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Abstract

The nearest-neighbour (NN) classifier has long been used in pattern recognition, ex-
ploratory data analysis, and data mining problems. A vital consideration in obtain-
ing good results with this technique is the choice of distance function, and corres-
pondingly which features to consider when computing distances between samples.
In this chapter, a new ensemble technique is proposed to improve the performance of
NN classifiers. The proposed approach combines multiple NN classifiers, where each
classifier uses a different distance function and potentially a different set of features
(feature vector). These feature vectors are determined for each distance metric using
a Simple Voting Scheme incorporated in Tabu Search (TS). The proposed ensemble
classifier with different distance metrics and different feature vectors (TS-DF/NN)
is evaluated using various benchmark data sets from the UCI Machine Learning
Repository. Results have indicated a significant increase in the performance when
compared with various well-known classifiers. The proposed ensemble method is
also compared with an ensemble classifier using different distance metrics but with
the same feature vector (with or without Feature Selection (FS)).
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1 Introduction

The nearest-neighbour (NN) classifier has long been used in pattern recognition,
exploratory data analysis, and data mining problems. Typically, the k nearest neigh-
bours of an unknown sample in the training set are computed using a predefined
distance metric to measure the similarity between two samples. The class label of
the unknown sample is then predicted to be the most frequent one occurring in the
k nearest-neighbours. The NN classifier is well explored in the literature and has been
proved to have good classification performance on a wide range of real-world data
sets [1-3,27].

The idea of using multiple classifiers instead of a single best classifier has aroused
significant interest during the last few years. In general, it is well known that an en-
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semble of classifiers can provide higher accuracy than a single best classifier if the
member classifiers are diverse and accurate. If the classifiers make identical errors,
these errors will propagate and hence no accuracy gain can be achieved in combining
classifiers. In addition to diversity, accuracy of individual classifiers is also important,
since too many poor classifiers can overwhelm the correct predictions of good clas-
sifiers [37]. In order to make individual classifiers diverse, three principle approaches
can be identified:

o Each member of the ensemble is the same type of classifier, but has a different
training set. This is often done in an iterative fashion, by changing the probability
distribution from which the training set is resampled. Well-known examples are
bagging [24] and boosting [25].

o Training multiple classifiers with different inductive biases to create diverse clas-
sifiers, e.g. “stacking” approach [38].

o Using the same training data set and base classifiers, but employing feature se-
lection so that each classifier works with a specific feature set and therefore sees
a different snapshot of the data. The premise is that different feature subsets lead
to diverse individual classifiers, with uncorrelated errors.

Specific examples of these three different approach can be found in the literature re-
lating to NN techniques. Bao et al. [10] followed the second route, and proposed an
ensemble technique where each classifier used a different distance function. How-
ever, although this approach does use different distance metrics, it uses the same set
of features, so it is possible that some errors will be common, arising from features
containing noise, which have high values in certain samples. An alternative approach
is proposed by Bay [15] following the third route: each member of the ensemble uses
the same distance metric but sees a different randomly selected subset of the features.

Here we propose and evaluate a method which combines features of the second
and third approaches, with the aim of taking some initial steps towards the automatic
creation and adaptation of classifiers tuned to a specific data set. Building on [10,15],
we explore the hypothesis that the overall ensemble accuracy can be improved if the
choices of subsets arise from

« iterative heuristics such as tabu search [17] rather than random sampling
« different distance metrics rather than single distance metric.

Furthermore we hypothesise that these choices are best co-adapted, rather than learnt
separately, as co-adaptation may permit implicit tackling of the problem of achiev-
ing ensemble diversity. In order to do this, and to distinguish the effects of different
sources of benefits, a novel ensemble classifier is proposed that consists of multiple
NN classifiers, each using a different distance metric and a feature subset derived
using tabu search. To increase the diversity, a simple voting scheme is introduced
in the cost function of Tabu Search. The proposed ensemble NN classifier (DF-TS-
INN) is then compared with various well-known classifiers.

The rest of this chapter is organized as follows. Section 2 provides review on Fea-
ture Selection Algorithms. Section 3 describes a proposed multiple distance function
ensemble classifier, followed by experiments in Section 4. Sect. 5 concludes the paper.
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2 Feature Selection Algorithms (a Review)

The term feature selection refers to the use of algorithms that attempt to select the
best subset of the input feature set. It has been shown to be a useful technique for
improving the classification accuracy of NN classifiers [7, 8]. It produces savings in
the measuring features (since some of the features are discarded) and the selected
features retain their original physical interpretation [9]. Feature selection is used in
the design of pattern classifiers with three goals [9,11]:

1. to reduce the cost of extracting features
2. to improve the classification accuracy
3. to improve the reliability of the estimation of performance.

The feature selection problem can be viewed as a multiobjective optimization
problem since it involves minimizing the feature subset and maximizing classification
accuracy. Mathematically, the feature selection problem can be formulated as follows.
Suppose X is an original feature vector with cardinality n and X is the new feature
vector with cardinality i1, X c X, J(X) is the selection criterion function for the
new feature vector X. The goal is to optimize J(). The problem is NP-hard [29, 30].
Therefore, the optimal solution can only be achieved by performing an exhaustive
search in the solution space [1]. However, an exhaustive search is feasible only for
small n. A number of heuristic algorithms have been proposed for feature selection
to obtain near-optimal solutions [9,11,12,31-34].

The choice of an algorithm for selecting the features from an initial set depends
on n. The feature selection problem is said to be of small scale, medium scale, or
large scale for n belonging to the intervals [0,19], [20,49], or [50,00], respectively [11,
12]. Sequential Forward Selection (SES) [35] is the simplest greedy sequential search
algorithm. Other sequential algorithms such as Sequential Forward Floating Search
(SFFS) and Sequential Backward Floating Search (SBES) are more efficient than SFS
and usually find fairly good solutions for small and medium scale problems [32].
However, these algorithms suffer from the deficiency of converging to local optimal
solutions for large scale problems when n > 100 [11,12]. Recent iterative heuristics
such as tabu search and genetic algorithms have proved to be effective in tackling this
category of problems, which are characterized by having an exponential and noisy
search space with numerous local optima [12,17,33,36].

Tabu search (TS) has been applied to the problem of feature selection by Zhang
and Sun [12]. In their work, TS performs the feature selection in combination with an
objective function based on the Mahalanobis distance. This objective function is used
to evaluate the classification performance of each subset of the features selected by
the TS. The feature selection vector in TS is represented by a binary string wherealor
0 in the position for a given feature indicates the presence or absence of that feature
in the solution. Their experimental results on synthetic data have shown that TS not
only has a high probability of obtaining an optimal or near-optimal solution, but also
requires less computational effort than other suboptimal and genetic algorithm based
methods. TS has also been successfully applied in other feature selection problems
[8,13,14].
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3 Proposed Ensemble Multiple Distance Function Classifier (DF-TS—1NN)

In this section, we discuss the proposed ensemble multiple distance function TS/INN
classifier (DF-TS-INN). The use of n classifiers, each with a different distance func-
tion and potentially different set of features is intended to increase the likelihood that
the errors of individual classifiers are not correlated. In order to achieve this it is nec-
essary to find appropriate feature sets within the context of the ensemble as a whole.
However with F features the search space is of size 2", Initial experiments showed
that in order to make the search more tractable it is advantageous to hybridize the
global nature of TS in the whole search space, with local search acting only within
the sub-space of the features of each classifier. Figure 1 shows the training phase of
the proposed classifier.

During each iteration, N random neighbours with Hamming Distance 1 from the
current feature set FV; are generated for each classifier i € {1,...,n} and evaluated
using the NN error rate for the appropriate distance metric Di. From the set of N
neighbours, the M best are selected for each classifier.! All M" possible combinations
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Fig.1 Training phase of proposed DF-TS-INN classifier

! In this study M =2,n=5,and N = /F, where F = Total Number of Features



3 Proposed Ensemble Multiple Distance Function Classifier (DF-TS-INN) 73

are then evaluated using a simple voting scheme (SVS) and the best is selected to go
forward to the next iteration. Thus, the feedback from the SVS allows T'S to search it-
eratively for combinations of feature vectors that improve the classification accuracy.
Implicitly it seeks feature vectors for the different distance measures whereby the er-
rors are not correlated, and so provides diversity. By using n distance functions, n
feature vectors are obtained using TS in the training phase. In the testing phase, the
n NN classifiers with their different feature vectors are combined as shown in Fig. 2.

In the following subsections, feature selection using T'S and the various distance
metrics described in this paper are discussed as they are at the heart of the proposed
algorithm.

3.1 Distance Metrics

The following five distance metrics are used for NN classifiers. All metrics are widely
used in the literature.

« Squared Euclidean Distance: E = ¥, (x; — y;)?
o Manhattan Distance: M = Y1 | (x; — y;)

+ Canberra Distance: C = Y12, (x; — ;) /(x; + yi)
« Squared chord distance: S = Y72, (/%i — /77)*

o Squared Chi-squared distance: C; = Y17, (x; — y:)*/(xi + yi)

where x and y are the two input vectors and m is the number of features.

Feature Feature @ |  ccccccoooa Feature
Vector (FV1) Vector (FV2) Vector (FVn)
NN Classification NN Classification NN Classification
using Distance D1 using DistanceD2 |  TTTTTTTTTT using Distance Dn
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y

Ensemble Voting Scheme
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Fig.2 Testing Phase



74 M.A. Tahir, J.E. Smith
3.2 Feature Selection and Diversity using Tabu Search

TS was introduced by Glover [5, 6] as a general iterative metaheuristic for solving
combinatorial optimization problems. TS is conceptually simple and elegant. It is
a form of local neighbourhood search which starts from an initial solution, and then
examines feasible neighbouring solutions. It moves from a solution to its best admis-
sible neighbour, even if this causes the objective function to deteriorate. To avoid cyc-
ling, solutions that were recently explored are declared forbidden or tabu for a num-
ber of iterations. The tabu list stores a characterization of the moves that led to those
solutions. The tabu status of a solution is overridden when certain criteria (aspira-
tion criteria) are satisfied. Sometimes intensification and diversification strategies are
used to improve the search. In the first case, the search is accentuated in promising
regions of the feasible domain. In the second case, an attempt is made to consider so-
lutions over a broader area of the search space and so provide it with a global nature.
The flow chart of the TS algorithm is given in Table 1.

Table1 Algorithm Tabu Search (TS)

Q : Set of feasible solutions
S : Current Solution
S*  :Best admissible solution

Cost : Objective function

N(S) : Neighbourhood of solution S

V*  :Sample of neighbourhood solutions
T : Tabu list

AL : Aspiration Level

Begin
L. Start with an initial feasible solution S € Q.
2. Initialize tabu list and aspiration level.
3. For fixed number of iterations Do
4. Generate neighbour solutions V* ¢ N(S§).
5. Find best $* € V*.
6. If move S to $* is not in T Then
7. Accept move and update best solution.
8. Update tabu list and aspiration level.
9. Increment iteration number.
10. Else
11. If Cost(S*) < AL Then
12. Accept move and update best solution.
13. Update tabu list and aspiration level.
14. Increment iteration number.
15. End If
16. End If
17. End For

End
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The size of the tabu list can be determined by experimental runs, watching for the
occurrence of cycling when the size is too small, and the deterioration of solution
quality when the size is too large [16]. Suggested values of tabu list include Y, /Y
(where Y is related to problem size, e.g. number of modules to be assigned in the
quadratic assignment problem (QAP), or the number of cities to be visited in the
travelling salesman problem (TSP), and so on) [17].

Objective Function

A simple voting scheme is used in each instance of # classifiers. The objective function
is the number of instances incorrectly classified using a simple voting scheme. The
objective is to minimize

S
Cost = Z C; 1)
i=1
where § is the number of samples, C; = 1 if instance is classified incorrectly after
simple voting in n classifiers, else C; = 0.

Initial Solution

The feature selection vector is represented by a 0/1 bit string where 0 indicates that
the feature is not included in the solution while 1 indicates that it is. All features are
included in the initial solution.

Neighbourhood Solutions

During each iteration, N random neighbours with Hamming Distance 1 (HD1) are
generated for the feature set for each classifier and evaluated using the NN error rate
with the appropriate distance metric as the cost function. Neighbours are generated
by randomly adding or deleting a feature from the feature vector of size F. Among the
neighbours, M best solutions are selected, yielding M possible classifiers for each of
the n distance metrics. The M" resulting ensembles are then evaluated using Equa-
tion (1) and the one with the best cost (i.e. the solution which results in the minimum
value of Equation (1)) is selected and considered as a new current solution for the next
iteration. Note that these ensembles may be quickly evaluated since we pre-computed
the decision of each of the M x n classifiers during the local search phase. Figure 3
shows an example showing neighbourhood solutions during one iteration. Let us as-
sume that the cost of the three different feature subsets in the solution are 50, 48,
and 47 using distance metrics 1, 2, and 3, respectively. N = 4 neighbours are then
randomly generated for each distance metric using HD1. M = 2 best solutions are
selected and M" = 2* = 8 solutions are evaluated using the ensemble cost function.
The best solution is then selected for the next iteration.

Tabu Moves

A tabu list is maintained to avoid returning to previously visited solutions. In our
approach, if an ensemble solution (move) is selected at iteration i, then selecting the
same ensemble solution (move) for T subsequent iterations (tabu list size) is tabu.
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Fig.3 An example showing neighbourhood solutions during one iteration of the proposed TS
method. n =3, N=4,and M =2

Aspiration Criterion

The aspiration criterion is a mechanism used to override the tabu status of moves. It
temporarily overrides the tabu status if the move is sufficiently good. In our approach,
if an ensemble solution is selected at iteration i and this move results in a best cost
for all previous iterations, then that solution is selected even if that feature is in the
tabu list.

Termination Rule

The most commonly used stopping criteria in TS are

« after a fixed number of iterations

o after some number of iterations when there has been no increase in the objective
function value

« when the objective function reaches a pre-specified value.

In this work, the termination condition is a fixed number of iterations.
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4 Experiments

To evaluate the effectiveness of our method, extensive experiments were carried out,
and comparisons with several methods performed.

4.1 Methods

The proposed (DF-TS-INN) algorithm is compared with the following methods. All
methods are implemented using the WEKA library [26].

e Decision Tree Method (C4.5): A classifier in the form of a tree structure, where
each node is either a leaf node or a decision node [3, 20].

o Decision Table (DT): It uses a simple decision table majority classifier [21].

« Random Forest (RF): Ensemble Classifier using a forest of random trees [22].

« Naive Bayes Algorithm (NBayes): The Naive Bayes Classifier technique is based
on Bayes’ theorem. Despite its simplicity, Naive Bayes can often outperform nu-
merous sophisticated classification methods [23].

o Bagging: A method for generating multiple versions of a predictor and using these
to get an aggregated predictor (ensemble) [24]. C4.5 is used as base classifier.

o AdaBoostl: A meta-algorithm for constructing ensembles which can be used
in conjunction with many other learning algorithms to improve their perform-
ance [25]. C4.5 is used as base classifier.

In addition, we compare the following variations of the proposed ensemble algo-
rithms:

1. DF-INN: Ensemble Classifier using NN classifiers with each classifier having
different distance metrics (DF) and without FS.

2. DF-TSI-INN: Ensemble Classifier using NN classifiers, each using a different
distance metric. FS using TS is applied independently for each data set.

3. DF-TS2-INN: Ensemble Classifier as above but with a single common feature
set selected by TS. Subsets for various distance metrics are derived using TS.

4. DF-TS3-1NN: Proposed Ensemble Classifier. Different feature subsets for each
classifier derived simultaneously using TS.

4.2 Data Sets Descriptions and Experimental Setup

We have performed a number of experiments and comparisons with several bench-
marks from the UCI [4] in order to demonstrate the performance of the proposed
classification system. A short description of the benchmarks used, along with TS run-
time parameters are given in Table 2.

The tabu list size and number of neighbourhood solutions are determined using
the following equation:

T = N = ceil (V/F) )

where T is the tabu list size, N is the number of neighbourhood solutions and F is
the number of features.
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Table2 Data sets description. P = Prototypes, F = Features, C = Classes, T = Tabu list size, N =
Number of neighbourhood solutions

Name P F C T N
Statlog Diabetes 768 8 2 3 3
Statlog Heart 270 13 2 4 4
Statlog Australian 690 14 2 4 4
Statlog Vehicle 846 18 4 5 5
Statlog German 1000 20 2 5 5
Breast Cancer 569 32 2 6 6
Tonosphere 351 34 2 6 6
Sonar 208 60 2 8 8
Musk 476 166 2 13 13

In all data sets, B-fold cross-validation has been used to estimate error rates [18].
For B-fold CV, each data set is divided into B blocks using B-1 blocks as a training
set and the remaining block as a test set. Therefore, each block is used exactly once
as a test set. Each experiment was run 100 times using different random 10-CV par-
titions and the results were averaged over the 100 runs [19].

The number of iterations for FS using TS is 200 for all data sets, which was chosen
after preliminary experimentation.

In order to offset any bias due to the different range of values for the original
features in the NN classifier, the input feature values are normalized over the range
[1,10] using Equation (3) [7]. Normalizing the data is important to ensure that the
distance measure allocates equal weight to each variable. Without normalization, the
variable with the largest scale will dominate the measure.

Xi,j — MiNg=1..0 X(,j)

xi = . *10) (3)
MaXk=1..n X(k,j) — MMNf=1...n X(k,j)

where x; ; is the jth feature of the i-th pattern, x; ; is the corresponding normalized
feature, and # is the total number of patterns.

4.3 Comparison of Different ways of Creating Feature Sets

Table 3 shows the classification accuracy using various distance functions within sin-
gle classifiers, and for the ensemble technique without feature selection. As can be
seen, on some data sets there is a wide discrepancy between the accuracy obtained
with different distance metrics. With the simple voting scheme used here the votes of
the less accurate classifiers can dominate, so that the ensemble performs worse than
the best single classifier on those datasets.

Table 4 shows the classification accuracy using various distance functions and
with FS and compared with the various variations of the proposed method. Compar-
ing the results for individual classifiers with feature selection ({E, M, C, C,,S.}) to
those without (Table 3) it can be seen that the accuracy is increased in every case -
a nice example of the value of performing feature selection.
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Table 3 Classification accuracy (%) using individual classifiers and various variations of the
proposed classifier. M = Manhattan, E = Euclidean, C = Canberra, C; = Chi-squared, S; =
Squared-chord

Data Set E M Cc G S.  DF-INN
Australian 82.1 82.0 85.7 82.3 82.4 84.0
Breast Cancer 95.3 95.2 952 954 954 95.6
Diabetes 70.5 69.7 66.0 69.4 69.6 70.2

German 70.9 71.1 70.2 70.5 70.0 71.8
Heart 78.1 79.6 80.8 79.0 78.3 79.0
Ionosphere  87.0 90.7 92.2 89.1 89.0 90.3
Musk 85.4 83.3 84.0 86.1 86.0 86.0
Sonar 82.5 84.6 86.6 86.0 86.4 85.4
Vehicle 69.6 69.5 69.6 70.4 70.4 70.7

Turning to the use of feature selection to derive a common subset for all clas-
sifiers (DF-TS2-INN), not only do we see improved performance compared to the
same algorithm without feature selection (DF-INN in Table 3), but now the mean
accuracy is higher than the best individual classifier on most data sets. This is a good
example, which indicates that in order for ensembles to work well, the member clas-
sifiers should be accurate.

The other condition for ensembles to work well is diversity, and the performance
improves further when feature selection is done independently for each classifier
(DE-TSI-INN), as they can now use potentially different feature sets. However, this
approach only implicitly (at best) tackles the diversity issue, and the performance is
further increased when different feature subsets co-adapt, so that each feature set is
optimized in the context of the ensemble as whole (DF-TS3-1NN). In all but two
cases our proposed method (DF-TS3-1NN) outperforms the others and the means
differ by more than the combined standard deviations, indicating a high probability
that these are truly significantly different results. In the two cases where DF-TS1-INN

Table4 Mean and standard deviation of classification accuracy (%) using individual classifiers
and variations of the proposed classifier. M = Manhattan, E = Euclidean, C = Canberra, C; =
Chi-squared, S = Squared-chord

Data Set E M C C, S. DF-TSI-INN DF-TS2-INN DF-TS3-INN
Australian  86.5 88.1 86.4 859 86.8 89.0(0.61) 85.1(0.45)  90.5(0.48)
Breast Cancer 97.4 97.8 97.5 97.4 97.5 97.9(0.22) 97.6(0.32)  98.0(0.25)
Diabetes 717 708 71.1 70.1 70.3 75.5(0.71)  72.5(0.82)  74.5(0.85)
German 723 738 741 745 73.4 76.5(0.63)  74.2(0.71)  79.8(0.62)
Heart 83.2 82.6 822 84.0 83.0 85.0(1.11)  83.8(1.45)  86.3(0.90)
Ionosphere  93.3 954 96.2 91.1 94.3 95.3(0.41) 95.1(0.37)  96.3(0.52)
Musk 91.2 89.9 89.8 923 91.8 91.6(0.67) 92.3(0.82)  94.5(0.72)
Sonar 91.0 90.9 93.1 91.5 93.0 93.5(0.82) 93.4(1.00)  94.7(1.09)

Vehicle 73.9 751 742 749 742 77.2(0.60)  74.5(0.59)  76.9(0.61)
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has a higher observed mean than DF-TS3-1NN, the differences are less than the stan-
dard deviation of either set of results, so they are almost certainly not significant.

Table 5 shows the number of features used by the proposed classifier for various
data sets. Different features have been used by the individual classifiers that are part
of the whole ensemble classifier, thus increasing diversity and producing an over-
all increase in the classification accuracy. Fcommon represents those features that are
common for ensemble classifier, i.e. that are used by each classifier. As can be seen
on most data sets there are few, if any, features that are used by every classifier. This is
a cause of diversity among the decisions of the different classifiers, and the fact that
these feature sets are learnt rather than simply assigned at random is responsible for
the different classifiers all remaining accurate — the other pre-requisite for successful
formation of an ensemble.

4.4 Comparison with other Algorithms

Table 6 shows results of a comparison of classification accuracy (in %) between the
proposed DF-TS-INN classifier and others for different data sets. The proposed al-
gorithm achieved higher accuracy on all data sets except Diabetes.

Table5 Total number of features used by proposed classifier. Fr = Total available features, Fy =
Feature using Manbhattan distance, Fg = Features using Euclidean distance, Fc = Features using
Canberra distance, Fc, = Features using chi-squared distance, Fs, = Feature using squared-
chord distance.

Data Set Fr Fr Fu Fc FCS FSC Fcommon Fensemble
Australian 14 5 9 9 7 5 1 14
Breast Cancer 32 19 13 15 21 13 3 28
Diabetes 8 3 5 1 3 5 0 8
German 20 9 13 13 13 15 3 19
Heart 13 10 8 10 6 8 2 13
Ionosphere 34 11 13 15 11 11 2 26
Musk 166 84 74 76 86 90 0 124
Sonar 60 31 33 27 35 33 0 58
Vehicle 18 9 11 13 7 13 0 17

Table 6 Average classification accuracy (%) using different classifiers. DT = Decision table.
RF = Random forest

Data Set C4.5 DT RF NBayes Bagging AdaBoost INN DF-TS3-INN

Australian 84.3 84.7 86.1 77.1 86.0 85.0 79.6 90.5
Breast Cancer 93.6 93.3 95.9 93.3 95.35 96.1 95.4 98.0
Diabetes 74.3 74.1 74.7  75.6 76.0 72.4 70.3 74.5
German 71.6 72.5 74.7 74.5 74.6 72.50 70.9 79.8
Heart 78.2 82.3 80.2 84.0 80.5 79.2 75.7 86.3
Tonosphere  89.8 94.2 954 92.8 92.2 90.3 87.5 96.3
Musk 82.7 80.8 87.8 73.9 88.2 90.0 85.6 94.5
Sonar 73.0 72.6 80.3  67.9 78.5 80.1 86.5 94.7

Vehicle 72.7 66.4 74.7 45.4 74.5 76.4 69.7 76.9
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For Australian, German and Ionosphere data sets there is improvement of 1.98%,
5.06% and 0.4% respectively when compared with the best of the other methods
(Random Forest Classifier).

For Heart, there is an improvement of 3.3% when compared with the best of the
other methods (Naive Bayes Classifier).

For Vehicle, Breast Cancer and Musk data sets, there is an improvement of 0.5%,
0.76%, and 4.55% respectively when compared with the best of the other methods
(AdaBoost).

For Sonar, there is an improvement of 7.8% when compared with the best of the
other methods (INN).

Since Diabetes has only eight features, the proposed algorithm is unable to com-
bine the benefits of feature selection and ensemble classifiers using different dis-
tance metrics.

As can be seen, the proposed method performs consistently well and outperforms
other methods on all but one data set. Moreover, for the other methods there is con-
siderable variation in performance according to how well the indicative bias of each
method suits each data set. It is worth noting that the two methods of producing en-
sembles always improve the performance compared to the base C4.5 classifiers, apart
from Ada-Boost on the Diabetes data set.

Figure 4 shows the standard deviation obtained over 100 runs of random 10-fold

cross-validation of each data set for different algorithms. From the graph, it is clear
that the standard deviation of the proposed classifier compares favorably with other

Standard Deviation

25

0.5

Australian Diabetes  lonosphere Vehicle Heart WDBC Sonar Musk German

@ Proposed B C4.5 OBagging O AdaBoost B Nbayes B 1NN

Fig.4 Standard deviation for different algorithms on various data sets
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algorithms, and is usually less than the observed difference in mean accuracies, sug-
gesting that these are significant. In particular it is always less than that of the two
other boosting algorithms. Thus if we think in terms of the Bias-Variance decompo-
sition of classifier errors, it might initially appear that both the bias and the variance
terms are reduced for this method, but this must be studied in more detail.

4.5 Analysis of Learning

Figures 5-7 show the classification accuracy (%) versus number of iterations for Aus-
tralian, Ionosphere and German data sets using one run of the solution search space
using TS. The figure clearly indicates that TS focuses on a good solution space. The
proposed TS algorithm progressively zooms towards a better solution subspace as
time elapses; a desirable characteristics of approximation iterative heuristics.
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5 Condusions

A new ensemble technique is proposed in this paper to improve the performance of
NN classifiers. The proposed approach combines multiple NN classifiers, where each
classifier uses a different distance function and potentially a different set of features
(feature vector). These feature vectors are determined using a combination of Tabu
Search (at the level of the ensemble) and simple local neighbourhood search (at the
level of the individual classifiers).

We show that rather than optimizing the feature set independently for each dis-
tance metric, it is preferable to co-adapt them, so that each feature set is optimized
in the context of the ensemble as whole. This approach also implicitly deals with the
problem tackled by many authors, namely of how to find an appropriate measure for
the diversity of an ensemble so that it can be optimized. Our solution is to simply do
this explicitly by letting TS operate, using the ensemble error rate as its cost function.

The proposed ensemble DF-TS-INN classifier is evaluated using various bench-
mark data sets from the UCI Machine Learning Repository. Results indicate a signifi-
cant increase in performance compared with other different well-known classifiers.

This work is intended as a step towards the automatic creation of classifiers tuned
to specific data sets. Having done our initial “proof of concept’, the next stages of this
research programme will be concerned with automating the choice of distance metric
and k for each of our k — NN classifiers. We will also consider ways of automatically
selecting subsets of the training examples to use for classification, as a way of tack-
ling the well-known scalability problems of NN as the number of training examples
increases.
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