
Making a Difference to Differential Evolution

Zhenyu Yang1, Jingsong He1 and Xin Yao1,2

1 Nature Inspired Computation and Applications Laboratory (NICAL),
University of Science and Technology of China, Hefei, Anhui, China.
zhyuyang@mail.ustc.edu.cn, hjss@ustc.edu.cn

2 School of Computer Science, University of Birmingham, Edgbaston,
Birmingham B TT, UK.
x.yao@cs.bham.ac.uk

Abstract

Differential evolution (DE) and evolutionary programming (EP) are two major algo-
rithms in evolutionary computation. They have been applied with success to many
real-world numerical optimization problems. Neighborhood search (NS) is a main
strategy underpinning EP. There have been analyses of different NS operators’ char-
acteristics. Although DE might be similar to the evolutionary process in EP, it lacks
the relevant concept of neighborhood search. In this chapter, DE with neighbor-
hood search (NSDE) is proposed based on the generalization of NS strategy. The
advantages of NS strategy in DE are analyzed theoretically. These analyses mainly
focus on the change of search step size and population diversity after using neigh-
borhood search. Experimental results have shown thatDEwith neighborhood search
has significant advantages over other existing algorithms on a broad range of different
benchmark functions.NSDE’s scalability is also evaluated on a number of benchmark
problems, whose dimension ranges from  to .

Key words: Differential Evolution, Global Optimization, Evolutionary Algorithms,
Neighbourhood Search, Hybrid Algorithms

1 Introduction

Differential evolution (DE) is a simple yet effective global optimization algorithm
with superior performance in several real-world applications [,]. Several variations
of DE have been proposed to improve its performance. A self-adaptive strategy has
also been investigated to adapt between different variants of DE []. Although there
are only three strategy parameters (population size NP, crossover rate CR and muta-
tion scaling factor F), it was found that the performance of DE is very sensitive to the
setting of these control parameters. Zaharie [] analyzed how these control param-
eters influence the population diversity of DE, while [] used extensive experiments

 Z. Yang, J. He, X. Yao

to study how the performance of DEs is affected by these factors. Although empirical
rules can be found for choosing these control parameters, they are not general and
therefore not suitable for practical applications.

There are two main steps in DE: mutation and crossover. The mutation will cre-
ate a trial vector for each individual, and then crossover will recombine each pair of
trial vectors and individuals to produce offspring. Since DE only uses discrete recom-
bination for crossover, mutation supplies the major power to make progress during
evolution. As another mutation-based strategy, evolutionary programming (EP) is
also a major branch of evolutionary computation. In EP, new offspring are obtained
by giving a perturbation to the original individuals. That means all offspring for the
next generation are generated in the neighborhood of current solutions. Thus EP
uses a neighborhood search (NS) strategy to improve the quality of solutions. The
characteristics of different NS operators have been analyzed in [,]. EP’s evolution-
ary behavior has shown that NS is an efficient operator for such a generate-and-test
method. However there is no definite neighborhood search concept in DE, and little
work has been done to investigate how this NS strategy will affect DE’s evolutionary
behaviors. Based on the success of the NS strategy in EP, the idea of DE with a similar
strategy deserves more investigation.

In this chapter, the common features of DE and EP are generalized into a uni-
form framework, and based on this understanding, DE with neighborhood search
(NSDE) is proposed to improve its neighborhood search ability. Then the advantages
of DE with neighborhood search are analyzed theoretically. These analyses mainly
focus on the change of search step size and population diversity after using a neigh-
borhood search (NS) strategy. Experimental evidence is also given to regarding the
evolutionary behavior of DE with neighborhood search on widely used benchmark
functions.

2 Preliminaries

2.1 Evolutionary Programming

Optimization by evolutionary programming (EP) can be summarized into twomajor
steps: first mutate the solutions in the current population, and then select the next
generation from the mutated and the current solutions [].

x′i(j) = x i(j) + η i(j)Nj(0, 1) ()

η′i(j) = ηi(j) exp(τ
′N(0, 1) + τNj(0, 1)) ()

where i � �1, . . . , μ	, μ is the population size, j � �1, . . . , n	, n is the dimension
of object parameters, N(0, 1) denotes a normally distributed one-dimensional ran-
dom number with mean zero and standard deviation one, and Nj(0, 1) indicates that
the random number is generated anew for each value of j. Usually, evolutionary pro-
gramming using Eqs. () and () is called classical evolutionary programming (CEP) .

 Preliminaries 

TheCauchy operator is introduced into Eq. () to substitute Gaussian mutation in [],
i.e. the update equation is replaced by:

x′i(j) = x i(j) + ηi(j)δ j ()

where δ j is a Cauchy random variable with the scale parameter t = 1 and is generated
anew for each j. EP using Cauchy mutations is called fast evolutionary programming
(FEP). IFEP (Improved FEP) based onmixing different mutation operators, and LEP
based on mutations with the Lévy probability distribution were also proposed in []
and [], respectively.

By Eq. () or Eq. (), we can find that new offspring are obtained by giving a per-
turbation to the original individual. This means all offspring for the next generation
are generated in the neighborhood of current solutions. Thus EP improves the quality
of solutions through a neighborhood search (NS) strategy. Operators such as Gaus-
sian Nj(0, 1) and Cauchy δ j are used to control the size and shape of the neighbor-
hood: η j is a self-adaptive scaling factor for the neighborhood size. The characteris-
tics of differentNS operators have been analyzed in [,]. How theseNS operators are
used will strongly affect EP’s performance. Based on the importance of the NS strat-
egy in EP, we intend to investigate whether such an NS strategy can be generalized
and used in other evolutionary algorithms.

2.2 Differential Evolution

Individuals are represented by D-dimensional vectors x i ,∀i � �1, . . . ,NP	 in DE,
where D is the number of optimization parameters and NP is the population size.
According to the description by Storn and Price [], the mutation and crossover of
original DE can be summarized as follows:

y i = x i1 + (x i2 − x i3) ċ F ()

z i(j) = �
y i(j), if Uj(0, 1) < CR
x i(j), otherwise ()

with i, i1 , i2 , i3 � [1,NP] are integers and mutually different. F � 0 is a real con-
stant factor to control the differential variation d i = x i2 − x i3 , and Uj(0, 1) denotes
a uniform random number between  and . To represent crossover result z i more
formally, we can define a Boolean maskM = (M(1),M(2), . . . ,M(D)) as follows:

M(j) = � 1, if Uj(0, 1) < CR
0, otherwise.

and then z i can be represented as:

z i = y i ċM + x i ċM = y i ċM + x i ċ (I −M)

= y i ċM + x i − x i ċM = x i − (x i − y i) ċM

 Z. Yang, J. He, X. Yao

where I is an all-‘’ vector I = (1, . . . , 1)D . With these equations, we know that
M is a componential mask of vector (x i − y i). For each offspring, z i(j) = x i(j)
ifM(j) = 0, otherwise z i(j) = y i(j).This means crossover in DE can be regarded as
a selection process on the mutated components. After mutation DE performs a sub-
space selection process through crossover, and then it will search for better solutions
in the subspace.

Now, similarity can be found between the evolutionary processes of DE and EP.
Although there is no concept of neighborhood in DE, it has been carried out with
a scaling factor F that has some relation with DE’s search step size []. A large F
value is expected to increase the probability of escaping from local optima. However,
it also increases the perturbation of mutation, which will decrease DE’s convergence
speed. This is similar to the characteristics of neighborhood search operators used
in EP, except there F was restricted to a constant number. So within the selected
subspace after crossover, DE will have similar evolutionary behaviour to EP. Tomake
use of the successful neighborhood search (NS) operators in EP, the idea of DE with
similar NS strategy deserves more investigation.

3 DE with Neighborhood Search

3.1 Analyses of DE’s Search Characteristics

In Eq. (), note that the smaller the difference between parameters x i2 and x i3 , the
smaller the difference vector d i = x i2−x i3 and therefore the perturbation.Thatmeans
if the population becomes close to the optimum, the step length is automatically de-
creased. This is similar to the self-adaptive step size control found in evolutionary
programming. Based on this understanding, we can use an uniform mutation equa-
tion for DE and EP as follows:

x′i(j) = x i(j) + ξi(j) ψ ()

where ξi(j) means d i(j) (d i is the difference vector x i2 − x i3), and is η i(j) in EP.
ψ is a constant number F in DE, a Gaussian random number Nj(0, 1) in CEP , and
a Cauchy random number δ j in FEP .

Generalizing the analysis method for the mean search step size in [], the ex-
pected length of ψ jumps in the universal equation can be calculated as follows:

Eψ = Y
+�

−�

x Ψ(x) dx

where Ψ(x) is the distribution density function for generating the number ψ. When
Ψ(x) takes a Gaussian function and a Cauchy function , the expected length of Gaus-
sian and Cauchy jumps are . and +6, respectively. Obviously, Ψ(x) takes an im-
pulse function δ(x − F) in DE and the expected jump will be:

EDE = Y
+�

−�

x δ(x − F) dx = F

 DE with Neighborhood Search 

Up to now we have shown the relation between scaling factor F and search step size
theoretically. After setting a value for F, the search step size will be determined di-
rectly. Since different optimization problems or even different stages of the same evo-
lution may demand different kinds of search step size, it is easy to understand why
the empirical value F = 0.5 is not always suitable, and DE with more universal NS
operators will have greater potential.

3.2 Mixing Search Biases of Different NS Operators

In Sect. ., we have given a uniform equation for DE and EP, and within the frame
we can generalize Eq. () to:

y i = x i1 + d i ċ ψ ()

where ψ denotes a NS operator, which can be substituted with any kind of neigh-
borhood search operator. The NS operator is used to control the size and shape of
neighborhood during the evolutionary process. Assume the density function of ψ is
fψ(x), then the probability of generating jumps l smaller than a specified step L and
larger than L will be:

P(l < L) = Y
+L

−L
fψ(x) dx

P(l � L) = Y
−L

−�

fψ(x) dx + Y
+�

+L
fψ(x) dx

With these equations, the probability of generating different jumps by the NS oper-
ator can be calculated, and thus we can achieve some basic search biases for different
NS operators. To show the expected advantages of changing the constant number
F to a NS operator, two widely used NS operator candidates will be analyzed here.
They are Gaussian random N(0, 1), and Cauchy random C(t = 1). The probabilities
of them generating different jumps are given in Fig. .

Fig. 1 The probability of generating different jumps for the given NS operators.

 Z. Yang, J. He, X. Yao

First, fromFig.  we can observe that all of the NS operators aremore flexible than
the constant setting for F. Constant F can only produce fixed length jump steps, while
the two NS operators have the ability to produce many kinds of jump steps with dif-
ferent probabilities. For a common optimization problem, the probability is very low
that the fixed jump steps produced by F are just right for evolution. So NS operators
will be more universal than a constant setting for F. Deeper observation shows that
Gaussian random N(0, 1) is very localized. It is more likely to produce small jumps.
In contrast, Cauchy random C(t = 1) is more expandable. It has a greater probabil-
ity of producing long jumps. Small jumps will be beneficial when the current search
point is near the global optimum. However, as analyzed in [], convergence of the
evolution process will be very slow and will risk being trapped in some of the local
optima. Long jumps have the ability to escape from poor local optima and locate
a good near-global optimum. But this will be beneficial only when the global is suf-
ficiently far away from the current search point. Generally, the Cauchy operator will
perform better when far away from the global optimum, while the Gaussian operator
is better at finding a local optimum in a good region. It will therefore be beneficial to
mix different search methods but to also bias them differently. Here we change DE’s
mutation to:

y i = x i1 + �
d i ċ N(0.5, 0.5), if U(0, 1) < 0.5
d i ċ δ, otherwise. ()

where N(0.5, 0.5) denotes a normally distributed one-dimensional random number
with mean . and standard deviation ., and δ is a Cauchy random variable with
scale parameter t = 1. The parameters (0.5, 0.5) for the Gaussian operator are taken
after determining an empirical value for F in DE. Equation () introduces a neigh-
borhood search strategy that can produce many more kinds of step sizes, and this is
expected to be beneficial when dealing with real-world optimization problems. Here
the neighborhood search inspired DE is denoted NSDE .

Population diversity can be used to analyze the expected advantages of DE with
neighborhood search. It has been found that if ψ � F ċN(0, 1), the expected popula-
tion variance after mutation and crossover becomes:

E(Var(Y)) = 12F2 +
m − 1
m
3Var(x) ()

E(Var(Z)) = &2F2p −
2p
m
+
p2

m
+ 1'Var(x) ()

where m is the dimension of object parameters, and p is the value of crossover rate
CR. These equations are proved in [] in detail.

Similar analysis can be carried out when ψ is restricted to a constant number F.
For E((F ċ N(0, 1))2) = E(F2) = F2, the result for E(Var(Y)) and E(Var(Z)) will
remain the same as Eqs. () and (), i.e. the population diversity stays the same after
using the Gaussian NS operator. In Eq. (), the mutation will be determined by di
directly. For eachmutation, the object parameters can only change with step di . After

 Experimental Studies 

introducing the Gaussian NS operator, DE’s search step size is determined not only
by difference vector di , but also by the NS operator N(0, 1). The operator can scale
di into many kinds of search step sizes, while the original constant number can only
produce a fixed step size d i ċ F. This will be an advantage when DE is searching for
the global optimum in an unknown environment, where no prior knowledge exists
about what search step size is prefered.

However, a localized Gaussian operator will only be beneficial when near the
small neighborhood of the global optimum. In contrast, the Cauchy operator can
overcome this limitation. For the Cauchy variable with scale parameter t = 1, we
know that

Var(δ) =
+�

Y
−�

x2
1

π(1 + x2)
dx = +6

E(δ2) = Var(δ) + (E(δ))2 = +6

So after changing ψ in Eq. () to a Cauchy random variable, it is easy to carry out the
expected population variance after mutation, and crossover that becomes:

E(Var(Y)) = E(Var(Z)) = +6

Obviously, the Cauchy operator is much more global than the Gaussian, so DE with
a Cauchy NS operator will have superior ability to escape from local optima. Equa-
tion () has considered not only a Gaussian operator , but also the Cauchy operator’s
search biases, so NSDE is expected to be more powerful when searching in an envi-
ronment without prior knowledge. In the next section, experiments will be provided
to test the performance of NSDE on a set of widely used benchmark functions.

4 Experimental Studies

Here experimental evidence is provided to study howneighborhood search operators
influence DE’s performance. We evaluate the performance of the proposed NSDE
algorithm on both classical test functions and the new set of functions provided by
CEC special session. NSDE follows Eq. () to replace F with NS operators, and
CR is set to U(,) to enhance DE’s subspace search ability, here U(,) stands for
a uniform random between  and .The algorithms used for comparison are classical
DE with empirical parameter setting [,] and other widely used algorithms such as
FEP, CMAES .

4.1 NSDE on classical benchmark functions

First we test NSDE’s performance on a set of  classical functions for numeric op-
timization. Functions f1 − f13 are high-dimensional problems. Functions f1 − f5 are
unimodal. Function f6 is the step function which has one minimum and is discon-
tinuous. Function f7 is a noisy quartic function where random[0, 1) is a uniformly

 Z. Yang, J. He, X. Yao

distributed random variable in [0, 1). Functions f8 − f13 are multimodal functions
where the number of local minima increases exponentially with the problem dimen-
sion [, ]. Functions f14 − f23 are low-dimensional functions which have only a few
localminima [,]. Details of these functions can be found in the appendix to [].The
average experimental results of  independent runs are summarized in Tables –
(the results for FEP are taken from []).

For unimodal functions f1 − f7, it is apparent that the proposed NSDE performs
better than both DE and FEP. In particular, NSDE’s results on f1 − f4 are significantly
better than DE and FEP. It seems a large neighborhood search is efficient in speeding
up the evolutionary convergence on unimodal functions. However, NSDE performs
worse than DE on f5. This is a generalized Rosenbrock’s function, and there are cor-
relations between each pair of neighboring object parameters. It can be inferred that
the one-dimension based neighborhood search strategy has difficulty in optimizing
such functions. No strong conclusion can be drawn for f6 and f7. There is no signif-
icant difference among all the algorithms.

Table  shows the experimental results for functions f8 − f13. These functions are
multimodal functions with many local optima. Their landscapes appear to be very
“rugged” [], and are often regarded as being difficult to optimize. Figure  shows
the evolutionary processes of NSDE and DE for these functions. It can be observed
that DE stagnates rather early in the search andmakes little progress thereafter, while
NSDE keeps making improvements throughout the evolution. It appears that DE is
trapped in one of the local optima and is unable to get out. NSDE on the other hand,
has the ability to produce many kinds of search step sizes with neighborhood search
operators and thus has a higher probability of escaping from a local optimum when
trapped. A good near-global optimum is more likely to be found by NSDE. In terms
of detailed results in Table , NSDE performs significantly better than DE and FEP
on almost all these functions. It can be concluded that DE with neighborhood search
is more effective and efficient when searching in mutimodal functions with many
optima.

For multimodal functions with only a few local optima, such as f14 − f23, both
NSDE and DE have better performance than FEP, except that the three algorithms
performed exactly the same on f16, f17 and f19. NSDE have a similar performance
to classical DE. They performed exactly the same on six (i.e. f14 − f19) out of ten
functions. For the rest of the functions, NSDE performed better on f20, but was out-
performed by DE on f21 − f23. To trace why NSDE is inefficient on these  functions,
further experiments are conducted to observe its evolutionary behaviors. In these
experiments we give more computational effort to NSDE, and the results of  inde-
pendent runs are summarized in Table .

With a few more generations, NSDE can find the global optima of these func-
tions. Figure  shows the evolutionary processes for f21 − f23. It is clear that NSDE’s

�

Fig. 2 Evolution process of the mean best values found for unimodal functions f1 − f7. The
results were averaged over  runs. The vertical axis is the function value and the horizontal
axis is the number of generations

 Experimental Studies 

 Z. Yang, J. He, X. Yao

Table 1 Comparison between NSDE, DE and FEP on f1 − f7. All results have been averaged
over  independent runs

Test # of NSDE DE # of FEP vs DE vs FEP

Func Gen’s Mean Mean Gen’s Mean t-test t-test

f1  7.10 �10−17 1.81 �10−13  5.70 �10−04 −10.84† −31.00†

f2  6.49 �10−11 6.43 �10−07  8.10 �10−03 −17.22† −74.38†

f3  7.86 �10−16 2.12 �10−12  1.60 �10−02 −10.86† −8.08†

f4  2.27 �10−09 4.61 �10−02  . −2.05† −4.24†

f5 20,000 5.90 �10−28  20,000 . 1.03 −6.10†

f6      0 0

f7  4.97 �10−03 4.84 �10−03  7.60 �10−03 0.52 −6.48†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test

Table 2 Comparison between NSDE, DE and FEP on f8 − f13. All results have been averaged
over  independent runs

Test # of NSDE DE # of FEP vs DE vs FEP

Func Gen’s Mean Mean Gen’s Mean t-test t-test

f8 1500 − 12,569.5 − 11,362.1 9000 − 12,554.5 −5.08† −2.02†

f9 3000 3.98 �10−02 . 5000 4.60 �10−02 −39.63† −0.22

f10 1500 1.69 �10−09 1.20 �10−07 1500 1.80 �10−02 −19.86† −60.61†

f11 1500 5.80 �10−16 1.97 �10−04 2000 1.60 �10−02 −1.00 −5.14†

f12 1500 5.37 �10−18 1.98 �10−14 1500 9.20 �10−06 −6.79† −18.07†

f13 1500 6.37 �10−17 1.16 �10−13 1500 1.60 �10−04 −7.39† −15.50†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test.

Table 3 Comparison between NSDE, DE and FEP on f14 − f23. All results have been averaged
over  independent runs

Test # of NSDE DE # of FEP vs DE vs FEP

Func Gen’s Mean Mean Gen’s Mean t-test t-test

f14  0.998 0.998  1.22 0 −2.80†

f15  .3.07 �10−04 .3.07 �10−04  .5.00 �10−04 0 −4.26†

f16  −1.03 −1.03  −1.03 0 0

f17  0.398 0.398  0.398 0 0

f18  3.00 3.00  3.02 0 −1.29

f19  −3.86 −3.86  −3.86 0 0

f20  −3.32 −3.28  −3.27 −4.97† −5.99†

f21  −9.68 −10.15  −5.52 4.58† −16.83†

f22  −10.33 −10.40  −5.52 1.49 −15.85†

f23  −10.48 −10.54  −6.57 2.91† −8.80†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test.

 Experimental Studies 

Table 4 Further experiments for NSDE on f21 − f23. All results have been averaged over 
independent runs

Test # of NSDE # of DE FEP vs DE vs FEP
Func Gen’s Mean Gen’s Mean Mean t-test t-test
f21  −10.15  −10.15 −5.52  −20.59†

f22  −10.40  −10.40 −5.52  −16.28†

f23  −10.54  −10.54 −6.57  −8.94†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test

Fig. 3 Evolution process of the mean best values found for multimodal functions with many
local optima, i.e. f8− f13.The resultswere averaged over  runs.The vertical axis is the function
value and the horizontal axis is the number of generations

 Z. Yang, J. He, X. Yao

convergence is a little slower than DE on these functions. The major difference be-
tween functions f8 − f13 and f14 − f23 is that f14 − f23 appears to be simpler than
f8 − f13 due to their low dimensionalities and a smaller number of local optima [].
But NSDE still spends some computational effort blindly to avoid being trapped in
local optima when optimizing these functions. This will weaken the search strength
in the direction towards the optimum. NSDE’s performance indicates that the ad-
vantages of introducing neighborhood search become insignificant on this class of
problems.

Scalability of an algorithm is also an important measurement of how good and
how applicable the algorithm is []. So further experimentswere conducted to evalu-
ate NSDE’s scalability against the growth of problem dimensions. We selected  scal-
able functions from the  benchmark functions. The dimensions D of them were set
to , ,  and , respectively. The computation times used by algorithms were
set to grow in the order of O(D) []. For example, for function f1,  generations
were set for D = 50,  for D = 100,  for D = 150, and  for D = 200.The
average results of  independent runs are summarized in Tables  and .

Fig. 4 The evolution process of the mean best values found for f21− f23 in further experiments.
The resultswere averaged over  runs.The vertical axis is the function value and the horizontal
axis is the number of generations

 Experimental Studies 

For unimodal functions, NSDE outperformed DE on f1 − f3 and f6.The classical
DE has only advantages on f4 for dimensions  and . For functions f1 − f3,
NSDE gained better and better results from -D to -D, with the computational
time growth in the order of O(D). But such good scalability was not observed for
classical DE. Although DE appeared to achieve better results on the -D problem
than the -D, its performance became poorer for problems of -D and -D. For
function f6, NSDE found the optimum from -D to -D, while DE only found
the optimum for -D. For function f4, both NSDE and DE performed worse and
worse with the growth of dimensions. NSDE’s performance decreased faster than
DE. Function f4’s fitness value is determined by the maximum component of the
D-dimensional vector (see the definition of f4 []). Global evolutionary operator is
needed to make progress when optimizing this function. Maybe the neighborhood
search strategy in NSDE is too local to create better offspring for large scale f4.

Table  shows the results for multimodal functions with many local optima. As
mentioned in Sect. ., this class of functions are often regarded as being difficult to
optimize because the number of local optima increase exponentially as their dimen-
sion increases. It was encouraging to find NSDE outperformed DE on all of these
functions, from -D to -D. For function f8, NSDE’s results were not only closer

Table 5 Comparison between NSDE and DE on f1 – f6, with dimension D = 50, ,  and
, respectively. All results have been averaged over  independent runs

Test # of # of NSDE DE vs DE
Func Dim’s Gen’s Mean Std Mean Std t-test

f1

 2500 4.28 �10−18 7.86 �10−18 5.48 �10−15 4.05 �10−15 −9.56†

100 5000 2.07 �10−22 2.72 �10−22 2.91 �10−17 1.84 �10−17 −11.18†

150 7500 1.58 �10−25 2.48 �10−25 4.82 �10−17 4.70 �10−17 −7.25†

200 10,000 1.10 �10−27 1.47 �10−27 2.77 �10−15 5.26 �10−15 −3.72†

f2

50 2500 2.02 �10−11 1.49 �10−11 1.05 �10−07 3.44 �10−08 −21.58†

100 5000 1.58 �10−13 1.30 �10−13 7.45 �10−10 4.63 �10−10 −11.38†

 7500 2.27 �10−15 1.69 �10−15 2.13 �10−09 8.22 �10−09 −1.83†

 10,000 4.88 �10−17 3.49 �10−17 1.43 �10−07 6.50 �10−07 −1.56

f3

50 2500 1.35 �10−16 2.44 �10−16 1.15 �10−13 8.34 �10−14 −9.74†

100 5000 9.98 �10−21 1.55 �10−20 8.35 �10−16 6.79 �10−16 −8.70†

150 7500 1.12 �10−23 1.34 �10−23 4.57 �10−15 4.58 �10−15 −7.06†

200 10,000 1.08 �10−25 1.44 �10−25 1.89 �10−13 5.35 �10−13 −2.50†

f4

50 2500 1.12 �10+00 1.85 �10+00 4.86 �10+00 2.26 �10+00 −9.05†

100 5000 2.00 �10+01 6.10 �10+00 2.26 �10+01 4.44 �10+00 −2.43†

150 7500 3.34 �10+01 4.83 �10+00 3.09 �10+01 3.95 �10+00 2.81†

200 10,000 4.31 �10+01 6.20 �10+00 3.41 �10+01 3.32 �10+00 8.95†

f6

50 2500 0.00 �10+00 0.00 �10+00 0.00 �10+00 0.00 �10+00 0.00
100 5000 0.00 �10+00 0.00 �10+00 2.00 �10−02 1.41 �10−01 −1.00
150 7500 0.00 �10+00 0.00 �10+00 4.00 �10−02 1.98 �10−01 −1.43
200 10,000 0.00 �10+00 0.00 �10+00 4.02 �10+00 1.34 �10+01 −2.12†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test

 Z. Yang, J. He, X. Yao

Table 6 Comparison between NSDE and DE on f8 – f11, with dimension D = 50, ,  and
, respectively. All results have been averaged over  independent runs

Test # of # of NSDE DE vs DE
Func Dim’s Gen’s Mean Std Mean Std t-test

f8

50 2500 − 20,946.80 16.70 − 15,928.00 3731.52 −9.51†

100 5000 − 41,860.40 69.50 − 31,729.30 7533.67 −9.51†

150 7500 − 62,568.70 216.56 − 54,961.90 5736.55 −9.37†

200 10,000 − 83,044.50 348.88 − 73,964.00 2124.57 −29.82†

f9

50 2500 6.57 �10−01 8.67 �10−01 3.23 �10+02 2.84 �10+01 −80.31†

100 5000 8.78 �10+00 3.11 �10+00 5.56 �10+02 1.04 �10+02 −37.18†

150 7500 2.69 �10+01 6.12 �10+00 3.46 �10+02 3.23 �10+02 −6.99†

200 10,000 5.30 �10+01 1.05 �10+01 1.61 �10+02 1.69 �10+01 −38.37†

f10

50 2500 3.74 �10−10 4.44 �10−10 1.64 �10−08 6.13 �10−09 −18.44†

100 5000 1.91 �10−12 1.02 �10−12 8.59 �10−10 4.41 �10−10 −13.74†

150 7500 4.81 �10−14 2.29 �10−14 3.09 �10−01 4.80 �10−01 −4.55†

200 10,000 2.04 �10−14 3.53 �10−15 1.48 �10+00 3.66 �10−01 −28.59†

f11

50 2500 0.00 �10+00 0.00 �10+00 1.97 �10−04 1.39 �10−03 −1.00

100 5000 0.00 �10+00 0.00 �10+00 5.92 �10−04 2.37 �10−03 −1.77†

150 7500 0.00 �10+00 0.00 �10+00 1.13 �10−03 3.16 �10−03 −2.53†

200 10,000 2.46 �10−04 1.74 �10−03 3.05 �10−03 8.14 �10−03 −2.38†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test.

to optimum, but also more stable than classical DE (see the values of Std. Dev and
t-test). For function f9, NSDE’s performance decreased a little as the dimensions in-
creased, but was still much better than DE. For function f10, NSDE showed similar
good scalability as for unimodal functions, i.e., its results became better and better
from -D to -D problems. For function f11, NSDE found the optimum for -D,
-D and -D problems, while DE never found the optimum for them. Although
NSDE failed to find the optimum for -D f11 , it still outperformedDE significantly.

4.2 NSDE on CEC2005’s Functions

To evaluate NSDE further, a new set of benchmark functions were used, including
 functions with different complexity []. Many of them are the shifted, rotated, ex-
panded or combined variants of classical functions. Functions f1 − f5 are unimodal
while the remaining  functions aremultimodal. The experimental results will com-
pare with not only classical DE, but also another widely used algorithm, CMAES.
DE and CMAES’s experimental results were provided in [, ]. To be consistent
with their experimental setting, experiments are conducted on all  30 − D prob-
lems, and we chose the function evaluations (FEs) to be 3.0
10+05. Error value, i.e.
the difference between current fitness value and optimum value, is used to compare
algorithm’s performance. The average error values of  independent runs are sum-
marized in Tables –.

 Experimental Studies 

For unimodal functions f1 − f5, the three algorithms have comparable perform-
ance. NSDE and DE have exactly the same results on the Shifted Sphere function f1.
NSDEperformed better on f2− f4, butwas outperformed byDEon f5. It is remarkable
that CMAES performed far better than NSDE on f3 and f5, but far worse on f4. One
possible reason is that CMAES and DE-based algorithms have very different search
biases on these functions. Later we will trace the reason through characteristics of
different functions.

For basic and expanded multimodal functions f6 − f14, the advantages of intro-
ducing neighborhood search are much more significant. In terms of experimental
results, NSDE outperformed DE on almost all functions except f7 and f12. Although
CMAES performed better on f6 − f8, and was outperformed by NSDE on the other
six functions f9 − f14. NSDE is superior on these multimodal functions, which is
consistent with the conclusions given for the classical functions.

After analyzing the characteristics of these functions, i.e. the first column of
Tables  and , it is found that DE has rather poor performance on rotated or non-

Table7 Comparison between NSDE, DE and CMAES on f1− f5. All results have been averaged
over  independent runs (S means the function is Shifted, R means Rotated, and N means
Non-separable)

CEC’ NSDE DE CMAES vs DE vs CMAES
Func Mean Mean Mean t-test t-test
f1(S/-/-) 0.00 �10+00 0.00 �10+00 5.28 �10−09 0 −26.9†

f2(S/-/N) 5.62 �10−08 3.33 �10−02 6.93 �10−09 −3.40† 3.78†

f3(S/R/N) 6.40 �10+05 6.92 �10+05 5.18 �10−09 −74.9† 11.4†

f4(S/-/N) 9.02 �10+00 1.52 �10+01 9.26 �10+07 −1.41 −2.76†

f5(-/-/N) 1.56 �10+03 1.70 �10+02 8.30 �10−09 15.3† 18.8†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test

Table8 Comparison betweenNSDE,DE andCMAESon f6− f14. All results have been averaged
over  independent runs (S means the function is Shifted, R means Rotated, and N means
Non-separable)

CEC’ NSDE DE CMAES vs DE vs CMAES
Func Mean Mean Mean t-test t-test
f6(S/-/N) 2.45 �10+01 2.51 �10+01 6.31 �10−09 −7.60† 4.57†

f7(S/R/N) 1.18 �10−02 2.96 �10−03 6.48 �10−09 3.41† 5.04†

f8(S/R/N) 2.09 �10+01 2.10 �10+01 2.00 �10+01 −6.42† 76.7†

f9(S/-/-) 7.96 �10−02 1.85 �10+01 2.91 �10+02 −1.77† −41.1†

f10(S/R/N) 4.29 �10+01 9.69 �10+01 5.63 �10+02 −3.22† −10.5†

f11(S/R/N) 1.41 �10+01 3.42 �10+01 1.52 �10+01 −7.28† −0.56
f12(S/-/N) 6.59 �10+03 2.75 �10+03 1.32 �10+04 2.76† −2.53†

f13(S/-/N) 1.62 �10+00 3.23 �10+00 2.32 �10+00 −9.25† −7.84†

f14(S/R/N) 1.32 �10+01 1.34 �10+01 1.40 �10+01 −5.14† −9.40†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test

 Z. Yang, J. He, X. Yao

Table 9 Comparison between NSDE, DE and CMAES on f15 − f25. All results have been aver-
aged over  independent runs

CEC’ NSDE DE CMAES vs DE vs CMAES
Func Mean Mean Mean t-test t-test
f15 3.64 �10+02 3.60 �10+02 2.16 �10+02 0.15 6.59†

f16 6.90 �10+01 2.12 �10+02 5.84 �10+01 −6.26† 1.68
f17 1.01 �10+02 2.37 �10+02 1.07 �10+03 −5.15† −9.40†

f18 9.04 �10+02 9.04 �10+02 8.90 �10+02 0 1.52
f19 9.04 �10+02 9.04 �10+02 9.03 �10+02 0 0.61
f20 9.04 �10+02 9.04 �10+02 8.89 �10+02 0 1.65
f21 5.00 �10+02 5.00 �10+02 4.85 �10+02 0 2.21†

f22 8.89 �10+02 8.97 �10+02 8.71 �10+02 −2.00† 3.43†

f23 5.34 �10+02 5.34 �10+02 5.35 �10+02 0 −3.27†

f24 2.00 �10+02 2.00 �10+02 1.41 �10+03 0 −11.1†

f25 2.00 �10+02 7.30 �10+02 6.91 �10+02 .−7.09�10+03† −3.12†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test.

separable functions. CMAES has superior performance on f2, f3 and f5 − f7, but
still gained poor results on the remaining functions. As an improved version of DE,
although NSDE outperformed DE on some of these rotated or non-separable func-
tions, the results of f3, f5 − f8 and f12 are still unsatisfactory. Despite success in ex-
panding the neighborhood search ability, NSDE’s performance is still limited by the
inherited framework of original DE.

For hybrid composition functions f15 − f25, the results in Table  show that all
algorithms not only failed to locate the optimum, but also become trapped in local
optima that are far from optimum. These functions are much more difficult, and no
effective algorithms have yet been found to slve them []. A more detaile investi-
gation of the results shows that NSDE still outperformed DE on f17, f22, f25, and
outperformed CMAES on f17, f23 − f25. These functions are the hybrid composition
of basic rotated or non-separable functions. The reason why NSDE is inefficient on
some of these functions is as found in the analysis of f1 − f14, i.e. NSDE’s perfor-
mance on non-separable functions is limited by the inherited framework of DE. It is
interesting to note that NSDE’s results on f17 and f25 are much closer to the optimum
than those ofDE andCMAES.The strategy of introducing large jumps to escape from
local optima in NSDE is still useful even on some of these composition multimodal
functions.

5 Conclusions

This chapter proposesNSDE , an improved variation of classicalDE,which is inspired
by EP’s neighborhood search (NS) strategy. Gaussian and Cauchy NS operators are
introduced intoNSDE.The advantages of DEwith neighborhood search are analyzed
theoretically. It has been shown that NS operators will improve the diversity of DE’s

References 

search step size and population, which will be beneficial to escape from local optima
when searching in environments without prior knowledge of what search step size is
prefered.

Experimental evidence is also provided showing how the neighborhood search
(NS) strategy affectsDE’s evolutionary behavior. A total of widely used benchmark
problemswere employed to test NSDE’s performance. Our experimental results show
that DE with neighborhood search has significant advantages over classical DE.

Acknowledgement. The authors are grateful to Prof. P.N. Suganthan and Dr. Tang Ke for their
constructive comments on this chapter. This work is partially supported by the National Sci-
ence Foundation of China (Grant No.  and ).

References

. R. Storn, K. Price () Differential Evolution –A Simple and EfficientHeuristic Strategy
for Global Optimization over Continuous Spaces. Journal of Global Optimization, :–


. R. Thomsen () Flexible Ligand Docking using Differential Evolution. Proc. of the
 Congress on Evolutionary Computation, :–

. A.K. Qin, P.N. Suganthan () Self-adaptive Differential Evolution Algorithm for Nu-
merical Optimization. Proc. of the  Congress on Evolutionary Computation, :–


. D. Zaharie () Critical Values for the Control Parameters of Differential Evolution
Algorithms. Proc. ofMendel , th International Conference on Soft Computing, –


. R. Gämperle, S. D. Müller, P. Koumoutsakos () A Parameter Study for Differential
Evolution. Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation,
–

. X. Yao, Y. Liu, G. Lin () Evolutionary Programming Made Faster. IEEE Transactions
on Evolutionary Computation, ::–

. C. Lee, X. Yao () Evolutionary Programming Using Mutations Based on the Lévy
Probability Distribution. IEEE Transactions on Evolutionary Computation, ::–

. T. Bäck, H. P. Schwefel () An Overview of Evolutionary Algorithms for Parameter
Optimization. Evolutionary Computation, :–

. J. Vesterstrom, R. Thomsen () A Comparative Study of Differential Evolution, Par-
ticle SwarmOptimization, and Evolutionary Algorithms onNumerical BenchmarkProb-
lems. Evolutionary Computation, :–

. Y. Liu, X. Yao, Q. Zhao, T. Higuchi () Scaling Up Fast Evolutionary Programming
with Cooperative Coevolution. Proc. of the Congress on Evolutionary Computation,
:–

. P. N. Suganthan et al. () Problem Definitions and Evaluation Criteria for the CEC
 Special Session on Real-Parameter Optimization. http://www.ntu.edu.sg/home/
EPNSugan

. J. Rönkkönen, S. Kukkonen, K. V. Price () Real-Parameter Optimization with Differ-
ential Evolution. Proc. of the  Congress on Evolutionary Computation, :–

 Z. Yang, J. He, X. Yao

. A. Auger, S. Kern, N. Hansen () Performance Evoluation of an Advanced Local
Search Evolutionary Algorithm. Proc. of the  Congress on Evolutionary Computa-
tion, :–

. H. Nikolaus () Compilation of Results on the  CEC Benchmark Function Set.
http://www.ntu.edu.sg/home/EPNSugan

