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Abstract

The issue of setting the values of various parameters of an evolutionary algorithm
(EA) is crucial for good performance. One way to do it is by controlling EA param-
eters on-the-fly, which can be done in various ways and for various parameters. We
briefly review these options in general and present the findings of a literature search
and some statistics about the most popular options. Thereafter, we provide three case
studies indicating a high potential for uncommon variants. In particular, we recom-
mend focusing on parameters regulating selection and population size, rather than
those concerning crossover and mutation. On the technical side, the case study on
adjusting tournament size shows by example that global parameters can also be self-
adapted, and that heuristic adaptation and pure self-adaptation can be successfully
combined into a hybrid of the two.
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1 Introduction

In the early years of evolutionary computing the common opinion was that evolu-
tionary algorithm (EA) parameters are robust. The general claim was that the perfor-
mance of an EA does not depend heavily on the right parameter values for the given
problem instance at hand. Over the last two decades the EC community realised that
setting the values of EA parameters is crucial for good performance. One way to cal-
ibrate EA parameters is by controlling them on-the-fly, which can be done in various
ways and for various parameters [13,16,18]. The purpose of this chapter is to present
a general description of this field, identify the main stream of research, and argue
for alternative approaches that do not fall in the main stream. This argumentation is
based on three case studies published earlier [7,15,17].

The rest of the chapter is organised as follows. Section 2 starts off with giving
a short recap of the most common classification of parameter control techniques.
Then we continue in Sect. 3 with an overview of related work, including some statis-
tics on what types of parameter control are most common in the literature. Section 4
presents three case studies that substantiate our argument regarding the choice of the
parameter(s) to be controlled. Section 5 concludes the chapter.
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2 (lassification of Parameter Control Techniques

In classifying parameter control techniques of an evolutionary algorithm, many as-
pects can be taken into account [1,13,16,18,53]. In this chapter we consider the three
most important ones:

1. What is changed (e.g., representation, evaluation function, operators, selection
process, mutation rate, population size, and so on)?

2. How the change is made (i.e., deterministic heuristic, feedback-based heuristic,
or self-adaptive)?

3. The evidence upon which the change is carried out (e.g., monitoring performance
of operators, diversity of the population, and so on)?

Each of these is discussed in the following.

2.1 Whatis Changed?

To classify parameter control techniques from the perspective of what component
or parameter is changed, it is necessary to agree on a list of all major components of
an evolutionary algorithm, which is a difficult task in itself. For that purpose, let us
assume the following components of an EA:

« Representation of individuals

+ Evaluation function

» Variation operators and their probabilities

o Selection operator (parent selection or mating selection)

« Replacement operator (survival selection or environmental selection)
« Population (size, topology, etc.)

Note that each component can be parameterised, and that the number of paramet-
ers is not clearly defined. For example, an offspring v produced by an arithmetical
crossover of k parents X1,. .. , X, can be defined by the following formula:

V=a1X;+...+axy,

where ay, ... , ay, and k can be considered as parameters of this crossover. Paramet-
ers for a population can include the number and sizes of subpopulations, migration
rates, and so on for a general case, when more than one population is involved. Des-
pite the somewhat arbitrary character of this list of components and of the list of
parameters of each component, the “what-aspect” is one of the main classification
features, since this allows us to locate where a specific mechanism has its effect.

2.2 How are Changes Made?

Methods for changing the value of a parameter (i.e., the “how-aspect”) can be classi-
fied into: parameter tuning and parameter control. By parameter tuning we mean
the commonly practised approach that amounts to finding good values for the par-
ameters before the run of the algorithm and then running the algorithm using these
values, which remain fixed during the run. Parameter control forms an alternative,
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as it amounts to starting a run with initial parameter values that are changed during
the run.

We can further classify parameter control into one of the three following cate-
gories: deterministic, adaptive and self-adaptive. This terminology leads to the tax-
onomy illustrated in Fig. 1.

Deterministic parameter control This takes place when the value of a strategy
parameter is altered by some deterministic rule. This rule fires at fixed moments, pre-
determined by the user (which explains the name “deterministic”) and causes a pre-
defined change without using any feedback from the search. Usually, a time-varying
schedule is used, i.e., the rule is used when a set number of generations have elapsed
since the last time the rule was activated.

Adaptive parameter control This takes place when there is some form of feed-
back from the search that serves as inputs to a mechanism used to determine the di-
rection or magnitude of the change to the strategy parameter. The assignment of the
value of the strategy parameter may involve credit assignment, based on the qual-
ity of solutions discovered by different operators/parameters, so that the updating
mechanism can distinguish between the merits of competing strategies. Although
the subsequent action of the EA may determine whether or not the new value per-
sists or propagates throughout the population, the important point to note is that the
updating mechanism used to control parameter values is externally supplied, rather
than being part of the “standard” evolutionary cycle.

Self-adaptive parameter control The idea of the evolution of evolution can be
used to implement the self-adaptation of parameters [6]. Here the parameters to be
adapted are encoded into the chromosomes and undergo mutation and recombinat-
ion. The better values of these encoded parameters lead to better individuals, which
in turn are more likely to survive and produce oftspring and hence propagate these
better parameter values. This is an important distinction between adaptive and self-
adaptive schemes: in the latter the mechanisms for the credit assignment and updat-
ing of different strategy parameters are entirely implicit, i.e., they are the selection
and variation operators of the evolutionary cycle itself.

2.3 What Evidence Informs the Change?

The third criterion for classification concerns the evidence used for determining the
change of parameter value [49, 51]. Most commonly, the progress of the search is

Parameter setting

before the run during the run
Parameter tuning Parameter control
Deterministic Adaptive Self-adaptive

Fig.1 Global taxonomy of parameter setting in EAs
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monitored, e.g., by looking at the performance of operators, the diversity of the popu-
lation, and so on. The information gathered by such a monitoring process is used as
feedback for adjusting the parameters. From this perspective, we can make further
distinction between the following two cases:

Absolute evidence We speak of absolute evidence when the value of a strategy
parameter is altered by some rule that is applied when a predefined event occurs. The
difference from deterministic parameter control lies in the fact that in deterministic
parameter control a rule fires by a deterministic trigger (e.g., time elapsed), whereas
here feedback from the search is used. For instance, the rule can be applied when the
measure being monitored hits a previously set threshold - this is the event that forms
the evidence. Examples of this type of parameter adjustment include increasing the
mutation rate when the population diversity drops under a given value [38], changing
the probability of applying mutation or crossover according to a fuzzy rule set using
a variety of population statistics [37], and methods for resizing populations based on
estimates of schemata fitness and variance [52]. Such mechanisms require that the
user has a clear intuition about how to steer the given parameter into a certain di-
rection in cases that can be specified in advance (e.g., they determine the threshold
values for triggering rule activation). This intuition may be based on the encapsu-
lation of practical experience, data-mining and empirical analysis of previous runs,
or theoretical considerations (in the order of the three examples above), but all rely
on the implicit assumption that changes that were appropriate to make on another
search of another problem are applicable to this run of the EA on this problem.

Relative evidence In the case of using relative evidence, parameter values are
compared according to the fitness of the offspring that they produce, and the bet-
ter values get rewarded. The direction and/or magnitude of the change of the strat-
egy parameter is not specified deterministically, but relative to the performance of
other values, i.e,, it is necessary to have more than one value present at any given
time. Here, the assignment of the value of the strategy parameter involves credit as-
signment, and the action of the EA may determine whether or not the new value
persists or propagates throughout the population. As an example, consider an EA
using more crossovers with crossover rates adding up to 1.0 and being reset based
on the crossovers performance measured by the quality of offspring they create.
Such methods may be controlled adaptively, typically using “bookkeeping” to moni-
tor performance and a user-supplied update procedure [11,32,45], or self-adaptively
[5,23,35,47,50,53] with the selection operator acting indirectly on operator or pa-
rameter frequencies via their association with “fit” solutions.

2.4 Summary

Our classification of parameter control methods is three-dimensional. The compo-
nent dimension consists of six categories: representation, evaluation function, vari-
ation operators (mutation and recombination), selection, replacement, and popu-
lation. The other dimensions have respectively three (deterministic, adaptive, self-
adaptive) and two categories (absolute, relative). Their possible combinations are
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given in Table 1. As the table indicates, deterministic parameter control with rela-
tive evidence is impossible by definition, and so is self-adaptive parameter control
with absolute evidence. Within the adaptive scheme both options are possible and
are indeed used in practice.

3 Related Work

We conducted a literature review to get an overview of the work that has been done
on the various parameters of evolutionary algorithms of the last decade. Our aim
was not to deliver a fully annotated bibliography, but rather to illuminate some ex-
amples from the literature on this topic. The literature spans the conference proceed-
ings of three major EC conferences: GECCO (1999-2006), CEC (1999-2006) and
PPSN (1990-2006). In total we found 235 papers that were concerned, in any way
(thus not necessarily (self-)adaptive), with one of the parameters of EAs mentioned
above: representation, initialisation, evaluation function, variation operators, selec-
tion and population size. (In addition, we found 76 papers about adaptive EAs in
general.) We categorised the 235 papers, the result of which is shown in Fig. 2. We
consider this a preliminary overview giving some indication of the distribution of
research effort spent on these issues. The histogram clearly shows that much research

Table 1 Refined taxonomy of parameter setting in EAs: types of parameter control along the
type and evidence dimensions. The - entries represent meaningless (nonexistent) combina-
tions
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number of publications

120

109
100 4
80 68
60
40
25
20 10 16
7 I_‘
0 ] 1
& & & & é@o &
G & & & &
& g & 2@
g o ¥ R & oR
=] & Q g
Q& & 0 o‘i‘
N \\'p (\9.\\
& X

Fig.2 Publication histogram



158 A.E. Eiben, M.C. Schut

effort is spent on the variation operators (in general: 25, mutation: 54, crossover: 30).
Also, the population parameter is well researched. However, we are aware of the fact
that this number is biased, because it includes papers that are somewhat out of the
scope of this chapter: for example, on population control in genetic programming, on
the island-model of (sub)populations and on distributing (sub)populations in paral-
lel evolutionary algorithms. We did not include papers on co-evolution.

We briefly discuss each EA parameter here, where we focus on the papers that
explicitly look at (self-) adaptivity of the parameters. If possible, we make a distinction
between deterministic, and self- adaptation within the discussion of a parameter.

3.1 Representation

Concerning representation, the genome length can be taken as a variable during an
evolutionary run [28,36,43,56]. Consider Ramsey et al. [43] who investigate a vari-
able length genome under different mutation rates. To the suprise of the authors,
the length of individuals self-adapts in direct response to the applied mutation rate.
When tested with a broad range of mutation rates, the length tends to increase dra-
matically in the beginning and then decrease to alevel corresponding to the mutation
rate.

In earlier work, Harvey [28] presents an important property of variable-length
genomes: “the absolute position of some symbols on the genotype can usually no
longer be used to decide what feature those symbols relate to” Harvey sketches
SAGA: a framework that was constructed to investigate the dynamics of a GA when
genotype lengths are allowed to increase. The framework includes a particular cross-
over operator (SAGA cross) that has the requirement that the similarities are maxi-
mised between the two left segments that are swapped and between the two right seg-
ments that are swapped. This results in a computationally efficient algorithm where
populations largely converge.

Stringer and Wu [56] show that a variable-length GA can evolve to shorter aver-
age size populations. This is observed when: (1) selection is absent from the GA, or
(2) when selection focuses on some other property not influenced by the length of
individuals. The model starts with an integer array of 100 elements, where each el-
ement represents an individual and the value denotes an individual’s chromosome
length. A simulated crossover produces children from two random parents, where
the value of the first child equals the first (random) crossover point plus the value of
the second parent less the second (random) crossover point; a similar procedure is
used for the second child.

3.2 Initialisation

Although making the initialisation adaptive may seem contradictory (i.e., what
should it adapt to initially?), there is a significant amount of literature dedicated to dy-
namic restart strategies for EAs [24,31,41,48]. This can be understood as (self-)adaptive
initialisation.
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Fukunga [24] shows how to find a good restart strategy in the context of resource-
bounded scenarios: where the goal is to generate the best possible solution given
a fixed amount of time. A new strategy is proposed that works based on a database
of past performance of the algorithm on a class of problem instances. The resulting
static restart strategy is competitive with those that are based on detection of lack of
progress. This static strategy is an example of deterministic parameter control and it
is surprising that it ourperforms the dynamic variant. According to the authors, one
reason for this is that the dynamic variant can only consider local information of the
current run.

Jansen [31] compares very simple deterministic strategies on a number of ex-
amples with different properties. The comparison is done in terms of a theoretical
investigation on expected runtimes of various strategies. The strategies are more com-
plex than fixing some point of time for a restart, but less complex than adaptive restart
strategies. Two classes of dynamic restart strategies are presented and one additive
and one multiplicative strategy is investigated in detail.

Finally, re-initialisation can also be considered in parallel genetic algorithms.
Sekaj [48] researches this: the effect of re-initialisation is analysed with respect to
convergence of the algorithm. In parallel genetic algorithms, (sub)populations may
periodically migrate (as discussed later in the section about population). Sekaj lets
re-initialisation happen when such migration took place. At re-initialisation, the cur-
rent population was replaced by a completely new, randomly generated population.
Additionally, two dynamic versions were presented: one where the algorithm after
some number of generations compares the best individuals of each population and
the worst population was re-initialised; and one which was based on the population
diversity. Re-initialisation is able to remove differences between homogeneous and
heterogeneous parallel GAs.

3.3 Evaluation Function

Regarding the evaluation function, some dynamic variants of this function are pre-
sented throughout the literature [19, 26, 34,44].

The Stepwise Adaptation of Weights (SAW) technique has been introduced for
problems that have a fitness function composed as a weighted sum of some atomic
measure of quality. For instance, problems involving constraint satisfaction and data
mining belong to this class, where the atomic measure can be the satisfaction of one
given constraint or the correct classification of one given data record [77,80]. SAWing
is an adaptive technique that adjusts the weights in the sum periodically at predefined
intervals by increasing those that belong to “wrong” items, that is, to unsatisfied con-
traints or ill-classified records. Hereby SAWing effectively changes the fitness func-
tion and allows the algorithm to “concentrate” on the difficult cases. SAWing has been
shown to work well on constraint satisfaction problems and data mining 78,79, 81].

Reis et al. [44] propose and analyse a fractional-order dynamic fitness function:
a fitness function based on fractional calculus. Besides the “default” fitness, the func-
tion has a component that represents the gain of the dynamical term. This dynamic
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function is compared with a static function that includes a discontinuity measure-
ment. The comparison has been done in the domain of electronic circuit design. Both
variants outperform the standard fitness algorithm.

Within the area of constraint optimisation problems, Kazarlis and Petridis [34]
propose a technique where the problem constraints are included in the fitness func-
tion as penalty terms. During the GA evolution these terms are varied, such that the
location of a global optimum is facilitated and local optima are avoided. In addition
to a static penalty assigment method (which is more often used in these types of prob-
lems), an increasing function is introduced that depends on the evolution time. This
function can be linear, exponential, square, cubic, quartic or 5-step. For the particu-
lar problems under research (Cutting and Packing and Unit Commitment Problem),
it was found that the square function was the optimum increase rate of the penalty
term (and not the linear function that was expected by the authors).

For the satisfiability problem, Gottlieb and Voss [26] compare three approaches
based on adapting weights, where weights indicate the relative importance of a con-
straint in a particular satisfiability problem. Adaptation takes place after a fixed num-
ber of fitness evaluations. One of the three approaches yielded overall optimal per-
formance that exploits SAT-specific knowledge.

It is noteworthy to mention that the dynamics of a fitness function can also be
understood the other way around: where the fitness function is taken as being a dy-
namic one (because the problem is dynamic) and the EA has to deal with this. In such
a case, the fitness function is thus not (self-)adaptive. For example, Eriksson and Ols-
son [19] propose a hybrid strategy to locate and track a moving global optimum.

3.4 Variation Operators

By far, most research effort in (self-)adaptive parameter control is spent on the vari-
ation operators: mutation and crossover. Although there are many papers about
tuning the parameter values of the operator rates, a significant number look into
(self-)adaptive parameter value control for mutation and crossover.

There are approximately a dozen papers that discuss the (self-)adaptive param-
eter control for both operators. Smith and Fogarty [50] use Kauffman’s NK model to
self-adapt the crossover and mutation rates. The method puts a mutation rate in the
chromosome itself and lets the (global) mutation rate be based on some aggregated
value of the mutation rates of the individuals. The authors compare their new method
to a number of frequently used crossover operators with standard mutation rates.
The results are competitive on simple problems, and significantly better on the most
complex problems. Ho et al. [30] present a probabilistic rule-based adaptive model
in which mutation and crossover rates are adapted during a run. The model works
based on subpopulations that each use different (mutation or crossover or both) rates
and good rates emerge based on the performance of the subpopulations. (Although
called ‘self-adaptive’ by the authors, in our earlier mentioned terminology, this model
is adaptive and not self-adaptive.) Finally, Zhang et al. [62] let the crossover and mu-
tation rate adapt based on the application of K-means clustering. The population is
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clustered and rates are inferred based on the relative sizes of the clusters containing
the best and worst chromosomes.

Regarding mutation, we see that the mutation operator is undoubtedly one of the
most researched parameters according to our overview: 54 papers have been pub-
lished about it. The topics of these papers range from introducing new mutation
operators to the convergence of fitness gain effects of particular operators. Of these
papers, 26 are specifically about (self-)adaptive mutation operators. We give some
examples of these mutation operator studies. One of the earliest references in our
overview is Bick [4] who presents a self-adaptation mechanism of mutation rates.
The rates are included in the individual itself. The methods enables a near-optimal
schedule for the mutation rate. More recently, Katada et al. [33] looked at the do-
main of evolutionary robotics, where they tested a GA whose effective mutation rate
changed according to the history of the genetic search. The individuals are neural
networks that evolve over time. The control task was motion pattern discrimination.
The variable mutation rate strategy shows better performance in this task, and this
benefit was more pronounced with a larger genetic search space. Finally, Arnold [3]
shows that rescaled mutations can be adaptively generated yielding robust and nearly
optimal performance in problems with a range of noise strengths. Rescaling muta-
tion has been suggested earlier in the literature, but this paper specifically discusses
an adaptive approach for determining the scaling factor.

Concerning crossover, we briefly describe two studies. White and Oppacher [59]
use automata to allow adaptation of the crossover operator probability during the
run. The basic idea is to identify groups of bits within an individual that should
be kept together during a crossover. An automaton encoded the probability that
a given bit will be exchanged with the other parent under the crossover operators.
First experiments show that the new crossover yields satisfactory results. The sec-
ond study was undertaken by Vekaria and Clack [57] who investigate a number of
biases to characterise adaptive recombination operators: directional - if alleles are
either favoured or not for their credibility; credit — degree at which an allele becomes
favoured; initialisation - if alleles are favoured without knowing their credibility; and
hitchhiker - if alleles become favoured when they do not contribute to the fitness in-
crease. Some experiments show, among other results, that initialisation bias (without
mutation) does improve genetic search. Overall, the authors conclude that the biases
are not always beneficial.

3.5 Selection

The majority of the 25 papers that we found with general reference to the selection
mechanism of EAs are not about (self-)adaptive selection, but address rather a wide
range of topics: e.g., without selection, effects of selection schemes, types of selection
(clonal, anisotropic), and so forth. A stricter search shows that most studies that we
categorised as being about (self-)adaptive selection actually refer to another EA par-
ameter, for example, the mutation rate or the evaluation function. We only found one
paper about (self-)adaptive survivor selection as defined in the terminology above.



162 A.E. Eiben, M.C. Schut

Gorges-Schleuter [25] conducts a comparative study of global and local selection in
evolution strategies. Traditionally, selection is a global parameter. In the so-called
diffusion model for EAs, the individuals only exhibit local behaviour and the selection
of partners for recombination and the selection individuals for survival are restricted
to geographically nearby individuals. Local selection works then as follows: the first
generated child is included in the next population whatsoever, each next child has to
be better than its parent in order to be included in the next population.

3.6 Population

The population (size) parameter scores second-highest in our chapter overview. We
already mentioned that this number is somewhat biased, because a number of the
papers are about topics that are outside the scope of this chapter. General research
streams that we identified regarding the population parameters with the 68 papers
are: measuring population diversity, population size tuning, island model and mi-
gration parameter, ageing individuals, general effects of population size, population
control in genetic programming, adaptive populations in particle swarm optimisa-
tion. For some topics, e.g., multi-populations or parallel populations, it is actually the
evaluation function that is variable and not the population (size) itself - although at
first sight the population size seems the varied parameter. This can also be said about
co-evolutionary algorithms.

Approximately 10 of the 68 papers are specifically about (self-)adaptive popula-
tion size. Later in this chapter, we discuss a number of these papers. Here, we briefly
mention two other such papers. First, Lu and Yen [39] propose a dynamic multi-
objective EA in which population growing and decline strategies are designed in-
cluding a number of indicators that trigger the adaptive strategies. The EA is shown
to be effective with respect to the population size and the diversity of the indi-
viduals. Secondly, Fernandes and Rosa [22] combine a dynamic reproduction rate
based on population diversity, an ageing mechanism and a particular type of (macro-
)mutation into one mechanism. The resulting mechanism is tested in a range of prob-
lems and shown to be superior in finding global optima.

4 (ase Studies

We include three case studies that illustrate the benefits of (self-)adapting EA param-
eters. The first case study considers self-adaptive mutation and crossover and adap-
tive population size. The second study looks at on-the-fly population size adjustment.
The third case study considers (self-)adaptive selection.

Throughout all case studies, we consider three important performance measures
that reflect algorithm speed, algorithm certainty, and solution quality. The speed of
optimization is measured by the Average number of Evaluations on Success (AES),
showing how many evaluations it takes on average for the successful runs to find
the optimum. The Success Rate (SR) shows how many of the runs were successful in
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finding the optimum. If the GA is somewhat unsuccessful (SR < 100%), the meas-
urement MBF (Mean Best Fitness) shows how close the GA can come to the opti-
mum. If SR = 100%, then the MBF will be 0, because every run found the optimum
0. (The MBF includes the data of all runs in it, the successful and the unsuccessful
ones.)

4.1 An Empirical study of GAs “Without Parameters”

An empirical study on GAs “without parameters” by Back, Eiben and van der Vaart [7]
can be considered as the starting point of the research this very chapter is based
upon. The research it describes aims at eliminating GA parameters by making them
(self-)adaptive while keeping, or even improving, GA performance. The quotes in the
title indicate that this aim is only partly achieved, because the mechanisms for elimi-
nating GA parameters can have parameters themselves. The paper describes methods
to adjust

o the mutation rate (self-adaptive, by an existing method after [4]),
o the crossover rate (self-adaptive, by a newly invented method),
o the population size (adaptive, by an existing method after [2], [42, pp. 72-80])

on-the-fly, during a GA run.

The method to change mutation rate is self-adaptive. The mutation rate is en-
coded in extra bits at the tail of every individual. For each member in the starting
population the rate is completely random within a given range. Mutation then takes
place in two steps. First only the bits that encode the mutation rate are mutated and
immediately decoded to establish the new mutation rate. This new mutation rate is
applied to the main bits (those encoding a solution) of the individual. Crossover rates
are also self-adaptive. A value between 0 and 1is coded in extra bits at the tail of every
individual (initialised randomly). When a member of the population is selected for
reproduction by the tournament selection, a random number r below 1 is compared
with the member’s p. . If r is lower than p., the member is ready to mate. If both
selected parents are ready to mate two children are created by uniform crossover,
mutated and inserted into the population. If it is not lower, the member will only
be subject to mutation to create one child which undergoes mutation and survivor
selection immediately. If both parents reject mating, the two children are created by
mutation only. If one parent is willing to mate and the other one does not, then the
parent that is not in for mating is mutated to create one offspring, which is inserted in
the population immediately. The willing parent is on hold and the next parent selec-
tion round only picks one other parent. Population size undergoes changes through
an adaptive scheme, based on the maximum-lifetime idea. Here every new individual
is allocated a remaining lifetime (RLT) between the allowable minimum and max-
imum lifetime (MinLT and MaxLT) at birth. The RLT depends on the individual’s
fitness at the time of birth, related to other individuals in the population. In each
cycle (roughly: generation), the remaining lifetime of all the members in the popula-
tion is decremented by one. There is only one exception for the fittest member, whose
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RLT is left unchanged. If the RLT of an individual reaches zero it is removed from
the population.

The three methods to adjust parameters on-the-fly are then added to a traditional
genetic algorithm and their effect on GA performance is investigated experimen-
tally. The experimental comparison includes 5 GAs: a simple GA as benchmark, three
GAs featuring only one of the parameter adjusting mechanisms and a GA that ap-
plies all three mechanisms and is therefore almost “parameterless”. The experimental
comparison is based on a test suite of five functions composed to comform to the
guidelines in [8,60]: the sphere model, the generalised Rosenbrock function, the gen-
eralised Ackley function, the generalised Rastrigin function, and the fully deceptive
six-bit function. All test functions are used with # = 10 dimensions and are scaled to
have an optimal value of 0. We performed 30 runs for each condition.

In order to give a clear and compact overview of the performance of all GA vari-
ants we show the outcomes by ranking the GAs for each function in Table 2. To obtain
a ranking, we award the best GA (fastest or closest to the minimum) one point, the
second best GA two points, and so on, so the worst performing GA for a given func-
tion gets five points. If, for a particular function, two GAs finish very close to each
other, we award them equally: add the points for both those rankings and divide that
by two. After calculating these points for each function and each GA variant we add
the points for all the functions to form a total for each GA. The GA with the least
points has the best overall performance.

The overall competition ends in a close finish between the all-in GA as number
one and AP-GA, the GA with adaptive population size, right on its heels. In this
respect, the objective of the study has been achieved, using the all-in GA the user has
fewer parameters' to set and gets higher performance than using the simple GA.

An unexpected outcome of this study is that adaptive population sizes proved
to be the key feature to improve the benchmark traditional GA, TGA. Alone, or in
combination with the self-adaptive variation operators, the mechanism to adjust the
population size during a run causes a consequent performance improvement w.r.t.
the benchmark GA. These outcomes give a strong indication that, contrary to past

Table2 Ranking of the GAs (the labelling is obvious from the text)

TGA SAM-GA SAX-GA AP-GA all-in GA

Sphere 2 5 3 1 4
Rosenbrock 3 5 4 4 2
Ackley 1 2.5 5 4 2.5
Rastrigin 2.5 5 4 2.5 1
Deceptive 4 5 2.5 2.5 1
Points 12.5 22.5 18.5 11 10.5
End rank 3 5 4 2 1

! This is not entirely true, since (1) initial values for those parameters must be given by the
user and (2) the population adaptation method introduces two new parameters MinLT and
MaxLT.
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and present practice (where quite some effort is devoted to tuning or online control-
ling of the application rates of variance operators), studying control mechanisms for
variable population sizes should be paid more attention.

After having published this paper, this conclusion has been generalised by dis-
tinguishing variation and selection as the two essential powers behind an evolution-
ary process [18, Chapter 2]. Here, variation includes recombination (crossover) and
mutation; for selection we can further distinguish parent selection and survivor se-
lection (replacement). Clearly, the population size is affected by the latter. From this
perspective, the paper gives a hint that further to studying mechanisms for on-the-fly
calibration of variation operators, the EC community should adopt a research agenda
for on-the-fly selection control mechanisms, including those focusing on population
size management.

4.2 Evolutionary Algorithms with On-the-Fly Population Size Adjustment

The investigation in [15] is a direct follow-up to [7] discussed in the previous section.
As noted by Béck et al. the population size is traditionally a rigid parameter in evo-
lutionary computing. This is not only true in the sense that for the huge majority of
EAs the population size remains constant over the run, but also for the EC research
community that has not spent much effort on EAs with variable population sizes.
However, there are biological and experimental arguments to expect that this would
be rewarding. In natural environments, population sizes of species change and tend
to stabilise around appropriate values according to factors such as natural resources
and carrying capacity of the ecosystem. Looking at it technically, population size is
the most flexible parameter in natural systems: it can be adjusted much more easily
than, for instance, mutation rate.

The objective of this study is to perform an experimental evaluation of a num-
ber of methods for calibrating population size on-the-fly. Note that the paper does
not consider (theory-based) strategies for tuning population size [65-68,70,74]. The
inventory of methods considered for an experimental comparison includes the fol-
lowing algorithms from the literature. The Genetic Algorithm with Variable Popu-
lation Size (GAVaPS) from Arabas [2], [42, pp. 72-80] eliminates population size as
an explicit parameter by introducing the age and maximum lifetime properties for
individuals. The maximum lifetimes are allocated at birth depending on fitness of
the newborn, while the age (initialised to 0 at birth) is incremented at each genera-
tion by one. Individuals are removed from the population when their ages reach the
value of their predefined maximum lifetime. This mechanism makes survivor selec-
tion unnecessary and population size an observable, rather than a parameter. The
Adaptive Population size GA (APGA) is a variant of GAVaPS where a steady-state
GA is used, and the lifetime of the best individual remains unchanged when indi-
viduals grow older [7]. In [27, 69] Harik and Lobo introduce a parameterless GA
(PLGA) which evolves a number of populations of different sizes simultaneously.
Smaller populations get more function evaluations, where population i is allowed to
run four times more generations than the population i +1. If, however, a smaller pop-
ulation converges, the algorithm drops it. The Random Variation of the Population
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Size GA (RVPS) is presented by Costa et al. in [63]. In this algorithm, the size of the
actual population is changed every N fitness evaluations, for a given N. Hinterding,
Michalewicz and Peachey [29] presented an adaptive mechanism, in which three sub-
populations with different population sizes are used. The population sizes are adapted
at regular intervals (epochs) biasing the search to maximise the performance of the
group with the mid-most size. The criterion used for varying the sizes is fitness diver-
sity. Schlierkamp-Voosen and Miihlenbein [72] use a competition scheme between
sub-populations to adapt the size of the sub-populations as well as the overall popula-
tion size. There is a quality criterion for each group, as well as a gain criterion, which
dictates the amount of change in the group’ size. The mechanism is designed in such
a way that only the size of the best group can increase. A technique for dynamically
adjusting the population size with respect to the probability of selection error, based
on Goldberg’s research [67], is presented in [73]. Finally, the following methods have
been selected for the experimental comparison.

GAVaPS from [2],

GA with adaptive population size (APGA) from [7],

the parameterless GA from [27],

the GA with Random Variation of Population Size (RVPS) from [63],

the Population Resizing on Fitness Improvement GA (PRoFIGA), newly in-
vented for this paper.

G W

The new method is based on monitoring improvements of the best fitness in the pop-
ulation. On fitness improvement the EA is made more explorative by increasing the
population size. If the fitness is not improving (for a short while) the population is
made smaller. However, if stagnation takes too long, then the population size is in-
creased again. The intuition behind this algorithm is related to (a rather simplified
view on) exploration and exploitation. The bigger the population size, the more it
supports explorative search. Because in the early stages of an EA run fitness typi-
cally increases, population growth, hence exploration, will be more prominent in the
beginning. Later on it will decrease gradually. The shrinking phase is expected to
“concentrate” more on exploitation of fewer individuals after reaching the limits of
exploration. The second kind of population growth is supposed to initiate renewed
exploration in a population that ist stuck in local optima. Initial testing has shown
that GAVaPS was very sensitive for the reproduction ratio parameter and the algo-
rithm frequently increased the size of the population over several thousand individ-
uals, which resulted in unreliable performance. For this reason it was removed from
further experimentation.

When choosing the test suite for experimentation popular, but ad hoc collections
of objective functions are deliberately avoided for reasons outlined in [14] and [18,
Chapter 14]. Instead, the multimodal problem generator of Spears [54] is used for
it has been designed to facilitate systematic studies of GA behavior. This genera-
tor creates random problem instances, i.e., fitness landscapes over bit-strings, with
a controllable size (chromosome length) and degree of multi-modality (number of
peaks). The test suite consists of 10 different landscapes for 100 bits, where the num-
ber of peaks ranges from 1 to 1000 through 1, 2, 5, 10, 25, 50, 100, 250, 500, and 1000.
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We performed 100 runs for each condition. Here again, the performance of the algo-
rithms is assessed by Success Rate (SR), Mean Best Fitness (MBF), and the Average
number of Evaluations to a Solution (AES). SR is an effectivity measure that gives the
percentage of runs in which the optimum (the highest peak) was found. MBF is also
an effectivity measure showing the average of the best fitness in the last population
over all runs. AES is a measure of efficiency (speed): it is the number of evaluations it
takes on average for the successful runs to find the optimum. If a GA has no success
(SR = 0) then the AES measure is undefined.

The main results are given in the graphs with a grid background in Fig. 3 and the
left-hand side of Fig. 4.

The AES plots are shown in Fig. 3 (left). These graphs show clear differences
between the algorithms. There are, however, no significant differences between the
problem instances when only looking at the speed curves (except for the parameter-
less GA). Apparently, finding a solution does not take more evaluations on a harder
problem that has more peaks. (Although it should be noted that for harder problems
the averages are taken over fewer runs, cf. the SR figures below, which reduces the re-
liability of the statistics.) This is an interesting artefact of the problem generator that
needs further investigation. The increasing problem hardness, however, is clear from
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the decreasing average quality of the best solution found (MBF), cf. Fig. 3 (right) and
the decreasing probability of finding a solution (SR), cf. Fig. 4 (left).

We can rank the population (re)sizing methods based on the AES plots: APGA
is significantly faster than the other methods, followed by PRoFIGA. The traditional
GA comes third. The parameterless GA is only competitive for easy problems and
the RVPS RW is clearly inferior to the other methods.

The SR and MBF results are quite homogeneous, with only one negative outlier,
the parameterless GA. It seems that we cannot rank the algorithms by their effectivity.
However, this homogeneity is a consequence of our choice of the maximum number
of fitness evaluations in the termination criterion. Apparently it is “too” high allowing
all contestants to reach the performance of the champions - be it slower. As a control
experiment, we repeated all runs with the maximum number of fitness evaluations
set to 1500. The resulting success rates are given in Fig. 4 (right), showing great dif-
ferences. APGA and PRoFIGA obtain somewhat worse, but comparable SR results as
before, but the other algorithms never find a solution yielding SR = 0 over all peaks.

Looking at the results we can conclude that adapting population sizes in an EA
can certainly pay off. The gains in terms of efficiency, measured by the number of fit-
ness evaluations needed to find a solution, can be significant: the winner of our com-
parison (APGA) achieves the same success rate and mean best fitness as the tradi-
tional GA with less than half of the work, and even the second best (PRoFIGA) needs
20% fewer evaluations. The second series of experiments shows that such an increase
in speed can be converted into increased effectivity, depending on the termination
condition. Here again, the winner is APGA, followed by PRoFIGA. It should be noted
that two GAs from this comparison (the parameterless GA and RVPS RW) are much
slower than the traditional GA. Hence, on-the-fly population (re)sizing is not nec-
essarily better than traditional hand-tuning of a constant population size. The added
value depends on the actual implementation, i.e., on how the population size is ad-
justed. Another observation made here is that the lifetime principle used in APGA
eliminates explicit survivor selection and makes population size an observable in-
stead of a user parameter. However, it should also be noted that using this idea does
not mean that the number of EA parameters is reduced. In fact, it is increased in our
case: instead of the population size N in the TGA, the APGA introduces two new
parameters, MinLT and MaxLT.

These results can be naturally combined with those of Back et al. confirming the
superiority of APGA on another test suite. Of course, highly general claims are still
not possible about APGA. But these results together form a strong indication that in-
corporating on-the-fly population (re)sizing mechanisms based on the lifetime prin-
ciple in EAs is a very promising design heuristic definitely worth trying and that
APGA is a successful implementation of this general idea.

4.3 Boosting Genetic Algorithms with (Self-) Adaptive Selection

The paper [17] seeks an answer to the question whether it is feasible (i.e., possible
and rewarding) to self-adapt selection parameters in an evolutionary algorithm? Note
that the idea seems quite impossible considering that
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« Self-adaptation manipulates parameters defined within an individual, hence the
given parameter will have different values over different members of the popula-
tion.

o  Parameters regarding selection (e.g., tournament size in tournament selection or
the bias in ranked biased selection) are inherently global, any given value holds
for the whole population, not only for an individual.

This explains why existing approaches to controlling such parameters are either de-
terministic or adaptive.

The paper investigates self-adaptation of tournament size in a purely self-adaptive
fashion and a variant that combines self-adaptation with a heuristic. The approach
is based on keeping tournament size K as a globally valid parameter, but decompos-
ing it. That is, to introduce local parameters k at the level of individuals that can be
self-adapted and establish the global value through aggregating the local ones. Tech-
nically, this means extending the individual’s chromosomes by an extra gene resulting
in (x, k). Furthermore, two methods are required. One, to specify how to aggregate
local k values to a global one. Two, a mechanism for variation (crossover and muta-
tion) of the local k values.

The aggregation mechanism is rather straightforward. Roughly speaking, the
global parameter will be the sum of the local votes of all individuals. Here we present
a general formula applicable for any global parameter P and consider tournament
size K as a special case.

N
P=[3 pil @

i=1
where p; € [Pmin> Pmax]> | | denotes the ceiling function, and N is the population

size.

Concerning variation of the extended chromosomes, crossover and mutation are
distinguished. Crossover works on the whole (x, k), by whichever mechanism the
user wishes. Mutation, however, is split. The x part of (x, k) is mutated by any suit-
able mutation operator, but for the k part a specific mechanism is used. A straightfor-
ward option would be the standard self-adaptation mechanism of ¢ values from Evo-
lution Strategies. However, those o values are not bounded, while tournament size is
obviously bounded by zero and the population size. A possible solution is the self-
adaptive mechanism for mutation rates in GAs as described by Bick and Schiitz [9].
This mechanism is introduced for p € (0, 1) and it works as follows:

-1
» = (1+ I;P .ey~N(0,1)) @)

where p is the parameter in question and y is the learning rate, which allows for
control of the adaptation speed. This mechanism has some desirable properties:

1. Changing p € (0,1) yieldsa p’ € (0,1).

2. Small changes are more likely than large ones.
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3. The expected change of p by repeatedly changing it equals zero (which is desir-
able, because natural selection should be the only force bringing a direction in
the evolution process).

4. Modifying by a factor ¢ occurs with the same probability as a modification by
1/c.

The concrete mechanism for self-adaptive tournament sizes uses individual k values
k € (0,1) and the formula of Equation (2) with y = 0.22 (as recommended in [9]).
Note that if a GA uses a recombination operator then this operator will be applied
to the tournament size parameter k, just as it is applied to other genes. In practice
this means that a child created by recombination inherits an initial k value from its
parents and the definitive value k is obtained by mutation as described by Equation
(2).

Besides the purely self-adaptive mechanism for adjusting tournament sizes the
chapter also introduces a heuristic variant. In the self-adaptive algorithm as de-
scribed above the direction (+ or —) as well as the extent (increment/decrement) of
the change are fully determined by the random scheme. This is a general property of
self-adaptation. However, in the particular case of regulating selection pressure we
do have some intuition about the direction of change. Namely, if a new individual
is better than its parents then it should try to increase selection pressure, assuming
that stronger selection will be advantageous for him, giving a reproductive advan-
tage over less fit individuals. In the opposite case, if it is less fit than its parents, then
it should try to lower the selection pressure. Our second mechanism is based on this
idea. Formally, we keep the aggregation mechanism from equation 1 and use the fol-
lowing rule. If (x, k) is an individual to be mutated (either obtained by crossover or
just to be reproduced solely by mutation), then first we create x’ from x by the regular
bitflips, then apply

k,:{k+Ak if f(;d) > f(x) 3)
k- Ak otherwise
where

Ak = ‘k— (1 + l;kke—ym‘)’l))1 @)
with y = 0.22.

This mechanism differs from “pure” self-adaptation because of the heuristic rule
specifying the direction of the change. However, it could be argued that this mechan-
ism is not a clean adaptive scheme (because the initial k values are inherited), nor
a clean self-adaptive scheme (because the final k values are influenced by a user de-
fined heuristic), but some hybrid form. For this reason we perceive and name this
mechanism hybrid self-adaptive (HSA). All together this yields two new GAs: the GA
with self-adaptive tournament size (GASAT) and the GA with hybrid self-adaptive
tournament size (GAHSAT).



4 Case Studies 171

The experimental comparison of these GAs and a standard GA for benchmark is
based on exactly the same test suite as the study in the previous section. The GAs are
tested on the same landscapes in {0,1}'%° with 1, 2, 5, 10, 25, 50, 100, 250, 500 and
1000 peaks obtained through the Multimodal Problem Generator of Spears [54]. We
performed 100 runs for each condition. Also the performance measures are identical:
the Mean Best Fitness (MBF) and its standard deviation (SDMBF), the Average num-
ber of Evaluations to a Solution (AES) and its standard deviation (SDAES), and the
Success Rate (SR) are calculated, based on 100 independent runs. The results for the
SGA, GASAT, and GAHSAT are shown in Table 3, Table 4, and Table 5, respectively.

The outcomes indicate that GASAT has better performance than SGA, but it is
not as powerful as the hybrid self-adaptive mechanism. The initial research question
about the feasibility of on-the-fly adjustment of K can be answered positively. It is in-
teresting to remark here that the self-adaptive GAs are based on a simple mechanism
(that was, nota bene, introduced for mutation parameters) and apply no sophisticated
twists to it. Yet, they show very good performance that compares favorably with the
best GA in [15]. The comparison between the former winner, APGA with adaptive
population size, and GAHSAT is shown in Table 6. Note that the MBF results are
omitted for they showed no significant difference. This comparison shows that the
GAHSAT is very competitive, running out the APGA on the smoother landscapes.

Table3 Results of SGA Table 4 End results of GASAT
Peaks SR AES SDAES MBF SDMBF Peaks SR AES SDAES MBF SDMBF
1 100 1478 191 1.0 0.0 1 100 1312 218 1.0 0.0
2 100 1454 143 1.0 0.0 2 100 1350 214 1.0 0.0
5 100 1488 159 1.0 0.0 5 100 1351 254 1.0 0.0
10 93 1529 168 0.9961 0.0142 10 92 1433 248 0.9956 0.0151
25 62 1674 238 0.9885 0.0174 25 62 1485 280 0.9893 0.0164
50 37 1668 221 0.9876 0.0140 50 46 1557 246 0.9897 0.0128
100 22 1822 198 0.9853 0.0145 100 21 1669 347 0.9853 0.0147
250 11 1923 206 0.9847 0.0137 250 16 1635 336 0.9867 0.0130
500 6 2089 230 0.9865 0.0122 500 3 1918 352 0.9834 0.0146
1000 5 2358 398 0.9891 0.0100 1000 1 1675 0 0.9838 0.0126
Table5 End results of GAHSAT Table 6 Comparing GAHSAT and the winning
APGA from [15]
Peaks SR AES SDAES MBF SDMBF GAHSAT APGA
1 100 989 244 1.0 0.0 Peaks SR AES SR AES
2 100 969 206 1.0 0.0 1 100 989 100 1100
5 100 1007 233 1.0 0.0 2 100 969 100 1129
10 89 1075 280 0.9939 0.0175 5 100 1007 100 1119
25 63 1134 303 0.9879 0.0190 10 89 1075 95 1104
50 45 1194 215 0.9891 0.0127 25 63 1134 54 1122
100 14 1263 220 0.9847 0.0140 50 45 1194 35 1153
250 12 1217 166 0.9850 0.0131 100 14 1263 22 1216
500 7 1541 446 0.9876 0.0119 250 12 1217 8 1040
1000 4 1503 272 0.9862 0.0113 500 7 1541 6 1161

1000 4 1503 1 910
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5 Summary and Conclusions

The relevance of the above studies lies in the potential of on-the-fly adjustment of
EA parameters that have not been widely considered in the past. The investigations
reviewed here provide substantial evidence that on-line regulation of population size
and selection can greatly improve EA performance. On the technical side, the case
study on adjusting tournament size shows by example that global parameters can
also be self-adapted, and that heuristic adaptation and pure self-adaptation can be
successfully combined into a hybrid of the two.

On the general level, two things can be noted. First, we want to remark that par-
ameter control in an EA can have two purposes. One motivation for controlling pa-
rameters on-the-fly is the assumption (observation) that in different phases of the
search the given parameter should have different values for “optimal” algorithm per-
formance. If this holds, then static parameter values are always inferior; for good
EA performance one must vary this parameter. Another reason it can be done for
is to avoid suboptimal algorithm performance resulting from suboptimal parameter
values set by the user. The basic assumption here is that the algorithmic control mech-
anisms do this job better than the user could, or that they can do it approximately as
good, but they liberate the user from doing it. Either way, they are beneficial.

The second thing we want to note is that making a parameter adaptive or self-
adaptive does not necessarily mean that we have an EA with fewer parameters. For
instance, in APGA the population size parameter is eliminated at the cost of intro-
ducing two new ones: the minimum and maximum lifetime of newborn individuals.
If the EA performance is sensitive to these new parameters then such a parameter
replacement can make things worse. But if the new parameters are less sensitive to
accurate calibration, then the net effect is positive: the user can obtain a good algo-
rithm with less effort spent on algorithm design. This latter is, however, hardly ever
considered in evolutionary computing publications.

This phenomenon also occurs on another level. One could say that the mech-
anisms to adjust parameters are also (meta) parameters. For instance, the method
that allocates lifetimes in APGA, or the function in Equation (2) specifying how the
k values are mutated can be seen as high level parameters of the GA. It is in fact an
assumption that these are well-chosen (smartly designed) and their effect is posi-
tive. Typically, there are more possibilities to obtain the required functionality, that
is, there are possibly more well-working methods one can design. Comparing differ-
ent methods implies experimental (or theoretical) studies very much like comparing
different parameter values in a classical setting. Here again, it can be the case that al-
gorithm performance is not so sensitive to details of this (meta) parameter, which
can fully justify this approach.

Finally, let us place the issue of parameter control in a larger perspective. Over
the last two decades the EC community has come to realise that EA performance,
to a large extent, depends on well-chosen parameter values, which in turn may de-
pend on the problem (instance) to be solved. In other words, it is now acknowledged
that EA parameters need to be calibrated to specific problems and problem instances.
Ideally, it should be the algorithm that performs the necessary problem-specific ad-
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justments. Ultimately, it would be highly desirable to utilise the inherent adaptive
power of an evolutionary process for calibrating itself to a certain problem instance,
while solving that very problem instance. We believe that the extra computational
overhead (i.e., solving the self-calibration problem additionally to the given techni-
cal problem) will pay off and hope to see more research on this issue.
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