A Parallel Ant Colony Optimization Algorithm Based
on Crossover Operation

Adem Kalinli! and Fatih Sarikoc?

' Department of Computer Technologies, Erciyes University,
Kayseri Vocational High School, Kayseri, Turkey.
kalinlia@erciyes.edu.tr

? Department of Computer Engineering, Erciyes University,
Institute of Science and Technology, Kayseri, Turkey.
fsarikoc@yahoo.com

Abstract

In this work, we introduce a new parallel ant colony optimization algorithm based
on an ant metaphor and the crossover operator from genetic algorithms. The perfor-
mance of the proposed model is evaluated using well-known numerical test problems
and then it is applied to train recurrent neural networks to identify linear and non-
linear dynamic plants. The simulation results are compared with results using other
algorithms.

Key words: Parallel Ant Colony Optimization, Hybrid Algorithms, Continuous Op-
timization, Recurrent Neural Network, System Identification

1 Introduction

There are many combinatorial optimization problems of the NP-hard type, and they
cannot be solved by deterministic methods within a reasonable amount of time. The
great difficulty of optimization problems encountered in practical areas such as pro-
duction, control, communication and transportation has motivated researchers to
develop new powerful algorithms. Therefore, several heuristics have been employed
to find acceptable solutions for difficult real-world problems. The most popular of
these new algorithms include genetic algorithms (GAs), simulated annealing (SA),
ant colony optimization (ACO), tabu search (TS), artificial immune system (AIS),
and artificial neural networks (ANNSs) [1-4]. Although all of these algorithms con-
vergence to a global optimum, they cannot always guarantee optimum solutions to
the problem. Therefore, they are called approximate or heuristic algorithms.

The ACO algorithm is an artificial version of the natural optimization process
carried out by real ant colonies. The first ACO algorithm was proposed by Dorigo
et al. in 1991, and was called an ant system (AS) [5, 6]. Real ants communicate with

88 A. Kalinli, F. Sarikoc

each other by leaving a pheromone substance in their path, and this chemical sub-
stance leads other ants. Thus, stimergy is provided and swarm intelligence emerges
in the colony behaviour. The main features of the algorithm are distributed compu-
tation, positive feedback and constructive greedy search. Since 1991, several studies
have been carried out on new models of the ACO algorithm and their application to
difficult optimization problems. Some of these algorithms are known as AS with eli-
tist strategy (AS.y;), rank based version of AS (AS;ank), MAX-MIN AS and ant colony
system (ACS) [7-10]. In most application areas, these algorithms are mainly used for
optimization in discrete space [9-13]. In addition, different kinds of ant algorithms,
such as continuous ant colony optimization (CACO), API, continuous interacting ant
colony (CIAC) and touring ant colony optimization (TACO), have been introduced
for optimization in the continuous field [14-17].

It is known that there is a premature convergence (stagnation) problem in the
nature of ant algorithms [6]. Therefore, as the problem size grows, the ability of the
algorithm to discover the optimum solution becomes weaker. On the other hand,
when the problem size and number of parameters increase, parallel implementation
of the algorithm could give more successful results [18,19]. Furthermore, ant colony
optimization approaches are population based and they are naturally suited to paral-
lel implementation [18-22]. So, these advantages lead us to consider a parallel version
of the ant algorithm.

In this work a parallel ant colony optimization (PACO) algorithm based on the
ant metaphor and the crossover operator of GAs is described. Our aim is to avoid
premature convergence behaviour of the ant algorithm and to benefit from the ad-
vantages of a parallel structure. The performance of the proposed PACO algorithm
is compared to that of the basic TS, parallel TS (PTS), GA and TACO algorithms for
several well-known numerical test problems. Then, it is employed to train a recurrent
neural network to identify linear and nonlinear dynamic plants. The second section
of the chapter presents information about parallel ant colony algorithms in the litera-
ture. In the third section, the basic principles of TACO algorithms are introduced and
the proposed model is described. Simulation results obtained from the test functions
optimization and an application of PACO to training recurrent neural network are
given in the fourth section. The work is concluded in the fifth section.

2 Parallel Ant Colony Algorithms

There are a few parallel implementations of ant algorithms in the literature. The first
of these studies is that of Bolondi and Bondanza. They used fine-grained parallelism
and assigned each ant to a single processor. Due to the high overhead for communi-
cation, this approach did not increase performance with an increased number of pro-
cessors. Better results have been obtained with a more course-grained model [20,23].

Bullnheimer et al. propose two parallelization strategies, synchronous and par-
tially asynchronous implementations of the ant system [18]. In simulations made on
some TSP instances, it is shown that the synchronization and communication over-
head slows down the performance. For this reason, the asynchronous parallel version
outperforms the synchronous version as it is reduces the communication frequency.

3 Touring Ant Colony Optimization and Proposed Parallel Model 89

Stiitzle, using some TSP instances, empirically tests the simple strategy of exe-
cuting parallel independent short runs of a MAX-MIN ant system [19]. He compares
the solution quality of these short runs with the solution quality of the execution of
one long run whose running time equals the sum of the running times of the short
runs. He shows that using parallel independent runs with different initial solutions
is very effective in comparison with a single long run.

Talbi et al. implemented a synchronous master-worker model for parallel ant
colonies to solve the quadratic assignment problem [22]. At each iteration, the mas-
ter broadcasts the pheromone matrix to all the workers. Each worker receives the
pheromone matrix, constructs a complete solution by running an ant process, applies
a tabu search for this solution as a local optimization method and sends the solution
found to the master. According to all solutions, the master updates the pheromone
matrix and the best solution found, and then the process is iterated.

Michel et al. propose an island model approach inspired by GAs [24]. In this
approach every processor holds a colony of ants and in a fixed number of generations
each colony sends its best solution to another colony. If the received new solution is
better, then it becomes the new solution for the colony and pheromone updating
is done locally depending on this new solution. Thus, the pheromone matrices of
colonies may differ from each other.

Delisle et al. presented a shared memory parallel implementation of an ant colony
optimization for an industrial scheduling problem in an OpenMP environment [25].

In another implementation, Kriiger et al. indicate that it is better to exchange only
best solutions found so far than to exchange the whole pheromone matrix [26].

Middendorf et al. show that information exchanges between colonies in small
quantities decrease the run time of the algorithm and improve the quality of the so-
lutions in multi-colony ant systems. They also conclude that it is better to exchange
local best solutions only with a neighbour in a directed ring and not too often, instead
of exchanging the local best solution very often and between all colonies [20].

3 Touring Ant Colony Optimization and Proposed Parallel Model
3.1 Pheromone Based Feedback in Ant System Metaphor

Real ants are capable of finding the shortest path from their nest to a food source,
back or around an object. Also, they have the ability to adapt to changes in the envi-
ronment. Another interesting point is that ants are almost blind, in other words they
cannot see well enough to select directions to follow. Studies on ants show that their
ability to find the shortest path is the result of chemical communication among them.
They use a chemical substance called pheromone to communicate with each other.
This type of indirect interaction through modification of the environment, which is
called stimergy, is the main idea of ACO algorithms.

Ants deposit a certain amount of pheromone on their path while walking and
each ant probabilistically chooses a direction to follow. The probability degree of be-
ing the chosen direction depends on the pheromone amount deposited on that di-
rection. If the pheromone amount of all directions is equal, then all directions have

90 A. Kalinli, F. Sarikoc

the same probability of being preferred by ants. Since it is assumed that the speed of
all ants is the same and, therefore, all ants deposit the same amount of pheromone
on their paths, shorter paths will receive more pheromone per time unit. Conse-
quently, large numbers of ants will rapidly choose the shorter paths. This positive
feedback strategy is also called an auto-catalytic process. Furthermore, the quantity
of pheromone on each path decreases over time because of evaporation. Therefore,
longer paths lose their pheromone intensity and become less attractive as time passes.
This is called a pheromone-based negative feedback strategy.

If there are only a few ants, the auto-catalytic process usually produces a bad-
optimal path very quickly rather than an optimal one. Since there are many ants
searching simultaneously for the optimum path, the interaction of these auto-cata-
lytic processes causes the search to converge to the optimum path very quickly and
to finally find the shortest path between the nest and the food without getting stuck
in a sub-optimal path. The behaviour of real ant colonies when finding the shortest
path represents a natural adaptive optimization process.

The ant colony optimization algorithm is an artificial version of the natural op-
timization process carried out by real ant colonies as described above. A simple
schematic algorithm modeling the behaviour of real ant colonies can be summarized
as below:

BEGIN
Initialize
REPEAT
Generate the artificial paths for all ants
Compute the length of all artificial paths
Update the amount of pheromone on the artificial paths
Keep the shortest artificial path found up to now
UNTIL (iteration = maxiteration or a criterion is satisfied)
END.

3.2 Touring Ant Colony Optimization Algorithm

In this algorithm, a solution is a vector of design parameters which are coded as
a binary bit string. Therefore, artificial ants search for the value of each bit in the
string. The concept of the TACO algorithm is shown in Fig. 1.

At the decision stage for the value of a bit, ants use only the pheromone informa-
tion. Once an ant completes the decision process for the values of all bits in the string,

(@« [ol{ol o] [0][0] [0] [o] [0} {o] [o]
mmmmmomllomm

Fig.1 An artifical path (solution) found by an ant

3 Touring Ant Colony Optimization and Proposed Parallel Model 91

it means that it has produced a solution to the problem. This solution is evaluated in
the problem and a numerical value showing its quality is assigned to the solution
using a function, often called the fitness function. With respect to this value, an arti-
ficial pheromone amount is attached to the links, forming the artificial way, between
the chosen bits. An ant on the nth bit position chooses the value of 0 or 1 for the
bit on the (# + 1)th position depending on the probability defined by the following
equation:

[7:;]*

5 ey
Y [7ij]
j=1

pij(t) =

where p;;(t) is the probability associated with the link between bit i and j, 7;;(t) is
the artificial pheromone of the link, « is a weight parameter. Artificial pheromone is
computed by the following formula:

F% if the ant k passes the link (1, j)
At (tt+1) = 2

0 otherwise

where Arf‘j is the pheromone quantity attached to the link (7, j) by the artificial ant
k, Q is a positive constant and Fy is the objective function value calculated using the
solution found by the ant k.

After M ants complete the search process and produce their paths, the pheromone
amount to be attached to the sub-path (0 — 1) between time ¢t and (#+1) is computed
as

M
Arij(t,t+1):;mfj(t,t+1) (3)
-1
The amount of pheromone on the sub-path (i, j) at the time (¢ + 1) is calculated
using the following equation:
T,'j(t+1):pTij(t)+ATij(t,t+1) (4)

where p is a coefficient called the evaporation parameter.

3.3 Parallel Ant Colony Optimization Algorithm

In this work, we introduce a hybrid algorithm model to avoid premature convergence
of ant behaviour and to obtain a robust algorithm. Generally, hybrid models utilize
the benefits of different algorithms. The proposed parallel ant colony optimization
(PACO) algorithm is based on the data structure of the TACO and the crossover
operator of GAs. We combine the convergence capability of the ant metaphor and
the global search capability of the genetic algorithm.

92 A. Kalinli, F. Sarikoc

In the PACO algorithm, each solution is represented by a binary vector of design
parameters and artificial ants search for the value of each bit in the string as TACO.
For this reason, the proposed algorithm can search a sampled finite subset of continu-
ous space.

The flowchart and pseudocode of the proposed model is given in Fig. 2 and Fig. 3,
respectively. In the model, different independent ant colonies are executed in paral-
lel. Each colony has a copy of the same search space with the same initial pheromone
quantities. However, it is possible to use different control parameter values for each
colony. As the algorithm runs, the pheromone quantities of each copy may be differ-
ent. A colony does not change the pheromone quantities of another colony. However,
they have the ability to exchange information implicitly. The information exchange
process between the ant colonies is based on the crossover operation.

Execution of the colonies is stopped after a given number of iterations (NumAnt-
Cycle). There is no specific rule to determine this number; it may be defined experi-
mentally. NumAntCycle is normally chosen to be sufficiently large to allow the search
to complete local searching. When all ants complete their paths in a colony, the qual-
ity of the path produced by each ant is evaluated and then the best one found is
reserved as the local best of the colony. In every fixed number of NumAntCycle it-
erations, local best solutions of each colony are added to the solution population.
Later, this population is altered by a crossover procedure to produce a new pop-
ulation. This new population is formed by implementing the crossover operation
among the solutions belonging to the previous solution population. After crossover,
the best part of the population survives and the solutions of this part are used to up-
date the pheromone quantities of the best paths in each colony. Thus, one epoch of
the algorithm is completed. In successive epochs, the search continues, depending
on the pheromone quantities updated in the previous epoch. This process is repeated
until a predefined number of epochs (NumOfEpoch) is completed. NumOfEpoch may
change according to the problem, so the value of this parameter is experimentally de-
fined.

e 1 16 1 - [

Colony | | Colony | | Colony Colony
1 2 3 s d
| Crossover process |

| final solutions |

Fig.2 Flowchart of the PACO algorithm

3 Touring Ant Colony Optimization and Proposed Parallel Model

93

Step 1) /* initialization */

For d:=1 to NumberOfColony do /* pheromone initialization */
For j:=1 to LenghtOfBitString do
7,(0.j)=c¢
Tq (]’ J) =c
End
End
For d:=1 to NumberOfColony do /* initial population of solutions */

BestSolBitStr{f " _ FuncRandF easible()

Step 2) /* movement of ants */
For d:=1 to NumberOfColony do
For j:=1 to LenghtOfBitString do
For k:=1to NumberOfAnts do
Select a bit value 0 or 1 according to equation (5) and (6)

Assign chosen value to rabu’(j)

chosen bit value i=rabu fj (j)

10, j) = (1=)z (i, j) + pao /* local update */

End
End
End
Step 3) /* Evaluate ant solutions */
For d:=1 to NumberOfColony do
For k:=1to NumberOfAnts do

CostOfSol’s = FuncCost(tabug(j)) /* j=1 to LenghtOfBitString */
Reserve best solution bit string of each colony as BestSolBitStrj"
End
End

Step 4) /* Empty all tabu list */
Step 5) /* Crossover operation */
If (NumAntCycle is completed) Then do /*crossover condition is provided*/

Mate BesiSolBitStr§® , BestSolBitStr}*"”

Produce offspring BestSolBitStr;ff‘p’i"g
Evaluate cost of offspring solutions
Survive best part of the population
Keep the best solutions as BestSolBitStr'® and the costs as CostOfBestSol,
For d:=1 to NumberOfColony do /* crossover update */
For j:=1 to LenghtOfBitString do
i = BestSolBitSr§" ()
71, j) = (1= p)ed i, j) + 1/(a + |C0stQﬂ365‘tSold|)
End
End
End-if
Step 6) If (NumOfEpoch is completed) Then Stop /* Stopping criteria is satisfied */
Else Goto Step 2

Fig.3 Pseudocode of the proposed algorithm

94 A. Kalinli, F. Sarikoc

Different independent ant colonies are sequentially executed in a single proces-
sor, for this reason, implementation of the algorithm is virtually parallel. Communi-
cation between the colonies is carried out at predetermined moments; therefore the
parallelism used in this work is synchronous.

Crossover Procedure

The crossover operator employed by GAs is used to create two new solutions (chil-
dren) from two existing solutions (parents) in the population. Depending on the
method of problem representation in string form, a proper crossover operator must
be chosen. When the problem is represented in binary string form, the simplest
crossover operation can be applied as follows: two solutions are randomly selected
as parent solutions from the population at two randomly selected points. The parts
between the points are swapped and two new solutions are produced. A crossover
operation can thus yield better solutions by combining the good features of parent
solutions. An example of this simple crossover operator is given below:

PresentSolutionl 101 1101 01110
PresentSolution2 110 0011 11011

NewSolutionl 101 0011 01110
NewSolution2 110 1101 11011

Movements of Ants

In the proposed model, the data representation structure is defined as discrete elem-
ents in a matrix form. Rows of this matrix are indicated by the values of i and columns
are indicated by the values of j. Since binary data representation is used, i can take
the values 0 or 1, but the maximum value of j depends on the parameters of the
problem. The element (i, j) of a predefined matrix format addresses a point in the
data structure on which artificial ants move as depicted in Fig. 1.

At the beginning of the search, some initial pheromone quantity (c) is allocated
to each path of the binary coded search space. In addition, an initial population of
random solutions in the feasible region is formed for genetic crossover operations on
the succeeding population.

While ants move from one point to another, they search the value of each bit in
the string, in other words, they try to decide whether the value of the next bit to be
chosen is 0 or 1 according to the state transition rule given in Equation (5).

k.. argmax; o 1y {74 (i,j)} with the probability of go (exploit)
tabud (]) = . ! ’ . s

Sa (j) with the probability of (1 — go) (explore)

where tabus (j) means the jth element of the tabu list for the kth ant in the dth

colony. In other words, it represents the selected value for the next bit. 74 (i, j) is

accumulated pheromone substance on the path (i, j) belonging to the dth colony

3 Touring Ant Colony Optimization and Proposed Parallel Model 95

and S;(j) is a stochastically found new value of the jth element for the dth colony
(S4(j) € {0,1}). In this equation, ants take a deterministic decision with the proba-
bility go, which is an initial coefficient balancing deterministic search versus stochas-
tic search. Deterministic search exhausts accumulated pheromone knowledge to find
new solutions near to the best one found so far. On the other hand, stochastic search
explores possible new paths to enhance the searching area. S; (j) is defined accord-
ing to the probability distribution formula

74 (i, j)
74 (j,0) + 74 (ju 1)

Py (i,j) = ie{0, 1} (6)

where P;(i, j) represents probability as an indication of accumulated pheromone
attraction of the point (i, j), which is to be selected in the search space of the dth
colony. To select a bit value S;(j) for the jth element of the tabu list, a stochastic
decision mechanism can be implemented over the probability distribution formula
P; (i, j). With this formula a roulette wheel mechanism could be used as a decision
mechanism in order to define the next value of S; ().

After choosing a path each ant updates the pheromone level of the path. This
operation is called the local updating rule and the formula for the rule is

i (i,j) = (1= p).7"

(i,§) + p-10 (7)
This formula is implemented in order to make the way previously chosen less attrac-
tive and to direct the following ants to other paths. p is an initial coefficient repre-
senting evaporation rate and 7, is another coeflicient showing the minimum level of
pheromone instances in each path.

After a predefined number of cycles (NumAntCycle), each colony reserves its
best solution found so far and this solution is added to the solution population for
the crossover operation. The crossover operation eliminates the worse part of the
population and provides a global reinforcement mechanism. Each solution of the
surviving part is assigned to one of the colonies, thus, information exchange between
colonies is implicitly provided. After this process, pheromone values of each colony
are updated depending on the returned solutions according to the formula

old

1
g (i) = (1=p)7g" (i) + T —— ®)

(a+ |cost_d|)

where cost_d is a value calculated by the cost function related to the assigned solution
to the dth colony. a is a constant employed to avoid overflow and scale the pheromone
effect of the cost value. Determining a proper value for a is highly dependent on the
problem. So, some preliminary experience and knowledge about the range of the cost
function values is necessary. This may be considered as a weakness of the algorithm.
Furthermore, by employing a crossover procedure, the proposed algorithm moves
far from a realistic simulation of ants in order to increase the search capability of the
global optimum and to yield better performance.

96 A. Kalinli, F. Sarikoc

It is known that there are reports in the literature based on the concepts TACO
and Island Model. The proposed algorithm uses a binary data representation, which
was earlier used in the TACO algorithm [17]. However, PACO differs from TACO in
some features. First, in PACO, selection of the next point depends on a state transi-
tion rule instead of using only a probability distribution formula. By employing a state
transition rule, PACO is able to balance exploitation versus exploration with a cer-
tain probability as happened in ACS. Second, after selection of each new point, a lo-
cal updating formula is implemented in order to lead other ants to unselected paths.
Moreover, crossover procedure is employed at predetermined intervals to provide
information exchange between colonies. Thus, PACO uses synchronous and paral-
lel information exchange structures established in a multi-colony ant system. Island
Model is another hybrid algorithm that combines both ACO and GA. However, this
model has a different data representation structure and runs more than one proces-
sor [24]. Since each processor holds a colony, implementation of the algorithm is
more complicated than PACO and TACO.

4 Simulation Results

The simulation work consists of two parts: numeric function optimization and train-
ing an Elman network to identify dynamical linear and non-linear systems.

4.1 Continuous Function Optimization

Seven well-known minimization test functions were employed to determine the per-
formance of the proposed PACO algorithm. These test functions are given in Table 1.

Table1 Numerical test functions used in the simulations

Notation Name Function
1
F1 Sphere =Y x,2
2 Rosenbrock f5 = 100(x — xz)2 +(1-x)°
5

E3 Step fi = El [xi] , where [x;] represents the greatest integer less

than or equal to x;

fi=[0.002+ 3 (j+ % (xi - ai)®) ']
j=1 i=1

F4 Foxholes on az])}?ﬁ]: (-32,-32), (-16,-32), (0,-32), (16,-32), (32,-32),
(-32,-16), (-16,-16), (0,-16), (16,-16), (32,-16),...,
(-32,32), (-16,32), (0,32), (16,32), (32,32)

F5 fs = (x{ + x3)/2 - cos (207x1) cos (207x2) + 2
0/ 2 10

. X5 X
— — | - —L

F6 Griewangk fo =1+ Zl (4000) I"[1 (cos (\ﬂ))

1= 1=

20
F7 Rastrigin f7=20A+ Y% (x12 —10cos (Zﬂxi)) JA=10
i=1

4 Simulation Results 97

The first four test functions were proposed by De Jong [27]. All test functions reflect
different degrees of complexity.

Sphere (F1) is smooth, unimodal, strongly convex, and symmetric.

Rosenbrock (F2) is considered to be difficult, because it has a very narrow ridge.
The tip of the ridge is very sharp, and it runs around a parabola.

Step (F3) is a representative of the problems of flat surfaces. Flat surfaces are obs-
tacles for optimization algorithms because they do not give any information as to
which direction is favourable. The background idea of the step function is to make the
search more difficult by introducing small plateaus to the topology of an underlying
continuous function.

Foxholes (F4) is an example of a function with many local optima. Many standard
optimization algorithms get stuck in the first peak they find.

Function F5 has 40000 local minimum points in the region when x; and x; are
within [-10,10].

Griewangk (F6) is also a non-linear and multi-modal function. The terms of the
summation produce a parabola, while the local optima are above parabola level. The
dimensions of the search range increase on the basis of the product.

Rastrigin’s function (F7) is a fairly difficult problem due to the large search space
and large number of local minima. This function contains millions of local optima
in the interval considered.

The solutions for the functions, parameter bounds, resolutions and the length of
each solution for each test function are given in Table 2.

In the first stage, simulation results were obtained for the proposed model. The
proposed PACO was executed 30 times with different initial solutions. The number
of ant colonies running in parallel was 4 (NumOfCol) and the number of ants was 30
(NumOfAnts). Each colony at any epoch was run for 20 (NumAntCycle) iterations for
the first five functions and 50 for the others. The total number of cycles made at any
epoch was 80 (NumOfCol - NumAntCycle) for the first five functions and 200 for the
other two functions. This process was repeated through 16800 evaluations for the first
five functions, 50000 evaluations for the other two functions in order to compare the
performance of the proposed method with the results obtained using GA, TS, PTS,

Table2 Number of parameters, solutions, parameter bounds and length of solution for the test
functions

F . Number of Solutions Parameter bounds Length of
unction
parameters X f(x) Lower Upper a solution
F1 4 0.0 0.0 -5.12 5.12 40
F2 2 1.0 0.0 —2.048 2.048 32
F3 5 -5.12 -30.0 -5.12 5.12 50
F4 2 -32.0 1.0 -65536 65536 40
F5 2 0.0 1.0 -10 10 36
F6 10 0.0 0.0 -600 600 200

F7 20 0.0 0.0 -5.12 5.12 400

98

A. Kalinli, F. Sarikoc

and TACO algorithms taken from [4] and after that the search was stopped. Other
parameters of the PACO were chosenas ¢ =0.1,p =0.1, 79 = 0.1, qo = 0.9, a = 0.001.

To show the robustness of the proposed model, frequency histograms of the re-
sults obtained using GA, TACO, basic TS, PTS and PACO algorithms are given in

Figs. 4-10 for the test functions 1-7, respectively.

100 100
:\; 80 :\; 30
> 60 > 60
2 2
S 40 & 40
= =
3 20 3 20
= &

0 - - - - - - 0

0 0.01 0.02 0.02 0.03 0.04 0.05 0 0.01 0.02 0.02 0.03 0.04 0.05

a) objective value b) objective value

Fig.4 Histograms drawn from the results obtained for the function F1 by (a) TS, PTS, TACO
and PACO algorithms, (b) GA

60

60
—~ 50 = 50
& S
e s
= = 40
2 a0 2 30
g g
2 20 2 2
(3] [
£ 10 u E 10

0 0

1E-05 1E-04 1E03 5E-03 001 003 025 1E-05 1.E-04 1E-03 5E03 001 003 025

a) objective value b) objective value

60 60
_. 50 . 50
q q
S 40 S 4
g 3
2 30 e 30
S 20 S 2
o o
g 10 .,F-j 10

0 0

1E-05 1.E-04 1E-03 5E-03 001 003 025 1E-05 1.E-04 1E-03 5E-03 001 003 025

c) objective value d) objective value

~ 50
3
> 40
2 30
)
g
= 10

0

1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 5.E-03

e) objective value

Fig.5 Histograms drawn from the results obtained for the function F2 by (a) TS, (b) PTS, (c)
GA, (d) TACO, and (¢) PACO

4 Simulation Results 99

100 100
& 80 & 80
g 60 3 60
g 40 g 40
8 20 8 20
0 T T T T T 0 -
-30 -29 -28 -27 -26 -25 -30 -29 -28 -27 -26 -25
a) objective value b) objective value

Fig.6 Histograms drawn from the results obtained for the function F3 by (a) TS, PTS, GA, and
PACO, (b) TACO

_ 100 100
£ 80 2 80
§ 60 § 60
g 40 g 40
g 20 g 20
T o0 T o0

0.999 1.000 1.001 1.206 1.298 1.443 0.999 1.000 1.001 1.206 1.298 1.443
a) objective value b) objective value
= 100 = 100
< g0 3 80
> >
e 60 e 60
3 40 S 40

0 0 -

0.999 1.000 1.001 1.206 1.298 1.443 0.999 1.000 1.001 1.206 1.298 1.443

c) objective value d) objective value

__100

£ 80

& 60

g

S 40

g 2

0 T T T T
0.999 1.000 1.001 1.206 1.298 1.443

e) objective value

Fig.7 Histograms drawn from the results obtained for the function F4 by (a) TS, (b) PTS, (c)
GA, (d) TACO, and (e) PACO

4.2 Training Recurrent Neural Network by Using the PACO Algorithm

The use of artificial neural networks (ANNs) to identify or model dynamic inputs is
a topic of much research interest. The advantage of neural networks for these types
of applications is to learn the behaviour of a plant without much a priori knowledge
about it. From a structural point of view, there are two main types of neural networks:
feedforward neural networks (FNNs) and recurrent neural networks (RNNs) [28].
Connections that allow information to loop back to the same processing element
are called recursive and NNs having these types of connections are named RNNs.

100 A. Kalinli, F. Sarikoc

100

100
£ a0 8 80
3 60 T 60
5 5
S 40 S 40
o o
2 20 £ 20
0 0 —
1.0000 1.0025 1.0028 1.01057 1.0138 1.0183 1.0000 1.0025 1.0028 1.01057 1.0138 1.0183
a) objective value b) objective value
100 100
F 80 X 80
3 60 % 60
8 40 & 40
= =
3 20 g 20
E =
0 0
1.0000 1.0025 1.0028 1.01057 1.0138 1.0183 1.0000 1.0025 1.0028 1.01057 1.0138 1.0183
c) objective value d) objective value

o
S

X 80
g 60
C
S 40
o
£ 20

0

10000 1.0025 10028 101057 10138 1.0183

e) objective value

Fig. 8 Histograms drawn from the results obtained for the function F5 by (a) TS, (b) PTS, (c)
GA, (d) TACO, and (¢) PACO

RNNSs are more suitable than FNNs for representing a dynamic system since they
have a dynamic mapping between their output(s) and input(s). RNNs generally re-
quire less neurons in the neural structure and less computation time. Moreover they
have a low probability of being affected by external noise. Because of these features,
RNNs have attracted the attention of researchers in the field of dynamic system iden-
tification.

Although gradient based search techniques such as back-propagation (BP) are
currently the most widely used optimization techniques for training neural networks,
it has been shown that these techniques are severely limited in their ability to find
global solutions. Global search techniques such as GA, SA, TS and ACO have been
identified as a potential solution to this problem. Although the use of GAs for ANN
training has mainly focused on FNNs [29-31], there are several works on training
RNNs using GAs in the literature [32-34]. SA and TS have some applications for
the training of ANNs [35-37]. Although GA, SA and TS algorithms have been used
for training some kinds of neural networks, there are few reports of use of the ACO
algorithm to train neural networks [38-40].

4 Simulation Results 101

100 100
:\; 80 :\; 80
= 60 > 60
2 2
$ 40 $ 40
Z 20 g 20
% mm .] . — I
= 0 =0

0.005 010 015 020 025 0.30 20E-07 4.2E-07 6.0E-07 8.0E-07 1.0E-06

a) objective value b) objective value

100 100
X 80 <8
? 60 § 60
o 40 © 40
3 =]
g 20 g 20 .:l
& &

0 0
1 11 12 13 14 15 16 5 6 7 8 9 10 11

c) objective value d) objective value

100
80
60
40
o0

4.2E-07 5.0E-07 0.005 0.01 002 0.03 004

frequency (%)

e) objective value

Fig.9 Histograms drawn from the results obtained for the function F6 by (a) TS, (b) PTS, (c)
GA, (d) TACO, and (e) PACO

A special type of RNN is the Elman network [41]. Elman network and its modified
models have been used in applications of system identification. Figure 11 depicts the
original Elman network with three layers of neurons. The first layer of this network
consists of two different groups of neurons. These are the group of external input
neurons and the group of internal input neurons also called context units. Context
units are also known as memory units as they store the previous output of the hidden
neurons. Elman networks introduced feedback from the hidden layer to the context
portion of the input layer. Thus, the Elman network has feedforward and feedback
connections. However, so that it can be trained essentially as feedforward networks
by means of the simple BP algorithm, the feedback connection weights have to be
kept constant. For the training to converge, it is important to select the correct values
for the feedback connection weights. However, finding these values manually can be
a lengthy trial-and-error process.

In this part of the work, the performance of the proposed PACO algorithm is
tested for training the Elman network to identify dynamic plants. The use of the
PACO algorithm to train the Elman network to identify a dynamic plant is illustrated
in Fig. 12. Here, y,, (k) and y, (k) are the outputs of the network and plant, at time k,

102 A. Kalinli, F. Sarikoc

respectively. Training of the network can be considered as a minimization problem
defined by

min J (w) ©)

where w = [W1W2W3...WV]T is the weight vector of the network. The time-averaged
cost function J(w) to be minimized by adaptively adjusting w can be expressed as

N 1/2

ming0) = 3 050 7)) (0
=1

where N is the number of samples used for calculation of the cost function.

A solution to the problem is a string of trainable connection weights representing
a possible network (Fig. 13). The PACO algorithm searches for the best weight set by
means of cost function values calculated for solutions in string form.

The structure of the network employed in this work is selected as in [4] to
compare the results. Since the plants to be identified are single-input single-output
(SISO), the number of external input neurons and output neurons is equal to one.
The number of neurons at the hidden layer is equal to 6. Therefore, the total num-

ber of connections is 54, of which 6 are feedback connections. In the case of only

100

. A100
§ 80 § 80
§ 60 §‘ 60
g 40 g 40
g 20 i',' 20
T 0 R
25 30 35 40 45 7E-8 2E-7 2E-5 1.0 12 20 23
a) objective value b) objective value
100 100
e 8o & 80
~. 60 > 60
o [$)
S 40 g 40
E= 0, “— 0,
60 70 80 90 100 110 120 130 140 150 160 170 180
c) objective value d) objective value

100
80
60
40
O 4

7E-82E-5 1.0 12 20 23 3.0 4.0

frequency (%)

e) objective value

Fig.10 Histograms drawn from the results obtained for the function F7 by (a) TS, (b) PTS, (c)
GA, (d) TACO, and (¢) PACO

4 Simulation Results 103

context °
unit

O_

—Q 0
wk) ° :
. : hidden output
input layer layer layer

Fig. 11 Structure of the Elman network

u(k) Plant Yp(k)
error

Recurrent
Neural Network

Ym(k)

PACO Algorithm

Fig.12 Scheme for training a network to identify a plant using the PACO algorithm

Wi Wy ws Wp o O Oy
I 5 N R 7 P R

Fig. 13 Representation of the trainable weights of a network in string form

feedforward connections being trainable, a solution is represented as a string of 48
weights. When all connections have trainable weights, then the string consists of 54
weights, of which 6 are feedback connection weights. In both cases, each weight is
represented with 16 binary bits. The feedback connections have weight values rang-
ing from 0.0 to 1.0 while feedforward can have positive or negative weights between
1.0 and -1.0. Note that from the point of view of the PACO algorithm, there is no
difference between feedback and feedforward connections, and training one type of
connections is carried out identically to training the other, unlike in the case of the
commonly used BP training algorithm.

In the training stage, first a sequence of input signals u(k), (k =0,1,...) is fed
to both the plant and the recurrent network designed with weights obtained from
a solution of the PACO algorithm. Second the rms error value between the plant and
recurrent network outputs is computed by means of Equation (10). Next, the rms er-

104 A. Kalinli, F. Sarikoc

ror values computed for the solutions are used to select the highest evaluation weight
set. The weight set with which the minimum rms error was obtained is selected as
the highest evaluation weight set. From the point of view of the optimization, this
is again a minimization problem. Simulations were conducted to study the ability of
RNN trained by PACO to model a linear and non-linear plant. A sampling period of
0.01 s was assumed in all cases.

Linear plant: This is a third-order linear system described with the following discrete-
time equation,

y(k)=A1y(k=1)+Asy(k-2) + Asy(k - 3)
+Blu(k—1)+BzM(k—2)+B3M(k—3) (H)

where A, = 2.627771, A, = -2.333261, A5 = 0.697676, B, = 0.017203, B, =
-0.030862, B3 = 0.014086.

The Elman network with all linear neurons was tested. Training input signal,
u(k), k =0,1,...,199, was randomly produced and varied between —2.0 and 2.0.
First the results were obtained by assuming that only the feedforward connection
weights are trainable. Second the results were obtained by considering all connection
weights of the Elman network trainable. For each case, experiments were repeated six
times for different initial solutions. The results obtained using the BP and the PACO
algorithms are given in Fig. 14. As an example, the responses of the plant and the
network designed by the PACO are presented in Fig. 15. The average rms error values
and the improvement percentages for a linear plant obtained using BP and PACO
algorithms are presented in Table 3.

rms error

0.08
— . T ——BP

0.07 +
0.06 |
0.05 + —%—PACO (only

' FF connections
0.04 | variable)
0.03 | —+—PACO (all
0.02 + connections

' variable)
0.01 +

0 == ————— trial

Fig.14 RMS error values obtained for the linear plant for six runs with different initial solutions

Table3 Comparison of results for the linear plant

Model Average rms error Improvement(%)
Back Propagation (BP) 7.67536 x 1072 -
PACO (a=1) 5.26118 x107* 93.15

PACO (all weights trainable) ~ 2.76346 x 107 96.40

4 Simulation Results 105

output —&— Plant Network

0.12

0.08 |
0.04 | §
0.00 |
-0.04 |

-0.08

-0.12 time(sec)

0 5 10 15 20

Fig. 15 Responses of the plant and the network trained by the PACO algorithm (third order
linear plant, rms error = 2.137717 x 107%%)

Non-linear plant: The second plant model adopted for the simulations was that of
a simple pendulum swinging through small angles [42]. The discrete-time descrip-
tion of the plant is:

0= (2 513) o= 10 (511 -1 5)re-2)

gT? T?

S 3 (k=2)-
HrTEARE Y.

u(k-2) (12)

where M stands for the mass of the pendulum, L the length, g the acceleration due to
gravity, A the friction coefficient, y the angle of deviation from the vertical position,
and u the external force exerted on the pendulum. The parameters used in this model
were as follows:

T=02s,g=98m/s>, A =1.2kgm?/s, M =1.0kg, L =0.5 m.

Replacing the parameters with their values in Equation (12) gives:
y(k)=Ay(k=1)+ Ayy(k-2) + A3y’ (k= 2) + Biu(k - 2) (13)

where A; = 1.04, A, = -0.824, A3 = 0.130667, B; = —0.16.

The Elman network with non-linear neurons in the hidden layer was employed.
The hyperbolic tangent function was adopted as the activation function of non-linear
neurons. The neural networks were trained using the same sequence of random in-
put signals as mentioned above. As in the case of the linear plant, the results were
obtained for six different runs with different initial solutions. The rms error values
obtained by the BP algorithm and the PACO are presented in Fig. 16. As an ex-
ample, the responses of the non-linear plant and the recurrent network with the

106

A. Kalinli, F. Sarikoc

rms error
0.35 o—BP
0.30 |
0.25 |
—X—PACO(only FF

0.20 + connections
045 variable)
010 | —+—PACO(all

. connections
005] Xy XX variable)
0.00 — T T trial

0 1 2 3 4 5 6 7

Fig. 16 RMS error values obtained for the non-linear plant for six different runs with different
initial solutions

weights obtained by the PACO are shown in Fig. 17. The average rms error values
and the improvement percentages for the non-linear plant obtained using BP and
PACO algorithms are presented in Table 4.

5 Discussion

From the histograms obtained for the numerical test functions 1 and 3, it is seen
that the basic TS, PTS and PACO algorithms are able to find the optimum solution

10
08 |
06 |
04
02 i
0.0]
02]
04+
06+
08+
1.0

output —&—Plant Network

time(sec)

0 5 10 15 20

Fig. 17 Responses of the plant and the network trained by the PACO algorithm (non-linear

plant, rms error = 2.611416 x 10~

02)

Table4 Comparison of results for the non-linear plant

Model Average rms error Improvement(%)
Back Propagation (BP) 0.26182 -
PACO (a=1) 5.59883 x 1072 78.62

PACO (all weights trainable) 2.78438 x 1072 89.37

6 Conclusions 107

for all runs (see Figs. 4 and 6). The reason is that the first problem is a convex and
continuous function, and the third is a convex and discrete function. For the rest of
the numerical test problems, the basic TS, GA and TACO cannot reach the optimal
solution for all runs. However, PTS and the proposed PACO can find the optimum
solutions or solutions very near to the optimum for each run. From the histograms
presented in Figs. 5, 7 and 8 it can easily be concluded that the proposed PACO is
able to find better solutions for F2, F4 and F5 than the basic TS, PTS, GA and TACO.
Although the PACO can provide better solutions for the F6 and F7 than the basic
TS, GA and TACO algorithms, its performance is not as good as the PTS algorithm.
However, the results obtained by the PACO for these functions are also acceptable.

The original Elman network could identify the third-order linear plant success-
fully. Note that an original Elman network with an identical structure to that adopted
for the original Elman network employed in this work and trained using the standard
BP algorithm failed to identify even a second-order linear plant. Moreover, when
the original Elman network had been trained by the basic GA, the third-order plant
could not be identified although the second-order plant had been identified success-
fully [43]. It can be seen that, apparently for both plants, the training was signifi-
cantly more successful when all connection weights of the network were trainable
than when only feedforward connection weights could be changed. Thus, by using
the PACO algorithm not only was it possible and simple to train the feedback con-
nection weights, but the training time required was lower than for the feedforward
connection weights alone. It is clearly seen from Figs. 14 and 16 and Tables 3 and 4
that, for both network structures (with all connection weights variable and with only
feedforward connection weights trainable), the proposed PACO trained the networks
better than the BP algorithm.

In this work, the data representation structure of the TACO and the search strat-
egy of ACS were employed in the proposed model. However, the proposed model is
a general structure for parallelization and it is also possible to use other ant based
search strategies such as MAX-MIN ant system. Moreover, performance of the pro-
posed model was tested on continuous problems; however this model can be imple-
mented for combinatorial type problems. Using different ant based search strategies
and performance examination of combinatorial problems are considered as future
studies for the proposed model.

6 Condusions

In this study a parallel ant colony optimization algorithm was proposed. The perform-
ance of the proposed algorithm was compared with that of basic TS, PTS, GA and
TACO algorithms for numerical test problems. It was also applied to training a recur-
rent neural network to identify linear and non-linear plants, and the results obtained
were compared with those produced by the BP algorithm. From the simulation re-
sults it was concluded that the proposed algorithm can be used to search multi-modal
spaces successfully, and can be efficiently applied to train recurrent neural networks
to identify dynamic plants accurately. It can be finally concluded that the PACO al-
gorithm might be an efficient tool for solving continuous optimization problems.

108

A. Kalinli, F. Sarikoc

References

10.

1L

12.

13.

14.

15.

16.

17.

18.

19.

Reeves CR (Ed.) (1995) Modern Heuristic Techniques for Combinatorial Optimization.
McGraw-Hill: UK.

Corne D, Dorigo M, Glover F (Eds) (1999) New Ideas in Optimization, McGraw-Hill:
UK.

Farmer JD, Packard NH, Perelson AS (1986) The Immune System, Adaptation, and Ma-
chine Learning. Physica, 22D:187-204

Kalinli A, Karaboga D (2004) Training recurrent neural networks by using parallel tabu
search algorithm based on crossover operation. Engineering Applications of Artificial
Inteligence, 17(5):529-542

Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy. Technical
Report No:91-016 Politecnico di Milano

Dorigo M, Maniezzo V, Colorni A (1996) The ant system: Optimization by a colony of
cooperating agents. IEEE Trans. on Systems, Man and Cybernetics — Part B, 26(1):1-13
Christopher FH et al. (2001) Swarm intelligence: an application of social insect optimiza-
tion techniques to the traveling salesman problem. Artificial Intelligence I

Bullnheimer B, Hartl RF, and Strauss C (1999) A new rank based version of the ant sys-
tem, a computational study. Central European J for Operations Research and Economics,
7(1):25-38

Stiitzle T, Hoos HH (1997) The MAX-MIN ant system and local search for the traveling
salesman problem. In Baeck T, Michalewicz Z, Yao X, (Eds), Proc. of the IEEE Int. Conf.
on Evolutionary Computation (ICEC’97):309-314

Gambardella LM, Dorigo M (1996) Solving symmetric and asymmetric TSPs by ant
colonies. Proc. of IEEE Int. Conf. on Evolutionary Computation, IEEE-EC 96, Nagoya,
Japan:622-627

Di Caro G, Dorigo M (1998) Mobile agents for adaptive routing. Proc. of 31st Hawaii Conf.
on Systems Sciences (HICSS-31):74-83

Stiitzle T, Dorigo M (1999) ACO algorithms for quadratic assignment problem. in: Corne
D, Dorigo M, Glover F (Eds), New Ideas in Optimization, McGraw-Hill:33-50
Gambardella LM, Taillard E, Agazzi G (1999) MACS-VRPTW: A multiple ant colony
system for vehicle routing problems with time windows. Technical Report, IDSIA-06:
Switzerland

Bilchev G, Parmee IC (1995) The ant colony metaphor for searching continuous design
spaces. Lecture Notes in Computer Science, Springer-Verlag, LNCS 993:25-39
Monmarché N, Venturini G, Slimane M (2000) On how Pachycondyla apicalis ants sug-
gest a new search algorithm. Future Generation Systems Computer 16(8):937-946

Dreo J, Siarry P (2004) Continuous ant colony algorithm based on dense heterarchy. Fu-
ture Generation Computer Systems, 20(5):841-856

Hiroyasu T, Miki M, Ono Y, Minami Y (2000) Ant colony for continuous functions, The
Science and Engineering, Doshisha University

Bullnheimer B, Kotsis G, Strauss C (1998) Parallelization strategies for the ant system.
in: De Leone R, Murli A, Pardalos P, Toraldo G (Eds), High Performance Algorithms
and Software in Nonlinear Optimization. Kluwer Series of Applied Optimization, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 24:87-100

Stiitzle T (1998) Parallelization strategies for ant colony optimization, in: Eiben AE, Back
T, Schoenauer M, Schwefel HP (Eds), Fifth Int. Conf. on Parallel Problem Solving from
Nature, Springer-Verlag: 1498:722-731

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

3L

32.

33.

34.

35.

36.

37.

38.

References 109

Middendorf M, Reischle F, Schmeck H (2000) Information exchange in multicolony algo-
rithms. in: Rolim J, Chiola G, Conte G, Mansini LV, Ibarra OH., Nakano H. (Eds), Parallel
and Distributed Processing: 15 IPDPSP Workshops Mexico, Lecture Notes in Computer
Science, Springer-Verlag, Heidelberg, Germany, 1800:645-652

Dorigo M (1993) Parallel ant system: An experimental study. Unpublished manuscript,
(Downloadable from http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html)

Talbi EG, Roux O, Fonlupt C, Robillard D (1999) Parallel ant colonies for combinato-
rial optimization problems. in: Rolim J. et al. (Eds) Parallel and Distributed Processing,
11 IPPS/SPDP’99 Workshops, Lecture Notes in Computer Science, Springer-Verlag, Lon-
don, UK 1586:239-247

Bolondi M, Bondanza M (1993) Parallelizzazione di un algoritmo per la risoluzione del
problema del commesso viaggiatore. Master’s Thesis, Dipartimento di Elettronica e In-
formazione, Politecnico di Milano: Italy

Michel R, Middendorf M (1998) An island model based ant system with lookahead for the
shortest supersquence problem. in: Eiben AE, Back T, Schoenauer H, Schwefel P (Eds),
Parallel Problem Solving from the Nature, Lecture Notes in Computer Science, Springer-
Verlag, Heidelberg, Germany, 1498:692-701

Delisle P, Krajecki M, Gravel M, Gagné C (2001) Parallel implementation of an ant
colony optimization metaheuristic with openmp. Int. Conf. on Parallel Architectures
and Compilation Techniques, Proceedings of the 3rd European Workshop on OpenMP
(EWOMP’01), Barcelona, Spain

Kriiger E, Merkle D, Middendorf M (1998) Studies on a parallel ant system for the BSP
model, unpublished manuscript. (Downloadable from http://citeseer.ist.psu.edu/
239263.html)

De Jong KA (1975) An Analysis of The Behaviour of a Class of Genetic Adaptive Systems.
PhD thesis, University of Michigan

Pham DT, Liu X (1999) Neural Networks for Identification. Prediction and Control, 4th
edn, Springer-Verlag

Arifovic], Gencay R (2001) Using genetic algorithms to select architecture of a feedfor-
ward artificial neural network. Physica A, 289:574-594

Sexton RS, Gupta JND (2000) Comparative evaluation of genetic algorithm and back-
propagation for training neural networks. Information Sciences, 129:45-59

Castillo PA, Merelo J], Prieto A, Rivas V, Romero G (2000) G-Prop: Global optimization
of multilayer percetptrons using Gas. Neurocomputing, 35:149-163

Ku KW, Mak MW, Siu WC (1999) Adding learning to cellular genetic algorithms for train-
ing recurrent neural networks. IEEE Trans. on Neural Networks, 10(2):239-252

Blanco A, Delgado M, Pegalajar MC (2000) A genetic algorithm to obtain the optimal
recurrent neural network. Int. J. Approximate Reasoning, 23:67-83

Blanco A, Delgado M, Pegalajar MC (2001) A real-coded genetic algorithm for training
recurrent neural networks. Neural Networks, 14:93-105

Castillo PA, Gonzalez J, Merelo J], Prieto A, Rivas V, Romero G (1999) SA-Prop: Opti-
mization of multilayer perceptron parameters using simulated annealing. Lecture Notes
in Computer Science, Springer, 606:661-670

Sexton RS, Alidaee B, Dorsey RE, Johnson JD (1998) Global optimization for artificial
neural networks: A tabu search application. European J of Operational Research, 106:570—
584

Battiti R, Tecchiolli G (1995) Training neural nets with the reactive tabu search. IEEE
Trans. on Neural Networks, 6(5):1185-1200

Zhang S-B, Liu Z-M (2001) Neural network training using ant algorithm in ATM traffic
control. IEEE Int. Symp. on Circuits and Systems (ISCAS 2001) 2:157-160

110

39.

40.

41.

42.

43.

A. Kalinli, E Sarikoc

Blum C, Socha K (2005) Training feed-forward neural networks with ant colony opti-
mization: An application to pattern classification. Fifth Int. Conf. on Hybrid Intelligent
Systems

Li J-B, Chung Y-K (2005) A novel back-propagation neural network training algorithm
designed by an ant colony optimization. Transmission and Distribution Conference and
Exhibition: Asia and Pacific:1-5

Elman JL (1990) Finding structure in time. Cognitive Science, 14:179-211

Liu X (1993) Modelling and Prediction Using Neural Networks. PhD Thesis, University
of Wales College of Cardiff, Cardiff, UK.

Pham DT, Karaboga D (1999) Training Elman and Jordan networks for system identifi-
cation using genetic algorithms. J. of Artificial Intelligence in Engineering 13:107-117

