiration. Practitioners of EC know that it does
not do its magic at the mere twitch of a wand — and there is much work still
ahead to understand how the next step-changes in capability will be reached.

But it remains true that EC demands relatively little from the practitioner
in order to function with at least moderate success. Three ingredients, only,
are needed: a way to express a solution as a data-structure, a way to modify
instances of that data-structure, and a way to calculate the relative quality
of two solutions. These are often simple things to design and implement, and
consequently EC enjoys the labels ‘generic’ and ‘flexible’, able to tackle a huge
diversity of problems.

In at least one important respect, however, the flexibility of EC was not
fully realized until the emergence, in the 1980s, of evolutionary multiobjec-
tive optimization (EMO), now a burgeoning sub-discipline. Handling prob-
lems with multiple (conflicting) objectives the way EMO does can be pro-
foundly useful. Consequently, EMO has spread rapidly, with some three- or
four-thousand scientific papers on the subject being published since its incep-
tion, sprinkled among the literature of many disciplines.

Straightforward explanations of EMO’s growth and appeal typically refer
to the extra information it provides when it yields a diverse set of solutions.
However, it turns out that EMO has many more feathers in its cap. We
propose, in this book, a characterization of EMO that accounts more for recent
innovations, and which shows where we think much of the future growth in
EMO and its applications will be.



VIII Preface

The view we adopt, and that the contributed chapters here make concrete,
stems from the observation that, alongside ‘vanilla’ EMO research there has
been a parallel development in terms of the ways that multiple objectives can
be used to help solve problems in general. With notable and often remark-
able effectiveness, we find, for example, that EMO techniques can accelerate
the search process (for single objective problems), provide novel methods for
machine learning, and reliably address dynamic optimization tasks. Similarly
we see that EMO techniques can uncover novel design principles, help us to
better understand natural complex systems, lead to better solutions even for
problems that are unashamedly single-objective, and more.

Some of the ideas presented in this book have become apparent to one
or other of the editors, in gradual degrees over the past half-dozen years
or so. For JK, the idea of objective function decomposition, explored with
Richard A. Watson and DC, in 2000–2001, is one of his earlier memories of
thinking more flexibly about how EMO would be used in the future. JK has
also been inspired by the recent work he did with Julia Handl on multiobjec-
tive clustering, particularly her innovative ideas about objectives as proxies
for fundamentally unmeasurable criteria. For DC, an ever-present interest in
the link between landscape topology and search dynamics (partially seeding
the aforementioned ‘multiobjectivization’ — objective function decomposition
— work) underpins his view that every realistic problem is a many-objective
one, and he has come to see EMO as a way to help in understanding the
‘true’ structure of a problem while, or before, solving it. For KD, the concept
of using EMO principles for other kinds of problem-solving tasks came to him
in 1999, while working on another book. His earlier experiences with single-
objective optimization algorithms had taught him that the dogged pursuit of a
single specified goal often leads to a rapid loss of solution diversity, with many
potentially powerful solutions being discarded; the possibility of using helper
objectives to prevent this effect was thus intriguing. KD is also excited with
the possibility of using EMO-found trade-off solutions for knowledge discovery
in real-world problem-solving tasks.

Our combined interest in this area was piqued again, most recently, by the
contributions to the MPSN workshop we co-chaired at PPSN in Reykjavik in
2006, where many of the ideas in this book finally came together and ‘brushed
shoulders’ for the first time.

It has been a lot of work; if only science could disseminate itself. Since
it can’t, we are most grateful to Ronan Nugent, the Springer editor, for his
general support as well as his careful checkign of some of the txet. But, all in
all, we have had great pleasure in compiling this book, and we do hope readers
will find in it some exciting challenges for their future work. We hope so, or
the various sacrifices and injustices imposed by us on our families during the
book’s production will be wasted. So, enjoy it or else!

Manchester, Edinburgh, Helsinki Joshua Knowles
August 2007 David Corne

Kalyanmoy Deb
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Introduction: Problem Solving, EC and EMO

Joshua Knowles1, David Corne2, and Kalyanmoy Deb3

1 School of Computer Science, University of Manchester, UK
j.knowles@manchester.ac.uk

2 School of Mathematical and Computer Sciences (MACS), Heriot-Watt
University, Edinburgh, UK dwcorne@macs.hw.ac.uk

3 Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of
Technology, Kanpur, India deb@iitk.ac.in

Summary. This book explores some emerging techniques for problem solving of a
general nature, based on the tools of EMO. In this introduction, we provide back-
ground material to support the reader’s journey through the succeeding chapters.
Given here are a basic introduction to optimization problems, and an introductory
treatment of evolutionary computation, with thoughts on why this method is so
successful; we then discuss multiobjective problems, providing definitions that some
future chapters rely on, covering some of the key concepts behind multiobjective
optimization. These show how optimization can be carried out separately from sub-
jective factors, even when there are multiple and conflicting ends to the optimization
process. This leads to a set of trade-off solutions none of which is inherently bet-
ter than any other. Both the process of multiobjective optimization, and the set
of trade-offs resulting from it, are ripe areas for innovation — for new techniques
for problem solving. We briefly preview how the chapters of this book exploit these
concepts, and indicate the connections between them.

1 Overview

Intellectual activity consists mainly of various kinds of search.
Alan M. Turing, 1948

When we say that computers can solve problems, it is a sort of half-truth, to
be taken with a medium-sized pinch of salt. It is manifestly true that computers
solve problems when they almost autonomously carry out everyday tasks involving
communication, auditing, logistics and so forth, and computers even act somewhat
more ‘intelligently’ when they do such tasks as controlling an automatic transmis-
sion, or making a medical diagnosis, in which they may even exhibit a computerized
form of learning. But it is also true that computers are not very autonomous in
solving new problems. Much human input and human innovation still goes into the
process of solving difficult problems (designing a cable-stayed bridge, finding novel
drug interventions, brokering international peace initiatives), a state of affairs that
is likely — and desirably so — to continue for some time to come.
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In this book, we consider an area in computer science which is at the forefront
of techniques for solving difficult problems. Evolutionary computation — that is,
methods that resemble a process of Darwinian evolution — can be used as a way
to make computers ‘evolve’ solutions to problems, which we, as humans, do not
ourselves know how to solve. By giving computers the capability of searching for
their own answers to problems — through huge spaces of possibilities, in a very flex-
ible way that goes beyond numerical methods — innovative and intelligent-seeming
solutions and actions can be produced.

Much of evolutionary computation is concerned with optimization. For a human
to use evolutionary computation to solve a new optimization problem, very little is
required. This is where the flexibility of EC comes from: one must only provide the
computer with (i) some way of representing or even ‘growing’ candidate solutions to
the problem, and (ii) some function (or method) for evaluating any candidate solu-
tion, estimating its goodness on a numerical scale. Enormous varieties of problems
can be stated succinctly in this way, from electronic circuits to furniture designs,
and from strategies for backgammon to spacecraft trajectories. And the boon of evo-
lutionary computation (though not one hundred percent realized) is that it turns
computers into almost universal problem solvers which can be used by anyone with
even minimal computational/mathematical competence. Of course, many problems
are fundamentally intractable, in the sense that we cannot hope to find truly optimal
solutions, but this does not really limit the uses of EC, but makes it more useful,
since its strength is in finding the best solution possible given the time allowed.

But, while we just said that optimization is widely applicable, it is but a sub-
set of a larger and even more flexible method of problem solving: multiobjective
optimization (MOO). The drawback of standard optimization (let’s call it single-
objective optimization or SOO) is the requirement for a function that can score each
and every candidate solution in terms of a single objective number. Many problems
exist that are not so easy to state in terms of a single function like this. Humans
are generally much more comfortable with, and used to, thinking in terms of aims
and objectives plural, when stating a problem. And, while it is possible, in princi-
ple, for people to combine their aims in some over-arching function by weighting or
ordering them by importance, in practice, different aims and objectives are often
not measured in the same units, on the same scales, and it is often nigh-impossible
to state the importance of different objectives when one has seen no solutions yet!
More fundamentally, many of the methods for combining functions together into
a single one, necessarily miss potentially interesting solutions. And many methods
are very difficult to use because a small change in weights, gives a totally different
solution. Therefore, it would be great if one could exploit the power of evolutionary
algorithms, but use them to search for solutions even when the aims and objectives
cannot be boiled down to a single function.

We are being purposely obtuse here, of course, because such methods already do
exist in the field of evolutionary multiobjective optimization (EMO), and they have
been growing more and more effective over the past twenty years or so. An EMO
algorithm is, loosely-speaking, one in which objectives are treated independently,
and a set of optimal trade-offs (called Pareto optima) is sought, rather than a single
optimum. But we introduced the field in this roundabout way to emphasise the point,
made above, that computers solve problems — difficult problems at least — only
in concert with humans. Humans are still the ones who generally own the problems
and understand something about what they desire and hope for in a solution. So,
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one of the key hurdles to problem solving with computers is to be able to formulate a
problem in such a way that a computer can actually solve it, and a human is happy
with the solution. EMO has this ability in spades, so rather than being a mere
branch of EC, it actually represents a major step forward generally in computer
problem solving.

Where this book advances further in terms of problem solving with computers,
and problem solving specifically using the tools of evolutionary multiobjective op-
timization, is in examining the critical area of how to exploit the greater flexibility
of search afforded by a multiobjective optimization perspective. While other books
and articles on EMO [6, 7, 5] have given a thorough grounding in the development
of EMO techniques, and have been formidable advocates of its benefits, it is only
relatively recently that a groundswell in terms of researchers confidently exploiting
EMO tools to new and innovative ends has really been apparent. It is on this we
concentrate.

The new uses of EMO do not represent a step-change, but a gradual realization
that there are few hard-and-fast rules in solving problems with the technique. Thus,
researchers have begun to ask themselves such things as what would happen if I
took away a constraint and treated it as an objective, what would happen if I had
a problem where I had one objective but it seemed possible to decompose it into
several, what would happen if I had some different functions which were inaccu-
rate proxies for a true ideal objective function? In this book, we see how current
research is dealing with these questions and further we see valuable products of this
exploration. We see here that, ironically, EMO is very useful in coevolution, an area
characterized by problems that have no formal objective function at all (evaluation
occurs only by competitions). We see it helps in traditional SOO problems, where
it speeds up search. We see it put to numerous uses in ill-posed problems, especially
those in machine learning. Along the way, the chapters also consider the important
issue of how to analyse and exploit the sets of solutions that are obtained from
EMO, both in terms of decision making (i.e., usually choosing one final solution) or
of learning from the set of trade-offs. And the development of EMO methods with
respect to their scalability to larger problems with more objectives is considered,
and supports the ideas proposed throughout the book.

In this chapter, we seek to do two jobs. First, to preview the book, which we have
partly done, but which we continue in Sec. 4. Secondly, to cover some bases for any
readers who might be unfamiliar with the fundamental concepts whose knowledge is
assumed in some of the chapters, we give some appropriate introductory material.
To these ends, Sec. 2 recalls the formal definition of a problem, including, in partic-
ular, an optimization problem. Hard problems, evolutionary algorithms, and the use
of the latter on the former, are then discussed. Sec. 3 deals with multiobjective opti-
mization, giving definitions for Pareto optimality and related issues. Then, Sec. 4 is
a rundown of the four parts the book is divided into, and provides summaries of each
of the chapters that make it up. Finally, Sec. 5 briefly concludes this introduction
chapter.



4 Knowles et al.

2 Problems and Solution Methods

2.1 Optimization Problems

Problems, in computer science, are both abstract and precise. They are abstract in
the sense of describing a whole class of instances; they are nevertheless precise in
the sense that both the inputs and the solution of a problem instance are members
of well-defined (mathematical) sets.

Specifically, a problem consists of: (i) a set of instances, where this set can be
defined by either listing it exhaustively (enumerating it), or, much more usually,
by specifying all the givens that define the form of an instance; and (ii) a set of
solutions, being a definition of the entities that comprise a valid solution and the
criteria for accepting it.

For example, we could define a sorting problem. A valid instance could be defined
as any finite set of positive integers; a valid solution as an ordering of the input set
that is strictly increasing.

An optimization problem is just a problem where the solution part of the problem
is defined in terms of a function (the objective function), which is to be maximized
or minimized.

Definition 1 An optimization problem is specified by a set of problem instances and
is either a minimization problem or a maximization problem.

From here onwards we will consider only minimization problems. In mathemat-
ical parlance, this is done ‘without loss of generality’, i.e., everything we say is true
of both minimization and maximization problems, as long as we replace ‘smallest’
with ‘largest’ and such like.

Definition 2 An instance of an optimization problem is a pair (X, f), where the
solution set X is the set of feasible solutions and the objective function f is a mapping
f : X → �. The problem is to find a globally optimal solution, i.e., an i∗ ∈ X such
that f(i∗) ≤ f(i) for all i ∈ X. Furthermore, f∗ = f(i∗) denotes the optimal cost,
and X∗ = {i ∈ X | f(i) = f∗} denotes the set of optimal solutions.

In this definition, ‘solution’ is being used in a broad sense to mean any well-formed
answer to the problem that maps to a cost through the function f . The objective is
not to find a solution, but to find a minimum cost one. In this case, therefore, it is
meaningful to talk about an approximate solution to the problem, i.e., one that is
close to optimal.

Once the problem is defined, we commonly express the task of optimization –
the fact that we wish to minimize our cost function over a particular set of potential
solutions, as follows:

minimize f(x), subject to x ∈ X. (1)

Here, f is the objective function, and it maps any solution x that is a member of
the set of feasible solutions X to the set of real numbers, �. We are asked to find
an x, such that f is minimized.
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2.2 Hard Optimization Problems

Some optimization problems are easy to solve, and fundamentally so. An easy prob-
lem is one where there exists a method that always works — that solves every valid
instance — finding an optimal solution in a reasonable amount of time, or number of
steps. An example of an easy problem is that of finding a shortest path between two
nodes in a network, where the nodes are separated by links with certain lengths. This
problem can be solved using Dijkstra’s famous algorithm (dynamic programming),
an ingenious method that greedily constructs the optimal solution, by considering
partial paths through the network and keeping track of the competing alternatives.

Unfortunately, a great many problems that we encounter — and almost all of
those in science and industry — are hard. That is to say, there is no known method
for solving instances of them exactly and reliably. More than that, these problems
are fundamentally hard in that they can be shown to belong to a set of problems,
all of which are essentially equivalent in their difficulty. The equivalence means that
finding quick and reliable methods for solving one of the problems would result in
quick and reliable methods for all of them.

However, no such method has yet been found, and many think that such a
method does not exist. Computer scientists call optimization problems that are
fundamentally hard in this way, NP-hard [17].

Consider the following list of problems:

- Find a competent, or good, strategy for playing the game, Othello
- Allocate resources for flood protection of the UK
- Define a taxonomy of prokaryotic genes, by their functional activities
- Design a suspension bridge
- Schedule the jobs in a factory, as orders and raw materials arrive periodically.

When defined more precisely, each of these is an example of a fundamentally
hard problem. There is no way to go directly to an optimal solution, or to organize
a search in a super-efficient fashion that gives reliable results for all instances.

Instead, for problems like these, we can only hope to find good (or approximately
optimal) solutions, by a process of searching through alternatives. Further, being
fundamentally hard, this process is likely to take significant time, even using modern
hardware, and even just to find an acceptable, rather than good, solution.

Fortunately, however, we rarely need to resort to a blind, random search through
the set X. Each of these problems, and realistic problems in general, have some
inherent structure that can be exploited as we try to devise a strategy for seeking
good solutions. This structure is usually apparent in the way that similar solutions
are related in terms of the cost function(s). For example, if two suspension bridge
designs are very similar, but differing slightly in the distance between the points of
suspension, then the performance characteristics of these two bridges are likely to
be very similar too. Such structure is partly captured by the search landscape; once
we have settled on the details of X (having decided how we will encode potential
solutions to the problem), the details of f , and the specifics of how we will generate
new solutions from others previously sampled, this landscape comes to life as a high-
dimensional mathematical structure. A fundamental aspect of all modern search
strategies is to sample points in this landscape (i.e., points in X), and attempt to
discover (or simply assume) certain properties of the landscape in an attempt to
navigate a path through it towards good solutions. One class of such strategies,
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called evolutionary computation, is recognized as being particularly successful (in
comparison to other methods, at least) at handling the landscapes found in most
real-world problems.

2.3 Evolutionary Computation

Algorithms are conceived in analytic purity in the high citadels of aca-
demic research, heuristics are midwifed by expediency in the dark corners
of the practitioner’s lair ... and are accorded lower status. Fred Glover

Origins

Problem solving by simulated evolution has been invented independently several
times. Its pre-history can be traced back at least to Butler, who pronounced that
that machines might ‘become as complicated as us’ by evolutionary processes, long
before general purpose computers had even been conceived (see Dyson [9], chap. 2).
Actual computerized simulations began in the 1950s, one of the early notable exam-
ples of problem solving being work by Baricelli [1] to ‘evolve’ fragments of code that
cooperated to play a game called Tac-Tix. Fraser [16], Bremmerman [3], Rechen-
berg [30], Schwefel [33] and Fogel [14] all experimented with models of evolution in
independent work conducted in the 50s and 60s, and were joined by many others,
notably Holland [19] in the 70s. These researchers had very different ends in mind,
and emphasised different elements of the neo-Darwinian principles of evolution in
the models that they investigated (for detailed accounts of this early, pioneering
work see [13] and [9]). For some time, the differences were cemented, and the dis-
tinct methods known as evolution strategies, genetic algorithms and evolutionary
programming developed in isolation. Today, and since the 1990s, evolutionary com-
putation is inclusive of all these areas, and innovations cross the boundaries, using
common concepts and abstractions from nature.4

The Basic Evolutionary Algorithm

Despite the high-falutin ideals of evolutionary computation to model and abstract
from the complexity and richness of nature’s wandering adaptive walks, the basic
evolutionary algorithm for optimization has much more in common with a process
of selective breeding (as used by Mendel) than it does with adaptation. The opti-
mization problem provides a static goal to which the algorithm is directed, and a
population of solutions are improved towards this by rounds of evaluation, biased
selection, reproduction, variation and replacement. One round or cycle is called a
generation, and the pseudocode in Fig. 1 captures the central process in practically
every evolutionary algorithm:

Typically, in evolutionary algorithms, there is made a distinction between the
genotype and the phenotype of a candidate solution, with the genotype being the
medium of reproduction and variation (step 3.2 in Fig. 1), but with selection being
based on the evaluation of the phenotype (steps 2 and 4). There are several alter-
native schemes for selection, but the basis for them is usually a relative ranking

4 We might say there is panmictic (all-mixing) evolution.
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1. Generate a population of candidate solutions to the problem
2. Evaluate the fitness of each candidate in the population
3. Produce some new solutions from this population:
while not done do

3.1 Select (preferring the fitter ones) some to be ‘parents’
3.2 Produce ‘children’ (new candidate solutions) from the parents

end while
4. Evaluate the fitness of each of the children.
5. Update the population, by incorporating some of the new children, and

removing some of the incumbents to make way for them
6. Until there is a reason to stop, return to step 3.

Fig. 1. Pseudocode for an evolutionary algorithm

of the solutions; the fitness of a solution then refers to the expected reproductive
opportunity afforded it by selection.

Reproduction occurs by a combination of replication and mutation events, or
recombination and mutation — both lead to variation in the children produced.
In recombination, genetic material from two or more solutions are crossed over to
yield one or more recombinant offspring. Mutation refers to a small change that is
made to the genotype of an offspring, following a recombination or replication event.
Evolutionary algorithms are always stochastic, and in most cases, selection, recom-
bination, and mutation are all based on dice-rolls. Moreover, the starting or initial
population (step 1 of Fig. 1) is most often created by a stochastic process. The off-
spring population, once created, replaces the population of the previous generation,
becoming the new current (parent) population.

Typically, the population in an evolutionary algorithm is of a fixed size from
one generation to the next. Replacement of the old by the new can again be based
on competition (i.e., selection), but it can also be entirely random. One particularly
popular replacement scheme is for the best few individuals (the elites) of the parent
population to be protected from replacement, so that they survive across generations.
This is called elitism, and it is implemented in most evolutionary algorithms because
it ensures non-retardation of the best solution(s).

Generally, there is immense variety in the way that individual evolutionary al-
gorithms will carry out each of these steps. To a large degree, the reasons for and
nature of this variety relate to the precise problem being addressed — this will
dictate, for example, the encoding used (how candidate solutions are represented
as data structures), which in turn affects the way that recombination and muta-
tion may be done. The more problem-independent aspects of EAs are selection for
breeding (step 3.1) and so-called ‘environmental selection’ (step 5). Many techniques
have been tried and tested, but the general lessons that are clear from practice are
that a ‘low pressure’ strategy tends to do well on the more interesting and difficult
problems. That is, though we may be tempted to strongly prefer to breed exclusively
from the most fit solutions in step 3.1, and be sure to be rid of the poorest solutions
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in step 5, it turns out that we get more capable and reliable algorithms when we
ensure that these steps are gently influenced by fitness.

Why EC works, and the benefits of EC

Evolutionary computation is very successful, but why? There is continued debate
about what underpins its general degree of success, but we first need to clarify what
we mean by ‘success’ in order to address this question properly. What appears to
be the case, at least for some important problems, is as follows:

Performance For some problems, EC is capable of much better solutions (and
achieved in better, or reasonable, time) than all or most other known meth-
ods.

Sufficiency For some problems, EC is capable of solutions competitive with solutions
achieved by all or most other known methods.

Applicability EC is applicable to almost any optimization problem.
Accessibility For some problems, EC has been applied, and works fine, but no com-

parisons with other methods have been done.
Opportunity For some problems, EC is the only approach that can be used with any

chance at all of success — in other words, with EC we can solve problems that
we couldn’t solve before.

The Performance statement is what most people would assume is meant by “EC
is successful”. Indeed it is true, but it must be stressed that this situation exists in
relatively few cases, usually those in which an EC practitioner has worked hard in
configuring the key components of the method – the encoding, the operators, and
perhaps other features (such as using a heuristic to provide seed solutions in the
initial population). The reason for EC’s success in such cases is tied up in the fact
that EC provides a framework within which a new approach can be engineered. At
heart, it seems plausible that the use of the central evolutionary concepts (Darwinian
selection from a population, coupled with a means of variation) is a key element in
the success here — i.e., it is a fundamentally powerful all-purpose landscape search
strategy. However, it is worth noting that much work (usually) needed to be done
to craft the landscape, turning it into a problem more amenable to this strategy.

The Sufficiency point is true for a great many problems, and it doesn’t seem to
characterize EC in a particularly exciting light, yet it speaks to EC’s ‘dependability’.
The key point here is that the ‘other’ methods tend to have a much larger variance in
their success than EC. Given, for example, a set of 100 different real-world problems
to solve, an EC approach, crafted with no undue effort in each case, will probably do
at least ‘OK’ on each of them. In contrast, an alternative method such as Simplex,
that does well in a few cases, may be inapplicable for all other cases; a graph-
based search technique that does well on a certain problem may perform terribly
in other cases, and so on. Sometimes, use of EC may be over the top, like using
an electron microscope to read the small-print in an insurance policy, and a rival
technique will do just as well in far less time. However, that rival may have abysmal
performance elsewhere in this set of problems. And so it goes on. As we noted with
regard to Performance, it seems safe to attribute the success of EC to the notion
that the Darwinian principles of evolution comprise a good all-purpose strategy for
navigating the kinds of landscapes that spring up once we start to solve a real-
world problem. The style of success inherent in Sufficiency, adds some weight to
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this. We can understand the high variance in the performance of other methods in
this context, by suggesting that such an alternative method will be ideally tuned
to aspects of the landscape structure of some (maybe very few) problems, while
being a manifestly hopeless strategy for other problems. The well-known gradient-
descent approach is an obvious example. Essentially, with gradient-descent search,
your problem will be solved quickly and optimally if the landscape’s structure is that
of a single, smooth multidimensional bowl (the optimum being the lowest point in
the centre of the bowl); but on almost any other landscape this strategy will miss
the optimum, by perhaps a great distance.

Bearing much relation to the last point, the Applicability of EC is well-known,
and this, in its own right, is a type of success that EC enjoys in abundance. Almost
by definition, if we have an optimization problem to solve, then we already have to
hand some notion of candidate structures for X and f . We need very little more than
that before we are then able to at least make a first attempt at using EC to solve
that problem. By contrast, other optimization techniques may require additional
elements that are either unforthcoming, or painful to arrange — such as necessary
features of the differentiability of f , or a sensible way to assess the quality of partial
solutions, or a requirement that candidate solutions be real-valued vectors of a fixed
length. An additional feature of EC’s general applicability, important to some, is
the great ease with which EC can exploit parallel computing resources.

Riding on its ready applicability, combined with its essential simplicity (requiring
no particular mathematical or programming prowess, for example), EC is successful
partly through its Accessibility. This in itself has led to many applications in which
EC has been used, pronounced ‘good’, ‘fine’ (or whatever), but not actually eval-
uated in comparison with any alternative approaches. That is, some practitioners,
given some problem that they needed to solve, have chosen EC (for one or more
of the reasons already discussed), used it, and left it at that. Such cases are valid
examples of ‘EC successes’, and some are in commercial use, but that is not to say
that some alternative method wouldn’t be (perhaps much) faster, and/or produce
higher-quality solutions.

So, many of the applications of EC that we see in the literature, or even in the
popular press, may only provide evidence that EC is a highly accessible algorithm,
rather than contribute to the evidence that it is the best choice for the problem at
han. Nevertheless there is ample evidence that for many important problems it is
indeed an appropriate choice; while, in some cases it is arguably the only choice.
The fact that EC imposes no constraint at all on the nature of the structures in
X, the set of candidate solutions, leads to some notable achievements for EC when
researchers exploit the Opportunity this provides. Essentially, there is no candidate
in the list of (non-EC) potential methods for optimization that is able to be applied
to the problem of finding ideal strategies for a fighter pilot to use during a dogfight.
However, EC has been used for this, with notable success [35]. Similarly, though one
can think of antenna design as a problem in which standard parameter vectors are
manipulated to achieve variants on standard designs, EC provides the opportunity
to think of optimizing antennae in a much wider sense; thus, Lohn [23] used EC to
optimize a set of algorithms for constructing antennae (such an approach, Genetic
Programming [21], is a large subfield of EC), enabling a search through a space
of possible antenna designs in which existing styles was just a tiny, imperceptible
corner. In this and many other cases EC becomes a way (perhaps the only successful,
and automated, way) to discover innovative solutions, rather than simply optimize
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around standard, prior designs. Many other such examples, as well as examples
of more conventional successes, may be found on a visit to the ‘HUMIES’ awards
website at http://www.genetic-programming.org/hc2007/cfe2007.html

We haven’t yet quite answered the question of ‘why’ EC works. But there is no
great mystery there. The well-known ‘No Free Lunch’ theorem [39] tells us that,
given an entirely random collection of landscapes (so, think in terms of all conceiv-
able landscapes) no single approach is capable of the type of success that we have
claimed here for EC. The flip-side of this is that, given some non-random collec-
tion of problems — a collection in which there is a bias towards certain elements of
general structure in the problem landscapes, say — a method may well exist which
is generally better than others. It is highly plausible to suggest that the collection
of real-world problems is highly biased in such a sense. In particular, once we have
gone through the process of formalising a problem sensibly, and defined X, f and
the operators we will use to move within X, landscapes that we construct are invari-
ably correlated, in the sense that nearby elements of X tend to have similar cost.
Thus real-world problems are highly biased towards correlated landscapes. Mean-
while, the essential Darwinian strategy used by EC, which is to follow ‘clues’ in a
landscape under the assumption of such correlation (apples not falling far from the
tree), yet not to overcommit too soon to any particular path or region in a landscape
(everyone has some chance to reproduce, rather than only the very fittest), seems
well suited to most of the landscapes in this class, while rarely being a particularly
poor approach.

The basic theory behind the EC search strategy is well known, and exemplified
in Price’s theorem [27], which basically expresses part of the above in formal terms.
In the EC field, specialisations of Price’s theorem have been derived [19], [29], [26],
which express nuances of the central idea, tied to specific kinds of solution structure
X. Given these highly general statements, we can be satisfied that the prowess of EC
is not a magical ability, but explainable. Meanwhile, similarly general statements for
several classes of EC algorithm enable us to be satisfied that an EA will generally
make progress in reasonable time [12, 32, 31, 37]. Beyond this, which we need not
(and choose not) go into here, the EC literature is replete with incremental steps
in our understanding of the many aspects involved in how to best configure an EA
for a particular problem class. There remains very much to discover about that very
point, but one key theme, which we certainly will develop further here, is one which
also further evidences EC’s traits of Applicability and Opportunity. Sometimes, with
other optimization methods, a problem with two or more objectives can only be
addressed if it is first simplified to a single-objective (and hence, a different) problem.
But, as we will see, this hurdle is not present with EC.

3 Multiobjective Optimization: Why Many Are Better
Than One

We have seen in the last section that amongst the benefits of EC is its general appli-
cability in optimization. Yet, an optimization problem defined by a single objective
function is itself a restricted class of problems. More generally, an optimization
problem may have multiple objectives.
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A multiobjective optimization problem (MOP) is typically formalized like this:

minimize {f1(x), f2(x), f3(x), . . . , fk(x)}
subject to x ∈ X

(2)

expressing the fact that we want, ideally, a single solution x that minimizes each of
k distinct cost functions (also called objective functions). These functions may well
be conflicting to various degrees, in the sense that a solution a for which f1(a) is
particularly good, may be such that f2(a) is particularly bad.

At this point, some terminology is necessary. A solution structure x ∈ X is
often called a decision vector (and X is called the decision space), since the values
in x tend to encapsulate the design decisions that we need to make. Meanwhile,
the vector (f1(x), f2(x), ..., fk(x)) is referred to as the vector of objectives, which
inhabits the so-called objective space, typically but not necessarily �k.

The quality of a candidate solution x is now no longer measured as a scalar, but
as a vector. This makes necessary a new way to assess whether or not some solution
x is better than some other solution y. Previously we might say either “x is better
than (worse than) y” or “x and y are equally fit”. Now, we can still say that they are
equally fit, to describe cases in which the objective vectors for x and y are identical,
but there are two distinct ways in which x and y’s performance on the task may
be different. First, we might have “x is better than y”, as before, to cover cases in
which x’s objective vector is better than y’s in at least one objective, and no worse
in all the others. This is called dominance and we say that x dominates y. Secondly,
we may have a case in which x is better than y on some objectives, but y is better
than x on other objectives. In this situation we say that x and y are incomparable,
or we say that they are nondominated.

Given a set of multiobjective solutions (such as the current population of solu-
tions during an EMO algorithm run), some of this set will be dominated by others
in this set. Those that are not dominated by any others in that set (which may
be a single solution, or the whole set) form what we call the Pareto set. In objec-
tive space, the set of objective vectors corresponding to the Pareto set is called the
Pareto front.

Commonly, the true, optimal solution to a real multiobjective problem is such
a set, containing more than one, and perhaps hundreds or thousands, of nondomi-
nated points. Put another way, no single solution in X dominates (or is equal to)
all other solutions in X; instead, the minimization task is satisfied by a set of dis-
tinct, nondominated solutions. Strictly speaking, this set is the Pareto set (and the
corresponding objective vectors are the Pareto front), while all other sets of nondom-
inated solutions that we may form from elements of x (such as the nondominated
points of the current population during an EMO run) are, at best, ‘approximations’
to the Pareto set. Commonly, however, papers in the field refer to “Pareto front of
the current population”, and the precise meaning is usually clear from the context.

Any single point on the Pareto front is called Pareto optimal ; it is (usually)
not optimal in the single-objective sense, since it (usually) does not minimize each
of the objectives; however, it represents a compromise, such that if any solution
exists that improves upon it on one objective, then that solution will be worse
on at least one other objective. Clearly, the Pareto set for any problem contains,
for each objective, a point that ‘truly’ minimizes that objective. That is, if we are
trying to find a bridge design that has minimal mass, minimal cost, and whose
construction would involve a minimal carbon footprint, then we can expect three
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of the solutions in the Pareto set to be, respectively, the best possible solutions
in these respects among those members of X that are feasible bridge designs. It
is almost always too much to expect, of course, that any single solution will do
particularly well on any pair of objectives, or all three at once, especially where
there is such obvious conflict. For example, cheaper designs will invariably use less
optimal materials in terms of strength/mass ratio, and will typically exploit mass-
produced, environmentally questionable sources. Nevertheless, the vector of scores
for these three points on each objective, representing the best attainable for each
objective, is itself a useful reference point in multiobjective optimization, known
as the ideal point. Some multiobjective optimization methods use an estimation of
this point in order to set target directions for the search. Similarly, the so-called
nadir point represents the vector of worst values for each objective, for points in the
Pareto front (note that, for a problem whose Pareto front shrinks to a single point,
the ideal and nadir points are the same).

These concepts are illustrated very simply in Fig. 2, where we see contrived ex-
amples of Pareto fronts for two problems. The white circles are supposed to represent
the Pareto optimal solutions, plotted in objective space, for a two-objective mini-
mization problem. The circles correspond to actual points (designs, decision vectors,
etc.) in the Pareto set. The white square locates the ideal point — a solution that we
cannot actually achieve in this problem, but showing the best attainable result for
each objective individually. Notice that this particular Pareto front ‘bulges’ towards
its ideal point — this is called a convex front. More generally, convexity is present in
a Pareto front if we can generally draw straight lines between two different solutions,
and find that there are solutions on the Pareto front that dominate the points on
the line. Alternatively, fronts in some problems may display much concavity — this
is the case with the Pareto front represented by black circles in Fig. 2 (these are also
used in the figure to illustrate the concept of a nadir point). A particularly interest-
ing aspect of problems with concavities in the Pareto front is that the solutions in
the concavity are not the optima of any simple weighted sum of the objectives. That
is, these may be points that the decision maker (see later in this section) will choose,
since they may form an ideal trade-off given various considerations. However, they
will invariably be missed in a search based on a single objective weighted sum, since,
on such a unidimensional view of fitness, these so-called unsupported solutions are
bested by other points on the front.

Now, from the viewpoint of the ‘owner’ of the optimization problem we are trying
to solve, we seem to have a difficulty. In the more common approach to optimization,
we will typically combine our different objectives into one (for example, adding up
a bridge design’s scores for cost, mass and carbon footprint) and concentrate on
minimizing their sum. This eventually yields a single result – which is the bridge
design that achieved the best combined score. Alternatively we may find several
solutions that achieve the same best score, but, when using single objective methods,
these will invariably turn out to be quite similar, and effectively the same design.
Hence, the problem has been defined, the optimization has been done, and we can
provide the solution, and move on to the next job. However, if we treat this as
a multiobjective problem, and perform a multiobjective search, our tactics for the
end game are not immediately clear. The outcome of our search is now a set of
solutions, and these will typically contain quite a variety of different designs. What
do we deliver as the single best design?
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Good

Bad

Good Bad

Fig. 2. Examples of possible Pareto fronts, convex (light) and concave (dark), show-
ing the ideal point for the convex front (white square) and the nadir point for the
concave front (dark square)

Before we answer that, certain notes will be instructive. First, whatever was
the optimal point in the single-objective (added up) formulation of the problem is
sure to be on the Pareto front of the multiobjective version of the problem. That is,
an adequately designed multiobjective search will deliver the ‘best’ single-objective
solution as one of the contents of the returned set of solutions. This is trivial to
see, by noting that the solution that truly optimizes a single objective ‘added up’
formulation must be a nondominated solution. Second, notice that the usual practice,
when combining many objectives into one, is to attempt to weight them suitably.
So, if cost is more important to us than anything else, we will give this a much
heftier multiplier than mass or carbon footprint, in the hope that this will guide
our (single-objective) search towards cheaper solutions, but which still show some
consideration for the other objectives. However, for the same reasons as before, the
optimal solution to this ‘new’ single objective problem will also be on the Pareto
front of our (unaltered) multiobjective search. Indeed, the Pareto front contains
the optima for every possible weighted-sum based single objective search for this
problem.

Thus, one way to view a multiobjective search is as a way to free the problem-
solver from the need to specify weights for each objective. It is notoriously difficulty
to decide on the correct relative weights in the first place, but you can be sure that
the returned Pareto set will contain (at least a good approximation to) the solution
that optimizes the ‘correct’ weighted-sum single-objective formulation (as well as all
others), without ever needing to specify the weights.

Suppose, then, that you are an engineer who normally casts your problem as a
single-objective weighted sum, but has been convinced, by one of the authors of this
chapter, to do a multiobjective search instead. Suppose, too, that beforehand you
specify a set of weights, W , for each objective, just as you would normally do. Now,
proceed to do a multiobjective search, but without actually making use of W . At
the end, you have a set of solutions — a set of bridge designs, or factory production
schedules, or whatever. Faced with this choice of possible solutions, and looking for
an easy, swift, automatic way to make the choice, you can simply take the one that
minimizes the single objective sum specified by W . So, why do it multiobjective at
all? Well, the difference is potentially twofold. First, via the multiobjective search
you may have found a better result, in terms of the single-objective score found by
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W , than you would have using a single-objective search method. This is a commonly
observed phenomenon. Second, you are presented with a diverse set of solutions that
provides information about the trade-offs available to you. Even though the weight
set W may represent for you a robust statement of what you require in a design
(though usually it doesn’t), some solutions on the Pareto front that don’t optimize
this particular weighted sum may nevertheless grab your attention. You may well
discover, for example, that an unexpectedly good saving in mass may be possible
for just a slight increase in cost. True, what we are suggesting here is that a decision
needs to be made, and in that sense the multiobjective search seems not to have
automatically solved your problem for you. But, on anything more than cursory
inspection, it becomes clear that the multiobjective search has provided everything
that the single-objective search would have provided for you, plus more, so this is
not an extra decision to be begrudged, it is an extra opportunity, to grasp or ignore
as you see fit.

Multiobjective search is therefore viewed as a way of providing the opportu-
nity for a decision maker to make informed decisions about the solution based on
information about the solutions that inhabit the Pareto front. In contrast, a single-
objective formulation and search, when applied to an inherently multiobjective prob-
lem, provides a solution that may look appealing in the absence of alternatives, but
is otherwise potentially far from what the decision maker may choose given a better
supply of possibilities.

When we therefore decide to face a multiobjective problem on its own terms,
and apply a search method that supplies a variety of different but equally ‘optimal’
solutions for a decision maker to consider, there are various ways we can respond to
this opportunity. As noted above, if we have a preferred weight vector at hand, we
can use that to pick the ‘best’ one. If instead we are skeptical about this, or any,
weight vector, other approaches are available to us, from the long-established field
of multicriterion decision making.

3.1 A Note on Multicriterion Decision Making

The man who, though exceedingly hungry and thirsty, [is] both equally,
being equidistant from food and drink, is therefore bound to stay where
he is.

Aristotle, On the Heavens (Book II)

Given that we have used an approach that generates an approximation to the
Pareto front, the decision maker is provided with this as both a collection of different
solutions to the problem, and a source of information about the conflicts between the
objectives, and other aspects of the space of possible solutions. If the decision maker
is an expert in the problem domain (which should normally be the case!), she may
go into a dark room, and emerge some time later having made her choice, based on
perhaps deep consideration of the information at hand as well as other, unformalized
(maybe unformalizable) aspects of the probable performance characteristics of the
various potential solutions.

But, such decision makers are expensive, and it is therefore desirable to have
more formal, automated ways to help decision makers minimize their effort. These



Introduction 15

are generally ways to use additional information about the problem or problem
domain, which may have been difficult to include in the original search that led to
the Pareto set. There are many standard such methods, and the reader may refer to
any textbook on multicriterion decision making for further information on the many
existing techniques for selecting a final preferred solution (e.g see [10, 25, 34, 38]).

To provide a flavour of the type of method in use, however, we mention first the
idea of ‘preference articulation’. When an expert is at hand who is able to provide
authoritative views on how to balance conflicting measures and goals, this can be
exploited by using preference articulation techniques [8, 2, 20], whereby a series of
concrete questions about preferences are asked to the decision maker. The answers
then determine if it is possible to build one or other type of consistent model of
the decision maker’s internal utility function; if so, then an automated procedure
can potentially be developed for solution evaluation/selection. Note that far more
complicated types of model exist for this than a simple weighted sum over the
objectives.

3.2 Visualization Methods

When tackling an optimization problem, visualization may be used to present vari-
ous features revealed about the problem, or to present information about the search
method being used. Amongst other things, the purposes of visualization include es-
timating the optimal solution value, monitoring the progress or convergence of an
optimization run, assessing the relative performance of different optimizers (includ-
ing stochastic optimizers whose results form a distribution), and surveying features
of the search landscape.

In multiobjective optimization, the above purposes of visualization remain im-
portant, but the set-valued nature of the results and the conflicts that exist between
objectives mean that additional or dual aspects come into play. These will often
include gaining an appreciation of the location and range of the Pareto set/front,
assessing conflicts and trade-offs between objectives, and selecting preferred solu-
tions.

In the following, we briefly present some of the visualization techniques used by
contributors in this book. For more information on visualization techniques that go
beyond those used in this book, the reader is referred to [25] (pp. 239–249), [28]
and [24].

A basic task in MOO visualization is to illustrate the Pareto front, or the approx-
imation of it found by an optimizer. A raw plot of the Pareto front approximation
for bi-objective (or sometimes three-objective) problems (see Fig. 3) is thus very
common. In this book, several of the chapters use this visualization technique to
present results or concepts. When used carefully, it is an intuitive and straight-
forward method which can yield much information in a small amount of space.
It is worth remembering, however, that the eye’s tendency to interpolate between
points is usually not to be trusted when considering points shown in such a plot. The
boundary of the region dominated by a set of points is represented by its attainment
surface, as shown in Fig. 3. This is the representation used in the chapter by Handl
and Knowles in their visualization of the Pareto fronts obtained by multiobjective
clustering.

Many problems of interest go beyond two or three objectives, of course. To
gain an understanding of the range of the Pareto front and the conflicts between
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Fig. 3. (Top) A standard two-objective plot of a Pareto front approximation. (Bot-
tom) The corresponding attainment surface represents the family of tightest goals
that are known to be attainable as a result of the points found

objectives (and to help select preferred solutions), a parallel axis plot (also known as
a value path) [18] is one method that has much to recommend it (see Fig. 4): it can
handle relatively many objectives; all objectives are represented simultaneously; the
value of each objective is shown by position along a standard numeric axis; and the
conflicts between pairs of adjacent objectives is represented by the angles of lines.
By adding interaction, allowing a user to change the order of presentation of the
objectives and to set acceptable values for objectives, it is possible to learn much
about the Pareto set. Parallel axes plots, or variations of them, can be seen in use
in the chapters of Rodriguez and Fleming, Brockhoff et al, and Parmee et al in this
book.
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Fig. 4. (Top) A parallel axes plot showing a whole approximation set. (Bottom) A
subset of the approximation set, arrived at by interactively setting acceptable levels
for each objective (shown by the cross-hairs)

To assess the progress of an optimizer, a plot of best function value against
iteration (or time) is the standard method used in single-objective optimization. In
multiobjective optimization, this simple and very useful visualization device cannot
be used. However, some authors in the book use an appropriate one-dimensional
measure of progress in place of best function value, and plot this instead. Cutello et al
do this in their chapter, showing how progress towards a known gold standard is
made over time.
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Similarly, it is often useful in single-objective evaluation to plot best function
value achieved (after convergence) against some metaparameter, like a parameter
of the search method used. Jin et al and Branke et al in this volume both plot
one-dimensional performance metrics against meta-parameters to show the effects
of the latter on search performance.

3.3 From EAs to EMOAs

Our primary interest in this book is the use of evolutionary multiobjective optimiza-
tion algorithms (EMOAs) — that is, evolutionary algorithms that work directly with
fitness vectors, rather than scalar fitness values. The benefits and merits of EAs, as
discussed above, carry over directly to EMOAs, while the steps we need to take to
operate with fitness vectors rather than scalars are relatively straightforward, as we
shall briefly discuss.

Before launching into an introduction to EMOAs, however, we do not dismiss
alternative optimization strategies. Though not our focus, non-EMOA multiobjec-
tive optimization predates EMOA, and continues to thrive. The field of operations
research (OR) is the primary alternative to EMO in this respect.

OR boasts a rich and growing multiobjective optimization literature. Many of
the problems considered in OR are multiobjective versions of convex problems, e.g.,
minimum spanning tree, where the single-objective version is polynomial-time solv-
able by convex optimization methods; to find Pareto optima of the multiobjective
problem, one can scalarize the objectives, and apply the same convex methods (so
finding one Pareto optimum is ‘easy’). However, for most of these problems, it can
be shown that the number of Pareto optima is exponential in the number of input
variables, and hence finding the Pareto optimal set is intractable for large problems
(see [11]). For these reasons, some of the work reported in the OR literature is based
on mathematical programming techniques supplemented with different schemes for
approximately sampling the Pareto front via scalarizing methods. Methods also
based on traditional optimization techniques, but using decision-making before or
interactively during optimization to reduce the number of Pareto optima to find,
are also popular.

In parallel, the OR field has also developed methods for nonconvex multiob-
jective optimization problems. These rely mainly on approximate optimization al-
gorithms such as simulated annealing and tabu search. To adapt them for use in
multiobjective optimization, two main approaches are possible. One is to adjust the
core functions of the algorithm, such as the acceptance function, so as to base deci-
sions on dominance relations between solutions (or other factors, such as proximity
of solutions in objective space). The other is to leave the basic algorithm in its
original form, and rely on scalarizing techniques (as used in the mathematical pro-
gramming approaches discussed above) to build up an approximation of the Pareto
optimal front.

Meanwhile, in recent years, some OR researchers have begun to experiment with
evolutionary algorithm approaches, encouraged by the rapid development of the field
of evolutionary multiobjective optimization. This brings us to our main topic.

There are comprehensive and authoritative recent texts available providing re-
views of and descriptions of the field of EMO (e.g., [5, 15, 7]). The central difference
to the single objective case is the assignment of fitness — obviously, each individual



Introduction 19

in the population now has its performance characterized by a fitness vector, rather
than a single value. Perusal of Fig. 1 suggests that the only way this need affect the
operation of an evolutionary algorithm is in the selection steps — i.e., steps 5 and
9, in which we are making decisions that require us to compare candidate solutions
in terms of relative fitness. This is indeed the case, and EMO algorithms tend to be
characterized by how these steps are performed.

The primary style of approach, often referred to (see several of the coming chap-
ters) as Pareto ranking, is to give each point in the population a single score based on
the degree to which it dominates, or is dominated by, other points in the population.
In one of the most celebrated such approaches, nondominated sorting [36], the score
assigned to a candidate solution reflects the ‘depth’ to which it dominates other
candidates in the current population. Specifically, all of the nondominated solutions
in the population are given the best rank (say, rank 1). These are then marked as
‘ranked’, and we proceed to find the nondominated front among the unranked re-
mainder. These are ranked 2, and the process continues until all candidates have
been ranked. An individual’s rank is then converted into a selective probability in
any one of numerous ways. Often, for example, practitioners will borrow the simple
Tournament Selection method common in single objective EAs, in which some (usu-
ally) small number from the population are randomly picked, and the best of these
(highest ranked, breaking ties randomly) becomes selected as a parent. As for the
other selection step (step 5 in Fig. 1), the typical approach in EMOAs is to ensure
that the Pareto front of the merged parent and child population is preserved, and
any remaining space in the population is filled by relatively highly ranked members.
It is common, however, for the Pareto front size to be larger than the population
size — when this happens (and more generally too, e.g., in considering which of
the non-front candidates to keep, when this is an issue) — selection decisions are
often based on density in objective space. So, we might prefer to maintain points
that are in relatively sparsely populated parts of the front, and don’t mind losing
solutions that are in crowded sections. These are certainly not the only approaches
to selection, and meanwhile we have skipped over many issues that are the topic
of hot research subareas in the field. However, the reader is again referred to any
of several accessible papers and texts that present the main techniques, and others
that describe ongoing research areas.

Meanwhile, the remainder of the book attempts to characterize and focus on a
certain category of subareas, in which EMO is considered more widely, as a frame-
work in which a variety of novel approaches to problem solving can be devised and
implemented.

4 New Directions in Problem Solving with MOO
Techniques

Rather than regarding problems as immutably divided into single-objective and
multiobjective, and basing such distinctions purely on the properties required of
a solution to the problem, EMO scientists, in practice, are finding reasons to blur
these distinctions, co-opting the EMO mechanisms for handling individual objectives
for related but distinct purposes that enhance the optimization process. This book
is largely about the most prominent and successful of these new problem-solving
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approaches. It is not a book of EC techniques or of isolated applications, but rather
concentrates on the concepts guiding the use of EMO in broad problem classes. In
particular, it shows how EMO

• can be used to understand and resolve ill-defined problems;
• helps in dynamic optimization environments, in problems with constraints, and

in various learning problems where quality is not always directly measurable or
free from biases;

• can eliminate a measurement bias or other confounding factor in the optimization
of an objective;

• can combine information from multiple sources;
• can change the landscape of a problem, making it easier to search;
• supports proper progress and convergence in search problems where the objective

is not explicit, but instead based on tests or competitions (e.g., in co-evolution);
• and, may be employed in the reverse-engineering of artificial and natural systems,

where it can contribute to the quest for new principles of design.

Among these and other lessons, we also learn more about the decision-making step
for choosing a ‘final’ solution that is associated with more traditional uses of mul-
tiobjective optimization, and explore how this need not be an entirely subjective
matter. In some uses of EMO presented in this book — for example, when apply-
ing it to traditional ‘single-objective’ problems, like constrained optimization — the
‘best’ solution is not a function of decision-maker preferences, and its identification
can be automated.

4.1 Chapter Summaries

Part I — Exploiting Multiple Objectives: From Problems to
Solutions

Part I of the book is a collection of chapters about problem formulation. It shows
how broad classes of problem, usually formulated with a single objective to optimize,
can be re-cast as multiobjective problems, with various beneficial and sometimes
even dramatic effects. In some cases, the effect achieved is an improvement in the
efficiency of searching the problem space. In other cases, there is a more profound
effect, so that different and better solutions can be accessed asymptotically, i.e., the
ultimate potential outcome of the search is improved. In yet other cases, the new
problem formulation yields a greater understanding of a problem, with its competing
goals and objectives, and this can help to re-evaluate the problem, possibly leading
to a more conscious refinement of it.

Using several objectives to help solve what are traditionally considered ‘single-
objective’ problems may raise the spectre of ‘relaxing’ the problem in some people’s
minds, resulting in a set of trade-offs, when only one solution is really wanted.
However, as is shown throughout the chapters in Part I, this does not turn out
to be a difficulty: the single-objective formulation (if it exists in well-defined form)
can always be invoked post hoc to select the best solution; and where this is found
inappropriate, it is because the multiobjective problem formulation has revealed a
weakness, or a hidden assumption, in the original problem definition — one that
should be externalized and dealt with appropriately. This issue of selecting the final
solution is discussed at some level in most of these chapters, and what is found is
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an interesting contrast to the usual view that multiobjective optimization always
implies a phase of (human) decision making.

Ficici (Chap. 2) considers co-evolutionary algorithms (CEAs), a thriving area
of research that has the potential to make valuable contributions to the breadth of
the whole problem-solving domain. The defining characteristic of CEAs is that the
fitness of an individual (a candidate solution) is defined, implicitly, by interactions
with other individuals. From this, it follows that CEAs can be used to solve prob-
lems for which no known (explicit) objective function exists: problems that would be
impossible to tackle using traditional optimization methods, such as finding optimal
strategies in two- or multi-player games. Ficici’s chapter shows how Pareto optimal-
ity can be used as an organizing principle in CEAs, with each individual being viewed
as a potential objective for optimization. From this idea, several long-standing dif-
ficulties associated with CEAs can be better understood and largely circumvented.
Moreover, the multiobjective framework allows the general co-evolutionary learning
problem to be handled in such a way that monotonic improvement of solutions is
ensured. This idea relates to elitism in MOEAs, and to the use of archives of non-
dominated solutions, a theme which is touched on in several other chapters in the
book, particularly de Jong and Bucci’s. The issue of decision making is raised in
the chapter, and its relationship to the concept of refinement, and the equilibrium
selection problem in game theory is described, with some tantalizing prospects for
future developments.

One of the earliest uses of multiobjective methods for solving single-objective
problems was their application in constrained optimization, an area thoroughly re-
viewed in Mezura-Montes and Coello’s work (Chap. 3). Constrained optimization
problems represent a large and important chunk of real-world problems, especially
in engineering, but they still pose a challenge to traditional evolutionary algorithm
methods. In this chapter, the common EA approach of using penalty functions is
compared, conceptually, with multiobjective formulations of the problem. Two ben-
efits of the latter are posited: that weights do not have to be selected in order to
balance the different importance or ranges of the constraints; and, that the number
of improving paths to the optimum is much greater, which increases the possibility of
approaching good solutions. Work that both supports and criticizes these assertions
is considered, and an empirical study is used to compare some of the current state-
of-the-art methods. In constrained optimization, it is shown that decision making
never enters as a matter of DM preferences, even in the multiobjective formulation.
In other words, there is an automatic way of selecting the objectively best solution
from the Pareto front in all cases.

Another considerable area of research in problem solving concerns optimization
in dynamically changing contexts, as explained in Chap. 4., Bui et al. investigate
using a secondary helper objective for this class of problems, aimed at maintaining
diversity in the evolving population, and thus a readiness for sudden or periodic
changes in the optima. The use of a secondary objective, and application of standard
MOEAs, is a simple approach to handling dynamism, and what is more it does not
introduce any issues related to decision making. Comparisons made with existing EA
mechanisms for dynamic problems, namely hypermutation and random immigration,
show the MOEA approach already gives the most consistently good performance,
while there remains much room for further development of the technique.

Cutello et al (Chap. 5) apply multiobjective EAs to the traditionally single-
objective problem of predicting a protein’s native structure, a pressing and massively
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significant problem in the biological sciences. The rather specialized nature of this
problem belies the fact that it may serve as an archetype for others in which the
objective function is not really objective or final, but a proxy used to help find
solutions. In structure prediction, it is an energy function that is minimized, and this
is essentially a guess made up of several components of energy; the ultimate arbiter
of quality, however, is not the objective function, but the distance to the observed,
real structure (which is not available at the time of optimization in real instances of
the problem, however). Taking a multiobjective approach to the problem (here by
decomposing the energy function into its components) is a process of learning how
to align the objective functions with the ultimate measure of solution quality. Here,
the flexible nature of multiobjective search is being used as a way to improve the
models on which the optimization is based.

Neumann and Wegener’s interest (Chap. 6) is in the possibility that for well-
defined problems a multiobjective formulation could be straightforwardly faster to
solve for an evolutionary algorithm than a single-objective one. Taking two classic
problems from combinatorial optimization, the single source shortest path problem
and the minimum spanning tree problem, they demonstrate that this possibility is
not a fiction. For the MST, the asymptotic expected optimization time is derived
for simple multiobjective and single-objective EAs, indicating the superiority of the
former. Experimental results on different instance types also show a performance
advantage of multiobjective algorithms for some classes of minimum spanning tree.
In all cases, the problem formulations used here directly yield unique solutions to
the original problem and no extra step of decision making is involved.

Handl and Knowles (Chap. 7) express and develop a view of problem-solving-via-
MOO that concords with some of the ideas expressed in the preceding five chapters.
They believe that in practical problem-solving applications, MOO is used in a va-
riety of subtly different ways, called modes. The modes capture the specific reason
why the problem has been formulated with multiple objectives, and what job each
of the objectives is doing. Handl and Knowles identify five different modes and pro-
vide examples of each from their own research. They also show how some modes
require no decision making for solution selection, while others reveal useful trade-
off information that would normally be hidden, but which must be accounted for
to select a final operational solution. For the latter case, however, some automatic
and semi-automatic methods of decision making have been successfully devised, no-
tably those based on the shape of the Pareto front and the consideration of control
distributions.

Part II — Multiple Objectives in Machine Learning

Part II of the book concerns the application of MOO to different problems in machine
learning. The chapters collected here, like those in part I, emphasise the reasoning
behind the multiobjective formulations presented, and demonstrate that core diffi-
culties in machine learning can be understood and alleviated by the multiobjective
approach. Common themes in machine learning, and in these chapters, are the trade-
off between accuracy and model complexity; conflicts between training, validation
and testing errors; and the combining of rules or classifiers. More unusual issues
that are also highlighted include competing errors in multi-class problems, program
bloat in genetic programming, and the value of promoting models that humans can
understand in system identification.
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Fieldsend et al (Chap. 8) consider the supervised learning paradigm, in which
the output class or value of a datum must be predicted from its inputs, following a
period of training on a random i.i.d. sample of example data. It is well known that the
supervised learning problem is about generalization performance, which is difficult to
assess during training, and hence different terms are often added to the basic training
error objective to achieve regularization or model selection. Fieldsend et al consider
multiobjective approaches to this central issue, and show some graphical methods for
identifying solutions that best balance accuracy vs model complexity. The chapter
also identifies a number of supervised learning problems where competing error terms
are inherent, and a balance must be struck between them. One such is the different
costs of misclassifications in multi-class data, most notably in disease diagnosis.
Some groundbreaking methods in this problem area are presented.

The first of two consecutive chapters on genetic programming is Bleuler et al’s
(Chap. 9). Genetic programming is a form of computer program induction, based
on evolutionary algorithm principles (see [22]). Bleuler et al focus on the problem
of ‘bloat’ in GP, whereby evolved programs have the tendency to grow larger and
larger, containing more and more useless code. This problem with GP has been
a bugbear for several years, and several methods for counteracting it have been
proposed and studied. In recent years, several multiobjective approaches have been
tried, with considerable success. In this chapter, the reason behind the success of
the Pareto-based approach to reducing bloat is investigated, following a thorough
review of this area.

Rodriguez-Vázquez and Fleming (Chap. 10) concentrate on the use of genetic
programming in system identification, specifically for non-linear dynamical systems.
They show how a multi-stage process, which involves going back and forth between
steps of structure selection, parameter estimation and validation can be compressed
into a one-step process through the use of a multiobjective formulation. Moreover,
human understanding of generated models is identified as an important issue which
can be further enhanced by including objectives that control the type and complexity
of model components used.

Rule mining is a method of classification, often for large databases, based on
two processes, (i) extracting useful rules and (ii) combining them. Ishibuchi et al
(Chap. 11) investigate both processes, exploring what is meant by a Pareto optimal
rule and a Pareto optimal rule set, and how these can be approximated. They uncover
interesting relations between accuracy and complexity, which echo the ‘switchback
effect’ shown in Fieldsend et al’s earlier chapter. They also show that Pareto optimal
rule sets are not necessarily comprised entirely of Pareto optimal rules, and this is
more the case as the ruleset size is allowed to grow.

Part III — Multiple Objectives in Design and Engineering

In design and engineering, it is quite widely understood and accepted that problems
invariably have competing objectives, and that problem solving is about finding good
balances, or spotting niches where a different type of solution might be attractive
for the first time. Part III of the book is about this area, particularly open-ended
design, where it is almost a given that problems are multiobjective, when viewed at
some level. Instead of explaining why and how multiple objectives arise here, the
chapters rather focus on how to support understanding, learning and invention in
a multiobjective space, and also how the same principles that are used for design
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might also help when analysing and seeking to understand existing natural systems,
which have inevitably evolved under several and various selection pressures.

Deb and Srinivasan (Chap. 11) suggest a systematic procedure of using two or
more conflicting objectives (usually minimization of size and maximization of per-
formance) to unveil salient knowledge about properties which when present in a
solution would make it an optimal solution corresponding to the underlying objec-
tives. The argument works as follows. Since Pareto-optimal solutions are no ordinary
solutions in the search space, but rather correspond to optimal solutions of certain
trade-offs among objectives, a series of such solutions is expected to possess some
common properties that can provide a practitioner with important knowledge about
‘what makes a solution optimal?’. This process of ‘innovization’ — the creation of
innovative knowledge through multiobjective optimization — is illustrated through
a number of engineering design problems.

Parmee’s focus (Chap. 12) is on methods to support the human designer as she
goes about her business, particularly in the area of conceptual design. Advanced
methods of visualization, interactive evolution and machine learning are described,
all aimed at taking away the drudgery of evaluation, and freeing the designer to make
more insightful and high-level choices and inferences, based on an understanding of
the multiobjective nature of the problem space.

Moshaiov is interested in analogies that can be drawn between artificial and
natural systems (Chap. 13). He explores how and why such analogies have been
useful because of what they can tell us about the design process, and about natural
(evolved) phenomena. From this historic background, he moves on to consider why,
in cybernetics, artificial life and evolutionary biology, the concept of trade-off is
known, but a multiobjective view is rarely taken. Moshaiov explains how such a
view could be made acceptable to both biologists and engineers, and considers what
the consequences of this broader outlook might be.

Part IV — Scaling Up Multiobjective Optimization

Much evidence for the potential of multiobjective optimization to deliver new and
powerful solutions to problems, from classic combinatorial optimization problems
to open-ended design problems, is provided in the first three parts of the book. To
turn this into a reality, there is, of course, a continuing need for the development of
effective multiobjective optimization methods. Of great concern to the field in recent
times has been the scalability of the algorithms and concepts we use — scalability
to increasing numbers of objectives and to larger design spaces. Part IV of the book
presents some of the latest developments in the design of scalable multiobjective
evolutionary algorithms.

Jin et al (Chap. 15) consider how the relatively low-dimensional manifold in
which Pareto optimal solutions reside can be modeled and projected back into the
much higher dimensional parameter space. Such an approach promises to achieve
great scalability in parameter space dimension, provided certain base assumptions
are valid. Jin et al show excellent performance of their techniques for problems with
up to 100 real-valued parameters.

The first of three chapters concerned with methods capable of handling problems
with many objectives is provided by Hughes (Chap. 16). He provides a background
to the issue and reviews the capabilities of several existing Pareto and non-Pareto
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multiobjective EAs at handling problems with four or more objectives. He considers
both the issues of convergence to the Pareto front, and of controlling the distribution
of points along it.

De Jong and Bucci (Chap. 17) are concerned with a particular class of problems
that results in optimization problems with many objectives, easily tens or hundreds
of them. This class is where the objectives are defined in terms of ‘tests’, an approach
that may be taken when other methods of evaluation are not possible. Although the
space of tests is usually very large, de Jong and Bucci show that tests need not all be
arranged on orthogonal axes, but they can be grouped together, depending on how
they affect the ordering of candidate solutions. This enables a significant reduction
in the number of effective objective dimensions considerably.

Brockhoff et al (Chap. 18) also seek to reduce the number of objectives pre-
sented, to a lower number, which is easier to handle effectively. The first method
for doing this has similarities with de Jong and Bucci’s method for tests: it depends
on inspection of the orderings induced by the objectives on sampled sets of solu-
tions, and whether or not these orderings can be preserved when some objectives
are removed from consideration. The second method does not consider orderings per
se, it is based on principal components analysis on the objectives to establish the
redundant ones. Both techniques are demonstrated on test instances, and unifying
concepts are discussed.

5 Concluding Remarks

There are many interesting topics vying for inclusion in a book on multiobjective
problem solving. Our choice has been guided by the desire to present the emerging
concepts and methods that are being used to tackle important and long-standing
classes of problems; and as a result some things have necessarily been left out. We
have not touched on the use of other natural analogies in multiobjective problem
solving, such as methods based on social insect behaviour, or flocking — methods
that can trump evolutionary algorithms in some domains. We have not considered
multiobjective optimization for problems where the number of solution evaluations
possible is severely restricted, an area which is gaining rapid prominence because of
the take-up of EMO in engineering and science, where evaluations are often costly.
In machine learning, we covered several topics, but left out the contribution MOO
is beginning to make in searching for ensembles of neural networks [4], though en-
sembles of rules are considered in the chapter by Ishibuchi et al.

And you, the reader, may well consider that we have overlooked something else
— and you are surely right. But what remains in the book is, we hope, the beginnings
of a synthesis that shows the contributions MOO is making to the core activity of
problem solving with computers. Rather than an esoteric technique at the fringes of
evolutionary algorithm research, or a specialist’s area in operations research, MOO
is now being used to help people solve all sorts of problems by offering genuinely
new approaches to them. It goes beyond a method that allows engineers to balance
out different criteria — though that is an important aspect of it. It can transform
a problem, reaching solutions that were not possible before, or allowing monotonic
progression where cycling previously occurred. It can take us to solutions, even to
classic problems, more quickly than before. And we have seen that the algorithms
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for achieving this are being developed anew, with fresh concepts to take us on to a
new scale of problem-solving ability.
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Summary. This chapter reviews a line of coevolutionary algorithm research that
reframes coevolution as a form of multiobjective optimization. This shift in perspec-
tive towards coevolution as a form of multiobjective optimization has led researchers
to new algorithmic and analytical formulations that have advanced the state of the
art in coevolutionary algorithm research. We review relevant literature and discuss
the basic concepts and issues involved in the application of multiobjective optimiza-
tion to coevolutionary algorithms.

1 Introduction

Recent work in coevolutionary algorithm (CEA) research considers coevolution as a
form of multiobjective optimization (MOO). This creates an unusual type of MOO
in which the objectives, and optimizers of those objectives, are comprised of the
coevolving individuals. Like any evolutionary algorithm (EA), a CEA is a stochastic
population-based search method. A fundamental difference between a CEA and an
“ordinary” (i.e., non-coevolutionary) EA concerns the process of evaluation. In an
EA, each individual is evaluated with respect to some predefined objective function;
the objective function provides a fixed standard that enables the direct comparison
of individuals. In the CEA, by contrast, an individual is evaluated by having it in-
teract with other coevolving individuals.1 This interactive aspect of evaluation in
coevolution is fundamentally game-theoretic in nature; hence, much recent research
in coevolution takes a game-theoretic perspective. Thus, the outcome of evaluating
an individual in a CEA depends upon the context of whom the individual inter-
acts with. In one context, the evaluated individual may look superior, while in
another context the same individual may appear inferior. This context sensitivity is

1 In biology, the term coevolution refers to co-adaptation between two distinct
populations; in evolutionary computation, we abuse the term somewhat by using
it also to refer to the co-adaptation of individuals within a single population.



32 Ficici

characteristic of coevolutionary systems and responsible for the complex dynamics
for which coevolution is (in)famous.

The concept of MOO is easily imported into CEA research: each individual with
which interaction can occur can be viewed as an objective for optimization. For
example, let us say that individual X interacts with individuals A, B, and C. In
this case, X’s performance is measured with respect to three distinct optimization
objectives. One optimization objective indicates how well an individual (e.g., X)
performs when it interacts with A; another objective concerns performance with
respect to B, and the third with respect to C. As with most MOO problems, the
search space may be such that the optimal behaviour with respect to one objective
(e.g., A) is suboptimal with respect to another objective (e.g., B); thus, a trade-off
surface may exist. This trade-off surface underlies the context-sensitive nature of
evaluation that has long been recognized in CEAs.

By viewing evaluation in coevolution as a form of MOO, we are able to invoke
the concept of Pareto optimality as an organizing principle. This chapter will show
how Pareto optimality can be used to articulate our goals in using a CEA, and thus
serve as a solution concept for coevolution. In particular, we will consider how the
MOO view of coevolution opens a new vista on the context sensitivity of evaluation
in CEAs, pointing to improved understanding and more effective search algorithms.

This chapter is organized as follows. Section 2 provides an introduction to CEA
research; it reviews some early and notable work in coevolution, defines the learner-
teacher paradigm which CEAs often use, discusses various problems that can arise
when using coevolution, and reviews the literature on the application of MOO to
coevolution. Section 3 introduces the idea of solution concepts, and discusses the
importance of a solution concept to evolutionary search and CEAs in particular.
Section 4 introduces the fundamental concepts involved in using MOO in a coevo-
lutionary algorithm, and discusses how an MOO perspective can help address the
problems that can arise when using a CEA. Section 5 introduces the concept of
monotonic progress in coevolution, and outlines how the Pareto optimality solu-
tion concept can have the property of monotonicity. Section 6 reviews issues that
can arise in practice when you treat coevolution as a multiobjective optimization
process. Finally, Section 7 offers some concluding remarks.

2 Coevolutionary Algorithms

Before we explore the MOO view of coevolution, we need to consider prior coevolu-
tion research to understand what the MOO perspective contributes. In this section,
we present a selective literature review to provide a helpful background; more thor-
ough reviews of coevolution research can be found in Ficici [18] and Wiegand [59].
This section concludes with a review of how MOO has been used in coevolution.

2.1 Early Work

Coevolution is a form of machine learning through self-play, where the computer
plays a game against itself and incrementally adjusts its game strategy in response
to how the play unfolds. In the late 1950’s, Samuel’s ground-breaking work [51] used
self-play to learn the game of checkers; though this work did not use an evolutionary
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strategy-adjustment method, the first coevolutionary algorithms would soon follow.
Published in 1963, Barricelli’s research [3] used coevolutionary dynamics to learn
strategies for the TacTix game, which is similar to Nim; follow-up work appears in
1967 [48]. Some 20 years later, Axelrod [2] used coevolution to evolve strategies for
the Iterated Prisoner’s Dilemma.2

Two iconic applications of coevolution are those of Hillis [29] and Sims [54].
Hillis [29] used coevolution as an optimization procedure to evolve minimal sorting
networks. Because the number of possible input sequences to a sorting network
grows rapidly with the length of the sequence, exhaustive testing of the network
quickly becomes impractical. Some form of sampling is required. Hillis showed that
coevolutionary dynamics can provide an effective approach to perform this sampling.
Working with input sequences of length 16, he obtained a sorting network that used
61 comparators—just one more than the smallest network known for this input
size. In contrast, when Hillis used random sampling of input sequences, instead of
coevolving them, the smallest network found that could correctly sort all inputs had
65 comparators. Hillis’ study presents evidence that coevolving the input sequences
can provide a more effective gradient for evolving minimal sorting networks.

In a more open-ended setting, Sims [54] used coevolution to evolve virtual crea-
tures that played a competitive two-player game in an environment with simulated
physics. The objective for each creature was to gain control over a cube placed in
the centre of an arena. By allowing both creature morphology and control to evolve,
Sims was able to obtain a variety of interesting behaviours for playing this game;
for example, some agents tried to scoop the cube to obtain control, whereas others
used long extremities to push opponents away. Over evolutionary time, strategies
and counter-strategies were seen to arise. Such evolutionary dynamics are often
likened to an “arms race,” where competitors must discover increasingly sophisti-
cated strategies to survive. The potential of coevolution to engender an arms race
in complexity is the primary appeal of coevolutionary algorithms.

2.2 The Learner-Teacher Paradigm

Hillis’ [29] work on sorting networks used two populations; one population contained
candidate sorting networks while the other contained sets of input sequences that
required sorting. These populations were placed in a competitive relationship that
manifested an asymmetric zero-sum game. The sorting networks were rewarded for
properly sorting input sequences and input sequences were rewarded for thwarting
sorting networks. This arrangement has become a standard paradigm known as
“learner-teacher,” “host-parasite,” or “test-based”3 coevolution.

One feature of the learner-teacher paradigm is that it often has certain asymme-
tries. First, the game being played is usually asymmetric, meaning that the strategy
spaces for the learners and teachers are different. Second, we are often interested pri-
marily in evolving competent learners; we care about evolving challenging teachers
only insofar as they help the learning process of the learners. A third common fea-
ture of this paradigm is that the difficulties of the two search spaces are asymmetric;

2 These early papers on coevolution are reproduced in [25].
3 “Test-based” is the term used by de Jong and Bucci in their chapter in this

volume.
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specifically, it is usually much more difficult to find competent learners (e.g., effec-
tive sorting networks) than difficult teachers (e.g., input sequences that are hard to
sort). This fact has heavily influenced much research in coevolutionary algorithms,
as we will discuss below. In situations where both populations are of equal interest,
or where we have just one population, individuals can simultaneously be learners as
well as teachers for others.

The work of Pagie and Hogeweg [46] uses the learner-teacher paradigm in a
symbolic regression task. One population contains genetic program (GP) functions
while the other population contains data points that the GP functions must fit. A
space of 676 possible data points is obtained by discretizing the domain of a two-
dimensional target function. A GP function is rewarded for minimizing the difference
between itself and the target function over the data points on which the GP function
is tested; data points are rewarded for exposing large differences between a GP
function and the target function.

The space of possible data points is small enough that results obtained by coe-
volving data points can be compared to results obtained from GP evolution using
complete evaluation (i.e., where all 676 data points are used to evaluate each genetic
program). Pagie and Hogeweg [46] find that coevolved data points produce genetic
programs that better approximate the target function than genetic programs evolved
with full evaluation. This result is surprising because evaluation on the full set of
test points should provide a more accurate assessment of fitness. In contrast, eval-
uation using coevolved data points is highly focused on a relatively small portion
of the target function domain; as a result, the fitness measurement obtained for a
genetic program depends strongly upon the subset of data points used to take the
measurement. Both Hillis [29] and Pagie and Hogeweg [46] argue that coevolving
tests provides better performance because this context sensitivity of evaluation in
coevolution allows the learner population to escape local optima—local optima that
would otherwise stall evolutionary learning in an ordinary EA using full evaluation.

Much of the interest in using MOO for coevolution revolves around the goals of
better understanding how to conduct evaluation and evolve teachers, and thereby
make learner evolution more effective. For example, a conventional CEA performs
evaluation by aggregating the outcomes of a learner’s interactions with teachers into
a scalar, typically by averaging. Though their algorithms have some less conventional
aspects, both Hillis [29] and Pagie and Hogeweg [46] average over a learner’s out-
comes. Such aggregation loses information. In contrast, the MOO approach keeps
the outcomes with each teacher separate, producing a vector rather than a scalar.
Thus, multiobjective evaluation uses information differently, and promises to use it
more advantageously.

2.3 Problems with Coevolution

Despite their many successful applications, coevolutionary algorithms are well known
to exhibit a variety of undesirable behaviours that hinder problem solving [18, 59].
Among the various problems that can arise are disengagement and cyclic dynamics;
both of these problems can further lead to evolutionary forgetting, where previously
learned traits are lost and need to be re-learned. Yet another problem that can arise
in coevolution is overspecialization.
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Disengagement

Disengagement refers to a loss of fitness gradient in multi-population coevolution.
Returning to our learner-teacher CEA paradigm, we note above that evolving a com-
petent learner is typically much more difficult than evolving a challenging teacher.
A naive coevolutionary algorithm will place learners and teachers in a strictly com-
petitive framework, where learners obtain fitness for “solving” teachers and teachers
obtain fitness for being difficult to solve. In such a framework, the more easily evolved
population (typically the teachers) will quickly outpace the capabilities of the other
population. This can eventually produce a state where none of the learners can
solve any of the teachers. In such a situation, all of the learners will appear equally
poor, and all of the teachers will appear equally challenging. Nevertheless, in reality,
the learners will likely not be of equal competence—they will merely appear that
way because teachers that can expose distinctions between the learners do not exist.
Consequently, in each population, all individuals obtain the same fitness and are left
subject to genetic drift; selection ceases to exert its influence. As Watson’s numbers
games show [58], we do not need asymmetric games for disengagement to occur;
his experiments show that a loss of fitness gradient can also occur in symmetric
games when members of one population can only interact with members of another
population.

The problem of disengagement has been considered by many researchers (e.g.,
[50, 36, 47, 44, 10]). Though several methods have been used to ameliorate disen-
gagement, they generally all provide a way to modulate the reproductive success of
individuals that are deemed “too good” relative to others.

Cyclic Dynamics

Under the competitive dynamics of the conventional coevolutionary algorithm, cyclic
dynamics can occur in both asymmetric (e.g., [36]) and symmetric games; in sym-
metric games, we can obtain cyclic dynamics in single-population (e.g., with Rock-
Paper-Scissors (RPS) [30]) and multi-population (e.g., with the Penny-Matching
game [26]) systems. In conventional coevolutionary algorithms, we have frequency-
dependent selection; that is, the fitness of an individual depends not only upon what
other strategies it interacts with, but also upon the frequency with which it interacts
with these strategies. For example, in the RPS game, the fitness of an individual
playing Rock depends upon how many Scissors and Paper players it interacts with;
fitness improves as the proportion of Scissors increases, and fitness worsens as the
proportion of Paper increases. Thus, if Paper is the majority of the population, then
the proportion of Rock will increase, to the detriment of Scissors (which Rock beats)
and the benefit of Paper (which beats Rock). Eventually, the fitness of Paper will
surpass that of Rock, and so on in a cycle. The problem cyclic dynamics poses for
coevolutionary search is that it can make the discovery of new areas of the search
space more difficult; also, given the fact that real coevolutionary algorithms have
finite populations, cyclic dynamics can drive a strategy to extinction during the
portion of the cycle where the strategy is maladapted to the population; this leads
to a loss of genetic diversity. Most importantly, whereas a search algorithm should
converge onto a solution (assuming one exists), cycling is a divergent dynamic. Thus,
cycling is generally a symptom of an improperly implemented solution concept; we
discuss solution concepts further in Section 3.
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Like the problem of disengagement, cycling has been examined by a number of
researchers. Methods to avoid cycling generally work by diffusing selective pressure,
for example by fitness sharing [49], using multiple genetically isolated populations
[8, 31], or augmenting the environment of interaction to include non-agent elements
[43].

Overspecialization

Overspecialization occurs when the evolutionary trajectory of learners concentrates
on a sub-region of the search space where learner phenotypes exhibit only a narrow
range of skills. For instance, if chess were our domain, overspecialization could result
in strategies that, for example, only had good opening games but were otherwise
poor. Often, a domain demands that learners acquire a breadth of competencies. The
proper selection of teachers is required to shepherd the learner population towards
good, well-rounded solutions.

2.4 Pareto Coevolution

The ideas of MOO and coevolution appear together at least as early as the work of
Juillé and Pollack [34, 33, 32]. This work coevolves GP classifiers for the intertwined
spirals problem, which originates from the neural networks community (e.g., [38]).
Two intertwined spirals are composed of 97 data points each, and the classification
task is to identify to which spiral each datum belongs. Juillé and Pollack [34, 33,
32] obtain effective GP classifiers that have an interesting modular structure that
corresponds with a spatial division of the input space. They evaluate classifiers in a
series of pairwise comparisons. Given a pair of classifiers La and Lb, a point is earned
by La for each datum Tj where La correctly classifies Tj and Lb incorrectly classifies
Tj , and vice versa for classifier Lb. This scoring method creates a form of niching
that enhances genetic diversity during search. The 194 total data points of the spirals
are described by Juillé and Pollack [32] as being independent optimization problems;
hence a form of multiobjective optimization is being performed. Nevertheless, this
work is distinguished from later work on Pareto coevolution by the fact that the
objectives themselves are not subject to evolution.

Watson and Pollack [57] and Ficici and Pollack [21] introduce the idea that
the coevolving entities themselves can be considered objectives for optimization. In
Watson and Pollack [57], the criterion of Pareto dominance is used to implement
selection in the SEAM algorithm; this allows the shuffled HIFF problem to be solved
[56]. Pareto dominance is next used in algorithms by Noble and Watson [42] and
Ficici and Pollack [23]. In Noble and Watson [42], Pareto coevolution is used to
coevolve poker strategies; their method delivers encouraging results compared to
those obtained with an ordinary EA. In Ficici and Pollack [23], Pareto coevolution
is used to discover cellular automaton (CA) rules for the density classification task;
a high-quality rule (84% correct classification) is obtained.

The density classification problem falls neatly into the learner-teacher paradigm.
Two populations are involved: CA rules (learners) and automaton initial conditions
(teachers). As demonstrated by Juillé and Pollack [35, 36], initial conditions that are
difficult to classify are much easier to evolve than rules that are effective classifiers.
This means that special effort is required to guide the evolution of the teacher
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population in order to provide a useful learning gradient for the learner population;
without such guidance, problematic dynamics such as those described in Section 2.3
may arise and impede learning.

The need to create a useful gradient for learners affords Ficici and Pollack [23] the
opportunity to explore not only the application of Pareto optimality to coevolution,
but also the idea of distinctions. The concept of distinctions is applied to the teacher
population; a teacher that causes a pair of learners to obtain different outcomes is
said to distinguish the learners. For example, by causing two CA rules to perform
differently, an automaton initial condition reveals a distinction in their performance.
We may understand distinctions to be the dual of the Pareto concept: dominance and
nondominance is determined by establishing differences in behaviour. The teachers’
abilities to distinguish learners thus affects the learning gradient for the learner
population.

As we will discuss below, an observation made early in Pareto coevolution re-
search was that the number of possible objectives can quickly grow as search pro-
gresses. The work of Bucci and Pollack [6, 7] and de Jong and Pollack [16] establishes
a theory of the minimal number of objectives required for Pareto coevolution to suc-
ceed. More recently, work by Bucci et al. [5] and de Jong and Bucci [15] develops
a formalism to project this potentially high-dimensional space onto an alternative
coordinate system that decomposes the search space into a minimal number of “be-
havioural” dimensions. One can then order individual phenotypes according to their
competencies in these dimensions. This new ordering may allow for more effective
evaluation and search.The chapter by de Jong and Bucci in this volume presents
new work on using MOO to discover behavioural dimensions.

Finally, the concept of distinctions appears in the recent coevolutionary algo-
rithm by Bongard and Lipson [4]; they present an online learning method for system
identification that attempts to minimize the number of (sometimes costly) probes of
the system being modeled. This work coevolves candidate system models (learners)
with model tests (teachers). Tests are sought that cause the population of evolving
models to differ in their predictions of what the real system would do given the
input specified by the test; such tests distinguish the models. Once such distinc-
tions are discovered, the system being modeled is probed on these tests to resolve
model disagreements. This learning approach thus concentrates on probes of the real
system that will reveal the learning gradient. Good results for a number of system
identification problems are reported.

3 Solution Concepts

As we have seen above, many optimization problems can be recast as games. For ex-
ample, in the case of sorting networks [29], an optimization process was transformed
into a constant-sum two-player game between a sorting network and an input se-
quence. As with any EA used for optimization, when we use a CEA to “solve” a
game, we are performing search. The process of search presupposes some notion of
what it is we are searching for. The purpose of a solution concept is to articulate
our goal for search.
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3.1 Definition

A solution concept is a formalism that specifies which elements of a search space are
solutions to a search problem. We borrow the term ‘solution concept’ from game
theory [27]. Solving a game is a form of search; here, we are interested in applying
the idea of a solution concept to search problems, in general.

We begin with a search domain D. When we search a domain, we require a
solution concept O to perform a binary partition of D; one partition D∈O contains
only solutions, while the other partition D/∈O contains only non-solutions. At most,
one of these partitions may be empty. Thus, depending upon the contents of D and
the definition of O, a search problem may have one, many, or no solutions.

Typically, the elements in D∈O are distinguished in some systematic way from
the elements in D/∈O. Solution concepts that produce such systematic partitions
are intensional in nature. Intensional solution concepts specify what (measurable)
properties an element in the domain must have in order to constitute a solution to our
search problem. The solution concept does not indicate what the actual solution(s)
will be, if any—it only specifies what properties solutions will have if they exist. In
contrast, an extensional solution concept lacks any underlying semantics, and can
be used to obtain an arbitrary partition. Extensional solution concepts are rare in
practice.

By applying a solution concept to a search domain, we obtain a specific search
problem. We can imagine an infinity of search problems. Of course, if D is finite
(which it need not be), the number of ways to partition it is finite, and exponential
in its size (i.e., the possible solution sets are members of the power set 2D).

The solution concept can also operate on any subspace B ⊂ D such that B is
partitioned. Note that solutions to B are not necessarily solutions to D, and vice
versa. One way to think of a subspace B is that it represents the portion of D that
we have discovered so far. We discuss this idea more below.

3.2 Example Solution Concepts

Simple Examples

To illustrate how solution concepts may work, let us begin with a simple search space;
let D = {3, 4, 9, 12, 15, 21, 25, 27}. One solution concept may specify that solutions
are prime numbers; in this case, we obtain the partition D∈O = {3} and D/∈O =
{4, 9, 12, 15, 21, 25, 27}. Another solution concept may specify that solutions are even
numbers; in this case, we have D∈O = {4, 12} and D/∈O = {3, 9, 15, 21, 25, 27}. If
the solution concept specifies that the most positive number is a solution, then
D∈O = {27}; if we were aware only of the subspace B ⊂ D, where B = {3, 9, 12}, then
B∈O = {12}. Thus, a solution concept can be applied to local states of knowledge;
we go into more detail on this topic in Section 5.

Single-Objective Search

Moving to more realistic scenarios, say we have a search space that spans some con-
tinuous interval D = [−100, 100]. If we are interested in maximizing some continuous
function f(x), then we have a single-objective search problem with a straightforward
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solution concept: any value of x ∈ D that maximizes f(x) is a solution. If there is
more than one solution, then we are indifferent as to which one we choose; if we
have a preference of one solution over another, then we need to refine our solution
concept, as we discuss in Section 3.3.

Multiobjective Search

Next, we may add a second continuous function h(x), and construct a two-objective
search problem where we seek to maximize f(x) and simultaneously minimize h(x).
It could easily be that the value of x that maximizes f(x) is not the value that
minimizes h(x), and vice versa; in this case, we have a trade-off curve that we need
to explore. A sensible solution concept for this problem would be Pareto optimality;
the solution would be the set of nondominated values of x. A value x is nondominated
for our problem if there does not exist an alternative value x′ such that f(x′) > f(x)
and h(x′) ≤ h(x), or f(x′) ≥ f(x) and h(x′) < h(x).

When Pareto optimality is used as a solution concept, it is very often the case
that we seek to locate more than just one, or a few, of the nondominated elements
of the search space; indeed, we typically seek to identify as much of the trade-off
surface as possible. That is, the desired output from the search process is the set
of all nondominated elements of the search space, which is known as the Pareto
front . Once this trade-off surface is obtained, we usually embark upon a separate
decision-making process to select one element from the trade-off surface (we discuss
this process more in Section 6.2). Thus, depending upon our needs, when we use
Pareto optimality as a solution concept, we may define a solution to be either an
element of the trade-off surface (less common) or the entire trade-off surface itself
(more common).

Games

Arguably, the most sophisticated solution concepts are those applied to games. The
mathematics of strategic reasoning is known as game theory [27]. A game G has
N players; each player i has a set Si of game strategies available to her. Each of
these players chooses a strategy; for player i, this strategy choice may be either a
pure strategy si ∈ Si, or a mixed strategy, which is a stochastic strategy defined
by a probability distribution over the player’s pure strategies Si. Note that a pure
strategy is a degenerate mixed strategy where all the probability mass is on one
pure strategy. Let C = 〈m0, m1, . . . , mN−1〉 be the strategy profile that represents
the strategic choices of the N players, where mi is the mixed strategy choice of
player i. Given a strategy profile C, the game G also defines the payoff each player
of the game receives. A solution concept, then, is a formal specification about the
properties a profile C should have to constitute a solution to the game G.

The most famous solution concept in game theory is the Nash equilibrium [41].
Finding a Nash equilibrium is essentially a combinatorial search problem [11]. A
profile C∗ = 〈m∗

0, m
∗
1, . . . , m

∗
N−1〉 is in Nash equilibrium when no player has incentive

to deviate unilaterally from her mixed-strategy choice. That is, for each player i, no
other mixed strategy mi 
= m∗

i that player i could use will give player i a higher
payoff than m∗

i , given the strategic choices of the N − 1 other players.
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A game may have more than one Nash equilibrium; indeed, the number of Nash
equilibria may be exponential in the number of strategies [40]. For this reason, efforts
to discover all of the Nash equilibria of a game are generally impractical; this is in
contrast to the size of the Pareto front, which cannot be larger than the search space
itself, and is often much smaller. Thus, the solution concept affects how the number
of solutions relates to the size of the search space; this, in turn, affects our decision
as to whether to locate one, some, or all solutions.

3.3 Refinements

A solution concept may yield more than one solution when applied to a domain,
and these different solutions may have different properties; this is often the case,
for example, in games that have multiple Nash equilibria. Given multiple solutions,
we may prefer the properties of one solution over another. If we do have such a
preference, then how do we formalize our preference to rationalize our choice? In
game theory, this question is the equilibrium selection problem [52], and often entails
refining our solution concept. A solution concept Oβ is a (strict) refinement of
another solution concept Oα if and only if

∀D : D∈Oβ ⊆ D∈Oα and ∃D : D∈Oβ ⊂ D∈Oα .

That is, for Oβ to strictly refine Oα, two conditions must be met. First, for
every possible domain, all solutions to Oβ must also be solutions to Oα. Second,
there must exist at least one domain for which Oβ specifies fewer solutions than Oα.

3.4 Implementation

Our definition of a search problem stipulates that the solution concept be intrinsic
to the problem statement. Nevertheless, the solution concept itself must be imple-
mented by our search algorithm. Of course, we have many search algorithms from
which to choose. These algorithms may differ in terms of their computational de-
mands and efficiency, but they must all implement the solution concept of our search
problem if they are to be correct. When an algorithm implements a different solution
concept, then it solves a different search problem. Solution concepts are therefore
important because they link search problems and search algorithms. This basic ob-
servation is the foundation for the coevolutionary algorithm research described in
[18].

Evolutionary game theory (EGT) [39] provides a convenient framework for illus-
trating how different algorithmic mechanisms may or may not implement a solution
concept (e.g., Nash equilibrium) when used in a CEA. The EGT framework is a
selection-only system (i.e., there is no variation) and has an infinitely large popula-
tion. The canonical selection dynamics in EGT correspond to “fitness proportional”
selection in evolutionary algorithms. In the EGT framework, all dynamical point
attractors of proportional selection are Nash equilibria [30]. Nevertheless, evolution-
ary computation uses a wide variety of selection methods aside from proportional
selection. Many of these alternative selection methods, however, have very different
dynamical properties. In a certain class of games where proportional selection would
have converged to Nash equilibrium, these alternative selection methods instead con-
verge to non-Nash fixed points, or yield cyclic or even chaotic dynamics [20]. These
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are examples of how an algorithm can fail to implement a certain solution concept.
Though all selection methods realize Darwinian selection in a broad sense, they are
not interchangeable with respect to the solution concept; the implementation details
of selection matter, as they affect the solution concept [20].

The EGT framework can also be used to study whether or not a certain solution
concept is implemented by diversity maintenance methods [22, 18]. For example,
both competitive fitness sharing [50] and similarity-based fitness sharing [28] fail to
implement the Nash equilibrium solution concept in a class of variable-sum games.
This result highlights the fact that the evolving population is essentially charged
with two, sometimes conflicting duties. One duty of the population is to conduct
search; the reason we use diversity maintenance methods is to improve the efficacy
of the search. The other duty of the population is to contain the solution of the
search process.

The difficulty arises when the solution to our search problem can only be repre-
sented by the state of the population as a whole, rather than by just an individual
within the population. For example, the Hawk-Dove game [39] is a simple variable-
sum game of two pure strategies (Hawk and Dove). Given a single population of
pure-strategists, the Nash equilibrium for this game is represented by a polymorphic
population, where the population contains both Hawks and Doves in a specific pro-
portion; this proportion corresponds to the probabilities with which a Nash equilib-
rium mixed-strategy would play Hawk and Dove. Thus, while the solution demands
one population state, a diversity maintenance method will likely demand some other
population state (to maximize genetic diversity), bringing the two tasks charged to
the population into conflict. This realization has led to the emergence of new algo-
rithms where archives take over the duty of representing the solution obtained from
search, leaving the population free to conduct the search itself (e.g., [24, 12]).

4 Pareto Optimality in Coevolution

4.1 Learners and Teachers

For purposes of exposition, let us assume that our search problem fits the learner-
teacher paradigm that has so often been used in coevolutionary algorithms. We have
already discussed two examples of this paradigm in Section 2.2. Another example
is that of Juillé and Pollack [36], who coevolve a population of cellular automaton
(CA) rules (learners) with a population of lattice initial conditions (teachers).

The solution concepts that interest us here are Pareto optimality and its “dual”
concept, which concerns distinctions. The Pareto-distinctions duality fits neatly into
the learner-teacher paradigm. As we note above, in this paradigm, the task of evolv-
ing a competent learner is typically much more difficult than evolving a challenging
teacher. Thus, the problem is to evolve teachers that are of appropriate difficulty.
Put another way, the goal of the teacher population is to create a gradient that the
learner population can successfully follow such that learners improve.
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4.2 Pareto Optimality

Domination, Mutual Nondomination, and Equivalence

Let L be a set of learners and T a set of teachers. Let G be a matrix of payoffs
where Gi,j is the payoff learner Li ∈ L obtains from interacting with teacher Tj ∈ T .
Following the usual definition of Pareto domination, learner La dominates learner

Lb with respect to T , which we denote La

T
� Lb, if and only if

La

T
� Lb ≡ ∀Tj : Ga,j ≥ Gb,j and ∃Tj : Ga,j > Gb,j . (1)

That is, learner La dominates learner Lb with respect to T when interaction
with each teacher in T causes La to perform at least as well as Lb and interacting
with some teacher in T causes La to perform strictly better than Lb.

Two learners La and Lb are mutually nondominating with respect to T , denoted

La
T∼ Lb, if and only if

La
T∼ Lb ≡ ∃Tj , Tk : Ga,j > Gb,j and Ga,k < Gb,k. (2)

That is, there exists some teacher with respect to which learner La outperforms
Lb, and there exists some other teacher with respect to which learner Lb outperforms
La.

Two learners La and Lb are equivalent with respect to T , denoted La
T
= Lb, if

and only if

La
T
= Lb ≡ ∀Tj ∈ T : Ga,j = Gb,j . (3)

That is, there exists no teacher in the set T that distinguishes the performance
of La and Lb.

To reiterate, the relation that holds between a pair of learners is conditioned on

the set of teachers; for example, it may be that La

T
� Lb but La

T ′
∼ Lb, for T 
= T ′.

Dominated Set and Pareto Front

The set of dominated learners in L with respect to T , denoted D0(L, T ), is

D0(L, T ) ≡ {L ∈ L : ∃Lx ∈ L, Lx � L}. (4)

The Pareto optimal learners in L with respect to T , denoted F 0(L, T ), is there-
fore

F 0(L, T ) ≡ L−D0(L, T ). (5)

That is, the Pareto optimal learners are those learners in L that are not domi-
nated. The set F 0(L, T ) is also known as the Pareto front. For any two learners in
F 0(L, T ), it must be the case that they mutually nondominate each other, or that
they obtain identical payoffs across the set of teachers:

∀Lx, Ly ∈ F 0(L, T ) : Lx
T∼ Ly ∨ Lx

T
= Ly. (6)

Each learner of a pair of mutually nondominating learners can do something

better than the other. For example, if La
T∼ Lb, then La possesses some competency
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that Lb lacks and vice versa. With respect to the set of teachers T , a dominated
learner is less capable, or general, than the learner (or learners) that dominates it.

When La

T
� Lb, for example, it is the case that the competencies of La are at least

as good as those of Lb in every tested objective and strictly better in at least one;
thus, we can think of La as having more broadly applicable abilities than Lb with
respect to T .

Pareto Layers

If we have a finite set of learners, once we identify F 0(L, T ), we can recursively
examine D0(L, T ) to locate learners that would be nondominated if L did not contain
the learners in F 0(L, T ). Thus, we define

F N (L, T ) = F 0(DN−1(L, T ), T ), (7)

DN (L, T ) = D0(DN−1(L, T ), T ). (8)

We can continue the recursion until every learner is identified as belonging to
a particular Pareto layer. As with the Pareto front, learners within each layer N
are either mutually nondominating or equivalent with respect to T . Within a single
layer, each learner of a pair of mutually nondominating learners can do something
better than the other. Every learner in layer F N must be dominated by some learner
in layer F N−1, and so is less general than its dominating learner(s) with respect to
T .

4.3 Distinctions

A set of teachers T specifies objectives for learner optimization. For each pair of

learners Lx and Ly where Lx

T
� Ly or Lx

T∼ Ly, there exist specific teachers that
distinguish the performance or behaviour of Lx from Ly. To identify the distinctions
made by the teachers, we construct a new matrix H, where Hm,n = 1 if teacher Tm

distinguishes the learners in the ordered pair n = 〈Li, Lj〉 in favour of Li; otherwise,
Hm,n = 0. That is, Hm,n = 1 ⇔ Gi,m > Gj,m. This also means that if Hm,n = 1 for
n = 〈Li, Lj〉, then Hm,n′ = 0 for n′ = 〈Lj , Li〉.

Equation (9) shows a simple example matrix G. In this example, we have three

learners and three teachers. We see that learner Lb

T
� Lc; specifically, all three

teachers distinguish Lb from Lc in favour of Lb. In contrast, Lb
T∼ La and Lc

T∼ La.
In the latter case, teacher Tα does not distinguish Lc from La, but the other two
teachers do, one in favour of each learner.

G =

Tα Tβ Tγ

La 1 1 3
Lb 4 3 2
Lc 1 2 1

(9)

From matrix G we construct matrix H, as shown in (10). We can now easily see
the gaps in learner performance that each teacher exposes. In particular, we see that
Tβ makes all the distinctions that Tα makes, plus one other. Tγ makes distinctions
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that neither Tα nor Tβ make, and vice versa. If we view the ordered learner pairs
as optimization objectives for teachers, then we see that Tβ � Tα, Tγ ∼ Tα, and
Tγ ∼ Tβ . Thus, we can use the idea of Pareto optimality to select teachers in a way
that complements the use of Pareto optimality to select learners.

H =

〈La, Lb〉 〈La, Lc〉 〈Lb, La〉 〈Lb, Lc〉 〈Lc, La〉 〈Lc, Lb〉
Tα 0 0 1 1 0 0
Tβ 0 0 1 1 1 0
Tγ 1 1 0 1 0 0

(10)

4.4 Symmetric Games

In the learner-teacher CEA paradigm, learners and teachers are often different types
of individuals. This is the case in domains like the sorting networks task [29] or the
CA rules task [36]; these are two-player games where the type of one player, say
the sorting network, is intrinsically different from that of the other player, say a
sequence of unsorted numbers. The games being played in such domains are termed
asymmetric, because each game role requires a different set of strategies. In contrast,
a symmetric game is one where each role in the game shares the same strategy set
and payoff function. Examples of such games are Rock-Paper-Scissors, the Iterated
Prisoner’s Dilemma [1, 2], and numbers games [58].

Though we introduce Pareto optimality and distinctions in the context of asym-
metric games, nothing prevents us from applying these concepts in symmetric games.
In a symmetric game, the game players share the same set of strategies, and we no
longer have the situation where the learning task of one game player is intrinsically
more difficult than that of another’s. Thus, we no longer need to differentiate players
as learners or teachers. Instead, players may simultaneously be learners and teach-
ers; fitness may now be conferred onto an individual for being good at “doing” or
for being good at “teaching”, or for both.

4.5 Addressing Problems in Coevolution

In Section 2.3, we discuss various problems that can arise during the use of a co-
evolutionary algorithm. Here we discuss how the concepts of Pareto optimality and
distinctions address these problems.

With respect to the issue of disengagement, Pareto optimality and distinctions
help by providing an alternative to the naive competitive coevolutionary framework.
By rewarding teachers for exposing gaps in learner competence (i.e., showing one
learner to be able to “solve a problem” that another cannot), the teacher population
is given incentive to remain engaged; that is, teachers obtain fitness by revealing
a gradient structure for the learners to follow. This incentive structure prevents
teachers from becoming uniformly too difficult for the learner population.

Next, cyclic dynamics can involve frequency-dependent fitness and intransitive
structures (e.g., such as those found in RPS). Pareto optimality and distinctions are
not frequency dependent; further, these concepts can detect intransitivities. For ex-
ample, all three strategies in RPS are involved in an intransitive loop. Each strategy
can beat some strategy that no other can; only Rock beats Scissors, and so on. As a
result, each strategy is on the Pareto front (regardless of the frequency with which
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each strategy appears in the population). Each RPS strategy can also make a unique
distinction; for example, only Rock can distinguish Paper and Scissors in favour of
Paper, and so on. Thus, all three RPS strategies are nondominated teachers as well.

Finally, overspecialization occurs when an appropriate diversity of teachers is
not used to guide learners. The problem of overspecialization is illustrated in de
Jong’s compare-on-one game [16]; in this game, conventional coevolutionary ap-
proaches easily lose teacher diversity, resulting in learners that are very good in
one dimension of optimization, but very poor in another. One approach to address
overspecialization is proposed by de Jong [13], who constructs an archive mechanism
that uses both Pareto optimality and the concept of distinctions to maintain teacher
diversity, and obtains more generalized learner progress.

5 Monotonic Behaviour

A desirable property for search algorithms, in general, is that the longer a search
algorithm runs, the better its output should be. A similar statement would be to
say that, the more we explore a search space, the more our estimation of a solution
should improve. Here, we discuss whether a coevolutionary algorithm using Pareto
optimality as a solution concept might have such properties. We will assume that
we seek the entire Pareto front as our solution.

To explore these questions, we make some simplifying assumptions. First, we as-
sume a single-population system; thus, each member of the population is evaluated
by having it interact with members of the same population. Second, we make the
strong assumption that the population may grow indefinitely as we discover more
of the search space; that is, each newly discovered element of the search space is
added to our population. This second assumption ensures that our knowledge of
the search space will grow monotonically. Our questions then become the follow-
ing: Given monotonically increasing knowledge of the search space, will we obtain
monotonically improving estimations of our solution (i.e., the Pareto front)?

On the one hand, as knowledge of the search space increases, evaluation be-
comes more thorough. Thus, it may appear intuitive that monotonically increasing
knowledge of the search space should imply monotonically improving estimates of
the Pareto front. On the other hand, the outcome of evaluation is sensitive to whom
an individual interacts with. Thus, it might be that when we add a newly discovered
element of the search space to our evaluation process, the evaluations of previously
discovered elements will change in dramatic and important ways, potentially upset-
ting a monotonic path towards the solution. We will see below that whether our
estimations of the solution actually improve monotonically or not depends upon
how we treat learners that appear equivalent. (For further discussion of monotonic
progress in coevolution, see [18, 19, 14].)

5.1 Formalism

Let Wt ⊆ D be our state of knowledge of the search space D at time t. With each
new element of D that we discover, W increases. Thus, Wt+1 ⊇ Wt. At each point
in time t, we can apply our solution concept O to our state of knowledge Wt. This
gives us a sequence of states of knowledge and a corresponding sequence of solutions.
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We can think of this latter sequence as a series of exact solutions to our states of
knowledge or a series of estimated solutions to the full search space D. Using Pareto
optimality as our solution concept, we extract for each time point t the set of learners
that are nondominated with respect to Wt. We are interested in knowing how the
nondominated set of Wt may change with time, and how it might relate to the true
solution—the Pareto front of D.

5.2 Example

Let us work through a simple example of how the Pareto front might change as we
discover more of the search space. We assume a search space D = {a, b, c, d, e, f};
the full payoff matrix for this space is

G =

a b c d e f

a 5 3 2 4 2 2
b 0 3 1 3 2 1
c 2 1 1 2 0 1
d 5 3 2 4 1 3
e 0 3 2 1 1 2
f 1 0 0 2 0 1

. (11)

Matrix element Gi,j is the payoff strategy i obtains when it interacts with strat-
egy j. Let our initial state of knowledge be W0 = {a, b, c}. Knowing only the first
three rows and columns of the payoff matrix (11), the Pareto front is comprised

only of element a. Strategies b and c are each dominated by a; that is, a
W0

� b and

a
W0

� c. Next, say we discover a new strategy d, and our subsequent state of knowl-
edge becomes W1 = {a, b, c, d}. Now we know the first four rows and columns of the
payoff matrix. With this knowledge, we find that b and c are still dominated, but d

appears to have the same payoff profile as a; that is, a
W1

= d. Since, a and d appear
equivalent, we place them both on the Pareto front. Say we next discover strategy
e, giving W2 = {a, b, c, d, e}. We find that e it distinguishes a and d in favour of a.

As a result, we have a
W2

� d, and only a is on the front. Finally, say we discover
strategy f , which, although it is dominated, nevertheless distinguishes a and d in

favour of d. This makes a
W3

∼ d, and so the Pareto front is now a and d.
The above example gives us the following sequence of solution estimations as

knowledge increases: {a}, {a, d}, {a}, {a, d}. Note that the first estimation in the
sequence is discarded only to reappear as the third estimation; similarly the second
estimation is discarded to reappear as the fourth. We call such behaviour non-
monotonic. In contrast, what we call monotonic behaviour requires that, once we
discard an estimation of the true solution due to an increase in knowledge, then we
will never repeat that estimation for any future state of knowledge.

The source of the non-monotonic behaviour that we observe in our example
occurs at time-step t = 1, where we discover strategy d. Our mistake was to add d to
the Pareto front because it appeared equivalent to a. If we instead exclude from our
estimation new strategies that appear equivalent to previously discovered strategies,
then we will obtain monotonic behaviour from the Pareto solution concept; under
this modified approach, our sequence of estimations will be {a}, {a}, {a}, {a, d}. As
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another possibility, we can include strategy d as an alternative estimation, along
with a; that is, at time-step t = 1, we will estimate the true Pareto front to be
either {a} or {d}, instead of {a, d}. At time-step t = 2, the discovery of strategy
e, which distinguishes a and d in favour of a, allows us to see that the true Pareto
front cannot possibly be {d}. Note that this is different from saying that d cannot
appear on the true Pareto front; we are merely saying that d alone is not the true
Pareto front.

In general, the relation between any two strategies can only move from = to �
or from � to ∼ as knowledge increases. Once we transition from x = y to x � y, we
can never go back because we know there is at least one dimension of performance
that distinguishes x and y; similarly, once we transition from x � y to x ∼ y, we
can never go back because we know that x and y each has at least one dimension of
performance that distinguishes it, in its favour, from the other.

Monotonic behaviour is desirable because it means that we can discard estima-
tions with confidence; we will never change our minds and return to a previously
discarded estimation in light of new knowledge of the search space. Further, Ficici
[19] shows that the space of possible estimations can be arranged into a partial
order; a monotonic sequence of estimations moves through the space of possible es-
timations such that the partial order is never violated. Thus, there exists a formal
sense in which coevolutionary search can achieve directional progress (even when
the search space is open-ended).

6 Issues in Practice

6.1 Managing the Nondominated Set

Most multiobjective optimization involves a modest number of objectives. In Pareto
coevolution, however, the number of objectives can be on the order of the population
size. Researchers investigating Pareto coevolution quickly found the potentially large
number of objectives to be problematic, as it allowed the Pareto front to include
most of the learner population [42, 23]. As a result, early work resorted to various
heuristic methods to create a fitness gradient amongst the members of the Pareto
front. The approach used by Noble and Watson [42] was to eliminate individuals that
were nearly dominated; in Ficici and Pollack [23], fitness sharing schemes [50, 33]
were used to obtain a gradient within a Pareto layer.

As we mention in Section 3.4, recent work on coevolutionary algorithms has
begun to emphasize the use of structured archives as an antidote to the problem
of expecting a population to simultaneously conduct search and represent the solu-
tion to the search effort. For example, Ficici and Pollack [24] introduce an archive
that implements the Nash equilibrium solution concept. Work by de Jong [12, 13]
introduces an archive based upon Pareto optimality. In each of these examples, the
purpose of the archive is to organize (according to the solution concept in use) the
elements of the search space that are discovered by a separate search mechanism
(e.g., an evolving population). In this way, the task of performing search is made
distinct from the task of representing the solution of the search process; this avoids
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the potential conflicts discussed in Section 3.4 that can arise with diversity mainte-
nance methods. The trend towards archive-based algorithms in coevolution mirrors
that in evolutionary multiobjective optimization (e.g., [37]).

6.2 Operationalizing the Result of Multiobjective Search

An important issue in multiobjective optimization concerns how the result of the
optimization process is to be used. Given a set of candidate solutions that approx-
imate the true Pareto front, how do we choose a particular candidate as our final
“answer” to our search problem? Of course, the specifics of the search domain play
an important role in this decision making. For example, if we are evolving designs for
a bridge, we might care about the trade-off between material costs and durability.
Whatever trade-off we decide upon, it is clear that we will select exactly one design.
The situation for coevolution is typically more complicated because of the close
kinship between coevolutionary domains and game theory. The result of Pareto co-
evolution essentially yields the set of (pure) game strategies on the trade-off surface
of competence; each strategy will have its own strengths and weaknesses. Pareto
coevolution eliminates dominated strategies, which is very helpful, but otherwise
provides little assistance in operationalizing the result of search into an effective
strategy that we can field in an adversarial strategic setting. Indeed, Pareto coevo-
lution essentially leaves us with the equilibrium selection problem of conventional
game theory [52]. Recall that many Nash equilibria involve mixed strategies, that is,
probability distributions over pure strategies; thus, Pareto coevolution is unusual,
as far as MOO goes, in that the ultimate solution can be a stochastic combination
of points on the Pareto front (this generally cannot be the case when building a
bridge, but the idea of stochastic combinations of Pareto-optimal points is intrigu-
ing to consider for other MOO domains). The elimination of dominated strategies
is a standard procedure in game theory to help find Nash equilibria [27]; thus, if we
are interested in constructing a Nash equilibrium mixed strategy, we know that the
Pareto front contains the appropriate set of pure strategies. Nevertheless, the issue
of operationalizing the result of Pareto coevolution largely remains an open issue.

7 Conclusion

A coevolutionary algorithm can only evaluate an individual by having it interact
with other individuals. This property ties coevolution to both game theory (the
mathematics of strategic interaction) and multiobjective optimization. This latter
connection is made clear once we view each individual that we can interact with as
an objective for optimization. The foundational concepts involved in the application
of MOO to coevolution are Pareto optimality and distinctions. These concepts help
address some of the difficulties that can be encountered when using a CEA, such
as loss of fitness gradient, cycling, and overspecialization. Viewing coevolution as a
form of MOO allows us to formalize coevolutionary search in new ways, and these
new formalisms suggest new insights and algorithmic approaches for solving games
and game-like problems.
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Summary. In this chapter, we present a survey of constraint-handling techniques
based on evolutionary multiobjective optimization concepts. We present some basic
definitions required to make this chapter self-contained, and then introduce the way
in which a global (single-objective) nonlinear optimization problem is transformed
into an unconstrained multiobjective optimization problem. A taxonomy of methods
is also proposed and each of them is briefly described. Some interesting findings
regarding common features of the approaches analyzed are also discussed.

1 Introduction

Nowadays, evolutionary algorithms (EAs) have become a popular choice to solve
different types of optimization problems [20, 33, 45]. This chapter points out the
application of some ideas originally designed to solve a specific type of optimization
problem using EAs, which are now applied to solve a different type of problem.
Despite being considered powerful search engines, EAs, in their original versions,
lack a mechanism to incorporate constraints into the fitness function in order to
solve constrained optimization problems. Hence, several approaches have been pro-
posed to deal with this issue. Michalewicz and Schoenauer [36] and Coello Coello
[7] have presented comprehensive surveys about constraint-handling techniques used
with EAs. As indicated in such surveys, the most popular method adopted to han-
dle constraints in EAs was taken from the mathematical programming literature:
penalty functions (mostly exterior). Penalty functions were originally proposed by
Courant in the 1940s [11] and later expanded by Carroll [4] and Fiacco and Mc-
Cormick [17]. The idea of this method is to transform a constrained optimization
problem into an unconstrained one by adding (or subtracting) a certain value to (or
from) the objective function based on the degree of constraint violation present in
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a certain solution. This aims to favour feasible solutions over infeasible ones during
the selection process. The main advantage of the use of penalty functions is their
simplicity. However, their main shortcoming is that penalty factors, which determine
the severity of the punishment, must be set by the user and their values are problem
dependent [50, 7]. This has motivated the design of alternative techniques like those
based on special encodings and operators [34, 48] and on repair algorithms [35].

Unlike penalty functions, which combine the objective function and the con-
straint values into one fitness value, there are other approaches which handle these
two values separately. The most representative approaches, which work based on
this idea are: (1) the methods based on the superiority of feasible points [41, 15] and
(2) the methods based on evolutionary multiobjective optimization concepts.

This chapter focuses on the latter type of technique (i.e., those based on multi-
objective optimization concepts) and describes, tests and criticizes them.

In order to present our discussion of methods in a more organized way, we
propose a simple taxonomy of techniques, based on the way they transform the
nonlinear programming problem (NLP) into a multiobjective optimization problem
(MOP):

1. Approaches which transform the NLP into an unconstrained bi-objective op-
timization problem (the original objective function and the sum of constraint
violations).

2. Techniques which transform the NLP into an unconstrained MOP where the
original objective function and each constraint of the NLP are treated as sepa-
rate objectives. From this category, we observed two further subcategories:

a) Methods which use non-Pareto concepts (mainly based on multiple popu-
lations) and

b) Methods which use Pareto concepts (ranking and dominance) as their se-
lection criteria.

The remainder of this chapter is organized as follows. In Section 2 we present
the general NLP, and we recall some multiobjective optimization concepts used in
this survey; we also show the transformation of an NLP into an MOP. After that,
in Section 3 the approaches which solve the NLP as a bi-objective problem (using
the original objective function and the sum of constraint violations) are presented.
Section 4 shows techniques based on solving the problem by taking the original ob-
jective function and each of the constraints of the problem as different objectives,
by using either Pareto or non-Pareto concepts. In Section 5, we provide some high-
lights of the methods previously discussed. A small comparative experiment using
four representative approaches (from those previously discussed) is presented in Sec-
tion 6. Finally, Section 7 presents our conclusions and some possible future paths of
research in the area.

2 Problem Definition and Transformation

In the following definitions we will assume (without loss of generality) minimization.
The general NLP is defined as to

Find X which minimizes f(X) (1)
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subject to:

gi(X) ≤ 0, i = 1, . . . , m (2)

hj(X) = 0, j = 1, . . . , p (3)

where X ∈ IRn is the vector of solutions X = [x1, x2, . . . , xn]T , where each xi, i =
1, . . . , n is bounded by lower and upper limits Li ≤ xi ≤ Ui which define the search
space S; m is the number of inequality constraints; and p is the number of equality
constraints (in both cases, constraints could be linear or nonlinear). The constraints
define the feasible region F ⊆ S.

When solving NLPs with EAs, equality constraints are usually transformed into
inequality constraints of the form

gj(X) = |hj(X)| − ε ≤ 0, j = m + 1, m + 2, . . . , m + p (4)

where ε is the tolerance allowed (a very small value). In the rest of the chapter we
will refer only to inequality constraints because we will assume this transformation.

As discussed in the Introduction chapter of this volume, in a multiobjective
problem, the optimum solution consists on a set of (“trade-off”) solutions, rather
than a single solution as in global optimization. This optimal set is known as the
Pareto-optimal set.

Based on the review of the literature that we undertook, we found that re-
searchers have adopted two different ways to transform the NLP into an MOP:

1. The first approach transforms the NLP into an unconstrained bi-objective prob-
lem. The first objective is the original objective function and the second objec-
tive is the sum of constraint violations as follows: optimize
F(X) = (f(X), G(X)), where G(X) =

∑m+p
i=1 max (0, gi(X)), and each

gi(X), i = 1, . . . , m + p, must be normalized.
Note, however, that when solving a transformed NLP, we are not looking for a set
of solutions Instead, we seek a single solution, the global constrained optimum,
where f(X) ≤ f(Y) for all feasible Y and G(X) = 0.

2. The second approach transforms the problem into an unconstrained MOP, in
which we will have k + 1 objectives, where k is the total number of constraints
(m + p) and the additional objective is the original NLP objective function.
Then, we can apply a multiobjective evolutionary algorithm to the new vector
F(X) = (f(X), g1(X), . . . , gm+p(X)), where g1(X), . . . , gm+p(X) are the origi-
nal constraints of the problem.
As indicated before, we are looking again for the global constrained optimum
instead of a set of trade-off solutions. Thus, we require the following: gi(X) = 0
for 1 ≤ i ≤ (m + p) and f(X) ≤ f(Y) for all feasible Y.

These apparently subtle differences in the way of stating an MOP point to
changes in the way multiobjective concepts are applied (i.e., they influence the way
in which MOEAs are actually used). In the following sections, we will describe the
approaches reported in the specialized literature to deal with this special type of
MOP that arises from a transformed NLP.

It is important to note that the use of multiobjective optimization concepts
improves the solution procedure of a constrained problem with respect to a typical
penalty function in two ways: (1) No penalty factors must be tuned and (2) the
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way to approach the feasible region becomes more robust because of the trade-offs
among objective function and constraints of the problem. In contrast, in a typical
penalty function this path to the constrained optimum is rather rigid and fixed.
In fact, a penalty function forces the search to generate feasible solutions. On the
other hand, by using a multiobjective approach we aim to decrease the violation
of constraints, but at the same time we look for objective function improvement,
and this behaviour may open up the potential of reaching the feasible region from
different (and maybe promising) directions.

3 Transforming the NLP into a Bi-objective Problem

Surry and Radcliffe [51] proposed COMOGA (Constrained Optimization by Mul-
tiobjective Optimization Genetic Algorithms) where individuals are Pareto-ranked
based on the sum of constraint violation. Then, solutions can be chosen using binary
tournament selection based either on their rank or on their objective function value.
This decision is based on a parameter called Pcost whose value is modified dynami-
cally. The aim of the proposed approach to solve this bi-objective problem is based
on reproducing solutions which are good in one of the two objectives with other
competitive solutions in the other objective i.e., constraint violation (such as Schaf-
fer’s Vector Evaluated Genetic Algorithm (VEGA) promoted to solve MOPs [47]).
COMOGA was tested on a gas network design problem, providing slightly better
results than those obtained with a penalty function approach. Its main drawback is
that it requires several extra parameters. Also, to the authors’ best knowledge, this
approach has not been used by other researchers.

Camponogara and Talukdar [3] proposed to solve the bi-objective problem in
the following way. A set of Pareto fronts in the bi-objective space is generated by
the EA. Two of them (Si and Sj , where i < j) are selected. After that, two solutions
xi ∈ Si and xj ∈ Sj where xi dominates xj are chosen. Based in these two points,
a search direction is generated as follows:

d =
(xi − xj)

|xi − xj |
. (5)

A line search begins by projecting d over one variable axis on the decision variable
space in order to find a new solution x which dominates both xi and xj . Other
mechanisms of the approach allow, at pre-defined intervals, replacing of the worst
half of the population with new random solutions to avoid premature convergence.
This indicates some of the problems of the approach in maintaining diversity. Ad-
ditionally, the use of line search within a GA adds some extra computational cost.
Furthermore, it is not clear what the impact is of the segment chosen to search on
the overall performance of the algorithm.

Zhou et al. [55] proposed a ranking procedure based on Pareto strength [56] for
the bi-objective problem, i.e. counting the number of individuals which are dom-
inated for a given solution. Ties are broken by the sum of constraint violations
(second objective in the problem). The simplex crossover (SPX) operator is used
to generate a set of offspring where the individual with the highest Pareto strength
and the solution with the lowest sum of constraint violations are both selected to
take part in the population for the next generation. The approach was tested on a
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subset of a well-known benchmark for evolutionary constrained optimization [30].
The results were competitive but the authors had to use different sets of parameters
for different functions, which made evident the high sensitivity of the approach to
the values of its parameters.

Wang and Cai [54] used a framework similar to the one proposed by Zhou et
al. [55] because they also used the SPX with a set of parents to generate a set of
offspring. However, instead of using just two individuals from the set of offspring, all
nondominated solutions (in the bi-objective space) are used to replace the dominated
solutions in the parent population. Furthermore, they use an external archive to
store infeasible solutions with a low sum of constraint violations in order to replace
some random solutions in the current population. The idea is to maintain infeasible
solutions close to the boundaries of the feasible region in order to perform a better
sampling of this region so as to find optimum solutions located there (i.e., when
dealing with active constraints) [28]. The approach provided good results in 13 well-
known test problems. However, different sets of values for the parameters were used,
depending of the dimensionality of the problem.

Venkatraman and Yen [52] proposed a generic framework to solve the NLP. The
approach is divided in two phases: The first one treats the NLP as a constraint
satisfaction problem, i.e., the goal is to find at least one feasible solution. To achieve
that, the population is ranked based only on the sum of constraint violations. The
second phase starts when the first feasible solution has been found. Now both ob-
jectives (the original objective function and the sum of constraint violations) are
taken into account and nondominated sorting [16] is used to rank the population
(alternatively, the authors proposed a preference scheme based on feasibility rules
[15], but in their experiments, they found that nondominated sorting provided bet-
ter results). Also, to favour diversity, a niching scheme based on the distance of the
nearest neighbours to each solution is applied. To decrease the effect of differences
in values, all constraints are normalized before calculating the sum of those which
are violated. The approach used a typical GA as a search engine with 10% elitism.
The approach provided good quality results in 11 well-known benchmark problems
and in some problems generated with the Test-Case Generator tool [32], but lacked
consistency due to the fact that the way to approach the feasible region is mostly
random because of the first phase, which only focuses on finding a feasible solution,
regardless of the direction from which the feasible region is approached.

Wang et al. [53] also solved the bi-objective problem, but using selection criteria
based on feasibility very similar to those proposed by Deb [15], where a feasible
solution is preferred over an infeasible one; between two feasible solutions, the one
with the best objective function value is selected and, finally, between two infeasible
solutions, the one with the lowest sum of constraint violation is chosen. Furthermore,
they proposed a new crossover operator based on uniform design methods [53]. This
operator is able to explore regions closer to the parents. Finally, Gaussian noise is
used as a mutation operator. The approach was tested on a subset of well-known
benchmarks used to test evolutionary algorithms in constrained optimization [30].
No details are given by the authors about the influence of the extra parameters
required to control the crossover operator (q) and the number of offspring generated
(r).
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4 Transforming the NLP into a Multiobjective Problem
with Objective Function and Constraints as Separate
Objectives

As indicated before, in this case we may use non-Pareto schemes or Pareto schemes.
Each of these two subclasses of methods will be discussed next.

4.1 Techniques Based on Non-Pareto Schemes

Parmee and Purchase [40] used the idea proposed in VEGA [47] to guide the search
of an evolutionary algorithm to the feasible region of an optimal gas turbine design
problem with a heavily constrained search space. The aim of VEGA is to divide the
population into subpopulations, and each subpopulation has then the goal of opti-
mizing only one objective. In this case, the set of objectives are the constraints of the
problem. Genetic operators are applied to all solutions regardless of the subpopula-
tion of each solution. In Parmee and Purchase’s approach, once the feasible region
is reached, special operators are used to improve the feasible solutions found. The
use of these special operators that preserve feasibility makes this approach highly
specific to one application domain rather than providing a general methodology to
handle constraints.

Schoenauer and Xanthakis [49] proposed a constraint-handling technique based
on the notion of behavioural memory [13], which takes into account the information
contained in the whole population after some genetic evolution. As it turns out, this
approach consists of a form of “lexicographic ordering” [10]. The main idea is to
satisfy each constraint of the problem in a sequential order. Once a certain number
of solutions in the population satisfy the first constraint (based on a parameter of
the approach), the second constraint is added in order to be also satisfied, but always
enforcing that the solutions satisfy the first one. In this way, solutions which satisfy
the second constraint but not the first one will be removed from the population (as in
a death-penalty approach [7]). The success of the approach normally depends on the
order in which constraints are processed. Besides, it may not be appropriate when
solving problems with a large feasible region (with respect to the whole search space).
However, this technique may be very effective to solve problems where constraints
have a natural hierarchy to be evaluated.

Coello Coello [6] also used VEGA’s idea [47] to solve NLPs. At each generation,
the population was split into m + 1 subpopulations of equal (fixed) size, where m
is the number of constraints of the problem. The additional subpopulation handled
the objective function of the problem and the individuals contained within it were
selected based on the unconstrained objective function value. The m remaining sub-
populations took one constraint of the problem each as their fitness function. The
aim was that each of the subpopulations tried to reach the feasible region correspond-
ing to one constraint. By combining these different subpopulations, the approach
would then reach the feasible region of the problem in terms of all of its constraints.
The main drawback of the approach is that the number of subpopulations increases
linearly with respect to the number of constraints.

This issue was further tackled by Liang and Suganthan [27], where a dynamic
particle multiswarm optimization was proposed. They also used VEGA’s idea to split
the swarm into subswarms, and each subswarm optimized one objective. However,
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in this case, the subswarms are assigned dynamically. In this way, the number of
subswarms depends on the complexity of the constraints to be satisfied instead of
depending on the number of constraints. The authors also included a local search
mechanism based on sequential quadratic programming to improve values of a set
of randomly chosen pbest values. The approach provided competitive results in the
extended version of a well-known benchmark adopted for evolutionary constrained
optimization [27]. The main drawbacks of the approach are that it requires extra
parameters to be tuned by the user and it has a strong dependency on the local
search mechanism.

4.2 Techniques Based on Pareto Schemes

Carlos Fonseca was apparently the first to propose the idea of using the Pareto dom-
inance relation to handle constraints [12, 19]. His proposal consisted of modifying
the definition of Pareto dominance in order to incorporate constraints. It is worth
noting that this proposal was really a small component of a multiobjective evolution-
ary algorithm (MOGA [18]), and was, therefore, mainly used to solve constrained
multiobjective optimization problems. Because of this, Fonseca’s proposal did not at-
tract much interest from researchers working with constraint-handling techniques for
single-objective optimization. Next, we will discuss several other constraint-handling
techniques that directly incorporate Pareto-based schemes.

Jiménez et al. [24] proposed an approach that transforms the NLP (and also the
constraint satisfaction and goal-programming problems) into an MOP by assigning
priorities. Regarding the NLP, constraints are assigned a higher priority than the
objective function. Then, a multiobjective algorithm based on a preselection scheme
is applied. This algorithm generates from two parents a set of offspring which will
be mutated to generate another set. The best individual from the first set of off-
spring (nonmutated) and the best one of the mutated ones will replace each of the
two parents. The idea is to favour the generation of individuals close to their par-
ents and to promote implicit niching. Comparisons among individuals are made by
using Pareto dominance. A real-coded GA was used as a search engine with two
types of crossover operators (uniform and arithmetic) and two mutation operators
(uniform and nonuniform). The results on 11 problems taken from a well-known
benchmark [30] were promising. The main drawback of the approach is the evident
lack of knowledge about the effect of the parameter “q” related with the preselec-
tion scheme, which the authors do not discuss in their paper. Also, the authors do
not provide any information regarding the number of evaluations performed by the
approach.

Coello Coello [5] proposed a ranking procedure based on a counter which was
incremented based on the number of individuals in the population which dominated
a given solution based on some criteria (feasibility, sum of constraint violation and
number of constraints violated). The approach was tested on a set of engineering
design problems providing competitive results. An adaptive mechanism was also im-
plemented in order to fine-tune the parameters of the approach. Its main drawbacks
are the computational cost of the technique and its difficulties in handling equality
constraints [29].

Ray et al. [42, 44] proposed the use of a Pareto ranking approach that operates
on three spaces: objective space, constraint space and the combination of the two
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previous spaces. This approach also uses mating restrictions to ensure better con-
straint satisfaction in the offspring generated and a selection process that eliminates
weaknesses in any of these spaces. To maintain diversity, a niche mechanism based
on Euclidean distances is used. This approach can solve both constrained or uncon-
strained optimization problems with one or several objective functions. The mating
restrictions used by this method are based on the information that each individual
has about its own feasibility. Such a scheme is based on an idea proposed by Hinter-
ding and Michalewicz [22]. The main advantage of this approach is that it requires
a very low number of fitness function evaluations with respect to other state-of-the-
art approaches. Its main drawback is that its implementation is considerably more
complex than that of any of the other techniques previously discussed.

Ray extended his work to a simulation of social behaviour [1, 43], where a
societies-civilization model is proposed. Each society has its leaders who influence
its neighbours. Also, the leaders can migrate from one society to another, promot-
ing exploration of new regions of the search space. Constraints are handled by a
nondominated sorting mechanism [16] in the constraint space. A leader-centric op-
erator is used to generate movements of the neighbours influenced by their leaders.
The main drawback of the approach is its high computational cost derived from the
nondominated sorting and a clustering technique required to generate the societies.
Results reported on some engineering design problems are very competitive. How-
ever, to the authors’ best knowledge, this technique has not been compared against
state-of-the-art approaches adopting the same benchmark [30].

Coello Coello and Mezura-Montes [9] implemented a version of the Niched-Pareto
Genetic Algorithm (NPGA) [23] to handle constraints in single-objective optimiza-
tion problems. The NPGA is a multiobjective optimization approach in which in-
dividuals are selected through a tournament based on Pareto dominance. However,
unlike the NPGA, Coello Coello and Mezura-Montes’ approach does not require
niches (or fitness sharing [14]) to maintain diversity in the population. Instead, it
requires an additional parameter called Sr that controls the diversity of the popu-
lation. Sr indicates the proportion of parents selected by four comparison criteria
(based on Deb’s proposal [15]), but when both solutions are infeasible, a dominance
criterion in the constraint space is used to select the best solution. The remaining
1− Sr parents are selected using a purely probabilistic approach. Results indicated
that the approach was robust, efficient and effective. However, it was also found that
the approach had scalability problems (its performance degraded as the number of
decision variables increased).

The use of dominance to select between two infeasible solutions was taken to
the differential evolution metaheuristic by Kukkonen and Lampinen [26]. In their
approach, when the comparison between a parent vector and its child vector is
performed, and both of them are infeasible, a dominance criterion is applied. The
results on the extended version of the benchmark [26] were very competitive.

Angantyr et al. [2] proposed assigning a fitness value to solutions based on a two-
ranking mechanism. The first rank is assigned according to the objective function
value (regardless of feasibility). The second rank is assigned by using nondominated
sorting [16] in the constraint space. These ranks have adaptive weights when defining
the fitness value. The aim is to guide the search to the unconstrained optimum
solution if there are many feasible solutions in the current population. If the rate of
feasible solutions is low, the search will be biased to the feasible region. The goal is to
promote an oscillation of the search between the feasible and infeasible regions of the
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search space. A typical GA with BLX crossover was used. The main advantage of this
approach is that it does not add any extra parameters to the algorithm. However,
it presented some problems when solving functions with equality constraints [2].

Hernandez et al. [21] proposed an approach named IS-PAES which is based on
the Pareto Archived Evolution Strategy (PAES) originally proposed by Knowles and
Corne [25]. IS-PAES uses an external memory to store the best set of solutions found.
Furthermore, IS-PAES requires a shrinking mechanism to reduce the search space.
The multiobjective concept is used in this case as a secondary criterion (Pareto
dominance is used only to decide whether or not a new solution is inserted into the
external memory). The authors acknowledge that the most important mechanisms
of IS-PAES are its shrinking procedure and the information provided by the external
memory which is used to determine the shrinking of the search space. Furthermore,
despite its good performance as a global optimizer, IS-PAES is far from simple to
implement.

Runarsson and Yao [46] presented a comparison of two versions of Pareto ranking
applied in the constraint space: (1) considering the objective function value in the
ranking process and (2) not considering it. These versions were compared against a
typical overpenalized penalty function approach. The authors found in their work
that using Pareto ranking leads to bias-free search, and thus concluded that it causes
the search to spend most of its time searching in the infeasible region. Therefore,
the approach is unable to find feasible solutions (or finds feasible solutions with a
poor value of the objective function).

Oyama et al. [39] used a similar approach to the one proposed by Coello Coello
and Mezura-Montes [9]. However, the authors proposed using a set of criteria based
on feasibility to rank all the population (instead of using them in a tournament
[9]). Moreover, this approach is designed to also solve constrained multiobjective
optimization problems. A real-coded GA with BLX crossover was used as the search
engine. This technique was used to solve one engineering design problem and a
real-world NLP. No further experiments or comparisons were documented.

5 Remarks

Based on the features found in each of the methods previously discussed, we highlight
the following findings:

• The transformation of the NLP into a multiobjective problem with constraints
and objective function as separated objectives is a more popular approach than
the transformation of the NLP to a bi-objective optimization problem.

• The use of subpopulations has been the least popular, although they may present
certain advantages in some particular optimization problems (see, for example,
[8]).

• There seems to be a certain trend towards using mean-centric crossover op-
erators (BLX [2, 39], random mix [42, 44], SPX [54, 55]) over using parent-
centric crossover (uniform design methods [53], leader centric operator [1, 43])
when adopting real-coded GAs. Furthermore, other authors used more than one
crossover operator (uniform and arithmetic [24]). This choice seems to contra-
dict the findings about competitive crossover operators that have been reported
by other researchers when using other constraint-handling techniques such as
GENOCOP and penalty functions [37, 38].
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• The use of diversity mechanisms is found in most approaches, which is a clear
indication of the loss of diversity experienced when adopting multiobjective op-
timization schemes for handling constraints [51, 3, 54, 52, 42, 44, 1, 43, 9, 2, 21].

• The use of explicit local search mechanisms is still scarce, despite the evident
advantages that such mechanisms may bring into this area [27].

• The difficulty of using Pareto concepts when solving the NLP pointed out by
Runarsson and Yao [46] has been confirmed by other researchers such as Mezura-
Montes and Coello Coello [29]. However, the methods described in this survey
provide several alternatives to deal with the inherent shortcoming for the lack
of bias provided by Pareto ranking.

6 A Limited Comparative Study

Four techniques were selected from those discussed before to perform a small compar-
ative study that aims to illustrate some practical issues of constraint-handling tech-
niques based on multiobjective concepts. The techniques selected are the following:
COMOGA [51] which transforms the constrained problem into a bi-objective prob-
lem; VEGA, as proposed in Coello Coello [6], which handles a problem of “m+p+1”
objectives with the same number of subpopulations (where m is the number of in-
equality constraints and p is the number of equality constraints); the NPGA, as
in [9], which calculates Pareto dominance in the constraint space (the number of
objectives depends of the number of constraints of the problem); and the approach
that uses Pareto ranking (called MOGA by us although it does not follow Fon-
seca’s proposal [18] exactly) [5], where dominance is computed based on separated
objectives (number of violated constraints and degree of constraint violation).

These techniques were chosen because all of them mainly modify the parent se-
lection scheme of an EA and do not use additional mechanisms (specialized crossover
or mutation operators, external memory, etc.). Therefore, and because of their sim-
plicity they can be included inside a typical EA without further changes. In or-
der to simplify our notation, the last three techniques previously indicated will be
called CHVEGA, CHNPGA and CHMOGA, respectively (CH stands for constraint-
handling).

To evaluate the performance of the techniques selected, we decided to use a well-
known benchmark found in the specialized literature [36] and in three engineering
design problems [31]. The Appendix at the end of the chapter includes the details
of all the test functions adopted.

To get an estimate of how difficult is to generate feasible points through a purely
random process, we computed the ρ metric (as suggested by Michalewicz and Schoe-
nauer [36]) using the following expression:

ρ = |F |/|S| (6)

where |S| is the number of random solutions generated (S = 1, 000, 000 in our case),
and |F | is the number of feasible solutions found (out of the total |S| solutions
randomly generated).

The different values of ρ and the main features of each test function are shown
in Table 1.
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Problem n Type of function ρ LI NI LE NE
1 5 quadratic 27.0079% 0 6 0 0
2 2 non linear 0.0057% 0 2 0 0
3 10 quadratic 0.0000% 3 5 0 0
4 7 non linear 0.5199% 0 4 0 0
5 8 linear 0.0020% 3 3 0 0
6 2 quadratic 0.0973% 0 0 0 1
7 4 quadratic 2.6859% 6 1 0 0
8 4 quadratic 39.6762% 3 1 0 0
9 3 quadratic 0.7537% 1 3 0 0

Table 1. Main features of the nine test problems used. n is the number of decision
variables, LI is the number of linear inequalities, NI the number of nonlinear in-
equalities, LE is the number of linear equalities and NE is the number of nonlinear
equalities

In our comparative study, we used a binary Gray-coded GA with two-point
crossover and uniform mutation. Equality constraints were transformed into inequal-
ities using a tolerance value of 0.001 (see [7] for details of this transformation). The
number of fitness function evaluations is the same for all the approaches under study
(80, 000). The parameters adopted for each of the methods were the following:

• COMOGA:
– Population size = 200
– Crossover rate = 1.0
– Mutation rate = 0.05
– Desired proportion of feasible solutions = 10 %
– ε = 0.01

• CHVEGA:
– Population size = 200
– Number of generations = 400
– Crossover rate = 0.6
– Mutation rate = 0.05
– Tournament size= 5

• CHNPGA:
– Population size = 200
– Number of generations = 400
– Crossover rate = 0.6
– Mutation rate = 0.05
– Size of sample of the population = 10
– Selection Ratio = 0.8

• CHMOGA:
– Population size = 200
– Number of generations = 400
– Crossover rate = 0.6
– Mutation rate = 0.05

A total of 100 runs per technique per problem were performed. A summary of
all results is shown in Table 2, where Pi refers to the problem solved (1 ≤ i ≤ 9).
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Statistical results on nine test problems
P. Approach Optimal Best Mean St. Dev. Fp

COMOGA −30533.057 −30329.563 7.48E+1 0.24%
P1 CHVEGA −30665.539 −30647.246 −30628.469 7.88E+0 41%

CHNPGA -30661.033 -30630.883 2.05E+1 35%
CHMOGA −30649.959 −30568.918 5.35E+1 3.5%

COMOGA −6808.696 −5255.105 9.95E+2 0.20%
P2 CHVEGA −6961.814 −6942.747 −6762.048 1.02E+2 4.3%

CHNPGA −6941.307 −6644.539 3.36E+2 2%
CHMOGA −6939.440 −6678.926 1.57E+2 2%

COMOGA*(8) 485.579 1567.294 9.24E+2 0.03%
P3 CHVEGA 24.306 28.492 34.558 2.93E+0 15%

CHNPGA 26.986 31.249 2.32E+0 4.9%
CHMOGA 29.578 45.589 1.52E+1 1.3%

COMOGA 733.00 983.63 1.16E+2 1.1%
P4 CHVEGA 680.63 693.64 739.31 2.51E+1 4.5%

CHNPGA 680.95 682.34 8.36E-1 24%
CHMOGA 681.71 692.97 1.09E+1 4.9%

COMOGA1*(71) 10865.43 18924.58 3.85E+3 0.0001%
P5 CHVEGA*(63) 7049.25 9842.45 17605.59 3.87E+3 0.005%

CHNPGA*(29) 8183.30 13716.70 4.80E+3 0.05%
CHMOGA 7578.34 9504.36 1.50E+3 2%

COMOGA 0.75 0.75 4.95E-4 0.029%
P6 CHVEGA 0.75 0.75 0.80 2.58E-2 1.1%

CHNPGA 0.75 0.75 1.21E-2 2.6%
CHMOGA 0.75 0.75 5.95E-4 1.7%

COMOGA 2.471158 2.726058 1.20E-1 0.03%
P7 CHVEGA 2.381 2.386833 2.393504 3.80E-3 35%

CHNPGA 2.382860 2.420906 2.56E-2 20%
CHMOGA 2.386333 2.504377 9.90E-2 5%

COMOGA 6369.428 7795.412 7.01E+2 0.4%
P8 CHVEGA 6059.946 6064.724 6259.964 1.70E+2 43%

CHNPGA 6059.926 6172.527 1.24E+2 33%
CHMOGA 6066.967 6629.064 3.85E+2 45%

COMOGA 0.012929 0.014362 8.64E-4 2.11%
P9 CHVEGA 0.012681 0.012688 0.012886 2.09E-4 25%

CHNPGA 0.012683 0.012752 6.20E-5 10%
CHMOGA 0.012680 0.012960 3.63E-4 4.8%

Table 2. Experimental results using the four approaches with the nine test prob-
lems. The symbol “*” and the number between parenthesis “(n )”mean that only
in n runs feasible solutions were found; Fp is the average percentage of feasible
solutions found during a single run (with respect to the full population)
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6.1 Discussion of Results

Based on the results obtained, all of them summarized in Table 2, we will focus our
discussion on the following topics.

• Quality: Which approach provides the “best” result overall (measured by the
best result in column 4 in Table 2).

• Consistency: Which approach provides the “best” mean and standard devia-
tion values (measured by the mean and standard deviation (Std. Dev.) results
in columns 5 and 6, respectively, in Table 2).

• Diversity: To analyze the rate of feasible solutions of each approach during a
single run.

Quality of the Results

CHNPGA provided the “best” best results in five problems (P1, P3, P4, P7 and
P8) and slightly improved the best known solution in one of them (P8). CHVEGA
obtained the “best” best result in problem P2 and CHMOGA in problems P5 and
P9. All the four approaches reached the best solution in problem P6.

Consistency

CHNPGA provided the most consistent results in four problems (P3, P4, P8 and
P9). In problem P1, CHNPGA showed a mean value closer to the optimal solution
than that provided by CHVEGA; however, CHVEGA’s standard deviation value
was smaller than CHNPGA’s. We consider the behaviour of CHNPGA to be more
consistent because of its mean closeness value to the optimal result. CHVEGA pre-
sented the “best” mean and standard deviation values in two functions (P2 and P7).
Finally, CHMOGA presented the best consistency in problem P5. It is important to
note that, for function P5, only CHMOGA consistently found feasible solutions in
each single run. The remaining techniques had problems reaching the feasible region
in this problem. Again, problem P6 was easily solved with a similar performance by
all four approaches.

Diversity

It is quite interesting to analyze the average number of feasible solutions that each
algorithm maintains in a single run. The fact that the population size is the same
for all four algorithms compared makes this a relatively fair point of comparison.
For most of the problems, the approach which consistently reached the vicinity of
the optimum, was able to achieve a rate of feasible solutions above the average
rate of the four approaches. These approaches that reached near the optimum are
CHNPGA in P1, P3 P4, P8 and P9, CHVEGA in P2, and P7, and CHMOGA in
P5. As expected, this rate corresponds to the approximate size of the feasible region
with respect to the whole search space (reported as ρ, the fourth column in Table
1), i.e., we have high rates on problems with larger feasible regions and low rates on
problems with very small feasible regions. See, for example, test function P1 (27%
of the search space is feasible and a 35% rate is maintained by CHNPGA) and P2
(0.0057% of the search space is feasible and a 4.3% rate is maintained by CHVEGA).
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Summary of results

Based on the observations made on each aspect of our small set of experiments and
analysis, we now summarize our main findings:

• The Pareto dominance tournament selection promoted by CHNPGA provided
the most accurate and consistent results for the set of test problems used in
the experiments (P1, P3, P4, P7, P8 and P9), regardless of the features of the
problem to be solved (type of objective function and constraints, dimensionality,
size of the feasible region with respect to the whole search space).

• The population-based mechanism used by CHVEGA was very effective in prob-
lems with a low dimensionality, small feasible regions and nonlinear objective
function (P2 and P7).

• The Pareto ranking approach based on feasibility used by CHMOGA was very
competitive in problems with average dimensionality, linear or quadratic objec-
tive function and very small feasible regions (P5 and P9). In fact, CHMOGA
was the only approach that consistently found feasible solutions in problem P5.

• These three multiobjective-based constraint-handling mechanisms (CHNPGA,
CHVEGA and CHMOGA) were able to maintain an appropriate rate of feasible
solutions (with respect to the size of the feasible region of the problem) so as to
reach the neighbourhood of the optimum.

• COMOGA was competitive only in problem P6, where all approaches were very
competitive. This can be explained by the fact that COMOGA was explicitly
designed to solve a specific type of problem rather than to be a general constraint-
handling technique.

These findings are far from being conclusive, but provide some clues about the
behaviour of these types of constraint-handling mechanisms.

7 Conclusions

We have presented in this chapter a survey of constraint-handling techniques based
on multiobjective optimization concepts. A taxonomy of techniques based on the
type of transformation made from the NLP to either a bi-objective (objective func-
tion and sum of constraint violation) or an MOP (with the objective function and
each constraint considered as separate objectives) has been proposed. We have pre-
sented a discussion about the main features of each method (selection criteria, di-
versity handling mechanism, genetic operators, advantages and disadvantages, and
validation). Furthermore, some interesting findings about all methods have been
summarized and briefly discussed.

In the final part of the chapter, we included a small comparative experiment
of four representative approaches. The aim of this study was to provide some basic
guidelines of their use to those interested in adopting these techniques. In this study,
emphasis was placed on relating each type of constraint-handling scheme to the type
of problem being solved.

Based precisely on these preliminary results, we foresee several potential paths
for future research in this area: (1) more intensive use of explicit local search mech-
anisms coupled with constraint-handling techniques, (2) in-depth studies of the in-
fluence of the genetic operators used in these types of methods, (3) novel and more
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effective proposals of diversity maintenance mechanisms, (4) the combination of
multiobjective concepts (Pareto methods with population-based techniques) into
one single constraint-handling approach.
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Appendix A

The details of each test function used in our experiments are presented below.

P1 Minimize f(X) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to
g1(X) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4

− 0.0022053x3x5 − 92 ≤ 0
g2(X) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4

+ 0.0022053x3x5 ≤ 0
g3(X) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2

+ 0.0021813x2
3 − 110 ≤ 0

g4(X) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2

− 0.0021813x2
3 + 90 ≤ 0

g5(X) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3

+ 0.0019085x3x4 − 25 ≤ 0
g6(X) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3

− 0.0019085x3x4 + 20 ≤ 0

where 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5). The opti-
mum solution is X∗ = (78, 33, 29.995256025682, 45, 36.775812905788), where
f(X∗) = −30665.539. Constraints g1 y g6 are active.

P2 Minimize f(X) = (x1 − 10)3 + (x2 − 20)3

subject to
g1(X) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0
g2(X) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solution is X∗ =
(14.095, 0.84296), where f(X∗) = −6961.81388. Both constraints are active.

P3 Minimize f(X) = x2
1 +x2

2 +x1x2−14x1−16x2 +(x3−10)2 +4(x4−5)2 +(x5−
3)2 + 2(x6 − 1)2 + 5x2

7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45
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subject to
g1(X) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0
g2(X) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0
g3(X) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0
g4(X) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0
g5(X) = 5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0
g6(X) = x2

1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0
g7(X) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6 − 30 ≤ 0
g8(X) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The global optimum is X∗ = (2.171996,
2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092,
8.375927), where f(X∗) = 24.3062091. Constraints g1, g2, g3, g4, g5 and g6 are
active.

P4 Minimize f(X) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5 + 7x2
6 +

x4
7 − 4x6x7 − 10x6 − 8x7

subject to
g1(X) = −127 + 2x2

1 + 3x4
2 + x3 + 4x2

4 + 5x5 ≤ 0
g2(X) = −282 + 7x1 + 3x2 + 10x2

3 + x4 − x5 ≤ 0
g3(X) = −196 + 23x1 + x2

2 + 6x2
6 − 8x7 ≤ 0

g4(X) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The global optimum is X∗ = (2.330499,
1.951372, -0.4775414, 4.365726, -0.6244870, 1.038131, 1.594227), where f(X∗) =
680.6300573. Two constraints are active (g1 and g4).

P5 Minimize f(X) = x1 + x2 + x3

subject to
g1(X) = −1 + 0.0025(x4 + x6) ≤ 0
g2(X) = −1 + 0.0025(x5 + x7 − x4) ≤ 0
g3(X) = −1 + 0.01(x8 − x5) ≤ 0
g4(X) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0
g5(X) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0
g6(X) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000, (i = 2, 3), 10 ≤ xi ≤ 1000,
(i = 4, . . . , 8). The global optimum is: X∗ = (579.19, 1360.13, 5109.92, 182.0174,
295.5985, 217.9799, 286.40, 395.5979), where f(X∗) = 7049.248. g1, g2 and g3

are active.

P6 Minimize f(X) = x2
1 + (x2 − 1)2

subject to
h(X) = x2 − x2

1 = 0

where −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The optimum solution is X∗ = (±1/
√

2, 1/2),
where f(X∗) = 0.75.
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P7 Design of a welded beam A welded beam is designed for minimum cost sub-
ject to constraints on shear stress (τ), bending stress in the beam (σ), buckling
load on the bar (Pc), end deflection of the beam (δ), and side constraints. There

b

b

P

l

L

t

h

Fig. 1. Welded beam.

are four design variables as shown in Figure 1: h (x1), l (x2), t (x3) and b (x4).
The problem can be stated as follows.

Minimize f(X) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2)

subject to
g1(X) = τ(X)− τmax ≤ 0
g2(X) = σ(X)− σmax ≤ 0
g3(X) = x1 − x4 ≤ 0
g4(X) = 0.10471x2

1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0
g5(X) = 0.125− x1 ≤ 0
g6(X) = δ(X)− δmax ≤ 0
g7(X) = P − Pc(X) ≤ 0

where τ(X) =
√

(τ ′)2 + 2τ ′τ ′′ x2
2R

+ (τ ′′)2 τ ′ = P√
2x1x2

, τ ′′ = MR
J

,

M = P
(
L + x2

2

)
, R =

√
x2
2
4

+
(

x1+x3
2

)2

J = 2
{

x1x2√
2

[
x2
2

12
+
(

x1+x3
2

)2
]}

σ(X) = 6PL
x4x2

3
, δ(X) = 4PL3

Ex3
3x4

Pc(X) =
4.013

√
EGx2

3x6
4

36
L2

(

1− x3
2L

√
E
4G

)

P = 6000 lb, L = 14 in, E = 30 × 106 psi, G = 12 × 106 psi
τmax = 13, 600 psi, σmax = 30, 000 psi, δmax = 0.25 in, where 0.1 ≤ x1 ≤ 2.0,
0.1 ≤ x2 ≤ 10.0, 0.1 ≤ x3 ≤ 10.0 and 0.1 ≤ x4 ≤ 2.0.

P8 Design of a pressure vessel A cylindrical vessel is capped at both ends by
hemispherical heads as shown in Figure 2. The objective is to minimize the
total cost, including the cost of the material, forming and welding. There are
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four design variables: Ts (thickness of the shell), Th (thickness of the head), R
(inner radius) and L (length of the cylindrical section of the vessel, not including
the head). Ts and Th are integer multiples of 0.0625 inch, which are the available
thicknesses of rolled steel plates, and R and L are continuous.

R

Th

R

sTL

Fig. 2. Pressure vessel

The problem can be stated as follows.

Minimize f(X) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

subject to
g1(X) = −x1 + 0.0193x3 ≤ 0
g2(X) = −x2 + 0.00954x3 ≤ 0
g3(X) = −πx2

3x4 − 4
3
πx3

3 + 1, 296, 000 ≤ 0
g4(X) = x4 − 240 ≤ 0

where 1 ≤ x1 ≤ 99, 1 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200 and 10 ≤ x4 ≤ 200.

P9 Minimization of the weight of a tension/compression spring This
problem consists of minimizing the weight of a tension/compression spring (see
Figure 3) subject to constraints on minimum deflection, shear stress, surge
frequency, outside diameter and design variables. The design variables are the
mean coil diameter D (x2), the wire diameter d (x1) and the number of active
coils N (x3). Formally, the problem can be expressed as

Minimize (N + 2)Dd2

subject to

g1(X) = 1− D3N
71785d4 ≤ 0

g2(X) = 4D2−dD
12566(Dd3−d4)

+ 1
5108d2 − 1 ≤ 0

g3(X) = 1− 140.45d
D2N

≤ 0
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P P

d

D

Fig. 3. Tension-compression spring

g4(X) = D+d
1.5

− 1 ≤ 0

where 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3 and 2 ≤ x3 ≤ 15.
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Summary. In this chapter, we discuss the use of multiobjective evolutionary al-
gorithms (MOEAs) for solving single-objective optimization problems in dynamic
environments. Specifically, we investigate the consideration of a second (artificial)
objective, with the aim of maintaining greater population diversity and adaptabil-
ity. The paper suggests and compares a number of alternative ways to express this
second objective. An empirical comparison shows that the best alternatives are com-
petitive with other evolutionary algorithm variants designed for handling dynamic
environments.

1 Introduction

Many real-world optimization problems are dynamic. Changes in the environment
can take various forms such as changes in the parameters, objective functions, or
problem constraints. For example, portfolio decisions need to be re-optimized every
now and then to reflect changes in the stock market. In scheduling, new jobs have to
be inserted into the schedule. Even the optimization of a flight path needs to adapt
to changes on the fly; especially under the new free-flight control arrangements.

In such dynamic environments the optimum changes, and an optimization al-
gorithm has to track the changing optimum over time. One difficulty when using
evolutionary algorithms (EAs) in dynamic environments is that the population loses
its genetic diversity, thereby also losing its ability to adapt. A variety of methods
has been proposed in the literature to address the diversity loss, e.g., by maintaining
a separate memory to store the best solutions found in each generation, or by using
multi-populations to simultaneously track several areas in a changing landscape.

In this chapter, we investigate the use of multiobjective evolutionary algorithms
(MOEAs), which usually do not fully converge but naturally maintain a certain
diversity of the population along the Pareto front. The idea is to supplement the
dynamically changing original objective by adding a second (artificial) objective,
aiming at maintaining diversity. We suggest a number of alternatives for this second
objective, compare them empirically, and discuss their computational complexity.
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The moving peaks benchmark (MPB) [22] is used as a standard testbed for our
experiments. NSGA2 [9], a widely used MOEA variant, is employed as the evo-
lutionary multiobjective technique. Our proposed approaches are empirically com-
pared against each other, and against a traditional EA and two classical variants
for dynamic environments: the random immigrants [12] and the hypermutation al-
gorithm [6] on different types of changes.

In the remainder of the paper, we first review some related work on chang-
ing environments, and the use of MOEAs for solving single-objective optimization
problems. In Section 3, we introduce the different alternatives used as the second
objective. The empirical comparison and a discussion of the results can be found in
Section 4. The paper concludes with a summary and some ideas for future work.

2 Related Work

2.1 Changing Environments

A number of criteria have been proposed in the literature to classify dynamic envi-
ronments, such as frequency, severity, and predictability [4, 24, 27].

The frequency of change determines how often the environment changes. As
the frequency increases, the time left for adaptation gets shorter and tracking the
optima gets harder. The severity of a change indicates the degree of a change, e.g.,
the distance the optimum moves, or how strongly the heights of local optima change.
The predictability of the change defines the pattern of the change, such as linearity,
randomness, or circularity. In the latter, the cycle length defines the amount of time
needed before the changes repeat themselves.

Dynamic environments have been studied extensively in the EA literature. Some
detailed reviews can be found in [4, 15]. Generally speaking, there are three main ap-
proaches to date: diversity control, memory-based and multi-population approaches.

Diversity control is a common topic in EA in general. To control diversity in a
dynamic problem, one can either increase diversity whenever a change is detected —
such as with the hypermutation method [6] and the variable local search technique
[26] — or maintain high diversity throughout the evolutionary run as in random
immigrants [12], the Thermodynamical Genetic Algorithm [18, 19], or sentinels [20].

Memory-based techniques employ an extra memory that implicitly or explicitly
stores useful information to guide future search. Implicit memory usually uses re-
dundant representations [8, 11, 13, 17] and leaves it up to the evolutionary algorithm
how to make use of this available memory. In explicit memories [3, 29, 30], specific
information (e.g., the best solution at certain time intervals) is stored and retrieved
when needed by the evolutionary mechanism.

The last approach uses subpopulations to simultaneously track several optima
in different areas of the search space. Basically, it maintains a self-adaptive memory
of several promising areas of the search space. Examples in this group are the self-
organizing scouts method [4] and the multinational GA [25].

A number of authors have suggested different benchmark problems including
the moving peaks problem [3, 4], a close variant thereof [21], the XOR-DOP gener-
ator [31], and a class of dynamic trap functions [2]. In our later analysis, we use the
moving peaks problem.
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2.2 Using MOEAs to Solve Single-Objective Optimization
Problems

Many real-world problems involve several, usually conflicting objectives. In those
cases, there is usually no single optimal solution, but a set of equally good alterna-
tives with different trade-offs. Evolutionary algorithms are particularly suitable to
solve such problems, since they maintain a population of solutions and can search
for a large number of alternatives simultaneously. Most work on MOEAs is based on
the concept of dominance. A solution x is said to dominate a solution y if and only
if solution x is at least as good as y in all objectives, and strictly better in at least
one objective. This concept is then used during selection by favouring nondominated
solutions. For comprehensive books on the topic, the reader is referred to [7, 9].

There are several approaches applying MOEAs to solve single-objective prob-
lems. Knowles, Watson, and Corne [16] hypothesised that adding objectives may
reduce the number of local optima in a problem, and showed good performance on
benchmark TSP problems. Also, in [14] Jensen thought that adding objectives to
flow-shop scheduling problems might lead to good building blocks for better solu-
tions, and so chose to use additional objectives that rewarded parts of a good solution
(flow times of individual jobs). Abbass and Deb [1] proposed adding an artificial ob-
jective to promote diversity. Three different artificial objectives were discussed in
their work. The first is based on a time-stamp for each chromosome using the gen-
eration number. The second is by generating the second fitness at random. The
third is by reversing the optimization of the first objective (i.e., maximizing the
function if the original problem is minimization and vice versa). In comparison to
single-objective algorithms, this approach offered a better convergence rate while
maintaining good diversity.

Toffolo and Benini [23] used diversity explicitly as an additional objective for
multiobjective evolutionary algorithms. They used the sum of the Euclidean dis-
tances between an individual and all other individuals in the population as a mea-
sure on how much that individual contributes to the diversity. As an alternative
measure, they also suggested the distance to the closest individual. The approach
was tested against several state-of-the-art MOEAs. The results showed that the ap-
proach is very effective at converging to the POF and at distributing the solutions
along it.

In all of the previous work, environments were assumed to be stationary.
With the purpose of solving optimization problems in dynamic environments, Ya-
masaki [28] introduced a technique which records all evaluations an individual ever
received, and uses all this information to decide which individuals to keep. In this
process, the concept of Pareto dominance is also used.

In this chapter, we look at the use of MOEAs for dynamic environments. We
propose and compare a number of different choices for the second artificial objective,
including ideas from Abbass and Deb [1] and Toffolo and Benini [23]. Some of these
objectives explicitly address diversity, while others do so only implicitly. The chapter
is an extended version of [5], with an analysis on the complexity of the method as
well as a more detailed empirical evaluation.
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3 Methodology

3.1 Designing the Artificial Objective

One of the main challenges in using MOEAs to solve single objective optimization
problems is defining the supplementary objectives. In this work, we propose to trans-
form the original single-objective optimization problem into a bi-objective problem.
The first objective is always taken as the objective of the original single optimization
problem, while the second objective is an artificial one. While in principle it would
be possible to consider also the case of more than two objectives, we assume only
one artificial objective. There are a number of ways to define the artificial objective.
Here, we classify them into two categories, namely by whether they address diver-
sity explicitly or implicitly. For those using implicit diversity, the second objective
is built based on some information that may help indirectly support diversity of the
population. The artificial objectives considered are as follows:

• Time stamp: The first artificial objective is a time stamp at the time when an
individual is generated. As in [1], we stamp each individual in the initial popula-
tion with a different time stamp represented by a counter that gets incremented
whenever a new individual is created. From the second population on, all indi-
viduals in the population get the same time stamp, set to the population size
plus the generation index. The time stamp then serves as a second objective to
be minimized (i.e., old individuals are favoured in the selection).

• Random: The second artificial objective is to minimize a random value assigned
to each individual. Some bad individuals may be assigned small random values
and get a chance to survive, which may be useful when the environment changes.

• Inversion: The third approach inverts the original objective function by min-
imizing it if it was a maximization problem, and vice versa, as proposed in [1].

The objectives explicitly addressing diversity will rely on the Euclidean distance
between solutions. We propose three different options as follows, and they are all to
be maximized:

• Distance from the closest neighbour (DCN): The artificial objective of
a solution is the distance from the solution to its closest neighbour. So, a pair
of very similar solutions will have a rather poor second objective value, and a
certain spread of solutions is encouraged.

• Average distance from all individuals (ADI): This objective takes into
account a solution’s average distance from all other solutions in the population.
Again, it encourages the spread of the population over the search space, favouring
solutions at the edge of the population.

• Distance from the best individual of the population (DBI): This objec-
tive will help the algorithm to avoid any possible trap caused from local optima.
The best individual will be located first; then the distance from the solution to
the best individual will be calculated.

3.2 Complexity Analysis

Obviously, the three artificial objectives with implicit diversity preservation can
be calculated very quickly (in constant time). For the others, the computational
complexity is as follows:
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• DCN: We need to calculate the second objective value for all solutions in the
population using Euclidean distance. Further, for each solution, we need to search
for its closest neighbour. Therefore, its computational complexity is O(nN2)
where N is the population size and n is the number of variables.

• ADI: Similarly, this case requires O(nN2) operations since, for each solution,
we need to count all the distances from the solution to all others.

• DBI: Since the best solution is used for calculation of the objective value for all
solutions, complexity is only linear in N , that is, O(nN), much smaller than for
DCN and ADI.

However, in the following, we will compare the approaches solely on the basis
of function evaluations, assuming that the time to calculate distances is negligible
compared to the time to evaluate an individual.

4 Experimental Studies

4.1 Selected MOEA

NSGA2 [9, 10] is one of today’s most successful and most widely used MOEAs. It
is based on two principles, convergence and diversity. Convergence to the Pareto-
optimal front is ensured by nondominated sorting. This method ranks individuals
by iteratively determining the nondominated solutions in the population (nondom-
inated front), assigning those individuals the next best rank, and removing them
from the population. Diversity within one rank is maintained by favouring individu-
als with a large crowding distance, which is defined as the sum of distances between
a solution’s neighbours on either side in each dimension of the objective space.
Furthermore, NSGA2 is an elitist algorithm, i.e., it keeps as many nondominated
solutions as possible (up to the size of the population).

4.2 Moving Peaks Benchmark

We test our approach on the Moving Peaks Benchmark [3, 22]. This is a dynamic
benchmark problem with a number of peaks changing over time in location, width,
and height. Formally, the benchmark function can be formulated as follows:

F (−→x , t) = max[B(−→x ), maxi=1,..,mP (−→x , hi(t), wi(t),
−→p i(t))], (1)

where B is a time-invariant basis landscape, P is the function defining the shape of
the individual peaks with peak-height h, peak-width w, and peak-location p, and i
ranges from 1 to m, where m is the number of peaks.

The benchmark exhibits three different types of change:

• Moving the peaks within the search space does not create new optima. It re-
quires a tracking behaviour of the EA, which has to follow a moving optimum.
Naturally, the faster the peaks move, the more difficult the tracking, up to the
point when the population is unable to follow.

• Changing the peak heights leads to a “jumping” behaviour of the optimum,
when the current optimum is reduced in height and another, previously local
optimum becomes the new global optimum.
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• Changing the width makes the basin of attraction narrower or wider over time.
Because narrower peaks mean that a small peak is less likely to be “covered”
by a higher peak, narrower peaks generally mean a rougher landscape, slowing
down the tracking process.

The benchmark generator has a number of parameters. For a basic scenario, we
used the parameters specified in Table 1.

Table 1. Parameters for the benchmark problem

Parameters Values
Number of peaks 50
Number of dimensions 5
Change frequency 25 generations
Peak function cone
Peak heights 20..70
Peak width 1..12
Correlation coefficient 0.0

We run three sets of experiments. In the first set of experiments, we have a
small shift length of 1.0 for moving the peaks, and consider all combinations of
height severities 7 and 15 and width severities 1 and 3.

In the second set of experiments, we fix the severities for height and width to 7
and 1, respectively, and consider different shift lengths: 1, 3, 5, 7, and 10.

The last set of experiments uses the same settings as in [4], which allows com-
parison with results from the literature. Details can be found in Table 2.

Table 2. Parameter settings for the third set of experiments

Parameters Values
Number of peaks 10
Change frequency 50 generations
Shift severity 1

4.3 Parameter Settings and Performance Assessment

We will compare our MOEAs with some other approaches from the literature,
namely

• a traditional EA,
• random immigrants [12], which, in each generation, replaces a certain percentage

of the individuals with random individuals, and
• hypermutation, which drastically increases the mutation rate for one generation

after a change.
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All MOEAs use NSGA2 with binary representation (with 30 bits for each vari-
able), binary tournament selection, single-point crossover, and bit-flip mutation. The
random immigrants algorithm replaces 20% of the population at each generation
with new individuals, as recommended in [12]. The mutation rate of the hypermu-
tation algorithm is set to 0.5 [6]. In order to have a fair comparison, we also employ
elitism for all three algorithms, where the best solution of the previous generation
is always included in the current one.

The behaviour of the evolutionary methods largely depends on the crossover and
mutation rates used. Therefore, it is necessary to examine the different methods with
a wide range of parameter values to identify a good setting. The crossover rate pc

is varied between 0.5 and 1 with a step size of 0.05 and the mutation rate pm is
varied between 0 and 0.2 with a step size of 0.01. For each pair of pc and pm, 30
runs are performed with different random seeds, a population size of 100, and 1,000
the number of generations.

We report on two performance measures: For the average generation error
(AGEr), we record the best individual in each generation as measured on the original
single objective function. The difference between the objective value of this individ-
ual and the current global optima is known as the generation error. The average
generation error (AGEr) is then the average over all generation errors just before
a new change occurs. The offline error [4] also takes into account how quickly the
new best solution is located. It is defined as the average of all current errors, i.e.,
the average deviation of the best individual evaluated since the last change from the
optimum. Finally, the diversity of the population is also recorded over time. It is
calculated as the average Euclidean distance between all pairs of individuals in the
population in phenotype space.

4.4 Parameter Tuning and Effect of Changing the Peak Width and
Height

Firstly, we try to find the best performance each approach achieved over a wide
range of crossover and mutation rates, and for different change severities of height
and width (our first scenario). These results are summarized in Tables 3 and 4. The
result associated with each approach in the table corresponds to the minimum value
of the AGEr and its associated pair of pc and pm. As can be seen, the height severity
has a larger influence than the width severity.

In general, the traditional EA has the worst performance. This indicates the
need for introducing diversity in the population during the optimization process,
especially after the change, such that the population has enough diversity to adapt to
the new area of the optimum. Of the traditional approaches, hypermutation performs
best. In fact, it is even the best of all tested approaches for the test case with
large height severity and small width severity. The random immigrants approach
didn’t differ much from the baseline traditional EA. The best overall performance
is achieved by the MOEA with DCN or ADI as artificial objective (note that the
difference in results between DCN and ADI is not statistically significant).

The small mutation rate for the random immigrants and hypermutation ap-
proaches may contribute to the fact that diversity is already maintained through
the introduction of new offspring at random for the random immigrants and the
higher mutation rate for the hypermutation algorithm. An overall high mutation
rate is not helpful.
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Table 3. The best pc and pm for each approach and the AGEr ± the standard error
with height change severity of 7.0 and width change severity of 1.0 and 3.0

Width severity 1.0 3.0
The artificial pc (pm) AGEr pc (pm) AGEr
objective function
Traditional EA 0.55 (0.04) 11.48 ± 0.60 0.55 (0.04) 13.69 ± 0.75
Random Immigrants 1.00 (0.01) 11.47 ± 0.56 0.65 (0.01) 13.51 ± 1.06
hypermutation 0.75 (0.01) 11.95 ± 0.59 0.85 (0.01) 13.78 ± 0.63
Time-based objective 0.60 (0.11) 12.06 ± 0.64 0.50 (0.11) 12.96 ± 0.81
Random objective 0.60 (0.10) 11.29 ± 0.55 0.50 (0.08) 12.30 ± 0.96
Inverse objective 0.55 (0.06) 12.37 ± 0.87 0.50 (0.09) 13.96 ± 0.87
DCN 0.75 (0.05) 9.52 ± 0.45 0.65 (0.04) 10.42 ± 0.71
ADI 0.70 (0.06) 9.74 ± 0.35 0.55 (0.04) 9.31 ± 0.51
DBI 0.50 (0.09) 12.24 ± 0.55 0.80 (0.10) 11.79 ± 0.71

Table 4. The best pc and pm for each approach and the AGE ± the standard error
with height change severity of 15.0 and width change severity of 1.0 and 3.0

Width severity 1.0 3.0
The artificial pc (pm) AGEr pc (pm) AGEr
objective function
Traditional EA 0.55 (0.07) 16.14 ± 0.71 0.50 (0.04) 14.79 ± 0.85
Random Immigrants 0.55 (0.03) 15.38 ± 0.81 0.80 (0.02) 14.67 ± 0.70
hypermutation 0.70 (0.02) 11.96 ± 0.80 0.80 (0.02) 12.70 ± 0.66
Time-based objective 1.00 (0.10) 12.06 ± 0.80 0.55 (0.09) 15.06 ± 1.00
Random objective 0.55 (0.10) 14.79 ± 0.66 0.65 (0.09) 14.20 ± 0.83
Inverse objective 0.50 (0.07) 15.98 ± 0.89 0.60 (0.07) 15.28 ± 0.88
DCN 0.50 (0.07) 12.68 ± 0.60 0.50 (0.06) 12.56 ± 0.62
ADI 0.65 (0.06) 13.18 ± 0.52 0.50 (0.05) 13.00 ± 0.63
DBI 0.60 (0.06) 14.05 ± 0.61 0.60 (0.07) 13.96 ± 0.74

Figures 1 and 2 visualize the values of AGEr for different values of crossover
and mutation rates for the two best MOEA representatives and traditional EA ap-
proaches: ADI and hypermutation. Obviously, the absence of mutation deteriorates
the quality of solutions. This effect is stronger for ADI than for hypermutation.
Hypermutation can still introduce new genetic material when triggered. With ADI,
genetic material, once lost, can never be regenerated. Over all considered change
severities, the surface for ADI is smoother than that for hypermutation, indicating
that the approach produces more reliable results. A good performance was achieved
for MOEAs within an area centred around pc = 0.6, pm = 0.07. In this area, the
DCN and ADI approaches produced the best results. The traditional EA and ran-
dom immigrants approaches are very sensitive to the mutation rate (not shown).
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Fig. 1. The AGEr achieved from the hypermutation over different ranges of pc and
pm in four different cases of change severities: (7,1),(7,3),(15,1),(15,3)

4.5 Analysis of the Effect of Moving Peaks

In the second scenario, we investigate the performance of the algorithms under
the effect of moving peaks with different shift lengths. Height change severity and
width change severity were fixed at 7.0 and 1.0, respectively, and the best algorithm
parameters found for this scenario in the previous subsection were used. We again
measure the value of AGEr for all algorithms and report them in Table 5.

The results still show the best performance for DCN and ADI. The results also
demonstrate the inefficiency of the three proposed objectives using implicit diversity
(time stamp, random, and inverse). They seem not to make any improvement in
comparison with other single-objective methods (EA, hypermutation, and random
immigrants).

4.6 Comparison with Self-organizing Scouts (SOS)

In order to compare our approaches with more complex state-of-the-art approaches,
the third problem set uses the same parameter settings as used in [4] for testing the
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Fig. 2. The AGEr achieved from ADI over different ranges of pc and pm in four
different cases of change severities: (7,1),(7,3),(15,1),(15,3)

Table 5. The obtained AGEr and the standard error of all algorithms with different
shift severities: 1, 3, 5, 7, 10

Algs 1 3 5 7 10
Traditional EA 11.48 ±0.6 12.31 ±0.90 12.73 ±0.89 13.41 ±0.88 14.86 ±0.92
Rand. Imm. 11.47 ±0.56 12.57 ±0.90 12.79 ±0.96 13.19 ±0.93 13.98 ±0.98
Hypermutation 11.95 ±0.59 11.71 ±0.88 12.35 ±0.92 12.86 ±0.84 12.97 ±0.92
Time objective 12.06 ±0.64 13.09 ±0.87 14.17 ±0.88 14.96 ±0.87 15.21 ±0.93
Rand. obj. 11.29 ±0.55 12.52 ±0.85 13.36 ±0.87 13.91 ±0.87 14.11 ±0.92
Inv. obj. 12.37 ±0.87 13.37 ±0.85 13.59 ±0.86 14.03 ±0.86 14.67 ±0.93
DCN 9.52 ±0.45 10.64 ±0.80 11.10 ±0.79 11.77 ±0.80 12.36 ±0.86
ADI 9.74 ±0.35 11.20 ±0.97 12.84 ±1.05 13.13 ±0.93 13.67 ±0.89
DBI 12.24 ±0.55 13.44 ±0.94 14.27 ±0.98 14.59 ±0.91 15.04 ±0.95

self-organizing scouts (see Table 2). The offline errors of all tested algorithms are
reported in Table 6.
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Note in particular that the change frequency is lower than in the previous ex-
periments. This allows algorithms more time to recover from the change. However,
MOEAs with implicit diversity objective showed a slow ability of recovering in com-
parison to the other algorithms. Their values of offline error are the worst. Mean-
while, the algorithms using explicit diversity (especially DCN and ADI) are still the
best, with the smallest values of offline error.

Since self-organizing scouts used real-valued representation, for consistency we
also tested the approaches with real-valued representation. For this, the SBX
crossover and polynomial mutation [9] were used. The offline error was also recorded
for each approach and reported in Table 6. Although the trend does not change re-
garding the performance of EMO and the traditional methods, it is interesting to
see that the approaches with real-valued representation generally obtained better
results in comparison with those using binary representation.

For self-organizing scouts, Branke [4] reported an offline error of 4.01, which is
a bit lower than the 4.60 we found for our MOEA with DCN as artificial objective.
Still, we believe this is a promising result, as our approach is much simpler than
self-organizing scouts and basically uses standard MOEA software.

Table 6. The off-line error and its standard error obtained with the problem instance
from the literature

Algorithms Binary Rep. Real-valued Rep.
Traditional EA 6.63±0.158 5.72±0.11
Random Immigrants 6.80±0.132 5.82±0.109
Hypermutation 6.11±0.206 5.88±0.082
Time objective 8.04±0.299 6.38±0.179
Random objective 7.52±0.211 5.67±0.119
Inverse objective 8.45±0.244 8.08±0.215
DCN 5.84±0.131 4.60±0.085
ADI 5.35±0.162 5.25±0.161
DBI 6.21±0.155 6.40±0.235

4.7 Diversity Measurement

We now investigate the underlying reason for the superior performance of DCN and
ADI. We hypothesised that diversity plays a key role in solving the dynamic opti-
mization problem. We implemented both explicit and implicit diversity as the sec-
ond objective function to make the single-objective dynamic problem a bi-objective
problem. Especially for DCN and ADI, they directly impose the geometrical spread
of the population and discourage crowding consistently over time. Further, NSGA2
with crowding distance also provides a good mechanism to preserve diversity in the
population.

To further support our hypothesis, we measure the phenotypic diversity of the
population for each approach over time as the average Euclidean distance between all
pairs of individuals. A typical example is shown in Figure 3. Clearly, ADI maintains
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the highest level of diversity throughout the run. On average, DCN, hypermutation,
and random immigrants have a similar level of diversity. But while hypermutation is
strongly oscillating, random immigrants and DCN maintain a more or less constant
level of diversity. The fact that DCN performs much better than random immi-
grants in terms of AGEr is probably due to a more intelligent strategy to maintain
this diversity. Instead of introducing just random (and mostly useless) individuals,
diversity is maintained by keeping good but different individuals.
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Fig. 3. The diversity of the population over time with change severities of height
= 7.0, width = 1.0, and with shift = 5.0 (using binary representation)

In summary, the above results show that integrating diversity into EMO offers a
promising solution to dynamic optimization problems. The diversity-based objective
helps the EMO approach outperform the random immigrant and hypermutation
algorithms.

5 Conclusion

This chapter has proposed a new way to maintain diversity in the population in
order to improve the EA’s ability to continuously adapt to a dynamic environment.
The main idea is to add an artificial objective with the goal of encouraging diver-
sity, and then to use a standard MOEA technique to solve the (now two-objective)
optimization problem.
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We looked into a number of alternatives for the artificial objective and compared
these alternatives empirically with each other and with some other results from the
literature. Of the six tested artificial objectives, only those which explicitly take into
account diversity seem to perform well in all scenarios. The best ones clearly out-
perform the standard EA and classical diversity control techniques, such as random
immigrants or hypermutation. When compared to self-organizing scouts, a state-of-
the-art evolutionary algorithm specifically designed for dynamic environments, our
approach is slightly inferior, but it is much simpler and easier to implement.

In future, we intend to investigate other types of diversity as the second objective
such as using the niche count (as in fitness sharing) instead of the average distance
to all other individuals.
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Summary. Finding the native structure of a protein starting from its amino acid
sequence remains one of the most challenging open problems in bioinformatics and
molecular biology. The Protein Structure Prediction (PSP) problem has been tack-
led from many different directions. The common approach is to cast it in the form
of a global single-objective optimization problem using energy functions to evaluate
the physical state of the conformations. In this work we reformulate the PSP as a
multiobjective optimization problem motivated by the fact that the folded state of
a protein is a small ensemble of conformational structures. A 2-objective decompo-
sition of the CHARMM energy function is proposed based on local and nonlocal
interactions between atoms, supported by experimental evidence that these objec-
tives are in fact conflicting. A new MOEA algorithm is used to search for (observed)
Pareto-optimal sets of conformations with respect to the 2-objective formulation
and tested on a large set of medium-size proteins (26-70 residues), with results
demonstrating the effectiveness of this approach and providing different measures of
protein complexity. Results also point to instances in which the CHARMM energy
model suffers from low accuracy owing to the required trade-off between differing
objectives in finding “good” conformations.

1 Introduction

Central to the field of protein structural biology is a set of observations, hypotheses
and paradoxes. The thermodynamic hypothesis postulates that the native state of a
protein is the state of lowest free energy of the protein system under physiological
conditions [2]. Anfinsen’s hypothesis claims that the information determining the
three-dimensional structure of a protein is a consequence of both its amino acid se-
quence and the solvent environment [1]. The function of proteins is directly related
to the three-dimensional conformations assumed by the proteins. From the protein
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structure it is theoretically possible to infer the protein function. Hence, sequence →
structure → function is another well-known paradigm in molecular biology. Accord-
ing to Levinthal’s paradox, it would take the present age of the universe for a protein
to explore all possible configurations and locate the minimum energy configuration
[18].

The free energy of a protein can be modeled as a function of the different interac-
tions within the protein. These interactions (local, nonlocal, hydrophobic, entropic
effects, hydrogen bonding) depend on the positions of the atoms of the protein. The
set of atomic coordinates providing the minimum possible value of free energy corre-
sponds to the native conformation of the protein. Since the interactions comprising
the energy function are highly nonconvex, the protein structure prediction problem
must be tackled as a global optimization problem.

For the past fifty years, the protein structure prediction problem has been defined
as a large single-objective optimization problem, with researchers employing Molecu-
lar Dynamics, Monte Carlo methods and Evolutionary Algorithms [3, 27, 23, 6, 12].
In this chapter, we reason by computational experiments that it would be more suit-
able to model the protein structure prediction problem as a multiobjective optimiza-
tion problem. The goal of our research is to find a set of equivalent three-dimensional
folded conformations, relying on the observation that the folded state is one of only
a small ensemble of all possible conformations [24]. We adopt a multiobjective ap-
proach in order to obtain “good” nondominated compact solutions near or inside
the folded state. At any stage the protein exists in an ensemble of conformations
which comprise an approximated Pareto front. As described later in the chapter, we
consider two conflicting forces/objectives: local and nonlocal interactions. A more
thorough comparison of our approach with other state-of-the-art PSP methods may
be found in [8, 7]. Here we explore the advantages of this approach and attempt to
validate it through detailed computational studies on a large test-bed of proteins.

To our knowledge there are only two previous works that study PSP as a mul-
tiobjective optimization problem. In a recent article [10], Lamont and coauthors
reformulated the PSP problem as a MOP using a multiobjective evolutionary algo-
rithm (MOfmGA), but limited their study to two small protein sequences: [Met]-
enkephelin (five residues) and polyalanine (14 residues). Schulze-Kremer has also
used multiobjective optimization.3 In particular he used RMSD as an additional
objective with the rationale that “more . . . information about genuine protein confor-
mations should improve the fitness function to guide the genetic algorithm towards
native-like conformations”. This approach is problematic in that it assumes advance
knowledge of the native conformation, which of course is not the case for newly
discovered protein sequences.

The chapter is organized as follows. We begin by explaining the energy model
used for the PSP problem. After discussing how conformations are represented, we
introduce the multiobjective formulation and present experimental evidence sup-
porting the notion that various objectives are in fact conflicting. Section 4 describes
the designed multiobjective evolutionary algorithm and the mutation operators used.
Next, a simple angle-based decision making method is presented to select solutions
from the computed Pareto sets as a post-processing phase. Section 5 reports the
results of the computational studies on the proposed test-bed of proteins. The first
set of results presents an exhaustive study of six proteins extracted from the lit-

3 http://www.techfak.uni-bielefeld.de/bcd/Curric/ProtEn
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erature. The dynamics of the Pareto fronts are presented, coupled with analysis of
the structural quality of the conformations during the evolutionary process guided
by the MOEA. Additional analysis at the level of correlation between the energy
function and the metrics (RMSD and DME) used is reported. The second set of
results evaluates the performance of our approach on another seven proteins ex-
tracted from the literature. We conclude with a summary of results and possible
future investigations.

2 Multiobjective Optimization

Many optimization problems involve multiple, conflicting, and noncommensurate
objective functions having strong nonlinear interdependence and several constraints;
in general, it is desirable to optimize all objective functions simultaneously. The pri-
mary goal of such optimization problems is to obtain a class of equivalent solutions,
usually called efficient or Pareto optimal.

A conformation cpo is Pareto optimal if there exists no feasible point c which
would decrease some criterion without causing a simultaneous increase in at least
one other criterion. A Pareto optimal set that truly meets this definition is called
a true Pareto-optimal set, P∗

true. In contrast, a Pareto-optimal set that is obtained
by means of an optimization method is referred to as an observed Pareto-optimal
set, P∗

obs. In reality, an observed Pareto optimal set is an estimate of a true Pareto-
optimal set. Identifying a good estimate P∗

obs is the key factor for the decision maker’s
selection of a compromise solution, which satisfies the objectives as much as possible.
We denote the observed Pareto-optimal set obtained at time-step t using an opti-
mization method by P∗,t

obs (or the current observed Pareto-optimal set). Moreover,
we have

P∗,t
obs = {xt

1, . . . ,x
t
np} (1)

where np =| P∗,t
obs | is the total number of observed Pareto solutions at time step t.

Consequently, the major problem a decision maker faces is to find “the best”

x ∈ P∗
obs.

Definition 3 For a given MOP f(x) and Pareto-optimal set P∗, the Pareto front,
PF ∗, is defined as:

PF ∗ = {u = f = (f1(x), . . . , fk(x)) | x ∈ P∗}. (2)

As for the Pareto optimal set, we can define the observed Pareto front at time
step t by an optimization method:

PF ∗,t
obs = {ut

1,u
t
2, . . . ,u

t
N}, (3)

where N =| PF ∗,t
obs | is the total number of observed Pareto front solutions at time

step t.
The goals of our research work are to find a PF ∗

obs as close as possible to PF ∗

and to find a PF ∗
obs as diverse as possible by the application of multiobjective opti-

mization algorithms for PSP. Identifying a good estimate of PF ∗,t
obs is crucial for the
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decision maker’s selection of a good protein conformation in terms of given metrics.
In sum, an MOP consists of the following procedure: finding the optimal (or the
observed) Pareto front and choosing one of the candidate solutions in the Pareto
front using some higher-level information. The design, application, and evaluation
of procedures for determining the most preferred alternative from a set of nondom-
inated alternatives is currently a topic of interest dealt with in the field of MCDM
(see the introduction chapter, page 14).

3 Energy Modeling

3.1 Representation Models

A nontrivial task that preempts use of any search procedure to attack the PSP
problem is the selection of a good representation for the conformations. Few confor-
mation representations are commonly used: all-atom 3D coordinates, all-heavy-atom
coordinates, backbone atom coordinates + sidechain centroids, Cα coordinates, and
backbone and sidechain torsion angles. Some algorithms use multiple representations
simultaneously for different purposes. The relative advantages of different represen-
tations is in and of itself a topic of great interest in evolutionary computation, and
in optimization in general.

In the current work, we use an internal coordinates representation (torsion an-
gles), which is currently the most widely used representation model for real proteins.
Each residue type requires a fixed number of torsion angles to fix the 3D coordi-
nates of all atoms. Bond lengths and angles are fixed at their ideal values. All the
ω torsion angles are fixed at their ideal value at 180◦. So, the degrees of freedom
in this representation are the backbone and sidechain torsion angles (φ, ψ and χi).
The number of χ angles depends on the residue type.

The planar bond angle
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Fig. 1. Internal coordinates representation (torsion angles)

Figure 1 illustrates the representation used and the meaning of the different
torsion angles
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3.2 Multiobjective Formulation

In order to evaluate the structure of a molecule, we need to use some cost functions.
Sometimes called potential energy functions or force fields, these functions return
a value for the energy based on the conformation of the molecule. As such, they
provide information on which conformations of the molecule are better or worse. A
lower the energy value represents a better conformation.

The literature on cost functions is enormous [19, 13, 5]. In this work we use
the CHARMM (version 27) energy function. CHARMM (Chemistry at HARvard
Macromolecular Mechanics) is a popular all-atom force field used mainly for studying
macromolecules [20]. It is a composite sum of several molecular mechanics equations
grouped into two major types: bonded (stretching, bending, torsion, Urey-Bradley,
impropers) and non-bonded (van der Waals, electrostatics) interactions.

Following the structure of the energy function, we can think of a protein as a
collection of atoms linked by chemical bonds. With the symbol ai ↔ aj we represent
a chemical bond between the two atoms ai and aj . Using this notation we can divide
all the atoms into two categories: bonded atoms and non-bonded atoms:

Abond = {< ai, . . . , ai+k > |∃ai ↔ ai+1}, ∀i = 1 . . . k, 1 ≤ k ≤ 3, (4)

A¬bond = {< ai, . . . , aj > |¬∃ai ↔ aj}, ∀i, j. (5)

The bond set Abond represents the set of all atom chains with a maximum length
of four. In this way we consider only bonds, angles and torsion interactions between
atoms, i.e., local interaction. The A¬bond set represents all the atoms not connected
by a chemical bond, which are atoms separated by at least three or more covalent
bonds, and whose interactions are thus nonlocal. This division reflects the decompo-
sition of the CHARMM energy function into two partial sums, bond and non-bond
atom energies:

f1 = Ebond(Abond,Cbond), f2 = E¬bond(Anon−bond,Cnon−bond), (6)

where symbols Cbond and C¬bond are, respectively, the force constants involved for
bonded and non-bonded atoms (for a detailed description of these constants see
[20]).

The bond energy characterizes the interactions between residues that are neigh-
bours along the primary sequence. The non-bond term represents the interaction
between residues that are separated in the primary sequence by at least two inter-
vening residues (one to four interactions).

We reduce the size of the conformational space bounding the backbone tor-
sion angles by limiting it to regions that satisfy secondary and supersecondary
constraints. Each torsion angle is constrained to lie in a range which reflects the
secondary structure prediction for the residue. Table 1 reports the different ranges
for each class. The native classes are based on the full DSSP 8-class classification.
The predicted classes are based on the artificial neural network method presented in
[28]. Side-chain torsion angles are constrained in regions derived from the backbone-
independent rotamer library of Roland L. Dunbrack [26]. Side-chain constraint re-
gions are of the form [μ− σ, μ + σ], where μ and σ are the mean and the standard
deviation for each side-chain torsion angle computed from the rotamer library. It
is important to note that under these constraints the conformation is still highly



98 Cutello et al.

Table 1. Corresponding regions of the Secondary and Supersecondary Structure
Constraints both for the native (a) and predicted (b) case

(a) Native

Structures φ ψ

H (α-helix) [−67◦,−47◦] [−57◦,−37◦]
B (β-bridge) [−130◦,−110◦] [110◦, 130◦]
E (β-strand) [−130◦,−110◦] [110◦, 130◦]
G (3 − 10-helix) [−59◦,−39◦] [−36◦, 16◦]
I (pi-helix) [−67◦,−47◦] [−80◦,−60◦]
T (turn) [−180◦, 180◦] [−180◦, 180◦]
S (bend) [−180◦, 180◦] [−180◦, 180◦]
U (undefined) [−180◦, 180◦] [−180◦, 180◦]

(b) Predicted

Structures φ ψ

H (α-helix) [−75◦,−55◦] [−50◦,−30◦]
E (β-strand) [−130◦,−110◦] [110◦, 130◦]
a [−150◦,−30◦] [−100◦, 50◦]
b [−230◦,−30◦] [100◦, 200◦]
e [30◦, 130◦] [130◦, 260◦]
l [30◦, 150◦] [−60◦, 90◦]
t [−160◦,−50◦] [50◦, 100◦]
U (undefined) [−180◦, 180◦] [−180◦, 180◦]

flexible and the structure can take on various shapes that are vastly different from
the native shape. We use both the native and predicted secondary structures to
compare the quality of the obtained conformations.

Using this representation, the multiobjective formulation is the following: the
two functions f1 and f2 represent our minimization objectives, the torsion angles
of the protein are the decision variables of the multiobjective problem, and the
constraint regions derived by the secondary structures are the variable bounds.

3.3 Bond Energy vs. Non-bond Energy

Before we analyze the quality of the obtained results, we offer experimental valida-
tion for this particular multiobjective approach. It is based on the fact that local
interaction (bond energy) and nonlocal interaction (non-bond energy) among atoms
are in conflict, this being the typical characteristic of a multiobjective optimization
problem. The literature on energy functions is vast, and most of the major energy
functions are based on the combined use of bond and non-bond energies. While there
is no formal proof about the conflict between them, we present an intuitive argument
of the conflicting nature of bond and non-bond interactions and then show how it
is possible to verify it experimentally.

Mentioned above is the thermodynamic hypothesis, which states that the native
structure of a protein is that conformation which sits at the global minimum of the
thermodynamical potential (free energy) of the protein [1]. This is a valid principle
that governs the protein conformational search even if it is a simplified version of the
real-world scenario. Along the pathway to reach the native structure, the protein is
forced “to decide” what to do next. It is quite clear that the protein moves in such a
way as to decrease the bond energy of the system locally, not globally. For example,
the electrostatic interactions or the short distance van der Waals interaction of
atoms nearby in space but far in primary sequence could be penalized although an
improvement is reached in bond, angles or torsion energies. This example represents
the conflict between minimizing local and nonlocal interactions.

This simple intuition is demonstrated experimentally by the plot in Figure 2. In
this figure we show the typical bond and non-bond energy course during the itera-
tions of the multiobjective evolutionary algorithm (see Section 4). It is clear that the



Computational Studies of PSP Problems via MOEAs 99

two functions are in conflict. If one interaction decreases, the other always increases.
At the same time, there are compensatory effects that result in the minimization of
the total energy.
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Fig. 2. Landscape illustrating the conflict between bond and non-bond energies.
Left y axis range is for non-bond energy, right y axis range is for bond energy

4 The Multiobjective Evolutionary Algorithm

The PAES (Pareto Archived Evolutionary Strategy) algorithm was proposed for the
first time by Knowles and Corne in 1999 [16]. PAES is a multiobjective optimizer
which uses a simple (1+1) local search evolution strategy. Nonetheless, it is capable
of finding diverse solutions in the Pareto-optimal set because it maintains an archive
of nondominated solutions which it exploits to accurately estimate the quality of
new candidate solutions. At each iteration t, a candidate solution ct and a mutated
solution mt are compared for dominance. In the case that either one dominates the
other, the dominating solution becomes the current solution of the next iteration.
If neither solution dominates the other, the new candidate solution is compared
with a reference population of previously archived nondominated solutions. If the
comparison fails to favour one solution over the other, the chosen solution is the one
which resides in the least crowded region of the space. A maximum size of the archive
is always maintained. The crowding procedure is based on recursively dividing up
each dimension of the objective space into 2d equal-sized hypercubes, where d is a
user defined ‘depth’ parameter. The algorithm continues until a given, fixed number
of iterations is reached.

PAES by itself has proved to be a useful MOEA with successful application in
several different fields. However, when applied to the PSP problem, we have observed
poor performance both in terms of energy function and final structure obtained (see
Table 2). The complexity of the funnel landscape of the PSP problem, which is
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I-PAES(depth, archive size, objectives)
1. t := 0;
2. Initialize(c); /*Generate initial random solution*/
3. Evaluate(c); /*Evaluation of initial solution*/
4. AddToArchive(c); /*Add c to archive*/
5. while(not(Termination()))

/*Start Immune phase*/

6. (cclo
1 , cclo

2 ) := Cloning(c); /*Clonal expansion phase*/

7. (chyp
1 , chyp

2 ) := Hypermutation(cclo
1 , cclo

2 ); /*Affinity maturation*/

8. Evaluate(chyp
1 , chyp

2 ); /*Evaluation phase*/

9. if(chyp
1 dominates chyp

2 ) m := chyp
1 ;

10. else if(chyp
2 dominates chyp

1 ) m := chyp
2 ;

11. else m := Best(chyp
1 , chyp

2 ); /*min Echarmm selection*/

12. AddToArchive(Worst(chyp
1 , chyp

2 )); /*max Echarmm selection*/
/*End Immune phase*/
/*Start (1+1)-PAES*/

13. if(c dominates m) discard m;
14. else if(m dominates c)
15. AddToArchive(m);
16. c := m;
17. else if(m is dominated by any member of the archive) discard m;
18. else test(c, m, archive size, depth);
19. t := t + 1;
20. endwhile

Fig. 3. Pseudocode of I-PAES

characterized by a huge number of local minima, coupled with the goal of producing
a “good” conformation from a structural point of view (RMSD and DME), clearly
poses many problems (e.g., premature convergence, trapping in local minima, etc).
These kinds of results are reported in Section 5.1, and they have motivated us to
develop a more sophisticated algorithm.

I-PAES [8, 7] is a modified version of PAES [16, 17] with a different solution
representation (polypeptide chain) and immune-inspired (cloning and hypermuta-
tion) operators [22]. The algorithm starts by initializing a random conformation.
The torsion angles (φ, ψ, χi) are generated randomly from the constraint regions.
Next, the energy of the conformation (a point in the landscape) is evaluated. The
protein structure in internal coordinates (torsion angles) is transformed into Carte-
sian coordinates. The CHARMM energy potential of the structure is then computed
using routines from the TINKER Molecular Modeling Package.4

At this point, we have the main loop of the algorithm. From the current solution,
two clones will be generated, producing the solutions (cclo

1 , cclo
2 ) which will be mu-

tated into (chyp
1 , chyp

2 ). After evaluation, the better clone (min Echarmm) of chyp
1 and

chyp
2 is selected as the new mutated solution m, while the other one, if possible, is

4 http://dasher.wustl.edu/tinker/
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added to the archive following the standard method of PAES to update the archive.
From this moment on, the algorithm proceeds following the standard structure of
PAES. Figure 3 shows the pseudocode of the algorithm.

4.1 Mutation Operators

Two kinds of mutation operators are used in the affinity maturation phase (line 7 of
I-PAES). The first clone is mutated using the first mutation operator and the second
clone using the second mutation operator. The first mutation operator, M1, may
change the conformation dramatically. When this operator acts on a peptide chain,
all the values of the backbone and sidechain torsion angles of a randomly chosen
residue are reselected from their corresponding constrained regions. The probability
for the application of this operator is regulated by the following law:

M1(f fe) = e

( −2×(f fe)
Tmax

)

, (7)

where Tmax is the maximum number of evaluations allowed and f fe is the number
of fitness function evaluations performed. The probability of mutation decreases as
the search method proceeds. The second mutation operator, M2, performs a local
search of the conformational space. It will perturb some torsion angles (φ, ψ, χi) of
a randomly chosen residue with the law θ′ = θ + N(0, 1), where θ is the generic
torsion angle, and N(0, 1) is a real number generated by a Gaussian distribution of
mean μ = 0 and standard deviation σ = 1. The mutation rate used is similar to that
in the scheme presented in [6]. The number of mutations decreases as the search
method proceeds following the law

M2(f fe) = 1 +

(
L

k

)

× e

( −2×(f fe)
Tmax

)

, (8)

where f fe and Tmax are defined as before, L is the number of residues and k is a
constant set to 4.

The simple idea behind these equations operators is to maintain a high level of
diversity in the PAES archive while preventing premature convergence. As we will
see later in the results section, these operators will play an important role, improving
the performance of the algorithm in contrast to the use of a static mutation rate.

4.2 Decision-making Phase

After a Pareto front is found, one has to choose a solution (or a class of solutions)
in this front using some “higher-level information”. Such a decision making phase
can be difficult to accomplish, in particular when the number of objectives and
solutions is large. Although there is no universally accepted method, in general the
most interesting solutions of the observed Pareto front are characterized by the
fact that a small improvement in one objective will cause a large deterioration in
at least one other objective. These solutions are called knees [4, 11]. A simple and
effective algorithm for finding the knees in the Pareto front is based on an angle-
based method which uses the four closest neighbours. Given a conformation point
P, if we denote by A1 and A2 the two closest points from the left, and by B1 and

B2 the two closest points from the right, we can form four angles: ̂A1PB1, ̂A1PB2,
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̂A2PB1, and ̂A2PB2. The greatest of these four angles is then assigned to P. The
knees of the Pareto front are the angles greater than a given threshold. Using this
idea, we can adopt the following decision-making scheme:

1. detect the solutions which lie in the knees of the observed Pareto front, using
the angle-based method with four neighbours described above; and

2. select the solution with the lowest energy function value from these samples.

This simple method is able to select solutions with a good trade-off between
energy and metrics values (DME and RMSD).

This is just one possible approach for the decision-making phase. It is possible
to use other types of higher-level information to select solutions from the Pareto
front, using for instance structure stability, compactness, or hydrophobic score.

5 Computational Studies

5.1 First Set of Results and Discussions

In the first set of experiments, we apply the approach to six protein sequences,
five extracted from reference [6] and one from [9]: 1ZDD, 1ROP, 1CRN, 1UTG,
1R69 and 1CTF. 1ZDD (Disulfide-Stabilized Mini Protein A Domain) is a two-helix
peptide of 34 residues. For this protein the secondary structure constraints were
predicted by the SCRATCH5 prediction server [25]. 1ROP (repressor of primer) is a
4-helix bundle protein that is composed of two identical monomers. Each monomer
has 56 residues and forms an α-turn-α structure. 1CRN (crambin) is a 46-residue
protein with two α-helices and a pair of β-strands. It has three disulphide bonds,
whose constraints we do not use. 1UTG (uteroglobin) is a 4-helix protein that has
70 residues. 1R69 (Amino-Terminal domain of phage 434 Repressor) is 63-residue
protein with five short α-helices; two of these form a helix-turn-helix motif. 1CTF
(C-terminal domain of the ribosomal protein L7/L12) is 68-residue protein. It has
six secondary structures (three α-helix and three β-strands). For these proteins
we set the maximum number of energy function evaluations to 2.5 × 105. For the
proteins 1ROP, 1CRN, 1R69 and 1CTF the supersecondary structure constraints
were predicted by a well-known artificial neural network method [28].

The discussion is as follows. First, we compare the performance of different
versions of the PAES and I-PAES algorithms on the first protein set. Then we study
the stability of the approach with respect to the native and predicted secondary
structure constraints. Finally, we show specific results for each protein in terms of
the obtained observed Pareto-optimal sets at different time steps, P∗,t

obs, and various
dynamics of the algorithm during the evolution.

A Class of PAES Algorithms for the PSP

We start our computational studies with a comparison of different versions of the
PAES evolution strategy. Four versions of the PAES algorithm are presented: I-
PAESm and I-PAESs are instances of the modified version of PAES proposed in [8]
featuring, respectively, dynamic (exponential decay) and static (single mutation)

5 http://www.ics.uci.edu/%7Ebaldig/scratch/
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rates. (1+1)-PAES1 and (1+1)-PAES2 are two instances of the standard PAES
algorithm where the first version uses only the local mutation operator, M2, while
the second version uses the combination of both operators, global (M1) and local
(M2). Note that for both versions of (1+1)-PAES a residue is selected according to
the standard PAES mutation strategy, with probability 1/l, where l is the length of
the protein (number of residues).

In Table 2 we show the comparative results on ten independent runs between the
four different versions of the PAES algorithm. The first interesting result is connected
to the use of the global (M1) mutation operators, which clearly plays an important
role in the exploration of the conformational space. In fact, in terms of energy, lower
energy values are obtained using both the local and the global mutation operators.
This is seen by the fact that the (1+1)-PAES1 algorithm, which uses only the local
mutation operator, is unable to efficiently optimize the energy function value. On
the other hand, if we inspect the results at the algorithm level comparing (1+1)-
PAES with I-PAES, we observe a better overall behaviour of the I-PAES algorithm.
This is related to the different selection scheme used by I-PAES with respect to
(1+1)-PAES.

Table 2. Comparative results between I-PAESs, I-PAESm, (1+1)-PAES1 and
(1+1)-PAES2. For each protein we report the Protein Data Bank (PDB) identifier,
the length (number of residues), the approximate class (α-helix, β-sheet), and the
energy values of the native structures. The last three columns show the best results
obtained for each protein on ten independent runs. The DME and RMSD values
are measured on Cα atoms from the native structure. Energy values are calculated
using the ANALYZE routine from TINKER

Protein Algorithm DMEmin (Å) RMSDmin (Å) Min energy (kcal/mol)

1ROP(56 aa) I-PAESs 2.01 4.11 −661.48
class: α I-PAESm 1.684 3.70 −902.36
energy: -667.05 kcal/mol (1+1)-PAES1 4.91 6.31 2640.77

(1+1)-PAES2 5.99 8.665 −409.95

1UTG(70 aa) I-PAESs 4.49 5.11 282.24
class: α I-PAESm 3.79 4.60 573.89
energy: -142.46 kcal/mol (1+1)-PAES1 4.71 6.04 7563.07

(1+1)-PAES2 4.82 5.56 397.12

1CRN(46 aa) I-PAESs 4.13 4.73 232.29
class: α + β I-PAESm 3.72 4.31 509.09
energy: 202.73 kcal/mol (1+1)-PAES1 4.67 6.18 1653.93

(1+1)-PAES2 6.05 7.89 509.52

1R69(63 aa) I-PAESs 5.93 8.42 211.26
class: α I-PAESm 4.91 5.05 264.56
energy: -676.53 kcal/mol (1+1)-PAES1 5.16 7.59 9037.89

(1+1)-PAES2 6.88 8.52 659.49

1CTF(68 aa) I-PAESs 8.08 10.69 71.55
class: α + β I-PAESm 6.82 10.12 218.99
energy: 230.08 kcal/mol (1+1)-PAES1 9.61 12.09 1424.33

(1+1)-PAES2 8.84 10.21 617.69
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Table 3. Comparative results using Native and Predicted Secondary Structure con-
straints with I-PAES. For each protein we report the Protein Data Bank (PDB)
identifier, the length (number of residues), and the approximate class (α-helix, β-
sheet). The last three columns show the best results obtained for each protein on
ten independent runs. The DME and RMSD values are measured on Cα atoms
from the native structure

Protein Nres class Best DMEmin (Å) Best RMSDmin (Å) Best energy (kcal/mol)

native predicted native predicted native predicted

1ZDD 34 α 2.01 1.54 3.26 2.27 −1500.31 −1052.09
1ROP 56 α 1.52 1.62 3.47 3.70 −992.77 −902.36
1CRN 46 α + β 4.75 3.72 3.86 4.43 126.76 509.09
1UTG 70 α 7.01 3.79 6.92 4.60 −667.91 573.89
1R69 63 α 6.51 4.09 5.93 5.05 −648.72 264.56
1CTF 68 α + β 9.39 6.82 12.94 10.12 −409.13 218.98

Native Versus Predicted Constraints

In this section we study the impact of the use of the native secondary structure
information with respect to the predicted one. Table 3 shows the results for each
protein.

One would expect an improvement in the quality of the computed conformations
when the native (known) secondary structures are used. Evident from inspection of
the results in Table 3 is that while the imposed native constraints allow one to find
better energies for all the proteins, the obtained conformational structures in fact do
not take advantage of the native secondary structure except for proteins with “sim-
ple” native 3D conformations. I-PAES continues to show a good performance on
1ZDD and 1ROP proteins while for 1UTG, 1CTF and 1R69 the results get worse. A
different behaviour is observed for the 1CRN protein which shows results somehow
intermediate between the simple and the more complex proteins. A possible expla-
nation of this phenomena is the following: the conformational constraints imposed
by the native secondary structure do not alter the flexibility of the residues along the
connecting peptides (turns, twists, etc.). In fact, while the constraint regions of the
torsion angles are still relatively large, the secondary structural elements (α-helix,
β-strands) now have a more stable and fixed structure which probably does not help
the protein folding generated by the evolutionary algorithm.

Conformational Energy and Structure Dynamics

In order to better understand the exploration of the conformational space carried
out by the proposed evolutionary algorithm, we save, for each run at each iteration,
statistical information for the solutions in the archive: energy values, archive size,
metrics (RMSD and DME). Figure 4 shows the final best Pareto fronts obtained by
I-PAES for each studied protein. It is evident how approximate Pareto fronts of the
nondominated solutions are effectively obtained for each protein. The distribution of
points along the fronts shows a higher number of points for the non-bond objective
compared to the bond objective. The algorithm samples more points along the non-
bond objective relative to the bond one, which means that the non-bond energy has
more variability and a higher weight during the evolution of the algorithm. This
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Fig. 4. Final best Pareto front with the characteristic energy function vs. RMSD
values plot (inset figure) for (a) 1ZDD, (b) 1ROP, (c) 1CRN, (d) 1UTG, (e) 1R69,
and (f) 1CTF
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Fig. 5. Observed Pareto fronts at different iterations for (a) 1ZDD, (b) 1ROP, (c)
1CRN, (d) 1UTG, (e) 1R69, and (f) 1CTF
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reflects experimentally the theory that the non-bond energy term, which includes
van der Waals and electrostatic atom energies, is one of the driving forces during
the protein folding.

The inset plot in each figure shows the total energy value and the RMSD value
for each conformation that has been sampled by the algorithm. This type of plot
illustrates the level of correlation between the energy function and the RMSD values
and is an index of the accuracy of the energy function for the specific protein,
suggesting that minimizing the energy by varying the conformation will tend to
drive the conformation towards the native structure. The proteins 1ZDD, 1ROP,
1CRN and 1R69 show a higher correlation with respect to 1UTG and 1CTF. In
particular, 1UTG has the lowest level of correlation, meaning that CHARMM is not
a good energy function for exploring its conformational space. On the other hand,
even if the 1CTF protein shows an acceptable level of correlation, the complexity of
the structure, in terms of secondary structural elements and native 3D conformation,
strongly reduces the performance of the algorithm. Moreover, by inspecting the plots,
it is clear how the algorithm is able to produce a high sampling of the search space.
Generally, more than 1, 000 conformations lie in a range of 1 Å.

Figure 5 presents snapshots of the dynamics of observed Pareto fronts at different
iteration times. As a first observation we note that the size of solutions in the front
increases as the search process proceeds. Almost all the proteins reach (or get very
close to) the maximum allowed size of 1, 000 solutions used in all the experiments
(see Figure 8). This behaviour satisfies one of the requirements of good convergence
in multiobjective optimization, where a wide range of values for the objective should
be produced. Moreover, as we will see later, the detailed dynamics of the archive
size will give more additional information on the level of complexity of the protein.
The number of knees and the discontinuous regions are other measures of the level
of complexity of the protein. Simple proteins, with few secondary structure elements
and simple native conformation, tend to present a continuous front with few knees
(e.g., 1ZDD and 2MLT, discussed in the next section).

It is also possible to select solutions from the observed Pareto fronts in figure 5
and reconstruct the folding pathway generated by the algorithm for each protein.
Figure 6 shows the reconstruction for the 1CRN protein. The conformation at time
0 is the first randomly generated structure; then each of the other conformations is
representative of the observed Pareto front at time step t (iteration).

Another measure of complexity is given by the analysis of the dynamics of the
RMSD values in the archive (see figure 7). Simple proteins (e.g., 1ZDD and 1ROP)
show quick convergence towards native-like structures, while complex proteins (e.g.,
1UTG and 1CTF) demonstrate lower convergence rates and greater fluctuations in
the value of the best RMSD in the archive. The distance between the two curves is
an indicator of the quality of the final archive. A smaller distance indicates a larger
size of the ensemble of native-like structures generated.

Finally, the analysis of the archive size at each iteration provides an experimental
proof for the previous comments. Figure 8 shows the dynamics of the archive size at
each iteration for each protein. As observed before for all the proteins except 1CTF,
the algorithm is able to fill up the archive; but, again, simple protein sequences show
a faster growth rate while complex sequences need more time before a good confor-
mation is generated. For example, 1CTF protein shows less than 100 conformations
in the archive for the first 10, 000 iterations; moreover, 1CTF is the only protein
for which the final size of the archive does not reach the allowed maximum. The
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(a) 0 (starting) (b) 1× 104

(c) 3× 104 (d) 5× 104

(e) 8× 104 (f) 1.7× 105 (final)

Fig. 6. 1CRN protein folding

strong oscillations in the curves reflect the update scheme of PAES and I-PAES: if
a new nondominated solution is generated it will be added to the archive, and all
the solutions which are dominated by the new one are removed.

5.2 Second Set of Results and Discussions

The second set of experiments presents further results using additional protein se-
quences in the literature. The protein set is composed of seven proteins extracted
from [15, 21, 9]. The PDB IDs are 2MLT, 1VII, 1G2H, 1EOM, 2GP8, 1BW6, 1ED0
and 1NKL.
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Fig. 7. Archive RMSD dynamics with respect to the crystal structure for 1ZDD
(a), 1ROP (b), 1CRN (c), 1UTG (d), 1R69 (e) and 1CTF (f)
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Melittin Protein (2MLT)

Melittin is a 26-residue proteins which has recently received a good deal of attention
in computational protein-folding studies because of the huge number of local min-
ima present in the its funnel folding-landscape. In particular, the membrane-bound
portion of the protein (first 20 residues) is estimated to have between 1034 and 1054

locally optimal conformations. This peptide is therefore an obvious test subject for
which a substantial number of computational experiments have been done [15].
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Fig. 9. 2MLT: (a) observed Pareto fronts at different iterations; (b) final best Pareto
front with the characteristic energy function vs. RMSD values plot (inset plot)

As reported in Table 4, the best conformation obtained with I-PAES has
DME = 0.77Å and RMSD = 1.92Å (see figure 10). Inspecting the conformations
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Fig. 10. Native (left plot) and predicted (right plot) for 2MLT protein (DME =
0.77Å, RMSD = 1.92Å)

in the final archive we found that they all present good characteristics in terms of
both metrics and energy. This is also evident from the results reported in Table 4,
where the RMSD and DME values for the conformation with best energy are still
competitive. This is an index of a good accuracy level of CHARMM energy function
for this peptide. Good performance of I-PAES on the 2MLT protein is also evident
from the the plots in Figure 9, where the Pareto front dynamics and the correlation
between the energy function and the RMSD values are shown. As in the work of
Floudas [15], we have also studied only the membrane-bound portion of the proteins
(20 residues), and, in this case, the best predicted structure matches the crystal
structure with DME = 0.66Å and RMSD = 1.36Å.

Second Protein Set

Finally, we have tested the multiobjective approach with additional protein se-
quences which have been recently studied using constraint logic programming [9]
and Monte Carlo methods [21]. Table 4 reports the best results obtained with the
I-PAES algorithm in terms of DME, RMSD and the energy value for each pro-
tein. The results continue to show the low correlation between the energy function
CHARMM and the metrics: the values of the metrics for the conformation with
lowest energy are always the worst with respect to the best conformation. More-
over, we would like to highlight the fact that the protein conformation that has
the minimum energy in the knees is often better than the one obtained from the
whole Pareto front generated. Thus, as mentioned above, the energy landscape pro-
duced by the CHARMM energy function does not seem to fit the real landscape
well. Despite this, the proposed multiobjective approach is able to generate good
ensembles of native-like conformations. Finally, the fact that solutions in the Pareto
front that are not minimum energy solutions are better (in terms of RMSD and
DME) clearly justifies a multiobjective approach, rather than one which focuses on
a single objective (i.e., energy).

6 Conclusion

As reported by Plotkin and Onuchic in 2002 [24], “the folded state is a small ensemble
of conformational structures compared to the conformational entropy present in
the unfolded ensemble”. This claim inspired our research goal of finding a set of
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Table 4. Simulation results using I-PAES. For each protein we report the Protein
Data Bank (PDB) identifier, the length (number of residues), and the approximate
class (num. of α-helix and/or β-sheet). The other columns list, respectively, the best
RMSD, DME, and energy results obtained for each protein on ten independent
runs. The last column shows the values of DME and RMSD for the conformation
with minimum energy (sixth column). The DME and RMSD values are measured
on Cα atoms from the native structure. Energy values are calculated using the
ANALYZE routine from TINKER

Protein Nres class Best DMEmin Best RMSDmin Best energy (DME,RMSD)
α, β Å Å kcal/mol (Å,Å)

2MLT 26 3α 0.77 1.92 −18.25 (0.88, 2.01)
1VII 36 3α 4.71 6.39 −407.25 (4.81, 8.25)
1G2H 36 4α 7.61 8.51 −193.77 (8.78, 8.68)
1E0M 37 3β 5.46 7.27 −108.78 (5.52, 7.39)
2GP8 40 2α 5.27 6.84 −705.25 (5.45, 7.26)
1BW6 43 5α 3.88 6.98 −1403.17 (5.38, 7.36)
1ED0 46 2α 7.24 8.79 112.49 (10.38, 11.22)
1NKL 70 6α 9.92 9.87 −1064.14 (10.92, 12.21)

equivalent three-dimensional conformations inside the folded state. To reach this
goal we adopted a modified version of PAES multiobjective evolutionary algorithm in
order to obtain a set of nondominated compact solutions close to the folded state. We
considered the bond and non-bond interactions as main forces to direct the folding
towards the native state. Our model is based on the fact that local interaction (bond
energy) and nonlocal interaction (non-bond energy) between atoms are in conflict.

Namely, it is clear that although it is possible to make movements that are able
to locally decrease the bond energy of the protein conformation, this is not possible
globally. Moreover, the electrostatic interactions or the short distance van der Waals
interaction of atoms nearby in space but far in the protein primary sequence could
be penalized even though an improvement is obtained in bond, angles or torsion
energies. If one interaction decreases, the other always increases. At the same time,
there are compensatory effects that will bring about minimization of the total energy.
We have provided experimental evidence for the conflict between the two types of
interactions, which in turn allows for casting the PSP problem in the form of a
multiobjective optimization problem.

The analysis of the I-PAES final archives points to the low-accuracy problem
inherent in the CHARMM energy function (we would not be surprised if a sim-
ilar behaviour is observed with other available energy function models). Specifi-
cally, low energy usually does not reflect good (native-like) structure, especially for
long/complex proteins. A trade-off is required between these objectives in order to
find good conformations. The multiobjective approach has shown to be useful in
order to overcome this problem.

We proposed a modified version of the algorithm PAES, I-PAES, that uses
immune-inspired principles (clonal expansion and hypermutation operators) as a
new search method for PSP. Computational studies for large peptides and proteins,
employing I-PAES, demonstrate the effectiveness of the evolutionary multiobjective
approach, and the results are comparable in terms of RMSD and DME to other
approaches in the literature. The I-PAES algorithm is highly efficient, though the
scheme lacks a theoretical guarantees of convergence.
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The proposed method is the starting point for many other possible future lines
of investigation. A straightforward approach consists of increasing the number of
objectives in order to include additional driving forces relevant to protein folding,
for example, the hydrophobic fitness score proposed in [14]. In theory, while any
number of objectives can be used at the same time, there arises the problem of
correctly handling objectives in different units. It would be interesting to scale up this
approach to very long protein sequences (1,000+ residues) by, for example, cutting
the protein into smaller subsequences and applying the multiobjective approach to
each of them. The predicted structure of the full protein will be then assembled
using the prediction for each of the subsequences.
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Summary. Many real-world problems are multiobjective optimization problems,
and evolutionary algorithms are quite successful on such problems. Since the task
is to compute or approximate the Pareto front, multiobjective optimization prob-
lems are considered as more difficult than single-objective problems. One should
not forget that the fitness vector with respect to more than one objective contains
more information that in principle can direct the search of evolutionary algorithms.
Therefore, it is possible that a single-objective problem can be solved more effi-
ciently via a generalized multiobjective model of the problem. That this is indeed
the case is proved by investigating the single-source shortest paths problem and the
computation of minimum spanning trees.

1 Introduction

Typical textbooks on optimization problems focus on single-objective optimization
problems; see, e. g., Cormen, Leiserson, Rivest, and Stein (2001). The function f to
be optimized is defined on a search space S and takes real values, i. e., f : S → R.
For minimization problems on discrete search spaces S there may be many optimal
search points s ∈ S such that f(s) ≤ f(s′) for all s′ ∈ S but only one optimal value
fmin := min{f(s) | s ∈ S}. One is interested in the optimal value fmin and one
optimal search point s.

In the case of multiobjective optimization problems the objective function f is
vector-valued, i. e., f : S → R

k. Since there is no canonical complete order on R

k,
one compares the quality of search points with respect to the canonical partial order
on R

k, namely f(s) ≤ f(s′) iff fi(s) ≤ fi(s
′) for all i ∈ {1, . . . , k}. A Pareto-optimal

search point s is a search point such that (in the case of minimization problems)

∗ This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part
of the Collaborative Research Center “Computational Intelligence” (SFB 531)
and by the German-Israeli Foundation (GIF) in the project “Robustness Aspects
of Algorithms”.
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f(s) is minimal with respect to this partial order and all f(s′), s′ ∈ S. Again, there
can be many Pareto-optimal search points but they do not necessarily have the same
objective vector. The Pareto front consists of all objective vectors y = (y1, . . . , yk)
such that there exists a search point s where f(s) = y and f(s′) ≤ f(s) implies
f(s′) = f(s). The problem is to compute the Pareto front, and for each element y
of the Pareto front, one search point s such that f(s) = y. As for any optimization
problem, one may be satisfied with approximate solutions. This can be formalized
as follows. For each element y of the Pareto front we have to compute a solution
s such that f(s) is close enough to y. Close enough is measured by an appropriate
metric and an approximation parameter. In the single-objective case one switches
to the approximation variant if exact optimization is too difficult. The same reason
may hold in the multiobjective case. There may be another reason. The size of the
Pareto front may be too large for exact optimization.

Sometimes, people try to turn multiobjective problems into single-objective ones,
e. g., by optimizing a weighted sum of the objective values of the single criterion. This
may be useful in some applications but, in general, we do not obtain the information
contained in the Pareto front and the corresponding search points.

Multiobjective optimization has been an issue in operations research for a long
time. Due to the typically high computational complexity of multiobjective prob-
lems the application of randomized search heuristics is a way to obtain satisfactory
solutions. Many variants of evolutionary algorithms specialized to multiobjective
optimization problems have been developed and applied; for a survey see the mono-
graphs of Deb (2001) and Coello Coello et al. (2002).

A conclusion from this discussion is that “multiobjective optimization is more
(at least as) difficult than (as) single-objective optimization”. This is true at least if
the objective values for the different criteria are “somehow independent”. Without
such an assumption there is no reason to believe in the conclusion above.

Only a few publications point out that re-formulating a problem in terms of
more objective functions can reduce the run time of the optimization process.
Jensen (2004) successfully used additional “helper-objectives” to guide the search
of evolutionary algorithms in high-dimensional spaces. A similar approach was pro-
posed by Knowles, et al. (2001) where single-objective problems are “multiobjec-
tivized”, i.e., decomposed into multiobjective problems which are easier to solve
than the original problems.

The aim of this chapter is to show by rigorous analyses that formulating some
well-known single-objective optimization problems as multiobjective ones might
speed up the computation process. More precisely, we discuss the following sce-
nario. The considered problem is a single-objective problem. It is possible to add
some further criteria such that the Pareto front of the newly created multiobjective
optimization problem is not too large and such that the solution of the multiobjective
problem includes the solution of the single-objective problem. Solving the multiob-
jective problem instead of the single-objective problem implies computing the Pareto
front instead of a single optimal value. Each considered search point contains more
information than in the single-objective case since it contains also the objective val-
ues for the additional criteria. At least in principle it is possible that this additional
information improves the search behaviour of evolutionary algorithms. This would
imply that for solving difficult single-objective optimization problems one should
also think about the possibility of reformulating them as generalized multiobjective
optimization problems.
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The purpose of this chapter is to prove that the considered scenario is not a
fiction. We investigate not artificial problems to support this claim but two com-
binatorial optimization problems contained in any textbook on algorithms, namely,
the single-source shortest paths problem and the computation of minimum span-
ning trees. (Nobody should expect that evolutionary algorithms beat the well-known
problem-specific algorithms.)

In Section 2, we consider the single-source shortest paths problem and show
how a well-known evolutionary algorithm can solve this problem efficiently using
a multiobjective fitness function. Section 3 is devoted to the minimum spanning
tree problem. We compare a simple multiobjective EA with a single-objective one
and point out the advantages of the multiobjective approach by a rigorous run time
analysis as well as by experiments on randomly chosen instances.

2 The Single-Source Shortest Paths Problem

The single-source shortest paths problem (SSSP) is a fundamental combinatorial
optimization problem. The usual description is the following one. The problem in-
stance is described by a distance matrix D = (dij)1≤i,j≤n where dij ∈ N ∪ {∞}
is the length of the direct connection from place i to place j. The problem is to
compute for the source s := n and for each place i a shortest path from s to i. The
naive description of all shortest paths may need a storage space of Θ(n2). Dijkstra’s
famous algorithm has a computation time of Θ(n2) and computes a description of
all shortest paths which needs only storage space Θ(n). For each place i the place
vi is the direct predecessor on a shortest path from s to i.

In order to consider EAs for the SSSP we use the following model of the problem.
The search space consists of all v = (v1, . . . , vn−1) ∈ {1, . . . , n}n−1 where vi 
= i.
Place vi is considered as the direct predecessor of place i. Hence, each search point
v describes a directed graph on V = {1, . . . , n} where s = n has indegree 0 and all
other nodes have indegree 1. However, there are invalid graphs which are not trees
rooted at s. Figure 1 shows a valid tree and an invalid graph.
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Fig. 1. Illustration of the search points v = (7, 6, 10, 7, 1, 5, 10, 7, 5) leading to a tree
of s-i paths and w = (9, 4, 10, 2, 1, 5, 10, 7, 5) leading to an invalid graph
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As mentioned before, we want to analyze an EA which is not designed for SSSP.
Hence, we transform the (1+1) EA working on the boolean search space {0, 1}n

to work on the search space of all permutations on {1, . . . , n}. The local operation
of the (1+1) EA on {0, 1}n is the flip of one bit. Moreover, the (1+1) EA does
not accept worsenings. In order not to get stuck forever in a local optimum, the
(1+1) EA flips each bit independently from the others with probability 1/n. Hence,
the number of local operations is asymptotically Poisson distributed with parameter
λ = 1.

A local operation for SSSP is to replace the predecessor vi of some place i ≤
n− 1 with another predecessor v′

i ∈ {1, . . . , n}− {i, vi}. This operation changes the
considered paths for all places in the subtree of place i. The number of different local
operations equals (n− 1)(n− 2) and a flip is a randomly chosen local operation. For
a mutation step, we choose S according to a Poisson distribution with parameter
λ = 1 and perform sequentially S + 1 flips.

Finally, we have to describe an appropriate fitness function f . The first idea is to
define f(v) = ∞ for all invalid v and f(v) as the sum of the lengths of the s-i paths
in the tree T (v) described by v. However, this leads to a difficult problem for all
randomized search heuristics, at least for certain problem instances. Let di,i−1 < ∞
and dij = ∞ if j 
= i − 1. Then the search point v∗ = (2, 3, . . . , n − 2, n − 1, n) is
optimal, and it is the only search point where f(v∗) < ∞. Hence, this optimiza-
tion problem is equivalent to the well-known scenario referred to as “needle in a
haystack”. There is a unique global optimum, and all other search points have the
same fitness. Then, nothing is better than random search, which takes exponential
time with overwhelming probability.

We can hope for better results of randomized search heuristics only if the fitness
function provides more information. We may restrict the possible problem instances
by considering only distance matrices where dij ∈ {1, . . . , d∗} ∪ {∞} for some pa-
rameter d∗ (possibly depending on n). If a search point v describes for j places paths
of finite length, then f(v) is defined as the sum of the sum of the lengths of these
paths and (n− 1− j)nd∗. Here “non-paths” and paths of infinite length contribute
nd∗ to the fitness, which is more than the maximal length of a path of finite length.
However, we cannot distinguish between non-paths and paths of infinite length. This
can be changed by assigning nd∗ to paths of infinite length and n2d∗ to places i for
which v does not describe an s-i path.

We are not able to analyze the (1+1) EA for this fitness function. Instead we
have analyzed a simple EA on a multiobjective fitness function since the core of
the SSSP is to minimize the lengths of n− 1 paths. Let f(v) = (f1(v), . . . , fn−1(v))
where fi(v) is the length of the s-i path if v describes such a path and fi(v) = ∞
otherwise. We define a partial order on Rn−1. It is f(v) ≤ f(v′) iff fi(v) ≤ fi(v

′) for
all i ∈ {1, . . . , n−1}. The objective in multiobjective optimization is the computation
or approximation of the set of Pareto optimal search points. A search point is called
Pareto optimal if it is optimal, in our case minimal, with respect to the partial
order described above. The theory on SSSP tells us that there is exactly one Pareto
optimal fitness vector l∗ = (l∗1 , . . . , l∗n−1) describing the lengths of all shortest s-i
paths. There can be many search points v such that f(v) is Pareto optimal. We are
satisfied if we have computed one optimal search point.

Now, we have a vector-valued fitness function and a partial order on the fitness
vectors. The multiobjective (1+1) EA chooses a search point v uniformly at random.
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Then it applies the mutation operator described above and accepts v′ iff f(v′) ≤
f(v).

There are SSSP instances with a unique optimal search point (this seems to be
a typical case in applications). For these instances we can prove an Ω(n2) bound on
the expected optimization time of the multiobjective (1+1) EA.

Theorem 1. The expected optimization time of the multiobjective (1+1) EAon
SSSP is bounded below by Ω(n2).

Proof. The search space consists of (n − 1)(n−1) search points. For instances with
a unique optimal search point, the probability of choosing the optimal one in the
initialization step is (n−1)−(n−1). Otherwise, we investigate the final step producing
the optimal individual. For each non-optimal individual there is at most one opera-
tion to change it into the optimal one since the predecessor for one place has to be
altered to the right one. Therefore, the probability of a success is bounded above by

1
(n−1)(n−2)

and the expected waiting time is bounded below by (n−2)(n−1) = Ω(n2).
��

Theorem 2. The expected optimization time of the multiobjective (1+1) EAon
SSSP is bounded above by O(n3).

We prove a more sophisticated bound. Let ti be the smallest number of edges
on a shortest s-i path, mj := #{i | ti = j}, and T = max{j | mj > 0}. Then we
prove that the upper bound is

en2
∑

1≤j≤T

(ln mj + 1).

This bound has its maximal value Θ(n3) for m1 = · · · = mn−1 = 1. We also obtain
the bound O(n2T log n) which is much better than O(n3) in the typical case where
T is small.

Proof. The proof is based on the following simple observation. Whenever fi(v) = l∗i ,
we only accept search points v′ where fi(v

′) = l∗i . Hence, we do not forget the length
of shortest paths we have found (although we may switch to another shortest path).
Now we assume that we have a search point v where fi(v) = l∗i for all i where ti < t.
Then we wait until this property holds for all i where ti ≤ t. For each place i where
ti = t and fi(v) > l∗i there exists a place j such that tj = t− 1, j is the predecessor
of i on a shortest s-i path using t edges, and fj(v) = l∗j . Then a mutation flipping
only vi into j is accepted and leads to a search point v′ where fi(v

′) = l∗i . The
probability of such a mutation equals 1/(e(n − 1)(n − 2)) (1/e is the probability
of flipping exactly one position, 1/(n − 1) is the probability of flipping the correct
position, and 1/(n − 2) is the probability of flipping it to the correct value). If we
have r such places, the success probability is at least r/(en2) and the expected
waiting time is bounded above by en2/r. The largest value for r is mt and we have
to consider each of the values mt, . . . , 1 at most once. Hence, the total expected time
of this phase is bounded above by en2(1 + 1

2
+ · · · + 1

mt
) ≤ en2(ln mt + 1). Since t

can take the values 1, . . . , T we have proved the claimed bound. ��
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The upper bound of Theorem 2 holds even in the case where we allow infinite
distance values. Let us consider the special case where di,i−1 = 1 and dij = ∞
otherwise. This is the needle-in-a-haystack scenario for the single-objective opti-
mization problem. Theorem 7 implies an O(n3) bound of the (1+1) EAin the mul-
tiobjective optimization problem. This bound is tight for this problem instance.
As long as vn−1 
= n we have f(v) = (∞, . . . ,∞). The probability of starting with
vn−1 = n equals 1/(n−1). In the negative case, we have to wait for a mutation where
vn−1 is mutated into n. The probability that a local operation does this change is
1/(n − 1)(n − 2). The expected number of local changes per step equals 2. Hence,
the expected time until vn−1 = n equals Θ(n2). Until vn−1 = n, the value of vn−2

does not influence the fitness vector. Therefore, we can repeat the arguments for
vn−2, . . . , v1 and obtain an expected optimization time of Θ(n3).

Altogether, the multiobjective (1+1) EAon SSSP has an expected optimization
time of O(n3), and Ω(n2) if the solution is unique. For typical problem instances, the
more sophisticated bound which follows from the proof of Theorem 7 is “much closer”
to n2 than to n3. Hence, the multiobjective (1+1) EAis an efficient heuristic to solve
SSSP (without beating Dijkstra’s algorithm). Our results on SSSP also show that
multiobjective problems should not be transformed artificially into single-objective
problems.

3 Minimum Spanning Trees

3.1 Simple Evolutionary Algorithms for Multiobjective
Optimization

The rigorous analysis of the expected optimization time of evolutionary algo-
rithms is not easy. Most of such results are on simple evolutionary algorithms like
the (1+1) EA(Droste, Jansen, and Wegener (2002)). This is even more true for
multiobjective optimization. Therefore, we investigate and analyze the algorithm
called SEMO (Simple Evolutionary Multiobjective Optimizer) due to Laumanns et
al. (2002). The algorithm starts with an initial solution s ∈ {0, 1}n. All nondom-
inated solutions are stored in the population P . In each step a search point from
P is chosen uniformly at random and one bit is flipped to obtain a new search
point s′. The new population contains for each nondominated objective vector f(s),
s ∈ P ∪ {s′}, one corresponding search point, and in the case where f(s′) is not
dominated, s′ is chosen.

In applications, we need a stopping criterion. Here we are interested in the ex-
pected number of rounds until f(P ) := {f(s)|s ∈ P} equals the Pareto front. This
is called the expected optimization time. Note that the described algorithm differs
from the original version of SEMO, by replacing an individual s′′ of P by s′ if
f(s′′) = f(s′) holds. Applying our version of SEMO to a single-objective optimiza-
tion problem, we obtain the algorithm known as RLS (randomized local search).
All our results also hold for the original version of SEMO but it seems to be more
typical for search heuristics to replace search points by other ones with the same
quality (e.g., simulated annealing works this way). If SEMO starts with a search
point s which is a local optimum, then P = {s} forever. The use of this local muta-
tion operator was motivated by the fact that this choice simplifies the analysis. Giel
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SEMO

1. Choose an initial solution s.
2. Determine f(s) and initialize P := {s}.
3. Repeat

• choose s ∈ P uniformly at random,
• choose i ∈ {1, . . . , n} uniformly at random,
• define s′ = (s′1, . . . , s

′
n) by s′j = sj , if j �= i, and s′i = 1 − si,

• determine f(s′),
• let P unchanged, if there is an s′′ ∈ P such that f(s′′) ≤ f(s′) and

f(s′′) �= f(s′)
• otherwise, exclude all s′′ where f(s′) ≤ f(s′′) from P and add s′ to P .

(2003) has generalized the investigations of Laumanns et al. (2002) and Zitzler et
al. (2003) by considering the usual mutation operator of evolutionary algorithms.

GSEMO (Global SEMO)
GSEMO works like SEMO, but s′ is defined in a different way. For each i,
s′i = 1 − si with probability 1/n and s′i = si otherwise.

Note that GSEMO applied to single-objective optimization problems equals
the well-known (1+1) EA. Hence, we compare SEMO and GSEMO with RLS and
(1+1) EA.

3.2 A Two-Objective Model of the Minimum Spanning Tree
Problem

An instance of the minimum spanning tree problem consists of an undirected graph
G = (V, E) with n vertices and m edges and a positive integer weight w(e) for each
edge. The problem is to find an edge set E′ connecting all vertices of V with minimal
total weight.

Neumann and Wegener (2004) have analyzed RLS (with 1-bit flips and 2-bit
flips) and the (1+1) EA for the minimum spanning tree problem. They have used the
following model of the problem. The search space is S = {0, 1}m and s ∈ S describes
the edge set of all edges ei where si = 1. Raidl and Julstrom (2003) have shown that
edge sets are appropriate for the minimum spanning tree problem. Neumann and
Wegener (2004) have penalized edge sets which do not describe connected graphs
(and in one model have additionally penalized edge sets containing cycles). They
were able to prove the following results:

• The expected optimization time of RLS and the (1+1) EA is bounded by
O(m2(log n + log wmax)) where wmax is the largest weight of the considered
graph.

• There are graphs with m = Θ(n2) and wmax = Θ(n2) such that the expected
optimization time of RLS and the (1+1) EA equals Θ(m2 log n).
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This is one of the first rigorous analyses of the expected optimization time of evolu-
tionary algorithms on combinatorial optimization problems contained in textbooks.
Previous results considered the computation of shortest paths (Scharnow, Tinnefeld,
and Wegener (2002)) and maximum matchings (Giel and Wegener (2003)).

We discuss the reason for the expected optimization time of RLS and the
(1+1) EA. If a search point describes a non-minimum spanning tree, one-bit flips are
not accepted. The new search point describes either an unconnected graph or a con-
nected graph with a larger weight. We have to wait until a mutation step includes an
edge and excludes a heavier one from the newly created cycle. The expected waiting
time for a specified 2-bit flip equals Θ(m2).

As already mentioned, the considered algorithms penalize the number of con-
nected components. This motivates the following two-objective optimization model
of the minimum spanning tree problem.

• The search space S equals {0, 1}m for graphs on m edges and the search point
s describes an edge set.

• The fitness function f : S → R

2 is defined by f(s) = (c(s), w(s)) where c(s) is
the number of connected components of the graph described by s and w(s) is
the total weight of all chosen edges.

• Both objectives have to be minimized.

We discuss some simple properties of this problem.

• The parameter c(s) is an integer from {1, . . . , n}.
• The first property implies that the populations of SEMO and GSEMO contain

at most n search points and the Pareto front contains exactly n elements.
• The parameter w(s) is an integer.

We have to be careful when discussing this problem. There exists another type of
multiobjective minimum spanning tree problem. Each edge has k different types of
weights, i. e., w(e) = (w1(e), . . . , wk(e)). Unconnected graphs are penalized, and the
aim is to minimize f(s) where s is not legal if s does not describe a connected graph,
and f(s) is the sum of all w(ei) corresponding to si = 1, otherwise. Similarly to other
optimization problems this multiobjective variant of a polynomially solvable problem
is NP-hard (Ehrgott (2000)). This problem has been attacked in different ways, e. g.,
by Hamacher and Ruhe (1994). Zhou and Gen (1999) present experimental results
for evolutionary algorithms, and Neumann (2004) has analyzed which parts of the
Pareto front can be obtained in expected pseudopolynomial time.

3.3 The Analysis of the Expected Optimization Time

Our results hold for SEMO as well as for GSEMO. The essential steps are 1-bit flips.
In the definition of SEMO and GSEMO we have not specified how to choose the
first search point. We discuss two possibilities.

• The first search point is chosen uniformly at random. This is the typical choice
for evolutionary algorithms.

• The first search point is s = 0m describing the empty edge set. This is quite
typical, e. g., for simulated annealing.
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Our analysis is simplified by knowing that P contains 0m. Note that f(0m) =
(n, 0) belongs to the Pareto front and 0m is the only search point s with c(s) = n.
First, we investigate the expected time until the population contains the empty edge
set.

Theorem 3. Starting with an arbitrary search point the expected time until the
population of SEMO or GSEMO contains the empty edge set is bounded above by
O(mn(log n + log wmax)).

Proof. One might expect that we have to wait only until all edges of the initial
search point s have been excluded. This is not true. In this way, it is possible
that we accept the inclusion of edges since this decreases the number of connected
components (although it increases the total weight). Later, we may exclude edges of
the new search point s′ without increasing the number of connected components. It
is possible to construct a search point s′′ which dominates s. Then s is eliminated
and all search points in the population (perhaps only one) have more edges than s.

Hence, the situation is more complicated. Instead of the minimal number of
edges of all search points in P we analyze the minimal weight of all search points
in P . The search point s∗ with minimal weight has the largest number of connected
components (otherwise, the search point s∗∗ with c(s∗∗) > c(s∗) is dominated by
s∗ and will be excluded from P ). We analyze w(s∗). We have reached the aim of
our investigations if w(s∗) = 0, since this implies s∗ = 0m. After initialization,
w(s∗) ≤ W := w1 + · · ·+ wm ≤ m · wmax.

We only investigate steps where s∗ is chosen for mutation. The probability of
such a step is always at least 1/n, since |P | ≤ n. Hence, the expected time is larger
only by a factor of at most n than the expected number of steps where s∗ is chosen.

By renumbering, we may assume that s∗ has chosen the first k edges. We in-
vestigate only steps flipping exactly one bit. This has probability 1 for SEMO and
probability at least e−1 for GSEMO, where e = 2.71 . . . . These steps are accepted
if they flip one of the first k edges. If the edge i is flipped, we obtain a search point
whose weight is w(s∗)− wi and the minimal weight has been decreased by a factor
of 1− wi

w(s∗)
. The average factor of the weight decrease equals

1

m

⎛

⎝
∑

1≤i≤k

(1− wi

w(s∗)
) +

∑

k+1≤i≤m

1

⎞

⎠ ≥ 1− 1

m

if the choice of a nonexistent edge is considered as a weight decrease by a factor of 1.
The bound 1− 1

m
does not depend on the population. After M := �(ln 2)·m·(log W +

1)� steps choosing the current s∗, the expected weight of the new s∗ is bounded
above by (1− 1/m)M ·W ≤ 1

2
. Applying Markoff’s inequality, the probability that

w(s∗) ≥ 1 is bounded above by 1/2. Hence, w(s∗) < 1 holds with probability at least
1/2. Since weights are integers, w(s∗) < 1 implies w(s∗) = 0. The expected number
of phases of length M until w(s∗) = 0 is at most 2. Hence, altogether the expected
waiting time for s∗ = 0m is bounded above by 2 · n ·M = O(mn(log n + log wmax))
for SEMO. The corresponding value for GSEMO is larger at most by a factor of 3.
��

One may expect that this upper bound is an overestimate for many graphs and
starting points.
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Theorem 4. Starting with a population containing the empty edge set, the expected
optimization time of SEMO or GSEMO is bounded by O(mn2).

Proof. As long as the algorithm has not reached its goal, we consider the smallest
i such that the population contains, for each j, i ≤ j ≤ n, a Pareto-optimal search
point sj with f(sj) = (j, ·). This implies that the graph described by sj consists
of j connected components and has the minimal possible weight among all possible
search points describing graphs with j connected components. After initialization,
the population includes 0m which has the smallest weight among all search points
representing graphs with n connected components. Hence, i is well defined. The
search point sj is only excluded from the population if a search point s′j with f(s′j) =
f(sj) is included in the population. Hence, the crucial parameter i can only decrease
and the search is successful if i = 1.

Finally, we investigate the probability of decreasing i. It is well known that
a solution with i − 1 components and minimal weight can be constructed from
a solution with i components and minimal weight by introducing a lightest edge
that does not create a cycle. Therefore, it is sufficient to choose si for mutation
(probability at least 1/n) and to flip exactly one bit concerning a lightest edge
connecting two components in the graph described by si (probability at least 1/m
for SEMO and at least 1/(em) for GSEMO). Hence, the expected waiting time to
decrease the parameter i is bounded above by O(nm). After at most n− 1 of such
events the search is successful. ��

Corollary 1. If the weights are bounded above by 2n, SEMO and GSEMO find the
Pareto front in the two-objective variant of the minimum spanning tree problem in
an expected number of O(mn2) rounds independently of the choice of the first search
point.

For dense graphs, this bound beats the bound O(m2 · log n) for the application
of RLS and the (1+1) EA to the single-objective variant of the minimum spanning
tree problem.

3.4 Discussion

The most interesting case is the one of polynomially bounded weights. The expected
optimization time of the (1+1) EA is then O(m2 log n) (see Section 3.2), and this
bound is best possible as shown by the analysis of special input graphs Gn. The
reason for this bound is the following. If the considered search point is a spanning
tree, we obtain a better spanning tree by eliminating i edges of the tree and inserting
i edges producing a tree of smaller weight. For Gn, steps for i = 1 are much more
likely than steps for larger i. The expected waiting time for a special 2-bit flip is
O(m2). It is likely to need Θ(n) of such 2-bit flips. One might think that the expected
optimization time is Θ(nm2). However, this is not the case since in the beginning
there are several good 2-bit flips.

In Section 2, we have obtained an upper bound of O(mn2) on the expected
optimization time of both SEMO variants. This is only an upper bound, and it
would be better to have an upper bound which is asymptotically best possible. It is
an open question whether there exist graphs Gn with m = Θ(n2) where SEMO has
an expected optimization time of Θ(n4). The best lower bound we have obtained is
Ω(n3 log n).
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n2 n2 n2

Fig. 2. Example graph with a path containing p edges and a complete graph on q
vertices

In the following, we present the example graphs leading to this expected opti-
mization time and discuss the main arguments of the run time analysis. The full
proof is much longer than the proof of the upper bounds in Section 2. Since the lower
bound does not match the general upper bound, we do not present the complete
proof.

The idea of the example is to connect a path with p expensive edges of weight
n2 with a complete graph on q = n−p vertices with cheap edges of weight 1. Figure
1 shows such graphs. Here we focus on the case q = n/2 and p = n/2. The complete
graph ensures a number of Θ(n2) edges. The probability of flipping k path edges (or
shortly p-edges) is bounded above by

(
n/2

k

)
(1/m)k ≤ (n/m)k = O(n−k).

We call a graph a c-graph if it consists of a connected component on the complete
subgraph and n/2 + 1− c p-edges. Note that c-graphs which do not contain a cycle
are Pareto optimal. There are c− 1 different 1-bit flips to produce (c− 1)-graphs.

After random initialization, it is very likely we obtain a c-graph where c ≥ n/6.
As seen above, an offspring of a c-graph can be a c′-graph, but it is very likely that
c− c′ = O(1). Hence, at the first point in time where the population contains a c′′-
graph where c′′ ≤ n/10 it is very likely that the population size is Θ(n) (note that
c-graphs can only be replaced by other c-graphs). Afterwards, we have to produce a
1-graph. Let c(P ) be the smallest c such that the population P contains a c-graph.
We can hope to reduce c(P ) only if we select for mutation a c′-graph where c′ is close
to c(P ). Hence, the waiting time for a good selection is Θ(n). Then there are at most
c(P )−1 good 1-bit flips with an expected waiting time of Ω(m/c(P )). This motivates
the Ω(mn log n) = Ω(n3 log n) bound. The complete proof is more involved since it
may happen that the population contains a graph with c components which is not
a c-graph.

Summarizing, SEMO has the advantage of working with 1-bit flips while the
(1+1) EA is mainly based on 2-bit flips. However, SEMO has to cope with an
increase in the population size leading to a waiting time until an appropriate search
point is chosen for mutation.

3.5 Experimental Results

The theoretical results are asymptotic ones. They reveal differences for worst-case
instances and large m. We add experimental results that show what happens for
typical instances and reasonable m. In order to compare randomized algorithms on
perhaps randomly chosen instances, one may compare the average run times, but
these values can be highly influenced by outliers. We have no hypothesis about the
probability distribution describing the random run time for constant input length.
Hence, only parameter-free statistical tests can be applied. We apply the Mann-
Whitney test (MWT) that ranks all observed run times. Small ranks correspond
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to small run times. If the average rank of the results of algorithm A1 are smaller
than those of A2, MWT decides how likely it can be that such a difference or a
larger one can occur under the assumption that A1 is not more efficient than A2.
If the corresponding p-value is at most 0.05, we call the result significant; if it is
at most 0.01, we call it very significant; and if it is at most 0.001, we call it highly
significant. The statistical evaluation has been performed with the software SPSS
(Version 11.5; see www.spss.com). The tables contain the considered class of graphs,
the average rank (AR) of different algorithms and the p-value for the hypothesis that
the algorithm with the smaller AR-value is likely to be faster.

The experiments consider the following graph classes.

• uniformn: these are complete graphs with m =
(

n
2

)
edges, and the weights are

chosen independently and uniformly at random from {1, . . . , n}.
• uniformbdn: each possible edge is chosen with probability 3/n, leading to a

small average degree of 3; unconnected graphs are rejected and the construction
is repeated; the weights of existing edges are chosen as for uniformn.

• planen: the n vertices are placed randomly on the points of the two-dimensional
grid {1, . . . , n} × {1, . . . , n}; the weight of an edge is the rounded Euclidean
distance between the vertices.

• planebdn: the n vertices are placed as for planen, but each edge is considered
only with probability 3/n as for uniformbdn.

These graph classes reflect different choices of weights (one non-metric and one
metric) and the possibility of dense and sparse graphs. Our algorithms are RLS,
(1+1) EA, SEMO, and GSEMO. The index z denotes the case where the initial
search point is the empty edge set (or all-zero string). Without an index the ini-
tial search point is chosen uniformly at random. The run times of RLS and the
(1+1) EA denote the number of fitness evaluations until a minimum spanning tree
is constructed. The run times of SEMO and GSEMO denote the number of rounds
until, in one experiment, P contains a minimum spanning tree or until f(P ) equals
the Pareto front. In each experiment the compared algorithms are considered for
100 runs leading, to an average rank of 100.5.

We have analyzed the influence of the initial search point. First, we have consid-
ered the time until the Pareto front is computed. The results are shown in Table 1.

Result 1 In 23 out of 24 experiments the variant starting with the empty edge set
has the smaller AR-value. Only eight results are significant, among them five very
significant and two of these highly significant.

If we are only interested in the computation of a minimum spanning tree, one
may expect that one sometimes computes a minimum spanning tree without com-
puting the empty edge set. Indeed, the influence of the choice of the initial search
point gets smaller. For the classes uniformn, n = 4i and 3 ≤ i ≤ 11, there is no real
difference between SEMOz and SEMO, while the AR values of GSEMO are in eight
of the nine experiments smaller than for GSEMOz. For the classes planen, n = 4i
and 3 ≤ i ≤ 11, SEMOz beats SEMO (seven cases) and GSEMOz beats GSEMO
(seven cases). We do not show the results in detail since they are not significant
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Table 1. Comparison of SEMO and GSEMO with different initial solutions

Class AR
SEMOz

AR
SEMO

p-value AR
GSEMOz

AR
GSEMO

p-value

uniform12 92.76 108.25 0.058 89.35 111.66 0.006
uniform16 83.51 117.49 < 0.001 91.28 109.72 0.024
uniform20 99.12 101.89 0.735 94.21 106.80 0.124
uniform24 98.01 102.99 0.543 93.65 107.35 0.094
uniform28 94.62 106.38 0.151 94.48 106.52 0.141
uniform32 91.24 109.76 0.024 96.76 104.24 0.361
plane12 81.61 119.39 < 0.001 88.14 112.86 0.003
plane16 94.51 106.49 0.143 89.38 111.63 0.007
plane20 97.17 103.83 0.416 95.15 105.85 0.191
plane24 93.33 107.67 0.080 103.11 97.89 0.524
plane28 90.58 110.43 0.015 93.09 107.91 0.070
plane32 94.55 106.45 0.146 97.44 103.56 0.455

(with the exception of three out of 36 cases). The remaining experiments consider
the more general case of an initial search point chosen uniformly at random.

We have not considered the worst-case instances for RLS and the (1+1) EA pre-
sented by Neumann and Wegener (2004). This would be unfair for these algorithms.
Nevertheless, the experiments of Briest et al. (2004) have indicated that, for n and m
of reasonable size, dense random graphs are even harder than the asymptotic worst-
case examples. This leads to the conjecture that SEMO beats RLS and GSEMO
beats its counterpart (1+1) EA. Here, the run time measures the rounds until a
minimum spanning tree is constructed. Table 2 proves that our conjecture holds for
the considered cases. Note that the average rank of 100 runs of one algorithm is at
least 50.5. In several experiments the AR value of SEMO or GSEMO comes close
to this value. For n ≥ 20, all values are at most 51.6 and for small values of n the
AR values are smaller than 60.

Result 2 It is highly significant for all considered graph classes and graph sizes that
SEMO outperforms RLS and GSEMO outperforms the (1+1) EA.

The theoretical analysis of the algorithms gives values of O(m2 log n) for RLS and
the (1+1) EA, and O(mn2) for SEMO and GSEMO (if the weights are reasonably
bounded). For complete graphs, m = Θ(n2), and we get values n4 log n vs. n4. For
sparse graphs, m = Θ(n), and we get values n2 log n vs. n3. Although these are
only upper bounds, one may expect different results for the sparse graphs from
uniformbdn and planebdn. Table 3 shows that this is indeed the case.

Result 3 It is highly significant for uniformbdn with n ≥ 24 and for planebdn

with n ≥ 16 (for the considered values of n), that RLS outperforms SEMO. Similar
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Table 2. Comparison on complete uniform and complete geometric instances

Class AR
RLS

AR
SEMO

p-value AR
(1+1) EA

AR
GSEMO

p-value

uniform12 146.36 54.64 < 0.001 147.79 53.32 < 0.001
uniform16 148.45 52.55 < 0.001 149.28 51.72 < 0.001
uniform20 149.74 51.26 < 0.001 149.40 51.60 < 0.001
uniform24 150.00 51.00 < 0.001 150.29 50.71 < 0.001
uniform28 150.40 50.60 < 0.001 150.23 50.77 < 0.001
uniform32 150.50 50.50 < 0.001 150.50 50.50 < 0.001
plane12 141.43 59.58 < 0.001 145.04 55.96 < 0.001
plane16 144.25 56.75 < 0.001 148.28 52.72 < 0.001
plane20 149.47 51.53 < 0.001 149.54 51.46 < 0.001
plane24 149.95 51.05 < 0.001 149.89 51.11 < 0.001
plane28 150.40 50.60 < 0.001 150.36 50.64 < 0.001
plane32 150.34 50.66 < 0.001 150.28 50.72 < 0.001

results hold for the (1+1) EA and GSEMO, but they are highly significant only for
large values of n, namely n ≥ 32 for both graph classes.

Note that the last group of experiments considers values of n up to 100.

Conclusions

It has been investigated whether the multiobjective variant of a single-objective op-
timization problem can lead to more efficient optimization processes. We have shown
that this is indeed the case for two of the best known combinatorial optimization
problems. In the case of the single-source shortest paths problem, we have pointed
out that the run time of the optimization process can be reduced drastically by
using a multiobjective fitness function. For the minimum spanning tree problem the
multiobjective approach is superior on randomly chosen dense graphs. For sparsely
connected graphs it is better to use the single-objective variant of the problem. The
results are obtained by a rigorous asymptotic analysis of the expected optimization
time and by experiments on graphs of reasonable size.
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Table 3. Comparison on instances with bounded average degree

Class AR
RLS

AR
SEMO

p-value AR
(1+1) EA

AR
GSEMO

p-value

uniformbd12 91.91 109.09 0.036 101.44 99.57 0.819
uniformbd16 90.62 110.39 0.016 103.54 97.46 0.458
uniformbd20 89.79 111.22 0.009 98.98 102.02 0.710
uniformbd24 73.19 127.82 < 0.001 91.53 109.47 0.028
uniformbd28 78.01 122.99 < 0.001 93.03 107.98 0.068
uniformbd32 77.92 123.08 < 0.001 80.85 120.15 < 0.001
uniformbd40 73.02 127.98 < 0.001 84.37 116.63 < 0.001
uniformbd60 65.40 135.60 < 0.001 71.22 129.78 < 0.001
uniformbd80 56.70 144.30 < 0.001 58.72 142.28 < 0.001
uniformbd100 54.99 146.01 < 0.001 58.47 142.53 < 0.001
planebd12 97.56 103.45 0.472 105.24 95.77 0.247
planebd16 81.88 119.13 < 0.001 96.79 104.22 0.364
planebd20 81.06 119.95 < 0.001 101.70 99.30 0.769
planebd24 84.45 116.55 < 0.001 86.52 114.48 0.001
planebd28 81.94 119.06 < 0.001 88.45 112.55 0.003
planebd32 71.53 129.47 < 0.001 80.86 120.14 < 0.001
planebd40 67.18 133.82 < 0.001 74.57 126.44 < 0.001
planebd60 56.59 144.41 < 0.001 60.69 140.31 < 0.001
planebd80 52.98 148.02 < 0.001 59.60 141.40 < 0.001
planebd100 52.21 148.79 < 0.001 52.30 148.70 < 0.001
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Summary. This chapter identifies five distinct modes in which multiobjective op-
timization is used to solve practical optimization problems. Implications for the
interpretation and analysis of the resulting Pareto front, and for decision making,
are discussed, and each mode is illustrated using application examples taken from
recent research.

Introduction

Much research in multiobjective optimization (MOO) follows what might be called a
standard mode of problem solving in which (i) the problem with its several objectives
defined is taken as granted,3 (ii) a Pareto optimal front (or set) approximation is
generated, and (iii) decision making is carried out to select a preferred or subjectively
best solution. There are variations on this in which decision making is partially
carried out before optimization, or interactively during it, but these distinctions do
not alter the main assumptions that the objectives are predefined at the beginning
of the problem-solving process and that human (expert) decision-maker preferences
are the basis for selecting the ‘final’ solution.

Undoubtedly, this standard mode of problem solving with MOO is highly suc-
cessful and general, and will continue to be central to numerous applications (see
the next section for more details). But, we also observe that this mode of problem
solving is not the only one being used in practice. Rather, it is evident that multi-
objective optimization is now being used in unconventional ways to produce certain
effects or benefits. Indeed, in this book, other chapters describe novel uses of MOO,
which do not necessarily begin with a well-defined MOO problem and end with hu-
man decision making. Perhaps the most well-known example of this is the idea that
constrained optimization problems may be treated as multiobjective problems, as

3 The multiobjective knapsack problem is an example of such a well-defined mul-
tiobjective problem that may be taken as a starting point.
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in chapter 3, and see also [16]. But the other chapters in this book provide plenty
of evidence that this idea is finding currency more widely too.

Our thesis, then, is that MOO gets put to use in practical problem-solving ap-
plications in a variety of subtly different ways, which we call modes. The modes
really capture the specific reason why the problem has been formulated with mul-
tiple objectives, and what job each of the objectives is doing. In some modes, the
interpretation of what the Pareto front/set means is different from the standard and
this can be understood by appreciating the specific problem formulation. Moreover,
in some of the modes, human decision making for solution selection is not appro-
priate or is not the only valid approach; sometimes automatic solution selection
(automated decision making) is possible.

In this chapter, we explore this thesis with reference to a variety of concrete ap-
plications from our own research. We identify five different modes of using MOO, and
discuss in each case an application and the potential for automatic solution selection
in that mode. Our applications include clustering, unsupervised feature selection,
semi-supervised classification, instrument configuration and the travelling salesman
problem. The chapter is organized so that each of the five numbered sections corre-
sponds to one mode of MOO, and this introduction section and a summary section
are not numbered.

1 Standard Multiobjective Optimization

The different modes of using multiobjective optimization (MOO) that we identify
in this chapter categorize what job the objectives are doing. In some uses of MOO,
as we shall see, the objectives are put to work to achieve specific effects and are
not really an intrinsic part of the basic problem formulation. But in the first mode
we identify—what we call ‘standard’ multiobjective optimization—the objectives do
indeed serve to define the basic problem to be solved.

Thus, in standard multiobjective optimization all objectives are distinct, mea-
surable criteria, each expressing some aspect requiring optimization. Assuming all
important criteria have been included as objectives, one may be unsure about their
relative importance to a decision maker (and/or about how to normalize them), but
one can be certain that the ‘ideal’ solution will be Pareto optimal (for the reasons,
see the Introduction chapter of this book). Thus, using an approach that generates
a Pareto front (approximation), a decision maker can learn something about the
conflicts between the objectives and the space of possible solutions, and, through
careful inspection, may subsequently select a single preferred solution. As the name
suggests, this is all very standard, and the reader may refer to any textbook on mul-
tiobjective optimization or multicriterion decision making for further information on
the many existing techniques for ‘solving’ these problems (generating a Pareto front
approximation) and selecting a final preferred solution (e.g., see [12, 35, 44, 49]).

As an example of this commonly used mode of MOO, we consider the problem
of instrument configuration.
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1.1 Application Example: Instrument Configuration

Context

The task of instrument configuration is an optimization problem encountered in a
wide range of different disciplines where complex scientific apparatus is employed
for measurement or analysis purposes. Certain aspects of such instruments’ output
may depend on a set of configuration parameters, and, with a growing number of
such parameters, an enumeration and deterministic probing of all possible settings
may quickly become impossible. Some typical aspects affected by parameter set-
tings may be the instrument’s accuracy, the “cost” of an experiment (e.g., in finan-
cial terms) and its throughput (i.e., the time consumed for obtaining the output).
Some of these aspects may be strongly conflicting, and, consequently, certain in-
strument optimization problems are best modelled as multiobjective problems, and
have recently been tackled using explicit multiobjective optimization approaches.
A prominent example is the use of multiobjective optimization in radiation ther-
apy treatment planning, where an intrinsic conflict exists between maximizing the
tumoricidal dose (that which disrupts the tumor) and minimizing the dose to the
surrounding healthy tissue, especially in the critical organs [13, 43]. More recently,
multiobjective approaches have also been used for the configuration of instruments
employed in biochemical research, and one such example from the second author’s
own research [40, 39] is discussed in the following.

Multiobjective Instrument Configuration

In [40], a series of experiments directed at improving the bandwidth and fidelity
of metabolomics4 studies is described. A combination of mass spectrometry and
chromatography can be used to perform metabolic analyses, but the scientific in-
struments available have generally been designed for other applications; so an op-
timization of the instrument configuration was undertaken. About a dozen real-
valued parameters comprising the configuration of a gas chromatography time-of-
flight mass spectrometer (GC-TOF MS) were varied, while a fixed biological sample
was assayed. Three objectives in the optimization were considered: (i) maximizing
the signal-to-noise ratio in the chromatogram, that is, the output signal of the in-
strument; (ii) maximizing the number of ‘true’ peaks in the chromatogram; and (iii)
minimizing the processing time — the time for the instrument to analyse one sample.
In the experiments reported, a multiobjective evolutionary algorithm (MOEA), the
Pareto-Envelope-based Selection Algorithm (PESA-II [7]), was used to perform the
optimization and some 180 GC-TOF MS configurations were assayed in all. At the
end, a particular configuration that offered the preferred compromise solution was
chosen by an expert DM from the estimated Pareto front obtained (see Figure 1).
This solution represented a threefold increase in the number of peaks observed (and
thus a similar increase in the number of compounds detected) coupled with ac-
ceptable signal-to-noise, and a small increase in the potential throughput (i.e., a
reduction in the processing time of a sample), over the hand-tuned configuration
usually employed.

4 Metabolomics [27] is the science of monitoring metabolic processes in biological
cells or samples, and it relies on instruments capable of detecting the concentra-
tion of thousands of different chemical compounds present in a sample.
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Fig. 1. Evolution of GC-TOF conditions for the optimal separation of typical serum
metabolites. The diagram shows peak number and run time for each trial separation.
The generation number is encoded in the size of the symbol (larger = later)

1.2 Potential for solution selection

In this mode of standard multiobjective optimization, all objectives express impor-
tant criteria to be optimized. A priori, it is often not known how these different
criteria should be normalized or how they will trade off one against the other. This
is the reason behind generating a Pareto front and deferring the selection of a de-
sirable solution until the end. This final selection of a solution will depend very
largely on the particular preferences of a human decision maker. Consequently, in
this mode, automatic selection of good solutions from the Pareto front is not likely
to yield satisfying results and, indeed, most work on methods for selecting solutions
has been related to aiding a decision maker only (see references above). Neverthe-
less, some recent work [8, 5] has suggested that the most promising solutions of a
multiobjective optimization problem may often be located at a ‘knee’ in the Pareto
front and that automatic identification (and even constriction of the search during
the optimization process) may therefore be possible. The rationale of ‘knee’ points
as good solutions in the Pareto front is that these solutions simultaneously score rel-
atively well under all of the objectives considered (compared to neighbouring points
in objective space).
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2 Counterbalance for Bias

The second mode we identify is where MOO is used as a tool to counterbalance a
measurement bias affecting an objective function. Mathematically, this setting can
be described as follows, assuming just one (primary) objective to be optimized:

f(x) = f ′(x) + m(g(x)), (1)

where f ′ is an ideal (i.e., unknown), unbiased measure of the primary objective,
m(g(x)) is a bias term where m is an unknown but monotone function of a measur-
able function g, and f is the measurable but biased sum of the two.

Given that f ′ is thought to provide an objective assessment of the quality of a
solution, it would be desirable to minimize f ′(x) as follows:

minimize f ′(x) = f(x)−m(g(x)); (2)

but since m is unknown it is not possible to formulate the problem in this way.
However, the problem may, instead, be formulated as

‘minimize’ (f(x),−(g(x))) , (3)

with x = (x1, x2, . . . , xn) ∈ X,

in terms of two measurable objectives. Hence, the framework of MOO is used as a
means of introducing an additional objective, g, to counterbalance the bias of the
primary objective.5

The set of Pareto optimal solutions will certainly contain the desired solution
since each Pareto optimum is the best value of f(x) given a fixed value of g(x). In this
scenario, selection of the best solution does not usually depend on preferences, but
on the estimation of the biases. In some applications, the biases may be estimated
using Monte Carlo methods, and this may help us identify the best solution in the
Pareto front.

The task of unsupervised feature selection is a good example of a problem in
which this mode of multiobjective optimization is useful, as will be explained in the
following.

2.1 Application Example: Unsupervised Feature Selection

Context

Machine learning in high-dimensional feature spaces can be very difficult for a num-
ber of reasons: the computational cost of processing many dimensions; the presence
of many redundant or noise-dominated features; and the curse of dimensionality [3],
which means that the number of data may need to grow quickly as dimension in-
creases for learning or pattern recognition to work. For these reasons, dimensionality
reduction techniques are often employed, so that the dimension of the data seen by
the learning algorithm is reduced.

5 N.B. the equations above can be generalized to more than one primary objective
where necessary.
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One way of dimensionality reduction is subset selection, also referred to as fea-
ture selection [18]. Here, a lower-dimensional projection of the data is obtained by
selecting a subset of the original features and discarding the remaining ones. Hence,
in this approach each feature in the reduced feature space corresponds directly to a
distinct feature in the original high-dimensional feature space. The main advantage
of the approach lies in its ease of interpretation: the method directly returns the
variables that are relevant for a given classification task.

We consider here the case of unsupervised feature selection, that is, dimension-
ality reduction in the face of unlabelled input data. This particular area of ma-
chine learning has been seriously addressed only relatively recently in the litera-
ture [9, 11, 17, 32, 37, 38, 41, 45, 47]. Performance in unsupervised classification
is typically measured as the ability of a clustering to reveal ‘interesting’ groupings
(clusters) in a given data set E. Good feature subsets can be found by an iterative
search, where many candidate subsets are evaluated. In a ‘wrapper’ approach to
evaluating the feature subsets, a clustering algorithm is applied to a candidate fea-
ture subspace, and the quality of the resulting clustering solution is evaluated using
internal cluster validation techniques. Here, the term ‘internal’ signifies the fact that
no external information, that is, information about the (true) class memberships of
individual data items (if known), is used for the evaluation of individual clustering
solutions. Cluster validation techniques have been designed specifically in order to
allow for the selection of the best clustering solution out of a set of partitionings
obtained on the same set of data but generated by different algorithms or corre-
sponding to different numbers of clusters. Crucially, however, they are not originally
aimed at accurately comparing partitionings obtained in different feature subspaces;
and therein lies the problem with their use in feature subset selection.

To elaborate, internal cluster validation techniques are generally based on some
form of distance computation in feature space, and this is problematic for their use
in feature selection as it automatically induces a bias of these measures with respect
to the dimensionality of the feature space. The existence of this bias is related to
the fact that when moving to high dimensions, the histogram of distances between
items in a data space changes: the mean of the histogram tends to increase and the
variance of the histogram tends to decrease. In other words, the distances between all
pairs of points tend to become highly similar, and (depending on the specific form of
the validation technique) this causes a bias to low or high dimensions. For example,
many cluster validation techniques consider ratios between intra-cluster compactness
and inter-cluster separation, the values of which draw closer for high dimensions.
Consequently, these validation techniques are biased towards low dimensions, and
thus clustering solutions in a higher-dimensional space that are actually better than
solutions in a lower-dimensional space may be overlooked.

Such biases complicate the validation of clustering results across subspaces of
different dimensionalities. If the natural dimensionality bias is not accounted for, a
wrapper-based feature selection method will always favour extreme feature spaces
(i.e., the lowest- or highest-dimensional feature spaces available). Previously sug-
gested remedies for this issue are the ad hoc normalization of the evaluation function
and the cross-projection technique proposed by Dy and Brodley [11]. Normalization
requires the selection of an appropriate scaling factor, which is usually expected to
be a function of the feature cardinality dF [11, 32]. This may reduce the bias or
overcompensate for it, but will not usually remove it cleanly. The cross-projection
technique proposed by Dy and Brodley [11] attempts to reduce the cardinality-
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specific bias by considering pairs of clustering solutions, each derived in a different
feature subspace, and comparing each of them in both of these subspaces. This
relation can be used for pairwise comparisons between features sets, but it is not
transitive, which makes its use in global optimization techniques problematic.

Multiobjective Unsupervised Feature Selection

Recently, in [21, 32, 38], the application of Pareto multiobjective optimization algo-
rithms has been suggested to deal with the bias by considering feature cardinality as
a separate objective, as in equation 3. In [21], the multiobjective evolutionary algo-
rithm PESA-II was used to optimize two objectives. The first of these was an internal
validation technique, the Silhouette Width [42], which assesses the compactness of
the clusters identified, as well as the separation between them, and which was to be
maximized. Experimental analysis of the Silhouette Width revealed that it is biased
towards feature subspaces of low cardinality, and the feature cardinality was there-
fore introduced as a second objective to be maximized. Experiments on an extensive
test suite demonstrated the suitability of this approach to overcome the problem
of bias in unsupervised feature selection. In particular, the method performed very
well at identifying the optimal feature subspace as a part of the estimated Pareto
front, and outperformed alternative methods in this respect. Also, differently from
traditional greedy approaches, the algorithm was able to simultaneously uncover
distinct partitionings embedded in subspaces of different cardinality.

2.2 Potential for solution selection

In this particular mode of multiobjective optimization, one of the two objectives is
introduced merely as a way of counterbalancing the bias of the primary objective.
As discussed above, this approach is useful only due to the difficulty of quantifying
this bias exactly, which would otherwise enable one to formulate the problem as a
single-objective optimization problem. It is therefore particularly material to explore
for this problem whether, once a complete Pareto front has been obtained, it might
then be possible to single out the best solution(s) from this set of solutions.

A possible way of doing solution selection for this mode has been suggested
in [21]. The approach is based on the assumption that the same bias that affects the
objective evaluation of the candidate subspaces and the corresponding partitionings
is also present when evaluating completely unstructured data. Furthermore, it takes
advantage of the discrete nature of the secondary objective.

The methodology proposed in [21] for solution selection works as follows. First,
the feature selection algorithm is applied to the data at hand in order to obtain an
estimated Pareto front, which we term the ‘solution front’. Second, the minimum
and maximum bounds of the original data (in each feature) are determined, and
uniformly random data is generated within these bounds of the original data. This
‘control data’ is then subjected to the same procedure of feature selection as the
original data. The resulting estimated Pareto front is referred to as the ‘control
front’. The solutions obtained in the solution and in the control front for a given
feature cardinality are then directly comparable: we can therefore score solutions in
the solution front by their distance from the corresponding solution in the control
front. This score is then plotted as a function of the cardinality of the feature set and
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Fig. 2. (Top) Plot of Square3d, a 13-feature data set, containing eight clusters
arranged in a cube pattern in the first three dimensions, and Gaussian noise in the
remaining ten dimensions. (Bottom) Solution front and control front obtained on
this data. The distance between the solution and the control point obtained for
a given feature cardinality can serve as an indicator of quality. In our method of
solution selection, the solution point with the maximum distance from its control
point is selected as the best solution

the maximum value (often corresponding to a ‘knee’ in the solution front) is selected
as the best solution. This methodology is illustrated in Figure 2. The performance
of this approach was evaluated in [21] and promising results were obtained.
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3 Multiple Source Integration

In the third mode, MOO is used to integrate noisy data from multiple sources. Hence,
in this setting, it is used as an alternative to an a priori or an a posteriori integration
technique. The problems where this approach is used are originally single-objective.
However, multiple noisy views of the data need to be integrated, as their combined
use may yield better results than the use of data from a single information source.

Mathematically, this setting can be described by a set of objective functions:

f1(x) = f ′
1(x) + n̄1 (4)

...

fm(x) = f ′
m(x) + n̄m,

where the function value of each objective function fi is equal to the value of an ideal
function f ′

i with some unknown random noise n̄i on it, for i ∈ 1, . . . , m. In some
cases, the f ′ are all identical, e.g., if the ‘views’ of the data arise from the same
types of measurement but taken at different times. By formulating the problem as

‘minimize’ z = f(x) = (f1(x), f2(x), . . . , fm(x)) (5)

with x = (x1, x2, . . . , xn) ∈ X,

and finding the Pareto optima, the impact of the noise may be reduced, if it is
reasonably uncorrelated with the solution space X. The Pareto set corresponding
to minimizing the f is not necessarily that which minimizes the f ′; therefore it is
not guaranteed that the desired solution will be among the Pareto optima.

An example of this type of problem is given in the following.

3.1 Application Example: Semi-supervised Classification

Context

In certain classification scenarios it may be desirable to combine the strengths of un-
supervised and supervised classification techniques, that is, to exploit both limited
prior knowledge of class labels and knowledge of the underlying data distribution
in feature space; semi-supervised approaches aim to do this. Through the combined
use of labelled and unlabelled data it becomes possible to give a degree of exter-
nal guidance to the classification algorithm, while still permitting intrinsic structure
in the data to be taken into account. This is considered particularly useful when
dealing with data sets consisting of a large number of unlabelled data items and
relatively few labelled ones (a scenario typically encountered in application domains
where the categorization of individual data items is accompanied by high compu-
tational, analytical or experimental costs) and, more generally, in the case of very
limited prior knowledge. For example, in cases where the classes within a particular
data set are only partially known, additional ones may be identified by taking the
data distribution into account. Also, due to the combination of two fundamentally
different sources of information, semi-supervised approaches would be expected to
be more robust than both unsupervised and supervised approaches, and may be less
sensitive towards both annotation errors and the occlusion of structure in the data
due to noise.
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: class A
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Legend:

a) Suboptimal classification model b) Optimal classification model

Fig. 3. Illustration of the fundamental idea behind semi-supervised classification.
The unlabelled data points can help us avoid suboptimal solutions and identify the
classification model that is optimal with respect to the given data. Semi-supervision
is closely related to the notion of transductive inference [6], where labelled data is
used to classify a set of known but unlabelled data rather than to obtain a general
model or to classify future ‘unseen’ data

In the case of sparse labelled ‘training data’, the supervised classification prob-
lem on this data will, usually, be underdetermined, and the models resulting from
an entirely supervised analysis may therefore be meaningless. On the other hand, an
entirely unsupervised analysis may produce a partitioning not consistent with the
class labels available, and may therefore be of little significance to the user. Semi-
supervised classification aims to find a solution to these classification problems that
is consistent both with the data distribution (internal knowledge) and prior in-
formation about class memberships or related constraints (external knowledge), as
illustrated in Figure 3.

Different approaches to the integration of these two sources of information exist,
and these fundamentally differ in the underlying algorithms and their bias to one
or the other of the two types of information. Many existing methods are based on
classification approaches initially designed to take into account only one of the two
information sources, which have then be adapted to modify candidate solutions to
comply with the additional information available. Examples are methods based on
established supervised classifiers, such as support vector machines; these classifiers
are trained on the labelled data, but decision boundaries between classes are ‘shifted’
into areas of low densities, as measured across the unlabelled data [4, 31]. An al-
ternative approach is the use of established clustering methods, such as k-means or
agglomerative algorithms [2, 26]; evidently, these are principally guided by the un-
labelled data, but the labelled data may be used to bias the search towards clusters
consistent with the class labels (e.g., through initialization or the introduction of
constraints).

Multiobjective Semi-supervised Clustering and Feature Selection

Fundamentally, semi-supervision calls for the integration of both unsupervised and
supervised components into the classification process. The use of Pareto multiob-
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jective optimization provides the means to avoid the need for hard constraints or
a fixed weighting between unsupervised and supervised objectives when integrating
these components—and because the Pareto approach generates a set of solutions
offering different balances between optimizing the supervised and unsupervised ob-
jectives, it promises greater consistency across different data sets—and to be less
affected by annotation errors (that is, faulty class labels in the supervised part of
the data). However, identifying the best solution amongst the set returned may, of
course, be a challenge.

In [22, 23], multiobjective approaches to the problems of semi-supervised clus-
tering and semi-supervised feature selection have been proposed. Both methods are
quite similar in essence: a multiobjective evolutionary algorithm is used to opti-
mize candidate solutions. In the case of clustering, each candidate solution repre-
sents a partitioning of the data set. In the case of feature selection, each candidate
solution represents a feature subset associated with a target number of clusters
used for k-means partitioning of the data in this feature subspace. In both applica-
tions, unsupervised and supervised information are captured by individual objectives
that are used to score the quality of these candidate solutions. In semi-supervised
clustering, the objectives used are an internal validation technique (the Silhouette
Width [42]) and an external validation technique (the Adjusted Rand Index [28]).
In semi-supervised feature selection there are two unsupervised objectives, namely
the Silhouette Width and subspace cardinality (in order to counterbalance the car-
dinality bias of the Silhouette Width, as discussed in Section 3). The Adjusted Rand
Index is used as a third supervised objective.

In [22, 23], these multiobjective approaches to clustering and feature selection
were compared to a range of alternative single-objective methods including ‘pure’ un-
supervised and supervised approaches, as well as linear and nonlinear combinations
of the two approaches. In both applications, a clear advantage of the multiobjective
approach could be observed.

3.2 Potential for solution selection

In some applications of this type, automatic selection may be possible, namely in
those types where priority information regarding the different information sources is
available. For example, in the semi-supervision problem considered above, the class
labels may sometimes be seen as a more reliable source of information than the
unsupervised information provided by internal validation techniques (e.g., if they
have been provided by human experts). Thus, those solutions with the highest score
under the supervised objective may be selected from the estimated Pareto front.

In [22], this way of solution selection was investigated and it was shown that
the solutions returned are different (and superior) to those identified by a purely
supervised approach. This may seem surprising, but can be explained through the
problem of underdetermination mentioned above: due to the sparseness of the class
labels available a variety of models consistent with the class labels exist (see Fig-
ure 4). The use of semi-supervision allows one to select the one that corresponds
to the highest degree of structure in the feature space, and therefore yields results
superior to those obtained by a purely supervised approach.
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Fig. 4. (a) Simple two-dimensional data set with no conflict between external and
internal information (clusters do not overlap). The classes of a small number of
the data points (randomly selected) are used for a semi-supervised clustering. (b)
Score under the external objective versus objective quality of the partitioning (as
established by the Adjusted Rand Index between the clustering solution considered
and the correct partitioning of the data). (c) Three-dimensional estimated Pareto
front returned by multiobjective semi-supervised clustering

This solution selection approach will not be optimal if there are annotation
errors, however. But, in that case, the shape of the estimated Pareto front can
provide evidence for or against there being annotation errors, and can help us select
the most satisfactory solution. If, by taking a solution which compromises slightly on
the supervised objective a large improvement in the unsupervised objective occurs,
this can be taken as evidence for some class annotation error(s) in the input data.
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In this case, a solution nearly but not quite optimal under the supervised objective
may be preferred.

Further examples of this mode of MOO will be needed to see, more generally,
whether the shape of the Pareto front tends to give reliable information about good
solutions, and whether or not effective solution selection procedures can usually be
designed.

4 Performance Approximation by Proxies

The fourth mode of MOO comprises those applications in which the ‘real’, underlying
objective of the problem, f ′(x,y), is a function of both the solution x and some
‘hidden’ variables y that are not available during optimization. For example, in
training a supervised classifier, y refers to the generalization ability of the classifier
on future data (which may be estimated using a test set after the optimization,
though the classifier must not be trained using these examples).

Since the function f ′ is not suitable for use in the optimization process (because
y is unavailable), it needs to be replaced by ‘proxy’ objectives fi(x), which are
functions of x only. Often, such ‘proxy’ objectives only capture certain aspects of a
good solution, and different proxies are complementary with respect to each other.
Thus, it should be expected that the desired solution(s) will score relatively highly
under all of the ‘proxy’ objectives, and an MOO approach may therefore be suitable,
although the desired solution cannot be guaranteed to be in the associated set of
Pareto optima.

The difference between this context and that of standard MOO (as introduced
above) may seem unclear to some readers. However, the distinction is clear: in the
case of standard MOO, the objective functions have primacy, i.e. they define the
Pareto set; e.g., the concept of a ‘best car’ does not exist per se but, given a search
space, a set of ‘best cars’ is induced by the objectives chosen. In contrast, in the
context of proxy objectives, it is the solution that has primacy, and the objectives
are only a means of orienting the search in order to discover this solution; e.g., the
real structure of a protein exists, and one may try and find it by employing a number
of different energy/cost functions.

An example of this type of problem is given in the following.

4.1 Application Example: Clustering

Context

Data clustering is a problem where informal definitions are usually used to capture
the essence of the problem [10, 14, 29], and is thus a problem where any single
‘objective’ measure of quality is only a proxy of some intangible concept of a good
clustering. Arabie et al. [1] define clustering as

“Those methods concerned in some way with the identification of homoge-
neous groups of objects”,

while Everitt [14] documents several different definitions including this one of a
cluster:
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“A cluster is a set of entities that are alike, and entities from different
clusters are not alike”.

Because of these rather informal definitions (in the most respected texts in the
field), it can be difficult even to assess clustering algorithms fairly, after the fact.
But, for this reason, Milligan [36] argues that the assessment of clustering algorithms
should be based on simulation and Monte Carlo studies that “allow the researcher
to know the exact cluster structure underlying the data”. In such a scenario “no
doubt exists as to the true clustering, or the extent to which any given clustering
algorithm has recovered this structure”. By this means, an assessment based on
external knowledge is achieved, which means that the suitability of the problem
formulation (as reflected by the choice of the clustering criterion), rather than the
performance of an algorithm at optimizing one particular problem formulation only,
is taken into account.

Different formulations of the clustering problem vary in the optimization crite-
rion used internally by the clustering algorithm (where obviously correct class in-
formation cannot be used). Importantly, though, most existing clustering methods
attempt, explicitly or otherwise, to optimize just one such internal criterion—and it
is this confinement to a particular cluster property that explains the fundamental
discrepancies observable between the solutions produced by different algorithms on
the same data and that will cause a clustering method to fail (as judged by means
of external knowledge) in a context where the criterion employed is inappropriate.

Multiobjective Clustering

In practice, the problem of choosing an appropriate clustering objective (viz. algo-
rithm) can be alleviated through the application and comparison of multiple cluster-
ing methods, or through the a posteriori combination of different clustering results
by means of ensemble methods [46, 48]. However, a more principled approach may
be the consideration of clustering as a multiobjective optimization problem, as sug-
gested in [15]. This approach has been explored using evolutionary algorithms in our
recent research [19, 20, 24] and results indicate very competitive performance against
a range of algorithms, including modern ensemble approaches. Figure 5 illustrates
the basic principle behind the method.

4.2 Potential for Solution Selection

Similarly to the first mode of multiobjective optimization, solution selection in the
context of ‘proxies’ will usually require user inspection and/or prior knowledge.
If the ‘proxies’ have been chosen such that they reflect different, complementary
and conflicting properties of the solution required, ‘good’ solutions can probably be
expected to be located towards the centre of the Pareto front (rather than at its
extremes). Again, automatic methods may be employed to discover regions of high
local curvature, which will indicate solutions that compare particularly favourably
to all of their neighbouring solutions. For example, in the context of our work on
multiobjective clustering, a fully automatic procedure was developed for identifying
the best solution from the estimated Pareto front. This method has been tested
extensively and selects consistently good solutions across data of different dimension,
cluster number and other variables [24].
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Fig. 5. The correct clustering solution often corresponds to a trade-off between two
or more clustering objectives. A Pareto front (depicted as a line) and three different
Pareto optimal clustering solutions are shown for a simple three-cluster data set,
plotted in two-objective space. The solution at the top left is generated by an algo-
rithm like single-link agglomerative clustering, which minimizes connectivity only.
The solution at the bottom right is generated by an algorithm like k-means, which
minimizes overall deviation only. (Connectivity and overall deviation are defined
in [19].) The correct solution is situated somewhere between these two solutions,
and so it would not usually be discovered by either method. A multiobjective ap-
proach considering the trade-offs between the two objectives should be able to access
this solution much more readily. For sake of clarity, the approximation set in this
example contains only solutions for k = 3. More generally, the number of clusters
can also be kept dynamic — in this case an approximation set is obtained in which
the number of clusters varies along the estimated Pareto front

5 Multiobjectivization

The fifth and final category identified is where MOO may be used solely as a way to
obtain improved search ‘guidance’ in what is essentially a single-objective problem.6

Assuming a single objective that is measurable, a problem may still be difficult be-
cause of its search landscape. There are at least two difficulties in search landscapes
that can potentially be mitigated by ‘multiobjectivization’: (i) where a problem in-
volves frustration (or epistasis), which causes excessive local optima in the search
landscape; (ii) where the search landscape contains regions offering little or no ob-
jective function gradient. In the first case, decomposition of the primary objective
into several different functions (each function either defined over all of the variables

6 N.B., there is no reason why multiobjectivization cannot also be generalized to
the case where the original problem is itself multiobjective.
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or a subset of them) may help to separate out the conflicting aspects of the problem,
thus reducing the number of local optima ‘seen’ by a search algorithm [33]. In the
second case, the use of extra ‘helper objectives’ in addition to the primary objective
may provide helpful guidance in the flat regions of the landscape [30, 33].

Multiobjectivization may potentially be achieved by any reformulation of the
problem that respects the following relation [33]:

∀xopt ∈ X ∃x∗ ∈ X, x∗ = xopt, (6)

where xopt is an optimal solution to the original single-objective problem and x∗

is a Pareto optimum of the multiobjectivized problem. This ensures that at least
one of the true Pareto optimal solutions will be optimal with respect to the original
primary objective and will correspond to the best solution.

Neumann and Wegener use a kind of multiobjectivization in their chapter (this
book) for a spanning tree problem. They derive the average-case time complexity of
a simple EA working on the original and transformed problem, and discuss why the
latter is much less.

An example of multiobjectivization from earlier work done by the second author
(and collaborators) is given in the following.

5.1 Application Example: Travelling Salesman Problem

We are given a set C = {c1, c2, . . . , cN} of cities and for each pair {ci, cj} of distinct
cities there is a distance d(ci, cj). Our goal is to find an ordering π of the cities that
minimizes the quantity

N−1∑

i=1

d(cπ(i), cπ(i+1)) + d(cπ(N), cπ(1)). (7)

In [34], a two-objective version of the problem was formulated as follows:

“minimize” f(π, a, b) = (f1(π, a, b), f2(π, a, b))

where f1(π, a, b) =
∑π−1(b)−1

i=π−1(a)
d(cπ(i), cπ(i+1))

and f2(π, a, b) =
∑N−1

i=π−1(b)
d(cπ(i), cπ(i+1)) +

∑π−1(a)−1
i=1 d(cπ(i), cπ(i+1)) + d(cπ(N), cπ(1))

(8)

where a and b are two cities specified a priori, and if π(a) < π(b) they are swapped
(see Figure 6). It is intended that a and b be chosen arbitrarily. Notice that the
sum of the two objectives is the same as the quantity to be minimized in (7). This
ensures that the optimum of (7) is coincident with at least one of the Pareto optima
of (8), as required by our definition of multiobjectivizing above.

It was shown in [34] that this formulation was preferable to the original one
when considering the performance of a simple hill climber versus a multiobjective hill
climber, the Pareto archived evolution strategy (PAES), and when genetic algorithm
performance was compared with that of a multiobjective evolutionary algorithm.
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5.2 Potential for Solution Selection

In the above mode of multiobjective optimization, solution selection is straightfor-
ward: we are, originally, given a single-objective formulation of the optimization
problem at hand, and additional objectives are introduced only as a means of facili-
tating the search process. It is therefore justified to assume that the solutions scoring
best under the original single objective will provide us with the best solution.

Summary

Multiobjective optimization is sometimes put to use in unconventional ways, which
demands further explanation and investigation. In this chapter, five distinct motiva-
tions for the use of multiobjective optimization were identified, and an application
example for each one of them was provided. It is not intended that this classifica-
tion is not absolute or final, and it is certainly true that some applications can be
understood in terms of more than one of our identified modes of MOO in practice.
Nevertheless, we hope that identifying these modes gives a clearer picture of what
is happening in some of these problems and hence what the solutions in the Pareto
front actually signify. We have already used the same classification to help shed light
on some other applications of MOO in the field of computational biology [25] and
hope it may prove useful in seeing how MOO is used in future applications as well.

An important element of the work presented in this chapter concerns solution
selection: we have found that understanding the modes of MOO also helps us under-
stand different approaches to selecting ‘final’ solutions. Although a decision maker’s
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preferences or expert knowledge do come into play in many cases, it is also true that
effective automatic solution selection has been demonstrated in some applications
already. This is very significant because if multiobjective optimization approaches
are to be compared with more usual single-objective problem formulations, one has
to be able to use objective measures of performance; and this usually means that
some objective means of returning one single proposed solution is required. More
than that, the popularity of MOO methods may be increased if decision aid (to the
point of automatic selection) were a more integral part of using these methods.
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Summary. This chapter sets out a number of the popular areas in multiobjective
supervised learning. It gives empirical examples of model complexity optimization
and competing error terms, and presents the recent advances in multi-class receiver
operating characteristic analysis enabled by multiobjective optimization. It con-
cludes by highlighting some specific areas of interest/concern when dealing with
multiobjective supervised learning problems, and sets out future areas of potential
research.

1 Introduction: What Is Supervised Learning?

A common task in machine learning is to learn the functional relationship between
inputs and outputs. The inputs x are generally vectors of features, which may be
discrete, continuous or mixed. The output is typically a scalar y, the target. If y
is a continuous variable then the problem is known as a regression problem; for
example, x might be a vector of rainfall measurements and y might be the height of
a river at a particular place. Conversely, if y is a discrete variable then the problem is
known as a classification problem: y here indicates into which class the observations
x fall; a common example is medical diagnosis in which x is a vector of physiological
measurements for a particular person and y indicates whether the person has a
particular disease (y = 1, say) or not (y = 0).

During supervised learning the machine is equipped with a set of training data
comprising pairs {xn, yn}N

n=1 of features and targets which are assumed to be rep-
resentative of the process being modelled. If the mapping x �→ y is successfully
learned, then the learned function can be used to make predictions of the target for
features whose target is unknown.

A number of problems arise in supervised learning. On the data side there are
issues of how well the training data actually represents the generating process (if
important relationships are not represented, they cannot be learnt), and of whether
the generating process is stationary or not (i.e., whether the problem itself changes
over time). Perhaps the most important question facing the supervised learner is
how to prevent overfitting ; that is, how to ensure that the learned function models
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the underlying relationship between features and targets, without modelling any
noise present in the training data.

On the function induction side there are the problems of choosing a priori which
specific model/family of models to use and of determining how complex a repre-
sentation to allow. There is also the issue of which error term to use during the
training/learning process in order to generate the model with the best generaliza-
tion ability or other related properties. Finally, there is the issue of which subset of
inputs/features to induce the model from.

The chapter proceeds as follows. In Section 2 a more formal definition of super-
vised learning is provided; this is followed by a number of sections giving empirical
examples of evolutionary multiobjective optimization (EMOO) in the supervised
learning domain. Section 3 presents an example of regularization using EMOO. Sec-
tion 4 discusses competing error terms, and gives examples from both two-class and
multi-class Receiver Operating Characteristic analysis. The chapter concludes with
a brief discussion of issues arising in the domain, highlighting potential areas for
further work and current unanswered questions.

2 Different Formulations of Supervised Learning

More formally, assume we are given a model f which predicts an output ŷ (i.e., class
membership probabilities or real-valued regression prediction) based on a feature
vector x and model parameters w, so that

ŷ = f(x,w). (1)

The model may be quite simple, such as a linear regressor, but frequently very flex-
ible, nonlinear models such as neural networks or support vector machines (SVMs)
are used.

Supervised learning techniques try to find a parameterization w that minimizes
some error E over all feature-target pairs:

ŵ = arg min
w∈W

E(f(x,w), g(x)) ∀x ∈ ℵ, (2)

where g(x) is an oracle function that tells the true target value for every input,
ℵ is the set of all valid feature vectors, and W is the set of all feasible model
parameterizations. Typically one does not have access to ℵ or the oracle function;
rather one has a subset of (often noisy) observations in the form a data set D =
{xn, yn}N

n=1, so that practical supervised learning involves minimizing

ŵ = arg min
w∈W

E(f(xn,w), yn) n = 1, . . . , N. (3)

Usually the training pairs are assumed to be independently and identically dis-
tributed (i.i.d.) draws from a generating distribution, so that the error becomes the
sum of the error for each training pair:

E =

N∑

n=1

Ẽ(f(xn,w), yn). (4)
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In regression problems, the error function is usually taken as the squared error, Ẽ =
(f(x,w)−yn)2, which is tantamount to assuming that the observations are corrupted
by Gaussian-distributed noise, although if the noise is not Gaussian distributed
some other error function will be appropriate. For classification problems, the cross-
entropy is the error function that corresponds to maximizing the likelihood of the
data [2].

As noted above, the full range of training examples is generally unavailable, and
one has to be content with a finite (and often small) training set. An inevitable
consequence of this is that the models with a high degree of flexibility are able to fit
the peculiarities of the particular training data set rather than the general trends in
the data. Clearly, optimization to a particular data set inhibits generalization and
renders predictions on unseen data poor. A common way to tackle this overfitting is
to regularize the error function by augmenting (3) with a regularization term that
penalizes overly complex models; thus, the error to be minimized becomes

E = Edata + αEreg, (5)

where Edata is the data error function (equations (3) and (4)), Ereg is a penalty that
increases as the model becomes more complex, and α is a regularization parameter.1

A widespread choice for Ereg is the weight-decay penalty:

Ereg = ‖w‖2. (6)

This penalty function penalizes models with large parameters—models with large
nonlinear terms that are therefore likely to be overfitting. Although the form of the
penalty may at first sight appear somewhat ad hoc, it is naturally interpreted from
a Bayesian point of view as a prior probability over the parameters [25, 26, 2]. Other
complexity-penalizing functions such as Minimum Description Length (MDL), the
Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC)
have been proposed [see, e.g., 5].

Conventionally, the overall error is minimized and the regularization parameter
determined by cross-validation. It is shown in the next section how choosing the
model parameters may be viewed as a two-objective optimization problem.

3 Regularization by Multiobjective Optimization

Arguably one of the more fruitful avenues investigated so far by the EMOO com-
munity in multiobjective supervised learning is complexity model optimization (see,
e.g., [14, 23, 28] for recent work and overviews). As noted earlier, there tends to
be a tendency, especially when using models with high representation capability,
to overfit a model parameterization to the training data, leading to poor general-
ization ability. A textbook example of this would be when using neural networks
(NNs). Given enough activation units, NNs are universal approximators, allowing
sufficient complexity within the model to permit them to model any deterministic
underlying generation process. However, determining the appropriate complexity a

1 Other approaches to controlling overfitting have been to use pruning algorithms
to remove nodes [24], other complexity loss functions [32] and topology selection
methods [31].
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Fig. 1. Noisy sine wave training data (dots), with noiseless generating function
shown with the solid line. Noise drawn from a Gaussian with zero mean and 0.3
standard deviation. 63 training data points (input values drawn at intervals of 0.1
from 0 to 2π)

priori for a problem so as not to overfit the data at hand is a persistent problem. As
noted above, in statistical machine learning this overfitting is typically tackled by
the use of weight decay regularization. This approach requires the determination of
the regularization parameter α on the weighting of this penalty. The use of EMOO,
in contrast, allows optimization over all complexities. As such the problem can be
cast as bi-objective for EMOO, with the first objective being the minimization of
the error function (in the regression problems shown here, the mean square error),
and the second objective being the minimization of model complexity (here, the sum
of the squared weights of a multi-layer perceptron (MLP) neural network; equation
6).

A simple example is now provided. The problem is the regression of a noisy
sine wave, using the training data illustrated in Figure 1, with circles denoting the
training data and the line representing the continuous (noiseless) generating process.
Using a simple greedy (1+1)-evolution strategy (ES), as described by [13, 15], one
can discover the networks corresponding to the estimated Pareto front shown in
Figure 2 with dots.

A general (1+1)-ES is given in Algorithm 1. In the implementation of this general
algorithm in this section an initial nondominated set of points was generated by
training an MLP (with one input unit, 50 hidden units and one output unit) using
the quasi-Newton method [2, 27] and evaluating its objectives every 50 epochs, up
to 5,000 epochs (Algorithm 1 line 1). The ES was run for 50,000 generations (line 2),
with a probability of weight mutation of 0.1, and mutation being formed of additive
draws from a zero mean Gaussian with standard deviation of 0.2 (line 4). In the
implementation here, update() (line 6) ensures F always contains the best current
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Fig. 2. Estimated Pareto optimal front of NNs (dots) and the same NNs evaluated
on a validation set from the same generation and noise process (crosses); note the
switch back effect in the lower left corner

Algorithm 1 A general ‘greedy’ (1+1)-ES scheme for multiobjective opti-
mization in supervised learning, where e is the set of error evaluations on
model parameterization w and data x. Error terms to be minimized without
loss of generality
Inputs:

T Number of generations
M Number of initial samples of w

1: F := initialize(x,M) Initial estimate of front
2: for t := 1 : T
3: w := select(F ) Select from archive
4: w′ := perturb(w) Perturb/mutate parameters
5: e := evaluate(x,w′, ) Evaluate error functions
6: F := update(F,w′) Update archive
7: end

estimate of the true Pareto front by storing an unconstrained nondominated set of
the best parameterizations found so far.

Figure 3a shows the regression lines of the model with the lowest complex-
ity (summed squared weights) from the estimated Pareto front, with Figures 3b–h
showing the regression lines of models with consecutively higher complexity levels
(sampled at roughly every fiftieth element of the estimated true Pareto front shown
in Figure 2).
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Fig. 3. Regression lines of the estimated Pareto optimal NNs on the training data.
Plots (a)–(h) show models sampled regularly from estimated Pareto front, from
lowest complexity to highest complexity
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Fig. 4. a) Regression line of model with lowest RMSE on training data from esti-
mated Pareto set. b) Regression line of model with lowest RMSE on validation data
from estimated Pareto set (on training data). c) Regression line of ensemble of ten
models with lowest RMSE on validation data from estimated Pareto set (on training
data)

The models span the spectrum from severe underfitting (such as the almost
straight lines in Figure 3a) to severe overfitting (such as the wiggly lines shown
in Figure 3h). This range of model types is to be expected from the optimization
objectives. The problem still arises as to how to choose an operating model from
the set at the end of the optimization run. One approach discussed in [14] is to
evaluate the set on a second validation set of data and note at which point the
complexity/accuracy curve ‘switches back’. This is shown in Figure 2 by crosses,
where a validation set of the same size as the training set is used, from the same
noisy generating process. A prominent ‘switch back’ point can be seen in the lower
left-hand corner, which would lead one to choose either the model with the lowest
root mean squared error (RMSE) in this area or to use an equal-weighted ensemble
of models from this region.

Figure 4 shows the regression line of various approaches with a solid line – in
all cases the dashed line shows the underlying noiseless generating process. Figure
4a is the model with the lowest RMSE on the training data (i.e., the model corre-
sponding to the leftmost point in Figure 2), Figure 4b is the model with the lowest
RMSE on the validation data (i.e., the model corresponding to bottom left of the
‘switch back’ cross in Figure 2), and Figure 4c is the average regression line of the
ten models with the lowest validation error (the models at the knee of the switch
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back). As can clearly be seen, the model with the lowest RMSE on the training
data clearly is overfitting, but the regression lines in Figures 4b and 4c are much
closer to the underlying generating process. Even though the network representation
capability is very high (50 hidden units, with only 63 training points) the use of a
complexity minimization objective and a validation set has led to a good estimate
of the noiseless generating process. Other approaches like bootstrapping or cross-
validation during the optimization can also be employed for a similar effect within
the MOEA approach; see, for instance, [15]. In addition, an interesting approach to
regularization has been explored by Gräning et al. [17], who optimize Receiver Op-
erating Characteristic performance on simulated additional training sets generated
by perturbing the features of the training data with Gaussian noise.

4 Competing Error Terms

Another application area that has proved popular is training with multiple errors.
Here, conflicting ‘goodness-of-fit’ measures are used in the learning process, typically
due to competing properties which are desired of the final model(s).

4.1 Regression

In the area of regression this has been in the formulation of a trade-off between
different measures of goodness-of-fit. For instance, using EMOO methods, one may
optimize with respect to one measure (e.g., RMSE or absolute error) and also with
respect to the distributional properties of this principal error measure [1, 9]. In the
regression field, EMOO methods have also been used to optimize multiple ‘appli-
cation specific error terms’, for instance, in financial applications, the return on
investment of predicting an asset price. It is difficult to train a model using this
term by itself, but used in conjunction with a goodness-of-fit error measure, it can
ensure that you have models that accurately predict the signal and are profitable
[13, 29].

4.2 Classification

In classification problems, the task is to allocate new or previously unseen examples
x to one of two or more classes (categories) Cj . This is generally based on a model,
or set of models, induced from some existing corpus of data whose true classes
are known already. The misclassification rate (proportion of data which is labelled
with an incorrect class by the classifier) is typically taken as a measure of classifier
accuracy, and as the objective to be minimized. However, when there is an imbalance
in the cardinality of each distinct class in a set of data, for training and/or testing, the
total misclassification rate can be misleading. For instance, in a two class problem,
it is trivial to get a 10% misclassification rate if the sizes of the two classes are in a
9:1 ratio.

In order to deal with class imbalance, Receiver Operating Characteristic Analysis
(ROC) is typically used in the 2-class classifier optimization. This analysis traces out
the true positive rate (the proportion of correct assignments to the principal class by
the model) against the false positive rate (the proportion of incorrect assignments
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Fig. 5. ROC example. Points denote the different TPR/FPR combinations possible
from a classifier by using a different threshold on the model output (or alternatively
using different model parameters)

of the second class to the principal class by the model) by varying the classification
threshold of the model (if the model outputs a probability of assignment, or a score)
or the parameters of the model itself. This visualization shows the trade-off between
the accuracy in classifying the two separate classes for a particular model – as
illustrated in Figure 5. The best possible classifier would operate in the top left of
the plot, with a TPR of 1 and an FPR of 0. The dashed line denotes the random
allocation line, the expected performance of a classifier which allocates class labels
to data at random (at some fixed ratio). Any classifier operating below this line is
performing worse than randomly; the operating point of such a classifier can be
reflected through the random allocation line simply by switching the class labels the
classifier has assigned to the data.

The plotting of classifier performance in the TPR/FPR plane also allows a user
to evaluate models given different costs of misclassification. For example, in medical
diagnosis, the cost of misclassifying a patient by saying he does not have a cancer
when he does is far more costly than saying he has a cancer when he does not.
The latter error will be detected with a biopsy sample; the former error may not be
detected before the cancer progresses to a more dangerous state.

The area under the ROC curve (AUC), which lies between 0 and 1, is often
used as a single value to compare classifiers. As explained by Hand and Till [18],
this measures a classifier’s ability to separate two classes over the range of possible
costs. The Gini coefficient is also used, which is twice the area between the curve
and the random allocation line.

ROC analysis obviously lends itself to optimization with EMOO methods, with
the TPR and FPR being cast as two separate objectives.2 The example in Figure 6a
shows the decision boundaries formed by radial basis function (RBF) neural network

2 Alternatively one could maximize the AUC as a function of a set of solutions, if
one were careful as to how the set was updated, as discussed later.
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Fig. 6. a) Decision contours of RBF networks on the estimated optimal ROC front;
training data with one class denoted by circles and the other by crosses. b) Estimated
optimal ROC front on 250 training data pairs (denoted by dots) and their evaluation
on 1,000 testing data pairs (denoted by crosses)

classifiers on the test problem from [10], optimized using a simple (1+1)-ES.3 Figure
6b in turn shows the estimated optimal ROC curve on the 250 training data points
(shown with dots on the plot), and their evaluation on 1000 testing data points
(shown with crosses on the plot).

Interestingly, although not shown here (but available in [10]), synthetic ROC
problems are perhaps the only supervised learning problems for which the true
Pareto front can be determined and the performance of the optimized solutions
compared to it. This is because with a synthetic classification problem one can de-
termine the exact posterior probability of any feature vector, and therefore trace out
the ROC curve of a Bayes rule classifier (the best possible). Without knowing the
generating process one cannot know where the true Pareto front lies for any classifi-
cation problem, and therefore how close any particular model is to it. However, the
downside to this is that when optimizing a classifier based on training data, you only
actually have access to an estimate of the posterior probability, not the true poste-
rior probability (otherwise you would not need a classifier in the first place). As such
the estimated ROC curve may actually seem above the known optimal curve. This
problem of noise and uncertainty (which is apparent in most if not all supervised
learning problems) is one of the principal areas needing additional research in multi-
objective supervised learning, and can be the source of over-optimistic assessments
of performance.

It is also worth noting that in 2-class ROC optimization the granularity of the
front is limited by the cardinality of the dataset —therefore the use of unconstrained
archives is often appropriate.

3 The RBFs contained ten units with Gaussian kernels, optimized in the fashion
discussed in [11] using a (1+1)-ES for 5,000 generations with a probability of
mutation of 0.1 and a variance of additive Gaussian mutation of 0.2.



Multiobjective Supervised Learning 165

4.3 Separating Classes

An early formulation of the multi-class ROC problem was proposed by [18], who
introduced a generalization of the AUC. In summary, their M measure is the average
of the pairwise AUCs between the Q(Q−1)/2 pairs of classes. More precisely, Hand
and Till show that the AUC is the probability, denoted Â(k|j), that a randomly
drawn member of class Ck will have a lower estimated probability of belonging to
class Cj than a randomly drawn member of Cj . Clearly, a classifier able to separate Ck

from Cj has large Â(k|j), whereas if it makes assignments no better than chance, then
Â(k|j) = 1/2. Except in the two-class problem, Â(k|j) 
= Â(j|k), and exchanging
class labels does not alter their separability, so the classifier’s ability to separate
Cj and Ck is measured by Â(j, k) = [Â(k|j) + Â(j|k)]/2. Hand and Till then define
overall performance of a classifier as

M =
2

Q(Q− 1)

∑

j<k

Â(j, k), (7)

where Q is the number of classes. M thus measures the average ability of a classifier
to separate classes, although it considers the pairwise performances of the classifier
rather than the full Pareto front. Hand and Till also describe the measure for a
classifier with fixed parameters, rather than for a parameterized family of classifiers,
as done in the next section of this chapter. A natural generalization is to consider the
multiobjective maximization (for a parameterized family) of the Q(Q− 1) pairwise
Â(j, k). In fact, this leads to a simple algorithm for the maximization of M itself,
which is now described.

The key to maximizing M is that it is possible to find a set E of parameters w
that together maximize M . Consequently, if the addition of a proposed parameter
vector w′ to E increases any one of the Â(j, k), it automatically increases M ; since
an unrestricted set of parameters is kept, no other elements of E need be deleted,
so the other Â(j, k) are, at worst, not decreased. This leads to the straightforward
procedure outlined in Algorithm 2. As for the multiobjective evolutionary algorithm,
it maintains an archive E of solutions. At each stage, a randomly selected member of
E is perturbed and the M measure of the archive plus w′ evaluated; if the addition
of w′ increases M then w′ is retained (line 6 of Algorithm 2), and any parameters
which now do not contribute to M are removed (lines 7–9).

When maximizing M over a family of classifiers, several ROC curves for indi-
vidual classifiers generally contribute to the composite ROC curve for the family.
Example ROC curves for eight classifiers resulting from the optimization of M for
synthetic data using the probabilistic k -nn classifier [20] are shown in Figure 7. For
each pair of classes the axes of each panel are Ckk, the true positive rate for Ck, and
Ckj , the rate at which misclassifications of Ck examples are classified as Cj . Each
‘ROC curve’ corresponds to a distinct w = {k, β} parameter value,4 and the opti-
mized M is achieved by the envelope of these curves. Evaluation of the Â(k|j) that
contribute to M can be performed by applying the method described by Hanley and
McNeil [19] and Hand and Till [18, page 174] for calculating the AUC for a single
classifier to the envelope of the ROC curves.

As Figure 7 shows, after optimization only eight distinct (k, β) combinations
contribute to the optimized M ≈ 0.991, although during optimization up to 20 pa-
rameter combinations were involved. Selection of the operating parameters on the

4 The probabilistic k -nn classifier is discussed further in Section 4.4.
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Algorithm 2 Evolutionary optimization of Hand and Till’s M measure
Inputs:

T Number of generations

1: E := initialize()
2: for t := 1 : T
3: w := select(E)
4: w′ := perturb(w) Perturb parameters
5: if M(E ∪ w′) > M(E)
6: E := E ∪ w′ Insert w′

7: for u ∈ E
8: if M(E) = M(E \ u)
9: E := E \ u Remove redundant elements

10: end
11: end
12: end
13: end

basis of the Â(j, k) is possible; it is emphasized that the Â(j, k) summarize the over-
all pairwise separability rather than permitting specific choices to be made between
particular misclassification rates. Additional information is available through exam-
ination of the families of pairwise trade-off curves, such as those displayed in Figure
7.

As the optimized M measures the ability of a particular family of classifiers to
separate classes, it may be used for comparing classifiers. Table 1 shows the opti-
mized M and number of distinct models (distinct parameter values) contributing to
M for a number of standard machine learning data sets taken from the UCI reposi-
tory [4]. The two-class Ionosphere data is well known to be easily classified, and M
(actually the AUC here) is correspondingly high with only three distinct parameter
sets for the k -nn classifier and four sets for the MLP. The Image data can be well
separated, but only with the use of 13 parameter sets for k -nn; again, better separa-
tion is achieved by the more flexible MLP, but at the expense of many more models.
The DNA data with only three classes but 180 features requires 181 (k, β) combina-
tions for optimal separation. In contrast, even after optimization the Satimage data
cannot be well separated with k -nn classifiers. Results are not presented for the MLP
classification of the Abalone, Satimage and DNA datasets because the computation
of the Â(j|k) for envelopes of individual classifiers becomes exorbitantly expensive
with many samples and models.

In summary, although M provides a global measure of a classifier’s performance
on a particular dataset and identifies a relatively small number of optimal param-
eter sets, the question of how to select an operating point remains. The question
arises, for instance, about whether a single operating point selected from a group
which together maximizes M would necessarily be as good as a single operating
point maximized for M . In the next section a different approach to multi-class ROC
optimization is discussed which confronts some of these issues.
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Fig. 7. Pairwise ROC curves for the k -nn classification of the 3-class synthetic data
set. Each row corresponds to a pair of classes. Axes correspond to the true positive
rate Ckk and the rate at which Ck examples are misclassified as Cj . Each curve
corresponds to a distinct parameter combination, so that Â(k|j) is the area under
the envelope of the curves

4.4 Multi-class ROC

The authors have shown recently that with Q-classes (where Q > 2) ROC analysis
can be extended and cast in terms of minimizing the off-diagonal elements of the
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Fig. 8. Left: Growth of M with iteration during optimization. Right: Number of
distinct parameter combinations contributing to M during optimization. Results for
k -nn classification of 3-class synthetic data

Table 1. Optimized M measure for UCI data sets

k -nn MLP
Name Examples Features Q M Models M Models

Abalone 3133 10 3 0.927 33
Image 210 19 7 0.996 13 0.999 25

Ionosphere 200 33 2 0.992 3 0.996 4
Vehicle 564 18 4 0.973 11 0.966 75

Satimage 4435 36 6 0.713 20
DNA 2000 180 3 0.989 181

confusion rate matrix [11, 7, 6]. An example confusion rate matrix is given below;
note that the true positive rates and false positive rates are not available here, but
class assignment rates (where Ci,j/|Ci| denotes the classification rate of class i data
to class j, normalized by the total number of class i data points) are.

Predicted Class
1 2 . . . 3

1
C1,1
|C1|

C1,2
|C1| . . .

C1,Q

|C1|
Actual Class 2

C2,1
|C2|

C2,2
|C2| . . .

C2,Q

|C2|
. . . . . . . . . . . . . . .

Q
CQ,1
|CQ|

CQ,2
|CQ| . . .

CQ,Q

|CQ|

This is therefore a Q(Q−1) objective minimization problem. However, although
the dimensionality of the Pareto front/optimal ROC front increases rapidly with the
number of classes, as with the 2-class problem, there is a limit (albeit potentially
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very large) to the number of distinct points on it which is a function of the size of
the data set used, and Q.

By extending the Gini coefficient analysis, a random allocation simplex can be
used to compare different classifiers in Q(Q− 1) dimensional objective space. Clas-
sifiers whose off-diagonal confusion rates sum to greater than Q− 1 are performing
worse than average. Additionally, that single model furthest in front of this simplex
(closest to the origin) should be the classifier chosen when no misclassification costs
are known (for a more extensive discussion see [6]). This also allows the compari-
son of different classifier families for particular supervised learning problems (e.g.,
k -nearest neighbour classifiers, decision trees, multi-layer perceptrons, radial basis
functions, etc.). The comparison can thus concern itself not simply with the cardi-
nality of dominance between the points on the ROC front produced, but also using
a measure on the objective space which is meaningful (similar to the volume mea-
sure, or S metric, used in general multiobjective optimization, but without scaling,
and based on a prespecified region of a hypercube). More formally, [6] have shown
that the volume lying between the origin (the perfect classifier) and the random
allocation simplex, which also lies in the unit hypercube (where it is feasible for a
classifier performing better that average to operate) is

(Q− 1)Q(Q−1)

(Q(Q− 1))!
− Q(Q− 1)(Q− 2)Q(Q−1)

(Q(Q− 1))!
. (8)

This region is denoted here by P . The measure on it, G(), is calculated as the
proportion of P dominated by elements of the ROC surface (F ). Therefore, like
the Gini coefficient in two dimensions, G(F ) is a measure of how much better than
random the elements in a set F are. δ(F, F ′) in turn measures how much of P is
dominated by the set F but not by the set F ′. This can be used to compare two
different fronts (generated for instance by two different classifier families) which
possibly overlap in parts.

Due to the shape of the region, it is not quite as trivial to calculate its volume as
it is to calculate the region used in the S metric [33], as a reference simplex is used,
as opposed to a reference point (which is further constrained to lie within a unit
hypercube). As such, the region defined by P is a hyper-pyramid, with a Q(Q− 1)
truncated corners. Monte Carlo sampling of this region can give a good estimate of
the volume dominated, and [8] discusses how to do this efficiently.5

When using a soft classifier (one that gives a probability of class membership,
or a score) it is computationally efficient to assess the effect of a number of different
sample cost matrices c on the misclassification rates for any particular model pa-
rameterization.6 This is because passing the data x through a classification model
can be time consuming, whist transforming this output using different cost matri-
ces allows the evaluation of many different possible misclassification combinations

5 If the reader is considering using this measure to compare multi-class ROC curves,
she is advised to consult this technical report, as the probability of randomly
generating a sample in the region defined by P , by generating a uniform sample

in the unit hypercube, is (Q−1)Q(Q−1)

(Q(Q−1))!
−Q(Q−1)(Q−2)Q(Q−1)

(Q(Q−1))!
, which rapidly becomes

become prohibitively small even for small Q. Sampling methods developed in [8]
generate random points in P with a probability of ≈ 1

Q(Q−1)
.

6 Assuming linear costs.
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Algorithm 3 Converting the general (1+1)-ES scheme for multiobjective
optimization in supervised learning (Algorithm 1), into a (1+λ)-ES scheme
for ROC optimization (replacing lines 5 and 6 of original algorithm)

Inputs:
λ Number of cost samples

1: for j := 1 : λ
2: c := sample() Sample costs
3: e := evaluate(x,w′, c) Evaluate error functions
4: F := update(F,w′, c) Update archive
5: end

relatively cheaply. The application of Algorithm 1 in this case is better viewed as a
(1 + λ)–ES, with λ cost matrices c additionally sampled for any particular model
parameterization w.7 As such lines 5 and 6 of Algorithm 1 should be replaced by
Algorithm 3.

In the empirical results given below, λ = 50 different cost matrices are assessed
for each model parameterization, drawn from unbiased Dirichlet distributions, with
each optimization run lasting T = 5, 000 generations (therefore 5, 000 unique model
parameterizations evaluated, each with 50 different cost matrices). The probability
of parameter mutation was 0.8, with the mutation being additive draws from a
Gaussian distribution with mean 0 and standard deviation 0.2.

Results are given here for the UCI Image, Vehicle and Satimage data sets. Details
of data set sizes are given in Table 1, and therefore the objective dimensionalities for
these sets in this problem formulation are 42, 12 and 30, respectively. The classifica-
tion models used are the probabilistic k -nn algorithm, probabilistic k -nn algorithm
with tricube kernel [20] and the multinomial logistic regression classifier (MLR) [3].
The probabilistic k -nn classifier is a simple local classifier which classifies based
on the actual classes of known data in the unlabelled data’s immediate locality.
It has two parameters, k, the number of neighbours used, and β, which controls
the ‘strength of association’ between neighbours (effectively a way of making closer
neighbours more important). The MLR is a simple global classifier which separates
feature space into different classes with smooth planes, and has D(Q+1) parameters
(where D is the number of features, the size of x). The probabilistic k -nn with a
tricube kernel has the local classification properties of the probabilistic k -nn, with
an additional tendency to push the assignment probability down if the unlabelled
sample is ‘far’ from any labelled data.

Figure 9 shows the signed distance of all points lying on the ROC curve for each
classifier from the random allocation simplex; negative numbers mean the operating
point is better than random and a value of -1 indicates that the model perfectly
classifies the data presented. As can be seen, visually both variants of the proba-
bilistic k -nn classifier seem to do considerably better than the MLR classifier, with
all classifiers performing better than random. Table 2 provide the associated G and
δ measures, calculated from 10,000 Monte Carlo samples in P . From these it can

7 These sample costs can be straightforwardly and randomly sampled from a Dirich-
let distribution; see [6] for a discussion on this.
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Fig. 9. Distances from the random classifier simplex. Negative distances correspond
to models in P . Left: k -nn; Middle: k -nn tricube; Right: MLR. Top: UCI Image data;
Middle: UCI Vehicle data; Bottom: UCI Satimage data

be seen that for the Image dataset the probabilistic k -nn model would tend to be
the preferred model, with only small portions of its front lying behind that of the
probabilistic k -nn tricube model (additionally, the probabilistic k -nn model has the
single operating point furthest from the random allocation simplex). A similar re-
sult can be seen for the Vehicle data set, although here it is interesting to note that,
although the MLR visually seems to underperform compared to the k -nn models,
the δ measures show that, for some particular choices of costs, the MLR classifier is
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Table 2. Generalized Gini coefficients and exclusively dominated volume compar-
isons of the probabilistic k -nn, probabilistic k -nn with tricube kernel and MLR
classifiers

Measure Image Vehicle Satimage
G(k-nn) 0.137 0.073 0.116
G(k-nn tricube) 0.080 0.030 0.099
G(MLR) ≈ 0 0.009 ≈ 0
δ(k-nn, k-nn tricube) 0.070 0.044 0.026
δ(k-nn,MLR) 0.137 0.068 0.116
δ(k-nn tricube, k-nn) 0.013 0.001 0.008
δ(k-nn tricube,MLR) 0.080 0.028 0.099
δ(MLR, k-nn) 0 0.005 0
δ(MLR, k-nn tricube) 0 0.007 0

actually the best to choose. The results from the Satimage dataset again give the
same overall order to the classifiers, with the MLR being totally worse, irrespective
of costs, than both types of probabilistic k -nn model. Again, for some cost combina-
tions the model with the tricube kernel is a better classifier to use; however for the
majority of cost preferences, the standard probabilistic k -nn is the most appropriate
classifier to choose out of the three model families compared.

Compared to optimizing using the M measure, a far larger range of parameters is
found to be optimal under this framework. For instance, when using the probabilistic
k -nn model for the synthetic data in Section 4.3, eight different parameterizations
described the set which maximized M , compared to approximately 7, 500 solutions
on the Pareto optimal ROC surface for the same dataset described in [6]. The Pareto
optimal ROC surface, however, describes the full range of trade-offs that may be
obtained between classification rates, rather than the average class separability over
the range of pairwise cost ratios described by M , and also shows the user which
cost matrix (equivalent to the threshold in 2-class cases) is needed with a particular
model parameterization to obtain a particular expected set of misclassification rates.

5 Discussion

There are a number of other avenues in multiobjective supervised learning which
have been explored using EMOO, but the examples presented here provide a rea-
sonable overview of the area. A more general overview can also be found in [22].

However, there are still a large number of open questions in the field of multi-
objective supervised learning that are worth highlighting.
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Fig. 10. Example decision boundaries (from RBF classifiers) with identical operat-
ing points in ROC space

Hybrid Models

Usually researchers tend to either start a process with a ‘traditional’ local optimizer
(like gradient descent in NNs), or iterate between a local process and an EMOO
method. This tends to be the case because the search space is easier traversed
(at least to begin with) by local methods, and because, for many of the classi-
fiers/regressors used, the range of parameters to be searched is essentially without
limits. As such, EMOO techniques are often used to trace out an estimate of the
Pareto front for a problem after a traditional algorithm has supplied a single point
on a good estimate of the front. The question of how much search to carry out with
local methods and how much time to spend searching with EMOO methods is still
an open one.

Overfitting

Unless there is an explicit casting of an objective to minimize complexity, EMOO
approaches to optimizing competing errors can be very prone to overfitting. The
use of weight decay regularization approaches in hybrid EMOOs may mitigate this
somewhat, but to do this they must assume a penalty term independent of the region
of objective space, which is a difficult assumption to justify.

Many-to-One Mappings

Perhaps more than other application areas, supervised learning parameter space is
full of regions which have identical evaluations in objective space – especially if it is a
classification problem. These disjoint plateaus can cause many problems for optimiz-
ers, and when using an elite multiobjective optimizer raise the question as to which
of the solutions to store if they have the same objective valuations but very different
input space partitioning. Figure 10 illustrates this with the synthetic classification
problem used earlier – the decision contours shown have identical misclassification
rates on the data but different decision boundaries.
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Noise, Uncertainty, Truth

Arguably, the largest problem in multiobjective supervised learning is the fact that
only samples of the generating process are available, which tend to be noisy. Opti-
mizing with uncertainty/robust optimization is an area gaining momentum in the
general EMOO community at the current time [21, 30, 12, 16], and supervised learn-
ing problems should present an interesting avenue of research. Given the concerns
of data mislabelling or feature/sensor noise, and the uncertainty caused when many
different models/model parameterizations can lead to the same objective evaluation
(on a certain data sample), as mentioned above, all supervised learning problems
seem to contain at least one form of uncertainty.
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Summary. This chapter investigates the use of multiobjective techniques in genetic
programming (GP) in order to evolve compact programs and to reduce the effects
caused by bloating. The underlying approach considers the program size as a second,
independent objective besides program functionality, and several studies have found
this concept to be successful in reducing bloat. Based on one specific algorithm, we
demonstrate the principle of multiobjective GP and show how to apply Pareto-based
strategies to GP. This approach outperforms four classical strategies to reduce bloat
with regard to both convergence speed and size of the produced programs on an
even-parity problem. Additionally, we investigate the question of why the Pareto-
based strategies can be more effective in reducing bloat than alternative strategies
on several test problems. The analysis falsifies the hypothesis that the small but
less functional individuals that are kept in the population act as building blocks
for larger correct solutions. This leads to the conclusion that the advantages are
probably due to the increased diversity in the population.

1 Motivation

The tendency of trees to grow rapidly during a genetic programming (GP) run is
well known [16, 26, 2, 6] and may be explained by:

• The bigger trees get, the more code they contain that does not influence the
fitness of the individuals. These so-called introns protect the individuals against
the destructive effects of the crossover and mutation operators.

• The probability of finding a big tree that achieves a high fitness is greater than
of finding a short program with the same behaviour (fitness-causes-bloat theory
[19] ).

• Removing bigger subtrees is much more likely to destroy the program than re-
moving shorter ones, which leads to a bias for the preservation of long programs
(removal-bias theory [25] ).

This phenomenon, which is denoted as bloating, leads to several problems:
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• Trees can grow quadratically [18]; this leads not only to excessive use of CPU
time and memory but also makes the evaluation of trees infeasible.

• Smaller solutions usually generalize the training data better than bigger ones
[2].

• When trees start to grow rapidly, so does the fraction of the tree constituted
of introns. The recombination of individuals therefore usually comprises an ex-
change of introns, and the fitness of the population does not improve anymore;
the GP run stagnates with high probability [2]. Moreover, when the system is
bloating, the recombination of individuals may have no effect since introns will
be usually exchanged, and this may lead to stagnation.

Therefore, normally at least, an upper limit for the program size is set manually.
Several other strategies have been developed to address the problem of bloating,
which can roughly be divided into two classes:

• Methods that modify the program structure and/or the genetic operators in
order to remove or reduce the factors that cause bloat. Some examples are Au-
tomatically Defined Functions (ADFs) [17], Explicitly Defined Introns (EDIs)
[2] and Deleting Crossover [5].

• Techniques that incorporate the program size as an additional factor in the
selection process, e.g., as a constraint (size limitation) or as a penalty term
(Parsimony Pressure [26]).

When bloating occurs, combinations of the different approaches are possible. Nev-
ertheless, both types have certain disadvantages. For methods of the first class, e.g.,
ADF, EDI or Deleting Crossover, usually knowledge of how the program structure
and the genetic operators interact with the effect of bloating is required. A difficulty
with some methods of the second class is to optimally set the parameters associ-
ated with them, e.g., by choosing an appropriate parsimony factor when applying
Constant Parsimony Pressure [26].

Pareto-based methods belong to the second class and have two advantages: They
do not rely on problem knowledge and they do not require additional parameters to
be set. The idea is to consider the program size as a second, independent objective
besides program functionality and apply a Pareto-based method to the resulting bi-
objective problem. The algorithm will then always prefer the smaller of two equally
performing programs. As an additional side effect, both small but less functional
and large but more complete programs will be kept in the population during the
evolution. This basic strategy has proved to successfully reduce bloat in several
studies [4, 9, 7, 11, 21, 3, 15]. However, it is still an open question why keeping
many non-functional small individuals in the population helps in finding small and
correct solutions quickly rather than distracting the search. A potential explanation
is the increased diversity in the population. Alternatively, small individuals may
be partial solutions to the problem, which can be combined by recombination into
compact full solutions, thus acting as building blocks.

Using the method proposed in [4] as an example, the present chapter (i) describes
how Pareto-based optimization methods can be applied to reduce code growth in
GP and (ii) investigates what mechanisms make these methods effective. In the
course of this chapter, we briefly discuss various traditional methods against bloat
(Section 2.1), give an overview of alternative multiobjective approaches to fight bloat
(Section 2.2), describe a particular method in detail (Section 3) and compare it to
traditional techniques (Section 3.2), and finally investigate possible reasons for its
effectiveness (Section 4).
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2 Overview of Existing Approaches

2.1 Traditional Approaches to Reduce Bloat

Towards the end of a GP run introns grow rapidly and comprise almost all of the
code while the optimization process stagnates (no fitness improvement anymore) [2].
Thus, the question is why simulated evolution favours programs with large sections
of non-functional code over smaller solutions.

One explanation is that GP crossover is inhomogeneous, i.e., it does not ex-
change code fragments that have the same functionality in both parents. Therefore,
crossover most often reduces the fitness of offspring relative to their parents by
disrupting valuable code segments or placing them in a different context. Because
crossover points are chosen randomly within an individual, the risk of disrupting
blocks of functional code can be reduced substantially by adding introns. To keep
this process from using too many machine resources, normally a limit on the tree
depth or number of nodes is set manually; when an offspring individual exceeds
this limit, one of its parents is added to the population instead. However, setting a
reasonable limit is difficult. If the limit is too low, GP might not be able to find a
solution. If it is too high, the evolution process will slow down because of the im-
mense resource usage, and the chances of finding small solutions are very low. In the
following, this setup will be named Standard GP. Here, the fitness Fi of individual i
is defined as the error Ei of an individual’s output compared to the correct solution

Fi = Ei,

where Fi is to be minimized.
Another obvious mechanism for limiting code size is to penalize larger programs

by adding a size-dependent term to their fitness; this is called Constant Parsimony
Pressure [5, 26]. The fitness of an individual i is calculated by adding the number
of edges Ni, weighted with a parsimony factor α, to the regular fitness:

Fi = Ei + α ·Ni

Soule and Foster [26] report that in some runs parsimony pressure drives the en-
tire population to the minimum possible size. With a higher parsimony pressure
the probability of a run suffering from this effect increases. This results in a lower
probability of finding good solutions.

A third approach to tackling bloat is to optimize the functionality first and the
size afterwards [12]. The formula for the fitness of an individual i depends on its
own performance. An additional parameter ε comes into play; ε is the maximum
acceptable error and can be set to zero for discrete problems. For fitness assignment
the population is divided into two groups:

1. The individuals that have not yet reached an error equal to or smaller than ε
get a fitness according to their error Ei without any pressure on the size:

Fi = Ei + 1 if Ei > ε

2. The fitness of individuals that have reached an error equal to or smaller than ε.
The new fitness is calculated using the size Ni of individual i:

Fi = 1− 1
Ni

if Ei ≤ ε.
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An individual with a large tree size will get a fitness near 1 while one with a
large tree size will have a fitness closer to 0.

One advantage of this method is that the GP can find good solutions without being
hampered since pressure on size is not applied until the individual has already
reached the aspired-for performance. In runs where no acceptable solution is found,
bloating will continue. Therefore it is useful to additionally set an upper limit on
the tree size. In the following we will call this setup Two Stage for to the two stages
of fitness evaluation.

Similar to this concept is a strategy called Adaptive Parsimony Pressure. Zhang
and Mühlenbein have proposed an algorithm that varies the parsimony factor α
during the optimization process [28]:

Fi(g) = Ei(g) + α(g) · Ci(g).

Ci(g) stands for the complexity of individual i at generation g. The complexity
can be defined in several ways [28], e.g., as the number of nodes in a tree or as
normalized size obtained by dividing the individual’s size by the maximum size in
the population [5]. In contrast to the Two Stage strategy, the fitness function does
not depend on the individual’s performance but on the best performance in the
population at generation g. The parsimony pressure used to calculate the fitness in
generation g is increased substantially if the best individual in generation g− 1 has
reached an error below the threshold ε:

α(g) =

{
1

T2 · Ebest(g−1)

Ĉbest(g)
if Ebest(g − 1) > ε

1
T2 · 1

Ebest(g−1)·Ĉbest(g)
otherwise.

Ebest is the error of the best performing individual in the population, T denotes the
size of the training set and Ĉbest(g) is the expected complexity of the best program
in the next generation:

Ĉbest(g + 1) = Cbest(g) + ΔCsum(g),

where Cbest stands for the complexity of the best performing individual in the pop-
ulation and ΔCsum(g) is recursively defined as

ΔCsum(g) =
1

2
(Cbest(g)− Cbest(g − 1) + ΔCsum(g − 1))

with the following starting value

ΔCsum(0) = 0.

The only parameter that has to be set manually is ε. Blickle [5] has reported results
superior to those of Constant Parsimony Pressure when applying Adaptive Parsi-
mony Pressure to a continuous regression problem, and equal results to those of
Constant Parsimony Pressure when using it on a discrete problem.

In summary we can state that traditional methods aggregate the program func-
tion and program size in terms of one objective and fix a trade-off between these
two criteria by means of a user-defined parameter.
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2.2 Multiobjective Approaches

Using Size as Second Objective

Naturally, most optimization problems involve multiple, conflicting objectives which
cannot be optimized simultaneously. This type of problem is often tackled by trans-
forming the optimization criteria into a single objective which is then optimized
using an appropriate single-objective method. The same is usually done when try-
ing to address the phenomenon of bloat in GP by modifying the fitness evaluation
or the selection process. Actually, there are two objectives: i) the functionality of a
program and ii) the code size. While the second objective is traditionally converted
into a constraint by limiting the size of a program, controlling the code size by
adding a penalty term (Parsimony Pressure) corresponds to weighted-sum aggre-
gation. Ranking the objectives, i.e., optimizing the functionality first and the size
afterwards (Two Stage strategy), introduces a hierarchy on the objectives which in
turn defines a total preorder on the search spaces.

Alternatively, Pareto-based methods can be applied by considering program
functionality and program size as independent objectives. In this approach, small
but functionally poor programs can coexist with large but good (in terms of func-
tionality) programs, which in turn maintains population diversity during the entire
run. It is important to note that only fitness assignment and selection is changed
when switching from single-objective to multiobjective GP, while the other opera-
tors like mutation and recombination are not influenced. In 2001, three publications
independently proposed the idea of using multiobjective methods for reducing bloat
in GP, as first mentioned in [23] but not investigated in detail, and showed promis-
ing results [4, 9, 7]. In the following years additional studies have successfully used
Pareto-based methods for bloat reduction [11, 21, 3, 15]. The remainder of this sec-
tion summarizes these approaches and the key results of the respective studies. The
method proposed in [4] serves as the basis for the analysis presented in this chapter.

Nondomination Tournament [9]

The authors propose a simple selection operator based on nondomination. In this
scheme, the selection of one individual works as follows: A comparison set is ran-
domly picked from the population and then candidate solutions are randomly cho-
sen until one is found that is not dominated by any member of the comparison set;
this individual is selected. To prevent the method from converging on small but
non-functional programs an additional bias towards larger solutions is included in
the domination criterion. Two different possibilities are compared: i) Using epsilon
dominance on the program size, i.e., depending on the fitness f an individual i may
dominate individual j even when it is larger than j (fi < fj and si < sj + ε). ii)
Redefining the size objective such that it equals a threshold value for all trees that
are smaller than this limit.

The approach is compared to standard GP on three symbolic regression problems
and on the multiplexer problem. It is demonstrated that much smaller solutions can
be found that are of similar quality. The number of fitness evaluations are similar,
but due to the smaller average program size the running times are substantially
smaller for the multiobjective method. Additionally, the preference for the different
variants of the size bias changes with the problem.
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FOCUS [7, 11]

Selection in the FOCUS algorithm works by discarding all weakly dominated indi-
viduals in the population. In order to promote diversity within the population, a
diversity measure is used as a third objective in the optimization. However, unlike in
most multiobjective EAs, diversity is measured in the parameter space. A distance
measure for GP trees is defined and the average distance to the other members of
the population is used as third objective function in the evaluation of a program.

This method is compared to standard GP on three instances of the parity bit
problem. The experimental results show that some kind of diversity maintenance is
necessary to keep the population from converging to small but non-functional trees.
Including the diversity objective, FOCUS was, using fewer function evaluations, able
to find correct solutions that are much smaller than those found by standard GP.

POPE-GP [3]

Another study uses NSGA-II [8] as selection operator in another overall method
named POPE-GP [3]. Like all state-of-the-art evolutionary multiobjective optimiza-
tion algorithms NSGA-II employs a diversity mechanism to distribute the individuals
in the objective space. This eliminates the problem of convergence to small but non-
functional programs. In an assessment on a classification problem, this approach
yielded smaller programs with superior generalization compared to standard GP.

Biased Multiobjective Parsimony [21]

The authors argue that in most cases it is much easier for GP to find small non-
functional programs than large correct ones, which is the reason why the evolution
process can converge to small, non-functional individuals. To avoid this, a bias to-
wards larger solutions is introduced. In contrast to the bias in [9], the user does not
specify a target size but rather the relative importance of the two objectives. This
is achieved by performing a tournament in which individuals are either compared
based on their fitness (program functionality) only or based on their nondominated
sorting rank [8]. By setting the probability p for using the fitness as criterion in the
tournament, one can adjust the influence of the program size in selection, i.e., higher
values of p lead to higher parsimony pressure.

The study uses four classical GP test problems (artificial ant, symbolic regres-
sion, multiplexer and even-parity) for comparing the proposed approach to standard
GP and to two other single-objective strategies presented in the same publication.
The results show that biased multiobjective parsimony is able to reduce the size of
the solutions significantly for all problems in comparison to standard GP. But for
higher parsimony pressure, which generates a highly significant reduction in program
size, the fitness values start to increase compared to standard GP, i.e., the program
functionality decreases. Consequently, the parsimony pressure must be carefully cho-
sen to achieve a reduction while maintaining the quality of the solutions. The two
single-objective strategies perform similarly to the multiobjective selection.

Other Related Approaches

The method presented in [15] is closely related to [9]. Here the selection consists
of picking a random set of individuals and selecting all the nondominated solutions



Reducing Bloat in GP with Multiple Objectives 183

from this set. Instead of replacing the selection operator with a multiobjective version
as in most other approaches, Smits et al. [24] propose maintaining an external set
of nondominated solutions and adapting the crossover operator to recombine one
individual from the normal population with one individual from the nondominated
set.

Methods like those presented in this section have successfully been used in several
applications [27, 14, 29, 22]. And the same basic idea has found use in areas other
than GP. In evolutionary design of classifiers, for example, the same problem with
parsimony exists and the multiobjective methods presented for bloat in GP have
effectively been applied [20, 10].

Summary of Multiobjective Approaches

Summarizing the studies discussed above, one can state that considering program
size as a second objective beside program functionality and applying a Pareto-based
optimization method has been highly successful in reducing bloat compared to stan-
dard GP. If a pure dominance-based fitness assignment scheme is used, this may
lead to convergence to small, non-functional programs, thereby reducing the chance
of finding a high-quality solution. The reason is that many more small programs ex-
ist than functional ones. Two basic strategies have been proposed to eliminate this
problem: i) the introduction of a bias against small programs [9, 21], which gives
rise to the difficult problem of correctly setting this bias or ii) the enforcement of
diversity in the population with respect to either the parameter space [7, 11] or the
objective space [4, 3].

3 A Multiobjective Approach to Reduce Bloat in Detail

This section describes how to apply a multiobjective approach to reducing bloat
based on the example of the method presented in [4]. Additionally, it provides an
empirical comparison of the multiobjective approach to four alternative strategies
for reducing bloat.

3.1 Algorithm

The approach proposed in [4] uses an improved version of the Strength Pareto Evolu-
tionary Algorithm (SPEA) for multiobjective optimization proposed in [32]. Besides
the population, SPEA maintains an external set of individuals (archive) which con-
tains the nondominated solutions among all solutions considered so far. The variant
implemented here differs from the original SPEA only in the fitness assignment. In
SPEA the fitness of an individual in the population depends on the “strengths” of
the individual’s dominators in the external set, but is independent of the number of
solutions this individual dominates or is dominated by within the population. The
potential problem arising with this scheme is illustrated in Figure 1. The Pareto-
optimal front consists of only four solutions and the second dimension is highly
discretized (as is the case for the application considered in Section 3.2, cf. Fig-
ure 11). As a consequence, the population is divided into four fitness classes, i.e.,
clusters which contain solutions having the same fitness. The fitness values only
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Fig. 1. A problematic situation with the original SPEA fitness assignment scheme in
the case of a highly discretized objective space. The white points represent members
of the external set while the grey points stand for individuals in the population

among clusters vary, not within clusters. Thereby the selection pressure towards
the Pareto-optimal front is reduced substantially and may slow down the evolution
process.

To avoid this situation, with the present algorithm both dominating and domi-
nated solutions are taken into account for each individual. In detail, each individual i
in the external set P and the population P is assigned a real value S(i), its strength,
representing the number of solutions it dominates:

S(i) = |{j | j ∈ P + P ∧ i ! j}|,

where | · | denotes the cardinality of a set, + stands for multiset union and the
symbol ! corresponds to the relation of weak Pareto dominance.1 The strength of
an individual is greater than or equal to 1 as each individual weakly dominates itself.
Finally, the fitness F (i) of individual i is calculated on the basis of the following
formula:

F (i) =
∑

j�i

S(j).

That is, the fitness is determined by the strengths of its dominators. Note again
that each individual weakly dominates itself and thus F (i) ≥ S(i). In contrast to
SPEA, there is no distinction between members of the external set and population
members.

It is important to note that fitness is to be minimized here, i.e., low fitness values
correspond to high reproduction probabilities. The best fitness value is 1, which
means that an individual is neither (weakly) dominated by any other individual
nor (weakly) dominates another individual. A low fitness value is assigned to those
individuals which

1 A solution weakly dominates another solution if and only if it is not worse in any
objective.
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i) dominate only few individuals and
ii) are dominated by only few individuals (which in turn dominate only few indi-

viduals).

Therefore, not only is the search guided towards the Pareto-optimal front but also a
niching mechanism is incorporated based on the concept of Pareto dominance. This
enhances population diversity with respect to the objective space and successfully
avoids convergence to small but non-functional programs, as will be demonstrated
in Section 3.2.

For details of the SPEA implementation we refer the reader to [30]. The clus-
tering procedure is not needed in this study because the size of the external set is
unrestricted due to the small number of nondominated solutions emerging with the
considered test problem.2

3.2 Experiments

In the following, we compare five methods — Standard GP, Constant Parsimony,
Adaptive Parsimony, Two Stage and the SPEA variant — by evolving even-parity
functions of different arities.

Methodology

The even-parity function was chosen because it is commonly used as a GP test
problem [16, 26] and the complexity (arity = number of inputs) can be easily adapted
to either the available machine resources or the performance of an algorithm. The
Boolean even-k-parity function of k Boolean arguments returns TRUE if an even
number of its Boolean arguments are TRUE, and otherwise returns NIL.

Parity functions are often used to check the accuracy of stored or transmitted
binary data in computers because a change in the value of any one of its arguments
toggles the value of the function. Because of this sensitivity to its inputs, the parity
function is difficult to learn [17]. The training set consist of all 2k possible input
combinations. The error of an individual is measured as the number of input cases
for which it did not provide the correct output value. A correct solution to the even-
k-parity function is found when the error equals zero. We will call a run successful if
it found at least one correct solution. For each setup 100 runs have been performed,
and, in the following, usually the average values over 100 runs are reported. If not
stated differently, the even-5-parity problem was used. Additionally, in a few runs
even-parity functions of higher arities have been evolved.

Parameter Settings

After some test runs with Standard GP we decided to use a population size of 4,000
and a maximum of 200 generations; this setup performed best of all, keeping the
product Generations ∗ Popsize = 800, 000 constant. All runs were processed up
to generation 200, even if they found a correct program before generation 200. We

2 The technique used here is a slight variation of the method later proposed under
the name SPEA2 [31] which contains further improvements over SPEA.
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set the initial depth for newly created trees to five and, in addition, restricted the
maximum allowed depth of trees to 20, which is by far enough to generate correct
solutions. It is important to note that only Standard GP and Two Stage runs (if no
pressure is applied because no correct solution has been found) are affected by this
limit. The other methods manage to keep the tree size so small that no significant
part of the population reaches tree depths close to the limit.

The terminal set consists of all inputs d0, d1, ..., dk−1 to the even-k-parity func-
tion. No numerical constants have been used. The function set consists of the fol-
lowing four Boolean functions: {AND, OR, IF, NOT}. Note that using the same
function set without IF makes the task of evolving an even-parity function con-
siderably more difficult. Preliminary tests for Constant Parsimony with different
parsimony pressures of 0.001, 0.01, 0.1 and 0.2 showed the best results for α = 0.01.
This value has been used in all following Constant Parsimony runs.

For Adaptive Parsimony several settings from [5] have been used: The maximum
acceptable error ε was set to 0.02. Ei(g) was normalized with the maximum possible
error. The best error that can be achieved is Ei(g) = 0. Ci(g) was defined as the size
Ni(g) of an individual i normalized with the maximum size in population Nmax(g).
In order to be able to use the formula given in Section 2 a constant c = 0.01 was
added to the error measure.

Table 1 summarizes the parameters used for all runs (if not stated differently).

Table 1. Global parameter setting

Population size 4000
Generations 200
Maximum depth Dmax = 20
Maximum initial depth Dinitial = 5
Probability of crossover pc = 0.9
Probability of mutation pm = 0.1
Tournamentsize T = 7
Reproduction method Tournament
Function set {AND,OR, IF,NOT}
Terminal set d0, d1, ..., dk−1

Constant Parsimony Pressure α = 0.01
Threshold (for Adaptive Pars.) ε = 0.02

Results

As expected, all methods have been able to find correct solutions in most of the 100
runs. Table 2 shows the percentage of successful runs, i.e., runs that found at least
one correct solution within 200 generations. Two Stage and Standard GP have the
same probability of solving the test problem since the fitness function is the same
for both unless the concerned individual in Two Stage already represents a correct
solution.
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Fig. 2. Comparison of the success rates
for the different methods relative to the
generations. 100% means that all of the
100 runs found a solution before or in
this generation

Fig. 3. Average tree size, mean of 100
runs per method

More information about how fast a method finds correct solutions can be ob-
tained by calculating the probability of a run finding a correct solution within the
first k generations. It is computed by summing over the runs that have found a cor-
rect solution by generation k. This probability is shown in Figure 2. It is interesting
that all methods have found correct solutions before generation 20 in some runs. For
all methods the probability of finding the first correct solution in the second half of
the run is low. Increasing the arity of the even-parity function from 5 to 7 makes the
problem much harder to solve. With an even-7-parity function, Standard GP did
not produce one correct solution within 31 runs of 200 generations each. Parsimony
was successful in ten and the SPEA variant in 22, out of 31 runs. This shows that
keeping smaller trees in the population not only reduces the computational effort
but also improves chances of solving the problem. For the even-9-parity function,
the SPEA variant was successful within 500 generations in 17 out of 31 runs, and
Constant Parsimony in 4 out of 31.

Table 2. Results compared for Standard GP, Two Stage, Constant Parsimony,
Adaptive Parsimony and the SPEA variant

Method Success Smallest Mean Largest
Rate Av. Av. Av.

[%] Size Size Size
Standard GP 84 324.0 643.2 1701.8
Constant Pars. 100 26.2 52.3 106.9
Adaptive Pars. 99 23.0 87.1 714.9
Two Stage 84 25.7 170.1 867.6
SPEA variant 99 16.8 21.7 37.1
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One of the main goals of reducing bloat is to keep the average tree size small in
order to lower the computational effort required. Figure 3 shows the mean of average
tree sizes in the population for 100 runs relative to the generation. Standard GP
shows a rapid increase of average size until a significant part of the population
reaches the maximum tree depth at about generation 20. From this point on, the
increase in size gets slower. This is clearly an effect of limiting the tree depth. Out of
ten runs where the tree depth was unlimited, none showed this saturation pattern.
In contrast, tree size grew faster and faster, reaching an average size of 9,764 edges
(average over 10 runs).

All of the other methods show common behaviour. After reaching a maximum
between generation 20 and 30 the average size is reduced and stabilizes. Around
the time when the average size reaches a maximum, the average error reaches a
minimum. Maybe it is the general behaviour of algorithms that somehow favour
small solutions, at least for discrete problems. An improvement in functionality is
first achieved by a large individual and is followed by smaller programs with the
same error. At the beginning of a run, when the average error is high, it is easy for
evolution to improve functionality and the reduction of the average error is fast. The
reduction in size mainly takes place when a lot of individuals have the same fitness.
While fitness is changing fast this is not the case. Parsimony pressure with an α
of 0.01, for example, mainly distinguishes between programs of equal performance.
An individual may be 100 nodes larger than another and compensate for this with
classifying only one additional test case correctly. Further investigations would be
needed to justify the previously mentioned assumption.

Of more practical relevance is the fact that although the average size develop-
ment shows a similar pattern for Two Stage, Constant Parsimony, Adaptive Parsi-
mony and the SPEA variant the absolute values differ very much. As can be seen in
Figure 3, the proposed SPEA variant has by far the smallest average size throughout
the whole run. In generation 200 the average number of edges is down to 21.7; this
is less than half of the second smallest average size which was attained by Constant
Parsimony. Another important aspect is the range between the highest and the low-
est final average size within all runs for one method. Table 2 lists the highest and
the lowest final average size that occurred in 100 runs. For the SPEA variant the
final average sizes vary only very little. At the other extreme is Two Stage. Some of
the Two Stage runs never found a correct solution and therefore never experienced
any pressure on tree size. These runs are exactly like Standard GP runs. Adaptive
Parsimony performed considerably worse than Constant Parsimony (unlike in [5],
where Adaptive Parsimony and Constant Parsimony achieved equal performance),
and its final average sizes fell into a large range.

The second main goal when using methods against bloat is to retrieve compact
solutions. The question is whether methods that keep the average tree size in the
population low also produce small correct solutions. Figures 4 to 8 show a bar for
each run. The height of the bar corresponds to the size of the smallest correct
solution that was found during the whole run. If no correct solution was found there
is no corresponding bar. For calculating the mean and median value only successful
runs have been taken into account. It is shown that methods with low average tree
sizes like the SPEA variant and Constant Parsimony were not only able to produce
correct solutions but also found more compact solutions than methods with a larger
average tree size. The average size of the smallest solutions for the SPEA variant
is 21.1, which is close to the minimal possible tree size (17) for a solution to the
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even-5-parity function using the given function set. This ideal solution was found in
22 runs. Every successful run found compact solutions; even the worst run found a
solution of size 38. Although Constant Parsimony has a high probability of finding
correct solutions within 200 generations, the size of the smallest solutions varies in
a wide range. Once again the results of Adaptive Parsimony are worse than those
of Constant Parsimony. Especially, the range of the sizes of the smallest solutions is
larger with Adaptive Parsimony Pressure.

Fig. 4. Standard GP, size of the smallest correct solution

Some insight into why the SPEA variant is more successful than Constant Par-
simony can be gained by looking at the distribution of the population in the (size,
error)-plane. Figures 9 to 12 show the distribution of the population at generation
30 and 200 both for one representative run of the SPEA variant and one Constant
Parsimony run. Each dot in the diagram represents one individual. The two runs for
the SPEA variant and Constant Parsimony have been started with the same initial
population. While the SPEA variant keeps a set of small individuals with different
errors in the population during the whole run, Constant Parsimony moves the en-
tire population towards lower errors and larger sizes. Around generation 30, when
the average size reaches a maximum value and the average error a minimum value,
parsimony pressure becomes effective and the population is moved back towards
smaller sizes. The only small programs that are constantly kept in the population
have an error of 16. Into this category also falls the smallest possible program that
results from returning one input to the output. It is possible that in the variety of
small trees that can be found in populations of the SPEA variant at all stages of
the evolution, good building blocks for correct solutions are present.

4 Investigating the Mechanisms of Multiobjective Bloat
Reduction

As demonstrated in the previous section and by all the studies described in Sec-
tion 2.2, Pareto-based multiobjective optimization is successful at reducing bloat.
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Fig. 5. Constant Parsimony, size of the
smallest correct solution

Fig. 6. Two Stage, size of the smallest
correct solution

Fig. 7. Adaptive Parsimony, size of the
smallest correct solution

Fig. 8. SPEA variant, size of the small-
est correct solution

While it is intuitive that maintaining a selection pressure towards smaller programs
reduces bloat, it is not obvious why the multiobjective approach is particularly effec-
tive compared to alternative strategies. The algorithm used in Section 3 maintains
a large portion of small non-functional programs in the population, as no preference
for any of the two objectives size, and functionality is applied. This strategy seems to
enhance the identification of a compact and correct solution rather than distracting
the search algorithm as one would assume. In the following, a hypothesis concerning
the cause of the observed behaviour will be presented and analysed.

4.1 Hypotheses

Figure 13 shows the hypothesized minimal-size solution found for the even-5-parity
problem with the given operator set. This program is composed of subtrees that are
themselves solutions to the parity bit problems for a lower number of inputs and that
were often found by the multiobjective approach. This observation, together with
the fact that even-parity programs can be obtained by programs for lower a number
of bits, leads to the assumption that it was composed of solutions to subproblems by
means of recombination. In this scenario, the multiobjective approach may support
the existence of such small programs that are not correct solutions but that have
relatively good functionality, as they are solutions to subproblems. So, the hypothesis
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Fig. 9. SPEA variant population at gen-
eration 30

Fig. 10. Constant Parsimony popula-
tion at generation 30

Fig. 11. SPEA variant population at
generation 200

Fig. 12. Constant Parsimony popula-
tion at generation 200

is that the small programs kept in the population act as building blocks for compact
and correct solutions.

Alternatively, the advantage of the multiobjective optimization may be based
on the increased genetic diversity. The existence of this effect was demonstrated in
an empirical study in [1] where single-objective optimization problems were solved
by adding objectives and applying a Pareto-based method. A closely related idea is
that adding objectives makes a problem easier by removing local optima [13].

If the building block hypothesis describes the dominating factor leading to bloat
reduction, the following can be expected to hold:

• The fitness assignment should be able to discriminate between small solutions
that are solutions to subproblems or building blocks and random programs of
the same size. If this is not the case, the EA will not prefer building blocks over
random solutions.

• Through recombinations of solutions to subproblems, the functionality of off-
spring programs should often be largely better than the parents’ functionality.

• Switching off recombination should strongly reduce the effectiveness of the mul-
tiobjective method.

In the following, the experimental results on multiple test problems for these
effects will be analysed.
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Fig. 13. Hypothesized minimal size solution found for the even-5-parity problem.
The marked subtrees are solutions to parity problems of lower arities

Fig. 14. Multiplexer problem (k = 6)

d3 0 d4 0 d5 0

+

output

d0 d2d1

Fig. 15. Adder problem (k = 6)

4.2 Test Problems

Besides the parity bit problem described in Section 3.2 the following test problems
are used for the analysis.

k-Multiplexer

A multiplexer is a device to select one of several data inputs and forward it to the
output, cf. Figure 14. The k-multiplexer problem has m binary control inputs and
n binary data inputs, where n = 2m and k = m + n. Thus, the feasible values for k
are k = {3, 6, 11, 20, 37, . . .}
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k-Hamming Distance

Here, the task is to calculate the Hamming distance between the first half and the
second half of the binary input string of length k. Obviously, k is restricted to being
even. This test problem was specifically designed to allow a stepwise buildup of
correct programs, since the solutions that calculate the correct Hamming distance
for a part of the input string have a relatively high score on the complete problem.

k-Adder

A related test problem is the k-adder where the first k
2

bits of the k binary input di

determine which of the remaining bits are added; cf. Figure 15. Thus, the output is
calculated as follows:

a =

k∑

i=0

di · di+ k
2
. (1)

Operators

The same operators as for the parity bit have been used for the multiplexer problem,
namely NOT, OR, AND, and IF . For the Hamming distance and the adder an
additional binary plus operator + was introduced.

4.3 Results

This section tests the building block hypothesis described above by analysing ex-
perimental results for the different effects that should be observed if the hypothesis
holds.

Fitness Discrimination of Small Programs

For the population to contain a significant number of small programs that are solu-
tions to subproblems, they must exhibit better fitness values than random programs
of the same size, e.g., when scored on the even-5-parity problem, a solution to the
even-3-parity problem should be preferred to a random program of the same size.
One characteristic of solutions to subproblems is that they do not use all available
inputs. Accordingly, the possible fitness ranges for programs that do not use all of
the provided inputs (as do solutions to subproblems) are plotted in Figures 16–19.
On the k-parity problem, all solutions that use less than k inputs have equal fitness
as they provide the correct result to exactly half of the test cases. Thus, solutions
to subproblems or other good building blocks for compact full solutions cannot pre-
vail in the population despite the significant portion of small programs maintained
by the Pareto-based selection. Nevertheless, the multiobjective method was highly
successful on the parity problems. This gives a first indication against the building
block hypothesis. For the other test problems the same problem does not appear,
and the Hamming distance problem and the adder problem have been specifically
designed such that solutions to subproblems score relatively well on the full problem.
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Fig. 16. Fitness ranges for small pro-
grams on the even-7-parity problem

Fig. 17. Fitness ranges for small pro-
grams on the 11-multiplexer problem

Fig. 18. Fitness ranges for small pro-
grams on the 8-Hamming distance prob-
lem

Fig. 19. Fitness ranges for small pro-
grams on the 10-adder problem

Fitness Changes in Recombination

If the crossover operator successfully combines solutions to subproblems or other
building blocks into a full solution, the fitness value of the offspring will be sub-
stantially better than the parents’ fitness. If such recombinations are a major origin
of good solutions, we can expect to often see large fitness increases from parents
to offspring. Figures 20–22 show the fitness differences between one parent and one
offspring appearing in all recombinations of 25 runs. Large changes in fitness are
very rare. This indicates that recombination of building blocks into good programs
is extremely rare on our test problems.

Effect of Single-Parent Variation

The hypothesis states that the multiobjective methods maintain more promising
building blocks in the population than alternative methods like Constant Parsimony.
Thus, its performance should depend more on recombination than that of constant
parsimony. Consequently, using single-parent variation, i.e., switching off recombi-
nation, should affect the SPEA variant much more than Constant Parsimony. We
have tested this on the even-7-parity problem using the parameter settings as de-
scribed in Table 1, except for the tournament size in Constant Parsimony, which was
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Fig. 20. Fitness differences in recombi-
nation on the 11-multiplexer problem
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Fig. 21. Fitness differences in recombi-
nation on the 8-hamming problem
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Fig. 22. Fitness differences in recombi-
nation on the 10-adder problem

set to 10. In order to compensate for the reduced variation without recombination,
the mutation rate was increased to 0.9. Figures 23 and 24 show in how many of
the 10 runs a correct solution was found for the three different settings standard
(pc = 0.9, pm = 0.1), high mutation (pc = 0.9, pm = 0.9), and no crossover (pc = 0,
pm = 0.9). For both methods the number of successful runs is similar and does not
change heavily. Another performance indicator is the speed of convergence. Here,
both algorithms take much longer to find the first correct solution, as shown in Fig-
ures 25 and 26 due to the increased mutation rate, but no significant difference in
the influence of crossover exists. Lastly, we compare the sizes of the smallest correct
solutions found by the two methods; cf. Figures 27 and 28. Again, the performance
is influenced adversely by the increased mutation rate but there is no significant in-
fluence of the recombination. In summary, the performance of the SPEA variant is
not more dependent on recombination than the performance of Constant Parsimony.

5 Summary

Bloating is a well known problem of variable-length representations, as used in ge-
netic programming, and various strategies have been proposed to address it. A recent
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Fig. 23. Number of successful runs for
the SPEA variant on the 7-even-parity
problem. 1) standard settings, 2) high
mutation rate, 3) high mutation rate and
no recombination

Fig. 24. Number of successful runs for
the Constant Parsimony on the 7-even-
parity problem. 1) standard settings, 2)
high mutation rate, 3) high mutation
rate and no recombination

Fig. 25. Generation of the first correct
solution for the SPEA variant on the
7-even-parity problem. 1) Standard set-
tings, 2) high mutation rate, 3) high mu-
tation rate and no recombination

Fig. 26. Generation of the first correct
solution for the Constant Parsimony on
the 7-even-parity problem. 1) Standard
settings, 2) high mutation rate, 3) high
mutation rate and no recombination

development is to explicitly use the underlying objectives of program functionality
and program size in a multiobjective optimization method. Several variants of this
approach have been proposed, all of which successfully reduced code growth com-
pared to standard GP with depth limitation, on a variety of discrete and continuous
test problems. Here, we have discussed how to apply Pareto-based multiobjective
methods to the problem of bloat on the example of the SPEA variant published
in [4]. The experimental validation on the parity-bit test problem showed that this
method not only reduces code growth compared to standard GP but also outper-
forms three alternative methods for bloat control with respect to average size of
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Fig. 27. Size of the smallest correct so-
lution found in each run of the SPEA
variant on the 7-even-parity problem.
1) Standard settings, 2) high mutation
rate, 3) high mutation rate and no re-
combination

Fig. 28. Size of the smallest correct so-
lution found in each run of Constant
Parsimony on the 7-even-parity prob-
lem. 1) Standard settings, 2) high mu-
tation rate, 3) high mutation rate and
no recombination

the programs, which is decisive for the overall computational effort, the size of the
smallest correct solutions and the best program functionality.

Additionally, we tried to identify the cause for these improvements as it is not ob-
vious why keeping small and non-functional programs in the population can improve
the quality of the results rather than distracting the search. We have formulated the
hypothesis that small programs may act as building blocks for compact correct solu-
tions. These building blocks could then be combined into compact correct solutions
by recombination, whereas alternative methods which do not keep small but non-
functional programs in their populations cannot profit from this effect. Several tests
revealed evidence against this hypothesis. In particular,

• the multiobjective method is also successful when the fitness of small solutions
that may act as building blocks cannot be distinguished from the fitness of
random programs of the same size,

• recombination does very rarely leads to the large improvements in fitness that
would be expected for successful combinations of building blocks, and

• switching off recombination does not seem to influence the capabilities of the
multiobjective approach.

Therefore, we conclude that the positive effects of maintaining small but non-
functional programs in the population are mainly due to increased genetic diversity,
as described in [1], or the closely related concept of changes in the fitness landscape
which induce a lower number of local optima [13]. Additional experiments will be
necessary to further verify these conclusions.

One explanation of why maintaining diversity is important with respect to small
trees is that the recombination gets more effective the smaller the trees are (as a
comparison between Figures 9 and 10 reveals).
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Summary. The work presented in this chapter is concerned with the identification
and modelling of nonlinear dynamical systems using multiobjective evolutionary al-
gorithms (MOEAs). This problem involves the processes of structure selection, pa-
rameter estimation, model performance and model validation and defines a complex
solution space. Evolutionary algorithms (EAs), in particular genetic programming
(GP), are found to provide a way of evolving models to solve this identification and
modelling problem, and their use is extended to encompass multiobjective functions.
Multiobjective genetic programming (MOGP) is then applied to multiple conflicting
objectives in order to yield a set of simple and valid human-understandable models
which can reproduce the behaviour of a given unknown system.

1 Introduction

In this chapter, we will introduce a multiobjective genetic programming technique
applied to a practical problem on identification and modelling nonlinear systems.
We do not know the optimal solution or the true Pareto front, but we can produce a
set of near optimal solutions according to the user’s requirements and present these
solutions in a human-understandable way.

2 Genetic Programming

Nature has provided the inspiration for the design of computational algorithms
in a variety of ways. These computational processes have taken two main natural
systems as their basis: the brain and the the theory of evolution. Evolutionary
algorithms (EAs), one of these nature-inspired computational models, optimize by
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varying a population of data structures and selecting the fittest ones for further
variation. The main classification considers three evolutionary algorithms; evolution
strategies (ESs) [22], evolutionary programming (EP) [10] and genetic algorithms
(GAs) [15]. Genetic programming (GP), popularized by Koza [19], is a branch of
GAs we describe in detail, as follows.

GP can be defined as a GA designed to evolve populations of hierarchically
structured computer programs according to their performance on a previously spec-
ified fitness criterion. The main difference between GP and its predecessor GA is the
fact that GP genotypes or individuals are programs which are not fixed in length or
size. The maximum depth of the parse tree of the program is specified a priori to
constrain the search space, but all solutions up to and including this maximum are
considered. When genetic operators operate over the population of tree-structured
individuals, the new genotypes differ from their parents in structure (size, shape and
contents).

2.1 Genetic Programming Representation

Each hierarchical genotype consists, then, of functions that can be composed re-
cursively from the set of NF functions from F = f1, f2, ..., fNF , and the set of
NT terminals from T = a1, a2, ..., aNT . The function set can consist of any arith-
metic, Boolean, mathematical, or any other more complex functions (routines). The
terminal set basically contains variables or constant values. To illustrate the hier-
archical encoding used for GP, Figure 1 gives a simple example where the opera-
tions +,−, ∗, % (protected division), IF, <, >, =, belong to the function set, and
the variables A, B and constants 1, 2,. . . , 10 constitute the terminal set. It is seen
in Figure 1, that the number of arguments (arity) taken for each of the functions
+,−, ∗, %, IF, <, >, = are 2, 2, 2, 2, 3, 2, 2, 2, respectively. The function arity is rele-
vant in order for us to create valid hierarchical structures and to select valid sub-
structures for crossing over and mutating.

2.2 Genetic Programming Operators

Selection in GP works in the same way as in a GA; the different representation
of individuals used by GP and GAs does not impact upon selection. Thus, any
conventional GA selection operator, such as roulette wheel or tournament can be
used.

As for the conventional GA, crossover is considered the main genetic operator.
One of the main differences between GP and the traditional implementation of GA
is the fact that GP crossover does not preserve any kind of context in the chromo-
some. This is due to the fact that the standard crossover defined in [19] exchanges
subtrees which are chosen at random in both parents. Koza has pointed out that
random subtree crossover maintains diversity in the population because crossing
two identical structures will generally create different offspring. This is because the
crossover points are, in general, different in the two parents. Crossover, a sexual
operator, works by first selecting a pair of structures from the current population.
Then, a node rooted in each parent is randomly selected. These nodes become the
roots for the substructures lying below the crossover point. In the next step, the sub-
structures are exchanged between the parents, producing two new structures which
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Fig. 1. An example of a GP individual, tree, function and equivalent program

are usually of different sizes than their parents. Figure 2 illustrates the crossover
operation. Note that for GP crossover, the crossover point can be either a termi-
nal or an internal point. In this example, the crossover point in both parents are
internal nodes. This means that function nodes are chosen as roots for the substruc-
tures to be exchanged. When an internal node is selected, the number of arguments
taken by the associated function must be considered in order to exchange a valid
substructure.

Mutation is considered a secondary operator. It operates by randomly select-
ing a node, which can be either a terminal or an internal point, and replacing
the associated substructure with a randomly generated subtree up to a maximum
size. In a conventional GA, the mutation operator introduces a certain degree
of diversity into the population which is beneficial at later generations. In con-
trast, the GP crossover operation is the mechanism for diversification in the GP
population.

This fact is the justification given in [19] for using a 0% mutation probability.3

3 Multiobjective Genetic Programming (MOGP)

Conventional genetic programming, and in general evolutionary algorithms, assign
a single performance measure to each individual based on the evaluation of a scalar
fitness function. However, these methods possess the characteristic of simultaneously

3 However, it is relevant to mention that mutation plays an important role in GP (or
any variable encoding) when the neutral efects are considered (more information
about this topic can be found in [18, 13]).
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Fig. 2. GP crossover operation

searching for multiple solutions and can furthermore simultaneously evaluate several
aspects of the problem to be solved. Therefore, this characteristic makes evolutionary
algorithms suitable to solve problems that cannot be seen in a unidimensional space,
and cannot be treated by conventional optimization methods.

The field of GP and multicriteria optimization has hardly been explored. A few
approaches have been developed to control the tree growth problem of computer
programs. Most of these approaches are formulated as aggregating functions with
the aim of generating parsimonious computer programs (this fact is related to the
well-known bloating problem for variable encodings as in genetic programming).
Some approaches that use an aggregating function are [16, 2, 25, 26]. More recently,
this issue has been handled by means of a multiobjective fitness function (see [9,
5, 24]). However, we will not focus on this topic, which is treated in details in the
chapter of Bleuler et al. in this volume. However, it is important to mention that
controlling tree size by means of a multiobjective function evaluation can produce
simple understandable solutions, easily manageable for the user. In [17], has been
proposed a multiobjective fitness function evaluation for structural risk minimization
on decision trees, which are evolved by means of genetic programming. Here, a bi-
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objective function, where one of the two objectives is related to tree size complexity,
is evaluated.

But, we can also introduce a multiobjective function into a genetic programming
algorithm in order to evolve a solution based on diverse criteria concerning the prob-
lem domain. It is well known that in the real world, most problems are described as
depending on multiple attributes that must be considered and multiple objectives
that have to be satisfied. These multiobjective optimization problems tend to be
characterized by a set of alternatives that must be considered equivalent in the ab-
sence of information concerning the relevance of each objective relative to the others.
Few papers about using a multiobjective fitness function with GP and applying it
to practical problems have been published. The first attempt to use multiobjective
evolutionary algorithms to evaluate several aspects of a problem on its domain is
illustrated in [20]. A multiobjective genetic programming method based on MOGA
[11, 12] for a problem of deriving Boolean queries has been introduced in [7]. Here,
the authors considered only a bi-objective fitness function.

Zhang and Rockett [27] applied a multiobjective genetic programming approach
for the “optimal” feature extraction pre-processing for pattern classification. They
used a bi-objective fitness function performance, but they also considered a third ob-
jective concerning tree size complexity. Thus, their multiobjective function includes
tree complexity measure, Bayes error and misclassification error. In [1], a comparison
of fitness performance between a MOGA [11, 12] and NSGA-II [8] Pareto approaches
applied to a natural language parsing and tagging problem is presented. Again, as
in previous reported papers, the author uses a bi-objective fitness function. The first
objective, parsing, is defined as the average probability of the grammar rules used
to construct the parsing. The second objective, tagging, is a measure of the total
probability of its sequence of tags.

In this chapter, system identification and modelling problems will be introduced.
A genetic programming approach combined with a multiobjective fitness function is
presented. This multiobjective function considers several aspects of the problem such
as model complexity (not tree size complexity but complexity concerning the prob-
lem domain), model performance and model validation. The next section introduces
details of this problem.

4 System Identification and the Generation of Simple
Understandable Models

System identification is defined as the process of constructing a mathematical model
from observations and prior knowledge. However, the problem of identifying nonlin-
ear model structures cannot be evaluated using only a single criterion. Identification
involves diverse characteristics which have to be considered, such as linearity, degree
of nonlinearity, model structure, performance and model validation.

In [23, 24], a tree-structured representation to this problem was introduced.
This approach is based on an input-output model that describes the input-output
relationship of a system. For representing these systems, Leontaritis and Billings
[21] have introduced the well-known NARMAX (Nonlinear AutoRegressive Moving
Average with eXogenous inputs) model which is an extended ARMAX description
for representing nonlinear systems. This model is given by a nonlinear function F �
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of the output y(k), the input u(k) and the possible noise disturbance e(k). Thus,

y(k) = F �(y(k − 1), . . . , y(k − ny), u(k − d), . . . , u(k − d− nu + 1),

e(k − 1), . . . , e(k − ne))
(1)

where ny, nu and ne are the maximum lags considered for the output, input and
noise terms, respectively, d is the delay, and � is the degree of nonlinearity of the
model structure. Note that if � = 1, the resulting model is a linear structure. If the
disturbance is assumed to be white noise, equation (1) can be simplified to

y(k) = F �(y(k − 1), . . . , y(k − ny), u(k − d), . . . , u(k − d)− nu + 1) (2)

and the structure becomes a NARX (Nonlinear AutoRegressive with eXogenous
inputs) model.

4.1 Polynomial Representation

The NARMAX model is the most general form of input-output model and can be
expressed in different ways. [6] has shown that the polynomial NARMAX model is
the most common expression which works well in practical applications. Equation
(1) can be written in polynomial form as follows,

y(k) = ΨT
yu(k − 1)θyu + ΨT

yue(k)θyue + ΨT
e (k)θe (3)

where ΨT
yu(k − 1) includes the constant term and all the output and input terms

as well as all possible combinations up to degree �. These terms will be referred to
as process terms. The parameters of such terms are in the vector θyu. The other
vectors of monomials are defined likewise. ΨT

yue(k) and ΨT
e (k) will be referred to as

noise terms.
However, because the noise e(k) is unknown, equation (3) can be rewritten in

the prediction error (PE) form as

y(k) = Pi(k)θ̂ + ε(k) (4)

where the residual ε(k) is defined as

ε(k) = y(k)− ŷ(k, θ̂) (5)

and Pi(k) consists of all possible linear output, input and noise terms, and all possible
nonlinear terms in the output, input, noise and combined terms. The polynomial
model is then nonlinear in the output, input and noise, but linear in the parameters.
This set of coefficients is estimated by means of an Extended Least Squares (ELS)
algorithm [4] when noise terms are included; otherwise, the traditional LS algorithm
can be applied.

4.2 GP Encoding of NARMAX Structures

In this section, the mapping process of NARMAX structures into a GP tree repre-
sentation is detailed. As mentioned previously, the polynomial form of this structure
can be expressed as a tree. Only addition and product functions are required, and
associated coefficients are estimated by means of a least squares algorithm. This



Multiobjective GP for Human-Understandable Models 207

Fig. 3. NARMAX polynomial encoding

process is illustrated in Figure 3. At the root node, the polynomial expression is
defined, and an LS is applied based on measured data in order to get the set of
coefficients.

Based on equation (4) and Figure 3,

Y =

⎡

⎢
⎢
⎢
⎣

y(1)
y(2)

...
y(N)

⎤

⎥
⎥
⎥
⎦

P T =

⎡

⎢
⎢
⎢
⎣

p1(k)
p2(k)

...
pn(k)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0
y(k − 1)
y(k − 2)
u(k − 1)
y(k − 1)2

y(k − 1)y(k − 2)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

θ̂ =

⎡

⎢
⎢
⎢
⎣

θ1

θ2

...
θn

⎤

⎥
⎥
⎥
⎦

and θ̂ is estimated as
θ̂ = [P T P ]−1P T Y, (6)

where θ̂ is the model coefficients vector, P is the vector of identified model terms
(monomials) and Y is the measured output vector.

The terminal set and the set of functions appropriate for building such models
are T = {X1, X2, X3, X4, X5} = {c, y(k − 1), y(k − 2), u(k − 1), u(k − 2)} and F =
{ADD, MULT, =, +, ∗}; where nu and ny (in this case nu = ny = 2) are maximum lags
considered for the output and input terms, respectively. It is important to point
out that duplicated rows in matrix P are deleted before the coefficient estimation
and individual evaluation stages (those are eliminated during the decoding process).
Thus, redundant terms into the model are removed, but this fact does not mean they
are removed from individual GP trees. An example is shown in Figure 4. Decoding
the GP expression, the following P matrix is obtained:
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PT =

⎡

⎢
⎢
⎢
⎢
⎣

1.0
y(k − 1)

y(k − 1)y(k − 2)
u(k − 1)

y(k − 1)y(k − 2)

⎤

⎥
⎥
⎥
⎥
⎦

.

Eliminating duplicated rows, the P matrix is reduced to

PT =

⎡

⎢
⎢
⎣

1.0
y(k − 1)
u(k − 1)

y(k − 1)y(k − 2)

⎤

⎥
⎥
⎦ .

Then, the least squares algorithm is applied using P. As mentioned, if noise
terms are involved, the ELS algorithm is applied.

Fig. 4. NARMAX polynomial encoding (duplicated terms)



Multiobjective GP for Human-Understandable Models 209

5 Multiobjective Fitness Evaluation

In the system identification and modelling procedure, once the input-output data
is available, three steps are left: model structure determination, performance and
validation. In the conventional identification procedure, these are independently
evaluated. For the MOGP approach, each member of the population (a potential
candidate model) will be assigned a fitness which is a value that considers the three
aspects measured based upon different attributes, as shown in Table 1 and described
as follows.

5.1 Model Structure and Parsimony

From the definition of the NARMAX model, it is observed that the number of linear
and nonlinear terms, the degree and the maximum lags play an important role in the
determination of the model structure. These three model structure attributes are
defined as objectives in the multiobjective system identification function. By min-
imizing these objectives, a parsimonious model structure may be identified which
shows good prediction quality and proves to be a valid model by additionally opti-
mizing performance and validation objectives.

Table 1. Objectives used in the MOGP identification procedure

Attribute Objective Description
Model complexity Model size Number of process and noise

terms
Model degree Maximum order term
Model Lag Maximum lagged input, output

and noise terms
Model Performance Residual vari-

ance
Variance of the predictive er-
ror between the measured output
and the OSAPE

Long-term pre-
diction error

Variance of the LTPE

Model validation ACF, CCF and
higher- order
correlation
functions

Correlation based test functions
for model with additive noise at
the output

5.2 Model Performance

The residual variance is equivalent to the short-term prediction error and it is de-
sirable to estimate also the long-term prediction output of the system. Due to this,
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these two predictive error measures are defined as the objectives regarding the model
performance. The residual variance is calculated by

σ̂2
ε =

1

N

N∑

k

|ŷ(k)− y(k)|2 (7)

where

ŷ = F �(y(k− 1), . . . , y(k−ny), u(k− 1), . . . , u(k−nu), e(k− 1), . . . , e(k−ne)). (8)

The long-term prediction error (LTPE) is computed by using equation (7) where
the estimated output is defined as

ŷ = F �(ŷ(k− 1), . . . , ŷ(k−ny), u(k− 1), . . . , u(k−nu), e(k− 1), . . . , e(k−ne)). (9)

In these equations, ŷ(k) denotes the predicted system output.

5.3 Dynamical Model Validation

The use of statistics is a systematic approach to validating the quality of an iden-
tified model. In the literature, several approaches to model validation, formulated
as statistical hypothesis testing, have been proposed [3]. One of the most common
methods are the correlation tests which are used to verify if the residuals are white.
In this case, a model is considered valid (the null hypothesis is accepted) if the
correlations fail to detect significant dynamics in the residuals.

When the process is nonlinear, additional tests must be performed in order to
detect the nonlinearities in the input, output and residuals from a fitted model.
These linear and nonlinear correlation-based functions are reviewed, as follows.

Linear Model Validation

Based on the ARMAX model, ideally, the residuals ε(t) should be reduced to an un-
correlated sequence denoted by e(t) with zero mean and finite variance. Correlation-
based model validity tests are used to check if

e(t) ≈ ε(t). (10)

This can be done by testing whether all the correlation functions are within the
present confidence intervals. When equation (10) is true, the following tests shows
that

Φεε(τ) = E[ε(t− τ)ε(t)] = δ(t)
Φuε(τ) = E[u(t− τ)ε(t)] = 0 ∀τ

}

(11)

where Φεε and Φuε are the estimated residual autocorrelation function and the cross-
correlation function between the input and the residual, respectively. δ(τ) is the
Kronecker delta.

The expression Φεε 
= δ(τ) is an indication that the process model is correct
but the noise model is incorrect, and therefore the residuals are autocorrelated; but
they are uncorrelated with the input, such that Φuε(τ) = 0, ∀τ . Alternatively, if the
noise model is correct but the process model is biased, then the residuals are both
autocorrelated such that Φεε(τ) 
= δ(τ), and correlated with the input (Φuε(τ) 
= 0).
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However, the validation of the nonlinear process is not straightforward. These
two correlation tests are necessary but not sufficient conditions in order to be con-
fident that an identified nonlinear model is valid. For the purpose of validating
nonlinear models, high-order correlation tests are introduced.

Nonlinear Model Validation

For nonlinear systems, it is seen that the nonlinear function F �(•) , given by equation
(1), will not, in general, satisfy the superposition and homogeneity principles. The
model validation tests described by equation (11) can then only detect a subset of
possible nonlinear terms which could be presented in the residuals sequence. For the
purpose of nonlinear model validation, higher-order correlation tests were proposed
by [3]. Based upon the NARMAX model, three correlation tests have been developed
in order to detect every possible nonlinear term [3]. Thus, the residuals ε(t) will be
unpredictable from all linear and nonlinear combinations of past inputs and outputs
if and only if

Φεε(τ) = δ(τ)
Φuε(τ) = 0 ∀τ
Φε(uε) = E[ε(t)ε(t− 1− τ)u(t− 1− τ)] = 0 τ ≥ 0

⎫
⎬

⎭
(12)

However, in the situation where only the system model is involved in the identi-
fication procedure and the noise sequence is additive at the output, the NARMAX
model can be expressed as equation (2). Here, all the cross-product noise terms are
eliminated; this equation is then known as the NARX model. It is seen that pa-
rameter estimation of the polynomial representation of equation (2) would therefore
require less computational effort compared with the case of the NARMAX model.
In the case of NARX model validation, the noise model is not specifically estimated
and consequently, the residuals may be coloured. Specific tests are required and the
estimated nonlinear model will be unbiased if and only if

Φu2ε2(τ) = 0 ∀τ
Φu2ε(τ) = 0 ∀τ
Φuε(τ) = 0 ∀τ

⎫
⎬

⎭
. (13)

From this equation, the cross-correlation Φu2ε2(τ) detects all process terms in the
input and the cross-terms between the input and output. Therefore, the expression
Φu2ε2(τ) = 0 indicates that the process model is correct and there is no cross-term
involved in the model. Otherwise, it would indicate that internal noise cross-terms of
the form uk(t)el(t) are missed, where k = even or odd, and l = odd. The correlation
functions Φu2ε(τ) and Φuε(τ) detect odd and even terms in the input, respectively.
For all the correlation-based validity tests mentioned above, confidence intervals
indicate whether the correlation between variables is significant or not. If N (the
number of data points) is large, the standard deviation of the correlation estimate
is 1/

√
N , where the 95% confidence limits are therefore approximately ±1.96/

√
N ,

assuming a Gaussian distribution. Based on these correlation validation functions,
the complete identification procedure is described in the next section.
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6 Multiobjective Genetic Programming in Practice

The example presented in this section considers the simple Wiener process. The
experiment uses a population of 100 individuals, Pc = 0.9 and Pm = 0.01; the
algorithm was run for 200 generations. In the context of model representation, ny =
nu = 10 and ne = 0 were considered. The differential equation of the linear dynamic
part of the simple Wiener process is given as

10v̇(t) + v(t) = u(t), (14)

and the static nonlinear part is expressed by

y(k) = 2 + v(k) + v2(k). (15)

The process described above was executed by a pseudo-random ternary test
signal (PRTS) with maximum length 26, amplitude 2 and mean value 1 [14]. The
sampling time was ΔT = 2 s and the clock time interval was 10 seconds. Then,
N = 26 ∗ 5 = 130 data pairs were used for the identification. The input/output data
are shown in Figure 5.

Fig. 5. Simple Wiener process input/output data

Because a NARX representation was used in this example, the objectives were
defined and classified as shown in Table 1, where the correlation-based validation
tests are defined by equation (13).

Objectives related to model validation were initially ignored. Therefore, only
good models in terms of complexity and performance were identified (see Figure
6a). Subsequently, the correlation objective function priorities were modified to be
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considered as constraints. The target value to be attained was set up to be the
95% confidence limit. The correlation-based validation objectives are contained in a
(2 ∗ τ + 1) element vector. In order to define these functions as scalar, the following
operation is introduced:

CCF = max |abs(Φxy(τ))| (16)

where CCF represents a correlation test function and x and y can be input, noise
or the vector product of the input and noise. The identification process then evolved
through regions of the search space where valid models were located (i.e., regions
of the search space where models that satisfy correlation restrictions were located).
Ideally, one would expect to obtain a solution (or set of alternatives) with the op-
timum (minimum or maximum) value in all objectives. However, it is not likely to
occur due to the fact that, in general, objectives are in conflict with one another.
This fact is shown in Figure 6b, where the validation criteria were treated as con-
straints. It is seen that in order to obtain valid models, the performance objectives
tend to exhibit higher values.

However, this set of models is expected to be robust and applicable to different
sets of data (operating conditions).

7 Discussion

As can be seen from Figure 6, a multiobjective genetic programming tool provides a
set of potential models which can answer the questions about the complexity, flexi-
bility and validity of a model. It also provides the opportunity of manipulating the
family of solutions by changing priorities and goals values of the objective functions
depending on the purpose of the identification.

GP is restricted by the number of nodes permissible in a tree, but the search
space is still considered extremely large, and its variable size and dynamic represen-
tation gives diversity in the population. Thus, it is important to note that MOGP
was able to evolve tree structures of variable size which represent models that posses
good predictive qualities. An improvement in the performance on both the training
and the testing sets of data has been reached by producing models with a slightly
higher degree and number of terms.

In Figure 6a., validation objectives are ignored. Then, it is observed that the
goals are, in some cases, not reached for these objectives, and models from six to
ten terms4 are plotted. Comparing Figures 6a. and 6b, we see that models possess-
ing better long-term prediction qualities are shown in Figure 6a. However, these
models cannot be valid. In Figure 6b, validation criteria have been modified and
considered as constraints. This means that these criteria must be satisfied before
the optimization of the remaining objectives (the priority is higher for validation).
There are some models presented in Figure 6a, which are no longer shown in Figure
6b (models that do not satisfy validation criteria). We are now able to select a simple
model (shorter model), or a model presenting the best prediction capabilities but a
bit more complex. This final set of models contains simple human-understandable

4 10 was set as the upper bound for the graph, but this does not mean that there
is any other model possessing more than ten terms.
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Fig. 6. MOGP identification procedure. Model validation objectives are consid-
ered as hard objectives (constraints): a) without validation measures and b) with
validation measures
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valid models, which are shown in Tables 2 and 3. Table 2 presents values of the
multiobjective function and Table 3 shows the structure of these models. It is im-
portant to point out that, although maximum output and input lags were set to
10, only models of lag = 2 were evolved (this was considered as an objective to be
minimized). Models produced by MOGP are also compared to models obtained by
means of traditional techniques such as stepwise regression5 and orthogonal least
squares (OLS6) (see [4, 14] for more details). It can be observed that although both
models (produced by stepwise regression and OLS) show similar model complexity,
they have a worse performance than models generated by MOGP; also, these models
do not satisfy all validation (correlation tests) criteria. It is relevant to point out
that stepwise regression and OLS consider only model performance attributes in
order to get the model structure by means of the minimization of the VAR objective
(residual variance), and the LTPE and validation process are computed after by the
modelling process. Thus, we cannot simultaneously optimize all the stages of system
identification and modelling by means of traditional methods and only one model
can be obtained, not a set of alternatives, as is the case with MOGP.

Table 2. Set of simple human-understandable valid models

Model Terms Degree Lag VAR LTPE Corr. 1 Corr. 2 Corr. 3
1 7 2 2 0.002192 0.02063 ✓ ✓ ✓
2 7 2 2 0.002083 0.02259 ✓ ✓ ✓
3 8 2 2 0.001947 0.01451 ✓ ✓ ✓
4 9 2 2 0.000979 0.01039 ✓ ✓ ✓

Stepwise 7 2 2 0.001608 0.07852 X ✓ ✓
OLS 7 2 2 0.005224 0.26808 X ✓ X

8 Concluding Remarks

This chapter has presented an exploration in the area of multiobjective genetic
programming (MOGP), providing an alternative to control the search process by
restricting the search space and searching the feasible zone of simple human-
understandable solutions.

Comparing conventional identification methods with multiobjective evolutionary
algorithms, the former do not guarantee that the model can be an acceptable repre-
sentation of the system. They require a verification process to determine whether an
obtained model (not a set) is adequate or not (validation). In contrast, MOGP inte-
grates these three steps in the modelling process, providing a useful tool to generate,
in a single step, simple feasible and understandable models.

5 stepwise regression method; see[14] for more details.
6 orthogonal least squares; see [14] for more details.
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Table 3. Structure of simple human-understandable valid models

Term/Model 1 2 3 4 Stepwise OLS
c ✓ ✓ ✓ ✓ ✓ ✓

y(k − 1) ✓ ✓ ✓ ✓ ✓ ✓

y(k − 2) ✓ ✓ ✓ ✓ ✓ ✓

u(k − 1) ✓ ✓ ✓

u(k − 2) ✓ ✓ ✓ ✓

y(k − 1)2 ✓

y(k − 2)2 ✓

u(k − 1)2 ✓ ✓ ✓ ✓

u(k − 2)2 ✓ ✓ ✓

u(k − 1)u(k − 2) ✓

y(k − 1)u(k − 1) ✓ ✓ ✓

y(k − 2)u(k − 1) ✓ ✓ ✓

y(k − 2)u(k − 2) ✓ ✓ ✓ ✓
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Summary. In this chapter, we discuss the application of evolutionary multiob-
jective optimization (EMO) to association rule mining. Especially, we focus our
attention on classification rule mining in a continuous feature space where the an-
tecedent and consequent parts of each rule are an interval vector and a class label,
respectively. First we explain evolutionary multiobjective classification rule mining
techniques. Those techniques are roughly categorized into two approaches. In one
approach, each classification rule is handled as an individual. An EMO algorithm is
used to search for Pareto-optimal rules with respect to some rule evaluation criteria
such as support and confidence. In the other approach, each rule set is handled as
an individual. An EMO algorithm is used to search for Pareto-optimal rule sets
with respect to some rule set evaluation criteria such as accuracy and complexity.
Next we explain evolutionary multiobjective rule selection as a post-processing pro-
cedure in classification rule mining. Pareto-optimal rule sets are found from a large
number of candidate classification rules, which are extracted from a database using
an association rule mining technique. Then we examine the effectiveness of evolu-
tionary multiobjective rule selection through computational experiments on some
benchmark classification problems. Finally we examine the use of Pareto-optimal
and near Pareto-optimal rules as candidate rules in evolutionary multiobjective rule
selection.

1 Introduction

Data mining is a very active and rapidly growing research area in the field of com-
puter science. The task of data mining is to extract useful knowledge for human users
from a database. Whereas the application of evolutionary computation to data min-
ing is not always easy due to its heavy computation load, especially in the case of
a large database ([3], [4], [9]), many evolutionary approaches have been proposed
in the literature ([6], [16], [32], [34], [37]). Evolutionary multiobjective optimization
(EMO) has also been applied to data mining in some studies ([10]–[12], [17], [20]–
[23], [36]). In the field of fuzzy logic, multiobjective formulations have frequently
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been used for knowledge extraction ([5], [18]–[21], [23], [25], [27], [39], [40]). This is
because the interpretability-accuracy trade-off analysis is a very important research
issue in the design of fuzzy rule-based systems [5]. Multiobjective formulations have
also been used in non-fuzzy genetics-based machine learning ([26], [28], [31]).

Association rule mining [1] is one of the most well-known data mining tech-
niques. In its basic form [1], all association rules satisfying the minimum support
and confidence are efficiently extracted from a database. The application of associ-
ation rule mining to classification problems is often referred to as classification rule
mining or associative classification ([29], [30], [33], [38]). Classification rule mining
usually consists of two phases: rule discovery and rule selection. In the rule discov-
ery phase, a large number of classification rules are extracted from a database using
an association rule mining technique. All classification rules satisfying the minimum
support and confidence are usually extracted from a database. Some of the extracted
classification rules are selected to design a classifier in the rule selection phase us-
ing a heuristic rule sorting criterion. The accuracy of the designed classifier usually
depends on the specification of the minimum support and confidence. Their tuning
was discussed for classification data mining in [7] and [8].

Whereas the basic form of association rule mining is to extract all association
rules that satisfy the minimum support and confidence [1], other rule evaluation
measures have also been proposed to quantify the utility or quality of an association
rule. Among them are gain, variance, chi-squared value, entropy gain, Gini, Laplace,
lift, and conviction [2]. It is shown in [2] that the best rule according to any of the
above-mentioned measures is a Pareto-optimal rule with respect to support and
confidence. Motivated by this study, the use of an EMO algorithm was proposed to
search for Pareto-optimal classification rules with respect to support and confidence
for partial classification ([10]–[12], [36]). Similar formulations were used to search for
Pareto-optimal association rules [17] and Pareto-optimal fuzzy association rules [27].
EMO algorithms were also used to search for Pareto-optimal rule sets in classification
rule mining ([21], [22]) where the accuracy of rule sets was maximized and their
complexity was minimized. The same idea was also used in the multiobjective design
of fuzzy rule-based classifiers ([18]–[20], [23], [25]).

In this chapter, we empirically examine the usefulness of evolutionary multi-
objective rule selection in classification rule mining in continuous feature spaces
through computational experiments on some well-known benchmark data sets from
the UCI machine learning repository. We also examine the relation between Pareto-
optimal rules and Pareto-optimal rule sets in the classifier design. This examination
is performed by depicting selected rules in Pareto-optimal rule sets together with
candidate classification rules in the confidence-support space. Our interest is to
check whether selected rules in Pareto-optimal rule sets are close to the Pareto front
with respect to support and confidence. Then we examine the use of Pareto-optimal
and near Pareto-optimal rules as candidate rules in evolutionary multiobjective rule
selection.

This chapter is organized as follows. First we explain some basic concepts in clas-
sification rule mining in Section 2. Next we explain two approaches in evolutionary
multiobjective classification rule mining in Section 3. One approach handles each
classification rule as an individual to search for Pareto-optimal rules. In the other
approach, each rule set is handled as an individual. An EMO algorithm is used to
search for Pareto-optimal rule sets. In Section 4, one method in the latter approach
is explained in detail. More specifically, we explain evolutionary multiobjective rule
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selection as a post-processing procedure in the rule selection phase of classification
rule mining in Section 4. Pareto-optimal rule sets are found from a large number
of candidate classification rules, which are extracted from a database using an as-
sociation rule mining technique in the rule discovery phase. In Section 5, we report
experimental results on some well-known benchmark data sets. Experimental results
demonstrate the usefulness of evolutionary multiobjective rule selection in classifi-
cation rule mining. The relation between Pareto-optimal rules and Pareto-optimal
rule sets is also examined. Then we examine the use of Pareto-optimal and near
Pareto-optimal rules as candidate rules in evolutionary multiobjective rule selection
in Section 6. Finally we conclude this chapter in Section 7.

2 Classification Rule Mining

Let us assume that we have m training patterns xp = (xp1, xp2, . . . , xpn), p =
1, 2, . . . , m from M classes in the n-dimensional continuous pattern space where
xpi is the attribute value of the pth training pattern for the ith attribute. We denote
the set of these m training patterns by D. For our pattern classification problem,
we use classification rules of the following type:

Rule Rq: If x1 is Aq1 and . . . and xn is Aqn then class Cq with CFq, (1)

where Rq is the label of the qth rule, x = (x1, x2, . . . , xn) is an n-dimensional
pattern vector, Aqi is an antecedent interval for the ith attribute, Cq is a class label,
and CFq is a rule weight (i.e., certainty grade). We denote the classification rule Rq

in (1) as “Aq ⇒ Cq” where Aq = (Aq1, Aq2, . . . , Aqn). Each antecedent condition
“xi is Aqi” in (1) means the inclusion relation “xi ∈ Aqi.” It should be noted that
classification rules of the form in (1) do not always have n antecedent conditions.
Some rules may have only a few conditions while others may have many conditions.

In the field of association rule mining, two rule evaluation measures called support
and confidence have often been used ([1], [2]). Let us denote the support count of
the classification rule Aq ⇒ Cq by SUP(Aq ⇒ Cq), which is the number of patterns
compatible with both the antecedent part Aq and the consequent class Cq. SUP(Aq)
and SUP(Cq) are also defined in the same manner, and are the number of patterns
compatible with Aq and Cq, respectively. The support of the classification rule
Aq ⇒ Cq is defined as

Support(Aq ⇒ Cq) =
SUP(Aq ⇒ Cq)

|D| , (2)

where |D| is the cardinality of the data set D (i.e., |D| = m). On the other hand,
the confidence of Aq ⇒ Cq is defined as

Confidence(Aq ⇒ Cq) =
SUP(Aq ⇒ Cq)

SUP(Aq)
. (3)

In partial classification ([10]–[12], [36]), the coverage is often used instead of the
support:

Coverage(Aq ⇒ Cq) =
SUP(Aq ⇒ Cq)

SUP(Cq)
. (4)
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Since the consequent class is fixed in partial classification (i.e., since the denominator
of (4) is constant), the maximization of the coverage is the same as that of the
support.

In classification rule mining ([29], [30], [33], [38]), an association rule mining
technique such as Apriori [1] is used in the rule discovery phase to efficiently extract
all classification rules that satisfy the minimum support and confidence. These two
parameters are prespecified by users. Then a part of extracted classification rules
are selected to design a classifier in the rule selection phase.

Let S be a set of selected classification rules. That is, S is a classifier. When
a new pattern xp is to be classified by S, we choose a single winner rule with the
maximum rule weight from among rules compatible with xp in S. The confidence of
each rule is used as its rule weight in this chapter. The consequent class of the win-
ner rule is assigned to xp. When multiple compatible rules with different consequent
classes have the same maximum rule weight, the classification of xp is rejected in
evolutionary multiobjective rule selection in this chapter. Only when the accuracy
of the rule set finally obtained (i.e., classifier) is to be evaluated, do we use a ran-
dom tiebreak scheme among those classes with the same maximum rule weight in
computational experiments.

3 Evolutionary Multiobjective Rule Mining

Evolutionary multiobjective techniques in classification rule mining can be roughly
categorized into two approaches. In one approach, each rule is evaluated according
to multiple rule evaluation criteria such as support and confidence. An EMO algo-
rithm is used to search for Pareto-optimal classification rules. In the other approach,
each rule set is evaluated according to multiple rule set evaluation criteria such as
accuracy and complexity. An EMO algorithm is used to search for Pareto-optimal
rule sets. In this section, we explain these two approaches.

3.1 Techniques to Search for Pareto-Optimal Classification Rules

It is shown in [2] that the set of Pareto-optimal rules with respect to support and
confidence includes the best rule according to any of the following rule evaluation
criteria: gain, variance, chi-squared value, entropy gain, Gini, Laplace, lift, and con-
viction. Thus it is an important research issue to search for Pareto-optimal rules with
respect to support and confidence in association rule mining. The use of NSGA-II
([13], [14]) for this task was proposed by de la Iglesia et al. ([10], [12]) where the
following two-objective optimization problem was used for partial classification:

Maximize {Coverage(R), Confidence(R)}, (5)

where R denotes a classification rule. It should be noted that the maximization of the
coverage means the maximization of the support since the consequent class is fixed
in partial classification. The use of a dissimilarity measure between classification
rules instead of the crowding distance in NSGA-II was examined in [11] in order
to search for a set of Pareto-optimal classification rules with a large diversity. The
Pareto-dominance relation in NSGA-II was modified in [36] in order to search for
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not only Pareto-optimal classification rules but also dominated (but near Pareto-
optimal) classification rules.

Ghosh and Nath [17] used an EMO algorithm to search for Pareto-optimal asso-
ciation rules with respect to confidence, comprehensibility and interestingness. That
is, association rule mining was formulated as a three-objective optimization problem
in [17]. A similar three-objective optimization problem was formulated in Kaya [27]
where an EMO algorithm was used to search for Pareto-optimal fuzzy association
rules with respect to support, confidence and comprehensibility.

Instead of the two-objective problem in (5) for each class, it is also possible to
use the following formulation for all classes:

Maximize {Support(R), Confidence(R)}. (6)

Pareto-optimal rules of this two-objective problem can be searched for by an EMO
algorithm. This formulation, however, does not work well when there exists a ma-
jority class in the given database (i.e., when the number of patterns from one class is
much larger than those from the other classes). For example, the Wisconsin breast
cancer data set in the UCI machine learning repository has 458 patterns of benign
(Class 1) and 241 patterns of malignant (Class 2). Classification rules of length 3 or
less for this data set are shown for each class in the confidence-support space in Fig.
1 (see Section 5 for details of rule extraction in our computational experiments).
Pareto-optimal rules for each class with respect to coverage and confidence are de-
picted by open circles in each plot of Fig. 1. That is, open circles in Fig. 1 show
Pareto-optimal rules of the two-objective problem in (5) for each class. When we
use the two-objective problem in (6) for all classes (i.e., both classes in Fig. 1) with
support and confidence, open circles in Fig. 1 (b) are not Pareto-optimal because
they are dominated by some rules in Fig. 1 (a). Of course, open circles in Fig. 1 (b)
are Pareto-optimal if we discuss the Pareto optimality for each class with respect
to support and confidence. In this case, the maximization of support has the same
meaning as the maximization of coverage.

3.2 Techniques to Search for Pareto-Optimal Rule Sets

In classification rule mining ([29], [30], [33], [38]), first an association mining tech-
nique such as Apriori [1] is used in the rule discovery phase to efficiently extract all
classification rules that satisfy the minimum support and confidence. Then a part of
the extracted classification rules are selected using a heuristic rule sorting criterion
in the rule selection phase to design a classifier. Evolutionary multiobjective rule
selection was proposed in [21] and [22] to search for Pareto-optimal rule sets with
respect to accuracy and complexity in the rule selection phase of classification rule
mining.

Genetic algorithm-based rule selection was first proposed for the design of ac-
curate and comprehensible fuzzy rule-based classifiers in [24] where a weighted sum
fitness function was used to maximize the classification accuracy and minimize the
number of fuzzy rules. An EMO algorithm was used to search for Pareto-optimal
fuzzy rule-based classifiers with respect to these two objectives in [18]. The total
number of antecedent conditions was introduced as the third objective in [19] to
minimize not only the number of fuzzy rules but also their length while maximiz-
ing the classification accuracy of fuzzy rule-based classifiers. The use of a memetic
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Fig. 1. Location of rules in the confidence-support space for the Wisconsin breast
cancer data set. Pareto-optimal rules with respect to confidence and support for
each class are depicted by open circles

EMO algorithm was examined to search for Pareto-optimal fuzzy rule-based classi-
fiers with respect to these three objectives in [25]. Fuzzy rule selection techniques
in these studies were used for non-fuzzy classification rule mining in [21] and [22].
The same three-objective problem as in [19] and [25] was handled by multiobjective
fuzzy genetics-based machine learning in [23].

4 Evolutionary Multiobjective Rule Selection

Let us assume that we have already extracted N classification rules in the rule
discovery phase of classification rule mining. These N classification rules are used as
candidate rules in rule selection. Let S be a subset of the N candidate rules (i.e., S
is a classifier). We use a binary string of length N to represent S where “1” and “0”
mean the inclusion in S and the exclusion from S of the corresponding candidate
rule, respectively.

As in our former studies ([21], [22]), we use the following three objectives:

f1(S): The number of correctly classified training patterns by S,
f2(S): The number of selected rules in S,
f3(S): The total number of antecedent conditions over selected rules in S.

The first objective is maximized while the second and third objectives are min-
imized. The third objective can be viewed as the minimization of the total rule
length since the number of antecedent conditions in each rule is often referred to as
its rule length. We use NSGA-II ([13], [14]) to search for Pareto-optimal rule sets
(i.e., Pareto-optimal subsets of the N candidate rules) with respect to these three
objectives. We also use a single-objective genetic algorithm (SOGA) with the (μ+λ)-
ES generation update mechanism to optimize the weighted sum fitness function of
the three objectives for comparison in our computational experiments.
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In NSGA-II and SOGA, we use a problem-specific heuristic procedure for de-
creasing the number of rules in each string. Since the classification of each training
pattern is based on a single-winner scheme (i.e., winner-take-all scheme), some rules
in a string are used for the classification of many patterns while others are used for
the classification of no patterns. When a rule in a string is not used for the classifi-
cation of any patterns, we can remove this rule from the string without degrading
the classification accuracy (i.e., the first objective). At the same time, the removal
of such an unnecessary rule improves the second and third objectives. We remove
all the unnecessary rules from each string after the first objective is evaluated and
before the second and third objectives are evaluated in each generation of NSGA-II
and SOGA.

5 Computational Experiments

In this section, first we demonstrate how SOGA can decrease the number of ex-
tracted rules and their rule length without severely degrading their classification
accuracy through computational experiments on some well-known benchmark data
sets in the UCI machine learning repository. Next we show that a large number of
nondominated rule sets are obtained by a single run of NSGA-II. We can visualize
the accuracy-complexity trade-off using the obtained rule sets. Then we examine
the relation between Pareto-optimal rules and Pareto-optimal rule sets by depicting
selected rules in the confidence-support space together with candidate rules.

5.1 Conditions of Computational Experiments

We used 12 data sets in Table 1 (though we do not report experimental results on all
of these data sets in detail). We did not use incomplete patterns with missing values.
All attribute values including discrete attributes were handled as real numbers (e.g.,
we used 0, 1 and 2 for ternary attributes). The domain of each attribute was divided
into multiple intervals using an optimal splitting method [15] based on the class
entropy measure [35]. Since the choice of an appropriate number of intervals for
each attribute is not easy, we simultaneously used four different partitions with two,
three, four, and five intervals (i.e., 14 antecedent intervals in total for each attribute).
As a result, various candidate classification rules were examined in the rule discovery
phase using overlapping antecedent intervals of various widths for each attribute.

We extracted candidate classification rules with three or fewer antecedent condi-
tions using prespecified values of the minimum support and confidence (in the case
of the sonar data set with 60 attributes, we examined candidate rules with just one
or two conditions). This restriction on the number of antecedent conditions is to find
rule sets with high understandability (i.e., because it is very difficult for human users
to intuitively understand long classification rules with many antecedent conditions).
This restriction is also to decrease the number of extracted rules. We used a data
mining technique, which can be viewed as a variant of Apriori [1], for classification
rule mining with the upper bound on the number of antecedent conditions in each
rule.

We examined 4 × 4 combinations of the following four specifications of each
threshold for the 12 data sets in Table 1 (in the case of the wine data set, the four
values of the minimum support were 4%, 6%, 8% and 10%):
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Table 1. Data sets used in computational experiments

Data set Attributes Patterns Classes

Breast W 9 683* 2
Car 6 1728 4

Glass 9 214 6
Heart C 13 297* 5

Iris 4 150 3
Letter 16 20000 26

Nursery 8 12960 5
Sonar 60 208 2

Soybean L 35 266* 19
TicTacToe 9 958 2

Vote 16 232* 2
Wine 13 178 3

∗ Incomplete patterns with missing values are not included

Minimum support: 1%, 2%, 5%, 10%,
Minimum confidence: 60%, 70%, 80%, 90%.

All the extracted classification rules for each combination of the two threshold
values were used in evolutionary rule selection as candidate rules. NSGA-II was
executed with the following parameter values:

Population size: 200 strings,
Crossover probability: 0.9 (uniform crossover),
Mutation probability: 0.05 (for 0 → 1) and 1/N (for 1 → 0) where N is the string

length,
Termination conditions: 1,000 generations.

We also used SOGA with the same parameter values to maximize the following
weighted sum fitness function:

Maximize f(S) = w1 · f1(S)− w2 · f2(S)− w3 · f3(S), (7)

where w = (w1, w2, w3) is a nonnegative weight vector, which was specified as
w = (2, 1, 1) in our computational experiments.

The classification accuracy on test patterns of candidate rules and selected rules
was examined by iterating the twofold cross-validation procedure with 50% training
patterns and 50% test patterns five times for each data set (i.e., 5×2 CV). We report
average results over its five iterations in the next subsection. In some computational
experiments, we show experimental results of only a single run of NSGA-II. In
other computational experiments, all the given patterns in each data set were used
as training patterns for examining the relation between Pareto-optimal rules and
Pareto-optimal rule sets.
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5.2 Experimental Results

First we show some experimental results by SOGA to clearly demonstrate the effect
of evolutionary rule selection. Experimental results on the Wisconsin breast cancer
data set were summarized in Figs. 2 and 3. Each plot on the right-hand side was
obtained by applying SOGA to candidate classification rules in the corresponding
plot on the left-hand side. For example, about six rules were selected by SOGA
in Fig. 2 (b) from thousands of candidate rules in Fig. 2 (a). The deterioration in
the classification rates on training patterns by evolutionary rule selection from Fig.
3 (a) to Fig. 3 (b) was less than 1%. When the minimum support was 0.10 (i.e.,
the rightmost row), the classification rates on training patterns were improved by
evolutionary rule selection from Fig. 3 (a) to Fig. 3 (b). The deterioration in the
classification rates on test patterns by evolutionary rule selection from Fig. 3 (c) to
Fig. 3 (d) was about 1%–2%. The average rule length was decreased by evolutionary
rule selection from about 3 in Fig. 2 (c) to less than 2 in Fig. 2 (d). These observations
show that only a small number of simple classification rules were selected by SOGA
without severely deteriorating the classification accuracy.
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Fig. 2. Experimental results by SOGA on the Wisconsin breast cancer data set
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Fig. 3. Accuracy of classifiers in Fig. 2

We also applied evolutionary multiobjective rule selection to the Wisconsin
breast cancer data set in the following manner. First the given 683 patterns were
randomly divided into 342 training patterns and 341 test patterns. Next, candidate
rules were extracted from the 342 training patterns using minimum support 0.01
and minimum confidence 0.6. As a result, 17,070 classification rules were extracted.
Then NSGA-II was applied to the extracted classification rules. From its single run,
20 nondominated rule sets were obtained. Finally each of the obtained rule sets was
evaluated for the training and test patterns. The classification rates of the obtained
rule sets are shown in Fig. 4 (a) for the training patterns and in Fig. 4 (b) for the
test patterns. Some of the obtained rule sets (i.e., rule sets with only a single rule)
are not shown because their classification rates are out of the range of the vertical
axis of each plot in Fig. 4. We can observe a clear trade-off relation between the
number of selected rules and the classification rates on the training patterns in Fig.
4 (a). A similar trade-off relation is also observed for the test patterns in Fig. 4 (b).

While we observed very similar trade-off relations between the accuracy on train-
ing patterns and the number of selected rules for all the examined data sets, we
obtained totally different results on test patterns. For example, experimental results
on the Cleveland heart disease data set are shown in Fig. 5 where we observe a clear
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deterioration in the accuracy on test patterns due to the increase in the number of
selected rules (i.e., the overfitting of selected rules to training patterns).
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Fig. 4. Experimental results by NSGA-II on the Wisconsin breast cancer data set
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Fig. 5. Experimental results by NSGA-II on the Cleveland heart disease data set

Finally we examined the relation between Pareto-optimal rules and Pareto-
optimal rule sets for the Wisconsin breast cancer data set. First we extracted candi-
date classification rules from all the 683 patterns using minimum support 0.01 and
minimum confidence 0.6. Next we applied NSGA-II to the extracted classification
rules. Then we chose two rule sets from the obtained nondominated rule sets. One
is the most complicated rule set with the highest accuracy on the training patterns.
The other is the simplest rule set among rule sets with only two rules. This computa-
tional experiment was iterated ten times. Candidate classification rules and selected
rules are shown in Fig. 6 for the most accurate rule set and Fig. 7 for the simplest rule
set with two rules. It should be noted that these figures include experimental results
of ten runs. We can see that Pareto-optimal rule sets do not necessarily consist of
only Pareto-optimal rules with respect to confidence and support. We can also see,



230 Ishibuchi et al.

however, that most of the selected rules are Pareto-optimal or near Pareto-optimal
rules in the confidence-support space (especially in Fig. 7).
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Fig. 6. Candidate rules and selected rules in the most accurate rule set for the
Wisconsin breast cancer data set (experimental results of ten runs are shown)
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Fig. 7. Candidate rules and selected rules in the simplest rule set with two rules for
the Wisconsin breast cancer data set (experimental results of ten runs are shown)

6 Pareto-Optimal and Near Pareto-Optimal Rules

As shown in Figs. 2 and 3, the number of candidate classification rules and their
classification accuracy strongly depend on the choice of the two threshold values:
minimum support and confidence. When their values were very small, too many
candidate rules were extracted. On the other hand, when their values were too large,
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many candidate rules were not obtained. Thus the choice of appropriate threshold
values is important but difficult. Since Pareto-optimal and near Pareto-optimal rules
are likely to be selected as shown in Figs. 6 and 7, it seems a good idea to use only
Pareto-optimal and near Pareto-optimal rules as candidate rules. In this section, we
examine the effectiveness of this idea.

6.1 Use of Pareto-Optimal Rules as Candidate Rules

In the same manner as in Fig. 4, we applied evolutionary multiobjective rule selection
to the Wisconsin breast cancer data set using only Pareto-optimal rules as candidate
rules. That is, we chose only Pareto-optimal rules with respect to confidence and
support for each class from the generated classification rules in Fig. 4. The chosen
Pareto-optimal rules are shown by open circles in Fig. 8. Evolutionary multiobjective
rule selection was applied to the Pareto-optimal rules in Fig. 8. Experimental results
are shown in Fig. 9. From the comparison between Figs. 4 and 9, we can see that
fewer nondominated rule sets were obtained in Fig. 9 than in Fig. 4 (high-accuracy
rule sets with many rules were not obtained in Fig. 9 (a)). Whereas the training
data accuracy in Fig. 9 (a) was clearly degraded from Fig. 4 (a) by the use of only
the Pareto-optimal rules as candidate rules, the test data accuracy was not severely
degraded from Fig. 4 (b) to Fig. 9 (b).
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(b) Rules with a Class 2 consequent

Fig. 8. Pareto-optimal rules used in Fig. 9 and near Pareto-optimal rules used in
Fig. 11. Near Pareto-optimal rules are defined by the ε-dominance with ε = 0.01

In Fig. 10, we show experimental results on the Cleveland heart disease data
set where only the Pareto-optimal rules for each class were used as candidate rules.
The number of candidate rules was decreased from 15,745 in Fig. 5 to 36 in Fig. 10.
The number of obtained nondominated rule sets was also decreased from 42 in Fig.
5 to 13 in Fig. 10. From the comparison between Figs. 5 and 10, we can see that the
training data accuracy in Fig. 10 (a) was severely degraded from Fig. 5 (a) by the
use of only the Pareto-optimal rules as candidate rules. Rule sets with many rules,
which had high training data accuracy in Fig. 5 (a), were not obtained in Fig. 10
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(a) Classification rates on training data (b) Classification rates on test data

Fig. 9. Experimental results on the Wisconsin breast cancer data set where only
Pareto-optimal rules for each class were used as candidate rules

(a). The test data accuracy in Fig. 10 (b), however, was not severely degraded from
Fig. 5 (b).
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Fig. 10. Experimental results on the Cleveland heart disease data set where only
the Pareto-optimal rules for each class were used as candidate rules

6.2 Use of Pareto-Optimal and Near Pareto-Optimal Rules

As shown in the previous subsection, the use of only Pareto-optimal rules as candi-
date rules had a large effect on the number of candidate rules. In some cases, the
number of Pareto-optimal rules was too small. In this subsection, we examine the
use of not only Pareto-optimal rules but also near Pareto-optimal rules as candidate
rules.

Using a dominance margin ε, we define a modified Pareto dominance in the same
manner as [36]. A rule Ri is said to be ε-dominated by another rule Rj when both
the inequalities
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confidence(Ri) + ε ≤ confidence(Rj), support(Ri) + ε ≤ support(Rj) (8)

hold and at least one of the following two inequalities holds:

confidence(Ri) + ε < confidence(Rj), support(Ri) + ε < support(Rj). (9)

When a rule Ri is not dominated by any other rules in the sense of the ε-dominance
in (8) and (9), we call Ri an ε-nondominated rule. It should be noted that the ε-
dominance with ε = 0 is exactly the same as Pareto dominance. In the other extreme
case with ε = ∞, all rules are ε-nondominated rules.

In Fig. 8 of the previous subsection, we showed Pareto-optimal rules (open cir-
cles) and near Pareto-optimal rules (small closed circles), which were defined by the
ε-dominance with ε = 0.01. Experimental results using Pareto-optimal and near
Pareto-optimal rules as candidate rules are shown in Fig. 11. Computational ex-
periments in Fig. 11 (ε = 0.01) were performed in the same manner as in Figs. 4
(ε = ∞) and 9 (ε = 0). From these figures, we can see that an increase in the value
of ε leads to an increase in the number of obtained nondominated rule sets. It also
improves the training data accuracy (compare Fig. 9 (a) with Fig. 11 (a)).
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Fig. 11. Experimental results on the Wisconsin breast cancer data set where Pareto-
optimal and near Pareto-optimal rules with ε = 0.01 for each class were used as
candidate rules

In Table 2, we show the relation between the value of ε and the number of
candidate rules (i.e., Pareto-optimal and near Pareto-optimal rules). Near Pareto-
optimal rules are defined by the ε-dominance for each value of ε in Table 2. Table 2
shows average results over five iterations of the twofold cross-validation procedure
(i.e., ten runs of evolutionary multiobjective rule selection) for each specification of
ε for each data set. We used the same parameter specifications in the rule discovery
process as in some computational experiments in the previous section:

Minimum support: 1% (4% only for the wine data set),
Minimum confidence: 60%,
Maximum rule length: 3 (2 only for the sonar data set).

We can see from Table 2 that the value of ε has a large effect on the number
of candidate rules. In Table 2, many candidate rules were obtained for some data
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Table 2. Average number of candidate rules

Data set
Value of ε

0 0.001 0.01 0.1 ∞
Breast W 18 10083 10312 12573 16828*

Car 10 667 676 757 1654*
Glass 240 6755 7098 10597 13930*

Heart C 65 4318 4543 7789 14577*
Iris 21 890 893 929 1140*

Letter 150 646 2479 5102* 5102*
Nursery 8 1365 1367 1494 2572*
Sonar 33 42602 42734 49327 85780*

Soybean L 4578 32481 36884 57060 57892*
TicTacToe 14 167 178 1678 4153*

Vote 8 1344 1363 2146 4102*
Wine 27 20465 20489 23984 35530*

* Largest value in each row.

sets even when ε was very small. This is because candidate rules include a large
number of weak Pareto-optimal rules with maximum confidence 1.0 (see Fig. 8). In
the case of ε = 0, weak Pareto-optimal rules are not used as candidate rules. Thus
the number of candidate rules was drastically decreased by changing the value of ε
from ε = 0.001 to ε = 0 in Table 2.

Using the same parameter values as in the previous section, we applied NSGA-II
to the candidate classification rules for each value of ε. In Table 3, we show the av-
erage number of obtained nondominated rule sets over five iterations of the twofold
cross-validation procedure. Only when rule sets had different objective vectors, did
we count them as different rule sets. Some of different rule sets had the same ob-
jective vector. In that case, they were viewed as the same rule set in Table 3. From
Table 3, we can see that much fewer nondominated rule sets were obtained in the
case of ε = 0 than in the other cases with ε > 0. The average CPU time used for
NSGA-II (i.e., used for evolutionary multiobjective rule selection) is shown in Table
4. Our computational experiments were performed using a PC with a Dual Core
Pentium D 3.6 GHz processor. From this table, we can see that the CPU time was
drastically decreased by using a small value of ε (especially by specifying ε = 0).

As we have already explained, a number of nondominated rule sets were obtained
by a single run of NSGA-II for evolutionary multiobjective rule selection in our
computational experiments. In each of the ten runs of NSGA-II in five iterations of
the twofold cross-validation procedure, we chose the rule set with the highest training
data accuracy. That is, we chose the best rule set with respect to the classification
rate on training data. Then the classification rate on test data of the chosen rule set
was calculated. Average results over ten runs of NSGA-II were summarized in Table
5 for training data and Table 6 for test data. It should be noted that the experimental
results in Table 6 are not the best results with respect to the generalization ability
since the training data accuracy was used for the choice of a single classifier among
obtained nondominated rule sets in each run.
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Table 3. Average number of obtained nondominated rule sets

Data set
Value of ε

0 0.001 0.01 0.1 ∞
Breast W 10.4 16.4 15.8 16.7* 16.2

Car 8.6 18.1 19.0 27.7* 23.9
Glass 21.6 35.7* 35.1 32.8 34.9

Heart C 20.2 52.8 56.5* 52.4 53.5
Iris 5.0 7.0 7.0 7.1* 7.0

Letter 61.5 106.3 130.7 134.3* 134.3*
Nursery 10.0 10.0 10.2 19.6 23.2*
Sonar 8.4 17.0 18.1 19.2* 17.0

Soybean L 48.3 58.7 58.1 57.3 63.1*
TicTacToe 10.5 25.7 28.2* 22.6 21.3

Vote 4.0 5.9 6.0 6.1* 6.0
Wine 8.1 8.6 9.0 9.8 10.3*

* Largest value in each row

Table 4. Average CPU time for evolutionary multiobjective rule selection (minutes)

Data set
Value of ε

0 0.001 0.01 0.1 ∞
Breast W 4.0 51.5 135.4 147.5 170.6*

Car 0.8 8.4 21.4 21.9 32.1*
Glass 5.7 18.4 40.4 49.9 55.3*

Heart C 3.1 15.2 20.4 31.3 51.7*
Iris 1.5 3.5 4.3 4.3 4.5*

Letter 118.9 191.4 511.9 942.6 943.7*
Nursery 5.4 90.7 129.4 151.3 245.7*
Sonar 8.3 92.5 98.0 109.8 191.0*

Soybean L 33.3 61.7 217.4 276.1 278.8*
TicTacToe 2.4 4.2 5.3 15.9 32.9*

Vote 2.7 6.6 8.5 10.5 13.4*
Wine 5.4 31.6 75.9 90.3 100.6*

* Largest value in each row
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Table 5. Average classification rates on training data of nondominated rule sets
with the best training data accuracy

Data set
Value of ε

0 0.001 0.01 0.1 ∞
Breast W 97.6 99.7* 99.7* 99.7* 99.7*

Car 69.5 81.7 85.5 87.7* 84.8
Glass 81.8 97.1 97.3* 96.9 97.0

Heart C 77.6 96.5 97.0* 96.0 95.6
Iris 95.6 98.5* 98.5* 98.5* 98.5*

Letter 53.7 54.6 56.0 56.3* 56.3*
Nursery 89.9 89.9 90.0 93.0 94.0*
Sonar 95.0 100.0* 100.0* 100.0* 100.0*

Soybean L 90.5 98.3 98.5 98.9* 98.9*
TicTacToe 76.0 99.0 99.1 99.7 99.8*

Vote 97.8 99.7 99.8* 99.8* 99.7
Wine 99.5 100.0* 100.0* 100.0* 100.0*

* Best value in each row.

From Table 5, we can see that the use of only Pareto-optimal rules (i.e., ε = 0)
leads to severe deterioration in the training data accuracy in almost all the exam-
ined data sets. This is because the number of candidate rules was very small when
ε = 0 (see Table 2). We can also see that the highest classification rates on training
data were not always obtained from the case where ε = ∞. If we examine all com-
binations of candidate rules, the highest training data accuracy is always obtained
from the case where ε = ∞. This is because candidate rules in this case include
all candidate rules in the other cases. The highest training data accuracy, however,
was not always obtained from the case where ε = ∞ in Table 5. This means that
the best combination of candidate rules was not always found by NSGA-II since the
size of the search space was too large (i.e., 2N where N is the number of candidate
rules).

Whereas the training data accuracy was not good in the case of ε = 0 in Table
5, good results were obtained from ε = 0 with respect to the test data accuracy
in Table 6. This is because the use of only Pareto-optimal rules as candidate rules
prevents the overfitting of selected rule sets to training data (compare Fig. 10 with
Fig. 5).

7 Conclusions

In this chapter, first we explained two approaches to evolutionary multiobjective
classification rule mining. One is to search for Pareto-optimal rules and the other
is to search for Pareto-optimal rule sets. Next we demonstrated the usefulness of
evolutionary rule selection as a post-processing procedure in the second phase of
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Table 6. Average classification rates on test data of nondominated rule sets with
the best training data accuracy in Table 5

Data set
Value of ε

0 0.001 0.01 0.1 ∞
Breast W 95.6* 94.3 95.4 95.1 95.0

Car 67.2 80.5 84.3 86.6* 83.4
Glass 61.9 60.6 63.2* 60.4 62.7

Heart C 52.1* 41.5 42.1 40.6 40.5
Iris 95.4* 95.4* 95.2 95.4* 95.4*

Letter 52.7 53.6 54.9* 54.8 54.8
Nursery 90.0 90.0 90.1 92.8 93.8*
Sonar 74.0* 58.6 62.2 63.7 64.1

Soybean L 78.4* 65.2 71.7 63.2 69.3
TicTacToe 73.3 98.5 98.4 98.6 98.9*

Vote 96.1* 94.7 94.5 94.6 94.2
Wine 92.8* 90.4 91.3 90.2 90.5

* Best value in each row.

classification rule mining. Then we demonstrated the accuracy-complexity trade-off
relation in nondominated rule sets using evolutionary multiobjective rule selection.
Finally we examined the use of Pareto-optimal and near Pareto-optimal rules as
candidate rules in evolutionary multiobjective rule selection after examining the
relation between Pareto-optimal rules and Pareto-optimal rule sets.

The following observations were obtained from computational experiments on
some benchmark problems in the UCI machine learning repository.

(1) Clear accuracy-complexity trade-off relations of rule sets were observed on
training data for all the examined benchmark problems.

(2) A totally different relation between accuracy and complexity was observed
on test data for each benchmark problem. Whereas clear trade-off relations
were observed on test data as well as training data for some problems, trade-off
relations on training data were reversed on test data for other problems due to
the overfitting of rule sets to training data.

(3) Almost all rules comprising small Pareto-optimal rule sets with respect to ac-
curacy and complexity were Pareto-optimal or near Pareto-optimal with respect
to confidence and support.

(4) Some rules comprising large Pareto-optimal rule sets were far from the Pareto
front with respect to confidence and support.

(5) Restricting candidates to Pareto-optimal and near Pareto-optimal rules using
ε-dominance increased the efficiency of evolutionary multiobjective rule selection
by decreasing the size of the search space. Whereas this restriction degraded the
accuracy of rule sets on training data, the accuracy on test data was not always
degraded.
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Summary. In optimization studies, often researchers are interested in finding one
or more optimal or near-optimal solutions. In this chapter, we describe a systematic
optimization-cum-analysis procedure which performs a task beyond simply finding
optimal solutions, but first finds a set of near-Pareto-optimal solutions and then
analyses them to unveil salient knowledge about properties which make a solution
optimal. The proposed ‘innovization’ task is explained and its working procedure
is illustrated on a number of engineering design tasks. The variety of problems
chosen in the chapter and the resulting innovations obtained for each problem amply
demonstrate the usefulness of the proposed innovization task. The procedure is a
by-product of performing a routine multiobjective optimization for a design task and
in our opinion portrays an important process of knowledge discovery which may not
be possible to achieve by other means.

Keywords: Innovative design, optimization, engineering design, evolutionary opti-
mization, multiobjective optimization, commonality principles, Pareto-optimal so-
lutions.

1 Introduction

In the context of engineering the design of a system, a product or a process, re-
searchers and practitioners constantly look for innovative solutions. Unfortunately,
there exist very few scientific and systematic procedures for achieving such inno-
vations. Goldberg [11] narrates that a competent genetic algorithm – a search and
optimization procedure based on natural evolution and natural genetics – can be an
effective way to arrive at an innovative design for a single-objective scenario.
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In this chapter, we extend Goldberg’s argument and describe a systematic proce-
dure involving a multiobjective optimization task and perform a subsequent analysis
of optimal solutions to arrive at a deeper understanding of the problem, and not
simply to find a single optimal (or innovative) solution. In the process of our gaining
insights into the problem, the systematic procedure suggested here may often un-
cover new and innovative design principles which are common to optimal trade-off
solutions. Such commonality principles among multiple solutions should provide a
reliable procedure for arriving at a ‘blueprint’ or a ‘recipe’ for solving the problem
in an optimal manner. Through a number of engineering design problems, we de-
scribe the proposed ‘innovization’ procedure and present resulting innovized design
principles which are useful, not obvious from the appearance of the problem, and
not possible to achieve by a single-objective optimization.

In the remainder of the chapter, we describe the importance of considering mul-
tiple conflicting objectives in an innovative design task in Section 2. Thereafter, we
present the proposed innovization procedure in Section 3. The innovization task is
illustrated by applying the procedure to a number of engineering design problems
in Sections 4, 5 and 6. Finally, conclusions are made in Section 7.

2 Multiple Conflicting Objectives of Design

The crux of the proposed innovization procedure involves optimization of at least
two conflicting objectives of a design. When a design is to be achieved for the single
goal of minimizing the size of a product or of maximizing output from it, usually one
optimal solution is the target. When optimized, the optimal solution portrays the
design, fixes the dimensions, and conveys little else. Although a sensitivity analysis
can provide some information about the relative importance of constraints, it only
provides local information close to the single optimum solution. Truly speaking,
such an optimization task of finding a single optimum design does not often give
a designer any understanding deeper than what the optimum solution should look
like. After all, how much can a single (albeit optimal) solution in the entire search
space of solutions offer?

Let us now think of an optimum design procedure in the context of two or
more conflicting goals. Say, we talk about the design of an electric induction motor
involving armature radius, wire diameter and number of wiring turns as design
variables, and the design goal is to minimize the size of the motor; possibly we shall
arrive at a motor which will look small and deliver only a few horsepower (shown as
solution A in Figure 1), just enough to run a pump for lifting water to a two-storey
building. On the other hand, if we design the motor for the maximum delivered
power using the same technology as before, we will arrive at a motor which can
deliver, say, a few hundred horsepower, needed to run a compressor in an industrial
air-conditioning unit (solution B in Figure 1). However, the size and weight of such
a motor will be substantially larger. If we let use a bi-objective optimization method
of minimizing size and maximizing delivered power simultaneously, we shall arrive
at these two extreme solutions and a number of other intermediate solutions (as
shown in the figure) with different trade-offs in size and power, including motors
which can be used in an overhead crane to hoist and manoeuvre a load, motors
delivering 50 to 70 horsepower which can be used to run a machining centre in a
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Fig. 1. Trade-off designs show a clear conflict between motor size and power de-
livered in a range of TEFC three-phase squirrel cage induction motors (data taken
from Siemens Ltd. [14]). Despite the differences, are there any similarities in their
designs?

factory, and motors delivering about two hundred horsepower which can be used for
an industrial exhauster fan.

If we now line up all such motors in worsening order of one of the objectives, say
their increased size, in the presence of two conflicting objectives, they would also
get sorted in the other objective in an opposite sense (say their increased output).
Obtaining such a wide variety of solutions in a single computational effort is itself a
significant matter, discussed and demonstrated in various evolutionary multiobjec-
tive optimization (EMO) studies in the recent past [5, 3] and in some chapters of
this book. Here, we suggest a post-optimality analysis, which should result in a set
of innovized principles about the design problem, which we describe next.

After the multiobjective optimization task, we have a set of optimal solutions
specifying the design variables and their objective trade-offs. We can now analyse
these solutions to investigate if there exist some common principles among all or
many of these optimal solutions. In the context of the motor design task, it would be
interesting to see if all the optimal solutions have an identical wire diameter or an
armature diameter proportional or in some relation to the delivered power. If such
a relationship between design variables and objective values exists, it is needless
to say that it would be of great importance to a designer. Such information will
provide a plethora of knowledge on (or a recipe for) how to design the motor in an
optimal manner. With such a recipe, the designer can later design a new motor for a
new application without resorting to solving a completely new optimization problem
again. Moreover, the crucial relationship between design variables and objectives will
also provide vital information about the theory of design of a motor, which can bring
out limitations and scopes of the existing procedure and spur new and innovative
ideas for designing an electric motor.
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It is argued elsewhere [6] that since the Pareto-optimal solutions are not any
arbitrary solutions, but rather solutions which mathematically must satisfy the so-
called Fritz-John necessary conditions (involving gradients of objective and con-
straint functions) [12] in engineering and scientific systems and problems, we may
be reasonably confident in claiming that there would exist some commonalities (or
similarities) among the Pareto-optimal solutions which will ensure their optimal-
ity. On the other hand, there would exist some dissimilarities among them which
would make them different from each other and place them on various locations on
the Pareto-optimal front providing an optimal trade-off among objectives. Whether
such similarities exist for all solutions on the Pareto-optimal front, or whether some
kind of similarity exist partially among solutions on a part of the Pareto-optimal
front and another kind of similarity exists in another part of the front, or there exist
hierarchical (or level-wise) similarities (some kinds for all and some sub-kinds for a
portion of the front) varies from problem to problem. Whatever the extent of the
commonalities, if they exist, they must convey some design principles worth know-
ing. We argue and demonstrate amply in the subsequent sections that such design
principles deciphered from the obtained Pareto-optimal solutions may often bring
out new and innovative principles which were unknown earlier. They are also useful
in design activities and provide a better understanding of parameter interactions.
Since these innovative principles are the outcome of a carefully performed optimiza-
tion task, we call the procedure an act of ‘innovization’ – a process of obtaining
innovative solutions and design principles through the act of optimization.

3 Innovization Procedure

As described above, the analysis of the optimized solutions will result in worthwhile
design principles if the trade-off solutions are really close to the optimal solutions
or if they are exactly on the Pareto-optimal front. Since for engineering and com-
plex scientific problem solving we need to use a numerical optimization procedure,
and since in such problems the exact optimum is not known a priori, adequate
experimentation and verification must first be done to gain confidence about the
proximity of the obtained solutions to the actual Pareto-optimal front. In all case
studies performed here, we have used the well-known elitist nondominated sorting
genetic algorithm, or NSGA-II [7], as the multiobjective optimization tool. NSGA-II
begins its search with a random population of solutions and iteratively progresses
towards the Pareto-optimal front so that at the end of a simulation run multiple
trade-off optimal solutions are obtained simultaneously. For a detail description of
NSGA-II, readers are referred to the original study [7]. The NSGA-II solutions are
then clustered to identify a few well-distributed solutions. The clustered NSGA-II
solutions are then modified by using a local search procedure (we have used Ben-
son’s method [1, 5] here). The obtained NSGA-II-cum-local-search solutions are then
verified by two independent procedures:

1. The extreme Pareto-optimal solutions are verified by running a single-objective
optimization procedure (a genetic algorithm is used here) independently on each
objective function, subject to satisfying given constraints.

2. Some intermediate Pareto-optimal solutions are verified by using the normal
constraint method (NCM) [15], starting at different locations on the hyperplane
constructed using the individual best solutions obtained from the previous step.
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When the attainment of optimized solutions and their verifications are made,
ideally a data mining strategy must be used to automatically evolve design principles
from the combined data of the optimized design variables and their corresponding
objective values. By no means is this an easy task, and it is far from being simply a
matter of regression over a set of multidimensional data: (i) there may exist multiple
relationships, thereby requiring us to find multiple solutions to the problem simul-
taneously, (ii) a relationship may exist partially in the data set, thereby requiring a
clustering procedure to identify which design principles are valid in which clusters,
and (iii) since optimized data may not exactly be the optimum data, exact rela-
tionships may not be possible to achieve, thereby requiring us to use fuzzy-rule- or
rough-set-based approaches. While we are currently pursuing various data mining
and machine learning techniques for an automated learning and deciphering of im-
portant design principles from optimized data, in this chapter we mainly use visual
and statistical comparisons and graph-plotting software for the task. We present the
proposed innovization procedure here:

Step 1: Find an individual optimum solution for each of the objectives by using a
single-objective GA (or sometimes using NSGA-II by specifying only one objec-
tive) or by a classical method. Thereafter, derive and note the ideal point.

Step 2: Find the optimized multiobjective front by NSGA-II. Also, obtain and note
the nadir point2 from the front.

Step 3: Normalize all objectives using ideal and nadir points and cluster a few so-
lutions Z(k) (k = 1, 2, . . . , 10), preferably in the area of interest to the designer
or uniformly along the obtained front.

Step 4: Apply a local search (Benson’s method [1] is used here) and obtain the
modified optimized front.

Step 5: Perform the normal constraint method (NCM) [15], starting at a few lo-
cations, to verify the obtained optimized front. These solutions constitute an
optimized front that we can be reasonably confident in.

Step 6: Analyse the solutions for any commonality principles, to be interpreted as
plausible innovized relationships.

Since the above innovization procedure is expected to be applied to a problem once
and for all, designers may not be especially concerned by the computation time
needed to complete the task. However, if needed, the above procedure can be made
faster by parallelizing Steps 1, 2, 4 and 5 on a distributed computing machine.

We now illustrate the working of the above innovization procedure on a number
of engineering applications.

4 Overhead Crane Manoeuvring

In an optimal operation of an overhead crane, often the performance of a crane
operator depends on how quickly (with minimum time of operation) and efficiently

2 It is interesting to note that finding a set of trade-off Pareto-optimal solutions
using an evolutionary multiobjective optimization (EMO) procedure is one way
of arriving at the nadir point. Finding the nadir point is an important task in
the classical multicriterion decision-making approaches, and is reported to be a
difficult task [13].



248 Deb and Srinivasan

(with minimum power consumption) a task is performed. The task is often to lift
a load from an elevation and place it on a truck or a railway wagon by lowering it.
Here, we formulate a dynamic model of the trolley and the load (shown in Figure 2),
so as to allow the length of the load to vary in the following manner, as a function
of position (x) from the starting point of the trolley:

l(x) = l0 +

(
x

xf

)2γ

(lf − l0). (1)

The length l(x) is computed downwards, and l0 is the length of the cord connecting
the hanging load at x = 0 and lf is the length at x = xf (the destination of trolley).
A condition of lf > l0 is assumed here. The parameter γ is kept as a variable in the
NSGA-II and is allowed to vary within [−3, 3] so that different strategies of lowering
the load from the initial point to the destination point are possible, as shown in the
right-hand side plot in Figure 2.
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Fig. 2. A schematic of the crane-manoeuvring problem. The right plot shows a true
variation with γ = −3, 0 and 3 with the normalized x (or x/xf )

The dynamics (differential equations) of the trolley mass and the sway of the
load as a function of time are formulated by force balance equations [9]. The terms
will involve time-dependent parameters: Applied force F0, length of cord, angular
location of cord from the vertical, position of trolley mass along the guide etc. These
equations can then be solved numerically starting with an initial condition of rest,
and the simulation continued until the trolley mass reaches the stop at the right-
most position on the guide and the maximum angular displacement of the cord goes
below a threshold value αc. The solution of differential equations will provide the
time of operation (the first objective) and the application of step-wise force on the
trolley mass will provide the consumed energy (the second objective).

For this problem, NSGA-II considers three sets of variables: (i) magnitude of
applied force F0 (varying in [100, 1675] N, coded in a 10-bit string), (ii) pattern of
applying force F0 (coded in a 500-bit string and applying the force at an interval of
Δt = 4 sec, thereby keeping a maximum of 500× 4 or 2,000 sec time for the trolley
to reach the destination point), and (iii) γ (treated as a real-valued variable lying
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within [−3, 3]). NSGA-II allows mixed variables (discrete and real) to be handled
together. The variable γ is operated by using the simulated binary crossover (SBX)
and the polynomial mutation operators [5]. Each of these two operators requires a
parameter to be set specifying the extent of the search, and here we use standard
values of ηc = 5 and ηm = 20 for crossover and mutation, respectively. The time for
completing the task is computed by summing the time required for the trolley to
reach the destination and the time required for the hanging load to reach a small
angle of sway of αc = 0.0002 rad. NSGA-II is run with a population of size 100 and
the nondominated solutions found after 1,000 generations are shown in Figure 3.
Single-objective EAs are also applied to individually minimize operation time and
supplied energy. NSGA-II solutions outperform the single-objective EA solutions in
this problem.
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Fig. 3. Nondominated solutions for the crane manoeuvring problem are shown

4.1 Innovized Principles

Table 1 shows the variables (force, pattern of applying force and γ) of a few well-
distributed sets of nondominated solutions. It is observed that in most solutions
a near-optimal strategy is to apply the load (and hence consumed energy) at the
beginning of the task. After sufficient inertia is generated, no further application of
load is needed, and the trolley can reach the stop without much velocity, and hence
producing little sway of the load. This is an energy-efficient operation of the crane
that is somewhat obvious; but the optimized solutions bring out this property as a
useful operating condition for solving the crane manoeuvring problem.

Another extremely interesting observation can be made from the variation in
γ values of the trade-off near-optimal solutions. Although this variable can take
any value within [−3, 3], all solutions seem to have been fixed close to its upper
bound (≈ 3.00). A plot of this variation (γ = 3, marked on the right-hand side plot
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Table 1. Near-optimal trade-off solutions arranged in an increasing order of applied
force

γ Force (N) Pattern

2.98 149.26 111111110010001000000000000000000000000000000000000
3.00 187.76 11111111001000100000000000000000000000000
3.00 238.56 111111110010001000000000000000000
3.00 327.86 11111011001001100000000000
2.98 427.93 111110110010011000000
3.00 544.94 11111111001000100
2.87 629.62 111111110010001
2.88 818.99 110111010010001

in Figure 2) reveals that all nondominated solutions portrays a strategy in which
the load should not be dropped early during the course of the trolley movement,
and should be lowered only at the end. Such a strategy emerging from all optimal
solutions is certainly interesting and can be explained easily when this phenomenon
is revealed. Assuming the hanging load to be an ideal pendulum, we can equate the
supplied energy (E) with the maximum change in potential energy and obtain the
following relationship between the required energy E and the length of pendulum l:

E = mg(1− cos θ)l. (2)

For a fixed termination condition of a critical θ = αc, a pendulum having a larger
length requires more supplied energy. Thus, for minimal energy consideration a
smaller length is better. This is the reason why the optimal strategy for minimum
energy-time operation is to keep the length fixed to its lower value (l0) initially and
then lower the load as late as possible.

This problem clearly demonstrates the importance of the proposed innovization
task in practice. In the following sections, we show a few more engineering design
problems where more concrete and innovative, though yet unknown design principles
are revealed.

5 Two-Member Truss Design

We consider a three-variable, two-objective truss design problem, which was orig-
inally studied using the ε-constraint method [2, 16] and later by an evolutionary
approach [5]. The truss (Figure 4) has to carry a certain load without elastic fail-
ure. We consider two conflicting objectives of design: (i) minimize total volume of
truss members and (ii) minimize the maximum stress developed in both members
(AC and BC) due to the application of the 100 kN load. There are three decision
variables: cross-sectional area AC (x1) and BC (x2) measured in m2 and the vertical
distance between A (or B) and C (y) measured in m. The nonlinear optimization
problem is given as follows:
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Fig. 4. A two-membered truss structure

Minimize f1(x, y) = x1

√
16 + y2 + x2

√
1 + y2,

Minimize f2(x, y) = max(σAC , σBC),
Subject to max(σAC , σBC) ≤ Smax,

0 ≤ x1, x2 ≤ Amax,
1 ≤ y ≤ 3.

(3)

Using the dimensions and loading specified in Figure 4, it can be observed that
member AC is subjected to a 20

√
16 + y2/y kN load and member BC is subjected

to an 80
√

1 + y2/y kN load. The stresses are calculated as follows:

σAC =
20
√

16 + y2

yx1
, (4)

σBC =
80
√

1 + y2

yx2
. (5)

Here, we limit the stresses to Smax = 1(105) kPa and cross-sectional areas to
Amax = 0.01 m2. All three variables are treated as real-valued. The simulated bi-
nary crossover (SBX) with ηc = 10 and the polynomial mutation operator with
ηm = 50 are used [5]. All constraints are handled using the constraint-tournament
approach developed elsewhere [5]. Figure 5 shows all nondominated solutions ob-
tained by NSGA-II. Although the trade-off between the two objectives is clear from
the figure, we perform two other studies to gain confidence about optimality of these
solutions. First, we employ a single-objective genetic algorithm to find the optimum
of individual objective functions subjected to the constraint and variable bounds.
Figure 5 marks these two solutions as ‘1-obj’ solutions. It is evident that the NSGA-
II front extends to these two extreme solutions. Next, we use the NCM method [15]
with different starting points from a line joining the two extreme solutions. The
solution found at the end of each optimization is shown in the figure as well. Since
these solutions fall on the NSGA-II front, it gives us confidence that the obtained
NSGA-II nondominated solutions are close to the Pareto-optimal front.

5.1 Innovized Principles

Before we discuss the NSGA-II solutions, we perform an exact analysis to find
the true Pareto-optimal solutions for this problem. The problem, although simple
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mathematically, is a typical optimization problem having two resource terms in
objectives involving variables x1 and x2 each and interlinking them with another
variable y. For such problems, the optimum occurs when the identical resource
allocation between the two terms in both objective and constraint functions are
made:

x1

√
16 + y2 = x2

√
1 + y2, (6)

20
√

16 + y2

yx1
=

80
√

1 + y2

yx2
. (7)

Thus, every optimum solution is expected to satisfy both the above equations, yield-
ing y = 2 and x1/x2 = 0.5. Using y = 2 m in the expression for the first (volume)
objective, we can also obtain x2 = V/2

√
5 m2, where V is the volume (in m3) of the

structure. Substituting these values in the objective functions V = f1 and S = f2,
we obtain SV = 400 kN, an inverse relationship between the objectives. Thus, the
solutions in the Pareto-optimal front are given in terms of volume V , as follows:

x∗
1 =

V ∗

4
√

5
m2, x∗

2 =
V ∗

2
√

5
m2, y∗ = 2 m, S∗ = 400/V ∗ kPa.

When the variable x2 reaches its maximum limit, that is, at the transition point
T shown in Figure 6, VT = 0.04472 m3 and ST = 8, 944.26 kPa, and x2 cannot be
increased any further.

The inset plot (drawn with a logarithmic scale on both axes) in Figure 5 shows
this interesting aspect of the obtained front. There are two distinct behaviours of the
optimal front around the transition point T marked in the figure, one spanning from
the smallest-volume solution to a volume of about 0.04478 m3 (point T), and another
spanning from this transition point to the smallest stress solution. The extreme
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solutions and this intermediate solution, obtained by NSGA-II, are tabulated in
Table 2. An investigation of the values of the decision variables reveals the following
innovizations:
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Table 2. Two extreme solutions and an interesting intermediate solution (T) for
the two-member truss design problem are presented

Solution x1 (m2) x2 (m2) y (m) f1 (m3) f2 (kPa)
Min. Volume 4.60(10−4) 9.05(10−4) 1.935 0.004013 99,937.031
Intermediate (T) 49.30(10−4) 99.89(10−4) 2.035 0.044779 8,945.610
Min. of max. stress 39.54(10−4) 100.00(10−4) 3.000 0.051391 8,432.740

1. The inset plot in Figure 5 reveals that for optimal structures, maximum stress
(S) developed is inversely proportional to the volume (V ) of the structure, that
is, SV = constant, as was predicted above. When a straight line is fitted with
the logarithm of two objective values, an SV = 402.2 relationship is found for
NSGA-II solutions. This is close to the true relationship computed above.

2. The inset plot also reveals that the transition occurs at V = 0.044779 m3, which
is also close to the exact theoretical value computed above.

3. To achieve a solution with smaller maximum stress (and larger volume) opti-
mally, both cross-sectional areas (AC and BC) need to be increased linearly
with volume, as shown in Figure 6. The figure also plots the mathematical re-
lationships (x1 and x2 versus V ) obtained earlier with solid lines, which can be
barely seen, as the obtained NSGA-II solutions fall on top of these lines.

4. A further investigation reveals that the ratio between these two cross-sectional
areas is almost 1:2 and the vertical distance (y) takes a value close to 2 m for
all solutions.

5. Figure 7 reveals that the stresses developed on both members (AC and BC) are
identical for any optimized solution.
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These are interesting properties about the design problem which may not be so
intuitive to a designer. But the above innovized principles can be explained from
the mathematical formulation described. Thus, although these optimality conditions
can be derived mathematically from the problem formulation given in Equation 3 in
this simple two-membered truss structure design problem, they may be often tedious
and difficult to achieve exactly for large-sized and complex problems. Applying a
numerical optimization technique and investigating the optimized solutions have the
potential of revealing such important innovative principles of design.

5.2 Higher-Level Innovizations

Before we leave this case study, we would like to raise another important aspect of
the innovization procedure. Since an analysis is performed on the solutions obtained
by solving a particular optimization problem (that is, for fixed values of all problem
parameters), one may wonder how the innovized principles will change if different
parameter values are used. In the context of the above truss structure design, the
parameters kept fixed for the entire analysis were (i) upper limit of developed stress,
Smax, (ii) upper limit of cross-sectional areas, Amax, and (iii) lower and upper bound
of y. It would be interesting to investigate whether the innovized principles deci-
phered above will still be valid parametrically for variations of these parameters.
For example, one may think that the reason for the fixed-x2 solutions (near the
smallest stress value) occurred due to the use of a small Amax. It may be worthwhile
to ponder whether the two-pronged behaviour of the Pareto-optimal front observed
above would still remain if the cross-sectional limit Amax were increased.

To get a complete idea of the innovized principles, one needs to redo the multi-
objective optimization runs for different values of problem parameters and perform
further analysis. Figure 9 shows the Pareto-optimal fronts obtained with different
Amax values and by keeping rest all parameters the same as before. Interestingly,
in all simulations the two-pronged behaviour appears, meaning that the property
of fixed-y solutions for smaller volume solutions followed by fixed-x2 solutions for
smaller stress values is universal. Higher-level innovizations for the above truss struc-
ture design problems are as follows:

1. As long as the required cross-sectional areas can be accepted, there exists an
optimum y. By fixing y at this optimum value, a trade-off between stress and
volume can be obtained by directly changing x1 and x2 by an identical rate.

2. Since x2 (in this configuration) would reach the upper limit faster than x1 due
to its requirement of carrying a larger load, for any further reduction in stress
value, x2 must be kept fixed at the upper bound and y should be increased as
much as allowed. While doing so, the optimal procedure would be to reduce x1.
Thus, the minimum stress configuration would be for the maximum value of x2

and for the largest value of y or the smallest value of x1, whichever happens
faster.

3. Figure 9 also shows that all fronts produce the same relationship SV ≈ 400
kN for optimality. Since, y = 2 is an optimal solution for any Amax, ideally,
SV = 2 × 20(16 + y2)/y or 400 kN for all cases. Thus, for all optimal trusses
having no bounds on cross-sectional size, an optimal truss will have SV = 400
kN.

Similarly, further higher-level innovizations can be investigated by varying other
fixed parameters.
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6 Welded Beam Design

The welded beam design problem is well studied in the context of single-objective
optimization [17]. A beam needs to be welded on another beam and must carry a
certain load F (Figure 10). We want to find four design parameters (thickness of the

b

t

hl
F

Fig. 10. The welded beam design problem

beam, b, width of the beam t, length of the weld �, and thickness of the weld h) for
which the cost of the beam is minimum and, simultaneously, the vertical deflection
at the end of the beam is minimum. The overhang portion of the beam has a length
of 14 in, and force F = 6, 000 lb is applied at the end of the beam. It is intuitive that
a design which is optimal from the cost consideration is not optimal from rigidity
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consideration (or end deflection) and vice versa. Such conflicting objectives lead to
interesting Pareto-optimal solutions.

In the following, we present the mathematical formulation of the two-objective
optimization problem of minimizing the cost and the end deflection [10, 4]:

Minimize f1(x) = 1.10471h2� + 0.04811tb(14.0 + �),
Minimize f2(x) = 2.1952

t3b
,

Subject to g1(x) ≡ 13, 600− τ(x) ≥ 0,
g2(x) ≡ 30, 000− σ(x) ≥ 0,
g3(x) ≡ b− h ≥ 0,
g4(x) ≡ Pc(x)− 6, 000 ≥ 0,
0.125 ≤ h, b ≤ 5.0,
0.1 ≤ �, t ≤ 10.0.

(8)

There are four constraints. The first constraint makes sure that the shear stress
developed at the support location of the beam is smaller than the allowable shear
strength of the material (13,600 psi). The second constraint makes sure that normal
stress developed at the support location of the beam is smaller than the allowable
yield strength of the material (30,000 psi). The third constraint makes sure that
thickness of the beam is not smaller than the weld thickness from a practical stand-
point. The fourth constraint makes sure that the allowable buckling load (along t
direction) of the beam is more than the applied load F . A violation of any of the
above four constraints will make the design unacceptable. The stress and buckling
terms are highly nonlinear to design variables and are given as follows [17]:

τ(x) =

√

(τ ′)2 + (τ ′′)2 + (�τ ′τ ′′)/
√

0.25(�2 + (h + t)2),

τ ′ =
6, 000√

2h�
,

τ ′′ =
6, 000(14 + 0.5�)

√
0.25(�2 + (h + t)2)

2 {0.707h�(�2/12 + 0.25(h + t)2)} ,

σ(x) =
504, 000

t2b
,

Pc(x) = 64, 746.022(1− 0.0282346t)tb3.

Table 3 presents the two extreme solutions obtained by the single-objective GA
and also by NSGA-II. An intermediate solution, T (which will be explained latter),
obtained by NSGA-II, is also shown. Figure 11 shows these two extreme solutions
and a set of Pareto-optimal solutions obtained using NSGA-II. The obtained front
is verified by finding a number of Pareto-optimal solutions using the NC method
[15].

6.1 Innovized Principles

Let us now analyse the NSGA-II solutions to decipher innovized design principles:

1. Although Figure 11 shows an apparent inverse relationship between the two ob-
jectives, the logarithmic plot (inset) shows that there are two distinct behaviours
between the objectives. From an intermediate transition solution T (shown in
Table 3 and in Figure 11) near the smallest-cost (having comparatively larger
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Table 3. The extreme solutions for the welded-beam design problem

Solution x1 (h) x2 (�) x3 (t) x4 (b) f1 f2

(in) (in) (in) (in) (in)
Min. Cost 0.2443 6.2151 8.2986 0.2443 2.3815 0.0157
Min. Deflection 1.5574 0.5434 10.0000 5.0000 36.4403 4.3904(10−4)
Intermediate (T) 0.2326 5.3305 10.0000 0.2356 2.5094 0.0093
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Fig. 11. NSGA-II solutions are shown
for the welded beam design problem

T
 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016

Bending stress (psi)

Shear stress (psi)

Buckling load (lb)

(b−h)*20000 (in)

Deflection (in)

C
o
n
s
t
r
a
i
n
t
 
V
a
l
u
e
s

Fig. 12. Constraint values of all
Pareto-optimal solutions are shown for
the welded beam design problem

deflection) solutions, objectives behave differently than in the rest of the trade-
off region. For small-deflection solutions, the relationship is almost polynomial
(f1 ≈ O(f−0.890

2 )).
2. Figure 12 plots the constraint values for all trade-off solutions. It is apparent

that for all optimal solutions the shear stress constraint is the more critical and
active. For small-deflection (or large-cost) solutions, the chosen bending strength
(30,000 psi) and allowable buckling load (6,000 lb) are quite large compared to
the developed stress and applied load. Any Pareto-optimal solution must achieve
the maximum allowable shear stress value (13,600 psi). Thus, in order to improve
the design, selection of a material having a larger shear strength capacity would
be wise.

3. The transition point (T) between two trade-off behaviours (observed in Fig-
ure 11) happens mainly from the buckling consideration. Designs having larger
deflection values (or smaller cost values) reduce the buckling load capacity, as
shown in Figure 12. When the buckling load capacity becomes equal to the
allowable limit (6,000 lb), no further reduction is allowed. This happens at a
deflection value close to 0.00932 in (having a cost of 2.509).

4. Interestingly, there are further innovizations with the design variables. For small-
deflection solutions, the decision variable b must reduce inversely (b ∝ 1/f2)
with deflection objective (f2) to retain optimality. Since for these solutions,
only the shear stress constraint is active, and since the shear stress constraint
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does not involve the variable b, this variable does not get set by the constraint.
On the other hand, b has opposite effects between cost and deflection. Thus,
the optimal solutions reflect a similar pattern of variation in b: a reduction in b
causes a reduction in cost and an increase in deflection (Figure 12).

5. For small-deflection solutions, the decision variable t remains constant, as shown
in Figure 13. This indicates that for most Pareto-optimal solutions, the height
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of the beam must be set to its upper limit. Although t causes an inverse effect
on cost and deflection, as apparent from the equations, the active shear stress
constraint involves t. Since the shear stress value reduces with an increase in
t (apparent from the formulation), it can be argued that fixing t to its upper
limit would make a design optimal. Thus, if in practice solutions close to the
smallest-cost solution are not desired, a beam of identical height (t = 10 in)
may be procured, thereby simplifying the inventory.

6. However, an increase in � and a decrease in h with an increase in deflection (or a
decrease in cost) are not completely monotonic, as can be seen from Figure 14.
These two phenomena are not at all intuitive and are also difficult to explain
from the problem formulation. However, the innovized principles for arriving at
optimal solutions seem to be as follows: for a reduced cost solution, keep t fixed
to its upper limit, increase � and reduce h and b. This ‘recipe’ of design can
be practised only until the applied load is strictly smaller than the allowable
buckling load.

7. Thereafter, any reduction in cost optimally must come from (i) reducing t from
its upper limit, (ii) increasing b, and (iii) adjusting other two variables so as to
make buckling, shear stress, and constraint g4 active. In these solutions, with
decreasing cost the dimensions are reduced in such a manner so as to make the
bending stress increase. Finally, the minimum-cost solution occurs when the
bending stress equals to the allowable strength (30,000 psi, as in Figure 12). In
this solution all four constraints become active, so as to optimally utilize the
materials for all four purposes.
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8. To achieve very small cost solutions, the innovized principles are different: for
a reduced cost solution, reduce t and increase �, h and b. Thus, overall a larger
� is needed to achieve a small cost solution.

6.2 Higher-Level Innovizations

Here, we redo the innovization procedure for one different value of three allowable
limits: Shear strength in constraint g1 is increased by 20%, bending strength in
constraint g2 is increased by 20%, and buckling limit load in constraint g4 is reduced
by 50%. We change them one at a time and keep the other parameters identical to
their previous values. Figure 15 shows the corresponding Pareto-optimal fronts for
these three cases. The following innovizations are obtained:
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Fig. 15. Effect of material strength and buckling load limit on the Pareto-optimal
front for the welded beam design problem

1. It is clear that all three cases produce similar dual behaviour (different char-
acteristics on either side of a transition point) in the Pareto-optimal front, as
was also observed in the previous case. All other innovizations (such as t being
constant and b being smaller with increasing deflection, etc.) mentioned earlier
remains the same in all three cases.

2. The minimum-cost solution depends on all three constraint (g1, g2 and g4)
limits, but the minimum-deflection solution only depends on the limit of the
shear stress constraint (g1). However, with this solution, variables t and b take
their largest allowable values of 10 in and 5 in, respectively.

3. An increase of shear strength by 20% causes the solutions to change. Recall that
the shear stress constraint (g1) was the most critical constraint in the original
case. An increase in shear strength value also makes the constraint active for all
new trade-off solutions. Since solutions change, a slightly different trade-off front
emerges. Interestingly, the location of the transition point along the deflection
axis does not change (since the buckling load limit is not changed).
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4. An increase in bending strength of 20% does not change smaller-deflection so-
lutions. Since a higher bending limit is allowed now, better cost solutions are
found. A solution with a cost of 2.3545 is now obtained with a deflection value
of 0.021 in. The location of the transition point in unaffected by this change in
bending strength value.

5. Finally, a decrease in the buckling load limit by 50% changes the location of the
transition point (which moves towards a larger-cost solution); however the rest
of the original Pareto-optimal front remains identical to the original front.

Thus, we conclude with confidence that (i) shear strength has a major role to play
in deciding the optimal variable combinations (the shear stress constraint remains
active in all cases), (ii) bending strength has an effect on the smallest-cost solution
alone, as only this solution makes the bending constraint active, and (iii) the buckling
load limit has the sole effect of locating the transition point on the Pareto-optimal
front. These pieces of information provide adequate knowledge about the relative
importance of each constraint and the variable interactions for optimally designing
a welded beam over an entire gamut of cost-deflection trade-offs. It is unclear how
such valuable innovative information could have been achieved otherwise merely
from a mathematical problem formulation.

7 Conclusions

In this chapter, we have introduced a new knowledge discovery procedure (which we
called ‘innovization’), based on multiobjective optimization and a post-optimality
analysis of optimized solutions. We have argued that the task of a single-objective
optimization results in a single optimum solution which may not provide enough
information about useful relationships between design variables, constraints and ob-
jectives for achieving different trade-off solutions. On the other hand, consideration
of at least two conflicting objectives of design should result in a number of opti-
mal solutions, trading off the two objectives. Thereafter, a post-optimality analysis
of these optimal solutions should provide useful information and design principles
about the problem, such as relationships among variables and objectives which are
common among the optimal solutions and differences which make the optimal solu-
tions different from each other. We have argued that such information should often
introduce new principles for optimal designs, thereby allowing designers to uncover
innovations for solving the problem at hand.

On a number of engineering design problems having mixed discrete and contin-
uous design variables, many useful innovizations (innovative design principles) are
revealed. Interestingly, many such innovizations were not intuitive and not known
before. The ease of application of the proposed innovization procedure has also be-
come clear from different applications. It is also clear that the proposed procedure is
useful and ready to be used in other more complex design tasks. The procedure will
enable designers to perform the innovization task once and for all to the problem
at hand and the knowledge thus gained will go a long way in understanding the
intricacies of the problems and in solving such future design tasks. On another note,
since the Pareto-optimal front obtained using NSGA-II are verified by other single-
objective optimization techniques, the reported trade-off solutions also remain as
‘benchmark’ optimal solutions to these problems.
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However, the innovization procedure suggested here must now be made more
automatic and problem independent, as far as possible. In this regard, an efficient
data mining technique is in order to evolve innovative design relationships from the
Pareto-optimal solutions. Although some apparent hurdles of this task have been
pointed out in this chapter, we are currently pursuing ways to overcome them.

Finally, it is also worth mentioning that similarly to the expectation of com-
mon properties existing among Pareto-optimal solutions (as discovered and demon-
strated amply in this chapter), commonality principles may also be expected to
exist in other kinds of trade-off solutions, such as among weakly Pareto-optimal
solutions, locally Pareto-optimal solutions [5], and robust or reliable Pareto-optimal
solutions [8]. It would be interesting then to investigate how the innovized relation-
ships get changed from one type of optimal solution to the other. For example, such
an analysis may provide answers to questions such as how robust Pareto-optimal
solutions differ from Pareto-optimal solutions themselves. Another interesting ex-
tension of this study would be to consider three or more conflicting objectives of
design, and a resulting post-optimality analysis may yield higher-level innovizations
than those that may be obtained with the two-objective procedure. The ease and
ability of NSGA-II to handle different vagaries of design variables (discrete, Boolean,
real-valued, etc.), nonlinearities in constraint and objective functions, scalability in
problem size, and multimodality and multi-objectivity in problem formulations make
such an innovization task tractable and worth performing.

References

[1] H. P. Benson. Existence of efficient solutions for vector maximization problems.
Journal of Optimization Theory and Applications, 26(4):569–580, 1978.

[2] V. Chankong and Y. Y. Haimes. Multiobjective Decision Making Theory and
Methodology. New York: North-Holland, 1983.

[3] C. A. C. Coello, D. A. VanVeldhuizen, and G. Lamont. Evolutionary Algo-
rithms for Solving Multi-Objective Problems. Boston, MA: Kluwer Academic
Publishers, 2002.

[4] K. Deb. An efficient constraint handling method for genetic algorithms. Com-
puter Methods in Applied Mechanics and Engineering, 186(2–4):311–338, 2000.

[5] K. Deb. Multi-objective optimization using evolutionary algorithms. Chichester,
UK: Wiley, 2001.

[6] K. Deb. Unveiling innovative design principles by means of multiple conflicting
objectives. Engineering Optimization, 35(5):445–470, 2003.

[7] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[8] K. Deb and H. Gupta. Searching for robust Pareto-optimal solutions in multi-
objective optimization. In Proceedings of the Third Evolutionary Multi-Criteria
Optimization (EMO-05) Conference (Also Lecture Notes on Computer Science
3410), pages 150–164, 2005.

[9] K. Deb and N. Gupta. Optimal operating conditions for overhead crane maneu-
vering using multi-objective evolutionary algorithms. In Proceedings of the Ge-
netic and Evolutionary Computation Conference, (GECCO-2004), pages 1042–
1053, 2004. Lecture Notes in Computer Science (LNCS) 3102.



262 Deb and Srinivasan

[10] K. Deb and A. Kumar. Real-coded genetic algorithms with simulated binary
crossover: Studies on multi-modal and multi-objective problems. Complex Sys-
tems, 9(6):431–454, 1995.

[11] D. E. Goldberg. The design of innovation: Lessons from and for Competent
genetic algorithms. Kluwer Academic Publishers, 2002.

[12] J. Jahn. Vector optimization. Berlin, Germany: Springer-Verlag, 2004.
[13] P. Korhonen, S. Salo, and R. Steuer. A heuristic for estimating nadir criterion

values in multiple objective linear programming. Operations Research, 45(5):
751–757, 1997.

[14] S. Ltd. TEFC 3 phase squirrel cage induction motor catalogue,
http://globaludyog.com/pumps/sl.htm.

[15] A. Messac and C. A. Mattson. Normal constraint method with guarantee of
even representation of complete pareto frontier. AIAA Journal, in press.

[16] K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer, Boston, 1999.
[17] G. V. Reklaitis, A. Ravindran, and K. M. Ragsdell. Engineering Optimization

Methods and Applications. New York : Wiley, 1983.



User-Centric Evolutionary Computing:
Melding Human and Machine Capability to
Satisfy Multiple Criteria

Ian C. Parmee1, Johnson A. R. Abraham2, Azahar Machwe1

1 ACDDM Lab, Faculty of Computing, Engineering and Mathematical Sciences,
University of the West of England, Frenchay Campus, Coldharbour Lane,
Bristol, BS16 1QY, UK ian.parmee@uwe.ac.uk; azahar.machwe@uwe.ac.uk

2 Level E Ltd, ETTC, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JL,
UK johnson@levelelimited.com

Summary. This chapter centres around the use of interactive evolutionary com-
putation as a search and exploration tool for open-ended contexts in design. Such
contexts are characterized by poor initial definition and uncertainty in terms of ob-
jectives, constraints and defining variable parameters. The objective of the research
presented is the realization of ‘user-centric’ intelligent systems, i.e., systems which
can overcome initial lack of understanding and associated uncertainty, whilst also
stimulating innovation and creativity through a high degree of human / machine
interaction. Two application areas are used to illustrate how, through the adoption
of bespoke visualization techniques, flexible representations, and machine learning
agents that ‘observe’ the evolutionary process, this objective can be achieved.

1 Introduction

Conceptual design and early-stage decision-making processes are largely people-
centred activities where human judgement, intuition, experiential knowledge and
personal / team preference play major roles. Handling multiple criteria that are so
often poorly defined during these stages is extremely difficult. Although some form
of machine-based problem representation may be available, there is generally a de-
gree of uncertainty in terms of its fidelity. To attempt to develop a closed, definitive
computational approach to multi-criteria satisfaction under these conditions is not
only an extremely difficult task but one which could be considered misguided. The
definitive inclusion of the many human-centred nuances associated with preference,
previous experience, political reasoning, intuition and is beyond current capability
and this situation is unlikely to change in the short, medium or even long term.
Whether it is necessary or desirable to attempt to replace the rich human capabil-
ity that can so often introduce innovation and creativity is a pertinent question.
A far more natural and potentially powerful approach is to identify the manner
in which the complex individual and team-based human behaviour associated with
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early stage design and decision making can best be supported and enhanced by com-
putational technology. We must not lose this behaviour through the introduction of
inflexible computational approaches. Far better to develop systems that capture
user knowledge, experience and intuition and utilize these in a mutually benefi-
cial manner whilst also learning from the interaction with regard to future system
development.

The chapter centres around the use of evolutionary computation as a search and
exploration process from which high-quality, relevant information can be extracted
to support a better understanding of poorly defined and uncertain problem areas.
The use of multiple criteria and subjective evaluation by users is critical in the
problem areas we consider. In these contexts, related work now extends across several
fields which present differing levels of complexity. Typical difficulties experienced
relate to representation of the problem space and the multiple criteria (qualitative
and quantitative) which together provide an evaluation of generated solutions.

An overview of two application areas illustrating the nature of these problems
and the manner in which they can be overcome is presented. References direct the
reader to associated papers providing far more detail. Differing levels and types
of user interaction are apparent, ranging along the explicit-implicit spectrum intro-
duced in Parmee and Abraham (2005), which moves from well-established interactive
evolutionary computation (IEC) (Takagi and Ohsaki 1999; Kim and Cho 2005; Car-
nahan and Doris 2004) to interaction involving the extraction of information and
associated continuous development of the problem representation. Other computa-
tional intelligence approaches for machine learning and search and exploration are
included.

The manner in which user interaction can overcome problems relating to poor
representation and poorly defined objectives within EC systems is investigated. The
objective is the realization of user-centric intelligent systems that overcome initial
lack of understanding and associated uncertainty with regard to multiple criteria and
support an improving knowledge base whilst stimulating innovation and creativity.

2 Evolving Appropriate Representations

Problem formulation and reformulation is a well-known research area within the
design research community, especially when considering innovative and creative de-
sign [Gero 1994, Goel 1997, Su 1990]. This is associated with the development of
a designer’s understanding of a problem during the early investigative stages that
may result in radical changes in problem representation and criteria formulation and
ranking. There is also the integration of knowledge through analogical or metaphor-
ical transfer from another problem area which can be of significant benefit to the
development of innovative approaches (Gero and Shi 1999; Brown 1998). The fol-
lowing sections, however, concentrate on the utilization and integration of computa-
tional intelligence (CI) techniques with these early decision-making processes with
the aim of the eventual establishment of user-centred intelligent systems that greatly
enhance human capability.

Uncertainty and poor definition are inherent features during early stage design
/ decision making. An immediate requirement for information to improve under-
standing can be confounded by many interacting variable parameters and multiple



User-Centric Evolutionary Computing 265

objectives that defy full quantitative representation and require a degree of subjec-
tive evaluation. Problem representation may, in the first instance, be based merely
upon qualitative mental models arising from experiential knowledge, discussion and
sparse available data. Mental representations play a significant role in defining ini-
tial direction. Concepts based upon current understanding require both quantitative
and qualitative exploration to generate further relevant information that supports
and enables meaningful progress.

Generally, the development of computational problem representations supports
exploration through the evaluation of solutions against criteria perceived to be rel-
evant at a particular point in time. Initial representations based upon current un-
derstanding and any available relevant data will likely be relatively basic, and user
confidence in the fidelity of model output may therefore be low. However, such
representations provide essential problem insight despite their apparent shortfalls.
Seemingly high performance solutions identified in terms of quantitative criteria fol-
lowed by qualitative human evaluation utilizing experiential knowledge and intuition
provides an indication of concept viability and model fidelity. An iterative user- /
machine-based exploratory process can commence where gradual improvements in
understanding contributes to better representations, a developing knowledge-base
and the eventual establishment of computational models that support more rigorous
analysis. A highly interactive process thus emerges supporting the development of
representation through knowledge discovery. Such a human- / machine-based devel-
opment may run concurrently with, and be enhanced by, other forms of investigation
and data / information gathering.

A high degree of assumption relating to objective representation generally pro-
vides a starting point for investigation. An initial variable parameter set may be se-
lected with later addition or removal of variables as the sensitivity to various aspects
becomes apparent. Constraints may be softened to allow exploration of perceived
non-feasible regions. Quantitative objectives may change as significant payback be-
comes apparent through a reordering of objective preferences. Some non-conflicting
objectives may merge whilst conflict between others may stimulate problem refor-
mulation. The initial design space is therefore a moving feast rich in relevant and
potentially opinion-changing information (Parmee 2002). It is quite possible that
final solutions will be identified from a space that bears little resemblance to the
problem space that provided a starting point for investigation.

During early design and decision-making processes we could be considered to be
concurrently negotiating two design spaces, i.e.,

1. The machine-based quantitative space that is bounded and inflexible when con-
sidered stand-alone (i.e., the space defined by all possible variable combinations
of a computational design model). Evolutionary search and exploration utilizing
machine-based criteria representations to evaluate solutions can rapidly provide
novel information from this space that aids problem understanding at a human
level. Such understanding and subsequent search space redefinition can radically
alter the initial bounds.

2. The investigators’ mental representations of the problem. These representations
are bounded only by current knowledge and understanding. The development
of this problem space relies upon external stimuli that includes the output from
machine-based representation plus human intuition and judgement at both a
quantitative and a qualitative level.
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The appropriate melding of these two spaces supports a holistic, knowledge-
based approach that can result in significant step changes to machine-based objective
representation and in overall understanding. This could be considered a general
description of how we progress when faced with poorly defined problems that initially
seem beyond our perceived analytic capabilities.

Using this description the chapter explores a human-centric utilization of evolu-
tionary computation, machine learning and agent-based approaches integrated with
enabling computational technologies to significantly enhance knowledge discovery in
terms of variable space / objective space relationships and associated representation
development processes. Novel human-centred computational design processes should
lead to innovation and competitive product development through continuous knowl-
edge discovery. The continuous development of both qualitative and quantitative
objectives plays a primary role in this process.

3 Multiobjective Information Generation, Capture and
Visualization

Earlier related research by the authors investigated the visualization of design infor-
mation within interactive evolutionary design (IED) processes (Parmee et al. 2001;
Parmee 2001; Parmee 2002). These user-centric processes have increasingly included
the integration of software agent-assisted analysis of GA output that provides fur-
ther support to the designer in the identification of complex relationships between
variables and multiple objectives (Cvetkovic and Parmee 2001). Designer prefer-
ence has also been extensively addressed (Cvetkovic and Parmee 2003) and novel
evolutionary multiobjective approaches have been introduced (Parmee and Watson
1999).

The concurrent further development of the cluster-oriented genetic algorithm
(COGA; Parmee 1996) has provided the means to extract wide-ranging information
relating to appropriate variable ranges, solution and variable sensitivity and the
degree of conflict between included objectives.

Cluster-oriented genetic algorithms (COGAs) provide the means to identify high-
performance (HP) regions of complex conceptual design spaces. COGAs identify
HP solution regions through the online adaptive filtering of GA-generated solutions.
COGA comprises two primary components: the diverse search engine which utilizes a
genetic algorithm to search the design space, identifying regions of high performance
relating to a particular objective, and the adaptive filter (AF), which extracts and
stores information relating to each identified region. The adaptive filter (AF) copies
high fitness designs from the evolving population to the final clustering set (FCS).
The user can vary the severity of the filtering mechanism in order to identify regions
ranging from succinct groupings of very high-performance solutions to larger regions
of high- and lower-performance solutions. Sufficient regional set cover (in terms of
number of solutions) can be achieved to allow significant qualitative and quantitative
design information to be extracted. COGA development and application has been
well documented. Many associated papers can be downloaded from http://www.ad-
comtech.co.uk/Parmee-Publications.htm

COGAs played a significant role within the Interactive Evolutionary Design Sys-
tem (IEDS), providing two-dimensional (variable) projections of high-performance



User-Centric Evolutionary Computing 267

 
 

Fig. 1. COGA single-objective
output showing projection of
high-performance (HP) solutions
relating to ATR objective onto a
two-variable hyperplane

Fig. 2. COGA air frame design
output relating to three objectives
again projected onto 2-D variable
space. This gives clear indications of
degree of conflict between objectives

regions relating to conceptual airframe design of military aircraft (Parmee and Bon-
ham 1999; Bonham and Parmee 1999). The airframe conceptual design model is
represented by nine variable parameters mainly in the form of design ratios. There
are 11 possible outputs, each of which can be considered an objective. The HP re-
gion projections, relate to both single (Fig. 1) and multiple objectives (Fig. 2). The
projections provide excellent graphical representations from which much relevant in-
formation can be extracted as described in Parmee and Abraham 2004. In particular,
objective conflicts are plain to see in those hyperplanes comprising prime variables
to which all included objectives are particularly sensitive, as is the case in Fig. 2.
Here, the shaded region comprises HP solutions that are common to both ATR and
FR objectives, thereby illustrating low conflict whereas the remoteness of the SEP
high-performance region indicates a higher degree of conflict. The hyperplane shown
in both figures relates to Gross Wing Plan Area and Wing Aspect Ratio variables,
whereas the objective projections relate to Attained Turn Rate (ATR), Ferry Range
(FR) and Specific Excess Power (SEP) objectives.

However, the designer cannot be expected to search through all 2-D hyperplanes
to benefit from such a clear graphical representation hence the development of the
parallel coordinate box plot (PCPB) (Fig. 3), which, from an analysis of COGA
output, gives an overall perspective of much of the information relating to variable
and objective sensitivities. (Parmee and Abraham 2004).

The PCBP acts as a ‘one-stop shop’ which the user can visit and decide on
which 2-D hyperplanes to view. The PCBP shows the HP solution distribution of
each objective across all variable dimensions (Vn). The length of the three vertical
axes related to each variable indicates to what extent the COGA HP solution output
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Fig. 3. The Parallel Co-ordinate Box Plot (PCBP)

for each objective covers each variable range. The colour-coded box plots relate to
each objective. The median is marked within the box and the box extends between
the lower and upper quartile HP solution values within the variable set. The degree
of overlap of the three boxes indicates the degree of conflict between the objectives.

For instance, the box plots of variables 4, 5, 7 and 8 suggest high degrees of
conflict that could be better expressed graphically by viewing appropriate pair-wise
hyperplanes (one of which is shown in Fig. 2). A full description of this representa-
tion can be found in Parmee and Abraham 2004. In addition, COGA data can be
processed in terms of variable attribute relevance analysis (Inselberg 1985) in addi-
tion to standard skewness calculations to verify the visual information available in
the PCBP (Abraham and Parmee 2004). The resulting ranking identifies variables
4, 5, 7 and 8 as those variables to which the objective set is most sensitive. Hence,
the user can concurrently view the variable / objective interaction from a number
of different perspectives.

A further perspective is achieved by mapping COGA output onto objective space
(Fig. 4). This mapping supports a far better understanding of the spatial relation-
ships between high-performance solutions that lie on and close to a Pareto frontier
(Fig. 5). For comparison, a Pareto front has been generated by SPEA (Zitzler et
al. 2002). A nondominated sorting of the COGA high-performance sets results in
an approximate Pareto Front (Fig. 7) which is complete in terms of the ATR and
FR objectives due to low conflict and the common HP region, but which would be
incomplete in terms of the SEP / ATR1 objectives due to high conflict and no com-
mon region (see Fig. 6). Reducing the severity of the AF in subsequent SEP and/or
ATR COGA runs allows lower-performing solutions into the FCS, thereby closing
this ‘conflict gap’. If the setting of the AF filter is too high, the missing solutions
cannot enter the FCS. Lower the AF setting, and they enter the FCS and the gap
is closed.
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Fig. 4. COGA projection of HP
solutions relating to two
objectives. The lighter shaded
clusters show HP solutions
relating to ATR and FR
objectives. The common black
HP solutions satisfy both
objectives

Fig. 5. Similar projection
illustrating how the edges of the
cluster provide a close
approximation to a Pareto frontier
generated for the two objectives
using the SPEA MOGA approach

 

 

Fig. 6. The distribution of
solutions for objective ATR1 and
SEP1 against SPEA-II Pareto
front. Note the ‘conflict gap’
that relates to the disjoint HP
regions of Fig. 2

Fig. 7. Nondominated sorting of
the high-performance sets of the
COGA runs relating to ATR1 and
FR results in overlapping curves
that represent a full approximate
Pareto front
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The objective space projections can be represented in a scatter matrix plot,
as shown in Fig. 8. COGA data for six of a total of 11 objectives is assessed by
the preliminary airframe model. The subsequent nondominated sorting of the high-
performance sets results in the approximate Pareto curves of the scatter matrix plot
in Fig. 9.

This user-centred approach generates highly visual representations of results in
both variable and objective space. A direct mapping for each solution exists across
the two spaces. The user has the opportunity to view several differing perspectives of
generated data which could support implicit learning and the development of tacit
knowledge relating to complex variable / objective interactions. It is suggested that
such approaches can assist the user in building a better ‘intuitive map’ of the highly
complex relationships.

COGA is inherently user-interactive as the user can explore conflict relationships
via the settings of an Adaptive Filter (Parmee 1996). The AF controls the entry of
lower performance solutions of selected objectives into the final high-performance
solution sets. By lowering the AF threshold it is possible to close the ‘conflict gap’
evident in Figs. 2 and 6 between ATR1 and SEP and between FR and SEP. The
user must first decide which objective should be compromised in terms of accepting
lower-performing solutions.

Although this exploration can be beneficial in terms of learning more about
the problem space, it could also be very time consuming where high numbers of
objectives exist. More recent work has therefore been investigating how sufficient
data can be generated through relatively short COGA runs to indicate the degree of
conflict between objectives via graphical presentation. The assimilation of conflict
characteristics by the user supports the setting of objective preferences which allow
the relaxation of the AF setting. It is also possible to automate this process to a
greater or lesser extent. The process is outlined below.

Step 1: COGA is run for 50 generations for each objective. The resulting high-
performance solutions that pass the AF for each objective are stored in that
objective’s final clustering set FCSi. However, all COGA generated solutions,
irrespective of fitness, are stored for further information extraction in the appro-
priate set Di (where i relates to an individual objective). A PCBP (see Fig. 3)
is generated from FCSs and the user determines which variables are causing the
highest degree of conflict.. Hyperplanes relating to any two objectives (similarly
to Fig. 2) can be viewed to provide a clear impression of the degree of con-
flict and objective space projections (Fig. 8), and approximate Pareto frontiers
(Fig. 9) can also be studied.

Step 2: Where no significant conflict is evident between objectives from the PCBP,
hyperplane projections and/or projections onto objective space, these objec-
tives can be grouped and need not be included further in the process as high-
performance solutions are evident across all of them. This reduces the overall
number of objectives that require attention.

Step 3: Having assimilated available information, the user then ranks the remain-
ing conflicting objectives from 1 to 5 to indicate the degree of importance of
each objective. The higher the rank, the less the objective performance should
be allowed to be compromised by lower AF settings and the resulting lower
performance solutions in the FCS.
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Fig. 8: Scatter Matrix plot of solutions relating to six objectives in the

objective space
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Fig. 9: Distribution of nondominated solutions objective space.



User-Centric Evolutionary Computing 273

Step 4: Each filter setting is appropriately altered by a preset percentage amount
dependant upon rank, and the AFs are then applied to the already generated
Di sets.

Step 5: The filtered solutions for each objective are then nondominantly sorted to
give approximate Pareto fronts between any pair. Visually, these will be seen
either as relatively complete fronts or as fronts with ‘conflict gaps’.

Step 6: Max, Min rules are used to check whether the fronts of any two objectives
are overlapping or whether a gap exists. This is checked for all the possible
pair-wise combinations of the selected objectives. If there is no overlap, steps 4
and 5 are repeated for the objectives involved. If there is overlap, the iteration
ceases and the identified fitness thresholds are used to filter the solutions in
the remaining stages of COGA runs. During the iterative process the overlap
for each objective pair is tracked, and if an objective has overlap with all the
remaining objectives during the iterative process, the associated AF setting is
not altered in further iterations.

The user can determine the degree of automation to be utilized. The iterative
process involving steps 4, 5 and 6 can be interactive, where the user is provided
with a matrix scatter plot of the Pareto fronts between different objectives. The
user can then choose the fitness threshold for each objective such that she is able to
establish an overlap between different objective fronts based on her preferences. The
chosen filter threshold can be used to filter the solutions in the later COGA runs.
It is quite likely that objective preferences will change during the overall process as
understanding improves and overall better solution performance becomes possible
by reformulating initial assumptions and representations.

It would become more difficult to interact with the system as the number of ob-
jectives increase due to information overload, at which point the automated process
can provide assistance. It would be entirely the user’s decision as to how interac-
tive the process should be. Generated data and associated graphics can be archived
for further study not only by the individual but also by the decision-making team.
Traceability should not be an issue, as decision points dependent upon output and
subjective judgement can be identified and tagged throughout the process.

It is stressed that the main objective of the above process is to better understand
the problem at hand in order to evolve the best representation of the problem in
terms of variable and objective definition. It is very likely that the representation
will continue to change over several iterations until sufficient understanding of the
problem space results in a more definitive model.

4 Concurrent Handling of Quantitative and Qualitative
Criteria

The airframe design criteria of the previous section are quantitatively defined within
a conceptual parametric model of the system under design. In this case the major-
ity of the variable parameters are ratios that can provide indications of preferred
preliminary design, e.g., short, broad wings rather than slender narrow wings. How-
ever, the presence of qualitative objectives (which may be considered as important
as the quantitative ones) requires an appropriate degree of subjective evaluation and
presents the need for a more explicit form of user interaction. Objectives relating
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to aesthetic qualities of a design, for instance, may be integrated with a parametric
model to some extent via accepted and well-founded rules governing relative layout,
but to truly evaluate the manner in which an artefact is pleasing to the user, the de-
signer (with, preferably, the end user) needs to be directly involved in the evaluation
process.

Such issues have been under investigation for some time within the well-
established field of interactive evolutionary computation (IEC) which considers
varying degrees of user involvement in the assessment of EC-generated solutions.
A positioning of work described in the previous section along an implicit / explicit
interactive evolution spectrum can be found in Parmee 2004. Other recent examples
of design research involving evolutionary computation, visualization and varying de-
grees of user-interaction include the concept generation work of Avigad et al. (2004)
and Grierson’s work relating to the visualization of multi-dimensional Pareto fron-
tiers (2002).

Recent research within the ACDDM Lab has concentrated upon a number of
specific issues relating to the manner in which sets of criteria requiring differing
degrees of user evaluation can be combined within a user-interactive EC approach.
Such issues relate to the development of flexible problem representation, appropri-
ate interface design and the manner in which user-fatigue and cognitive overload
caused by the online evaluation of EC-generated solutions can be reduced through
the introduction of online machine learning techniques and solution reduction via
concept clustering. The overall objective of this work has been to develop an overall,
flexible framework that supports a user-centred approach to problem solving where
multiple quantitative and qualitative criteria play a major role. This development
is running parallel to that of the more implicit form of user interaction described
in the previous section, although the intention is to integrate these approaches in
future work.

The research relates to user-centric evolutionary design systems which integrate
machine-based evaluation of engineering and rule-based aesthetic criteria with the
designer’s subjective aesthetic evaluation of design solutions. A detailed discussion of
factors which make such a system difficult to implement within a real-world context
can be found in Machwe et al. (2005a). The research has led to a generic framework
for an Interactive Evolutionary Design Environment (IEDE), as shown in Fig. 1.

The initial problem formulation for the IEDE involved the design of simply
supported beam bridges against structural engineering criteria and aesthetic crite-
ria (both rule-based and subjective). Several novel concepts have been introduced,
including agent-based construction and repair of population members; agent-based
evaluation of aesthetic criteria; object-based design representation; and a case-based
machine learning subsystem (Machwe and Parmee 2005b and 2006a).

The design of ‘urban furniture’ in the form of novel and aesthetically pleasing
seating arrangements for parks and other public areas followed subsequently to the
bridge design. Simple structural analysis of the resulting forms is combined with
both rule-based and user-led aesthetic evaluation at a more complex level.

The following sections provide a review of the development of an overall architec-
ture and problem representation that supports such an integration of quantitative
and qualitative objective evaluation.



User-Centric Evolutionary Computing 275

 

Fig. 10. Interactive Evolutionary Design Environment

4.1 Representation

A highly flexible object-based representation is utilized within the IEDE which al-
lows the representation of diverse designs whilst being sufficiently robust to being
manipulated by evolutionary algorithms (Rosenmann 1997; Bentley 2000). The ini-
tial bridge design work used a collection of primitive elements to represent a struc-
ture. For example, any structure made up of LEGO bricks can be represented as
a collection of primitive design objects each with a specific x and y position and a
predefined length (along X) and height (along Y). Flexibility also supports the use
of different elements with different design properties.

Fig. 11 shows some of the non-optimized 2-D bridge designs generated using
the IEDE object-based representation followed by the final designs generated using
various engineering, rule-based aesthetic and subjective fitness criteria. The urban
furniture (seating arrangement) extends the representation into three dimensions.
Elements representing the seat, backrest and legs of a simple bench-type arrange-
ment have been created. This shows the flexible nature of the object-based repre-
sentation, which can used to represent almost any design form.

4.2 CARA

Without the construction and repair agent (CARA), the object-based representation
would not be able to generate meaningful shapes. The construction agent (CA)
builds the initial design population using a flexible rule base. Fully free-form designs
can be generated by just random placements of elements or a fully defined skeleton
can be provided for the placement of elements. The repair agent (RA) ensures that
designs remain feasible after undergoing mutation operations, i.e., it maintains the
structural integrity of the solutions during the evolutionary design process.
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Fig. 11. Initial population of bridge designs followed by best designs generated
from the interactive system

4.3 Structural and Aesthetic Criteria

The CARAs can currently create three kinds of bridges: simple beam bridges without
support, simple beam bridges with supports and simple beam bridges with angled
span sections and supports. Thus, an initial population can consist of a mixture
of three designs. These designs are assessed in terms of the designer’s aesthetic
preferences in addition to structural and cost criteria. Simple length/depth ratio
criteria have initially been utilized whilst also minimizing material cost. Column
design is assessed via standard buckling criteria.

It is impossible to create a set of aesthetic rules which can be applied univer-
sally. However, certain guidelines to provide limited machine-based estimation of
aesthetics (Machwe and Parmee 2005a and 2005b) can be utilized. It is difficult
therefore to incorporate aesthetic criteria as part of a design system unless some
form of designer interaction is utilized. In the present work aesthetics are evaluated
at two separate levels. On the machine side, aesthetic fitness is evaluated using a set
of rules (or guidelines). On the human side, the designer has the option of ranking
the solutions using subjective assessment. This ensures that while certain aesthetic
rules are included within the design evaluation, the subjective aspect of aesthetic
design is not ignored. In the bridge design system the following rule-based aesthetics
have been coded:

1. Symmetry of support placement
2. Slenderness ratio
3. Uniformity in thickness of supports
4. Uniformity in thickness of span sections

Many other quantitative rules exist, but aesthetic evaluation has been kept rela-
tively simple during these formative stages of the study where current design repre-
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sentation does not support detailed aesthetic evaluation. Each aesthetic is evaluated
by a separate ‘aesthetic agent’.

The ‘user-assigned fitness’ is the ranking or fitness given to a design by the user
on a scale of 0 to 10 (10 being the best). Furthermore, the user can mark solutions
for preservation into the next generation. Overall user evaluation operates thus:

1. User stipulates the frequency of user interaction (e.g., once every ten genera-
tions).

2. User evaluates a preset number of population members from the initial popu-
lation (usually the top ten members in terms of stability, material usage and
explicitly defined aesthetic criteria).

3. The EP system runs.
4. Population members are evaluated by the user every n generations.
5. Steps 3 and 4 are repeated until user terminates the process.

The overall fitness evaluation therefore comprises structural criteria in terms
of stability and material usage plus rule-based ‘aesthetic fitness’ and human-based
‘user-assigned fitness’. It is quite apparent that there are a number of objectives
here that could be concurrently manipulated via a standard evolutionary multiob-
jective technique or by COGA. However, the research has concentrated upon the
establishment of the overall system in terms of addressing major issues relating to
representation, user-interaction and machine-based assimilation of user preference.
In the first instance, in order to establish proof of concept, the various objectives
have been combined within a weighted sum representation.

Within the bridge design, CARA system rules relating to the slenderness ratio
of spans, the positioning of supports and the thickness of span elements were used.
These are also used in the bench design problem with an obvious increase in the
number of such rules due to the three-dimensional nature of the problem. A variable
number of components (or elements) possessing sets of properties such as style,
position and dimensions have also been included, e.g., seat elements, leg elements
and back element.

Some initial results from the seating arrangement design system utilizing a rel-
atively well-structured CARA rule-set that produces bench-like designs are shown
in Fig. 12. Engineering criteria plus rule-based and user-assigned aesthetic criteria
have again been used to determine the fitness of the solutions. Fig. 13 shows some
resulting designs when using fully free-form construction of the initial population,
i.e., random placement of elements (Machwe and Parmee 2006b). Here, only a basic
fitness criterion of minimizing the ground footprint and creating a well-connected
structure is used in addition to aesthetic criteria. For further details the reader is
directed to [10].

4.4 Machine Learning

The online machine learning subsystem (Fig. 14) reduces the cognitive load on the
designer during the interactive evolutionary process. It is an online learning system
utilizing case-based reasoning (CBR) to assimilate the subjective aesthetic prefer-
ences of the designer. A comparative study showed CBR to be the most promising
technique (Machwe and Parmee 2006a) in that the design information can be stored
as it stands without transformation to other formats such as fuzzy variables or input
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Fig. 12. Generated bench designs 

Fig. 13. Interactively evolved free-form seating arrangements

values for neural networks. Such a transformation can destroy essential information.
It also proved to be the only technique suitable for online use. The retrieval part of
the CBR uses nearest-neighbour distance metrics to measure the difference between
the new design and the designs in the Case base. The design closest to the newly
generated design has its user-assigned fitness awarded to the new design.

The population size is set at 20 and the user is shown the top ten solutions, with
respect to machine-based fitness functions, from each generation. The user also has
the freedom to explore and evaluate individual solutions from the population. The
user-based experimentation involved identifying ‘interesting’ solutions in the early
generations and then evaluating how well the online machine-based learning system
is able to identify the user’s preferences as the shapes evolve.

Since CBR learning is online the cases are not carried over from past runs.
Initially the case library is empty. After the first generation of user evaluations the
case library begins to fill. Solutions not examined by the user are assigned zero
fitness. Once there are a number of cases in the case library, the machine learning
system starts ranking solutions and the user has the option to change the machine-
assigned rank.

With the learning system operating in the background the number of changes
made by the user (to the machine assigned rank) decrease with each generation
as the machine assimilates user preferences, as can be seen in Fig. 15. For further
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information on the implementation and detailed results the reader is directed to
Machwe and Parmee 2006a.

5 Discussion

This largely speculative paper provides an overview of the research that has illus-
trated various levels and forms of user interaction when dealing with both qualitative
and quantitative criteria. Much greater detail can be found in the cited papers.

The research in Section 3 illustrates the manner in which information relat-
ing to complex interactions between variables and objectives can be extracted from
evolutionary search and exploration processes. The succinct presentation of this in-
formation from several differing perspectives supports the designer in both decision
making and in the iterative development of the design representation. Section 4 in-
troduces a highly flexible representation that can readily be changed through online
user development of an agent-oriented rule base and then proceeds to illustrate how
a user-centred approach can significantly enhance multiple objective satisfaction
where some of the included objectives are difficult, if not impossible, to represent
computationally. The case-based machine learning approach offers a great deal of
potential across all levels and forms of user-centred evolutionary systems in terms
of assimilating user preferences and reducing cognitive load.

However, this approach also has limitations. Specifically, a case-based system is
only as good as the similarity measure used to retrieve the cases from the library. In
the case of numeric representation, data retrieval is relatively easy using the nearest
neighbour approach. In the case of nonnumeric representation, retrieval can require
conversion of solutions to numeric or pseudo-numeric form. Also, the efficiency of
learning in a case-based system depends on the number of stored cases. The larger
the number of stored cases, the higher the efficiency. Clearly, the number of stored
cases cannot be infinite since there are practical limits to storage and retrieval
of solutions from very large case libraries. Other learning methods such as neural
networks and fuzzy rule-based systems do not have these extra storage and retrieval
efficiency requirements.

Perhaps we can now imagine developing relatively basic machine-based concep-
tual design representations based upon our current understanding and then rapidly
exploring the multi-variate/multiobjective space described by these representations
using combinations of local and global search techniques. As the search progresses,
the overall system extracts and accumulates information relating to complex char-
acteristics of the design domain whilst also discovering viable solutions. Solutions
are initially identified that best satisfy objectives / constraints seemingly relevant
in terms of current understanding, whilst background processes extract information
from areas of the problem space previously visited, and present this in a succinct
manner to the user.

The degree of difficulty of satisfying initial objectives within existing variable
bounds or within existing objective preference ranking becomes quantifiable and
presentable through background data processing as the search progresses. Online
user actions such as constraint softening, objective preference variation and modifi-
cation of variable ranges may change the nature of the space and search direction,
whilst machine-based software agents acting as information collators, processors and
presenters provide indications of the effects of such changes. These agents constantly
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Fig. 14. The CBR system integrated with the IEDE

 
Fig. 15. Number of user-made changes to machine-assigned fitness during
different generations

advise the user on interesting solution correlations or redirect her to previously vis-
ited areas now possibly of more interest. Concurrent, finer-grained, localized search
processes may be spawned to explore specific regions. These actions become semi-
autonomous as, through a machine learning capability, the agents become more
‘aware’ of your requirements in terms of both quantitative and qualitative objec-
tives. The environment becomes more immersive as you react to the information
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being presented. User online actions become an integral part of the exploration pro-
cess, reacting to feedback from the system to make iterative changes to the problem
landscape.

At any point this relatively continuous exploration process can be paused and
relevant information downloaded and presented to the decision-making team for dis-
cussion. An easily understood graphic provides a recorded history of user-instigated
changes, thereby supporting traceability and allowing analysis of the logical pro-
gression of the team’s thinking, based upon extracted information. The presenta-
tion of such material promotes discussion and allows the perspectives of others to
be integrated into further exploratory interactive activity via appropriate problem
redefinition and reformulation.

As this iterative interactive process continues, confidence in the developing de-
sign models increases, the knowledge base becomes well-founded and uncertainty
significantly decreases. A natural result is a reduction in user interaction as we
move from a high-risk concept definition phase through an intermediate phase of
increasing confidence to the final stages of detailed analysis of a well-defined design
space. As illustrated to some extent by the research presented, many of the compo-
nent parts of the envisaged user-centred intelligent system described above are at
a stage of development where their collective utilization is possible. It is suggested
that the flexibility of CI technologies is such that specific problems are unlikely to be
insurmountable. For instance, although a machine-based representation of an evalu-
ation function may cause problems, the user-centric approach supports complete or
partial human evaluation of solutions against any number of criteria, and this can
initially play an integral role in evaluation.

Such systems, continuously running as background processes, can support the
development of in-house knowledge and expertise whilst reducing lead times to the
discovery of innovative products when allied with complementary investigative pro-
cesses. Current ACDDM collaborators in the pharmaceutical industry are already
integrating our user-centric search, exploration and optimization processes using
such in-house networked PC resource.

From an academic and industrial point of view, further development and utiliza-
tion of such systems within a research environment could support significant leaps in
understanding related to the characteristics of poorly-defined complex design spaces.
The ability to rapidly and efficiently play ‘what-if’ against multiple qualitative and
quantitative objectives whilst concurrently gathering high-quality information that
either confirms or contradicts current thinking suggests an environment well suited
to the support of knowledge discovery and innovation. The role of human intuition,
experience and judgement within such an environment would be paramount, whilst
the inherent support of agent-based entities in terms of data processing and presen-
tation would be invaluable.

The development of such people-centred computational environments for concep-
tual design and early stage decision making is the overall objective of the Institute
for People-Centred Computation (http://www.ip-cc.org.uk). This virtual institute
established across the UK Universities of Bristol, Cambridge, Cardiff, Newport and
West of England is intent on the identification of common languages, methodolo-
gies and practices across multiple disciplines in order to facilitate generic system
development.
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Scientists discover the world that exists; engineers create the world that
never was.

Theodore von Kármán

Summary. This chapter provides a comparative discussion on natural and artificial
systems. It focuses on multiobjective problems as related to the evolution of systems
either naturally or artificially; yet, it should be viewed as relevant to other forms
of adaptation. Research developments in areas such as evolutionary design, plant
biology, robotics, A-life, biotechnology, and game theory are used to support the
comparative discussion. A unified approach, namely multi-competence cybernetics
(MCC) is suggested. This is followed by a discussion on the relevance of a Pareto
approach to the study of nature. One outcome of the current MCC study is a
suggested analogy between species and design concepts. Another resulting suggestion
is that multi-fitness dynamic visualization of natural systems should be of a scientific
value, and in particular for the pursuit of understanding of natural evolution by
way of thought experiments. It is hoped, at best, that MCC would direct thinking
into fruitful new observations on the multi-fitness aspects of natural adaptation.
Alternatively, it is expected that such studies would allow a better understanding
of the similarities and dissimilarities between the creation of natural and artificial
systems by adaptive processes.

1 Introduction

Comparing natural and artificial systems has been the focus and drive of the fathers
of cybernetics. Such a comparative approach has also served as a major stimulator



286 Moshaiov

in the development of the field of Evolutionary Computation (EC). Observing the
bio-inspired field of EC we identify its strong link with the field of Mathematical
Programming (MP). Many developments in EC could be viewed as advancements
in MP as related to both single-objective and multiobjective Optimization (SOO
and MOO, respectively). The similarity between SOO, as implemented in EC, and
natural evolution is quite apparent.

The similarities between natural evolution and optimality have been extensively
discussed in the literature, and the comparison between optimality and adaptation
has been a subject of ongoing debate (e.g., [1]).

As outlined in Section 2.3, most of the available discussions on optimality as
related to natural evolution can be viewed as referring to SOO rather than MOO.
Considering the significance of MOO in the development of artificial systems, the
above observation seems striking. Therefore, it is justifiable to explore the relations
between MOO and natural evolution. This chapter provides a discussion on this
topic using research developments in areas such as evolutionary design, plant biology,
robotics, A-life, biotechnology, and game theory. It should be noted that the focus
of this chapter is on adaptation as related to evolution; yet some aspects of the
discussion should be relevant to other forms of adaptation.

The following contains four sections. Section 2 provides the background needed
for the suggested comparison. In Section 3, several observations are made with re-
spect to the suggested comparison. In addition, Section 3 provides a definition of
Multi-competence Cybernetics (MCC) and explains the notion of multi-fitness. Sec-
tion 4 includes a short comparison between natural and artificial design, as well as
a recently suggested comparison between design concepts and species as related to
MCC. Section 5 provides a short list of MCC questions that might shed some light
on future MCC research topics. Finally, Section 6 summarizes and concludes this
chapter.

2 Background

This section provides some overview of issues that are relevant to the comparative
discussion and suggestions of this chapter.

2.1 Introduction to Cybernetics

Existing Definitions and Scope

The traditional definition of cybernetics, as “the science of communication and con-
trol in the animal and the machine,” is attributed to Norbert Wiener [40]. The
fathers of cybernetics, such as Wiener, studied analogies and metaphors between
animals and machines starting at the level of a neuron up to and including the level
of societies. It should be pointed out that there are a host of different definitions of
cybernetics, as listed by the American Society for Cybernetics (see: http://www.asc-
cybernetics.org/foundations/definitions.htm). Of special interest to the current dis-
cussion are the nontraditional definitions such as “the art of securing efficient op-
eration” (L. Couffignal), “the mathematical and constructive treatment of general
structural relations, functions and systems” (F. von Cube), “the art and science
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Fig. 1. The scope of modern cybernetics

of manipulating defensible metaphors”(G. Pask), and “the art and science of hu-
man understanding” (H. Maturana). It is clear from this collection that cybernetics
can be viewed from different and much broader perspectives than that of the origi-
nal definition. Modern cybernetics involves three types of systems, as schematically
depicted in Figure 1.

As suggested in Figure 1, and in accordance with Pask’s definition of cybernetics,
the scope of cybernetics involves comparisons between the different systems. This
issue is briefly described in the following.

The Two Viewpoints of Cybernetics

Cybernetics includes two interesting viewpoints. In fact, Holland [18] implicitly refers
to them in his discussion on the role of genetic algorithms by stating that: “It should
be emphasized that the plans (algorithms) set forth have a dual role”. Referring
to the upper part of Figure 1, the first view of cybernetics is aimed at studying
natural systems to support the development of better man-made systems (arrow
pointing to the right), whereas the second viewpoint involves using new ideas, which
are generated as a part of the development and the analysis of artificial systems,
to possibly find new explanations to nature (arrow pointing to the left). When
considering the first viewpoint of cybernetics, it should be noted that the common
engineering design process is substantially different from the way evolution creates
its biological products. Yet, the desire to imitate or at least be inspired by nature
is strong and has been proved to be fruitful from the engineering standpoint (e.g.,
soft computing methods, bio-inspired robotics).

Although most of the work in cybernetics could be viewed as focusing on the
first viewpoint, the second view should not be ignored. Given the success of bio-
inspiration, some sort of similarity must exist, and a major question is whether
the similarity is applicable to also the second view of cybernetics. As an example
of the second viewpoint, consider the use of EC in explaining natural evolution as
in [11]. EC has made an extensive use of metaphors and analogies from its early
days, and this has provided a rich vein for its continual development. Yet, there
are several difficulties when considering the use of EC to study natural systems. In
the more general sense, the difficulties of using the second viewpoint of cybernetics
are related to (i) controversies concerning Artificial life (A-life) studies in general,
(ii) controversies concerning the association of adaptation with optimality, and (iii)



288 Moshaiov

difficulties in testing theories of evolution. In this chapter a fourth issue is added and
discussed, namely, difficulties in trying to relate the notion of multiobjectiveness to
the common terminology of biology. In the next three sections (2.2, 2.3, 2.4), some
aspects of the three types of difficulties are briefly discussed, whereas the fourth
issue is dealt with in Section 3.

2.2 Cybernetics and A-life

The scientific exploration of nature and its evolution is an ongoing process that
involves observations, theories, and, occasionally, experiments. Acceptable theories,
which are based on observations, are always subject to the possibility of being re-
placed or extended. Darwinism has already been extended into neo-Darwinism as
scientific knowledge has expanded. In spite of the fact that the basic ideas of Darwin
still prevail, the pursuit for a better and more complete understanding of natural
evolution is far from over. The study of evolution has inherent difficulties due to the
time scale involved, the lack of complete information about the past, the complexity
of natural systems, and the difficulties of performing experiments.

The second viewpoint of cybernetics might help us somewhat compensate for
these inherent difficulties. A related approach is that of the Evolution of Artificial
Creatures (EAC). EAC is a research topic of relevance to fields such as Robotics,
Mechatronics, and Cybernetics. It is an experimental setup for research in A-life; a
field that attempts to investigate living systems through the simulation and synthesis
of life-like processes in artificial media. In spite of its controversial nature, the A-life
research approach has about two decades of recorded research achievements with a
growing research community and related conferences. One way to view A-life studies
is to consider it as thought experiments as suggested in [13]. This means, according
to Di Paolo et al. [13], that “although simulations can never substitute for empirical
data collection, they are valuable tools for re-organizing and probing the internal
consistency of a theoretical position.” Such a scientific justification to A-life helps
us resolve, to some extent, the controversial aspect of this approach.

2.3 Cybernetics, Adaptation, and Single-Objective Optimization

Securing efficient operation, as stated in the proposed definition of cybernetics by
Couffignal (see Section 2.1), suggests a close relationship between cybernetics and
optimization of systems. It also hints at close relationships between cybernetics and
both control and adaptation. Efficiency is usually associated with some measure
with respect to a goal or an objective. Holland [18] lists three major components in
the adaptation of a system, namely the environment, the adaptation plan to induce
improvements, and a performance measure to be associated with the environment.
When referring to artificial systems, Holland [18] states “Here the plans serve as op-
timization procedures...” In support of his uniform treatment of adaptation, Holland
provides illustrations from different fields. In all of his illustrations, when referring
to optimization, it appears that the reference is to SOO (including the weighted
sum of performances). Holland’s suggestion seems logical in view of the similarity
between the notion of fitness of an organic individual and performance of an ar-
tificial individual. This fundamental aspect of evolving natural (artificial) systems,
namely fitness (performance), serves to measure which organic (artificial) individual
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has a better chance to ‘survive’ (selected as a candidate in an adaptation step for
optimality).

It seems suitable to continue this review on the resemblance between adaptation
and optimality with some historical aspects of the use of the famous and confusing
term ‘survival of the fittest ’, coined by Spencer [37]. Fittest tends to imply optimiza-
tion and an optimum, and therefore it requires clarification. The notion of survival
of the fittest has been in the centre of ongoing debates, which date back to the time
of Darwin. At the extreme, it has been the focus of some theological discussions. In
such debates it has been claimed to be a tautology; namely, that it means survival
of those better at survival, and hence is meaningless. Gould [16] suggests that the
rebuttal by Darwin is most compelling. According to Gould, “Darwin insisted, in
principle at least, that fitter organisms could be identified, before any environmen-
tal test, by features of presumed biomechanical or ecological advantage.” The term
survival of the fittest has also played a role in discussions on what is known as social
Darwinism, and in particular with respect to the justification of controversial ideolo-
gies such as racialism. These kinds of debates may have caused a certain resentment
to the term, and probably contributed to the need to better express what adapta-
tion is all about. In fact, although many researchers in the field of EC are still using
the term ‘survival of the fittest’, most contemporary biologists almost exclusively
use the alternative term of ‘natural selection’, and acknowledge its complex nature.
Biologists tend to agree that natural selection plays a role in the evolution of traits
as an adaptation process, but may fail to agree about the significance of its role with
respect to other evolutionary forces (e.g., [30]).

Both fitness and performance are typically considered as scalars. Usually, perfor-
mance, as applied to optimization, is understood as a value, which is measured with
respect to some objective or to a weighted sum of objectives. With respect to the
latter it should be noted that the weighted sum of objectives should be considered
as an SOO approach. Fitness is aimed at describing the natural capability of an
individual of a certain genotype to reproduce, namely to be able to transfer at least
a part of its genetic material to the next generation. Fitness of a genotype in biology
is commonly measured either in absolute or relative terms. In the former measuring
method, fitness is a ratio of the number of individuals after selection to that before
selection, as related to a particular genotype. To measure absolute fitness is usually
difficult; hence the idea of a relative fitness has emerged. In both methods, fitness is
a scalar. Wright [41] suggested studying natural evolution by visualizing the distri-
bution of fitness values as if it were a landscape. For this purpose a distance measure
between genotypes is needed. The concept of a fitness landscape, or adaptive land-
scape, involves the set of all possible genotypes, their degree of similarity, and their
related fitness values.

A similar visualization is commonly used in SOO, where the values of the per-
formance of all solution candidates are visualized as a landscape. In a maximization
problem the aim is to find the peak or peaks of the landscape. When taking an
adaptationist viewpoint, and using the metaphor of landscape as described above,
evolution might be viewed as a local optimization rather than a global one. For
example, Orzack and Sober [30] defined adaptationism as “the claim that natural
selection is the only important cause of the evolution of most nonmolecular traits
and that these traits are locally optimal.” Although their view of adaptationism is
somewhat extreme, the general understanding is that natural selection is similar to
local optimization. In fact, as pointed out by Parker and Maynard Smith [31], opti-
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mization and game theories have been widely used, particularly by field biologists,
to analyze evolutionary adaptation. Yet, as it appears from the description of Parker
and Maynard, in such studies a single optimization criterion rather than several cri-
teria, is associated with fitness. One should not confuse the notion of payoffs, which
is used in such studies, and that of criteria, since (as stated in [31]) “payoffs are
expressed in units of the criterion to be maximized”.

Taking the above into account, one should conclude that there is a similarity be-
tween adaptation and optimality, in particular with respect to SOO. When viewed
closely, it appears that most discussions which deal with adaptation versus opti-
mization and do not explicitly refer to SOO and/or MOO should be considered as
implicitly referring to SOO. As already pointed out in the introduction (Section 1),
it should be noted that this chapter deals primarily with adaptation in the sense of
evolution.

So far the discussion has focused on the similarity between fitness of an organic
individual and performance of an artificial individual, as related to adaptation and
optimization. When focusing on shape and structure, in nature and in the artificial,
it appears valid to further discuss the similarity in physical terms, such as energy,
rather than in biological terms (such as the number of individuals after selection).
Bejan [6] has investigated such a similarity with respect to tree-like structures, and
has generalized his observations into a theory. According to his constructal theory,
“For a finite-size system to persist in time (to live), it must evolve in such a way
that it provides easier access to the imposed currents that flow through it.” The con-
structal theory, which has emerged from the design of engineered systems, assumes
that geometric forms that appear in nature are predictable through optimization
under constraints. Furthermore, similarly to studies on adaptation and optimiza-
tion, the discussion in [6] refers to SOO. The only apparent exception is the citation
from the work of Nottale [29] on fractals, which states, “One of the possible ways to
understand fractals would be to look at the fractal behaviour as the result of an opti-
mization process. . . Such a combination. . .may come from a process of optimization
under constraint, or more generally of optimization of several quantities sometimes
apparently contradictory. . . ” Interestingly, this citation is left by Bejan [6] without
a discussion on the possible role of MOO in the constructal theory. Recently, in [7],
a MOO approach to the design of heat exchangers has been discussed in conjunction
with the constructal theory. Yet, no reference has been made with respect to heat
exchangers in nature.

In summary, there are studies, although of a controversial character, on the
similarities between natural and artificial systems as related to optimization. Most
of such studies, which use optimization theory to explain evolutionary adaptation,
either explicitly or implicitly refer to SOO. There are, however, some exceptions,
which are discussed in Section 3.

2.4 Validation of Adaptation Theories

The second viewpoint of cybernetics, which has been described in Section 2.1, may
help produce new theories and explanations about nature. Yet, any borrowed idea,
from engineering design or alike, needs validation. Recalling the idea of the role
of A-life as thought experiments, as discussed in Section 2.2, it is worthwhile to
note that Parker and Maynard Smith [31] have used a similar argument. They have
justified optimality theory in evolutionary biology by saying that “Optimization
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models help us test our insight into the biological constraints that influence the
outcome of evolution. They serve to improve our understanding about adaptations,
rather than to demonstrate that natural selection produces optimal solutions.”

In some sense, the use of optimization models in the study of natural adaptation
could be viewed as a part of A-life. In any case, if model predictions match the
actual observations, then one may hope to have made the right assumptions about
the natural process and its modeling. Clearly, models by themselves cannot validate
a theory and empirical evidence is a must. Unfortunately, it is well known that em-
pirical research on natural evolution has many limitations, and has not resulted in
a well-accepted evolution theory, but rather into a variety of opinions and debates
(e.g., [1, 30, 35]). While evolution theories and their extensions are difficult to sub-
stantiate by empirical evidence, it is noted that thought experiments, on ideas such
as those presented in this chapter, might lead to future planning of evolutionary
experiments. As noted by Sarkar [35], with respect to empirical adaptationism, such
tests might become increasingly plausible with the advent of large sets of complete
genomic sequences.

2.5 Multiobjective Problems in Engineering Design

The following provides background on engineering design in the spirit of the second
viewpoint of cybernetics. Namely, ideas from engineering design which are presented
here are to be borrowed (in Sections 4 and 5) for the pursuit of understanding nature.

General

Product development commonly involves trade-offs among conflicting objectives
(e.g., accuracy vs. cost). The significance of such trade-offs to creative design has
been highlighted in the TRIZ method, which resulted from a comprehensive study
of patents by Altshuller, as described in [36]. Traditionally, multiobjective problems
(MOPs) have been treated by a SOO-like approach using either a weighted sum of
the objectives or a goal attainment method. Such problem definitions and solution
techniques could be viewed as range-dependent approaches. Modern processing tech-
nologies provide a means to consider parallel search methods which are suitable for
range-independent MOPs that may involve a search towards a Pareto front and the
associated nondominated solutions (see the introduction chapter of this volume).

EC tools are known to be suitable for supporting engineering design (e.g., [8]).
Their attractiveness for engineering design has been strengthened by the recent de-
velopments of reliable and generic multiobjective evolutionary algorithms (MOEAs),
and by the introduction of interactive EC methods for engineering design (see recent
reviews by Coello [10] and Parmee [32], respectively). Pareto-based search has also
been implemented for engineering design and other applications by non-EC methods
(e.g., [21]). Yet, evolutionary multiobjective search and optimization techniques are
becoming the most popular methods to solve MOPs in general and for engineer-
ing design in particular [10]. The majority of such studies concerns the search of
particular Pareto-optimal designs from the set of alternative designs.

Recently, a nontraditional MOP approach, involving set-based concepts rather
than particular designs as the focus of the search and selection, has been developed
at Tel-Aviv University aiming at the support of engineers. The brief description
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of the concept-based approach, which is given below, follows a recent review by
Moshaiov and Avigad [25]. There are two main reasons for the outlining of the
concept-based approach below. First, this background provides a typical spectrum
of engineering considerations that are quite common to multiobjective search and
optimization in design. Second, as pointed out in Moshaiov [23, 24], species and
design concepts might be similar, at least in some metaphorical sense. In fact, this
observation served as a trigger for the work presented here, which summarizes and
continues the suggestions of [23, 24].

An Overview on the Concept-Based Approach

The concept-based approach involves the search and selection of conceptual designs.
The major motivation for the development of the concept-based approach is rooted
in the significance of conceptual design to the survivability of companies (e.g., [38]).
The concept-based approach is not restricted to MOPs. Yet, its development ef-
forts have concentrated on MOPs due to the nature of engineering design, which
commonly involves trade-offs among conflicting objectives [25].

The concept-based approach deviates from the traditional representation in
which each concept has a one-to-one relationship with a point in the objective space.
In general, a conceptual solution should be viewed as a category of solutions. Hence,
in contrast to the traditional approach, in the concept-based approach a concep-
tual solution is represented by a set of particular solutions. This allows performance
variability, which results from the particular solutions that are associated with a
conceptual solution. The set-based concept representation provides a stage for a
synergistic human-computer interaction. In the concept-based approach, comput-
ers are utilized to extensively search the decision space at the level of particular
solutions, whereas humans articulate their preferences at the level of conceptual so-
lutions. Such preferences may be articulated not only at the level of concepts, but
also at the level of sub-concepts (e.g., [4]).

In addition to such inherent concept-related preferences, concept-based MOPs
may involve range-related preferences. Both types of preferences could be imple-
mented either a priori or interactively during the search. The recent review paper
by Moshaiov and Avigad [25] lists a variety of EC studies and contributions, which
have been made at Tel Aviv University on the concept-based approach. Among the
studied concept-based topics are a dynamic goal approach, a Pareto approach, a
structured EC approach with sub-concepts, interactivity by preferences of concepts
and sub-concepts, subjective-objective fronts, various concept robustness issues, con-
cept selection by variability and optimality, extension to an epsilon-Pareto approach,
generalization to path planning, application to simultaneous mechanics and control
design, and various computational aspects.

It should be noted that in engineering design the selected solution might not
necessarily be from the Pareto-optimal set (e.g., [4, 32]). Yet, an understanding of
the concepts’ relative performances along and in the vicinity of the front is significant
to concept and solution selection (e.g., [26]).

This is illustrated in Figure 2a. Assume that the figure contains the performances
of all solutions of two concepts. Both concepts (designated by stars and circles)
play a role in the front. Yet, when a look beyond the front is taken, the ‘star’
concept of Figure 2a might be more robust than the ‘circle’ one. This may have
happened when the solutions of the first two ranks are to be disregarded due to
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Fig. 2a. Two concepts Fig. 2b. Three concepts

some uncertainties. Alternatively, human preferences might result in the excluding
of one or both concepts and the selection of another concept (not shown) that is not
on the concept-based front but rather on the subjective-objective front, as described
in [4].

Recently, Avigad and Moshaiov [3] argued that concept selection measures
should not depend solely on Pareto optimality but should also account of variability
in the objectives afforded by a concept. This is illustrated in Figure 2b. Here, the
performances, in a bi-objective space, of three concepts are depicted as circles, stars,
and black dots. In this min-min problem, the concept-based Pareto-front consists of
solutions from the first and second concepts (circles and stars), and yet one should
not ignore the third concept because, in comparison with each of the other concepts,
it has a better variability with respect to the objectives. In engineering design, such
variability might be important due to the variability of market demands (e.g., [5]).
The variability and optimality issue adds up to the interactivity and concept robust-
ness issues that motivated the use of an epsilon-Pareto approach for concept-based
problems [24, 26].

In summary, the concept-based approach deals with the search and selection of
conceptual designs by way of a set-based representation of each concept in a multi-
objective space. In this chapter, the concept-based approach is used for a comparison
between design concepts and species (see Section 4.3). The comparative discussion
of Section 4.3 follows the cybernetic principles and ideas that are described below.

3 Introduction to Multi-competence Cybernetics

This section discusses the notion of Multi-competence Cybernetics (MCC). It starts
with general observations concerning MOO as related to nature (Section 3.1). Next,
in Section 3.2 the term MCC is introduced and justified as a replacement for the
term Multiobjective Cybernetics (MOC), which has been originated and used by
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the author in [24]. Finally, Section 3.3 provides some insight to the notion of multi-
fitness.

3.1 General Observations

Observing the mainstream literature on natural evolution, as related to the com-
parison of adaptation with optimality, it is striking to note the lack of a consistent
and extensive discussion on the similarities and dissimilarities with respect to MOO.
This seems astonishing because MOPs play a major role in engineering design (as
described in Section 2.5), and nature has produced what can be considered remark-
able designs. An intriguing question has to be raised, namely, given that natural
adaptation is possibly related to SOO, could a similar relation exist with respect to
MOO? Several related observations are made in the following:

• Pareto-related ideas were not available at the time of Darwin’s Origin of Species.
Yet the following point is quite surprising.

• There is no reference to a multiobjective evolutionary theory; optimality theory
in evolutionary biology seems to involve the use of a criterion and not a mixture
of criteria (e.g., [31]).

• The notion of objectives is controversial with respect to nature.
• A notion equivalent to trade-offs of objectives might be that of trade-offs of

functions and forms, or that of trade-offs in behaviour.
• There is no well-known general theory of evolution that relates fitness with

trade-offs of functions and forms (or something similar).
• The word ‘trade-off’ has been used with respect to optimal theory of natural

evolution; however, it has referred to the counteracting costs and benefits of
strategy changes with respect to a criterion, and not in a multicriterion sense
(e.g., [31]).

• There are, however, suggestions to use MOO in studying biological systems, and
evidence of its practical results (e.g., [14, 27]).

• Adopting TRIZ, as suggested in [9], to a biological patents’ database, might shed
light on possible analogies as related to trade-offs.

• There is an increasing evidence of studies that could be viewed as belonging to
multiobjective A-life, and/or to the related topic of multiobjective robotics (e.g.,
[39] and [26], respectively).

• Studies on multiobjective robot path planning, such as that of [26], involve the
conflicting objectives of fast versus safe. Such characteristics appear essential for
survival in nature.

• Multiobjective optimization is used in bioinformatics and computational biology
(see a recent review in [17]), yet much of this could be viewed as engineering-
related activities.

• Studies on multiobjective machine learning, such as in [19] and in the intro-
duction chapter of this volume, are strongly related to multiobjective aspects
of neural networks. Hence, they might be important to an MCC discussion on
learning and control aspects of adaptation.

• There is evidence of the use of multicriterion decision making in ecological plan-
ning (e.g., [34]), and of the use of multiobjective optimization in bioprocessing
(e.g., [20]). Yet, such activities could be viewed as bioengineering-related activi-
ties, and do not necessarily provide evidence of any human-independent natural
process in the sense of Dawkins’s Blind Watchmaker.
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• MOEA is useful for control (as revealed in reviews such as that of Coello [10]).
Yet, it could be viewed as an engineering-related activity.

• There is evidence of the existence of multiobjective game theory (e.g., [15, 22,
28]). Although practised primarily for operations research, it could be viewed as
relevant to biology.

• Multiobjective game theory has been implemented in games that have some
metaphorical value with respect to biology (e.g., [22]).

• Human behaviour clearly shows the significance of conflicting objectives and
conflict resolution in natural systems (societies). This is apparent in studies on
multiobjective game theory (e.g., [28]).

• MOEA is used for understanding nature (e.g., [33]). Yet, such studies do not tell
much about natural evolution, but rather on human inference in the process of
understanding nature.

The above list of observations includes a compilation of evidence as related to
MOO and nature in the spirit of the second viewpoint of cybernetics. It provides
some evidence that MOO might support understanding of nature at least in the
form of thought experiments (see Section 2.2). This falls within the idea expressed
by Parker and Maynard [31], namely that “optimization models. . . serve to improve
our understanding about adaptation.” To support the extension from SOO to MOO
one must try to understand the possible role of MOO in understanding nature. This
is explained in the following.

3.2 Defining Cybernetics and Multi-competence Cybernetics

Modern cybernetics is viewed here as the study of the competence of natural and
artificial systems within the scope of analogies and metaphors. It follows the defi-
nitions of von Cube and of Pask, and constitutes a shift from the terminology of
Couffignal (see Section 2.1). That is, the notion of securing efficient operation is
replaced with the notion of competence. The former terminology appears to be ad-
equate only to the first viewpoint of cybernetics which focuses on the design of the
artificial, whereas the latter seems to be more appropriate to both points of view; in
other words it does not imply the involvement of a designer. Competence should be
understood here, in the context of artificial systems, as the designer’s objective that
reflects the designer’s perception of what type of property of the system is to be
used when comparing design alternatives. On the other hand, in the case of natural
systems, competence should be viewed as fitness in the sense that no purpose should
be implied by it. Yet, as pointed out by Parker and Maynard Smith [31], respect
to optimality theory in evolutionary biology, the optimization criterion is often an
indirect measure of fitness. The suggested broad view on cybernetics refers to the
study of the competence of systems, including natural and artificial ones. Hence,
Holland’s work [18] on adaptation in natural and artificial systems should be viewed
as a study within the field of cybernetics.

The transformation from the traditional definition of cybernetics, as ‘the science
of communication and control in the animal and the machine’, to the above one,
appears to have a rationale. Understanding communication and control should not
be separated from understanding morphology and mechanics, as pointed out by
modern research on the evolution of artificial creatures (see Section 2.2). In fact,
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evolution appears to suggest a mixed view on the how and what is governed and
governing.

The above definition of cybernetics suggests we define Multi-competence Cyber-
netics (MCC) as the study of the multi-competence of natural and artificial systems
within the scope of analogies and metaphors. Here, the focus is not on debates such as
optimality versus adaptation, or adaptationism versus pluralism. Rather, a unified
view is suggested on adaptation in natural and artificial systems that extends ideas
such as those presented in [18] to incorporate the notions of multiobjective adapta-
tion in artificial systems and multi-fitness adaptation in nature. In other words, the
MCC suggestions made here do not aim at adding to any controversy, but rather
at providing a framework for thinking when comparing natural and artificial sys-
tems. The proposed unified view could be substantiated by empirical, logical, and
simulation-based arguments, using the accumulation of evidence, which is presented
in Section 3.1. The proposed MCC approach is further explained in the following.

3.3 Justifying the Notion of Multi-fitness and Its Visualization

The proposed extension from cybernetics to MCC may look trivial but it requires a
justification and clarifications. Where artificial systems are concerned, the notion of
multi-competence seems clear as it translates to multiobjective. The natural coun-
terpart of the notion of multi-competence as multi-fitness is however not as trivial
to justify. In other words, in spite of the fact that comparing the notion of fitness
with the notion of performance, or with that of objective, is not rare, the suggested
notion of multi-fitness and the related notion of Pareto front would appear strange,
unfamiliar, and even unacceptable to most biologists (for an exception see [14]).

By its definition, fitness is to be measured under the same survival condition.
One could argue that there are different types of survival threats and that they
can appear in nature either separately or together. In fact, some generic classical
threats are well known. For example, shortage of food could be a survival threat,
and so could a predator. Certain traits or strategy may fit one type of a threat but
not necessarily all types of threats. This means that the notion of fitness cannot be
separated from the type of survival threat. In other words there could be different
types of fitness related to the different generic threats. To further illustrate the
issue of multi-fitness we should note that threats on a particular individual might
change from one type to another during the individual’s lifetime. The changes may
also apply to different individuals of a population in a different order. The time
scale of such changes may span over generations and not just over the lifetime of
the individual. An individual or a species may also change the environment, which
adds another dimension to the above discussion. This can be further illustrated and
discussed using the terminology of game theory and winning criterion. The game
of survival is not just one game; it is a series of games. The rules of winning are
not fixed, and they may vary with time and space. The criterion (type of threat)
may change from one game to the other, and one could also perceive that even one
game may have multiple criteria (e.g., [15, 22, 28]), that is, different threats that are
happening simultaneously.

One could therefore think of the multi-competence problem in nature as the
study of the trajectories of individuals and species in a multi-fitness space. As pointed
out by Parker and Maynard Smith [31], fitness can be expressed either directly or
indirectly. Taking a form and function approach to the indirect expression of fitness,
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the above discussion could be compared with that of [14] and [27]. According to [14],
the study of form-function relations of branched structures could be advanced by
the use of multiobjective optimization. In [27], simulated adaptive walks are used
to study the early evolution of the morphologies of ancient vascular plants, in a
multi-fitness fashion, using multi-tasks and their related fitness landscapes. Clearly,
both direct and indirect expressions of fitness suggest that a multi-fitness (multi-
competence) dynamic visualization of natural systems should be of scientific value,
in particular for the pursuit of understanding of natural evolution by way of thought
experiments and A-life studies. It may also be significant for the analysis of empirical
data. Such visualization is perceivable up to 3-D but its extension might pose a
difficulty. This is similar to the visualization problem that occurs in multiobjective
design (e.g., [21]). While saying all of this, one should realize that it is not so clear
to what a degree the notion of Pareto front is significant for the understanding
of evolution. This issue is further discussed in Section 4.2 following some further
description of the general aspects of MCC.

4 Fundamentals of Multi-competence Cybernetics

As suggested in Section 3, understanding analogies and metaphors between the nat-
ural and the artificial, as related to MOPs, seems important. Yet, such an attempt
is inherently difficult and often speculative. The prime merit of the following is
perhaps in raising some questions and pointing at potential approaches that have
resulted from research on the concept-based approach in engineering design. Spec-
ulation could be avoided by focusing on possible analogies as a means for possible
inspiration and for the production of useful metaphors. This could trigger thought
experiments that should not be understood as an attempt to necessarily pose any
new theories on nature.

The common process of engineering design differs substantially from evolution-
ary design. Yet, here the interest is primarily on design by artificial evolution as
compared with that of nature. In the following section (4.1), some general aspects of
comparing these design processes are discussed. Next, Section 4.2 provides an MCC
discussion on the notion of Pareto front. Finally, in Section 4.3, an MCC comparison
is carried out with respect to the possible similarities of design concepts and species.

4.1 General Aspects

Many topics that have been mentioned in the background (Section 2), especially
those related to the concept-based approach, reflect typical issues in engineering
design. In particular they relate to evolutionary multiobjective design. Among such
typical issues are:

1. The generic nature of design tools, and in particular EC-based ones.
2. The closeness to A-life aspects.
3. The structured nature of the representations of engineering solutions.
4. The uncertain and subjective nature of design goals and objectives.
5. The interest in the nondominated set and the objective trade-offs.
6. The lack of sufficient modeling of performances.
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7. The subjectivity of concept-related preferences.
8. The inherent variability of conceptual solutions.
9. The interest in solutions that are robust and the different types of robustness.

10. As above with respect to robust concepts.
11. The need to extend the Pareto approach for the general concept selection prob-

lem.
12. The need for an efficient search.

The above issues are typical to engineering design; yet, one may claim some
similarities with nature, at least as related to the possibility of thought experiments.
The first three items do not pose any serious dissimilarity problem. Items 4 and 5
appear related to the dynamics and variability of the survival conditions in nature
(see Section 3.3 and also the discussion in the next paragraph). Items 6 and 7 are
related to the difficulties of modeling, which appear to be a common problem in both
natural and artificial systems. Items 8–11 relate to the MCC comparison between
concept and species, which is discussed in Section 4.3. Finally item 12 demonstrates
a major difference between natural and artificial evolution that is related to the
notion of purpose in engineering, which does not exist in nature. Some of the above
issues are further discussed below.

Engineering design is a purpose-directed process and not a result of the work of a
‘blind watchmaker’. It involves dynamic goals, and the exact preference of objectives
is uncertain and may vary during the design and among the designers. In nature,
since the environment changes with time, and threats are dynamic, evolution is a
dynamic process, and fitness and the multi-fitness problem are dynamic as well (see
Section 3.3). In the case of conceptual design, the desire to obtain the full spectrum
of nondominated solutions is related to the issue of the uncertainty of objectives
(e.g., due to variability of market demands [5]). This may resemble a desire to
predict natural evolution under the uncertainty of the trajectories of evolution, or
in environments with variable conditions. This issue is further discussed below.

4.2 Is Pareto Relevant to the Study of Nature?

Comparing individuals or species in a multi-competence space does not necessarily
mean that the notion of a Pareto front is relevant to the understanding of nature.
Yet, as already pointed out, there is some evidence for the significance of a Pareto
approach to the understanding of natural systems (e.g., [14, 27]). One should realize
that the use of the idea of nondominated solutions in engineering design is a result
either of postponing the decision on the objective preferences or of trying to compare
performances of different solutions under different situations without a preference
for a particular situation. In such cases the efforts of obtaining the front allows a
better understanding of the design trade-offs. When dealing with nature one should
be careful in making Pareto-related statements. It is arguable that a Pareto front can
be useful in the analysis of natural solutions; yet, such an analysis should assume that
there is no particular trajectory of scenarios. In spatio-temporal evolution scenarios,
a dynamic weighted sum approach, or a dynamic prioritization approach might be
more relevant than the Pareto approach. Such alternatives to the Pareto approach
do not necessarily mean that the performances of individuals and species are not
bounded in some sense by a global Pareto front. Understanding the applicability of
the notion of nondominated sets in natural evolution might help to shed some light
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on its possible contribution to natural diversity. Of particular interest might be the
use, in the MCC context, of fuzzy and multiobjective game theory (e.g., [28]). This
may help account for the fact that the “assignment of fitness values in nature” by
way of conflicting competences might be only partially understood by humans.

4.3 Comparing Concepts and Species

Understanding that an analogy between design concepts and species might exist
had an important impact on the development of different concept-based MOEAs
(see [2])). The following provides some background on this observation. In biology,
the term species commonly refers to the most basic biological classification, compris-
ing of individuals that are able to breed with each other but not with others (except
in rare cases). In nature, a niche can be viewed as a subspace in the environment
with finite resources that must be shared among the population (society) of that
niche, while it competes to survive. In evolutionary algorithms, the term speciation
(or ‘niching’) commonly refers to an automatic technique to overcome the tendency
of the population to cluster around one optimal solution in a multimodal function
optimization. Speciation techniques help maintain diversity to prevent premature
convergence while dealing with multimodality. Speciation could be viewed as an
automatic process or operator that gradually divides the population into subpop-
ulations (species). Each of these subpopulations deals with a separate part of the
problem (niche of the search space). Commonly, a niche refers to an optimum of
the domain and the fitness represents the resources of that niche. The common pro-
cess of speciation is also a niching process, as it finds the niches, while dividing the
population into them.

Species that are either competing or cooperating are viewed as coevolving. Com-
petitive coevolution has been computationally employed with single as well as mul-
tiple populations. In contrast to niching, where species are automatically formatted,
in coevolution of competing species they are commonly predefined (although their
populations’ relative size may be subject to automatic changes). This situation re-
sembles that of the concept-based approach, in which the association of sets of par-
ticular solutions with concepts is predefined. The last observation clearly indicates
a possible analogy between concepts and species. Both are represented by subsets
of the populations. It seems intuitive to view different species as different design
concepts of nature.

A crucial part of the algorithm, in [4] and in similar studies, is the penalty
functions that are used for the fitness. These include a front-based concept-sharing
penalty and an in-concept front niching penalty. The front-based concept sharing is
applied to preserve concept diversity, and to prevent a good concept from hindering
the evolution of other potential concepts within a front. The in-concept front nich-
ing preserves the diversity of particular solutions within each concept belonging to
a particular nondominated front (rank). In a recent investigation [2], the algorithm,
such as the one in [4], has been modified to improve the analogy by eliminating
crossover operations between concepts. In [2], a crowding approach has been imple-
mented to penalize the fitness. In developing the penalties and the algorithms, the
focus has been on engineering design and the wish to find a good representation of
the optimal concepts. With the elimination of crossover operations between concepts
in [2], it appears that the process of the simultaneous multiobjective concept-based
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evolution could be viewed as the evolution of species towards and along a Pareto
front.

While supporting the development of computational mechanisms to simultane-
ously evolve species/concepts towards and along a Pareto front by a metaphorical
EC approach, a host of questions should be raised about the applicability of such
comparisons to improving the understanding of nature. The main question from the
second viewpoint of cybernetics is to what a degree it would be possible to advance
the potential analogy between design concepts and species to better understand evo-
lution. Furthermore, it is still questionable if new metaphors might arise from taking
an MOO view rather than an SOO view on nature. Clearly, the existing concept-
based algorithms have been developed for engineering design applications and not
as simulators of natural selection. Yet, as described in Section 3, multi-competence
situations in the sense of multi-fitness or multifunctionality do exist in nature. Very
basic survival situations in nature could involve trade-offs in behaviours such as
fast (to obtain food) versus safe (to avoid dangers), which has been the subject of
a concept-based robotic-related study in [26]. Incorporating spatio-temporal evolu-
tion scenarios into the concept-based approach might create a new way of studying
natural evolution in the sense of the second viewpoint of cybernetics. The following
is an open question for future research. Would it be possible to say that, regardless
of different scenarios, nature evolves species towards optimality in a multiobjective
sense, just as humans are trying to create conceptual designs that are satisfying in
some Pareto sense?

Engineering design often involves satisfying solutions that are not necessarily
Pareto optimal. Similarly, it is expected that natural selection involves “design solu-
tions” that could be viewed as advancing towards a Pareto front but are not optimal
in the Pareto sense. It appears logical to try not only an epsilon-Pareto approach
but also a fuzzy Pareto approach.

Of a particular interest for future research is investigating potential analogies
and metaphors related to current studies on the robustness of concepts (e.g., [5]),
which should not be confused with robustness of particular solutions (e.g., [12]).
This topic encompasses different types of robustness with respect to different types
of uncertainties, and requires the introduction of measures not only for multiobjec-
tive optimality of concepts, but also for their robustness. In this regard, methods of
comparison, in the multiobjective sense, of particular solutions and concepts (sets),
as well as their rationale, might also serve as an MCC research playground where
such questions are asked with respect to species. A more questionable idea is to
try and compare the interactivity aspects of the concept-based approach with evo-
lutionary issues of mixed systems (see Figure 1). Finally, it should be noted that,
due to the fact that the concept-based approach is a set-based approach, analogies
might be explored not only with respect to species but also with respect to other
biological categories.

5 Hypothetical MCC Questions

The study of multiobjective optimality and robustness of conceptual solutions, which
is motivated by engineering, could be carried out using a multiobjective concept-
based EAC. In such design studies the EC approach allows evolution that is purpose-
directed. Similarly, EAC can be used as an A-life setup to try and explore the
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role of MOO in the natural evolution of species with a blind watchmaker approach.
Performing such independent studies might be complemented with related MCC
questions. The above discussion in section 4 raises some interesting MCC questions.
Among such speculative questions are the following:

1. Is Pareto optimality relevant to natural selection in any sense?
2. As above, with respect to local versus global fronts.
3. Given the dynamic aspects of the survival conditions in nature, could it be

possible to compare it as similar to the varying market demands in engineering?
4. Does robustness of concepts have a biological counterpart to robustness of

species?
5. As above, in relation to descendants of a biological ancestor.
6. Could evolving Pareto-optimal/robust design concepts be related to game-based

theories of evolution?
7. Would it be possible to use ecology and biotechnology multiobjective planning

to support MCC-based studies of natural evolution?
8. What are the consequences of a Pareto approach to natural evolution with

respect to discussions on natural diversity?
9. What would be the implications of the use of fuzzy multiobjective game theory

in MCC studies?

The above list of MCC questions could certainly be extended. Of a particular
interest are related questions about other forms of adaptation in nature, as well as
questions associated with evolutionary developmental biology. Such issues are left
for future research.

6 Summary and Conclusions

This chapter introduces Multi-competence Cybernetics (MCC). The current study
focuses on a comparative discussion concerning the multi-competence evolution of
systems in nature and the artificial. Research developments in areas such as evolu-
tionary design, plant biology, robotics, A-life, biotechnology, and game theory are
used to justify the proposed MCC approach. Several questions are raised, which
are related to a long-standing controversy on adaptationism and optimality. Among
such questions is that on the relevance of a Pareto approach to the study of nature.
At the risk of a controversial position, this chapter suggests a comparison between
species and engineering design concepts and hints at possible analogies with respect
to their multi-competence. Another resulting suggestion is that multi-fitness dy-
namic visualization of natural systems should be of a scientific value, in particular
for the pursuit of understanding of natural evolution by way of thought experiments.
In addition, future MCC research directions are proposed. It is concluded that MCC
is a justified framework of thinking that has a ground in past and present findings
both in engineering design research and biology. Yet, its scope, as demonstrated
here, is bound to be controversial, which makes it both an intriguing and an excit-
ing research area. It is hoped, at best, that MCC would direct thinking into fruitful
new observations on the multi-fitness aspects of natural adaptation. Alternatively,
it is expected that such studies would allow a better understanding of the similari-
ties and dissimilarities in the creation of natural and artificial systems by adaptive
processes.



302 Moshaiov

Acknowledgments

The author is grateful to the many colleagues who have agreed to serve on the
IPC of the related IEEE-ICCC-MOC 2005 workshop attempt. Thanks also to the
IPC members and coorganizers of the IEEE/RSJ IROS-MOR 2006 Workshop on
Multi-Objective Robotics, and the GECCO-ENAS-2007 Workshop on The Evo-
lution of Natural and Artificial Systems: Metaphors and Analogies in Single and
Multi-Objective Problems. X. Yao and the University of Birmingham should be
acknowledged for an inspiring environment and their support of the author’s Sab-
batical during 2005. Also to be acknowledged are A. Bejan, J. Niklas, E. Sober and
J. Knowles for reading and commenting on the draft. Finally, my student G. Avigad
should be acknowledged for his ideas and dedication that created the foundation for
the concept-based approach, and for his comments on the draft of this chapter.

References

[1] Abrams, P. (2001) Adaptationism, optimality models, and tests of adaptive
scenarios. In: Orzack, S. H., Sober, E. (eds) Adaptationism and optimality.
Cambridge University Press, Cambridge, pp. 273–302

[2] Avigad, G., Moshaiov, A. (2006) Simultaneous concept-based EMO. Report
at: http://www.eng.tau.ac.il/˜moshaiov, also submitted to the IEEE Trans on
EC

[3] Avigad, G., Moshaiov, A. (2007) Set-based concept selection in multi-
objective problems: optimality and variability approach. Report at:
http://www.eng.tau.ac.il/˜moshaiov

[4] Avigad, G., Moshaiov, A., Brauner, N. (2005a) Interactive concept-based
search using MOEA: The hierarchical preferences case. Int J of Computational
Intelligence, 3:182–191

[5] Avigad, G., Moshaiov, A., and Brauner, N. (2005b) MOEA for concept robust-
ness to variability and uncertainty of market’s demands. Proc of the 1st EC
workshop in the 9th AI*IA conf on AI, Milan, Italy

[6] Bejan, A. (2000) Shape and structure, from engineering to nature. Cambridge
University Press, Cambridge

[7] Bejan, A., Lorente, S. (2006) Constructal theory of generation of configuration
in nature and engineering. J of Applied Physics 100:041301-27

[8] Bentley, P. J. (1999) (ed) Evolutionary design by computers. Morgan Kauf-
mann, San Francisco, California

[9] Bogatyreva, O., Pahl A-K., Vincent, J. F. V. (2002) Enriching TRIZ with
biology — The biological effects database and implications for teleology and
epistemology. Proc of the ETRIA World Conf, Strasbourg, pp. 301–307

[10] Coello, C. A. C. (2005) Recent trends in evolutionary multiobjective optimiza-
tion. In A. Abraham, L. Jain and R. Goldberg (eds) Evolutionary multiob-
jective optimization: Theoretical advances and applications, Springer-Verlag,
London, pp. 7–32

[11] Dawkins, R. (1986) The blind watchmaker. Longman Scientific and Technical,
Harlow



Multi-competence Cybernetics 303

[12] Deb, K., Gupta, H. (2005) Searching for robust Pareto-optimal solutions in
multi-objective optimization. In: Evolutionary Multi-Criterion Optimization,
volume 3410 of LNCS, Springer, pp. 150–164

[13] Di Paolo, E. A., Noble, J., Bullock, S. (2000) Simulation models as opaque
though experiments. In: Bedau, M. A., McCaskill, J. S., Packard, N. H., Ras-
mussen, S. (eds) Artificial Life VII: the 7th Int Conf on the Simulation and Syn-
thesis of Living Systems. Reed College, Portland, Oregon, MIT Press/Bradford
Books, Cambridge MA, pp. 497–506

[14] Farnsworth, K. D., Niklas, K. J. (1995) Theories of optimization, form and
function in branching architecture in plants. Functional Ecology, 9:355–363

[15] Fernandez, F. R., Hinojosab, M. A., and Puertoa, J. (2004) Set-valued TU-
games. European J of Operational Research 159:181–195

[16] Gould, S.J. (2002) The structure of evolutionary theory. The Belknap Press of
Harvard University Press, Cambridge and London

[17] Handl, J., Kell, D. B., Knowles, J. (2006) Multiobjective optimization in bioin-
formatics and computational Biology. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 4 (2):279–292

[18] Holland, J. H. (1975) Adaptation in natural and artificial systems. The Uni-
versity of Michigan Press, Michigan

[19] Jin, Y. (ed) (2005) Multi-objective machine learning. Springer, Berlin
[20] Mandal, C., Gudi, R. D., Suraishkumar G. K. (2005) Multi-objective opti-

mization in aspergillus niger fermentation for selective product enhancement.
Bioprocess Biosyst Eng, 28:149–164

[21] Mattson, C. A., Messac, A. (2005) Pareto frontier based concept selection
under uncertainty with visualization. Optimization and Engineering, 6:85–115

[22] Meijer and Koppelaar, (2003) Towards multi-objective game theory. GAME-
ON conference, available at: http://mmi.tudelft.nl/˜meijer/files/meijer-
gameon03.pdf

[23] Moshaiov, A. (2006a) Multi-objective design in nature and in the artificial.
Invited keynote paper, Proc of the 5th Int Conf on Mechanics and Materials
in Design, Porto, Portugal

[24] Moshaiov, A. (2006b) Multi-objective cybernetics and the concept-based
approach: Will they ever meet? The PPSN 2006 Workshop on Mul-
tiobjective Problem Solving from Nature, (PPSN 2006), available at:
http://dbkgroup.org/knowles/MPSN3/Moshaiov-MO-cybernetics.pdf

[25] Moshaiov, A., Avigad, G. (2007a) Concept-based multi-objective problems and
their solution by EC. Proc of the User-centric EC Workshop of the GECCO
2007 Conf, London, UK

[26] Moshaiov, A., and Avigad, G. (2007b) The extended concept-based multi-
objective path planning and its A-life implications. Proc the 1st IEEE Sympo-
sium on A-life, in 2007 IEEE Symposium Series on Computational Intelligence,
Honolulu, Hawaii, USA

[27] Niklas, K. J. (2004) Computer models of early land plant evolution. Annu.
Rev. Earth Planet. Sci. 32:47–66

[28] Nishazaki, I., Sakawa, M. (2001) Fuzzy and multiobjective games for conflict
resolution. Studies in Fuzziness and Soft Computing 64, Physica-Verlag, Hei-
delberg.

[29] Nottale, L. (1993) Fractal space-time and microphysics, World Scientific, Sin-
gapore



304 Moshaiov

[30] Orzack, S. H., Sober, E. (2001) Introduction, in Orzack SH, Sober E (Eds.)
Adaptationism and optimality, Cambridge University Press, Cambridge

[31] Parker, G. A., Maynard Smith, J. (1990) Optimality theory in evolutionary
biology. Nature, 348:27–33

[32] Parmee, I. C. (2005) Human centric intelligent systems for design exploration
and knowledge discovery. Proc of ASCE 2005 Int Conf on Computing in Civil
Eng, Cancun, Mexico

[33] Poladian, L., Jermlin, L. S. (2006) Multi-objective evolutionary algorithms and
phylogenetic inference with multiple data sets. Soft Comp, 10:359–368

[34] Pukkala, T. (2002) (ed) Multi-objective Forest Planning, Kluwer Academic
Publishers, Durdrecht

[35] Sarkar, S. (2005) Maynard Smith, optimization, and evolution. Biology and
Philosophy

[36] Savransky, S. D. (2000) Engineering of creativity: Introduction to TRIZ
methodology of inventive problem solving. CRC Press LLC, Boca Raton,
Florida

[37] Spencer, H. (1864) Principles of Biology, Williams and Norgate
[38] Sobek, D. K., Ward, A. C. (1996) Principles from TOYOTA’S set-based con-

current engineering process. Proc of the 1996 ASME Design Engineering Tech-
nical Conferences and Computers in Engineering Conference, Irvine, Califor-
nia, USA

[39] Teo, J., Abbass, H. A. (2005) Multiobjectivity and complexity in embodied
cognition. IEEE Trans. on Evolutionary Computation, 9 (2):337–360

[40] Wiener, N. (1948) Cybernetics or control and communication in the animal
and the machine. MIT Press, Cambridge

[41] Wright, S. (1932) The roles of mutation, inbreeding, cross-breeding and selec-
tion in evolution. Proc of the 6th Int Congress of Genetics, pp. 356–366



Part IV

Scaling up Multiobjective Optimization



Fitness Assignment Methods for
Many-Objective Problems

Evan J. Hughes1

Dept. Aerospace, Power and Sensors
Cranfield University
DCMT, Shrivenham, Swindon, UK.
ejhughes@theiet.org

Summary. This chapter considers a number of alternative methods for fitness as-
signment in evolutionary algorithms for multiobjective optimization. Most of the
fitness assignment methods in the literature were designed to work for any number
of objectives, in principle; but, in practice, some of the more popular methods (e.g.
those in NSGA-II, IBEA and SPEA) do not perform well on problems with four
or more objectives. We investigate why this is the case, considering two aspects
of performance: convergence towards the Pareto front and drive towards a set of
well spread solutions. The visualization of induced fitness surfaces is used to under-
stand the effects of the different fitness assignment methods, and both Pareto- and
non-Pareto-based methods are analysed.

1 Introduction

1.1 Background

All optimization algorithms, whether of conventional design or based on evolutionary
methods, rely on being able to perform a direct comparison between two competing
solutions. In order to derive a selective pressure (or gradient) towards an optimum,
the comparison should yield that either solution A is superior to B, or vice versa. For
progress towards the global optimum, then the comparison must also report that
the true superior solution is indeed superior. If the solutions are equivalent, then
there is no information as to which may be genotypically closer to the optimum and
no progress towards the optimum can be made unless a superior solution to either
A or B exists elsewhere, or can be generated somehow.

With single-objective problems, the assignment of a degree of fitness that is
used to compare two solutions is often straightforward. Complexities are introduced,
however, when constraints are also considered. With more than one objective, it is
likely that there no longer exists a single solution, but, rather, the best objective
values are described by the Pareto front. The concept of nondomination applies and
infers that two solutions lying on the Pareto front are therefore equivalent until some
additional external preferences are applied . In order to derive a gradient or selective
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pressure, however, the optimization algorithm will still require a single-dimensional
fitness assignment method that allows solution A to be compared directly with
solution B, even though the algorithm may be maintaining an entire Pareto front in
a single run.

Pareto ranking methods alone, as described in the Introduction chapter of this
volume (pp. 1–26), will create a selective bias towards solutions on the Pareto front,
but will not necessarily produce solutions that are spread across the front or at the
edges. Additional elements in the fitness assignment are required to aid the Pareto
ranking in order to create a diverse solution set.

Various forms of Pareto ranking and sharing/clustering have been exploited in
recent years to develop a large number of multiobjective optimization algorithms
which can solve bi-objective optimization problems effectively and reliably, for ex-
ample, NSGA-II and SPEA-II. However, it is known that many of the methods
which are efficient on bi-objective problems do not scale well to problems with large
numbers of objectives (four or more typically cause issues) [7, 5].

As the number of objectives increases, typically the proportion of nondominated
solutions within a search population increases [3]. The result is that if all of the solu-
tions are nondominated, then all of the solutions will have the same Pareto rank, and
the search towards the Pareto front reaches a plateau. In practice, the selective pres-
sure is low even in the early phases of the search when dominated solutions exist, as
only few Pareto ranks are needed to classify the population. The secondary elements
of the fitness assignment function now dominate. These secondary elements are of-
ten sharing or clustering methods and serve to distribute the solutions across the
nondominated front. Thus, with many-objectives, the initial optimization progres-
sion is weakly towards the Pareto front; then, in the later stages of the optimization,
the solutions are spread out evenly. As the dimensionality increases, the spreading
actions dominate rapidly giving nondominated solutions distributed evenly, but not
near the true Pareto front.

Real engineering problems are often characterized by many objectives, many
constraints, or both. Often, problems have constraints where information on the
degree of constraint is available, and the constraints can be converted to objectives
(see this volume, pp. 53–75). The constraint conversion however increases the di-
mensionality of the objective space (primarily in the early phases of the search until
the constraints are satisfied).

The problem is how to design a many-objective fitness assignment method that
will allow an optimization algorithm to produce nondominated fronts that are both
well spread and a good approximation of the true Pareto front. Currently, there are
few algorithms that are designed specifically to tackle many-objective problems.

1.2 Many-Objective Fitness Assignment Methods

Two alternative approaches have been employed to date to derive useful fitness as-
signment processes for many objective problems: either augment the Pareto ranking
concept with functions that can aid the progression towards the Pareto front, or
use approaches that do not use Pareto ranking. A general observation is that meth-
ods based on Pareto ranking still perform well on bi-objective problems but may
have computational performance issues when scaling to very large numbers of ob-
jectives, whereas many non-Pareto ranking methods scale well computationally but
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are not necessarily so efficient at approximating the Pareto front with low numbers
of objectives. Why do these methods behave so differently?

Fundamentally, the fitness assignment process maps the multiobjective space
into a single dimension to allow the solutions to be ranked. There are some idealized
optimization behaviours we would like to promote through the fitness assignment
process:

1. A solution that is dominated should not be assigned a fitness superior to its
dominating solution;

2. If two solutions are nondominated, the solution with the closest neighbours
should be inferior;

3. If two solutions are nondominated, the solution closest to the true Pareto front
should be superior;

4. Constrained solutions should be inferior to feasible solutions.

These four idealized optimization behaviours all assume that the objective func-
tions (and constraint satisfaction) improve (in a minimization or maximization
sense) as the true solution quality improves. It must be remembered that it is pos-
sible for the objective functions to be good indicators of true solution performance
only in specific regions of the search space, leading to multimodalities and, therefore,
‘local’ Pareto optimal fronts. However, the fitness assignment process is by defini-
tion applied after the objectives have been defined and therefore must assume that
the objective functions do indeed provide a true reflection of the solution quality.
The ability of any optimization algorithm to escape local optima is a property not
of the fitness assignment process but of how the new trial solutions are generated;
generally, in evolutionary methods, mutation-based techniques are employed to help
search for global optima.

Whenever a high-dimensional space is mapped to a lower dimension, information
has to be discarded and a compromise is often made, leading to a nonideal fitness
assignment and, therefore, potentially inappropriate ranking of the solutions. There
are also examples where the idealized behaviour may not always produce the best
performing algorithm: the handling of constraints may well be improved by compro-
mising on item 4 [8]. Constraint handling techniques are considered further in this
volume, pp. 53–75.

Many approaches to multiobjective fitness assignment exploit Pareto ranking
methods, which treat item 1 above as the dominant requirement, with item 2 as a sec-
ondary ranking element. Interestingly, many of these methods (for example, NSGA,
NSGA-II, MOGA, SPEA, SPEA-II) have no mechanism for addressing item 3 di-
rectly. Instead the algorithms rely on the concept that, in bi-objective spaces, driv-
ing away from dominated solutions (item 1) is a very good approximation of item 3
(moving towards the Pareto front). However, for many-objective spaces where the
majority of solutions are nondominated, the approximation breaks down as item 1
becomes ineffective. Thus, we can now see the mechanism which describes the vari-
ation in behaviour between the Pareto ranking and non-Pareto methods: whether
they address item 3 indirectly through Pareto concepts, or directly through other
means.

Unfortunately, item 3 above is difficult to convert to a fitness metric, and if we
knew the Pareto front from the design of the fitness assignment process, we would
have solved a large part of the problem, with only the corresponding decision space
region to be identified! All of the methods that function well for many-objective
problems have item 3 as the primary fitness assignment mechanism, with item 2
and (sometimes) item 1 as secondary processes.
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1.3 Fitness Assignment Visualisation

When designing and evaluating alternative fitness assignment mechanisms, it is use-
ful to be able to visualize the behaviour of the assignment process in the objective
space. A simple mechanism is to create a sample set of solution points in objective
space, and then evaluate the fitness that would be given to each solution. One of
the solution points can then be moved across the entire objective region, usually by
gridding the space to some convenient resolution, and then graphing the variation
of fitness of each solution point (including a graph for the point that is moving) as
the single point is moved. The result for a bi-objective problem is a set of 3D sur-
faces that describes how the fitness of the moving and fixed points vary as the one
objective point moves. If we draw contour lines of constant fitness on these surfaces,
then we can create maps of isofitness contours that can be used to visualize the
behaviour of the fitness assignment method.

Although the isofitness contour concept can be extended to many objectives,
high-dimensional visualisation becomes an issue. However, in conjunction with the
four idealized optimization behaviours described in Section 1.2, the key character-
istics of the fitness assignment process can often be determined from visualisation
in two dimensions, and the expected behaviour in many dimensions predicted accu-
rately. For simple aggregation functions, where the fitness of a point is independent
of the location of other objective vectors, the isofitness contours alone suffice; a
detailed example is provided in Section 3.1.

For more complex ranking methods, we need to visualize how the rank order
would be influenced by the geometry of the points. For these methods (such as
NSGA) it is more useful to consider a contour of relative isofitness. A map of rel-
ative fitness is calculated by subtracting the fitness map of a fixed point from the
fitness map of the moving point (assuming that the assigned fitness value is to be
minimized in the ranking process). For example, Figure 1 shows the locations of five
fixed points. As a sixth point is moved through the objective region, the fitness of the
point of interest (at [0.7, 0.85] in the figure) is calculated and subtracted from the
fitness that the sixth moving point would have at the current location of the sixth
point on the graph. The result is that points which lie on a zero-valued contour are
directly equivalent to the fixed point being studied, when considered for ranking. All
regions which dominate the fixed point of interest should have a value less than 0,
and all regions that are dominated should have values greater than 0. Thus, item 1
in Section 1.2 would be satisfied. To satisfy item 2, nondominated solutions that
are more crowded than the point of interest should have a positive relative fitness,
and nondominated solutions that are less crowded should have a negative relative
fitness. To satisfy item 3, the local gradient of the fitness contour should always be to
improve all objectives, i.e., falling towards the origin of the graph (in a minimization
sense), or, as a worst case, to leave an objective unchanged. Any regions where the
gradient is towards degrading an objective value may allow a solution nearer to the
true Pareto front to appear inferior to one further away. Figure 1 demonstrates these
regions of relative fitness and the direction of the gradients on the contour where
points are directly equivalent to the point of interest at location [0.7, 0.85]. Sec-
tion 2.2 provides a detailed example of the isofitness contour visualisation process in
action.

The use of isofitness contours to visualize many-objective fitness assignment
methods provides a simple mechanism to analyse typical fitness behaviours. The



Fitness Assignment Methods for Many-Objective Problems 311

Fig. 1. Example of a relative isofitness map showing an idealized relative fitness
behaviour in the dominated, dominating and nondominated regions of the fixed
point at [0.7, 0.85] being examined

process can be automated in high dimensions where the dominated and dominating
regions can be assessed for correct relative performance, and the local gradients
can be calculated in the nondominated region and tested for any reverse gradient
conditions. However, although automation can identify fitness assignment methods
that are unlikely to work well in many-objective spaces, the ability of the fitness
assignment methods to create well-spread solution sets is difficult to ascertain. In
addition, the shape of the isofitness contours is often conditioned on the distribution
of the trial points in the objective region. Thus, for accurate automated analysis
a Monte Carlo process is advised where many different example sets of objective
vectors are tested in order to explore the potential for adverse fitness behaviours.

1.4 Chapter Structure

This chapter discusses the behaviour of existing fitness assignment methods designed
for bi-objective problems, and methods that can function with many objectives.
Enhancements to Pareto ranking are discussed in Section 2, and non-Pareto methods
are discussed in Section 3. Section 3.3 discusses how some of the fitness methods
may be used to aid the visualisation of the Pareto front with many objectives, and
Section 4 concludes.

2 Pareto Ranking Extensions

2.1 Introduction

It is known that as the dimensionality of the objective space increases, the propor-
tion of solutions which are nondominated in the initial random population tends to
increase rapidly [3].

Generally, with many-objective problems, and, therefore, with very few domi-
nated individuals, the selective pressure on the remaining population is very low,
as nondominated individuals are considered equivalent. The spreading mechanisms
dominate the selection process and the solutions are spread, rather than progressing



312 Hughes

towards the Pareto front [7]. The problem now is: how can Pareto ranking methods
be extended to restore the selective pressure towards the Pareto front (i.e., item 3 in
Section 1.2)? Realistically, we would rather have a set of points close to the Pareto
front but poorly spread, rather than a well-spread set of solutions that are far from
the true optimal surface.

The Nondominated Sorting process alone can only separate a population into in-
dividual rank layers. Alternative strategies, such as those used in SPEA and MOGA,
count levels of domination and provide similarly layered structures.

2.2 Nondominated Sorting Genetic Algorithm

The following example is based on the classic NSGA algorithm (see this volume,
p. 19) that consists of a nondominated sorting step, followed by sharing within
the sorted layers. The weakness in the original sharing method was that a priori
knowledge was often needed in order to set the share radius. For demonstration,
here a large fixed share radius of σ = 0.4 has been used.
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Fig. 2. 3D relative fitness surface for
point [0.7, 0.85] and the NSGA method
with one moving and five fixed objec-
tive vectors. Spreading factor is σ =
0.4

Fig. 3. Relative isofitness contours for
point [0.7, 0.85] and the NSGA method
with one moving and five fixed objec-
tive vectors. Spreading factor is σ =
0.4

Figure 2 shows the relative fitness surface for point [0.7, 0.85] in a six point set,
five of which are in fixed locations and the sixth is moved through the objective
region in order to generate the fitness surface. The values on the graph are the
differences in fitness value between the moving and the fixed point at [0.7, 0.85].
Figure 3 shows the corresponding relative isofitness contour map. Thus, if the moving
point were at location [0.4, 0.63], then the figures show that the fitness of the moving
point would be less by a value of 1.2 and therefore more likely to be selected after
ranking.

The key feature of Figure 3 is that although the nondominated front is visible
clearly (as a line connecting all the nondominated points), many of the contours
traverse across the objective space, rather than focusing towards the origin (which
would be an ideal solution). If we consider point [0.2, 0.8] for example, the relative
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fitness is very low, demonstrating that the point is highly attractive. If we now con-
sider point [0.75, 0.5], it is nondominated with respect to the test point at [0.7, 0.85];
however, the local gradient is focused towards improving objective 1, but degrading
objective 2! Therefore the requirement of item 3 in Section 1.2 is compromised as
we are moving away from the Pareto front. The problem with the classic NSGA al-
gorithm is that as the dimensionality increases, regions with adverse fitness gradient
structures become more common and the optimization process is compromised.

With the contour alignment in the nondominated region approximately normal
to the nondominated front, the selective focus is on spreading the solutions, rather
than on driving them towards the Pareto front. With many objectives, the problems
are exacerbated.

2.3 Nondominated Sorting Genetic Algorithm II

Figures 4 and 5 show the relative fitness surface and relative isofitness contours
for the NSGA-II fitness assignment process with point [0.7, 0.85] as a fixed refer-
ence. NSGA-II uses crowding distance rather than fitness sharing (the use of −∞
at the edges has been modified to provide a consistent and representative fitness
landscape). It is clear that the fitness gradient is changed significantly over the orig-
inal NSGA algorithm. The crowding operator is calculated based on the location
of the neighbour solutions relative to the point (in the same nondominated rank),
and the result is that the fitness in the local region remains constant as long as
the local neighbour solutions are the same. The fitness surface is now dominated
by plateaus, rather than by continuous gradients. The optimization performance is
improved over NSGA as there are fewer regions where the gradient is away from
the Pareto surface; however, they still exist and point [0.75, 0.5] is a good example.
Unfortunately, within the plateaus, there is no selective pressure to either converge
towards the Pareto surface, or to spread evenly, however a plateau is preferable to
a reverse-gradient in the nondominated region. In a practical algorithm, a moder-
ate or large population size would be desirable in order to reduce the scale of each
plateau region (i.e., for smaller distances to neighbours). As the NSGA-II algorithm
maintains the elite solutions within the working population, in practice the popu-
lation sizes are often sufficiently large to make the ranking process perform well in
low dimensions. With many-objective problems, however, still having areas in the
nondominated region of reverse gradient degrades the algorithm performance.

2.4 Multiobjective Genetic Algorithm

The Multiobjective Genetic Algorithm (MOGA) [3] counts the number of solutions
that a point is dominated by, and then uses a sharing mechanism to spread the
solutions. The fitness landscape that is obtained is very similar to NSGA; however,
not all implementations of the algorithm confine the sharing mechanism to individual
rank layers, of the same domination count, as in the NSGA algorithm. Figures 6
and 7 show the relative fitness surface generated from the MOGA algorithm when
the sharing was not confined to rank layers.

In the figures, a share distance of σ = 0.1 has been used. Issues with reverse gra-
dient in the nondominated region are visible clearly in many regions (point [0.85, 0.3]
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Fig. 4. 3D relative fitness surface
for point [0.7, 0.85] and the NSGA-II
method with one moving and five fixed
objective vectors

Fig. 5. Relative isofitness contours
for point [0.7, 0.85] and the NSGA-II
method with one moving and five fixed
objective vectors
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Fig. 6. 3D relative fitness surface
for point [0.7, 0.85] and the MOGA
method with one moving and 5 fixed
objective vectors. Spreading factor is
σ = 0.1

Fig. 7. Relative isofitness contours
for point [0.7, 0.85] and the MOGA
method with one moving and 5 fixed
objective vectors. Spreading factor is
σ = 0.1

for example). The point [0.85, 0.85] is interesting, as the gradient towards it con-
verges as a local attractor. This is a direct result of using global sharing, rather than
restricting sharing to within rank/domination layers, and is caused by empty regions
within the dominated space being emphasized by the sharing process. Additionally,
the point [0.85, 0.85] shows that item 1 in Section 1.2 is compromised, as there are
solutions in the dominated region that are superior to the test point at [0.7, 0.85].
If rank/domination layer sharing is applied, then the fitness surface is very similar
to the surface obtained with NSGA. The MOGA algorithm does not scale well to
many-objective problems either.

2.5 Hypervolume Selection

Fundamentally, the hypervolume metric [10] assesses the total volume that lies be-
tween a chosen reference point that acts as a corner to a hypercube and the non-
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dominated front, described by a set of points, which intersects the hypercube. The
closer the nondominated front is to the Pareto front, the larger is the hypervolume.

A simple way to use the hypervolume metric to augment the basic Pareto ranking
process is to first use nondominated sorting to establish the front that a particular
point belongs to, and to then calculate the hypervolume of the set of points which
includes all points on that front and all points that are worse. The point of interest
is then removed from the set and the hypervolume recalculated, allowing a change in
hypervolume, ΔS, to be established. The change ΔS is then normalized by the max-
imum possible hypervolume to give an indicator of local worth ΔS/Vmax. The fitness
is the Pareto rank layer index number minus ΔS/Vmax. As long as ΔS/Vmax < 1
then the Pareto ranking structure will be preserved, with the local shaping of the
fitness surface being provided by the hypervolume metric.
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Fig. 8. 3D relative fitness surface
for point [0.7, 0.85] and the hybrid
Nondominated Sorting/Hypervolume
method with one moving and five ex-
isting objective vectors

Fig. 9. Relative isofitness contours
for point [0.7, 0.85] and the hybrid
Nondominated Sorting/Hypervolume
method with one moving and five ex-
isting objective vectors

For minimization, the hypervolume reference point R is placed in such a way
as to be at least weakly dominated by every member of the set to be investigated.
Often, the reference point is chosen as the maximum value observed in all objectives
so far.

Figures 8 and 9 show the resultant relative isofitness contours for a reference
point at R = [1, 1]. It is clear that the fitness gradient is always well defined in the
dominated/dominating regions; however in the nondominated region, there is a sig-
nificant plateau before the nondominated front, which can reduce overall algorithm
efficiency. There are no regions of reverse relative fitness gradient, however.

The hypervolume metric produces a weak ‘spreading’ effect; however, it is clear
that points are being driven slowly towards [0.3, 0.9] by a gradient that is primarily
independent of solution locations: although it may cause solutions to crowd locally
in the area, the focus will aid the discovery of better extreme solutions. The main
drive is towards the Pareto front and the distribution of solutions is a weak secondary
process with this simple implementation. Many of the practical implementations of
the hypervolume metric [6, 2] use extra processes to improve the distribution of
the solutions further. The lack of any nondominated regions with reverse gradient
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characteristics makes the method suitable for many-objective optimization; however,
the processing complexity of the hypervolume metric often limits its applicability.

2.6 Indicator-Based Evolutionary Algorithm

The Indicator-Based Evolutionary Algorithm (IBEA) process [11] does not use
Pareto ranking directly, but instead uses indicator functions that allow the fitness of
a solution in a population to be determined. The indicators, however, are specifically
designed to preserve Pareto rank.
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Fig. 10. Relative isofitness contours
for point [0.7, 0.85] and the IBEA
method with one moving and five ex-
isting objective vectors. Scaling factor
κ = 0.002

Fig. 11. Relative isofitness contours
for point [0.7, 0.85] and the IBEA
method with one moving and five ex-
isting objective vectors. Scaling factor
κ = 0.1

Figure 10 shows the isofitness contours for the IBEA ε indicator in equation 1,
with a shape parameter of κ = 0.002. In (1), OiA is the value of the ith objective
of population member A, k is the number of objectives and P is a set of objective
vector points that describe the population. For visualisation purposes, the difference
in the logarithm of the fitness has been plotted.

I(A, B) = min
ε
{OiA − ε ≤ OiB for i ∈ {1, . . . , k}}

f =
∑

OA∈P 	=OB

−exp(−I(A, B)/κ) (1)

It is clear that the relative isofitness contours of the ε indicator are structured
with only a weak relationship to the shape of the nondominated surface. The relative
fitness values in the dominated and dominating regions are correct. The fitness
gradient is well structured with no reverse gradients, and in regions beyond the edges
of the nondominated front will promote good edge exploration. The fitness method
does lack any intrinsic directionality to aid a uniform distribution of solutions across
the Pareto front, however. The lack of gradient for forming uniform distributions in
the population is evidenced in Figure 10 by solutions which are well spread (e.g.,
[0.9, 0.2]) not being promoted as superior to the point under test at [0.7, 0.85].
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Figure 11 shows how an alternative choice of the scaling factor κ can change
the structure of the fitness surface. With the larger value of κ = 0.1, the algorithm
will not perform so well on highly concave Pareto fronts as the isocontours do not
form sharp ‘corners’, and will penalize Pareto solutions within a deep concavity. In
Figure 11, the points [0.3, 0.9] and [0.9, 0.2] both lie on a fitness contour that is
superior to the test point [0.7, 0.85], which is in turn superior to point [0.8, 0.8].
All of the points are nondominated, but the modified fitness function is promoting
solutions which are isolated over those which are crowded, and will achieve a superior
spread of solutions than with the smaller value for κ.

The configuration is likely to give good performance on convex and mildly con-
cave Pareto fronts. The fitness contours also demonstrate that although a strict
Pareto relationship is maintained when comparing two solutions in isolation, the
act of combining the results for a population of solutions can produce isofitness con-
tours that do not follow the nondominated front, and yet not compromise any of
the ideal requirements itemized in Section 1.2. The IBEA method will work well on
many-objective functions; however, an external diversity mechanism, such as clus-
tering of an archive, is recommended to achieve a controlled spread of solutions.

2.7 Summary of Pareto Methods

If the Pareto rank is enforced in the fitness process, with inferior ranks guaranteed
to have a worse fitness than true nondominated solutions, it is possible to create
optimizers that perform very well in bi-objective problems. However, for many-
objective problems, the gradient of the fitness within the nondominated regions
must also always focus on improving all objectives to some degree.

The IBEA and hypervolume methods have both demonstrated advantageous
fitness gradient structures, but at the expense of limited (if any) solution distribution
characteristics intrinsic within the fitness assignment. The desires to move away from
existing solutions, yet not degrade performance on any objectives, are conflicting
in many circumstances. Realistically, the degree of solution spreading that can be
generated by the fitness assignment function alone is limited, but an external archive
can be used to help impose a uniform spread of solutions across the Pareto front,
for example, through clustering.

3 Non-Pareto Ranking Methods

An alternative many-objective fitness assignment process is to use a method that
does not rely on Pareto ranking to sort the population. The simplest of these non-
Pareto methods is to use a conventional aggregation approach such as weighted sum
(Section 3.1) and perform many single objective optimizations, changing the weight
vector set a little each time to enable the entire Pareto surface to be sampled.

A natural extension is to attempt to satisfy all the weight vectors simultane-
ously in a single run of the optimizer. Multiple Single Objective Pareto Sampling
(MSOPS) [4] is one method that develops this concept into a practical algorithm.

Many early multiobjective EAs, such as VEGA and Weighted Average Rank-
ing [1], do not use Pareto ranking methods. Many of these early approaches have
some merit in many-objective spaces and are worthy of investigation.
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3.1 Repeated Single Objective

In the Repeated Single Objective (RSO) [5] approach, a conventional single objective
EA is used, based on an aggregation function, and repeat runs are performed for
different target search directions, allowing a Pareto front to be constructed from
a sequence of spot solutions. To allow direct comparison with true multiobjective
EAs, each run of RSO uses a correspondingly smaller population size and number
of generations to keep the total number of evaluations to identify a Pareto front
consistent.

The RSO method is very simple but does require an a priori specification of the
directions to search, in order to populate the Pareto front, which can be difficult
with previously unseen problems. The RSO method is known to be effective in
high-dimensional many-objective optimization problems [5]. The performance and
applicability of RSO to different objective structures is determined primarily by the
choice of the aggregation functions used to identify optimal solutions.

A key benefit of prespecification of search directions is that designer preferences
can be incorporated very easily and the search focused only on regions of interest.
Additionally, Pareto front analysis may be performed as described in Section 3.3.

Aggregation Functions

Aggregation functions have been used for many years in classical gradient-based
optimization. Generally, a single aggregation function will yield a single Pareto
point; however, all of the aggregation functions described here are effective with
both low- and high-dimensional objective spaces. In practice, once the structure of
the Pareto surface has been approximated, a decision has to be made about the
particular Pareto point to choose. An aggregation function can then be used in a
single-objective optimization framework to identify a single near-Pareto solution.

The following common aggregation functions have been plotted with their fitness
functions arranged for objective minimization. The fitness contours have been drawn
in the same context as the population-based methods, with the five example popu-
lation points plotted to allow direct comparison. It should be remembered, however,
that the following aggregation methods are conditioned only by the weight vector
and control parameters, and not by the location of the other population members.
Thus, the isofitness contour plots are contours of true fitness values, but should still
allow dominated individuals to be inferior to dominating solutions.

Weighted Sum

The weighted sum score of k objectives is calculated using (2), where wi is part of
the weight vector W = [w1, w2, . . .] and is the weight of the ith objective Oi.

f =
k∑

i=1

(wiOi) (2)

Weighted sum will not introduce discontinuities into the gradient of the aggregated
function but is able to generate points only on convex Pareto fronts. The location
of the point on the Pareto front is highly dependent on the shape of the front itself;
however, the search ‘direction vector’ may be described as V = W.
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Fig. 12. Isofitness contours for the
Weighted Sum aggregation method.
Weights are W = [1, 1]

Fig. 13. Isofitness contours for the
Weighted Sum aggregation method.
Weights are W = [2, 1]

Figures 12 and 13 show the isofitness contours for the weighted sum aggregation
function with two different weighting vectors. The diagonal line radiating from the
origin shows the search direction vector V. The isofitness contours form hyperplanes
normal to the search direction V. The weighted sum method will return Pareto
points where the normal to the Pareto front is parallel to V, and therefore normal
to the isofitness contours. Thus, the aggregation method is unsuitable if points
within a concave region of a Pareto front are to be identified. The primary benefit
of the weighted sum is that if the gradients of the individual objective functions are
continuous, then the gradient of the resulting fitness value, f , will also be continuous.
No additional constraints are created, allowing the weighted sum to be used as an
aggregation method with all optimization algorithms.

Goal Attainment

The goal attainment score of k objectives is calculated by transforming all of the
objectives into objective-space constraints using (3),where wi is the weight of the
ith objective Oi, and Zi is the ith dimension of an idealized reference point Z.

Minimize γ subject to:

Oi − wiγ ≤ Zi ∀i ∈ [1, k] (3)

The control parameter γ is reduced until the constrained region consists of a
single feasible point. This point lies on the Pareto front. If the final value of γ is
negative, the reference point Z has been dominated. Figure 14 shows the isofitness
contours for the goal attainment aggregation function. As the isofitness contours
always form a ‘corner’ which has its sides aligned parallel to the objective axes, goal
attainment is able to generate points on both convex and concave Pareto sets.

If the optimization process converges to a solution that exactly ‘matches’ the
weight vector, then C = (O1−Z1)/w1 = (O2−Z2)/w2 = . . ., where C is a constant,
allowing the convergence of the solution with respect to the weights to be assessed.
The weight vector corresponds to a point on the Pareto set in the true direction given
by the vector V = [w1, w2, . . .] (after offsetting by the reference point Z). Thus, the
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Fig. 14. Isofitness contours for the
Goal Attainment aggregation method.
Reference point is Z = [0.1, 0.2],
weights are W = [1, 3]

Fig. 15. Isofitness contours for the ε-
constraint aggregation method. Objec-
tive 1 is being minimized, while con-
straining objective 2 to ≤ 0.7

angle between the vectors V and O − Z indicates whether the solution lies where
it was expected or not. If the vector V lies within a discontinuity of the Pareto set,
or is outside of the entire objective space, then the angle between the two vectors
will be significant. By observing the distribution of the final angular errors across
the total weight set, the limits of the objective space and discontinuities within the
Pareto set can be identified. This active probing of regions of interest can only be
performed if the weight vectors are defined prior to the optimization run. Section 3.3
provides examples of the process.

Unfortunately, goal attainment relies heavily on the optimization algorithm be-
ing able to implement constraints efficiently. Constraint handling in evolutionary
processes is possible, but not often efficient.

ε-Constraint

The ε-constraint metric converts all but one of the objectives into objective space
constraints. The optimization process operates on the one remaining objective and
the Pareto front point chosen is usually a point that best satisfies the objective, and
is just within the feasible region defined by the constraints on the remaining objec-
tives. As the constraint locations are moved, other Pareto points may be identified.
Equation (4) describes the process, where Ci is the constraint location of the ith
objective Oi.

Minimize f = Oj subject to:

Oi ≤ Ci ∀i 
= j ∈ [1, k] (4)

Figure 15 shows the isofitness contours for the ε-constraint aggregation function.
Like goal attainment, the isofitness contours always form a ‘corner’ which has its
sides aligned parallel to the objective axes; thus ε-constraint is able to generate
points on both convex and concave Pareto sets. If the objective to be minimized
is chosen carefully, the gradient of the optimization surface can be very favourable;
for example if the first three objectives are highly multimodal, but the fourth is
unimodal, it makes sense to constrain the first three and optimize the fourth.
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Weighted Min-Max

The weighted min-max score of k objectives is calculated using (5),where wi is the
weight of the ith objective Oi.

f =
k

max
i=1

(wiOi) (5)
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Fig. 16. Isofitness contours for
the Weighted Min-Max aggregation
method. Weights are W = [2 1]

Fig. 17. Isofitness contours for
the Weighted Min-Max aggregation
method. Weights are W = [2 5]

Figures 16 and 17 show the isofitness contours for the weighted min-max aggre-
gation function with two different weighting vectors. Like goal attainment, weighted
min-max isofitness lines form ‘corners’, and the method is able to generate points
on both convex and concave Pareto sets. If the optimization process converges to a
solution that exactly ‘matches’ the weight vector, then w1O1 = w2O2 = . . ., allow-
ing the convergence of the solution with respect to the weights to be assessed. The
weight vector corresponds to a point on the Pareto set in the true direction given
by the vector V = [1/w1, 1/w2, . . .].

Weighted Min-Max is sometimes also referred to as a Weighted Tchebychev
Norm (spelling of Tchebychev may vary). It is a variant of the Lp norm method
with p = ∞. It can be considered as a weighted L∞ metric but with a reference
point at the origin.

Lp Norm

The Lp Norm score of k objectives is calculated by using (6),where Oi is the ith
objective of the vector O, Zi is the ith dimension of an idealized reference point
Z, Wi is a weighting component and p is a scalar factor that determines the shape
of the isofitness contours. For the classic Lp norm methods, unity weighting factors
Wi = 1 are usually assumed.

f =

[
k∑

i=1

Wi|Oi − Zi|p
] 1

p

(6)
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Fig. 18. Isofitness contours for the Lp

Norm aggregation method. Reference
point is Z = [0.4, 0.4], shape is p = 1

Fig. 19. Isofitness contours for the Lp

Norm aggregation method. Reference
point is Z = [0.4, 0.4], shape is p = 2
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Fig. 20. Isofitness contours for the Lp Norm aggregation method. Reference point
is Z = [0.4, 0.4], shape is p = 100

Figures 18, 19 and 20 show the isofitness contours for the Lp norm aggregation
function with three different shape parameters. The classic Lp norm does not use a
weight vector; rather, the Pareto point that is closest to the reference point Z will
give the lowest aggregated value. Thus, as Z is moved, points on the Pareto front
can be generated. The reference point Z must dominate the nearest points on the
Pareto front; otherwise the optimizer will simply converge to the point Z if it lies
within the objective region.

Figure 18 uses a shape of p = 1 and is therefore the L1 norm, or the Manhat-
tan distance. The isofitness contours form lines that have similar properties to the
weighted sum; however, if the reference point is placed within a concave region of
the Pareto front, points within the concavity can be found, although the reference
must be placed very close to the Pareto front in order to identify regions of sharp
concavities.

Figure 19 uses a shape of p = 2 and is therefore the L2 norm, or the Euclidean
distance. The isofitness contours form circular contour lines, allowing shallow con-
cave regions to be identified easily. Sharp concavities will still require the reference
point to be placed very close to the Pareto front. With low values of p, the gradient



Fitness Assignment Methods for Many-Objective Problems 323

of the objective functions, and therefore the gradient of the aggregated fitness, is
maintained.

Figure 20 uses a shape of p = 100 and is therefore the L100 norm. The isofit-
ness contours approximate corners now, similarly to the corners displayed by the
Weighted Min-Max method, allowing even quite sharp concave regions to be identi-
fied easily. With these high values of p, the gradient of the aggregated function can
be subjected to numerical errors and appear discontinuous. A metric with p = ∞ is
the Tchebychev Norm, and the infinite power is approximated by a max() operation.

Vector Angle Distance Scaling (VADS)

Vector Angle Distance Scaling (VADS) is a new metric first introduced in [4]. The
metric is designed specifically for identifying the Objective Front , rather than just the
Pareto front. The objective front is the entire leading edge of the feasible objective
space region. The Pareto front is therefore a subset of the objective front. If the
objective front is identified, then areas where ‘gaps’ appear in the Pareto set can be
analysed: if there are objective front solutions that lie within the gap, then the break
in the Pareto front is a discontinuity due to a very deep or reentrant concavity. If
there are no objective front solutions in the region, then it is likely that the feasible
objective region is comprised of disconnected subregions. In bi-objective problems, it
is not difficult to identify regions of discontinuity in the Pareto front alone. However,
even with three objectives, a discontinuity may present as a ‘hole’ and is not simple
to identify without knowing the shape of the objective front. All of the metrics so
far that are capable of identifying the Pareto surface in the presence of concavities
use an isofitness contour that forms a ‘corner’. To identify regions of the objective
front, a mechanism is needed to form the isofitness contours into acute angles in
order to allow deep probing into highly concave regions. The use of these metrics
for surface analysis is discussed further in Section 3.3.

The VADS score is the magnitude of the vector of objectives (|O|) divided by the
cosine of the angle between the vector of objectives and a target vector, where the
resulting angle cosine is then raised to a high power. Thus, an objective vector that
forms a point lying on the target vector is assigned a fitness which is the distance
along the target vector. As the objective vector strays from the target vector, the
fitness is increased rapidly with increasing offset angle.

The cosine of the angle can be calculated conveniently by a dot product oper-
ation. The score equation for k objectives is calculated using (7), where V is the
k-dimensional unit-length target vector which describes the point on the objective
front to search for, O is the k-dimensional objective vector, | · | indicates vector mag-
nitude and q is a constant factor for scaling the cosine result (typically q = 100).
The vector V may also be described in terms of the weight vector used in the other
metrics as the normalisation V = W/|W|.

f =
|O|

(
V · O

|O|

)q (7)

Low values for q may lead to difficulty in identifying very sharp concavities in the
objective front. The dot product of the vector V with the objective vector O must
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Fig. 21. Isofitness contours for the
Vector-Angle Distance Scaling aggre-
gation method. Weights are W =
[1, 1], q = 100. Logarithm of fitness
plotted for clarity

Fig. 22. Isofitness contours for the
Vector-Angle Distance Scaling aggre-
gation method. Weights are W =
[2, 1], q = 10. Logarithm of fitness plot-
ted for clarity

remain positive for the basic VADS metric to function correctly, and consequently
objective offsets may be necessary for proper operation.

Figure 21 shows the isofitness contour for a weight vector W = [1, 1] and shaping
parameter q = 100. The ‘tear drop’-shaped isofitness contour is made thinner by
increasing q, allowing sharper concavities to be probed. With very high values of
q, care must be taken to prevent numerical instability. In the figure, the logarithm
has been taken to reduce the dynamic range of the metric values experienced in the
optimization process. The use of logarithms allows (7) to be reformulated as shown
in (8) and reduces the impact of numerical imprecision.

f = exp((q + 1) log(|O|)− q log (V ·O)) (8)

Figure 22 shows the isofitness contour for a weight vector of W = [2, 1] and
shaping parameter q = 10. With the lower value for q, the ‘tear-drop’ shaped isofit-
ness contour is fatter and therefore less able to probe deep folds in the objective
surface. It is also clear that as the weight vector is changed, the isofitness contour
follows the vector, rather than being aligned to the objective axes.

The final solution identified by an optimizer using the VADS metric should have
the objective vector O lying parallel to the target vector V. Thus the angle between
the two vectors can be used to assess final convergence. As VADS is tolerant of
‘folds’ in the objective surface that cause discontinuities in the Pareto front, angular
errors between V and O indicate non-obtainable sections in the objective region.

3.2 Multiple Single Objective Pareto Sampling

Multiple Single Objective Pareto Sampling (MSOPS) [4] is a technique that allows
multiple single objective optimization searches to be run in parallel and therefore
exploit a larger effective working population. Each of the aggregated optimizations
is directed by its own vector of weights, or target vectors. Thus the algorithm uses a
matrix of target vectors to search in parallel. It is also possible to combine searches in
different directions and with different reference points, and searches using different
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aggregation functions all within a single optimization run. The key advantage is that
the algorithm does not rely on Pareto ranking to provide selective pressure. As the
target vectors are generally decided a priori, MSOPS provides an active probing of
the Pareto set, rather than passive discovery.

The operation of MSOPS is to generate a set of target vectors, T , and evaluate
the performance of every individual in the population, P , for every target vector,
based on a conventional aggregation method. As aggregation methods (e.g., weighted
min-max, ε-constraint, goal attainment) are very simple to process, the calculation
of each of the performance metrics is fast.

Thus, each of the members of the population set P has a set of scores, one for
each member of T , that indicate how well the population member satisfied the range
of target conditions. The scores are held in a score matrix, S, which has dimensions
||P || × ||T ||, where || · || indicates set cardinality. Each column of the matrix S
corresponds to one target vector (across the population P ). The aggregate fitness,
fi, of the ith member of P is calculated using equation 9, where fn(Oi,Vn,Zn) is the
aggregation function n with target vector Vn and reference point Zn for objective
vector Oi (which is the ith member of P ).

fi∈P = min
∀n∈T

(
fn(Oi,Vn,Zn)

min∀j 	=i∈P (fn(Oj ,Vn,Zn))

)

(9)

The flexibility of the approach is such that the target vectors can be arbitrary,
either generated to give full coverage of the objective space if no a priori domain
knowledge exists, or with some structure to target key elements of the search volume.
As the fitness combination method employed is based on the set of fixed target
vectors, the target vector set determines the final spread of the obtained solutions.
As a consequence, the efficiency of the algorithm is reduced in relation to the number
of unobtainable target vectors that do not pass through the feasible objective region.
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Fig. 23. 3D relative fitness surface
for point [0.7, 0.85] and the MSOPS
method with one moving and five ex-
isting objective vectors and using ten
Weighted Min-Max target vectors

Fig. 24. Relative isofitness contours
for point [0.7, 0.85] and the MSOPS
method with one moving and five ex-
isting objective vectors and using ten
Weighted Min-Max target vectors

Figures 23 and 24 show the relative fitness surface and contours for the MSOPS
algorithm using ten target vectors, referenced at the origin, and the Weighted Min-
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Max aggregation function. It is clear in Figure 24 that the relative fitness gradient
in the nondominated region is never counter to the objective directions and so will
provide rapid progress towards the Pareto front; however, the isofitness contours are
also not aligned to the true nondominated surface of the other population members;
rather, they are aligned to a combination of the target vectors and nondominated
surface. For example, point [0.8, 0.8] is nondominated and yet does not lie on the
same fitness contour as the other nondominated solutions as it is far from a target
vector. In contrast, point [0.9, 0.2] is closer to a target vector line and so has a better
fitness (however, it is still inferior to the test point [0.7, 0.85]). The result is that
the final population will cluster around the points where the target vectors cut the
Pareto front (or the nearest feasible point in a weighted min-max sense).
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Fig. 26. Plot of objective/decision
space for function (10). Circles are
VADS solutions, stars are Weighted
Min-Max solutions

Figure 25 shows the MSOPS relative isofitness contours when using the VADS
Aggregation metric. The VADS contours in Figure 25 are very complicated and it is
clear that the directions of the target vectors are a dominating factor in the descrip-
tion of the fitness surface. The VADS metric is designed for identifying the Objective
front profile, rather than just the Pareto front. Thus, highly concave and reentrant
surfaces may be probed with this metric. Unfortunately, the relative fitness gradient
in the nondominated regions are often not ideal, and optimization performance is
compromised in both bi-objective and many-objective problems.

Empirical studies have shown that running the MSOPS algorithm with both
Weighted Min-Max and VADS Aggregation will provide superior optimization per-
formance to VADS alone. When both metrics are combined, the weighted min-max
process dominates initially and minimizes the effects of reverse gradients in the
nondominated regions. As the algorithm converges, the VADS metric can help to
provide a more balanced search in difficult regions such as extreme convexities.
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3.3 Pareto Front Analysis

To demonstrate the use of RSO or MSOPS for analysis of the objective and Pareto
front, the Tanaka two-objective test function has been studied [9]:

O1 = x

O2 = y

0 ≥ −(x)2 −(y)2 + 1 + 0.1 cos

(

16 arctan

(
x

y

))

0.5 ≥ (x− 0.5)2 + (y − 0.5)2

0 ≤ x, y ≤ 1 (10)

Figure 26 shows the result of MSOPS using combined Weighted Min-Max and
VADS, applied to (10) with 51 target vectors (shown as dashed) and a population of
50 (run for 100 generations). The stars indicate the best set of solutions found with
the weighted min-max and the circles are the best VADS solutions. The 51 weight
vectors were generated a priori using the origin as a reference point and designed to
cover the objective space with equal angles between neighbouring vectors.

It is clear that points on the boundary of the objective front have been identified.
The ‘leading edge’ of the objective space is identified by VADS, while Weighted Min-
Max finds the Pareto front. The use of two aggregation functions is very useful for
analysing the behaviour of the objectives, rather than just the Pareto front. The area
around [0.1, 0.3] is a discontinuity in the Pareto front and as such has only been
identified in the VADS search. The corresponding plots of angular errors between
each target vector and the ‘best performing’ objective vector for VADS and min-max
respectively are shown in Figures 27 and 28, sorted according to the weights with V1

(the first element of the target vectors) increasing. It is clear that many of the target
vectors were satisfied with an error less than 2◦ to their nearest objective vector for
VADS; but there are areas with high errors for weighted min-max, indicating that
some target vectors could not be obtained exactly. These errors correspond to the
limits of the Pareto set in the VADS plot (the first and the last two target vectors in
Figure 27) and also to the discontinuities in the function in the weighted min-max
plot (around vectors 15 and 37 in Figure 28).

This example demonstrates that because we know a priori the regions of the
Pareto set that are being investigated, based on the set of target vectors, we can
quantify how close the optimization result came. With large numbers of objectives
though, large numbers of target vectors may be required if a detailed search is to be
performed across the entire objective space in one pass. It is simple, however, with
RSO or MSOPS to target a range of smaller areas with each run. The areas can be
of varying size and diverse in each run if necessary, providing extreme flexibility in
the optimization process and incorporation of designer preferences and interactive
decision-making. Strategies may be used to yield extra information about the Pareto
front, such as generating a set of target vectors that lie on a plane, allowing ‘slices’
through the Pareto front to be visualized to test for continuity.

3.4 Summary of Non-Pareto Methods

Both RSO and MSOPS are capable of generating objective fronts and Pareto fronts
in low- and high-dimensional objective spaces. However, the MSOPS process is more
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grees) of target vectors for their best
performing objective vector using the
VADS metric and function (10)

Fig. 28. Plot of angular errors (in de-
grees) of target vectors for their best
performing objective vector using the
weighted min-max metric and func-
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efficient in practice and is recommended if multiple target vectors are to be consid-
ered. The RSO algorithm is best when a single final optimal solution is to be gener-
ated. Interestingly, although the IBEA method has been described as using Pareto
concepts, the relationship to MSOPS is very strong and it could be argued that
MSOPS is an indicator-based algorithm that has not been restricted to identifying
the Pareto front alone.

As both RSO and MSOPS utilize aggregation functions, the wide variety of func-
tions available allow a comprehensive analysis of the objective and Pareto surface
to be performed.

4 Conclusions and Recommendations

Most optimization algorithms to date have focused on bi-objective problems, and
many, unfortunately, do not extend well to many-objective problems with four or
more objectives. This chapter has shown that the properties of the fitness assignment
process can be visualized and analysed to assess the suitability of a method for many-
objective optimization. Some of the fitness assignment methods may also be used to
aid analysis and visualisation of the objective and Pareto fronts.

It is unlikely that a simple fitness assignment function will provide selective
pressure towards the Pareto front while also providing an effective drive towards
a set of well-spread solutions. It is more likely that an influence or mechanism
external to the fitness assignment process may be needed to ensure that a satisfactory
distribution of solutions is obtained, such as clustering or automatic target vector
generation.

References

[1] P. J. Bentley and J. P. Wakefield. An analysis of multiobjective optimization
within genetic algorithms. Technical Report ENGPJB96, University of Hud-



Fitness Assignment Methods for Many-Objective Problems 329

dersfield, UK, 1996. Online: http://citeseer.ist.psu.edu/62443.html.
[2] L. Bradstreet, L. Barone, and L. While. Maximising hypervolume for selection

in multi-objective evolutionary algorithms. In IEEE Congress on Evolution-
ary Computation, CEC 2006, pages 1744–1751, Vancouver, Canada, July 2006.
IEEE.

[3] K. Deb. Multi-objective optimization using evolutionary algorithms. John Wiley
& Sons, 2001. ISBN 0-471-87339-X.

[4] E. J. Hughes. Multiple single objective pareto sampling. In Congress on Evo-
lutionary Computation 2003, pages 2678–2684, Canberra, Australia, 8–12 De-
cember 2003. IEEE.

[5] E. J. Hughes. Evolutionary many-objective optimisation: Many once or one
many? In IEEE Congress on Evolutionary Computation, 2005, volume 1, pages
222–227, Sept. 2005.

[6] B. Naujoks, N. Beume, and M. Emmerich. Multi-objective optimisation using
S-metric selection: application to three-dimensional solution spaces. In IEEE
Congress on Evolutionary Computation, CEC 2005, volume 2, pages 1282 –
1289, Edinburgh, UK, Sept. 2005. IEEE.

[7] R. C. Purshouse. Evolutionary many-objective optimisation: An exploratory
analysis. In The 2003 Congress on Evolutionary Computation (CEC 2003),
volume 3, pages 2066–2073, Canberra, Australia, 8–12 December 2003. IEEE.

[8] T. P. Runarsson and X. Yao. Stochastic ranking for constrained evolutionary
optimisation. IEEE Transactions on Evolutionary Computation, 4(3):284–294,
Sept. 2000.

[9] M. Tanaka, H. Watanabe, Y. Furukawa, and T. Tanino. Ga-based decision
support system for multicriteria optimization. In Conference on Systems, Man
and Cybernetics: Intelligent Systems for the 21st Century, volume 2, pages
1556–1561. IEEE, 22–25 October 1995.

[10] E. Zitzler. Evolutionary algorithms for Multiobjective Optimisation: Methods
and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH),
Zurich, Switzerland, Nov. 1999.

[11] E. Zitzler and S. Knzli. Indicator-based selection in multiobjective search. In
Parallel Problem Solving from Nature - PPSN VIII, volume LNCS 3242/2004,
pages 832–842, Birmingham, UK, 2004. Springer.



Modeling Regularity to Improve Scalability of
Model-Based Multiobjective Optimization
Algorithms

Yaochu Jin1, Aimin Zhou2, Qingfu Zhang2, Bernhard Sendhoff1, and Edward
Tsang2

1 Honda Research Institute Europe
Carl-Legien-Str. 30
63073 Offenbach, Germany
{yaochu.jin,bernhard.sendhoff}@honda-ri.de

2 Department of Computer Science
University of Essex
Wivenhoe Park, Colchester, CO4 3QS, UK
{azhou,qzhang,edward}@essex.ac.uk

Summary. Model-based multiobjective optimization is one class of metaheuris-
tics for solving multiobjective optimization problems, where a probabilistic model
is built from the current distribution of the solutions and new candidate solutions
are generated from the model. One main difficulty in model-based optimization is
constructing a probabilistic model that is able to effectively capture the structure
of the problems to enable efficient search. This chapter advocates a new type of
probabilistic model that takes the regularity in the distribution of Pareto-optimal
solutions into account. We compare our model to two other model-based multiob-
jective algorithms on a number of test problems to demonstrate that it is scalable to
high-dimensional optimization problems with or without linkage among the design
variables.

1 Introduction

The last decade has witnessed a great success of evolutionary algorithms and other
population-based meta-heuristic search methods in solving multiobjective optimiza-
tion problems [8]. Nevertheless, several challenges still remain to be addressed for
population-based search methods to deal with hard, real-world optimization prob-
lems. One of these challenges is algorithms’ ability to efficiently solve optimization
problems of a high search dimension, which is often known as the scalability of
optimization algorithms.
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For evolutionary multiobjective algorithms to be scalable to high search di-
mensions, they must be able to effectively take advantage of domain knowledge
of the problem at hand during the search. Unfortunately, major search operators of
conventional evolutionary algorithms, such as crossover and mutation, are not effi-
cient in taking problem-specific knowledge into account in search. To address this
weakness, several approaches have been suggested for incorporating domain knowl-
edge into evolutionary algorithms to guide the sampling process [13], among which
model-based optimization methods, such as the estimation of distribution algorithms
(EDAs) [6, 18], have widely been studied. It should be noticed that existing EDAs
have mainly been developed to solve scalar optimization problems, which are not
necessarily suited for solving multiobjective problems.

Another weakness of evolutionary algorithms that use crossover and mutation
for generating new candidate solutions is that they do not explicitly exploit the cor-
relation between design variables (also known as variable linkage) [10]. Model-based
algorithms are believed to be able to learn the linkage among variables. However,
the ability of learning linkage can be at the cost of scalability if the probabilistic
model is not chosen appropriately.

This chapter presents a methodology for incorporating additional knowledge
into building probabilistic models for solving continuous multiobjective problems.
The domain knowledge we use here is the regularity in the distribution of Pareto-
optimal solutions, which has largely been overlooked in developing evolutionary
multiobjective optimization algorithms. Since regularity is a general property for a
large class of multiobjective problems, the proposed framework is applicable to a
wide range of real-world problems.

The remainder of the chapter is organized as follows. A brief introduction to solv-
ing multiobjective optimization problems using a probabilistic model, together with
a short discussion on the main difficulties of model-based algorithms, is presented
in Section 2. Three model-based multiobjective optimization algorithms, including
the one that takes regularity into account, are described in detail in Section 3. Sec-
tion 4 provides the experimental setup, such as parameter settings of algorithms,
the test functions, and the performance indicators, for quantitatively evaluating the
performance of the algorithms. Comparison results of the three models with respect
to algorithms’ scalability and ability to handle variable linkages are presented in
Section 5. A summary and conclusions of the chapter are provided in Section 6.

2 Probabilistic Modeling for Multiobjective
Optimization

The basic idea of population-based search using a probabilistic model is to first
estimate the probability distribution of the solutions previously generated and to
then generate new candidate solutions by sampling the probabilistic model, as shown
in Fig. 1.

A large family of probabilistic models can be used to estimate the distribution
of continuous and discrete functions [18]. In this chapter, we limit our discussion to
continuous optimization problems, where Gaussians or a mixture of Gaussians are
employed to model the distribution of the function to be optimized.

It would be ideal if we could use a full joint probability distribution model, i.e., a
probabilistic model that considers dependency between all variables. Unfortunately,
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from the model
Sampling new solutions 

Fig. 1. A generic framework for model-based optimization algorithms using a pop-
ulation

accurate estimation of a full joint distribution model in a high-dimensional space
remains an open problem. In order to estimate the distribution accurately, a huge
number of data samples are needed, which is impractical in solving real-world prob-
lems due to the fact that calculation of the function value for a given design (often
known as fitness evaluation in evolutionary optimization) is computationally very
expensive. In this context, EDAs that require a huge population size are of very
limited practical importance.

Several techniques have been adopted to address the curse of dimensionality.
The simplest way to cope with high dimensionality is to neglect the linkage between
variables and build a univariate distribution model for each variable [22, 30]. Unfor-
tunately, such models are not able to capture the dependency between variables and
they are not recommendable if there are strong correlations between the variables.
One popular approach is to use factorized univariate or multivariate distributions,
which are able to capture the independence between the variables. A multivariate
factorized probability distribution is a probabilistic model in the form of a product of
probability density functions. Both univariate factorization [2, 19] and multivariate
factorization [2, 19, 3] have been employed for model-based optimization.

A natural extension to models consisting of a single factorized probability dis-
tribution is to use a weighted sum of single factorized distributions, which is usually
known as a mixture of Gaussians. Such models can often be obtained by dividing the
search space into a number of subspaces and then constructing a single factorized
distribution for each cluster [3]. This method is of particular interest for multimodal
scalar optimization and multiobjective optimization, where more than one solution
needs to be achieved.

Although multivariate factorization is able to capture the dependency among
at least two variables, it is not straightforward to select a model that is optimal
for a given problem [4]. Another approach to factorization is to map the high-
dimensional search space onto a latent space of a lower dimensionality, and then a
univariate or multivariate factorized distribution can be built. The mapping from
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the high-dimensional design space to the low-dimensional latent space can often be
realized using dimension reduction techniques such as principal component analy-
sis [1]. Model-based optimization algorithms using a distribution model in latent
space have been reported in [7, 27, 24]. One main difficulty is to determine the
dimension of the latent space.

2.1 Modeling Regularity in Multiobjective Optimization

As previously discussed, incorporation of knowledge into a search process helps to
improve the search performance, especially the scalability of the search algorithms to
high search dimensionality. In addition to domain knowledge that is specific to each
particular problem, regularity in the distribution of the Pareto-optimal solutions is
a nice property that holds for a large class of multiobjective optimization problems.
So far, this nice property has largely been overlooked. The importance of taking
advantage of regularity in evolutionary multiobjective optimization was first advo-
cated in [14], where it is suggested that the success of local search in multiobjective
optimization can most probably be attributed to the fact that local search is able to
implicitly exploit the regular distribution of Pareto-optimal solutions. In that work,
piecewise linear models are constructed in the design space using the nondominated
solutions achieved by an evolutionary algorithm. It has been demonstrated that the
quality of the solutions generated from the linear models are better than the original
solutions.

The regularity property can be induced from the Karush-Kuhn-Tucker condi-
tion [21, 26], which indicates that under certain smoothness conditions, the Pareto-
optimal set in the design space of a continuous multiobjective optimization problem
is an (m− 1)-dimensional piecewise continuous manifold, where m is the number of
the objectives.

The question now is how to efficiently exploit the regularity property using
model-based multiobjective optimization. Although it is believed that model-based
optimization is able to learn the problem structure, it must be pointed out that the
model’s ability to capture the problem structure heavily depends on the model in
use. This is particularly true for multiobjective optimization, where the final solution
is a Pareto front consisting of multiple solutions rather than a single optimum.

Most existing model-based multiobjective optimization algorithms for solving
continuous problems employ Gaussian distributions with few exceptions, e.g., in [24],
where a Voronoi mesh has been adopted. The most important a priori knowledge
that can be derived from the regularity condition is that the Pareto front in the
original n-dimensional search space can be modeled in an (m−1)-dimensional space
without any information loss, where n is the dimensionality of the search space; and,
in most cases, m % n. This knowledge removes exactly the main obstacle in latent-
variable-based models, where the dimension of the latent space must be specified.
Besides, knowing that the Pareto front is a principal curve or surface, we believe
that first-order or second-order polynomials might be more efficient than Gaussian
models in modeling the regular distribution of the Pareto-optimal solutions.

Take bi-objective optimization problems as an example. The regularity property
has two implications. First, the Pareto front can be described by one or a few sections
of a one-dimensional model, regardless how large the design space is. Second, a
linear curve is more efficient in leading the population to the final Pareto front, as
illustrated in Fig. 2.
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Fig. 2. Modeling Pareto set using (a) linear models; (b) Gaussian models

The idea of modeling regularity in model-based multiobjective optimization has
most recently been exploited by the authors, and very competitive results have been
achieved [31, 32, 33, 34] compared to some of the state-of-the-art evolutionary mul-
tiobjective optimization methods such as NSGA-II [9], GDE3 [17], and MIDEA [5].
In the following, we are going to compare one model-based multiobjective algorithm
that exploits regularity to two other model-based multiobjective optimization algo-
rithms with respect to scalability with search dimension, ability to handle variable
linkage, and sensitivity to population size.

3 Three Model-Based Algorithms

3.1 Regularity-Based Latent Principal Curve Model (LPCM)

Modeling in a latent space is an attractive idea because the dimension of the latent
space is usually much lower than that of the design space. According to the regularity
condition, the Pareto front of an m-objective optimization problem can be modeled
in an (m− 1)-dimensional space. For this purpose, the local principal curve analysis
(LPCA) algorithm [15] has been employed. One elegant property of LPCA is that
it simultaneously groups the population into a number of clusters while mapping it
from the n-dimensional design space to the (m− 1)-dimensional latent space.

The points in the kth cluster (denoted by Ck) can be described by a uniform
distribution on an (m− 1)-dimensional manifold Mk:

P k(S) =

{
1

V k , if S ∈ Mk,
0, else

(1)

where S is an (m − 1)-dimensional random vector in the latent space, V k is the
volume of Mk bounded by

ak
i ≤ si ≤ bk

i , i = 1, · · · , (m− 1), (2)

and

ak
i = min X∈Ck (X − X̄k)T Uk

i , (3)

bk
i = max X∈Ck (X − X̄k)T Uk

i , (4)
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where X̄k is the mean of the points in Ck, and Uk
i is the ith principal component

of the data in cluster Ck.
While the uniform distribution defined in Eq. (1) is used to capture the regularity

(centroid) in the distribution of the population, local dynamics of the population is
described by an n-dimensional zero-mean Gaussian distribution in the design space:

Nk(X) =
1

(2π)n/2|Σk|n/2
exp

{

−1

2
XT ΣkX

}

, (5)

where Σk = δk I, I is an n× n dimensional identity matrix, and δk is calculated by

δk =
1

n−m + 1

n∑

i=m

λk
i , (6)

where λk
i is the ith largest eigenvalue of the covariance matrix of the points in cluster

k. Here, we assume that the inequality n > m − 1 always holds. An illustration of
the principal curve and the Gaussian models in a one-dimensional latent space is
provided in Fig. 3, where the population is divided into two clusters.

Cluster 1 Cluster 2

Fig. 3. Modeling the distribution of the population using a uniformly distributed
principal curve and a Gaussian perturbation

During the sampling process, the probability at which the model of cluster k is
chosen is determined by

p(k) =
V k

∑K
k=1 V k

, (7)

where V k is the volume of the (m− 1)-dimensional manifold. In the case of a curve,
it is the length of the curve.

The sampling process consists of three steps. In the first step, a point is generated
on the (m− 1)-dimensional manifold Mk according to Eq. (1), and is then mapped
onto the n-dimensional design space. Assume S is an (m − 1)-dimensional random
vector generated in Mk for the kth cluster; it is mapped onto the n-dimensional
design space in the following way, if the manifold Mk is a first-order principal curve:

X1 = Θk
0 + Θk

1 S, (8)

where X1 is an n-dimensional random vector, Θk
0 is the mean of the data in cluster

C(X)k, and Θk
1 is an n× (m− 1)-dimensional matrix, composed of the eigenvectors

corresponding to the (m− 1) largest eigenvalues.
In the second step, an n-dimensional random vector X2 is generated from the

Gaussian distribution defined in Eq. (5). Finally, the following new candidate solu-
tion is generated:

X = X1 + X2. (9)

This process continues until all offspring are generated.



Modeling Regularity to Improve Scalability 337

3.2 Univariate Factorized Gaussian Model (UGM)

The basic idea for using a univariate factorized normal distribution for modeling the
population has been considered in [5]. Before constructing the models, the population
is divided into K clusters. For this purpose, the leader clustering algorithm [12] is
employed, as suggested in [5]. In this clustering algorithm, it is not necessary to
define the number of clusters; however, a threshold that defines the radius of the
clusters must be given, which implicitly determines the number of clusters. One
major drawback of the leader algorithm is that the clustering result is sensitive
to the choice of the initial cluster centre (leader). For cluster k, k = 1, 2, ..., K, a
Gaussian model is then constructed for each search dimension:

pk
i (xi) =

1

δk
i

√
2π

exp

{

− (xi − μk
i )2

2(δk
i )2

}

, (10)

where μk
i and δk

i are the mean and the standard deviation of the Gaussian model for
variable i = 1, ..., n. The mean and standard deviation of the univariate Gaussian
distribution for cluster k can be calculated according to the individuals that are
assigned to the cluster.

During the sampling process, one of the K clusters is chosen randomly with
probability 1/K. For the chosen cluster, one new candidate solution is generated
using the n Gaussian models for each design variable. This procedure repeats until
all the offspring solutions are generated.

3.3 Marginalized Multivariate Gaussian Model (MGM)

Univariate factorized Gaussian models neglect any correlation between the vari-
ables. As a result, the model cannot effectively learn the problem structure if there
is dependency among the variables. To address this problem, a joint Gaussian dis-
tribution model is considered in this model. However, building an accurate full joint
distribution model in a high-dimensional space is almost intractable. For this reason,
the population is first grouped into a number clusters and then a joint distribution
model is built for each cluster. To cluster the population, the k-means clustering al-
gorithm [12] is adopted. Therefore, the number (K) of clusters needs to be predefined
by the user.

For the kth cluster, the following joint distribution model is constructed:

pk(X) =
1

(2π)n/2|Σk|n/2
exp

{

−1

2
(X − Λk)T (Σk)−1(X − Λk)

}

, (11)

where X is an n-dimensional design vector, Λk is an n-dimensional vector of the
mean value, and Σk is an n × n covariance matrix estimated by the individuals in
the kth cluster.

Different from the univariate factorized model, the probability of sampling the
model of the kth cluster is calculated as follows:

p(k) =
Nk

∑K
k=1 Nk

, (12)

where Nk is the number of individuals in the kth cluster.
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3.4 The General Algorithm Framework

For a fair comparison, all three algorithms use the same selection strategy, i.e., the
MaxiMin sorting selection algorithm suggested in [28], which is a variant of the
crowded nondominated sorting selection proposed in [9]. The first steps in the Max-
iMin sorting are the same as those in the crowded nondominated sorting. First, the
parent and offspring populations are combined. Second, the combined population
is sorted according to the nondominance ranks. During the ranking, nondominated
solutions in the combined population are assigned with a rank 1, which belongs to
the first nondominated front. These individuals are removed temporarily from the
population and the nondominated individuals in the rest of the population, which
consists of the second nondominated front of the population, are identified, and
assigned a rank 2. This procedure repeats until all individuals in the combined pop-
ulation are assigned a rank from 1 to R, assuming that R nondominated fronts can
be identified in total. Instead of calculating the crowding distance as done in NSGA-
II, selection starts directly after nondominated sorting. During selection, solutions
on the first nondominated front are passed to the parent population of the next
generation. If the number of solutions on the first nondominated front is smaller
than the population size, those on the second nondominated front are moved to the
parent population. However, it can happen that only some of the solutions on a
nondominated front can be selected.

Let us assume there are L solutions on the jth nondominated front, and only M
solutions are to be selected, where M < L. In NSGA-II, M solutions with the largest
crowding distances are selected. In the MaxiMin selection method, the extreme
solutions on the concerned nondominated front are selected. Then, the solutions that
have the maximal distance to the selected solutions from the same nondominated
front are selected first. This process is continued until the parent population is filled
up. An illustrative example is provided in Fig. 4.

Assume that we need to select ten solutions from 20 in the combined population.
We first select the six solutions on the first nondominated front. On the second non-
dominated front, there are six solutions, from which four will be selected. According
to the MaxiMin method, the two extreme solutions A and B are first selected. Then,
solution C is selected because the minimal distance from solution C to those selected
from the second nondominated front (A and B) is the largest. Afterwards, solution
D is selected because its minimal distance to the selected solutions (A, B, and C)
is the maximal. It has been shown that the MaxiMin approach can lead to a more
diverse population with a lower computational complexity compared to the crowded
nondominated sorting selection method [28].

It should be noted that the reproduction strategy in our work is also different
from that in MIDEA [5]. In this work, all solutions in the parent population are used
to construct the probabilistic model, whereas in MIDEA only a portion of individuals
in the parent population is used. In addition, the number of new candidate solutions
(offspring) generated from the model equals the number of parents, while in MIDEA
only those solutions that are not used in model building are replaced by newly
generated offspring.

A generic diagram of the model-based multiobjective optimization algorithms
studied in this work is presented in Fig. 5.
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Fig. 5. A generic diagram of the model-based optimization algorithms

4 Experimental Setup

4.1 Parameter Settings

To investigate the scalability of the algorithms’ performance with the search di-
mension, we have performed simulations on the test problems with dimensions of
10, 20, 30, 40, 50, 60, 70, 80, 90, 100. The sensitivity of the search performance to the
size of the population is also studied. To this end, we have used population sizes of
20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 400, 600, 800, and 1, 000. The baseline for
comparison is the maximum number of fitness evaluations, which is listed in Table 1.

In UGM, the clustering of the population is conducted in the objective space
using the leader algorithm, as recommended in [5]. The threshold used in clustering
is set to 0.2, and a maximum of ten clusters is allowed. For MGM, the population
is clustered using the k-means algorithm, and the cluster number is set to 3 if the
population size is smaller than or equal to 50; otherwise, the cluster number is set
to 5. Note, however, that clustering for MGM is done in the design space. The
reason why population clustering is carried out in different spaces is that the leader
algorithm produces better results in the objective space while the k-means algorithm
shows more stable results in the parameter space.
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In LPCM, the clustering of the population is conducted using the local principal
component analysis algorithm, where the number of clusters is predefined to 3 for a
population size smaller than or equal to 50. In the case of a population size larger
than 50, the number of clusters is defined to be 5.

Table 1. Maximum Evaluations

Pop Size Max Evaluation Max Gen
20 20000 1000
30 30000 1000
40 40000 1000
50 50000 1000
60 30000 500
70 35000 500
80 40000 500
90 45000 500
100 50000 500
200 60000 300
400 60000 150
600 60000 100
800 60000 75
1000 60000 60

4.2 Test Functions

The performance of the algorithms is studied on six test functions. Three of them are
taken directly from the widely used ZDT test functions [35], namely, ZDT1, ZDT2,
and ZDT3, whose Pareto fronts are convex, concave and discontinuous, respectively.
Note that the ZDT test functions are slightly modified so that the Pareto front in
the design space is shifted to

x2 = · · · = xn = 0.2, x1 ∈ [0, 1].

In the ZDT test functions, there is no dependency among the design variables. To
investigate how the algorithms can deal with variable linkage, three additional test
functions derived from the ZDT test functions are also considered, termed ZDT1.2,
ZDT2.2, and ZDT3.2. The Pareto front of these three test functions in the objective
space is completely the same as the corresponding ZDT functions. However, there is
a nonlinear dependency between the design variables. The mathematical descriptions
of the six test functions are presented in Table 2.

4.3 Performance Indicators

To evaluate the performance of the algorithms, we adopted two performance in-
dicators(PIs). The first PI is the inverted generational distance (IGD) [25], which
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Table 2. Test Instances

Test function Search space Objectives

ZDT1 [0, 1]n f1(x) = x1

f2(x) = g(x)[1−
√

f1(x)/g(x)]

g(x) = 1 + 9(
n∑

i=2

(xi − 0.2)2)/(n− 1)

ZDT2 [0, 1]n f1(x) = x1

f2(x) = g(x)[1− (f1(x)/g(x))2]

g(x) = 1 + 9(
n∑

i=2

(xi − 0.2)2)/(n− 1)

ZDT3 [0, 1]n f1(x) = x1

f2(x) = g(x)[1−
√

f1(x)/g(x)− x1
g(x)

sin(10πx1)]

g(x) = 1 + 9(
n∑

i=2

(xi − 0.2)2)/(n− 1)

ZDT1.2 [0, 1]n f1(x) = x1

f2(x) = g(x)[1−
√

x1/g(x)]

g(x) = 1 + 9(
n∑

i=2

(x2
i − x1)

2)/(n− 1)

ZDT2.2 [0, 1]n f1(x) =
√

x1

f2(x) = g(x)[1− (f1(x)/g(x))2]

g(x) = 1 + 9(
n∑

i=2

(x2
i − x1)

2)/(n− 1)

ZDT3.2 [0, 1]n f1(x) = x1

f2(x) = g(x)[1−
√

x1/g(x)− x1
g(x)

sin(10πx1)]

g(x) = 1 + 9(
n∑

i=2

(x2
i − x1)

2)/(n− 1)

is derived from the generational distance (GD) suggested in [29, 9]. IGD can be
expressed as follows:

D(P, P ∗) =
1

|P ∗|
∑

x∈P∗
||x− x′||2, (13)

where P is the nondominated set achieved by the optimization algorithm, P ∗ is
a reference Pareto-optimal set uniformly sampled from the true Pareto front, x is
a solution in reference set P ∗, and x′ is a solution in set P that has the minimal
distance to x. If the reference set represents the true Pareto front adequately well,
IGD can effectively measure the accuracy as well as the diversity of the achieved set
P . The inverted generational distance is called D-metric hereafter.

The second PI we adopted in the comparison is the difference of the hypervolume
(I-Metric for short) between the reference set P ∗ and the achieved set P [16]:
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I−
H(P ) = IH(P ∗)− IH(P ), (14)

where IH(P ∗) and IH(P ) are the hypervolumes of P and P ∗, respectively.

5 Simulation Results

5.1 Scalability with Search Dimension: Without Dependency

The first set of simulations has been performed to study the scalability of the three
algorithms with search dimension for a given population size (100) on the three
test functions without variable linkage. The simulation results on ZDT1, ZDT2, and
ZDT3 are provided in Figs. 6, 7, and 8, respectively, where the best and worst
Pareto fronts from 30 independent runs according to the D-metrics are plotted. It
can be seen from the figures that the results from LPCM, UGM, and MGM, which
are presented on the left, the middle, and the right panels of the figures, are quite
similar when the dimension changes from 20 to 100, though degradation in the
performance of the MGM is a little more serious than that of LPCM and UGM.
This observation can be confirmed by the D-metric and the I-metric of the results
listed in Tables 3 and 4, respectively, in which the mean and standard deviation of
30 runs are listed.

The results indicate that both LPCM and UGM have very good scalability with
search dimension for problems without variable linkage. It is worth noting that
the performance of MGM is also quite good, probably due to the fact that the
distribution of the Pareto fronts in ZDT1, ZDT2, and ZDT3 is quite easy to model.

Table 3. Mean and standard deviation of the D-metric for test functions without
variable linkage

Instance Method Search Dimension
20 40 60 80 100

LPCM 0.0043±0.0001 0.0044±0.0001 0.0047±0.0001 0.0051±0.0001 0.0057±0.0002
ZDT1 UGM 0.0043±0.0002 0.0044±0.0002 0.0046±0.0002 0.0049±0.0002 0.0053±0.0002

MGM 0.0046±0.0002 0.0046±0.0002 0.0052±0.0004 0.0069±0.0011 0.0091±0.0013
LPCM 0.0040±0.0000 0.0042±0.0001 0.0045±0.0001 0.0048±0.0001 0.0054±0.0002

ZDT2 UGM 0.0044±0.0001 0.0045±0.0001 0.0047±0.0002 0.0051±0.0002 0.0056±0.0002
MGM 0.0045±0.0006 0.0043±0.0002 0.0048±0.0005 0.0061±0.0010 0.0096±0.0021
LPCM 0.0051±0.0000 0.0053±0.0001 0.0056±0.0001 0.0060±0.0001 0.0069±0.0003

ZDT3 UGM 0.0054±0.0003 0.0058±0.0002 0.0069±0.0006 0.0080±0.0008 0.0098±0.0012
MGM 0.0056±0.0003 0.0055±0.0003 0.0058±0.0004 0.0064±0.0005 0.0081±0.0011

5.2 Scalability with Search Dimension: With Dependency

Simulations are also conducted on the three test functions with nonlinear linkage
among the design variables. The best and worst Pareto fronts from 30 independent
runs according to the D-metric for the three test functions, ZDT1.2, ZDT2.2, and
ZDT3.2 are presented in Figs. 9, 10, and 11, respectively. From the figures (left
panel), we find that there is a slight performance decrease of LPCM on ZDT1.2 and
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Fig. 6. Best (squares) and worst (circles) nondominated set on ZDT1. Population
size 100. The number of design variables ranges from 20 (top row) to 100 (bottom
row)
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Fig. 7. Best (squares) and worst (circles) nondominated set on ZDT2. Population
size 100. The number of design variables ranges from 20 (top row) to 100 (bottom
row)
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Fig. 8. Best (squares) and worst (circles) nondominated set on ZDT3. Population
size 100. The number of design variables ranges from 20 (top row) to 100 (bottom
row)
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Table 4. Mean and standard deviation of the I-metric for test functions without
variable linkage

Instance Method Search Dimension
20 40 60 80 100

LPCM 0.0048±0.0001 0.0058±0.0001 0.0069±0.0002 0.0083±0.0004 0.0098±0.0005
ZDT1 UGM 0.0048±0.0002 0.0056±0.0003 0.0064±0.0003 0.0076±0.0004 0.0087±0.0004

MGM 0.0061±0.0008 0.0061±0.0006 0.0081±0.0011 0.0120±0.0022 0.0163±0.0023
LPCM 0.0049±0.0001 0.0061±0.0002 0.0075±0.0003 0.0090±0.0004 0.0108±0.0006

ZDT2 UGM 0.0050±0.0001 0.0059±0.0002 0.0071±0.0003 0.0083±0.0004 0.0099±0.0005
MGM 0.0075±0.0021 0.0063±0.0010 0.0083±0.0014 0.0120±0.0025 0.0202±0.0046
LPCM 0.0043±0.0003 0.0080±0.0008 0.0129±0.0014 0.0185±0.0018 0.0265±0.0033

ZDT3 UGM 0.0093±0.0061 0.0186±0.0040 0.0311±0.0058 0.0428±0.0079 0.0565±0.0096
MGM 0.0151±0.0041 0.0107±0.0033 0.0147±0.0034 0.0210±0.0044 0.0328±0.0075

ZDT2.2, comparing its performance on the three ZDT functions without variable
linkage. The performance decrease on ZDT3.2 seems more obvious; nevertheless, the
best achieved Pareto front still approximates the true Pareto front very well. This
indicates that the performance of LPCM scales well with the search dimension.

If we look at the results of UGM (middle panel), the performance becomes very
poor. For all the three test functions, no single run is able to achieve a complete
Pareto front, regardless of the search dimension. This strongly indicates that UGM
is not suited for solving problems in which variable linkage exists.

We can see from the figures (right panel) that for test functions ZDT1.2 and
ZDT2.2, MGM is able to achieve the entire Pareto front when the search dimension
is low (20). However, the performance degrades seriously as the search dimension
increases. This suggests that although MGM is able to capture the linkage between
the design variables, the modeling accuracy decreases rapidly when the dimension
becomes high.

The above observations made from the plot of the Pareto fronts can be confirmed
by the D-metric and the I-metric of the results form 30 independent runs, as listed
in Tables 5 and 6, respectively.

Table 5. Mean and standard deviation of the D-metric for test functions with
variable linkage

Instance Method Search Dimension
20 40 60 80 100

LPCM 0.0045±0.0001 0.0049±0.0001 0.0058±0.0011 0.0091±0.0044 0.0120±0.0072
ZDT1.2 UGM 0.1494±0.0266 0.2165±0.0213 0.2443±0.0224 0.2552±0.0134 0.2676±0.0151

MGM 0.0138±0.0179 0.2032±0.0540 0.3526±0.0130 0.3624±0.0133 0.3637±0.0125
LPCM 0.0042±0.0001 0.0046±0.0001 0.0051±0.0002 0.0063±0.0033 0.0070±0.0020

ZDT2.2 UGM 0.1845±0.0232 0.2222±0.0176 0.2408±0.0106 0.2512±0.0114 0.2508±0.0119
MGM 0.0339±0.0269 0.1916±0.0236 0.2626±0.0125 0.2690±0.0100 0.2718±0.0119
LPCM 0.0051±0.0001 0.0109±0.0211 0.0077±0.0027 0.0103±0.0032 0.0126±0.0037

ZDT3.2 UGM 0.0554±0.0296 0.0975±0.0284 0.1186±0.0090 0.1221±0.0014 0.1232±0.0008
MGM 0.0868±0.0370 0.1059±0.0700 0.1428±0.0603 0.1690±0.0288 0.1993±0.0329

5.3 Sensitivity to Population Size

In solving hard real-world problems, the computational cost is often very high. One
common approach is to parallelize the fitness evaluation using a computer cluster
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Fig. 9. Best (squares) and worst (circles) nondominated set on ZDT1.2. Population
size 100. The number of design variables ranges from 20 (top row) to 100 (bottom
row)
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Fig. 10. Best (squares) and worst (circles) nondominated set on ZDT2.2. Population
size 100. The number of design variables ranges from 20 (top row) to 100 (bottom
row)
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Fig. 11. Best (squares) and worst (circles) nondominated set on ZDT3.2. Population
size 100. The number of design variables ranges from 20 (top row) to 100 (bottom
row)
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Table 6. Mean and standard deviation of the I-metric for test functions with vari-
able linkage

Instance Method Search Dimension
20 40 60 80 100

LPCM 0.0057±0.0001 0.0073±0.0005 0.0102±0.0029 0.0173±0.0090 0.0223±0.0134
ZDT1.2 UGM 0.1494±0.0224 0.2072±0.0176 0.2323±0.0182 0.2434±0.0117 0.2551±0.0126

MGM 0.0241±0.0291 0.2020±0.0422 0.3293±0.0117 0.3391±0.0121 0.3425±0.0114
LPCM 0.0066±0.0004 0.0091±0.0006 0.0115±0.0011 0.0160±0.0106 0.0195±0.0078

ZDT2.2 UGM 0.2957±0.0249 0.3354±0.0173 0.3542±0.0101 0.3647±0.0107 0.3648±0.0114
MGM 0.0869±0.0614 0.3053±0.0233 0.3751±0.0117 0.3822±0.0091 0.3854±0.0105
LPCM 0.0065±0.0029 0.0402±0.0562 0.0423±0.0221 0.0649±0.0212 0.0795±0.0239

ZDT3.2 UGM 0.1778±0.0689 0.2832±0.0503 0.3188±0.0124 0.3282±0.0049 0.3319±0.0029
MGM 0.2602±0.0834 0.3003±0.1485 0.3895±0.1072 0.4487±0.0613 0.5098±0.0552

or even grid computing techniques [20]. Nevertheless, it is always desirable that the
performance of an algorithm not be sensitive to the population size. To check the
algorithms’ sensitivity to population size, we compared the performance of LPCM,
UGM and MGM using different population sizes, ranging from 20 to 1,000; refer
to Table 1. As we can see from Table 1, the allowed maximum number of fitness
evaluations for large population sizes is larger than that allowed for small population
sizes to improve the convergence. However, our simulation results still suggest that
an overly large population size is not desirable when the number of fitness evaluations
is limited.

The results in terms of the D-metric are presented in Figs. 12, 13, and 14 for
ZDT1, ZDT2, and ZDT3, respectively.

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

LPCM

dimension

D
−

m
et

ric

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

UGM

dimension

D
−

m
et

ric

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

MGM

dimension

D
−

m
et

ric

Fig. 12. Results on ZDT1 using different population sizes

From the figures, we can observe that among the three algorithms, LPCM shows
very robust performance for a wide range of population sizes on the ZDT functions
without variable linkage, though a too large population size is not recommended for
solving high-dimensional problems. The UGM method, on the other hand, performs
quite well with a medium to large population size. However, a population smaller
than 60 turns out to be insufficient for the UGM. By contrast, MGM is quite sensitive
to the population size, and a population size smaller than 60 or larger than 200
should not be used.

Simulation results on the test functions with variable linkage are plotted in
Figs. 15, 16, and 17, respectively.
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Fig. 13. Results on ZDT2 using different population sizes
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Fig. 14. Results on ZDT3 using different population sizes
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Fig. 15. Results on ZDT1.2 using different population sizes

LPCM distinguishes itself from the other two algorithms more on the test func-
tions with variable linkage. In solving problems with variable linkage, LPCM still
performs very well with different population sizes for high-dimensional problems. On
ZDT3.2, the performance is not very satisfactory for small population sizes. Con-
trary to that, UGM performs poorly in most cases, except for the case in which a
very large population size is used for a low-dimensional problem. The bad perfor-
mance of UGM can obviously be attributed to the fact that UGM is not able to
efficiently solve problems with variable linkage. From the figures, we can see that
MGM works well on low-dimensional problems, though it is quite clear that MGM
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Fig. 16. Results on ZDT2.2 using different population sizes
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Fig. 17. Results on ZDT3.2 using different population sizes

is not suited for solving high-dimensional problems with variable linkage, despite
the fact that it is theoretically able to capture correlations between variables.

6 Conclusion

This chapter presents a model-based multiobjective optimization method that is able
to explicitly take advantage of the regularity in the distribution of Pareto-optimal
solutions. By using the regularity condition, the dimensionality of the latent space
in which the model is constructed is greatly reduced. In addition, a principal curve
or surface model is used instead of a joint Gaussian distribution or a factorized
Gaussian distribution model.

Simulation studies on comparing the scalability of the three multiobjective op-
timization algorithms, i.e., LPCM, UGM, and MGM, are conducted on six test
problems with or without linkage among the design variables. From the simulation
results, we demonstrate that LPCM exhibits excellent scalability to the increase in
search dimension for problems with or without variable linkage. We also show that
LPCM is in principle insensitive to population size ranging from 20 to 1,000. We
show that UGM is also scalable to the search dimension for problems without linkage
among design variables. However, the performance of UGM deteriorates drastically
when linkage exists among the design variables.

It is somehow surprising that MGM also shows quite good performance on high-
dimensional test problems without variable linkage, though it is more sensitive to
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the population size than LPCM and UGM. While MGM shows better performance
than UGM on low-dimensional problems with variable linkage, its performance is as
poor as that of UGM for high-dimensional problems, regardless of the population
size used.

From our comparative studies, we conclude that explicitly taking the regular-
ity in the distribution of Pareto-optimal solutions into account is very helpful in
improving the scalability of model-based multiobjective optimization algorithms.

Our future work is to compare the performance of the algorithms on more
complex test problems where stronger correlations exist, such as those suggested
in [23, 11]. In addition, the scalability of the algorithms to the number of objec-
tives (see pp. 307–329 and pp. 1–5, this volume) is also an interesting issue to
further investigate.
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Summary. We consider a class of optimization problems wherein the quality of
candidate solutions is estimated by their performance on a number of tests. Clas-
sifier induction, function regression, and certain types of reinforcement learning,
including problems often attacked with coevolutionary algorithms, can all be seen
as members of this class. Traditional approaches to such test-based problems use a
single objective function that aggregates the scores obtained on the tests. Recent
work, by contrast, argues that useful finer-grained distinctions between candidate
solutions are obtained when each test is treated as a separate objective, and that
algorithms employing such multiobjective comparisons show favourable behaviour
relative to those which do not. Unfortunately, the number of tests can be very large.
Since it is well-known that high-dimensional multiobjective optimization problems
are difficult to handle in practice, the question arises whether the multiobjective
treatment of test-based problems is feasible. To begin addressing this question, we
examine a method for reducing the number of dimensions without sacrificing the
favorable properties of the multiobjective approach. Our method, which is a form
of dimension extraction, finds underlying objectives implicit in test-based problems.
Essentially, the method proceeds by placing the tests along the minimal number of
coordinate axes that still preserve ordering information among the candidate solu-
tions. Application of the method to the strategy set for several instances of the game
of Nim suggest the technique has significant practical benefits: a type of compression
of the set of objectives is observed in all tested instances. Surprisingly, we also find
that the information contained in the arrangement of tests on the coordinate axes
reveals important information about the structure of the underlying problem.
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1 Introduction

Certain problem domains encountered in machine learning and computational in-
telligence applications involve an evaluation of candidate solutions that is derived
from a set of tests. The outcomes of a candidate on these tests are integrated into
a scalar or vector which reflects different aspects of the quality of the individual,
and which is used to make decisions about keeping, discarding, or modifying that
candidate. These domains are called test-based problems [6].

Before introducing the ideas that follow, it will be useful to carry forward several
illustrative examples of test-based problems:

• Classifier Induction: We are given a set of labeled data points and asked to
produce a model, a neural network for example, that classifies them as well as
possible. We fix a network topology and consider the task as a search through
M , the space of possible weights for that topology. In other words, we seek
a particular set of weights m∗ ∈ M which minimizes some classification error
over the given data set. Each data point can be thought of as a test which an
m ∈ M either passes (classifies correctly) or fails (classifies incorrectly).3 The
error measure is an integration of this test information into a final evaluation of
m.

• Function Regression: We are given a set of coordinates (xi, yi) representing
the inputs and outputs of an unknown function and are tasked with finding a
function that produces those pairs. We fix a space F of functions (for instance,
genetic programs) and construe the task as a search through F for an f∗ which
minimizes a measure like the RMS error. As with the classifier induction example,
we can view each pair (xi, yi) as a test of a candidate function f ∈ F . f ’s outcome
on test xi is its error |f(xi) − yi|. These individual errors are then integrated
over all pairs to form an evaluation of f , e.g., its RMS error.

• Learning Games of Strategy: We aim to learn a competent strategy for an
instance of the game of Nim. Let P1 be the set of first-player strategies and P2

the set of second-player strategies. In order to see how good a particular strategy
r ∈ P1 is, we play it against a variety of second-player opponents s ∈ P2. Each
opponent s can be thought of as a test of r: r plays s with the outcome being a
win or loss for r. These outcomes across many P2 players can then be integrated
into an evaluation of r, for instance its worst-case outcome.

• Coevolutionary Algorithms: Roughly speaking, coevolutionary algorithms
search through instances of two or more distinct roles, utilizing individuals play-
ing one role to evaluate individuals playing the other. A seminal example is
Hillis’ coevolution of sorting networks (one role) against sets of unsorted lists (a
second role which Hillis called parasites) [11]. Each possible sorting network is a
candidate solution whose sorting abilities can be partially tested by a parasite.
To put it differently, a sorting network’s evaluation is derived from its outcomes
against a number of parasites acting as tests.

The connections between coevolution and multiobjective optimization are worth
exploring in more detail. Recent work examining these connections has produced a
theory which suggests that any test-based problem can be viewed as a multiobjective

3 In practice we could further differentiate between false positive and false negative
outcomes, but for the sake of the example we are simplifying matters.
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optimization problem. In this chapter, we aim to explore some of the outcomes of
this point of view. In the remainder of this section we will explore the intellectual
source of these ideas and then give an overview of the rest of the chapter.

It is worth pointing out that the method described here can be viewed as per-
forming dimension extraction in the sense of [4]. The notion of dimension reduction
has recently been applied in other work in Evolutionary Multiobjective Optimiza-
tion; see, for instance, [7] and [15]. Also see the discussion of feature selection and
feature extraction in the chapter by Brockhoff et al. in this volume.

1.1 Coevolution, Test-Based Problems and MOO

Traditionally, coevolutionary algorithms have integrated outcomes against multiple
tests into a single fitness value, often by averaging or maximizing over all values.4

That is, a candidate solution interacts with several test individuals and is then given
a fitness that is an average or the maximum of its results against these tests (for a
discussion on treating interactions in Cooperative Coevolution as tests, see [3]).

Both [8] and [13] argue that a finer-grained comparison can be made by view-
ing each test as its own objective. Rather than averaging or maximizing over all
outcomes, the idea is to treat each outcome as a separate component of a vector of
outcomes. Then, to compare two candidate solutions, the same Pareto dominance
or Pareto covering relations utilized in multiobjective optimization are employed.

The process of transforming single-objective problems into multiobjective prob-
lems by separating the different criteria contributing to the quality of individuals
has been named multiobjectivization [12]. The application of this idea within coevo-
lution is called Pareto coevolution. In Pareto-coevolution, each test in the population
is treated as if it were an objective in a massive multiobjective optimization prob-
lem.5 For instance, if there were a population of 100 parasites in the sorting network
example, a Pareto coevolutionary approach might evaluate a sorting network with
a 100-dimensional vector of numbers, each number an outcome against a different
parasite. Initial approaches to Pareto coevolution bought finer-grained comparison
information at the cost of large outcome vectors like this; increasing the dimen-
sionality of the objective space generally complicates the search problem. In other
words, while Pareto coevolution has advantages, for instance its mitigation of cy-
cling dynamics, large outcome vectors introduce new problems; see also the chapter
by Ficici in this volume. As a result, there has been a drive to reduce the size of
these vectors without losing too much of what was gained by using them in the first
place.

Along these lines, [6] presents empirical results suggesting that a Pareto co-
evolutionary algorithm could find what were dubbed the underlying objectives of a
problem. These are hypothetical objectives that determine the performance of can-
didate solutions without the need to test candidates against all possible tests. [6]
applies a two-population Pareto coevolutionary algorithm, DELPHI, to instances of

4 Simple fitness proportional coevolutionary algorithms typically use a (weighted)
average of outcomes as fitness. Cooperative Coevolutionary algorithms sometimes
use the maximum outcome as fitness value [14].

5 A critical difference from evolutionary multiobjective optimization being that in
coevolution not all objectives are in hand in advance, but rather are discovered
during search.
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a class of abstract test games. Figures 13 and 15 of that work suggest that evaluator
individuals6 evolve in a way which tracks the underlying objectives of the prob-
lem domain. The results suggest that the algorithm is sensitive to the presence of
underlying objectives even though it is not given explicit information about those
objectives. [2] makes a similar observation, also empirical though using a different
algorithm; Fig. 5 of that work suggests a similar sensitivity to underlying objectives.
In both cases, clusters of individuals, rather than single individuals, move along or
collect around the objectives of the problem domain. The problem domains consid-
ered, namely numbers games [18], were designed to have a known and controllable
number of objectives, but the algorithms used in these two studies did not rely on
that fact. The work therefore raises the question of whether underlying objectives
exist in all problem domains, and whether search learning algorithms can discover
them.

A partial answer to this question is found in the notion of coordinate system [4].
Coordinate systems, which were defined for a class of test-based problems,7 can be
viewed as a formalization of the empirically observed underlying objectives of [6].
To elaborate, a coordinate system consists of several axes. Each axis is a list of tests
ordered in such a way that any candidate can be placed somewhere in the list. A
candidate’s placement is such that it passes all tests before that spot and fails all
tests after it. For this reason, an axis can be viewed as measuring some aspect of a
candidate’s performance: a candidate that places high on an axis is “better than”
one which sits lower in the sense that it passes more tests (more of the tests present
in the axis, not more tests of the problem as a whole). Formally, an axis corresponds
to a numerical function over the candidates, in other words to an objective function.
It can be proved [4] that every problem of the considered class possesses at least
one coordinate system, meaning it has a decomposition into a set of axes. In short,
every such problem has some set of objective functions associated with it, one for
each axis in a coordinate system for the problem.

Besides defining coordinate systems formally, [4] gives an algorithm that finds a
coordinate system for a problem domain in polynomial time. The algorithm, though
fast, is not guaranteed to produce the smallest possible coordinate system for the
problem. Finite domains must have a minimal coordinate system, but in general even
finite domains can have distinct coordinate systems of different sizes. The algorithm
is not coevolutionary per se, as it examines the outcomes of tests on candidates. It
is therefore applicable to the entire class of test-based problems.

1.2 Chapter Overview

To summarize, recent theoretical work on coevolutionary algorithms has elucidated
a theory of underlying objectives for test-based problems which establishes a con-
ceptual link between multiobjective optimization and coevolution. We can now view
coevolution as a form of multiobjective optimization in which not all objectives are
explicitly given a priori, but are nevertheless present theoretically and can be ex-
tracted. Although this theory originated in coevolutionary algorithms research, it
is focused on problem structure and indifferent to which search algorithm is used.

6 What we are here calling tests.
7 Specifically, problems with a finite number of candidates and a finite number of

binary-outcome tests.
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Coordinate systems can be extracted from any test-based problem, which includes
classifier induction, function regression, and game strategy learning problems.

However, there are two questions left unaddressed by this story. First, that min-
imal coordinate systems exist as theoretical objects does not guarantee they can
be extracted algorithmically; previous work has given an algorithm which could
find some coordinate system, but not necessarily a minimal one. Secondly, even
if they could be found, there is no guarantee that the extracted coordinate sys-
tems are meaningful, i.e., that their structure relates to characteristic features of
the problem. With these questions left open, it is possible coordinate systems are
simply mathematical curiosities that have limited relevance in practice. The aim of
understanding underlying objectives and establishing a bridge between test-based
problems and multiobjective optimization would then not be met.

This chapter will focus on the two questions by developing and applying an ex-
act coordinate system extraction algorithm to small instances of the game of Nim.
The exact algorithm is guaranteed to identify a minimum dimensional coordinate
system, but can only be applied to small problems due to its computational com-
plexity. After giving the necessary background, we will describe the exact extraction
algorithm and prove that it produces a minimal coordinate system, giving a positive
answer to the question of whether minimal coordinate systems can be discovered al-
gorithmically. We argue that the extracted coordinate system can be interpreted as
compressing objective information of the problem, in the sense that knowing where
a candidate solution lies in a coordinate system is equivalent to knowing how that
candidate performs against all possible tests. Since the number of axes in a coor-
dinate system can be no more than the number of tests, but may be significantly
smaller, a minimal coordinate system is a maximally compressed view of candidate
solutions’ performance.8

In the game of Nim, where candidates are players and tests are potential oppo-
nents, we observe that a substantial compression does take place. Minimal coordinate
systems for all tested instances of Nim have significantly fewer axes than tests. We
also observe that the axes can be interpreted: each axis directly tests a candidate’s
strength for a particular game configuration. It is worth noting that, although each
axis tests on a corresponding game configuration, not all game configurations cor-
respond to axes. There are significantly fewer axes than game configurations, too.
This correlation between axes and game configurations is noteworthy given that the
coordinate system extraction algorithm is insensitive to details of the application
domain. There is no reason to expect that an axis, while theoretically meaningful,
would correspond in an intuitively meaningful way with a candidate player’s ability
at the game. Nevertheless, across the tested instances of Nim, extracted coordinate
systems consistently represent ability for specific game configurations. These results
validate that the notion of coordinate system is not just a theoretical curiosity;
rather, coordinate systems give a view into performance that is both compressed in
size and intuitively meaningful.

In short, this set of ideas establishes fruitful connections among multiobjective
optimization, coevolution, machine learning, and game strategy learning techniques.
The theoretical and algorithmic notion of coordinate systems provides a way to
view a test-based problem as a sort of multiobjective problem, allowing conceptual

8 Maximally compressed with respect to our set of assumptions, of course — nat-
urally there are many ways to compress this information.
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cross-fertilization among these disciplines. The results on Nim suggest that this
conceptual link can go both ways: treating Nim strategy learning as a multiobjective
optimization problem can yield insights into the nature of the game itself as well as
into how to learn or evolve strategies to play it.

2 Preliminaries

2.1 Definition of Problem Structure

Our notion of problem structure is based on the observation that while the number
of possible tests in a problem can be very large, the testing may be limited to a
small number of underlying objectives [6]. The question we aim to address is how
these underlying objectives may be identified. If this is possible, it permits accurate
evaluation using only a limited number of tests. In the following, we consider how
a minimal set of objectives can be identified for which the information provided is
equivalent to the information provided by the set of all possible tests.

Let S be the set of candidate solutions in a problem; these can, for example, be
classifiers, or game-playing agents. Let T denote the set of tests. In the example of
classification these would be test points; in game playing they would be opponents.
A test can be viewed both as an object T ∈ T or as a function T : S −→ {0, 1}
that returns the outcome of the test for a given candidate solution. We will write
the outcome of a test T ∈ T for a candidate solution S ∈ S as T (S).

Definition 1 (Objective) An objective is a function that assigns a value to a
candidate solution which measures an aspect of its performance: o : S −→ R.

Without loss of generality, we will assume that higher values are to be preferred.
An ordered set of objectives OS can be viewed as a vector function that accepts
a candidate solution and returns an outcome vector, where each element i is the
outcome of objective OSi: OS(S) = OS1(S), OS2(S), . . . , OSn(S).

The set of all tests T can be viewed as a set of objectives; each test can be viewed
as a binary objective whose value for a given candidate solution S is given by the
outcome of the test T (S). Since T is given as part of the problem formulation, the
corresponding objectives will be called the initial objectives:

Definition 2 (Initial Objectives) Oinit = T.

The question of identifying a minimal set of objectives is thus reduced to the
problem of compressing the initial objectives to a minimal set of objectives that
provides equivalent information, as we define next.

2.2 Objective Compression

A given set of objectives O1 can be compressed to yield an equivalent but smaller
set of objectives O2. For this purpose, the notion of equivalence is defined as follows.
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Definition 3 (Equivalence) We define two objective sets O1, O2 to be equivalent,
written equiv(O1, O2), if the following criteria hold:

• Information preservation. This criterion holds if a mapping f exists such that
∀S ∈ S : f(O2(S)) = O1(S). If this is the case, the objective values assigned by
O1 can be reconstructed from the objective values assigned by O2.

• Order preservation. For the transformation to be meaningful, the second set
of objectives should result in the same preference information. Though depen-
dent on the preference function, this will generally be achieved if ∃i : O1i(x) >
O1i(y) ⇐⇒ ∃j : O2j(x) > O2j(y), where x, y ∈ S, 1 ≤ i ≤ |O1|, and
1 ≤ j ≤ |O2|.

2.3 Order Preservation: Pareto-Dominance

As an example, we demonstrate that the second condition is sufficient to guarantee
order preservation for the preference function of Pareto-dominance. The Pareto-
dominance preference function states that a candidate solution x is preferred over
another candidate solution y, or dominates it, with respect to the objectives in O1,

written x
O1
� y, if:

∀i : O1i(x) ≥ O1i(y) ∧ ∃i : O1i(x) > O1i(y) with 1 ≤ i ≤ |O1|.
If two objective sets O1 and O2 are equivalent, then x

O1
� y ⇐⇒ x

O2
� y.

This can be seen as follows:

Assume x
O1
� y. Then ∀i : O1i(x) ≥ O1i(y) and ∃i : O1i(x) > O1i(y). Therefore,


 ∃i : O1i(y) > O1i(x). Thus, due to the order preservation condition, 
 ∃j : O2i(y) >
O2i(x), and hence ∀j : O2j(x) ≥ O2j(y).

Furthermore, since ∃i : O1i(x) > O1i(y), the condition guarantees that ∃j :
O2j(x) > O2j(y). Since we have ∀j : O2j(x) ≥ O2j(y) and ∃j : O2j(x) > O2j(y), it

follows that x
O2
� y, and thus the forward implication has been shown. The backward

implication is analogous.

2.4 Problem Structure

Assume we are given a problem P with initial objectives Oinit. Then P ’s problem
structure is defined by the smallest set of objectives Omin that is equivalent to Oinit:

Definition 4 (Problem Structure) Omin = arg min
Oi∈O

|Oi| such that

equiv(Oi, Oinit), where Oi ∈ O, and O is the set of all possible objective sets given
some representation of objectives.

We define the evaluation dimension of a problem as the lowest number of dimen-
sions d for which a correct coordinate system exists, or equivalently as the cardinality
of the problem structure:

Definition 5 (Evaluation Dimension) deval() = |Omin|.
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2.5 Coordinate Systems for Test-Based Problems

In the following, we present a representation for objectives in test-based problems.
Based on this representation, a search algorithm will be used to identify the small-
est objective set that is equivalent to the initial objectives, and which therefore
represents the structure of the problem.

The objective sets we will consider take the form of coordinate systems. Each
axis in a coordinate system represents an objective. The position of a test on an
axis is determined by which candidate solutions are defeated by the test. We will
write SF (T, S) to indicate that test T defeats candidate solution S, meaning that
it assigns a zero outcome to the candidate solution. Failing a solution S is written
SF (S).

T1 T2

T4
T3

Fig. 1. Example of a coordinate system. Monotonicity: T2 defeats strictly more can-
didate solutions than T1. Compositionality: T4 defeats all and only those candidate
solutions that are defeated by either T1 or T3

Definition 6 (Solution Failure) SF (T, S) ⇐⇒ T (S) = 0. Solution failures can
be grouped together in sets. We write SF (T ) to denote the set of all solution failures
made by T : SF (T ) = {SF (S)|S ∈ S ∧ SF (T, S)}. The set of all possible solution
failures is named SFS: SFS = {SF (S)|S ∈ S}.

We now proceed to define the elements of a coordinate system.

Definition 7 (Axis) An axis A represents an ordered set of increasing solution
failure sets: A = A1, A2, . . . An with Ai ⊆ SFS such that ∀i < j : Ai ⊂ Aj. The
elements Ai of an axis will be called coordinates.

Definition 8 (Coordinate System) A coordinate system CS is an ordered set of
axes: CS = A1, A2, . . . An.

Definition 9 (Position) A position P in an n-dimensional coordinate system is
an ordered set of coordinates, one for each axis: P = A1

i , A
2
j , . . . A

n
k .
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The coordinate systems that will be defined feature the following two properties,
which motivate viewing them as coordinate systems (see Figure 1):

Definition 10 (Monotonicity) If test T1 has a higher position on an axis than
T2, this implies that T1 defeats all candidate solutions defeated by T2, in addition
to one or more other candidate solutions.

Definition 11 (Compositionality) If test T3’s position is spanned by two tests
T1 and T2 which reside on different axes, i.e., T3’s position is (T1,T2), then the set
of candidate solutions defeated by T3 is the union of the sets of candidate solutions
defeated by T1 and T2: SF (T3) = SF (T1) ∪ SF (T2).

Both tests and candidate solutions can be embedded into a coordinate system.

Definition 12 (Test Embedding) The embedding CS(T ) of a test T in a co-
ordinate system CS is the position obtained by choosing the highest coordinate on
each axis for which T still makes all corresponding solution failures: CS(T ) = {Ai

j ∈
CS, 1 ≤ i ≤ n|SF (T ) ⊇ Ai

j ∧ 
∃k > j : SF (T ) ⊇ Ai
k}.

Definition 13 (Interpretation of Test Positions) The set SF (P ) of solutions
defeated by a test at position P is obtained by taking the union of the solution failure
sets represented by the position’s coordinates: SF (P ) = ∪

1≤i≤n
Pi.

Definition 14 (Solution Embedding) The embedding CS(S) of a candidate so-
lution S in a coordinate system CS is the position obtained by choosing the highest
coordinate on each axis for which S is not included in the corresponding solution
failures: CS(S) = {Ai

j ∈ CS, 1 ≤ i ≤ n|S /∈ Ai
j ∧ 
∃k > j : S /∈ Ai

j}.

Since a coordinate system represents an objective set, CS(S) may be interpreted
as the objective vector for candidate solution S; each axis represents one objective,
and the coordinate on the axis represents the value of the objective. In order to
map coordinates into numerical values, any monotonic assignment of coordinates
to values may be used; for example, the index of the coordinate on the axis can be
employed such that a candidate solution with position (A1

8, A
2
5) would have objective

values (8, 5).

Definition 15 (Interpretation of Solution Positions) The set TS(P ) of tests
solved by a candidate solution at position P = CS(S) is obtained by assembling all
tests whose coordinates do not exceed that of the solution: TS(P ) = {T ∈ T| 
 ∃Ai ∈
CS(T )|Ai ⊃ Pi}.

Definition 16 (Correctness) A coordinate system CS is correct for a given set
of tests TS ⊆ T, written correct(CS, TS), if for each test the set of solution failures
equals the set of solution failures represented by the embedding of the test: ∀T ∈ TS :
SF (CS(T )) = SF (T ).
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Our central theorem states that the objectives represented by a correct coordi-
nate system are equivalent to the initial objectives.

Theorem 1 (Correctness of coordinate systems) correct(CS, Oinit) =⇒
equiv(CS, Oinit).

Proof. The coordinate systems that have been defined above are a specific way to
represent objectives for a test-based problem. We will now demonstrate that the
objectives represented by a correct coordinate system are always equivalent to the
initial objectives. Therefore, by restricting the search to correct coordinate systems,
it is guaranteed that any coordinate systems found will be equivalent to the initial
objectives. We can thus perform objective compression by searching for the smallest
correct coordinate system.

Given a correct coordinate system CS, proving equivalence to the initial objec-
tives Oinit requires establishing the properties of information preservation and order
preservation. Regarding information preservation, it is to be shown that a mapping
f exists such that ∀S ∈ S : f(CS(S)) = Oinit(S). In other words, the outcomes
{T (S)|T ∈ T} need to be reconstructed from the coordinates of S. Thus, f can be
based on the composition of (1) the embedding function CS(S), which determines
the position of a candidate solution in the coordinate system, and (2) the interpre-
tation function TS(P ), which determines the tests solved by a candidate at position
P : TS(CS(S)). This function returns the tests solved by S. Given all tests solved
by S, the outcome of any test can be determined by seeing whether the test is part
of this set. This yields the desired reconstruction function:

fi(S) =

{
1 if Ti ∈ TS(CS(S))
0 otherwise.

Next, the property of order preservation is to be shown. Assume ∃i : Oinit,i(x) >
Oinit,i(y). Thus, ∃T ∈ T : T (x) > T (y); since we are assuming binary tests, this
means T (x) ∧ ¬T (y). Given that CS is a correct coordinate system, we know that
TS(CS(y)) yields the tests solved by y, and must therefore contain a test that is
not present in TS(CS(x)). Since the axes are monotonic, this implies y must have
a higher coordinate for some axis.

Conversely, assume y has a higher coordinate than x for some axis: TS(CS(y)) >
TS(CS(x)). Then there must exist a test solved by y that is not solved by x. Thus,
y has a higher coordinate for the initial objective corresponding to this test. ��

3 The Exact Algorithm and Nim

3.1 Exact Algorithm

We present an algorithm that performs exact identification of problem structure,
meaning that the dimensionality of the extracted coordinate system is guaranteed
to be minimal. The algorithm operates by considering all possible coordinate systems
in order of increasing dimensionality, and returning when a correct coordinate sys-
tem has been found. This guarantees that the smallest possible coordinate system,
measured in terms of its dimensionality, will be found.
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As described, a coordinate system consists of axes whose coordinates represent
solution failure sets. Given a set of candidate solutions, the number of all solution
failure sets is the power set of this set, and thus exponential in the size of the
solution set. Considering all assignments of all solution failure sets to axes is therefore
prohibitive. However, the only requirement for a coordinate system is that it be
able to represent the given set of tests. Thus, the coordinate system must contain
positions corresponding to the solution failure sets represented by the tests, but
need not contain positions corresponding to other solution failure sets. This greatly
reduces the search problem; due to this observation, we can restrict the search by
considering only subsets of the solution failure sets represented by the tests.

Since the number of all possible coordinate systems grows very quickly, the exact
algorithm that will be presented will in general still not be feasible for problems of
realistic size. Its purpose however is to permit studying the structure of small exam-
ple problems, and to provide a starting point for efficient structure approximation
algorithms.

The algorithm starts from an empty coordinate system. Each axis is initially
defined by two virtual tests: ORG (origin), which passes all solutions, and INF
(infinity), which defeats all solutions. To search for a correct coordinate system, all
tests are visited in turn. For each test, it is determined whether the test can be
placed in the current coordinate system; if not, the coordinate system is adapted to
permit representing the test. If this fails given the current dimensionality because
one or more additional axes are required, the dimensionality is increased.

The placement of tests is stored in a state vector, representing the current place-
ment of each test. Two search operators are employed: the operator find_first_full
_state(state) finds the first correct coordinate system from the current state by
visiting the tests in turn and placing each test correctly, adapting the coordinate
system where necessary; inc_full_state increases the current state, and this oper-
ator is applied when the current state does not permit the construction of a correct
coordinate system. By continuing the search for a correct coordinate system while
the state so far permits this and increasing the state once it is found that it does
not permit this, a correct coordinate system of the given dimensionality will be
found if it exists. Since the dimensionality is incremented only if no correct system
is found, the first coordinate system found by the algorithm is guaranteed to be
minimal. The algorithm therefore returns once a correct coordinate system is found.
The pseudocode of the main loop of the algorithm is given in Algorithm 1.

calculate options(T) accepts a test and for each axis i determines the highest
coordinate for which the test still makes all corresponding solution failures.
These coordinates are written T i

min, and represent the embedding of the test
in the partially constructed space. The successor of a coordinate Ai

min(T ) is
written Ai

max(T ). The coordinate of a test on axis i must lie between Ai
min(T )

and Ai
max(T ). Potentially, a new coordinate must be created. The options for

such a new coordinate are constrained by Ai
min(T ) and Ai

max(T ); the solution
failure set it represents must be a superset of the former and a subset of the
latter. Therefore, the algorithm must search the powerset of Ai

max(T )\Ai
min(T ).

init test state(T) places a test at the highest possible existing coordinates, i.e.,
A1

min(T ), A2
min(T ), . . . , An

min(T ).
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Algorithm 4 find structure()

1: for num dims = 1 to num tests do
2: init axes()
3: state = [0, 0, 0, 0, 0]
4: for i = 1 to num tests do
5: calculate options(T )
6: init test state(i)
7: end for
8: while !done do
9: if find first full state(state) then

10: done = true! � success; break outer for loop and return
11: else
12: ok = inc full state
13: if !ok then
14: done = true � failure; increment num dims
15: end if
16: end if
17: end while
18: end for

find first full state(state) looks for the first feasible state from the current
state by ensuring a correct placement for each test in turn. This is done by
calling inc_test_state until a correct placement for a test is found.

inc test state(i) increments the state element corresponding to test T , and fails
if this exceeds the range for this state element. If the increment succeeds, the
element represents a new placement for the test. The order of the options con-
sidered is as follows: First, the test is placed at the position that its embedding
would indicate, i.e., A1

min(T ), A2
min(T ), . . . , An

min(T ), using init test state(T).
The next n options consider placing the test on one of the n axes. If this suc-
ceeds, the test defines a new coordinate for the axis concerned. Finally, all
combinations of solutions failures in Ai

max(T ) \Ai
min(T ) are considered.

inc full state moves to the next state by increasing the state vector.

3.2 The Game of Nim

We will explore the notion of problem structure and its extraction by applying the
search algorithm to the Game of Nim.

Nim originates from the Chinese game Tsyanshidzi (picking stones game). The
first European reference to a possible Nim-type game dates from 1503 [16]. The name
is thought to stem from the German imperative ‘nimm’ (take), and is proposed in
[1]. The game also features in Alain Resnais’ 1961 movie Last Year at Marienbad.

The game starts by placing a number of rows of small objects such as matches
on a table, where each row is called a counter. The players take turns, and on each
turn must take one or more matches from a single row. The player to take the last
match wins the game. In the misère version of the game, the outcome is reversed.
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Nim is an impartial game, meaning each player has the same available moves in
every position. An interesting result of combinatorial game theory is the Sprague-
Grundy theorem, independently discovered by Roland P. Sprague [17] and Patrick
M. Grundy [10]. The theorem states that every impartial game is equivalent to a
nim position, augmented with the possibility of adding matches.

In 1901, the Harvard mathematician Charles L. Bouton presented an optimal
strategy for the game of Nim [1]. To compute the strategy, the counters of a Nim
position are written below one another in binary notation. Next, the columns of the
numbers are summed. If all sums are even, the game position is a safe combina-
tion. To play optimally, the player must merely select a move that results in a safe
combination.

3.3 Results

We apply the structure extraction algorithm to the Game of Nim versions with the
following initial configurations: [1 3], [4], and [2 2].9 We employ the misère version
of the game, which has been noted as being more difficult to analyze. For all of
these small game configurations, the structure extraction algorithm took less than a
second. However, due to the high computational complexity of the exact algorithm,
larger versions of the game quickly lead to high computational requirements.

To apply the structure extraction algorithm, we first generate all strategies for a
game. No distinction is made between the first and second players; for both players,
all combinations of the legal moves in all game configurations are considered. The
complete set of strategies is then played against itself in a full squared comparison.
Since some game configurations never occur for some strategies, some players will
behave identically while having different strategy representations. Therefore, any
first players with outcome vectors identical to those of other first players are removed,
and likewise for duplicate second players. This yields an outcome matrix representing
all unique first and second players, which serves as input to the structure extraction
algorithm. The tests in the matrix are first sorted according to the number of solution
failures they represent; since a complete search is performed, this does not affect
the dimensionality of the outcome, but it may serve to consider the more likely
coordinate systems first.

Results for Nim [1 3]

The first version we apply the algorithm to is the [1 3] configuration, which has one
row containing a single match and one row containing three matches. There are seven
non-empty game configurations. Different configurations have different numbers of
legal moves; the full number of strategies is 144. However, after removing the first and
second players with duplicate outcome vectors, six first player strategies (candidate
solutions) and nine second player strategies (tests) remain. The resulting outcome
matrix for unique strategies is shown in Table 1.

The result of applying the structure extraction algorithm to the outcome ma-
trix for this game is a two-dimensional coordinate system; see Table 2. The first

9 The notation [x1x2] means that this game instance has two piles of sticks, and
the starting configuration has x1 sticks in the first pile and x2 sticks in the second
pile.
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Table 1. Outcome matrix of unique strategies for Nim[1 3]

T0 T4 T8 T24 T28 T32 T48 T52 T56
S0 1 0 1 1 0 1 1 0 1
S1 0 0 0 0 0 0 0 0 0
S2 1 1 1 1 1 1 1 1 1
S3 1 1 1 0 0 0 1 1 1
S72 1 0 0 1 0 0 1 0 0
S75 0 0 0 0 0 0 1 1 1

axis consists of tests T48, T0, and T24, representing the solution failure sets {S1},
{S1, S75}, and {S1, S75, S3}, in addition to ORG and INF. Interestingly, all coordi-
nates on the axis thus correspond exactly to actual tests, rather than being arbitrary
subsets of solution failures. The same holds for the second axis, containing tests T56
and T52.

Table 2. The two-dimensional coordinate system for Nim[1 3]

dim 1 ORG T48 T0 T24 INF
S1 1 0 0 0 0
S75 1 1 0 0 0
S3 1 1 1 0 0
S0 1 1 1 1 0
S2 1 1 1 1 0
S72 1 1 1 1 0

dim 2 ORG T56 T52 INF
S1 1 0 0 0
S72 1 0 0 0
S0 1 1 0 0
S2 1 1 1 0
S3 1 1 1 0
S75 1 1 1 0

Since a correct coordinate systems embeds all tests onto positions that corre-
spond to their outcomes, a question arises as to where the four tests that do not
lie on the axes are located. This is shown in Table 3 (left) and visualized in Figure
2. For any of these tests, the set of solutions defeated is the union of the solution
failure sets of its coordinates.

The next question is where the candidate solutions are embedded in the space.
This is shown in Table 3 (right) and Figure 3. The embedding of the solutions shows
how two objectives are sufficient to evaluate the solutions and express the relations
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Table 3. Left: Coordinates of the tests not lying on the axes. Each test is precisely
a composition of two other tests; see outcome matrix and text. Right: Coordinates
of the candidate solutions

test coordinates
T8 (T0 , T56 )
T4 (T0 , T52 )
T32 (T24 , T56 )
T28 (T24 , T52 )

test coordinates
S0 (T24 , T56 )
S1 (ORG, ORG)
S2 (T24 , T52 )
S3 (T0 , T52 )
S72 (T24 , ORG)
S75 (T48 , T52 )

T4 T28

T8 T32

T52

T56

T48 T0 T24

Fig. 2. Embedding of the tests into the coordination system found for Nim[1 3]

between them. For example, it is immediately seen that solution S2 is the optimal
solution, as it has the highest coordinate on both dimensions. Comparing this with
the initial situation in which all nine tests are objectives demonstrates the utility of
objective compression: by identifying the compositionality implicitly present in the
problem, the number of objectives required for evaluation is reduced from nine to
two.

Apart from the potential computational advantage offered by objective com-
pression, an interesting theoretical question is whether the automatically extracted
coordinate system can tell us something about the structure of a problem. To this
end, we now interpret the axes that have been identified.

Table 4 shows the actions selected by the axis tests in all of the seven different
game configurations that can occur in Nim[1 3], the resulting game configuration
after the action, and the outcome for the test. It is immediately seen that the
tests in dimension 1 differ only in a single configuration, viz. configuration 3, which
represents the game state [0 3], i.e., a single row with three matches. The first test on
the axis, T48, removes all three matches and thus leaves no matches, thereby losing
the game. T0 leaves two matches, so that its outcome depends on the opponent
strategy. Finally, the last strategy on the axis, T24, leaves a single match, and
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S2

S0

T52

T56

T48 T0 T24

S72

S3S75

S1

Fig. 3. Embedding of the candidate solutions into the coordination system found
for Nim[1 3]. Two dimensions are sufficient to evaluate the solutions and express the
relations between them, as compared to the original nine dimensions required when
using all tests as objectives. This substantial reduction demonstrates the potential
value of objective compression

thereby secures a sure win. Thus, the particular coordinate system that has been
extracted has a clear interpretation in this dimension: the objective represents the
quality of the move selected by a test in game situation [0 3].

For the second dimension (Table 5), the result is similar. The tests only differ in
game situation 6, which represents the configuration [1 2]. The tests select increas-
ingly good moves, leaving [0 2] (result depending on opponent), and [1 0] (sure win)
respectively.

Table 4. Actions selected by the tests on the first axis in the seven game configu-
rations. The axis apparently tests on the ability to select a good action in situation
3, which represents configuration [0 3]. Moving down the table, the resulting config-
urations show the increasing quality of the moves

C1 C2 C3 C4 C5 C6 C7 After Result
T48 1 1 3 1 1 1 1 [0 0] sure loss
T0 1 1 1 1 1 1 1 [0 2] depends
T24 1 1 2 1 1 1 1 [0 1] sure win

Results for Nim [2 2]

Nim[2 2] has eight configurations, resulting in 288 strategies. The resulting outcome
matrix contains 36 unique tests and six unique candidate solutions. The extracted
minimal coordinate system is four dimensional; thus, a high degree of compression
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Table 5. Actions selected by the tests on the second axis. Again, the axis con-
cerns the behaviour of tests in a single configuration: [1 2], and the tests represent
increasingly good moves for this configuration

C1 C2 C3 C4 C5 C6 C7 After Result
T56 1 1 3 1 1 3 1 [0 2] depends
T52 1 1 3 1 1 2 1 [1 0] sure win

is observed. As in Nim[1 3], all dimensions can be interpreted, and the different
options for a dimension always concern a single game configuration.

Results for Nim [4]

Nim[4] has four configurations, and 24 strategies. There are six unique tests and
five unique candidate solutions. The problem is two dimensional, and as with the
previous two problems the dimensions have a clear interpretation. The coordinate
system and the embedding of the candidate solutions is visualized in Figure 4.

T16

T12

T20 T8

S2S1

S3

S0

S12

Fig. 4. Embedding of the candidate solutions into the coordination system found
for Nim[4]

4 Discussion and Conclusions

We have presented an algorithm that is able to extract the underlying objectives
of an arbitrary test-based problem. Any test-based problem has underlying objec-
tives. Viewing each test as a separate objective yields an initial objective set. By
compressing this initial set into a smaller number of objectives, meaningful under-
lying objectives can be obtained. The algorithm that has been presented delivers a
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set of objectives that are guaranteed to be minimal in number, yet which provide
evaluation information that is equivalent to the initial objective set.

The optimal dimension extraction algorithm has been applied to small versions
of the Game of Nim. A main finding is that by extracting the underlying objec-
tives, the number of required objectives can be drastically reduced. In other words,
the extraction algorithm substantially decreases the dimensionality of the objective
space, without loss of information. For example, for a version of the game with 36
distinct tests, the initial set of 36 objectives was reduced to an equivalent objective
set containing only four objectives. This demonstrates that the notion of objective
set compression is not merely a theoretical possibility; in the example domain that
has been explored, the number of objectives can be greatly reduced. While there is
no guarantee that the rate of compression in other games will be comparable, it has
been shown that a substantial reduction of the number of objectives is possible at
least for some problems.

Objective compression is a new analytical tool that has several applications.
First and foremost, it may serve to increase our insight into existing problems. By
identifying the underlying objectives of a problem, intrinsic information about the
structure of the evaluation function implicit in the problem is revealed. Our results
with the Game of Nim showed that the underlying objectives can be highly inter-
pretable; in all cases, objectives represented orthogonal dimensions of performance
in the game where each subsequent position on an axis represented a better strategic
choice, and where each axis corresponded to a single state that may arise during
play.

A second consequence of theoretical interest is that any test-based problem is
characterized by an evaluation dimension: the minimal number of objectives for
which an objective set exists that is equivalent to the initial objective set. The eval-
uation dimension forms an intrinsic property of the problem. Thus, an open question
for any test-based problem is what its evaluation dimension is; we expect the eval-
uation dimension to have implications for the complexity of evaluation and search.
An open question is how the evaluation dimension or the problem structure relate
to existing notions of dimensionality or complexity, such as the teaching dimension
[9].

In addition to these theoretical implications, problem structure extraction may
find applications in learning and search. If the relevant dimensions of performance
for a problem can be identified or estimated, this may help us select which tests are
to be used in evaluation. An illustration of this principle has been given in [5], which
details a coevolutionary algorithm that guides selection using a coordinate system
extracted from the population.

The algorithm presented here guarantees that the coordinate systems that are
produced will be of minimum size, and thus have a number of objectives equal to the
evaluation dimension. While this algorithm is of theoretical interest in that it can be
used to identify minimal dimensional objective sets for small test problems, appli-
cation to problems of practical interest will typically be computationally infeasible.
Therefore, a final open question is how objective set compression may be performed
efficiently when approximate solutions are acceptable. An example of an approxi-
mate dimension extraction algorithm has been given in [4], but more accurate and
more efficient algorithms would form valuable extensions of the work presented here.
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Summary. Dimensionality reduction methods are used routinely in statistics, pat-
tern recognition, data mining, and machine learning to cope with high-dimensional
spaces. Also in the case of high-dimensional multiobjective optimization problems,
a reduction of the objective space can be beneficial both for search and decision
making. New questions arise in this context, e.g., how to select a subset of objec-
tives while preserving most of the problem structure. In this chapter, two different
approaches to the task of objective reduction are developed, one based on assessing
explicit conflicts, the other based on principal component analysis (PCA). Although
both methods use different principles and preserve different properties of the under-
lying optimization problems, they can be effectively utilized either in an a posteriori
scenario or during search. Here, we demonstrate the usability of the conflict-based
approach in a decision-making scenario after the search and show how the principal-
component-based approach can be integrated into an evolutionary multicriterion
optimization (EMO) procedure.

1 Introduction

The field of multiobjective evolutionary algorithms has been rapidly growing over the
last decade, and there have been numerous publications dealing with two- and three-
dimensional problems [10]. On the other hand, studies addressing high-dimensional
problems are rare [28, 9]. The reason is that many-objective problems lead to further
difficulties with respect to decision making, visualization, and computation aspects.
Nevertheless, from a practical point of view, it is desirable with most applications
to include as many objectives as possible, without the need to further specify pref-
erences among the different criteria. This causes the considered problems to be
practically challenging or even intractable; e.g., it has been shown experimentally
that state-of-the-art algorithms, working well on low-dimensional problems, such as
NSGA-II and SPEA2, have difficulties in finding well-representative sets of Pareto-
optimal solutions on various test functions with many objectives [33].
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Some of the additional problems occurring with many objectives are obvious;
e.g., the decision-making process becomes harder when more objectives are involved.
More objectives imply that more objective values per solution have to be consid-
ered, and the visualization of the objective values also becomes difficult for more
than three objectives. Furthermore, the computation time needed to evaluate a single
solution may increase considerably with more objectives. Even with the availability
of sufficient computing resources, some search methods are practically not usable
for a high number of objectives. For example, most algorithms based on the hyper-
volume indicator [18] have running times exponential in the number of objectives
[34, 35, 3, 19]. Moreover, there is a fundamental issue involved with nondomina-
tion based optimization algorithms which is worth discussing. With more objectives
the probability that any two arbitrary solutions are nondominated to each other
increases, because there are more objectives in which a trade-off (one is better in
one objective but worse in any other objective) can occur. While dealing with a
finite-sized population-based approach, the proportion of nondominated solutions
in the population increases. As most evolutionary algorithms provide more empha-
sis to the nondominated solutions, a large proportion of the old population gets
emphasized, thereby not leaving much room for new solutions to be included in the
population. This, in effect, reduces the selection pressure for the better solutions in
the population and the search process slows down.

Assuming that the number of given objectives for a problem is large, the question
arises whether all objectives are necessary in terms of both finding a good approxi-
mation of the Pareto front and the decision-making process. Here, we assume that
the decision-making process is postponed until after the search is performed by mul-
tiobjective evolutionary algorithms. We present two different approaches to handling
a large number of objectives by eliminating redundant objectives systematically. To
this end, we give a brief overview of existing methods for dimensionality reduction
in Section 2 together with a comparison between the two methods presented later.
In Section 3, we present a conflict-based objective reduction method [4], and in Sec-
tion 4 an objective reduction method based on principal component analysis [15].
The first method aims at preserving (most of) the dominance structure, whereas
the second method utilizes a correlation-based notion of conflict to interpret the
principal components. Although both methods use different principles and preserve
different properties of the underlying optimization problems, they can be effectively
utilized both in an a posteriori scenario and during search by reducing the number
of objectives. Here, we demonstrate the usability of the conflict-based approach in
a decision-making scenario after the search and show how the principal-component-
based approach can be integrated into an evolutionary multicriterion optimization
(EMO) procedure. Many other methodologies are possible and more effort must be
spent on addressing the important issue of many-objective problems.

2 Objective Reduction Methods: Overview

There is a broad interest in dimensionality reduction methods in statistics, pattern
recognition, data mining, and machine learning [27]. Since pre-processing of data is
a common task in real-world problems, various dimensionality reduction techniques
have been proposed and successfully used, e.g., in biology [11] and text processing
[1]. The general idea of dimensionality reduction methods is to reduce large feature
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spaces to smaller feature spaces, where the variables under consideration are called
features. Two distinct approaches to reduce the dimensionality of the feature space
can be distinguished; they are often referred to as feature extraction and feature
selection.

Given a high-dimensional data set with many “features”, the task in feature ex-
traction is to find a new feature space the data can be embedded into, and the size of
which is as small as possible. In other words, feature extraction tries to extract a set
of (arbitrary) features to explain the data. The emerging features are often new and
defined as combinations of the original ones. Methods for this task of feature extrac-
tion are, e.g., principal component analysis (PCA) [25] and independent component
analysis [24]. In contrast to the feature extraction approach, the task in feature se-
lection is to find the smallest subset of the given features, representing the given
data best. The task of finding a smallest subset of features is, in general, NP-hard
when formalized as an optimization problem [8]. Therefore, an exhaustive search is
necessary to solve some instances of feature selection problems optimally. In prac-
tice, various methods based on greedy heuristics as well as evolutionary algorithms
have been proposed and applied to feature selection problems [26, 12, 32].

The further sections will present two dimensionality reduction approaches, espe-
cially developed for the case of multiobjective optimization problems. The features
are here the objectives, and we try to find a selection of objectives describing the
original problem. Since new objectives—potentially defined as combinations of the
given ones—are not easy to handle in the decision making, we focus on finding
subsets of the given objectives, best (re-)formulating the original problem, i.e., fea-
ture selection approaches. In contrast, a feature extraction method for test-based
multiobjective problems is presented in this volume, pp. 357–376. The approach,
presented in the next section (Section 3), is based on a definition of conflicting ob-
jectives (also presented in Section 3) and is a pure feature selection method, whereas
the approach presented in Section 4 employs a feature extraction method, namely
PCA, to arrive at a subset of the given objectives.

The two approaches presented pursue different goals. On the one hand, the
conflict-based approach aims at finding minimum objective sets yielding the same
(or a slightly changed) dominance structure as the original problem induces. This
procedure is applicable as an a posteriori approach to assist in the decision making
after a multiobjective optimization procedure. The integration of this approach into
the optimization itself will be addressed in future work. On the other hand, the PCA-
based approach tries to detect the objectives which span the Pareto-optimal front,
assuming that the considered problems possess a low-dimensional Pareto-optimal
front although many objectives are contained in the original problem. Thus, this
approach can be used during an optimization process; and, starting with all given
objectives, the procedure systematically eliminates redundant objectives and finally
determines the trade-off frontier corresponding to the required number of objectives.

Before we present the two objective reduction approaches in detail, we briefly
address the general problem of scaling objective values. Especially in real world prob-
lems, one often has to consider objectives which are not measured on comparable
length scales. Those disproportionately scaled objectives have different influences on
both the objective reduction methods presented in this chapter. On the one hand, the
δ error in the conflict-based approach directly depends on the objective scaling, i.e.,
objectives with large values, in principle, cause larger errors than objectives with
small values. On the other hand, in the PCA-based approach, disproportionately
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scaled objectives may lead to large differences in their variances, eventually bias-
ing the eigenvalues and eigenvectors (in favour of objectives with larger variances).
This would render the entire analysis erroneous. Since both objective reduction ap-
proaches highly depend on the objective values, we recommend scaling the objectives
to comparable values whenever it is possible. For instance, in the second approach,
we recommend using the correlation matrix instead of the covariance matrix, as
described in Section 4.3. Further research will be necessary to study the influences
of objective scaling on the proposed approaches in detail and to develop objective
reduction methods which are as insensitive to a scaling of the objectives as possible.

3 A Conflict-Based Objective Reduction Method

To present a recently proposed conflict-based objective reduction method [4], we
start with the introduction of the underlying objective conflict definition on the
basis of simple examples (Section 3.1). Section 3.2 continues with the definition
of minimum objective sets and the presentation of the two problems δ-MOSS and
k-EMOSS. Afterwards, we present both exact and greedy algorithms for the two prob-
lems and show the usability of the approach for high-dimensional test problems in
Section 3.3.

3.1 Introductory Examples and Objective Conflicts

Example 1. Assume we have a minimization problem with three solutions in the
decision space X that are pairwisely incomparable. Solution x1 ∈ X is better than
the other two with respect to objective f1; with regard to objective f2, solution
x2 ∈ X has the best value; and solution x3 ∈ X has the best f3-value. Figure 1
shows the value path plot3 of the three solutions x1, x2, and x3. Assuming that
x1,x2, and x3 represent either the entire search space or the Pareto-optimal set,
the original objective set F := {f1, f2, f3} is conflicting according to [13] as there
is no single optimal solution but three Pareto-optimal ones. For the same reason of
incomparable solution pairs, the objective set is also conflicting according to [31].
Last, every possible objective pair fi, fj with i, j ∈ {1, 2, 3}, i 
= j, “exhibits evidence
of conflict” as defined in [29].

Although the three conflict definitions in [13, 31, 29] mislead to the assumption
that all objectives are necessary to represent the dominance relation, the objective
set {f1, f2, f3} contains redundant information as defined by Gal and Leberling [21]:
the objective f2 can be omitted, and all solutions remain incomparable to each other
with regard to the objective set {f1, f3}, i.e., the dominance relation on the search
space stays unaffected.

A conflict definition, based on the dominance relation between solutions and
indicating that objectives are redundant, i.e., their omission does not affect the
dominance relation, was recently proposed in [4] and uses a generalization of the
weak Pareto dominance relation, induced by a given (sub)set F of objectives:

(F := {(x,y) |x,y ∈ X ∧ ∀fi ∈ F : fi(x) ≤ fi(y)}
3 As used in [29].
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Fig. 1. Value path plot for three so-
lutions x1, x2, and x3 and three objec-
tives f1, f2, f3 in Example 1

Fig. 2. Value path plot for three solu-
tions y1, y2, and y3 and four objectives
f1, f2, f3, f4 in Example 2

Definition 1 Let F1,F2 ⊆ F be two sets of objectives. We call F1 conflicting with
F2 iff (F1 
=(F2 .

If a subset F ′ ⊆ F of the given objective set F is not conflicting with F ,
we can omit all objectives in F \ F ′ without changing the underlying dominance
structure of the problem; the objectives in F \F ′ are redundant. In practice, one is
often interested in a further objective reduction at the cost of slight changes in the
dominance structure. This poses the question of how such a structural change can
be quantitatively measured.

Example 2. Consider a set of solutions y1, y2, and y3 with four objectives, fi ∈ F ,
1 ≤ i ≤ 4 as in Fig. 2. Let F ′ := {f3, f4}. We observe that by reducing the set of
objectives to F ′, the dominances change: on the one hand x1 (F′ x2; on the other
hand x1 
(F x2. In this sense, we make an error: the objective values of x1 had to
be smaller by an additive term of δ = 0.5 such that x1 (F x2 would actually hold.
This δ value can be used as a measure to quantify the difference in the dominance
structure induced by F ′ and F . By computing the δ values for all solution pairs
x,y, we can determine the maximum error. The meaning of the maximum δ value
is that whenever we wrongly assume that x (F′ y, we also know that x is not worse
than y in all objectives by an additive term of δ. For F ′ := {f3, f4}, the maximum
error is δ = 0.5; for F ′ := {f2, f4}, the maximum δ is 4.

In the following, we formalize the definition of error in [4], according to the above ex-
ample. The background for that is provided by the (additive) ε-dominance relation4

[37] and a generalization of the notion of conflict in Definition 1.

Definition 2 Let F1 and F2 be two objective sets. We call

• F1 δ-nonconflicting with F2 iff
(
(F1⊆(δ

F2

)
∧
(
(F2⊆(δ

F1

)
;

• F1 δ-conflicting with F2 iff ¬ (F1 δ-nonconflicting with F2).

The above definition of δ-conflict contains Definition 1 for the case δ = 0. The
absence of δ-conflict between objective sets can be useful, in practice, if a prob-
lem formulation needs to be changed by considering a different objective set but

4 (ε
F′ := {(x,y) |x,y ∈ X ∧ ∀i ∈ F ′ ⊆ F : fi(x)− ε ≤ fi(y)}
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the underlying problem structure has to be (mostly) preserved. If a multiobjective
optimization problem uses the objective set F1 and one can prove that F1 is δ-
nonconflicting with another objective set F2, one can easily replace F1 with F2 and
can be sure that in the new formulation, for any x,y ∈ X, x either weakly dominates
y with respect to F2 or x ε-dominates y with respect to F2 if x weakly dominates
y with respect to F1 and ε = δ. In the special case of an objective subset F ′ ⊆ F ,
δ-nonconflicting with all objectives F , the definition fits the intuitive measure of
error in Example 2. If an objective subset F ′ ⊂ F is δ-nonconflicting with the set F
of all objectives, x δ-dominates y, i.e., ∀i ∈ F : fi(x)−δ ≤ fi(y) whenever x weakly
dominates y with respect to the reduced objective set F ′. We, then, can omit all
objectives in F \F ′ without making a larger error than δ in the omitted objectives.

3.2 Minimum Objective Sets

Based on the above conflict definitions, we will now formalize the notion of δ-minimal
and δ-minimum objective sets as in [4] and present a condition under which an
objective reduction is possible. Furthermore, we present the two problems δ-MOSS
and k-EMOSS, already presented in [4].

Definition 3 Let F be a set of objectives and δ ∈ R. An objective set F ′ ⊆ F is
denoted as

• δ-minimal with respect to F iff (i) F ′ is δ-nonconflicting with F , (ii) F ′ is
δ′-conflicting with F for all δ′ < δ, and (iii) there exists no F ′′ ⊂ F ′ that is
δ-nonconflicting with F ;

• δ-minimum with respect to F iff (i) F ′ is δ-minimal with respect to F , and (ii)
there exists no F ′′ ⊂ F with |F ′′| < |F ′| that is δ-minimal with respect to F .

A δ-minimal objective set is a subset of the original objectives that cannot be further
reduced without changing the associated dominance structure with an error of at
most δ. A δ-minimum objective set is the smallest possible set of original objectives
that preserves the original dominance structure except for an error of δ. By defini-
tion, every δ-minimum objective set is δ-minimal, but not all δ-minimal sets are at
the same time δ-minimum.

Definition 4 A set F of objectives is called δ-redundant if and only if there exists
F ′ ⊂ F that is δ-minimal with respect to F .

This definition of δ-redundancy represents a necessary and sufficient condition for
the omission of objectives while the obtained dominance relation preserves most of
the initial dominance relation according to the definition of error in Example 2.

Both the δ-MOSS and the k-EMOSS problem from [4] formalize the question of
finding objective subsets F ′ for given solution sets A ⊆ X to detect whether the
objective values of the given solutions include redundancy. The δ-MOSS problem asks
for a δ-minimum objective set with respect to the given objective set for a given
error δ. The k-EMOSS problem asks for an objective set of size k with the smallest
error δ according to the entire objective set. In the following, we denote the number
of objectives as M := |F|.
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Definition 5 Given a multiobjective optimization problem, the problem δ-MINIMUM
OBJECTIVE SUBSET (δ-MOSS) is defined as follows.

Instance: The objective vectors f(x1), . . . , f(xm) ∈ RM of the solutions
x1, . . . ,xm ∈ A ⊆ X and a δ ∈ R.

Task: Compute a δ-minimum objective subset F ′ ⊆ F with respect to F .

Definition 6 Given a multiobjective optimization problem, the problem MINIMUM

OBJECTIVE SUBSET OF SIZE k WITH MINIMUM ERROR (k-EMOSS) is defined as fol-
lows.

Instance: The objective vectors f(x1), . . . , f(xm) ∈ RM of the solutions
x1, . . . ,xm ∈ A ⊆ X and a k ∈ N.

Task: Compute an objective subset F ′ ⊆ F which has size |F ′| ≤ k and is
δ-nonconflicting with F with the minimal possible δ.

In the unlikely case that we know the objective vectors of all solutions within our
search space, we can compute the exact number of non-δ-redundant objectives within
a given problem with algorithms for δ-MOSS. Otherwise, if we know the objective
vectors only for a small sample of the solution space, algorithms for δ-MOSS and
k-EMOSS can be used to simplify the decision-making process after the search by
computing objective subsets with certain properties. We can, for example, use only
the generated nondominated solutions as inputs for the algorithms to compute a
subset of objectives describing the dominance structure between the search points
in our Pareto front approximation. If we take all solutions, generated during the
optimization into account, the outcome of the algorithms tells the decision maker
which objectives are necessary to describe the dominance structure between the
solutions in the sampled section of the search space.

3.3 Algorithms and Results

After the definition of an objective subset’s error regarding the dominance structure
and the presentation of the two problems δ-MOSS and k-EMOSS, we present both exact
and greedy algorithms for them, while dealing with two questions: (i) what is the
exact intrinsic number of objectives in a problem and (ii) how can it be approximated
if only samples of the search space are considered?

Regarding question (i), we present an exact algorithm to examine the minimum
number of non-redundant objectives for a given problem. Regarding question (ii),
since the entire search space is usually unknown and the problem of computing a
minimum objective set itself is NP-hard, we present greedy algorithms which can
cope with samples of the search space of appropriate size and provide an example
of how to use their outputs to (ii) gain information about the intrinsic number of
objectives in a problem even if the entire search space is unknown.

An Exact Algorithm

To solve both the δ-MOSS and the k-EMOSS problem exactly, we present here Algo-
rithm 5, already proposed in [4]. Since the above problems are known to be NP-hard
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Algorithm 5 An exact algorithm for δ-MOSS and k-EMOSS
1: Init:
2: C := ∅, SC := ∅
3: for all pairs x,y ∈ A, x �= y of solutions do
4: S{(x,y)} := ∅
5: for all objective pairs i, j ∈ F , where not necessary i �= j do
6: compute δij := δmin({i} ∪ {j},F) with respect to x,y
7: S{(x,y)} := S{(x,y)} � ({i} ∪ {j}, δij)
8: end for
9: SC∪{(x,y)} := SC � S{(x,y)}

10: C := C ∪ {(x,y)}
11: end for
12: Output for δ-MOSS: (smin, δmin) in SC with minimal size |smin| and δmin ≤

δ
13: Output for k-EMOSS:(s, δ) in SC with size |s| ≤ k and minimal δ

[5], the exact algorithm has a running time exponentially in the number of objec-
tives. Thus, it can solve only small problem instances in reasonable time and is
therefore more of theoretical interest although it has some advantages; cf. the next
section. The basic idea is to consider all solution pairs (x,y) successively and store
in the set SC all minimal objective subsets F ′ together with the minimal δ′ value
such that F ′ is δ′-nonconflicting with the set F of all objectives when taking into
account only the solution pairs in C considered so far.

The subfunction δmin(F1,F2) computes the minimal δ error for two solutions
x,y ∈ X such that F1 is δ-nonconflicting with F2 with respect to x,y. Due to
space limitations, we cannot show here how this minimal δ can be computed in time
O(M ·m2) and refer the reader to [5]. Furthermore, Algorithm 5 computes the union
� of two sets of objective subsets with simultaneous deletion of non-δ′-minimal pairs
(F ′, δ′):

S1 � S2 := {(F1 ∪ F2, max{δ1, δ2}) | (F1, δ1) ∈ S1 ∧ (F2, δ2) ∈ S2

∧ 
∃(F ′
1, δ

′
1) ∈ S1, (F ′

2, δ
′
2) ∈ S2:

(
F ′

1 ∪ F ′
2 ⊂ F1 ∪ F2 ∧max{δ′1, δ′2} ≤ max{δ1, δ2}

)

∧ 
∃(F ′
1, δ

′
1) ∈ S1, (F ′

2, δ
′
2) ∈ S2:

(
F ′

1 ∪ F ′
2 ⊆ F1 ∪ F2 ∧max{δ′1, δ′2} < max{δ1, δ2}

)}

The correctness proof of Algorithm 5—as well as the proof of its running time
of O(m2 · M · 2M )—can also be found in [5]. Note, that the exact algorithm can
be easily parallelized, as the computation of the sets S{(x,y)} are independent for
different pairs (x,y). It also can be accelerated if line 9 of Algorithm 5 is tailored to
either the δ-MOSS or the k-EMOSS problem by including a pair (F ′, δ′) into SC∪{(x,y)}
only if δ′ ≤ δ and |F ′| ≤ k, respectively.

Greedy Strategies

To solve the δ-MOSS and k-EMOSS problems for the entire search space exactly is
unrealistic due to both the size of the search space and the running time of the
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Algorithm 6 A greedy algorithm for δ-MOSS
1: Init:
2: compute the relations 	i for all 1 ≤ i ≤ M and 	F
3: F ′ := ∅
4: R := A × A\ 	F
5: while R �= ∅ do
6: i∗ = argmin

i∈F\F ′
{|(R∩ 	i) \

(
	0

F ′∪{i} ∩ 	δ
F\(F ′∪{i})

)
|}

7: R := (R∩ 	i∗) \
(
	0

F ′∪{i∗} ∩ 	δ
F\(F ′∪{i∗})

)

8: F ′ := F ′ ∪ {i∗}
9: end while

Algorithm 7 A greedy algorithm for k-EMOSS
1: Init:
2: F ′ := ∅
3: while |F ′| < k do
4: F ′ := F ′ ∪ argmin

i∈F\F ′
{δmin (F ′ ∪ {i},F) with respect to A}

5: end while

presented exact algorithm. Two ways to bypass this are (i) to reduce the input
size and (ii) to develop approximation algorithms with lower runtimes. We will
first present simple approximation algorithms for the two problems and afterwards
discuss what information can be gained with the presented algorithms to assist in
the decision-making step.

Given a set A ⊆ X of solutions and a δ > 0, Algorithm 6, as an approximation
algorithm for δ-MOSS, computes an objective subset F ′, δ-nonconflicting with the
set F of all objectives in a greedy way. Starting with an empty set F ′, Algorithm 6
chooses in each step the objective fi which yields the smallest set (F′ ∩ (i without
considering the relationships in (0

F′∪{i} ∩ (δ
F until F ′ is δ-nonconflicting with

F . For the correctness proof of Algorithm 6 and the proof of its running time of
O(min{M3·m2, M2·m4}) we once again refer the reader to [5]. Note that Algorithm 6
does not necessarily yield a δ-minimum or even a δ-minimal objective set with
respect to F .

Algorithm 7 is an approximation algorithm for k-EMOSS. It supplies always an
objective subset of size k but does not guarantee our finding find the set with minimal
δ. The greedy algorithm needs time O(m2 · M3) since at most k ≤ M loops with
M calls of the δmin subfunction are needed. One call of the δmin function needs
time Θ(m2 · M) (cf. [5]), and all other operations need time O(1) each. Note that
Algorithm 7 can be accelerated in a concrete implementation as the while loop can
be aborted if either |F ′| = k or δmin(F ′,F) = 0.

Results

With the presented greedy algorithms, we can now approximate the optimal solu-
tions for δ-MOSS and k-EMOSS for larger instances than can be solved with the exact
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Fig. 3. Comparison between the greedy and the exact algorithm on 0-MOSS for a
problem with 32 solutions and random objectives on a linux computer (SunFireV60X
with 3060MHz) over 100 runs: summed running times (left); averaged sizes of the
computed minimum / minimal sets (right). See [6] for details

algorithm; cf. Fig. 3. Nevertheless, computing a minimum objective set for the en-
tire search space is still unrealistic. The question remains about how the algorithms
presented can be used to assist in the decision making. That the algorithms are
useful in reducing the vast amount of information considered in the decision-making
step is shown in Fig. 4. The first plot in Fig. 4(a) shows a value path plot of a
Pareto front approximation for the 0-1-knapsack problem with 20 objectives and
50 solutions, computed by the indicator-based evolutionary algorithm IBEA [36]. A
decision maker who has to choose one out of the 50 solutions would have difficulties
when dealing with all 1,000 objective values. A run of the greedy Algorithm 6 with
δ = 0 indicates that nine objectives are sufficient to describe the dominance rela-
tion between the given 50 solutions (Fig. 4(b)). When using the exact Algorithm 5
we can find an even smaller objective set, yielding the same dominance relation
(Fig. 4(c)). This indicates for the decision maker that the 350 objective values, i.e.,
only seven out of the 20 objectives, contain the same information on the dominance
relation between the 50 solutions as the 1,000 values of Fig. 4(a). If the decision
maker wants to further reduce the number of objectives, Algorithm 5 can be applied
to the k-EMOSS problem with k = 6, 5, . . . , 1. This demonstrates that for the given
example a reduction to six objectives causes an error of δ = 129. Further reduction
cause errors of 289 (k = 5), 363 (k = 4), 447 (k = 3), 485 (k = 2), and 552 (k = 1).

If not only the decision about which of the various nondominated solutions to
take is important but also the increase of knowledge on the problem itself, a different
approach might be useful which has been discussed recently in detail in [7]. We
exemplify this approach by applying it to a radar waveform optimization problem.
In a recently proposed study of designing waveforms for a pulsed Doppler radar [23],
the author describes nine objectives, characterizing different waveforms in terms of
median/minimum range and velocity extent of detectable targets (objectives 1–8)
and the required time to transmit the total waveform (objective 9). According to the
author, the objectives are not totally independent, e.g., objectives 1 and 5 should
not conflict and objective pairs 1/3, 5/7, 2/4, and 6/7 “tend to have a degree of
correlation, i.e., they may not conflict strongly” ([23], page 709). The definition of
conflict, proposed in the previous section, allows us to test the mentioned prediction
of conflicts between the objectives analytically. To this end, after normalizing the
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Fig. 4. Visualization of the capability of the presented algorithms for 0-MOSS on the
0-1-knapsack problem with 20 objectives. The plots show the objective values for the
50 solutions computed by an IBEA run. Figure (a) shows the values for the complete
set of 20 objectives. The other figures show the objective subsets, 0-nonconflicting
with the entire objective set, computed by the greedy algorithm (b), and the exact
algorithm (c)

objective vectors, the set of 22,844 known nondominated solutions is reduced to
a significantly smaller set of 107 solutions by computing the ε-nondominated set
with ε = 0.0625. Afterwards, the δ errors between all pairs of single objectives are
computed. According to Definition 1, all objective pairs conflict with each other.

Surprisingly, the smallest error occurs between objectives 4 and 9, and the second
smallest between objective pair 1/7, in contrast to the prediction of [23]; the left
part of Fig. 5 shows the computed δ errors graphically. Using the computed δ errors
between the objectives, a tree-like visualization of the objectives can also be derived
to gain information on the problem (Fig. 5, right part); cf. [7] for details.

5 A reduction was necessary due to the large running times of the algorithms on
* 20, 000 points. The reduction to 107 points, however, was arbitrary. Note, that
larger sets of up to 5,000 points yield similar results.
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Fig. 5. Analysis of the radar waveform problem: (left) Visualization of the minimum
delta error between objective pairs; the thicker the arrow, the smaller the error.
Errors larger than 0.8 are omitted for clarity. The arrows point to the objective with
the larger δ error; (right) tree visualization of the δ errors. The annotated values on
the inner nodes correspond to the minimal δ error between the paired objectives,
and the overall δ error (bold) respectively, if only the annotated objective is taken
into account instead of all objectives on the subtree’s leaves. For details, see [7].

3.4 Difficulties with the Conflict-Based Approach and Future
Directions

Due to the fact that finding a minimum objective subset is an NP-hard problem, the
running time of the exact algorithm is not practical. Although the running times of
the greedy heuristics are much smaller, their running times are also a problem when
many objectives (* 50) and reasonable solution sets (≥ 200) are taken into account.
While the relation-based approach was introduced as an a posteriori method here,
a first preliminary attempt to use the approach within an EMO procedure was
recently done in [7], but the integration of the objective reduction method into an
evolutionary algorithm still remains future work.

4 A PCA-Based Objective Reduction Method

4.1 Difficulties of EMO Methodologies in Handling Many
Objectives

Before we discuss the objective reduction procedure used during an EMO simulation
run, we want to draw the reader’s attention towards Figure 6, which highlights
quantitatively the number of EMO publications by the number of objectives [10],
until 2001. The overwhelming majority have used only two objective functions, most
probably for the ease of their solution principles. Some have used three to nine
objectives, and only a few have tried beyond ten objectives. The studies using more
than ten objectives have mostly employed a single-objective optimization method,
by converting the multiobjective optimization problem into a single objective. On
the whole, such a sparse and fragmentary (more details are cited in [15]) research
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Fig. 6. EMO publications by number of objec-
tives (until 2001), taken from [10]
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Fig. 7. Illustration of difficulty in
10-objective MOP with NSGA-II.

effort also reflects the difficulties involved with the EMO approach towards many-
objective problems.

While the difficulties associated with a large number of objectives were high-
lighted in Section 1 (more details may be found in [15]), it would be interesting for
readers to witness a concrete example — the vulnerability of EMO methodology in
general (and of the elitist nondominated sorting GA or NSGA-II [14] in particular)
to large dimensional Multiobjective Optimization Problems (MOPs). We defer ex-
posing this vulnerability to first explain the test problems which we have designed
and utilized for all demonstrations in the remainder of the chapter. These test prob-
lems, to be to referred as DTLZ5(I, M), are built upon the well-known M -objective
DTLZ5 problems [16], the changes introduced being in terms of the parameter θi,
and the additional constraints [15] to help maintain the claimed scalability of the
latter. DTLZ5(I, M), where I denotes the dimensionality of the Pareto-optimal sur-
face (in terms of the number of objectives) and M denotes the total number of
objectives in the problem, is as follows:

Min f1(x) = (1 + g(xM )) cos(θ1) cos(θ2) · · · cos(θM−2) cos(θM−1),
Min f2(x) = (1 + g(xM )) cos(θ1) cos(θ2) · · · cos(θM−2) sin(θM−1),
Min f3(x) = (1 + g(xM )) cos(θ1) cos(θ2) · · · sin(θM−2),
...

...
Min fM−1(x) = (1 + g(xM )) cos(θ1) sin(θ2),
Min fM (x) = (1 + g(xM )) sin(θ1),
where g(xM ) =

∑
xi∈xM

(xi − 0.5)2,

θi =

{ π
2

xi, for i = 1, . . . , (I − 1),
π

4(1+g(xM ))
(1 + 2g(xM )xi), for i = I, . . . , (M − 1),

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

The total number of variables are n = M +k−1, where k = |xM | = 10 is prescribed.
The problem is so designed that the Pareto-optimal surface will correspond to (i) a
zero value of the g function, in turn implying xi = 0.5 for i = M, . . . , (M +k−1), (ii)
a fixed value of π/4 for the variables xI to xM−1, and (iii) independent values for the
variables x1 to xI−1, by virtue of which they are responsible for the dimensionality of
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the Pareto-optimal surface. Hence, by simply setting I to an integer between 2 and
M , the dimensionality (I) of the Pareto-optimal surface can be changed. Further,
given the nature of the problem, the Pareto-optimal surface (solutions being denoted
by f∗) to these problems is non-convex and follows the relationship,

∑M
i=1(f

∗
i )2 = 1.

For an illustration, let us look at the I = 2 case. For the Pareto-optimal solutions,
while θ1 varies between zero and π/2, θi = π/4 for all i = 2, . . . , M−1. Also, xi = 0.5
for i = M, . . . , (M + 9). Thus, the Pareto-optimal front is one dimensional (w.r.t.
variables) and two dimensional (w.r.t. objectives):

fM = sin(θ1), fj = cos(θ1)/(
√

2)M−2; for j = 1

fj = cos(θ1)/(
√

2)M−j ; ∀j = 2, . . . , M − 1

}

(2)

However, it is observed that for M > 3 there exist other solutions having g > 0
which are also Pareto-optimal solutions and which violate the dimensionality claim
made above. To remedy this problem (details may be found in [15]), we introduce
M − 1 constraints to the original DTLZ5(2,M) problem, in the form

f2
M + 2M−2f2

j ≥ 1, for j = 1
f2

M + 2M−jf2
j ≥ 1, for all j = 2, . . . , M − 1.

}

(3)

Let us now turn to Figure 7, where a comparison is drawn between DTLZ5(10,10)
(or DTLZ2(10)) and DTLZ5(3,3) (or DTLZ2(3)) in terms of percentage of solutions
converging to the Pareto-optimal surface. Here, results corresponding to five runs
(5,000 generations in each run) for each problem, with different initial populations
of size 200, are plotted. The SBX crossover [13] with a probability of 0.9 and index
of 5 and polynomial mutation [13] with a probability of 1/n and index of 50 are
used. It can be seen that while for the 3-objective version of the problem a signif-
icantly high percentage of solutions converge (having g(xM ) ≤ 0.01) to the front,
for the 10-objective version, approximately only 4% solutions come to the Pareto-
optimal front. Although these results are specific to the test problems considered
here, they reflect the general underlying difficulty with a large number of objectives
— in which case the proportion of nondominated solutions in the population in-
creases (as discussed in Section 1, [15]) to eventually stagnate the search process.
With this understanding, the results here can be treated as representing the general
characteristic of large-dimensional problems where only a small percentage of solu-
tions converge to the Pareto-optimal surface. This feature can well be termed the
“curse of dimensionality” in evolutionary multiobjective optimization.

4.2 Redundancy Among Objectives: Existence, Form, and Past
Research

Simulation results in the previous section indicated the vulnerability of EMO
methodologies to those large-dimensional M -objective MOPs that have an M -
dimensional Pareto-optimal front.

However, there may exist many-objective problems in practice that have redun-
dant objectives; that is, although the problem has M objectives, the Pareto-optimal
front involves a much lower-dimensional interaction. Such a reduction in the dimen-
sionality may happen, either gradually from the region of random solutions towards
the Pareto-optimal region, or, the entire search space may have such a structure. The
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former type of problem is quite likely to exist in practice. In this case, the noncon-
flicting nature of objectives does not exist for all solutions in the search space. For
randomly picked solutions, all the objectives may be conflicting and there may be an
M -dimensional interaction; however, for solutions close to the Pareto-optimal front
(special solutions), the optimality conditions of some objectives may be similar and
behave in a nonconflicting manner. On the other hand, the latter case implies that
there exist some objectives in the problem formulation which are nonconflicting to
each other. Often, such information about the nature of variation of objective values
is not intuitive to a designer/decision maker. The DTLZ5(I,M) problem constructed
earlier offers a way to simulate this second scenario with the flexibility of controlling
the reduction in dimension.

Given the fact that not many studies have been performed in the total realm
of high-dimensional multiobjective problems, it is only natural, not to expect many
studies on the determination of redundancy in many-objective problems. Those cat-
alogued are largely suggestive in nature in terms of proposed definitions of redun-
dancy and the possible ways to address it. Some of these studies are by Gal and
Leberling [21], Gal and Hanne [20], and Agrell [2]. Another recent study [22] used
a correlation matrix to identify the redundant objectives, if any, in a four-objective
optimization problem.

Here, to target determination of redundant objectives, we propose a principal
component analysis (PCA) procedure coupled with the NSGA-II method. The pro-
posed combined procedure works iteratively from the interior of the search space
and iteratively moves towards the Pareto-optimal region and adaptively attempts
to find the correct lower-dimensional interactions.

4.3 Proposed PCA-NSGA-II Procedure

Given two random variables X1, X2 ∈ RN (X1 = [x11, x12 . . . x1N], X2 =
[x21, x22 . . . x2N]) with expected values μX1 and μX2 and standard deviations σX1

and σX2 , the correlation between them can be defined as ρX1,X2 = Covariance(X1,X2)
σX1 σX2

=
E((X1−μX1 ) (X2−μX2 ))

σX1 σX2
. Given M such random variables, the correlation between

all pairs of variables can be computed as above, and correlation matrix RM×M can
be composed, where Ri,j would imply ρXi,Xj . Here, two features are worth highlight-
ing. One is the centring of data (where the mean of each variable is subtracted before
multiplication) for computation of the covariance and the second is division of the
covariance by the standard deviation (referred to as standardization), for computa-
tion of the correlation. An equivalent but simpler representation of the correlation
matrix can be obtained by transforming the given random variables to centred and

standardized form. Let X̄i=
(Xi−μXi

)

σXi
represent the ith random variable in both cen-

tred and standardized form. Given M such random variables, we can define a new
M ×N matrix X = [X̄1 X̄2 . . . X̄M ]T . In this case, the correlation matrix RM×M is
given by 1

N
XXT . In principal component analysis (PCA), it is either the covariance

matrix or the correlation matrix that is eigen-decomposed and analysed. PCA on
covariance matrices causes problems when variables show large differences in vari-
ances, in which case variables with large variances get larger weights (and ones with
small variance get insignificant weights) and can dominate the whole covariance ma-
trix and, hence, the eigenvalues and eigenvectors. Large differences in the variables’
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variances can naturally arise due to their different scales (units). The remedy to this
problem of different scales and large differences in variances of the variables can be
found in the use of the correlation matrix, which involves standardizing the variables
to have variance equal to 1 (over and above, setting the mean to 0, which is also
done in the covariance matrix). Hence, we recommend and employ the correlation
matrix as opposed to the covariance matrix, for our study.

In the context of evolutionary multiobjective optimization, the dimension M ,
which basically represents the ‘measurement types’ can be taken to represent the
objective functions, while N , which basically represents the time samples, can be
taken to represent the population members. To illustrate the customization of the
PCA procedure to the domain of evolutionary multiobjective optimization, we con-
sider the DTLZ5(2,3) problem. With M = 3 (3-objective problem), N = 200 (pop-
ulation size) is taken and NSGA-II is run over 5,000 generations. The correlation
matrix R obtained corresponding to the final population is shown in Table 1. It can
be observed from this matrix that the first and third objectives are negatively cor-
related, that is, they are in conflict with each other. The same is true for the second
and third objectives. Hence, while the first and second objectives are nonconflict-
ing6, each of them is in conflict with the third objective. Thus, in this simple case
it can be concluded from this matrix that either the first or the second objective is
redundant in this problem.

Table 1. PCA-NSGA-II: Formulation and Solution Module illustrated on
DTLZ5(2,3)

Correlation Matrix : 1.000000 0.999998 -0.916090
R 0.999998 1.000000 -0.916109

-0.916090 -0.916109 1.000000

Eigenvalues of E1 E2 E3

1. R i. actual 2.889 0.000 0.111
ii. by ratio 0.962898 0.000 0.037101

2. R2 i. actual 8.345 0.000 0.012
ii. by ratio 0.998518 0.0000 0.001482

Eigenvectors V1–PCA1 V2–PCA3 V3–PCA2

0.583104 0.707070 0.400052
0.583108 -0.707143 0.399917
-0.565664 -0.000080 0.824636

However, for a large number of objectives and in more complex problems, such
a clear analysis may not be possible from an M × M matrix of real numbers. To
address this, we prescribe a three-step procedure, which would eventually help us
identify a reduced set (if possible) of objectives — those which are most important
for forming the Pareto-optimal front.

6 Note that in the remainder of this chapter we will use a correlation-based idea of
conflicting objectives instead of the conflict definition given in Section 3.
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Eigenvalue Analysis for Dimensionality Reduction

The eigenvalues of the correlation matrix R for DTLZ5(2,3) and their corresponding
eigenvectors are shown in Table 1. Here, the first principal component (eigenvector
(0.583104, 0.583108,−0.565664)T , corresponding to the largest eigenvalue and ac-
counting for 96.2898% of the variance) is designated as ‘PCA1’. The first component
of this vector denotes the contribution of the first objective function towards this
vector, the second component denotes the contribution of the second objective, and
so on. For a three-objective problem, like this one, the three contributions could eas-
ily be seen as the direction cosines defining a directed-ray in the three-dimensional
objective space (this analogy would naturally also extend to higher dimensional
problems). Now, the task here is to extract the information about conflict or no-
conflict between objectives, based on the relative signs of their contributions. It is
understood that the eigenvectors in PCA are only defined up to their sign (that is,
if V is an eigenvector then so is -V); hence, objectives with contributions with the
same sign could be interpreted as increasing or decreasing together, when moving
in the direction of the eigenvector. Similarly, objectives with opposite sign contribu-
tions could be interpreted as being in conflict with respect to the eigenvector. Thus,
if we consider the objectives corresponding to the most positive and most negative
contributions towards an eigenvector, they would mark the two most conflicting ob-
jectives with respect to this direction. To this effect, in the above example f2 and f3

could be observed to be the two most critically conflicting objectives with respect
to PCA1.

Acknowledging that each principal component accounts for a certain fraction of
the total variance of a data set, we can define a Threshold Cut (TC) as the proportion
of the total variance to be accounted for and we can preset it for a given study. We
can then start with analysing the first principal component, and then the subsequent
ones, until their cumulative contribution exceeds TC. Hence, setting an appropriate
TC is very important. If too high a TC (close to 1) is set, even some redundant
objectives may be picked as important ones, thereby defeating the purpose of the
PCA analysis. On the other hand, if too low a value of TC is set, even some important
objectives may be ignored, thereby rendering the whole study erroneous. However,
we understand that in order to make a reliable study, a TC value of 0.95 may be a
balanced option. The choice of the TC can also be based on the relative magnitudes
of the eigenvalues. If the reduction in two consecutive eigenvalues is more than
a predefined proportion, no further principal component may be considered. This
decision can also be based on the choice of the decision maker. If the decision maker
wishes to include certain preferred objectives in the EMO procedure, the principal
component analysis can be continued till all such preferred objectives are chosen.
Many such possibilities exist and are worth experimenting with, but we prescribe a
TC of 0.95. With this value, for DTLZ5(2,3) being considered, only the first principal
component needs to be analysed, since PCA1 itself contributes 96.28% of the total
variance (0.9628, by fraction). Hence, we need not consider any subsequent PCAs,
and on the basis of larger conflict can declare the second and third objectives as
important objectives to this problem. This way, the first objective is determined
to be redundant and an EMO procedure can be applied to solve the two-objective
problem (f2 and f3), instead of our using all three objectives.
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Effect of Multiple Principal Components

For the DTLZ5(2,3) being considered, a TC of 0.95 necessitated consideration of
PCA1 alone, along with which identifying the two most conflicting objectives nat-
urally led to identification of the redundant objective. However, for large-objective
problems (say, M = 50), not only many PCAs may be required to be considered but
also the notion of identifying only the two most conflicting objectives along a partic-
ular PCA may not be adequate. Thus, the need is to build upon the understanding
developed above, to be able to lay a dimensionality-reduction procedure which is
compact (requiring us to account for as small a number of PCAs as possible) and
effective (ensuring identification of the right set of objectives as important).

For compactness, we prescribe usage of matrix R2 instead of R for eigen-
decomposition; in the case of R2, the eigenvalues get squared and more emphasized
(evident in Table 1), while the eigenvectors remain unchanged. As the variance con-
tribution of a principal component relates to the ratio of the corresponding eigen-
value of the total, fewer principal components would now have to be considered to
meet the preset TC.

For effectiveness, we suggest the following procedure for interpretation of eigen-
values and eigenvectors of matrix R2:

1. As the first principal component accounts for a significant proportion of the total
variance in the data set, we would want to capture any signal of a conflicting
objective. Hence, for the first principal component, along with the objective
corresponding to the most-positive element, we consider as important any and
all objectives which correspond to a negative component, however small. If in
some case all the elements along PCA1 are positive, we pick up the objectives
corresponding to the first two most positive elements.

2. We refer to subsequent principal components only if the fraction of variance
accounted for by the first principal component is less than TC. In such a case,
we consider the second principal component, then the third, and so on, until
the cumulative variance accounted exceeds TC. Given any subsequent principal
component, we first check if the proportion of the total variance that it accounts
for is greater than 10% (0.1, by fraction) or not.
a) If not, we only choose the objective corresponding to the highest absolute

element in the eigenvector.
b) If yes, we consider various cases:

i. If all the elements of the eigenvector are identical in sign, we choose
only the objective corresponding to the highest magnitude.

ii. If the value of the highest positive element (p) is less than the absolute
value of the most negative element (n), we check if p ≥ 0.9|n|. If yes,
then we choose the two objectives corresponding to p and n; otherwise
we choose only the objective corresponding to n.

iii. Similarly, we also consider the possibility of the absolute value of the
most-negative element (n) being less than the highest positive element
(p), in which case we further check if |n| ≥ 0.8p. If yes, we choose the
two objectives corresponding to p and n; otherwise we only choose the
objective corresponding to p.

At the outset, the criteria for selection of objectives in the above paragraph may
appear as ad hoc fixations. Let us now mention the logic in the same. The first
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principal component, which accounts for the most significant proportion of the total
variance (of the data set), is given the highest weight and based on the prescriptions
above, it will provide us at least two important objectives. Further, a principal
component which accounts for less than 10% of the total variance is interpreted in
accordance with its low importance and is prescribed to provide only one objective
as important. We utilize, the principal components with intermediate importance to
provide either one or more important objectives depending on how comparable the
most positive and the most negative contributions of corresponding objectives are
along these directions. The fixations like p ≥ 0.9|n| and |n| ≥ 0.8p (as in the above
paragraph) are just tests of the comparableness. For instance, testing for p ≥ 0.5|n|
instead of p ≥ 0.9|n|, or testing for |n| ≥ 0.5p instead of |n| ≥ 0.8p, is more likely
to also infer the objectives corresponding to p (apart from n) and n (apart from p)
as important, in their respective cases. Hence, here, the user can be flexible in such
fixations depending on how robust the procedure is expected to be. Extracting more
and more objectives as important at this stage (based on importance along important
directions) would make the procedure more robust on one hand; on the other hand, it
may render the dimensionality reduction procedure slower, as more iterations may be
required to reach the minimal set of important objectives. Our experience with many
test problems and some real-world problems suggests that our prescriptions above
are fairly grounded. The readers should note that the inaccuracy in results presented
in this chapter basically emanate from the limitations of the PCA technique itself,
which we discuss in a later section. Interestingly, the same procedure, when employed
while utilizing a nonlinear dimensionality reduction technique, namely, maximum
variance unfolding [30], provides fully accurate results. Hence, the prescriptions made
above can be fairly relied upon while remaining open to suitable amendments.

Final Reduction Using the Correlation Matrix

It is expected that interpretation of principal components (eigenvalue analysis) based
on the preceding procedure would lead to identification of many of the redundant
objectives. To consider whether further reduction in the number of objectives is
possible, we now return to a reduced correlation matrix (only columns and rows
corresponding to non-redundant objectives adjudged so by eigenvalue analysis) and
investigate if there still exists a set of objectives having identical positive or negative
correlation coefficients with other objectives and having positive correlations among
themselves. This will suggest that any one member from such a group is enough to
establish the conflicting relationships with the remaining objectives.

Consider an identically correlated set of S objectives, each being represented
by fi, i = 1 . . . S. Further, assume that V principal components were utilized for
eigenvalue analysis, each represented by vj , j = 1 . . . V , and each accounting for
a proportion ej , j = 1 . . . V , towards the total variance of the data set. Let the
contribution of fi along vj be represented by fij . Then, compute for each of the
identically correlated objectives fi the value ci =

∑V
j=1 ‖(fij · ej)‖. Pick from the

set {ci | i = 1 . . . S} of scalars the highest value, say ck. Then the objective fk can
be considered as a representative of the set of S objectives. This selection criterion
physically implies that an objective which contributes most along the important
principal components collectively is deemed fit to be the representative. It should
also be mentioned that once NSGA-II is run for a sufficiently large number of gener-
ations, the correlation matrix stabilizes and correlation patterns turn invariant over
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a number of generations. Hence, the inferences drawn from the reduced correlation
matrix can be trusted.

Overall PCA-NSGA-II Procedure

We are now ready to present the overall PCA-NSGA-II procedure.

Step 1: Set an iteration counter t = 0 and an initial set of objectives I0 =
{1, 2, . . . , M}.

Step 2: Initialize a random population for all objectives in the set It, run an EMO,
and obtain a population Pt.

Step 3: Perform a PCA analysis on Pt using It to choose a reduced set of objectives
It+1 using the predefined TC. Steps of the PCA analysis are as follows:
1. Compute the correlation matrix.
2. Compute eigenvalues and eigenvectors and choose non-redundant objectives

using the procedure discussed in Section 4.3.
3. Reduce the number of objectives further, if possible, by using the correlation

coefficients of the non-redundant objectives found in item 2 above, applying
the procedure discussed in Section 4.3.

Step 4: If It+1 = It, stop and declare the obtained front. Else set t = t + 1 and go
to Step 2.

Thus, starting with all M objectives, the above procedure iteratively finds a reduced
set of objectives by analysing the obtained nondominated solutions by an EMO
procedure. When no further objective reduction is possible, the procedure stops and
declares the final set of objectives and corresponding nondominated solutions.

We realize that the above procedure of dimensionality reduction has not much of
a meaning for those problems which have an exactly M -dimensional Pareto-optimal
front. In such a scenario, it is expected that the proposed algorithm will deem all
objectives to be important in the very first iteration, thereby not performing any
dimensionality reduction. However, even in this case the proposed procedure will
establish a relative order of importance of the objectives by the PCA analysis, which
may provide additional information to a decision maker.

4.4 Simulation Results with the PCA-NSGA-II Procedure

We now show the simulation results obtained with the iterative PCA-NSGA-II pro-
cedure described above on a number of test problems having a varying number
of objectives. Having realized the curse of dimensionality in Section 4.1, to solve
DTLZ5(I,M) problems with I > 3, we use a population size of 800 and run NSGA-II
for 10,000 generations. It is expected that such a choice of these parameters will
offer a reasonable computational effort towards convergence of the population. PCA
is then applied to the nondominated population so obtained. The rest of the param-
eters remain the same as in Section 4.1.

Problem DTLZ5(2,10)

Let us now discuss the implementation of the complete PCA-NSGA-II procedure,
as highlighted in Section 4.3 on DTLZ5(2,10) problem. The inferences drawn by
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Table 2. DTLZ5(2,10): Iter1(i). Eigenvalue
Analysis

Iter. 1 : PCA1 (58.83 % variance) f7 f10

PCA2 (28.26 % variance) f1

PCA3 (06.53 % variance) f8

PCA4 (03.27 % variance) f8

Table 3. DTLZ5(2,10): Iter1(ii).
Reduced Correlation Analysis

f1 f7 f8 f10

f1 + - + -
f7 - + + -
f8 + + + -
f10 - - - +

Table 4. DTLZ5(2,10): Iter2(i). Eigenvalue
Analysis

Iter. 2 : PCA1 (94.58 % variance) f7 f10

PCA2 (4.28 % variance) f8

Table 5. DTLZ5(2,10): Iter2(ii).
Reduced Correlation Analysis

f7 f8 f10

f7 + + -
f8 + + -
f10 - - +

Table 6. DTLZ5(2,10): Iter2(iii). Selection criterion for Reduced Correlation Matrix

e1:0.9458 e2:0.0428
f7 +0.543 -0.275 c7=0.5253
f8 +0.457 +0.672 c8=0.4610

PCA1 PCA2

eigenvalue analysis in Iteration 1, as tabulated above, suggests that a total of four
objectives are important. Further, the reduced correlation matrix, as shown above,
suggests that no further reduction is possible as each objective is differently corre-
lated with the other. Consequently, Iteration 2 is performed using this reduced set of
four objectives, namely f1, f7, f8 and f10. The eigenvalue analysis, highlights three
objectives, f7, f8, and f10 to be important. Further, the reduced correlation matrix
shows f7 and f8 to be identically correlated. Table 6 is based on the guidelines in
Section 4.3 and evaluates f7 to be a better representative than f8, amongst the two.

While the overall results are tabulated in Table 7, the corresponding populations
are shown in Figures 8, 9, and 10.

Table 7. DTLZ5(2,10)

Iter. 1 f1 f7 f8 f10

Iter. 2 f7 f10

Iter. 3 f7 f10

Table 8. DTLZ5(2,20)

Iter. 1 f2 f5 f10 f12 f16 f18 f20

Iter. 2 f5 f18 f20

Iter. 3 f18 f20

Iter. 4 f18 f20

Table 9. DTLZ5(2,30)

Iter. 1 f1 f8 f30

Iter. 2 f8 f30

Iter. 3 f8 f30
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Higher-Objective DTLZ5(2,M) Problems

To further investigate the performance of the proposed procedure on a larger number
of objectives, we apply it to 20, 30, and 50 objective problems, whose results are
summarized in Table 8, Table 9, and Table 10, respectively. In each case, for the
set of objectives declared critical by PCA-NSGA-II procedure, the Pareto-optimal
front obtained by running NSGA-II matches with that expected theoretically, from
Equation 2. However, for brevity we show such conformance only for DTLZ5(2,20),
in Figures 11 and 12.

Consider a situation where, given an M objective optimization problem, nei-
ther the cardinality of the Pareto-optimal front nor the indices of the objectives
contributing to the front is known. An exhaustive attempt to find the front would
require us to consider all possible combinations (

(
M
i

)
) of objectives for a particular

cardinality (i), which in turn would have to be varied from 1 to M . Consequently,
as many as

∑M
i=0

(
M
i

)
or, equivalently, 2M combinations would need to be checked.

On the other hand, our proposed procedure uses a fraction of these computations
to make a good estimate of the Pareto-optimal front. Though it is applicable only
to quasi-convex objectives, readers may find the work in [17] interesting, in pursuit
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of deciding Pareto optimality for a point in the decision space of a MOP using only
subsets of the set of objectives.

Table 10. DTLZ5(2,50)

Iter. 1 f13 f50

Iter. 2 f13 f50

Table 11. DTLZ2(3)

Iter. 1 f1 f2 f3

Table 12. DTLZ2(5)

Iter. 1 f1 f2 f3 f4 f5

DTLZ2(M) or DTLZ5(M,M) Problems

Unlike a reduced dimensionality for the Pareto-optimal frontier in DTLZ5(I,M) with
I < M , DTLZ5(M,M), also referred to as DTLZ2(M), problems preserve the dimen-
sionality of the Pareto-optimal front. This implies that, in DTLZ2(M) problems, the
entire Pareto-optimal front involves all M objectives. While Table 11 shows all the
three objectives to be critical for DTLZ2(3), all the five objectives are found critical
for DTLZ2(5), as shown in Table 12. Hence, the results obtained reflect the prob-
lem characteristics. Further, the fact that the obtained results neatly highlight the
case of ‘no redundancy’, induces in us further confidence in the proposed procedure,
that it is not ‘greedily tuned’ to figure out redundancy when there isn’t any. For
DTLZ2(3), the Pareto-optimal front obtained by NSGA-II with three objectives is
mapped over the theoretical front based on Equation 1, and is shown in Figure 13.
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4.5 Difficulties with the PCA Approach and Future Directions

While PCA yields a smaller dimensional linear subspace that best represents the full
data according to a minimum square error criterion, it may be ineffective in revealing
the underlying dimensionality when the data points live on a nonlinear manifold
(manifolds are spaces that are locally linear but unlike Euclidean subspaces, can
be globally nonlinear) or when the data structure is non-Gaussian. The strength of
our proposed PCA-NSGA-II algorithm emerges from the fact that we can relate the
most important directions in the data set (in terms of variance) to the importance
of objectives given a multiobjective optimization problem. Now if the determination
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of important directions in a data set is erroneous, the inferences drawn about the
importance of objectives, and hence the determination of redundant objectives, will
be meaningless. Hence, it would be worthwhile to assess situations in which PCA is
likely to extract erroneous directions. Such situations can be best examined under
the question “Does the data live in a low-dimensional subspace?” or “Does the data
live on a low-dimensional sub-manifold?”.

To highlight difficulties with standard PCA, let us begin with a concrete example
of DTLZ5(2,10) for which PCA-NSGA-II declared f7 and f10 as critical objectives
and the rest as redundant. Let us investigate these results in light of two facts. Fact
1 relates to the property of DTLZ5(2,M) problems where the Pareto-optimal front
corresponds to the last objective and any other one. In this context, declaration of
f7 and f10 as critical is right. Fact 2 relates to the criteria of judging an objective set
as critical. PCA-NSGA-II is expected to declare those objectives as critical which
apart from being in conflict with each other also account for variances larger than
those declared redundant. From Figure 14, f9 and f10 can be seen to account for
the largest variance amongst the set of ten objectives. This, in fact, is generalizable
to all DTLZ5(2,M) problems, where objectives with indices M and (M − 1) will
collectively account for the largest variance in the data set of all given objectives.
Hence, the last two objectives must come up as the critical objectives given any
DTLZ5(2,M) problem, which is not the case with the PCA utilized for this chapter.
The remedy lies in the nonlinear version of PCA, some preliminary results of which
can be found in [30].

5 Conclusions

In this chapter, we have addressed the important issue of tackling multiobjec-
tive problems when the number of objectives is large. We argued that the use of
domination-based evolutionary approaches is not computationally efficient in han-
dling such many-objective problems. Hence, we proposed two objective reduction ap-
proaches. For the conflict-based approach, which aims at preserving the dominance
structure while omitting objectives, we discussed how exact and greedy algorithms
can eliminate redundant objectives in an a posteriori approach, i.e., after an EMO
procedure generates a Pareto front approximation, to assist the decision maker. For
the second approach, we showed how it can be used during an EMO procedure,
namely NSGA-II, to detect the crucial objectives in large-dimensional MOPs which
degenerate to possess a lower-dimensional Pareto-optimal frontier. Both methods
presented indicate that EMO methodologies could be a worthy option for generat-
ing smaller-dimensional Pareto-optimal solutions when solving problems with many
objectives. Hopefully, this study will motivate further research for devising more
reliable and efficient methods of dimensionality reduction and eventually facilitate
solutions to large-dimensional multiobjective optimization problems which are com-
mon in practice.
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Zürich, Apr. 2007.

[8] M. Charikar, V. Guruswami, R. Kumar, S. Rajagopalan, and A. Sahai. Com-
binatorial feature selection problems. In IEEE Symposium on Foundations of
Computer Science, pages 631–640, 2000. URL citeseer.ist.psu.edu/376451.

html.
[9] C. Coello Coello and A. Hernández Aguirre. Design of Combinational Logic

Circuits through an Evolutionary Multiobjective Optimization Approach. Ar-
tificial Intelligence for Engineering, Design, Analysis and Manufacture, 16(1):
39–53, 2002.

[10] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers,
New York, 2002.

[11] J. J. Dai, L. Lieu, and D. Rocke. Dimension Reduction for Classification with
Gene Expression Microarray Data. Statistical Applications in Genetics and
Molecular Biology, 5(1), 2006.

[12] M. Dash and H. Liu. Feature selection for classification. Intelligent Data Anal-
ysis, 1(3):131–156, 1997.

[13] K. Deb. Multi-objective optimization using evolutionary algorithms. Wiley,
Chichester, UK, 2001.

[14] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In Parallel
Problem Solving from Nature (PPSN-VI), pages 849–858, 2000.

[15] K. Deb and D. Saxena. Searching For Pareto-Optimal Solutions Through Di-
mensionality Reduction for Certain Large-Dimensional Multi-Objective Opti-
mization Problems. In IEEE Congress on Evolutionary Computation (CEC
2006), pages 3352–3360, 2006.

[16] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems for
Evolutionary Multi-Objective Optimization. In A. Abraham, R. Jain, and



402 Brockhoff et al.

R. Goldberg, editors, Evolutionary Multiobjective Optimization: Theoretical Ad-
vances and Applications, pages 105–145. Springer, 2005. ISBN 1-85233-787-7.

[17] M. Ehrgott and S. Nickel. On the number of criteria needed to decide Pareto-
optimality. Mathematical Methods of Operations Research, 55(3):329–345, 2002.

[18] M. Emmerich, N. Beume, and B. Naujoks. An EMO Algorithm Using the
Hypervolume Measure as Selection Criterion. In Evolutionary Multi-Criterion
Optimization (EMO 2005), volume 3410 of LNCS, pages 62–76. Springer, 2005.

[19] C. M. Fonseca, L. Paquete, and M. López-Ibáñez. An Improved Dimension-
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δ-minimal objective set, 382
δ-minimum objective set, 382
δ-redundant objective set, 382
ε-constraint, 320
δ-MOSS problem, 382
k-EMOSS problem, 383

adaptation in natural systems, 288–290
aesthetic criteria, 274
aggregation function, 318
airframe conceptual design, 267
area under the curve (AUC), 165
artificial objective, 80
association rule mining, 221, 222

confidence, 221
support, 221

automatic solution selection, see
decision making

automatically defined function (ADF),
178

behavioural memory, 58
bi-objective optimization problem, 54
bias, see modes of multiobjective

optimization, counterbalance for
bias

bloat, 177–197
BLX crossover, 61
Boolean even-k-parity problem, 185
building block hypothesis, 191, 193
building blocks, 177, 178, 189, 191

case-based machine learning, 274

CHARMM, 97

classification rule mining, 221

rule selection, 224

cluster-oriented genetic algorithm
(COGA), 266

clustering, 143–144

clustering of solutions, 246

code bloat, see bloat

coevolution, 358–361

coevolutionary algorithms, 31, 32, 359,
374

early work, 32

learner-teacher paradigm, 33

Pareto coevolution, 36

issues in practice, 47

monotonic behaviour in, 45

operationalizing the result of, 48

problems with, 34

commonality principles, 245

competence, 293

competing error terms, 162

compression, 357, 359, 361–363,
365–367, 369, 371–375

concept-based approach, 292

conceptual design, 263

confidence-support space, 220, 224, 230

conflicting objective sets, 380, 381

constant parsimony pressure, 178, 179,
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constrained optimization by multi-
objective optimization genetic
algorithms (COMOGA), 56

constraint satisfaction problem, 57
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constructal theory, 290
construction and repair agent (CARA),

275
coordinate system, 360, 361, 363–367,

369–374
crowding distance, 313
curse of dimensionality

linkage learning, 333
cybernetics, 286

definitions, 286
relationship to A-life, 288
scope, 287
two viewpoints, 287

data clustering, see clustering
data mining, 247
decision making, 263, 377

automatic solution selection, 132,
134, 137, 144, 148

in multiobjectivization, 147
using control data, 137, 144
using Monte Carlo sampling, 137

based on DM preferences, 133, 134
decision aid, 134, 148
DM, 133, 134
knee point, 134, 144

decision-making phase, 101
deleting crossover, 178
dimension, 363, 371–374
dimension extraction, 359, 374
dimension reduction, 359
dimensionality reduction, 378–380, 382,

388
discontinuity, 323
diversity, 80
DM, see decision making
dominated set, 42
dual behaviour, 259
dynamic optimization problems, 77–91
dynamic particle multiswarm optimiza-

tion, 58

eigenvalue analysis, 395
engineering design, 291, 300
estimation of distribution algorithms

(EDAs), 332
Euclidean distance, 322
explicit-implicit spectrum, 264
explicitly defined intron (EDI), 178

feature extraction, 359, 379
feature selection, 379

unsupervised, 135–138
fitness, 307

absolute, 289
landscape, 289
philosophical meaning of, 289
relative, 289

fitness gradient, 310
fitness sharing, 312
fitness-causes-bloat theory, 177
Fritz-John necessary conditions, 246

game theory, 290
games, 39

asymmetric, 44
symmetric, 44

genetic programming, 201
bloat, see bloat
representation, 202

goal attainment, 319

helper objectives, 116
high-dimensional problems (in the

variables), 352
human-centric evolutionary computa-

tion, 266
human-understandable model, 201, 213
hypervolume, 314
hypervolume indicator, 378

I-PAES, 100
mutation operators used in, 101

ideal point, 247
indicator

hypervolume, see hypervolume
indicator

indicator-based evolutionary algorithm
(IBEA), 316

innovization, 243–261
procedure, 246

instrument configuration problem, 133
interactive evolutionary computation

(IEC), 274
interactive evolutionary design, 266
interactive evolutionary design system

(IEDS), 266
introns, 177
IS-PAES, 61
isofitness contour, 310
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k-adder, 193
k-Hamming distance, 193
k-multiplexer, 192
Karush-Kuhn-Tucker condition, 334
knee point, see decision making, knee

point
knees in the Pareto front, 101

latent space, 333–335, 352
latent variable, 334
Levinthal’s paradox, 94
lexicographic ordering, 58
linkage, 331–333, 335, 340, 342

Manhattan distance, 322
many objectives, 308
marginalized multivariate Gaussian

model (MGM), 337
minimal objective set, 382
minimum objective set, 382
model-based multiobjective optimiza-

tion, 331
model-based optimization, 333
modes of multiobjective optimization,

131–147
counterbalance for bias, 135–138
multiobjectivization, 145–147
multiple source integration, 139–143
proxy objectives, 143–144
standard multiobjective optimization,

132–134
monotonic improvement, 45
moving peaks problem, 78
multi-class ROC analysis, 167
multi-competence cybernetics, 293, 295,

297
scope, 300

multi-fitness adaptation in nature, 296,
297

multiobjective classification rule mining,
219–240

multiobjective clustering, 144
multiobjective engineering design, 291,

300
multiobjective formulation, 97
multiobjective genetic algorithm

(MOGA), 313
multiobjective genetic programming

(MOGP), 201–215

model complexity objective, 209
model performance objective, 209
model validity objective, 209
models generated by, 215

multiobjective genetic programming (to
control bloat), 177–197

multiobjective minimum spanning tree,
120–122

multiobjective optimization problem
(MOP), 54

multiobjective supervised learning,
155–174

competing error terms, 162
regularization, 157
separating classes, 165

M measure, 165
switch back effect, 161

multiobjectivization, 116, see modes
of multiobjective optimization,
multiobjectivization, 197

multiple single objective Pareto
sampling (MSOPS), 324

multiple source integration, see modes
of multiobjective optimization,
multiple source integration

nadir point, 247
NARMAX model, 205
Nash equilibrium, 39
niche, 299

relationship to design concept, 299,
300

niched-Pareto genetic algorithm
(NPGA), 60

Nim, 361, 362, 366, 368–374
nondominated sorting genetic algorithm

(NSGA), 312
nondominated sorting genetic algorithm

II (NSGA-II), 313
nonlinear programming problem (NLP),

54

object-based representation, 275
objective conflict, 380, 381
objective front, 323
objective reduction, 378–380, 382, 388

conflict-based, 380
PCA-based, 388

objective set
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δ-minimal, 382
δ-minimum, 382
δ-redundant, 382
minimal, 382
minimum, 382
redundant, 382

objective values
scaling of, 379

objectives
many, 377
necessary, 378
redundant, 382
scaling of, 379

optimality in natural evolution, 286

parallel coordinate box plot (PCPB),
267

Pareto
coevolution, 36

issues in practice, 47
monotonic behaviour in, 45
operationalizing the result of, 48

domination, 42
front, 39, 42
layers, 43
nondomination, 42
optimality, 39, 41, 42

Pareto archived evolution strategy
(PAES), 61, 99

Pareto coevolution, 36, 359
issues in practice, 47
monotonic behaviour in, 45
operationalizing the result of, 48

Pareto front, 95
relevance in nature, 298

Pareto front analysis, 327
Pareto ranking, 308
Pareto strength, 56
Pareto-optimal classification rule sets,

223
Pareto-optimal classification rules, 222
parity bit problem, 182
parsimonious model structure, 209
parsimony, 209
parsimony pressure, 178
partial classification, 221, 222

coverage, 221, 222
penalty function, 53
poor representation, 264

preselection scheme, 59
principal component analysis, 388
principal curve analysis, 335
problem

δ-MOSS, 382
k-EMOSS, 383
many-objective, 377
radar waveform optimization, 386

problem formulation, 264
protein structure prediction (PSP), 94

internal coordinates, 96
potential energy functions, 97
torsion angles, 96

proxy objective, see modes of mul-
tiobjective optimization, proxy
objectives

radar waveform optimization problem,
386

receiver operating characteristics (ROC)
analysis, 162

multi-class, 167
redundant objective set, 382
regularity in distribution of Pareto-

optimal solutions, 332, 334
regularity-based latent principal curve

model (LPCM), 335
regularization in supervised learning,

157
removal-bias theory, 177
repeated single objective (RSO)

approach, 318
representation used in PSP, see protein

structure prediction (PSP)
run time analysis, 119, 120, 122, 124

scalability with the number of variables,
342

search and exploration, 264
secondary structure, 97
selective pressure, 308
semi-supervised classification, 139–143
sensitivity analysis, 244
separating classes, 165

M measure, 165
simplex crossover (SPX), 56
single-objective problem

solving with a multiobjective
approach, 115–130
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single-source shortest paths problem,
117

solution concepts, 37
distinctions, 37, 41, 43
implementation of, 40
monotonic, 45
Nash equilibrium, 39
Pareto optimality, 39, 41, 42
refinements of, 40

solution selection, see decision making
species, 299

relationship to design concept, 299,
300

stagnation, 178
subjective evaluation, 265
subpopulation, 58
supervised learning

formulations, 156
regularization, 157

switch back effect, 161
system identification, 205, 209

Tanaka objective function, 327
target vector, 324

Tchebychev norm, 323
test-based problem, 358, 359, 361, 373,

374
thermodynamic hypothesis, 93
thought experiment, 285, 288
transforming an NLP into an MOP, 55
travelling salesman problem, 146
tree bloat, see bloat
two stage strategy, 180

uniform design methods, 57
univariate factorized Gaussian model

(UGM), 337
unsupervised feature selection, see

feature selection, unsupervised
user interaction, 264

vector angle distance scaling (VADS),
323

vector evaluated genetic algorithm
(VEGA), 56

weighted min-max, 321
weighted sum, 318
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