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Abstract

In this chapter, we present an evolutionary approach to solve a novel mechatronic de-
sign problem of a pinion-rack continuously variable transmission (CVT).This prob-
lem is stated as a multiobjective optimization problem, because we concurrently op-
timize the mechanical structure and the controller performance, in order to produce
mechanical, electronic and control flexibility for the designed system. The problem
is solved first with a mathematical programming technique called the goal attain-
ment method. Based on some shortcomings found, we propose a differential evolu-
tion (DE)-based approach to solve the aforementioned problem. The performance
of both approaches (goal attainment and the modified DE) are compared and dis-
cussed, based on quality, robustness, computational time and implementation com-
plexity. We also highlight the interpretation of the solutions obtained in the context
of the application.

Key words: Parametric Optimal Design, Multiobjective Optimization, Differential
Evolution

1 Introduction

Thesolution of real-world optimization problems poses great challenges, particularly
when the problem is relatively unknown, since these uncertainties add an extra com-
plexity layer. Currently, several systems can be considered as mechatronic systems



 Efrén Mezura-Montes et al.

due to the integration of the mechanical and electronical elements in such systems.
This is the reason why it is necessary to use new design methodologies that consider
integral aspects of the systems.

The traditional approach to the design of mechatronic systems, considers the
mechanical behavior and the dynamic performance separately. Therefore, the de-
sign of mechanical elements involves kinematic and static behaviors while the de-
sign of the control system uses only the dynamic behavior. This design approach
from a dynamic point of view cannot produce an optimal system behavior [, ].
Recent works on mechatronic systems design propose a concurrent design method-
ology which considers jointly the mechanical and control performances.

For this concurrent design concept, several approaches have been proposed.
However, these concurrent approaches are based on an iterative process. There, the
mechanical structure is obtained in a first step and the controller in a second step. If
the resulting control structure is very difficult to implement, then the first step must
be repeated all over again.

On the other hand, an alternative approach to formulate the system design prob-
lem is to consider it as a dynamic optimization problem [,]. In order to do this, the
parametric optimal design of the mechatronic system needs to be stated as a multi-
objective dynamic optimization problem (MDOP). In this approach, both the kine-
matic and the dynamic models of the mechanical structure and the dynamic model
of the controller are considered at the same time, together with system performance
criteria. This approach allows us to obtain a set of optimal mechanical and controller
parameters in only one step, which could produce a simple system reconfiguration.

In this chapter, we present the parametric optimal design of a pinion-rack con-
tinuously variable transmission (CVT).The problem is stated as a multiobjective op-
timization problem. Two approaches are used to solve it. One is based on a math-
ematical programming technique called goal attainment [] and the other is based
on an evolutionary algorithm called differential evolution [].The remainder of this
chapter is organized as follows. In Sect. , we detail the transformation of the original
problem into amultiobjective optimization problem. In Sect. , we present the math-
ematical programming method, its adaptation to solve the problem and the results
obtained. Afterwards, the evolutionary approach is explained and tested in Sect. .
Later, in Sect. , we present a discussion of the behavior of both approaches, based
on issues such as quality and robustness of the approach, computation time and im-
plementation complexity. Finally, our conclusions and future paths of research are
presented in Sect. .

2 Multiobjective Problem

In the concurrent design concept, the mechatronic design problem can be stated as
the following general problem:

minΦ(x , p, t) = [Φ1,Φ2, . . . , Φn]
T ()

Φi = Y
t f

t0
Li(x , p, t)dt i = 1, 2, . . . , n
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under p and subject to:

ẋ = f (x, p, t) ()
g(x , p, t) � 0 ()
h(x, p, t) = 0 ()

x(0) = x0

In the problem stated by () to (): p is a vector of the design variables from the
mechanical and control structure, x is the vector of the state variables and t is the
time variable. On the other hand, some performance criteria L must be selected for
the mechatronic system. The dynamic model () describes the state vector x at time
t. Also, the design constraints of the mechatronic system must be developed and
proposed, respectively. Therefore, the parameter vector p which is a solution of the
previous problemwill be an optimal set of structure and controller parameters, which
minimize the performance criteria selected for the mechatronic system and subject
to the constraints imposed by the dynamic model and the design.

Current research efforts in the field of power transmission of rotational propul-
sion systems, are dedicated to obtaining low energy consumption with highmechan-
ical efficiency. An alternative solution to this problem is the so called continuously
variable transmission (CVT), whose transmission ratio can be continuously changed
in an established range. There are many CVT configurations built in industrial sys-
tems, especially in the automotive industry, due to the requirements to increase fuel
economy without decreasing system performance. The mechanical development of
CVTs is well known and there is little to modify regarding its basic operating prin-
ciples. However, research efforts continue on the controller design and the CVT in-
strumentation side. Different CVT types have been used in different industrial ap-
plications; the Van Doorne belt or V-belt CVT is the most widely studied mechan-
ism [, ]. This CVT is built with two variable radii pulleys and a chain or metal-
rubber belt. Due to its friction-drive operating principle, the speed and torque losses
of rubber V-belts are a disadvantage. The Toroidal Traction-drive CVT uses the high
shear strength of viscous fluids to transmit torque between an input torus and an
output torus. However, the special fluid characteristic used in this CVT makes the
manufacturing process expensive. A pinion-rack CVT is a traction-drive mechan-
ism, presented in []. This CVT is built-in with conventional mechanical elements
as a gear pinion, one cam and two pairs of racks.The conventional CVTmanufacture
is advantageous over other existing CVTs. However, in the pinion-rack CVT, it has
been determined that the teeth size of the gear pinion is an important factor in the
performance of the system.

Because the gear pinion is the main mechanical element of the pinion-rack CVT,
determining the optimal teeth size of such a mechanical element to obtain an opti-
mal performance is, by no means, easy. On the other hand, an optimal performance
system must consider low energy consumption in the controller. Therefore, in order
to obtain an optimal performance of the pinion-rack CVT, it is necessary to propose
the parametric optimal design of such system.
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The goals of the parametric optimal design of the pinion-rack CVT are to obtain
amaximummechanical efficiency aswell as aminimum controller energy.Therefore,
a MDOP for the pinion-rack CVT will be proposed in this chapter.

2.1 Description and Dynamic CVT Model

In order to adapt the MDOP to the pinion-rack CVT, it is necessary to develop the
dynamic model of such a system. The pinion-rack CVT changes its transmission ra-
tio when the distance between the input and output rotation axes is changed. This
distance is called “offset” and will be denoted by “e”. As was indicated earlier, this
CVT is built-in with conventional mechanical elements such as a gear pinion, one
cam and two pairs of racks. An offset mechanism is integrated inside the CVT. This
mechanism is built-in with a lead screw attached by a nut to the vertical transport
cam. Figure  depicts the main mechanical CVT components.

The dynamic model of a pinion-rack CVT is presented in []. Ordinary differ-
ential equations (), () and () describe the CVT dynamic behavior. In Eq. (): Tm
is the input torque , J1 is the mass moment of inertia of the gear pinion, b1 is the
input shaft coefficient viscous damping, r is the gear pinion pitch circle radius, TL is
the CVT load torque, J2 is the mass moment of inertia of the rotor, R is the plane-
tary gear pitch circle radius, b2 is the output shaft coefficient viscous damping and
θ is the angular displacement of the rotor. In Eqs. () and (): L, Rm , Kb , Kf and n
represent the armature circuit inductance, the circuit resistance, the back electro-
motive force constant, the motor torque constant and the gearbox gear ratio of the

Fig. 1 Main pinion-rack CVT mechanical elements
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DCmotor, respectively. Parameters rp , λs , bc and bl denote the pitch radius, the lead
angle, the viscous damping coefficient of the lead screw and the viscous damping co-
efficient of the offset mechanism, respectively. The control signal u (t) is the input
voltage to the DC motor. Jeq = Jc2 +Mr2p + n2 Jc1 is the equivalent mass moment of
inertia, Jc1 is the mass moment of inertia of the DC motor shaft, Jc2 is the mass mo-
ment of inertia of the DC motor gearbox and d = rp tan λs , is a lead screw function.
θR (t) = 1

2 arctan Vtan 42Ωt −
π
2 5W is the rack meshing angle. The combined mass to

be translated is denoted byM and P = Tm
rp

tan ϕ cos θR is the load on the gear pinion
teeth, where ϕ is the pressure angle.

1
R
r
3Tm − TL = %J2 + J1 1

R
r
3
2
* θ̈ ()

−GJ1 1
R
r
3
e
r
sin θRZ θ̇2

+%
b2 + b1 4 Rr 5

2

+J1 4 Rr 5
ė
r cos θR

* θ̇

L
di
dt
+ Rm i = u (t) − G

nKb

d
Z ė ()

%
nK f

d
* i − P = GM +

Jeq
d2
Z ë + %bl +

bc
rpd
* ė ()

In order to fulfill the concurrent design concept, the dynamic model of the pinion-
rack CVTmust be stated with state variables as it is indicated in the general problem
stated by () to (). With the state variables x1 = θ̇, x2 = i, x3 = e, x4 = ė, the dynamic
model given by () to () can be written as:

ẋ1 =

ATm + \J1A 2x3
p1 p2

sin θR^ x21 − TL
−\b2 + b1A2 + J1A 2x4

p1 p2
cos θR^ x1

J2 + J1A2

ẋ2 =
u (t) − ( nKb

d )x4 − Rx2
L

()

ẋ3 = x4

ẋ4 =
(
nK f

d )x2 − (bl +
bc
rpd
)x4 − Tm

rp
tan ϕ cos θR

M + Jeq
d2

Performance Criteria and Objective Functions
The performance of a system is measured by several criteria. One of the most com-
mon is the system efficiency because it reflects the energy loss. In the case of the
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pinion-rack CVT, the mechanical efficiency criterion of the gear systems is used to
state the MDOP. This is because the racks and the gear pinion are the main CVT
mechanical elements.

Themathematical equation for mechanical efficiency presented in [] is used in
this work, where μ, N1, N2, m, r1 and r2 represent the coefficient of sliding friction,
the number of gear pinion teeth, the number of spur gear teeth, the gear module, the
pitch pinion radius and the pitch spur gear radius, respectively:

η = 1 − πμ 1
1
N1
+

1
N2
3 = 1 −

πμ
2m
1
1
r1
+

1
r2
3 ()

In [], the speed ratio equation is as below, where ω is the input angular speed and
Ω is the output angular speed of the CVT:

ω
Ω
=
R
r
= 1 +

e
r
cos θR ()

Considering r1 C r and r2 C R, the CVT mechanical efficiency is given by

η(t) = 1 −
πμ
N1

�

�
1 +

1
1 + e cos θR

r

�

�
()

In order tomaximize themechanical CVT efficiency, F(ċ), which is given below,must
be minimized:

F(ċ) =
1
N1

�

�
1 +

1
1 + e cos θR

r

�

�
()

Equation () can be written as follows, and is used to state the MDOP:

L1(ċ) =
1
N1
1
2r + e cos θR
r + e cos θR

3 ()

The second objective function of the MDOPmust describe the dynamic behavior. In
order to fulfill this, a proportional and integral (PI) controller structure is used in the
MDOP. This is because, despite the development of many control strategies, the PI
controller structure remains one of the most popular approaches in industrial pro-
cess control because of its good performance. Then, in order to obtain the minimal
controller energy, the objective function for the MDOP, given below, is used:

L2(ċ) =
1
2
G−Kp(xref − x1) − KI Y

t

0
(xref − x1)dtZ

2

()

The objective functions previously established fulfill the concurrent design concept,
since structural and dynamic behaviors will be considered at the same time in the
MDOP.
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Constraint Functions
Thedesign constraints for the CVT optimization problem are proposed according to
geometric and strength conditions for the gear pinion of the CVT.

To prevent fracture of the annular portion between the axis bore and the teeth
root on the gear pinion, the pitch circle diameter of the pinion gear must be greater
than the bore diameter by at least . times the gear module []. Then, in order to
avoid fracture, the constraint g1 must be imposed. To achieve a uniform load dis-
tribution on the teeth, the face width must be  to  times the value of the gear
module [].This is ensured with constraints g2 and g3. To maintain the CVT trans-
mission ratio within the range [2r, 5r] constraints g4, g5 are imposed. Constraint
g6 ensures the number of teeth on the gear pinion is equal to or greater than 12 [].
A practical constraint requires that the gear pinion face width is greater than or equal
to 20mm. In order to ensure this, constraint g7 is imposed. To constrain the distance
between the corner edge in the rotor and the edge rotor, constraint g8 is imposed.
Finally, to ensure a practical design for the pinion gear, the pitch circle radius must
be equal to or greater than 25.4mm. For this, constraint g9 is imposed.

On the other hand, it can be observed that J1, J2 are parameters which are a func-
tion of the CVT geometry. For these mechanical elements, the mass moments of in-
ertia are defined by

J1 =
1
32
ρπm4 (N + 2)2 N2h ()

J2 = ρh G
3
4
πr4c −

16
6
(emax +mN)

4
−
1
4
πr4s Z ()

where ρ,m, N , h, emax, rc and rs are the material density, the module, the number of
teeth on the gear pinion, the face width, the highest offset distance between axes, the
rotor radius and the bearing radius, respectively.

Design Variables
Because the concurrent design concept considers structural and dynamic behaviors
at the same time, the vector of the design variables must describe the mechanical
and controller structures. In order to fulfill this, design variables of the mechanical
structure related to the standard nomenclature for a gear tooth are used. Moreover,
the controller gains KP and KI which describe the dynamic CVT behavior, are also
used.

Equation () establishes a parameter called gear module m for metric gears,
where d is the pitch diameter and N is the teeth number.

m =
d
N
=
2r
N

()

On the other hand, the face width h, which is the distance measured along the axis
of the gear and the highest offset distance between axes emax, are parameters which
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define the CVT size. Therefore, the vector pi is proposed in order to establish the
MDOP of the pinion-rack CVT:

pi = [pi1 , p
i
2 , p

i
3 , p

i
4 , p

i
5 , p

i
6]
T

= [N ,m, h, emax,KP ,KI]
T ()

2.2 Optimization Problem

In order to obtain the mechanical CVT parameter optimal values, we propose
a MDOP given by Eqs. () to (), where the control signal u(t) is given by (). As
the objective functions must be normalized to the same scale [], the corresponding
factorsW = [0.4397, 563.3585]T were obtained using the algorithm from Sect.  by
minimizing each objective function subject to constraints given by Eqs. () and ()
to ().

min
p�R6

Φ(x , p, t) = [Φ1,Φ2]
T ()

where

Φ1 =
1
W1

10

Y
0

%
1
p1
&
p1p2 + x3 cos θR
p1 p2
2 + x3 cos θR

'* dt

Φ2 =
1
W2

10

Y
0

u2dt

subject to the dynamic model stated by () and subject to:

u(t) = −p5(xref − x1) − p6
t

Y
0

(xref − x1)dt ()

J1 =
1
32
ρπp42 (p1 + 2)

2 p21p3 ()

J2 =
ρp3
4
G3πr4c −

32
3
(p4 + p1p2)

4
− πr4s Z ()

A = 1 +
2x3
p1p2

cos θR ()

d = rp tan λs ()

θR =
1
2
arctan Gtan 12x1 t −

π
2
3Z ()



 Mathematical Programming Optimization 

g1 = 0.01 − p2 (p1 − 2.5) � 0

g2 = 6 −
p3
p2
� 0

g3 =
p3
p2
− 12 � 0

g4 = p1p2 − p4 � 0

g5 = p4 −
5
2
p1p2 � 0 ()

g6 = 12 − p1 � 0
g7 = 0.020 − p3 � 0

g8 = 0.020 − \rc −
 
2(p4 + p1p2)^ � 0

g9 = 0.0254 − p1p2 � 0

3 Mathematical Programming Optimization

As we can observe, in a general way, a MDOP is composed by continuous functions
given by the dynamic model of the system as well as the objective functions of the
problem. In order to find the solution of the MDOP, it must be transformed into
aNonlinear Programming Problem (NLP) []. Two transformation approaches exist:
the sequential and the simultaneous approach. In the sequential approach, only the
control variables are discretized. This approach is also known as control vector pa-
rameterization. In the simultaneous approach, the state and control variables are dis-
cretized resulting in a large-scale NLP problemwhich requires special algorithms for
its solution []. Because of the diversity of mathematical programming algorithms al-
ready established, transformation of theMDOP into aNLPproblemwas done adopt-
ing the sequential approach.

TheNLP problemwhich is used to approximate the original problem given by ()
to () can be stated as:

min
p
F(p) ()

subject to:

ci � 0 ()
ce = 0 ()

where p is the vector of the design variables, ci are the inequality constraints and
ce are the equality constraints. In order to obtain the NLP problem given by ()
to (), the sequential approach requires the value and the gradient calculation of
the objective functions. Moreover, the gradient of the constraints with respect to the
design variables must be calculated.
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3.1 Gradient Calculation and Sensitivity Equations

The gradient calculation for the objective function uses the following equation:

∂Φi

∂p j
=

t f

Y
t0

&
∂Li
∂x
%
∂x
∂p j
(t)* +

∂Li
∂p j
' dt ()

where, it can be seen in the general problem stated by () to (), that Li is the ith
objective function, x is the vector of the state variables, p j is the jth element of the
vector of the design variables and t is the time variable. On the other hand, in order
to obtain the partial derivatives x

p j
, it is necessary to solve the ordinary differential

equations of the sensitivity given by

∂ẋ
∂p j

=
∂ f
∂x
%
∂x
∂p j
* +

∂ f
∂p j

()

These sensitivity equations can be obtained by taking the time derivatives with re-
spect to p j of the dynamic model. Due to the fact that ẋ is a function of the time
variable t as well as the design variables p j (we must consider that p j are indepen-
dent of t), then:

ẋ =
dx
dt
=
∂x
∂t

()

moreover

d_ ∂x
∂p j
`

dt
=
∂ _ ∂x

∂p j
`

∂t
=
∂ 4 ∂x∂t 5
∂p j

=
∂ 4 dx

dt 5

∂p j
=
∂ẋ
∂p j

()

Finally, using the equalities () and proposing the following variable:

y j =
∂x
∂p j

()

the partial derivatives of x with respect to p j are now given by the following ordinary
differential equations:

ẏ j =
∂ f
∂x

y j +
∂ f
∂p j

()

y j(0) =
∂x0

∂p j
()

3.2 Goal Attainment Method

In order to transform the MDOP into a NLP problem, the sequential approach is
used. The resulting problem is solved using the Goal Attainment Method []. In the
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remainder of the chapter, we will refer to it as “MPM” (Mathematical Programming
Method). In such a technique, a subproblem is obtained as follows:

min
p,λ

G (p, λ) Δ
= λ ()

subject to:

g(p) � 0
h(p) = 0

ga1(p) = Φ1 (p) − ω1λ −Φd
1 � 0 ()

ga2(p) = Φ2 (p) − ω2λ −Φd
2 � 0

where λ is an artificial variable without sign constraint, and g(p) and h(p) are the
constraints established in the original problem.Moreover, in the last two constraints,
ω1 and ω2 are the scattering vectors, Φd

1 and Φd
2 are the desired goals for each objec-

tive function and Φ1 and Φ2 are the evaluated functions.

3.3 Numerical Method to Solve the NLP Problem

In order to solve the resulting NLP problem, Eqs. () and (), the Successive
Quadratic programming (SQP) method is used. There, a Quadratic Problem (QP)
which is a quadratic approximation to the Lagrangian function optimized over a lin-
ear approximation to the constraints, is solved. A vector pi containing the current
parameter values is proposed and the NLP problem given by Eqs. () and () is
obtained, where Bi is the Broyden–Fletcher–Goldfarb–Shanno updated (BGFS) pos-
itive definite approximation of the Hessian matrix, and the gradient calculation is
obtained using sensitivity equations. Hence, if γ solves the subproblem given by ()
and () and γ = 0, then the parameter vector pi is an original problem optimal solu-
tion. Otherwise, we set pi+1 = pi +γ and with this new vector the process is repeated
all over again.

min
γ
QP(p i) = G 4pi5 + ∇GT 4pi5 γ +

1
2
γTBiγ ()

subject to

g(pi) + ∇gT 4pi5γ � 0

h(pi) + ∇hT 4pi5γ = 0

ga1(pi) + ∇gTa1 4p
i5γ � 0 ()

ga2(pi) + ∇gTa2 4p
i5γ � 0

3.4 Experiments and Results of the Mathematical ProgrammingMethod

In order to carry out the parametric optimal design of the pinion-rack CVT, we per-
formed 10 independent runs, all of them using a PC with a . GHz Pentium IV
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processor with  GB of Memory using Matlab .. Release . The system paramet-
ers used in the numerical simulations were: b1 = 1.1 Nms�rad, b2 = 0.05 Nms�rad,
r = 0.0254m, Tm = 8.789 Nm, TL = 0Nm, λs = 5.4271, ϕ = 20, M = 10 Kg,
rp = 4.188
10−03 m, K f = 63.92
10−03 Nm�A, Kb = 63.92
10−03 Vs�rad, R = 10 Ω,
L = 0.01061H, bl = 0.015 Ns�m, bc = 0.025 Nms�rad and n = ((22ċ40ċ33)�(9ċ8ċ9)).
The initial conditions vector was [x1(0), x2(0), x3(0), x4(0)]T = [7.5, 0, 0, 0]T and
the output reference was considered to be xref = 3.2.

Because the goal attainmentmethod requires a goal for each of the objective func-
tions, further calculations were necessary. The goal for Φ1 was obtained byminimiz-
ing this function subject to Eqs. () and () to (). The optimal solution vector p1
is shown in Table .The goal for Φ2 was obtained byminimizing this function subject
to Eqs. () and () to (). The optimal solution vector p2 for this problem is also
shown in Table .

Varying the scattering vector can produce different nondominated solutions. In
Table , two cases are presented: p�A is obtained with ω = [0.5, 0.5]T , and p�B is ob-
tained with ω = [0.4, 0.6]T .

As can be seen in the results in Table , 80% of the runs diverged. This behav-
ior shows a high sensitivity of the MPM to the starting point (detailed in Table )
because it must be carefully chosen in order to allow the approach to obtain a good
solution. Information about the time required by the MPM per independent run is
summarized in Table .

Figure  shows the mechanical efficiency and the input control of the pinion-
rack CVT with both solutions obtained by the MPM (p1, p2 and p�A). The solution

Table 1 Details of the solutions obtained by the MPM

[N� , m� , h� , e�max, K
�

P , K
�

I ] ΦN(•) = [Φ1(•), Φ2(•)] Φ(•) = [Φ1(•), Φ2(•)]

p1 = [38, 0.0017, 0.02, 0.0636, 10.000, 1.00] ΦN(p1) = [1.0000, 4.7938] Φ(p1) = [0.4397, 2700.6279]
p2 = [13.4459, 0.0019, 0.02, 0.0826, 5.000, 0.01] ΦN(p2) = [2.8017, 1.0000] Φ(p2) = [1.2319, 563.3585]
p�A = [26.7805, 0.0017, 0.02, 0.0826, 5.000, 0.01] ΦN(p�A) = [1.4696, 1.4696] Φ(p�A) = [0.6461, 827.9116]
p�B = [29.0171, 0.0017, 0.02, 0.0789, 5.000, 0.01] ΦN(p�B) = [1.3646, 1.5469] Φ(p�B) = [0.6000, 871.4592]

Table 2 Initial points used for the MPM. Also shown is the corresponding scattering vector

Initial search point Scattering vector
[13.4459, 0.0019, 0.02, 0.0826, 5.000, 0.01] [0.5, 0.5]
[38, 0.0017, 0.02, 0.0636, 10.000, 1.00] [0.5, 0.5]
[38, 0.0017, 0.02, 0.0636, 10.000, 1.00] [0.4, 0.6]
[38, 0.0017, 0.02, 0.0636, 10.000, 1.00] [0.6, 0.4]
[28.8432, 0.0017, 0.02, 0.0550, 5.024, 0.017] [0.5, 0.5]
[13.4459, 0.0019, 0.02, 0.0826, 5.000, 0.01] [0.4, 0.6]
[28.8432, 0.0017, 0.02, 0.0550, 5.024, 0.017] [0.4, 0.6]
[28.8432, 0.0017, 0.02, 0.0550, 5.024, 0.017] [0.6, 0.4]
[30.77, 0.0017, 0.02, 0.0694, 5.121, 0.010] [0.5, 0.5]
[30.77, 0.0017, 0.02, 0.0694, 5.121, 0.010] [0.4, 0.6]
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Table 3 Time required by each run of the MPM. Note that only two runs could converge to
a solution. The remaining 8 runs could not provide any result

Run Time required
 Diverged
 . Min
 Diverged
 Diverged
 Diverged
 Diverged
 Diverged
 Diverged
 Diverged
 . Min
Average . Min

Fig. 2 Mechanical efficiency and control input for the pinion-rack CVT obtained by the MPM

p�A was selected because it has the same overachievement of the proposed goal for
each objective function.

As can be observed in Fig. , when the number of teeth is increased (p�1 ) and
their size is decreased (p�2 ), a higher CVTmechanical efficiency is obtained. Also, we
can observe perturbations in the mechanical efficiency, which are produced because
of tip-to-tip momentary contact prior to full engagement between teeth. With the
optimal solution, this tip-to-tip contact is reduced because a better CVT planetary
gear is obtained when the tooth size is decreased. Summarizing, the optimal solu-
tion implies a lower sensitivity of the mechanical efficiency with respect to reference
changes. On the other hand, a more compact CVT size is obtained since (p�3 ) is de-
creased. Furthermore, a minimal controller energy is obtained when the controller
gains (p�5 ) and (p�6 ) are decreased. In Fig. , it can be observed that the optimal vector
minimizes the initial overshoot of the control input.

Despite the sensitivity of the NLP method, the optimal solutions obtained are
good from the mechanical and controller point of view.
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4 Evolutionary Optimization

Thehigh sensitivity of theMPMto its initial conditions, and its implementation com-
plexity motivated us to solve the problem using an evolutionary algorithm (EA).This
is because one of themain advantages of anEA is that competitive results are obtained
regardless of its initial conditions (i.e. a set of solutions is randomly generated). We
selected Differential Evolution [] for several reasons: () it is an EA which has pro-
vided very competitive results when compared with traditional EAs such as genetic
algorithms and evolution strategies in real-world problems []; () it is very simple
to implement []; and () its parameters for the crossover and mutation operators
generally do not require a careful fine-tuning [].

DE is an evolutionary direct-search algorithm to solve optimization problems.
DE shares similarities with traditional EAs, however, it does not use binary encoding
as a simple genetic algorithm [] and it does not use a probability density function to
self-adapt its parameters as an Evolution Strategy []. Instead, DE performs muta-
tion based on the distribution of the solutions in the current population. In this way,
search directions and possible stepsizes depend on the location of the individuals
selected to calculate the mutation values.

Several DE variants have been proposed []. The most popular is called “DE/-
rand//bin”, where “DE”means Differential Evolution, the word “rand” indicates that
the individuals selected to compute the mutation values are chosen at random, “” is
the number of pairs of solutions chosen to calculate the differences for the mutation
operator and finally “bin” means that a binomial recombination is used. A detailed
pseudocode of this variant is presented in Fig. .

Four parameters must be defined in DE: () the population size, () the number
of generations, () the factor F � [0.0, 1.0], which scales the value of the differences
computed from randomly selected individuals (typically three, where two are used
to compute the difference and the other is only added) from the population (row 
in Fig. ). A value of F = 1.0 indicates that the complete difference value is used; and
finally, () the CR � [0.0, 1.0] parameter, which controls the influence of the parent
on its corresponding offspring; a value of CR = 0.0 means that the offspring will
take its values from its parent instead of taking its values from the mutation values
generated by the combination of the differences of the individuals chosen at random
(rows 9–15 in Fig. ).

DE was originally proposed to solve global optimization problems. Moreover,
like other EAs, DE lacks a mechanism to handle the constraints of a given optimiza-
tion problem. Hence, we decided to modify the DE algorithm in order to solve con-
strained multiobjective optimization problems. It is worth remarking that the goal
when performing these modifications was to maintain the simplicity of DE as much
as possible.

Three modifications were made to the original DE:

. The selection criterion between a parent and its corresponding offspring was
modified in order to handle multiobjective optimization problems.

. A constraint-handling technique to guide the approach to the feasible region of
the search space was added.
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Fig. 3 “DE/rand//bin” algorithm. randint(min,max) is a function that returns an integer num-
ber betweenmin andmax. rand[0, 1) is a function that returns a real number between 0 and 1.
Both are based on a uniform probability distribution. “NP”, “MAX_GEN”, “CR” and “F” are
user-defined parameters. “D” is the dimensionality of the problem

. A simple external archive to save the nondominated solutions found during the
process was added.

4.1 Selection Criterion

We changed the original criterion to select between parent and offspring (rows 16–20
in Fig. ) based only on the objective function value. As in multiobjective optimiza-
tion we are looking for a set of trade-off solutions, we used, as traditionally adopted
in Evolutionary Multiobjective Optimization [], Pareto Dominance as the criterion
to select between the parent and its corresponding offspring. The aim is to keep the
nondominated solutions from the current population.

A vector U = (u1 , . . . ,uk) is said to dominate V = (v1 , . . . , vk) (denoted by
U aV) if and only if U is partially less than V, i.e. ∀i � �1, . . . , k	, ui � vi b .i �
�1, . . . , k	�ui < vi . If we denote the feasible region of the search space asF , the evolu-
tionary multiobjective algorithm will look for the Pareto optimal set (P�) defined as:

P� �= �x � F � e. x′ � F F(x′) a F(x)	. ()
In our case, k = 2, as we are optimizing two objectives.
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4.2 Constraint Handling

Themost popular approach to incorporate the feasibility information into the fitness
function of an EA is the use of a penalty function. The aim is to decrease the fitness
value of the infeasible individuals (i.e., those that do not satisfy the constraints of the
problem). In this way, feasible solutions will have a higher probability of being se-
lected and the EA will eventually reach the feasible region of the search space. How-
ever, the main drawback of penalty functions is that they require the definition of
penalty factors. These factors determine the severity of the penalty. If the penalty
value is very high, the feasible region will be approached mostly at random and the
feasible global optimum will be hard to find. On the other hand, if the penalty is
too low, the probability of not reaching the feasible region will be high. Based on the
aforementioned disadvantage, we decided to avoid the use of a penalty function. In-
stead, we incorporated a set of criteria based on feasibility, originally proposed by
Deb [] and further extended by other researchers [, , ]:

• Between two feasible solutions, the one which dominates the other wins.
• If one solution is feasible and the other one is infeasible, the feasible solutionwins.
• If both solutions are infeasible, the onewith the lowest sumof constraint violation

is preferred.

We combine Pareto dominance and the set of feasibility rules into one selection cri-
terion, which substitutes rows 16–20 in Fig.  as presented in Fig. .

4.3 External Archive

One of the features that distinguishes a modern evolutionary multiobjective opti-
mization algorithm is the concept of elitism []. In our modified DE, we added an
external archive, which stores the set of nondominated solutions found during the
evolutionary process. This archive is updated at each generation in such a way that
all nondominated solutions from the population will be included in the archive. After
that, nondominance checking is performed with respect to all the solutions (the new-
comers and also the solutions in the archive). The solutions that are nondominated
with respect to everybody else will remain in the archive. When the search ends, the
set of nondominated solutions in the archive will be reported as the final set of solu-
tions obtained by the approach.

Fig. 4 Modified selection mechanism added to the DE algorithm in order to solve the multi-
objective optimization problem
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4.4 Results of the EA Approach

In our experiments, we performed 10 independent runs. A fixed set of values for the
parameters was used in all runs and they were defined as follows: Population size
NP = 200, MAX_GENERATIONS = 100; the parameters F and CR were ran-
domly generated within an interval. The parameter F was generated per generation
in the range [0.3, 0.9] (the differences can be scaled in different proportions with-
out affecting the performance of the approach) and CR was generated per run in the
range [0.8, 1.0] (greater influence of the mutation operator instead of having such
influence from the parent when generating the offspring).These values were empiri-
cally derived. This way of defining the values for F and CRmakes it evident that they
do not require to be fine-tuned. We will refer to the evolutionary approach as “EA”
(Evolutionary Algorithm).

The experiments were performed on the same platform on which the goal at-
tainment experiments were carried out. This was done to have a common point of
comparison to measure the computational time required by each approach.

In Table  we present the number of nondominated solutions and also the time
required per run.

The 10 different Pareto fronts obtained are presented in Fig. .
In order to help the decision maker, we filtered the 10 different set of solutions

in order to obtain the final set of nondominated solutions. The final Pareto front ob-
tained from the 10 runs contains 28 nondominated points and is presented in Fig. .
Finally, the details of the 28 solutions are presented in Table .

Figure  shows themechanical efficiency and the input control of the pinion-rack
CVTwith the optimal solution obtained with theMPM and the solution ([.,
., ., ., .,.]) in themiddle of the filtered Pareto front
obtainedwith the EA (Fig. ).We can observe that themechanical efficiency found by
the EA is better than that of the MPM solution. We can also see a smooth behavior of

Table 4 Time required and number of nondominated solutions found at each independent run
by the EA

Run Time required Nondominated
solutions

 18.53 Hrs. 17
 20.54 Hrs. 15
 18.52 Hrs. 25
 18.63 Hrs. 16
 18.55 Hrs. 17
 17.57 Hrs. 19
 18.15 Hrs. 18
 18.47 Hrs. 24
 18.67 Hrs. 16
 20.24 Hrs. 18
Average .. Hrs .. solutions
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Fig. 5 Different Pareto fronts obtained by the EA in 10 independent runs
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Fig. 6 Final set of solutions obtained by the EA in 10 independent runs

Table 5 Details of the trade-off solutions found by the EA. All solutions are feasible

[N� , m� , h� , e�max , K
�

P , K
�

I ] [Φ1(•), Φ2(•)]

[32.949617, 0.001780, 0.020413, 0.063497, 5.131464, 0.022851] [0.534496, 1033.243548]
[25.022005, 0.001699, 0.020103, 0.052385, 5.087026, 0.024991] [0.687214, 837.167059]
[24.764331, 0.001723, 0.020662, 0.048119, 5.104801, 0.011072] [0.694969, 828.856396]
[32.203853, 0.001793, 0.021356, 0.066703, 5.033164, 0.012833] [0.547385, 984.149814]
[30.774167, 0.001710, 0.020092, 0.069459, 5.129618, 0.010260] [0.568131, 950.480089]
[34.231339, 0.001756, 0.020974, 0.065426, 5.104461, 0.023469] [0.515604, 1042.009590]
[31.072336, 0.001760, 0.020295, 0.072332, 5.018621, 0.024963] [0.564775, 964.310541]
[27.647589, 0.001685, 0.020151, 0.069264, 5.001687, 0.031805] [0.627021, 877.670407]
[27.548056, 0.001696, 0.020083, 0.067970, 5.006868, 0.017859] [0.629913, 864.206663]
[30.866972, 0.001735, 0.020305, 0.058766, 5.002777, 0.032694] [0.567519, 960.120458]
[28.913492, 0.001747, 0.020478, 0.058322, 5.021887, 0.027174] [0.603222, 923.771423]
[28.843277, 0.001764, 0.020282, 0.055027, 5.024443, 0.017157] [0.605340, 915.753294]
[30.185435, 0.001700, 0.020075, 0.059569, 5.133269, 0.019914] [0.577733, 949.842309]
[29.448640, 0.001755, 0.020601, 0.063276, 5.019318, 0.033931] [0.593085, 944.906551]
[20.002905, 0.001697, 0.020098, 0.053235, 5.114809, 0.018447] [0.844657, 715.605541]
[26.373053, 0.001718, 0.020176, 0.068410, 5.031773, 0.014986] [0.656264, 849.215816]
[32.227085, 0.001764, 0.020567, 0.070369, 5.178989, 0.026127] [0.544721, 1030.722785]
[23.476167, 0.001731, 0.020618, 0.057264, 5.050345, 0.010533] [0.730990, 790.412654]
[23.853314, 0.001696, 0.020054, 0.063646, 5.097374, 0.040464] [0.717403, 827.978369]
[23.936736, 0.001767, 0.020179, 0.054081, 5.026456, 0.013965] [0.719347, 810.685134]
[18.094865, 0.001754, 0.020097, 0.033930, 5.263513, 0.012051] [0.926890, 700.251032]
[15.287561, 0.001836, 0.020539, 0.065247, 5.001634, 0.077960] [1.086582, 648.563140]
[20.410186, 0.001689, 0.020082, 0.067889, 5.005502, 0.046545] [0.828891, 729.481066]
[29.319668, 0.001754, 0.020557, 0.057790, 5.140154, 0.012875] [0.595073, 944.511281]
[28.165197, 0.001722, 0.020449, 0.069922, 5.035457, 0.013965] [0.617721, 886.468167]
[34.733111, 0.001738, 0.020849, 0.064827, 5.470063, 0.078838] [0.504179, 1230.655492]
[18.028162, 0.001753, 0.021026, 0.075356, 5.185506, 0.027797] [0.930299, 697.362827]
[21.642511, 0.001694, 0.020196, 0.061009, 5.040619, 0.029378] [0.785859, 752.464167]

the mechanical efficiency for the EA, maintaining a more compact CVT size for the
EA solution. However, the initial overshoot of the input control is greater than that of
the MPM solution. These behaviors are observed with all the solutions lying on the
middle of the Pareto front, because a higher number of teeth and a corresponding
smaller size are obtained (p�1 was increased and p�2 was decreased) whereas the input
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Fig. 7 Mechanical efficiency and Control input for the pinion-rack CVT. obtained by the EA
approach

energy controller is greater (p�5 and p�6 were increased) in these optimal solutions.
In conclusion, from a mechanical point of view, the solutions in the middle of the
Pareto front, offer many possible system reconfigurations of the pinion-rack CVT.

5 Advantages and Disadvantages of Both Approaches

5.1 Quality and Robustness

As we can see, the results provided by the EA were as good as those obtained by the
MPM method because the latter solutions were also nondominated with respect to
those found by the EA. However, the EA was not sensitive to the initial conditions
(a randomly generated set of solutions was adopted at all times). The EA approach
provided a more robust behavior than that shown by the MPM. Despite the fact that
the results obtained by both approaches are considered similar (from a mechanical
and from a control point of view), as the EA obtains several solutions from a single
run, it gives the designer the chance to select from them, the best choice based on his
preferences.

5.2 Computation Cost

It is clear, based on the results shown in Tables  and  for the MPM and the EA ap-
proaches respectively, that the EA is the most expensive, computationally speaking.
However, as pointed out in Table , the EA obtains a set of nondominated solutions
per single run. In contrast, the MPM always returns a single solution on each run.
Therefore, based on the average time (18.78 h) and the average number of solutions
obtained (18.5 solutions), approximately, one solution per hour is obtained. On the
other hand, the MPM obtained a solution after approximately 36minutes computa-
tion time. Therefore, we can conclude that the EA requires, roughly, twice the time
used by the MPM to find a single solution.
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5.3 Implementation Issues

As mentioned in Sect. ., in order to solve the multiobjective optimization prob-
lem using the MPM, a sequential quadratic programming method was used. There,
a quadratic programming problem, which is an approximation to the original CVT
problem, was solved, and some difficulties detected:

• This method requires gradient calculation, sensitivity equations and gradient
equations of the constraints. In general, the number of sensitivity equations is
the product of the number of state variables and the number of design variables.
Gradient equations are related to the number of design variables. Summarizing,
we must calculate two objective functions equations,  sensitivity equations, six
gradient equations and  constraint gradient equations. On the other hand, with
the EA only two objective functions equations must be calculated. Therefore, re-
configuration of the EA is simple.

• Due to the fact that the QP problem is an approximation to the original prob-
lem and that the constraints are a linear approximation, this problem might be
unbounded or infeasible, whereas the original problem is not. With the EA, the
original problem is solved. Therefore, the search for the optimal solution is per-
formed in the feasible region of the search space, directly. In this way, in the case
of the EA, new structural parameters can be obtained when additional mechan-
ical constraints to the design problem are added. These mechanical constraints
could be considered directly in the constraint-handling mechanism of the algo-
rithm without the need for any further changes.

It is worth recalling that another additional step related to the use of the MPM is that
it requires minimizing each objective function considered, separately.This is because
the goal attainment method requires a goal for each function to be optimized. This
step is not required by the EA. Finally, the EA showed no significant sensitivity to its
parameters.

5.4 Goal Attainment to Refine Solutions

It is important to mention that we carried out a set of runs of the MPM using a non-
dominated solution obtained by the EA, as a starting point. However, the approach
was unable to improve the solution in all cases.

6 Conclusions and Future Work

We have presented the multiobjective optimization of a pinion-rack continuously
variable transmission (CVT). The aim is to maximize the mechanical efficiency and
to mininize the corresponding control. The problem is subject to geometric and
strength conditions for the gear pinion of the CVT. Two different approaches were
used to solve the problem: A mathematical programming method called Goal At-
tainment and also an evolutionary algorithm. The first one was very sensitive to the
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initial start point of the search (the point must be given by the user and must be
carefully selected), but the computation time required was of about 30 minutes to
obtain a solution. On the other hand, the evolutionary algorithm, which in our case
was differential evolution, showed no sensitivity to the initial conditions, i.e. a set of
randomly generated solutions was used in all experiments. Also, the approach did
not show any sensitivity to the values of the parameters related to the crossover and
mutation operators. Furthermore, the EA returned a set of solutions on each single
run, which gave the designer more options to select the best solutions, based on his
preferences. The computational time required for the EA was about 60 minutes to
find a solution. The results obtained with the two approaches were similar based on
quality, but the EA was more robust (in each single run it obtained feasible results).
Finally, the EAwas easier to implement, which is one clear advantage of the approach.

Future work will include designing a preferences-handling mechanism in order
to let the EA concentrate the search on those regions of the Pareto front where the
most convenient solutions are located. Furthermore, we plan to solve other mech-
atronic problems using the proposed approach.
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