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Preface

The community of researchers claiming the relevance of their work to the field of
metaheuristics is growing faster and faster, despite the fact that the term itself has
not been precisely defined. Numerous books have been published specializing in any
one of the most widely known methods, namely, simulated annealing, tabu search,
evolutionary algorithms, ant colony algorithms, particle swarm optimization, but at-
tempts to bring metaheuristics closer together are scarce. Yet some common features
clearly appear in most metaheuristics, such as the use of diversification to force the
exploration of regions of the search space, rarely visited until now, and the use of
intensification, to investigate thoroughly some promising regions. Another common
feature is the use of memory to archive the best solutions encountered. One common
shortcoming of most metaheuristics is the delicate tuning of numerous parameters;
the theoretical results available are not sufficient to help the user facing a new, difficult
optimization problem.

The goal of this book is to collect state-of-the-art contributions that discuss re-
cent developments in a particular metaheuristic or highlight some general ideas that
proved effective in adapting a metaheuristic to a specific problem. Some chapters
are overview-oriented while others describe recent advances in one method or its
adaptation to a real-world application. The book consists of  chapters covering top-
ics from various areas of metaheuristics, including simulated annealing ( chapters),
tabu search ( chapters), ant colony algorithms ( chapters), general purpose studies
on evolutionary algorithms ( chapters), applications of evolutionary algorithms (
chapters), and miscellaneous metaheuristics ( chapters).

The first chapter on simulated annealing, by Chandra Sekhar Pedamallu and
Linet Özdamar, is devoted to a comparison of a simulated annealing (SA) algorithm,
an interval partitioning (IP) algorithm, and a hybrid algorithm integrating SA into IP.
All three methods, developed for solving the continuous constrained optimization
problem, are equipped with a local solver that helps to identify feasible stationary
points. The performances are tested on a suite of  benchmark problems collected
from different sources in the literature.

In the second chapter, Horacio Martínez-Alfaro applies simulated annealing to
linkage synthesis of a four-bar mechanism for a given number of desired path points.
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Several examples are shown to demonstrate that a path can be better specified, since
the user is able to provide more prescribed points than the usual limited number of
five allowed by the classical methods.

The following chapter by Ricardo P. Beausoleil deals with nonlinear multiobjec-
tive optimization. The chapter introduces a new version of the Multiobjective Scatter
Search (MOSS) algorithm, applying a multi-start tabu search and convex combina-
tion methods as a diversification generation method. A constraint-handling mech-
anism is incorporated to deal with constrained problems. The performance of this
approach is tested through  test problems.

Muhammad A. Tahir and James E. Smith then propose a new approach to im-
proving the performance of the nearest neighbor (NN) classifier.The technique com-
bines multiple NN classifiers, where each classifier uses a different distance func-
tion and potentially a different set of features, determined through a combination of
tabu search and simple local neighborhood search. Comparison with different well-
known classifiers is performed using benchmark data sets available in the literature.

The following chapter by Adem Kalinli and Fatih Sarikoc presents a new paral-
lel ant colony optimization algorithm aimed at solving continuous-type engineering
problems. Its performance is evaluated by means of a set of classical test problems,
and then it is successfully applied to the training of recurrent neural networks to
identify linear and nonlinear dynamic plants.

Alberto V. Donati, Vince Darley, and Bala Ramachandran describe the integra-
tion of an ant-based algorithm with a greedy algorithm for optimizing the schedul-
ing of a multi-stage plant in the consumer packaged goods industry. The scheduling
must provide both optimal and flexible solutions to respond to fluctuations in de-
mand. “Phase transitions” can be identified in a multidimensional space, where it is
possible to vary the number of resources available.

The following chapter by Sung-Soo Kim, Alice E. Smith, and Soon-Jung Hong
presents an ant colony approach to optimally load balance code division multiple ac-
cess micro-cellular mobile communication systems. Load balancing is achieved by
assigning each micro-cell to a sector. The cost function considers handoff cost and
blocked calls cost, while the sectorization must meet a minimum level of compact-
ness. The problem is formulated as a routing problem where the route of a single ant
creates a sector of micro-cells. There is an ant for each sector in the system, multi-
ple ants comprise a colony and multiple colonies operate to find the sectorization
with the lowest cost. The method is shown to be effective and highly reliable, and is
computationally practical, even for large problems.

Gusz Eiben andMartijn Schut discuss new ways of calibrating evolutionary algo-
rithms, through a suitable control of their parameters on-the-fly.Theyfirst review the
main options available in the literature and present some statistics on the most pop-
ular ones. They then provide three case studies indicating the high potential of un-
common variants. In particular, they recommend focusing on parameters regulating
selection and population size, rather than those concerning crossover and mutation.

The chapter by Marc Schoenauer, Pierre Savéant, and Vincent Vidal describes a
new sequential hybridization strategy, called “Divide-and-Evolve”, that evolutionarily
builds a sequential slicing of the problem at hand into several, hopefully easier, sub-
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problems. The embedded (meta-)heuristic is only asked to solve the “small” prob-
lems. Divide-and-Evolve is thus able to globally solve problems that are intractable
when fed directly into the heuristic. A prominent advantage of this approach is that
it opens up an avenue for multi-objective optimization, even when using a single-
objective embedded algorithm.

In their chapter, Carlos García-Martínez and Manuel Lozano are interested in
local search based on a genetic algorithm (GA). They propose a binary-coded GA
that applies a crowding replacement method in order to keep, within the population,
different niches with high-quality solutions. Local search can then be performed by
orientating the search in the nearest niches to a solution of interest. The local GA de-
signed consistently outperformed several local search procedures from the literature.

The chapter by Francisco B. Pereira, Jorge M.C. Marques, Tiago Leitão, and Jorge
Tavares presents a study on locality in hybrid evolutionary cluster optimization. Since
a cluster is defined as an aggregate of between a few and many millions of atoms or
molecules, the problem is to find the arrangement of the particles that corresponds
to the lowest energy. The authors argue that locality is an important requisite of evo-
lutionary computation to ensure the efficient search for a globally optimal solution.

In the following chapter, Pankaj Kumar, Ankur Gupta, Rajshekhar, Valadi K.
Jayaraman, and Bhaskar D. Kulkarni present a genetic algorithm-based learning
methodology for classification of benchmark time series problems in medical diag-
nosis and process fault detection. The results indicate that the constrained window
warping method with genetically learned multiple bands could be reliably employed
for a variety of classification and clustering problems.

The chapter by Jong-Hwan Kim, Chi-Ho Lee, Kang-Hee Lee, and Naveen S. Kup-
puswamy focuses on evolving the personality of an artificial creature by using its
computer-coded genomes and evolutionary GA in a simulated environment. The ar-
tificial creature, named Rity, is developed in a D virtual world to observe the out-
come of its reactions, according to its genome (personality) obtained through evolu-
tion.

In their chapter, Antonin Ponsich, Catherine Azzaro-Pantel, Serge Domenech,
and Luc Pibouleau provide some guidelines for GA implementation inmixed integer
nonlinear programming problems. The support for the work is the optimal batch
plant design. This study deals with the two main issues for a GA, i.e., the processing
of continuous variables by specific encoding and the handling of constraints.

Márcia Marcondes Altimari Samed and Mauro Antonio da Silva Sa Ravagnani
present approaches based on GAs to solve the economic dispatch problem. To elim-
inate the cost of the preliminary tuning of parameters, they have performed a co-
evolutionary hybrid GA whose parameters are adjusted in the course of the opti-
mization.

Efrén Mezura-Montes, Edgar A. Portilla-Flores, Carlos A. Coello Coello, Jaime
Alvarez-Gallegos, and Carlos A. Cruz-Villar then describe an evolutionary approach
to solving a novel mechatronic multiobjective optimization problem, namely that of
pinion-rack continuously variable transmission. Both the mechanical structure and
the controller performance are concurrently optimized in order to producemechan-
ical, electronic, and control flexibility for the designed system.
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In the last chapter devoted to evolutionary algorithms, Hélcio Vieira Junior im-
plements a GA for an aeronautic military application. The goal is to determine an op-
timal sequence of flare launch such that the survival probability of an aircraft against
a missile is maximized.

The four remaining chapters deal with miscellaneous metaheuristics. First, Jörn
Grahl, Stefan Minner, and Peter A.N. Bosman present a condensed overview of the
theory and application of the estimation of distribution algorithms (EDAs) in both
the discrete and the continuous problem domain. What differentiates EDAs from
other evolutionary and non-evolutionary optimizers is that they replace fixed varia-
tion operators like crossover and mutation with adaptive variation that comes from
a probabilistic model. EDAs have been successfully applied to many problems that
are notoriously hard for standard genetic algorithms.

In the following chapter, Zhenyu Yang, Jingsong He, and Xin Yao propose Neigh-
borhood Search (NS) to be embedded with Differential Evolution (DE). The advan-
tages of NS strategy in DE are analyzed theoretically. These analyses focus mainly
on the change in search step size and population diversity after using neighbor-
hood search. Experimental results have shown that DE with neighborhood search
has significant advantages over other existing algorithms in a broad range of differ-
ent benchmark functions. The scalability of the new algorithm is also evaluated in a
number of benchmark problems, whose dimensions range from  to .

Sébastien Aupetit, Nicolas Monmarché, and Mohamed Slimane are interested
in the training of Hidden Markov Models (HMMs) using population-based meta-
heuristics. They highlight the use of three methods (GA, ant colony algorithm, and
particle swarm optimization) with and without a local optimizer. The study is first
performed from a theoretical point of view; the results of experiments on different
sets of artificial and real data are then discussed.

The last chapter of the book by Fred Glover deals with inequalities and target
objectives that were recently introduced to guide the search in adaptive memory
and evolutionary metaheuristics for mixed integer programming. These guidance
approaches are useful in intensification and diversification strategies related to fixing
subsets of variables at particular values, and in strategies that use linear programming
to generate trial solutions whose variables are induced to receive integer values. The
author shows how to improve such approaches in the case of - mixed integer pro-
gramming.

We do hope you will find the volume interesting and thought provoking. Enjoy!

Adelaide, Australia
Paris, France

Zbigniew Michalewicz
Patrick Siarry
March 
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Comparison of Simulated Annealing, Interval Partitioning
and Hybrid Algorithms in Constrained Global Optimization
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Abstract

Thecontinuous Constrained Optimization Problem (COP) often occurs in industrial
applications. In this study, we compare three novel algorithms developed for solving
the COP.The first approach consists of an Interval Partitioning Algorithm (IPA) that
is exhaustive in covering the whole feasible space. IPA has the capability of discard-
ing sub-spaces that are sub-optimal and/or infeasible, similar to available Branch and
Bound techniques. The difference of IPA lies in its use of Interval Arithmetic rather
than conventional bounding techniques described in the literature. The second ap-
proach tested here is the novel dual-sequence Simulated Annealing (SA) algorithm
that eliminates the use of penalties for constraint handling. Here, we also introduce
a hybrid algorithm that integrates SA in IPA (IPA-SA) and compare its performance
with stand-alone SA and IPA algorithms. All three methods have a local COP solver,
Feasible Sequential Quadratic Programming (FSQP) incorporated so as to identify
feasible stationary points. The performances of these three methods are tested on
a suite of COP benchmarks and the results are discussed.

Key words: Constrained Global Optimization, Interval Partitioning Algorithms,
Simulated Annealing, Hybrid Algorithms

1 Introduction

Many important real world problems can be expressed in terms of a set of nonlinear
constraints that restrict the real domain over which a given performance criterion is
optimized, that is, as a Constrained Optimization Problem (COP). The COP is ex-
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pressed as:minimize f (x)� x = (x1, . . . , xn)t � ξ ⊂ R
n where ξ is the feasible domain.

ξ is defined by k inequality constraints (gi(x) � 0, i = 1, . . . , k), (m − k) equality
constraints (hi(x) = 0, i = k + 1, . . . ,m) and domain lower and upper bounds
(LBx � x � UBx). The expressions g(x) and h(x)may involve nonlinear and linear
relations. The objective function, f (x), is minimized by an optimum solution vec-
tor x� = (x1 , . . . , xn)t � ξ ⊂ R

n where f (x�) � f (x) for all x � ξ. In the general
COP with a non-convex objective function (and a general non-convex feasible do-
main), discovering the location of the global optimum is NP-hard. Derivative based
solution approaches developed for solving the COP might often be trapped in infea-
sible and/or sub-optimal sub-spaces if the combined topology of the constraints is
too rugged.

Existing global optimization algorithms designed to solve the COP can be cat-
egorized as deterministic and stochastic methods. Surveys on global optimization
are abundant in the literature (see the recent one []). Examples of deterministic
approaches are: Lipschitzian methods []; branch and boundmethods []; reformu-
lation techniques []; interior point methods []; Branch and Reduce (BARON []
and interval methods [], []. An extensive list of up to date references of stochastic
approaches for theCOP ismaintained byCoelloCoello (http://www.cs.cinvestav.mx/
�constraint/) where evolutionary approaches, genetic algorithms, ant colony ap-
proaches, simulated annealing and many other techniques are cited for continuous
and discrete problems.

Here we focus on the Interval Partitioning Algorithms (IPA) and Simulated An-
nealing (SA) to solve the COP. IPA is a branch and bound technique that uses inclu-
sion functions. Similar to the branch and bound technique, IPA is complete and reli-
able in the sense that it explores the whole feasible domain and discards sub-spaces in
the feasible domain only if they are guaranteed to exclude feasible solutions and/or
local stationary points better than the ones already found. On the other hand, SA
is a black box stochastic algorithm that generates a sequence of random solutions
converging to a global optimum. SA employs a slow annealing process that accepts
worse solutions more easily in the beginning stages of the search as compared to later
phases []. Using this feature, SA escapes from local optima and overcomes the dif-
ficulties encountered by derivative based numerical methods. A convergence proof
for SA in the real domain is provided in []. We now discuss the available literature
on SA and IPA designed for the COP.

AsHedar and Fukushima [] alsomention in their report, publications concern-
ing the implementation of SA in the COP are rather scarce. Some successful special
case SA applications for constrained engineering problems exist in the literature (e.g.,
structural optimization problems [], [], SA combined with genetic algorithms in
economic dispatch [], in power generator scheduling [], [], [], in thermoel-
astic scaling behavior []).There has also been theoretical work conducted related to
the use of SA in the general COP. For instance, Wah and Wang [], [] introduce
a new penalty method where penalty parameters are also perturbed by SA. Hedar
and Fukushima [] apply multi-start SA from solutions that are preferably pareto
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optimal according to the infeasibility and optimality criteria. The latter technique
aims at achieving a better exploration in both feasible and infeasible regions. Similar
to constrained SA applications, interval research on the COP is also relatively scarce
when compared with bound constrained optimization. Hansen and Sengupta []
discuss the inequality COP whereas Ratschek and Rokne [] describe interval tech-
niques for the COP with both inequality and equality constraints. Numerical results
using these techniques are published later in Wolfe [] and Kearfott []. Dallwig
et al. [] propose the software (GLOPT) for solving bound constrained optimization
and the COP where a new reduction technique is proposed. More recently, Kear-
fott [] presents a software named GlobSol and Markot [] develops an IPA for
the COP with inequalities where new adaptive multi-section rules and a new box
selection criterion are presented []. Here, we propose a deterministic IPA algo-
rithm having an adaptive tree search management approach that coordinates calls
to a local solver, Feasible Sequential Quadratic Programming (FSQP – [], []).
In IPA, FSQP is activated within the confinement of each sub-space stored in the
list of boxes to be explored. The second approach proposed is the dual-sequence SA,
DSA, where the sequences of infeasible and feasible solutions are traced separately. In
each SA iteration, a feasible candidate neighbor is compared with the last feasible so-
lution obtained in the feasible sequence, and similarly an infeasible one is compared
with the last infeasible solution. Thus, two sequences are constructed in parallel, and,
the problems (e.g., the magnitude of penalty parameters) encountered by penalty
methods are avoided. This approach is different from other approaches. For instance
in Hedar and Fukushima’s algorithm [], each new sequence started from a non-
dominated solution is a single sequence. The diversification scheme implemented in
DSA is also much simpler and requires minimal memory space. DSA also incorpo-
rates FSQP as a local solver, but it has its own invoking policy. In the third approach
proposed here, we create a hybrid IPA-DSA algorithm by integrating DSA into IPA
where DSA works within the confinement of the specific sub-domain to be explored.
This time, FSQP is invoked by DSA. This hybrid approach targets the total coverage
of the search domain while enabling a global search in the sub-domains explored.
Further, the total search space is reduced by IPA’s reliable elimination of infeasible
and sub-optimal sub-spaces. All three approaches are compared using a test suite of
COP benchmarks. In the next sections we provide the basics of Interval Arithmetic,
and brief descriptions of IPA, DSA and IPA-DSA.

2 Basics of Interval Arithmetic

Denote the real numbers by x, y, . . . , the set of compact intervals by I �= �[a, b] � a �
b; a, b � R	 and the set of n dimensional intervals (also called simply intervals or
boxes) by I

n . Italic letters will be used for intervals. Every interval x � I is denoted
by [x , x], where its bounds are defined by x = inf x and x = sup x. For every a � R,
the interval point [a, a] is also denoted by a. The width of an interval x is the real
number w(x) = x − x. Given two real intervals x and y, x is said to be tighter than y
if w(x) < w(y).
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Given (x1 , . . . , xn) � I, the corresponding box x is the Cartesian product of in-
tervals, x = x1
, . . . ,
 xn , where x � I

n . A subset of x , y � x, is a sub-box of x. The
notion of width is defined as follows:

w(x1 
 . . . 
 xn) = max1�i�nw(xi) and w(xi) = xi − xi ()

Interval Arithmetic operations are set theoretic extensions of the corresponding real
operations. Given x , y � I, and an operation ◊ � �+,−,
,/	, we have: x◊y =
�x◊y�x � x , y � y	.

Due to properties of monotonicity, these operations can be implemented by real
computations over the bounds of intervals. Given two intervals x = [a, b] and y =
[c, d], we have:

[a, b] + [c, d] = [a + c, b + d],
[a, b] − [c, d] = [a − d , b − c],
[a, b] 
 [c, d] = [min�ac, ad , bc, bd	, max�ac, ad , bc, bd	],
[a, b] / [c, d] = [a, b] 
 [1�d , 1�c] if 0  [c, d].

The associative law and the commutative law are preserved over these operations,
however, the distributive law does not hold. In general, only a weaker law is verified,
called subdistributivity.

Interval arithmetic is particularly appropriate to represent outer approximations
of real quantities. The range of a real function f over an interval x is denoted by f (x),
and it can be computed by interval extensions.

Definition . (Interval extension): An interval extension of a real function f � Df ⊂
R
n � R is a function F � In � I such that ∀x � I

n , x � Df � f (x) = � f (x) � x �
x	 � F(x).

Interval extensions are also called interval forms or inclusion functions. This def-
inition implies the existence of infinitely many interval extensions of a given real
function. In a proper implementation of interval extension based inclusion functions
the outward rounding must be made to be able to provide a mathematical strength
reliability.

The most common extension is known as the natural extension. Natural exten-
sions are obtained from the expressions of real functions, and are inclusion mono-
tonic (this property follows from the monotonicity of interval operations). Hence,
given a real function f , whose natural extension is denoted by F, and two intervals
x and y such that x � y, the following holds:

F(x) � F(y). We denote the lower and upper bounds of the function interval
range over a given box y as andF(y) and F(y), respectively.

Here, it is assumed that for the studied COP, the natural interval extensions of f ,
g and h over x are defined in the real domain. Furthermore, (F and similarly, G and
H) is α-convergent over x, that is, for all y � x,w(F(y))−w( f (y)) � cw(y)α where
c and α are positive constants.
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An interval constraint is built from an interval function and a relation symbol,
which is extended to intervals. A constraint being defined by its expression (atomic
formula and relation symbol), its variables, and their domains, we will consider that
an interval constraint has interval variables (variables that take interval values), and
that each associated domain is an interval.

The main feature of interval constraints is that if its solution set is empty, i.e., it
has no solution over a given box y, then it follows that the solution set of the COP is
also empty and the box y can be reliably discarded. In a similar manner, if the upper
bound of the objective function range, F(y), over a given box y is less than or equal to
the objective function value of a known feasible solution (the Current Lower Bound,
CLB), then y can be reliably discarded since it cannot contain a better solution than
the CLB.

Below we formally provide the conditions where a given box y can be discarded
reliably based on the ranges of interval constraints and the objective function.

In a partitioning algorithm, each box y is assessed for its optimality and feasibility
status by calculating the ranges for F, G, and H over the domain of y.

Definition . (Cut-off test based on optimality:) If F(y) < CLB, then box y is called
a sub-optimal box.

Definition . (Cut-off test based on feasibility:) If Gi(y) � 0, or 0  Hi(y) for any i,
then box y is called an infeasible box.

Definition . If F(y) � CLB, and F(y) � CLB, then y is called an indeterminate box
with regard to optimality. Such a box holds the potential of containing x� if it is not an
infeasible box.

Definition . If (Gi(y) < 0, and Gi(y) � 0), or (0 � Hi(y) � 0) for some i, and other
constraints are consistent over y, then y is called an indeterminate box with regard to
feasibility and it holds the potential of containing x� if it is not a sub-optimal box.

The IPA described in the following section uses the feasibility and optimality cut-
off tests in discarding boxes reliably and sub-divides indeterminate boxes repetitively
until either they are discarded or they are small enough (these boxes have a potential
of holding x� and finally the local solver identifies it). However, at certain points in
this process, available indeterminate boxes are occasionally (given that some condi-
tions hold) subjected to local search before they reach the tolerance size. The latter is
undertaken to speed up convergence.

3 The Interval Partitioning Algorithm (IPA)

Under reasonable assumptions, IPA is a reliable convergent algorithm that sub-
divides indeterminate boxes to reduce the uncertainties related to feasibility and
optimality by nested partitioning. In terms of subdivision direction selection (the
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choice of the variables to partition in a given indeterminate box), convergence de-
pends on whether the direction selection rule is balanced []. The contraction and
the α-convergence properties enable this. Here, the rule that selects the variable with
the widest variable domain is utilized (Rule A) for this purpose.The reduction in the
uncertainty levels of boxes finally lead to their elimination due to sub-optimality or
infeasibility while helping IPA in ranking remaining indeterminate boxes in a better
fashion.

A box that becomes feasible after nested partitioning still has uncertainty with
regard to optimality unless it is proven that it is sub-optimal. The convergence rate
of IPAmight be very slow if we require nested partitioning to reduce a box to a point
interval that is the global optimum. Hence, we need to use the local search procedure
FSQP that might also identify stationary points in larger boxes. FSQP calls are coor-
dinated by a special adaptive tree search procedure that is developed in Pedamallu
et al. [].

The adaptive tree management system maintains a stage-wise branching scheme
that is conceptually similar to the iterative deepening approach []. The iterative
deepening approach explores all nodes generated at a given tree level (stage) before
it starts assessing the nodes at the next stage. Exploration of boxes at the same stage
can be done in any order, the sweep may start from best-first box or the one on the
most right or most left of that stage (depth-first). On the other hand, in the pro-
posed adaptive tree management system, a node (parent box) at the current stage
is permitted to grow a sub-tree forming partial succeeding tree levels and nodes in
this sub-tree are explored before exhausting the nodes at the current stage. In the
proposed IPA, if a feasible solution (CLB) is not identified yet, boxes in the sub-tree
are ranked according to descending total constraint infeasibilty, otherwise they are
ranked in ascending order of F(y). A box is selected among the children of the same
parent according to either box selection criterion, and the child box is partitioned
again continuing to build the same sub-tree.This sub-tree grows until the Total Area
Deleted (TAD) by discarding boxes fails to improve in two consecutive partitioning
iterations in this sub-tree. Such failure triggers a call to FSQP for all boxes that have
not been previously subjected to local search. The boxes that have undergone local
search are placed back in the list of pending boxes and exploration is resumed among
the nodes at the current stage. Feasible and improving solutions found by FSQP are
stored (that is, if a feasible solution with a better objective function value is found,
CLB is updated and the solution is stored).

The above adaptive tree management scheme is achieved bymaintaining two lists
of boxes, Bs and Bs+1 that are the lists of boxes to be explored at the current stage s
and at the next stage s + 1, respectively. Initially, the set of indeterminate or feasible
boxes in the pending list Bs consists only of x and Bs+1 is empty. As child boxes are
added to a selected parent box, they are ordered according to the current ranking cri-
terion. Boxes in the sub-tree stemming from the selected parent at the current stage
are explored and partitioned until there is no improvement in TAD in two consecu-
tive partitioning iterations. At that point, partitioning of the selected parent box is
stopped and all boxes that have not been processed by local search are sent to FSQP
module and processed to identify feasible and improving point solutions if FSQP is
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successful in doing so. From that moment onwards, child boxes generated from any
other selected parent in Bs are stored in Bs+1 irrespective of further calls to FSQP in
the current stage.When all boxes in Bs have been assessed (discarded or partitioned),
the search moves to the next stage, s + 1, starting to explore the boxes stored in Bs+1.

The tree continues to grow in this manner taking up the list of boxes of the next
stage after the current stage’s list of boxes is exhausted. The algorithm stops either
when there are no boxes remaining in Bs and Bs+1 or when there is no improve-
ment in CLB as compared with the previous stage. The proposed IPA algorithm is
described below.

IP with adaptive tree management

Step . Set tree stage, s = 1. Set future stage, r = 1. Set non-improvement counter
for TAD: nc = 0. Set Bs , the list of pending boxes at stage s equal to x, Bs = �x},
and Bs+1 = �.

Step . If the number of function evaluations or CPU time reaches a given limit, or,
if both Bs = � and Bs+1 = �, then STOP.

Else, if Bs = � and Bs+1 � �, then set s � s + 1, set r � s, and continue. Pick the
first box y in Bs and continue.

. If y is infeasible or suboptimal, discard y, and go to Step .

. Else if y is sufficiently small, evaluate m, its mid-point, and if it is a feasible
improving solution, update CLB, reset nc � 0, and store m. Remove y from Bs
and go to Step .

Step . Select variable(s) to partition (sort variables according to descending width
and select first v variables whose widths exceed the average width of candidate
variables).

Step . Partition y into 2v non-overlapping child boxes. Check TAD, if it improves,
then reset nc � 0, else set nc � nc + 1.

Step . Remove y from Bs , add 2v boxes to Br .

.. If nc � 2, apply FSQP to all (previously unprocessed by FSQP) boxes in Bs
and Bs+1, reset nc � 0. If FSQP is called for the first time in stage s, then set
r � s + 1. Go to Step .

.. Else, go to Step .

1 It should be noted that, whether or not FSQP fails to find an improving solution, IPA will
continue to partition indeterminate boxes as long as they pass both cutoff tests. Finally, the
algorithm encloses potential improving solutions in sufficiently small boxes where FSQP
can identify them.
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Fig. 1 Implementation of the adaptive iterative deepening procedure

The adaptive tree management system in IP is illustrated in Fig.  on a small tree
where node labels indicate the order of nodes visited.

4 The Dual-sequence SA Algorithm: DSA

In contrast to the deterministic exhaustive IPA, DSA is a stochastic global search al-
gorithm that does not necessarily cover thewhole search spacewithin a finite number
of iterations. DSA is shown to be superior to single sequence SA applications where
constraint handling is carried out via penalty functions []. DSA also utilizes FSQP
to identify stationary points nearby good solutions. Before we describe DSA algo-
rithm, we provide notation related to infeasibility degrees of constraints.

We denote the degree of infeasibility of constraint i at a given solution vector x
by INFi(x) and define it below for infeasible equality and inequality constraints.

INFi(x) = �
0 if hi(x) = 0 or gi(x) � 0;
�hi(x)� or gi(x) otherwise. ()

Total infeasibility degree of a solution x is given as: TIF(x) = Σmi=1INFi(x).
In Fig.  we provide the pseudocode of DSA and the relevant notation. DSA

starts with a random initial sample, so called “seed”, within the hypercube defined
by [LBx , UBx]. The iteration counter of DSA is denoted as q. In each iteration, a can-
didate solution, xq , that is a neighbor to xq−1 is generated by perturbing the value of
a selected coordinate of xq−1 within the coordinate lower and upper bounds. This is
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Fig. 2 Pseudocode of DSA
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achieved by procedure Perturb. In DSA, every solution is classified so as to belong to
the feasible or infeasible sequence.

In each iteration, the information regarding both sequences is updated according
to the neighbor’s feasibility status. If xq is feasible, then, feas_objq becomes equal to
f (xq) and TIFq takes its old value TIFq−1 since there is no change in the infeasible
sequence. Otherwise, if xq is infeasible, TIFq is set equal to TIF(xq) and feas_objq

takes its old value. These are indicated in Fig.  by update sequence information com-
ments.

Diversification inDSA: InDSA,we introduce twodiversification schemes.These
are indicated as comments in Fig. .The first scheme (Diversification I) is controlled
by a counter, Gq that stops a sequence of solutions once it stagnates. Stagnation oc-
curs when the best feasible solution found so far, f �, does not improve during a long
sequence of moves.Thus, Gq records the number of consecutive non-improving fea-
sible solutions and it is reset to zero whenever a feasible objective value lower than
f �, is encountered. When Gq exceeds the limit Gq_max , (Gq_max = 0.1 ċ q_max),
the procedure generates a new seed, which is not a neighbor to the previous solu-
tion, xq−1. In other words, a new sequence of solutions is started, replaces xq−1, and
all parameters are re-initialized. The temperature temp is re-annealed, Gq is set to .
According to the feasibility status of the new seed, feas_objq−1 and TIFq−1 are re-set.

The second diversification scheme (Diversification II) in DSA is designed for
avoiding traps set by recurrent feasible solutions. We define a counter Fq that counts
the number of feasible solutions obtained so far. When Fq � Fq_max , we re-set TIFq

to a large number so that new and worse infeasible solutions are accepted and the
search moves away from the vicinity of a trapping feasible solution. Fq is reset to zero
after it exceeds Fq_max (Fq_max = 0.01 ċ q_max).

Intensification in DSA: In DSA, we do not immediately allow probabilistic ac-
ceptance of a worse solution. A number of consecutive hill-climbing iterations are
applied before enabling its acceptance. We carry out this intensification process by
a control counter, Lq that records the consecutive number of feasible or infeasible
non-improving solutions. Each non-improving solution is directly rejected and not
given any probabilistic chance of acceptance until Lq reaches its limit, Lq_max . Here,
we set Lq_max = n, that is, we set it to the number of dimensions in the COP, because
we would like to have a chance to find a better neighbor in each coordinate before
we may accept a worse solution. This approach has an intensification effect on the
search.

When Lq exceeds Lq_max , it is re-set to zero, and DSA is permitted to accept
a worse candidate solution xq with the annealing probability defined in Equation ().
After a worse solution is accepted, the next cycle of hill-climbing starts. This intensi-
fication approach reduces the number of moves that stray from a good sequence.

Prob(accept) =

��������
�
��������

exp
�

�
−
f (xq) − feas_objq−1

f (xq)temp
�

�
if xq is feasible

exp
�

�
−
TIF(xq) − TIFq−1

TIF(xq)temp
�

�
otherwise

()
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According to the equation above, if xq turns out to be feasible, f (xq) is assessed
against feas_objq−1 and if infeasible, assessment is carried out according to the com-
parison between TIF(xq) and TIFq−1.This enables the procedure to compare a feasi-
ble candidate solution xq (generated after an infeasible solution) with the last feasible
solution in the feasible sequence, rather than with xq−1. Hence, xq might not be im-
mediately accepted if it is not better than feas_objq−1.The latter eliminates trapping in
feasible areas. In any case, if a new feasible solution is good enough, its neighborhood
is scanned by FSQP. The situation is similar when an infeasible candidate solution is
generated. That particular infeasible candidate is accepted or rejected according to
the last solution’s TIF in the infeasible sequence. Thus, an infeasible solution arriving
just after a feasible solution can still be accepted if it improves TIF. In this manner,
DSA enhances the exploration power of SA in infeasible regions and reduces wasted
function calls in feasible regions.

The cooling temperature temp found in Equation () is managed as follows. Since
the probability of acceptance is based on normalized deterioration, initially temp is
set to .. Whenever a worse solution is accepted, the annealing temperature temp
is reduced geometrically (temp �� temp�(1 + θ), here, θ = 0.005). This approach
is different from the standard SA algorithm that waits for an epoch length to reduce
temp. Here, the intensification duration becomes an adaptive epoch length. Ozdamar
and Demirhan [] test this approach against several SA algorithms from the litera-
ture and find that this is the most effective method in bound constrained optimiza-
tion. In order to increase Prob(accept) in later stages of the search and give more
freedom to DSA, the temperature temp is re-annealed when it falls below its min-
imum allowable value, t f .

DSA stops when the maximum number of moves, q_max, is reached. The best
feasible solution, f �, encountered during the search is reported.

FSQP calls:Throughout the search,DSA interactswith FSQPby invoking a prob-
abilistic call to local search whenever a better feasible solution is found. Hence, FSQP
contributes to SA by providing exploration ability around the feasible solutions iden-
tified by DSA. The relation between FSQP and DSA is such that DSA provides the
current feasible solution xq to FSQP as a starting point. FSQP seeks for a local or
global stationary point around xq and simply updates f � if it finds a better solution.
The sequence of solutions generated by DSA is not affected by invoking FSQP.

In order to reduce the number of FSQP calls, we introduce an annealing type of
activation probability that depends on the annealing temperature temp as well as on
how much the new feasible solution xq improves f (x) compared to the last feasible
solution, feas_objq−1. The probability of calling FSQP is calculated as follows.

Prob(call_FSQP) = exp
�

�

−1
(feas_objq−1 − f (xq)) ċ

 
temp)

�

�
()

FSQP is also allowed to explore around feasible or infeasible worse solutions
accepted near the end of the search, that is, when the iteration index q exceeds,
for instance, 0.9 ċ q_max. The latter FSQP calls do not require the calculation of
Prob(call_FSQP).
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5 The Hybrid IPA-DSA Algorithm

The hybrid IPA-DSA algorithm is basically the IPA algorithm described in Sect. 
with the exception that rather than invoking FSQP in Step ., the DSA algorithm
is invoked. In the hybrid algorithm DSA works as described in Sect. , however, the
search space is confined by the boundaries of box y. DSA invokes FSQP using its
own probabilistic calling scheme. Our goal in developing this hybrid is to use the
advantage of activating global search in larger boxes within an exhaustive algorithm
framework. We make the following parameter adjustments in the hybrid algorithm.
In each box y that DSA is activated, the number of iterations allowed is q_max =
500 ċ sizeof(y)�sizeof(x), and similarly, the number of iterations the solver FSQP is
allowed in a given box y is equal to 150 ċ sizeof(y)�sizeof(x). Thus, these parameters
are based on the box size.

6 Numerical Experiments and Comparisons with Other Deterministic
and Stochastic Search Methods

6.1 Test Problems

We test the performance of all methods on  COPs collected from different sources
in the literature.These are listed in Table  with their characteristics (number of non-
linear/linear equalities and inequalities as well as expression types), optimal or best
results reported, and their source references. A few test problems are tested in their
revised versions. Most of the problems involve polynomial constraints and objective
functionswith nine exceptionswhere trigonometric expressions are found (problems
P, P, P, P, P, P, P, P, P). Some problems have a single variable in
their objective function (P, P, P, P, P, P, P, P), and perturbations made
by DSA in such problems do not affect the objective function directly. This might
lead to some difficulties in finding the direction of descent.

6.2 Comparison with Single Sequence Penalty-based SA Algorithms

DSA and the hybrid IPA-DSA are compared with five SA algorithms that handle con-
straint feasibility by using an objective function augmented with constraint infeasi-
bility degrees. All these algorithms are single sequence techniques, that is, solutions
are not differentiated according to feasibility status. Similar toDSA, they all call FSQP
in the same manner to identify feasible stationary solutions.

We call penalty based SA algorithms SAP. In SAP, the augmented objective f ′(x)
of the COP includes a penalty function, p(x) that is non-decreasing inTIF(x). f ′(x)
is defined as

min f ′(x) = � f (x) + p(x) if TIF(x) � 0
f (x) otherwise ()
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Table 1 List of Test problems

Second column: N: dimension, NE: Nonlinear equations, LE: linear equations, NI: Nonlinear
inequalities, LI: Linear inequalities
*: indicates that result is obtained in this chapter

Prob. N,# NE, Notes f (x�) Source
Id. # LE,# NI,

# LI
P ,,,, Quadratic f (x) - [] (G)
P ,,,, Linear f (x), nd degree NI .* [] (G)
P ,,,, Trigonometric f (x), . [] (G)

th degree NI
P ,,,, Linear single variable f (x), -. [] (Chapter , Test problem )

nd degree concave NI
P ,,,, Linear single variable f (x), - [] (Chapter , Test problem )

nd degree concave NI
P ,,,, Linear single variable f (x), -. [] (Chapter , Test problem )

nd degree NI
P ,,,, Linear single variable f (x), - [] (e_.def )

nd degree NI
P ,,,, Linear single variable f (x), - [] (Example )

nd degree NI
P ,,,, Linear single variable f (x), -. [] (Example )

nd degree NI, convex and
non-convex

P ,,,, Linear single variable f (x), . [] (Example )
nd degree NI

P ,,,, Linear single variable f (x), -. [] (Example )
nd degree NI

P ,,,, Linear single variable f (x),  []
nd degree NI

P ,,,, Nonlinear f (x), nd degree NI -. []
P ,,,, Nonlinear f (x), nd degree NI -. []
P ,,,, Nonlinear f (x), nd degree NI - []
P ,,,, nd degree f (x) with many , -. [] (Problem .)

interactive terms
P ,,,, Linear single variable f (x), -. Revised P

nd degree NI
P ,,,, Nonlinear f (x), Geometric . []

fractional NI, nd degree NI
P ,,,, Linear f (x), Geometric . []

fractional NI, nd degree NI
P ,,,, nd degree f (x), nd degree NE -. [] (Alkyl.gms)
P ,,,, nd degree f (x) .* [] (Genhs.gms)
P ,,,, Quadratic f (x), .* [] (revised robot.gms)

trigonometric NI
P ,,,, nd f (x), -.* [] (revised mathopt.gms)

trigonometric NI
P ,,,, Quadratic f (x), . [] (robot.gms)

trigonometric NE
P ,,,, Quadratic f (x), -. [] (mathopt.gms)

trigonometric NE
P ,,,, Linear f (x), trigonometric NI * [] (revised hs.gms)
P ,,,, Linear f (x), trigonometric .* [] (revised hs.gms)

NI, nd degree NI
P ,,,, Linear f (x), th degree NI, -* [] (revised rk.gms)

rd degree NI, nd degree NI
P ,,,, nd f (x) -.* [] (revised hs.gms)
P ,,,, nd f (x), trigonometric NE . [] (G)
P ,,,, Trigonometric f (x), nd degree NI -. [] (G)
P ,,,, nd f (x), nd degree NI . [] (G)
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In SAP, the augmented f ′(x) is used to assess solutions rather than f (x). The
annealing probability of acceptance is expressed below.

Prob(accept) = exp
�

�

−( f ′(xq) − f ′(xq−1))
f ′(xq)temp

�

�
()

SAP contains the intensification scheme in DSA and the first diversification
scheme. The second diversification scheme in DSA is omitted since the feasible so-
lution sequence is not traced separately in SAP. In other words, all features of SAP
and DSA are the same with this exception and this performance comparison only
involves the maintenance of a single sequence or a dual sequence.

We now list the types of penalty functions p(x) considered in this comparison.
Penalty functions.Weutilize five different expressions for p(x).These are adapted

from theGA literature.The first two penalty functions are static in the sense that they
are not affected by the status of the search, i.e., on the number of function evaluations
already spent until the current solution is obtained.The third one is dynamic, and the
last two are classified as annealing penalty functions. These are listed below.

.MQ []. MQ is a static penalty function that depends only on the number of
infeasible constraints rather than on TIF(x).The penalty function is expressed below.

p(x) = B −
Bs
m

()

Here, s is the number of feasible constraints (equalities plus inequalities), m is the
total number of constraints, and B is a large positive number (109 is the suggested
value by the developers of the function) that guarantees that an infeasible solution
has a larger objective function value than a feasible solution.

. QP (Quadratic Penalty function). QP is the static classical quadratic penalty
function expressed below.

p(x) = B
m

!
i=1

INF2i (x) ()

Again, B is a sufficiently big positive number (e.g., 106) such that a solution having
a larger TIF(x) is guaranteed to have a worse objective function value than another
with a smaller TIF(x).

. JH []. JH is a dynamic penalty function that depends both on the progress
of the search and on TIF(x). The idea in JH is to allow exploration in earlier stages
of the search and become strict in later stages. Here, for representing the progress of
the search we take the number of SAP iterations, q, made until the current solution
is reached. The penalty function is adapted as follows:

p(x) = (qC)α
m
!
i=1

INFβi (x) ()

The value of the parameter C is suggested as 0.5, and for α, β, the values of  or  are
suggested. Here, we prefer the former value because q becomes large in later stages
of the search.
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The advantage of JH and the following two annealing penalties over static ones is
that the infeasibility (and its related p(xq)) of a candidate solution, xq , can be traded
off with the reduction in f (xq). That is, ( f (xq) + p(xq)) < f (xq−1) where xq−1 is
the feasible predecessor solution. This increases the exploration capability of SAP.

. MA []. MA is an annealing penalty function where the quadratic penalty
weight is divided by the annealing temperature, temp, that is reduced as the search
runtime increases. Similar to JH, the penalty becomes quite high near the end of the
search, and infeasible solutions tend to be rejected. The function p(x) is adapted as
follows.

p(x) =
0.5"m

i=1 INF2i (x)
temp

()

Here, we let temp take the value of the geometric cooling temperature that the SAP
algorithm uses in that iteration. Hence, the rejection criterion of non-improving so-
lutions in SAP is aligned with p(x).

. CSBA []. CSBA is an annealing penalty function of multiplicative type where
f (x) ismultiplied by an exponential functionwhose arguments areTIF(x) and temp.
As temp goes to zero, the penalty function goes to one leading to increased f (x).The
penalty function is adapted as follows.

p(x) = f (x)e
−

�

temp
TIF(x) ()

6.3 Comparison with IPA

The IPA described here utilizes an adaptive tree management. For the purpose of
the comparison, here, we also include two more IPA versions: IPA with best-first
tree management scheme and IPA with depth-first scheme. These two versions are
similar to IPA-adaptive scheme. However, in the best-first approach, the one with
leastTIF(y) among indeterminate boxes is selected for re-partitioning until a feasible
solution is identified, and, then, once a feasible solution is identified, the box with the
lowest F(y) is selected. On the other hand, in the depth-first approach, the box on
the left branch of the last partitioned box is always selected for re-partitioning. Calls
to FSQP are managed in the same way (according to the improvement in TAD) in all
three IPA versions.

Furthermore, we also provide the hybrid IPA-DSA algorithm in three versions:
with adaptive, best-first and depth-first tree management schemes.

6.4 Comparison with Other Deterministic Approaches

To complete the comparison portfolio, we also solve the test problems with five well-
known solvers that are linked to the commercial software GAMS (www.gams.com)
and also with stand-alone FSQP [], [] whose code has been provided by AEM
(www.aemdesign.com/FSQPmanyobj.htm). The solvers used in this comparison are
BARON . [], Conopt . [], MINOS . [], Snopt .. [] and FSQP. Among
these solvers, BARON is an exhaustive global solver and all others are local solvers.
We allow every solver to complete its run without imposing additional stopping cri-
teria except the maximum CPU time.
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6.5 Results

In the experiments, SAP, DSA, and the hybrid IPA-DSA are re-run  times for
every test problem using a . GHz PC with  MB RAM in Windows operating
system. In SAP and DSA, every problem is run with a maximum iteration counter
of q_max = 2000(n +m) or maximum CPU time of  CPUseconds. In IPA-DSA
hybrid, the number of function evaluations, excluding those made byDSA, is limited
to 1000(n +m) and DSA is allowed a number of function calls that depends on the
relative size of the box as described in Sect. . One run of IPA-DSA takes a longer
time than stand-alone DSA and therefore, the maximum number of function evalu-
ations is halved. Similarly, the stand-alone IPA methods are allowed 1000(n + m)
function evaluations. All methods in the comparison have a limited run time of 
CPUseconds.

In Tables  and , we illustrate the results obtained by the hybrid stochastic and
stochastic methods. In Table , we summarize the results obtained by the three tree
management schemes in the hybrid IPA-DSA method. In Table , we provide the
results obtained by stand-alone DSA and five SAP methods.

We provide the results in the following format. For all SA methods and hybrid
IPA-DSA, we provide the average absolute deviations from the global optima (and
standard deviations) of three results: the average deviation of the worst solution ob-
tained in  runs (st results column in Tables  and ) over  problems, the aver-
age deviation of the best solution in  runs (nd column in Tables  and ) over

Table 2 Hybrid IPA-DSA results
Hybrid IPA-DSA Abs. Dev. Abs. Dev. Abs. Dev. Ratio of CPU

(Worst) (Best) (Average) Unsolved Secs
Probs. Over
 runs

IPA-DSA
(Adaptive Tree)
Average 327.40 96.73 144.58 0.000 38.37
Std. Dev. 800.53 327.87 356.42 0.000 136.98
# of Optimal Solutions 17 23
# of Unsolved Probs. 0 0
IPA-DSA
(Best-first Tree)
Average 237.990 95.80 152.44 0.001 44.55
Std. Dev. 653.53 328.02 372.54 0.004 160.23
# of optimal Solutions 15 21
# of Unsolved Probs. 1 0
IPA-DSA
(Depth-first Tree)
Average 256.17 100.50 137.41 0.014 12.48
Std. Dev. 634.01 327.27 305.58 0.073 45.53
# of Optimal Solutions 16 20
# of Unsolved Probs. 2 0
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Table 3 Hybrid IPA-DSA results
SAMethods Abs. Dev. Abs.Dev. Abs. Dev. Ratio of CPU

(Worst) (Best) (Average) Unsolved (Secs)
Probs.
Over
 runs

without Penalty
DSA
Average 218.62 109.54 136.29 0.004 1.842
Std. Dev. 571.53 332.49 357.25 0.02 2.325
# of Optimal Solutions 15 21
# of Unsolved Probs. 1 0

with Penalty (SAP)
Morales-Quezada
Average 543.87 111.82 298.11 0.02 1.55
Std. Dev. 1279.56 330.91 666.60 0.08 2.74
# of Optimal Solutions 14 20
# of Unsolved Probs. 4 0
Static Quadratic
Average 340.39 107.46 156.85 0.01 1.98
Std. Dev. 730.49 331.39 362.95 0.03 4.19
# of Optimal Solutions 13 22
# of Unsolved Probs. 4 0
Joines and Houck
Average 385.82 107.26 157.45 0.01 1.73
Std. Dev. 841.84 331.44 366.32 0.05 3.55
# of Optimal Solutions 13 20
# of Unsolved Probs. 4 0
Michalewicz and Attia
Average 622.50 116.22 334.69 0.01 0.75
Std. Dev. 1381.33 334.51 657.46 0.04 0.81
# of Optimal Solutions 9 20
# of Unsolved Probs. 6 0
Carlson et al.
Average 647.40 116.22 334.69 0.03 0.54
Std. Dev. 1403.84 334.51 657.46 0.10 0.63
# of Optimal Solutions 8 20
# of Unsolved Probs. 7 0

 problems and the average of  runs’ average deviation (rd column in Tables 
and ) over  problems. Finally, the average ratio of unsolved problems in  runs
where no feasible solution was found (th column) and the average CPU times per
run are reported (th column).We also report the number of optimal solutions found
among worst and best solutions (rd row of every method), and the number of prob-
lems where no feasible solution was found at all in  runs, i.e., total failure of the
procedure (th row of every method).
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In Table , we provide the results for deterministic methods.These are illustrated
in terms of the average absolute deviation from the global optimum, standard devi-
ation, number of optimal solutions obtained and number of problems for which no
feasible solution was found.

Let us first compare the results in Tables  and . We observe that the average
results obtained by DSA and the hybrid IPA-DSA (adaptive tree) methods are not

Table 4 Hybrid IPA-DSA results

Deterministic Abs. Dev. CPU Deterministic Abs. Dev. CPU
Methods Secs Methods Secs
FSQP MINOS
Average 300.75 0.04 Average 393.90 0.27
Std. Dev. 939.19 0.07 Std. Dev. 955.30 0.16
# of Optimal 16 # of Optimal 11
Solutions Solutions
# of Unsolved 0 # of Unsolved 3
Probs. Probs.
Baron Conopt
(Exhaustive)
Average 108.99 0.13 Average 516.90 0.29
Std. Dev. 374.99 0.12 Std. Dev. 1215.03 0.33
# of Optimal 13 # of Optimal 9
Solutions Solutions
# of Unsolved 0 # of Unsolved 7
Probs. Probs.
Snopt
Average 442.84 0.38
Std. Dev. 960.95 0.58
# of Optimal 10
Solutions
# of Unsolved Probs. 5

IPA
IPA Abs. Dev. CPU IPA Abs. Dev. CPU
Adaptive Tree Secs Best-first Tree Secs
Average 114.48 39.27 Average 117.70 282.00
Std. Dev. 330.59 158.54 Std. Dev. 342.01 352.53
# of Optimal 17 # of Optimal 17
Solutions Solutions
# of Unsolved 0 # of Unsolved 3
Probs. Probs.
IPA
(Depth-first Tree)
Average 380.74 4.73
Std. Dev. 980.11 10.12
# of Optimal 17
Solutions
# of Unsolved Probs 2
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significantly different. However, in terms of the number of optimal solutions found
and in terms of the criterion of achieving feasible solutions in every run, the hybrid
method is better than DSA. If we consider the CPU times taken by bothmethods, the
hybrid method is seen to be computationally very expensive. In general, the best-first
tree management approach takes longer CPU times due to its memory and sorting
requirements and the depth-first approach is fastest among the hybrids. Yet, in terms
of achieving a feasible solution in every run, the depth-first approach is inferior to the
other two approaches ( a feasible solution is not identified in about . runs over ).
In terms of the worst solutions obtained, DSA’s performance is superior to those of
SAP, and the best-first and depth-first approaches in the hybrid method perform as
well as DSA in this respect.These results show that using DSA as a stand-alone solver
is a reasonable choice for the COP because CPU times are small and average case
and worst case quality of solutions are acceptable. On the other hand, if one wishes
to improve the best solution found at the expense of longer computation times, the
hybrid IPA-DSA method can be used.

We now take a look at Table  and compare deterministic methods with SA-based
approaches. As expected, the best method among GAMS solvers is the exhaustive
approach BARON.The computation time taken by this solver is very small, however,
the number of optimal solutions found ismuch lower than the best solutions found by
all SA-based methods. Again, this advantage comes with more computational effort.
For DSA, we can obtain best results in  runs while BARON carries out only one
run. However, one should not forget that BARON would not be able to find a better
solution within the allowed CPU time while it is always possible to obtain a better
result by running a stochastic method more than once. Using the stand-alone IPA-
adaptive tree might not be a good option under these circumstances. Though the
number of optimal solutions obtained is higher than BARON and problem solving
capability is as good as that of BARON, the computation times are higher.

We can summarize our findings as follows. Considering the deterministic and
stochastic COP methods tested in these experiments, SA-based methods seem to be
the best option to use in terms of CPU times and solution quality. If a user is willing to
afford longer computation times, then he/she can resort to the hybrid IPA-DSA solver
to have a higher chance of identifying the optimum solution to the COP at hand.
The IPA-DSA adaptive tree approach described here uses its exhaustive partitioning
and exploration tools that result in the highest number of optimal solutions and best
capability in identifying feasible solutions in every run.

7 Conclusions

We have described different SA-based approaches to solve the COP. Among the SA
methods described here, the performance of the novel dual-sequence SA (DSA) and
those of SA approaches with different penalty functions (SAP) are illustrated. Fur-
thermore, a new stand-alone exhaustive interval partitioning algorithm (IPA) with
an adaptive tree management scheme is described. This method is also tested with
different tree management schemes. IPA provides us with an exhaustive exploration
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framework that guides DSA in conducting the search. By combining IPA with DSA,
we obtain a hybrid algorithm (IPA-DSA) that uses the advantage of exploring the
whole search space by systematic partitioning while discarding sub-spaces that are
guaranteed to exclude feasible solutions or better stationary points reliably. Finally,
we have included the well-known deterministic commercial solvers in the experi-
ments. Our empirical results indicate that it is desirable to use DSA to solve the COP
if one wishes to obtain a high quality solution within small computation times. How-
ever, the solution quality can be even better if the hybrid IPA-DSA is used (in terms
of the number of optimal solutions found and identifying feasible solutions). The
performance of the exhaustive deterministic method BARON is also quite good and
fast, but it lacks the flexibility of finding even better solutions by multiple re-runs.

Acknowledgement. We wish to thank Professor Andre Tits (Electrical Engineering and the
Institute for Systems Research, University of Maryland, USA) for providing the source code of
CFSQP.
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Abstract

This chapter presents an alternative method of linkage synthesis (finding link lengths
and its initial position) using a computational intelligence technique: Simulated An-
nealing. The technique allows one to define n desired path points to be followed by
a four-bar linkage (path generation problem). The synthesis problem is transformed
into an optimization problem in order to use the Simulated Annealing algorithm.
With this approach, a path can be better specified since the user will be able to pro-
vide more “samples” than the usual limited number of five allowed by the classical
methods. Several examples are shown to demonstrate the advantages of this alterna-
tive synthesis technique.

Key words: Mechanism, Synthesis, Simulated Annealing, Optimization

1 Introduction

Linkage synthesis or finding link lengths and its initial position is well known and
studied in many text books [, , ]. Two methods are used: graphical and analyt-
ical. However, their main limitation is the number of prescribed points [,]. Some
authors [,,] have worked successfully on solving the problemwhenmore than
four points are prescribed. However, an elimination process has to be undertaken in
order to find the satisfied constraint solutions, i.e. when a linkage solution does not
follow the prescribed points in the specified order, or when the link lengths are very
large or small.

Themain disadvantage is the number of prescribed points: there has not been any
previous publication in which any of the above methods, graphical and analytical,
guarantees what happens between any two prescribed precision points. The larger
the number of prescribed precision points, the greater the effort needed to solve the
problem. This is what has been the “problem”.

An alternative way of linkage synthesis is presented which is capable of dealing
with n (� 5) prescribed points. The technique requires a desired trajectory in order
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Fig. 1 Location of a point in the complex plane

to obtain “samples” from it. The synthesis problem is then transformed into an op-
timization problem and solved using the Simulated Annealing (SA) algorithm [].
Our study is focused on synthesizing a four-bar linkage which consists in finding its
link lengths and its initial position with additional constraints such as limiting link
lengths, displacement angles, and/or linkage type.

2 Position Analysis of a Four-bar Linkage

Theposition of a point in a complex plane may be determined by a position vector as
shown in Fig.  whereRA = RA cos θ + jRA sin θ with RA being the magnitude of the
vector. A two-dimensional vector has two attributes that can be expressed in either
polar or Cartesian coordinates. In Cartesian form, the x (real part) and y (imagi-
nary part) components are specified and in polar form, a magnitude and an angle are

R2

Input link

R1

Ground link

R4

Output link

R3

Coupler link

Tracer Point P

Described Path

A0

B0

A

B

Fig. 2 Four-bar mechanism notation
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Fig. 3 Close-loop notation

provided. Vectors are commonly used for the analysis of mechanisms. For the anal-
ysis of the four-bar mechanism shown in Fig. , links can be expressed as position
vectors which are arranged in a closed-loop form. The sum of these vectors must be
zero in order to have a closed trajectory. For this study, the lengths and angles for
each link are defined as shown in Fig. . For simplicity, x (real) axis is aligned with
the ground link, R1 (see Fig. ).

3 Problem formulation

There are two classical methods for four-bar linkage synthesis: graphical and ana-
lytical, also called “the complex number” approach [, ]. The complex number ap-
proach has been the most widely used method for computer-based applications. As
mentioned earlier, the effort needed to solve a synthesis problem increases with the
number of prescribed points.

The problem statement is to design a four-bar linkage that moves its coupler link
such that a point on that link, a tracer point, which in this case is determined by two
vectors (ra , rb), will be at the first point of the desired trajectory, and after the input
link has rotated an angle ϕ1, the tracer point will be at the second point of the tra-
jectory, and so forth until the nth point is reached. Since the problem is transformed
into an optimization one, an objective or cost function is needed.This objective func-
tion involves the tracer point coordinates, which are functions of the link positions
and lengths, and the n prescribed points of the desired trajectory.

The technique used tominimize the error between the trajectory described by the
four-barmechanism, and the one given by the userwas the SimulatedAnnealing (SA)
algorithm.
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Our input data for the vector loop equation are the four link lengths, link angles θ1
and θ2, and ground pivot coordinates A0 or RA0 .

The simplicity of this linkage synthesis approach is based on the fact that the ob-
jective function to be minimized is the squared error/difference between the desired
trajectory and the one generated by the synthesized four-bar linkage tracer point. In
this way we can obtain the following expression:

C(P, P̂) =
n
!
i=1
(pi − p̂i)

2 ()

whereP is an array with pi as the location of the ith prescribed point and P̂ an array
with p̂i as the ith location of the synthesized linkage tracer point.

Our final goal is to reduce the error between the desired trajectory and the actual
trajectory described by the synthesized linkage.This can be seen also as a fitting curve
problem: the goal is to fit a curve that is generated by a four-bar linkage of unknown
link lengths and initial position.

Our original synthesis problem is now transformed into a combinatorial opti-
mization problem [–].This type of problem requires a substantial amount of CPU
time but with the evolving computer technology, this has become a non-important
factor.

Simulated annealing has proven to be a powerful tool in solving large combina-
torial optimization problems [–, –, , ]. Although the solution obtained with
this technique does not guarantee passing exactly through all the prescribed points,
the global behavior of the trajectory can be better controlled.

For this case it should be noticed that beside vectors R1, R2, R3, and R4 and
pin points A, B, and B0, there are two vectors, ra and rb . ra has the same direction
(angle) as link ,R3, and ends where a perpendicular vector rb (to the linkage tracer
point) starts. The tracer point is located at the tip of the rb vector (as shown in Fig. ).

With direction chosen as shown on Fig. , we have the following closed-loop
equation:

R2 +R3 −R4 −R1 = 0 ()

The user determines the number of precision points, n, and then gives their initial
coordinates.These coordinates are used to determine if the initial linkage satisfies the
Grashof crank-rocker linkage type condition.

Lmax + Lmin � La + Lb ()

where Lmax is the length of the longest link, Lmin is the length of the shortest link, La
and Lb are the lengths of the remaining two links.

Our input data for the vector loop equation are the four link lengths, and angles θ1
and θ2. θ2 is the independent variable and is the one to be varied during the analysis.
θ1 can be considered also as an input since it is modified by the simulated anneal-
ing algorithm for each design attempt. Using the closed-loop vector equation in the
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Fig. 4 Reference path and described path of a four-bar linkage

Cartesian form, we can solve for the two unknown variables θ3 and θ4 with constant
link length inputs, and θ2 as independent variable:

0 = R2 (cos θ2 + j sin θ2) + R3 (cos θ3 + j sin θ3) − ()
R4 (cos θ4 + j sin θ4) − R1 (cos θ1 + j sin θ1)

This equation is separated into its real part (x component):

R2 cos θ2 + R3 cos θ3 − R4 cos θ4 − R1 cos θ1 = 0 ()

and imaginary part (y component):

R2 sin θ2 + R3 sin θ3 − R4 sin θ4 − R1 sin θ1 = 0 ()

These equations are solved simultaneously [] for θ3 and θ4 to obtain:

θ3 = 2 arctan
�

�

−B1 #
$
A2
1 + B2

1 − C2
1

C2 − A1

�

�
()

θ4 = 2 arctan
�

�

−B1 #
$
A2
1 + B2

1 − C2
2

C1 − A1

�

�
()
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where:

A1 = R1 cos θ1 − R2 cos θ2 , B1 = R1 sin θ1 − R2 sin θ2 ,

C1 = R2
4 + A2

1 + B2
1 − R2

3�2R4 , C2 = R2
4 − A2

1 − B2
1 − R2

3�2R3
()

The next step is to calculate the coordinates of the pin joints between each pair of
links in order to place the mechanism in a global coordinate system. Between links
R2 and R3:

Ax = RA0x + R2 cos θ2 ()

Ay = RA0 y + R2 sin θ3 ()

Between links R3 and R4:

Bx = Rx + R2 cos θ2 + R3 cos θ3 ()

By = Ry + R2 sin θ2 + R3 sin θ3 ()

Between links R4 and R1:

B0x = Bx − R4 cos θ4 ()

B0y = By − R4 sin θ4 ()

In order to obtain the cost of the proposed solution we obtain the coordinates of the
tracer point:

tx = Rx + R2 cos θ2 + ra cos θ3 − rb sin θ3 ()
ty = Ry + R2 sin θ2 + ra sin θ3 + rb cos θ3 ()

4 Simulated Annealing Algorithm

Simulated annealing is basically an iterative improvement strategy augmented by
a criterion for occasionally accepting higher cost configurations [,]. Given a cost
function C(z) (analog to energy) and an initial solution (state) z0, the iterative im-
provement approach seeks to improve the current solution by randomly perturb-
ing z0. The Metropolis algorithm [] was used for acceptance/rejection of the new
state z′ at a given temperature T, i.e.,

• randomly perturb z, the current state, to obtain a neighbor z′, and calculate the
corresponding change in cost δC = z′ − z

• if δC < 0, accept the state
• otherwise if δC � 0, accept the state with probability

P(δC) = exp (−δC�T) ()
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This represents the acceptance–rejection loop of the SA algorithm.The acceptance cri-
terion is implemented by generating a random number, ρ � [0, 1] and comparing it
to P(δC); if ρ < P(δC), then the new state is accepted. The outer loop of the algo-
rithm is referred to as the cooling schedule, and specifies the equation by which the
temperature is decreased. The algorithm terminates when the cost function remains
approximately unchanged, i.e., for nno consecutive outer loop iterations.

Any implementation of simulated annealing generally requires four components:

. Problem configuration (domain over which the solution will be sought).

. Neighborhood definition (which governs the nature and magnitude of allow-
able perturbations).

. Cost function.

. Cooling schedule (which controls both the rate of temperature decrement and
the number of inner loop iterations).

The domain for our problem is the real plane for link lengths and θ1. The cost
function was described in detail in Sec. . The neighborhood function used here
is the same as used by Martínez-Alfaro and Flugrad [], which is modeled as an є
ball around each link length and θ1. To determine a perturbation for any given link
length, two randomnumbers are generated.One of them is used to specify themagni-
tude of the perturbation and the other one to determine the sign of the perturbation.
The allowable perturbations are reduced by the following limiting function:

є = єmax
log(T − Tf )
log(T0 − Tf )

()

where єmax is an input parameter and specifies the maximum link length perturba-
tion, and T, T0, Tf are the current, initial and final temperatures, respectively.

The cooling schedule in this chapter is the same hybrid one introduced by Mar-
tínez-Alfaro and Flugrad [] in which both the temperature and the inner loop cri-
terion vary continuously through the annealing process []. The outer loop behaves
nominally as a constant decrement factor,

Ti+1 = α Ti ()

where α = 0.9 for this research.The temperature throughout the inner loop is allowed
to vary proportionally with the current optimal value of the cost function. So, denot-
ing the inner loop index as j, the temperature is modified when a state is accepted,
i.e.,

Tj =
Cj

Clast
Tlast ()
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where Clast and Tlast are the cost and temperature associated with the last accepted
state. Note that at high temperatures, a high percentage of states are accepted, so the
temperature can fluctuate by a substantial magnitude within the inner loop.

The following function was used to determine the number of acceptance–rejec-
tion loop iterations:

Nin = Ndof %2 + 8&1 −
log(T − Tf )
log(T0 − Tf )

'* ()

where Ndof is the number of degrees of freedom of the system.
The initial temperature must be chosen such that the system has sufficient energy

to visit the entire solution space. The system is sufficiently melted if a large percent-
age, i.e. 80%, of state transitions are accepted. If the initial guess for the temperature
yields less than this percentage, T0 can be scaled linearly and the process repeated.
The algorithm will proceed to a reasonable solution when there is excessive energy;
it is simply less computationally efficient. Besides the stopping criterion mentioned
above, which indicates convergence to a global minimum, the algorithm is also ter-
minated by setting a final temperature given by

Tf = αNout T0 ()

where Nout is the number of outer loop iterations and is given as data to our problem.
Figure  shows a flowchart of the implementation.

5 Results

The following results were obtained by a computer program implemented in C pro-
gramming language. Figure  shows a path with five prescribed precision points and
the synthesized four-bar mechanism. It also shows both paths, desired and real, and
the mechanism in its first position.

The following example, Fig. , shows a desired path with  precision points. Due
to the characteristics of the prescribed trajectory, the resulting mechanism generates
a close trajectory to the prescribed one.

Figure  shows the following example which is a path with n = 32 precision
points. In this example we can observe how a larger number of prescribed points
can describe a smoother path and the global path looks acceptable.

Figure  shows the following test consisting of n = 20 prescribed points of the de-
sired trajectory with a space constraint given by a polygon with vertices at (0,−2.5),
(7.5, 0), (10, 0), (10, 7.5), (2.5, 10), (−2.5, 5).The additional constraint helps to ob-
tain a smoother trajectory by limiting link lengths. Figure  shows the prescribed
points and the generated ones with the resulting mechanism changed.
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Fig. 5 Implementation of the simulated annealing algorithm
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Fig. 6 Desired and synthesized paths for n = 5 prescribed points

Many other tests were performed with different trajectories and different seeds for
the random number generator and the numerical results were very similar for each
set of prescribed points or trajectory. However, the resulting mechanism changed in
initial position and link lengths, even when the cost was almost the same (an aver-
age difference of only . units). Thus, small differences in cost may generate very
different mechanisms.

6 Conclusions and Future Research

Four-bar mechanism synthesis is possible when more than five prescribed precision
points are provided. The simulated annealing algorithm could be an alternative syn-
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Fig. 7 Trajectory with  prescribed points

thesis procedure when more than the classical number of points are provided. It is
possible to apply the simulated algorithm even when just a few points are provided.
Some advantages can be mentioned:

• The synthesis problem is transformed into an optimization one: this transformat-
ion is based on a simple four-bar mechanism position analysis.

• More constraints can be included in addition to the available space or link lengths
constraints.
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Fig. 8 Desired and synthesized paths for n = 32 prescribed points

Although the mechanisms obtained with this technique do not pass exactly
through all specified points, we have good control of the global trajectory of the
mechanism.

The simulated annealing algorithm can be applied to more synthesis types: pre-
scribed timing, function generator, etc., and some other additional constraints could
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Fig. 9 Desired and synthesized paths for n = 20 prescribed points with space constraints

be included, specially when the mechanism is part of a machine and must fit inside
the dimensions of the machine.

Another future research area could be spatial mechanisms synthesis. As noted
above, application of the simulated annealing algorithm converts the synthesis prob-
lem into an analysis problem with a specific link dimension and position search cri-
teria.
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Abstract

This chapter introduces a new version of our multiobjective scatter search to deal
with nonlinear continuous vector optimization problems, applying a multi-star tabu
search (TS) and convex combinationmethods as a diversification generationmethod.
A new mechanism of forbidden solutions to create different families of subsets of
solutions to be combined, is applied in this version. A constrain-handlingmechanism
is incorporated to deal with constrained problems.The performance of our approach
is compared with ourMOSS implementation [] for some bi-objective unconstrained
test problems, -objective test problems were compared with points of the Pareto-
optimal front, and our constraint-handling mechanism is illustrated.

Key words: Multiple Objectives, Metaheuristics, Tabu Search, Scatter Search, Non-
linear Optimization

1 Introduction

The great majority of exact methods to deal with complex multiobjective optimiza-
tion problems, that is, problems with nonlinearities in the objective function and/or
constraints, and with a large number of variables have been considered impractical.
To deal with these difficulties, different metaheuristic approaches have been devel-
oped.

Evolutionary algorithms have beenwidely applied tomultiobjective optimization
problems. Here, we present an approach based on tabu search and scatter search as
a hybrid method to deal with complex multiobjective optimization problems.

This approach is a new version of our multiobjective scatter search (MOSS) [],
where new techniques are introduced in order to improve it, and to deal with con-
strained problems.

MOSS is also a hybrid method that, in the tabu search phase, creates restrictions
to prevent moves toward solutions that are “too close” to previously visited solutions.
A sequential fan candidate list strategy is used to explore solution neighborhoods.
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A weighted linear function is used to aggregate the objective function values. The
weights used are modified in such a way that a sufficient variety of points can be
generated. These solutions are later used as reference points for the scatter phase.

In order to guide the search more quickly to better regions, in MOSS-II we
embed, in the tabu phase, convex combinations by joining the new solutions with
point of current set of efficient points.

The proposed algorithm incorporates a new strategy to diversify the search using
a new mechanism of forbidden solutions to create different families of subsets to be
combined. Also, an intensification strategy in the combination method is introduced
to improve the search toward the Pareto-optimal front.

MOSS-II incorporates a mechanism to manipulate constraints. While most
MOEAs consider combinations of solutions with efficient and non efficient solutions,
feasible and infeasible solutions, MOSS-II considers its combinations using only fea-
sible efficient solutions.

The organization of the chapter is as follows: In Sect.  the problem is stated. The
general scheme of our strategy is presented in Sect. . Section  presents the tabu
search phase. In Sect.  we present the scatter search phase. Experimental computa-
tion is presented in Sect. . Section  contains the conclusions.

2 Statement of the Problem

We are interested in finding x = (x1 , x2 , . . . , xn) such that it optimizes F(x) =
( f1(x), f2(x), . . . , fr(x)) under the following constraints: I = �x � X̄ � g j � 0, j �
�1, 2, . . . ,m		, where X̄ = Πn

i=1Xi , xi � Xi ⊂ R, (i � �1, . . . , n	). Here, X̄ is the
search space and I is the feasible space.

3 General Scheme of the Strategy

We use amulti-start TS as a generator of diverse solutions. This approach can be seen
as a sequence of TSs where each TS has its own starting point, recency memory, and
aspiration threshold; they all share the frequencymemory to bias the search to unvis-
ited or less visited regions. Initially, the starting solutions are systematically generated
then, each TS in sequence initiates the search from one starting point. The searches
continue while new solutions are incorporated to the set of trial solutions S, when
one TS finishes its work, the convex combinations can be applied between solutions
of the actual set of reference solutions R and elements of the set S, the new gener-
ated solutions are introduced into S, the generated solutions are filtered in the case
of constrained problems, and the current nondominated points are subtracted and
designated to be reference solutions. When all TS finish their work, new solutions are
created consisting of linear combinations of elements of subsets of the reference set.
The new potentially Pareto solutions are created by joining the new solutions with
those of the reference set, and extracting a collection of efficient solutions. The refer-
ence set is diversified by re-starting from the TS approach taking as starting points
solutions of the current potentially Pareto set.



 General Scheme of the Strategy 

We use the following notation in the development of the text:
S = a set of trial solutions, from which all other sets derive.
P = an approximate Pareto set, containing all non-inferior solutions

of S.
R1 = a set of high-quality non-inferior solutions subset of P.
R2 = a set of elements belonging to the difference of P and R1.
R = a set of current reference solutions belonging to R1 or R2.
TD = a set of tabu solutions, composing a subset of R excluded from

consideration to be combined during t scatter iterations.
T1D = a set of tabu solutions, composing a subset of R excluded from

consideration to be combined during t1 scatter iterations.
C = a critical set, consisting of duplicated solutions.
D = a diverse subset of the set R.
Ω(D) = the set of combined solutions, created from a given set D.
CK is the Kramer choice function and
CK(P) = a set of selected elements of P.
b = the larger size of the trial solutions set.
b1 = the larger size of the reference set.
b2 = the larger size of the approximate Pareto set.
s� = the maximum number of starting points.

AlgorithmMultiObjectiveScatterSearch
(MaxIter = maximum number of global iterations.
NewParetoSolution = a Boolean variable that takes the value
TRUE if a new non-dominated solution entered to the reference set
FALSE in other case,
CutOffLimit = a limit number of scatter iterations,
tau = the generational distance between two consecutive efficient fronts,
τ = an approximation parameter.)
While (MaxIter is not reached or tau , τ)

Create seed solutions used to initiate the approach
Use of a memory-based strategy to generate
a set of trial solutions from the starting points
While (NewParetoSolution or CutOffLimit is not reached)

Filter to preserve the feasibility
Create a set of reference points taking
the current potentially Pareto solutions
Separate in two subsets the reference set using a choice function
Generate diverse subsets of the reference set
using tabu sets and a measure of dissimilarity
Apply line search approach to obtain new solutions

End while
Rebuild

End while
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4 Tabu Search Phase

We use a multi-start TS as a generator of diverse solutions. In the new implemen-
tation the parameter NumComb defines the number of tabu iterations necessary in
order to apply the convex combinations method with a set of parameters �wci � i =
1, . . . , 10	, startpoints is the number of initial points.

MultiStart_Tabu Phase
Repeat
icomb = 1
tabu_iteration = tabu_iteration+1
Set the tabu list empty
Generate the new starting point x
Set the reference point equal to F(x)
Apply our Taboo search method
If tabu_iteration = icomb ċ NumComb then
Apply the convex combination method
icomb = icomb+1

If constrained then
Filter to preserve the feasibility

Apply the Pareto relation to R - S
Update the set R

Until tabu_iteration = startpoints
End of the Phase

This Taboo search method chooses a new solution vector taking into account the as-
piration level function, the additive function value and a penalty function that modi-
fies the value of the additive function. Also, tabu restrictions are used to guide the
search.

A good balance between the diversification and intensification phase is very im-
portant to obtain a good initial set of solutions in a reasonable time.
NonNewParetoSolution, Level andMaxLevel are parameters to obtain this balance.

4.1 Move

The range of variables is split into subranges, frequency memory is used to control
the random selection of the subranges where the variables take values.

Next we identify our candidate list strategy. We use a simplified version of a se-
quential fan strategy as a candidate list strategy. The sequential fan generates p best
alternative moves at a given step, and then creates a fan of solution streams, one for
each alternative. The best available moves for each stream are again examined, and
only the p best moves overall provide the p new streams at the next step. In our case,
taking p = 1, we have in each step one stream and a fan of  points to consider.

Nowwe explain how to transit to a new solution. Let E be the set of efficientmoves
andD the set of deficientmoves, where a deficientmove is amove that does not satisfy
the aspiration level, otherwise the move is efficient. Then, we define the best move as
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[m � E(x) � c�(x′) = max�c(x′), x′ = m(x)	] if E(x) � �, in the case where E(x) =
� and D(x) � � then, we select [m � D(x) � c�(x′) = max�c(x′), x′ = m(x)	]. In
our algorithm, we use the Boolean variable NewParetoSolution in order to identify if
the set E is nonempty.

MaxLevel is an indicator of the maximum number of times that a non-efficient
move is accepted, and Level is the number of times that a non-efficient move has
occurred.When Level is greater thanMaxLevel then, we take a random solution of S.

Our implementation uses as move attribute, variables that change their val-
ues as a result of the move. The change is represented by a difference of values
fk(x′) − z�k ∀k = 1, . . . , r, x

′ � X̄ where x′ was generated from x by a recent move, x
is a current solution and Z� is a reference solution, Z� = (z�1 , . . . , z�r ).

4.2 Aspiration Level and Transitions

An aspiration threshold is used to obtain an initial set of solutions as follows: without
lost of generality, let us assume that every criterion is maximized. Notationally, let
Δ f (x′) = (Δ f1(x′), . . . , Δ fr(x′)) where Δ fk(x′) = fk(x′) − z�k , k � �1, . . . , r	.

A goal is satisfied, permitting x′ to be accepted and introduced in S if (.Δ fk(x′)
, 0)or(∀k � �1, . . . , r	[Δ fk(x′) = 0]), otherwise is rejected.

The point Z� is updated by z�k = max fk(x′)∀k � �1, . . . , r	, x′ � S.
In order to measure the quality of the solution we propose to use in our tabu

search approach an Additive Function Value AFV with weighting coefficients λk
(λk , 0), representing the relative importance of the objectives. We want to set the
weights λk (k = 1, . . . , r) so that the solution selected is closest to the new aspira-
tion threshold. Therefore each component in the weight vector is set according to
the objective function values. We give more importance to those objectives that have
greater differences between the quality of the trial solution and the quality of the ref-
erence solution. The influence is given by an exponential function exp(−sk), where
sk is obtained as sk = ( fk(x′) − z�k)�z

�

k , λk = 2 − exp(−sk) (k � �1, . . . , r	), then
AFV(x′) = "k=1,r λk( fk(x′) − z�k ).

Amovement to diversify is executedwhen residence[i, j] is greater than Ti , where
Ti is the threshold that determines the number of times that one sub-range can be
visited without penalizing and residence[i, j] is the number of time that the sub-
range j has been visited by the variable with index i (i � �1, . . . , n	). We mod-
ify the value of AFV(x′) as follows: AFV(x′) = (1 − freq

FreqTotal) ċ AFV(x
′), where

freq is an addition of the entries of type residence associated to the selected vari-
ables and subranges that hold the condition residence[i, j] � Ti , and FreqTotal =
"i "

subrange
j=1 residence[i, j] (∀i � I′ = �i � i was choosen	), we would have for

each variable a threshold Ti equal to the maximum between  and Round("subrange
j=1

residence[i, j]�subrange), where Round is the closest integer.

4.3 Tabu Restrictions

Tabu restrictions are imposed to prevent moves that bring the values of variables “too
close” to values they held previously [].
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The implementation of this rule is as follows: the variable x′ is excluded from falling
inside the line interval bounded by x−w(x′− x) and x+w(x′− x), where 1 , w � 0,
when a move from x to x′ is executed.

We have the following escape mechanism: when the forbidden moves grow so
much that all movements become tabu and none satisfies the aspiration level, a re-
duction mechanism is activated and the tabu distance in each list is reduced, then the
number of forbidden moves is reduced.

4.4 FrequencyMemory

Our approach uses a frequency-based memory denoted by residence, this is a record
that has two entries, residence[i, j]explained above, and residence_x[i] containing
the number of times that the variable x[i] has been visited, i � �1, 2, . . . , n	, j �
�1, 2, . . . , subrange	.

4.5 Duplicated Points

Avoiding the duplicate points already generated can be a significant factor in pro-
ducing an effective overall procedure. The generation of a duplicate point is called
a critical event. Our algorithm is based on a “critical event design” that monitors the
current solutions in R and in the trial solutions set S. The elements considered in the
critical event design are the values of the objectives and the decision variables. We
consider that a critical event takes place if one trial solution is too close to another
solution belonging to the trial solution set or to the reference set.

Let B(p, ξ) be a set of points within distance ξ from p, ξ � 0. We call B(p, ξ)
a ball with center p and radius ξ. Then, for any point p � F[S - R] we define a ball
B(p, ρ) with 0 < ρ � 1, and for any point p′ � S - R a ball B(p′ , δ) with 0 < δ � 1.

A critical event takes place if a trial solution satisfies a full “critical condition”.
A “critical condition” is “full” if it is satisfied and the trial solution belongs to B(p′ , δ)
defined on S - R. The “critical condition” is satisfied if the image of the trial solution
pertains to B(p, ρ) defined on F[S - R].

The radius of the ball defined on the decision space is fixed and the radius
of the ball defined on the objective space is an adaptive parameter in the interval
[min r, max r]; initially ρ = max r then, if the average number of the current solu-
tions per ball defined on F[S - R], is greater than the average number of previous
solutions per ball defined on previous F[S - R] then, the current radius is halved,
otherwise the value of the radius is doubled (inside of the permissible range.) The
distance from p to any point on S - R is defined by the Euclidean distance, and on
F[S - R] by the Usual distance (that is the absolute value.)

Taboo searchmethod
NonNewParetoSolution = 0
While NonNewParetoSolution < b3

NewParetoSolution = FALSE
Update the reference point
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Generate new solutions to include into the set S
Update the tabu list
Choose the new solution x
If NewParetoSolution then
NonNewParetoSolution = 0
Intensification = TRUE
Level = 0

else
NonNewParetoSolution = NonNewParetoSolution + 1
Intensification = FALSE
If Level <MaxLevel then
Level = Level + 1

Endwhile
End

5 Scatter Search Phase

Scatter Search (SS) is designed to generate a dispersed set of points from a chosen set
of reference points []. Its foundation derives from strategies for combining decision
rules and constraints, with the goal of enabling a solution procedure based on the
combined elements to yield better solutions than one based only on the original ele-
ments. SS operates on a set of solutions non-randomly generated called reference set.
New solutions, called trial solutions, are created by making combination of subsets
of the current set of reference solutions. The new reference set is selected from the
current set of reference solutions, and the new trial solutions created.

5.1 Pseudo-code SS

Scatter_Search Phase
scatter_iter = 0
While CutOffLimit � scatter_iter do

Apply Kramer choice function to separate
the Potentially Pareto set
Apply the Combination Subset method
Update S
If constrained then
Filter to preserve the feasibility

Apply Pareto relation to R - S
Update the Reference Point R
scatter_iter = scatter_iter + 1

endwhile
Rebuild

End of the Phase
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5.2 Kramer Choice Function

In order to split the current Pareto set into two subsets, an optimality principle is
used: “Selection by a number of dominant criteria” []. For all x , y � P, let q(x , y)
be the number of criteria for which the decision variable y improves the decision
variable x, then QP(x) = maxy�P q(x , y), x � P can be seen as a discordance index
if x is assumed to be preferred to y. Then the Kramer choice function is defined as
follows: CK(P) = �x′ � P�QP(x′) = minx�P QP(x)	.

5.3 Choosing Diverse Subsets

As a basis for creating combined solutions we generate subsets D � R. Our approach
is organized to generate three different collections of diverse subsets, which we refer
to as D1, D2, and D3.
Suppose R1 � � and R2 � � then, the type of subsets we consider are as follows:
-element subsets D1, where the first element is in R1 − TD1, the second element
pertains to R1 − T1D1 and it is the most dissimilar to the first, and the third element
belongs to R1 − T1D1 selected to be the most dissimilar to the former two.
-element subsets D2, where the first element is in R1 − TD2, the second element
pertains to R2 − T1D2 and it is the most dissimilar to the first, and the third element
belongs to R2 − T1D2 selected to be the most dissimilar to the former two.
-element subsets D3, where the first element is in R2 − TD3, the second element
pertains to R1 − T1D3 and it is the most dissimilar to the first, and a third element
that belongs to R1−T1D3 selected to be the most dissimilar to the selected elements.
If R1 − Z or R2 − Z, for Z = TD��D1,D2,D3� and Z = T1D��D1,D2,D3�, are empty then,
we take a random solution of R1 or R2, respectively.

If the cardinality of R1 or R2 is , then, the third element is created by a linear
combination of the two previously selected elements.

The most dissimilar solution is measured with the max-min criterion, that is, we
define the distance between a point p � R and a non-empty subset A � R by

d(p,A) =min�d(p, a) � a � A	

where d is the Euclidean measure, then the max-min criterion is defined as

d�(p,A) = max�d(p,A) � p � R	

We use two different tabu sets in order to avoid duplicating the diverse subsets to be
combined and to obtain more diversity in the search. Having selected the first solu-
tion to be considered in the diverse subset, it is included in the tabu set TD��D1,D2,D3�.
The second element to be considered in the diverse subset is included in the tabu set
T1D��D1,D2,D3�. A simple dynamic rule to create a tabu tenure t and t1 of the set
TD��D1,D2,D3� is used. We choose t to vary randomly between tmin = 1 and tmax = 6,
and t1 as a progressive tabu restriction, its value being increased by the number of
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times that this solution has been selected as second element in D. The Tabu restric-
tions are overridden to create one -element subset, if one of the selected solution is
a new solution, that is, a solution created in the last scatter iteration.

Another difference with respect to MOSS is the introduction of one intensifica-
tion strategy that consists in combining solutions withmore similar structures. To do
this, we define new subsets D of two elements where the first element is in R1−TD4,
the second element pertains to R1 − T1D4 selected to be closest to the first.

5.4 Linear Combinations

Our strategy consists in creating Ω(D) = x + ϖ(y − x), for ϖ = 1�2, 1�3, 2�3,−1�3,
−2�3, 4�3, 5�3, and x , y � D as follows:

. Generate new trial points on lines between x and y.
. Generate new trial points on lines between x and z.
. Generate new trial points on lines between y and z.
. Generate one solution by applying y + x−y

2 .
. Generate one solution by applying z + x−z

2 .
. Generate one solution by applying z + y−z

2 .

where x, y and z are elements of D � �D1,D2,D3	.
The infeasible variables are set equal to the closest bounds to them. The set S is

the union of all generated solutions, S = -Ω(D) for all D.
Note that the number of subsets generated depends on the number of solutions

not forbidden in the current set R, and on the larger size of the trial solutions set.

5.5 The Reference Set

The reference set R is a subset of the trial solution set S that consists of an approxi-
mation to the Pareto-optimal set.

Let P � ΩP - R, where ΩP � S0C, consists of a subset of current non-dominated
solutions. If �P� � b1, then we use the max-min criterion and a parameter є as meas-
ure of the closeness, to obtain a diversified collection of solutions P′, that is, set
one first element of P into P′, then let x � P maximizes the minimum distance
d(F(x), F(y(i))) for i � �P′ � and hold the condition d(F(x), F(y(i))) , є, y(i)
pertaining to the non-empty set P′ then, when P′ = b1 set P = P′.

5.6 Rebuilding the Reference Set

In order to rebuild the reference set, we take startpoints starting points from R us-
ing the max-min criterion and we resume the process with tabu search to construct
a set S of new trial solutions.

Set, startpoints =min�20, � R �	
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6 Experimental Computation

In this section we investigate the performance of our MOSS-II described above on
a number of standard test functions having two, three and four objectives. The re-
sults obtained for -objective and -objective test problems are compared to the
Pareto-optimal front. We also compare our approach with the results obtained by
our MOSS [] for -objective test problems, some constrained test problems, taken
from the book Evolutionary Algorithms for Solving Multiobjective-Problems (Coello
Coello C.A. and co-authors []) illustrate our constraint-handling mechanism, and
a quantitative study with difficulty constrained test problems shows the performance
of MOSS-II on constrained problems.

The experiments were done on a personal computer at  MHz. The code was
written in DELFI-. The CPU times were measured with the system routine.

6.1 Effect of the є Parameter

Now we show how changes in the value of the є parameter determine changes in the
distribution of the solutions.

Unconstrained Problems
Murata test problem:

minimize f1(x , y) = 2
 
x

minimize f2(x , y) = x(1 − y) + 5
1 � x � 4, 1 � y � 2

Rendon test problem:

minimize f1(x , y) =
1

x2 + y2 + 1
minimize f2(x , y) = x2 + 3y2 + 1

−3 � x, y � 3

Constrained Problems
Binh() test problem:

minimize f1(x , y) = 4x2 + 4y2

minimize f2(x , y) = (x − 5)2 + (y − 5)2

s.t.

0 , (x − 5)2 + (3.1)y2 − 25

0 , −(x − 8)2 + (y + 3)2 + 7.7
x � [0, 5], y � [0, 3]
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Fig. 1 Pareto front achieved by MOSS-II on Murata problems. On the left є = 0.01 and on the
right є = 0.05

Fig. 2 Pareto front achieved by MOSS-II on Rendon problems. On the left є = 0.01 and on the
right є = 0.6

Fig. 3 Pareto front achieved by MOSS-II on Binh() problems. On the left є = 0.01 and on the
right є = 1.5
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Jimenez test problem:

maximize f1(x , y) = 5x + 3y

maximize f2(x , y) = 2x + 8y

s.t.

0 , x + 4y − 100

0 , 3x + 2y − 150

0 , −5x − 3y + 200

0 , −2x − 8y + 75

xy , 0

6.2 An Illustration of the Approximation to Pareto-optimal Front

Here we illustrate the approximation to Pareto-optimal front with several test prob-
lems using one hundred variables. In these the first approximation corresponds with
the output of the tabu phase and the last is the achieved front.

Kursawe test problem: Pareto-optimal set and Pareto-optimal front disconnected
concave-convex front and isolated point.

minimize f1(x) =
n−1

!
i=1
&−10 exp1−0.2

2
x2i + x

2
i+13'

minimize f2(x) =
n

!
i=1
4� xi �0.8 +5 sin(xi)3 + 3.58285

xi � [−103 , 103]

Fig. 4 Pareto front achieved by MOSS-II on Jimenez problems. On the left є = 0.01 and on the
right є = 1.5
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Fig. 5 A sequence of approximation and the last approximation to Pareto-optimal front on the
Kursawe test problem

Fig. 6 First (o) and final (.) approximations to Pareto-optimal front on Quagliarella test prob-
lem

Quagliarella test problem: Pareto-optimal set disconnected and a concave Pareto-
optimal front with a diminishing density of solutions towards the extreme points.

minimize f1(x) = &
1
n

n
!
i=1
4x2i − 10 cos(2π(xi) + 10)5'

1�4

minimize f2(x) = &
1
n

n

!
i=1
(xi − 1.5)2 − 10 cos(2π(xi − 1.5)) + 10'

1�4

xi � [−5, 5]

Minimize ZDT Test Problems [] []:

ZDT test problem: The ZDT problem has a convex Pareto-optimal front.
ZDT test problem:The ZDT problem has a non-convex Pareto-optimal front.
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Fig. 7 First (+) and final (.) approximations to Pareto-optimal front on ZDT, ZDT

Fig. 8 First (+) and final (.) approximations to Pareto-optimal front on ZDT, ZDT

ZDT test problem: This problem provides some difficulties by introducing discon-
tinuities in the Pareto-optimal front.
ZDT test problem: This problem has several local Pareto-optimal fronts, providing
difficulties converging to the global Pareto-optimal front.

6.3 A Comparative StudyMOSS-II vs MOSS (2-Objective, 100 variables)

The performance of our MOSS-II was compared with the results obtained by our
first variant MOSS (MOSS showed a good performance versus SPEA, NSGA-II and
PESA; see []). The parameters were taken as follows: ρ � [0.0078125, 1] and δ =
0.0001, є = 0.01, τ = 0.01,MaxIter = 6, CutoffLimit = 30, NumComb = startpoints�2,
MaxLevel = 3, b = 240, b1 = 100, s� = 100 in order to obtain  solutions. Initially,
startpoints = s�.

A statistical test was carried out on the -objective test problems described above.
The following box-plots describe the performance on the test problems Kursawe,
Quagliarella, ZDT, ZDT, ZDT and ZDT, these box-plots show the coverage set,
the QRS(A) defining the relative number of nondominated solutions in the approxi-
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Fig. 9 Box plot representing the distribution of the coverage set, QRS(A) and spacing metrics
on Kursawe and Quagliarella problems (MOSS = , MOSS-II = , MOSS = , MOSS-II = ,
MOSS =  and MOSS-II = )

Fig. 10 Box plot representing the distribution of the coverage set, QRS(A) and spacing metrics
on ZDT and ZDT problems (MOSS = , MOSS-II = , MOSS = , MOSS-II = , MOSS = 
and MOSS-II = )

Fig. 11 Box plot representing the distribution of the coverage set, and spacing metrics on the
ZDT problem at left, and the coverage set,QRS(A) and spacingmetrics on the ZDT problem
at right (MOSS = , MOSS-II = , MOSS = , MOSS-II = , MOSS =  and MOSS-II = )
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Table 1 MOSS performance for -objective test problems

Problems CS(MOSS-II,MOSS) CS(MOSS,MOSS-II)
Maximum Minimum Median Maximum Minimum Median

Kursawe 1.000 0.000 0.000 0.010 0.000 0.000
Quagliarella 1.000 0.040 0.120 0.120 0.000 0.035
ZDT 0.060 0.000 0.010 1.000 0.010 0.440
ZDT 1.000 0.010 0.980 0.190 0.000 0.020
ZDT 0.610 0.010 0.565 1.000 0.750 0.830
ZDT 1.000 0.000 1.000 0.990 0.480 0.620

QMOSS-II(MOSS) QMOSS(MOSS-II)
Maximum Minimum Median Maximum Minimum Median

Kursawe 1.000 0.990 1.000 1.000 0.000 1.000
Quagliarella 0.960 0.010 0.880 1.00 0.880 0.965
ZDT 1.000 0.970 1.000 1.000 0.010 0.575
ZDT 1.000 0.010 0.020 1.00 0.830 1.000
ZDT 1.000 0.400 0.445 0.260 0.010 0.175
ZDT 1.000 0.000 0.010 0.560 0.010 0.390

Spacing(MOSS) Spacing(MOSS-II)
Kursawe 2.060 0.830 1.260 2.000 1.560 1.810
Quagliarella 0.013 0.008 0.012 0.012 0.003 0.010
ZDT 0.007 0.003 0.003 0.006 0.003 0.003
ZDT 0.005 0.003 0.005 0.006 0.003 0.003
ZDT 0.011 0.004 0.005 0.806 0.005 0.037
ZDT 0.050 0.003 0.004 0.312 0.005 0.047

mated set of solutions A, and the spacing. The first two columns represent the cov-
erage set measure, the following columns represent the QRS(A)metric, and the last
two columns the spacing metric.

Table  provides evidence that, for problems ZDT, ZDT, ZDT, ZDT, Kur-
sawe, and Quagliarella, MOSS-II performs as well as MOSS in terms of convergence
and distribution.

The results shown in the box plots and tables, indicate that the algorithm was
able to find well-distributed solutions on all Pareto-achieved fronts. To obtain 
solutions for the above test functions the following average computational times were
needed: ZDT  seconds, ZDT  seconds, ZDT . seconds, ZDT . seconds,
Kursawe . seconds, and Quagliarella . seconds.

6.4 A Comparative Study of 3-objective and 4-objective Test Problems

In this section we examine the performance of our algorithm on four test problems
taken from the literature [].The k-paramter for the -objective and -objective test
problems was equal to  and , respectively (see Deb et al. for details about the
k-paramter).

Problem DTLZ. The following problem is a -objective problem with a linear
Pareto-optimal front and n = 20 variables. The objective function values lie on the
linear hyper-plane satisfying f1 + f2 + f3 = 0.5 in the range f1, f2 , f3 � [0, 0.5].
Here we use the following parameters:MaxIter = 25, CutoffLimit = 30, NumComb =
startpoints�2, MaxLevel = 3, b = 240, b1 = 100, s� = 100. To obtain  solutions
with average time of  seconds, we set ρ � [0.0078125, 1], δ = 0.0001, є = 0.01,
τ = 0.01.

ProblemsDTLZ, DTLZ, DTLZ andDTLZ().The following test problems
prove the ability of our approach to converge on the global Pareto-optimal front, sat-
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Fig. 12 Pareto front achieved by MOSS-II on DTLZ and DTLZ problems

isfying f 21 + f 22 + f 23 = 1 in the range f1 , f2 , f3 � [0, 1]. We considered  variables for
the DTLZ, DTLZ, DTLZ problems and for the -objective DTLZ() problem, 
variables were considered. Parameters was taken as:MaxIter = 15 for the -objective
problems, and for the -objective problem MaxIter = 30, the rest as in DTLZ. For
DTLZ, DTLZ, and DTLZ an average time of  seconds was needed to obtain
 solutions, and for DTLZ()  seconds.

DTLZ problems have variable density in the search space. Observe that our al-
gorithm achieved a distributed set of solutions.

All the above figures correspond with the median associated to the spacing mea-
sure.

Statistics
Here, we present a quantitative study of the case illustrated above. The test problems
have known Pareto-optimal fronts, and the results of the four algorithms were com-
pared to it.
In all cases, the median is close to the value zero, indicating that the solutions are
found to lie close to the Pareto-optimal fronts and with well-distributed solutions.

Fig. 13 Pareto front achieved by MOSS-II on DTLZ and DTLZ problems
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Table 2 MOSS performance for -objective and -objective test problems

Problems Generational Distance Spacing
Maximum Minimum Median Maximum Minimum Median

DTLZ 0.327 0.000 0.002 0.367 0.009 0.011
DTLZ 0.034 0.032 0.033 0.031 0.021 0.026
DTLZ 0.544 0.030 0.032 0.444 0.016 0.025
DTLZ 0.106 0.031 0.036 0.131 0.023 0.035
DTLZ() 0.074 0.052 0.062 0.116 0.062 0.079

6.5 An Illustration with Constrained Test Problems

This section examines the performance of our algorithm on several constrained test
problems taken from the literature [], [], [], [].

Many researchers have explored the problem of how to deal with constraints in
a multiobjective metaheuristic. Many techniques have been developed, for example,
static penalties, dynamic penalties, adaptive penalties, rejection infeasible solutions,
multiobjective optimization, repair algorithms, co-evolutionary models, and others
(see [], [], []). We examine  different side-constraint problems with different

Fig. 14 Pareto front achieved by MOSS-II on Osyczka and Osyczka problems

Fig. 15 Pareto front achieved by MOSS-II on Kita and Belegundu problems
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levels of difficulty, using rejection infeasible solutions in each iteration. The Pareto
fronts achieved are shown in Figs. –.

Belegundu test problem:

minimize f1(x , y) = −2x + y
minimize f2(x , y) = 2x + y

s.t.
0 , −x + y − 1
0 , x + y − 7

x � [0, 5], y � [0, 3]

Kita test problem:

minimize f1(x , y) = −x2 + y
minimize f2(x , y) = (1�2)x + y + 1

s.t.
0 , (1�6)x + y − 13�2
0 , (1�2)x + y − 15�2

0 , 5x + y − 30
xy , 0

Osyczka test problem:

minimize f1(x , y) = x + y2

minimize f2(x , y) = x2 + y
s.t.

0 , −x − y + 12

0 , x2 + 10x − y2 + 16y − 80
x � [2, 7], y � [5, 10]

Osyczka test problem:

minimize f1(x) = −(25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4 − 4)2 + (x5 − 1)2

minimize f2(x) = x21 + x
2
2 + x

2
3 + x

2
4 + x

2
5 + x

2
6

s.t.
0 , x1 + x2 − 2
0 , 6 − x1 − x2
0 , −2 − x2 + x1
0 , −2 − x1 + 3x2

0 , −4 − (x3 − 3)2 − x4
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0 , (x5 − 3)2 − x6 − 4
x1 , x2 , x6 � [0, 10], x3 , x5 � [1, 5], x4 � [0, 6]

Tanaka test problems:

minimize f1(x , y) = x
minimize f2(x , y) = y

s.t.

0 � −x2 − y2 + 1 + (a cos(b arctan(x�y))

0 , (x − 0.5)2 + (y − 0.5)2 − 0.5
0 , x , y � π

Tanaka with a = 0.1 and b = 16
Tanaka with a = 0.1 and b = 32
Tanaka(abs) with a = 0.1 and b = 16
Tanaka(abs) with a = 0.1 and b = 32
Deeper Tanaka with a = 0.1(x2 + y2 + 5xy) and b = 32
Non-periodic Tanaka with a = 0.1(x2 + y2 + 5xy) and b = 8(x2 + y2)

Fig. 16 Pareto front achieved by MOSS-II on Tanaka, Tanaka problems

Fig. 17 Pareto front achieved by MOSS-II on deeper Tanaka, non-periodic Tanaka problems
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Fig. 18 Pareto front achieved by MOSS-II on Tanaka abs. a = 0.1 b = 16 and Tanaka abs
a = 0.1 b = 32 problems

TBU test problem:

minimize f1(x , y) = 4x2 + 4y2

minimize f2(x , y) = (x − 5)2 + (y − 5)2

s.t.

(x − 1)2 + y2 − 25 � 0

−(x − 8)2 − (y + 3)2 + 7.7 � 0
−15 � x , y � 30

Deb-Gupta test problem:

minimize f1(x) = x21
minimize f2(x) = h(x1) +G(x)S(x1)

s.t.
g j(x) , 0, j = 1, . . . ,m

Fig. 19 Pareto front achieved by MOSS-II on TBU and Deb-Gupta problems



 R.P. Beausoleil

where,

h(x1) = 1 − x21 , G(x) =
5

!
i=2

50x2i , S(x1) =
1

0.2 + x1
+ x21

0 � x1 � 1, −1 � xi � 1

Test. g1(x) = 0.2x1 + x2 − 0.1

Viennet test problem:

minimize f1(x , y) =
(x − 2)2

2
+
(y + 1)2

13
+ 3

minimize f2(x , y) =
(x + y − 3)2

175
+
(2y − x)2

17
− 13

minimize f3(x , y) =
(3x − 2y + 4)2

8
+
(x − y + 1)2

27
+ 15

s.t.
y < −4x + 4
x � −1
y � x − 2
−4 � x , y � 4

Tamaki test problem:
maximize f1(x , y, z) = x
maximize f2(x , y, z) = y
maximize f2(x , y, z) = z

s.t.

x2 + y2 + z2 � 1
0 � x , y, z � 4

Fig. 20 Pareto front achieved by MOSS-II on Viennet and Tamaki problems
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6.6 Quantitative Study of Constrained Problems

Now we concentrate our study on several constrained test problems proposed by
K. Deb in []. We study the performance of our approach on test functions from
CTP to CTP, these problems present difficulties near the Pareto-optimal front and
also in the entire search space. In all problems, five decision variables are used.

In this experiment the parameter maxiter was set equal to , the other param-
eters were taken as above. Twenty simulation runs were performed for each problem.

Test Problems:

Problem CTP:

minimize f1(x) = x1,
minimize f2(x) = g(x) exp(− f1�g(x)),

s.t.
c j = f2 − aj exp(−b j f1(x)) , 0, j = 1, 2, 3, 4
x1 � [0, 1], −5 � xi � 5, (i = 2, 3, 4, 5)

where

a1 = 0.909, a2 = 0.823, a3 = 0.760, a4 = 0.719
b1 = 0.525, b2 = 0.276, b4 = 0.144, b4 = 0.074

In this problem one-fifth of the solutions lie on the boundary of the constrained
Pareto-optimal set, the rest on the constraints.

Problems CTP until CTP:

minimize f1(x) = x1 ,
minimize f2(x) = g(x)(1 − f1(x)�g(x)).

s.t.
c(x) = cos(θ)( f2(x) − e) − sin(θ) f1(x) ,

a� sin(bπ(sin(θ)( f2(x) − e) + cos(θ) f1(x))c)�d

x1 � [0, 1], −5 � xi � 5, (i = 2, 3, 4, 5)

The following parameters are used to define the problems:

CTP: θ = −0.2π, a = 0.2, b = 10, c = 1, d = 0.5, e = 1.
CTP: a = 0.1, d = 6, the others as above.
CTP: a = 0.75, the others as above.
CTP: c = 2, the others as above.
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For the above problems, the Pareto-optimal solutions lie on the straight line
( f2(x) − e) cos(θ) = f1(x) sin(θ).

CTP: θ = 0.1π, a = 40, b = 5, c = 1, d = 2, e = −2.

In this test problem, the Pareto-optimal region corresponds to all solutions sat-
isfying the following inequalities 1 � (( f2 − e) sin(θ) + f1(x) cos(θ)) � 2.

CTP: θ = −0.05π, a = 40, b = 5, c = 1, d = 6, e = 0.

The Pareto-optimal region is a disconnected set of the unconstrained Pareto-
optimal feasible region. For more details about the above test functions see Deb [].

The function g(x) = 41 +"5
i=1(x2i − 10 cos(2πxi)) was used in our experiment.

A knowledge of the relations that satisfy the solutions of the Pareto-optimal set
permits one to obtain a measure of the convergence property of our approximations
in the following way: for each simulation run, using the above relations we can calcu-
late how far each solution lies from the Pareto-optimal set (a deviation). Hence it is
easy to calculate the mean of the deviations for each simulation run as a convergence
measure, and finally we obtain the maximum, minimum, and the median of these
measures as an overall convergence measure.

Figures – illustrate our approximations of the above test problems. The
Pareto fronts achieved correspond with the median of our simulation runs for the
convergence measure.

Figure  shows the approximation to the Pareto-optimal front for CTP and
CTP. MOSS-II is able to find solutions in all fronts for the CTP problem, and for
the CTP it found solutions in all disconnected regions, showing good convergence
and distributed solutions.

MOSS-II is able to find a very close approximation to the true Pareto-optimal
front in each region of the CTP (Fig. ) problem. Problem CTP did not cause
difficulty for MOSS-II, which obtained close convergence to the true Pareto-optimal
front and well-distributed solutions.

Fig. 21 Pareto front achieved by MOSS-II for CTP, CTP
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Fig. 22 Pareto front achieved by MOSS-II for CTP, CTP

Fig. 23 Pareto front achieved by MOSS-II for CTP, CTP

Fig. 24 Pareto front achieved by MOSS-II on CTP

Figure  shows the approximations for CTP and CTP. The non-uniformity
in spacing of the Pareto-optimal solutions for CTP presents no great difficulty to
MOSS-II; it was able to find a good approximation. In the CTP problem, observe
that MOSS-II was able to converge to the right feasible patch and close to the true
Pareto-optimal front.
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Perpendicular infeasible patches caused no difficulty for MOSS-II (Fig. ).
Tables  and  summarize the results explained above and illustrated in the figures.
Overall, the median of the convergence measure and the spacing are close to the
value zero, indicating that the solutions found lie close to the Pareto-optimal fronts
and with well- distributed solutions. The maximum extension front shows evidence
that in general, MOSS-II was able to find solutions in all fronts. Also, a reasonable
number of solutions was obtained to each problem in a very good computation time.

The box-plots in Fig.  illustrate the results given in the above tables for the
convergence measure and spacing measure.

Figure  shows that the median of the convergence measure and the spacing
measure in each problem are close to zero, and the dispersion around the median in
all cases is small, showing that MOSS-II performance was consistent.

Table 3 MOSS performance for constrained problems

Problems Convergence Spacing
Maximum Minimum Median Maximum Minimum Median

CTP 0.097 0.066 0.084 0.006 0.002 0.003
CTP 0.650 0.002 0.003 0.016 0.002 0.003
CTP 0.116 0.017 0.028 0.063 0.003 0.043
CTP 0.764 0.075 0.098 0.060 0.000 0.004
CTP 0.145 0.046 0.052 0.040 0.014 0.038
CTP 0.346 0.227 0.306 0.548 0.007 0.010
CTP 4.933 0.001 0.001 3.947 0.950 1.022

Table 4 MOSS performance for constrained problems

Problems Maximum extension front Cardinality
Maximum Minimum Median Maximum Minimum Median

CTP 0.581 0.561 0.568 100 63 68
CTP 1.000 0.828 0.841 100 44 49
CTP 0.900 0.627 0.892 19 14 15
CTP 1.017 0.763 0.893 100 9 14
CTP 0.983 0.667 0.819 93 22 38
CTP 2.799 1.541 1.685 100 77 100
CTP 3.947 0.950 1.022 100 40 43

Time
Maximum Minimum Median

CTP 16 7 10
CTP 36 2 14
CTP 31 8 22
CTP 15 9 14
CTP 30 10 9
CTP 14 6 9
CTP 10 3 5
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Fig. 25 Box plot representing the distribution of the convergence measure, and spacing mea-
sure onCTPproblems, from left to right CTP1 = 1, CTP2 = 2, CTP3 = 3, CTP4 = 4, CTP5 = 5,
CTP6 = 6, and CTP7 = 7

6.7 Results

Our approach has been executed for different types of problems with different com-
plexities, convex and non-convex search spaces, Pareto fronts with a set of discrete
points, disconnected Pareto curves, linear and non-linear constraints. The aimwas to
improve the first approach to solving problems with more variables, more objective
functions, and with constrained problems. We believe that MOSS-II achieved this.

MOSS-II has incorporated new features to obtain different resolutions in the dis-
tribution of solutions, and also in the stop condition.

It is important to highlight that MOSS-II can solve all the above problems effi-
ciently, setting the parameter maxiter equal to , and the rest as a set of invariant
parameters, as shown above.

The results illustrated show that MOSS-II achieved a good approximation to fea-
sible Pareto-optimal fronts in all test problems with a widely distributed set of solu-
tions.

7 Conclusions

In these experiment the first TS phase was shown to be useful in generating an initial
good Pareto frontier and introduce diversity in the search process. The embedded
convex combinations in the tabu phase between points of the trial solution set S and
points of the reference set R, improve the tabu phase of MOSS. Convex combinat-
ions in continuous problems seem to be a good mechanism to generate new Pareto
points. A good approximation to the Pareto frontier was obtained in only a few it-
erations. A Kramer Choice Function seems a good optimality principle to separate
the reference set of current Pareto solutions. Different metrics and different forbid-
den mechanisms are used to construct diverse subsets of points to obtain a balance
between intensification and diversification. Our reference set of points, in which all
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points are nondominated solutions, permits the use of a simple constraint-handling
mechanism with good performance and reasonable computation time.

Sixty different test problems were solved using the proposed approach, and are
incorporated into a library, available with an executable code for our approach at
rbeausol@icmf.inf.cu.

The proposed approach seems to be a viable strategy to solve unconstrained and
constrained multiobjective nonlinear problems.
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Abstract

Thenearest-neighbour (NN) classifier has long been used in pattern recognition, ex-
ploratory data analysis, and data mining problems. A vital consideration in obtain-
ing good results with this technique is the choice of distance function, and corres-
pondingly which features to consider when computing distances between samples.
In this chapter, a new ensemble technique is proposed to improve the performance of
NN classifiers.The proposed approach combines multiple NN classifiers, where each
classifier uses a different distance function and potentially a different set of features
(feature vector). These feature vectors are determined for each distance metric using
a Simple Voting Scheme incorporated in Tabu Search (TS). The proposed ensemble
classifier with different distance metrics and different feature vectors (TS–DF/NN)
is evaluated using various benchmark data sets from the UCI Machine Learning
Repository. Results have indicated a significant increase in the performance when
compared with various well-known classifiers. The proposed ensemble method is
also compared with an ensemble classifier using different distance metrics but with
the same feature vector (with or without Feature Selection (FS)).

Key words: Nearest Neighbour, Tabu Search, Ensemble Classifier, Feature Selection

1 Introduction

The nearest-neighbour (NN) classifier has long been used in pattern recognition,
exploratory data analysis, and data mining problems. Typically, the k nearest neigh-
bours of an unknown sample in the training set are computed using a predefined
distance metric to measure the similarity between two samples. The class label of
the unknown sample is then predicted to be the most frequent one occurring in the
k nearest-neighbours.TheNNclassifier is well explored in the literature and has been
proved to have good classification performance on a wide range of real-world data
sets [–, ].

The idea of using multiple classifiers instead of a single best classifier has aroused
significant interest during the last few years. In general, it is well known that an en-
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semble of classifiers can provide higher accuracy than a single best classifier if the
member classifiers are diverse and accurate. If the classifiers make identical errors,
these errors will propagate and hence no accuracy gain can be achieved in combining
classifiers. In addition to diversity, accuracy of individual classifiers is also important,
since too many poor classifiers can overwhelm the correct predictions of good clas-
sifiers []. In order to make individual classifiers diverse, three principle approaches
can be identified:

• Each member of the ensemble is the same type of classifier, but has a different
training set. This is often done in an iterative fashion, by changing the probability
distribution from which the training set is resampled. Well-known examples are
bagging [] and boosting [].

• Training multiple classifiers with different inductive biases to create diverse clas-
sifiers, e.g. “stacking” approach [].

• Using the same training data set and base classifiers, but employing feature se-
lection so that each classifier works with a specific feature set and therefore sees
a different snapshot of the data. The premise is that different feature subsets lead
to diverse individual classifiers, with uncorrelated errors.

Specific examples of these three different approach can be found in the literature re-
lating to NN techniques. Bao et al. [] followed the second route, and proposed an
ensemble technique where each classifier used a different distance function. How-
ever, although this approach does use different distance metrics, it uses the same set
of features, so it is possible that some errors will be common, arising from features
containing noise, which have high values in certain samples. An alternative approach
is proposed by Bay [] following the third route: each member of the ensemble uses
the same distance metric but sees a different randomly selected subset of the features.

Here we propose and evaluate a method which combines features of the second
and third approaches, with the aim of taking some initial steps towards the automatic
creation and adaptation of classifiers tuned to a specific data set. Building on [, ],
we explore the hypothesis that the overall ensemble accuracy can be improved if the
choices of subsets arise from

• iterative heuristics such as tabu search [] rather than random sampling
• different distance metrics rather than single distance metric.

Furthermorewehypothesise that these choices are best co-adapted, rather than learnt
separately, as co-adaptation may permit implicit tackling of the problem of achiev-
ing ensemble diversity. In order to do this, and to distinguish the effects of different
sources of benefits, a novel ensemble classifier is proposed that consists of multiple
NN classifiers, each using a different distance metric and a feature subset derived
using tabu search. To increase the diversity, a simple voting scheme is introduced
in the cost function of Tabu Search. The proposed ensemble NN classifier (DF–TS–
NN) is then compared with various well-known classifiers.

The rest of this chapter is organized as follows. Section  provides review on Fea-
ture Selection Algorithms. Section  describes a proposedmultiple distance function
ensemble classifier, followed by experiments in Section . Sect.  concludes the paper.
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2 Feature Selection Algorithms (a Review)

The term feature selection refers to the use of algorithms that attempt to select the
best subset of the input feature set. It has been shown to be a useful technique for
improving the classification accuracy of NN classifiers [, ]. It produces savings in
the measuring features (since some of the features are discarded) and the selected
features retain their original physical interpretation []. Feature selection is used in
the design of pattern classifiers with three goals [, ]:

. to reduce the cost of extracting features
. to improve the classification accuracy
. to improve the reliability of the estimation of performance.

The feature selection problem can be viewed as a multiobjective optimization
problem since it involvesminimizing the feature subset andmaximizing classification
accuracy.Mathematically, the feature selection problem can be formulated as follows.
Suppose X is an original feature vector with cardinality n and X̄ is the new feature
vector with cardinality n̄, X̄ � X, J(X̄) is the selection criterion function for the
new feature vector X̄ . The goal is to optimize J(). The problem is NP-hard [, ].
Therefore, the optimal solution can only be achieved by performing an exhaustive
search in the solution space []. However, an exhaustive search is feasible only for
small n. A number of heuristic algorithms have been proposed for feature selection
to obtain near-optimal solutions [, , , –].

The choice of an algorithm for selecting the features from an initial set depends
on n. The feature selection problem is said to be of small scale, medium scale, or
large scale for n belonging to the intervals [,], [,], or [,6], respectively [,
]. Sequential Forward Selection (SFS) [] is the simplest greedy sequential search
algorithm. Other sequential algorithms such as Sequential Forward Floating Search
(SFFS) and Sequential Backward Floating Search (SBFS) are more efficient than SFS
and usually find fairly good solutions for small and medium scale problems [].
However, these algorithms suffer from the deficiency of converging to local optimal
solutions for large scale problems when n � 100 [, ]. Recent iterative heuristics
such as tabu search and genetic algorithms have proved to be effective in tackling this
category of problems, which are characterized by having an exponential and noisy
search space with numerous local optima [, , , ].

Tabu search (TS) has been applied to the problem of feature selection by Zhang
and Sun []. In their work, TS performs the feature selection in combination with an
objective function based on theMahalanobis distance. This objective function is used
to evaluate the classification performance of each subset of the features selected by
the TS.The feature selection vector in TS is represented by a binary string where a  or
 in the position for a given feature indicates the presence or absence of that feature
in the solution. Their experimental results on synthetic data have shown that TS not
only has a high probability of obtaining an optimal or near-optimal solution, but also
requires less computational effort than other suboptimal and genetic algorithmbased
methods. TS has also been successfully applied in other feature selection problems
[, , ].
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3 Proposed Ensemble Multiple Distance Function Classifier (DF–TS–1NN)

In this section, we discuss the proposed ensemblemultiple distance functionTS/NN
classifier (DF–TS–NN). The use of n classifiers, each with a different distance func-
tion and potentially different set of features is intended to increase the likelihood that
the errors of individual classifiers are not correlated. In order to achieve this it is nec-
essary to find appropriate feature sets within the context of the ensemble as a whole.
However with F features the search space is of size 2Fċn . Initial experiments showed
that in order to make the search more tractable it is advantageous to hybridize the
global nature of TS in the whole search space, with local search acting only within
the sub-space of the features of each classifier. Figure  shows the training phase of
the proposed classifier.

During each iteration, N random neighbours withHamming Distance  from the
current feature set FVi are generated for each classifier i � �1, . . . , n	 and evaluated
using the NN error rate for the appropriate distance metric Di. From the set of N
neighbours, theM best are selected for each classifier. AllMn possible combinations

Fig. 1 Training phase of proposed DF–TS–NN classifier

1 In this study M = 2, n = 5, and N =

�

F , where F = Total Number of Features
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are then evaluated using a simple voting scheme (SVS) and the best is selected to go
forward to the next iteration. Thus, the feedback from the SVS allows TS to search it-
eratively for combinations of feature vectors that improve the classification accuracy.
Implicitly it seeks feature vectors for the different distance measures whereby the er-
rors are not correlated, and so provides diversity. By using n distance functions, n
feature vectors are obtained using TS in the training phase. In the testing phase, the
n NN classifiers with their different feature vectors are combined as shown in Fig. .

In the following subsections, feature selection using TS and the various distance
metrics described in this paper are discussed as they are at the heart of the proposed
algorithm.

3.1 Distance Metrics

The following five distance metrics are used for NN classifiers. All metrics are widely
used in the literature.

• Squared Euclidean Distance: E = "m
i=1(xi − yi)2

• Manhattan Distance: M = "m
i=1(xi − yi)

• Canberra Distance: C = "m
i=1(xi − yi)�(xi + yi)

• Squared chord distance: Sc = "m
i=1(
 
xi −

 yi)2

• Squared Chi-squared distance: Cs = "m
i=1(xi − yi)2�(xi + yi)

where x and y are the two input vectors and m is the number of features.

Fig. 2 Testing Phase
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3.2 Feature Selection and Diversity using Tabu Search

TS was introduced by Glover [, ] as a general iterative metaheuristic for solving
combinatorial optimization problems. TS is conceptually simple and elegant. It is
a form of local neighbourhood search which starts from an initial solution, and then
examines feasible neighbouring solutions. It moves from a solution to its best admis-
sible neighbour, even if this causes the objective function to deteriorate. To avoid cyc-
ling, solutions that were recently explored are declared forbidden or tabu for a num-
ber of iterations. The tabu list stores a characterization of the moves that led to those
solutions. The tabu status of a solution is overridden when certain criteria (aspira-
tion criteria) are satisfied. Sometimes intensification and diversification strategies are
used to improve the search. In the first case, the search is accentuated in promising
regions of the feasible domain. In the second case, an attempt is made to consider so-
lutions over a broader area of the search space and so provide it with a global nature.
The flow chart of the TS algorithm is given in Table .

Table 1 Algorithm Tabu Search (TS)
Ω : Set of feasible solutions
S : Current Solution
S� : Best admissible solution
Cost : Objective function
N(S) : Neighbourhood of solution S
V� : Sample of neighbourhood solutions
T : Tabu list
AL : Aspiration Level

Begin
. Start with an initial feasible solution S � Ω.
. Initialize tabu list and aspiration level.
. For fixed number of iterations Do
. Generate neighbour solutions V� ⊂ N(S).
. Find best S� � V�.
. If move S to S� is not in TThen
. Accept move and update best solution.
. Update tabu list and aspiration level.
. Increment iteration number.
. Else
. If Cost(S�) < ALThen
. Accept move and update best solution.
. Update tabu list and aspiration level.
. Increment iteration number.
. End If
. End If
. End For

End



 Proposed Ensemble Multiple Distance Function Classifier (DF–TS–NN) 

The size of the tabu list can be determined by experimental runs, watching for the
occurrence of cycling when the size is too small, and the deterioration of solution
quality when the size is too large []. Suggested values of tabu list include Y ,

 
Y

(where Y is related to problem size, e.g. number of modules to be assigned in the
quadratic assignment problem (QAP), or the number of cities to be visited in the
travelling salesman problem (TSP), and so on) [].

Objective Function
Asimple voting scheme is used in each instance of n classifiers.Theobjective function
is the number of instances incorrectly classified using a simple voting scheme. The
objective is to minimize

Cost =
S
!
i=1

Ci ()

where S is the number of samples, Ci = 1 if instance is classified incorrectly after
simple voting in n classifiers, else Ci = 0.

Initial Solution
The feature selection vector is represented by a / bit string where  indicates that
the feature is not included in the solution while  indicates that it is. All features are
included in the initial solution.

Neighbourhood Solutions
During each iteration, N random neighbours with Hamming Distance  (HD) are
generated for the feature set for each classifier and evaluated using the NN error rate
with the appropriate distance metric as the cost function. Neighbours are generated
by randomly adding or deleting a feature from the feature vector of size F. Among the
neighbours, M best solutions are selected, yielding M possible classifiers for each of
the n distance metrics. The Mn resulting ensembles are then evaluated using Equa-
tion () and the one with the best cost (i.e. the solution which results in the minimum
value of Equation ()) is selected and considered as a new current solution for the next
iteration. Note that these ensembles may be quickly evaluated since we pre-computed
the decision of each of the M 
 n classifiers during the local search phase. Figure 
shows an example showing neighbourhood solutions during one iteration. Let us as-
sume that the cost of the three different feature subsets in the solution are 50, 48,
and 47 using distance metrics 1, 2, and 3, respectively. N = 4 neighbours are then
randomly generated for each distance metric using HD1. M = 2 best solutions are
selected and Mn = 23 = 8 solutions are evaluated using the ensemble cost function.
The best solution is then selected for the next iteration.

Tabu Moves
A tabu list is maintained to avoid returning to previously visited solutions. In our
approach, if an ensemble solution (move) is selected at iteration i, then selecting the
same ensemble solution (move) for T subsequent iterations (tabu list size) is tabu.
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Fig. 3 An example showing neighbourhood solutions during one iteration of the proposed TS
method. n = 3, N = 4, andM = 2

Aspiration Criterion
The aspiration criterion is a mechanism used to override the tabu status of moves. It
temporarily overrides the tabu status if themove is sufficiently good. In our approach,
if an ensemble solution is selected at iteration i and this move results in a best cost
for all previous iterations, then that solution is selected even if that feature is in the
tabu list.

Termination Rule
Themost commonly used stopping criteria in TS are
• after a fixed number of iterations
• after some number of iterations when there has been no increase in the objective

function value
• when the objective function reaches a pre-specified value.
In this work, the termination condition is a fixed number of iterations.
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4 Experiments

To evaluate the effectiveness of our method, extensive experiments were carried out,
and comparisons with several methods performed.

4.1 Methods

Theproposed (DF–TS–NN) algorithm is compared with the following methods. All
methods are implemented using the WEKA library [].

• Decision Tree Method (C.): A classifier in the form of a tree structure, where
each node is either a leaf node or a decision node [, ].

• Decision Table (DT): It uses a simple decision table majority classifier [].
• Random Forest (RF): Ensemble Classifier using a forest of random trees [].
• Naive Bayes Algorithm (NBayes): The Naive Bayes Classifier technique is based

on Bayes’ theorem. Despite its simplicity, Naive Bayes can often outperform nu-
merous sophisticated classification methods [].

• Bagging: Amethod for generatingmultiple versions of a predictor and using these
to get an aggregated predictor (ensemble) []. C. is used as base classifier.

• AdaBoost: A meta-algorithm for constructing ensembles which can be used
in conjunction with many other learning algorithms to improve their perform-
ance []. C. is used as base classifier.

In addition, we compare the following variations of the proposed ensemble algo-
rithms:

. DF–NN: Ensemble Classifier using NN classifiers with each classifier having
different distance metrics (DF) and without FS.

. DF–TS–NN: Ensemble Classifier using NN classifiers, each using a different
distance metric. FS using TS is applied independently for each data set.

. DF–TS–NN: Ensemble Classifier as above but with a single common feature
set selected by TS. Subsets for various distance metrics are derived using TS.

. DF–TS–NN: Proposed Ensemble Classifier. Different feature subsets for each
classifier derived simultaneously using TS.

4.2 Data Sets Descriptions and Experimental Setup

We have performed a number of experiments and comparisons with several bench-
marks from the UCI [] in order to demonstrate the performance of the proposed
classification system. A short description of the benchmarks used, alongwith TS run-
time parameters are given in Table .

The tabu list size and number of neighbourhood solutions are determined using
the following equation:

T = N = ceil (
 
F) ()

where T is the tabu list size, N is the number of neighbourhood solutions and F is
the number of features.
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Table 2 Data sets description. P = Prototypes, F = Features, C = Classes, T = Tabu list size, N =
Number of neighbourhood solutions

Name P F C T N
Statlog Diabetes     
Statlog Heart     
Statlog Australian     
Statlog Vehicle     
Statlog German     
Breast Cancer     
Ionosphere     
Sonar     
Musk     

In all data sets, B-fold cross-validation has been used to estimate error rates [].
For B-fold CV, each data set is divided into B blocks using B– blocks as a training
set and the remaining block as a test set. Therefore, each block is used exactly once
as a test set. Each experiment was run  times using different random 10-CV par-
titions and the results were averaged over the  runs [].

Thenumber of iterations for FS using TS is  for all data sets, whichwas chosen
after preliminary experimentation.

In order to offset any bias due to the different range of values for the original
features in the NN classifier, the input feature values are normalized over the range
[,] using Equation () []. Normalizing the data is important to ensure that the
distance measure allocates equal weight to each variable. Without normalization, the
variable with the largest scale will dominate the measure.

x′i , j = (
xi , j −mink=1.. .n x(k , j)

maxk=1.. .n x(k , j) −mink=1.. .n x(k , j)
7 10) ()

where xi , j is the jth feature of the i-th pattern, x′i , j is the corresponding normalized
feature, and n is the total number of patterns.

4.3 Comparison of Different ways of Creating Feature Sets

Table  shows the classification accuracy using various distance functions within sin-
gle classifiers, and for the ensemble technique without feature selection. As can be
seen, on some data sets there is a wide discrepancy between the accuracy obtained
with different distance metrics. With the simple voting scheme used here the votes of
the less accurate classifiers can dominate, so that the ensemble performs worse than
the best single classifier on those datasets.

Table  shows the classification accuracy using various distance functions and
with FS and compared with the various variations of the proposed method. Compar-
ing the results for individual classifiers with feature selection (�E,M ,C,Cs , Sc	) to
those without (Table ) it can be seen that the accuracy is increased in every case –
a nice example of the value of performing feature selection.
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Table 3 Classification accuracy (%) using individual classifiers and various variations of the
proposed classifier. M = Manhattan, E = Euclidean, C = Canberra, Cs = Chi-squared, Sc =

Squared-chord

Data Set E M C Cs Sc DF–NN
Australian 82.1 82.0 .. 82.3 82.4 84.0
Breast Cancer 95.3 95.2 95.2 95.4 95.4 ..
Diabetes .. 69.7 66.0 69.4 69.6 70.2
German 70.9 71.1 70.2 70.5 70.0 ..
Heart 78.1 79.6 .. 79.0 78.3 79.0
Ionosphere 87.0 90.7 .. 89.1 89.0 90.3
Musk 85.4 83.3 84.0 .. 86.0 86.0
Sonar 82.5 84.6 .. 86.0 86.4 85.4
Vehicle 69.6 69.5 69.6 70.4 70.4 ..

Turning to the use of feature selection to derive a common subset for all clas-
sifiers (DF–TS–NN), not only do we see improved performance compared to the
same algorithm without feature selection (DF–NN in Table ), but now the mean
accuracy is higher than the best individual classifier on most data sets. This is a good
example, which indicates that in order for ensembles to work well, the member clas-
sifiers should be accurate.

The other condition for ensembles to work well is diversity, and the performance
improves further when feature selection is done independently for each classifier
(DF–TS–NN), as they can now use potentially different feature sets. However, this
approach only implicitly (at best) tackles the diversity issue, and the performance is
further increased when different feature subsets co-adapt, so that each feature set is
optimized in the context of the ensemble as whole (DF–TS–NN). In all but two
cases our proposed method (DF–TS–NN) outperforms the others and the means
differ by more than the combined standard deviations, indicating a high probability
that these are truly significantly different results. In the two caseswhereDF–TS–NN

Table 4 Mean and standard deviation of classification accuracy (%) using individual classifiers
and variations of the proposed classifier.M = Manhattan, E = Euclidean, C = Canberra, Cs =

Chi-squared, Sc = Squared-chord

Data Set E M C Cs Sc DF–TS–NN DF–TS–NN DF–TS–NN
Australian 86.5 88.1 86.4 85.9 86.8 89.0(0.61) 85.1(0.45) ..(0.48)
Breast Cancer 97.4 97.8 97.5 97.4 97.5 97.9(0.22) 97.6(0.32) ..(0.25)
Diabetes 71.7 70.8 71.1 70.1 70.3 ..(0.71) 72.5(0.82) 74.5(0.85)
German 72.3 73.8 74.1 74.5 73.4 76.5(0.63) 74.2(0.71) ..(0.62)
Heart 83.2 82.6 82.2 84.0 83.0 85.0(1.11) 83.8(1.45) ..(0.90)
Ionosphere 93.3 95.4 96.2 91.1 94.3 95.3(0.41) 95.1(0.37) ..(0.52)
Musk 91.2 89.9 89.8 92.3 91.8 91.6(0.67) 92.3(0.82) ..(0.72)
Sonar 91.0 90.9 93.1 91.5 93.0 93.5(0.82) 93.4(1.00) ..(1.09)
Vehicle 73.9 75.1 74.2 74.9 74.2 ..(0.60) 74.5(0.59) 76.9(0.61)
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has a higher observedmean thanDF–TS–NN, the differences are less than the stan-
dard deviation of either set of results, so they are almost certainly not significant.

Table  shows the number of features used by the proposed classifier for various
data sets. Different features have been used by the individual classifiers that are part
of the whole ensemble classifier, thus increasing diversity and producing an over-
all increase in the classification accuracy. FCommon represents those features that are
common for ensemble classifier, i.e. that are used by each classifier. As can be seen
onmost data sets there are few, if any, features that are used by every classifier.This is
a cause of diversity among the decisions of the different classifiers, and the fact that
these feature sets are learnt rather than simply assigned at random is responsible for
the different classifiers all remaining accurate – the other pre-requisite for successful
formation of an ensemble.

4.4 Comparison with other Algorithms

Table  shows results of a comparison of classification accuracy (in %) between the
proposed DF–TS–NN classifier and others for different data sets. The proposed al-
gorithm achieved higher accuracy on all data sets except Diabetes.

Table5 Total number of features used by proposed classifier. FT = Total available features, FM =
Feature usingManhattandistance, FE = Featuresusing Euclidean distance, FC = Features using
Canberra distance, FCs = Features using chi-squared distance, FSc = Feature using squared-
chord distance.

Data Set FT FE FM FC FCs FSc FCommon FEnsemble

Australian 14 5 9 9 7 5 1 14
Breast Cancer 32 19 13 15 21 13 3 28
Diabetes 8 3 5 1 3 5 0 8
German 20 9 13 13 13 15 3 19
Heart 13 10 8 10 6 8 2 13
Ionosphere 34 11 13 15 11 11 2 26
Musk 166 84 74 76 86 90 0 124
Sonar 60 31 33 27 35 33 0 58
Vehicle 18 9 11 13 7 13 0 17

Table 6 Average classification accuracy (%) using different classifiers. DT = Decision table.
RF = Random forest

Data Set C4.5 DT RF NBayes Bagging AdaBoost NN DF–TS–NN
Australian 84.3 84.7 86.1 77.1 86.0 85.0 79.6 ..
Breast Cancer 93.6 93.3 95.9 93.3 95.35 96.1 95.4 ..
Diabetes 74.3 74.1 74.7 75.6 .. 72.4 70.3 74.5
German 71.6 72.5 74.7 74.5 74.6 72.50 70.9 ..
Heart 78.2 82.3 80.2 84.0 80.5 79.2 75.7 ..
Ionosphere 89.8 94.2 95.4 92.8 92.2 90.3 87.5 ..
Musk 82.7 80.8 87.8 73.9 88.2 90.0 85.6 ..
Sonar 73.0 72.6 80.3 67.9 78.5 80.1 86.5 ..
Vehicle 72.7 66.4 74.7 45.4 74.5 76.4 69.7 ..
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• For Australian, German and Ionosphere data sets there is improvement of 1.98%,
5.06% and 0.4% respectively when compared with the best of the other methods
(Random Forest Classifier).

• For Heart, there is an improvement of 3.3% when compared with the best of the
other methods (Naive Bayes Classifier).

• For Vehicle, Breast Cancer and Musk data sets, there is an improvement of 0.5%,
0.76%, and 4.55% respectivelywhen comparedwith the best of the othermethods
(AdaBoost).

• For Sonar, there is an improvement of 7.8% when compared with the best of the
other methods (NN).

• Since Diabetes has only eight features, the proposed algorithm is unable to com-
bine the benefits of feature selection and ensemble classifiers using different dis-
tance metrics.

As can be seen, the proposed method performs consistently well and outperforms
other methods on all but one data set. Moreover, for the other methods there is con-
siderable variation in performance according to how well the indicative bias of each
method suits each data set. It is worth noting that the two methods of producing en-
sembles always improve the performance compared to the base C. classifiers, apart
from Ada-Boost on the Diabetes data set.

Figure  shows the standard deviation obtained over  runs of random -fold
cross-validation of each data set for different algorithms. From the graph, it is clear
that the standard deviation of the proposed classifier compares favorably with other

Fig. 4 Standard deviation for different algorithms on various data sets
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algorithms, and is usually less than the observed difference in mean accuracies, sug-
gesting that these are significant. In particular it is always less than that of the two
other boosting algorithms. Thus if we think in terms of the Bias-Variance decompo-
sition of classifier errors, it might initially appear that both the bias and the variance
terms are reduced for this method, but this must be studied in more detail.

4.5 Analysis of Learning

Figures – show the classification accuracy (%) versus number of iterations for Aus-
tralian, Ionosphere and German data sets using one run of the solution search space
using TS. The figure clearly indicates that TS focuses on a good solution space. The
proposed TS algorithm progressively zooms towards a better solution subspace as
time elapses; a desirable characteristics of approximation iterative heuristics.

Fig. 5 Error rate vs number of iterations for Australian data set

Fig. 6 Error rate vs number of iterations for Ionosphere data set
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Fig. 7 Error rate vs number of iterations for German data set

5 Conclusions

A new ensemble technique is proposed in this paper to improve the performance of
NN classifiers.The proposed approach combines multiple NN classifiers, where each
classifier uses a different distance function and potentially a different set of features
(feature vector). These feature vectors are determined using a combination of Tabu
Search (at the level of the ensemble) and simple local neighbourhood search (at the
level of the individual classifiers).

We show that rather than optimizing the feature set independently for each dis-
tance metric, it is preferable to co-adapt them, so that each feature set is optimized
in the context of the ensemble as whole. This approach also implicitly deals with the
problem tackled by many authors, namely of how to find an appropriate measure for
the diversity of an ensemble so that it can be optimized. Our solution is to simply do
this explicitly by letting TS operate, using the ensemble error rate as its cost function.

The proposed ensemble DF–TS–NN classifier is evaluated using various bench-
mark data sets from theUCIMachine Learning Repository. Results indicate a signifi-
cant increase in performance compared with other different well-known classifiers.

This work is intended as a step towards the automatic creation of classifiers tuned
to specific data sets. Having done our initial “proof of concept”, the next stages of this
research programmewill be concernedwith automating the choice of distancemetric
and k for each of our k −NN classifiers. We will also consider ways of automatically
selecting subsets of the training examples to use for classification, as a way of tack-
ling the well-known scalability problems of NN as the number of training examples
increases.
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Abstract

In this work, we introduce a new parallel ant colony optimization algorithm based
on an ant metaphor and the crossover operator from genetic algorithms. The perfor-
mance of the proposedmodel is evaluated usingwell-knownnumerical test problems
and then it is applied to train recurrent neural networks to identify linear and non-
linear dynamic plants. The simulation results are compared with results using other
algorithms.

Keywords: Parallel Ant Colony Optimization, Hybrid Algorithms, Continuous Op-
timization, Recurrent Neural Network, System Identification

1 Introduction

There are many combinatorial optimization problems of the NP-hard type, and they
cannot be solved by deterministic methods within a reasonable amount of time. The
great difficulty of optimization problems encountered in practical areas such as pro-
duction, control, communication and transportation has motivated researchers to
develop new powerful algorithms. Therefore, several heuristics have been employed
to find acceptable solutions for difficult real-world problems. The most popular of
these new algorithms include genetic algorithms (GAs), simulated annealing (SA),
ant colony optimization (ACO), tabu search (TS), artificial immune system (AIS),
and artificial neural networks (ANNs) [–]. Although all of these algorithms con-
vergence to a global optimum, they cannot always guarantee optimum solutions to
the problem. Therefore, they are called approximate or heuristic algorithms.

The ACO algorithm is an artificial version of the natural optimization process
carried out by real ant colonies. The first ACO algorithm was proposed by Dorigo
et al. in , and was called an ant system (AS) [, ]. Real ants communicate with
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each other by leaving a pheromone substance in their path, and this chemical sub-
stance leads other ants. Thus, stimergy is provided and swarm intelligence emerges
in the colony behaviour. The main features of the algorithm are distributed compu-
tation, positive feedback and constructive greedy search. Since , several studies
have been carried out on newmodels of the ACO algorithm and their application to
difficult optimization problems. Some of these algorithms are known as AS with eli-
tist strategy (ASelit ), rank based version ofAS (ASrank ),MAX-MINAS and ant colony
system (ACS) [–]. In most application areas, these algorithms are mainly used for
optimization in discrete space [–]. In addition, different kinds of ant algorithms,
such as continuous ant colony optimization (CACO),API, continuous interacting ant
colony (CIAC) and touring ant colony optimization (TACO), have been introduced
for optimization in the continuous field [–].

It is known that there is a premature convergence (stagnation) problem in the
nature of ant algorithms []. Therefore, as the problem size grows, the ability of the
algorithm to discover the optimum solution becomes weaker. On the other hand,
when the problem size and number of parameters increase, parallel implementation
of the algorithm could give more successful results [, ]. Furthermore, ant colony
optimization approaches are population based and they are naturally suited to paral-
lel implementation [–]. So, these advantages lead us to consider a parallel version
of the ant algorithm.

In this work a parallel ant colony optimization (PACO) algorithm based on the
ant metaphor and the crossover operator of GAs is described. Our aim is to avoid
premature convergence behaviour of the ant algorithm and to benefit from the ad-
vantages of a parallel structure. The performance of the proposed PACO algorithm
is compared to that of the basic TS, parallel TS (PTS), GA and TACO algorithms for
several well-known numerical test problems.Then, it is employed to train a recurrent
neural network to identify linear and nonlinear dynamic plants. The second section
of the chapter presents information about parallel ant colony algorithms in the litera-
ture. In the third section, the basic principles of TACOalgorithms are introduced and
the proposedmodel is described. Simulation results obtained from the test functions
optimization and an application of PACO to training recurrent neural network are
given in the fourth section. The work is concluded in the fifth section.

2 Parallel Ant Colony Algorithms
There are a few parallel implementations of ant algorithms in the literature. The first
of these studies is that of Bolondi and Bondanza. They used fine-grained parallelism
and assigned each ant to a single processor. Due to the high overhead for communi-
cation, this approach did not increase performance with an increased number of pro-
cessors. Better results have been obtained with amore course-grained model [,].

Bullnheimer et al. propose two parallelization strategies, synchronous and par-
tially asynchronous implementations of the ant system []. In simulations made on
some TSP instances, it is shown that the synchronization and communication over-
head slows down the performance. For this reason, the asynchronous parallel version
outperforms the synchronous version as it is reduces the communication frequency.
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Stützle, using some TSP instances, empirically tests the simple strategy of exe-
cuting parallel independent short runs of aMAX-MIN ant system []. He compares
the solution quality of these short runs with the solution quality of the execution of
one long run whose running time equals the sum of the running times of the short
runs. He shows that using parallel independent runs with different initial solutions
is very effective in comparison with a single long run.

Talbi et al. implemented a synchronous master–worker model for parallel ant
colonies to solve the quadratic assignment problem []. At each iteration, the mas-
ter broadcasts the pheromone matrix to all the workers. Each worker receives the
pheromonematrix, constructs a complete solution by running an ant process, applies
a tabu search for this solution as a local optimization method and sends the solution
found to the master. According to all solutions, the master updates the pheromone
matrix and the best solution found, and then the process is iterated.

Michel et al. propose an island model approach inspired by GAs []. In this
approach every processor holds a colony of ants and in a fixed number of generations
each colony sends its best solution to another colony. If the received new solution is
better, then it becomes the new solution for the colony and pheromone updating
is done locally depending on this new solution. Thus, the pheromone matrices of
colonies may differ from each other.

Delisle et al. presented a sharedmemory parallel implementation of an ant colony
optimization for an industrial scheduling problem in an OpenMP environment [].

In another implementation, Krüger et al. indicate that it is better to exchange only
best solutions found so far than to exchange the whole pheromone matrix [].

Middendorf et al. show that information exchanges between colonies in small
quantities decrease the run time of the algorithm and improve the quality of the so-
lutions in multi-colony ant systems. They also conclude that it is better to exchange
local best solutions only with a neighbour in a directed ring and not too often, instead
of exchanging the local best solution very often and between all colonies [].

3 Touring Ant Colony Optimization and Proposed Parallel Model

3.1 Pheromone Based Feedback in Ant SystemMetaphor

Real ants are capable of finding the shortest path from their nest to a food source,
back or around an object. Also, they have the ability to adapt to changes in the envi-
ronment. Another interesting point is that ants are almost blind, in other words they
cannot see well enough to select directions to follow. Studies on ants show that their
ability to find the shortest path is the result of chemical communication among them.
They use a chemical substance called pheromone to communicate with each other.
This type of indirect interaction through modification of the environment, which is
called stimergy, is the main idea of ACO algorithms.

Ants deposit a certain amount of pheromone on their path while walking and
each ant probabilistically chooses a direction to follow. The probability degree of be-
ing the chosen direction depends on the pheromone amount deposited on that di-
rection. If the pheromone amount of all directions is equal, then all directions have
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the same probability of being preferred by ants. Since it is assumed that the speed of
all ants is the same and, therefore, all ants deposit the same amount of pheromone
on their paths, shorter paths will receive more pheromone per time unit. Conse-
quently, large numbers of ants will rapidly choose the shorter paths. This positive
feedback strategy is also called an auto-catalytic process. Furthermore, the quantity
of pheromone on each path decreases over time because of evaporation. Therefore,
longer paths lose their pheromone intensity and become less attractive as time passes.
This is called a pheromone-based negative feedback strategy.

If there are only a few ants, the auto-catalytic process usually produces a bad-
optimal path very quickly rather than an optimal one. Since there are many ants
searching simultaneously for the optimum path, the interaction of these auto-cata-
lytic processes causes the search to converge to the optimum path very quickly and
to finally find the shortest path between the nest and the food without getting stuck
in a sub-optimal path. The behaviour of real ant colonies when finding the shortest
path represents a natural adaptive optimization process.

The ant colony optimization algorithm is an artificial version of the natural op-
timization process carried out by real ant colonies as described above. A simple
schematic algorithm modeling the behaviour of real ant colonies can be summarized
as below:

BEGIN
Initialize
REPEAT
Generate the artificial paths for all ants
Compute the length of all artificial paths
Update the amount of pheromone on the artificial paths
Keep the shortest artificial path found up to now

UNTIL (iteration = maxiteration or a criterion is satisfied)
END.

3.2 Touring Ant Colony Optimization Algorithm

In this algorithm, a solution is a vector of design parameters which are coded as
a binary bit string. Therefore, artificial ants search for the value of each bit in the
string. The concept of the TACO algorithm is shown in Fig. .

At the decision stage for the value of a bit, ants use only the pheromone informa-
tion. Once an ant completes the decision process for the values of all bits in the string,

Fig. 1 An artifical path (solution) found by an ant
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it means that it has produced a solution to the problem.This solution is evaluated in
the problem and a numerical value showing its quality is assigned to the solution
using a function, often called the fitness function. With respect to this value, an arti-
ficial pheromone amount is attached to the links, forming the artificial way, between
the chosen bits. An ant on the nth bit position chooses the value of  or  for the
bit on the (n + 1)th position depending on the probability defined by the following
equation:

pi j(t) =
[τi j]α
2
"
j=1
[τi j]α

()

where pi j(t) is the probability associated with the link between bit i and j, τi j(t) is
the artificial pheromone of the link, α is a weight parameter. Artificial pheromone is
computed by the following formula:

Δτki j(t, t + 1) =
����
�
����

Q
Fk

if the ant k passes the link (i, j)

0 otherwise
()

where Δτki j is the pheromone quantity attached to the link (i, j) by the artificial ant
k, Q is a positive constant and Fk is the objective function value calculated using the
solution found by the ant k.

AfterM ants complete the search process and produce their paths, the pheromone
amount to be attached to the sub-path (0 � 1) between time t and (t+1) is computed
as

Δτi j(t, t + 1) =
M

!
k=1

Δτki j(t, t + 1) ()

The amount of pheromone on the sub-path (i, j) at the time (t + 1) is calculated
using the following equation:

τi j(t + 1) = ρτij(t) + Δτi j(t, t + 1) ()

where ρ is a coefficient called the evaporation parameter.

3.3 Parallel Ant Colony Optimization Algorithm

In this work, we introduce a hybrid algorithmmodel to avoid premature convergence
of ant behaviour and to obtain a robust algorithm. Generally, hybrid models utilize
the benefits of different algorithms. The proposed parallel ant colony optimization
(PACO) algorithm is based on the data structure of the TACO and the crossover
operator of GAs. We combine the convergence capability of the ant metaphor and
the global search capability of the genetic algorithm.
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In the PACO algorithm, each solution is represented by a binary vector of design
parameters and artificial ants search for the value of each bit in the string as TACO.
For this reason, the proposed algorithmcan search a sampled finite subset of continu-
ous space.

The flowchart and pseudocode of the proposedmodel is given in Fig.  and Fig. ,
respectively. In the model, different independent ant colonies are executed in paral-
lel. Each colony has a copy of the same search space with the same initial pheromone
quantities. However, it is possible to use different control parameter values for each
colony. As the algorithm runs, the pheromone quantities of each copy may be differ-
ent. A colony does not change the pheromone quantities of another colony. However,
they have the ability to exchange information implicitly. The information exchange
process between the ant colonies is based on the crossover operation.

Execution of the colonies is stopped after a given number of iterations (NumAnt-
Cycle). There is no specific rule to determine this number; it may be defined experi-
mentally. NumAntCycle is normally chosen to be sufficiently large to allow the search
to complete local searching. When all ants complete their paths in a colony, the qual-
ity of the path produced by each ant is evaluated and then the best one found is
reserved as the local best of the colony. In every fixed number of NumAntCycle it-
erations, local best solutions of each colony are added to the solution population.
Later, this population is altered by a crossover procedure to produce a new pop-
ulation. This new population is formed by implementing the crossover operation
among the solutions belonging to the previous solution population. After crossover,
the best part of the population survives and the solutions of this part are used to up-
date the pheromone quantities of the best paths in each colony. Thus, one epoch of
the algorithm is completed. In successive epochs, the search continues, depending
on the pheromone quantities updated in the previous epoch.This process is repeated
until a predefined number of epochs (NumOfEpoch) is completed.NumOfEpochmay
change according to the problem, so the value of this parameter is experimentally de-
fined.

Fig. 2 Flowchart of the PACO algorithm
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Fig. 3 Pseudocode of the proposed algorithm
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Different independent ant colonies are sequentially executed in a single proces-
sor, for this reason, implementation of the algorithm is virtually parallel. Communi-
cation between the colonies is carried out at predetermined moments; therefore the
parallelism used in this work is synchronous.

Crossover Procedure
The crossover operator employed by GAs is used to create two new solutions (chil-
dren) from two existing solutions (parents) in the population. Depending on the
method of problem representation in string form, a proper crossover operator must
be chosen. When the problem is represented in binary string form, the simplest
crossover operation can be applied as follows: two solutions are randomly selected
as parent solutions from the population at two randomly selected points. The parts
between the points are swapped and two new solutions are produced. A crossover
operation can thus yield better solutions by combining the good features of parent
solutions. An example of this simple crossover operator is given below:

PresentSolution   
PresentSolution   

NewSolution   
NewSolution   

Movements of Ants
In the proposed model, the data representation structure is defined as discrete elem-
ents in amatrix form. Rows of thismatrix are indicated by the values of i and columns
are indicated by the values of j. Since binary data representation is used, i can take
the values  or , but the maximum value of j depends on the parameters of the
problem. The element (i, j) of a predefined matrix format addresses a point in the
data structure on which artificial ants move as depicted in Fig. .

At the beginning of the search, some initial pheromone quantity (c) is allocated
to each path of the binary coded search space. In addition, an initial population of
random solutions in the feasible region is formed for genetic crossover operations on
the succeeding population.

While ants move from one point to another, they search the value of each bit in
the string, in other words, they try to decide whether the value of the next bit to be
chosen is  or  according to the state transition rule given in Equation ().

tabukd ( j) = �
argmaxi��0,1� �τd (i, j)	 with the probability of q0 (exploit)
Sd ( j) with the probability of (1 − q0) (explore)

()

where tabukd ( j) means the jth element of the tabu list for the kth ant in the dth
colony. In other words, it represents the selected value for the next bit. τd (i, j) is
accumulated pheromone substance on the path (i, j) belonging to the dth colony
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and Sd( j) is a stochastically found new value of the jth element for the dth colony
(Sd( j) � �0, 1	). In this equation, ants take a deterministic decision with the proba-
bility q0, which is an initial coefficient balancing deterministic search versus stochas-
tic search. Deterministic search exhausts accumulated pheromone knowledge to find
new solutions near to the best one found so far. On the other hand, stochastic search
explores possible new paths to enhance the searching area. Sd ( j) is defined accord-
ing to the probability distribution formula

Pd (i, j) =
τd (i, j)

τd ( j, 0) + τd ( j, 1)
, i � {, } ()

where Pd(i, j) represents probability as an indication of accumulated pheromone
attraction of the point (i, j), which is to be selected in the search space of the dth
colony. To select a bit value Sd( j) for the jth element of the tabu list, a stochastic
decision mechanism can be implemented over the probability distribution formula
Pd(i, j). With this formula a roulette wheel mechanism could be used as a decision
mechanism in order to define the next value of Sd( j).

After choosing a path each ant updates the pheromone level of the path. This
operation is called the local updating rule and the formula for the rule is

τnewd (i, j) = (1 − ρ).τoldd (i, j) + ρ.τ0 ()

This formula is implemented in order to make the way previously chosen less attrac-
tive and to direct the following ants to other paths. ρ is an initial coefficient repre-
senting evaporation rate and τ0 is another coefficient showing the minimum level of
pheromone instances in each path.

After a predefined number of cycles (NumAntCycle), each colony reserves its
best solution found so far and this solution is added to the solution population for
the crossover operation. The crossover operation eliminates the worse part of the
population and provides a global reinforcement mechanism. Each solution of the
surviving part is assigned to one of the colonies, thus, information exchange between
colonies is implicitly provided. After this process, pheromone values of each colony
are updated depending on the returned solutions according to the formula

τnewd (i, j) = (1 − ρ).τoldd (i, j) +
1

(a + �cost_d�)
()

where cost_d is a value calculated by the cost function related to the assigned solution
to the dth colony. a is a constant employed to avoid overflow and scale the pheromone
effect of the cost value. Determining a proper value for a is highly dependent on the
problem. So, some preliminary experience and knowledge about the range of the cost
function values is necessary. This may be considered as a weakness of the algorithm.
Furthermore, by employing a crossover procedure, the proposed algorithm moves
far from a realistic simulation of ants in order to increase the search capability of the
global optimum and to yield better performance.
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It is known that there are reports in the literature based on the concepts TACO
and Island Model. The proposed algorithm uses a binary data representation, which
was earlier used in the TACO algorithm []. However, PACO differs from TACO in
some features. First, in PACO, selection of the next point depends on a state transi-
tion rule instead of using only a probability distribution formula. By employing a state
transition rule, PACO is able to balance exploitation versus exploration with a cer-
tain probability as happened in ACS. Second, after selection of each new point, a lo-
cal updating formula is implemented in order to lead other ants to unselected paths.
Moreover, crossover procedure is employed at predetermined intervals to provide
information exchange between colonies. Thus, PACO uses synchronous and paral-
lel information exchange structures established in a multi-colony ant system. Island
Model is another hybrid algorithm that combines both ACO and GA. However, this
model has a different data representation structure and runs more than one proces-
sor []. Since each processor holds a colony, implementation of the algorithm is
more complicated than PACO and TACO.

4 Simulation Results

The simulation work consists of two parts: numeric function optimization and train-
ing an Elman network to identify dynamical linear and non-linear systems.

4.1 Continuous Function Optimization

Seven well-knownminimization test functions were employed to determine the per-
formance of the proposed PACO algorithm. These test functions are given in Table .

Table 1 Numerical test functions used in the simulations

Notation Name Function

F Sphere f1 =

4
�

i=1
x2i

F Rosenbrock f2 = 100(x21 − x2)
2
+ (1 − x1)2

F Step
f3 =

5
�

i=1
[xi] , where [xi ] represents the greatest integer less

than or equal to xi

F Foxholes
f4 = [0.002 +

25
�

j=1
( j +

2
�

i=1
(xi − ai j)6)−1]−1

�(a1 j , a2 j)�
25
j=1

= (-,-), (-,-), (,-), (,-), (,-),

(-,-), (-,-), (,-), (,-), (,-),...,
(-,), (-,), (,), (,), (,)

F f5 = (x21 + x22)�2 − cos (20πx1) cos (20πx2) + 2

F Griewangk f6 = 1 +

10
�

i=1
�

x2i
4000	−

10



i=1
�cos� x i

�

i
��

F Rastrigin f7 = 20A+

20
�

i=1
x2i − 10 cos (2πxi)� ,A = 10
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The first four test functions were proposed by De Jong []. All test functions reflect
different degrees of complexity.

Sphere (F) is smooth, unimodal, strongly convex, and symmetric.
Rosenbrock (F) is considered to be difficult, because it has a very narrow ridge.

The tip of the ridge is very sharp, and it runs around a parabola.
Step (F) is a representative of the problems of flat surfaces. Flat surfaces are obs-

tacles for optimization algorithms because they do not give any information as to
which direction is favourable.Thebackground idea of the step function is tomake the
search more difficult by introducing small plateaus to the topology of an underlying
continuous function.

Foxholes (F) is an example of a functionwithmany local optima.Many standard
optimization algorithms get stuck in the first peak they find.

Function F has  local minimum points in the region when x1 and x2 are
within [−10, 10].

Griewangk (F) is also a non-linear and multi-modal function. The terms of the
summation produce a parabola, while the local optima are above parabola level. The
dimensions of the search range increase on the basis of the product.

Rastrigin’s function (F) is a fairly difficult problem due to the large search space
and large number of local minima. This function contains millions of local optima
in the interval considered.

The solutions for the functions, parameter bounds, resolutions and the length of
each solution for each test function are given in Table .

In the first stage, simulation results were obtained for the proposed model. The
proposed PACO was executed  times with different initial solutions. The number
of ant colonies running in parallel was  (NumOfCol) and the number of ants was 
(NumOfAnts). Each colony at any epochwas run for  (NumAntCycle) iterations for
the first five functions and  for the others. The total number of cycles made at any
epoch was  (NumOfCol ċ NumAntCycle) for the first five functions and  for the
other two functions.This process was repeated through  evaluations for the first
five functions,  evaluations for the other two functions in order to compare the
performance of the proposed method with the results obtained using GA, TS, PTS,

Table 2 Number of parameters, solutions, parameter bounds and length of solution for the test
functions

Function Number of Solutions Parameter bounds Length of
a solutionparameters xi f (x) Lower Upper

F 4 0.0 0.0 −5.12 5.12 
F 2 1.0 0.0 −2.048 2.048 
F 5 −5.12 −30.0 −5.12 5.12 
F 2 −32.0 1.0 −65536 65536 
F 2 0.0 1.0 −10 10 
F 10 0.0 0.0 −600 600 
F 20 0.0 0.0 −5.12 5.12 
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and TACO algorithms taken from [] and after that the search was stopped. Other
parameters of the PACOwere chosen as c = 0.1, ρ = 0.1, τ0 = 0.1, q0 = 0.9, a = 0.001.

To show the robustness of the proposed model, frequency histograms of the re-
sults obtained using GA, TACO, basic TS, PTS and PACO algorithms are given in
Figs. – for the test functions –, respectively.

Fig. 4 Histograms drawn from the results obtained for the function F by (a) TS, PTS, TACO
and PACO algorithms, (b) GA

Fig. 5 Histograms drawn from the results obtained for the function F by (a) TS, (b) PTS, (c)
GA, (d) TACO, and (e) PACO
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Fig. 6 Histograms drawn from the results obtained for the function F by (a) TS, PTS, GA, and
PACO, (b) TACO

Fig. 7 Histograms drawn from the results obtained for the function F by (a) TS, (b) PTS, (c)
GA, (d) TACO, and (e) PACO

4.2 Training Recurrent Neural Network by Using the PACO Algorithm

The use of artificial neural networks (ANNs) to identify or model dynamic inputs is
a topic of much research interest. The advantage of neural networks for these types
of applications is to learn the behaviour of a plant without much a priori knowledge
about it. From a structural point of view, there are twomain types of neural networks:
feedforward neural networks (FNNs) and recurrent neural networks (RNNs) [].
Connections that allow information to loop back to the same processing element
are called recursive and NNs having these types of connections are named RNNs.
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Fig. 8 Histograms drawn from the results obtained for the function F by (a) TS, (b) PTS, (c)
GA, (d) TACO, and (e) PACO

RNNs are more suitable than FNNs for representing a dynamic system since they
have a dynamic mapping between their output(s) and input(s). RNNs generally re-
quire less neurons in the neural structure and less computation time. Moreover they
have a low probability of being affected by external noise. Because of these features,
RNNs have attracted the attention of researchers in the field of dynamic system iden-
tification.

Although gradient based search techniques such as back-propagation (BP) are
currently themostwidely used optimization techniques for training neural networks,
it has been shown that these techniques are severely limited in their ability to find
global solutions. Global search techniques such as GA, SA, TS and ACO have been
identified as a potential solution to this problem. Although the use of GAs for ANN
training has mainly focused on FNNs [–], there are several works on training
RNNs using GAs in the literature [–]. SA and TS have some applications for
the training of ANNs [–]. Although GA, SA and TS algorithms have been used
for training some kinds of neural networks, there are few reports of use of the ACO
algorithm to train neural networks [–].
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Fig. 9 Histograms drawn from the results obtained for the function F by (a) TS, (b) PTS, (c)
GA, (d) TACO, and (e) PACO

Aspecial type of RNN is the Elmannetwork []. Elmannetwork and itsmodified
models have been used in applications of system identification. Figure  depicts the
original Elman network with three layers of neurons. The first layer of this network
consists of two different groups of neurons. These are the group of external input
neurons and the group of internal input neurons also called context units. Context
units are also known asmemory units as they store the previous output of the hidden
neurons. Elman networks introduced feedback from the hidden layer to the context
portion of the input layer. Thus, the Elman network has feedforward and feedback
connections. However, so that it can be trained essentially as feedforward networks
by means of the simple BP algorithm, the feedback connection weights have to be
kept constant. For the training to converge, it is important to select the correct values
for the feedback connection weights. However, finding these values manually can be
a lengthy trial-and-error process.

In this part of the work, the performance of the proposed PACO algorithm is
tested for training the Elman network to identify dynamic plants. The use of the
PACO algorithm to train the Elman network to identify a dynamic plant is illustrated
in Fig. . Here, ym(k) and yp(k) are the outputs of the network and plant, at time k,
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respectively. Training of the network can be considered as a minimization problem
defined by

min
w�W

J (w) ()

where w = [w1w2w3 ...wv]
T is the weight vector of the network. The time-averaged

cost function J(w) to be minimized by adaptively adjusting w can be expressed as

minJ(w) = &
1
N

N

!
k=1
4yp(k) − ym(k)5

2
'

1�2

()

where N is the number of samples used for calculation of the cost function.
A solution to the problem is a string of trainable connection weights representing

a possible network (Fig. ). The PACO algorithm searches for the best weight set by
means of cost function values calculated for solutions in string form.

The structure of the network employed in this work is selected as in [] to
compare the results. Since the plants to be identified are single-input single-output
(SISO), the number of external input neurons and output neurons is equal to one.
The number of neurons at the hidden layer is equal to . Therefore, the total num-
ber of connections is , of which  are feedback connections. In the case of only

Fig. 10 Histograms drawn from the results obtained for the function F by (a) TS, (b) PTS, (c)
GA, (d) TACO, and (e) PACO
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Fig. 11 Structure of the Elman network

Fig. 12 Scheme for training a network to identify a plant using the PACO algorithm

Fig. 13 Representation of the trainable weights of a network in string form

feedforward connections being trainable, a solution is represented as a string of 
weights. When all connections have trainable weights, then the string consists of 
weights, of which  are feedback connection weights. In both cases, each weight is
represented with  binary bits. The feedback connections have weight values rang-
ing from . to . while feedforward can have positive or negative weights between
. and −1.0. Note that from the point of view of the PACO algorithm, there is no
difference between feedback and feedforward connections, and training one type of
connections is carried out identically to training the other, unlike in the case of the
commonly used BP training algorithm.

In the training stage, first a sequence of input signals u(k), (k = 0, 1, . . . ) is fed
to both the plant and the recurrent network designed with weights obtained from
a solution of the PACO algorithm. Second the rms error value between the plant and
recurrent network outputs is computed by means of Equation (). Next, the rms er-
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ror values computed for the solutions are used to select the highest evaluation weight
set. The weight set with which the minimum rms error was obtained is selected as
the highest evaluation weight set. From the point of view of the optimization, this
is again a minimization problem. Simulations were conducted to study the ability of
RNN trained by PACO to model a linear and non-linear plant. A sampling period of
. s was assumed in all cases.

Linear plant:This is a third-order linear systemdescribedwith the following discrete-
time equation,

y(k) = A1 y(k − 1) + A2 y(k − 2) + A3 y(k − 3)
+B1u(k − 1) + B2u(k − 2) + B3u(k − 3) ()

where A1 = 2.627771, A2 = −2.333261, A3 = 0.697676, B1 = 0.017203, B2 =
−0.030862, B3 = 0.014086.

The Elman network with all linear neurons was tested. Training input signal,
u(k), k = 0, 1, . . . , 199, was randomly produced and varied between −2.0 and ..
First the results were obtained by assuming that only the feedforward connection
weights are trainable. Second the results were obtained by considering all connection
weights of the Elman network trainable. For each case, experiments were repeated six
times for different initial solutions. The results obtained using the BP and the PACO
algorithms are given in Fig. . As an example, the responses of the plant and the
network designed by the PACO are presented in Fig. .The average rms error values
and the improvement percentages for a linear plant obtained using BP and PACO
algorithms are presented in Table .

Fig. 14 RMSerror values obtained for the linear plant for six runswith different initial solutions

Table 3 Comparison of results for the linear plant

Model Average rms error Improvement(%)
Back Propagation (BP) 7.67536 �10−02 -
PACO (α = 1) 5.26118 �10−03 93.15
PACO (all weights trainable) 2.76346 �10−03 .
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Fig. 15 Responses of the plant and the network trained by the PACO algorithm (third order
linear plant, rms error = 2.137717 �10−03)

Non-linear plant: The second plant model adopted for the simulations was that of
a simple pendulum swinging through small angles []. The discrete-time descrip-
tion of the plant is:

y(k) = 12 −
λT
ML2

3 y(k − 1) + &
λT
ML2

− 1 −
gT2

L
' y(k − 2)

+
gT2

6L
y3(k − 2) −

T2

ML2
u(k − 2) ()

whereM stands for the mass of the pendulum, L the length, g the acceleration due to
gravity, λ the friction coefficient, y the angle of deviation from the vertical position,
and u the external force exerted on the pendulum.The parameters used in this model
were as follows:

T = 0.2 s, g = 9.8 m/s2, λ = 1.2 kgm2/s, M = 1.0 kg, L = 0.5 m.

Replacing the parameters with their values in Equation () gives:

y(k) = A1 y(k − 1) + A2 y(k − 2) + A3 y3(k − 2) + B1u(k − 2) ()

where A1 = 1.04, A2 = −0.824, A3 = 0.130667, B1 = −0.16.
The Elman network with non-linear neurons in the hidden layer was employed.

Thehyperbolic tangent function was adopted as the activation function of non-linear
neurons. The neural networks were trained using the same sequence of random in-
put signals as mentioned above. As in the case of the linear plant, the results were
obtained for six different runs with different initial solutions. The rms error values
obtained by the BP algorithm and the PACO are presented in Fig. . As an ex-
ample, the responses of the non-linear plant and the recurrent network with the
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Fig. 16 RMS error values obtained for the non-linear plant for six different runs with different
initial solutions

weights obtained by the PACO are shown in Fig. . The average rms error values
and the improvement percentages for the non-linear plant obtained using BP and
PACO algorithms are presented in Table .

5 Discussion

From the histograms obtained for the numerical test functions  and , it is seen
that the basic TS, PTS and PACO algorithms are able to find the optimum solution

Fig. 17 Responses of the plant and the network trained by the PACO algorithm (non-linear
plant, rms error = 2.611416 �10−02)

Table 4 Comparison of results for the non-linear plant

Model Average rms error Improvement(%)
Back Propagation (BP) 0.26182 -
PACO (α = 1) 5.59883 �10−2 78.62
PACO (all weights trainable) 2.78438 �10−2 89.37



 Conclusions 

for all runs (see Figs.  and ). The reason is that the first problem is a convex and
continuous function, and the third is a convex and discrete function. For the rest of
the numerical test problems, the basic TS, GA and TACO cannot reach the optimal
solution for all runs. However, PTS and the proposed PACO can find the optimum
solutions or solutions very near to the optimum for each run. From the histograms
presented in Figs. ,  and  it can easily be concluded that the proposed PACO is
able to find better solutions for F, F and F than the basic TS, PTS, GA and TACO.
Although the PACO can provide better solutions for the F and F than the basic
TS, GA and TACO algorithms, its performance is not as good as the PTS algorithm.
However, the results obtained by the PACO for these functions are also acceptable.

The original Elman network could identify the third-order linear plant success-
fully. Note that an original Elman network with an identical structure to that adopted
for the original Elman network employed in this work and trained using the standard
BP algorithm failed to identify even a second-order linear plant. Moreover, when
the original Elman network had been trained by the basic GA, the third-order plant
could not be identified although the second-order plant had been identified success-
fully []. It can be seen that, apparently for both plants, the training was signifi-
cantly more successful when all connection weights of the network were trainable
than when only feedforward connection weights could be changed. Thus, by using
the PACO algorithm not only was it possible and simple to train the feedback con-
nection weights, but the training time required was lower than for the feedforward
connection weights alone. It is clearly seen from Figs.  and  and Tables  and 
that, for both network structures (with all connection weights variable and with only
feedforward connectionweights trainable), the proposed PACO trained the networks
better than the BP algorithm.

In this work, the data representation structure of the TACO and the search strat-
egy of ACS were employed in the proposed model. However, the proposed model is
a general structure for parallelization and it is also possible to use other ant based
search strategies such as MAX-MIN ant system. Moreover, performance of the pro-
posed model was tested on continuous problems; however this model can be imple-
mented for combinatorial type problems. Using different ant based search strategies
and performance examination of combinatorial problems are considered as future
studies for the proposed model.

6 Conclusions
In this study a parallel ant colony optimization algorithmwas proposed.Theperform-
ance of the proposed algorithm was compared with that of basic TS, PTS, GA and
TACO algorithms for numerical test problems. It was also applied to training a recur-
rent neural network to identify linear and non-linear plants, and the results obtained
were compared with those produced by the BP algorithm. From the simulation re-
sults it was concluded that the proposed algorithm can be used to searchmulti-modal
spaces successfully, and can be efficiently applied to train recurrent neural networks
to identify dynamic plants accurately. It can be finally concluded that the PACO al-
gorithm might be an efficient tool for solving continuous optimization problems.



 A. Kalinli, F. Sarikoc

References

. Reeves CR (Ed.) () Modern Heuristic Techniques for Combinatorial Optimization.
McGraw-Hill: UK.

. Corne D, Dorigo M, Glover F (Eds) () New Ideas in Optimization, McGraw-Hill:
UK.

. Farmer JD, Packard NH, Perelson AS () The Immune System, Adaptation, and Ma-
chine Learning. Physica, D:–

. Kalinli A, Karaboga D () Training recurrent neural networks by using parallel tabu
search algorithm based on crossover operation. Engineering Applications of Artificial
Inteligence, ():–

. Dorigo M,Maniezzo V, Colorni A () Positive feedback as a search strategy. Technical
Report No:– Politecnico di Milano

. Dorigo M, Maniezzo V, Colorni A () The ant system: Optimization by a colony of
cooperating agents. IEEE Trans. on Systems, Man and Cybernetics – Part B, ():–

. Christopher FH et al. () Swarm intelligence: an application of social insect optimiza-
tion techniques to the traveling salesman problem. Artificial Intelligence I

. Bullnheimer B, Hartl RF, and Strauss C () A new rank based version of the ant sys-
tem, a computational study. Central European J for Operations Research and Economics,
():–

. Stützle T, Hoos HH () The MAX-MIN ant system and local search for the traveling
salesman problem. In Baeck T, Michalewicz Z, Yao X, (Eds), Proc. of the IEEE Int. Conf.
on Evolutionary Computation (ICEC’):–

. Gambardella LM, Dorigo M () Solving symmetric and asymmetric TSPs by ant
colonies. Proc. of IEEE Int. Conf. on Evolutionary Computation, IEEE-EC , Nagoya,
Japan:–

. Di CaroG,DorigoM ()Mobile agents for adaptive routing. Proc. of stHawaii Conf.
on Systems Sciences (HICSS-):–

. Stützle T, DorigoM () ACO algorithms for quadratic assignment problem. in: Corne
D, Dorigo M, Glover F (Eds), New Ideas in Optimization, McGraw-Hill:–

. Gambardella LM, Taillard E, Agazzi G () MACS-VRPTW: A multiple ant colony
system for vehicle routing problems with time windows. Technical Report, IDSIA-:
Switzerland

. Bilchev G, Parmee IC () The ant colony metaphor for searching continuous design
spaces. Lecture Notes in Computer Science, Springer-Verlag, LNCS :–

. Monmarché N, Venturini G, Slimane M () On how Pachycondyla apicalis ants sug-
gest a new search algorithm. Future Generation Systems Computer ():–

. Dreo J, Siarry P () Continuous ant colony algorithm based on dense heterarchy. Fu-
ture Generation Computer Systems, ():–

. Hiroyasu T, Miki M, Ono Y, Minami Y () Ant colony for continuous functions, The
Science and Engineering, Doshisha University

. Bullnheimer B, Kotsis G, Strauss C () Parallelization strategies for the ant system.
in: De Leone R, Murli A, Pardalos P, Toraldo G (Eds), High Performance Algorithms
and Software inNonlinear Optimization. Kluwer Series of Applied Optimization, Kluwer
Academic Publishers, Dordrecht, The Netherlands, :–

. Stützle T () Parallelization strategies for ant colony optimization, in: Eiben AE, Back
T, Schoenauer M, Schwefel HP (Eds), Fifth Int. Conf. on Parallel Problem Solving from
Nature, Springer-Verlag: :–



References 

. MiddendorfM, Reischle F, SchmeckH () Information exchange inmulticolony algo-
rithms. in: Rolim J, Chiola G, ConteG,Mansini LV, Ibarra OH., NakanoH. (Eds), Parallel
and Distributed Processing:  IPDPSP Workshops Mexico, Lecture Notes in Computer
Science, Springer-Verlag, Heidelberg, Germany, :–

. Dorigo M () Parallel ant system: An experimental study. Unpublished manuscript,
(Downloadable from http://iridia.ulb.ac.be/�mdorigo/ACO/ACO.html)

. Talbi EG, Roux O, Fonlupt C, Robillard D () Parallel ant colonies for combinato-
rial optimization problems. in: Rolim J. et al. (Eds) Parallel and Distributed Processing,
 IPPS/SPDP’ Workshops, Lecture Notes in Computer Science, Springer-Verlag, Lon-
don, UK :–

. Bolondi M, Bondanza M () Parallelizzazione di un algoritmo per la risoluzione del
problema del commesso viaggiatore. Master’s Thesis, Dipartimento di Elettronica e In-
formazione, Politecnico di Milano: Italy

. Michel R,MiddendorfM () An islandmodel based ant systemwith lookahead for the
shortest supersquence problem. in: Eiben AE, Back T, Schoenauer H, Schwefel P (Eds),
Parallel Problem Solving from the Nature, Lecture Notes in Computer Science, Springer-
Verlag, Heidelberg, Germany, :–

. Delisle P, Krajecki M, Gravel M, Gagné C () Parallel implementation of an ant
colony optimization metaheuristic with openmp. Int. Conf. on Parallel Architectures
and Compilation Techniques, Proceedings of the rd European Workshop on OpenMP
(EWOMP’), Barcelona, Spain

. Krüger F, Merkle D, Middendorf M () Studies on a parallel ant system for the BSP
model, unpublished manuscript. (Downloadable from http://citeseer.ist.psu.edu/
.html)

. De Jong KA () An Analysis ofThe Behaviour of a Class of Genetic Adaptive Systems.
PhD thesis, University of Michigan

. Pham DT, Liu X () Neural Networks for Identification. Prediction and Control, th
edn, Springer-Verlag

. Arifovic J, Gencay R () Using genetic algorithms to select architecture of a feedfor-
ward artificial neural network. Physica A, :–

. Sexton RS, Gupta JND () Comparative evaluation of genetic algorithm and back-
propagation for training neural networks. Information Sciences, :–

. Castillo PA, Merelo JJ, Prieto A, Rivas V, Romero G () G-Prop: Global optimization
of multilayer percetptrons using Gas. Neurocomputing, :–

. KuKW,MakMW, SiuWC () Adding learning to cellular genetic algorithms for train-
ing recurrent neural networks. IEEE Trans. on Neural Networks, ():-

. Blanco A, Delgado M, Pegalajar MC () A genetic algorithm to obtain the optimal
recurrent neural network. Int. J. Approximate Reasoning, :–

. Blanco A, Delgado M, Pegalajar MC () A real-coded genetic algorithm for training
recurrent neural networks. Neural Networks, :–

. Castillo PA, Gonzalez J, Merelo JJ, Prieto A, Rivas V, Romero G () SA-Prop: Opti-
mization of multilayer perceptron parameters using simulated annealing. Lecture Notes
in Computer Science, Springer, :-

. Sexton RS, Alidaee B, Dorsey RE, Johnson JD () Global optimization for artificial
neural networks: A tabu search application. European J ofOperational Research, :–


. Battiti R, Tecchiolli G () Training neural nets with the reactive tabu search. IEEE
Trans. on Neural Networks, ():–

. Zhang S-B, Liu Z-M () Neural network training using ant algorithm in ATM traffic
control. IEEE Int. Symp. on Circuits and Systems (ISCAS ) :–



 A. Kalinli, F. Sarikoc

. Blum C, Socha K () Training feed-forward neural networks with ant colony opti-
mization: An application to pattern classification. Fifth Int. Conf. on Hybrid Intelligent
Systems

. Li J-B, Chung Y-K () A novel back-propagation neural network training algorithm
designed by an ant colony optimization. Transmission and Distribution Conference and
Exhibition: Asia and Pacific:–

. Elman JL () Finding structure in time. Cognitive Science, :–
. Liu X () Modelling and Prediction Using Neural Networks. PhD Thesis, University

of Wales College of Cardiff, Cardiff, UK.
. Pham DT, Karaboga D () Training Elman and Jordan networks for system identifi-

cation using genetic algorithms. J. of Artificial Intelligence in Engineering :–



An Ant-bidding Algorithm for Multistage Flowshop
Scheduling Problem: Optimization and Phase Transitions

Alberto V. Donati1 , Vince Darley2, and Bala Ramachandran3

1 Joint Research Center, European Commission, Via E. Fermi , TP   Ispra (VA),
Italy.
Corresponding author:
alberto.donati@jrc.it

2 Eurobios UK Ltd.,  Farringdon Street, London ECA AB, UK.
vince.darley@eurobios.com

3 IBM T.J. Watson Research Center, Route , Yorktown Heights,  NY, US.
rbala@us.ibm.com

Abstract

In this chapter we present the integration of an ant-based algorithm with a greedy
algorithm for optimizing the scheduling of a multistage plant in the consumer pack-
aged goods industry. The multistage manufacturing plant is comprised of different
stages: mixing, storage, packing and finished goods storage, and is an extension of
the classic Flowshop Scheduling Problem (FSP).We propose a new algorithm for the
Multistage Flowshop Scheduling Problem (MSFSP) for finding optimized solutions.
The schedulingmust provide both optimal and flexible solutions to respond to fluctu-
ations in the demand and operations of the plants while minimizing costs and times
of operation. Optimization of each stage in the plant is an increasingly complex task
when considering limited capacity and connectivity of the stages, and the constraints
they mutually impose on each other.

We discuss how our approach may be useful not just for dynamic scheduling,
but also for analyzing the design of the plant in order for it to cope optimally with
changes in the demand from one cycle of production to the next. Phase transitions
can be identified in amultidimensional space, where it is possible to vary the number
of resources available. Lastly we discuss how one can use this approach to understand
the global constraints of the problem, and the nature of phase transitions in the dif-
ficulty of finding viable solutions.

Key words: Scheduling, Optimization, Ant Colony System, Phase Transitions
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1 Introduction and Problem Description

We focus in this chapter on the scheduling of operations of a multistage manufactur-
ing plant in the consumer packaged goods industry, the core of a multistage supply
chain. The production plant considered here has three main parts: making (mixers),
intermediate storage (tanks), and packing lines; each stage has inputs and/or out-
puts, with limited connectivity with the adjacent stage. Each finished product or SKU
(Stock Keeping Unit) – the final output of the production cycle – differs in terms of
variant and pack size.

Given the demand for the period considered (usually one week) with the type
and quantity of each SKU required for the period, the optimization consists in find-
ing the most efficient schedule of the resources of each stage, to minimize the latest
completion time on the packing lines (also called themakespan). In this way, the ap-
proach proposed here will globally optimize the schedule of the factory. The plant
details are the following.

Making. Raw materials are subject to a number of parallel chemical processes to
obtain different variants, each characterized by a number of attributes, such as color,
base formulation, and dilution level. The variants produced in a mixer in batches are
temporarily stored in tank facilities, and then directed to packing lines. TheMaking
section in the plant is characterized by the number ofmixers. Eachmixer is then char-
acterized by the variants it can make, the processing duration for every variant, the
batch size, the cleaning/changeover times between different variants (which depend
on the exact variant sequence). Finally mixers are characterized by the connectivity
with the tanks, that is the maximum number of simultaneous connections with tanks
for the transfer of the variant made, and their respective flow rate into the tanks.

Intermediate Storage. Storage facilities are temporary storage/caching tanks or
silos, connecting the mixers to the packing lines. This stage is characterized by the
number of tanks, and for each tank the variants that can be stored, its capacity with
respect to the variant, the maximum number of simultaneous connections they can
receive from the mixers, the maximum number of simultaneous connections for the
transfer of the variant stored to the packing lines, and the setup/changeover times in
changing the variant stored.

Packing Lines.The packing lines are the stage where the packing process is com-
pleted, which results in the finished product.Theplant is characterized by the number
of packing lines active (briefly PL). Each PL is characterized by which SKU can be
packed and the relative packing rate, by the setup times due to changes in the pack
size, and by the setup times due to changes in variant attributes. They are also char-
acterized by the number, time and duration of maintenance operations, and finally
by a “preferred attribute sequence” (for example, a color sequence), that might be
preferred or required to follow under a specified policy. The maximum number of
connections they can receive from the tanks are also specified.

Finished Goods Storage. Forecasted demand and actual demand can sometimes
present differences which cannot be covered during the production span.This can be
due in part to forecast errors, but mostly due to short notice changes to customer or-
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ders, or manufacturing problems may lead to time/quantity problems with the avail-
ability of certain products in sufficient quantity. This stage allows for the storage of
a small buffer of goods to handle those situations. Nevertheless finished goods stor-
age is wasteful in terms of excess inventory and physical requirements, but allows
one to relax the constraints on the rest of the manufacturing plant. Hence, manu-
facturing operations continuously endeavor to keep the finished goods inventory at
a minimum, while satisfying the supply chain and end customer requirements.

Supply Chain. In principle the optimization process could be continued outside
the factory to consider interactions between different factories (which may be pro-
ducing the same or different products), transport of finished goods and raw ingredi-
ents. Addressing these interactions would require the analysis of the corresponding
supply chain networks. We have limited ourselves here to the scheduling aspects of
a given manufacturing plant in the supply chain.

For the plant type considered here, the connectivity between the three stages is
limited. Taking into account all the problem details and constraints makes Multi-
stage Factory Scheduling an increasingly complex task, besides its nature as an NP-
complete problem.

Flowshop/jobshop scheduling has been widely studied in recent years and there
is an abundant literature about all the possible variants/constraints of such problems.

Fig. 1 Supply chain and plant representation. From left to right: mixers, intermediate stor-
age (tanks), and packing lines. Each stage is characterized by number of resources (#), their
type/capacity/rate and connectivity with the adjacent stage. The weekly demand profile of the
SKUs to be done, is the input of the problem
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In some cases a two-objective hierarchical minimization is carried out, the first with
respect to themaximummakespan (the time from start to completion of the last job),
the other minimizing the total usage time.

Mathematical programming approaches have been studied formodel based plan-
ning and scheduling in the process industries. The flexible flowshop scheduling
problem with more than two stages was first studied by Lee and Vairaktarakis in []
presenting a worst-case heuristic method. More recently [] theoretical aspects of
a -stages flexible flowshop to complete finished products are considered and solved
with an agent based model to deal with unforeseen changes in the system. In [],
mathematical programming models and solution methods are presented and strate-
gies for implementing model-based integration of process operations are reviewed
to address scheduling of multiproduct plants, integration of planning and schedul-
ing across plant sites and design of multipurpose batch plants under uncertainty.

In general, there are two classes of process scheduling formulations – one based
on discretizing time into uniform or non-uniform intervals and another based on
treating time in a continuous manner.The advantages and disadvantages of these ap-
proaches are reviewed in []. Various heuristic/metaheuristics methods have been
considered as well: a simulated annealing algorithm for a multistage manufacturing
system is proposed in [], a fast tabu search in [], simulated annealing and genetic
algorithm [], and various other heuristics like the NEH (polynomial heuristic) pre-
sented in [] and in the survey in [] of machine scheduling problems. This list is
limited, given the abundance of variety of methods and model/problems for these
types of scheduling problems and their possible variants.

In this chapter, we present a new version of the permutation flowshop scheduling
problem with limited temporary storage and with the presence of a making stage
that is intimately related to the schedule. The model has been formulated to suit the
process industries with liquid goods, so while on one side there is a possible loss of
generality in the problem considered, on the other it constitutes an application to
a real case.

We will also analyze the robustness of schedules and related phase transitions.
Phase transitions in optimization problems have received considerable research at-
tention recently in that they constitute an essential aspect when dealing with changes
that might increase utilization of the system resources, such as spikes in the demand
profiles fromone period to another. Phase transition in problemdifficulty in the gen-
eral NK search problem has been studied in []. Phase transitions have been studied
for the jobshop problem [] and multiprocessor scheduling []. This work differs
from the earlier phase transition research in that our focus is not on the phase transi-
tion with respect to problem difficulty, but the phase transition related to operations
management in a production facility.

The chapter is organized as follows. In Sect. , we introduce the use of ant-based
algorithms for the multistage scheduling flowshop problem. We provide the algo-
rithm details in Sect.  and present computation results in Sect. . In the remainder
of the chapter, we study the design and phase transition aspects of the problem.
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2 Ants and Multistage Scheduling Flowshop Problem (MSFSP)

Recently a variety of new distributed heuristics have been developed to solve hard,
NP-complete optimization problems. An ant-based algorithm uses a colony of ants,
or cooperative agents, to find and reinforce optimal solutions. A variety of Ant
Colony Optimization (ACO) algorithms have been proposed for discrete optimiza-
tion, as discussed in [], and have been successfully applied to the traveling sales-
man problem, symmetric and asymmetric ( [] and []), the quadratic assignment
problem [], graph-coloring problem [], sequential ordering problem [], flow-
shop [], jobshop [], and vehicle routing problem []. In particular in [] a com-
parison is made with a previous ACO algorithm, the min-max ant system (MMAS,
presented in []) for the scheduling of a single-stage flowshop problem, and an
improved version is also discussed, for the standard Taillard’s problems presented
in [].

The use of ants-based algorithms rather than other heuristics or metaheuristics
methods, such asGeneticAlgorithms, SimulatedAnnealing or Taboo Search, ismoti-
vated by several facts. First, it has been shown that ants algorithms can very effectively
explore the search space, thus finding very good solutions in short times for many
NP complete problems when combined with local search heuristics. A comparison
of several strategies and metaheuristics and theoretical aspects is discussed in [];
the effects of local search procedures have been discussed in [] to show that the
combination of an ACO and local search methods gives better results with respect to
other heuristics combined with the same procedures; in particular for the sequential
ordering problem (SOP), which is an asymmetric TSP with precedence constraints,
it is reported that the Ant Colony System (ACS) is better than a genetic algorithm
in combination with the same local search. This is due to the fact that ACS produces
starting solutions that are easily improved by the local search while starting solutions
produced by the genetic algorithm quickly bring the local search to a local minimum.

Besides this, ants-based algorithms can deal with a high number and variety of
system constraints and it can easily be adapted to new situations where additional
constraints are added to the problem. Finally, the fact that they can deal with changes
in the system in a very effective way, so that they can be applied in a dynamic situation
such as plant scheduling, where changes (e.g. glitches, breakdowns, additional delays,
etc.) are likely to happen, so a quick reschedule is needed.

Ant-based optimization is a parallel distributed optimization process. A popula-
tion of ants collectively discover and combine good pieces of different solutions. The
mechanism is to encode the information not in a population of individual solutions,
but in a modification of the environment: a shared space of pheromones. Artificial
ants, searching for solutions, construct a solution step by step, and examine at each
step the pheromones in the neighborhood. What step to do next will be determined
by weighting the immediate reward of that move with the pheromone distribution,
left by other ants in situations similar to the one they find themselves in. Once an
ant has completed a solution,it calculates the fitness of that solution, and then retro-
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spectively adjusts the strength of pheromone on the path it took proportionally to
the fitness.

A procedure such as this, iterated over a population of ants, will provide two
things: (a) a set of good solutions, and (b) a space of pheromones encoding global
information.

Clearly (a) is very important. However, we will show that for real-world opti-
mization of dynamic, uncertain, changing problems, (b) is of equal importance. It is
for this reason that we have highlighted the ant algorithm as an important new ap-
proach which we believe is of great practical use. Briefly the importance of the space
of pheromones is the following: if we change the problem in some small way (to re-
flect a change in demand, or a breakdown, delay or glitch in the manufacturing plant,
or an addition to the plant), the information contained in the pheromones is still
mostly relevant to the new problem. Hence a solution to the new/modified problem
can be found considerably quicker. More traditional optimization procedures cannot
do this and need a restart on the new problem.

The difficulty, as with applying all optimization algorithms, is in determining
a suitable abstract representation: we need to define the space of pheromones and
problem steps and choice procedure appropriately. It is known that for many algo-
rithms (genetic algorithms, simulated annealing, etc.) the choice of representation
is crucial in producing an effective optimization procedure. We do not expect ant
algorithms to be any less representation-dependent in this regard.

An advantage of the ant algorithm, in this regard, is the relatively natural way in
which expert rules of thumbmay be encoded into the ‘immediate reward’mentioned
above. Many algorithms find it difficult to incorporate such hints or guidance into the
search process. For ants algorithms this is quite straightforward, where the rules of
thumb were encoded into the heuristic component. The bidding algorithm [] is
thus used for the calculation of the transition probabilities used by the ants in the
solution construction procedure. This will be described in detail in the next section.

The algorithm presented here has also a number of enhancements with respect
to the classic ACO. On one hand, to improve the search in the neighborhood of good
solutions, a boost of pheromones is performed for high fitness solutions found; on
the other, to enhance the exploration of very low probability steps in the solution
construction, a random exploration is introduced.

Using these enhancements, the process of learning is constant and faster, and
with proper choice of the parameter set, the optimal solutions are found within a few
hundred iterations. We found that ants devote their resources very effectively to ex-
ploring a variety of high fitness solutions, while it is crucial to maintain the balance
between learning and reinforcement.

3 Algorithm Scheme

The following section describes in detail the ant-bidding algorithm.
The optimization problem can be formulated as follows. Given:
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. M mixers, each having a production profile �V	 of the variants that can be
done, producing each variant v of �V	 in a continuous manner at a rate rM(v),
v = 1, . . . ,V (we approximate batch mixing operations by assigning a rate equal
to batch size and batch duration); we also define the variant changeover/cleanup
times tMvariant(i, j) to change to variant j after variant i, tMconc(i, j) and an addi-
tional changeover time due to some variant attributes (such concentration, or
white/not white type); the maximum number of simultaneous connections to
the tanks are also defined;

. T storage tanks, each having a capacity of Cv, v = 1, . . . ,V , the changeover times
tTsetup(i, j) to store variant j after variant i, the maximum number of simultane-
ous incoming connections from themixers, and themaximum number of simul-
taneous connections to the packing lines;

. PL packing lines, each having a packing profile �S	 of the SKU that can be
packed, and for each a packing rate rPL(s), s = 1, . . . , S, the variant changeover
time tPLvariant(i, j) of packing a SKU having variant j after one having variant i, the
pack-size changeover time tPLsize(i, j) of packing SKU j after i having a different
pack-size, the maximum number of simultaneous connections from the tanks,
the number n of scheduled maintenance operations with their intervals [ti , t f ]k ,
k = 1, . . . , n and the preferred attribute sequence of length m, �APL1 , . . . ,APLm 	,
which is also PL dependent;

. the demand profile of the S SKUs to complete for the period, where for each is
specified a variant and pack size and the quantity to be done, D(s), s = 1, . . . , S;

find the assignment and sequence of theV variants on themixers and of SKUs on the
packing lines that satisfy all the constraints (in particular limited number and capac-
ity of the tanks, limited connectivity, preferred attribute sequence, clean/up changing
times) and such tominimize the makespan, calculated as the time when the last SKU
to be done is packed, since the beginning of the operations. In the following we will
refer to task or job to indicate either the making of a variant or to the packing of an
SKU.

In the ant algorithm scheme, each step is the completion of an assignment task.
There are then two types of steps, . the making of a variant in a mixer (M-step), .
the packing of a SKU on a packing line (P-step).

The problem is represented by two acyclic diagraphs G(n,e) where the nodes
n represent the tasks to be completed and edges express a temporal sequence rela-
tion: e(i, j) = task j follows task i. The pheromones φ are represented with two dis-
tinct matrices relative to the two different types of tasks (making and packing). The
element φ(i, j) on each edge represents at any time the pheromone relative to the
convenience of doing the job j immediately after job i on any resource. Moreover we
have introduced at the beginning of the schedule on each resource (Mmixers and PL
packing lines) virtual tasks, to be able to store information also about the first (real)
job, so that the first tasks scheduled are also associated with the pheromones (those
connecting with the virtual tasks).

The dimension of theM-pheromones matrix is then (V +M) ċV and that for the
P-pheromones is (S + PL) ċ S.
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A. Initialization
The problem data is read in, the pheromones are set to a uniform value. The level of
pheromones during the iterations is never allowed to drop below aminimum thresh-
old and never be higher than a maximum level. This procedure allows the ants, on
one hand, to never exclude zero-pheromone edges, and on the other, to never accu-
mulate high amounts of pheromones on one edge, avoiding the formation of high
concentration-pheromone trails. This may slow down the algorithm for very large
problems, where it can be reasonable to remove those edges that are rarely used, be-
ing relative to task that are topologically distant (such as cities in the TSP).

B. Propagation of Ants
An iteration of the algorithm consists in the initialization and propagation of a num-
ber of artificial ants (usually  to ). Each ant of the group completes a solution by
choosing a sequence of steps, until no SKU is left to be done; since the problem size
is N = V + S, this will involve N such steps for each ant, that is V M-steps and S P-
steps during the construction procedure. Each ant maintains an updated taboo list,
a Boolean list of V + S elements to know what has been done and what needs to be
completed. During propagation the pheromones are not changed, and only when the
last ant of the group has finished, are the pheromones are updated.

Each artificial ant completes the following constructive procedure:

ċ Choose a resource
The ant progressively chooses which resource is available for the scheduling of the
next job; with the term resource we indicate one of the following two:

. a mixer and an empty tank,
. a packing line and a not-empty tank.

The resource is chosen by examining among all the resources and jobs to complete,
which one is available or will be available first, in consideration of the constraints;
besides some tasks can be done on some resource but not on others (e.g. a mixer is
available but it cannot handle any of the variants left to be done), in this case the
resource is not considered as an available one. So, if a mixer and an empty tank are
available, anM-step will be performed, or if a packing line and a not-empty tank are
available, a P-step will be performed.

ċ Choose a task
M-step. Once a mixer and an empty tank have been identified, the bids for the vari-
ants (MBids) that still need to be done and that can be done on this resource, are
calculated.

The bids of the variants are given by:

MBid(v) = !
s=1,. . . ,S

PBid(sv) ()

where v is the variant considered, s is the index for the SKUs sv having this variant
and PBid is the bid of SKU s over all the possible packing lines where the SKU can
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be done, finding the one with the highest value, as calculated by:

PBid(sv) =
D(sv)
T′

()

where D(sv) is the demand of the SKU s, and the term T′ includes the delay to wait
for that PL to be available, the setup times, and the time to process the SKU: D(sv)/
rPL(s) where rPL(s) is the packing rate of SKU s on the packing line.

Note that in the term PBidwe have not taken into account any setup/changeover
times for the mixer or tank, or other delays due tomixer and tank availability and the
setup times for the packing lines: these quantities are not known at this time, being
dependent on the schedule and on which packing line the specific SKU that will be
scheduled.

TheMBids are finally scaled by a proper factor to be in the order of magnitude
of the pheromones. The transition probabilities of making variant j after making the
last variant i are given by:

P( j) 8
φV(i, j)α ċMBid(vj)β

(1 + Tsetup(i, j))γ
()

where φV are theM-pheromones, Tsetup(i, j) is the setup/changeover time due to the
mixer and tank and it is computed as the maximum of the setup times tMvariant(i, j)
+ tMconc(i, j) and tTsetup(i, j), considering the time when the mixer and tank become
available respectively (they are usually not available at the same time, so overlapping
in the setup times occurs); the factors α, β and γ are introduced to adjust the relative
weights of these three components, the pheromones versus the heuristic factors (the
bids and setup times).

The transition probabilities are used in the following ways:

. Greedy step: choose the j that has the maximum value of probability
. Probabilistic step: choose the j with a probability distribution given by ()
. Random step: choose j randomly.

Which type of step tomake next is determined by two fixed cutoff parameters qo and
ro with qo < ro . At each step, a random number r is generated in [0, 1]; the ant makes
a greedy step if r < qo , else if r < ro the ant makes a probabilistic step, otherwise it
makes a random step.

Once the step has been made (that is a task has been chosen) and the next task j
has been selected, the necessary system variables are updated and the mixer starts to
make the variant j, filling the tank(s) selected.

The parameters qo and ro are used to regulate the process exploration versus ex-
ploitation, that is to say, intensification versus diversification.

P-step. If the next available resource is a packing line and a not empty tank is found,
the task will be to make a SKU on that packing line. In other words, the packing line
has been chosen at this point, but the tank not yet, because there might be several not
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empty tanks. Before choosing the tank it is then necessary to calculate the probabili-
ties for the SKUs, which will determine which variant (and then which tank) to use.
Of course for the SKU to be considered in the bids, its corresponding variant must
be present in some tank. Then the value of the bid is given by:

PBid(s) =
D(s)
T

()

where D(s) is the demand of the SKU s for the period, and T here is the resource
allotment time, that is the total time required on the chosen resources to complete
the SKU, and includes setup times of the packing lines, due to changes in the pack
size, the presence of maintenance cycles (that will block the packing and shift its ter-
mination at a time subsequent to the end of the maintenance), the processing rates of
the packing line for the SKU. In the calculation are included also the delays due to the
following fact: another SKU with the same variant might have already been sched-
uled on one or more different packing line(s) and the variant quantity in the tank
may not be enough to start packing an SKU using that variant. In the worst situa-
tion, it is necessary to introduce a delay to the start of the packing. The calculation of
the exact delay is relatively expensive computationally (when there is multiple inflow
and outflow to a single tank, for example), so in this calculation we only consider an
approximate delay D, that guarantees the feasibility of the SKU.

The resource allotment time then given by:

T = max(tavailable − t, 0) + Tsetup + t(s) + Δ ()

where t is the current time, tavailable is the time when the packing line will finish the
previous job and will be available, Tsetup is the setup time (for changing pack size
and/or variant), t(s) = D(s)�rPL(s) is the processing time of SKU s on the chosen
PL; finally Δ is the approximate estimation of extra delays (approximate in the sense
that the real delay can change due to availability of liquid in the tank and it will be
computed only when the SKU has been chosen), and it includes also possible addit-
ional penalties due to the presence of maintenance during the packing task, since in
this case, the packing has to be interrupted.

Then the transition probability for doing SKU j after SKU i, is then given by:

P( j) 8
φSKU(i, j)α ċ PBid(s j)β

(1 + Tsetup(i, j))γ
()

where φSKU are the P-pheromones and Tsetup(i, j) is the adjusted setup time for doing
j after i (that is, it is calculated considering variant and size changeovers from i to
j). Again, the factors α, β and γ are introduced to adjust the relative weights of the
heuristic components. And like before, which type of step to make next (that is if
greedy, probabilistic or random) is set by the two parameters qo and ro .

C. Calculation of the Fitness
When all the SKUs in the demand profile have been completed (assigned to the pack-
ing lines), the schedule is complete. A complete solution is obtained and the fitness
is calculated.
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The fitness is the inverse of the maximum makespan MS over the packing lines,
that is the time when the last packing line ends the last SKU:

f =
q

max
i=1,. . . ,PL

(MS)
()

where q is a scaling factor depending on the size of the problem, in order to maintain
the fitness function (used to update the pheromones) in the appropriate order of
magnitude.

D. Update of the Pheromones
The pheromone matrices are updated by evaporation and deposition processes: all
pheromones evaporate at a rate (1−ρ), while the pheromones on the solutions found
(the paths of the ants) are augmented proportionally to the fitness (the goodness) of
the solution found, according to the following equation:

φ(i, j) � ρ ċ φ(i, j) + ε ċ !
a=1.. .nAnts

f (a)�
(i , j)�Sa ()

where nAnts is the number of ants circulating at a time (between pheromones up-
dates), Sa is the solution found by the ant a, f (a) is the fitness of the solution Sa ,

Fig. 2 Outline of the ants-bidding algorithm
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which contributes to the increment on the edges (i, j) � Sa . Here є is constant, and
ρ is also referred to as the pheromone persistency constant. If the fitness is close
enough (usually 5%) or greater than the best fitness found so far, the pheromones on
the edges of Sa are incremented by єboost instead of є in Equation (), a parameter
that is usually set to one or two orders of magnitude larger than є. In particular, if
the fitness of a solution is larger than the fitness of the best solution found so far, the
solution and its fitness are stored as the new best. The iteration then continues from
b. with a new colony, until all the Nit iterations are completed. The scheme of the
algorithm is presented in Fig. .

4 Further Enhancements

In this section we discuss some additional aspects/enhancements that have been in-
cluded in the model.

A. Attribute Sequence
Wemay encounter additional constraints in production scheduling in the real world.
This may arise due to the need to account for aspects of the problem that have not
been explicitly modeled, such as to minimize clean up procedures in order to re-
duce waste and environmental impact. For example, we may impose an additional
constraint that the SKU must follow a specified color sequence and/or pack size se-
quence, called attribute sequence, which depends on the packing line considered. In
such cases, only the SKUs whose attribute is the correct one for the current attribute
sequence of that packing line will have a non zero bid. When all the SKUs with that
attribute are completed the attribute is allowed to change to the next value in the se-
quence. For the variant there is no direct attribute sequence on the mixers, but they
will inevitably depend on the attribute sequence on the packing lines. In this way the
only non-zeroMBids calculated in Equation () are those for the variants associated
with SKUs that are feasible in the current attribute sequence on at least a packing line.
This is done simply setting to zero the PBids in Equation () that violate the sequence,
so if there is no SKU in the actual sequence the resultingMBid will be zero.

B. Maintenance Times
On the packing lines periodic maintenance operations are usually scheduled on
an ongoing basis. In the current implementation, we assume that the maintenance
schedule is known at the beginning of the optimization. Maintenance is encoded in
the following manner: . in the computation of the available resources, only those
that are not under maintenance are considered; . if a line is selected with a main-
tenance upcoming, if the packing is not finished when the maintenance starts, the
remainder of the packing continues after the maintenance has been completed. This
will affect the factor PBid in Equation () because the time T′ to complete the job
will be increased by the duration of the maintenance.

If other maintenance cycle(s) are present, analogous checks are made and further
interruption in the packing might happen.
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C. Turning on/off the Mixers
During the production of a variant, it might happen that the mixer has a production
rate that is not properly compensated on the other side by the packing lines, either
because the overall packing rate is too low, or because the system is in a state where
some or all the packing lines cannot pack the variant being made in the mixer. In this
situation, since the tanks have a limited capacity, if production is not stopped, tank(s)
can overflow. For this reason we have introduced a mechanism to turn off the mixers
when this is about to happen. Themixer is turned back on when the level in the tank
has dropped below a reasonable level, or there is a packing activity with an overall
rate greater than the production rate.

Mixers are turned on and off several times. The estimation of the precise turn
on/off times has proven to be an issue requiring some quite complex heuristic calcu-
lations as part of the optimization process.

In particular we have to compute the earliest possible time at which a mixer can
be turned onwhile ensuring that all packing lines will be able to run and no tanks will
overflow or become empty. Similarly we have to compute the earliest possible time
at which a given job can begin on a packing line, again while ensuring that no tanks
will overflow or become empty. In the general case, determining the earliest time is
an optimization problem in its own right. Because of the time-criticality of this rou-
tine to the performance of the overall optimization, carefully constructed heuristics
and a limited search are used for this calculation. These were designed and observed
to yield good results (as will be seen), and not to create nonviable solutions. How-
ever, it is possible, under some circumstances, that the resulting solutions might be
suboptimal. These algorithms must deal with mixers of differing speeds, potentially
feeding a tank which feedsmore than one packing line simultaneously (each of which
may run and hence drain the tank at different speeds). Finding the earliest time such
a job can start might require turning a mixer on earlier than before, but might also
require turning off a mixer that was previously on. Such complicated permutations
are very time-consuming to explore, given that these questions are asked in the inner-
most step of the optimization algorithm (i.e. are asked many thousands or millions
of times). Therefore a number of heuristics were developed which considered sepa-
rate cases such as that of a mixer being faster versus slower than the packing line(s) it
feeds, and that of small versus large time ranges when the mixer is currently off, and
that of packing jobs which extend across long versus short horizons. These heuris-
tics were carefully evaluated and tested by statistically generating large numbers of
artificial mixer/tank/packing-line scenarios. This gave us good confidence that the
heuristics perform well. It is still theoretically possible that the heuristics don’t re-
turn the optimal earliest time, however.

Split of the Making of the Variants
So far we have assumed that each variant is made at once and is completed in full,
once its production starts, until the total necessary quantity (the sum of the demands
of the SKUs having that variant) has been produced, even after an arbitrary number
of on/off operations on themixers. Nevertheless it could bemore convenient to com-
plete the production of a variant in two or more distinct phases.
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We have implemented this enhancement by simply considering this fact. The at-
tribute sequence might impose on the packing lines a sequence that will result in
a suboptimal schedule if, for the SKU demand profile considered, there is no pos-
sibility of using the variant for contiguous/subsequent SKUs on the packing line. In
other words, because of the attribute sequence, SKUs with another variant need to
be packed before it is possible to complete the SKUs having the same variant. This
situation will result in making and storage resources that are not fully exploited, since
they are in a waiting state.

We then introduced the possibility of splitting a variant when this situation hap-
pens. The splitting is done at the beginning of the optimization by creating an add-
itional variant in the optimization problem, whenever the presence is detected of one
or more SKUs that will never be contiguous under the attribute sequence constraints
on some packing line. A new variant is created relative to those SKUs, while the de-
mand of the initial variant is adjusted.

With this enhancement, improvements with respect to the previous results are
2.91% on average, for the problems considered below in the next section (problems
W to W).

Finally one might want to consider also splitting the packing of the SKUs. We
believe this procedure could also increase the quality of the best schedule found, but
no implementation has been done at this time, since more complex criteria need to
be introduced in this regard.

5 Results of the Optimization

We ran the model presented on problems of the following size: – SKUs, –
 variants, with usually  mixers,  tanks, – packing lines. These problems were
given by Unilever for the scheduling of a real factory, based on data for fabric con-
ditioner plants. Several tests were conducted. We present in this section only those
for which we had an existing best solution as a benchmark. For each of these prob-

Fig.3 Benchmark comparison of the new algorithmwith the bidding algorithm combinedwith
the best known. On the left, computation times are shown, while the right side shows the qual-
ity of the solutions found. The new algorithm finds solutions about two orders of magnitude
faster (in minutes), and usually of better quality
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lems,  optimization runs were repeated (that is starting from scratch, with uniform
pheromones), each with 10,000 iterations, that are usually completed in about 
seconds on a . GHz Pentium IV, using JSE Runtime Environment .. In most
problems the best solution is found within the first 1000 iterations, and within 10,000
iterations the same absolute best solution is found in all  runs (except with problems
Wak andWak).The optimization was also run for 100,000 iterations in a search
for further improvements.

We compared the results obtained in terms of computation time and quality with
existing benchmarks of the bidding algorithm combined with human adjustments,
that is manual methods based on visualization of the solution and adjustments by
skilled trials moving/splitting jobs. This included the possibility of splitting SKUs as
well, a possibility not implemented in the current version of the ants-bidding algo-
rithm (in the figures, indicated Ants+BA). This method, however, takes times in the
order of hours to generate the scheduling.

As can be seen, the Ants+BA algorithm can find optimized solutions much faster,
with an improvement of about two orders of magnitude. Most importantly, the so-
lutions are also improved in terms of optimization objective (shorter maximum
makespan). The results of the runs conducted are compared with the known bench-
mark, and are shown in Table .

On average over all runs considered, an improvement of < Δ% � = 3.29% for
the 10,000 iterations runs and < Δ% � = 3.83% for the 100,000 iterations runs is
reached, which is significant over a week of operations on a single plant. Some nega-
tive signs are present for D, mainly due to the fact that the benchmark times given
were rounded to the hour.

Besides this, it is also worth noticing that the new algorithm behaves in a quite
different way with respect to the number of changeovers and setup times, as shown in
Fig. . In particular variant changeovers on mixers and pack size changeovers are re-
duced, while variant changeovers on packing lines are increased.This result might be
interpreted as due to the fact that usually pack size changeover durations are greater
than variant changeover durations on packing lines.

Table 1 Results of optimization in terms of maximum makespan (in hours). The ant-bidding
algorithm (Ants+BA) is compared with the best known solutions after  runs of 10,000 and
100,000 iterations, and the best solution found is adopted.The percentual improvement Δ% is
then calculated

Instance Benchmark Ants+BA (.e iter.) Δ% Ants+BA (.e iter.) Δ%

W 131 129.02 1.52 129.02 1.52
W 101 99.36 1.64 99.36 1.64
W 112 112.06 −0.05 112.06 −0.05
W 103 96.79 6.22 96.79 6.22
Wak 119 106.11 11.45 106.11 11.45
Wak 117 117.15 −0.13 113.80 2.77
Wak 133 129.88 2.37 128.76 3.24
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Fig. 4 Comparison of the number of changeovers (a) making, (b) and (c) variant and SKU size
on PL

The overall average improvement in the number of changeovers is (for the prob-
lems considered here) equal to .%.We notice that there are several solutions hav-
ing the same makespan, because minimizing the makespan leaves some degeneracy
on the other packing lines, as they might finish at any time earlier than themaximum
makespan and provide a viable solution of equal quality. This aspect could be useful
when alternative ways of scheduling are needed.

A. Sensitivity to the Parameters
As in other optimization problems, ant algorithms demonstrate robustness with re-
spect to changes in the instance of the problem with little or no tuning of the param-
eters required. The values for the parameters are set on some test data, to maximize
the quality of the solutions found and the speed of their search. Values of the param-
eters that gave the best results are: qo = 0.4−0.5 and ro = 0.99�0.98 (one/two random
step each  steps), α = 0.1, β = 1.0, γ = 2.0, r = 0.7, є = 1.0 and єboost = 10.0, with
an offset of 0.01% from the best solution. In particular we observe that with respect to
other optimization problems solved with ACO, the value of qo used here seems quite
low.This is due to the fact that the problem considered here is highly constrained, so
it is better to favor exploration instead of exploitation.

The number of ants per iteration is always set to nAnts = 1, and does not seem to
be a crucial parameter for these small–medium size problems.

B. Glitches on Packing Lines
In this section we analyze the robustness of the production schedule with respect to
the effects of unforeseen glitches on the packing lines. This is particularly important,
since there aremany unexpected events in the real world thatmay require production
rescheduling. The capacity to cope with glitches depends mainly on the flexibility of
the plant. Notice that there are two situations that might affect the impact of a glitch:

a. the glitch is on a PL that has little utilization.
b. the glitch is on the PL that has high utilization.

To visualize the plant schedule and the effects of the glitch, we have developed
a graphical user interface. In Fig. , two schedules are shown as a result of the op-
timization process.The horizontal axis is time, the top panel shows the mixer sched-
ule, the middle panel the liquid quantities in the tanks and the bottom panel shows
the packing line schedule. The maximum makespan is also indicated at the very top
with the red line.
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Fig. 5 (a)The glitch on packing line , is from  to  (in red) and happens to be on a PL which
has some slack. In this case, there is no change in themakespan, since the duration of the glitch
is less than the available slack. (b) Here the glitch (from  to ) is on the critical packing line ,
the one with the maximummake-span and no flexibility to move other packing tasks to other
lines. Hence the overall makespan increases

Variants (onmixers and tanks) and SKUs (on packing lines) are labeled with their
names and colored with the respective color of the variant/SKU. The black rectangles
represent setup times, while dark gray rectangles on the packing lines are the sched-
uled maintenance operations. In case a. the glitch (in red) occurs on a line with low
utilization, so has no remarkable effects on overall production completion, while in
case b. the glitch is on a line that is highly utilized and is the only one that can accom-
plish the long production of FJ(DB) (in blue) and the following packing tasks, so all
production must shift, increasing the final makespan by the duration of the glitch.

The impact of the glitches are then essentially related to the flexibility of the plant.
With dynamic scheduling the loss of time is never greater than the duration of the
glitch.

C. Other Considerations

Because of the stochastic nature of this algorithm, to gather statistical consistency
data the algorithm was run several times over repeated runs, each starting from
scratch, with uniform pheromones distribution.

Over the runs, the average best fitness and the average system fitness as well as
their standard deviations were calculated, to analyze the convergence process. By sys-
tem fitness here we indicate the fitness of each ant (sampled every  iterations) av-
eraged over the number of ants that are being considered in that interval, which is



 A.V. Donati, V. Darley, B. Ramachandran

Fig. 6 Learning curve: the red solid line represents the best fitness found during iteration of
the algorithm, the blue squares and bars represent the system fitness and its variation

related to the good solution discovery process. In Fig. , the red lines represent the
average best fitness found so far (averaged over all runs), the blue squares the aver-
age system fitness (over the runs). The vertical bars represent the standard deviation
of the average system fitness, to indicate how much variation has been present from
one experiment to another. If, for example, the greediness is high (qo) the squares
will lie very close to the red line, with smaller error bars, indicating that the ants are
performing less exploration.

It is also useful to evaluate the distribution of the average fitness and its cumu-
lative distribution C, which are related to the probability P of finding a solution for

Fig. 7 Makespan distribution and its integral, of every agent that generates a solution during
iteration of the algorithm
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a given value of the fitness (P = 1 − C) and to phase transitions in the system, as
shown in Fig. .

Another relevant issue is how ants, once they have explored the space of solutions,
are able to react to changes in the system.One type of change is to add, remove or split
a job, perhaps as a consequence of demand changes. Others relate to plant operation,
such as glitches or machine breakdowns. We can show that the pheromone memory
allows the discovery of new solutions in a faster way. In Fig. , the red (lower) curve
represents the fitness when the optimization is started as usual with a uniform distri-
bution of pheromones. After  iterations the optimization is stopped and the prob-
lem is slightly changed by removing some tasks to be scheduled. The pheromones in
this case were initialized with the distribution obtained at the end of the previous
run. The blue (upper) curve shows not only a higher fitness (which actually depends
on the fact that some jobs were removed, hence shortening the makespan), but most
importantly a steeper rise.

6 Design

The optimization can also be run to test different plant configurations. Aided by data
generated by an optimization system such as this, on the relative constrainedness of
different parts of the manufacturing plant, a designer could understand and experi-
ment with the implications of different types of design changes, and thereby under-
stand which design features contribute most heavily to the creation of a factorywhich
is both efficient and robust from the point of view of the operations/planning man-
agement.

Fig. 8 Learning curves: the Y axis represent the fitness function (arbitrary unit), the red (lower)
curve is a standard run of the algorithm. When the pheromones of the last iteration are used
to initialize those for amodified problem, learning is much faster, as shown in the blue (upper)
curve
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It is possible to create several sets of experiments by changing each time the value
of the demand for each SKU and by initializing the pheromones to the average cal-
culated over the first set of experiments (i.e. those with unchanged demand). We
conducted an analysis of the factory capability to absorb variations in the demand by
introducing a uniform variation of 20% from period to period, in the demand of the
SKUs and spread between multiple SKUs.

Figure  shows nine possible configurations for a plant, derived by variations of
an original problem with  mixers (M = 3),  tanks (T = 3) and  packing lines
(PL = 5). For the first row of plots, each plot is relative to an increase in the number
of mixers, starting with M = 2, up to M = 4. The second row, each plot is relative to
an increase in the number of tanks, starting from T = 2, up to T = 4. The third and
last row, each plot is relative to the increase in the number of packing lines, starting
from PL = 4 up to PL = 6.

In all the plots the z-axis is the makespan necessary to complete the schedule,
while the x and y axes represent the incremental variation in the number of the other
resources of the plant, e.g. in the first row the number of mixers is progressively in-
creased, and each plot shows the resulting makespan as a variation of the number of
PL versus the number of tanks, T. The green bars are proportional to the standard
deviation, or variation for the time to complete the schedule.

Fig. 9 Plots of the average time to complete a schedule with different plant designs: in each plot,
we vary the number of resources available. Each row represents a different resource varying.
First row mixers, second tanks, and third packing lines
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We make two important observations here: on row , plot , we have that with
PL = 4, even increasing the number of mixers to M = 4 (ΔM = 1) and the number
of tanks T = 4(ΔT = 1), no significantly better schedules are obtained, than just
having M = 2(ΔM = −1), and T = 2(ΔT = −1). The situation of having just 
packing lines is evidently a bottleneck for the system.

In other plots, as in row , plot , we notice that increasing PL and M is really
beneficial if we move from PL = 4(ΔPL = −1) and M = 2(ΔM = −1), to PL =
4(ΔPL = −1) and M = 3(ΔM = 0), but not convenient at all to add an extra line,
that is to PL = 5(ΔPL = 0) and M = 4(ΔM = 0) or from the initial point PL =
4(ΔPL = −1) andM = 2(ΔM = −1) to PL = 5(ΔPL = 0) andM = 2(ΔM = −1). We
have added a packing line without obtaining any significant improvement.

The examples cited here support the following observations:

. Tradeoffs exist between cost of design and robustness of design, in terms of the
ability to robustly handle demand variations. Hence, robustness criteria need to
be considered in deciding plant capacity.

. Even if it is decided to increase capacity to improve design robustness to deal
with demand uncertainty, the capacity increase needs to be decided on the basis
of an analysis of plant bottlenecks.

A. Dynamic Capacity
We now examine phase transitions related behavior in this problem with a specific
focus on capacity/flexibility related issues. We define in this section, a measure of the
dynamic capacity of a plant based on the idea of considering the possible different
ways (processes) to complete a finished product/job/task/object. We consider all the
possible processes and distinguish among parallel and serial processes, respectively
those that can happen at the same time, and those that follow one and other, like
a sequence of operations, or sub-path.

The idea is to calculate for each finished product (here the SKUs) ameasure of ef-
ficiency/flexibility or utility of the parallel and serial processes involved by first iden-
tifying each distinct way that the final product can be achieved with the correspond-
ing sequence of operations (serial processes), and evaluating the speed at which they
can complete the process. Then, those that represent alternative ways to accomplish
the final product are added in a proper way. The calculation is repeated for all prod-
ucts. Finally all the utilities for all the products are combined taking into account also
additional correction factors due to constraints on the maximum parallel processes
present at any time.

In this way, for each possible final product, we consider all the feasible paths from
start to completion. Each of these paths can be regarded as one set of operations or
indefinitely many, and different finished products may share the same set, as in a typ-
ical multistage flowshop process, or have a quite different deconstruction into sets or
simpler processes, as in a complex job-shop type process, or complex heterogeneous
supply chain.

For each path we calculate, given the sequence of operations required, the min-
imum value of the utility U along the path, over either discrete steps or a continuous



 A.V. Donati, V. Darley, B. Ramachandran

path, that is the minimum rate at which the task can be accomplished on this path.
We repeat this calculation for all the pathways for this task, properly adding them
together (some weighting might be needed). Adding up all the utilities for different
paths for this task might not be sufficient, given that parallel processes might not be
possible in reality because of constraints, such as limited simultaneous connections
or limitations on resources. We need to examine for each of those paths how many
of them can be effectively simultaneously possible and calculate the fraction of those
that may be carried out at the same time. We can call this term the simultaneity con-
straint S, which corrects the utility U for the task t considered. The corrected utility
is thus given by:

Ũ(t) = S(t) ċ !
p�paths

min
n�nodes

U(p, n, t) ()

where the nodes represent the serial operations to complete a product on the path p,
each characterized by a processing rate, and Ũ represents the corrected utility when
taking into account constraints on simultaneous processing of tasks. The dynamic
capacity is then given by:

C = !
t�tasks

Ũ(t) ()

We have carried out the above procedure for the multistage flowshop problem (MS-
FSP), which involes finding the dynamic capacity when the system is a plant with
M mixers, producing V variants, each with different production profile and rate
(which depends on the variant), T tanks, for temporary storage of different variants
(one at a time), PL packing lines, characterized by packing profile (with SKU) and
rate for each SKUs (a variant in a certain pack size). We assume that the first two
stages are fully connected, while from tanks to packing lines there is a maximum
number of simultaneous connections Nc at a time. A scheme of these settings is rep-
resented in Figure .

For each SKU s and each feasible path p ( a combination of mixer and packing
line) the utility can be defined as: U(p, s) = min rM , rPL), where rM and rPL are
respectively the mixing rate (for the variant) and the packing rate (for the SKU).The
simultaneity constraint factor is taken into account in the following:

S(t) =
min(PL(s),Nc)

max(PL(s),Nc)
()

Fig. 10 Schematic representation of the liquid plant considered for the phase transition analysis
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where PL(s) is the number of packing lines where the SKU s can be done and Nc
the maximum number of connections at a time between the tank and the packing
lines. Due to full connectivity from mixers to tanks, more correction factors are not
necessary; we do not need this assumption in this context, but we take into account
this aspect. Indeed the time to complete a task is governed by theminimumrate along
the serial process, as explained in the text.

The total dynamic capacity is then given by:

C = !
v�Variants

S(s) ċ !
p�paths

U(p, s(v)) ()

It should be noted that the dynamic capacity has been defined in this way to
capture the flexibility of the plant, which is namely related to the various possible
paths available to manufacture a product.

We generated a number of plant instances with varying degrees of connectivity
and a number of demand profiles which are constantly increased by a finite amount.
The results are shown in Fig. , where the z-axis is the time to complete the schedule
(the makespan), the green bars represent the standard deviation over the demand
variation, having added for each demand profile a 20% uniform random variation,
and repeating this calculation over five runs. The red dots are missing data for plant
profiles that have been interpolated.

We note that a phase transition is present in this case for C = 35,000, where
a sudden drop occures in the time required to complete the schedule to a value that
is fairly constant even with further increases of the capacity.The interpretation of this

Fig. 11 Study of the factors affecting the time required to complete a production cycle, based
on the total demand and dynamic capacity defined in Equation ()
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result is that, irrespective of the demand, the plant dynamic capacity needs to exceed
a certain threshold to keep the plant makespans acceptable and robust to variable
demands. This situation is represented also in Fig. , where the dynamic capacities
of two existing plant configurations are computed and indicated by the two vertical
lines. A great improvement could be accomplished if only these plants could increase
their dynamic capacity and move after the phase transition, gaining about a 30%
improvement. This improvement could be accomplished by simply increasing the
number of connections between stages, with very little additional cost.

Interestingly enough, Unilever has anecdotal stories that relate to this analysis.
Over the years a given factory (say a toothpaste factory) has changed from making
 kinds of toothpaste, to  kinds, and then to , all without any substantial change
in the efficiency of production. However, when the 23rd kind was introduced, sud-
denly the factory just couldn’t copewith the production anymore. Efficiency dropped
drastically.

Further analysis and experiments need to be done varying the number of SKUs
under different demand scenarios with a fixed plant capacity to examine any phase
transition related effects.This is the subject of futurework, although the order param-
eter we have introduced, and its phase transitions appear to be a likely explanation
for these observations.

7 Conclusions

We have examined a number of aspects related to the scheduling of a multistage
manufacturing plant. The use of an adaptive algorithm provides a better and more
effective search in the solution space and copes with rescheduling in the case of mal-
functioning or glitches, and variations in the demand. The improved speed in the

Fig.12 Phase transition in the time necessary to complete a production cycle. An increase of the
dynamic capacity can correspond a relevant decrease of the production times.The two vertical
lines represent two plants from the data. Here it is shown that if bottlenecks are eliminated by
improving connectivity among stages (e.g. little additional investment), the throughput of the
plant can significantly increase
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search for solutions allows one not only to find optimal solutions, but also to study
several system configurations under many different conditions. The discovery of an
order parameter and a deep theoretical analysis of the phase transitions improves
the understanding of system design and its robustness and capability to respond to
a changing environment.

Potential extensions of this work include applications to other flowshop and job-
shop problems, but also to other complex/adaptive scheduling problems.
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Abstract

This chapter uses an ant colony meta-heuristic to optimally load balance code divis-
ionmultiple access micro-cellular mobile communication systems. Load balancing is
achieved by assigning each micro-cell to a sector. The cost function considers hand-
off cost and blocked calls cost, while the sectorization must meet a minimum level
of compactness. The problem is formulated as a routing problem where the route
of a single ant creates a sector of micro-cells. There is an ant for each sector in the
system, multiple ants comprise a colony and multiple colonies operate to find the
sectorization with the lowest cost. It is shown that the method is effective and highly
reliable, and is computationally practical even for large problems.

Key words: Load Balancing, Ant Colony Approach, Micro-cell Groupings

1 Introduction

In the last  years there has been substantial growth in micro-cellular mobile com-
munication systems. It is imperative to provide a high level of service at minimum
cost. With the substantial increase in cellular users, traffic hot spots and unbalanced
call distributions are common in wireless networks. This decreases the quality of ser-
vice and increases call blocking and dropping. One of the main design problems to be
addressed in micro-cellular systems is location area management. This location area
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management problem can be generally stated as: For a given network of n cells, the
objective is to partition the network into m location areas, without violating trans-
mission constraints, and with minimum cost. This chapter addresses the problem of
providing good quality of service at a reasonable level of cost for code division mul-
tiple access (CDMA) micro-cellular systems. To provide the best service for a given
number of base stations and channels, the call load must be dynamically balanced
considering the costs of call handoffs and call blockage. This is a location manage-
ment optimization problem that can be accomplished through sectorization of the
micro-cells. Figure  shows an example grouping that has one virtual base station
(VBS) and three sectors. The maximum number of channel elements assigned to
a VBS is termed hard capacity (HC). The maximum number of channel elements
that a sector can accommodate is termed soft capacity (SC). HC is assumed to be 
and SC is assumed to be  in this example. In Fig. (a) the total call demand is equal
to HC () but, the total call demand in one sector is greater than  resulting in 
blocked calls in that sector. Figure (b) has no blocked calls with the sameHC and SC.
Blocked calls are one consideration, while handoff calls are another. A disconnected
grouping of micro-cells generates unnecessary handoffs between sectors as shown in
Fig. (a). Therefore, the cells in a sector need to be connected compactly, as shown
in Fig. (b).

Fig. 1 Improper and proper groupings of micro-cells []

Fig. 2 Examples of micro-cell groupings []
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To minimize handoffs and interference among sectors, a measure of sector compact-
ness, as Lee et al. [] proposed, can be used.The following is amathematical equation
of the compactness index (CI):

CI =
"
n−1
i=1 "

n
j=i+1 xi j 
 Bi j

"
n−1
i=1 "

n
j=i+1 Bi j

()

There are n cells. Bi j is  if cells i and j are adjacent, otherwise . If the sectors of
cells i and j are the same, then xi j = 0, otherwise . The CIs for Figs. (c) and (d) are
14�24 = 0.583 and 9�24 = 0.375, respectively. If . is chosen as the maximum CI,
then Fig. (c) is infeasible.
The cells grouping problem is an NP-hard problem []. For load balancing of CDMA
wireless systems previous research has explored the use of optimization heuristics.
Kim and Kim [] proposed a simulated annealing approach to minimize the cost of
handoffs in the fixed part of a personal communication system network. Demirkol et
al. [] used SA tominimize handoff traffic costs and paging costs in cellular networks.
Chan et al. [] presented a genetic algorithm (GA) to reduce the cost of handoffs as
much as possible while service performance is guaranteed. Lee et al. [] used a GA
to group cells to eliminate large handoff traffic and inefficient resource use. In their
proposed sectorization, properly connected and compact sectors are considered to
keep the handoffs as few as possible while satisfying the channel capacity in each
sector. Brown and Vroblefski [] altered the GA approach of [] with less disruptive
crossover andmutation operators, that is, operators that bettermaintain the structure
of previous solutions in newly created solutions. They report improved results over
the Lee et al. GA.The same authors used a grouping GA on a related problem tomin-
imize location update cost subject to a paging boundary constraint []. Using the
same fundamental problem formulation of [] and [], we propose a new heuristic
based on an ant colony system for dynamic load balancing of CDMA wireless sys-
tems.

2 Ant Approach to Dynamic Load Balancing

The ant colony approach is one of the adaptive meta-heuristic optimization methods
inspired by nature which include simulated annealing, GA and tabu search. The ant
colony paradigm is distinctly different from other meta-heuristic methods in that it
constructs an entire new solution set (colony) in each generation, while others focus
on improving the set of solutions or a single solution fromprevious iterations. The ant
optimization paradigm was inspired by the behavior of real ants. Ethnologists have
studied how blind animals, such as ants, could establish shortest paths from their
nest to food sources. The medium that is used to communicate information among
individual ants regarding paths is pheromone.Amoving ant lays somepheromone on
the ground, thus marking the path. The pheromone, while gradually dissipating over
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time, is reinforced as other ants use the same trail. Therefore, efficient trails increase
their pheromone level over time while poor ones reduce it to nil. Inspired by the
behavior of real ants,MarcoDorigo introduced the ant colony optimization approach
in his PhD Thesis in  [] and expanded it in further work, as summarized in
[–]. The characteristics of ant colony optimization include:

. a method to construct solutions that balances pheromone trails (characteristics
of past solutions) with a problem-specific heuristic (normally, a simple greedy
rule)

. a method to both reinforce and evaporate pheromone.

Because of the ant paradigm’s natural affinity for routing, there have been a num-
ber of ant algorithm approaches to telecommunications in previous research. Chu, et
al. [], Liu et al. [], Sim and Sun [], Gunes et al. [] and Subing and Zemin []
all used an ant algorithm for routing in telecommunications. Shyu et al. [, ] pro-
posed an algorithmbased upon the ant colony optimization approach to solve the cell
assignment problem. Subrata and Zomaya [] used an ant colony algorithm for solv-
ing location management problems in wireless telecommunications. Montemanni et
al. [] used an ant colony approach to assign frequencies in a radio network. More
recently, Fournier and Pierre [] used an ant colony with local optimization to min-
imize handoff traffic costs and cabling costs in mobile networks.
Dynamic load balancing can be affected by groupingmicro-cells properly and group-
ing can be developed through a routing mechanism.Therefore, we use ants and their
routes to choose the optimum grouping ofmicro-cells into sectors for a given CDMA
wireless system state.

2.1 Overview of the Algorithm

In our approach each ant colony (AC) consists of ants numbering the same as the
number of sectors, and there are multiple colonies of ants (C colonies) operating
simultaneously. That is, each ant colony produces one dynamic load balancing (sec-
toring) solution and the number of solutions per iteration is the number of colonies.
Consider an example of accomplishing sectorization. There is one VBS and three sec-
tors. In step , the ant system generates three ants, one for each of the three sectors. In
step , a cell in each sector is chosen for the ant to begin in. In step , an ant chooses
a cell to move to – moves are permitted to any adjacent cell that has not already been
assigned to a sector. Step  continues the route formation of each ant, which results
in sectorization of all micro-cells.
The flowchart in Figs.  and  gives the details of the algorithm. The variable optimal
describes the best solution found so far (over all colonies and all iterations). The cur-
rent available capacity of each VBS and each sector is calculated to determine which
ant to move first for sectorization. The cell chosen for an ant to move to is based on
the amount of handoff traffic (described in Sect. .). When all cells are sectorized,
CI is calculated using Equation (). If CI is less than the specified level, the solution
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Fig. 3 Ant colony algorithm for dynamic load balancing

is feasible. Otherwise, it is infeasible (not compact enough) and discarded. After all
feasible solutions are evaluated the minimum cost solution of an iteration is assigned
to the variable best.
After all cells are sectorized by the ants in all colonies, the pheromone levels of each
cell’s possible assignment to each sector are updated using Equation (). In this equa-
tion, τik(t) is the intensity of pheromone of cell i for assignment to sector k at time t.
Δτik is an amount of pheromone added to cell i for assignment to sector k (we use
a straightforward constant for this amount = .). Δτ�i k is an elitist mechanism so
that superior solutions deposit extra pheromone. If the best solution of the colonies
 to C is also better than the current value of the variable optimal, we add a relatively
large amount of pheromone = 10.0. If the best solution of the colonies  to C is worse
than the current value of the variable optimal but the difference (GAP) between the
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Fig. 4 Ant colony algorithm for dynamic load balancing Contd.

values of the variables best and optimal is less than the value of optimal ċ 0.05, that
is, the objective function of the best solution in the colony is within 5% of the best
solution yet found, we add an amount of pheromone = 1.0. ρ is a coefficient such that
(1 − ρ) 
 τik(t) represents the evaporation amount of pheromone between times t
and t + 1. We use ρ = 0.5.

τik(t + 1) = ρ 
 τik +
C
!
j=1

Δτik j + Δτ�i k ()

FromEquation (), it can be seen that the amount of pheromone change is elitist.That
is, the pheromone deposited for the best ever solution is three orders of magnitude
greater than an ordinary deposit of pheromone and the amount deposited for the best
solution in the C colonies (if it meets the GAP criterion) is two orders of magnitude
greater than usual. This elitism helps the ant system to converge relatively quickly.

2.2 Evaluation

The total cost is composed of the cost of blocked calls, the cost of soft and softer
handoffs, and the cost of forced handoffs. Blocked calls are caused by exceeding HC
or SC. When a mobile station with an ongoing call moves from one VBS to another,
then a soft handoff occurs. When a mobile station with an ongoing call moves from
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one sector to another within aVBS, then a softer handoff occurs.When a cell changes
its sector, all ongoing calls in the cell have to change sectors and a forced handoff
occurs.
The cost of amicro-cellular system as proposed by Lee et al. [] is used in this chapter
and calculated based on the new grouping in time period t + 1 given the grouping of
cells in time period t. There areM virtual base stations (BSm , m = 1, . . . ,M); there
is call demand of TDi in each of the N cells, there is handoff traffic of hi j from cell i
to cell j, and there are K groupings (sectors) of micro-cells (SECk).
The objective cost function [] is

Min F = c1!
m
Max

���
�
���
!
i�BSm

TDi −HCm , 0
9��
:
��;

+ c2!
k
Max

���
�
���
!

i�SECk
TDi − SCk , 0

9��
:
��;

+ c3!
i
!
j
hi jzi j + c4!

i
!
j
hi j(wi j − zi j)

+ c5!
i
giTDi ()

The first term is a summation over theM virtual base stations of the blocked calls due
to hard capacity. The second term is a summation over the K sectors of the blocked
calls due to soft capacity. The third term is the soft handoff traffic between adjacent
cells with different VBSs. The fourth term is the softer handoff traffic between ad-
jacent cells in different sectors within a VBS. The fifth term is the amount of forced
handoff after sectorization (reconfiguration). zi j ,wi j, and gi are binary variables. zi j is
 if cells i and j are in different VBSs. wi j is  if cells i and j are in different sectors.
gi is  if cell i changes sectors from the existing sectorization to the newly proposed
one. c1, c2, c3, c4, and c5 are weighting factors. The values of c1, c2, c3, c4, and c5 are
, , , , and  for examples in this chapter, as proposed by Lee et al. []. Larger
weights are given to c1 and c2 because minimizing the blocked calls caused by hard
and soft capacity is the first priority of sectorization.

2.3 Determination of Starting Cell for Each Ant

The following is the probability that cell i in sector k is selected for start.

p(i, k) =
TDi

" j�SECk
TDj

, i � SECk ()

Greater probability is given to cells that have large call demands to reduce forced
handoff costs.We have one VBS and three sectors in the example shown in Fig. . Cell
 in sector  has the highest probability (.) of starting. Cells  and  in sector 
have the same highest probability (.) in sector . Cells  and  in sector  have
the same highest probability (.) in sector .
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2.4 Movement of Each Ant

The current available capacity of each VBS and each sector must be calculated. They
are used to define ant movement. Capacities are calculated using following equations.

C−BSm = Max
���
�
���

HCm − !
i�BSm

TDi , LBS
9��
:
��;

for all m ()

C−SECk = Max
���
�
���

SCk − !
i�SECk

TDi , LSEC
9��
:
��;

for all k ()

Figures  and  are examples where HC = 96, SC = 40, lower bound of VBS
(LBS) = 3, and lower bound of sector (LSEC) = 2. The available capacity for VBSs
and sectors (C−BSm and C−SECk) are calculated using Equations () and (). We
use the lower bounds of VBS and sectors (LBS and LSEC) to find the lowest total cost
for sectorization. When searching for the optimal solution, we must consider that
there are handoff costs and blocked calls. In other words, we might be able to save
greater handoff costs even though we have some blocked calls in a VBS or sector. If

Fig. 5 Selection of starting cell for each ant

Fig. 6 Calculation of available capacity for VBS and sectors
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cells , , and  are selected for sector  as shown in Fig. , sector  has no chance to be
selected by an ant for sectorization because there is no current available capacity in
sector  of VBS . To allow blocked calls in sector , a chance (2�72 = 2.8%) is given
to sector  using the lower bound of sector . The value of the lower bound is given
by the user based on expected blocked calls in the system. If we have a large lower
bound, there is a high possibility of blocked calls.
If there is more than one VBS, a VBS for beginning movement must be chosen first.
PBS(m) is the probability that VBS BSm is selected to bemoved from by an ant. After
choosing VBS m′, one of the sectors in VBS m′ must be chosen. PSEC(k,m′) is the
probability that sector k in VBS m′ is selected to be moved from by an ant. PBS(m)
and PSEC(k,m′) are calculated as follows:

PBS(m) =
C−BSm

"
M
u=1 C−BSu

for all m ()

PSEC(k,m′) =
C−SECk

"l�m′ C−SECl
for all k � BSm′ ()

The cell to be moved to by an ant is selected based on the amount of handoff traffic.
Hk(i) is the probability that cell i in Nk , is selected to move to first by an ant based
on the amount of handoff traffic, hi j. Nk is the set of cells which are not yet chosen
for sector k and are adjacent to the cells of SECk .

Hk(i) =
" j(hi j + hji)

"i " j(hi j + hji)
, for all i � Nk , and j � SECk ()

phero(i, k) is the intensity of pheromone for cell i being assigned to sector k at time t
which is τik(t).This is indicative of the suitability of cell i for sector k.We set . for
initial values of phero(i, k) because the denominator of equation () cannot equal .
phero(i, k) is updated using Equation () from Sect. .. pherok(i) is the probability
of the suitability of cell i for sector k:

pherok(i) =
phero(i, k)

"
K
k=1 phero(i, k)

for all i � Nk ()

Fig. 7 Calculation of available capacity for VBS and sectors using lower bounds
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Cell i is a cell adjacent to sector k. This cell has not been assigned to any sector yet.
The probability that cell i will be assigned to sector k is

pk(i) =
αHk(i) + βpherok(i)

"l�Nk
(αHk(l) + βpherok(l))

for all i � Nk ()

This probability considers both handoff traffic (termed the local heuristic in the ant
colony literature) and pheromone. α and β are typical ant colony weighting factors
where α weights the local heuristic and β weights the pheromone. For this chapter,
α = 1 and β = 1, giving equal weight to the local heuristic and the pheromone.

3 Experiments and Analysis

We consider three benchmarking problems from [] (Table ). We have recoded the
GA proposed by Lee et al. [] to compare the performance of our ant approach and
the GA for these problems.  replications were performed of each algorithm for
each problem. We use  ant colonies at each iteration, where each ant colony finds
one solution. So, we have  different solutions at each iteration.We found the optimal
solutions of the  and  cells problems using ILOG . to validate the performance
of the heuristics. We terminate the ant system and the GA in these first two problems
when an optimal solution is found and in the last problem ( cells) by a CPU time
of each replication of  seconds. We define the convergence rate as how many
times an optimal (or best found for the last problem) solution is obtained over 
replications.

Table 1 Description of three benchmarking examples from Lee et al. []

 cells  cells  cells

Number of cells 12 19 37
number of VBSs 1 2 3
Number of sectors 3 6 9

Fig. 8 Comparison of groupings of  cells at time t and t + 1
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For the  cells problem the objective function values of the old and the new group-
ings at times t and t + 1 are . and . as shown in Fig. . We have three
ants in each colony because there are three sectors in one VBS. For the traffic distri-
bution, we use an Erlang distribution with average traffic of .We set minimum CI to
..We find an optimal solution with evaluation value of . using ILOG . with
execution time = . CPU seconds. The convergence rate of the ant approach
to this optimal solution is 100% with . CPU seconds per iteration while the
convergence rate of GA is 98% with . CPU seconds per iteration.
For the  cells problem the evaluation values of the old and the new groupings at
times t and t + 1 are . and . as shown in Fig.  using an Erlang distri-
bution with average traffic = 12. We have six ants in each colony because there are
six sectors. We set minimum CI = 0.65. We find the optimal solution using ILOG
. with an execution time . CPU seconds. The convergence rate of the ant ap-

Fig. 9 Comparison of groupings of  cells at time t and t + 1

Fig. 10 Comparison of groupings of  cells at time t and t + 1
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proach to this optimal solution is 100% with . CPU seconds while the conver-
gence rate of GA is 99% with . CPU seconds.
For the large  cells problem, the evaluation values of the old and the new groupings
at times t and t + 1 are . and . as shown in Fig.  using an Erlang distri-
bution with average traffic . We have nine ants in each ant colony because there are
nine sectors. We set minimum CI = 0.65. Because this problem is too large to find

Table 2 Results of the ant colony approach and GA [] for the  cells problem over  repli-
cations

Algorithm Execution Objective Convergence
time minimum maximum average rate

5.0s 766.288 773.661 766.9409 73�100
Ant System 10.0s 766.288 773.661 766.9057 77�100

20.0s 766.288 768.354 766.5772 86�100
30.0s 766.288 768.354 766.5359 88�100
5.0s 766.288 888.258 798.7183 7�100

GA [] 10.0s 766.288 904.401 795.9874 12�100
20.0s 766.288 874.574 785.0495 18�100
30.0s 766.288 875.031 780.5263 18�100

Fig. 11 Comparison of results using GA [] and the ant colony for the  cells problem over
 replications and execution time  seconds
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the optimal solution exactly, we compare the performance of the ant approach and
the GA using convergence rate within a limited CPU time. The convergence rates of
 replications of the ant approach are , , , and 88% for computation times of
, , , and  CPU seconds as shown in Table . Convergence rates of the GA are
, , , and 18% for the same computation time. Not only does the ant approach far
exceed the convergence rate to the best solution but the solutions found by the ant
approach that are not the best are much closer to the best than those found by the
GA (Figs. , , , and ).

4 Conclusions

We have used the routing capability of the ant system paradigm to good effect in the
problem of dynamic routing of micro-cellular systems. Our approach is computa-
tionally quick and reliable in terms of how close to optimal a given replication is likely
to be. Using three test problems from the literature, we produced decidedly better re-
sults than the earlier published genetic algorithm approach and achieved optimality
on the problems whose size allowed enumeration. There are some parameters to set
for the ant system, but we chose straightforward ones and the method does not seem
sensitive to their exact settings. The probabilities used for placement and movement
of the ants were intuitively devised considering call traffic and available capacities.

Fig. 12 Comparison of results using GA [] and the ant colony for the  cells problem over
 replications and execution time  seconds
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Fig. 13 Comparison of results using GA [] and the ant colony for the  cells problem over
 replications and execution time  seconds

Fig. 14 Comparison of results using GA [] and the ant colony for the  cells problem over
 replications and execution time  seconds
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Abstract

The issue of setting the values of various parameters of an evolutionary algorithm
(EA) is crucial for good performance. One way to do it is by controlling EA param-
eters on-the-fly, which can be done in various ways and for various parameters. We
briefly review these options in general and present the findings of a literature search
and some statistics about the most popular options. Thereafter, we provide three case
studies indicating a high potential for uncommon variants. In particular, we recom-
mend focusing on parameters regulating selection and population size, rather than
those concerning crossover and mutation. On the technical side, the case study on
adjusting tournament size shows by example that global parameters can also be self-
adapted, and that heuristic adaptation and pure self-adaptation can be successfully
combined into a hybrid of the two.

Key words: Parameter Control, Self-adaptive, Selection, Population Size

1 Introduction

In the early years of evolutionary computing the common opinion was that evolu-
tionary algorithm (EA) parameters are robust.The general claim was that the perfor-
mance of an EA does not depend heavily on the right parameter values for the given
problem instance at hand. Over the last two decades the EC community realised that
setting the values of EA parameters is crucial for good performance. One way to cal-
ibrate EA parameters is by controlling them on-the-fly, which can be done in various
ways and for various parameters [, , ].The purpose of this chapter is to present
a general description of this field, identify the main stream of research, and argue
for alternative approaches that do not fall in the main stream. This argumentation is
based on three case studies published earlier [, , ].

The rest of the chapter is organised as follows. Section  starts off with giving
a short recap of the most common classification of parameter control techniques.
Then we continue in Sect.  with an overview of related work, including some statis-
tics on what types of parameter control are most common in the literature. Section 
presents three case studies that substantiate our argument regarding the choice of the
parameter(s) to be controlled. Section  concludes the chapter.
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2 Classification of Parameter Control Techniques

In classifying parameter control techniques of an evolutionary algorithm, many as-
pects can be taken into account [, , , , ]. In this chapter we consider the three
most important ones:
. What is changed (e.g., representation, evaluation function, operators, selection

process, mutation rate, population size, and so on)?
. How the change is made (i.e., deterministic heuristic, feedback-based heuristic,

or self-adaptive)?
. Theevidence uponwhich the change is carried out (e.g., monitoring performance

of operators, diversity of the population, and so on)?
Each of these is discussed in the following.

2.1 What is Changed?

To classify parameter control techniques from the perspective of what component
or parameter is changed, it is necessary to agree on a list of all major components of
an evolutionary algorithm, which is a difficult task in itself. For that purpose, let us
assume the following components of an EA:
• Representation of individuals
• Evaluation function
• Variation operators and their probabilities
• Selection operator (parent selection or mating selection)
• Replacement operator (survival selection or environmental selection)
• Population (size, topology, etc.)
Note that each component can be parameterised, and that the number of paramet-
ers is not clearly defined. For example, an offspring v produced by an arithmetical
crossover of k parents x1 , . . . , xk can be defined by the following formula:

v = a1x1 + . . . + akxk ,

where a1 , . . . , ak , and k can be considered as parameters of this crossover. Paramet-
ers for a population can include the number and sizes of subpopulations, migration
rates, and so on for a general case, when more than one population is involved. Des-
pite the somewhat arbitrary character of this list of components and of the list of
parameters of each component, the “what-aspect” is one of the main classification
features, since this allows us to locate where a specific mechanism has its effect.

2.2 How are Changes Made?

Methods for changing the value of a parameter (i.e., the “how-aspect”) can be classi-
fied into: parameter tuning and parameter control. By parameter tuning we mean
the commonly practised approach that amounts to finding good values for the par-
ameters before the run of the algorithm and then running the algorithm using these
values, which remain fixed during the run. Parameter control forms an alternative,
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as it amounts to starting a run with initial parameter values that are changed during
the run.

We can further classify parameter control into one of the three following cate-
gories: deterministic, adaptive and self-adaptive. This terminology leads to the tax-
onomy illustrated in Fig. .

Deterministic parameter control This takes place when the value of a strategy
parameter is altered by some deterministic rule.This rule fires at fixedmoments, pre-
determined by the user (which explains the name “deterministic”) and causes a pre-
defined change without using any feedback from the search. Usually, a time-varying
schedule is used, i.e., the rule is used when a set number of generations have elapsed
since the last time the rule was activated.

Adaptive parameter control This takes place when there is some form of feed-
back from the search that serves as inputs to a mechanism used to determine the di-
rection or magnitude of the change to the strategy parameter. The assignment of the
value of the strategy parameter may involve credit assignment, based on the qual-
ity of solutions discovered by different operators/parameters, so that the updating
mechanism can distinguish between the merits of competing strategies. Although
the subsequent action of the EA may determine whether or not the new value per-
sists or propagates throughout the population, the important point to note is that the
updating mechanism used to control parameter values is externally supplied, rather
than being part of the “standard” evolutionary cycle.

Self-adaptive parameter control The idea of the evolution of evolution can be
used to implement the self-adaptation of parameters []. Here the parameters to be
adapted are encoded into the chromosomes and undergo mutation and recombinat-
ion. The better values of these encoded parameters lead to better individuals, which
in turn are more likely to survive and produce offspring and hence propagate these
better parameter values. This is an important distinction between adaptive and self-
adaptive schemes: in the latter the mechanisms for the credit assignment and updat-
ing of different strategy parameters are entirely implicit, i.e., they are the selection
and variation operators of the evolutionary cycle itself.

2.3 What Evidence Informs the Change?

The third criterion for classification concerns the evidence used for determining the
change of parameter value [, ]. Most commonly, the progress of the search is

Fig. 1 Global taxonomy of parameter setting in EAs
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monitored, e.g., by looking at the performance of operators, the diversity of the popu-
lation, and so on. The information gathered by such a monitoring process is used as
feedback for adjusting the parameters. From this perspective, we can make further
distinction between the following two cases:

Absolute evidence We speak of absolute evidence when the value of a strategy
parameter is altered by some rule that is applied when a predefined event occurs.The
difference from deterministic parameter control lies in the fact that in deterministic
parameter control a rule fires by a deterministic trigger (e.g., time elapsed), whereas
here feedback from the search is used. For instance, the rule can be applied when the
measure being monitored hits a previously set threshold – this is the event that forms
the evidence. Examples of this type of parameter adjustment include increasing the
mutation ratewhen the population diversity drops under a given value [], changing
the probability of applying mutation or crossover according to a fuzzy rule set using
a variety of population statistics [], and methods for resizing populations based on
estimates of schemata fitness and variance []. Such mechanisms require that the
user has a clear intuition about how to steer the given parameter into a certain di-
rection in cases that can be specified in advance (e.g., they determine the threshold
values for triggering rule activation). This intuition may be based on the encapsu-
lation of practical experience, data-mining and empirical analysis of previous runs,
or theoretical considerations (in the order of the three examples above), but all rely
on the implicit assumption that changes that were appropriate to make on another
search of another problem are applicable to this run of the EA on this problem.

Relative evidence In the case of using relative evidence, parameter values are
compared according to the fitness of the offspring that they produce, and the bet-
ter values get rewarded. The direction and/or magnitude of the change of the strat-
egy parameter is not specified deterministically, but relative to the performance of
other values, i.e., it is necessary to have more than one value present at any given
time. Here, the assignment of the value of the strategy parameter involves credit as-
signment, and the action of the EA may determine whether or not the new value
persists or propagates throughout the population. As an example, consider an EA
using more crossovers with crossover rates adding up to . and being reset based
on the crossovers performance measured by the quality of offspring they create.
Such methods may be controlled adaptively, typically using “bookkeeping” to moni-
tor performance and a user-supplied update procedure [, , ], or self-adaptively
[, , , , , ] with the selection operator acting indirectly on operator or pa-
rameter frequencies via their association with “fit” solutions.

2.4 Summary

Our classification of parameter control methods is three-dimensional. The compo-
nent dimension consists of six categories: representation, evaluation function, vari-
ation operators (mutation and recombination), selection, replacement, and popu-
lation. The other dimensions have respectively three (deterministic, adaptive, self-
adaptive) and two categories (absolute, relative). Their possible combinations are
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given in Table . As the table indicates, deterministic parameter control with rela-
tive evidence is impossible by definition, and so is self-adaptive parameter control
with absolute evidence. Within the adaptive scheme both options are possible and
are indeed used in practice.

3 Related Work

We conducted a literature review to get an overview of the work that has been done
on the various parameters of evolutionary algorithms of the last decade. Our aim
was not to deliver a fully annotated bibliography, but rather to illuminate some ex-
amples from the literature on this topic.The literature spans the conference proceed-
ings of three major EC conferences: GECCO (–), CEC (–) and
PPSN (–). In total we found  papers that were concerned, in any way
(thus not necessarily (self-)adaptive), with one of the parameters of EAs mentioned
above: representation, initialisation, evaluation function, variation operators, selec-
tion and population size. (In addition, we found  papers about adaptive EAs in
general.) We categorised the  papers, the result of which is shown in Fig. . We
consider this a preliminary overview giving some indication of the distribution of
research effort spent on these issues.The histogram clearly shows that much research

Table 1 Refined taxonomy of parameter setting in EAs: types of parameter control along the
type and evidence dimensions. The – entries represent meaningless (nonexistent) combina-
tions

Deterministic Adaptive Self-adaptive
Absolute + + –
Relative – + +

Fig. 2 Publication histogram



 A.E. Eiben, M.C. Schut

effort is spent on the variation operators (in general: , mutation: , crossover: ).
Also, the population parameter is well researched. However, we are aware of the fact
that this number is biased, because it includes papers that are somewhat out of the
scope of this chapter: for example, on population control in genetic programming, on
the island-model of (sub)populations and on distributing (sub)populations in paral-
lel evolutionary algorithms. We did not include papers on co-evolution.

We briefly discuss each EA parameter here, where we focus on the papers that
explicitly look at (self-) adaptivity of the parameters. If possible, wemake a distinction
between deterministic, and self- adaptation within the discussion of a parameter.

3.1 Representation

Concerning representation, the genome length can be taken as a variable during an
evolutionary run [, , , ]. Consider Ramsey et al. [] who investigate a vari-
able length genome under different mutation rates. To the suprise of the authors,
the length of individuals self-adapts in direct response to the applied mutation rate.
When tested with a broad range of mutation rates, the length tends to increase dra-
matically in the beginning and then decrease to a level corresponding to themutation
rate.

In earlier work, Harvey [] presents an important property of variable-length
genomes: “the absolute position of some symbols on the genotype can usually no
longer be used to decide what feature those symbols relate to.” Harvey sketches
SAGA: a framework that was constructed to investigate the dynamics of a GA when
genotype lengths are allowed to increase.The framework includes a particular cross-
over operator (SAGA cross) that has the requirement that the similarities are maxi-
mised between the two left segments that are swapped and between the two right seg-
ments that are swapped. This results in a computationally efficient algorithm where
populations largely converge.

Stringer and Wu [] show that a variable-length GA can evolve to shorter aver-
age size populations. This is observed when: () selection is absent from the GA, or
() when selection focuses on some other property not influenced by the length of
individuals. The model starts with an integer array of  elements, where each el-
ement represents an individual and the value denotes an individual’s chromosome
length. A simulated crossover produces children from two random parents, where
the value of the first child equals the first (random) crossover point plus the value of
the second parent less the second (random) crossover point; a similar procedure is
used for the second child.

3.2 Initialisation

Although making the initialisation adaptive may seem contradictory (i.e., what
should it adapt to initially?), there is a significant amount of literature dedicated to dy-
namic restart strategies for EAs [,,,].This can be understood as (self-)adaptive
initialisation.
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Fukunga [] shows how to find a good restart strategy in the context of resource-
bounded scenarios: where the goal is to generate the best possible solution given
a fixed amount of time. A new strategy is proposed that works based on a database
of past performance of the algorithm on a class of problem instances. The resulting
static restart strategy is competitive with those that are based on detection of lack of
progress. This static strategy is an example of deterministic parameter control and it
is surprising that it ourperforms the dynamic variant. According to the authors, one
reason for this is that the dynamic variant can only consider local information of the
current run.

Jansen [] compares very simple deterministic strategies on a number of ex-
amples with different properties. The comparison is done in terms of a theoretical
investigation on expected runtimes of various strategies.The strategies aremore com-
plex thanfixing somepoint of time for a restart, but less complex than adaptive restart
strategies. Two classes of dynamic restart strategies are presented and one additive
and one multiplicative strategy is investigated in detail.

Finally, re-initialisation can also be considered in parallel genetic algorithms.
Sekaj [] researches this: the effect of re-initialisation is analysed with respect to
convergence of the algorithm. In parallel genetic algorithms, (sub)populations may
periodically migrate (as discussed later in the section about population). Sekaj lets
re-initialisation happenwhen suchmigration took place. At re-initialisation, the cur-
rent population was replaced by a completely new, randomly generated population.
Additionally, two dynamic versions were presented: one where the algorithm after
some number of generations compares the best individuals of each population and
the worst population was re-initialised; and one which was based on the population
diversity. Re-initialisation is able to remove differences between homogeneous and
heterogeneous parallel GAs.

3.3 Evaluation Function

Regarding the evaluation function, some dynamic variants of this function are pre-
sented throughout the literature [, , , ].

The Stepwise Adaptation of Weights (SAW) technique has been introduced for
problems that have a fitness function composed as a weighted sum of some atomic
measure of quality. For instance, problems involving constraint satisfaction and data
mining belong to this class, where the atomic measure can be the satisfaction of one
given constraint or the correct classification of one given data record [,]. SAWing
is an adaptive technique that adjusts the weights in the sumperiodically at predefined
intervals by increasing those that belong to “wrong” items, that is, to unsatisfied con-
traints or ill-classified records. Hereby SAWing effectively changes the fitness func-
tion and allows the algorithm to “concentrate” on the difficult cases. SAWing has been
shown to work well on constraint satisfaction problems and data mining [, ,].

Reis et al. [] propose and analyse a fractional-order dynamic fitness function:
a fitness function based on fractional calculus. Besides the “default” fitness, the func-
tion has a component that represents the gain of the dynamical term. This dynamic
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function is compared with a static function that includes a discontinuity measure-
ment.The comparison has been done in the domain of electronic circuit design. Both
variants outperform the standard fitness algorithm.

Within the area of constraint optimisation problems, Kazarlis and Petridis []
propose a technique where the problem constraints are included in the fitness func-
tion as penalty terms. During the GA evolution these terms are varied, such that the
location of a global optimum is facilitated and local optima are avoided. In addition
to a static penalty assigmentmethod (which ismore often used in these types of prob-
lems), an increasing function is introduced that depends on the evolution time. This
function can be linear, exponential, square, cubic, quartic or -step. For the particu-
lar problems under research (Cutting and Packing and Unit Commitment Problem),
it was found that the square function was the optimum increase rate of the penalty
term (and not the linear function that was expected by the authors).

For the satisfiability problem, Gottlieb and Voss [] compare three approaches
based on adapting weights, where weights indicate the relative importance of a con-
straint in a particular satisfiability problem. Adaptation takes place after a fixed num-
ber of fitness evaluations. One of the three approaches yielded overall optimal per-
formance that exploits SAT-specific knowledge.

It is noteworthy to mention that the dynamics of a fitness function can also be
understood the other way around: where the fitness function is taken as being a dy-
namic one (because the problem is dynamic) and the EAhas to deal with this. In such
a case, the fitness function is thus not (self-)adaptive. For example, Eriksson and Ols-
son [] propose a hybrid strategy to locate and track a moving global optimum.

3.4 Variation Operators

By far, most research effort in (self-)adaptive parameter control is spent on the vari-
ation operators: mutation and crossover. Although there are many papers about
tuning the parameter values of the operator rates, a significant number look into
(self-)adaptive parameter value control for mutation and crossover.

There are approximately a dozen papers that discuss the (self-)adaptive param-
eter control for both operators. Smith and Fogarty [] use Kauffman’s NK model to
self-adapt the crossover and mutation rates. The method puts a mutation rate in the
chromosome itself and lets the (global) mutation rate be based on some aggregated
value of themutation rates of the individuals. The authors compare their newmethod
to a number of frequently used crossover operators with standard mutation rates.
The results are competitive on simple problems, and significantly better on the most
complex problems. Ho et al. [] present a probabilistic rule-based adaptive model
in which mutation and crossover rates are adapted during a run. The model works
based on subpopulations that each use different (mutation or crossover or both) rates
and good rates emerge based on the performance of the subpopulations. (Although
called ‘self-adaptive’ by the authors, in our earlier mentioned terminology, this model
is adaptive and not self-adaptive.) Finally, Zhang et al. [] let the crossover and mu-
tation rate adapt based on the application of K-means clustering. The population is
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clustered and rates are inferred based on the relative sizes of the clusters containing
the best and worst chromosomes.

Regardingmutation, we see that the mutation operator is undoubtedly one of the
most researched parameters according to our overview:  papers have been pub-
lished about it. The topics of these papers range from introducing new mutation
operators to the convergence of fitness gain effects of particular operators. Of these
papers,  are specifically about (self-)adaptive mutation operators. We give some
examples of these mutation operator studies. One of the earliest references in our
overview is Bäck [] who presents a self-adaptation mechanism of mutation rates.
The rates are included in the individual itself. The methods enables a near-optimal
schedule for the mutation rate. More recently, Katada et al. [] looked at the do-
main of evolutionary robotics, where they tested a GA whose effective mutation rate
changed according to the history of the genetic search. The individuals are neural
networks that evolve over time.The control task was motion pattern discrimination.
The variable mutation rate strategy shows better performance in this task, and this
benefit was more pronounced with a larger genetic search space. Finally, Arnold []
shows that rescaledmutations can be adaptively generated yielding robust and nearly
optimal performance in problems with a range of noise strengths. Rescaling muta-
tion has been suggested earlier in the literature, but this paper specifically discusses
an adaptive approach for determining the scaling factor.

Concerning crossover, we briefly describe two studies. White and Oppacher []
use automata to allow adaptation of the crossover operator probability during the
run. The basic idea is to identify groups of bits within an individual that should
be kept together during a crossover. An automaton encoded the probability that
a given bit will be exchanged with the other parent under the crossover operators.
First experiments show that the new crossover yields satisfactory results. The sec-
ond study was undertaken by Vekaria and Clack [] who investigate a number of
biases to characterise adaptive recombination operators: directional – if alleles are
either favoured or not for their credibility; credit – degree at which an allele becomes
favoured; initialisation – if alleles are favoured without knowing their credibility; and
hitchhiker – if alleles become favoured when they do not contribute to the fitness in-
crease. Some experiments show, among other results, that initialisation bias (without
mutation) does improve genetic search. Overall, the authors conclude that the biases
are not always beneficial.

3.5 Selection

The majority of the  papers that we found with general reference to the selection
mechanism of EAs are not about (self-)adaptive selection, but address rather a wide
range of topics: e.g., without selection, effects of selection schemes, types of selection
(clonal, anisotropic), and so forth. A stricter search shows that most studies that we
categorised as being about (self-)adaptive selection actually refer to another EA par-
ameter, for example, the mutation rate or the evaluation function.We only found one
paper about (self-)adaptive survivor selection as defined in the terminology above.
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Gorges-Schleuter [] conducts a comparative study of global and local selection in
evolution strategies. Traditionally, selection is a global parameter. In the so-called
diffusionmodel for EAs, the individuals only exhibit local behaviour and the selection
of partners for recombination and the selection individuals for survival are restricted
to geographically nearby individuals. Local selection works then as follows: the first
generated child is included in the next population whatsoever, each next child has to
be better than its parent in order to be included in the next population.

3.6 Population

The population (size) parameter scores second-highest in our chapter overview. We
already mentioned that this number is somewhat biased, because a number of the
papers are about topics that are outside the scope of this chapter. General research
streams that we identified regarding the population parameters with the  papers
are: measuring population diversity, population size tuning, island model and mi-
gration parameter, ageing individuals, general effects of population size, population
control in genetic programming, adaptive populations in particle swarm optimisa-
tion. For some topics, e.g., multi-populations or parallel populations, it is actually the
evaluation function that is variable and not the population (size) itself – although at
first sight the population size seems the varied parameter.This can also be said about
co-evolutionary algorithms.

Approximately  of the  papers are specifically about (self-)adaptive popula-
tion size. Later in this chapter, we discuss a number of these papers. Here, we briefly
mention two other such papers. First, Lu and Yen [] propose a dynamic multi-
objective EA in which population growing and decline strategies are designed in-
cluding a number of indicators that trigger the adaptive strategies. The EA is shown
to be effective with respect to the population size and the diversity of the indi-
viduals. Secondly, Fernandes and Rosa [] combine a dynamic reproduction rate
based on population diversity, an ageing mechanism and a particular type of (macro-
)mutation into onemechanism.The resulting mechanism is tested in a range of prob-
lems and shown to be superior in finding global optima.

4 Case Studies

We include three case studies that illustrate the benefits of (self-)adapting EA param-
eters. The first case study considers self-adaptive mutation and crossover and adap-
tive population size.The second study looks at on-the-fly population size adjustment.
The third case study considers (self-)adaptive selection.

Throughout all case studies, we consider three important performance measures
that reflect algorithm speed, algorithm certainty, and solution quality. The speed of
optimization is measured by the Average number of Evaluations on Success (AES),
showing how many evaluations it takes on average for the successful runs to find
the optimum. The Success Rate (SR) shows how many of the runs were successful in
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finding the optimum. If the GA is somewhat unsuccessful (SR < 100%), the meas-
urement MBF (Mean Best Fitness) shows how close the GA can come to the opti-
mum. If SR = 100%, then the MBF will be , because every run found the optimum
. (The MBF includes the data of all runs in it, the successful and the unsuccessful
ones.)

4.1 An Empirical study of GAs “Without Parameters”

An empirical study on GAs “without parameters” by Bäck, Eiben and van der Vaart []
can be considered as the starting point of the research this very chapter is based
upon. The research it describes aims at eliminating GA parameters by making them
(self-)adaptive while keeping, or even improving, GA performance.The quotes in the
title indicate that this aim is only partly achieved, because the mechanisms for elimi-
natingGAparameters can have parameters themselves.The paper describesmethods
to adjust

• the mutation rate (self-adaptive, by an existing method after []),
• the crossover rate (self-adaptive, by a newly invented method),
• the population size (adaptive, by an existing method after [], [, pp. –])

on-the-fly, during a GA run.
The method to change mutation rate is self-adaptive. The mutation rate is en-

coded in extra bits at the tail of every individual. For each member in the starting
population the rate is completely random within a given range. Mutation then takes
place in two steps. First only the bits that encode the mutation rate are mutated and
immediately decoded to establish the new mutation rate. This new mutation rate is
applied to themain bits (those encoding a solution) of the individual. Crossover rates
are also self-adaptive. A value between  and  is coded in extra bits at the tail of every
individual (initialised randomly). When a member of the population is selected for
reproduction by the tournament selection, a random number r below  is compared
with the member’s pc . If r is lower than pc , the member is ready to mate. If both
selected parents are ready to mate two children are created by uniform crossover,
mutated and inserted into the population. If it is not lower, the member will only
be subject to mutation to create one child which undergoes mutation and survivor
selection immediately. If both parents reject mating, the two children are created by
mutation only. If one parent is willing to mate and the other one does not, then the
parent that is not in formating ismutated to create one offspring, which is inserted in
the population immediately. The willing parent is on hold and the next parent selec-
tion round only picks one other parent. Population size undergoes changes through
an adaptive scheme, based on themaximum-lifetime idea. Here every new individual
is allocated a remaining lifetime (RLT) between the allowable minimum and max-
imum lifetime (MinLT and MaxLT) at birth. The RLT depends on the individual’s
fitness at the time of birth, related to other individuals in the population. In each
cycle (roughly: generation), the remaining lifetime of all the members in the popula-
tion is decremented by one.There is only one exception for the fittest member, whose
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RLT is left unchanged. If the RLT of an individual reaches zero it is removed from
the population.

The three methods to adjust parameters on-the-fly are then added to a traditional
genetic algorithm and their effect on GA performance is investigated experimen-
tally.The experimental comparison includes  GAs: a simple GA as benchmark, three
GAs featuring only one of the parameter adjusting mechanisms and a GA that ap-
plies all three mechanisms and is therefore almost “parameterless”.The experimental
comparison is based on a test suite of five functions composed to comform to the
guidelines in [,]: the spheremodel, the generalised Rosenbrock function, the gen-
eralised Ackley function, the generalised Rastrigin function, and the fully deceptive
six-bit function. All test functions are used with n = 10 dimensions and are scaled to
have an optimal value of . We performed  runs for each condition.

In order to give a clear and compact overview of the performance of all GA vari-
ants we show the outcomes by ranking theGAs for each function in Table . To obtain
a ranking, we award the best GA (fastest or closest to the minimum) one point, the
second best GA two points, and so on, so the worst performing GA for a given func-
tion gets five points. If, for a particular function, two GAs finish very close to each
other, we award them equally: add the points for both those rankings and divide that
by two. After calculating these points for each function and each GA variant we add
the points for all the functions to form a total for each GA. The GA with the least
points has the best overall performance.

The overall competition ends in a close finish between the all-in GA as number
one and AP-GA, the GA with adaptive population size, right on its heels. In this
respect, the objective of the study has been achieved, using the all-in GA the user has
fewer parameters to set and gets higher performance than using the simple GA.

An unexpected outcome of this study is that adaptive population sizes proved
to be the key feature to improve the benchmark traditional GA, TGA. Alone, or in
combination with the self-adaptive variation operators, the mechanism to adjust the
population size during a run causes a consequent performance improvement w.r.t.
the benchmark GA. These outcomes give a strong indication that, contrary to past

Table 2 Ranking of the GAs (the labelling is obvious from the text)

TGA SAM-GA SAX-GA AP-GA all-in GA
Sphere 2 5 3 1 4
Rosenbrock 3 5 4 4 2
Ackley 1 2.5 5 4 2.5
Rastrigin 2.5 5 4 2.5 1
Deceptive 4 5 2.5 2.5 1
Points 12.5 22.5 18.5 11 10.5
End rank     

1 This is not entirely true, since () initial values for those parameters must be given by the
user and () the population adaptationmethod introduces two new parametersMinLT and
MaxLT.
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and present practice (where quite some effort is devoted to tuning or online control-
ling of the application rates of variance operators), studying control mechanisms for
variable population sizes should be paid more attention.

After having published this paper, this conclusion has been generalised by dis-
tinguishing variation and selection as the two essential powers behind an evolution-
ary process [, Chapter ]. Here, variation includes recombination (crossover) and
mutation; for selection we can further distinguish parent selection and survivor se-
lection (replacement). Clearly, the population size is affected by the latter. From this
perspective, the paper gives a hint that further to studying mechanisms for on-the-fly
calibration of variation operators, the EC community should adopt a research agenda
for on-the-fly selection control mechanisms, including those focusing on population
size management.

4.2 Evolutionary Algorithms with On-the-Fly Population Size Adjustment

The investigation in [] is a direct follow-up to [] discussed in the previous section.
As noted by Bäck et al. the population size is traditionally a rigid parameter in evo-
lutionary computing. This is not only true in the sense that for the huge majority of
EAs the population size remains constant over the run, but also for the EC research
community that has not spent much effort on EAs with variable population sizes.
However, there are biological and experimental arguments to expect that this would
be rewarding. In natural environments, population sizes of species change and tend
to stabilise around appropriate values according to factors such as natural resources
and carrying capacity of the ecosystem. Looking at it technically, population size is
the most flexible parameter in natural systems: it can be adjusted much more easily
than, for instance, mutation rate.

The objective of this study is to perform an experimental evaluation of a num-
ber of methods for calibrating population size on-the-fly. Note that the paper does
not consider (theory-based) strategies for tuning population size [–,,].The
inventory of methods considered for an experimental comparison includes the fol-
lowing algorithms from the literature. The Genetic Algorithm with Variable Popu-
lation Size (GAVaPS) from Arabas [], [, pp. –] eliminates population size as
an explicit parameter by introducing the age and maximum lifetime properties for
individuals. The maximum lifetimes are allocated at birth depending on fitness of
the newborn, while the age (initialised to  at birth) is incremented at each genera-
tion by one. Individuals are removed from the population when their ages reach the
value of their predefined maximum lifetime. This mechanism makes survivor selec-
tion unnecessary and population size an observable, rather than a parameter. The
Adaptive Population size GA (APGA) is a variant of GAVaPS where a steady-state
GA is used, and the lifetime of the best individual remains unchanged when indi-
viduals grow older []. In [, ] Harik and Lobo introduce a parameterless GA
(PLGA) which evolves a number of populations of different sizes simultaneously.
Smaller populations get more function evaluations, where population i is allowed to
run four timesmore generations than the population i+1. If, however, a smaller pop-
ulation converges, the algorithm drops it. The Random Variation of the Population
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Size GA (RVPS) is presented by Costa et al. in []. In this algorithm, the size of the
actual population is changed every N fitness evaluations, for a given N . Hinterding,
Michalewicz andPeachey [] presented an adaptivemechanism, inwhich three sub-
populationswith different population sizes are used.Thepopulation sizes are adapted
at regular intervals (epochs) biasing the search to maximise the performance of the
group with the mid-most size.The criterion used for varying the sizes is fitness diver-
sity. Schlierkamp-Voosen and Mühlenbein [] use a competition scheme between
sub-populations to adapt the size of the sub-populations as well as the overall popula-
tion size.There is a quality criterion for each group, as well as a gain criterion, which
dictates the amount of change in the group’s size.Themechanism is designed in such
a way that only the size of the best group can increase. A technique for dynamically
adjusting the population size with respect to the probability of selection error, based
on Goldberg’s research [], is presented in []. Finally, the following methods have
been selected for the experimental comparison.

. GAVaPS from [],
. GA with adaptive population size (APGA) from [],
. the parameterless GA from [],
. the GA with Random Variation of Population Size (RVPS) from [],
. the Population Resizing on Fitness Improvement GA (PRoFIGA), newly in-

vented for this paper.

The newmethod is based onmonitoring improvements of the best fitness in the pop-
ulation. On fitness improvement the EA is made more explorative by increasing the
population size. If the fitness is not improving (for a short while) the population is
made smaller. However, if stagnation takes too long, then the population size is in-
creased again. The intuition behind this algorithm is related to (a rather simplified
view on) exploration and exploitation. The bigger the population size, the more it
supports explorative search. Because in the early stages of an EA run fitness typi-
cally increases, population growth, hence exploration, will be more prominent in the
beginning. Later on it will decrease gradually. The shrinking phase is expected to
“concentrate” more on exploitation of fewer individuals after reaching the limits of
exploration. The second kind of population growth is supposed to initiate renewed
exploration in a population that ist stuck in local optima. Initial testing has shown
that GAVaPS was very sensitive for the reproduction ratio parameter and the algo-
rithm frequently increased the size of the population over several thousand individ-
uals, which resulted in unreliable performance. For this reason it was removed from
further experimentation.

When choosing the test suite for experimentation popular, but ad hoc collections
of objective functions are deliberately avoided for reasons outlined in [] and [,
Chapter ]. Instead, the multimodal problem generator of Spears [] is used for
it has been designed to facilitate systematic studies of GA behavior. This genera-
tor creates random problem instances, i.e., fitness landscapes over bit-strings, with
a controllable size (chromosome length) and degree of multi-modality (number of
peaks). The test suite consists of  different landscapes for  bits, where the num-
ber of peaks ranges from  to  through , , , , , , , , , and .
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We performed  runs for each condition. Here again, the performance of the algo-
rithms is assessed by Success Rate (SR), Mean Best Fitness (MBF), and the Average
number of Evaluations to a Solution (AES). SR is an effectivity measure that gives the
percentage of runs in which the optimum (the highest peak) was found. MBF is also
an effectivity measure showing the average of the best fitness in the last population
over all runs. AES is a measure of efficiency (speed): it is the number of evaluations it
takes on average for the successful runs to find the optimum. If a GA has no success
(SR = 0) then the AES measure is undefined.

Themain results are given in the graphs with a grid background in Fig.  and the
left-hand side of Fig. .

The AES plots are shown in Fig.  (left). These graphs show clear differences
between the algorithms. There are, however, no significant differences between the
problem instances when only looking at the speed curves (except for the parameter-
less GA). Apparently, finding a solution does not take more evaluations on a harder
problem that has more peaks. (Although it should be noted that for harder problems
the averages are taken over fewer runs, cf. the SR figures below, which reduces the re-
liability of the statistics.) This is an interesting artefact of the problem generator that
needs further investigation. The increasing problem hardness, however, is clear from

Fig. 3 AES (left) andMBF (right) of TGA, APGA, the parameterless GA, RVPS and PRoFIGA
with max-eval = 10,000

Fig. 4 SR of TGA, APGA, the parameterless GA, RVPS and PRoFIGA with max-eval = 10,000
(left) and with max-eval = 1500 (right)
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the decreasing average quality of the best solution found (MBF), cf. Fig.  (right) and
the decreasing probability of finding a solution (SR), cf. Fig.  (left).

We can rank the population (re)sizing methods based on the AES plots: APGA
is significantly faster than the other methods, followed by PRoFIGA.The traditional
GA comes third. The parameterless GA is only competitive for easy problems and
the RVPS RW is clearly inferior to the other methods.

The SR and MBF results are quite homogeneous, with only one negative outlier,
the parameterless GA. It seems that we cannot rank the algorithms by their effectivity.
However, this homogeneity is a consequence of our choice of the maximum number
of fitness evaluations in the termination criterion. Apparently it is “too” high allowing
all contestants to reach the performance of the champions – be it slower. As a control
experiment, we repeated all runs with the maximum number of fitness evaluations
set to 1500. The resulting success rates are given in Fig.  (right), showing great dif-
ferences. APGA and PRoFIGA obtain somewhat worse, but comparable SR results as
before, but the other algorithms never find a solution yielding SR = 0 over all peaks.

Looking at the results we can conclude that adapting population sizes in an EA
can certainly pay off.The gains in terms of efficiency, measured by the number of fit-
ness evaluations needed to find a solution, can be significant: the winner of our com-
parison (APGA) achieves the same success rate and mean best fitness as the tradi-
tional GAwith less than half of the work, and even the second best (PRoFIGA) needs
20% fewer evaluations. The second series of experiments shows that such an increase
in speed can be converted into increased effectivity, depending on the termination
condition. Here again, thewinner is APGA, followed by PRoFIGA. It should be noted
that two GAs from this comparison (the parameterless GA and RVPS RW) are much
slower than the traditional GA. Hence, on-the-fly population (re)sizing is not nec-
essarily better than traditional hand-tuning of a constant population size. The added
value depends on the actual implementation, i.e., on how the population size is ad-
justed. Another observation made here is that the lifetime principle used in APGA
eliminates explicit survivor selection and makes population size an observable in-
stead of a user parameter. However, it should also be noted that using this idea does
not mean that the number of EA parameters is reduced. In fact, it is increased in our
case: instead of the population size N in the TGA, the APGA introduces two new
parameters,MinLT andMaxLT.

These results can be naturally combined with those of Bäck et al. confirming the
superiority of APGA on another test suite. Of course, highly general claims are still
not possible about APGA. But these results together form a strong indication that in-
corporating on-the-fly population (re)sizing mechanisms based on the lifetime prin-
ciple in EAs is a very promising design heuristic definitely worth trying and that
APGA is a successful implementation of this general idea.

4.3 Boosting Genetic Algorithms with (Self-) Adaptive Selection

The paper [] seeks an answer to the question whether it is feasible (i.e., possible
and rewarding) to self-adapt selection parameters in an evolutionary algorithm?Note
that the idea seems quite impossible considering that
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• Self-adaptation manipulates parameters defined within an individual, hence the
given parameter will have different values over different members of the popula-
tion.

• Parameters regarding selection (e.g., tournament size in tournament selection or
the bias in ranked biased selection) are inherently global, any given value holds
for the whole population, not only for an individual.

This explains why existing approaches to controlling such parameters are either de-
terministic or adaptive.

Thepaper investigates self-adaptation of tournament size in a purely self-adaptive
fashion and a variant that combines self-adaptation with a heuristic. The approach
is based on keeping tournament size K as a globally valid parameter, but decompos-
ing it. That is, to introduce local parameters k at the level of individuals that can be
self-adapted and establish the global value through aggregating the local ones. Tech-
nically, thismeans extending the individual’s chromosomes by an extra gene resulting
in >x , k?. Furthermore, two methods are required. One, to specify how to aggregate
local k values to a global one. Two, a mechanism for variation (crossover and muta-
tion) of the local k values.

The aggregation mechanism is rather straightforward. Roughly speaking, the
global parameter will be the sum of the local votes of all individuals. Here we present
a general formula applicable for any global parameter P and consider tournament
size K as a special case.

P = @
N

!
i=1

piA ()

where pi � [pmin , pmax], @ A denotes the ceiling function, and N is the population
size.

Concerning variation of the extended chromosomes, crossover andmutation are
distinguished. Crossover works on the whole >x , k?, by whichever mechanism the
user wishes. Mutation, however, is split. The x part of >x , k? is mutated by any suit-
able mutation operator, but for the k part a specific mechanism is used. A straightfor-
ward option would be the standard self-adaptation mechanism of σ values from Evo-
lution Strategies. However, those σ values are not bounded, while tournament size is
obviously bounded by zero and the population size. A possible solution is the self-
adaptive mechanism for mutation rates in GAs as described by Bäck and Schütz [].
This mechanism is introduced for p � (0, 1) and it works as follows:

p′ = &1 +
1 − p
p
ċ e−γċN(0,1)'

−1

()

where p is the parameter in question and γ is the learning rate, which allows for
control of the adaptation speed. This mechanism has some desirable properties:

. Changing p � (0, 1) yields a p′ � (0, 1).
. Small changes are more likely than large ones.
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. The expected change of p by repeatedly changing it equals zero (which is desir-
able, because natural selection should be the only force bringing a direction in
the evolution process).

. Modifying by a factor c occurs with the same probability as a modification by
1�c.

The concrete mechanism for self-adaptive tournament sizes uses individual k values
k � (0, 1) and the formula of Equation () with γ = 0.22 (as recommended in []).
Note that if a GA uses a recombination operator then this operator will be applied
to the tournament size parameter k, just as it is applied to other genes. In practice
this means that a child created by recombination inherits an initial k value from its
parents and the definitive value k is obtained by mutation as described by Equation
().

Besides the purely self-adaptive mechanism for adjusting tournament sizes the
chapter also introduces a heuristic variant. In the self-adaptive algorithm as de-
scribed above the direction (+ or −) as well as the extent (increment/decrement) of
the change are fully determined by the random scheme.This is a general property of
self-adaptation. However, in the particular case of regulating selection pressure we
do have some intuition about the direction of change. Namely, if a new individual
is better than its parents then it should try to increase selection pressure, assuming
that stronger selection will be advantageous for him, giving a reproductive advan-
tage over less fit individuals. In the opposite case, if it is less fit than its parents, then
it should try to lower the selection pressure. Our second mechanism is based on this
idea. Formally, we keep the aggregation mechanism from equation  and use the fol-
lowing rule. If >x , k? is an individual to be mutated (either obtained by crossover or
just to be reproduced solely bymutation), then first we create x′ from x by the regular
bitflips, then apply

k′ = � k + Δk if f (x′) , f (x)
k − Δk otherwise ()

where

Δk = Bk − 11 +
1 − k
k

e−γN(0,1)3
−1

B ()

with γ = 0.22.
This mechanism differs from “pure” self-adaptation because of the heuristic rule

specifying the direction of the change. However, it could be argued that this mechan-
ism is not a clean adaptive scheme (because the initial k values are inherited), nor
a clean self-adaptive scheme (because the final k values are influenced by a user de-
fined heuristic), but some hybrid form. For this reason we perceive and name this
mechanism hybrid self-adaptive (HSA). All together this yields two newGAs: the GA
with self-adaptive tournament size (GASAT) and the GA with hybrid self-adaptive
tournament size (GAHSAT).
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The experimental comparison of these GAs and a standard GA for benchmark is
based on exactly the same test suite as the study in the previous section. The GAs are
tested on the same landscapes in �0, 1	100 with , , , , , , , ,  and
 peaks obtained through the Multimodal Problem Generator of Spears []. We
performed  runs for each condition. Also the performancemeasures are identical:
theMean Best Fitness (MBF) and its standard deviation (SDMBF), the Average num-
ber of Evaluations to a Solution (AES) and its standard deviation (SDAES), and the
Success Rate (SR) are calculated, based on  independent runs. The results for the
SGA, GASAT, and GAHSAT are shown in Table , Table , and Table , respectively.

The outcomes indicate that GASAT has better performance than SGA, but it is
not as powerful as the hybrid self-adaptive mechanism. The initial research question
about the feasibility of on-the-fly adjustment of K can be answered positively. It is in-
teresting to remark here that the self-adaptive GAs are based on a simple mechanism
(thatwas, nota bene, introduced formutation parameters) and apply no sophisticated
twists to it. Yet, they show very good performance that compares favorably with the
best GA in []. The comparison between the former winner, APGA with adaptive
population size, and GAHSAT is shown in Table . Note that the MBF results are
omitted for they showed no significant difference. This comparison shows that the
GAHSAT is very competitive, running out the APGA on the smoother landscapes.

Table 3 Results of SGA

Peaks SR AES SDAES MBF SDMBF
 100 1478 191 1.0 0.0
 100 1454 143 1.0 0.0
 100 1488 159 1.0 0.0
 93 1529 168 0.9961 0.0142
 62 1674 238 0.9885 0.0174
 37 1668 221 0.9876 0.0140
 22 1822 198 0.9853 0.0145
 11 1923 206 0.9847 0.0137
 6 2089 230 0.9865 0.0122
1000 5 2358 398 0.9891 0.0100

Table 4 End results of GASAT

Peaks SR AES SDAES MBF SDMBF
 100 1312 218 1.0 0.0
 100 1350 214 1.0 0.0
 100 1351 254 1.0 0.0
 92 1433 248 0.9956 0.0151
 62 1485 280 0.9893 0.0164
 46 1557 246 0.9897 0.0128
 21 1669 347 0.9853 0.0147
 16 1635 336 0.9867 0.0130
 3 1918 352 0.9834 0.0146
1000 1 1675 0 0.9838 0.0126

Table 5 End results of GAHSAT

Peaks SR AES SDAES MBF SDMBF
 100 989 244 1.0 0.0
 100 969 206 1.0 0.0
 100 1007 233 1.0 0.0
 89 1075 280 0.9939 0.0175
 63 1134 303 0.9879 0.0190
 45 1194 215 0.9891 0.0127
 14 1263 220 0.9847 0.0140
 12 1217 166 0.9850 0.0131
 7 1541 446 0.9876 0.0119
1000 4 1503 272 0.9862 0.0113

Table 6 Comparing GAHSAT and the winning
APGA from []

GAHSAT APGA
Peaks SR AES SR AES
 100 989 100 1100
 100 969 100 1129
 100 1007 100 1119
 89 1075 95 1104
 63 1134 54 1122
 45 1194 35 1153
 14 1263 22 1216
 12 1217 8 1040
 7 1541 6 1161
1000 4 1503 1 910
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5 Summary and Conclusions

The relevance of the above studies lies in the potential of on-the-fly adjustment of
EA parameters that have not been widely considered in the past. The investigations
reviewed here provide substantial evidence that on-line regulation of population size
and selection can greatly improve EA performance. On the technical side, the case
study on adjusting tournament size shows by example that global parameters can
also be self-adapted, and that heuristic adaptation and pure self-adaptation can be
successfully combined into a hybrid of the two.

On the general level, two things can be noted. First, we want to remark that par-
ameter control in an EA can have two purposes. One motivation for controlling pa-
rameters on-the-fly is the assumption (observation) that in different phases of the
search the given parameter should have different values for “optimal” algorithm per-
formance. If this holds, then static parameter values are always inferior; for good
EA performance one must vary this parameter. Another reason it can be done for
is to avoid suboptimal algorithm performance resulting from suboptimal parameter
values set by the user.Thebasic assumption here is that the algorithmic controlmech-
anisms do this job better than the user could, or that they can do it approximately as
good, but they liberate the user from doing it. Either way, they are beneficial.

The second thing we want to note is that making a parameter adaptive or self-
adaptive does not necessarily mean that we have an EA with fewer parameters. For
instance, in APGA the population size parameter is eliminated at the cost of intro-
ducing two new ones: the minimum and maximum lifetime of newborn individuals.
If the EA performance is sensitive to these new parameters then such a parameter
replacement can make things worse. But if the new parameters are less sensitive to
accurate calibration, then the net effect is positive: the user can obtain a good algo-
rithm with less effort spent on algorithm design. This latter is, however, hardly ever
considered in evolutionary computing publications.

This phenomenon also occurs on another level. One could say that the mech-
anisms to adjust parameters are also (meta) parameters. For instance, the method
that allocates lifetimes in APGA, or the function in Equation () specifying how the
k values are mutated can be seen as high level parameters of the GA. It is in fact an
assumption that these are well-chosen (smartly designed) and their effect is posi-
tive. Typically, there are more possibilities to obtain the required functionality, that
is, there are possibly more well-working methods one can design. Comparing differ-
ent methods implies experimental (or theoretical) studies very much like comparing
different parameter values in a classical setting. Here again, it can be the case that al-
gorithm performance is not so sensitive to details of this (meta) parameter, which
can fully justify this approach.

Finally, let us place the issue of parameter control in a larger perspective. Over
the last two decades the EC community has come to realise that EA performance,
to a large extent, depends on well-chosen parameter values, which in turn may de-
pend on the problem (instance) to be solved. In other words, it is now acknowledged
that EA parameters need to be calibrated to specific problems and problem instances.
Ideally, it should be the algorithm that performs the necessary problem-specific ad-
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justments. Ultimately, it would be highly desirable to utilise the inherent adaptive
power of an evolutionary process for calibrating itself to a certain problem instance,
while solving that very problem instance. We believe that the extra computational
overhead (i.e., solving the self-calibration problem additionally to the given techni-
cal problem) will pay off and hope to see more research on this issue.
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Abstract

Memetic algorithms are hybridizations of evolutionary algorithms (EAs) with prob-
lem-specific heuristics or othermeta-heuristics, that are generally usedwithin the EA
to locally improve the evolutionary solutions. However, this approach fails when the
local method stops working on the complete problem. Divide-and-Evolve is an orig-
inal approach that evolutionarily builds a sequential slicing of the problem at hand
into several, hopefully easier, sub-problems: the embedded (meta-)heuristic is only
asked to solve the ‘small’ problems, and Divide-and-Evolve is thus able to globally
solve problems that are intractable when directly fed into the heuristic. The Divide-
and-Evolve approach is described here in the context of temporal planning problems
(TPPs), and the results on the standard Zeno transportation benchmarks demon-
strate its ability to indeed break the complexity barrier. But an even more prominent
advantage of the Divide-and-Evolve approach is that it immediately opens up an av-
enue for multi-objective optimization, even when using single-objective embedded
algorithm.

Key words: Hybrid Algorithms, Temporal Planning, Multi-objective Optimization

1 Introduction

Evolutionary Algorithms (EAs) are bio-inspired meta-heuristics crudely borrowing
from the Darwinian theory of natural evolution of biological populations (see [] for
the most recent comprehensive introduction, or [] for a brief introduction of the ba-
sic concepts). In order to solve the optimization problem at hand, EAs evolve a pop-
ulation of individuals (tuples of candidate solutions) relying on two main driving
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forces to reach the optimal solution: natural selection and blind variations. Natural
selection biases the choices of the algorithm toward good performing individuals
(w.r.t. the optimization problem at hand) at reproduction time and at survival time
(survival of the fittest). Blind variation operators are stochastic operators defined on
the search space, which create new individuals from parents in the current popula-
tion, independently of their performance (hence the term “blind”). They are usually
categorized into crossovers, producing offspring from two parents, andmutations that
create one offspring from a single parent. Whereas the natural selection part of an EA
is (almost) problem independent, the choice of the search space (the representation)
and the corresponding variation operators has to be done anew for each application
domain, and requires problem-specific expertise.

This has been clearly demonstated in the domain of “combinatorial optimization”,
where it is now well-known (see Grefenstette’s seminal paper []) that generic EAs
alone are rarely efficient. However, the flexibility of EAs allows the user to easily add
domain knowledge at very different levels of the algorithm, from representation []
to ad hoc variation operators [] to explicit use of other optimization techniques
within the EA. The most successful of such hybridizations use other heuristics or
meta-heuristics to locally improve all individuals that are created by the EA, from
the initial population to all offspring that are generated by the variation operators.
Such algorithms have been termed “Memetic Algorithms” or “Genetic Local Search”
[]. Those methods are now the heart of a very active research field, as witnessed
by the yearly WOMA series (Workshops on Memetic Algorithms), journal special
issues [] and edited books [].

However, most memetic approaches are based on finding local improvements of
candidate solutions proposed by the evolutionary searchmechanism using dedicated
local search methods that have to tackle the complete problem. Unfortunately, in
many combinatorial domains, this simply proves to be impossible when reaching
some level of complexity.This chapter proposes an original hybridization of EAs with
a domain-specific solver that addresses this limitation in domains where the task
at hand can be sequentially decomposed into a series of (hopefully) simpler tasks.
Temporal planning is such a domain, that will be used here to instantiate theDivide-
and-Evolve paradigm.

Artificial Intelligence Planning is a form of general problem solving task which
focuses on problems that map into state models that can be defined by a state space
S, an initial state s0 � S, a set of goal states SG � S, a set of actions A(s) applicable
in each state S, and a transition function f (a, s) = s′ with a � A(s), and s, s′ � S.
A solution to this class of models is a sequence of applicable actions mapping the
initial state s0 to a goal state that belongs to SG .

An important class of problems is covered by temporal planning, which extends
classical planning by adding a duration to actions and by allowing concurrent actions
in time []. In addition, other metrics are usually needed for real-life problems to
ensure a good plan, for instance a cost or a risk criterion. A common approach is to
aggregate the multiple criteria, but this relies on highly problem-dependent features
and is not always meaningful. A better solution is to compute the set of optimal non-
dominated solutions – the so-called Pareto front.
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Because of the high combinatorial complexity and the multi-objective features of
Temporal Planning Problems (TPPs), EAs seem to be good general-purpose candi-
date methods.

However, there have been very few attempts to apply EAs to planning problems
and, as far as we know, not any to temporal planning. Some approaches use a specific
representation (e.g. dedicated to the battlefield courses of action []). Most of the
domain-independent approaches see a plan as a program and rely on genetic pro-
gramming and on the traditional blocks-world domain for experimentation (start-
ing with the Genetic Planner []). A more comprehensive state of the art on genetic
planning can be found in [] where the authors experimented with a variable length
chromosome representation. It is important to notice that all these works search the
space of (partial) plans.

In this context, theDivide-and-Evolve approach, borrowing from theDivide-and-
Conquer paradigm, tries to slice the problemat hand into a sequence of problems that
are hopefully easier to solve by the available OR or local methods.The solution to the
original problem is then obtained by a concatenation of the solutions to the different
sub-problems.

Note that the idea to divide the plan trajectory into small chunks has been studied
with success in []. The authors have shown the existence of landmarks, i.e. sets
of facts that must be true at some point during execution of any solution plan, and
the impact of ordering them on search efficiency. They also prove that deciding if
a fact is a landmark and finding ordering relations is PSPACE-complete. In this way,
Divide-and-Evolve can be seen as an attempt to generate ordered sets of landmarks
using a stochastic approach.However, the proposed approach is not limited to finding
sets of facts that must absolutely be true within every solution to the initial problem.
In particular, it also applies to problems that have no landmark per se, for simple
symmetry reasons: there can be several equivalent candidate landmarks, and only
one of them can and must be true at some point.

The chapter is organized as follows: the next section presents an abstract formu-
lation of the Divide-and-Evolve scheme, and starting from its historical (and peda-
gogical) root, the TGV paradigm. Generic representation and variation operators
are also introduced. Section  introduces an actual instantiation of the Divide-and-
Evolve scheme to TPPs. The formal framework of TPPs is first introduced, then the
TPP-specific issues for the Divide-and-Evolve implementation are presented and dis-
cussed. Section  is devoted to experiments on the TPP transportation Zeno bench-
mark for both single and multi-objective cases. The local problems are solved using
the exact temporal planner CPT [], a freely-available optimal temporal planner,
for its temporal dimension. The last section highlights the limitations of the present
work and sketches further directions of research.

Note that an initial presentation of Divide-and-Evolve was published at the Evo-
COP’ conference [], inwhich only very preliminary results were presented in the
single-objective case. Those results are here validated more thoroughly on the three
instances Zeno, Zeno and Zeno: the new experiments demonstrate that the
Divide-and-Evolve approach can repeatedly find the optimal solution on all three in-
stances. Moreover, the number of backtracks that are needed by the optimal planner
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CPT to solve each sub-problem is precisely analyzed, and it is demonstrated that it
is possible to find the optimal solution even when limiting the number of backtracks
that CPT is allowed to perform for each sub-problem, thus hopefully speeding up the
complete optimization. On the other hand, however, the multi-objective results that
are presented here are the same as those of [], and are recalled here for the sake
of completeness, as they represent, as far as we know, the very first results of Pareto
multi-objective optimization in temporal planning, and open up many avenues for
further research.

2 The Divide-and-Evolve Paradigm

This section presents theDivide-and-Evolve scheme, an abstraction of the TGV para-
digm that can be used to solve a planning problem when direct methods face a com-
binatorial explosion due to the size of the problem. The TGV approach might be
a way to break the problem into several sub-problems, hopefully easier to solve than
the initial global problem.

2.1 The TGVMetaphor

TheDivide-and-Evolve strategy springs from ametaphor on the route planning prob-
lem for the French high-speed train (TGV). The original problem consists in com-
puting the shortest route between two points of a geographical landscape with strong
bounds on the curvature and slope of the trajectory. An evolutionary algorithm was
designed [] based on the fact that the only local search algorithm at hand was
a greedy deterministic algorithm that could solve only very simple (i.e. short dis-
tance) problems. The evolutionary algorithm looks for a split of the global route into
small consecutive segments such that a local search algorithm can easily find a route
joining their extremities. Individuals represent sets of intermediate train stations be-
tween the station of departure and the terminus. The convergence toward a good
solution was obtained with the definition of appropriate variation and selection op-
erators []. Here, the state space is the surface on which the trajectory of the train is
defined.

Generalization
Abstracted to planning problems, the route is replaced by a sequence of actions and
the “stations” become intermediate states of the system.The problem is thus divided
into sub-problems and “to be close” becomes “to be easy to solve” by some local al-
gorithm L. The evolutionary algorithm plays the role of an oracle pointing at some
imperative states worth going through.

2.2 Representation

Theproblem at hand is an abstract AI planning problem as described in the introduc-
tion.The representation used by the EA is a variable length list of states: an individual
is thus defined as (si)i�[1,n], where the length n and all the states si are unknown and
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subject to evolution. States s0 and sn+1 C sG will represent the initial state and the goal
of the problem at hand, but will not be encoded in the genotypes. By reference to the
original TGV paradigm, each of the states si of an individual will be called a station.

Requirements
The original TGV problem is purely topological with no temporal dimension and
reduces to a planning problem with a unique action: moving between two points.
The generalization to a given planning domain requires being able to:

. define a distance between two different states of the system, so that d(S, T) is
somehow related to the difficulty for the local algorithmL to find a planmapping
the initial state S to the final state T;

. generate a chronological sequence of virtual “stations”, i.e. intermediate states of
the system, that are close to one another, si being close to si+1;

. solve the resulting “easy” problems using the local algorithm L;
. “glue” the sub-plans into an overall plan of the problem at hand.

2.3 Variation Operators

This section describes several variation operators that can be defined for the general
Divide-and-Evolve approach, independently of the actual domain of application (e.g.
TPPs, or the original TGV problem).

Crossover
The crossover operation exchanges stations between two individuals. Because of the
sequential nature of the fitness, it seems a good idea to try to preserve sequences of
stations, resulting in straightforward adaptations to variable-length representation of
the classical - or -point crossover operators.

Suppose you are recombining two individuals (si)1� n and (Ti)1� m . The -point
crossover amounts to choosing one station in each individual, say sa and Tb , and
exchanging the second part of the lists of stations, obtaining the two offspring (s1 ,
. . . , sa , Tm+1, . . . Tb) and (T1, . . . , Tb , sn+1, . . . , sn) (-point crossover is easily im-
plemented in a similar way). Note that in both cases, the length of each offspring is
likely to differ from those of the parents.

The choice of the crossover points sa and Tb can be either uniform (as done in
all the work presented here), or distance-based, if some distance is available: pick the
first station sa randomly, and choose Tb by, for example, a tournament based on the
distance from sa (this is ongoing work).

Mutation
Several mutation operators can be defined. Suppose individual (si)1� n is being mu-
tated:

• At the individual level, the Addmutation simply inserts a new station snew after
a given station (sa), resulting in an n+1-long list, (s1 , . . . , sa , snew , sa+1 , . . . , sn).
Its counterpart, the Delmutation, removes a station sa from the list.
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Several improvements on the pure uniform choice of sa can be added and are
part of ongoing work, too: if the local algorithm fails to successfully join all pairs
of successive stations, the last station that was successfully reached by the local
algorithm can be preferred for station sa (in both the Add and Delmutations). If
all partial problems are solved, the most difficult one (e.g. in terms of number of
backtracks) can be chosen.

• At the station level, the definition of each station can be modified – but this is
problem-dependent. However, assuming there exists a station-mutation operator
μS , it is easy to define the individual-mutation MμS that will simply call μS on
each station si with a user-defined probability pμS . Examples of operators μS will
be given in Sect. , while simple Gaussian mutation of the (x , y) coordinates of
a station were used for the original TGV problem [].

3 Application to Temporal Planning

3.1 Temporal Planning Problems

Domain-independent planners rely on the Planning Domain Definition Language
(PDDL) [], inherited from the STRIPS model [], to represent a planning prob-
lem. In particular, this language is used for a competition which has been held every
two years since  [,,,].The language has been extended to represent TPPs in
PDDL. []. For the sake of simplicity, and because the underlying temporal plan-
ner that we use, CPT [, ], does not strictly conform to PDDL., the temporal
model is often simplified as explained below [].

ATemporal PDDLOperator is a tuple o = >pre(o), add(o), del(o), dur(o)?where
pre(o), add(o) and del(o) are sets of ground atoms that respectively denote the pre-
conditions, add effects and del effects of o, and dur(o) is a rational number that de-
notes the duration of o. The operators in a PDDL input can be described with vari-
ables, used in predicates such as (at ?plane ?city). The variables ?plane and ?city are
then replaced by CPT with the objects of a particular problem in an initial grounding
process.

A Temporal Planning Problem is a tuple P = >A, I,O,G?, where A is a set of
atoms representing all the possible facts in a world situation, I and G are two sets
of atoms that respectively denote the initial state and the problem goals, and O is
a set of ground PDDL operators.

As is common in partial order causal link (POCL) planning [], two dummy ac-
tions are also considered, Start and End with zero durations, the first with an empty
precondition and effect I; the latter with precondition G and empty effects. Two ac-
tions a and a′ interfere when one deletes a precondition or positive effect of the other.
The simple model of time in [] defines a valid plan as a plan where interfering ac-
tions do not overlap in time. In other words, it is assumed that the preconditions
need to hold until the end of the action, and that the effects also hold at the end and
cannot be deleted during the execution by a concurrent action.
1 see http://ipc.icaps-conference.org/
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A schedule P is a finite set of action occurrences >ai , ti?, i = 1, . . . , n, where ai is
an action and ti is a non-negative integer indicating the starting time of ai (its ending
time is ti + dur(ai)). Pmust include the Start and End actions, the former with time
tag 0. The same action (except for these two) can be executed more than once in P if
ai = aj for i �= j. Two action occurrences ai and aj overlap in P if one starts before
the other ends; namely if [ti , ti +dur(ai)]D[t j , t j +dur(aj)] contains more than one
time point.

A schedule P is a valid plan iff interfering actions do not overlap in P and for
every action occurrence >ai , ti? in P its preconditions p � pre(a) are true at time ti .
This condition is inductively defined as follows: p is true at time t = 0 if p � I, and p
is true at time t � 0 if either p is true at time t − 1 and no action a in P ending at t
deletes p, or some action a′ in P ending at t adds p. Themakespan of a plan P is the
time tag of the End action.

3.2 CPT: an Optimal Temporal Planner

An optimal temporal planner computes valid plans with minimum makespan. Even
though an optimal planner was not mandatory (as discussed in Sect. ), we have
chosen CPT [], a freely-available optimal temporal planner, for its temporal di-
mension and for its constraint-based approach, which provides a very useful data
structure when it comes to gluing the partial solutions (see Sect. .). Indeed, since
in temporal planning actions can overlap in time, the simple concatenation of sub-
plans, though providing a feasible solution, obviously might produce a plan that is
not optimal with respect to the total makespan, even if the sequence of actions is the
optimal sequence. However, thanks to the causal links and order constraints main-
tained byCPT, an improved global plan can be obtained by shifting sub-plans as early
as possible in a final state of the algorithm.

Another argument for choosing CPT was the fact that it is a sound and complete
planner in the following sense: a valid plan with makespan equal to a given bound B
on the number of allowed backtracks is found if and only if one such plan exists.There
are then many strategies for adjusting the bound B so that an optimal makespan is
produced; e.g., the boundmay be increased until a plan is found, or can be decreased
until no plan is found, etc.

Indeed, because one motivation for the Divide-and-Evolve approach is to tackle
large instances that are too complex to be directly solved by the local algorithm (CPT
in our case), it is important to be able to launch only limited searches byCPT: a bound
on the number of allowed backtracks could be added to all CPT calls, and the fitness
penalizedwhen this bound is reached (CPT stopswithout giving a result in that case).
More details will be given in Sect. ..

One final reason for originally choosing CPT, before the collaboration among the
authors of this work started, was that a binary version was freely available on the third
author’s Web page. However, even though a tighter collaboration rapidly became ef-
fective, it proved nevertheless intractable to call CPT as a subroutine, for technical
reasons (CPT- was written in CLAIRE). Hence data had to be passed through files,
and CPT launched anew each time, resulting in a huge waste of CPU resources. This
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drawback will be solved by switching to CPT-, the most recent version of CPT (on-
going work).

3.3 Rationale for using Divide-and-Evolve for Temporal Planning

The reasons for the failure of standard OR methods addressing TPPs come from the
exponential complexity of the number of possible actionswhen the number of objects
involved in the problem increases. It has been known for a long time that taking into
account the interactions between sub-goals can decrease the complexity of finding
a plan, in particularwhen these sub-goals are independent [].Moreover, computing
an ideal ordering on sub-goals is as difficult as finding a plan (PSPACE-hard), as
demonstrated in []. which proposes an algorithm for computing an approximation
of such an ordering. The basic idea when using the Divide-and-Evolve approach is
that each local sub-plan (“joining” stations si and si+1) should be easier to find than
the global plan (joining the station of departure s0 and the terminus sn+1). This will
now be demonstrated on the Zeno transportation benchmark (see http://ipc.icaps-
conference.org/).

Table  illustrates the decomposition of a relatively difficult problem in the Zeno
domain (zeno14 from IPC- benchmarks), a transportation problem with  planes
(plane1 toplane5) and  persons (person1 toperson10) to travel among  cities
(city0 to city9). A plane can fly at two different speeds. Flying fast requires more
fuel. A plane has a fuel level and might be refueled when empty. A person is either at
a city or in a plane and requires to be boarded and disembarked.

Analyzing the optimal solution found by CPT-, it was possible (though not triv-
ial) to manually divide the optimal “route” of this solution in the state space into four
intermediate stations between the initial state and the goal. It can be seen that very
few moves (plane or person) occur between two consecutive stations (the ones in
bold in each column of Table ). Each sub-plan is easily found by CPT, with a maxi-
mum of  backtrack and 1.87 seconds of search time. It should be noted that most of
the time spent by CPT is on pre-processing: this operation is actually repeated each
time CPT is called, but could be factorized at almost no cost . . . except coding time.

Note that the final step of the process is the compression of the five sub-plans
(see Sect. .: it is performed in 0.10 second (plus 30.98 seconds for pre-processing)
without any backtracking, and the overall makespan of the plan is , much less
than the sum of the individual makespans of each sub-plan ().

To summarize, the recomposed plan, with a makespan of , required a total
running time of 193.30 seconds (including only 7.42 s of pure search) and only one
backtrack, whereas a plan with the same optimal makespan of  was found by CPT
in 2692.41 seconds and 566,681 backtracks. Sect.  will discuss this issue.

3.4 Description of the State Space

Non-temporal States
A natural state space for TPPs, as described at the beginning of this section, would
be the actual space of all possible time-stamped states of the system. Obviously, the
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Table 1 State decomposition of the Zeno instance. (The new location of moved objects ap-
pears in bold)

Objects Init Station  Station  Station  Station  Goal
(station ) (station )

plane  city  city  city  city  city  city 
plane  city  city  city  city  city  city 
plane  city  city  city  city  city  city 
plane  city  city  city  city  city  city 
plane  city  city  city  city  city  city 
person  city  city  city  city  city  city 
person  city  city  city  city  city  city 
person  city  city  city  city  city  city 
person  city  city  city  city  city  city 
person  city  city  city  city  city  city 
person  city  city  city  city  city  city 
person  city  city  city  city  city  city 
person  city  city  city  city  city  city 
person  city  city  city  city  city  city 
person  city  city  city  city  city  city 

Makespan 150 203 150 276 203
Backtracks 0 0 0 1 0
Search time 1.34 1.27 1.32 1.87 1.52
Total time 32.32 32.25 32.30 32.85 32.50

Compression Global Search
Makespan 476 476
Backtracks 0 566, 681
Search time 0.10 2660.08
Total time 31.08 (total : .) 2692.41

size of such a space is far too big and we simplified it by restricting the stations to
non-temporal states. However, even with this simplification, not all “non-temporal”
states can be considered in the description of the “stations”.

Limiting the Possible States
First, the space of all possible states grows exponentially with the size of the problem.
Second, not all states are consistent w.r.t. the planning domain. For instance, an ob-
ject cannot be located at two places at the same time in a transportation problem –
and inferring such state invariants is feasible but not trivial []. Note also that deter-
mining plan existence from a propositional STRIPS description has been proved to
be PSPACE-complete [].

A possible way to overcome this difficulty would be to rely on the local algorithm
to (rapidly) check the consistency of a given situation, and to penalize unreachable
stations. However, this would clearly be a waste of computational resources, possibly
leading to a far too difficult problem to solve for the EA (it would have to “discover”
again and again that one object cannot be at the same time at two different locations,
without a way to generalize and save these across different situations).
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On the other hand, introducing domain knowledge into EAs has been hailed for
some time as the royal road to success in evolutionary computation []. Hence, it
seems a more promising approach to add state invariants to the description of the
state space in order to remove as many of the inconsistent states as possible. The
good thing is that it is not necessary to remove all inconsistent states since, in any
case, the local algorithm is there to help the EA to spot them – inconsistent stations
will be given poor fitness, and will not survive the following selection steps. In par-
ticular, only state invariants involving a single predicate have been implemented in
the present work.

3.5 Representation of Stations

It was decided to describe the stations using only the predicates that are present
in the goal of the overall problem, and to maintain the state invariants based on the
semantics of the problem.

A good example is given in Table : the goal of this benchmark instance is tomove
the persons and planes in cities listed in the last column. No other predicate than
the corresponding (at objectN cityM) predicates is present in the goal. Through
a user-supplied file, the algorithm is told that only the at predicates will be used to
represent the stations, with the syntactic restrictions that within a given station, the
first argument of an at predicate can appear only once (at is said to be exclusivewith
respect to its first argument). The state space that will be explored by the algorithm
thus amounts to a vector of  fluents (instantiated predicates) denoting that an item
is located in a city (a column of Table ). In addition, the actual implementation of
a station includes the possibility to “remove” (in fact, comment out) a predicate of
the list: the corresponding object will not move during this sub-plan.

Distance
The distance between two stations should reflect the difficulty the local algorithm
has in finding a plan joining them. At the moment, a purely syntactic domain-
independent distance is used: the number of different predicates not yet reached.
The difficulty can then be estimated by the number of backtracks needed by the local
algorithm. It is reasonable to assume that most local problemswhere only a few pred-
icates need to be changed from the initial state to the goal will be easy for the local
algorithm – though this is certainly not true in all cases.

RandomGeneration of Stations
Thanks to the state invariants described above, generating random stations now
amounts to choose among consistent stations, and is thus rather simple for a sin-
gle station. Nevertheless, the generation of initial individuals (sequences of stations
(si)i�[1,n] such that all local problems (si , si+1) are simple for the local algorithm) re-
mains an issue. A very representation-specific method has been used for TPPs, and
will be described in the next section.
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3.6 Representation-specific Operators

The initialization of an individual (see Sect. .) and the station-mutation operator
(see Sect. .) will be described for the chosen problem-specific representation for
TPPs.

Initialization
First, the number of stations is chosen uniformly in a user-supplied interval. The user
also enters a maximal distance dmax between stations: two consecutive stations will
not differ by more that dmax predicates (the minimal number of stations is eventu-
ally adjusted in order to meet the requirement, according to the distance between
the initial state and the goal state). A matrix is then built, similar to the top lines of
Table : each line corresponds to one of the goal predicates, each column is a station.
Only the first and last columns (corresponding to initial state and goal) are filled with
values. A number of “moves” are then randomly added in the matrix, at most dmax
per column, and at least one per line. Additional moves are then added according to
another user-supplied parameter, and without exceeding the dmax limit per column.
The matrix is then filled with values, starting from both ends (init and goal), con-
strained column-wise by the state invariants, as described in Sect. . and line-wise
by the values in the init and goal states. If some station proves to be inconsistent at
some point, it is rejected and a new one is generated. A final sweep on all predicates
comments out some of the predicates with a given probability.

StationMutation
Thanks to the simplified representation of the states (a vector of fluents with a set of
state invariants), it is straightforward to modify one station randomly: with a given
probability, a new value for the non-exclusive arguments is chosen among the pos-
sible values respecting all constraints (including the distance constraints with previ-
ous and next stations). In addition, each predicate might be commented out from the
station with a given probability, as in the initialization phase.

4 First Experiments

4.1 Single Objective Optimization

Our main playground to validate the Divide-and-Evolve approach is that of trans-
portation problems, and started with the zeno domain as described in Sect. .. As
can be seen in Table , the description of the stations in zeno domain involves a sin-
gle predicate, at, with two arguments. It is exclusive w.r.t. its first argument. Three
instances have been tried, called zeno10, zeno12 and zeno14, from the simplest to
the hardest.

The simple zeno10 (resp. zeno12) instance can be solved very easily by CPT-
alone, in less than  seconds (resp.  seconds), finding the optimal plans with
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makespan  (resp. ) using  (resp. ) backtracks. On the other hand, the
zeno14 instance could not be solved at all by CPT-. However, as described in Ta-
ble , the new version CPT- could solve it, with amakespan of  and using ,
backtracks.

Algorithmic Settings
TheEA that was used for the first implementation of theDivide-and-Evolveparadigm
uses standard algorithmic settings at the population level:

• population size was set to  to limit the CPU cost;
• both (10+10)−ES and (10, 70)−ES evolution engines were used: the  parents

give birth to either  or  children, and the best  among the  children plus
the  parents ((10+ 10)− ES) or among the  children ((10, 70)− ES) become
the parents of next generation;

• -point crossover is applied to 25% of the individuals;
• the other 75% undergo mutation: 25% of the mutations are the Add (resp. Del)

generic mutations (Sect. .). The remaining 50% of the mutations are called
problem-specific station mutations. Within a station mutation, a predicate is ran-
domly changed in 75% of the cases and a predicate is removed (resp. restored) in
each of the remaining 12.5% cases. (see Sect. .);

• Initialization is performed using initial size in [2, 10], maximum distance of 
and probability to comment out a predicate is set to ..

Note that at the moment, no lengthy parameter tuning was performed for those
proof-of-concept experiments, and the above values were decided based upon a very
limited set of initial experiments.

The Fitness
The target objective is here the total makespan of a plan – assuming that a global plan
can be found, i.e. that all problems (si , si+1) can be solved by the local algorithm. If
one of the local problems cannot be solved, the individual is declared infeasible and is
penalized in such a way that all infeasible individuals are worse than any feasible one.
Moreover, this penalty is proportional to the number of remaining stations (relative
to the total number of stations) after the failure, in order to provide a nice slope for the
fitness landscape towards feasibility. For feasible individuals, an average of the total
makespan and the sum of the makespans of all partial problems is applied. The latter
is needed in order to promote smaller individuals. When only the total makespan
is used, the algorithm tends to generate some lengthy individuals with useless inter-
mediate stations, slowing down the whole run because of all the respective calls to
CPT.

Results on Zeno 10
For zeno10, all runs found the optimal solution in the very early generations, for
both evolution engines (10 + 10) − ES and (10, 70) − ES (rather often, in fact, the
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initialization procedure produced a feasible individual that CPT could compress to
the optimal makespan).

As already mentioned (see Sect. .), the number of backtracks used by CPT was
in all cases limited to a large number to avoid endless searches. However, in order
to precisely investigate the simplification due to Divide-and-Evolve, we took a closer
look at the number of backtracks used by CPT alone, and noticed two things: first,
when forbidden to use any backtrack, CPT nevertheless found a suboptimal solu-
tion with makespan ); second, when searching for the optimal solution without
limit on the number of backtracks, CPT never used more than  backtracks on
a single iteration, with a total of  altogether. It was hence decided to try differ-
ent limits on the number of backtrack per iteration during Divide-and-Evolve pro-
cedure, from  (above the actual number that is necessary for CPT alone) to  (
was not actually possible there). The results are presented in Table  and demon-
strate that, in all cases, Divide-and-Evolve was able to drive CPT toward the opti-
mal solution, even though no backtracks could actually be used by CPT. Note, how-
ever, that for the most difficult case (limit set to  backtrack), the (10 + 10) − ES
engine did not perform very well, while the (10, 70) − ES case was much more
robust.

Here again, when forbidden to use any backtrack, CPT nevertheless found a sub-
optimal solution with makespan . When searching for the optimal solution with-
out limit on the number of backtracks, CPT never used more than 8066 backtracks
on a single iteration, with a total of 27,560 altogether. Aswith zeno10, different limits
on the number of backtrack were run, from 8070 (slightly above the actual number
that is necessary for CPT alone) to . The results are presented in Table  and again
demonstrate that Divide-and-Evolve was indeed able to drive CPT toward the opti-
mal solution, though not when allowed no backtrack at all. Also, for the most difficult
case (limit set to  backtracks), the (10 + 10) − ES engine could not find the opti-
mal solution, while the (10, 70) − ES case could, with a much smaller number of
stations. Note that the (10, 70)−ES engine was able to find an optimal solution with
no backtrack only once in  runs, with more than  stations . . .

Results on Zeno 12
For zeno12 (see Table ), most runs (around 80% on average) found the optimal
solution. The running time for one generation of the (10, 70) − ES engine ( evalu-

Table2 Performance ofDivide-and-Evolve on zeno10using the (10+10)−ES evolution engine
(except last line) when the number of backtracks allowed for CPT is limited

Limit Makespan Maximal # BKT # Stations # Success
    /
    /
    /
    / (,)-ES

 / (,)-ES
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Table3 Performance ofDivide-and-Evolve on zeno12using the (10+10)−ES evolution engine
(except last line) when the number of backtracks allowed for CPT is limited

Limit Makespan Maximal # BKT # Stations # Success
, 549 5, 049 9 /
, 549 4, 831 13 /
 549 5 21 /
 549 28 3 /
 549 3 20 /
 549 2 − 1 7 − 11 / (,)-ES

ations) was about  minutes on a . GHz Pentium IV processor (because different
individuals can have very different numbers of stations, all running times are rough
averages over all runs performed for those experiments). All solutions were found in
less than  generations.

Results on Zeno 14
A more interesting case is that of zeno14: remember that the present Divide-and-
Evolve EA uses CPT-, that is unable to find any solution to zeno14: the results given
in Table  have been obtained using CPT-. But whereas it proved unable to solve the
full problem, CPT- could nevertheless be used to solve the hopefully small instances
of zeno14 domain that were generated by the Divide-and-Evolve approach – though
taking a huge amount of CPU time for that (on average, 90 minutes for one generation
of  evaluations). Note that here, setting a limit on the number of backtracks allowed
forCPTwas in any casemandatory, to preventCPT fromexploring the “too complex”
cases that would have resulted in a never-returning call (as does a call to the full
problem).

The optimal solution (makespan ) was found in  out of  runs, with a limit
on the number of backtracks set to 120,000. Note that Divide-and-Evolvewas unable
to find the optimal solution when using a smaller number of backtracks, though it
repeatedly found feasible solutions (see Table ) even with the lowest limit of one
backtrack (while CPT is not able to find any feasible solution alone, whatever the
number of backtracks allowed).

Table4 Performance ofDivide-and-Evolve on zeno14with limited number of backtracks using
the (10, 70) − ES evolution engine

Limited no BKT Best Makespan
, 
, 
, 
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Discussion of Single-objective Results
Themain conclusion of these experiments is the proof-of-concept of theDivide-and-
Evolve approach. Not only has Divide-and-Evolve been able to find an optimal so-
lution to zeno14 using a version of CPT that was unable to do so, but it also has
demonstrated that it could find optimal solutions to a given problem using a very
limited setting for CPT. Although, due to the huge overload of CPT calls through
Unix forks, it was not possible to see a statistically significant decrease in the CPU
time needed for different settings of the number of backtracks allowed for CPT, there
is no doubt that limiting CPT will allow Divide-and-Evolve to progress more quickly.
Further experiments (using CPT) are, however, needed to more precisely quantify
the gain, and determine the best tradeoff.

4.2 AMulti-objective Problem

ProblemDescription
In order to test the feasibility of the multi-objective approach based on the Divide-
and-Evolve paradigm, we extended the zenobenchmarkwith an additional criterion,
that can be interpreted either as a cost, or as a risk: in the former case, this additional
objective is an additivemeasure, whereas in the latter case (risk) the aggregation func-
tion is the max operator.

The problem instance is shown in Fig. : the only available routes between cities
are displayed as edges, only one transportation method is available (plane), and the
duration of the transport is shown on the corresponding edge. Risks (or costs) are
attached to the cities (i.e. concern any transportation that either lands or takes off
from that city). In the initial state, the three persons and the two planes are in City 0,
and the goal is to transport them to City 4.

As can be easily computed (though there is a little trick here), there are three
remarkable Pareto-optimal solutions, corresponding to traversing only one of the

(a) The instance: durations are attached to
edges, costs/risks are attached to cities (in gray
circles).

(b) The population at different generations
for a successful run on the cost (additive) in-
stance of the zeno mini-problem of Figure
(a)

Fig. 1 Themulti-objective Zeno benchmark
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three middle cities. Going through City 1 is fast, but risky (costly), whereas going
through City 3 is slow and safe and cheap.

When all persons go through respectively City 1, City 2 and City 3, the cor-
responding values of the makespans and costs in the additive case are (8, 800),
(16, 80) and (24, 8), whereas they are, in the max case, (8, 100), (16, 10)
and (24, 1).

Problem Complexity
It is easy to compute the number of possible virtual stations: each one of the three
persons can be in one of the five cities, or not mentioned (absent predicate). Hence
there are 36 = 729 possible combinations, and 729n possible lists of length n. So even
when n is limited to , the size of the search space is approx. 1017 . . .

The Algorithm
The EA is based on the standard NSGA-II multi-objective EA []: standard tourna-
ment selection of size  and deterministic replacement among parents + offspring,
both based on the Pareto ranking and crowding distance selection; a population size
of  evolves over  generations. All other parameters were as those used for the
single objective case.

Fitnesses
The problem has two objectives: one is the the total makespan (as in the single-
objective case), the other is either the risk (aggregated using the max operator) or
the cost (an additive objective). Because the global risk only takes three values, there
is no way to have any useful gradient information when used as fitness in the max
case. However, even in the additive case, the same arguments than for the makespan
apply (Sect. .), and hence, in all cases, the second objective is the sum of the overall
risk/cost and the average (not the sum) of the values for all partial problems – ex-
cluding from this average those partial problems that have a null makespan (when
the goal is already included in the initial state).

Results
For the additive (cost) case, the most difficult Pareto optimum (going through city 
only) was found four times out of  runs. However, the two other remarkable Pareto
optima, as well as several other points in the Pareto front were also repeatedly found
by all runs. Figure (b) shows different snapshots of the population at different stages
of the evolution for a typical successful run: at first (+), all individuals have a high
cost (above ); at generation  (‘
’), there exist individuals in the population that
have cost less than ; at generation  (squares), many points have a cost less than
. But the optimal (,) solution is only found at generation  (circles).

The problem in the risk context (the max case) proved to be, as expected, slightly
more difficult. All three Pareto optima (there exist no other point of the true Pareto
front in the max case) were found only in two runs out of . However, all runs found
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both the two other Pareto optima, as well as the slightly suboptimal solution that
goes only through city  but did not find the little trick mentioned earlier, resulting
in a (,) solution.

In both cases, those results clearly validate the Divide-and-Evolve approach for
multi-objective TPPs – remember that CPT has no knowledge of the risk/cost in its
optimization procedure – it only aggregates the values a posteriori, after having com-
puted its optimal plan based on the makespan only – hence the difficulty in finding
the third Pareto optimum going only through city3.

5 Discussion and Further Work

First, note that any planner can be used to solve the local problems. In particular,
both exact and suboptimal planners are suitable. Some experiments will be made
using planners other than CPT. However, because the final goal is to find an optimal
plan which joins the station of departure and the terminus, using an optimal planner
might be mandatory, and, at least, most probably makes things easier for the EA.
Because CPT is developed and maintained by one of the authors, we will more likely
contnue to use it in the future.

A primary theoretical concern is the existence of a decomposition for any plan
with optimal makespan. At the moment, because of the restriction of the representa-
tion to the predicates that are in the goal, some states become impossible to describe.
If one of these states is mandatory for all optimal plans, the evolutionary algorithm
may be unable to find the optimal solution. In the Zeno domain for instance, it can
be necessary to link a specific person to a specific plane. This may happen when two
persons are boarded on two planes, which thus play a symmetrical role between two
given stations, but do not play a symmetrical role w.r.t. the overall goal of the prob-
lem. The in predicate should then be taken into account when splitting the optimal
solution. The main difficulty, however, is to add the corresponding state invariant
between at and in (a person is either at a location or in a plane).

The results presented in Sect. ., although demonstrating thatDivide-and-Evolve
can solve problems that cannot be directly solved by CPT, they also show that the
search capabilities of the proposed algorithm should be improved for more robust-
ness.

There is plenty of room for improvements, e.g. on the variation operators: at
the moment, both are completely blind, without any use of any domain knowledge.
Of course, this is compliant with a “pure” evolutionary approach . . . that is also
known to be completely inefficient in the case of combinatorial optimization prob-
lems. Crossover can be improved by choosing the crossing station in the second par-
ent such that it is close to that of the first parent, at least at that moment, according to
the syntactic distance. TheAddmutation that randomly adds a station in the list will
be improved by building the new station in such a way that it is half-way from both
surrounding stations. The choice of station to be deleted in the Delmutation will be
biased toward the stations that are very easy to reach (in terms of actual number of
backtracks used).
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Also, all parameters of the algorithm will be carefully fine-tuned.
Of course the Divide-and-Evolve scheme has to be experimented on more ex-

amples. The International Planning Competition provides many instances in sev-
eral domains that are good candidates. Preliminary results on the driver problem
showed very similar results to those reported here on the zeno domain. However,
other domains, such as the depot domain, or many real-world domains, involve (at
least) two predicates in their goal descriptions (e.g. in and on for depot) . It is hence
necessary to increase the range of allowed expressions in the description of individ-
uals.

Other improvements will result from themove to CPT-, the new version of CPT,
entirely rewritten in C. It will be possible to call CPT from within the EA, and hence
to perform all grounding, pre-processing and CSP representation only once: at the
moment, CPT is launched anew for each partial computation, and a quick look at
Table  shows that on the zeno14 problem, for instance, the run-time per individual
will decrease from  to  seconds. Though this will not per se improve the quality
of the results, it will allow us to tackle more complex problems than even zeno14.
Along the same lines, other planners, in particular suboptimal planners, will also be
tried in lieu of CPT, as maybe the Divide-and-Evolve approach could find optimal
results using suboptimal planners (as done in some sense in the multi-objective case;
see Sect. .).

Greater improvements will be possible after that move, with respect to problem
representation. Because Divide-and-Evolve will have access to all exclusions among
predicates that are derived and maintained by CPT, exclusions among predicates
might be automatically derived, including exclusions across predicates, such as those
involving predicates in and on in the depot domain. Second, and maybe more im-
portant, the expressive power of the representation of the stations will be increased:
at the moment, only predicates that are listed in the overall goal are considered in
the intermediate stations. And the example of zeno14 clearly shows that, though the
DAE approach can indeed break the complexity barrier, solving instances that CPT
could not directly solve, it will not be able to reach the global optimum with such
restriction (one can construct examples where in predicates are necessary to actu-
ally optimally break the problem). It is hence planned to allow other predicates to be
used to represent intermediate stations. Of course, this will also increase the size of
the search space, and some detailed analysis will be needed to somehow determine
the minimal set of predicates that are needed for a given problem in order that the
DAE approach can find the global optimum.

A last but important remark about the results is that, at least in the single objective
case, the best solution found by the algorithm was always found in the early genera-
tions of the runs ( at most for Zeno14): it could be the case that the simple splits
of the problem into smaller sub-problems that are done during the initialization are
the main reasons for the good results. Detailed investigations will show whether or
not an EA is actually useful in that context!

Nevertheless, we do believe that using evolutionary computation is mandatory
in order to solve multi-objective optimization problems, as witnessed by the results
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of Sect. ., which are, to the best of our knowledge, the first ever results of Pareto
optimization for TPPs, and are enough to justify the Divide-and-Evolve approach.
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Abstract

Genetic Algorithms have been seen as search procedures that can quickly locate high
performance regions of vast and complex search spaces, but they are not well suited
for fine-tuning solutions, which are very close to optimal ones. However, genetic al-
gorithms may be specifically designed to provide an effective local search as well. In
fact, several genetic algorithm models have recently been presented with this aim. In
this chapter, we call these algorithms Local Genetic Algorithms.

In this chapter, first, we review different instances of local genetic algorithms pre-
sented in the literature. Then, we focus on a recent proposal, the Binary-coded Lo-
cal Genetic Algorithm. It is a Steady-state Genetic Algorithm that applies a crowd-
ing replacement method in order to keep, in the population, groups of chromosomes
with high quality in different regions of the search space. In addition, it maintains
an external solution (leader chromosome) that is crossed over with individuals of the
population.These individuals are selected by using Positive AssortativeMating, which
ensures that these individuals are very similar to the leader chromosome. The main
objective is to orientate the search in the nearest regions to the leader chromosome.

We show an empirical study comparing a Multi-start Local Search based on the
binary-coded local genetic algorithmwith other instances of thismetaheuristic based
on local search procedures presented in the literature. The results show that, for
a wide range of problems, the multi-start local search based on the binary-coded
local genetic algorithm consistently outperforms multi-start local search instances
based on the other local search approaches.

Key words: Local Genetic Algorithms, Local Search Procedures, Multi-start Local
Search

1 Introduction

Local Search Procedures (LSPs) are optimisation methods that maintain a solution,
known as current solution, and explore the search space by steps within its neigh-
bourhood. They usually go from the current solution to a better close solution, which
is used, in the next iteration, as current solution. This process is repeated till a stop
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condition is fulfilled, e.g. there is no better solution within the neighbourhood of the
current solution.

Three important LSPs are:

• First Improvement Local Search []: Replaces the current solutionwith a randomly
chosen neighbouring solution with a better fitness value.

• Best Improvement Local Search []: Replaces the current solution with the best
among all the neighbouring solutions.

• Randomised K-opt LSP (RandK-LS) [, , ]: Looks for a better solution by
altering a variable number of k components of the current solution per iteration,
i.e. the dimension of the explored neighbourhood is variable.

The interest on LSPs comes from the fact that they may effectively and quickly ex-
plore the basin of attraction of optimal solutions, finding an optimum with a high
degree of accuracy and within a small number of iterations. In fact, these methods
are a key component ofmetaheuristics that are state-of-the-art for many optimisation
problems, such asMulti-Start Local Search (MSLS) [],Greedy Randomised Adaptive
Search Procedures (GRASP) [, ], Iterated Local Search (ILS) [], Variable Neigh-
bourhood Search (VNS) [], andMemetic Algorithms (MAs) [].

Genetic Algorithms (GAs) [, ] are optimisation techniques that use a popula-
tion of candidate solutions. They explore the search space by evolving the population
through four steps: parent selection, crossover, mutation, and replacement. GAs have
been seen as search procedures that can locate high performance regions of vast and
complex search spaces, but they are not well suited for fine-tuning solutions [, ].
However, the components of the GAs may be specifically designed and their param-
eters tuned, in order to provide an effective local search behaviour. In fact, several
GA models have recently been presented with this aim [, ]. In this chapter, these
algorithms are called Local Genetic Algorithms (LGAs).

LGAs have some advantages over classic LSPs. Most LSPs lack the ability to fol-
low the proper path to the optimum on complex search landscapes. This difficulty
becomes much more evident when the search space contains very narrow paths of
arbitrary direction, also known as ridges. That is because LSPs attempt successive
steps along orthogonal directions that do not necessarily coincide with the direction
of the ridge. However, it was observed that LGAs are capable of following ridges of
arbitrary direction in the search space regardless of their direction, width, or even,
discontinuities []. Thus, the study of LGAs is a promising way to design more ef-
fective metaheuristics based on LSPs [, , , , , ].

The aim of this chapter is to analyse LGAs in depth. In order to do this:

• First, we introduce the LGA concept and identify its main properties.
• Second, we review different LGA instances presented in the literature.
• Finally, we focus on a recent LGA example, the Binary-coded LGA (BLGA) [].

We describe an empirical study comparing a MSLS based on the BLGA with
other instances of this metaheuristic based on LSPs proposed in the literature.
The results show that, for a wide range of problems, the MSLS instance based on
the BLGA consistently outperforms the MSLS instances based on the other local
search approaches.
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The chapter is organised as follows. In Sect. , we outline three LSPs that have been
often considered in the literature to build metaheuristics based on LSPs. In Sect. ,
we introduce a brief overview about GAs. In Sect. , we inspect the LGA concept
and review several LGA instances found in the literature. In Sect. , we describe an
example of LGA, the BLGA. In Sect. , we show an empirical study comparing the
performance of theMSLS based on the BLGAwith other instances of theMSLS based
on LSPs presented in Sect. . Finally, in Sect. , we provide some conclusions and
future research directions.

2 Local Search Procedures in the Literature

LSPs are improvement heuristics that maintain a solution, known as current solution
(XC), and search its neighbourhood (N(XC)) for a better one. If a better solution
S � N(XC) is found, S becomes the new XC and the neighbourhood search starts
again. If no further improvement can be made, i.e. �. S � N(XC) such as S improves
XC , then, a local or global optimum has been found.

The interest in LSPs comes from the fact that they may effectively and quickly
explore the basin of attraction of optimal solutions, finding an optimum with a high
degree of accuracy and within a small number of iterations. The reasons for this high
exploitative behaviour are:
• LSPs usually keep as XC the best found solution so far, and
• N(XC) is composed of solutions with minimal differences from XC , i.e. LSPs

perform a local refinement on XC .
Three important LSPs are:
• First Improvement Local Search (First-LS) []: Works by comparing XC with

neighbouring solutions. When a neighbouring solution appears better, XC is re-
placed and the process starts again. If all the neighbouring solutions are worse
than XC , then, the algorithm stops. In First-LS, N(XC) is usually defined as the
set of solutions withminimal differences from XC , i.e. in binary-coded problems,
S differs from XC only in one bit, ∀S � N(XC).

• Best Improvement Local Search (Best-LS) []: Generates and evaluates all the
neighbouring solutions of XC .Then, the best one replaces XC if it is better. Other-
wise, the algorithm stops. In Best-LS, N(XC) is usually defined as in First-LS.

• Randomised K-opt LSP (RandK-LS) [, , ]: Is a variation of the K-opt LSP
presented in [].Thatwas specifically designed to tackle binary-coded problems.
Its basic idea is to find a solution by flipping a variable number of k bits in the
solution vector per iteration. In each step, n (n is the dimension of the problem)
solutions (X , X, . . . , Xn) are generated by flipping one bit of the previous so-
lution, i.e. solution Xi+ is obtained by flipping one bit of the solution Xi (X  is
generated from XC ). A candidate set is used to assure that each bit is flipped no
more than once.Then, the best solution in the sequence is accepted as XC for the
next iteration, if it is better, otherwise the algorithm stops and returns XC .

LSPs are a key component of many metaheuristics. In order to perform a global
search, these metaheuristics look for synergy between the exploitative behaviour of
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the LSP and explorative components. In this way, while the explorative components
ensure that different promising search zones are focused upon, the LSP obtains the
best possible accurate solutions within those regions. Examples of metaheuristics
based on LSPs are:

• MSLS []: Iteratively applies the LSP to random solutions.
• GRASP [,]: Generates randomised heuristic solutions to the specific problem,

and applies the LSP to them.
• ILS []: The LSP is initially applied to a random solution. In the following iter-

ations, the LSP is applied to solutions generated by altering previous ones.
• VNS []: The idea is similar to that of ILS. The main difference is that the solu-

tions are lightly or strongly altered depending on whether or not the new solu-
tions improve the best one so far.

• MAs []:They are evolutionary algorithms that apply LSPs in order to refine the
individuals of the population.

3 Genetic Algorithms

GAs are general purpose search algorithms that use principles inspired by natural
genetic populations to evolve solutions to problems [,].The basic idea is to main-
tain a population of chromosomes that represent candidate solutions to the concrete
problem. The GA evolves the population through a process of competition and con-
trolled variation. Each chromosome in the population has an associated fitness to
determine which ones are used to form new chromosomes in the competition pro-
cess, which is called parent selection.The new ones are created using genetic operators
such as crossover andmutation.

GAs have had a great measure of success in search and optimisation problems.
The reason for a great part of their success is their ability to exploit the information
accumulated about an initially unknown search space in order to bias subsequent
searches into useful subspaces. This is their key feature, particularly in large, com-
plex, and poorly understood search spaces, where classical search tools (enumera-
tive, heuristic, ...) are inappropriate, offering a valid approach to problems requiring
efficient and effective search techniques.

Two of the most important GA models are the Generational GA and the Steady-
state GA:
• The Generational GA [] creates new offspring from the members of an old

population, using the genetic operators, and places these individuals in a new
population that becomes the old population when the whole new population is
created.

• The Steady-state GA (SSGA) [,] is different from the generational model in
that there is typically one single new member inserted into the new population
at any one time. A replacement/deletion strategy defines which member in the
current population is forced to perish (or vacate a slot) in order to make room
for the new offspring to compete (or, occupy a slot) in the next iteration.The basic
algorithm step of the SSGA is shown in Fig. .



 Local Genetic Algorithms 

SSGA()

initialise P;
evaluate P;

while (stop-condition is not fulfilled)
parents � select two chromosomes from P;
o f f spring � combine and mutate the chromosomes in parents;
evaluate o f f spring;
R � select an individual from P; //replacement strategy
decide if o f f spring should replace R;

Fig. 1 Structure of a SSGA.

4 Local Genetic Algorithms

There are two primary factors in the search carried out by a GA []:
• Selection pressure. In order to have an effective search there must be a search cri-

terion (the fitness function) and a selection pressure that gives individuals with
higher fitness a higher chance of being selected for reproduction, mutation, and
survival. Without selection pressure, the search process becomes random and
promising regions of the search space would not be favoured over non-promising
regions.

• Population diversity. This is crucial to a GA’s ability to continue fruitful explor-
ation of the search space.

Selection pressure and population diversity are inversely related:
• increasing selection pressure results in a faster loss of population diversity, while
• maintaining population diversity offsets the effect of increasing selection pres-

sure.
Traditionally, GA practitioners have carefully designed GAs in order to obtain a bal-
anced performance between selection pressure and population diversity. The main
objective was to obtain their beneficial advantages simultaneously: to allow the most
promising search space regions to be reached (reliability) and refined (accuracy).

Due to the flexibility of the GA architecture, it is possible to design GA models
specifically aimed to provide effective local search. In thisway, their unique objective is
to obtain accurate solutions. In this chapter, these algorithms are namedLocal Genetic
Algorithms.

LGAs present some advantages over classic LSPs. Most LSPs lack the ability to
follow the proper path to the optimum on complex search landscapes. This difficulty
becomesmuchmore evident when the search space contains very narrow paths of ar-
bitrary direction, also known as ridges. This is because LSPs attempt successive steps
along orthogonal directions that do not necessarily coincide with the direction of the
ridge. However, it was observed that LGAs are capable of following ridges of arbitrary
direction in the search space regardless of their direction, width, or even, discontinu-
ities []. Thus, the study of LGAs becomes a promising way to allow the design of
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more effective metaheuristics based on LSPs. In fact, some LGAs were considered for
this task [, , , , , ].

In the following sections, we explain the features of different LGA instances that
may be found in the literature. In addition, we cite the corresponding metaheuristic
models in which LGAs were integrated:
• μGAs [] (Section .).
• The Crossover Hill-climbing [] (Section .).
• LGAs based on female and male differentiation [] (Section .).
• LGAs as components of distributed GAs [, , ] (Section .).

4.1 μGAsWorking as LGAs

In [], a Micro-Genetic Algorithm (μGA) (GA with a small population and short
evolution) is used as LGA within a memetic algorithm. Its mission is to refine the
solutions given by the memetic algorithm. It evolves a population of perturbations
(Pi ), whose aptitude values depend on the solution given by the memetic algorithm.

Its main features are the following:
• It is an elitist Generational GA that uses roulette wheel parent selection, a ten-

point crossover, and bit mutation with adaptive probabilities. In addition, by
using a small population (five individuals), the μGA may achieve high selection
pressure levels, which allows accurate solutions to be reached.

• The perturbation space is defined in such a way that the μGA explores a small
region centred on the given solution. Thus, it offers local improvements to the
given solution.

Thememetic algorithmbased on the μGAwas tested against  different evolutionary
algorithm models, which include a simple GA and GAs with different hill-climbing
operators, on five hard constrained optimisation problems.The simulation results re-
vealed that this algorithm exhibits good performance, outperforming the competing
algorithms in all test cases in terms of solution accuracy, feasibility rate, and robust-
ness.

We should point out that μGAs have been considered as LGAs by other authors:

• Weicai et al. [] propose aMulti-agent GA that makes use of a μGA.
• Meloni et al. [] insert a μGA in a multi-objective evolutionary algorithm for

a class of sequencing problems in manufacturing environments.
• Papadakis et al. [] use a μGA within a GA-based fuzzy modelling approach to

generate TSK models.

4.2 A Real-coded LGA: Crossover Hill-climbing

Lozano et al. [] propose a Real-coded Memetic Algorithm that uses Crossover Hill-
climbing (XHC) as LGA. Its mission is to obtain the best possible accuracy levels to
lead the population towards the most promising search areas, producing an effective
refinement on them. In addition, an adaptive mechanism is employed to determine
the probability with which solutions are refined with XHC.
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The XHC is a Real-coded Steady-state LGA that maintains a pair of parents and
performs crossover repeatedly on this pair until some number of offspring, no f f , is
reached. Then, the best offspring is selected and replaces the worst parent, only if it
is better. The process iterates nit times and returns the two final current parents.

The XHC proposed may be conceived as a Micro Selecto-Recombinative Real-
coded LGA model that employs the minimal population size necessary to allow the
crossover to be applicable, i.e. two chromosomes. Although XHC can be instantiated
with any crossover operator, the authors used a self-adaptive real-parameter opera-
tor that generates offspring according to the current distribution of the parents. If
the parents are located close to each other, the offspring generated by the crossover
might be distributed densely around them. On the other hand, if the parents are lo-
cated far away from each other, then the offspring will be sparsely distributed.

Experimental results showed that, for a wide range of problems, the real-coded
memetic algorithm with XHC operator consistently outperformed other real-coded
memetic algorithms appearing in the literature.

Other studies have considered some variants of the XHC algorithm [, , ].

4.3 LGAs Based on Female andMale Differentiation

Parent-Centric Crossover Operators (PCCOs) is a family of real-parameter crossover
operators that use a probability distribution to create offspring in a restricted search
region marked by one of the parent, the female parent. The range of this probability
distribution depends on the distance among the female parent and the other parents
involved in the crossover, the male parents.

Traditionally, PCCO practitioners have assumed that every chromosome in the
population may become either a female parent or a male parent. However, it is
very important to emphasise that female and male parents have two differentiated
roles []:

• female parents point to the search areas that will receive sampling points, whereas
• male parents are used to determine the extent of these areas.

With this idea in mind, García-Martínez et al. [] propose applying a Female and
MaleDifferentiation (FMD) process before the application of a PCCO.TheFMDpro-
cess creates two different groups according to two tuneable parameters (NF and NM):

• GF with the NF best chromosomes in the population, which can be female par-
ents; and

• GM with the NM best individuals, which can be selected as male parents.

An important feature of this FMD process is that it has a strong influence on the
degree of selection pressure kept by the GA:

• On the one hand, when NF is low, high selection pressure degrees are achieved,
because the search process is very focused in the best regions.

• On the other hand, if NF is high, the selection pressure is softened, providing
extensive sampling on the search areas represented in the current population.
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The authors argue that the two parameters associated with the FMD process, NF and
NM , may be adequately adjusted in order to design Local Real-coded GAs that reach
accurate solutions:
• On the one hand, with low NF values (NF = 5), the GA keeps the best solutions

found so far in a similar way to which LSPs keep the best solution found so far in
XC .

• On the other hand, PCCOs sample the neighbourhood of the NF best solutions
as LSPs sample the neighbourhood of XC , i.e. PCCOs perform a local refinement
on the NF best solutions.

In addition, the authors argue thatGlobal Real-CodedGAs can also be obtained by ad-
equately adjusting NF and NM . Global Real-coded GAs offer reliable solutions when
they tackle multimodal and complex problems.

Finally, with the aim of achieving robust operation, García-Martínez et al. fol-
lowed a simple hybridisation technique to put together a Global Real-coded GA and
a Local Real-coded GA.

Empirical studies confirmed that this hybridisation was very competive with
state-of-the-art on metaheuristics for continuous optimisation.

4.4 LGAs as Components of Distributed GAs

Distributed GAs keep in parallel, several independent subpopulations that are pro-
cessed by a GA []. Periodically, a migration mechanism produces a chromosome
exchange between the subpopulations. Making distinctions between the subpopula-
tions by applying GAs with different configurations, we obtain Heterogeneous Dis-
tributed Genetic Algorithms (HDGAs). These algorithms represent a promising way
for introducing correct exploration/exploitation balance in order to avoid premature
convergence and reach accurate final solutions.

Next, we describe three HDGAmodels that assign to every subpopulation a dif-
ferent exploration or exploitation role. In this case, the exploitative subpopulations
are LGAs whose mission is to refine the solutions that have been migrated from ex-
plorative subpopulations:
• Gradual Distributed Real-coded GAs [] (Sect. ..).
• GA Based on Migration and Artificial Selection [] (Sect. ..).
• Real Coded GA with an Explorer and an Exploiter Population [] (Sect. ..).

4.4.1 Gradual Distributed Real-coded GAs
The availability of crossover operators for real-coded GAs [, ] that generate
different exploration or exploitation degrees makes the design of Heterogeneous
Distributed Real-coded GAs based on these operators feasible. Herrera et al. []
propose Gradual Distributed Real-coded GAs (GD-RCGAs) that apply a different
crossover operator to each subpopulation. These operators are differentiated ac-
cording to their associated exploration and exploitation properties and the degree
thereof. The effect achieved is a parallel multiresolution with regard to the action of
the crossover operators. Furthermore, subpopulations are suitably connected to ex-
ploit this multiresolution in a gradual way.
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GD-RCGAs are based on a hypercube topology with three dimensions (Fig. ).
There are two important sides to be differentiated:
• The front side is devoted to exploration. It is made up of four subpopulations

E1 , . . . , E4, to which exploratory crossover are applied. The exploration degree
increases clockwise, starting at the lowest E1, and ending at the highest E4.

• The rear side is for exploitation. It is composed of subpopulations e1, . . . , e4
that undergo exploitative crossover operators. The exploitation degree increases
clockwise, starting at the lowest e1, and finishing at the highest e4. Notice that the
e1, . . . , e4 populations are LGAs that achieve different exploitation levels.

The connectivity of the GD-RCGA allows a gradual refinement when migrations are
produced from an exploratory subpopulation toward an exploitative one, i.e., from
Ei to ei , or between two exploitative subpopulations from a lower degree to a higher
one, i.e. from ei to ei+1.

Experimental results showed that the GD-RCGA consistently outperformed se-
quential real-coded GAs and homogeneous distributed real-coded GAs, which are
equivalent to them, and other real-coded evolutionary algorithms reported in the
literature.

4.4.2 GA Based onMigration and Artificial Selection
In [], a distributedGA, calledGAMAS,was proposed.GAMASuses four subpopu-
lations, denoted as species I–IV, which supply different exploration or exploitation
levels by using different mutation probabilities:

• Species II is a subpopulation used for exploration. For this purpose, it uses a high
mutation probability (pm = 0.05).

• Species IV is a subpopulation used for exploitation. This way, its mutation prob-
ability is low (pm = 0.003). Species IV is an LGA that attempts to achieve high
exploitation by using a low mutation probability.

• Species III is an exploration and exploitation subpopulation with pm = 0.005.

GAMAS selects the best individuals from species II–IV, and introduces them into
species I whenever those are better than the elements in this subpopulation. Themis-

Fig. 2 Structure of a GD-RCGA
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sion of species I is to preserve the best chromosomes appearing in the other species.
At predetermined generations, its chromosomes are reintroduced into species IV by
replacing all of the current elements in this species.

Experimental results showed that GAMAS consistently outperforms simple GAs
and alleviates the problem of premature convergence.

4.4.3 Real-coded Genetic Algorithmwith an Explorer and an Exploiter Population
Tsutsui et al. [] propose a GA with two populations whose missions are well dif-
ferentiated: one is aimed to explore the search space, whereas the other is an LGA
that searches the neighbourhood of the best solution obtained so far. Both of them
are generational GAs. However, the LGA uses a fine-grained mutation and a popula-
tion of half the size of the explorer population. This way, the LGA performs a high
exploitation over the best solution so far.

Theproposed technique exhibited performance significantly superior to standard
GAs on two complex highly multimodal problems.

5 Binary-coded Local Genetic Algorithm
In this section, we describe a recent LGA example, the Binary-coded LGA (BLGA)
[] that may be used to design metaheuristics based on LSPs. The aim of BLGA is
two-fold:
• On the one hand, BLGA has been specifically designed to perform an effective

local search in a similar way to LSPs. BLGA optimises locally the solutions given
by the metaheuristic, by steps within their neighbourhoods.

• On the other hand, while BLGA performs the local search, its population (P)
acquires information about the location of the best search regions. Then, BLGA
can make use of the knowledge in P in order to guide the search. This kind of
information cannot be used by LSPs.

BLGA is a SSGA (Sect. ) that uses a crowding replacement method (restricted tour-
nament selection []) that favours the formation of niches (groups of chromosomes
of high quality located in different and scattered regions of the search space) in P.
In addition, BLGAmaintains an external chromosome, the leader chromosome (CL),
which plays the same role as XC in classical LSPs:

Fig. 3 Niches considered to guide the local search
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• BLGA samples new solutions within the neighbourhood of CL in a similar way
to LSPs with XC , by means of amulti-parent version of the uniform crossover op-
erator []. In addition, BLGAdirects the sampling operation towards the closest
niches to CL (Fig. ) by selecting parents with positive assortative mating [].

• BLGA keeps the best sampled solution in CL just as LSPs keep the best solution
obtained so far in XC .

5.1 General Scheme of the BLGA

Let’s suppose that a particular metaheuristic applies the BLGA as LSP. When the
metaheuristic calls the BLGA to refine a particular solution, the BLGA considers this
solution asCL .Then, the following steps are carried out during each iteration (Fig. ):

. Mate selection.m chromosomes (Y  ,Y , ...,Ym) are selected from the population
by applying the positive assortative mating m times (Sect. .).

. Crossover. CL is crossed over with Y  ,Y , ...,Ym by applying the multi-parent
uniform crossover operator, generating an offspring Z (Sect. .).

. To update the leader chromosome and replacement. If Z is better than CL , then
CL is inserted into the population using the restricted tournament selection
(Sect. .) and Z becomes the new CL . Otherwise, Z is inserted in the popu-
lation using this replacement scheme.

All these steps are repeated until a termination condition is achieved (Sect. .).

5.2 Positive Assortative Mating

Assortativemating is the natural occurrence ofmating between individuals of similar
phenotype more or less often than expected by chance. Mating between individuals
with similar phenotypemore often is called positive assortative mating and less often
is called negative assortative mating. Fernandes et al. [] implement these ideas to
design two mating selection mechanisms. A first parent is selected by the roulette
wheel method and nass chromosomes are selected with the same method (in BLGA
all the candidates are selected at random).Then, the similarity between each of these

Fig. 4 Model of the BLGA
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chromosomes and the first parent (CL in the BLGA) is computed (similarity between
two binary-coded chromosomes is defined as the Hamming distance between them).
If assortative mating is negative, then the one with less similarity is chosen. If it is
positive, the genomemore similar to the first parent is chosen to be the second parent.
In the case of BLGA, the first parent is CL and the method is repeated m times, in
order to obtain m parents.

Since positive assortative mating selects similar individuals to CL , it helps BLGA
to achieve the two main objectives:
• Positive assortative mating helps BLGA to perform a local refinement on CL be-

cause similar parents make the crossover operator to sample near to CL .
• Positive assortative mating probabilistically guides the search according to the

information kept in P, because it probabilistically selects chromosomes from the
nearest niches to CL (see Fig. ).

5.3 Multi-parent Uniform Crossover Operator

Since the main aim of the BLGA is to fine-tune CL , it should sample new points near
it. Uniform crossover (UX) [] creates an offspring from two parents by choosing
the genes of the first parent with the probability p f . If it uses a high p f value, it will
generate the offspring near to the first parent. The BLGA uses amulti-parent UX that
will be defined below.

During application of the crossover operator, the BLGAuses a short termmemory
mechanism to avoid the generation of any offspring previously created. It remembers
the genes of CL that have been flipped when generating an offspring Zk . Then, it
avoids flipping those genes of CL , in order to prevent the creation of Zk once again.
In order to do that, this mechanism maintains a mask, M = (M1 , . . . ,Mn), where
Mi = 1 indicates that the ith gene of CL (CL

i ) cannot be flipped in order to create
a new offspring. Initially, and when CL is updated with a better solution, any gene
can be flipped, soMi is set to  for all i � �1, . . . , n	.

The pseudocode of the crossover operator with short term memory is shown in
Fig. , where U(0, 1) is a random number in [0, 1], RI(1,m) is a random integer
in �1, 2, . . . ,m	, and p f is the probability of choosing genes from CL . It creates the
offspring Z as follows:
• Zi is set to CL

i for all i = 1, . . . , n with Mi = 1.
• IfMi = 0, then Zi is set to CL

i with probability p f . Otherwise, Zi is set to the ith
gene of a randomly chosen parent Y j . Themask is updated if Zi is different from
CL
i .

• Finally, if the Z obtained is equal to CL , then a gene i with Mi = 0 chosen at
random, is flipped and the mask is updated.

Tabu Search [] also uses a short term memory. Tabu search stores in that memory
the last movements that were used to generate the current solution. It forbides those
movements in order to avoid sampling previous solutions. In tabu search, each for-
bidden movement in the short termmemory has a tabu tenure that indicates when it
should be removed from the memory. When the tabu tenure expires, the movement
is permitted again.
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multiparent_UX(CL, Y , . . . , Ym, M, p f )

For (i = 1, ..., n)

If (Mi = 1 OR U(0, 1) < p f ) //short term memory mechanism
Zi � CL

i ;

Else
k � RI(1,m);
Zi � Yk

i ;

If (Zi � CL
i )

Mi � 1 ; //update the mask

If (Z = CL)
j � RI(1, n) such as Mi = 0;
Mi � 1 ; //update the mask
Zi � 1 − Zi;

Return Z;

Fig. 5 Pseudocode of the Multi-parent Uniform Crossover Operator with short termmemory

5.4 Restricted Tournament Selection

BLGA considers Restricted Tournament Selection (RTS) [] as its crowding replace-
ment method. The application of RTS together with the use of high population size
may favour the creation of groups of chromosomes with high quality in P, which be-
come located in different and scattered regions of the search space (niches). In this
way, the population of the BLGA acquires knowledge about the location of the best
regions of the search space. The aim of the BLGA is to use this information to guide
future searches.

The pseudocode of the RTS is shown in Fig. . Its main idea is to replace the
closest chromosome R to the one being inserted in the population, from a set of nT
randomly selected ones.

RTS(Population, solution)

GT � Select randomly nT individuals from Population;
R � Choose from GT the most similar

chromosome to solution;

If (solution is better than R)
replace R with solution;

Fig. 6 Pseudocode of restricted tournament selection
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5.5 Stop Condition

It is important to notice that when every component of the mask of the short term
memory (Sect. .) is equal to , then, CL will not be further improved, because the
crossover operator will create new solutions exactly equal to CL .Thus, this condition
will be used as the stop condition for the BLGA, and the BLGA will return CL to the
metaheuristic.

6 Experiments: Comparison with Other LSPs

This section reports on an empirical comparative study between the BLGA method
and other LSPs for binary-coded problems presented in the literature: First-LS [];
Best-LS []; and RandK-LS [, , ].

The study compares four instances of the simplest LSP based metaheuristic, the
Multi-start Local Search [], each one with a different LSP. The pseudocode of the
MSLS metaheuristic is shown in Fig. .

The four MSLS instances are defined as follows:

• MS-First-LS: MSLS with the First-LS.
• MS-Best-LS: MSLS with the Best-LS.
• MS-RandK-LS: MSLS with the RandK-LS.
• MS-BLGA: MSLS with the BLGA.

We have chosen theMSLSmetaheuristic in order to avoid possible synergies between
themetaheuristic and the LSP. In this way, comparisons among the LSPs are fairer. All
the algorithms were executed  times, each with amaximum of 100,000 evaluations.

The BLGA uses  individuals as the population size, p f = 0.95 and m = 10
mates for the crossover operator, nass = 5 for the positive assortative mating, and

multistart_LS (LSP)

Sbest
� generate random solution;

While (stop-condition is not fulfilled)
S � generate a random solution;
S′ � perform LSP on S;

If (S′ is better than Sbest)
Sbest

� S′;

Return Sbest;

Fig. 7 Pseudocode of the MSLS metaheuristic
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nT = 15 for restricted tournament selection (parameter values from []). The pop-
ulation of the BLGA does not undergo initialisation after the iterations of the MSLS,
i.e. the initial population of the BLGA at the jth iteration of the MS-BLGA is the last
population of the ( j − 1)th iteration. On the other hand, the leader chromosome is
given by the MSLS, i.e. it is generated at random, at the beginning of the iterations of
the metaheuristic.

We used the  test functions described in Appendix A. Table  indicates their
name, dimension, optimisation criteria, and optimal fitness value.

The results for all the algorithms are included in Table .The performance meas-
ure is the average of the best fitness function found over  executions. In addition,
a two-sided t-test at 0.05 level of significance was applied in order to ascertain if the
differences in performance of the MS-BLGA are significant when compared with
those for the other algorithms. We denote the direction of any significant differences
as follows:

Table 1 Test problems

Name Dimension Criterion f �

Onemax() 400 minimisation 0
Deceptive() 39 minimisation 0
Deceptive() 402 minimisation 0
Trap() 36 maximisation 220
Trap() 144 maximisation 880
Maxcut(G) 800 maximisation 572.71

Maxcut(G) 800 maximisation 6212

Maxcut(G) 800 maximisation Not known
Maxcut(G) 800 maximisation 1063.41

Maxcut(G) 1000 maximisation 70272

M-Sat(,,) 100 maximisation 13

M-Sat(,,) 100 maximisation 13

NkLand(,) 48 maximisation 13

NkLand(,) 48 maximisation 13

BQP(‘gka’) 50 maximisation 34144

BQP() 50 maximisation 20984

BQP() 100 maximisation 79704

BQP() 250 maximisation 45,6074

BQP() 500 maximisation 116,5864

1 Upper bounds presented in [].
2 Upper bounds presented in [].
3  is the maximum possible fitness value, however an opti-
mal solution with that fitness value may not exist, depending
on the current problem instance.
4 Best known values presented in [].
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Table 2 Comparison of the MS-BLGA with other MSLS instances
MS-First-LS MS-Best-LS MS-RandK-LS MS-BLGA

Onemax() 0 � 0 � 0 � 0
Deceptive() 8.68 � 3.36− 14.32+ 8.68
Deceptive() 177.6− 128.4− 201.6+ 185.84
Trap() 213.12+ 219.1 � 201.86+ 218.38
Trap() 790.08+ 828.92+ 781.78+ 869.3
Maxcut(G) 437.36+ 349.6+ 441+ 506.64
Maxcut(G) 425.6+ 335.16+ 431.32+ 497.36
Maxcut(G) 2920.82+ 2824.66+ 2946.58+ 2975.7
Maxcut(G) 849.86+ 628.32+ 873.82+ 898.08
Maxcut(G) 6427.44+ 5735.84+ 6463.1 � 6463.18
M-Sat(,,) 0.9551+ 0.9526+ 0.9563 � 0.9566
M-Sat(,,) 0.9332 � 0.9314+ 0.9335 � 0.9338
NkLand(,) 0.7660+ 0.7647+ 0.7694+ 0.7750
NkLand(,) 0.7456 � 0.7442 � 0.7493 � 0.7468
BQP(“gka”) 3414 � 3414 � 3414 � 3414
BQP() 2098 � 2094.08 � 2096.72 � 2098
BQP() 7890.56+ 7831.7+ 7881.52+ 7927.56
BQP() 45,557.16 � 45,171.38+ 45,504.22+ 45,510.96
BQP() 115,176.88 � 108,588.26+ 115,335.34 � 115,256.3

• A plus sign (+): the performance of MS-BLGA is better than that of the corres-
ponding algorithm.

• A minus sign (−): the algorithm improves the performance of MS-BLGA.
• An approximate sign (�): no significant differences.
We have introduced Fig.  in order to facilitate the analysis of these results. It shows
the percentage improvements, reductions, and non-differences, according to the
t-test, obtained when comparing MS-BLGA with the other algorithms on all the test
problems.

From Fig. , we can say that MS-BLGA performs better than all the other algo-
rithms for more than the 50% of the test problems, and better than or equivalent to

Fig. 8 Comparison of MS-BLGA with other algorithms
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almost 90%.Thus, wemay conclude that the BLGA is a very promising algorithm for
dealing with binary-coded optimisation problems.

On the other hand, Fig.  shows the percentage improvements, reductions and
non-differences obtained when using MS-BLGA for each test problem (with regard
to the other algorithms). Two remarks are worth mentioning regarding Fig. :

• MS-BLGA is one of the best algorithms for almost 90% of the test functions.
Specifically, MS-BLGA achieves better or equivalent results to those of the other
algorithms for all functions, except the two Deceptive ones.

• MS-BLGA returns the best results on four of the five Max-Cut problems.

To sumup,wemay conclude that the BLGA,workingwithin theMSLSmetaheuristic,
is very competitive with classic LSPs, because it obtains better or equivalent results
for almost all the test problems considered in this study.

7 Conclusions

In this chapter, we have shown that GAs may be specifically designed with the aim
of performing an effective local search: we called these GAs Local GAs. First, we sur-
veyed different LGA instances appearing in the literature. Then, we focused on the
BLGA, a recent LGA proposal. BLGA incorporates a specific mate selection mech-
anism, the crossover operator, and a replacement strategy to direct the local search
towards promising search regions represented in the proper BLGA population.

An experimental study, including  binary-coded test problems, has shown that
when we incorporate the BLGA into a MSLS metaheuristic, this metaheuristic im-
proves results compared with the use of other LSPs that are frequently used to im-
plement it. The good performance of the LGAs reviewed and the satisfactory results

Fig. 9 Performance of MS-BLGA on each test problem
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given by theBLGA indicate that further study of theseGAs is a topic ofmajor interest.
We currently intend to:

• analyse the behaviour of LGAs when they are used by different metaheuristics
based on LSPs [, , , , , ]. Specifically, we are interested in the BLGA.

• extend our investigation to different test-suites (other coding schemes) and real-
world problems.

Acknowledgement. This research has been supported by the Spanish MEC project TIN-
-C-.

A Appendix. Test Suite

The test suite used for the experiments consists of  binary-coded test problems (n
is the dimension of the problem). They are described in the following sections.

A.1 Onemax Problem

This is a minimisation problem that applies the following formula:

f (X) = n −
n

!
i=1

Xi ()

We have denoted as Onemax(n) an instance of the Onemax problemwith n decision
variables: we used Onemax().

A.2 Deceptive Problem

In deceptive problems [] there are certain schemata that guide the search towards
a solution that is not globally competitive. It is due to, the schemata that have the
global optimum do not bear significance and so, they may not proliferate during the
genetic process. The deceptive problem used consists of the concatenation of k sub-
problems of length .The fitness for each -bit section of the string is given in Table .
The overall fitness is the sum of the fitnesses of these deceptive subproblems. To ob-
tain an individual’s fitness, the value of this function is subtracted from themaximum
value (30k). Therefore, the optimum has a fitness of zero.

We denoted as Deceptive(k) an instance of the Deceptive problem with k sub-
problems of length . We used two instances: Deceptive() and Deceptive().

Table 3 Deceptive order- problem

Chromosomes        
Fitness        
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A.3 Trap Problem

Trap problem [] consists of misleading subfunctions of different lengths. Specif-
ically, the fitness function f (X) is constructed by adding subfunctions of length 
(F1),  (F2), and  (F3). Each subfunction has two optima: the optimal fitness value
is obtained for an all-ones string, while the all-zeroes string represents a local opti-
mum. The fitness of all other strings in the subfunction is determined by the num-
ber of zeroes: the more zeroes the higher the fitness value. This causes a large basin
of attraction towards the local optimum. The fitness values for the subfunctions are
specified in Table , where the columns indicate the number of ones in the subfunc-
tions F1, F2, and F3. The fitness function f (X) is composed of four subfunctions F3,
six subfunctions F2, and 12 subfunctions F1.The overall length of the problem is thus
. f (X) has 210 optima of which only one is the global optimum: the string with all
ones having a fitness value of .

f (X) =
3

!
i=0

F3(X[3i 
3i+2]) +
5

!
i=0

F2(X[2i+12
2i+13]) +
11

!
i=0

F1(X24+i) ()

We used two instances of the Trap problem:

• Trap(), which coincides exactly with the previous description. And,
• Trap(), which applyies Trap() to a chromosome with four groups of  genes.

Each group is evaluated with Trap(), and the overall fitness of the chromosomes
is the sum of the fitnesses of each group.

A.4 Max-Sat Problem

The satisfiability problem in propositional logic (SAT) [] is the task of deciding
whether a given propositional formula has a model. More formally, given a set of m
clauses �C1 , . . . ,Cm	 involving n Boolean variables X1 , . . . , Xn the SAT problem is
to decide whether an assignment of values to variables exists such that all clauses are
simultaneously satisfied.

Max-Sat is the optimisation variant of SAT and can be seen as a generalisation of
the SAT problem: given a propositional formula in conjunctive normal form (CNF),
theMax-Sat problem then is to find a variable assignment thatmaximises the number
of satisfied clauses. It returns the percentage of satisfied clauses.

We used two sets of instances of the Max-Sat problem with  variables, three
variables by clause, and  and  clauses, respectively.Theywere obtained using

Table 4 Fitness values of the subfunctions Fi of length i; the columns represent the number of
bits in the subfunction that are equal to one

   
F3    
F2   
F1  
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the random generator in [] ( []). They are denoted as M-Sat(n, m, l , seed), where
l indicates the number of variables involved in each clause, and seed is a parameter
needed to randomly generate theMax-Sat instance. Each execution of each algorithm
used a different seed, i.e. the ith execution of every algorithm used the same seedi ,
whereas the jth execution used seedj .

A.5 NK-Landscapes

In the NK model [], N represents the number of genes in a haploid chromosome
and K represents the number of linkages each gene has to other genes in the same
chromosome. To compute the fitness of the entire chromosome, the fitness contribu-
tion from each locus is averaged as follows:

f (X) =
1
N

N

!
i=1

f (locusi) ()

where the fitness contribution of each locus, f (locusi), is determined by using the
(binary) value of gene i together with values of the K interacting genes as an index
into a table Ti of size 2K+1 of randomly generated numbers uniformly distributed
over the interval [0, 1]. For a given gene i, the set of K linked genes may be randomly
selected or consists of the immediately adjacent genes.

We used two sets of instances of the NK-Landscape problem: one with N = 48
and K = 4, and another with N = 48 and K = 12. They are denoted as NKLand (N ,
K, seed), where seed is a parameter needed to randomly generate the NK-Landscape
instance. They were obtained using the code offered in [] ( []). Each execution of
each algorithm used a different seed, i.e. the ith executions of all the algorithms used
the same seedi , whereas the jth executions used seedj .

A.6 Max-Cut Problem

The Max-Cut problem [] is defined as follows: let an undirected and connected
graph G = (V , E), where V = �1, 2, . . . , n	 and E ⊂ �(i, j) � 1 � i < j � n	, be
given. Let the edge weights wi j = wji be given such that wi j = 0 ∀(i, j) �� E, and in
particular, let wii = 0. TheMax-Cut problem is to find a bipartition (V1 ,V2) of V so
that the sum of the weights of the edges between V1 and V2 is maximised.

We used five instances of the Max-Cut problem (G, G, G, G, G), ob-
tained by means of the code in [] ( []).

A.7 Unconstrained Binary Quadratic Programming Problem

The objective of the Unconstrained Binary Quadratic Programming (BQP) [, ] is
to find, given a symmetric rational n
 nmatrix Q = (Qi j), a binary vector of length
n that maximises the following quantity:

f (X) = XtQX =
n

!
i=1

n

!
j=1
qi jXi X j , Xi � �0, 1	 ()
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We used five instances with different values for n. They were taken from the OR-
Library []. They are the first instances of the BQP problems in the files ‘bqpgka’,
‘bqp’, ‘bqp’, ‘bqp’, ‘bqp’.They are called BQP(‘gka’), BQP(), BQP(),
BQP(), and BQP(), respectively.
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Abstract

Cluster geometry optimization is an important problem from the Chemistry area.
Hybrid approaches combining evolutionary algorithms and gradient-driven local
search methods are one of the most efficient techniques to perform a meaningful
exploration of the solution space to ensure the discovery of low energy geometries.
Herewe perform a comprehensive study on the locality properties of this approach to
gain insight to the algorithm’s strengths andweaknesses.The analysis is accomplished
through the application of several static measures to randomly generated solutions in
order to establish the main properties of an extended set of mutation and crossover
operators. Locality analysis is complemented with additional results obtained from
optimization runs. The combination of the outcomes allows us to propose a robust
hybrid algorithm that is able to quickly discover the arrangement of the cluster’s par-
ticles that correspond to optimal or near-optimal solutions.

Key words: Cluster Geometry Optimization, Hybrid Evolutionary Algorithms, Lo-
cality, Potential Energy

1 Introduction

A cluster is an aggregate of between a few and millions of atoms or molecules, which
may present distinct physical properties from those of a single molecule or bulk mat-
ter.The interactions among those atoms (or molecules) may be described by a multi-
dimensional function, designated as Potential Energy Surface (PES), whose knowl-
edge is mandatory in the theoretical study of the properties of a given chemical
system. The arrangement of particles corresponding to the lowest potential energy
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(i.e., the global minimum on the PES) is an important piece of information, needed
to understand the properties of real clusters. Usually, for systems with many particles
(such as clusters), the PES is approximately written in an analytical form as a sum of
all pair-potentials (i.e., functions that depend on the distance connecting each pair of
atoms or molecules). Due to their simplicity, both Lennard-Jones [,] andMorse []
potentials are among the most widely applied as pair-wise models in the study of
clusters. In particular, Morse functions may be used to describe either long-range
interactions, such as in the alkali metal clusters, or the short-range potentials arising
between, for example, C60 molecules. From the point of view of global optimization,
Morse clusters (especially the short-range ones) are considered to be more challeng-
ing than those described by the Lennard-Jones potential [, ]. Indeed, short ranged
Morse clusters tend to present a rough energy landscape due to the great number of
localminima and their PESs aremore likely to have amultiple-funnel topography [].

Since the early s Evolutionary Algorithms (EAs) have been increasingly ap-
plied to global optimization problems from the Chemistry/Biochemistry area. Clus-
ter geometry optimization is a particular example of one of these problems [–].
Nearly all the existing approaches rely on hybrid algorithms combining EAs with
local search methods that use first-order derivative information to guide the search
into the nearest local optimum. State of the art EAs adopt real-valued representations
codifying the Cartesian coordinates of the atoms that compose the cluster []. The
performance of evolutionary methods can be dramatically increased if local opti-
mization is used to improve each individual that is generated. Hybrid approaches for
this problem were first proposed by Deaven and Ho [] and, since then, have been
used in nearly all cluster optimization situations. Typically, local methods perform
a gradient-driven local minimization of the cluster potential, allowing the hybrid al-
gorithm to efficiently discover the nearest local optimum.

Locality is an essential requirement to ensure the efficiency of search and has
been widely studied by the evolutionary computation community [–]. Locality
indicates that small variations in the genotype space imply small variations in the
phenotype one. A locally strong search algorithm is able to efficiently explore the
neighborhood of the current solutions. When this condition is not satisfied, the ex-
ploration performed by the EA is inefficient and tends to resemble random search.

The goal of our analysis is to perform an empirical study on the locality properties
of the hybrid algorithm that is usually adopted for cluster optimization. The analysis
adopts the framework proposed by Raidl and Gottlieb []. In this model a set of
inexpensive static measures is used to characterize the interactions between repre-
sentation and genetic operators and assess how they influence the interplay among
the genotype/phenotype space. We extend this framework to deal with an optimiza-
tion situation where the joint efforts of an EA and a gradient driven local method
are combined during exploration of the search space. The study considers a broad
set of genetic operators, suitable for a real valued representation. Furthermore, two
distance measures are defined and used: fitness based and structural distance.

Mutation is the most frequent operator considered in locality studies. In a previ-
ous paper we presented a detailed analysis concerning its properties when applied in
this evolutionary framework []. Here, we briefly review the main conclusions and
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extend the work to consider crossover. We believe that to obtain a complete char-
acterization of the hybrid EA search competence, crossover must also be taken into
account. Regarding this operator, locality should measure its ability to generate des-
cendants by preserving and combining useful features of both parents.

Results allow us to gain insight about the degree of locality induced by genetic
operators. With regard to mutation, results establish a clear hierarchy in the local-
ity strength of different types of mutation. As for crossover, the analysis shows that
one of the operators is able to maintain/promote diversity, even if similar individuals
compose the population. The other two crossover operators considered in this study
require mutation to maintain diversity. To the best of our knowledge, this is the first
time that a comprehensive locality analysis has been used to study hybrid algorithms
for cluster geometry optimization. Results help to provide a better understanding of
the role played by each one of the components of the algorithm, which may be im-
portant for future applications of EAs to similar problems from the Chemistry area.
For the sake of completeness, the empirical locality study is complemented with add-
itional results obtained from real optimization experiments. The outcomes confirm
the main conclusions of the static analysis.

The structure of the chapter is the following: in Section  we briefly describe
Morse clusters. In Section  we present the main components of the hybrid algorithm
used in the experiments. A brief report of some optimization results is presented in
Section . Section  comprises a detailed analysis on the locality properties of the al-
gorithm. In Section  we present the outcomes of the optimization of a large cluster
to confirm the results of the locality analysis and, finally, Section  gathers the main
conclusions.

2 Morse Clusters

Morse clusters are considered a benchmark for testing the performance of newmeth-
ods for cluster structure optimization. The energy of such a cluster is represented by
the N-particle pair-wise additive potential [] defined as

VMorse = є
N−1

!
i

N

!
j�i
Eexp[−2β(ri j − r0)] − 2 exp[−β(ri j − r0)]F ()

where the variable ri j is the distance between atoms i and j in the cluster structure.
The bond dissociation energy є, the equilibrium bond length r0 and the range expo-
nent of the potential β are parameters defined for each individual pair-wise Morse
interaction. Usually, these are assumed to be constant for all interactions in a cluster
formed by only one type of atom. The potential of () is a scaled version [] of the
Morse function with non-atom-specific interactions, where є and r0 have both been
set to  and β has been fixed at , which corresponds to a short-range interaction.
Global optimization is particularly challenging for short-range Morse clusters, since
they have many local minima and a “noisy” PES [].This simplified potential has al-
ready been studied by other authors [,, ,], and the minima are well established
for many values of N [].
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The application of local minimization methods, as described below, requires the
specification of the analytical gradient of the function to be optimized. In Cartesian
coordinates, the generic element n of the gradient of the Morse cluster potential may
be given by

gn = −2βє
N

!
i�n
1
xni
rni
3�exp[−2β(rni − r0)] − exp[−β(rni − r0)]	 ()

where xni = xn − xi . Similar expressions apply for the y and z directions.

3 EAs for Morse Clusters Optimization

EAs have been used since  for cluster geometry optimization. A comprehensive
review of these efforts, including an outline of state-of-the art applications, can be
found in []. Regarding the application of EAs toMorse clusters, the most important
works are from Johnston and collaborators [, ]. In our analysis we adopt an ex-
perimental model similar to the one used by these researchers. Its main components
have been proposed and evaluated by different teams [–, ].

3.1 Chromosome Representation and Evaluation

An individual must specify the location of the atoms that compose the cluster. For
aggregates with N atoms, a solution is composed of 3 
 N real values specifying the
Cartesian coordinates of each of the particles. The scheme presented in Fig.  illus-
trates the chromosome format. Zeiri proposed this representation in  [] and,
since then, it has become the most widely used in this context [, ]. The coordin-
ate values range between  and λ. We set λ to N1�3, as this interval ensures that the
aggregate volume scales correctly with N [].

There is another parameter δ that specifies the minimum distance that must exist
between atoms belonging to the same cluster. It is useful to prevent the generation of
aggregates with particles that are excessively close to each other. This avoids possible
numerical problems (if two particles are too close, then the pair-wise potential will
tend to infinity) and reduces the size of the search space.This parameter is used in the
generation of the initial population and during the application of genetic operators.

To assign fitness to an individual we just have to calculate its potential energy
using ().

Fig. 1 Structure of a chromosome
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3.2 PopulationModel and Genetic Operators

A generational model is adopted and the standard set of variation operators is used.
For crossover, three different operators are analyzed in this research study: uniform,
cut and splice and generalized cut and splice crossover. The purpose of all of them
is to exchange sub-clusters between parents when generating descendants. In this
context, a sub-cluster is defined as a subset of the atoms that compose the cluster. In
uniform crossover, the atoms that will compose the offspring are randomly selected
from those of the parents. More specifically, the parent chromosomes are scanned
from left to right (atoms  through N) and, in each position, the child inherits the
atom from one of the parents with equal probability. When combining particles from
two parents to create a descendant, uniform crossover does not consider the spatial
distribution of the atoms. It just cares about the ordering of atoms in the chromo-
some, which is not related to their positioning in D space.

Cut and splice crossover (C&S crossover), proposed byDeaven andHo in  [],
was specifically designed for cluster geometry optimization. Unlike generic opera-
tors, such as uniform crossover, C&S is sensitive to the semantic properties of the
structures being manipulated and therefore it is able to arrange a more suitable com-
bination of the parents’ features. Since its proposal, it has become widely used and
several authors confirm that it enhances the performance of the algorithm [, ].
When generating two descendants D1 and D2 from parents P1 and P2, C&S deter-
mines the sub-clusters to be exchanged in the following way:

. Apply random rotations to P1 and P2.
. Define a random horizontal cutting plane (parallel to the xy plane) for P1. This

plane splits P1 in two complementary parts (X atoms below the plane and N −X
atoms above it);

. Define a horizontal cutting plane (parallel to the xy plane) for P2, in such a way
that X atoms stay below the plane and N − X are above it.

. Generate D1 and D2 by combining complementary parts of each one of the par-
ents.

Special precautions are taken whenmerging sections fromdifferent parents to ensure
that the distance between two atoms is never smaller than δ.

Unlike uniform crossover, C&S ensures that the contribution of each parent is
formed by a set of atoms that are close together (they are above or below a randomly
determined plane).The sub-clusters will tend to have low-energy, therefore increas-
ing the likelihood of combining useful building blocks that compose good quality
solutions. In addition to these two existing operators, here we propose and analyze
a generalization of C&S. This will help us to perform a more detailed study con-
cerning the locality properties of crossover operators used in evolutionary cluster
optimization. The new operator, which we will identify as generalized cut and splice
(GenC&S), acts in a way that resembles standard C&S crossover. The most relevant
difference is related to the way it determines the sub-clusters to be exchanged. With

1 Potential energy is directly related to the distance between pairs of atoms.



 F.B. Pereira, J.M.C. Marques, T. Leitão, J. Tavares

GenC&S, subsets of atoms that are close together in the parent clusters will form the
building blocks used to create descendants. The constraint that exists in the origin-
al cut and splice operator (atoms above/below the plane) is removed and Euclidian
distance is the only criterion used to select atoms.

More specifically, GenC&S creates a descendant D1 from parents P1 and P2 in
the following way (the other descendant D2 is created swapping the role played by
the parents):
. Select a random atom CP from P1.
. Select a random number X � [1, N − 2], where N is the number of atoms that

compose the cluster.
. From P1, copy CP and the X atoms closer to it, to D1.
. Select N −(X+1) atoms from P2 to complete D1. Give preference to atoms that,

in the D space, are closer to the original location of CP. Skip atoms that are too
close (i.e., at a distance smaller than δ) to particles already belonging to D1.
Depending on the atom distribution, in a small number of situations it might

be impossible to select enough particles from P2 to complete D1. This can happen
because too many atoms are skipped due to the distance constraint. If this situation
occurs, D1 is completed with atoms randomly placed.

There is another difference between C&S andGenC&S: in the second operator no
random rotations are applied to the parents before the genetic material is mixed.This
action is not necessary in the generalized version because we removed the constraint
that forces the cutting plane defining the sub-clusters to be parallel to the xy plane
and therefore there is no bias associated with this operator.

Twomutation operators were tested in this work: Sigmamutation and Flipmuta-
tion. We consider that mutation is performed on atoms, i.e., when applied it modifies
the value of the three coordinates that specify the position of a particle in D space.
The first operator is an evolutionary strategy (ES) like mutation and acts in the fol-
lowing way: when undergoing mutation, the new value vnew for each one of the three
coordinates of an atom (x , y, z) is obtained from the old value vold through the ex-
pression:

vnew = vold + σN(0, 1) ()

where N(0, 1) represents a random value sampled from a standard Normal distri-
bution and σ is a parameter from the algorithm. The new value must be between
 and λ.

Flip mutation works in the following way: when applied to an atom, it assigns
new random values to each one of its coordinates, i.e., it moves this atom to a random
location.

3.3 Local Optimization

Local optimization is performed with the Broyden–Fletcher–Goldfarb–Shanno lim-
ited memory quasi-Newton method (L-BFGS) of Liu and Nocedal [, ]. L-BFGS
is a powerful optimization technique that aims to combine the modest storage and
computational requirements of conjugate gradient methods with the superlinear
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convergence exhibited by full memory quasi-Newton methods (when sufficiently
close to a solution, Newton methods are quadratically convergent). In this limited
memory algorithm, the function to be minimized and its gradient must be supplied,
but knowledge about the corresponding Hessian matrix is not required a priori.

L-BFGS is applied to every generated individual. During local search, the maxi-
mum number of iterations that can be performed is specified by a parameter of the
algorithm, the Local Search Length (LSL). However, L-BFGS stops as soon as it finds
a local optimum, so the effective number of iterations can be smaller than the value
specified by LSL.

4 Optimization Results

Themain goal of the research reported here is to study the locality of different genetic
operators. This will be carried out in the next section. Nevertheless, to establish an
appropriate background, we first present some experimental results.

Aggregates ranging from  to  atoms compose the standard instances used
when Morse clusters are adopted as a benchmark for assessing the efficiency of evo-
lutionary algorithms. The original research conducted by Johnston et al. [] revealed
that the hybrid algorithm is efficient and reliable, as it was able to find nearly all
known best solutions. The only exception was the cluster with  atoms, where the
current putative optimum was only reported in a subsequent paper by the same au-
thors []. The algorithm used in the experiments relied on C&S crossover and flip
mutation as genetic operators. Other details concerning the optimization can be
found in [, ].

In , we developed a hybrid algorithm to be used in locality analysis. In order
to confirm its search competence, we repeated the experiments of searching for the
optimal geometry of Morse clusters ranging from  to  atoms. C&S crossover and
the two mutation operators previously described were used in the tests. Results ob-
tained confirmed the efficiency of the hybrid approach, as it was able to find all known
best solutions. Regardless of this situation, a more detailed analysis of the outcomes
revealed that there are some differences in results achieved by different mutation op-
erators. While experiments performed with Sigmamutation achieve good results for
all instances, tests done with Flipmutation reveal a less consistent behavior. For small
clusters (up to  atoms), the results achieved are analogous to those obtained by
Sigma mutation. As the clusters grow in size, the algorithm shows signs of poor scal-
ability and its performance starts to deteriorate. For clusterswithmore than  atoms,
most times it fails to find the optimum. A detailed description and analysis of the re-
sults and a complete specification of the parameter settings used in the experiments
may be found in [].

5 Locality Analysis

The cluster with  atoms (the largest instance that was considered in the previous
optimization experiments) was selected to perform all the tests concerning the lo-
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cality properties of the different genetic operators. When appropriate, the empirical
analysis is complemented with experimental results.

5.1 RelatedWork

Many approaches have been proposed to estimate the behavior of EAs when applied
to a given problem. Some of these techniques adoptmeasures that are, to some extent,
similar to the locality property adopted in this work. In this section we highlight the
most relevant ones.

The concept of fitness landscapes, originally proposed byWright [], establishes
a connection between solution candidates and their fitness values and it has been
widely used to predict the performance of EAs. Several measures for fitness land-
scapes were defined for this task. Jones and Forrest proposed fitness distance corre-
lation as a way to determine the relation between fitness value and distance to the
optimum []. If fitness values increase as distance to the optimum decreases, then
search is expected to be easy for an EA [].

An alternative way to analyze the fitness landscape is to determine its rugged-
ness. Some autocorrelation measures help to determine how rugged a landscape is.
Weinberger [] proposed the adoption of autocorrelation functions to measure the
correlation of all points in the search space at a given distance. Another possibility to
investigate the correlation structure of a landscape is to perform some randomwalks.
The value obtained with the random walk correlation function can then be used to
determine the correlation length, a value that directly reflects the ruggedness of the
landscape []. In general, smoother landscapes are highly correlated, making the
search for an EA easier. More rugged landscapes are harder to explore in a meaning-
ful way.

Sendhoff et al. studied the conditions for strong causality on EAs []. A search
process is said to be locally strongly causal if small variations in the genotype space
imply small variations in the phenotype space. In the above-mentioned work, varia-
tions in genotypes are caused bymutation (crossover is not applied). Fitness variation
is used to access distances in the phenotype space. A probabilistic causality condition
is proposed and studied in two situations: optimization of a continuousmathematical
function and optimization of the structure of a neural network. They conclude that
strong causality is essential, as it allows for controlled small steps in the phenotype
space that are provoked by small steps in the genotype space.

The empirical framework to study locality that we adopt in our research was pro-
posed by Raidl and Gottlieb [].Themodel is useful to study how the adopted repre-
sentation and the genetic operators are related and how this interplay influences the
performance of the search algorithm.The analysis is based on static measures applied
to randomly generated individuals that help to quantify the distance between solu-
tions in the search space and how it is linked to the similarity among correspond-
ing phenotypes. This model allows the calculation of three features, which are es-
sential for good performance: locality, heritability and heuristic bias. Locality was
already defined in the introduction. Heritability refers to the ability of crossover op-
erators to create children that combinemeaningful features of both parents. Heuristic
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bias concerns the genotype–phenotype mapping function. Some functions that favor
the mapping towards phenotypes with higher fitness might help to increase perfor-
mance. This effect is called heuristic bias. The authors suggest that these properties
can be studied either in a static fashion or can be dynamically analyzed during actual
optimization runs. They also claim that the results achieved provide a reliable ba-
sis for assessing the efficiency of representations and genetic operators. In the above
mentioned work, this framework is used to compare different representations for the
multidimensional knapsack problem.

5.2 Definitions

When performing studies with an evolutionary framework it is usual to consider
two spaces: the genotype space Φg and the phenotype space Φp []. Genetic oper-
ators work on Φg, whereas the fitness function f is applied to solutions from Φp: f :
Φp � R. A direct representation is adopted in this chapter. Since there is no matura-
tion or decoder function, genetic operators are directly applied to phenotypes. Then,
it is not necessary to perform an explicit distinction between the two spaces and,
from now on, we will refer to individuals or phenotypes to designate points from the
search space.

To calculate the similarity between two individuals from Φp, a phenotypic dis-
tance has to be defined. This measure captures the semantic difference between two
solutions and is directly related to the problem being solved. We determine pheno-
typic distance in the two following ways.

Fitness Based Distance
Determining the fitness distance between two phenotypes A, B is straightforward:

d f i t(A, B) = � f (A) − f (B)� ()

In cluster optimization, it calculates the difference between the potential energy of
the two solutions.

Structural Distance
According to (), the basic features that influence the quality of an N-atom cluster are
theN
(N−1)�2 interactions occurring between particles forming the aggregate.The
interaction between atoms i and j depends only on the distance ri j between them.We
implement a simple method to approximate the structural shape of a cluster. First, all
the N 
 (N − 1)�2 distances between atoms are calculated. Then, they are separated
into several sets according to their values. We consider  sets Si . The limits for each
Si , i = 1, . . . , 10, are defined as follows:

G
i − 1
10

 μ,

i
10

 μG , i = 1, . . . , 10 ()

where μ is the maximum distance between two atoms. Considering the parameter λ,
μ is equal to

 
3λ2. Structural distance captures the dissimilarity between two clusters
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A and B in terms of the distances between all pairs of atoms. It is measured in the
following way:

dstruct(A, B) =
1
10

10
!
i=1
�#Si(A) − #Si(B)� ()

where #Si(A) (likewise, #Si(B)) is the cardinality of subset Si for cluster A (likewise,
for cluster B).

5.3 Mutation Innovation

To analyze the effect of mutation on locality we adopt the innovation measure pro-
posed by Raidl and Gottlieb []. The distance between the individuals involved in
a mutation is used to predict the effect of the application of this operator. Let X be
a solution and Xm the result of applying mutation to X.Themutation innovationMI
is measured as follows:

MI = dist(X , Xm) ()

Distance can be calculated using either fitness based or structural distance. MI il-
lustrates how much innovation the mutation operator introduces, i.e., it aims to de-
termine how much this operator modifies the semantic properties of an individual.
Locality is directly related to this measure. The application of a locally strong opera-
tor implies a small modification in the phenotype of an individual (i.e., there will be
a small phenotypic distance between the two involved solutions). Conversely, opera-
tors with weak locality allow large jumps in the search space, complicating the task of
the search algorithm. To determine theMI,  random individuals were generated
and then, a sequence of mutations was applied to each one of them. In each one of
the  mutation series, distance is measured between the original individual and
the solution created after k � �1, 2, 3, 4, 5, 10, 25, 50, 100	 successive mutation steps.
To conform with the adopted optimization framework, local search is considered as
part of this genetic operator, i.e., L-BFGS is applied after each mutation and distance
is measured using the solution that results from this operation.

We will study the locality properties of two mutation operators: Sigma and Flip.
For the first operator, three values for σ are tested: �0.01 
 λ, 0.1 
 λ, 0.25 
 λ	. We
expect that the variation in the value of σ will provide insight to the effect of this
parameter on the performance of the algorithm.

Fitness Based Distance
To simplify the analysis, distances between the original solution and the succes-
sive mutants are grouped in different sets. Given a dfit fitness distance between
two solutions, set Gi to which dfit is assigned, is determined in the following way:
2 The σ value used in Sigma mutation is proportional to λ to ensure that its effect is com-
parable for clusters of different size. Nevertheless, in the text we will adopt the simplified
notation Sigma. instead of Sigma.�λ (alike for other values of σ).



 Locality Analysis 

�G0 � 0 � dfit < 1; G1 � 1 � dfit < 5; G2 � 5 � dfit < 10; G3 � 10 � dfit < 20; G4 �
20 � dfit < 30; G5 � 30 � dfit < 50; G6 � 50 � dfit < 100; G7 � 100 � dfit <
250; G8 � 250 � dfit < 500; G9 � 500 � dfit	.

The specific values selected to determine intervals are arbitrary. The relevant in-
formation to obtain here is the distribution of the fitness distances through the sets.
Situations where values tend to be assigned to higher order sets (i.e., large variations),
suggest that the locality is low. In Figs.  and  we present, for the number of muta-
tions considerd, the distances between the original solutions and the mutants itera-
tively generated. The three parts of Fig.  show results from experiments performed
with Sigma, and Fig.  shows results obtained with Flip mutation. In each column
(corresponding to a given mutation step), we show the distribution of the  dis-
tances for the Gi sets. It is clear that there are important differences in the locality
of mutation. Experiments combining Sigma. with L-BFGS exhibit the highest lo-
cality and, even after  steps, nearly all fitness distances belong to setsG–G (more
than 50% are in clusterG).This shows that there is still a clear relation, maybe even
excessive, with the departure point. On the contrary, experiments with Sigma.
and Flip mutation evidence lower locality. The modification they induce is substan-
tial (large displacement of one atom strongly modifies the fitness of the solution) and
local search might not be able to make an appropriate repair. Sigma. is between
these two scenarios. In the beginning it shows signs of reasonable locality, but after
some steps it approaches the distribution exhibited by Sigma. and Flip. This is
a behavior that is more in accordance with what one should expect from a mutation
operator. Individuals that are just a few steps away should have similar phenotypic
properties. Moreover, distance should gradually increase, as more mutations are ap-
plied to one of them.

Structural Distance
Analysis of MI with structural distance confirms the conclusions from the previous
section. In Fig.  we show the structural distance for the same operators and settings.
Once again, it is clear that Sigma. has high locality, Sigma. and Flip have both
low locality and Sigma. is between the two extremes. Results with both phenotypic
distances reveal that, as σ increases, the effect on the locality of Sigmamutation tends
to approach that of Flip mutation.

5.4 Crossover Innovation

Crossover innovation measures the ability of this operator to create descendants that
are different from their parents. Let C be a child resulting from the application of
crossover to parents P1 and P2. Following the definition proposed by Raidl andGott-
lieb [], crossover innovation CI can be measured as follows:

CI = min �dist(C, P1), dist(C, P2)	 ()

According to (),CImeasures the phenotypic distance between a child and its pheno-
typically closer parent. In general, we expect CI to be directly related to the distance
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Fig. 2 Distribution of fitness distances between the original solutions and the mutants itera-
tively generated for Sigma mutation: a) Sigma.; b) Sigma.; c) Sigma.
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Fig. 3 Distribution of fitness distances between the original solutions and the mutants itera-
tively generated for Flip mutation

Fig. 4 Average structural distances between the original solution and the mutants iteratively
generated

that exists between parents involved in crossover. Similar parents tend to create de-
scendants that are also close to both of them. On the contrary, dissimilar parents tend
to originate larger crossover innovations.

Nevertheless, under the same circumstances (i.e., when applied to the same pair
of individuals), different crossover operators might induce distinct levels of innova-
tion.This disparity reflects diverse attitudes on how the genetic material is combined.
When exploring the search space, it is important to rely on crossover operators that
maintain a moderately high value of CI. This will help to preserve population diver-
sity and ensure that an appropriate exploration of the space is performed. Anyway, it
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is also important that CI is not too high because this might prevent the preservation
and combination of useful features that are inherited from the parents. It is a well-
known fact that mixing properties from the parents in ameaningful way is one of the
most important roles of crossover [].

The CI of the different crossover operators was empirically analyzed. To study
how the parental distance affects this measure, we adopted the following procedure:
parent P1 was randomly generated and then kept unchanged throughout the ex-
periments, while parent P2 was obtained from P1 through the application of a se-
quence of mutations. In the experiments performed, we measured CI after k �
�1, 2, 3, 4, 5, 10, 25, 50, 100	 successive mutation steps. Local optimization is applied
to the original solution and also after each mutation. Sigma. was the operator
chosen to generate the sequence of mutated individuals that act as parent P2. As
can be confirmed from Figs.  and , at the beginning of the sequence (i.e., when the
number of mutations is small), the parents will be similar. When the number of suc-
cessive mutations increases, difference between parents tends to increase steadily (P1
remains unchanged while P2 accumulates mutations). To conform with the adopted
optimization framework, the child that is generated is locally improved before CI is
determined.

CIwas used to study the locality properties of three crossover operators: {Uniform,
C&S,GenC&S}.Theprocedure describedwas repeated  times for each of the op-
erators. Results obtained with the two distance measures will be analyzed separately.

Fitness Based Distance
The  fitness distances were grouped in the same  sets G–G previously de-
scribed. In Fig.  we present, for the three crossover operators, the distances between
a child and its phenotypically closer parent. Each column corresponds to a given dis-
tance between the two parents: in the first column from the left, parents are just one
mutation away, while in the last one they are  mutations away. In every one of
these columns we show the distribution of the  distances for the Gi sets.

It is clear from the figures that the combined application of crossover and sub-
sequent local search establishes a process with fairly high locality. Even with parents
that are  mutations away, the child maintains a clear relation, in terms of the po-
tential energy of the cluster, with at least one of its parents. Nearly all fitness distances
lie in sets G0, G1 and G2, meaning that the variation in potential energy does not
exceed .

Another relevant outcome is the noteworthy difference between the results
achieved with C&S and the results obtained with the other two crossover operators.
C&S seems to be insensitive to the difference that exists between parents. The dis-
tribution of the fitness distances is similar, whether the parents are almost identical
or have large dissimilarities. This result suggests that the diversity level of the pop-
ulation is irrelevant when C&S is applied. The justification for the results might be
related to the way C&S acts. Before cutting parents, it applies a random rotation to
each one of them. As the rotations are independent, even if the two parents are iden-
tical the descendants might be distinct. This is an unusual behavior because most
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Fig. 5 Distribution of fitness distances between the child and the phenotypically closer parent:
a) Uniform; b) C&S; c) GenC&S

crossover operators are unable to introduce any novelty into the population when
they are applied to an identical pair of solutions. On the contrary, C&S is capable of
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adding diversity to the population. As a consequence, existing diversity might not be
as relevant as it is in other situations. Finally, this outcome also suggests that muta-
tion might be less important in experiments with C&S than in experiments that rely
on other crossover operators.

Figures displaying the CI distribution of uniform and GenC&S operators present
a pattern that is more in compliance with the expected behavior of crossover. When
parents are similar, the innovation is small. As the distance betweenparents increases,
average CI also increases.

Structural Distance
Results achieved with structural distance are presented in the chart from Fig. .They
are in agreement with the information provided by fitness based distance.While C&S
crossover is insensitive to the distance that exists between parents, both uniform and
GenC&S tend to generate more innovative children as this distance increases.

5.5 Additional Tests

To complement our study, and to determine if the empirical study is confirmed by ex-
perimental results, we performed an extended set of optimization experiments using
the same Morse instance with  atoms that was selected for the locality analysis.
The study focused on the behavior of the search algorithm when using different gen-
etic operators.The settings are the following: Evaluations: 3,000,000; Population Size:
; Elitist Strategy; Tournament Selection with tourney size ; Crossover operators:
�Uniform, C&S, GenC&S	; Crossover rate: .; Mutation operators: �Sigma, Flip	;
σ = �0.01
 λ, 0.1
 λ, 0.25
 λ	; Mutation rate: �0.0, 0.01, 0.05, 0.1, 0.2, 0.3	; LSL:
; δ: ..

Each iteration performed by L-BFGS counts as one evaluation. The initial popu-
lation is randomly generated and for every set of parameters we performed  runs.

Fig. 6 Average structural distances between the child and the phenotypically closer parent
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When appropriate, statistical significance of the results is accessed with a t-test (level
of significance .).

In Tables  to  (respectively for uniform, C&S and GenC&S), we present an
overview of the results achieved. For each one of the settings we present the aver-
age of the best fitness over the  runs (MBF). In brackets we also present the Gap,
defined as the distance between the MBF and the putative optimum value for the po-
tential energy of a Morse cluster with  atoms (gap value expressed in percentage).

If we combine the information obtained with the locality analysis and the op-
timization results it is possible to infer some conclusions concerning the behavior

Table 1 Optimization results of the -atomMorse cluster using uniform crossover

Mutation rate
Mutation 0.01 0.05 0.1 0.2 0.3
Sigma . −188.247 −189.247 −190.449 −191.197 −191.894

(5.1) (4.6) (4.0) (3.7) (3.3)
Sigma . −192.831 −193.831 −194.086 −193.561 −194.348

(2.8) (2.3) (2.2) (2.5) (2.1)
Sigma . −194.433 −194.745 −193.548 −187.483 −183.937

(2.0) (1.9) (2.5) (5.5) (7.3)
Without −182.427
mutation (8.1)

Table 2 Optimization results of the -atomMorse cluster using C&S crossover

Mutation rate
Mutation 0.01 0.05 0.1 0.2 0.3
Sigma . .-. .-. .-. .-. .-.

(1.4) (1.7) (1.6) (1.6) (1.5)
Sigma . −194.505 .-. .-. −194.132 −194.455

(2.0) (1.6) (1.8) (2.2) (2.0)
Sigma . −193.995 −193.464 −191.784 −187.481 −183.347

(2.2) (2.5) (3.4) (5.5) (7.6)
Without .-.
mutation (1.8)

Table 3 Optimization results of the -atomMorse cluster using GenC&S crossover

Mutation rate
Mutation 0.01 0.05 0.1 0.2 0.3
Sigma . −193.708 −194.313 −193.967 −194.054 −194.760

(2.4) (2.1) (2.3) (2.2) (1.9)
Sigma . .-. −194.789 −194.634 .-. .-.

(1.9) (1.8) (1.9) (1.6) (1.2)
Sigma . .-. .-. .-. .-. .-.

(1.6) (1.6) (1.6) (4.0) (6.2)
Without −192.913
mutation (2.8)
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of the search algorithm. Experiments performed with uniform crossover obtain re-
sults of inferior quality to those achieved by the other two operators. This is true for
all settings adopted during the tests. The analysis presented in the previous section
showed that the locality properties of uniform crossover are comparable to those of
GenC&S. In contrast, optimization results suggest that knowing the locality of an
operator is not sufficient to predict its efficiency. The difference in performance be-
tween uniform crossover and the other two operators shows that, when solving dif-
ficult optimization problems, it is essential to rely on specific operators to explore
the search space. Specific operators are sensitive to the structure of individuals being
manipulated and, therefore, increase the probability of exchanging genetic material
in a meaningful way.

Results in bold in Tables  to  identify the best crossover operator for each spe-
cific setting. There is a clear separation between the settings where C&S had the best
performance and settings where GenC&S was better. When Sigma. mutation is
used, experiments performed with C&S always achieve the best results. On the con-
trary, when Sigma. is adopted, experiments performed with the new crossover
operator always exhibit the best performance. When Sigma. is used, differences in
performance between these two operators are small (with the exception of the experi-
ments performed with a mutation rate of .). Table  reviews the statistical analysis
performed. The symbol ‘H’ identifies settings where there are significant differences
between the results achieved by experiments performed with C&S and GenC&S. Re-
sults show that they occur in two situations:

(i) They are visible when the effect of mutation is almost irrelevant. This hap-
pens in the test performed without mutation and also in the experiment using
Sigma. with rate .. In these scenarios C&S crossover is clearly more efficient
than GenC&S. Locality analysis results help to explain why this happens. C&S does
not require distinct parents to generate original descendants. It is therefore able to
maintain and promote the diversity level of the population. The addition of a mu-
tation operator with the ability to perform considerable changes in the individuals
might lead to too large disruptions in the solutions preventing an efficient explor-
ation of the search space.

(ii) Significant differences also occur when mutation plays a major role in the
optimization process. More specifically, differences appear in nearly all experiments
performed with Sigma. (the only exception being the situation with a mutation
rate of .) and also in the test performed with Sigma. with rate .. In all these
situations, GenC&S was more efficient than the original C&S operator. This result is

Table 4 C&S vs GenC&S: significant differences (-atomMorse cluster)

Mutation rate
Mutation . . . . .
Sigma . �

Sigma . �

Sigma . � � � �

Without mutation �
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also in accordance with the locality analysis. GenC&S is sensitive to the diversity level
of the population and therefore it requires different parents to create children with
a substantial level of innovation. Just as experimental results show, its performance
is enhanced if the mutation operator helps to maintain an appropriate level of di-
versity. In the experiments that are between these two extremes, optimization results
achieved by the two crossover operators can be considered similar.

Results from the tables also confirm the robustness of the hybrid EA. In most
cases (particularly in experiments performed with crossover operators that are sen-
sitive to the structures being manipulated), the gap to the putative global optimum
is small, ranging between . and 2.0%.

6 Optimization of a Larger Cluster

Weperformed a final set of tests on the optimization of aMorse cluster with  atoms.
Our aim was twofold: first, we wanted to determine if the results achieved in a diffi-
cult optimization situation confirm our locality analysis. Also, we intended to collect
some statistics during the runs tomeasure the diversity of the population throughout
the optimization. In the previous section, the locality of genetic operators was studied
separately. Now, by collecting these statistics on the fly, we expected to gain insight
on how the combination of different genetic operators with other algorithmic com-
ponents influence search dynamics. Wewill also verify whether these results confirm
the static empirical analysis that was performed earlier.

6.1 Optimization Results

The settings of the experiments performed were as follows: Number of runs: ;
Evaluations: 3,000,000; Population size: ; Elitist strategy; Tournament selection
with tourney size ; Crossover operators: �C&S, GenC&S	 with rate .; Sigma.
mutation with rate �0.0, 0.01, 0.05, 0.1, 0.2	; LSL: ; δ: ..

Here, we did not aim to conduct an all-inclusive study. Our goal was just to obtain
additional verification whether the locality analysis could find support in optimiza-
tion results. That is why we maintained the settings selected for the optimization
of the -atom cluster, even though we were aware that the number of evaluations
should be increased to enable an appropriate exploration of the search space. Never-
theless, million evaluations should be enough to provide some hints concerning the
search performance of different genetic operators. Also, we selected just a subset of
the genetic operators previously considered. We did not perform experiments with
uniform crossover. Results achieved on the optimization of the -atom cluster show
that it is clearly less efficient than the other two crossover operators and so it was not
considered in this last step of the research. As for mutation, we selected Sigma., as
it proved to be the most balanced operator.

In Table  we show an overview of the results achieved. For each one of the se-
lected settings we present the mean best fitness calculated over the  runs and the
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gap to the putative global optimum expressed in percentage (value in brackets). The
first row presents results from experiments performed with C&S and the second
shows results achieved in tests done with GenC&S. Values in bold highlight settings
where the MBF is significantly better than that achieved by the other test performed
with the same mutation rate.

A brief overview of the optimization results shows that experiments performed
with GenC&S achieved better results than those that used original C&S crossover.
The only exception is whenmutation is absent. Here, the MFB is better in the experi-
ment performed with the original C&S operator. Actually, results show that this is
the best setting for C&S crossover. As soon as mutation is added, the efficiency of the
operator decreases. This is true even for small rates, even though the increase of the
mutation rate amplifies the effect. This situation was visible in tests performed with
the -atom cluster, but here it is more evident.

Experiments performed with GenC&S crossover achieve better results whenmu-
tation is used. It is also clear that fairly high mutation rates are required to enhance
the performance of the algorithm when this type of crossover is used.The only exper-
iment that was able to discover the putative global optimum for this instance was the
one that combined GenC&S crossover and Sigma. mutation with a rate of .. Even
though the relevance of this finding should be handledwith care (just asmentioned at
the beginning of this section, the number of evaluations might be too small to allow
a proper exploration of the search space), it nevertheless is a pointer to the efficiency
of the different operators. Anyway, the gaps that exist between theMFB and the global
optimum aremore relevant to assess the efficiency of the search algorithm. When us-
ing GenC&S crossover and Sigma mutation, gaps range between . and .%.These
low values demonstrate the competence of the optimization method, showing that
promising areas of the search space can be discovered even with a limited number of
evaluations.

We performed a brief statistical analysis to confirm the validity of our conclu-
sions. Values in bold in Table  show that there is a significant difference between the
MBF attained by C&S and GenC&S when no mutation is used. When a moderate
mutation rate is adopted (. and .), GenC&S outperforms C&S even though dif-
ferences are not statistically significant. As the mutation rate increases, differences in
MBF becomemore evident. When . or . are used, there is a significant difference
between the results achieved by the two crossover operators.We also studied whether
there are significant differences between experiments that used the same crossover
operator and different mutation rates. Tables  and  summarize these results. Cells

Table 5 Optimization results of the -atomMorse cluster

Mutation rate
0.0 0.01 0.05 0.1 0.2

C&S .-. −332.984 −332.783 −331.433 −328.197
(1.9) (2.3) (2.4) (2.7) (3.7)

GenC&S −329.520 −334.318 −336.083 .-. .-.
(3.3) (1.9) (1.4) (1.5) (1.1)
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marked with ‘H’ identify a situation where a significant difference exists. The results
are once again in compliance with our previous analysis. When using C&S crossover
(Table ), all experiments performed with a mutation rate of . achieve significantly
poorer results than experiments performed with other mutation rates. The only ex-
ception is when experiments with . and . rates are compared (in this situation, the
difference is not significant). As for GenC&S (Table ), significant differences are ob-
served when comparing experiments with and without mutation. All MBFs obtained
in tests performed without mutation are significantly worse that those achieved by
experiments that rely on mutation to promote diversity.

Graphs showing the optimization of the -atom cluster are presented in Fig. .
It shows the evolution of the best solution (averaged over  runs) during the opti-

Table 6 C&S significant differences (-atomMorse cluster)
. . . . .
.

. . �

.
. .

. . . �

. .
. . .

. . . . �

. . .
. . . .

. . . . .
. . . .
. . . . .

. . . . . .
. . . . .

Table 7 GenC&S significant differences (-atomMorse cluster)
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mization for four selected settings: two experiments without mutation and two ex-
periments using both operators (mutation rate .). For the sake of clarity, lines ob-
tained from experiments performed with other mutation rates (., . and .)
are not shown. However, results presented are representative of the behavior of the
optimization algorithm. When C&S crossover is used, there is a clear advantage if
the mutation operator is not present. After the initial stage, when both lines exhibit
a similar pattern, the experiment combining C&S and Sigma mutation starts to stag-
nate, suggesting that it is unable to identify promising areas of the search space.When
GenC&S is used, two completely different patterns emerge. If this operator is used in
combination with mutation, there is continuous improvement of the best solution
found. If mutation is not considered, then the algorithm quickly converges to a sub-
optimal solution and is completely unable to escape from it.This is an expected result,
given the locality analysis of GenC&S that was presented in Sect. .

6.2 Search Dynamics

The optimization results for the -atom cluster are in accordance with the locality
analysis that was performed earlier. This agreement is another sign suggesting that
locality analysis is a useful tool to predict the performance of evolutionary algorithms
when solving difficult optimization problems.

Before concluding the chapter, we present a last set of results that hopefully will
contribute to a full clarification of the behavior of the algorithm when exploring the
coordinate space. Locality analysis is performed in static environments, where a sin-
gle operator is applied at a time. In a real optimization situation, interactions that
exist between the genetic operators and selection might influence the behavior of the
algorithm. We now present several measures that illustrate how different configura-
tions of the search algorithm, in terms of the genetic operators used and parameter
settings adopted, are able to promote and maintain diversity in a population.

Fig. 7 Evolution of MBF in the optimization of the -atom cluster
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Fig. 8 Distribution of fitness distances in the population throughout the optimization of the
-atom cluster: a) C&S .; b) C&S .; c) C&S .



 F.B. Pereira, J.M.C. Marques, T. Leitão, J. Tavares

Fig. 9 Distribution of fitness distances in the population throughout the optimization of the
-atom cluster: a) GenC&S .; b) GenC&S .; c) GenC&S .
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When the algorithm was searching for good solutions for the -atom cluster, we
collected in several predetermined generations, �, , , , , , , 	, the aver-
age distance between all pairs of individuals from the population. The two distance
measures previously defined were used. In Figs.  and  we show the distribution of
the fitness distances obtained with different settings. The three parts of Fig.  display
results achieved in experiments performed with C&S crossover, and Fig.  presents
the outcomes from tests performed with GenC&S. We show results only from opti-
mization experiments performed with the following mutation rates: �0, 0.01, 0.1	.
Experiments performed with other mutation rates follow the same pattern.

Two clear distinct configurations emerge.WhenC&S crossover is used, the diver-
sity of the population is similar throughout the optimization. Also, the mutation rate
(and even the absence of mutation at all) does not influence the diversity level. Real
optimization results thus confirm the static analysis. C&S crossover is able to main-
tain a high level of diversity, independently of the difference that exists between par-
ents.

In experiments performed with GenC&S there is a clear distinction between mu-
tation used or not used. If crossover acts alone then the algorithm quickly converges
to a situation where approximately % of the individuals are identical and the other
20% are distinct.This result confirms the locality study that showed howGenC&S is
unable to inject diversity in the population. As soon as mutation is added, the prob-
lem is reduced. When a mutation rate of . is adopted, a small level of diversity

Fig. 10 Average structural distances in the population throughout the optimization of the -
atom cluster

3 The 20% of descendants that have a considerable different potential energy from that of
its parents is a consequence of the way GenC&S acts: when two mates are nearly identi-
cal, it might be impossible to select enough atoms from the parents in such a way that the
minimum distance constraint is satisfied. If this happens the descendant is completed with
atoms placed at random locations.
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is already visible, even though it is still clearly below the one that is verified in ex-
periments performed with C&S. If the mutation rate is raised to ., the diversity
is comparable to the one that is visible in tests performed with the other crossover
operator. This dependence on mutation to promote the diversity of the population
was already predicted during the locality analysis of GenC&S. Fig.  presents the
results obtained for structural distance in the same optimization experiments. They
confirm all the analysis. Actually, they are even more evident as they perfectly rank
the diversity level achieved by different combinations of crossover and mutation.

7 Conclusions

In this chapterwe studied the locality properties of the hybrid evolutionary algorithm
usually applied in cluster geometry optimization. Several Morse clusters instances,
a well-known NP-hard benchmark model system, were selected for the analysis.

Two distance measures, required to determine the semantic difference between
two solutions, were used to conduct a comprehensive analysis concerning the locality
strength of an extended set of mutation and crossover operators.

In what concerns mutation, the empirical study showed that there are important
differences in the locality level induced by different operators. Sigma mutation is an
appropriate variation operator, but a moderate standard deviation should be selected
to ensure the preservation of a reasonable correlation between individuals before and
after the application of this operator. Conversely, flip mutation has low locality. This
operator tends to perform large jumps in the search space, complicating the task of
the exploration algorithm.

As for crossover, interesting patterns emerge from the analysis. C&S, which is the
most widely used operator for cluster optimization, showed a remarkable innovation
capacity. This operator is able to generate original descendants, even when the diver-
sity of the population is low. This can be considered as an interesting behavior, but
it also suggests that C&S might have difficulties in performing a meaningful identi-
fication and combination of important features that exist in parents. The other two
operators considered in the analysis, GenC&S and uniform crossover, exhibit a be-
havior that is more in compliance with what is expected from crossover. If the mat-
ing parents are similar, the descendants tend to be analogous to them. If the distance
between parents is high, the probability of generating a child with distinct features
increases.

To validate our analysis we performed several optimization experiments using
different settings and distinct combinations of genetic operators. Experimental out-
comes support the most relevant results of the locality analysis and confirm the role
played by different genetic operators.

This study is part of an ongoing project concerning the application of EAs to op-
timization problems from the Chemistry area. In the near future, we plan to extend
ourmodel to consider heritability and heuristic bias, the other two features that com-
pose the original framework proposed by Raidl and Gottlieb. Results obtained with
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this analysis will be valuable for the future development of enhanced methods to em-
ploy in optimization problems with properties similar to the ones addressed in this
research.
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Abstract

It is well known that Dynamic Time Warping (DTW) is superior to Euclidean dis-
tance as a similarity measure in time series analyses. Use of DTW with the recently
introduced warping window constraints and lower bounding measures has signifi-
cantly increased the accuracy of time series classification while reducing the com-
putational expense required. The warping window technique learns arbitrary con-
straints on the warping path while performing time series alignment. This work
utilizes genetic algorithms to find the optimal warping window constraints which
provide a better classification accuracy. Performance of the proposed methodology
has been investigated on two problems from diverse domains with favorable results.

Key words: Time Series Alignment and Classification, Dynamic TimeWarping, Eu-
clidean Distance, Lower Bounding, Genetic Algorithms

1 Introduction

Thesuperiority ofDynamic TimeWarping (DTW)over Euclidean distance as a simi-
larity measure is a well established fact []. This leads to an obvious next step to use
DTW instead of Euclidean distance as the proximity measure while dealing with dif-
ferent time series for classification or indexing purposes. The application of DTW
in time series analysis has already been investigated in several domains. It was in-
troduced by the speech recognition community [] but has spread to other fields of
application, such as bioinformatics [], chemical engineering [], biometric data [],
signature analysis [], indexing of historical documents [] and robotics [] to name
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only a few. However, direct application of DTW has been limited due to its quadratic
time complexity [].

A recently introduced constrained window based warping method [] for time
series alignment has given rise to significant enhancement in the accuracy of the
DTWmethod and application of a lower bounding measure has led to reduced com-
putation time, making the methodology more desirable. The warping window con-
cept is a framework that learns arbitrary constraints on the warping path while per-
forming sequence alignment. The use of a lower bounding measure [, ] has sig-
nificantly reduced the computational time required by pruning off the unnecessary
computationally expensive calculations.

Ratanamahatana and Keogh [] obtained the constraints on the warping path
by formulating the problem as a classical search problem and implemented generic
heuristic search techniques. As the use of heuristic search techniques like backward
and forward hill climbing searchmethodologies performpoorly in obtaining a global
optimum solution of the problem, application of genetic algorithms (GA) can be of
significant help in the current scenario. In this work, we employ the widely used GA
to obtain the warping path constraints.

The rest of the chapter is organized as follows: Sect.  provides a short resume
of earlier research work on DTW and related work. Section  highlights details of
lower bounding measures and their utility. Section  explains the heuristic method
employed by Ratanamahatana and Keogh [] for learning the proposed bands for dif-
ferent classes and briefly outlines the genetic algorithm and explains how it has been
employed in the current framework. Details of the experimental data are provided
in Sect. . In Sect. , we discuss our experimental results. Finally, Sect.  provides
conclusions drawn from our work.

2 Dynamic TimeWarping (DTW)

Consider two multivariate time series Q and C, of length n and m respectively,

Q = q , q , q , . . . , qi , . . . , qn ()

C = c , c , c , . . . , c j , . . . , cm ()

where, qi and c j are both vectors such that, qi , c j � Rp with p , 1. To align these two
sequences using DTW, we construct a n-by-mmatrix where the (ith, jth) element of
the matrix corresponds to the squared distance,

d(i, j) =
r=p

!
r=1
(qi ,r − c j,r)2 ()

To find the best match between these two sequences, one finds a path through the
matrix that minimizes the total cumulative distance between them. Such a path will
be called a warping path. A warping path,W , is a contiguous set of matrix elements
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that characterizes a mapping between Q and C. The kth element ofW is defined as
W(k) = (i, j)k . The time-normalized distance [] between the two time series is
defined over the path as,

DTW(Q ,C) =min
W

I
J
J
J
J
J
J
J
J
J
K

M
N
N
N
N
N
N
NO

k=K
"
k=1

d(W(k)) ċ ϕ(k)

k=K
"
k=1

ϕ(k)

P
Q
Q
Q
Q
Q
Q
Q
Q
Q
R

()

where, ϕ(k) is the non-negative weighting coefficientK and is the length of thewarp-
ing pathW , which satisfies the condition,

max(m, n) � K � m + n − 1 ()

The normalization is done to compensate for K, the number of steps in the warp-
ing path, W , which can be different for different cases; i.e., number of steps will be
very low if too many diagonal steps are followed and hence the objective function
in Equation () will prefer such paths. Using path normalization, the path selection
procedure is made independent of number of steps taken. The symmetric normal-
ization [] has been used for the purpose, given as,

ϕ(k) = (i(k) − i(k − 1)) + ( j(k) − j(k − 1)) ()

Note that for a horizontal or a vertical step, the value of ϕ(k) is , but for the diagonal
step, it is . The path, however, is constrained to the following conditions []:

Boundary conditions: The path must start at W(1) = (1, 1) and end at W(K) =
(n,m) that is, the warping path has to start at the top right and end at the bottom
left of the distance matrix.

Continuity andmonotonic condition: Every point in the two time-seriesmust be used
in the warping path, and both i and j indexes can only increase by  or  on each step
along the path. In other words, if we take a point (i, j) from thematrix, the next point
must be either of (i, j + 1), (i + 1, j + 1) and (i + 1, j).

WarpingWindow condition: Thepath as we know intuitively, should not wander too
far from the diagonal. The concept of band has been introduced to keep the move-
ment of path close to the diagonal. This band has been illustrated in Fig.  by the
shaded region.

Mathematically, the band can be defined as,

j − Ri � i � j + Ri ()

where, Ri = d such that 0 � d � m and 1 � i � m. Ri is the permissible range
of warping above and to the right of the diagonal. The band will be symmetric with
respect to the diagonal. Even Euclidean distance can be defined in the case where the
bandwidth Ri = 0. In general, any arbitrary shaped band can be formed using the
above definition of the band. Now, the optimization problem given by Equation ()
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Fig. 1 A sample warping window band

can be effectively solved by dynamic programming technique as done in [, ]. For
this the cumulative distance matrix is calculated [–],

D(i, j) = min
����
�
����

D(i − 1, j) + d(i, j)
D(i − 1, j − 1) + 2 ċ d(i, j)
D(i, j − 1) + d(i, j)

()

This takes care of the continuity and monotonic conditions along with the path
normalization. Using this recursive formula for dynamic programming we can find
the warping path W . Now, along this warping path W the values of d(i, j) can be
summed up, and the final value of DTW distance can be found as given by Eq. ().
However, in cases where the warping window constraint is used, only those points
are considered in Eq. () that satisfy Eq. (). This reduces the number of paths that
need to be considered.

3 Lower-bounding Measures

Calculation of the DTWdistance takes up a lot of computation time, and a classifica-
tion algorithm that uses DTW as a distance measure is bound to be computationally
inefficient. To solve this problem, a fast lower bounding measure is used to prune-off
unnecessary calculations [, ].

3.1 Lower-boundingMeasure (LBmeasure)

Let us consider the two time-series Q and C defined in Eqs. () and (). Using the
global constraints on the warping path given by Eq. (), we construct an envelope
across Q bounded by two time-series U and L, given as,

uj,r = max(q j−R ,r � q j+R ,r) ()

l j,r = min(q j−R ,r � q j+R ,r) ()
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Using the above definitions of U and L, we define LBmeasure as,

LB_measure(Q ,C) =

M
N
N
N
NO

1
(m + n − 1)

j=m

!
j=1

r=p

!
r=1

����
�
����

(c j,r − uj,r)2 if c j,r � uj,r
(l j,r − c j,r)2 if c j,r < l j,r
0 , otherwise

()

It is important to note that the above defined LBmeasure for two time series will al-
ways be lower than the corresponding DTWmeasure. This point can be understood
very easily by considering the fact that while finding LBmeasure, we need not consider
continuity and monotonic path constraints, which have to be followed strictly in the
case of DTW measure evaluation. A mathematical proof of this has been provided
in []. The above conclusion can be employed in classification problem by finding
the LBmeasure before evaluating the DTWmeasure and in the process, saving a lot of
computation effort while identifying the nearest neighbor.

4 Learning Multiple Bands

4.1 LearningMultiple Bands for Classification using Heuristics

The next step involves finding bands for different classes. In the approach employed
byRatanamahatana andKeogh [], it has been posed as a search problem, and generic
heuristic techniqueswere used to obtain bands.The search can be performed as either
a forward or backward hill-climbing search algorithm. Forward search begins with
a uniform bandwidth of zero width, while backward search begins with maximum
bandwidth m above and to the right of the diagonal.

In backward search, one beginswith themaximumpossible bandwidth, evaluates
the accuracy with this bandwidth, then reduces the bandwidth of the complete seg-
ment, and re-evaluates the accuracy. If any improvement is obtained, one continues
reducing the bandwidth of the entire segment, otherwise the segment is split into two
equal halves, and the bandwidth of the two segments recursively reduced separately.
This is done until one reaches zero bandwidth for the segment or a threshold value
for the length of the segment is reached, or no further improvement can be made.
Forward search is very similar, except that one starts off with zero bandwidth and
increases the bandwidth in every step. For the heuristic search one needs a heuristic
function to measure the quality of operation and to determine whether an improve-
ment has been made or not. Ratanamahatana and Keogh [] used an accuracy metric
as heuristic function. The accuracy metric used was the number of correct classifica-
tions using the DTW distance and the band.

The threshold condition is used as terminating conditions to prevent any over
fitting of data. Ratanamahatana and Keogh [] employed the threshold condition

end − start + 1 � threshold ()

The value of the threshold has been taken as 1
2
 
m. Theoretically, the value of the

threshold can be as low as a single cell.
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4.2 LearningMultiple Bands for Classification using GA

Since their introduction by Holland [] in , genetic algorithms have evolved
to a great extent. Several variants of GA have been developed [] and have been
employed as well equipped tools for tackling problems from several domains.

Genetic algorithms are a particular class of evolutionary algorithm that uses tech-
niques inspired by evolutionary biology and the Darwinian concept of “survival of
the fittest”. These are implemented as computer simulations in which first, a pop-
ulation of abstract representations of candidate solutions (individuals) is randomly
generated. Each individual represents a potential solution to the problem.This popu-
lation of potential solutions goes through a simulated process of evolution by creating
new individuals through the breeding of the present individuals. Genetic algorithms
do not require continuity of parameters or existence of derivatives in the problemdo-
main. They can effectively handle multi-modal and multi-parameter type optimiza-
tion problems, which are extremely difficult to handle using classical optimization
methods.

Based on the complexity ofDTWcalculations involved, we utilized the basic form
of genetic algorithm, the structure of which is shown in Table . The details of the
components involved are:

Individual representation: Each individual is represented in the form of a binary
string. This string evolves from the binary encoding of the parameters involved in
the optimization problem. Although, there are a variety of ways in which a candidate
solution can be represented,bit-encoding is the most common, owing to its precision
and ease of use [].

Fitness function: Each individual represents a potential solution to the problem with
varying quality measured in terms of fitness function value. The most obvious func-
tion to be employed to evaluate the fitness for the current purpose is the classification
accuracy of different individuals. However, in the present scenario it is common for
many individuals to have the same accuracy. To sort out this problem, we include
a parameter, bandwidth along with accuracy, to differentiate between the fitness of
individuals having the same accuracy. Hence, if two individuals have the same accu-
racy, the one with the narrower bandwidth will be regarded as fitter.

Table 1 Algorithmic structure of GA

. Randomly initialize the population of candidate solutions
. Evaluate the fitness of each candidate solution
. Perform elitism
. Select candidate solutions for reproduction stage
. Perform crossover on selected candidate solutions
. Perform mutation on individuals obtained from Step 
. Obtain the new generation from individuals resulting from Step ,  and 
. Check for termination criterion, if not satisfied Go to Step 
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Initial generation: Apool of candidate solutions is initialized in the formof randomly
generated binary strings. The size of the pool, i.e. the population size considered in
this work, is .

Termination criteria: The generational progress continues until some termination
criteria are satisfied. In the current work, when the number of generations reaches
a maximum defined a priori, evolution of new generations is stopped.Themaximum
number of generations has been kept at .

Selection procedure: This selection is done stochastically so that fitter solutions have
more probability of being selected for the next generation. A tournament selection
procedure is used for the purpose. A set of three individuals is randomly selected
from the current generation, and the one with the maximum value of fitness function
is passed to the reproduction stage, where genetic operators are employed.

Crossover operator: Crossover simulates the natural process of reproduction, where
a pair of parent solutions is selected for breeding, and two new child solutions are
created which share many characteristics of their parents. A higher probability of
crossover is required for an effective local search and convergence to a solution. The
crossover probability is taken as .. As is common practice, the operator is imple-
mented on parent solutions by swapping the parts of corresponding binary strings at
random location

Mutation operator: Mutation introduces new individuals by changing an arbitrary
bit of the binary strings corresponding to randomly selected individuals. It is like
a random walk through the search space and signifies a global search. Mutation pro-
duces random solutions in the search space, and thus a high mutation probability
will result in a highly unstable system, and hence will slow down the convergence.
A low value of mutation probability will maintain diversity, yet keep the search space
stable. The mutation probability is taken as ..

Elitism operator: Elitism is a technique for ensuring that the best solutions are not
lost during crossover and mutation. It copies a very few individuals with the highest
fitness values to the next generation without any change, thus safeguarding against
loss of elite individuals. This is fulfilled by retaining the best 5% of the population
from the current to the next generation.

Following the algorithmic structure provided in Table , GA can be very easily
implemented to obtain the optimumwarpingwindowonce the bands are represented
in binary string format.

5 Data Sets

Performance of the proposed methodology was investigated on problems from two
very different domains. In the first application the methodology was employed in
the bioinformatics field; the second application was to fault diagnosis in a chemical
engineering system.
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5.1 Gene Expression Profiles

Modeling and analysis of temporal aspects of gene expression data are gaining in-
creasing importance [,]. Classification of these gene expression profiles has great
potential in identifying the functions of genes in various cellular processes and gene
regulations. It can be of great help in disease diagnosis and drug treatment evaluat-
ion []. The approach is also beneficial in grouping together similar kinds of genes,
and in the process can help one to understand the functions and characteristics of
various unknown genes [].

We took the four-class classification problem of identifying the four gene clus-
ters obtained by Iyer et al. []. Referring to the original work, the genes belonging
to different clusters are: cluster : genes –; cluster : genes –; cluster :
genes –; cluster : genes –. There are a total of  expression profiles
with each profile measured at  different time points. Figure  provides sample time
series from each class.

5.2 CSTR Batch Profiles

The continuously stirred tank reactor (CSTR) is an integral equipment in chemical
engineering operations. In the second case study, we performed fault diagnosis of
a jacketed CSTR in which an irreversible, exothermic, first-order reaction (A � B)
is taking place.The system is equipped with three control loops, controlling the outlet
temperature, the reactor holdup and the outlet concentration. A detailed mathemat-
ical model has been provided by Luyben []. This model has been further explored
by Venkatasubramanian et al. [] in their work on the application of neural net-
works to fault diagnosis. They introduced different ranges of operating parameters
resulting in one normal operation and six abnormal operations. Table  lists these
malfunctions.

Generation of the historical databaseThe inlet stream state values were varied in each run
to simulate abnormal operations. Each abnormal operating condition was character-

Fig. 2 Microarray gene expression, time series from each class
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Table 2 Selected malfunctions for CSTR fault diagnosis

Malfunction (fault) Variation from normal operation (%)
High inlet flow rate +(5 − 15)
Low inlet flow rate −(5 − 15)
High inlet concentration of reactant +(5 − 15)
Low inlet concentration of reactant −(5 − 15)
High inlet temperature of reactant +(5 − 15)
Low inlet temperature of reactant −(5 − 15)

ized by an abnormal value of an input variable.Thenormal operationswere simulated
by varying any of the input variables in the neighborhood of the perfectly normal op-
eration. This variation was kept in the range 2.0%.Themagnitudes of the input vari-
able were varied randomly in each simulation. The duration of each simulation was
 hours and the sampling interval was randomly varied from  minutes. Each of the
seven operating conditions was simulated  times to provide a historical database
of  batches. Gaussian measurement noise was added to the measured variables so
that the signal-to-noise ratio for the CSTR profile was approximately equal to ten.

6 Results and Discussion

In this section, we discuss the performance of the proposed methodology for super-
vised classification of the data sets obtained from the case studies discussed in the pre-
vious section. The accuracy of classification has been measured using the “-nearest-
neighbour” with “leaving-one-out” approach. The Ratanamahatana and Keogh []
methodology is different from the classical DTW in two senses: they employed the
lower bounding technique to enhance computational efficiency and used the warp-
ing window concept to increase the accuracy. They employed heuristic hill-climbing
search algorithms to train the warping window. In this work, we investigated the clas-
sification accuracy of constrained window based DTW, based on a warping window
trained with classical genetic algorithms and compared its performance with that ob-
tained by hill-climbing algorithms. The classification results obtained by the different
methodologies are listed in Table .

As was expected, application of a genetic algorithm to train the warping window
in DTW is highly effective in classifying the gene expression profiles. The classifica-
tion accuracy is more than 98% with use of the genetic algorithm.

Table 3 Comparison of results

Case Studies Classification Accuracy (%)
Hill climbing Hill climbing Genetic
(Forward) (Backward) Algorithms

Gene expression Classification 95.690 96.552 98.276
CSTR fault diagnosis 93.714 94.286 94.286
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However, the classification performance for the fault diagnosis of CSTR does not
show much improvement. The classification accuracy of the backward hill climbing
search algorithm and the GA remains the same at 94.286%.This observation may be
attributed to the fact that attaining a higher accuracy becomes really difficult if appli-
cation of DTW is unable to achieve any higher accuracy with change in the warping
window. The classification accuracy observed using the forward hill climbing algo-
rithm is slightly lower at 93.714%.

7 Conclusions and Future Work

In this work a genetically tuned DTW method with a constrained window based
warping method [] for time series alignment is introduced. In the original formu-
lation of Ratanamahatana and Keogh [] the constraints on the warping path were
obtained by formulating the problem as a classical search problem. Further, generic
heuristic search techniques were employed by them to get the optimal bands. With
the help of two case studies we have shown that the application of a GA can signifi-
cantly enhance performance and produce improved solutions.

Acknowledgement. We gratefully acknowledge financial assistance provided by the Depart-
ment of Biotechnology, New Delhi, India.
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Abstract

Ubiquitous robot systems represent the state-of-the-art in robotic technology. This
paradigm seamlessly blendsmobile robot technology (Mobot) with distributed sensor
systems (Embot) and overseeing software intelligence (Sobot), for various integrated
services. The wide scope for research in each component area notwithstanding, the
design of the Sobot is critical since it performs the dual purpose of overseeing intel-
ligence as well as user interface. The Sobot is hence modeled as an Artificial Creature
with autonomously driven behavior. This chapter discusses the evolutionary genera-
tion of an artificial creature’s personality.The artificial creature has its own genome in
which each chromosome consists of many genes that contribute to defining its per-
sonality.The large number of genes also allows for a highly complex system.However,
it becomes increasingly difficult and time-consuming to ensure reliability, variabil-
ity and consistency for the artificial creature’s personality while manually assigning
gene values for the individual genome. One effective approach to counter these prob-
lems is the Evolutionary Generative Process for an Artificial Creature’s Personality
(EGPP) which forms the focus of this chapter. EGPP evolves a genome population
such that it customizes the genome, meeting a simplified set of personality traits de-
sired by the user. An evaluation procedure for each genome of the population is car-
ried out in a virtual environment using tailored perception scenarios. Effectiveness of
this scheme is demonstrated by using an artificial creature Sobot, ‘Rity’ in the virtual
D world created in a PC, designed to be a believable interactive software agent for
human–robot interaction.

Key words: Ubiquitous Robot, Genetic Robot, Evolvable Artificial Creature, Artifi-
cial Genome, Artificial Personality
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1 Introduction

Ubiquitous robotic systems are emerging.These systems negate the necessity for per-
sonal robotic systems to limit themselves to the conventional notion of a stand-alone
robot platform. Brady defined robotics as the ‘Intelligent connection of perception to
action’ []. Ubiquitous robotics lends itself to that description, by allowing us to rede-
fine the interconnection between the three components, intelligence, perception and
action, by manifesting them individually as the intelligent Software Robot–Sobot,
the perceptive Embedded Robot–Embot and the physically active Mobile Robot–
Mobot, respectively, as described in [–]. The interconnection is therefore created
through the network and the integration is carried out using the middleware in the
ubiquitous space (u-space). This can be conceptualized as a networked cooperative
robot system. The core intelligence of this system is comprised of software robots.
Distributed Embots ensure that the Sobots possess context aware perceptive capabil-
ities. Lastly,Mobots act upon the service requests in the physical domain.Networking
technology such as the IPv format and broadband wireless systems is the key lever-
aging these advancements. Ubiquitous robots will thus be able to understand what
the user needs, even without the issuance of a direct command, and be able to sup-
ply continuous and seamless service. Following the general concepts of ubiquitous
computing, ubiquitous robotic systems are seamless, calm, and context aware. The
Sobot can connect to, and be transmitted to any device, at any time and at any place
within the u-space, by maintaining its own unique IP address. It is context aware
and can automatically and calmly provide services to the user. Embots collect and
synthesize sensory information through the detection, recognition and authentica-
tion of users and other robots. Mobots proceed to act by providing the general users
with integrated services. Middleware enables the Ubibot to interact andmanage data
communication reliably without disrupting the protocols in the u-space. From this
description it is evident that the design of the intelligent Sobot is critical to the func-
tioning of the ubiquitous robot system.

Sobots by their very nature of being software agents capable of seamless tran-
sition, are eminentlt suitable an interface for users to communicate with the entire
ubiquitous robot system. However, in order to do this effectively, they must present
an interactive interface. It is for this reason that Sobots are modeled as artificial crea-
tures.

Artificial creatures, also referred to variously as interactive creatures, autonomous
agents, synthetic characters, software robots, or D avatars, have been developed to
entertain humans in real-time interaction. In general, an artificial creature has vari-
ous virtual and physical sensors, which influence internal states such as motivation,
homeostasis, emotion, etc., and then lead to a different behavior externally according
to the internal state. These software agents have significant potential for application
in the entertainment industry. In particular, such agents have applications in the de-
velopment of interfaces with human–robot interaction systems, where the human
user may have meaningful interactions with the creature. Most previous work, how-
ever, dealt with behavior selection and learning mechanisms to improve the output
performance [–].
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The concept of genetic encoding and evolutionary mechanisms emerged to im-
prove the output performance of game characters in video gaming. The brain struc-
tures were encoded as a genome to activate proper behavior patterns when it inter-
acted with a user in real time [, ]. Genes in a creature’s genomes code for such
structures as chemo-receptors, reactions and brain lobes in the neural network-based
brain model, rather than outward phenomena such as disease-resistance, fearless-
ness, curiosity, or strength. Also, in strategy games and simulators, neuroevolution
was employed in training artificial neural networks as agent controllers, where fitness
was determined by game play [–]. In [, ], key parameters of the game char-
acter’s behavior were genetically encoded for evolution by which they were made to
be persistently competitive and to generate novel behaviors.

Along with the genetic encoding and evolutionary mechanism for the artificial
creature, its personality should also be emphasized to create a believable one. The
significance of having a diverse personality was noted in []: ‘Personality is a de-
terminer of, not merely a summary statement of, behavior.’ It was claimed that the
personality was crucial in building a reliable emotional agent. To build such a truly
believable artificial creature, it is required to provide an evolutionary generative pro-
cess that has the power to represent its personality by composing genetic codes of
parameters related by internal states and outward behaviors. The evolutionary gen-
erative process includes implementations of the artificial creature, virtual environ-
ment, perception scenario, personality model and evolutionary algorithm for a spe-
cific personality desired by a user.The evolutionary algorithm requires investigations
of genetic representation, fitness function, genetic operators and how they affect the
evolutionary process in the simulated environment.

This chapter focuses on evolving an artificial creature’s personality as desired
by using its computer-coded genome in a virtual environment. The primary ap-
plication is that of providing a believable and interactive agent for personal use.
The agent would reside in hardware devices such as personal computer and mobile
phone in order to provide ubiquitous services. Video clips of this scenario maybe
seen at http://rit.kaist.ac.kr/research.php (under the links ‘Intelligent Robots’, ‘Soft-
ware Robot’ under the title “Geney”). The genome is composed of multiple artifi-
cial chromosomes each of which consists of many genes that contribute to defining
the creature’s personality. It provides primary advantages for artificial reproduction,
the ability to evolve, and the reusability among artificial creatures [, ]. The large
number of genes also allows for a highly complex system. However, it is difficult and
time-consuming to manually assign values to them to ensure reliability, variability
and consistency of the artificial creature’s personality. The evolutionary generative
process for an artificial creature’s personality (EGPP) which forms the crux of this
chapter, effectively deals with these issues providing a powerful tool for artificial crea-
ture personality generation and evolution.

EGPP is a software system to generate a genome as its output, which character-
izes an artificial creature’s personality in terms of various internal states and their
concomitant behaviors. Initialization of the genome population is carried out by set-
ting some parameters in the graphical user interface (GUI). EGPP acts on the initial
population for evolution to have a plausible creature given the personality preference
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set through the GUI by the user. In a control architecture, to implement the plausib-
le creature, a stochastic voting mechanism is employed for behavior selection. Also,
gene masking operators are introduced to forbid unreasonable behaviors. The evalu-
ation procedure for each individual (genome) is carried out in a virtual environment
by applying a series of perceptions (perception scenario) to the artificial creature with
the corresponding genome and then by measuring its fitness. The proposed EGPP
has been validated by implanting the evolved genome into the artificial creature. In
experiments the artificial creature, Rity, developed in a D virtual world, is used as
a test agent in a personal computer environment.

This chapter is organized as follows: Sect.  describes the general concept of
ubiquitous robot system incorporating Sobot, Embot and Mobot. Section  intro-
duces an artificial creature, Rity, its internal control architecture, and the structure
of the genome, which is composed of a set of chromosomes including the funda-
mental genes, the internal state related genes, and the behavior related genes. Sec-
tion  describes the proposed EGPP along with the personality model, evolutionary
algorithm, perception scenario and fitness function. Experiments are carried out to
demonstrate its performance and effectiveness in Sect. . Concluding remarks follow
in Sect. .

2 The Ubiquitous Robot System

The ubiquitous robot system is comprised of networked and integrated cooperative
robot systems existing in the ubiquitous world. It includes Software Robot Sobots,
Embedded Robot Embots and Mobile Robot Mobots in their various forms. The
ubiquitous robot is created and exists within a u-space which provides both its phys-
ical and virtual environment. It is anticipated that in the years to come the world will
consist ofmany such u-spaces, each being based on the IPv protocol or a similar sys-
tem and interconnected through wired or wireless broadband network in real time.

The primary advantage of ubiquitous robot systems is that they permit abstrac-
tion of intelligence from the real world by decoupling it from perception and action
capabilities. Sensory information is standardized along with motor or action inform-
ation and this permits the abstract intelligence to proceed with the task of providing
services in a seamless, calm and context aware manner. Ubiquitous robots provide
us with services through the network at anytime and anywhere in a u-space through
distributed capabilities provided by the component Sobot, Embot and Mobot. Each
robot, however, has specific individual intelligence and roles, and can communicate
information through networks. The development of effective Middleware is critical
to this system since it serves to overcome difficulties due to heterogeneous protocols
and network difficulties.

Some of the integrated services and solutions offered by the ubiquitous robot
technology include ubiquitous home services for security and safety, location-based
services like GIS, health services in telemedicine, ubiquitous learning systems and
ubiquitous commerce services.
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As mentioned earlier, the ubiquitous robot system incorporates three kinds of
robot systems: Sobots, Embots and Mobots under the ambit of the following defini-
tions.

2.1 Software Robot: Sobot

Sobots are the intelligent component of the Ubibot system whose domain lies wholly
within the software realm of the network. It can easily traverse through the network
to connect with other systems irrespective of temporal and geographical limitations.
Sobots are capable of operating as intelligent entities without help from other ubiqui-
tous robots and are typically characterized by self-learning, context-aware intelli-
gence and, calm and seamless interaction abilities. Within the u-space, Sobots try
and recognize the prevailing situation and often make decisions on the course of
action and implement them without directly consulting the user each time. They are
proactive and demonstrate rational behavior and show capabilities to learnnew skills.
It is also totally pervasive in its scope and thus is able to provide seamless services
throughout the network.

The Sobot intelligence also has an important subsidiary function to perform,
which is for the interface with the user. Coupled with its ability to seamlessly transmit
itself, it must additionally present an interactive, believable interface for user com-
fort and convenience. It is for this reason that the Sobot is developed as an artificial
creature, with autonomous behaviors, as described in Sect. .

2.2 Embedded Robot: Embot

The embedded robots, as the name implies, are implanted within the environment or
upon Mobots. They together comprise the perceptive component of the ubiquitous
robot system. Utilizing a wide variety of sensors in a sensor network, Embots detect
and monitor the location of a user or a Mobot, authenticating them and also inte-
grate assorted sensory information thus comprehending the current environmental
situation. Embots are also networked and equipped with processing capabilities and
thus may deliver information directly or under the Sobot’s instructions to the user.
Embots are characterized by their calm sensing, information processing and inform-
ation communication capabilities. Embots offer great functionality by being able to
sense features such as human behavior, status, relationships and also environmental
conditions impacting human behavior. They also possess abilities to perform data
mining, which can enhance information search processes.

2.3 Mobile Robot : Mobot

Mobots offer a broad range of services for general users specifically within the physi-
cal domain of the u-space.Mobility is a key property ofMobots, as well as the general
capacity to provide services in conjunction with Embots and Sobots. The Mobot is
usually in continous communication with the Sobot in order to provide practical ser-
vices based on information given by the Embot. Alternatively, Mobots serve Embots
as a platform for data gathering. Mobots are typically multi-purpose service robots
with functionalities extending to home, office and public facilities.
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2.4 Middleware

Middleware allows communication within and among ubiquitous robots using a var-
iety of network interfaces and protocols. Middleware usually varies from one vendor
to the next depending upon a variety of factors.The selected middleware allows con-
version of the constituent entities of the ubiquitous robot system into specific com-
ponents with respect to the developer, thereby making it convenient to update func-
tions, maintain resources and perform power management. The Middleware struc-
ture for a ubiquitous robot systemmust contain at least one interface and one broker.
The interfaces refer to the hardware level interfaces of the communication protocols
such as Bluetooth and Ethernet and the software level interfaces like HTTP and FTP.
The broker enables the system to make an offer of service irrespective of the oper-
ating structure, position and type of interface. This thus enables Sobots to receive
information from a wide variety of Embots and to communicate with the Mobots.

3 Sobot as an Artificial Creature

This section introduces a Sobot as an artificial creature, Rity, in a D virtual world,
its internal control architecture and genome composed of a set of chromosomes [].

3.1 Artificial Creature, Rity

An artificial creature is defined as an agent which behaves autonomously driven by
its internal states such as motivation, homeostasis and emotion. It should also be able
to interact with humans and its environment in real time. Rity is designed to fulfill
the requirements for an artificial creature. It represents itself visually on the screen as
a dog and may interact with humans based on information through a mouse, a cam-
era or a microphone.

The internal control architecture in this chapter is composed of four primary
modules, that is, perception module, internal state module, behavior selection mod-
ule and motor module. All the modules are embodied in Rity, which is a D virtual
pet with  degrees of freedom. It is developed in Visual C++ . and OpenGL and
works well on Pentium III machines or above. Figure  illustrates both the internal
control architecture and a screen shot of the computer screen showing Rity, in a vir-
tual D environment. A brief explanation of each module in the internal architecture
follows.
Perception module The perception module can recognize and assess the environ-
ment and subsequently send the information to the internal state module. Rity has
several virtual sensors for light, sound, temperature, touch, vision, orientation and
time.
Internal state module
The internal state module defines the creature’s internal state with the motivation
unit, the homeostasis unit and the emotion unit. In Rity, motivation is composed of
six states: curiosity, intimacy, monotony, avoidance, greed and the desire to control.
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Fig. 1 Artificial creature, Rity. a) Internal control architecture. b) Screen shot of Rity in a D
virtual world

Homeostasis includes three states: fatigue, hunger and drowsiness. Emotion includes
five states: happiness, sadness, anger, fear and neutral. In general, the number of in-
ternal states depends on an artificial creature’s architecture. Each internal state is up-
dated by its own weights, which connect the stimulus vector to itself and are also
represented as a vector. For instance, motivation vector M is defined as

M(t) = [m1(t),m2(t), . . . ,m6(t)]T ()

where mk(t) is the kth state in the internal state module. Each motivation state is
updated by

mk(t + 1) = mk(t) + �λk(mk −mk(t)) + ST ċWM
k (t)	, k = 1, 2, . . . , 6 ()
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where S is the stimulus vector, WM
k is a weight matrix connecting S to the kth state

in the internal state module, mk is the constant to which the internal state converges
without any stimuli, and λk is the discount factor between  and . Similarly, the
following update equations are defined for the homeostasis unit using state vector
H(t) and weight matrix WH

k , and also the emotion unit using state vector E(t) and
weight matrix WE

k , respectively:

hk(t + 1) = hk(t) + �λk(hk − hk(t)) + ST ċWH
k (t)	, k = 7, 8, 9 ()

ek(t + 1) = ek(t) + �λk(ek − ek(t)) + ST ċWE
k (t)	, k = 10, 11, . . . , 14, ()

where H(t) = [h7(t), h8(t), h9(t)]T and E(t) = [e10(t), e11(t), . . . , e14(t)]T .
Behavior selection module
The behavior selection module is used to choose a proper behavior based on Rity’s
internal state. According to the internal state, various reasonable behaviors can be
selected probabilistically by introducing a voting mechanism [, ], where each be-
havior has its own voting value. The procedure of behavior selection is as follows:

. Determine the temporary voting vector, Vtemp using M and H.
. Calculate voting vector V by applying attention and emotion masks to Vtemp.
. Calculate a behavior selection probability, p(b), using V.
. Select a proper behavior b with p(b) among various behaviors.

Each step is described in the following.
. The temporary voting vector is defined as follows:

VT
temp = 4M

TDM +HTDH5

= [vt1 , vt2 , . . . , vtz] ()

where a superscript T represents a transpose of a vector and z represents the num-
ber of behaviors provided for Rity. vtr , r = 1, . . . , z, is the temporary voting value.
As there are 6 motivation states and 3 homeostasis states for Rity, 6 
 z matrix DM

and 3 
 z matrix DH are the behavioral weight matrices connecting motivation and
homeostasis to behaviors, respectively.

. Two masking matrices for attention and emotion assist Rity in selecting a nat-
ural behavior by masking unreasonable behaviors. An attention masking matrix
QA(a) is obtained by the attentional percept, a, which has its own masking value.
The matrix is defined as a diagonal matrix with diagonal entries qa1(a), . . . , qaz (a)
where qar (ċ), r = 1, . . . , z, is the masking value, and 0 � qar (ċ) � 1. Similarly, an
emotion masking matrix,QE(e), where e is the dominant emotion, is defined. From
these two masking matrices and the temporary voting vector, the behavior selector
obtains a final voting vector as follows:

VT =VT
tempQ

A(a)QE(e)

= [v1 , v2 , . . . , vz] ()

where vr , r = 1, 2, . . . , z, is the rth behavior’s voting value.
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. The selection probability p(bk) of a behavior, bk , k = 1, 2, . . . , z, is calculated
from the voting values as follows:

p(bk) = vk�
z

!
r=1
(vr).

. By employing the probability proportional selection mechanism, a reasonable
and natural behavior is selected.

In addition to behaviors, Rity has five facial expressions for happiness, sadness,
anger, fear and neutral state. It is chosen for the dominant emotional state.
Motor module
Themotor module incorporates virtual actuators to execute the selected behavior in
the virtual D environment.

3.2 Genetic Representation

This section presents a genetic representation for an artificial creature that would be
capable of animal-like evolution. Due to the existence of the pleiotypic and poly-
genic nature of the genotype, a single gene influences multiple phenotypic characters
(pleiotypic nature) and a single phenotypic character is directly inspired by multi-
ple genes (polygenic nature). To reflect this complexity to Rity’s chromosomal cod-
ing, a sophisticated internal architecture is encoded to avoid a purely mechanistic
response.

An artificial creature is made up of genome, a set of chromosomes, Ck , k =
1, 2, . . . , c, which has the capability of passing its traits to its offspring. Each chromo-
some Ck is composed of three gene vectors: the Fundamental gene vector (F-gene
vector), xF

k , the Internal state related gene vector (I-gene vector), xI
k , and the Behav-

ior related gene vector (B-gene vector), xB
k , and is defined as

Ck =

I
J
J
J
J
J
K

xF
k ,

xI
k ,

xB
k

P
Q
Q
Q
Q
Q
R

, k = 1, 2, . . . , c

with

xF
k =

�
S
S
S
�

xF1k
xF2k
T

xFwk

�
U
U
U
�

,xI
k =

�
S
S
S
�

xI1k
xI2k
T

xIyk

�
U
U
U
�

,xB
k =

�
S
S
S
�

xB1k
xB2k
T

xBzk

�
U
U
U
�

,

where w, y, and z are the sizes of the F-gene vector, I-gene vector, and B-gene vector,
respectively. F-genes represent fundamental characteristics of Rity, including gen-
etic information such as volatility, initial values, constant values (mk in (), hk in
() and ek in ()) and the discounting factor (λk of ()–()). The volatility gene in
Ck determines whether the kth internal state is volatile or non-volatile when reset.
I-genes include genetic codes representing their internal state by setting the weights
of WM

k (t) in (), WH
k (t) in () and WE

k (t) in (). These genes shape the relation-
ship between perception and internal state. B-genes include genetic codes related to
output behavior by setting the weights of DM and DH in (), and QE in ().
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An artificial genome, G, composed of a chromosomal set, is defined as

G = VC1 � C2 � . . . � Cc W ,

where c is the number of chromosomes in the genome.
Rity is implemented by w = 4, y = 47, z = 77, and c = 6 + 3 + 5 = 14. These

values are equivalent to the ability of perceiving 47 different types of percepts and of
outputting 77 different behaviors as response. Figure  shows the  chromosomes,
where the first six C1–C6 are related to motivation: curiosity (C1), intimacy (C2),
monotony (C3), avoidance (C4), greed (C5), and desire to control (C6), the next
three C7–C9 are related to homeostasis: fatigue (C7), drowsiness (C8), and hunger
(C9), and the last five C10–C14 are related to emotion: happiness (C10), sadness
(C11), anger (C12), fear (C13), and neutral (C14). As each chromosome is repre-
sented by 4 F-genes, 47 I-genes and 77 B-genes, Rity has 1792 genes in total. The
genes in Fig.  are originally represented by real numbers: initial and constant values
of F-genes range from 0 to 500, I-genes from −500 to 500, and B-genes from 0 to
1000. F- and B-genes are normalized to brightness values from 0 to 255, which are
expressed as black-and-white rectangles. The darker the color, the higher its value.
In addition to positive normalization, I-genes may have negative values and are nor-
malized as red-and-black rectangles in the same manner.

The D genetic representation has advantages of representing essential character-
istics of three types of genes intuitively, reproducing the evolutionary characteristics
of living creatures, and enabling users to easily insert or delete other types of chromo-
somes and genes related to an artificial creature’s personality and other information.

Fig. 2 Artificial genome of Rity
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4 Evolutionary Generative Process for a Personality (EGPP)

To build a truly believable artificial creature, it is required to design an evolution-
ary generative process to generate a genome representing its personality. The process
includes an implementation of the artificial creature and its virtual environment, its
personality model, and an evolutionary algorithm for a desired personality.

4.1 Personality Model

Big five personality dimensions are employed and Rity’s internal traits are classified
for the corresponding personalty dimension. They are classified as follows: extro-
verted (as opposed to introverted), agreeable (as opposed to antagonistic), conscien-
tious (as opposed to negligent), openness (as opposed to closedness), and neuroti-
cism (as opposed to emotional stability) []. From these, in this chapter agreeable
and antagonistic personalities are engineered for Rity to demonstrate the feasibility
of the EGPP. By comparing the performance for the two contrasting personalities, the
evaluation can be easily made concerning its ability to provide consistent (the ability
to exhibit reliably expectant behaviors) and uniquely distinct personality. The agree-
able personality assumes strength in curiosity, intimacy and happiness, and weakness
in greed, desire to control, avoidance, anger and fear. In contrast, the antagonistic
personality assumes weakness in curiosity, intimacy and happiness, and strength in
greed, desire to control, avoidance, anger and fear.

Considering the personality traits, the preference values of the agreeable and the
antagonistic personality models are assigned between 0 and 1 as in Table , where ψIk
and ψBk are preference values for the kth internal state and behavior group, respect-
ively. These values mean user’s desired preference and will be used for defining the
fitness function. Preference values in the table are denoted by

Ψ =
I
J
J
J
J
K

ψI1 ψI2 . . . ψIc
ψB1 ψB2 . . . ψBc

P
Q
Q
Q
Q
R

. ()

Table 1 Preference values for the agreeable and antagonistic personalities

Internal State Assigned preference values
Agreeable personality Antagonistic personality

Mode State k ψIk ψBk ψIk ψBk
Curiosity  . . . .
Intimacy  . . . .

Motivation Monotony  . . . .
Avoidance  . . . .
Greed  . . . .
Control  . . . .
Fatigue  . . . .

Homeostasis Drowsiness  . . . .
Hunger  . . . .
Happiness  . . . .
Sadness  . . . .

Emotion Anger  . . . .
Fear  . . . .
Neutral  . . . .
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The preference values are set by using slider bars in a graphical user interface
(GUI) (see Fig. ).

4.2 Procedure of Evolutionary Algorithm

EGPP includes an evolutionary algorithm,whichmaintains a population of genomes,
Gt

i , i = 1, 2, . . . , n, with the form of a two-dimensional matrix, P(t) = �Gt
1 ,Gt

2 , . . . ,
Gt

n	 at generation t, where n is the size of the population. Gt
i is defined as

Gt
i = VC

t
i1 Ct

i2 . . . Ct
i c W =

I
J
J
J
J
J
K

xFt
i

xIt
i

xBt
i

P
Q
Q
Q
Q
Q
R

=

I
J
J
J
J
J
K

xFt
i1 xFt

i2 . . . xFt
i c

xIt
i1 xIt

i2 . . . xIt
i c

xBt
i1 xBt

i2 . . . xBt
i c

P
Q
Q
Q
Q
Q
R

Figure  illustrates the procedure of the evolutionary algorithm in the following
manner:

(i) Preference values are assigned via a GUI and a population of genomes is ini-
tialized (Sect. .)

(ii) and (viii) Each Gt
i is masked by I-gene and B-gene maskings, in order to

generate reasonable behaviors. Masked genomes replace the original ones (Sect. .)
(iii) and (ix) The masked genome is implanted to the artificial creature, a series

of perceptions is applied to it, and then its fitness is evaluated (Sects. . and .).
(iv) and (x) The best genome is selected among the genomes in P(t), and stored

in b(t) which is the best solution for generation t .

Procedure EA
begin

t � 0
i) initialize P(t)
ii) gene-mask P(t)
iii) evaluate P(t)
iv) store the best genome b(t) among P(t)
v) while (not termination-condition) do

begin
t � t + 1

vi) select P(t) from P(t − 1)
vii) alter P(t)
viii) gene-mask P(t)
ix) evaluate P(t)
x) store the best genome b(t) among b(t − 1) and P(t)

end
end

Fig. 3 Procedure of evolutionary algorithm for an artificial creature’s personality
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(v) Steps (vi)–(x) are repeated until the termination condition is reached. The
maximum number of generations is used as a termination condition.

(vi) In the while loop, a new population (iteration t + 1) is formed by fitness
proportional selection in that generation.

(vii) Some members of the new population undergo transformations by means
of the crossover operators, ΘF

χ , ΘI
χ and ΘB

χ , and the mutation operators ΘF
μ , ΘI

μ and
ΘB
μ , to form new genomes (Sect. .).

4.3 Initialization Process

In the step ‘initialize P(t)’, xF0pk , x
I0
qk , x

B0
rk , p = 1, 2, . . . ,w, q = 1, 2, . . . , y, r =

1, 2, . . . , z, k = 1, 2, . . . , c, of all G0
i =Gt

i �t=0, i = 1, 2, . . . , n, in P(0) = �G
0
1 ,G0

2 , . . . ,
G0

n	 at generation t = 0, are initialized. As there are many genes to be evolved, their
characteristics should be considered in the initialization process for computational
efficiency and performance improvement. F-genes of all G0

i = Gt
i �t=0 are initialized

individually, since the format and the scale of genes are distinctly different from each
other. xF01k , x

F0
2k , x

F0
3k and xF04k represents volatility for genes inheritance, initial value,

constant value and discount factor in order. xF01k is given as either 0 or 1 when the
corresponding state is volatile or not. xF02k and xF03k are generated in U[0, Fmax] (uni-
formly distributed random variables on [0, Fmax]), where Fmax is the upper bound
for the two gene values. The discounter factor, xF04k � U(0, 1].

I- and B-genes are randomly initialized in between lower and upper bounds con-
sidering user’s preference values in (). These values are used for center of the range
gene values at initialization. I-genes, xI0qk , of all G

0
i =Gt

i �t=0 are randomly initialized
as follows:

xI0qk = m
I
qkU̇[ max[0, Imax ċ (ψIk − δI)],

Imax ċ (ψIk + δI) ] ()

wheremI
qk is the qth I-genemask of the kth chromosome, Imax is the upper bound of

I-gene values and δI is a constant for deciding the range of initialization of I-genes.
B-genes, xB0rk , of G

0
i =Gt

i �t=0 are similarly initialized as follows:

xB0rk = U[ max[0, Bmax ċ (ψBk − δB)],

Bmax ċ (ψBk + δB) ] ()

where Bmax is the upper bound of B-gene values and δB is a constant for the range of
B-gene values.

4.4 GeneMasking

To build a truly believable artificial creature with a specific personality, the artificial
creature is required to have a proper genome that leads to the generation of plausi-
ble internal states and behaviors. In this regard, a gene masking process is needed
to isolate unnecessary genes. The masking process is divided into I-gene masking
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(I-masking), and B-gene masking (B-masking). I-masking enables EGPP to provide
the artificial creature with reasonable internal states. The I-masking ΘI

m(x
I) for I-

gene vector xI
k , k = 1, 2, . . . , c, is defined as

ΘI
m(x

I) =4mI
1abs(xI

1) mI
2abs(xI

2) . . . mI
c abs(xI

c) 5

where mI
k , k = 1, 2, . . . , c, is an I-masking matrix and abs(xIk) is a resultant vector

after the absolute value of each element is taken. Each element in the I-masking ma-
trix has one of three masking values, −1, 0, or +1, which represent negative masking,
zero masking, and positive masking, respectively. With I-masking, I-genes xI are re-
placed by their masked equivalents. Similarly, B-masking is required such that the
artificial creature may select more appropriate behaviors given a specified internal
state and perception. The B-masking ΘB

m(x
B) for B-gene vector xB

k , k = 1, 2, . . . , c,
is defined as

ΘB
m(x

B) = 4mB
1x

B
1 mB

2x
B
2 . . . mB

c x
B
c 5

where mB
k , k = 1, 2, . . . , c, is a B-masking matrix. In the same manner as I-genes, all

B-genes are replaced by their masked equivalents. Elements of the B-masking matrix
take values either 0 or 1. Zero masking prevents the behavior from being selected,
while positive masking retains the voting values for the behaviors relevant to the per-
ception.

4.5 Perception Scenario

A series of randomly generated perceptions is applied to the artificial creature and
its internal states and behaviors are observed. These internal and external responses
are used to evaluate its genome for a specific personality at every generation. The
perception scenario is designed using stimuli from the environment. The manner in
which the stimuli may be applied is customizable and is formalized as follows: each
step in the perception scenario is characterized by an event. For the user, the event
represents a stimulus applied to the artificial creature. For the creature, it is a per-
ceived event. Based on this formalization, the perception scenario is defined as the
permutation of perceivable information of an artificial creature, for the given percep-
tion scenario time. Ideally, it is desired that the user inputs scenarios in a feedback
fashion, analyzing the response to each input, but this is an intricate and exhaustive
process, requiring extensive analysis on the part of the user, which is inappropriate
for a home-user scenario and hence the randomly generated sequence is utilized.
However, care is taken to ensure that illogically sequenced perception scenarios do
not result, such as the situation where an obstacle must exist prior to the perception
‘SUDDEN_DISAPPEAR’ activating as a possibility. Perception scenario is character-
ized as follows:

(A, Ã, P̃, ts , Ts) ()

where A = �A1 ,A2 , . . . ,Aq	 is the set of all perception groups representing similar
perceived events and q is the number of perception groups. Ã = �Ã1 , Ã2 , . . . , Ãq	,
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for Ãi � Ai(i = 1, . . . , q), which is used in a scenario for which a user does not
wish to or cannot feasibly expose the artificial creature to a complete set of stimuli.
P̃ = �p̃1 , p̃2 , . . . , p̃q	 is the set of the generation probabilities for the different percepts
associatedwith each Ãi � Ã. Events occur at discrete time intervalswith randomvari-
able time step, ts � [tmin, tmax], where the minimum of tmin is the sampling time, ΔT.
Ts is the duration length of the scenario, and is called the perception scenario time.

Rity can perceive 47 perceptions and a set of all the perception groups in Table  is
A = �Apo,Aob ,Abt ,Aph,Aso ,Aof ,Aba	, where Apo is the perception group related to
posture, Aob obstacle, Abt brightness/temperature, Aph pat/hit, Aso sound, and Aof
object/face, and Aba battery. Perception scenarios are generated through the GUI
as shown in Fig. , where the user can set both the scenario time (Ts) and voting
values for the generation probabilities of perception groups. Once ‘Start’ button is
pressed, a scenario is automatically generated as shown on the right side of the figure,
where the number represents the event occurrence time. The parameters, tmin = 0.1
s, tmax = 10 s, Ts = 500 s, Ã = �Apo,Aob ,Abt ,Aph ,Aso ,Aof ,Aba	 and voting values
�ṽ1 , ṽ2 , . . . , ṽq	 = �0.5, 0.5, 0.5, 0.7, 0.5, 0.7, 0.5	 were used. The set of generation

probabilities P̃ can be calculated by p̃i = ṽi�
q
"
r=1
(ṽr). Figure  shows its outcomes.

Perception scenario  (Fig. ) is used for evaluating genomes and perception scen-
ario  (Fig. ) is for verifying the selected genome by EGPP.The upper parts of Fig. 
show timing diagrams of the 47 types of perceptions for 500 s. The lower parts show
histograms representing the frequency of each perception.

4.6 Fitness Function

Considering the diverse range of personalities, a well-designed fitness function is
needed to evaluate genomes for a specific personality. The evaluation procedure has
the following three steps:

• Step : A genome is imported to the artificial creature.
• Step : A series of random stimuli in a perception scenario is applied to the arti-

ficial creature in a virtual environment.
• Step : A fitness is calculated by evaluating its internal states and behaviors.

Table 2 List of perceptions and their groups

Group Perception Group Perception Group Perception Group Perception
Posture POWER_ON Bright- SUDDEN_LIGHTNESS Pat/Hit HEAD_PATTED Object/ OBJECT_DETECTED
(Apo) SHAKEN ness/ SUDDEN_DARKNESS (Aph) HEAD_HITTED Face OBJECT_CLOSE

DANDLED Tempe- GLARING BODY_PATTED (Aof ) OBJECT_DETECTED
SHOCKED rature NORMAL BODY_HITTED OBJECT_CLOSE
LIFTED (Abt) DARK Sound SOUND_NOISY OBJECT_DETECTED
FALLEN VERY_DARK (Aso) SOUND_NORMAL OBJECT_CLOSE
CORRECT_POSTURE MILD SOUND_CALM FACE_DETECTED

Obstacle OBSTACLE_EXIST HOT SUDDEN_LOUD FACE_CLOSE
(Aob) DISTANCE_NEAR COLD SUDDEN_CALM Battery BATTERY_LOW

DISTANCE_MID VOICE (Aba) BATTERY_NORMAL
DISTANCE_FAR VOICE_GOOD BATTERY_FULL
SUDDEN_APPEAR VOICE_BAD
SUDDEN_DISAPPEAR VOICE_HELLO
CLIFF _OR_BYE
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Fig. 4 Generated perception scenarios for  perceptions and  perception groups. a) Percep-
tion scenario  for evaluation of genomes. b) Perception scenario  for verification of the se-
lected genome

In Step , dependent on the imported genome, it generates internal states and
relevant behaviors in response to stimuli. The fitness function can be designed by
using the difference between the user’s preference and the following two evalua-
tion functions: one to evaluate internal states and the other to evaluate behaviors
(see ()).
Evaluation function for internal states
Internal state vector, I(t,G) = [α1(t,G), . . . , αc(t,G)]T is defined at time t for
a genome G, where c is a number of internal states.

Rity hasM(t,G) = [m1(t,G), . . . , m6(t,G)]T = [α1(t,G), . . . , α6(t,G)]T in
((),H(t,G) = [h7(t,G), . . . , h9(t,G)]T = [α7(t,G), . . . , α9(t,G)]T , and
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Fig. 5 Perception scenario time setting and perception scenario generation via GUI

E(t,G) = [e10(t,G), . . . , e14(t,G)]T = [α10(t,G), . . . , α14(t,G)]T from (), ()
and (). For fitness, one evaluates the possession ratio of each internal state in re-
sponse to stimuli in a perception scenario for perception scenario time Ts . The pos-
session ratio of the kth (k = 1, 2, . . . , c) internal state for Ts , ΦI

pk(Ts ,G), is defined as

ΦI
pk(Ts ,G) =

�

�

Ts�ΔT

!
j=1

αk(Ts ,G)
�

�
�ΦI

p(Ts ,G), ()

where ΦI
p(Ts ,G) is the sum of the possession value of all internal states defined by

ΦI
p(Ts ,G) =

Ts�ΔT

!
j=1

c

!
k=1

αk(Ts ,G). (().a)

Evaluation function for behaviors
Given a set of behavior groups Bc

T = [β1 , β2 , . . . , βc], one examines the frequency
of each behavior group (Table ) for Ts . The frequency of the kth behavior group for
Ts is defined as

ΦBG
f k (Ts ,G) = f

BG
k (Ts ,G)�nBG , ()
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where the data set consists of nBG = "c
k=1 f BGk (Ts ,G) observations, with the be-

havior group βk appearing f BGk (Ts ,G) times for k (k = 1, 2, . . . , c). As shown in
Table , the behavior groups are classified on the basis of how each behavior group is

Table 3 List of state related behavior groups

Related internal mode Index Internal state Internal state related behavior group
Motivation  Curiosity approach, observe, touch, chase, search_looking_around

 Intimacy touch, eyecontact, glad, approach, show_me_face, hug_me,
lean, chase, once_again, handshake

 Monotony shake_arm_and_leg, snooze, look_around, stretch
 Avoidance turn_and_ignore, look_away, move_backward, cover_eyes,

kick, roar, head_down, hide_head, resist
 Greed look_around, search_looking_around, search_wandering,

collect, piss, roar, chase
 Control show_me_face, hug_me, give_me_ball, once_again,

complain_for_food
Homeostasis  Fatigue refuse, rest, crouch, recharge, faint, head_down

 Drowsiness yawn, sleep, snooze, lie, rest
 Hunger complain_for_food, rumble, search_wandering

Emotion  Happiness hurrah, dance_with_arms, mouth_open, shake_arms
 Sadness hit_ground, head_down, be_ill, hug_me, weep
 Anger shake_head, hit_head, roar, turn_and_ignore, look_away
 Fear resist, hide_head, tremble, faint, move_backward
 Neutral stop, lie, look_around

Fig. 6 Users’ preference setting for agreeable personality
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closely related to each internal state, where each behavior has the advantage of good
consistency with each internal state.

The user sets the relevant preference values ψIk and ψ
B
k in () for Rity’s personality

according to his/her preference (Table ) through the GUI (Fig. ), where each pref-
erence value is assigned between 0 and 1. Since the user’s preference corresponds to
the desired personality, EGPP finds the I-genes and B-genes to meet the preference
by utilizing the preference in the fitness function. Agreeable personality model in
Table  is set by the GUI in Fig. . If one clicks either the ‘I-Mask’ or ‘B-Mask’ button
in Fig. , the gene masking process can be implemented.

Using () and (), the fitness function is defined as

Φ(Ts ,G) = N − ρ
I
J
J
J
J
K

c

!
k=1
(1�ψ̃Ik)�ψ̃

I
k −Φ

I
pk(Ts ,G)� +

c

!
k=1
(1�ψ̃Bk )�ψ̃

B
k −Φ

BG
f k (Ts ,G)�

P
Q
Q
Q
Q
R
()

with the normalized preference value, ψIk and ψ
B
k , defined as

ψ̃Ik = ψ
I
k�

c
!
l=1

ψIl , ψ̃Bk = ψ
B
k �

c
!
l=1
ψBl (.a)

where ΦI
pk(Ts ,G), is the possession ratios of the kth internal state, ΦBG

f k (Ts ,G) is
the frequency of the kth behavior group inBc. N is a constant number and ρ a scale
factor for the difference terms.

4.7 Genetic Operators

EGPP uses two genetic operators for crossover and mutation. Crossover opera-
tor Θχ is divided into the F-crossover operator, ΘF

χ , I-crossover operator, ΘI
χ , and

B-crossover operator, ΘB
χ . These operations are performed only between parental

genes of the same kind, length, and chromosomal order. For example, there are two
parental artificial genomesGt

1 andGt
2. In the case of ΘF

χ ,xFt
1k can crossover only with

xFt
2k of the same F-genes. Based on this policy, two kinds of crossover are possible. In

the first method, ΘF
χ , ΘI

χ and ΘB
χ operate together between two arbitrary parents at

crossover rate pχ , where two offspring are generated from two parents. In the second
method, ΘF

χ , ΘI
χ and ΘB

χ operate independently between two arbitrary parents at
three different kinds of gene-dependent crossover rates pFχ , pIχ and pBχ . Consequently
two offspring are generated from six parents. In the same manner, the mutation op-
erator Θμ is divided into operators ΘF

μ , ΘI
μ , and ΘB

μ and the two methods outlined
above can be applied.

Although this section shows only two kinds of crossover andmutation operators,
as examples, it should be noted that various crossover and mutation operators can be
developed for the genomes of D representation.
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5 Experiments

The agreeable and antagonistic personality models were chosen to validate the pro-
posed EGPP and the fittest genome obtained was implanted into Rity to verify the
feasibility of EGPP. The parameter settings of EGPP were applied equally in both
cases of agreeable and antagonistic personalities. The population size was 20 and the
number of generations was 1000. Crossover andmutation operate independently be-
tween two arbitrary parents at three different kinds of gene-dependent crossover and
mutation rates. The crossover and mutation rates for the I- and B-genes were set to
(0.1, 0.05) and (0.2, 0.05), respectively. F-crossover and F-mutation rates were set to
0.0 to keep the assigned fundamental characteristics.

Fig. 7 Evolutionary generation of the agreeable genome by EGPP. a) An initial genome. b)
Evolution process by EGPP. c) Final genome
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5.1 Generating Genomes by EGPP

Figure  shows the evolution process for generating a genome for an agreeable
personality. The initial genomes were generated using the process as outlined in
Sect. .. One of them is shown in Fig. , which has chromosomes for intimacy
(C2) and happiness (C10) with strong I- and B-genes while chromosomes for avoid-
ance (C4), greed (C5), desire to control (C6), anger (C12) and fear (C13) have weak
I-genes and B-genes. Despite providing intuitive bounds for random initialization,
these settings did not always guarantee a viable set of genomes for an agreeable per-
sonality in a complex test environment.Theydo, however, provide a heuristic starting
point for optimizing the genome for a more consistent personality with EGPP. The

Fig. 8 Evolutionary generation of the antagonistic genome by EGPP. a) An initial genomes. b)
Evolution process by EGPP. c) Final genome
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progress of the EGPP is shown in Fig. , where a steady improvement in performance
is quantitatively demonstrated. Figure  illustrates the genome after EGPP, indicat-
ing significant changes to the genome’s structure. Similarly, Fig.  illustrates the same
process of EGPP for genomes that were evolved for an antagonistic personality. The
optimized genomes for the agreeable and antagonistic personalities can be seen in
Table .

The normalized preference column in the table indicates the normalized user as-
signed preference. A feature which can be seen, however, is the discrepancy between
the normalized value and that from the optimized genome. This discrepancy exists
for a number of reasons, such as complexity introduced by the large parameter set,
the constraints enforced by the masking process, and the dependency on the scen-
ario chosen for optimization. Thus, despite an exact match being near impossible
due to the random nature of these factors, the algorithm generates values which are
nevertheless close to the normalized values.

Table 4 Optimized genomes for the agreeable and antagonistic personalities

Agreeable personality
Internal State Behavior

Group State k Assigned Normalized Optimized Assigned Normalized Optimized
preference preference genome preference preference genome

Curiosity 1 0.5 0.098 0.165 0.5 0.098 0.170
Intimacy 2 0.8 0.157 0.166 0.8 0.157 0.207

Motivation Monotony 3 0.5 0.098 0.100 0.5 0.098 0.148
Avoidance 4 0.2 0.039 0.031 0.2 0.039 0.044
Greed 5 0.2 0.039 0.057 0.2 0.039 0.059
Control 6 0.1 0.020 0.000 0.1 0.020 0.022
Fatigue 7 0.2 0.039 0.056 0.2 0.039 0.030

Homeostasis Drowsiness 8 0.2 0.039 0.043 0.2 0.039 0.037
Hunger 9 0.2 0.039 0.042 0.2 0.039 0.037
Happiness 10 0.8 0.157 0.066 0.8 0.157 0.237
Sadness 11 0.5 0.098 0.122 0.5 0.098 0.000

Emotion Anger 12 0.2 0.039 0.043 0.2 0.039 0.007
Fear 13 0.2 0.039 0.100 0.2 0.039 0.000
Neutral 14 0.5 0.098 0.007 0.5 0.098 0.001

Antagonistic personality
Group State k Assigned Normalized Optimized Assigned Normalized Optimized

preference preference genome preference preference genome
Curiosity 1 0.2 0.039 0.032 0.2 0.039 0.041
Intimacy 2 0.2 0.039 0.001 0.2 0.039 0.052

Motivation Monotony 3 0.5 0.098 0.030 0.5 0.098 0.047
Avoidance 4 0.8 0.157 0.179 0.8 0.157 0.337
Greed 5 0.8 0.157 0.199 0.8 0.157 0.047
Control 6 0.7 0.137 0.086 0.7 0.137 0.012
Fatigue 7 0.2 0.039 0.071 0.2 0.039 0.029

Homeostasis Drowsiness 8 0.2 0.039 0.000 0.2 0.039 0.035
Hunger 9 0.2 0.039 0.061 0.2 0.039 0.006
Happiness 10 0.2 0.039 0.019 0.2 0.039 0.029
Sadness 11 0.5 0.098 0.079 0.5 0.098 0.076

Emotion Anger 12 0.8 0.157 0.138 0.8 0.157 0.169
Fear 13 0.8 0.157 0.106 0.8 0.157 0.122
Neutral 14 0.2 0.039 0.000 0.2 0.039 0.000
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5.2 Verification of Evolved Genomes

This section verifies the effectiveness of EGPP by implanting the agreeable genome A
(Fig. (c)) and the antagonistic genome B (Fig. (c)) into two artificial creatures, Rity
A and Rity B, respectively, and by observing their internal states and behaviors when
perception scenario  (Fig. (b)) is applied to them.The verified results are shown in
Table . It can be seen that, similar to the optimized results, the discrepancy between
the normalized value and that from the evaluated genome, is caused by the large
parameter set and masking process constraints, as mentioned earlier, in addition to
the use of a different perception scenario from that for the optimization process.
Verification on internal state responses

Figures  and  show the experimental results for internal state responses when
the perception scenario  was applied to agreeable Rity A and antagonistic Rity B,

Table 5 Verification of genomes by perception scenario , which is shown in Fig.  for verifi-
cation of the optimized genome)

Agreeable personality
Group State k Assigned Normalized Evaluated Assigned Normalized Evaluated

preference preference genome preference preference genome
Curiosity 1 0.5 0.098 0.154 0.5 0.098 0.172
Intimacy 2 0.8 0.157 0.174 0.8 0.157 0.191

Motivation Monotony 3 0.5 0.098 0.049 0.5 0.098 0.135
Avoidance 4 0.2 0.039 0.043 0.2 0.039 0.019
Greed 5 0.2 0.039 0.061 0.2 0.039 0.088
Control 6 0.1 0.020 0.002 0.1 0.020 0.000
Fatigue 7 0.2 0.039 0.083 0.2 0.039 0.023

Homeostasis Drowsiness 8 0.2 0.039 0.022 0.2 0.039 0.019
Hunger 9 0.2 0.039 0.062 0.2 0.039 0.019
Happiness 10 0.8 0.157 0.120 0.8 0.157 0.270
Sadness 11 0.5 0.098 0.070 0.5 0.098 0.051

Emotion Anger 12 0.2 0.039 0.029 0.2 0.039 0.000
Fear 13 0.2 0.039 0.053 0.2 0.039 0.000
Neutral 14 0.5 0.098 0.078 0.5 0.098 0.014

Antagonistic personality
Group State k Assigned Normalized Optimized Assigned Normalized Optimized

preference preference genome preference preference genome
Curiosity 1 0.2 0.039 0.071 0.2 0.039 0.060
Intimacy 2 0.2 0.039 0.002 0.2 0.039 0.066

Motivation Monotony 3 0.5 0.098 0.029 0.5 0.098 0.086
Avoidance 4 0.8 0.157 0.173 0.8 0.157 0.238
Greed 5 0.8 0.157 0.186 0.8 0.157 0.113
Control 6 0.7 0.137 0.051 0.7 0.137 0.013
Fatigue 7 0.2 0.039 0.010 0.2 0.039 0.046

Homeostasis Drowsiness 8 0.2 0.039 0.000 0.2 0.039 0.073
Hunger 9 0.2 0.039 0.070 0.2 0.039 0.000
Happiness 10 0.2 0.039 0.003 0.2 0.039 0.040
Sadness 11 0.5 0.098 0.074 0.5 0.098 0.046

Emotion Anger 12 0.8 0.157 0.133 0.8 0.157 0.113
Fear 13 0.8 0.157 0.134 0.8 0.157 0.106
Neutral 14 0.2 0.039 0.033 0.2 0.039 0.000
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Fig. 9 Internal state responses of agreeable Rity A to the perception scenario . a) Motivation
response. b) Emotion response. c) Normalized possession ratio histogram
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Fig. 10 Internal state responses of antagonistic Rity B to the perception scenario . a) Motivat-
ion response. b) Emotion response. c) Normalized possession ratio histogram
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respectively. Figure  shows that states of curiosity and intimacy have wider distri-
bution than those of avoidance, greed, and desire to control in motivation for the
perception scenario time of 500 s. Figure (b) shows that happiness state has the
widest distribution among emotion states. Figure (c) shows a histogram of normal-
ized possession ratios calculated in () for the perception scenario .The horizontal
axis represents the index of 14 internal states and the vertical axis represents the nor-
malized possession ratios of internal states.The 1st, 2nd, and 10th internal states have
high possession ratios, which indicate strong states of curiosity and intimacy in mo-
tivation and of happiness in emotion, while the 4th, 5th, 6th, 12th and 13th internal
states have low possession ratios which indicate weak states of avoidance, greed, and
desire to control in motivation, and of anger and fear in emotion.

In contrast, Fig. (a) shows that states of avoidance and greed have wider dis-
tribution than those of curiosity and intimacy in motivation for the same percep-
tion scenario . Figure (b) shows that states of sadness, anger, and fear have wider
distribution than happiness state in emotion. In Fig. (c), ‘-Avoidance’, ‘-Greed’,

Fig. 11 External behavior responses of agreeable Rity A to the perception scenario . a) Behav-
ior response. b) Facial expression response. c) Frequency of behavior groups
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Fig. 12 External behavior responses of antagonistic Rity B to the perception scenario . a) Be-
havior response. b) Facial expression response. c) Frequency of behavior groups

‘-Anger’, and ‘-Fear’ have high possession ratios, while ‘-Curiosity’, ‘-Intimacy’,
‘-Monotony’, ‘-Happiness’, and ‘-Neutral’ have low possession ratios.

Verification of behavior responses Figures  and  show external output responses
of agreeable Rity A and antagonistic Rity B, respectively, for the same perception sce-
nario  used for Figs.  and . All the behaviors are indexed sequentially and the
indexes of five facial expressions, neutral, happiness, sorrow, anger, and fear are set
to 0, 1, 2, 3, and 4. The behavior groups are sequentially indexed based on Table .
Figures (a) and (b) show the behavior responses, where the horizontal axis rep-
resents the perception scenario time and the vertical axis represents output behavior
indexes. In Fig. (b), there are many more facial expressions of happiness than other
kinds of facial expressions. In contrast, in Fig. (b), there are more facial expressions
of sorrow and anger than those of happiness. Figure (c) shows that the frequencies
of the behaviors belonging to the groups such as ‘-Curiosity’, ‘-Intimacy’, and ‘-
Happiness’ are high. In contrast, Fig. (c) shows that the frequencies of the groups
such as ‘-Avoidance’, ‘-Greed’, ‘-Anger’, and ‘-Fear’ are high.
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For both agreeable and antagonistic genomes, plausible artificial creatures, Ritys
were observed for all internal states and behaviors simultaneously for the prescribed
perception scenario. The genomes obtained defined consistent and distinct person-
alities for Ritys. These experimental results show the effectiveness of EGPP as an
evolutionary gene-generative mechanism for the personality desired by the user. At
http://rit.kaist.ac.kr/�ritlab/research/Artificial_Creatures/agreeable_antagonistic.
wmv, video clips of two Ritys are available.

6 Conclusions

This chapter has presented an overview of the evolutionary process for generating
a genome for an artificial creature with its own personality that resembles its liv-
ing counterpart. This enabled the creation of interactive and believable Sobots for
the ubiquitous robot system.The artificial creature was defined by the genome com-
posed of chromosomes in which genes were devised as the basic building blocks for
representing the personality. Using these building blocks, the evolutionary genera-
tive process enabled an artificial creature to have a personality desired by the user.
The key objective of this process was to generate an artificial creature with a person-
ality that was both complex and feature-rich, but still plausible by human standards
as an intelligent life form.This was demonstrably achieved bymasking processes and
a stochastic voting mechanism for behavior selection. It also outlined evolutionary
procedures that allowed for reproduction through artificial means, completing the
process of design for a fully functional life form. The technique was utilized to im-
plant the evolved genome into a Sobot artificial creature, Rity and then by confirming
its traits in a D virtual world. In the fables of the Arabian Nights, amythical creature,
theGenie, emerged fromwithin amagical lamp, and satisfied all of our desires. Future
systems based on the ubiquitous robot paradigm, are bringing this dream to fruition
through their immense capabilities of context-aware, calm, networked service avail-
able at anytime, anyplace and whenever desired. With the limitless possibilities they
present coupled with the power of evolutionary computation, the artificial evolution
of personality holds great promise to generate believable artificial creatures which
can seamlessly interact with humans and provide them with services.
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Abstract

In recent decades, a novel class of optimization techniques, namely metaheuristics,
has been developed and devoted to the solution of highly combinatorial discrete
problems. The improvements provided by these methods were extended to the con-
tinuous or mixed-integer optimization area. This chapter addresses the problem of
adapting a Genetic Algorithm (GA) to a Mixed Integer Non-linear Programming
(MINLP) problem. The basis of the work is optimal batch plant design, which is of
great interest in the framework of Process Engineering. This study deals with the two
main issues for GAs, i.e. the treatment of continuous variables by specific encod-
ing and efficient constraints handling in GA. Various techniques are tested for both
topics and numerical results show that the use of a mixed real-discrete encoding and
a specific domination-based tournament method is the most appropriate approach.

Key words: Genetic Algorithms, Variable Encoding, Constraint Handling, Batch
Plant Design

1 Introduction

A large range of applications drawn fromProcess Engineering can be expressed as op-
timization problems. This application range consists of examples formulated as pure
continuous problems – for instance the phase equilibrium calculation problem [], as
well as problems involving pure discrete variables – like the discrete job-shop batch
plant design []. Typically, for the former case, difficulties arise from non-linearities,
while they are due to the discontinuous nature of functions and search space, for
the latter. Finally, a great variety of models from the Process Engineering area com-
bine both kinds of problems and involve simultaneously (continuous) operation and
(discrete) decision variables. Design problems are good examples of this complexity
level, such as process network superstructure design problems [] or multiproduct
batch plant design problems [].

Obviously, significant investigation efforts have been carried out to develop effi-
cient and robust optimization methods, initially especially in the Operational Re-
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search and Artificial Intelligence areas, but subsequently within the Process En-
gineering community. Among the diversity of optimization techniques, two main
classes can be distinguished. One consists of deterministic methods, which are based
on a rigorousmathematical study (derivability, continuity...) of the objective function
and of the constraints to ensure an optimum. However, despite their ability to handle
non-linear models, their performances can be strongly affected by non-convexities.
This implies great effort to obtain a proper formulation of the model. Grossmann []
proposes a review of the existing Mixed Integer Non-linear Programming (MINLP)
techniques but it is commonly accepted that these methods might be heavily penal-
ized by the NP-hard nature of the problems, and will then be unable to solve large
size instances of a problem.

So, increasing effort was applied to the development of methods of the second
class, i.e. metaheuristics or stochasticmethods.Theywork by evaluating the objective
function at various points of the search space. These points are chosen using a set of
heuristics combined with the generation of random numbers. Stochastic techniques
do not use any mathematical properties of the functions, so they cannot guaran-
tee to obtain an optimum. Nevertheless, metaheuristics allow the solution of a large
range of problems, particularly when the objective function is computed by a simu-
lator embedded in an outer optimization loop []. Furthermore, despite their com-
putationally greedy nature, they are quite easily adaptable to highly combinatorial
optimization problems. A classification of metaheuristics and a survey of the main
techniques is proposed in [].

This study deals with the treatment of a problem drawn from the Chemical Engi-
neering literature, i.e. optimal design of batch plants usually dedicated to the produc-
tion of chemicals.Themodel, involving both real and integer variables, is solved with
a Genetic Algorithm.This technique has already shown its efficiency for this problem
class, especially when the objective function computation is carried out through the
use of Discrete Event Simulators (DES) [].Then this chapter studies the adaptation
of the Genetic Algorithm to a particular problem and focuses on the twomain issues
inherent to model formulation: constraint handling and variable encoding. The effi-
cient management of these two GA internal procedures is the key to obtaining good
quality results within an acceptable computation time.

This chapter is divided into six sections.Theproblem formulation and themethod-
ology are presented in Section , while Section  is devoted to themodel development
of the Optimal Batch Plant Design problem. Section  describes the Genetic Algo-
rithm implemented throughout the study. Some typical results are then analysed in
Section  and finally, conclusions and perspectives are given in Section .

2 Outline of the Problem

2.1 Outline of Metaheuristics

In the last two decades, major advances were made in the optimization area through
the use of metaheuristics. These methods are defined as a set of fundamental con-
cepts that lead to design heuristics rules dedicated to the solution of an optimization
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problem []. Basically, they can be divided into two classes: neighbourhood meth-
ods and evolutionary algorithms. The former is obviously based on the definition of
neighbourhood notion.

Definition . Considering a set X and a string x = [x1 , x2 , . . . , xn] � X. Let f be an
application that from x leads to y = [y1 , y2 , . . . , yn] � X. Then the neighbourhood
Yx ⊂ X is the set of all possible images y of string x for the application f .

Then, a neighbourhoodmethod typically proceeds by starting with an initial con-
figuration and iteratively replacing the solution by one of its neighbours according
to an appropriate evolution of the objective function. Consequently, neighbourhood
methods differ one from another by the application defining the neighbourhood of
any configuration and by the strategy used to update the current solution.

A great variety of neighbourhood optimization techniques have been proposed,
such as Simulated Annealing (SA, see []), Tabu Search (TS, see []), threshold al-
gorithms [] or GRASP methods [], etc. SA and TS are indeed the most repre-
sentative examples. Simulated Annealing mimics the physical evolution of a solid to
thermal equilibrium, slowly cooling until it reaches its lower energy state. Kirkpatrick
et al. [] studied the analogy between this process and an optimization procedure.
A new state, or solution, is accepted if the cost function decreases or if not, according
to a probability depending on the cost increase and the current temperature.

Tabu Search tackles a group of neighbours of a configuration s and keeps the best
one s’ even if it deteriorates the objective function. Then, a tabu list of visited con-
figurations is created and updated to avoid cycles like s � s′ � s . . . Furthermore,
specific procedures of intensification or diversification allow the search to be con-
centrated on the most promising zones or to be guided towards unexplored regions.

The second class of metaheuristics consists of evolutionary algorithms. They are
based on the principle of natural evolution as stated by Darwin and involve three
essential features: (i) a population of solutions to the considered problem; (ii) a tech-
nique evaluating each individual adaptation ; (iii) an evolution process made up of
operators reproducing elimination of some individuals and creation of new ones
(through crossover or mutation). This leads to an increase in the average quality of
the solutions in the latest computed generation.

The most widely used techniques are Genetic Algorithms (GAs), Evolution-
ary Strategies and Evolutionary Programming. Section  presents in detail the GA
adopted within this investigation. It must be pointed out that a large number of con-
tributions have been published showing how their efficiency can be improved [].
The second technique, commonly said (μ + λ) − ES, generates λ children from μ
parents and a selection step reduces the population to μ individuals for the following
iteration []. Finally, Evolutionary Programming is based on an appropriate coding
of the problem to be solved and on an adapted mutation operator [].

To summarize, as regards metaheuristics performance, their efficiency is gener-
ally balanced by two opposite considerations: on the one hand, their general proce-
dures are powerful enough to search for an optimum without much specific infor-
mation about the problem, i.e. a “black box” context. But the No Free Lunch theory
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shows that no one method can outperform all other mehods on all problems. So,
on the other hand, metaheuristics performance can be improved by integrating par-
ticular knowledge of the problem studied, but this specialization means, of course,
adaptation effort.

2.2 Optimal Batch Plant Design problems

Due to the growing interest in batch operating mode, many studies have dealt with
the batch plant design issue. The problem has been modelled in various forms for
which assumptions are more or less simplistic. Generally, the objective consists in
the minimization of plant investment cost.

Grossmann and Sargent [] proposed a simple posynomial formulation for
multiproduct batch plants. Kocis and Grossmann [] then used the same approach
to validate the good behaviour of a modified version of the Outer Approximation
algorithm. This model involved only batch stages and was subjected to a constraint
on the total production time. Modi and Karimi [] modified this MINLP model by
taking into account, in addition, semi-continuous stages and intermediate finite stor-
age with fixed location. They solved small size examples (up to two products and
eight operating stages) with heuristics. The same model was used again by Patel et
al. [] who treated larger size examples with Simulated Annealing, and by Wang et
al. [] [] [], who tackled successively Genetic Algorithms, Tabu Search and an
Ants Foraging Method. Nevertheless, Ponsich et al. [] showed that for this mixed
continuous and discrete formulation, and independently from the size of the stud-
ied instance, a Branch-and-Bound technique proves to be the most efficient option.
This Mathematical Programming (MP) technique is implemented in the SBB solver,
which is available in the GAMS modelling environment [].

The abovementioned formulations were further improved by taking into account
continuous process variables [] or uncertainties in product demand modelled by
normal probability distributions [] or by fuzzy arithmetic concepts, embedded in
a multiobjective GA []. However, those sophistication levels were not considered
in the framework of the present study.

2.3 Methodology

This chapter is dedicated to the treatment of MINLP problems by a Genetic Algo-
rithm. The case study is a typical engineering problem, involving mixed integer vari-
ables and constraints. Even though the stochastic technique used is initially devoted
to dealing with discrete variables, it was applied also to a large number of either con-
tinuous or mixed integer optimization problems. The crucial issue is the necessary
adaptation effort to integrate the treatment of real variables and the efficient handling
of the constraints.

The basis of this work is several instances of the optimal batch plant design prob-
lem and this investigation aims at testing and evaluating various operating modes of
the GA. As shown in previous work, (deterministic) MP methods proved to be the
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most efficient for the model considered. Thus, the results are compared with the opt-
imal solutions provided by the above mentioned SBB solver. The variables encoding
issue is studied using three different size examples: the first one is a small size ex-
ample but quite difficult to solve to global optimality. The two others are larger size
instances. The constraint handling problem is analysed by tackling amedium size ex-
ample in order to force the Genetic Algorithm to cope with a quite complex problem,
without being restricted by computation time.

3 Optimal Batch Plant Design Problems

Within the Process Engineering framework, batch processes are of growing industrial
importance because of their flexibility and their ability to produce high added-value
products in low volumes.

3.1 Problem Presentation

Basically, batch plants are composed of items operating in a discontinuous way. Each
batch then visits a fixed number of equipment items, as required by a given synthesis
sequence (so-called production recipe). Since a plant is flexible enough to carry out
the production of different products, the units must be cleaned after each batch has
passed into it. In this study, we will only consider multiproduct plants, which means
that all the products follow the same operating steps. Only the operating times may
be different from one recipe to another.

The objective of the Optimal Batch Plant Design (OBPD) problem is tominimize
the investment cost for all items involved in the plant, by optimizing the number and
size of parallel equipment units in each stage. The production requirements of each
product and data related to each item (processing times and cost coefficients) are
specified, as well as a fixed global production time.

3.2 Assumptions

The model formulation for OBPD problems adopted in this chapter is based on
Modi’s approach []. It considers not only treatment in batch stages, which usually
appears in all types of formulation, but also represents semi-continuous units that
are part of the whole process (pumps, heat exchangers...). A semi-continuous unit is
defined as a continuous unit alternating idle times and normal activity periods.

Besides, this formulation takes into accountmid-term intermediate storage tanks.
They are just used to divide the whole process into sub-processes in order to store an
amount of materials corresponding to the difference of each sub-process produc-
tivity. This representation mode confers on the plant better flexibility for numerical
resolution: it prevents the whole production process from being paralysed by one
limiting stage. So, a batch plant is finally represented by a series of batch stages (B),
semi-continuous stages (SC) and storage tanks (T) as shown in Fig. .
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Fig. 1 Typical batch plant and modelling

The model is based on the following assumptions:
(i) Devices used in the same production line cannot be used again by the same

product.
(ii) Production is achieved through a series of single product campaigns.
(iii) Units of the same batch or semi-continuous stage have the same type and size.
(iv) All intermediate tank sizes are finite.
(v) If a storage tank exists between two stages, the operation mode is “Finite Inter-

mediate Storage”. If not, the “Zero-Wait” policy is adopted.
(vi) There is no limitation for utility.
(vii) The cleaning time of the batch items is included in the processing time.
(viii) The size of the items are continuous bounded variables.

3.3 Model Formulation

Themodel considers the synthesis of I products treated in J batch stages and K semi-
continuous stages. Each batch stage consists of mj out-of-phase parallel items of the
same size Vj . Each semi-continuous stage consists of nk out-of-phase parallel items
with the same processing rate Rk (i.e. treatment capacity, measured in volume unit
per time unit). The item sizes (continuous variables) and equipment numbers per
stage (discrete variables) are bounded. The S − 1 storage tanks, with size V�s , divide
the whole process into S sub-processes.

Following the above mentioned notation, a MINLP problem can be formulated,
minimizing the investment cost for all items. This cost is written as an exponential
function of the unit size:

MinCost =
J

!
j=1
mjajV

α j
j +

K

!
k=1

nkbkR
βk
k +

S−1

!
s=1

csV
�γs
s ()

where aj and αj , bk and βk , cs and γs are classical cost coefficients. A com-
plete nomenclature is available in Appendix A. Equation () shows that there is no
fixed cost coefficient for any item. This may be unrealistic and will not tend towards
minimization of the equipment number per stage. Nevertheless, this formulation was
kept unchanged in order to compare our results with those found in the literature (see
Table  in Sect. .).
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This problem is subjected to three kinds of constraints:
(i) Variable bounding:

∀ j � �1, . . . , J	,Vmin � Vj � Vmax ()

∀k � �1, . . . ,K	, Rmin � Rk � Rmax ()

(ii) Time constraint: the total production time for all products must be lower than
a given time horizon H:

H ,
I
!
i=1

Hi =
I
!
i=1

Qi

Prodi
()

where Qi is the demand for product i.

(iii) Constraint on productivities: the global productivity for product i (of the whole
process) is equal to the lowest local productivity (of each sub-process s).

∀i � �1, . . . , I	, Prodi = min
s�S
[Prodlocis] ()

These local productivities are calculated from the following equations:
(a) Local productivities for product i in sub-process s:

∀i � �1, . . . , I	,∀s � �1, . . . , S	,Prodlocis =
Bis
TL
is

()

(b) Limiting cycle time for product i in sub-process s:

∀i � �1, . . . , I	,∀s � �1, . . . , S	, TL
is = max j�Js ,k�Ks[Ti j , θik] ()

where Js and Ks are, respectively, the sets of batch and semi-continuous stages in
sub-process s.

(c) Cycle time for product I in batch stage j:

∀i � �1, . . . , I	,∀ j � �1, . . . , J	, Ti j =
pi j + θik + θi ,k+1

mj
()

where k and k+1 represent the semi-continuous stages before and after batch stage j.
(d) Processing time of product i in batch stage j:

∀i � �1, . . . , I	,∀ j � �1, . . . , J	,∀s � �1, . . . , S	, pi j = p0i j + gi jB
di j
i s ()

(e) Operating time for product i in semi-continuous stage k:

∀i � �1, . . . , I	,∀k � �1, . . . ,K	,∀s � �1, . . . , S	, θik =
BisDik

Rknk
()

(f) Batch size of product i in sub-process s:

∀i � �1, . . . , I	,∀s � �1, . . . , S	, Bis = min j�Js %
Vj

Si j
* ()

(g) Finally, the size of intermediate storage tanks is estimated as the greatest size dif-
ference between the batches treated in two successive sub-processes:

∀s � �1, . . . , s − 1	,V�s = maxi�I[SisProdi(TL
is + T

L
i ,s+1) − θik − θi ,k+1] ()

Then, the aim of the OBPD problems is to find the plant structure that respects the
production requirements within the time horizon while minimizing the economic
criterion. The resulting MINLP problem proves to be non-convex and NP-hard [].
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4 Proposed Genetic Algorithm

The following comments recall the basic principles of the stochastic optimization
technique initiated by Holland [], and then focus on the specific parameters used
in this study.

4.1 General Principles

The principles of GAs rely on the analogy between a population of individuals and
a set of solutions of any optimization problem.The algorithm makes the solution set
evolve towards good quality, or adaptation, and mimics the rules of natural selection
stated by Darwin: the weakest individuals will disappear while the best ones will sur-
vive and be able to reproduce themselves. By way of genetic inheritance, the features
that make these individuals “stronger” will be preserved generation after generation.

The mechanisms implemented in the GAs reproduce this natural behaviour.
Good solutions are reached by creating selection rules, that will state whether the
individuals are adapted or not to the problem considered. Crossover and mutation
operators then contribute to the population evolution in order to obtain, at the end
of the run, a population of good quality solutions. This heuristics set is mixed with
a strong stochastic feature, leading to a compromise between exploration and inten-
sification in the search space, which contributes to GA efficiency.

The algorithm presented in this study is adapted from a very classical implemen-
tation of a GA. A major difficulty for GAs is concerned with parameters tuning. The
quality of this tuning depends strongly on the user’s experience and problem know-
ledge. A sensitivity analysis was performed to set parameters such as population size,
maximal number of computed generations or survival and mutation rates, to an ap-
propriate value.

As mentioned before, two main features of GA implementation are still a chal-
lenge for GA performance: constraint handling and variables encoding. These two
points are presented in the following sub-sections.

4.2 Constraint Handling

Since constraints cannot be easily implemented just by additional equations, as in
MP techniques, their handling is a key-point of GAs. Indeed, an efficient solution
will largely depend on the correct choice of the constraint handling technique, in
terms of both result quality and computation time.

In the framework of the studied problem, the constraint on variable bounds is in-
trinsically considered in the variable encoding while the constraint on productivities
is implemented in the model. So the only constraint to be explicitly handled by the
GA is the time constraint formulated in Eq. (), which imposes the condition that
I products are to be synthesized before a time horizon H.

The most obvious approach would be to lay down the limits of the feasible space
through the elimination of all solutions violating any constraint.Thatmeans that only
feasible solutions should be generated for the initial population. Then, the more se-
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vere the constraints, the more difficult it is to randomly find one feasible solution.
So, the effect of this technique on the computation time is strongly penalizing. Fur-
thermore, the search efficiency would greatly benefit from getting information about
the infeasible space.Then, allowing some infeasible solutions to survive the selection
step should be considered.

This was performed in various alternative constraint handling modes. Thorough
reviews are given in [] and []. The most famous technique is the penalization
of infeasible individuals, which is typically carried out by adding, in the objective
function, a quadratic constraint violation weighted by a penalty factor. This factor
can be either static (i.e. set to a fixed value throughout the whole search), dynamic
(increasing with the generation number), or set by analogy with simulated annealing
(for more details see []). The drawback due to the necessity of tuning at least one
parameter (the penalty factor or its initial value) can be overcome with self-adaptive
penalty approaches [], but is associatedwith high computation costs. Some alterna-
tive options for constraint handling are based on domination concepts, drawn from
multiobjective optimization. They are implemented either within roulette wheel []
or tournament [] selection methods.

According to the investigated literature references, the following methods are
evaluated in this chapter:
• Elimination as a reference.
• Penalization of the feasible individuals objective function as given by:

F = CostFunction + ρ(H −!Hi) ()

where ρ is a penalization factor.H and Hi are respectively the fixed horizon time
and the production time for product i, fromEq. (). A static penalty factor is used
in this study, for implementation simplicity reasons. Obviously, the efficiency of
this technique depends strongly on the value of the ρ factor in the added penal-
ization term. Its value was thus the object of a sensitivity analysis.

• Relaxation of the discrete variables range. By setting the discrete upper bounds
to a greater value, this technique gives an enlargement of the feasible space: min-
imization should, anyway, make the variables remain within their initial bounds.

• Tournament based on domination rules. This method, applied in the selection
step of the GA, relies on domination rules stated in [] and []. Basically, it is
stated that: (i) a feasible individual dominates an infeasible one; (ii) if two indi-
viduals are feasible, the one with the best objective function wins; (iii) if two indi-
viduals are infeasible, the one with the smallest constraint violation wins. These
rules enable the selection of the winners among some randomly chosen com-
petitors. Various combinations of competitors and winners were tested. A special
case of this method, namely single tournament (ST), occurs when the number of
competitors is equal to the population size, while the number of winners is the
survivor number: then, all survivors are determined in one single tournament
realization for each selection step.

Specific selection procedures were implemented according to the above mentioned
techniques. For the elimination, penalization and relaxation techniques, the selection
is performed using Goldberg’s roulette wheel [].This procedure implies evaluation
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of the adaptation or strength of each individual. This is computed as being the dif-
ference between the highest value of the objective function in the current population
and that of the considered individual i� strengthi = fmax − fi . This method shows the
advantage of being adapted to GA operation, i.e. maximizing the criterion. The last
constraint handling method is applied in the selection step itself, which is carried out
by tournament.

4.3 Variable Encoding

Theway the variables are encoded strongly influencesGAs efficiency. Inwhat follows,
three encoding techniques, which show increasing adaptation to the continuous con-
text but share some general features, are presented. The array representing the com-
plete set of all variables is called a chromosome. It is composed of genes, each one
encoding a variable by means of one or several locus. A difference will be made be-
tween genes encoding continuous variables from those encoding discrete ones. Since
the formers are bounded, they can be written in reduced form, like a real number α
bounded within  and . Each integer variable is coded directly in a single-locus gene,
keeping it unchanged.

The various encoding techniques differ one from another in the way the continu-
ous variables are represented, and by the gene location throughout the chromosome.

Rough Discrete Coding The first encoding method tested consists in discretizing the
continuous variables, i.e. the above mentioned α. According to the required preci-
sion, a given number of decimals of α is coded. This will logically have an effect
on the string length, and consequently on the problem size. The so-called weight
box [] was used in this study (Fig. ): each decimal is coded by four bits b1, b2, b3,
b4, weighting respectively , , , . As an example, the value of decimal d of α is given
by the following expression:

d = b1 ċ 1 + b2 ċ 2 + b3 ċ 3 + b4 ċ 3 ()

Fig. 2 Coding example with the weight box
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Thismethod enables one to prevent bias since the sum of all weights is lower than
ten. Also, the duplication of threes in the weighted box means that there exist vari-
ous ways to encode the same number. This means that the probabilities of selecting
a given number are not all equal. Concerning the variable position, all continuous
variables are located in the first part of the string, while the discrete genes are posi-
tioned at the end. The resulting configuration of a chromosome is shown in Fig. ,
for a small size example.

Obviously, the crossover and mutation operators are to be adapted to the coding
configuration. The crossover is implemented by a single cut-point procedure, but two
distinct mutation operatorsmust be used: (i)mutation by reversion of the locus value
on the continuous part of the string; (ii) mutation by subtraction of one unit of a bit
value on the discrete part (when possible). The latter technique is not a symmetric
mutation operator, thus it cannot prevent the algorithm from being trapped in some
local optimum. However, it proved to lead efficiently towards minimization.

Crossed discrete coding The discretization of the continuous variables is unchanged
with regard to the previous case, i.e. with the weight box method. The two meth-
ods only differ by the variables location. This change is suggested by the respective
size of continuous and discrete parts of the chromosome. Indeed, because of the re-
quired precision for continuous variables, the former is much larger than the latter
(in our case, the ratio equals  to ). The crossover operator with a single cut-point
procedure finds it very difficult to act on the discrete variables, and, consequently, to
allow correct exploration of the search space.

In order to deal with this problem, the continuous and discrete variables were
mixed up inside the string: since each processing stage induces one continuous and
one discrete variable (respectively the size and number of items), the variables are
encoded respecting the order of the operating stages in the recipe, as shown in Fig. 
for the same illustrative example.

Fig. 3 Chromosome configuration, coding 
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Fig. 4 Chromosome configuration, coding 

Obviously, this new encoding method strengthens the probability that discrete
genes may be involved in the one cut-point crossover process. However, due to the
size difference between continuous and integer genes, there is still much more op-
portunity for the former to be directly involved in crossover.

Mixed real-discrete coding The last coding method seems to be the best suited to the
nature of the variables. The reduced form α of continuous variables is coded dir-
ectly on a real-value locus while, as in previous cases, the discrete variables are still
kept unchanged for their coding.Therefore, both continuous and discrete genes have
a one-locus size and occupy well-distributed lengths inside the chromosome (Fig. ).
A mixed real-discrete chromosome is obtained, which will require specific genetic
operators.

Fig. 5 Chromosome configuration, coding 
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First, the crossover methods applied in real-coded GAs work on each gene and
not on the global structure of the chromosome.The simplest method relies on arith-
metical combinations of parent genes, such as is presented in the following equations:

y(1)k = λx(1)k + (1 − λ)x(2)k ()

y(1)k = (1 − λ)x(1)k + λx(2)k ()

where x(1)k and x(2)k are genes k of both parents and y(1)k and y(2)k are those of the re-
sulting children. λ is a fixed parameter within the range  to . Then, different proce-
dures are implemented according to themethod of determining the λ parameter [].
The chosen technique is a simulated binary crossover (SBX), proposed in []. The
method consists in generating a probability distribution around parent solutions to
create two offspring.

This probability distribution is chosen in order to mimic single-point crossover
behaviour in binary coded GAs, and involves the following two features:

• the mean decoded parameter value of two parents strings is invariant among the
resulting children strings;

• if the crossover is applied between two children strings at the same cross site as
used to create the children strings, the same parents strings will result.

This feature generates higher probabilities of creating an offspring close to the
parents than away from them, as illustrated in Fig. .Theprocedure for the generation
of two children solutions from two parents solutions is fully explained in []. Note
that this crossover procedure is carried out for each locus of the chromosome and
as a consequence, the arrangement of the continuous and discrete genes along the
string does not matter. However, even though SBX crossover does not induce any
problem for real variables, it may lead to real values for the discrete genes of the
resulting offspring. So, for the latter case, these real values were truncated in order to
keep only their integer part.

Fig. 6 Probability distribution for the location of an offspring, SBX crossover
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With respect tomutation, on the one hand, themethod corresponding to discrete
variables was kept unchanged from the previous cases. On the other hand, for real-
coded genes, an inventory of the variety of techniques is proposed in [] or [].
They usually rely on noise added to the initial muted gene value, according to a spe-
cific probability distribution. For the technique used in this study, a uniform proba-
bility distribution was chosen.

5 Numerical Results and Interpretation

In this section, the two main issues, i.e. variables encoding and constraint handling,
are treated on different size instances of Optimal Batch Plant Design problems.

5.1 Variable Encoding

The above mentioned procedures for variable encoding were tested on three ex-
amples. Problem  is a quite small size example. The plant has to synthesize three
products and comprises four batch stages, six semi-continuous stages, and one stor-
age tank. Thus, the problem involves  continuous and  integer optimization vari-
ables. It was previously studied with various techniques as shown in Table , which
highlights the fact that mathematical programming locates the best solution, for
which optimality is proved.

Despite its small size, this example turned out to be difficult to solve to optimality
since some of the stochastic techniques mentioned became trapped in a local opti-
mum, showing a set of discrete values different from that of the optimal solution. The
optimal values of the discrete variables are actually mj = �1, 2, 2, 1	 parallel items for
batch stages, while those of the local optimum are mj = �1, 3, 3, 1	.

The two other examples are larger size instances of batch plants, both manufac-
turing three products. Problems  and  contain, respectively  and  batch stages,
 and  semi-continuous stages and  and  sub-processes. They were also solved
to optimality by the SBB solver in this study.

The parameters chosen for the Genetic Algorithm were the following: survival
(respectively mutation) rate equal to 40% (resp. 30%). The maximum generation
number and the population size depend on the complexity of the example. Concern-
ing constraint handling, intuitive choices were adopted: elimination was chosen for
problem  due to its small size (not expensive in terms of computation time). For the

Table 1 Typical solutions obtained by various methods

Reference Optimization method Best solution
Patel et al. [] Simulated Annealing 368,883
Wang et al. [] GA 362,130
Wang et al. [] Tabu Search 362,817
Wang and Xin [] Ants Foraging Method 368,858
Ponsich et al. [] Math. Programming 356,610
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two larger examples, the single tournamentmethodwas selected. Table  summarizes
the main features of each problem.

The results were analysed in terms of quality and computation time.The number
of function calls could also be studied, but the time criterion appeared to be more
significant when checking the influence of the variable encoding methods. The CPU
time was measured on a Compaq Workstation W.

Quality is evaluated, of course, by the distance between the best found solution
and the optimal value. Since GA is a stochastic method, its results have to be analysed
also in terms of repeatability. So, for each test, theGAwas run  times.The criterion
for repeatability evaluation is the dispersion of the runs around the GA best solution
F�GA. The 2%-dispersion or 5%-dispersion are then defined as the percentage of runs
providing a result lying, respectively, in the range [F�GA , F

�

GA+2%] or [F
�

GA, F
�

GA+5%].
The results for problem  are presented in Table . Coding ,  and  represent

respectively rough discrete, crossed discrete and mixed real-discrete encoding tech-
niques. Clearly, the solution obtained with the mixed real-coding ismuch better than
the others: indeed, the optimal solution previously determined by the SBB solver is
almost exactly located. GA with coding  stays trapped in a local optimum and was
not able to find the set of discrete variables corresponding to the global optimum.
Although it finds a slightly lower solution, GA with coding  does not show much
more efficiency. The 2% and 5%-dispersions seem to be superior for the two first en-
coding techniques but this trend is due to the high quality of the best solution found
with coding .

The difference between relative and absolute result quality is highlighted by the
previous remark. A run set might show very good 2% and 5%-dispersions, if the
best result is far from the optimum, giving poor global quality of the runs. On the
other hand, a run set with lower dispersions but a better final result may be better
performing.This remark is illustrated in Fig. , in which case  shows a better relative
quality than case , which is characterized by a better absolute quality.

Table 2 Characteristics of the problems and solution by GA

Problem  Problem  Problem 
Cont./disc. variables / / /
Optimum 356,610 766,031 1,925,888
GA Parameters
Population size   
Generations number   
Const. Handling Elim. Single Tour. Single Tour.

Table 3 Comparison of variables encoding for Problem 

Coding  Coding  Coding 
GA best solution 371,957 369,774 356,939
Gap to optimum (%) 4.30 3.69 0.09
%-dispersion 68 67 1
%-dispersion 100 98 79
CPU time (s) 3 3 1
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Fig. 7 Example of absolute and relative quality of numerical results

Thus, by considering 5%-dispersion with the optimal solution as a reference (this
means calculating an absolute quality), the value is equal to 50%, 48% and 77%, for
codings ,  and  respectively. This clearly highlights the good global quality of the
GA runs performed with coding .

The computation time is not significant on such a small example. The number
of function evaluations is around 5.5 
104 for all problems. The population size and
generations number are both equal to , which would mean 4 
104 evaluations
per run, this shows that more than 25% of the search is spent in randomly looking
for an initial population of feasible solutions. This small size but complex problem
demonstrates the superiority of mixed real-discrete coding.

The results for problems  and  are presented in Table . It can be observed that
the three coding methods find results very close to the optimum. With regard to
dispersion evolution, Figure  shows the increasing superiority of coding  from ex-
ample  to example .This behaviour does not seem useful for such simple examples,
since the final solutions are quite similar, but it may be interesting for more severely
constrained problems, for which the feasible space is reduced: it might be assumed
that better solutions could be found, or at least found more easily. This would then
require the use of large population sizes and generation numbers and consequently,
a lower computation time.

For codings  and , the quality of all the runs can be related to the percentage
of feasible solutions in the last generation and to the number of failures of the GA
runs. It is considered that a GA run fails when no feasible solution is found during
the whole search. It is, however, clear that this failure number compensates slightly

Table 4 Comparison of variables encoding for Problems  and 

Problem  Problem 
Cod.  Cod.  Cod.  Cod.  Cod.  Cod. 

GA best solution 770,837 771,854 767,788 1,986,950 1,997,768 1,975,027
Gap to optimum (%) 0.63 0.76 0.23 3.17 3.73 2.55
% feas. solutions (end search) 65 67 54 41 59 52
% failures 0 0 0 37 10 0
CPU time (s.) 17 17 3 126 126 22



 Numerical Results and Interpretation 

Fig. 8 Dispersion evolution for the three problems with different coding methods

the dispersion fall for encoding  and , since the percentage of runs finding a result
close to the best found solution is based on the total number of runs and not on the
number of nonfailed runs.

Note that for examples  and , coding  performs more or less as coding . With
increasing problem size, the difficulty of acting on discrete variables – which are lo-
cated at the bottom of the chromosome in coding  – increases but there is no great
difference between the results provided by the two encoding methods. Only the dis-
persions seem to slightly favour coding  for Problem .

Finally, the comparison criterion based onCPU timehighlights coding  perform-
ance, since a run of this GA version is six times quicker than coding  or . Thus,
regarding variable encoding selection, numerical results prove the superiority of the
mixed real-discrete encoding method, and this will be used in the following section.

5.2 Constraint Handling

The constraint handling techniques described in Sect.  were tested on problem .

Elimination of infeasible individuals The results in Table  present trends for GA with
the elimination technique. These can be seen as a reference in order to evaluate the
performance of different constraint handling methods: they show very good quality
in terms of both distance to the optimum and dispersion of the runs. However, this
technique performs less well in terms of computation time: this could cause a bottle-
neck in applications that require lengthy computations for the objective function.

Comparison with the behaviour of other techniques that do not need a feasible
initial population, like tournament or penalization, highlights the fact that the GA

Table 5 Results for elimination technique

GA best solution 767,182
Gap to optimum (%) 0.15
2%-dispersion 95
5%-dispersion 100
Function evaluation no. .2.346 �105

CPU time (s) 56
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with the eliminationmethod spendsmost of the computing time randomly searching
for feasible solutions. Indeed, for a  generation run, involving a population of 
individuals, the theoretical function evaluation number is 2 
105, but it turns out to
be approximately 2.35
106. So, it can be deduced that less than 10% of the computing
time is used for the GA normal sequence while the remainder is devoted to the initial
population generation. For all the other techniques, the computation time is around
six seconds.

Penalizationof Infeasible Individuals This studywas carried out for different values of the
penalization factor ρ. The results presented in Table  underline the logical results
of the method. On the one hand, for small values of ρ, priority is assigned to the
minimization of the economic term while the time constraint is severely violated.
The best solution found is then often infeasible. On the other hand, for higher values
of the penalization factor, the result is feasible while the dispersion and optimality
gap criteria remain satisfied.

Finally, a compromise solution can be reached with intermediate values of ρ. By
giving the same weight to the time constraint and to minimization of the investment
cost, the global performances can be improved with solutions slightly exceeding the
time horizon. For all cases, the number of feasible solutions remains quite low.

Relaxation of discrete upper bounds In this section, the upper bound on discrete vari-
ables, i.e. the maximum number of parallel items per stage, is doubled and set to six.
As shown in Table , the best result is similar to that previously obtained with the
elimination technique. The dispersions fall with regard to the elimination technique
but remain acceptable. The ratio of feasible solutions at the end of the search proves
the good behaviour of GA, whichmaintains the discrete variables within their initial

Table 6 Results for penalization technique

ρ factor 100 10 0.1
GA best solution 769,956 766,520 592,032
Gap to optimum (%) 0.51 0.06 −22.71
Constraint violation (%) 0 0.64 37.4
%-dispersion 44 54 68
%-dispersion 85 89 96
% feas. solutions (end search) 16 3 0

Table 7 Results for relaxation technique

GA best solution 767,361
Gap to optimum (%) 0.17
2%-dispersion 58
5%-dispersion 95
% feas. solutions (end search) 53
Function evaluation no. .2.196 �105

CPU time (s.) 7
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bounds. Moreover, the CPU time is considerably reduced with regard to the elimi-
nation technique, showing the efficiency of relaxation to avoid the wasted time spent
in generating the initial solution. Indeed, the function evaluation number is almost
equal to the standard number generation number ċ population size.

Thus, the discrete upper bounds relaxation really appears to be a suitable tech-
nique for constraint handling. For larger size problems, the issue is how to determine
the order of magnitude of the upper bound relaxation. On the one hand, the relax-
ation should be sufficient to easily create the initial population. On the other hand,
too high an increase would cancel the necessary pressure that pushes the individu-
als towards the initial discrete feasible space, i.e. that leads to minimization of the
parallel item number.

Domination Based Tournament This method was applied to various combinations of
competitors Ncomp and survivors Nsurv, referred as (Ncomp, Nsurv)-tournaments
in the following, except for the single tournament technique (ST). The tested com-
binations and their corresponding results are shown in Table . For all cases, the
computation time is equal to  seconds, which is almost ten times faster than the
elimination technique.

The best results are similar and near-optimal for all kinds of tournaments tested.
Due to the low number of feasible solutions obtained at the end of the search, the
(2, 1), (3, 2) and (5, 4)-tournaments can be discarded. This behaviour can easily be
explained by the following assumption: the smaller the difference between Ncomp
and Nsurv, the easier it is to pass the selection step for weak individuals, with a poor
objective function. This underlines the efficiency of a more severe selection pressure,
which is furthermore confirmed by the number of failures of the (5, 4) version.

To evaluate the other options, the remaining criteria are the evolution of feasible
solutions ratio during the search and the dispersions of the runs. The corresponding
numerical results are given respectively in Figs.  and . On the one hand, it can
be deduced that the combinations visiting more feasible solutions are single tourna-
ment, (5, 1) and (4, 1)-tournaments.

On the other hand, Fig.  shows that (4, 2) and (5, 2)-tournaments as well as
single tournament are the best-performing combinations in terms of 2% and 5%-

Table 8 Results for various tournament techniques

Tournament version (2, 1) (3, 1) (3, 2) (4, 1) (4, 2)
GA best solution 767,450 767,334 767,900 768,228 767,587
Gap to optimum (%) 0.19 0.17 0.24 0.29 0.20
% feas. solutions 34 47 23 53 42
% failures 0 0 1 0 0
Tournament version (5, 1) (5, 2) (5, 4) ST
GA best solution 768,907 767,981 767,955 767,788
Gap to optimum (%) 0.38 0.25 0.25 0.25
% feas. solutions 54 48 10 55
% failures 0 0 15 0
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Fig. 9 Evolution of the ratio of feasible solutions (curves in the order of legend)

Fig. 10 Dispersions of the run for various tournament versions

dispersion. So, even though several combinations are very close in terms of result
quality, the single tournament method proves to be the best compromise, closely fol-
lowed by the (4, 1) option.

Finally, for this example, the single tournament and relaxation methods are the
best-suited constraint handling methods. However, it must be pointed out that the
relaxation method needs the relaxed upper bound as a parameter that requires rele-
vant choice, achieved with some knowledge of the problem studied. So, to conclude
this study and highlight the general trends, the single domination-based tournament
technique appears to be the most efficient constraint handling technique for Genetic
Algorithms.



 Conclusions 

This conclusion is valid for medium and large size problems. Nevertheless, it is
obvious that when the computation time is not a limiting factor, preference will be
given to the elimination technique.

6 Conclusions

A Genetic Algorithm was adapted to solve Optimal Batch Plant Design problems.
This work considered several operating modes of classical GA operators in order to
determine the one best suited to the problem studied.

Since the problem involves a MINLP formulation, the first main issue was the
evaluation of different variable encoding techniques that deal efficiently with both
continuous and integer variables. Computing tests were carried out on three differ-
ent size benchmark problems, in order to compare the behaviour of rough discrete,
crossed discrete andmixed real-discrete codingmethods.The result quality was eval-
uated with regard to the optimum found by aMP technique. Themixed real-discrete
method proved to be the best option, since it provided nearly optimal results for all
examples with a low computation time. Moreover, it overcame some local optimal
difficulties while the two other techniques were trapped in sub-optimal solutions.

The second investigationwas devoted to constraint handling techniques; here, the
production time constraint. Four constraint handling methods were tested on a me-
dium size problem: elimination, penalization, relaxation of the discrete upper bounds
and dominance based tournament. Elimination, which led to very good results in
terms of quality but less efficient in terms of computation time, is recommended
for small size examples. The use of a penalization technique, depending strongly on
the appropriate choice of the penalization factor, does not ensure feasible solutions
throughout the whole search. Nevertheless, it could provide compromise solutions
that improve the investment criterion, slightly violating the constraint.

Finally, numerical results showed that the relaxation and tournament methods
were the most efficient procedures. However, the relaxation technique depends on
the physical meaning of the variable and may be viewed as less general since it is
a parameter-based technique. Dominance rules implemented in the selection step
for the single tournament case are thus revealed to be the best constraint handling
technique in the case of severely constrained problems.

This contributionhas proposed some guidelines to tackle the two operatingmode
issues that are limiting factors for GAs. The use of these strategies should enable ef-
ficient evolution of the algorithm on different instances of mixed continuous and
integer problems.

Appendix A. Nomenclature
aj : cost factor for batch stage j
bk : cost factor for semi-continuous stage k
Bis : batch size for product i in sub-process s (kg)
cs : cost factor for intermediate storage tanks
Dik : duty factor for product i in semi-continuous stage k (L/kg)
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di j : power coefficient for processing time of product i in batch stage j
gi j : coefficient for processing time of product i in batch stage j
H: time horizon (h)
Hi : production time for product i (h)
i: product index
I: total number of products
j: batch stage index
J: total number of batch stages
Js : total number of batch stages in sub-process s
k: semi-continuous stage index
K: total number of semi-continuous stages
Ks : total number of semi-continuous stages in sub-process s
mj : number of parallel out-of-phase items in batch stage j
nk : number of parallel out-of-phase items in semi-continuous stage k
pi j : processing time of product i in batch stage j (h)
p0i j : constant for calculation of processing time of product i in batch stage j
Prodi : global productivity for product i (kg/h)
Prodlocis : local productivity for product i in sub-process s (kg/h)
Qi : demand for product i
Rk : processing rate for semi-continuous stage k (L/h)
Rmax: maximum feasible processing rate for semi-continuous stage k (L/h)
Rmin: minimum feasible processing rate for semi-continuous stage k (L/h)
s: sub-process index
S: total number of sub-processes
Si j : size factor of product i in batch stage j (L/kg)
Sis : size factor of product i in intermediate storage tanks (L/kg)
Ti j : cycling time of product i in batch stage j (h)
TL
is : limiting cycling time of product i in sub-process s (h)
Vj : size of batch stage j (L)
Vmax: maximum feasible size of batch stage j (L)
Vmin: minimum feasible size of batch stage j (L)
V�s : size of intermediate storage tank (L)
αj : power cost coefficient for batch stage j
βk : power cost coefficient for semi-continuous stage k
γs : power cost coeficient for intermediate storage
θik : operating time of product i in semi-continuous stage k
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Abstract

Two approaches based on genetic algorithms (GA) to solve economic dispatch (ED)
problems are presented. The first approach is based on the hybrid genetic algo-
rithm (HGA). Undesirable premature convergence to local minima can be avoided
by means of the mutation operator, which is used to create diversity in the popula-
tion by penalization or perturbation. Nevertheless, HGA needs to tune parameters
before starting a run. A coevolutionary hybrid genetic algorithm (COEHGA) is pro-
posed to improve the performance of the HGA.The COEHGA effectively eliminates
the parameter tuning process because the parameters are adjusted while running the
algorithm. A case from the literature is studied to demonstrate these approaches.

Key words: Economic Dispatch, Genetic Algorithm, Hybrid Genetic Algorithm,
Coevolutionary Algorithm

1 Introduction

One problem of fundamental importance with thermoelectric power generation is
optimization of the production cost. The Economic Dispatch (ED) problem has as
principal objective, the minimization of the total production cost function by allo-
cation of the power demand among the units available, while satisfying their op-
erational limits. The ED problem has been the subject of a very large number of
published papers since its original formulation. Important advances in optimization
methods are related to the achievement of solutions to the ED problem.

For a plant with n units, the total production cost function is expressed as:

Fe =
n

!
i=1

Fei(Pi) =
n

!
i=1

aiP2
i + biPi + ci ()

in which Fei represents the cost of the ith units, Pi is the electrical power generated
by ith units and ai , bi and ci are the characteristic coefficients of the cost function.
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According to [], the ED problem can be modeled as a constrained optimization
problem considering power balance constraints and operational constraints of the
form:

min Fe
subject to ()

Pmin
i � Pi � Pmax

i
n

!
i=1

Pi = PD

in which Fe is the objective function; Pi is the electrical power generated by the ith
units; PD is the value of the power demand and Pmin

i and Pmax
i are, respectively, the

lowest and highest operational output limits of the units.
An operationally effective method of optimization for solving dispatch problems

should be able to cater for a combination of feasible solutions or, simply, better so-
lutions than those that already exist. All these characteristics are often more desir-
able than having only one optimal solution. To satisfy the above arguments, two ap-
proaches based on GA to solve ED problems were proposed.

The following sections of this chapter are organized as follows. Section  presents
a review of some methods employed in the solution of ED problems. HGA and CO-
EHGA are reported in Sect.  and , respectively. In Sect. , tests and results for
a simple case are presented. Section  presents some conclusion.

2 Review of the Methods Employed in the Solution of Dispatch Problems

As was reported in [] and [], investigation of ED problems started in the early
s, when engineers were concerned with the problem of economic allocation of
generation or proper division of the load among the generating units available. One
of the first methods that yielded economic results was known as the equal incremen-
tal method. The use of digital computers to obtain loading schedules was initially
investigated in the s and continues today.

Deterministic methods were proposed to solve dispatch problems by means of
linear simplifications of the objective function. To do this, there are approaches
using linear programming, dynamic programming methods based on linear pro-
gramming, integer programming,mixed integer programmingmethods, branch and
bound method, among others.

Since the s, due to the advances in computation, approaches to solve ED
based on such heuristics as simulated annealing (SA), particle swarm (PS) and evo-
lutionary algorithms (EA) as GA have been proposed. Hybrid techniques that com-
bine GA with local search or other heuristics provide better solutions than the best
solutions found so far. SA and GA were combined in [] to avoid premature conver-
gence in the GA solution process. In [] techniques were introduced to GA to im-
prove efficiency and precision in the solution of ED.The techniques introduced were
prognostic mutation, elitism, approximate interval and penalty factors. A heuris-
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tic called stochastic hybrid search was proposed in [] to solve ED. The proposed
method was designed with a genetic operator called blend crossover, which supplied
a better search capacity. Two methods based on GA to solve ED by considering dis-
continuities of the objective function were presented in []: generation-apart elitism
and atavism. These methods can achieve optimal solutions in cases thath determin-
istic methods cannot. A micro-genetic algorithm to solve ED subject to merit order
loading was developed in [].The algorithm worked with a very small population, re-
sulting in a reduced computation time. In [], an improved GAwas proposed to solve
ED with a segmented quadratic cost function. In this work, a multi-stage algorithm
and a directional crossover were used to improve GA. A hybrid GA consisting of two
phases to solve the ED problemwith fuel options was presented in []. Phase- used
standard real coded GA while optimization by direct search and systematic reduc-
tion of the size of search region method were employed in phase-. Reference []
presented a promising technique for solving ED based on artificial-immune-system
(AIS) methodology. AIS uses learning, memory and associative retrieval to solve
recognition and classification tests. It was reported in [] that memetic algorithms
are capable of accommodating more complicated constraints and giving better qual-
ity solutions to solve ED. An approach based on PS with a nonsmooth cost function
for finding the global optimum was published in []. Different EAs were published
in [] for several kinds of ED problems. The techniques considered different muta-
tion operators using a Gaussian, Cauchy and Gaussian–Cauchy formulation.

The next section describes a hybrid genetic algorithm that was developed to solve
ED problem.

3 Hybrid Genetic Algorithm

From the optimization point of view, hybrid methods are advantageous techniques
to solve ED problems because they can handle constraints by incorporation of the
local search and they do not need rigorous mathematical exigency.

Preliminary studies used binary code. The exclusion of binary code avoids the
process coding and decoding and the algorithm becomes faster. Real codes permit
the use of deterministic rules, simplifying algorithm control during execution.

The constraints are treated separately from the objective function (fitness func-
tion). First, evaluation of the individuals (candidate solutions) occurs in the fitness
function and then, the candidate solutions are evaluated within the constraints and
classified into feasible or infeasible ones.

Special treatment is given to the infeasible solutions. An “effort” is made to bring
them into the feasible domain. A perturbation is applied to the feasible solutions to
eliminate premature convergence.

Crossover andmutation operators are formulated fromdeterministic rules based
on []. The selection operator uses the Roulette method. The main operator of this
algorithm is the mutation operator, which was specially formulated to guarantee the
diversity of the candidate solutions.The process of optimization, however, occurs due
to the interaction of the operators and, mainly, due to the pressure of the selection.
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A self-adaptive control algorithm is added to generate and submit the parameters
to the main routine. The control algorithm, in turn, is also a GA, whose operators
follow deterministic rules.

The main routine of the algorithm, called HGA, was implemented to solve the
optimization problem:

min f (Pi)
subject to ()

gi(Pi) � 0, i = 1, 2, . . . ,m
hj(Pi) = 0, j = 1, 2 . . . , r

where f is the objective function, g is the inequality constraint and h is the equality
constraint.

The steps of the main routine, HGA, are described below.

3.1 Initial Population

The candidate solutions of the initial population are the power, Pi, represented by
real numbers. The initial population is randomly determined according to the form:

Pinii = (Pmax
i − Pmin

i )RAN ()

with RAN being a random number in the interval [,].

3.2 Evaluation of the Candidate Solutions of the Initial Population

The candidate solutions of the initial population are evaluated in the fitness function
and in the constraints. These candidate solutions are classified into gi(Pi) � 0 and
gi(Pi) � 0.Those that satisfy the condition gi(Pi) � 0 (considered feasible solutions)
undergo a perturbation and those that satisfy gi(Pi) � 0 (infeasible solutions) are
penalized.

3.3 Mutation Operator

This operator gives rise to the “modified” solution, Pmod
i .

Pmod
i = Pinii + βid(Pinii ) ()

where d(Pinii ) is the gradient (that is evaluated as described in ()), βi represents the
size of the “step” in the direction of the gradient and is a parameter that may be con-
trolled. According to [], large mutation steps can be good in the early generations
helping exploration of the search space and small mutation steps might be needed in
the late generations to help fine tune the suboptimal solution.
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3.4 Evaluation of the Gradient

The gradient is evaluated using the function:

d(Pinii ) = δ0∇ f (P
ini
i ) −

m
!
i=1

δi∇gi(Pinii ) ()

with δ0 represents a perturbation factor, δi represents a penalty factor, considering
that δ0 and δi do not act simultaneously; ∇ f (Pinii ) is the gradient of the objective
function and ∇gi(Pinii ) are the gradient of the inequality constraints.

3.5 Perturbation Factor

The perturbation factor, δ0, is given as:

δ0 = �
1, if gi(Pi) � 0
0, if gi(Pi) � 0

()

δ0 may be considered as an attempt to “escape” from the premature convergence to
the undesired local minima.

3.6 Penalty Factor

The penalty factor, δi , is only applied to the infeasible candidate solutions and is pre-
sented as:

δi =

������
�
������

1

1 −
gi(Pi)

gmax(Pi) + s

, if gi(Pi) � 0

0, if gi(Pi) � 0

()

where gmax(Pi) = max�gi(Pi), i = 1, 2, . . . ,m	, s is a parameter that may be con-
trolled, but in general, is considered a very small number.

3.7 Crossover Operator

The candidate solutions of the initial population and those coming from the muta-
tion are selected using the Roulette method to decide which pairs participate in the
Crossover:

Pnewi = αPinii + (1 − α)Pmod
i ()

with α randomly selected in the interval [,].

3.8 Evaluation and Selection of the New Initial Population

The candidate solutions of the new population are evaluated in the fitness function
and selected according to the Roulettemethod.The best candidate solutions from the



 M.M.A. Samed, M.A. da S.S. Ravagnani

initial population and the best candidate solutions from the new population are clas-
sified according to the number of candidate solutions from the population to form
a new initial population.

3.9 Stopping Criteria

The procedures repeat themselves until the maximum number of generations (iter-
ations) has been reached. However, the number of iterations is a parameter that can
be controlled.

4 Coevolutionary Algorithm

The HGA was applied to dispatch problems and the number of candidate solutions,
NSC, and the number of iterations parameters, NI, required intensive trials to cali-
brate the initial estimates. It was noticed that the parameters are not independent
and the optimal combination among them can take much time and can make the
algorithm impractical for on-line applications. Under these conditions, an accurate
result depends on the sensitivity of the programmer and the time used to determine
the parameter values, which, when compared to the execution time of the algorithm,
is huge.

Therefore, a control algorithm, called coevolutionary (COE), was implemented
to avoid the process of manual control of the parameters of HGA.

4.1 Initial Parameters

First, a number of global generations (iterations) may be chosen.This number is con-
sidered the general stop criterion. Then, two initial population parameters were ran-
domly chosen, so that, NI is a parameter between [, ] and, NSC is a parameter
between [, ].The choice of these intervals was motivated by the good performance
of the parameters whenHGAwithout parameter control was applied to the ED prob-
lem. The populations are Param1 and Param2, formed as:

Param1 = (NI1 ,NSC1)

Param2 = (NI2 ,NSC2) ()

4.2 Crossover of the Parameters

The parameters Param1 and Param2 are used to generate a new population of par-
ameters:

ParamNEW = μParam1 + (1 − μ)Param2 ()

where μ is a randomly created number in the interval [, ].
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4.3 Submission of the Parameters to the HGA

The input data for the execution of the HGA are the parameters from the population
ParamNEW . When the NI is achieved in the HGA, the respective parameters are
returned to the COE to form the next generations of parameters.

4.4 Mutation of the Parameters

Another population of parameters, ParamNEWPOP , is inserted to be combined with
ParamNEW in the mutation operator. ParamNEWPOP is randomly chosen with NI
in the interval [, ] and NSC in the interval [, ].The objective of inserting this
population is to produce diversity of the parameters.

ParamMOD = λParamNEWPOP + (1 − λ)ParamNEW ()

in which λ is a random number between [, ].
ParamMOD is submitted to theHGAand the process is repeated until the number

of global generations is reached.

5 Results

The algorithm performance analysis considers convergence and mutation operator
analysis.

In these analyses, the equality constraint (P1 + P2 + .. + Pn) = PD was rewritten
as Pn = PD − (P1 + P2 + ... + Pn−1) to be incorporated in the inequality constraints.

5.1 Case Studied: Thirteen Generators

An industrial size problem was chosen to show how the accuracy and parameter
control are improved by the proposed coevolutionary genetic algorithm. The case
studied is an industrial power generation system composed of thirteen generators
and it is necessary to allocate  MWof power among these generators.The system
characteristics are given in Table .

The problem in question is a nonlinear objective function with linear constraints.
However, this simple problem was chosen to show how the accuracy and parameter
control are improved by the coevolutionary genetic algorithm.

Two approaches, HGA and COEHGA, were used to solve the problem. A solver
(IMSL-Fortran) based on the gradientmethod (GM) for nonlinear optimizationswas
used as reference. Table  shows the results.

As reported in Table , HGA provides better results than GM. After a large num-
ber of trials running the HGA, the “best” estimates for the population size and the
number of iterations were found, respectively, as NSC = 15 and NI = 300. In the
COEHGA the self-adaptive parameters were NSC = 35 and NI = 10. The process
of the automatic control of parameters makes the algorithm more suitable for use
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Table 1 System characteristics

Unit Pmin Pmax a b c
 0 680 0.00028 8.10 500
 0 360 0.00056 8.10 309
 0 360 0.00056 8.10 307
 60 180 0.00324 7.74 240
 60 180 0.00324 7.74 230
 60 180 0.00324 7.74 240
 60 180 0.00324 7.74 240
 60 180 0.00324 7.74 240
 60 180 0.00324 7.74 240
 40 120 0.00284 8.60 160
 40 120 0.00284 8.60 160
 55 120 0.00284 8.60 160
 55 120 0.00284 8.60 160

Table 2 Results

Results GM HGA COEHGA
P1 (MW) 643.8791 651.1451 735.6263
P2 (MW) 330.1394 319.9820 337.4955
P3 (MW) 309.5107 320.4637 292.6257
P4 (MW) 124.5300 137.7761 146.7135
P5 (MW) 145.1631 156.6884 177.3462
P6 (MW) 150.7257 147.0077 131.5521
P7 (MW) 160.1543 159.1650 154.1975
P8 (MW) 172.1578 145.3784 159.5506
P9 (MW) 176.9499 151.5512 167.3398
P10 (MW) 62.5544 82.2596 60.6778
P11 (MW) 92.8891 86.3206 74.6819
P12 (MW) 62.6343 82.8938 56.5370
P13 (MW) 88.7153 79.3682 25.6558
PTotal (MW) 2520.0000 2520.0000 2520.0000
Objective Function ($/h) 24703.32 24111.69 24072.03

because, obviously, it avoids the process of trial and error. Moreover, the results were
improved. The difference between HGA and COEHGA results shows that a depen-
dency exists among the parameters. This makes the exact determination of the opti-
mal parameters very difficult.

5.2 Convergence Analysis

This analysis was applied to COEHGA with NSC = 35 and NI = 10. All the candi-
date solutions were verified in all iterations. This process is carried out to classify the
candidate solutions according to the range of values in the objective function.
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Table 3 Convergence

Range of values of the objective function
Iteration 30,000–29,000 29,000–28,000 28,000–27,000 27,000–26,000 26,000–25,000 25,000–24,000
    13 9 2
    10 20 5
    0 21 14
    0 6 29
    0 0 35
    0 0 35
    0 0 35
    0 0 35
    0 0 35
    0 0 35

It can be observed that the number of candidate solutions in the lowest values
from the objective function increases iteration by iteration. However, all candidate
solutions were already in the best range at the 5th iteration and they remain in the
best range until the end. In the last iteration all candidate solutions can be considered
near optimal solutions or the optimal solution and this process can be considered
convergent.

5.3 Mutation Analysis

This analysis was applied to one candidate solution (initially infeasible) that was
chosen in the first iteration. The objective of this analysis is to observe the evolu-
tion of this candidate solution through its values for the objective function and with
a constraint that was not satisfied.

Figure  shows the values of the objective function and Fig.  shows the constraint
values, both through  iterations.

In Fig. , the process of penalization and perturbation can be observed. In the
first iteration, the candidate solution initially infeasible is penalized and conducted
to the feasible domain. So, after successive perturbation, the candidate solution was

Fig. 1 Analysis of a candidate solution in the objective function
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Fig. 2 Analysis of a candidate solution in a constraint

kept in the feasible domain and it improves the results in the objective function, as
can be observed in Fig. .

6 Conclusions

Economic Dispatch is a simple nonlinear problem that becomes complicated when
the operational constraints of the systems are considered.

This chapter presented two evolutionary approaches to solve the ED problem,
a HGA and a COEHGA. These approaches were formulated according to hybrid
methodologies. The tests proved that the process of GA investigation is not affected
by the infeasibility of the initial candidate solutions. In this chapter a local search
based on gradient was introduced to treat infeasible solutions.

The convergence process of the algorithms was demonstrated through analysis
of the distribution of the candidate solutions in the range of values of the objective
function. The efficiency of the mutation operator in treating constraints was con-
firmed.The accuracy of the results was improved through the COEHGA and refined
solutions were found and the time consumed in trial and errors eliminated.

If only the computation running time is taken into account, the HGA approach
could be considered the best choice because it can find the optimal solution in less
than one minute. The COEHGA approach can find the optimal solution in several
minutes in this specific case studied. Therefore, evaluation of the fitness function
requires the most computational effort in this specific application.

The results of this coevolutionary algorithm should directly contribute to the
development of new computational tools for solving ED problems and, indirectly,
should contribute to the better performance of Genetic Algorithms when applied to
problems in any other area of optimization.
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Abstract

In this chapter, we present an evolutionary approach to solve a novel mechatronic de-
sign problem of a pinion-rack continuously variable transmission (CVT).This prob-
lem is stated as a multiobjective optimization problem, because we concurrently op-
timize the mechanical structure and the controller performance, in order to produce
mechanical, electronic and control flexibility for the designed system. The problem
is solved first with a mathematical programming technique called the goal attain-
ment method. Based on some shortcomings found, we propose a differential evolu-
tion (DE)-based approach to solve the aforementioned problem. The performance
of both approaches (goal attainment and the modified DE) are compared and dis-
cussed, based on quality, robustness, computational time and implementation com-
plexity. We also highlight the interpretation of the solutions obtained in the context
of the application.

Key words: Parametric Optimal Design, Multiobjective Optimization, Differential
Evolution

1 Introduction

Thesolution of real-world optimization problems poses great challenges, particularly
when the problem is relatively unknown, since these uncertainties add an extra com-
plexity layer. Currently, several systems can be considered as mechatronic systems
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due to the integration of the mechanical and electronical elements in such systems.
This is the reason why it is necessary to use new design methodologies that consider
integral aspects of the systems.

The traditional approach to the design of mechatronic systems, considers the
mechanical behavior and the dynamic performance separately. Therefore, the de-
sign of mechanical elements involves kinematic and static behaviors while the de-
sign of the control system uses only the dynamic behavior. This design approach
from a dynamic point of view cannot produce an optimal system behavior [, ].
Recent works on mechatronic systems design propose a concurrent design method-
ology which considers jointly the mechanical and control performances.

For this concurrent design concept, several approaches have been proposed.
However, these concurrent approaches are based on an iterative process. There, the
mechanical structure is obtained in a first step and the controller in a second step. If
the resulting control structure is very difficult to implement, then the first step must
be repeated all over again.

On the other hand, an alternative approach to formulate the system design prob-
lem is to consider it as a dynamic optimization problem [,]. In order to do this, the
parametric optimal design of the mechatronic system needs to be stated as a multi-
objective dynamic optimization problem (MDOP). In this approach, both the kine-
matic and the dynamic models of the mechanical structure and the dynamic model
of the controller are considered at the same time, together with system performance
criteria. This approach allows us to obtain a set of optimal mechanical and controller
parameters in only one step, which could produce a simple system reconfiguration.

In this chapter, we present the parametric optimal design of a pinion-rack con-
tinuously variable transmission (CVT).The problem is stated as a multiobjective op-
timization problem. Two approaches are used to solve it. One is based on a math-
ematical programming technique called goal attainment [] and the other is based
on an evolutionary algorithm called differential evolution [].The remainder of this
chapter is organized as follows. In Sect. , we detail the transformation of the original
problem into amultiobjective optimization problem. In Sect. , we present the math-
ematical programming method, its adaptation to solve the problem and the results
obtained. Afterwards, the evolutionary approach is explained and tested in Sect. .
Later, in Sect. , we present a discussion of the behavior of both approaches, based
on issues such as quality and robustness of the approach, computation time and im-
plementation complexity. Finally, our conclusions and future paths of research are
presented in Sect. .

2 Multiobjective Problem

In the concurrent design concept, the mechatronic design problem can be stated as
the following general problem:

minΦ(x , p, t) = [Φ1,Φ2, . . . , Φn]
T ()

Φi = Y
t f

t0
Li(x , p, t)dt i = 1, 2, . . . , n
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under p and subject to:

ẋ = f (x, p, t) ()
g(x , p, t) � 0 ()
h(x, p, t) = 0 ()

x(0) = x0

In the problem stated by () to (): p is a vector of the design variables from the
mechanical and control structure, x is the vector of the state variables and t is the
time variable. On the other hand, some performance criteria L must be selected for
the mechatronic system. The dynamic model () describes the state vector x at time
t. Also, the design constraints of the mechatronic system must be developed and
proposed, respectively. Therefore, the parameter vector p which is a solution of the
previous problemwill be an optimal set of structure and controller parameters, which
minimize the performance criteria selected for the mechatronic system and subject
to the constraints imposed by the dynamic model and the design.

Current research efforts in the field of power transmission of rotational propul-
sion systems, are dedicated to obtaining low energy consumption with highmechan-
ical efficiency. An alternative solution to this problem is the so called continuously
variable transmission (CVT), whose transmission ratio can be continuously changed
in an established range. There are many CVT configurations built in industrial sys-
tems, especially in the automotive industry, due to the requirements to increase fuel
economy without decreasing system performance. The mechanical development of
CVTs is well known and there is little to modify regarding its basic operating prin-
ciples. However, research efforts continue on the controller design and the CVT in-
strumentation side. Different CVT types have been used in different industrial ap-
plications; the Van Doorne belt or V-belt CVT is the most widely studied mechan-
ism [, ]. This CVT is built with two variable radii pulleys and a chain or metal-
rubber belt. Due to its friction-drive operating principle, the speed and torque losses
of rubber V-belts are a disadvantage. The Toroidal Traction-drive CVT uses the high
shear strength of viscous fluids to transmit torque between an input torus and an
output torus. However, the special fluid characteristic used in this CVT makes the
manufacturing process expensive. A pinion-rack CVT is a traction-drive mechan-
ism, presented in []. This CVT is built-in with conventional mechanical elements
as a gear pinion, one cam and two pairs of racks.The conventional CVTmanufacture
is advantageous over other existing CVTs. However, in the pinion-rack CVT, it has
been determined that the teeth size of the gear pinion is an important factor in the
performance of the system.

Because the gear pinion is the main mechanical element of the pinion-rack CVT,
determining the optimal teeth size of such a mechanical element to obtain an opti-
mal performance is, by no means, easy. On the other hand, an optimal performance
system must consider low energy consumption in the controller. Therefore, in order
to obtain an optimal performance of the pinion-rack CVT, it is necessary to propose
the parametric optimal design of such system.
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The goals of the parametric optimal design of the pinion-rack CVT are to obtain
amaximummechanical efficiency aswell as aminimum controller energy.Therefore,
a MDOP for the pinion-rack CVT will be proposed in this chapter.

2.1 Description and Dynamic CVT Model

In order to adapt the MDOP to the pinion-rack CVT, it is necessary to develop the
dynamic model of such a system. The pinion-rack CVT changes its transmission ra-
tio when the distance between the input and output rotation axes is changed. This
distance is called “offset” and will be denoted by “e”. As was indicated earlier, this
CVT is built-in with conventional mechanical elements such as a gear pinion, one
cam and two pairs of racks. An offset mechanism is integrated inside the CVT. This
mechanism is built-in with a lead screw attached by a nut to the vertical transport
cam. Figure  depicts the main mechanical CVT components.

The dynamic model of a pinion-rack CVT is presented in []. Ordinary differ-
ential equations (), () and () describe the CVT dynamic behavior. In Eq. (): Tm
is the input torque , J1 is the mass moment of inertia of the gear pinion, b1 is the
input shaft coefficient viscous damping, r is the gear pinion pitch circle radius, TL is
the CVT load torque, J2 is the mass moment of inertia of the rotor, R is the plane-
tary gear pitch circle radius, b2 is the output shaft coefficient viscous damping and
θ is the angular displacement of the rotor. In Eqs. () and (): L, Rm , Kb , Kf and n
represent the armature circuit inductance, the circuit resistance, the back electro-
motive force constant, the motor torque constant and the gearbox gear ratio of the

Fig. 1 Main pinion-rack CVT mechanical elements
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DCmotor, respectively. Parameters rp , λs , bc and bl denote the pitch radius, the lead
angle, the viscous damping coefficient of the lead screw and the viscous damping co-
efficient of the offset mechanism, respectively. The control signal u (t) is the input
voltage to the DC motor. Jeq = Jc2 +Mr2p + n2 Jc1 is the equivalent mass moment of
inertia, Jc1 is the mass moment of inertia of the DC motor shaft, Jc2 is the mass mo-
ment of inertia of the DC motor gearbox and d = rp tan λs , is a lead screw function.
θR (t) = 1

2 arctan Vtan 42Ωt −
π
2 5W is the rack meshing angle. The combined mass to

be translated is denoted byM and P = Tm
rp

tan ϕ cos θR is the load on the gear pinion
teeth, where ϕ is the pressure angle.

1
R
r
3Tm − TL = %J2 + J1 1

R
r
3
2
* θ̈ ()

−GJ1 1
R
r
3
e
r
sin θRZ θ̇2

+%
b2 + b1 4 Rr 5

2

+J1 4 Rr 5
ė
r cos θR

* θ̇

L
di
dt
+ Rm i = u (t) − G

nKb

d
Z ė ()

%
nK f

d
* i − P = GM +

Jeq
d2
Z ë + %bl +

bc
rpd
* ė ()

In order to fulfill the concurrent design concept, the dynamic model of the pinion-
rack CVTmust be stated with state variables as it is indicated in the general problem
stated by () to (). With the state variables x1 = θ̇, x2 = i, x3 = e, x4 = ė, the dynamic
model given by () to () can be written as:

ẋ1 =

ATm + \J1A 2x3
p1 p2

sin θR^ x21 − TL
−\b2 + b1A2 + J1A 2x4

p1 p2
cos θR^ x1

J2 + J1A2

ẋ2 =
u (t) − ( nKb

d )x4 − Rx2
L

()

ẋ3 = x4

ẋ4 =
(
nK f

d )x2 − (bl +
bc
rpd
)x4 − Tm

rp
tan ϕ cos θR

M + Jeq
d2

Performance Criteria and Objective Functions
The performance of a system is measured by several criteria. One of the most com-
mon is the system efficiency because it reflects the energy loss. In the case of the
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pinion-rack CVT, the mechanical efficiency criterion of the gear systems is used to
state the MDOP. This is because the racks and the gear pinion are the main CVT
mechanical elements.

Themathematical equation for mechanical efficiency presented in [] is used in
this work, where μ, N1, N2, m, r1 and r2 represent the coefficient of sliding friction,
the number of gear pinion teeth, the number of spur gear teeth, the gear module, the
pitch pinion radius and the pitch spur gear radius, respectively:

η = 1 − πμ 1
1
N1
+

1
N2
3 = 1 −

πμ
2m
1
1
r1
+

1
r2
3 ()

In [], the speed ratio equation is as below, where ω is the input angular speed and
Ω is the output angular speed of the CVT:

ω
Ω
=
R
r
= 1 +

e
r
cos θR ()

Considering r1 C r and r2 C R, the CVT mechanical efficiency is given by

η(t) = 1 −
πμ
N1

�

�
1 +

1
1 + e cos θR

r

�

�
()

In order tomaximize themechanical CVT efficiency, F(ċ), which is given below,must
be minimized:

F(ċ) =
1
N1

�

�
1 +

1
1 + e cos θR

r

�

�
()

Equation () can be written as follows, and is used to state the MDOP:

L1(ċ) =
1
N1
1
2r + e cos θR
r + e cos θR

3 ()

The second objective function of the MDOPmust describe the dynamic behavior. In
order to fulfill this, a proportional and integral (PI) controller structure is used in the
MDOP. This is because, despite the development of many control strategies, the PI
controller structure remains one of the most popular approaches in industrial pro-
cess control because of its good performance. Then, in order to obtain the minimal
controller energy, the objective function for the MDOP, given below, is used:

L2(ċ) =
1
2
G−Kp(xref − x1) − KI Y

t

0
(xref − x1)dtZ

2

()

The objective functions previously established fulfill the concurrent design concept,
since structural and dynamic behaviors will be considered at the same time in the
MDOP.
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Constraint Functions
Thedesign constraints for the CVT optimization problem are proposed according to
geometric and strength conditions for the gear pinion of the CVT.

To prevent fracture of the annular portion between the axis bore and the teeth
root on the gear pinion, the pitch circle diameter of the pinion gear must be greater
than the bore diameter by at least . times the gear module []. Then, in order to
avoid fracture, the constraint g1 must be imposed. To achieve a uniform load dis-
tribution on the teeth, the face width must be  to  times the value of the gear
module [].This is ensured with constraints g2 and g3. To maintain the CVT trans-
mission ratio within the range [2r, 5r] constraints g4, g5 are imposed. Constraint
g6 ensures the number of teeth on the gear pinion is equal to or greater than 12 [].
A practical constraint requires that the gear pinion face width is greater than or equal
to 20mm. In order to ensure this, constraint g7 is imposed. To constrain the distance
between the corner edge in the rotor and the edge rotor, constraint g8 is imposed.
Finally, to ensure a practical design for the pinion gear, the pitch circle radius must
be equal to or greater than 25.4mm. For this, constraint g9 is imposed.

On the other hand, it can be observed that J1, J2 are parameters which are a func-
tion of the CVT geometry. For these mechanical elements, the mass moments of in-
ertia are defined by

J1 =
1
32
ρπm4 (N + 2)2 N2h ()

J2 = ρh G
3
4
πr4c −

16
6
(emax +mN)

4
−
1
4
πr4s Z ()

where ρ,m, N , h, emax, rc and rs are the material density, the module, the number of
teeth on the gear pinion, the face width, the highest offset distance between axes, the
rotor radius and the bearing radius, respectively.

Design Variables
Because the concurrent design concept considers structural and dynamic behaviors
at the same time, the vector of the design variables must describe the mechanical
and controller structures. In order to fulfill this, design variables of the mechanical
structure related to the standard nomenclature for a gear tooth are used. Moreover,
the controller gains KP and KI which describe the dynamic CVT behavior, are also
used.

Equation () establishes a parameter called gear module m for metric gears,
where d is the pitch diameter and N is the teeth number.

m =
d
N
=
2r
N

()

On the other hand, the face width h, which is the distance measured along the axis
of the gear and the highest offset distance between axes emax, are parameters which
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define the CVT size. Therefore, the vector pi is proposed in order to establish the
MDOP of the pinion-rack CVT:

pi = [pi1 , p
i
2 , p

i
3 , p

i
4 , p

i
5 , p

i
6]
T

= [N ,m, h, emax,KP ,KI]
T ()

2.2 Optimization Problem

In order to obtain the mechanical CVT parameter optimal values, we propose
a MDOP given by Eqs. () to (), where the control signal u(t) is given by (). As
the objective functions must be normalized to the same scale [], the corresponding
factorsW = [0.4397, 563.3585]T were obtained using the algorithm from Sect.  by
minimizing each objective function subject to constraints given by Eqs. () and ()
to ().

min
p�R6

Φ(x , p, t) = [Φ1,Φ2]
T ()

where

Φ1 =
1
W1

10

Y
0

%
1
p1
&
p1p2 + x3 cos θR
p1 p2
2 + x3 cos θR

'* dt

Φ2 =
1
W2

10

Y
0

u2dt

subject to the dynamic model stated by () and subject to:

u(t) = −p5(xref − x1) − p6
t

Y
0

(xref − x1)dt ()

J1 =
1
32
ρπp42 (p1 + 2)

2 p21p3 ()

J2 =
ρp3
4
G3πr4c −

32
3
(p4 + p1p2)

4
− πr4s Z ()

A = 1 +
2x3
p1p2

cos θR ()

d = rp tan λs ()

θR =
1
2
arctan Gtan 12x1 t −

π
2
3Z ()
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g1 = 0.01 − p2 (p1 − 2.5) � 0

g2 = 6 −
p3
p2
� 0

g3 =
p3
p2
− 12 � 0

g4 = p1p2 − p4 � 0

g5 = p4 −
5
2
p1p2 � 0 ()

g6 = 12 − p1 � 0
g7 = 0.020 − p3 � 0

g8 = 0.020 − \rc −
 
2(p4 + p1p2)^ � 0

g9 = 0.0254 − p1p2 � 0

3 Mathematical Programming Optimization

As we can observe, in a general way, a MDOP is composed by continuous functions
given by the dynamic model of the system as well as the objective functions of the
problem. In order to find the solution of the MDOP, it must be transformed into
aNonlinear Programming Problem (NLP) []. Two transformation approaches exist:
the sequential and the simultaneous approach. In the sequential approach, only the
control variables are discretized. This approach is also known as control vector pa-
rameterization. In the simultaneous approach, the state and control variables are dis-
cretized resulting in a large-scale NLP problemwhich requires special algorithms for
its solution []. Because of the diversity of mathematical programming algorithms al-
ready established, transformation of theMDOP into aNLPproblemwas done adopt-
ing the sequential approach.

TheNLP problemwhich is used to approximate the original problem given by ()
to () can be stated as:

min
p
F(p) ()

subject to:

ci � 0 ()
ce = 0 ()

where p is the vector of the design variables, ci are the inequality constraints and
ce are the equality constraints. In order to obtain the NLP problem given by ()
to (), the sequential approach requires the value and the gradient calculation of
the objective functions. Moreover, the gradient of the constraints with respect to the
design variables must be calculated.
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3.1 Gradient Calculation and Sensitivity Equations

The gradient calculation for the objective function uses the following equation:

∂Φi

∂p j
=

t f

Y
t0

&
∂Li
∂x
%
∂x
∂p j
(t)* +

∂Li
∂p j
' dt ()

where, it can be seen in the general problem stated by () to (), that Li is the ith
objective function, x is the vector of the state variables, p j is the jth element of the
vector of the design variables and t is the time variable. On the other hand, in order
to obtain the partial derivatives x

p j
, it is necessary to solve the ordinary differential

equations of the sensitivity given by

∂ẋ
∂p j

=
∂ f
∂x
%
∂x
∂p j
* +

∂ f
∂p j

()

These sensitivity equations can be obtained by taking the time derivatives with re-
spect to p j of the dynamic model. Due to the fact that ẋ is a function of the time
variable t as well as the design variables p j (we must consider that p j are indepen-
dent of t), then:

ẋ =
dx
dt
=
∂x
∂t

()

moreover

d_ ∂x
∂p j
`

dt
=
∂ _ ∂x

∂p j
`

∂t
=
∂ 4 ∂x∂t 5
∂p j

=
∂ 4 dx

dt 5

∂p j
=
∂ẋ
∂p j

()

Finally, using the equalities () and proposing the following variable:

y j =
∂x
∂p j

()

the partial derivatives of x with respect to p j are now given by the following ordinary
differential equations:

ẏ j =
∂ f
∂x

y j +
∂ f
∂p j

()

y j(0) =
∂x0

∂p j
()

3.2 Goal Attainment Method

In order to transform the MDOP into a NLP problem, the sequential approach is
used. The resulting problem is solved using the Goal Attainment Method []. In the
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remainder of the chapter, we will refer to it as “MPM” (Mathematical Programming
Method). In such a technique, a subproblem is obtained as follows:

min
p,λ

G (p, λ) Δ
= λ ()

subject to:

g(p) � 0
h(p) = 0

ga1(p) = Φ1 (p) − ω1λ −Φd
1 � 0 ()

ga2(p) = Φ2 (p) − ω2λ −Φd
2 � 0

where λ is an artificial variable without sign constraint, and g(p) and h(p) are the
constraints established in the original problem.Moreover, in the last two constraints,
ω1 and ω2 are the scattering vectors, Φd

1 and Φd
2 are the desired goals for each objec-

tive function and Φ1 and Φ2 are the evaluated functions.

3.3 Numerical Method to Solve the NLP Problem

In order to solve the resulting NLP problem, Eqs. () and (), the Successive
Quadratic programming (SQP) method is used. There, a Quadratic Problem (QP)
which is a quadratic approximation to the Lagrangian function optimized over a lin-
ear approximation to the constraints, is solved. A vector pi containing the current
parameter values is proposed and the NLP problem given by Eqs. () and () is
obtained, where Bi is the Broyden–Fletcher–Goldfarb–Shanno updated (BGFS) pos-
itive definite approximation of the Hessian matrix, and the gradient calculation is
obtained using sensitivity equations. Hence, if γ solves the subproblem given by ()
and () and γ = 0, then the parameter vector pi is an original problem optimal solu-
tion. Otherwise, we set pi+1 = pi +γ and with this new vector the process is repeated
all over again.

min
γ
QP(p i) = G 4pi5 + ∇GT 4pi5 γ +

1
2
γTBiγ ()

subject to

g(pi) + ∇gT 4pi5γ � 0

h(pi) + ∇hT 4pi5γ = 0

ga1(pi) + ∇gTa1 4p
i5γ � 0 ()

ga2(pi) + ∇gTa2 4p
i5γ � 0

3.4 Experiments and Results of the Mathematical ProgrammingMethod

In order to carry out the parametric optimal design of the pinion-rack CVT, we per-
formed 10 independent runs, all of them using a PC with a . GHz Pentium IV
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processor with  GB of Memory using Matlab .. Release . The system paramet-
ers used in the numerical simulations were: b1 = 1.1 Nms�rad, b2 = 0.05 Nms�rad,
r = 0.0254m, Tm = 8.789 Nm, TL = 0Nm, λs = 5.4271, ϕ = 20, M = 10 Kg,
rp = 4.188
10−03 m, K f = 63.92
10−03 Nm�A, Kb = 63.92
10−03 Vs�rad, R = 10 Ω,
L = 0.01061H, bl = 0.015 Ns�m, bc = 0.025 Nms�rad and n = ((22ċ40ċ33)�(9ċ8ċ9)).
The initial conditions vector was [x1(0), x2(0), x3(0), x4(0)]T = [7.5, 0, 0, 0]T and
the output reference was considered to be xref = 3.2.

Because the goal attainmentmethod requires a goal for each of the objective func-
tions, further calculations were necessary. The goal for Φ1 was obtained byminimiz-
ing this function subject to Eqs. () and () to (). The optimal solution vector p1
is shown in Table .The goal for Φ2 was obtained byminimizing this function subject
to Eqs. () and () to (). The optimal solution vector p2 for this problem is also
shown in Table .

Varying the scattering vector can produce different nondominated solutions. In
Table , two cases are presented: p�A is obtained with ω = [0.5, 0.5]T , and p�B is ob-
tained with ω = [0.4, 0.6]T .

As can be seen in the results in Table , 80% of the runs diverged. This behav-
ior shows a high sensitivity of the MPM to the starting point (detailed in Table )
because it must be carefully chosen in order to allow the approach to obtain a good
solution. Information about the time required by the MPM per independent run is
summarized in Table .

Figure  shows the mechanical efficiency and the input control of the pinion-
rack CVT with both solutions obtained by the MPM (p1, p2 and p�A). The solution

Table 1 Details of the solutions obtained by the MPM

[N� , m� , h� , e�max, K
�

P , K
�

I ] ΦN(•) = [Φ1(•), Φ2(•)] Φ(•) = [Φ1(•), Φ2(•)]

p1 = [38, 0.0017, 0.02, 0.0636, 10.000, 1.00] ΦN(p1) = [1.0000, 4.7938] Φ(p1) = [0.4397, 2700.6279]
p2 = [13.4459, 0.0019, 0.02, 0.0826, 5.000, 0.01] ΦN(p2) = [2.8017, 1.0000] Φ(p2) = [1.2319, 563.3585]
p�A = [26.7805, 0.0017, 0.02, 0.0826, 5.000, 0.01] ΦN(p�A) = [1.4696, 1.4696] Φ(p�A) = [0.6461, 827.9116]
p�B = [29.0171, 0.0017, 0.02, 0.0789, 5.000, 0.01] ΦN(p�B) = [1.3646, 1.5469] Φ(p�B) = [0.6000, 871.4592]

Table 2 Initial points used for the MPM. Also shown is the corresponding scattering vector

Initial search point Scattering vector
[13.4459, 0.0019, 0.02, 0.0826, 5.000, 0.01] [0.5, 0.5]
[38, 0.0017, 0.02, 0.0636, 10.000, 1.00] [0.5, 0.5]
[38, 0.0017, 0.02, 0.0636, 10.000, 1.00] [0.4, 0.6]
[38, 0.0017, 0.02, 0.0636, 10.000, 1.00] [0.6, 0.4]
[28.8432, 0.0017, 0.02, 0.0550, 5.024, 0.017] [0.5, 0.5]
[13.4459, 0.0019, 0.02, 0.0826, 5.000, 0.01] [0.4, 0.6]
[28.8432, 0.0017, 0.02, 0.0550, 5.024, 0.017] [0.4, 0.6]
[28.8432, 0.0017, 0.02, 0.0550, 5.024, 0.017] [0.6, 0.4]
[30.77, 0.0017, 0.02, 0.0694, 5.121, 0.010] [0.5, 0.5]
[30.77, 0.0017, 0.02, 0.0694, 5.121, 0.010] [0.4, 0.6]
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Table 3 Time required by each run of the MPM. Note that only two runs could converge to
a solution. The remaining 8 runs could not provide any result

Run Time required
 Diverged
 . Min
 Diverged
 Diverged
 Diverged
 Diverged
 Diverged
 Diverged
 Diverged
 . Min
Average . Min

Fig. 2 Mechanical efficiency and control input for the pinion-rack CVT obtained by the MPM

p�A was selected because it has the same overachievement of the proposed goal for
each objective function.

As can be observed in Fig. , when the number of teeth is increased (p�1 ) and
their size is decreased (p�2 ), a higher CVTmechanical efficiency is obtained. Also, we
can observe perturbations in the mechanical efficiency, which are produced because
of tip-to-tip momentary contact prior to full engagement between teeth. With the
optimal solution, this tip-to-tip contact is reduced because a better CVT planetary
gear is obtained when the tooth size is decreased. Summarizing, the optimal solu-
tion implies a lower sensitivity of the mechanical efficiency with respect to reference
changes. On the other hand, a more compact CVT size is obtained since (p�3 ) is de-
creased. Furthermore, a minimal controller energy is obtained when the controller
gains (p�5 ) and (p�6 ) are decreased. In Fig. , it can be observed that the optimal vector
minimizes the initial overshoot of the control input.

Despite the sensitivity of the NLP method, the optimal solutions obtained are
good from the mechanical and controller point of view.
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4 Evolutionary Optimization

Thehigh sensitivity of theMPMto its initial conditions, and its implementation com-
plexity motivated us to solve the problem using an evolutionary algorithm (EA).This
is because one of themain advantages of anEA is that competitive results are obtained
regardless of its initial conditions (i.e. a set of solutions is randomly generated). We
selected Differential Evolution [] for several reasons: () it is an EA which has pro-
vided very competitive results when compared with traditional EAs such as genetic
algorithms and evolution strategies in real-world problems []; () it is very simple
to implement []; and () its parameters for the crossover and mutation operators
generally do not require a careful fine-tuning [].

DE is an evolutionary direct-search algorithm to solve optimization problems.
DE shares similarities with traditional EAs, however, it does not use binary encoding
as a simple genetic algorithm [] and it does not use a probability density function to
self-adapt its parameters as an Evolution Strategy []. Instead, DE performs muta-
tion based on the distribution of the solutions in the current population. In this way,
search directions and possible stepsizes depend on the location of the individuals
selected to calculate the mutation values.

Several DE variants have been proposed []. The most popular is called “DE/-
rand//bin”, where “DE”means Differential Evolution, the word “rand” indicates that
the individuals selected to compute the mutation values are chosen at random, “” is
the number of pairs of solutions chosen to calculate the differences for the mutation
operator and finally “bin” means that a binomial recombination is used. A detailed
pseudocode of this variant is presented in Fig. .

Four parameters must be defined in DE: () the population size, () the number
of generations, () the factor F � [0.0, 1.0], which scales the value of the differences
computed from randomly selected individuals (typically three, where two are used
to compute the difference and the other is only added) from the population (row 
in Fig. ). A value of F = 1.0 indicates that the complete difference value is used; and
finally, () the CR � [0.0, 1.0] parameter, which controls the influence of the parent
on its corresponding offspring; a value of CR = 0.0 means that the offspring will
take its values from its parent instead of taking its values from the mutation values
generated by the combination of the differences of the individuals chosen at random
(rows 9–15 in Fig. ).

DE was originally proposed to solve global optimization problems. Moreover,
like other EAs, DE lacks a mechanism to handle the constraints of a given optimiza-
tion problem. Hence, we decided to modify the DE algorithm in order to solve con-
strained multiobjective optimization problems. It is worth remarking that the goal
when performing these modifications was to maintain the simplicity of DE as much
as possible.

Three modifications were made to the original DE:

. The selection criterion between a parent and its corresponding offspring was
modified in order to handle multiobjective optimization problems.

. A constraint-handling technique to guide the approach to the feasible region of
the search space was added.



 Evolutionary Optimization 

Fig. 3 “DE/rand//bin” algorithm. randint(min,max) is a function that returns an integer num-
ber betweenmin andmax. rand[0, 1) is a function that returns a real number between 0 and 1.
Both are based on a uniform probability distribution. “NP”, “MAX_GEN”, “CR” and “F” are
user-defined parameters. “D” is the dimensionality of the problem

. A simple external archive to save the nondominated solutions found during the
process was added.

4.1 Selection Criterion

We changed the original criterion to select between parent and offspring (rows 16–20
in Fig. ) based only on the objective function value. As in multiobjective optimiza-
tion we are looking for a set of trade-off solutions, we used, as traditionally adopted
in Evolutionary Multiobjective Optimization [], Pareto Dominance as the criterion
to select between the parent and its corresponding offspring. The aim is to keep the
nondominated solutions from the current population.

A vector U = (u1 , . . . ,uk) is said to dominate V = (v1 , . . . , vk) (denoted by
U aV) if and only if U is partially less than V, i.e. ∀i � �1, . . . , k	, ui � vi b .i �
�1, . . . , k	�ui < vi . If we denote the feasible region of the search space asF , the evolu-
tionary multiobjective algorithm will look for the Pareto optimal set (P�) defined as:

P� �= �x � F � e. x′ � F F(x′) a F(x)	. ()
In our case, k = 2, as we are optimizing two objectives.
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4.2 Constraint Handling

Themost popular approach to incorporate the feasibility information into the fitness
function of an EA is the use of a penalty function. The aim is to decrease the fitness
value of the infeasible individuals (i.e., those that do not satisfy the constraints of the
problem). In this way, feasible solutions will have a higher probability of being se-
lected and the EA will eventually reach the feasible region of the search space. How-
ever, the main drawback of penalty functions is that they require the definition of
penalty factors. These factors determine the severity of the penalty. If the penalty
value is very high, the feasible region will be approached mostly at random and the
feasible global optimum will be hard to find. On the other hand, if the penalty is
too low, the probability of not reaching the feasible region will be high. Based on the
aforementioned disadvantage, we decided to avoid the use of a penalty function. In-
stead, we incorporated a set of criteria based on feasibility, originally proposed by
Deb [] and further extended by other researchers [, , ]:

• Between two feasible solutions, the one which dominates the other wins.
• If one solution is feasible and the other one is infeasible, the feasible solutionwins.
• If both solutions are infeasible, the onewith the lowest sumof constraint violation

is preferred.

We combine Pareto dominance and the set of feasibility rules into one selection cri-
terion, which substitutes rows 16–20 in Fig.  as presented in Fig. .

4.3 External Archive

One of the features that distinguishes a modern evolutionary multiobjective opti-
mization algorithm is the concept of elitism []. In our modified DE, we added an
external archive, which stores the set of nondominated solutions found during the
evolutionary process. This archive is updated at each generation in such a way that
all nondominated solutions from the population will be included in the archive. After
that, nondominance checking is performed with respect to all the solutions (the new-
comers and also the solutions in the archive). The solutions that are nondominated
with respect to everybody else will remain in the archive. When the search ends, the
set of nondominated solutions in the archive will be reported as the final set of solu-
tions obtained by the approach.

Fig. 4 Modified selection mechanism added to the DE algorithm in order to solve the multi-
objective optimization problem
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4.4 Results of the EA Approach

In our experiments, we performed 10 independent runs. A fixed set of values for the
parameters was used in all runs and they were defined as follows: Population size
NP = 200, MAX_GENERATIONS = 100; the parameters F and CR were ran-
domly generated within an interval. The parameter F was generated per generation
in the range [0.3, 0.9] (the differences can be scaled in different proportions with-
out affecting the performance of the approach) and CR was generated per run in the
range [0.8, 1.0] (greater influence of the mutation operator instead of having such
influence from the parent when generating the offspring).These values were empiri-
cally derived. This way of defining the values for F and CRmakes it evident that they
do not require to be fine-tuned. We will refer to the evolutionary approach as “EA”
(Evolutionary Algorithm).

The experiments were performed on the same platform on which the goal at-
tainment experiments were carried out. This was done to have a common point of
comparison to measure the computational time required by each approach.

In Table  we present the number of nondominated solutions and also the time
required per run.

The 10 different Pareto fronts obtained are presented in Fig. .
In order to help the decision maker, we filtered the 10 different set of solutions

in order to obtain the final set of nondominated solutions. The final Pareto front ob-
tained from the 10 runs contains 28 nondominated points and is presented in Fig. .
Finally, the details of the 28 solutions are presented in Table .

Figure  shows themechanical efficiency and the input control of the pinion-rack
CVTwith the optimal solution obtained with theMPM and the solution ([.,
., ., ., .,.]) in themiddle of the filtered Pareto front
obtainedwith the EA (Fig. ).We can observe that themechanical efficiency found by
the EA is better than that of the MPM solution. We can also see a smooth behavior of

Table 4 Time required and number of nondominated solutions found at each independent run
by the EA

Run Time required Nondominated
solutions

 18.53 Hrs. 17
 20.54 Hrs. 15
 18.52 Hrs. 25
 18.63 Hrs. 16
 18.55 Hrs. 17
 17.57 Hrs. 19
 18.15 Hrs. 18
 18.47 Hrs. 24
 18.67 Hrs. 16
 20.24 Hrs. 18
Average .. Hrs .. solutions
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Fig. 5 Different Pareto fronts obtained by the EA in 10 independent runs
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Fig. 6 Final set of solutions obtained by the EA in 10 independent runs

Table 5 Details of the trade-off solutions found by the EA. All solutions are feasible

[N� , m� , h� , e�max , K
�

P , K
�

I ] [Φ1(•), Φ2(•)]

[32.949617, 0.001780, 0.020413, 0.063497, 5.131464, 0.022851] [0.534496, 1033.243548]
[25.022005, 0.001699, 0.020103, 0.052385, 5.087026, 0.024991] [0.687214, 837.167059]
[24.764331, 0.001723, 0.020662, 0.048119, 5.104801, 0.011072] [0.694969, 828.856396]
[32.203853, 0.001793, 0.021356, 0.066703, 5.033164, 0.012833] [0.547385, 984.149814]
[30.774167, 0.001710, 0.020092, 0.069459, 5.129618, 0.010260] [0.568131, 950.480089]
[34.231339, 0.001756, 0.020974, 0.065426, 5.104461, 0.023469] [0.515604, 1042.009590]
[31.072336, 0.001760, 0.020295, 0.072332, 5.018621, 0.024963] [0.564775, 964.310541]
[27.647589, 0.001685, 0.020151, 0.069264, 5.001687, 0.031805] [0.627021, 877.670407]
[27.548056, 0.001696, 0.020083, 0.067970, 5.006868, 0.017859] [0.629913, 864.206663]
[30.866972, 0.001735, 0.020305, 0.058766, 5.002777, 0.032694] [0.567519, 960.120458]
[28.913492, 0.001747, 0.020478, 0.058322, 5.021887, 0.027174] [0.603222, 923.771423]
[28.843277, 0.001764, 0.020282, 0.055027, 5.024443, 0.017157] [0.605340, 915.753294]
[30.185435, 0.001700, 0.020075, 0.059569, 5.133269, 0.019914] [0.577733, 949.842309]
[29.448640, 0.001755, 0.020601, 0.063276, 5.019318, 0.033931] [0.593085, 944.906551]
[20.002905, 0.001697, 0.020098, 0.053235, 5.114809, 0.018447] [0.844657, 715.605541]
[26.373053, 0.001718, 0.020176, 0.068410, 5.031773, 0.014986] [0.656264, 849.215816]
[32.227085, 0.001764, 0.020567, 0.070369, 5.178989, 0.026127] [0.544721, 1030.722785]
[23.476167, 0.001731, 0.020618, 0.057264, 5.050345, 0.010533] [0.730990, 790.412654]
[23.853314, 0.001696, 0.020054, 0.063646, 5.097374, 0.040464] [0.717403, 827.978369]
[23.936736, 0.001767, 0.020179, 0.054081, 5.026456, 0.013965] [0.719347, 810.685134]
[18.094865, 0.001754, 0.020097, 0.033930, 5.263513, 0.012051] [0.926890, 700.251032]
[15.287561, 0.001836, 0.020539, 0.065247, 5.001634, 0.077960] [1.086582, 648.563140]
[20.410186, 0.001689, 0.020082, 0.067889, 5.005502, 0.046545] [0.828891, 729.481066]
[29.319668, 0.001754, 0.020557, 0.057790, 5.140154, 0.012875] [0.595073, 944.511281]
[28.165197, 0.001722, 0.020449, 0.069922, 5.035457, 0.013965] [0.617721, 886.468167]
[34.733111, 0.001738, 0.020849, 0.064827, 5.470063, 0.078838] [0.504179, 1230.655492]
[18.028162, 0.001753, 0.021026, 0.075356, 5.185506, 0.027797] [0.930299, 697.362827]
[21.642511, 0.001694, 0.020196, 0.061009, 5.040619, 0.029378] [0.785859, 752.464167]

the mechanical efficiency for the EA, maintaining a more compact CVT size for the
EA solution. However, the initial overshoot of the input control is greater than that of
the MPM solution. These behaviors are observed with all the solutions lying on the
middle of the Pareto front, because a higher number of teeth and a corresponding
smaller size are obtained (p�1 was increased and p�2 was decreased) whereas the input
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Fig. 7 Mechanical efficiency and Control input for the pinion-rack CVT. obtained by the EA
approach

energy controller is greater (p�5 and p�6 were increased) in these optimal solutions.
In conclusion, from a mechanical point of view, the solutions in the middle of the
Pareto front, offer many possible system reconfigurations of the pinion-rack CVT.

5 Advantages and Disadvantages of Both Approaches

5.1 Quality and Robustness

As we can see, the results provided by the EA were as good as those obtained by the
MPM method because the latter solutions were also nondominated with respect to
those found by the EA. However, the EA was not sensitive to the initial conditions
(a randomly generated set of solutions was adopted at all times). The EA approach
provided a more robust behavior than that shown by the MPM. Despite the fact that
the results obtained by both approaches are considered similar (from a mechanical
and from a control point of view), as the EA obtains several solutions from a single
run, it gives the designer the chance to select from them, the best choice based on his
preferences.

5.2 Computation Cost

It is clear, based on the results shown in Tables  and  for the MPM and the EA ap-
proaches respectively, that the EA is the most expensive, computationally speaking.
However, as pointed out in Table , the EA obtains a set of nondominated solutions
per single run. In contrast, the MPM always returns a single solution on each run.
Therefore, based on the average time (18.78 h) and the average number of solutions
obtained (18.5 solutions), approximately, one solution per hour is obtained. On the
other hand, the MPM obtained a solution after approximately 36minutes computa-
tion time. Therefore, we can conclude that the EA requires, roughly, twice the time
used by the MPM to find a single solution.
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5.3 Implementation Issues

As mentioned in Sect. ., in order to solve the multiobjective optimization prob-
lem using the MPM, a sequential quadratic programming method was used. There,
a quadratic programming problem, which is an approximation to the original CVT
problem, was solved, and some difficulties detected:

• This method requires gradient calculation, sensitivity equations and gradient
equations of the constraints. In general, the number of sensitivity equations is
the product of the number of state variables and the number of design variables.
Gradient equations are related to the number of design variables. Summarizing,
we must calculate two objective functions equations,  sensitivity equations, six
gradient equations and  constraint gradient equations. On the other hand, with
the EA only two objective functions equations must be calculated. Therefore, re-
configuration of the EA is simple.

• Due to the fact that the QP problem is an approximation to the original prob-
lem and that the constraints are a linear approximation, this problem might be
unbounded or infeasible, whereas the original problem is not. With the EA, the
original problem is solved. Therefore, the search for the optimal solution is per-
formed in the feasible region of the search space, directly. In this way, in the case
of the EA, new structural parameters can be obtained when additional mechan-
ical constraints to the design problem are added. These mechanical constraints
could be considered directly in the constraint-handling mechanism of the algo-
rithm without the need for any further changes.

It is worth recalling that another additional step related to the use of the MPM is that
it requires minimizing each objective function considered, separately.This is because
the goal attainment method requires a goal for each function to be optimized. This
step is not required by the EA. Finally, the EA showed no significant sensitivity to its
parameters.

5.4 Goal Attainment to Refine Solutions

It is important to mention that we carried out a set of runs of the MPM using a non-
dominated solution obtained by the EA, as a starting point. However, the approach
was unable to improve the solution in all cases.

6 Conclusions and Future Work

We have presented the multiobjective optimization of a pinion-rack continuously
variable transmission (CVT). The aim is to maximize the mechanical efficiency and
to mininize the corresponding control. The problem is subject to geometric and
strength conditions for the gear pinion of the CVT. Two different approaches were
used to solve the problem: A mathematical programming method called Goal At-
tainment and also an evolutionary algorithm. The first one was very sensitive to the
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initial start point of the search (the point must be given by the user and must be
carefully selected), but the computation time required was of about 30 minutes to
obtain a solution. On the other hand, the evolutionary algorithm, which in our case
was differential evolution, showed no sensitivity to the initial conditions, i.e. a set of
randomly generated solutions was used in all experiments. Also, the approach did
not show any sensitivity to the values of the parameters related to the crossover and
mutation operators. Furthermore, the EA returned a set of solutions on each single
run, which gave the designer more options to select the best solutions, based on his
preferences. The computational time required for the EA was about 60 minutes to
find a solution. The results obtained with the two approaches were similar based on
quality, but the EA was more robust (in each single run it obtained feasible results).
Finally, the EAwas easier to implement, which is one clear advantage of the approach.

Future work will include designing a preferences-handling mechanism in order
to let the EA concentrate the search on those regions of the Pareto front where the
most convenient solutions are located. Furthermore, we plan to solve other mech-
atronic problems using the proposed approach.
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Abstract

Air defense systems based onMANPortable Air Defense Systems (MANPADS) have
demonstrated exceptional effectiveness against aircraft. To counter these systems, an
artefact named flare was developed.

The purpose of this chapter is to suggest a methodology to determine an opti-
mum sequence of flare launch, which aims to maximize the survival probability of
an aircraft against a MANPADS missile.

The proposed method consists in simulating the missile/aircraft/flare engage-
ment to obtain the flare launch program success’ probability distribution function.
In addition to utilizing this simulation, the use of a Genetic Algorithm is suggested
to optimize the flare launch program.

Employment of the proposed methodology increased the aircraft success proba-
bility by 51%under the same conditions of generic parameters for themissile, aircraft
and flare.

Key words: Metaheuristics, Combinatorial Optimization, Military

1 Introduction

The air defense system based on MANPADS (MAN Portable Air Defense Systems),
besides having low cost and great mobility, has demonstrated, throughout history,
great lethality: estimates suggest that 90% of worldwide combat aircraft losses be-
tween  and  were due to this kind of missile [].

The majority of these weapon systems are based on an infrared sensor, i.e., they
follow the radiation emitted by the aircraft’s heat.

To counter these weapons, an artefact named flare was developed. This object,
after being launched by the target aircraft, begins to burn itself, in this way producing
much more infrared radiation than the target aircraft. The missile, which follows the
biggest source of radiation inside its field of view,will change its trajectory to intercept
the flare, causing no more threat to the aircraft.

The target aircraft has three options for flare launch:
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• the first is an automatic flare launch by a device that senses the approaching mis-
sile;

• another option is amanual flare launch by the pilot when he sees the approaching
missile;

• the third option is an automatic launch of a predetermined sequence of flares by
the pilot when he enters into an area with great probability of having a MAN-
PADS based air defense system.

Despite the existence of devices that sense the approachingmissile (first option), they
are not totally reliable and/or are not very widespread. In the absence of these equip-
ments, the pilot has the choice to detect the threat himself (second option) or to use
a preemptive flare launch sequence (third option).

This work is limited to the third option, its purpose being to suggest a method-
ology to determine an optimum sequence of flare launch, which aims to maximize
the survival probability of an aircraft against a MANPADS missile.

Theproposedmethod consists of a simulation of themissile/aircraft/flare engage-
ment to obtain the flare launch program success probability distribution function.
Besides utilizing this simulation, a Genetic Algorithm is suggested to optimize the
flare launch program.

The utilization of simulations to infer the effectiveness of missiles against aircraft
has been discussed by several researchers [, , –] and demonstrated to be a very
efficient tool.The difference between this and previous work, is the addition of a third
entity into the simulation (the flare), and the employment of an optimization method
(Genetic Algorithm).

This chapter is organized as follows: in Sect. , the problem is defined.The heuris-
tic methodology (Genetic Algorithm) is reviewed in Sect. . Section  describes the
Monte Carlo simulation and Sect.  concludes.

2 Problem Definition

The aircraft’s flare launch system has the following programming parameters: the
number of flares (n f ) by salvo , the number of salvos (ns), the time interval between
successive flares (δ f ) and the time interval between successive salvos (δs), where the
first two variables are discrete and the last two are continuous. These parameters are
illustrated in Fig. , where n f = 4, ns = 3 and the symbol b represents the launch of
one flare.

Themain problem is how to define optimal parameters that produce the aircraft’s
greatest survival probability. Due to the stochastic behavior of the problem (the un-
known distance and bearing of the missile in relation to the aircraft and the time of
missile launch) and as field tests required to obtain these parameters are not a viable
option, Monte Carlo Simulation was selected as a tool to measure the efficiency of
a specific flare launch sequence.

1 A simultaneous discharge of weapons or projectiles from an aircraft.
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Fig. 1 Parameters of the flare launch system

“Themost commonly used optimization procedures – linear programming, non-
linear programming and (mixed) integer programming – require an explicitmathem-
atical formulation. Such a formulation is generally impossible for problems where
simulation is relevant, which are characteristically the types of problems that arise in
practical applications” [].

As the objective function is not known (either mathematical formulae or proper-
ties), the use of conventional optimization algorithms is not possible. We chose the
Genetic Algorithm as the solution for this problem.

3 Genetic Algorithm

Genetic Algorithms (GA) are search and optimization algorithms based on the nat-
ural selection theory of Charles Darwin. These algorithms were initially proposed by
John Holland [] and they follow Darwin’s assertion: the better an individual adapts
to the environment, the better his chances of survival and generating descendants.

The GA starts by randomly selecting a number of individuals inside the search
space. These individuals are then evaluated and assigned a fitness value. According
to the fitness value, a new population is created through stochastic operators of se-
lection, recombination (crossover) and mutation.

A generic GA can be described formally as (P(g) is the population of the gener-
ation g):

Algorithm : Genetic Algorithm

g = 0;
Start P(g);
Evaluate P(g);
Repeat

g = g + 1;
Select P(g) from P(g − 1);
Do crossover in P(g);
Do mutation in P(g);
Evaluate P(g);

Until the stop criterion is reached.
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3.1 Encoding and Generation Gaps of the Implemented GA

Each component of one solution, in genetics terms, is named a gene. Each gene rep-
resents, in our work, one parameter of the flare launch program. The ways the genes
may be represented are by binary (canonical) and real encodings. We opted for real-
value encoding, i.e., the flare launch program parameters are represented as vectors
in the n-dimensional Euclidean space R

n . For example, the codification for launch-
ing  salvos, with  flares each, time interval between successive flares of . seconds
and time interval between successive salvos of . seconds is:

pi = (8.00 2.00 1.23 2.76)

We utilized the generational replacement with elitism as the implemented Gener-
ation Gap. In this procedure, the whole population, but the best individual, is re-
placed in each generation.

3.2 Operators of the Implemented GA

Evaluate
To evaluate is to measure the performance with respect to an objective function.

In our problem, we utilized the statistic mean obtained by Monte Carlo Simu-
lation as the value of the objective function. Further details of this simulation are
provided in Sect. .

Selection
The selection operator is used to elect the individuals more adapted to the environ-
ment with the objective of allowing them to reproduce.

We used, as selection operator, linear ranking. In this option, the fitness value of
an individual is not the value of its objective function, but is re-defined as:

fitness(i) =Min +
(Max −Min) . (n − i)

n − 1
()

where: fitness(i) is the fitness value of the individual i, Max is the maximum value
of the fitness,Min is the minimum value of the fitness, 1 �Max � 2,Max+Min = 2,
n is the number of individuals of the population and i is the index of the individual
on the population arranged in descending order by objective function value.

After that, the selection operator will choose, with probability proportional to
the fitness value, an intermediate population (mating pool). This choice was imple-
mented through the method known as roulette wheel.

Algorithm : Roulette Wheel

Total_ f itness = "n
i=1 f itness(i);

Random = U(0, Total_ f itness);
Partial_ f itness = 0;
i = 0;

2 The proportion of individuals in the population which are replaced in each generation.
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Repeat
i = i + 1;
Partial_ f itness = Partial_ f itness + f itness(i);

Until Partial_ f itness � Random;
Return individual pi .

pi is the ith individual of population P(g) and U(a, b) is a uniform distribution in
the interval [a, b].

Crossover
Two individuals k and l are chosen from the mating pool and, with a certain proba-
bility (normally between % and %), the crossover operator will be employed to
generate two new individuals (offspring).

We chose the BLX-α crossover operator for our GA:

o f f springi = parentk + β(parentl − parentk) ()

where: o f f springi is the ith individual of population g, parent j is the jth individual
of the mating pool (extracted from population g − 1) and β � U(−α, 1 + α).

Mutation
Themutation operator improves the individual diversity of the population, but, as it
also destroys the individual’s data, it must be used with low probability rates (nor-
mally between .% and %).

Uniform mutation was the type implemented in our GA:

o f f springi = �U(ai , bi), if i = jparenti , if i � j ()

where: o f f springi is the ith gene of individual o f f spring, ai and bi are the viable
interval limits for the gene o f f springi , j is the selected gene for mutation on the
individual parent and parenti is the ith gene of individual parent.

Additionally, we took another procedure when dealing with the two first flare
programming parameters (number of flares by salvo and number of salvos): as these
parameters are not continuous, after the use of the GA operators crossover and
mutation, we took as result the integer value furnished by the operators. For ex-
ample: the crossover operator applied to the individuals p1 = 4 2 5 x1 x2 5 and
p2 = 4 6 1 x3 x4 5 provided: p3 = 4 3.12 1.87 x5 x6 5. Therefore, the resultant in-
dividual will be: p3 = 4 3 2 x5 x6 5.

For a detailed review of GA, readers can refer to [].

4 Monte Carlo Simulation

TheMonte Carlo Simulation (MCS) is based on the simulation of random variables
with the objective of solving a problem. Its main characteristic is that the outcomes
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of a process are determined, even those resulting from random causes. As it is a very
simple and flexible method, it can be used on problems of different complexity levels.
The biggest inconvenience of this methodology is the great number of runs necessary
to reduce the error estimate of the solution (normally values around ,),making
the simulation a very slow process.

The MCS of the flare program fitness calculation randomly generates scenarios
for the random variables of the entity missile: distance, bearing and launch time. Af-
ter this initial step, simulation of the missile, aircraft and flare path determines the
flare program’s success or failure in decoying the missile. Repeating this procedure
n times, we will obtain the flare program success’ probability distribution function.
The fitness value of a specific flare program will be the mean of the respective prob-
ability distribution function. In other words: for each individual of each generation
of the GA, the MCS will generate lots of random scenarios for the entity missile and
the mean of the outcomes will be the value that the MCS will return to the GA.

Observe that the result of one simulation of the MCS is a success or a failure in
decoying themissile, i.e., a zero or one, and, consequently, the probability distribution
function is a binomial one. We named the MCS outcome (mean of a specific flare
program probability distribution function) as the effectiveness.

The implemented MCS uses the following parameters:

• Aircraft parameters: the strike aircraft begins its path by heading for its target (it
is assumed that the aircraft is attacking a ground target) at distance d1 from the
target, altitude al tnav and velocity Vac f t . At distance d2 from the target, the air-
craft turns fa1 degrees. At distance d3, the aircraft climbs at fa2 degrees of attitude
until altitude al thi gh, when it heads for its target again and begins to descend
with fa3 degrees of attitude. At al tbomb altitude, the aircraft releases its weapons,
turns fa4 degrees and levels at al tnav altitude. This procedure, called pop-up at-

Fig. 2 Perspective (up/left), top (up/right) and side (down) views of the aircraft’s path
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tack, is illustrated in Figure , where the continuous line represents the aircraft’s
path, the dotted line represents the coordinates system’s reference and the triangle
represents the aircraft’s target.

• Missile parameters: the MCS uses, as data for the missile, its mean velocity,
turn rate, sensor movement maximum limit, maximum distance of proximity
fuse, maximum and minimum distance of employment, sensor’s field of view,
time constant and proportional navigation constant. The interception law im-
plemented was proportional navigation. It is assumed that the missile is pointed
toward the aircraft at the moment of its launch. All the random variables of this
MCS are associated with the entity missile (bearing and distance in relation to the
target aircraft and launch time). As these variables behave completely randomly
in the real world, we chose the uniform distribution inside the viable intervals to
represent their probability distribution function:

Bearing � U(0, 2π) ()

Distance � U(minimum distance, maximum distance) ()

Launch Time � U(, simulation’s maximum time) ()

• Flare parameters: the flare characteristics that are significant in the MCS are the
available number of flares, burn time, time to reach the effective radiation (rise
time), ejection velocity, deceleration and ejection angle in relation to the aircraft
body. The flare–aircraft separation’s path has great influence in decoying or not
decoying the missile, and it is illustrated in Fig. , where the bold line represents
the aircraft path, the thin line represents the flare path and the asterisk represents
the point where the flare reaches its effective radiation (rise time point).

Fig. 3 Flare-Aircraft separation’s side view
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As an example of the simulation’s geometry, one MCS history (named engage-
ment ε), in which the missile was decoyed by a flare, is shown in Figs.  and , where
the bold line represents the aircraft path, the thin line represents the missile path and
the dotted line represents the coordinates system’s reference.

Themoments of the engagement εmarked by the symbols◯ andH, in the Figures
 and , represent the positions of the aircraft and the missile, respectively, at missile

Fig. 4 Perspective (up/right) and close-up views of the engagement ε

Fig. 5 Top (left) and side (right) views of the engagement ε
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launch time and flare launch time. Observe that the missile had already fixed a bear-
ing to intercept the aircraft and then, after the moment H, it changed its trajectory to
intercept the flare.

As parameters to validate the MCS, we used generic values for the missile, the
flare and the aircraft, not representing any simulation of a real missile/aircraft/flare.

We ran five MCS, with , histories each, with the objective of confirming
model convergence. These simulations showed that, for a precision of 1.50%, the
simulation of  histories would be sufficient. The graphics of these simulations
can be checked in Figs.  and , where the y-axis measures the effectiveness differ-

Fig. 6 Convergence graphic of the simulations

Fig. 7 Detail of the convergence graphic shown in Fig. 
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ence between , simulations and the x-axis is the number of simulations. For
example: MCS  had, after  histories, an effectiveness of μ10 and, after , his-
tories, an effectiveness of μ30,000. In Fig. , the value of μ30,000 − μ10 = 21.00%.

After determining the number of histories () required for each MCS, we ran
the optimization model. The results of the first  generations can be seen in Table ,
where the numbers in brackets are the 95% confidence interval estimates.

Observe that the relation between the best efficiency of the tenth generation and
the worst of the first generation was approximately ., i.e., an improvement of 51%.

We ran only  generations with only  individuals because the computation
time required to perform the  MCS associated with each individual was very
long, e.g., in a Pentium , . GHz and  GB RAM, these  generations required
 days to run. As our purpose was to infer if this methodology would work and not to
optimize a real-world problem, we stopped the simulation after these  generations.

5 Conclusions

This chapter proposed a methodology to determine the optimum sequence of flare
launching, which aims to maximize the survival probability of an aircraft against
a MANPADS missile. This methodology utilizes the heuristic Genetic Algorithm to
optimize a stochastic objective function. As the engagement missile/flare/aircraft is
a stochastic problem, we appliedMonte Carlo Simulation to determine its probability
distribution function, which was then used as objective function value for the GA.

In Sect. , the problem was detailed for a better understanding of the proposed
method; the heuristic Genetic Algorithm and the implemented stochastic operators
were reviewed in Sect. ; the Monte Carlo Simulation and the significant parameters
of the problem were described in Sect. .

In the implemented MCS, we used generic parameters for the aircraft, the flare
and the missile, not representing any simulation of a real missile/aircraft/flare. The
worst success probability found by the first generation of the GA was 53.85% (95%

Table 1 Optimization’s GA:  first generations’ efficiency

Individual Effectiveness (%)
Generation  Generation  ... Generation  Generation 

p1 . . ... . .
[., .] [., .] [., .] [., .]

p2 . . ... . .
[., .] [., .] [., .] [., .]

� � � � � �

p20 . . ... . .
[., .] [., .] [., .] [., .]
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CI: [., .]). After  generations, it was possible to reach a success probabil-
ity of 81.75% (95% CI: [., .]), showing the coherency and efficiency of the
proposed methodology.

As future work, we will use the implemented method with real aircraft, flare
and missile parameters, and also compare the use of GA against other simula-
tion optimization techniques, such as the sequential response surface methodology
procedure.
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Abstract

This chapter serves as an introduction to estimation of distribution algorithms
(EDAs). Estimation of distribution algorithms are a new paradigm in evolutionary
computation. They combine statistical learning with population-based search in or-
der to automatically identify and exploit certain structural properties of optimization
problems. State-of-the-art EDAs consistently outperform classical genetic algorithms
on a broad range of hard optimization problems.We review fundamental terms, con-
cepts, and algorithms which facilitate the understanding of EDA research. The focus
is on EDAs for combinatorial and continuous non-linear optimization and the major
differences between the two fields are discussed.

Key words: Black Box Optimization, Probabilistic Models, Estimation of Distribu-
tions

1 Introduction

In this chapter, we give an introduction to estimation of distribution algorithms
(EDA, see []). Estimation of distribution algorithms is a novel paradigm in evolu-
tionary computation (EC).The EDA principle is still being labelled differently in the
literature: estimation of distribution algorithms, probabilistic model building genetic
algorithms (PMBGA), iterated density estimation evolutionary algorithms (IDEA)
or optimization by building and using probabilistic models (OBUPM). For the sake
of brevity we call this class of algorithms EDAs.

EDAs have emerged in evolutionary computation from research into the dynam-
ics of the simple genetic algorithm (sGA, see [] and []). It has been found in
this research that using standard variation operators, e.g., two-parent recombination
or mutation operators, easily leads to exponentially scaled-up behavior of the sGA.
This means that the required time measured by the number of fitness evaluations
to reliably solve certain optimization problems grows exponentially with the size of
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the problem. Loosely speaking, the use of fixed variation operators can easily cause
sGA behavior that moves towards enumeration of the search space, admittedly in an
elegant manner.

The failure of the sGA is systematic on certain problems. This has triggered re-
search that replaces the traditional variation steps in a GA. Briefly stated, what dif-
ferentiates EDAs from simple GAs and other evolutionary and non-evolutionary op-
timizers is that the main variation in EDAs comes from applying statistical learning
concepts as follows:

. The joint probability density of the selected individuals’ genotypes is estimated.
. This density is sampled to generate new candidate solutions.

As we will illustrate in this chapter, estimating a density from the genotypes of se-
lected solutions and subsequently sampling from it to generate new candidate so-
lutions is a powerful tool to make variation more flexible. This is because density
estimation can be regarded as a learning process. EDAs try to learn the structure of
problems. They attempt to adapt their search bias to the structure of the problem
at hand by applying statistical- and machine-learning techniques on a population of
solutions.

The learning capabilities of EDAs render them especially suitable for black-box-
optimization (BBO). In BBO one seeks to find the extremum of a fitness function,
without having a formal representation of the latter. One is solely given candidate
solutions and their fitness values. The fitness function itself is unknown, it is encap-
sulated in a so-called black box. BBO often appears in practice, if little knowledge on
the formal structure of the fitness function is available, and solutions are evaluated
with a complex virtual or physical simulation model.

EDAs have successfully been developed for combinatorial optimization. State-
of-the-art EDAs systematically outperform standard Genetic Algorithms with fixed
variation operators on a broad range of GA-hard problems, such as deceptive prob-
lems, MAXSAT, or Ising Spins. Many problems that are intractable for standard GAs
can reliably be solved to optimality by EDAs within a low-order polynomial number
of fitness evaluations depending on the problem size.

Because of this success in the discrete domain, the EDA principle has been
adapted for the continuous domain. Continuous EDAs are intended to solve non-
linear optimization problems in continuous spaces that cannot be handled by ana-
lytical or classical numerical techniques. It must be noted though, that a straightfor-
ward adaptation of the lessons learned from the discrete domain to the continuous
domain does not necessarily lead to efficient EDAs. We will discuss additional nec-
essary steps for the continuous domain that have led to optimizers that solve hard
non-linear problems reliably.

This chapter is structured as follows. In Sect. , we briefly review the simple gen-
etic algorithm and present a general framework for estimation of distribution algo-
rithms. We focus on discrete EDAs for combinatorial optimization in Sect. . Fun-
damental relationships between problem decompositions and search distributions
are explained in Sect. .. Standard test functions for discrete EDAs are presented in
Sect. .. Subsequently, a literature review on discrete EDAs for combinatorial opti-
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mization is given. Section  focuses on EDAs for non-linear optimization in continu-
ous spaces. A literature review for continuous EDAs is presented in Sects. . and ..
Consequently, we present material on convergence defects of EDAs for continuous
optimization in Sect. . and discuss recent approaches to enhance the efficiency of
continuous EDAs. The chapter ends with concluding remarks.

2 Preliminaries and Notation

2.1 The Simple Genetic Algorithm

The simple genetic algorithm is a cornerstone in GA theory. It is a stochastic search
strategy that maintains a set of solutions P of size �P� = n, called the population,
throughout the search. The population undergoes generational changes. We denote
a population in generation t by P t . A single solution is referred to as an individual.
Each individual has an associated fitness value that measures its quality. The goal of
the sGA is to find the individual that has the highest quality. An individual consists
of a phenotype and a genotype. The phenotype is its physical appearance (the actual
solution to the problem at hand) whereas the genotype is the genetic encoding of
the individual. The sGA processes genotypes that are binary (bit) strings of a fixed
length l . A single bit string is also referred to as a chromosome.A single bit at position
i, i = 1, 2, . . . , l in the chromosome is also referred to as an allele. The genotype–
phenotype mapping is called the representation of the problem and is an important
ingredient of GAs, see [].Whereas the fitness of an individual is computed with its
phenotype, new solutions are built on the basis of the genotype. For an illustration of
the genotype–phenotype mapping, see Fig. .

The sGA processes binary strings of fixed length as follows. The first population
of individuals is filled with a random sample from the complete solution space. All
solutions are drawn with equal likelihood, and all genotypes are assumed to be feas-
ible. The fitness of all individuals is evaluated and the better solutions are selected

Fig. 1 Genotype–phenotype mapping
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for variation using fitness proportionate selection. In fitness proportionate selection,
each individual’s probability of being selected is proportional to its quality. Selec-
tion intends to push the population into promising parts of the search space. For
a comparison of different selection schemes []. The set of selected individuals from
generation t is called the mating-pool and is denoted by S t .

New candidate solutions are generated by applying variation operators on elem-
ents of S t . The variation operators of a sGA are recombination operators of the two-
parent crossover-type (Fig. ) and bit-flip mutation. For recombination, one-point
crossover and uniform crossover are used. One-point crossover combines parts of
two randomly selected individuals (the so-called parents) from S t by cutting them
into two pieces at a randomly selected locus. New candidate solutions, the so-called
offspringOt , are generated by exchanging partial solutions between the parents. Uni-
form crossover produces offspring by exchanging every single bit between two ran-
domly chosen parents with a predefined probability. Bit-flipmutation modifies single
solutions by inverting each bit of the string with a usually small probability.

The offspringOt replaces the parents and the next iteration t+1 of the sGAbegins
with an evaluation of the newly generated populationP t+1 .Theprocess of evaluation,
selection, variation, and replacement is repeated until a predefined stopping criterion
is met, e.g., the optimal solution has been found, the best found solution cannot be
improved further, or amaximal running timehas been reached. See Fig.  for pseudo-
code of the sGA.

2.2 A General Framework for Estimation of Distribution Algorithms

Similar to the sGA, EDAs are stochastic, population-based search algorithms. What
differentiates EDAs from sGAand other evolutionary and non-evolutionary optimiz-
ers is that the primary source of variation in EDAs is not driven by the application of

Fig. 2 Recombination in the sGA

. Set generation counter t = 1
. Fill P 1 with uniformly distributed solutions
. EvaluateP

t

. Select S t from P

t

. Apply variation operators on S

t , fill Ot with newly generated solutions
. Replace parents with O

t

. If termination criterion is met, then end,
else t = t + 1, go to step .

Fig. 3 Pseudo-code for simple genetic algorithm
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variation operators to subsets of solutions. Instead, it comes from estimating a prob-
ability distribution from all selected individuals S t and consequently sampling from
this probability distribution to generate offspring Ot . In the following explanation,
assume maximization of an objective function.

To illustrate the EDA principle, we introduce a random variable Z that has an as-
sociated probability distribution P(Z) that covers all possible genotypes. To bemore
concrete, P(Z) denotes a joint probability distribution of all l alleles in the chromo-
some. A single genotype is denoted with Z, its probability is denoted by P(Z). The
random variable associated with a single, ith allele Zi is denoted by Zi . The prob-
ability distribution of a single allele is denoted by P(Zi). We further write PT(Z)
for a probability distribution over all genotypes that has a uniform distribution for
all genotypes with an associated fitness value larger than T and is equal to 0 other-
wise. If the probability distribution PT�(Z) of the optimal solution T was known,
we would simply have to sample from it to obtain the optimum because all solutions
worse than T have a chance of zero to be drawn. In practical optimization we do
not know PT�(Z). EDAs try to approximate it iteratively.

The first population P1 of n individuals is usually generated uniformly from all
feasible solutions. All individuals are evaluated and the selection step yields amating-
pool S t with solutions of higher quality. Now, a probability distribution is estimated
from the genotypes of the solutions in S t . This is achieved by learning a probabilis-
tic modelM = (ς, θ) from S t that is composed of a structure ς and a set of pa-
rameters θ.The structure defines (in)dependence between random variables and the
associated alleles. Learning the structure ς can be a complex task that is related to
learning (in)dependence relationships between alleles. The (in)dependence assump-
tions of the model are chosen such that they match those of the sample S t as close as
possible. This can be an optimization problem itself. The parameters θ of the model
are mostly probabilities and conditional probabilities. They are estimated after the
structure that fits best has been found. The modelM represents a probability distri-
bution that approximates the true distribution of the selected solutions’ genotypes in
S t . Let T denote the worst fitness from the selected individuals. The modelM ap-
proximates the true distribution of PT(Z), that is the distribution of all individuals
that have a better quality than T. The estimated probability distribution represented
byM is now randomly sampled from to generate offspringOt .Ot replaces the worst
solutions in the old population P t , and the population advances to population P t+1.
The replacement step uses elitism – it is assured that the best found solution is not re-
placed by a possibly worse solution. As a result the quality of the best found solution
does not decrease over time.

The process of evaluation, selection, model building, model sampling, and re-
placement is iteratively performed until a predefined convergence criterion is met.
Pseudo-code for the general EDA framework can be found in Fig. .

Note that in other metaheuristics one is often interested in building efficient vari-
ation operators that are applied on single or subsets of solutions for a specific opti-
mization problem. In EDAs the focus shifts from single solutions to the statistical dis-
tribution of sets of high-quality solutions in the search space. Loosely speaking, EDAs
approximate a density function that tells the decision maker where high-quality so-
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. Set generation counter t = 1
. Fill P 1 with uniformly distributed solutions
. EvaluateP

t

. Select S t from P

t

. Learn probabilistic modelM = (ς, θ) from S

t

. Sample offspring O

t fromM

. Replace the worst solutions in P

t with O

t

. If termination criterion is met, then end,
else t = t + 1, go to step .

Fig. 4 Pseudo-code for EDA framework.

lutions can be found, what probabilities they have in good populations, and which
decision variables are (in)dependent from each other.

In this chapter, we focus on EDAs that operate on fixed-length strings. A dis-
cussion of variable length EDAs for Genetic Programming, such as Probabilistic In-
cremental Program Evolution (PIPE, []), Extended Compact Genetic Program-
ming (eCGP, []), or grammar learning approaches, [], is beyond the scope of this
chapter.

3 Binary Estimation of Distribution Algorithms

3.1 ProblemDecomposition and Factorized Search Distributions

In this section, we focus on the special case that the genotype is a binary string of
fixed length l . Although the major results apply to higher alphabets as well, and the
proposed algorithms are extendable into this direction, the main stream of research
covers the binary case. This means that single alleles have either the value  or .
A simple and straightforwardway to implement anEDA that follows the general EDA
framework of Sect. . for binary genotypes of length l would be to use a frequency
table of size 2l as the probabilistic model. The frequency table holds a probability
P(Z) for each solution Z. The parameters of this model are the 2l probabilities of
the solutions. These probabilities can be estimated by the relative frequency P̂(Z) of
single solutions in the set of selected solutions S as

P̂(Z) =
α
�S�

, ()

where α denotes the number of solutions in S that equal Z. Generating new solutions
from this probabilistic model can be done in a straightforward manner by setting the
probability to sample Z to P̂(Z) and sample the offspring individual by individual.
The structure of this model implicitly assumes that all alleles depend on each other.
Using a frequency table of size 2l exploits no independence assumptions between
alleles.

Note that if we let the population size (and henceforth �S�) tend to infinity, the
estimated density expressed by the frequency table converges towards the true prob-
ability distribution P(Z). An iterative procedure of selection, estimation, sampling,
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and replacement would steadily increase T until PT(Z) only has positive probability
for optimal solutions and has zero probability for all other solutions. However, this
approach is generally intractable because the size of the frequency table and thus the
effort to estimate its parameters grows exponentially with the size l of the problem.
Also, population sizes are finite in practice.

To overcome the drawback of exponentially growing frequency tables, we can
allow for the estimation of factorized probability models. Factorizations of joint den-
sities of several random variables are products of marginal densities defined over
subsets of the random variables. Factorizations result from a joint density by assum-
ing statistical independence between random variables. The structure of a probabilis-
tic model relates to the (in)dependence relationships between the random variables.
The use of factorizations reduces the number of parameters that have to be estimated.
Estimating the parameters of factorized probability models is relatively easy, as the
parameters can independently be estimated for each factor [].

A simple example: we assume that all l distributions of the alleles are independent
from each other.Then, the joint distribution of the chromosomes can be expressed as
a univariate factorization, see Sect. ..The l-dimensional density is decomposed into
a product of l one-dimensional densities. The univariate factorization is defined as

P(Z) =
l

l
i=1

P(Zi). ()

The structure ς of this probabilistic model is fixed. The alleles are statistically inde-
pendent from each other. The parameters θ of this model are the l probabilities of
each allele being  or  (in the binary case). Factorizing the joint probability table
thus results in a reduction of dimensionality and, henceforth, probability tables that
can be estimated more efficiently without a reduction in precision.

Different types of factorizations have been used in EDAs, see Sects. .–.. Not
surprisingly, depending on the type of factorization that is used, the corresponding
EDA exploits different structures of the optimization problem at hand and exhibits
a different type of search bias. In general, however, the EDA approach of building
a model with respect to a certain factorization-type and sampling it to generate off-
spring is especially suited when it comes to solving additively decomposable problems.

According to [] the fitness function f (Z) is additively decomposable if it can
be formulated as

f (Z) =
m

!
i=1

fi(Zs i ). ()

f (Z) is additively defined over m subset of the alleles. The s1 , s2 , . . . , sm are index
sets, si � �1, 2, . . . , l	. The fi are sub-problems that are only defined on the alleles
Z j with j � si . The subproblems can be non-linear. The Zs i are subsets of all alleles.
These subsets can overlap.

Equation () exhibits a modular structure. It consists of m components that can,
but may not, be coupled. If the si are disjunct, si D s j = � ∀ i � j, the functions do
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not overlap and the overall problem is called separable. Separable problems can be
solved by solving the m subproblems fi and summing the results. Depending on the
size of the subproblems, separation reduces the dimensionality of the search space
significantly. Assuming that �si � = k ∀ i the dimensionality is reduced from l to k
and the size of the solution space is reduced from 2l to m2k . Problem () is called
decomposable if some sets si , s j exist for which si D s j � �. In this case, a strict sep-
aration of the sub-functions is no longer possible because a single decision variable
influences more than one sub-function.

What makes decomposable problems hard to solve? This is a non-trivial ques-
tion and several answers can be found in the literature. Most obviously the hardness
of the sub-functions directly contributes to the overall complexity of the problem.
Deceptive problems (see Sect. .) are hard to solve for GA and EDA and are often as-
sumed as sub-functions for testing purposes. Deceptive functions are typically harder
to solve for GA and EDA than non-deceptive functions. Further, subproblems can
contribute to the overall fitness on a similar scale, or the scaling of the sub-functions
can differ greatly. In the first case, all sub-functions of equal importance and conver-
gence towards the partial solutions will happen simultaneously. If the sub-functions
are exponentially scaled however, the most salient of them will converge first. The
other sub-functions may converge later and some instantiations might already be
lost at that time. Additively decomposable functions with exponentially scaled sub-
functions are harder to solve for GA and EDA – they require a higher population
size []. [] discusses whether the size �si � of the sets influences the hardness of
a problem. This can be the case, if for solving fi(si) all associated variables must be
regarded simultaneously. It may not be the case, however, if interactions are not very
strong and only some of the dependencies are important. The size of the sets can
thus be a source for the hardness of a problem but the degree of connectivity and
importance of the dependencies appears to be a more important source for the GA-
or EDA-complexity of a function.

High-quality configurations of alleles that belong to the sets si are referred to as
building blocks (BBs, [], []). It is commonly assumed in GA and EDA literature
that BBs are not further decomposable.Thismeans that to solve a subproblemdefined
by fi , all associated alleles Zs i have to be considered simultaneously. In experiments,
this can be achieved by using deceptive functions as subproblems, see Sect. ..

The building block structure of an ADF is called problem decomposition. A prob-
lem decomposition indicates which alleles depend on each other and which are inde-
pendent from each other. Information on the problem decomposition is also referred
to as linkage information [], [], [] and []. Tight linkage is a feature of a repre-
sentation that encodes alleles belonging to the same sets closely to each other. Loose
linkage characterizes a solution representation that spreads alleles belonging to the
same set widely over the chromosome.

The relationship between a problem decomposition and the factorization of
a search distribution is important. Assume a given population P that contains high-
quality solutions for a decomposable problem.The necessity of simultaneous appear-
ance of certain configurations of alleles within a sub-function will cause a statistical
dependency between these alleles in P . Alleles from different sub-functions can be
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set separately from each other to optimize (), and in general they will be statisti-
cally independent from each other in P except for noise and finite population ef-
fects. A central element of factorized probability distributions is the possibility to
assume independence between random variables. If these assumptions are exactly
in accordance with the decomposition of the problem, then the joint probability of
dimensionality l is factorized into several marginal densities of possibly smaller di-
mensionality – each modeling the distribution of alleles in a sub-function. In this
case, the factorization is called exact.

Sampling from an exactly factorized distribution is a powerful tool to solve com-
binatorial optimization problems []. However, efficient sampling is not always pos-
sible. In the following paragraphs, we refer to work that has been developed else-
where [], [] to illustrate for which decompositions efficient sampling is possible.
Assume that a fitness function of type () is given and one tries to solve the opti-
mization problem Z = argmax f (Z) by sampling solutions Z from a search distri-
bution. A candidate for the search distribution is the Boltzmann distribution which
is given as []

Pβ(Z) =
e β f (Z)

"y e β f (y) , ()

where β , 0 and y denotes the set of all solutions. The Boltzmann distribution has
the appealing property, that for increasing β it focuses on global optima of f (Z).
For β � 6, only global optima have positive probabilities. Unfortunately, sampling
from the Boltzmann distribution needs exponential effort because the denominator
is defined over all possible solutions. This is not a tractable search strategy.

If the fitness function is additively decomposable, the sampling effort can some-
times be reduced by sampling from a factorization of the Boltzmann distribution. If
it can be shown that for a given fitness function f (Z) the Boltzmann distribution can
be decomposed into boundedly smaller marginal distributions, sampling candidate
solutions from it can potentially be a promising search strategy.

To analyze whether this is the case, we define the sets di , bi , and ci for the index
sets si for i = 1, 2, . . . ,m as follows:

di =
i
m
j=1
s j , bi = si n di−1 , ci = si D di−1 .

If the following Factorization Theorem [], [], [] holds for a given decom-
posable function, the Boltzmann distribution can be factorized exactly into some
marginal distributions.

Factorization Theorem: Let the fitness function f (Z) = "m
i=1 fi(Zs i ) be an addi-

tive decomposition. If

bi � 0 ∀ i = 1, 2, . . . ,m ()

and

∀ i , 2 . j < i such that ci � s j , ()
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then

qβ(Z) =
m
l
i=1

Pβ(Zbi �Zci ) = Pβ(Z). ()

Condition () is called the running intersection property (RIP). If conditions () and
() hold, then theBoltzmann distribution can be obtained by an exact factorization of
marginal distributions. But, it is only reasonable to sample new solutions from () in
order to solve (), if sampling new solutions from () is computationally easier than
solving () directly. This is not the case if the marginal distributions are of arbitrary
dimensionality, because the sampling effort could then grow exponentially with the
problem size l . It is indeed the case, if the size of the sets bi and ci is bounded by
a constant that is independent of the bit-string length l . Then, the factorization is
called polynomially bounded.

The effort of sampling a polynomially bounded factorization ismuch smaller than
sampling the unfactorized distribution. Exactly factorizing a search distribution with
respect to a problemdecomposition can lead to a significant reduction in dimension-
ality of the size of the problems that one attempts to solve.

A major result of EDA theory is that if the factorization of the Boltzmann dis-
tribution for a combinatorial optimization problem is polynomially bounded, new
solutions can efficiently be generated and an EDA can theoretically solve the prob-
lem to optimality with a polynomial number of fitness evaluations []. This is an
important theoretical result that holds for infinite population sizes and if the exact
problem decomposition is known. In Sects. .–., we will describe how different
EDAs attempt to transfer this theoretical result into scalable optimizers.

3.2 Decomposable Test Functions

Thedynamics of the simple GA and EDAs are commonly investigated on decompos-
able test functions, especially the One-Max function and deceptive trap functions
described below. Both functions are defined on binary strings of fixed length l and
are separable. The One-Max function fOne-Max is defined as

fOne-Max(Z) =
l

!
i=1

Zi . ()

fOne-Max simply counts the number of ones in a binary string Z. From a decomposi-
tion point of view, the One-Max function is decomposable into l sub-problems that
are independent from each other as the fitness contribution of a single bit does not
depend on any other bit. To solve One-Max, each bit can be set independently from
each other, its building blocks each consist of a single bit and are of size one.

Deceptive trap functions [], [] of order k are defined as

fTrap(Z,u, k, d) =
���
�
���

k − u(Z) − d if u < k
k if u = k,

()



 Binary Estimation of Distribution Algorithms 

where u(Z) denotes the number of ones in the binary string Z of length k. The de-
ceptive trap function of order k = 5 is defined as

fTrap(Z,u) =
���
�
���

4 − u otherwise
5 if u = 5

()

where d has been set to d = 1. The trap function of order  is illustrated in Fig. .
Deceptive functions are designed such that all k bits have to be considered simultan-
eously in order to maximize them. The average fitness of partial solutions of sizes
that are < k that have all values of  is higher than the average fitness of the same
partial solutions that have all values of . Decision making about allele values that is
not based on the joint consideration of all k bits in a trap function will therefore sys-
tematically mislead genetic algorithms and EDAs into choosing the local maximum
of Z = (0, 0, . . . , 0) instead of the globally optimal chromosome Z = (1, 1, . . . , 1).

From a decomposition point of view, trap functions are artificial worst case func-
tions that are not further decomposable. k bits that belong to a single trap represent
bits of a single building block of size k. Trap functions are often used as sub-functions
in problems with more than one BB, like in composed trap functions.

Composed trap functions of order k are generated by defining m trap functions
on a binary stringwhose length l is kċm.This is done by partitioning the chromosome
into m = l

k sets of alleles si , i = 1, 2, . . . ,m, �si � = k and defining a trap function on
each of the m sets of alleles. The resulting function is defined as

fComp-Trap(Z) =
m

!
i=1

fTrap(Zs i ,ui , k), with ui =
k

!
j=1

Z(s i) j , ()

where (si) j denotes the jth bit in the ith trap function. If si D s j = �, then alleles are
only assigned to a single trap function and fComp-Trap is separable. In this case, the
BBs are non-overlapping. If on the other hand si D s j � �, then alleles are assigned
to several trap functions. In this case, the BBs are overlapping.

Fig. 5 Trap function of order k = 5
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Composed trap functions with tight linkage have the bits Zs i arranged next to
each other on the string. Composed trap functions with loose linkage have the bits
distributed all over the chromosome, e.g., in a random fashion.

Composed trap function with loose linkage are artificial test functions that rep-
resent hard BBO problems. Composed traps assume that the overall problem can be
decomposed in sub-problems, potentially yielding a reduction of the overall problem
dimensionality and making the problem much easier to solve. To solve composed
traps, we need to evaluate at most m ċ 2k solutions instead of 2mk if we know the as-
signment of bits to traps. In BBO, we do not know the structure of an optimization
problem. Thus, we do not know the assignments of the bits to the trap functions and
cannot properly decompose the problem. Instead, we are forced to learn the problem
decomposition before exploiting it. This is exactly what EDAs do.

3.3 No Interactions

Historically, the first EDA approaches in binary search spaces used univariate fac-
torizations of search distributions. A univariately factorized probability distribution
is a product of l univariate probability distributions ol

i=1 Pθ i (Zi), where Pθ i(Zi)
models the distribution of a single allele Zi and θi is the parameter vector that has to
be estimated for the ith allele. In the binary domain, θi simply holds the probability
of the ith allele being  or . Note, that univariately factorized probability distribu-
tions have a fixed structure. All alleles are assumed to be independent from each
other. Univariate factorizations are special cases of general Bayesian factorizations
described in Sect. . with l independent variables.

Estimating amodel on the basis of univariate factorizations reduces to parameter
estimation because the structure of the density in terms of (in)dependence assump-
tions is fixed. Estimating parameters for univariate factorizations has a computational
complexity ofO(n�θ�) where n is the population size and �θ� is the number of param-
eters that has to be estimated. As the number of parameters that has to be estimated
for a single univariate density Pθ i(Zi) is usually a small constant, �θ� = O(l).

Different EDAs based on univariate factorizations of frequency tables can be
found in the literature. The bit-based simulated crossover operator [] uses a binary
string of fixed length l . In the model building process, it computes for each allele i,
i = 1, 2, . . . , l the univariate probability of a  and a  at bit position i. Therefore,
the relative frequencies of single alleles are weighted by taking into account a fitness
measure fromhigh quality solutions. New solutions are sampled bit by bit.The samp-
ling process uses the probabilities that were obtained for each bit independently from
each other.

Population-based Incremental Learning (PBIL) [] uses the same vector of uni-
variate probabilities for each bit as []. However, instead of re-estimating the com-
plete probability vector from the selected individuals, the probability vector is adapted
in each generation from elitist individuals using an update rule. Starting with an ini-
tial setting where the probability of each bit being  is set to exactly ., the probabil-
ities for each bit are shifted towards  or . The directions for the shifts are obtained
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from elitist samples. Offspring are generated bit by bit. The alleles are sampled inde-
pendently from each other using a univariate probability for each bit.

The compact Genetic Algorithm (cGA) [] is very similar to PBIL.The cGA also
works on a probability vector of length l but does notmaintain a complete population
of solutions. Instead, it updates entries in the probability vectors from two sampled
individuals only. The updates are made with an updating rule that is similar to that
of PBIL.

In a similar fashion, the Univariate Marginal Distribution Algorithm (UMDA,
[]) estimates the probability of being  or zero for each bit position from its relative
frequency in the population. n new individuals are sampled from the distribution
to replace the population as a whole. In contrast to previous work, UMDA does not
alter the probabilities after estimating them. New solutions are generated bit by bit
from the estimated univariate factorization. The UMDA algorithm approximates the
behavior of a simple GA with uniform crossover.

Univariate factorizations have been used [] to solve permutation problems. Bi-
nary random variables are introduced for each pairwise combination of permutation
elements. The probability associated with each random variable relates to the prob-
ability that the associated permutation elements are positioned next to each other in
good solutions.

All algorithms discussed in this section are similar to each other and the sGA.
They do not respect linkage information. This means that subsolutions can be cut
into several parts by the crossover operators and can get lost. The sGA potentially
disrupts building blocks in its crossover step. The EDAs based on univariate factor-
ization set each bit independently from each other. They do not take into account,
that for solving decomposable problems with BBs of size � 1, the joint appearance of
configurations of several alleles has to be accounted for.

This is a valid approach, if the problem is decomposable into subproblems of
order k = 1 like the One-Max function. The simple genetic algorithm with uniform
crossover converges on One-Max inO(l log l) evaluations [], []. However, if the
size k of the sub-problems grows, the performance of the sGA can easily deteriorate.
It is well known that the sGA scales exponentially with the problem size, if the alleles
of a composed deceptive trap function are arbitrarily distributed over the chromo-
some and the order k of the traps is k � 3. In this case, the scalability of the simple
GA drops fromO(l log l) toO(2l) [].This clearly demonstrates the boundaries of
genetic algorithms with fixed operators. Loosely speaking, the behavior of exponen-
tially scaling GAs moves towards that of complete enumeration of the search space.
Note that the effect of generating offspring from a univariately factorized probability
distribution is similar to using uniform crossover []. Thus, the EDAs discussed in
this section are expected to scale similarly to the sGA. They are relatively efficient
on decomposable problems with sub-problems of smallest sizes and scale badly on
problems where the BBs are of higher order.

For real-world optimization, it is not realistic to assume that the BBs of a problem
are always of size . Linkage information is often not known a priori.This is especially
true for black box optimization. Using simpleGAwith fixed recombination operators
or univariate EDAs can thus easily result in an exponential scale-up behavior of the
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algorithm. Note that this can also happen with other fixed recombination operators,
and is not related to using one-point crossover or uniform crossover [].

3.4 Bivariate Interactions

Exponential scalability of univariate EDAs on problems with BBs of higher order has
motivated the development of EDAs based on more involved probabilistic models.
This subsection reviews EDAs that are capable of capturing bivariate dependencies
between alleles. In contrast to EDAs presented in Sect. ., the structure of the prob-
abilistic model of the EDAs in this section is no longer fixed. Instead, the structure
of the model is flexible to a certain degree, allowing for an adjustment of the fac-
torization that is built in every generation. Flexible probabilistic models allow for
an adaptive bias of the algorithm. To be more specific: EDAs discussed in this sec-
tion attempt to convert linkage information into statistical (in)dependence relation-
ships correctly. Learning probabilistic models as done in many EDAs corresponds
to minimizing the discrepancy between the distribution expressed by the model and
the empirical distribution of the alleles in the set of selected individuals. Inside the
boundaries imposed by a model type, EDAs search for that model that fits the distri-
bution of the genotypes best.

In the binary problem domain, Bayesian factorizations of search distributions
based on frequency counts are commonly used as probabilistic models. A Bayesian
factorization of a joint density is a product of conditional densities P(Zi �Zπi) for each
random variable Zi . πi denotes a vector of so-called parents of Zi that indicates on
which variables the univariate density Zi is conditioned. A Bayesian factorization of
a joint density P(Z) is defined as

P(Z) =
l

l
i=1

Pθ i(Zi �Zπi), ()

where θi denotes the vector of parameters that has to be estimated for each density
Pθ i (Zi �Zπi). The matrix π = (π1 , π2 , . . . , πl ) represents the structure of a Bayesian
factorization. π has a representation as a directed acyclic graph with l nodes where
each node corresponds to a single Zi , i = 1, 2, . . . , l and an arc from node j to node i
indicates that Zi is conditioned on Zj . Importantly, the Bayesian factorization is only
a valid density if and only if the factorization graph is acyclic. These probabilistic
models are also referred to as graphical models or Bayesian networks, see [], []
and [] for details.

EDA that are capable of capturing bivariate dependencies between variables re-
strict the general form of a Bayesian network given in () such that each variable can
at most depend on a single other variable. This means, that �πi � = 1 ∀ i = 1, 2, . . . , l .

Estimating the parameters of a given Bayesian factorization is straightforward.
The probabilities of bit i of being  or  is estimated by the relative frequency of this
bit being  or  given all possible configurations of the parents πi . This means, that
the probability of this bit of being  or  is held in a frequency table of size 2�πi �.
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The frequency table lists all possible configurations of the values of the �πi � parent
variables and for each configuration the corresponding relative frequency of the ith
bit being  or  in the mating-pool.

Sampling fromBayesian factorizations is done in two consecutive steps. First, the
nodes are sorted in topological order. If nodes are visited in topological order, a node i
is visited after all of its parent nodes πi have been visited already. After the nodes have
been sorted, sampling starts at a root node and then visits nodes in topological order.
The probabilities of a bit i of being  or  is set to the corresponding relative frequency
that has been calculated in the parameter estimation process.

The Mutual Information Maximization Input Clustering algorithm (MIMIC,
[]) uses a factorization graph that has the structure of a chain. In a chain, each
random variable has exactly one parent and conditions exactly one random variable
(except for starting and ending nodes in the chain). To select the chain that models
the distribution of the selected individuals as well as possible, MIMICminimizes the
difference between the distribution expressed by the factorization and the joint dis-
tribution of all alleles in the population. Therefore, the Kullback–Leibler divergence
between both distributions is taken as a distance measure that is minimized with
a greedy chain constructing approach. The computational complexity of the model
building process is O(l �θ�n). As �θ� = O(l) in a chain, the overall model building
complexity in MIMIC is quadratic in l .

The Combining Optimizers with Mutual Information Trees algorithm (COMIT,
[]) uses a factorization graph that has the structure of a tree. If the factorization
structure is a tree, then every random variable Zi is conditioned on exactly one par-
ent. In contrast to the chain model of MIMIC, several variables can be conditioned
on the same variable. To find a dependency tree that models the distribution of the
genotypes of the selected individuals as well as possible, the COMIT algorithm uses
a learning technique from [] that results in a maximum-likelihood factorization
with tree structure. The computational complexity of the model building process of
COMIT is similar to that of MIMIC.

The Bivariate Marginal Distribution Algorithm (BMDA, []) uses a set of inde-
pendent trees as its factorization graph. In this model, each random variable has at
most a single parent. The model building process starts with an empty factorization
graph. The factorization is constructed greedily by adding edges on basis of a χ2 de-
pendency test between pairs of random variables, where the edges are chosen in des-
cending order of the related χ2 statistic. The computational complexity of the model
building process isO(l2�θ�n). As �θ� = O(l), the model building complexity is cubic
in l .

In contrast to EDAs that use univariate factorizations of the search distribution,
EDAs that allow bivariate dependencies between alleles aremore powerful. However,
this comes at the price of a more complex model-building process. Moreover, EDAs
that can model bivariate dependencies between alleles are still not able to solve gen-
eral k-decomposable problems efficiently. As reported in [], the number of fitness
evaluations that an EDA based on tree-like factorization of the joint density requires
to successfully solve this problem grows exponentially with the size of the problem l .
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This is caused by inexact factorizations with respect to the problem decomposition
that allows mixing solutions of different subproblems instead of sampling partial so-
lutions to the subproblems independently from each other.

3.5 Multivariate Interactions

Probabilistic models that are able to capture multivariate interactions between alleles
were proposed in order to advance the model flexibility further. Therefore, marginal
product factorizations and Bayesian networks without restriction on the network
structure were used.

Amarginal-product factorization is a decomposition of a joint density into a prod-
uct of multiple multivariate densities, where the multivariate densities are defined
over mutually exclusive subsets of all considered random variables. This means that
each random variable appears in a single factor of the product only. We call the set
of variables that forms the ith multivariate density a node-vector vi . The node par-
tition vector v = (v1 , v2 , . . . , vm) represents the structure of the marginal product
factorization. A marginal product factorization is defined as

P(Z) =
m

l
i=1

Pθvi (Zvi ). ()

Marginal product factorizations decompose amultidimensional density into a prod-
uct of possibly multidimensional densities. In contrast to Bayesian factorizations,
marginal product factorizations do not use conditional densities. They simply as-
sume that all variables that appear in a factor vi are jointly distributed. Thus, the size
of the frequency tables associated with a node vector vi grows exponentially with �vi �,
whereas in Bayesian factorizations, it grows exponentially with the number of par-
ent variables �πi �. Since a single allele cannot appear in several factors in the marginal
product factorization, thismodel is suited tomodeling problemdecompositions with
non-overlapping building blocks, that is separable ADFs.

Bayesian factorizations are a more general class of distributions that characterize
marginal product models. In Bayesian factorizations, single alleles can be, but do
not necessarily have to be, associated with a single marginal density. Thus, Bayesian
factorizations are suitable for problem decomposition in which building blocks are
non-overlapping and in which they are overlapping.

Marginal product factorizations where the multivariate densities Pθv i (Zv i) are
represented by frequency tables were proposed in the Extended Compact Genetic
Algorithm (ECGA, []).The ECGA builds a marginal product model, starting with
a univariate factorization of the joint density of the binary genotype. A greedy heuris-
tic is used to iteratively join marginal densities such that the improvement in a min-
imum description length (MDL) metric is maximized. The greedy heuristic stops,
when no potential merging of marginal densities improves the MDL metric further.
The total number of fitness evaluations required by the ECGA to solve additively de-
composable problems of order k growswithO(2km1.5 logm)wherem is the number
of BBs in the problem. Note that the ECGA is able to properly decompose a search
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density based on frequency tables with respect to a problem decomposition.The time
required to solve additively decomposable problems measured by the number of fit-
ness evaluations grows sub-quadratically with the size of the problem if the size of
the problems k is bounded independent from l .

To solve permutation problems, marginal product factorizations were used by
[] and [].The factorizations were built on permutation random variables that al-
low for direct representation of permutations in combination with the greedy model
building process of the ECGA. Both the Akaike Information Criterion (AIC) metric
and the Bayesian Information Criterion (BIC) metric are used. The results indicate
a sub-quadratic growth of the minimally required population size with respect to the
problem size on decomposable deceptive permutation problems. Simple GAs scale
exponentially on these problems with respect to the problem size.

Acyclic Bayesian networks without further restrictions on the structure of the
graph were independently proposed for use in the Bayesian Optimization Algorithm
(BOA, [], [], []), the Estimation of Bayesian Network Algorithm (EBNA, [])
and the Learning Factorized Distribution Algorithm (LFDA, []).

In these algorithms, the model building starts with a univariate factorization.
In univariate factorizations, all variables are assumed to be independent from each
other. Iteratively arcs are added to the probabilistic model in a greedy fashion. This
relates to assuming dependence between alleles. A first version of the BOA uses
a Bayesian–Dirichlet metric [] to measure the fit between the distribution ex-
pressed by the model and the empirical distribution of the alleles in the mating-pool.
Greedily, arcs that maximize the Bayesian–Dirichlet metric are added to the graph,
where arcs that cause cycles are skipped. If the maximum number of parent variables
πi is bounded from above by κ, then this greedy approach to model building has
a computational complexity ofO(κl3 + κl2�θ�n).

Later versions of the BOA [] and the EBNAand LFDAuse penalization metrics
similar to the Bayesian Information Criterion (BIC) metric. Using a greedy way to
estimate a Bayesian network from selected individuals with the BIC metric has led
to sub-quadratic scale-up behavior of these algorithms on additively decomposable
problems [], []. Scalability results for the BOA that also suits the LFDAnd EBNA
can be found in [] and []. According to BOA scalability theory, the number of
fitness evaluations that the BOA requires to reliably solve additively decomposable
problems grows between O(l1.55) for uniformly scaled subproblems and O(l2) for
exponentially scaled subproblems independent of k.

Unconstrained Bayesian factorizations with local structures represented by deci-
sion graphswere used by [] in theHierarchical BOA (hBOA) to solve hierarchically
decomposable problems. Hierarchically decomposable problems are decomposable
and introduce additional dependencies on several levels of interpretation. The large
number of dependencies in these problems can hardly be expressed in a straightfor-
ward manner different from decision graphs. In hBOA, the decision graphs are com-
bined with a niching scheme. Niching localizes competition between solutions and
ensures that only similar solutions compete with each other. hBOA uses restricted
tournament replacement. For each newly generated solution, a set of currently avail-
able solutions is picked randomly. The most similar solution is replaced by the new
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solution, if the fitness of the new solution is higher. The combination of Bayesian
factorization with local structures and restricted tournament replacement has led
to sub-quadratic scale-up behavior on hierarchically decomposable problems [].
hBOA was successfully applied to Ising spin-glass problems and MAXSAT [].

The BOA and the hBOA have both been used to solve multi-objective prob-
lems [], []. The BOA was able to solve deceptive multi-objective problems that
other evolutionary algorithms could not solve. In a practical application, no signif-
icant superiority to GAs that use classical crossover operators could be found [].
The hBOA is found to scale upwell onmulti-objective decomposable deceptive prob-
lems. To obtain good scale-up however, clustering techniques in the objective space
are needed. On the test problems considered, multi-objective variants of the simple
GA and the UMDA scale badly and are incapable of solving problem instances of
medium sizes.

As we have seen in this chapter, the use of flexible probabilistic models allows for
a flexible bias of the EDA. State-of-the-art EDAs that are built on multivariate prob-
abilistic models solve decomposable problems in sub-quadratic time. The increase
of the model flexibility has led to more involved structure learning processes. At the
same time, the class of problems that can reliably be solved was enlarged such that
the resulting EDAs consistently outperform standard genetic algorithms with fixed
operators on hard decomposable optimization problems.

3.6 Summary

Discrete EDAs use probabilistic models to guide their search for high quality solu-
tions. State-of-the-art EDAs incorporate statistical learning techniques for building
a probabilistic model during the optimization and thereby are able to adapt their bias
to the structure of the problem at hand. For the important class of additively decom-
posable problems, the use of Bayesian factorizations or multivariate factorizations
has led to scalable optimizers that reliably solve additively decomposable problems
within a sub-quadratic number of fitness evaluations.

4 Continuous Estimation of Distribution Algorithms

The considerable success of discrete EDAs has motivated researchers to adapt the
general EDA principle to the continuous problem domain. Continuous EDAs are
proposed for function optimization in continuous spaces. Their application can be
promising if classical numerical methods like gradient-based methods fail or are not
applicable because derivatives are not available or due to outliers or noise. Continu-
ous EDAs are used for what is often referred to as global optimization. For continu-
ous optimization with the EDAs of this section a genotype is a vector of size l of real
values if not stated otherwise.

Continuous EDAsmostly use variants of the normal probability density function
(pdf) as the basis of their probabilistic model because the normal pdf is a commonly-
used and computationally tractable approach to represent probability distributions
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in continuous spaces. The normal pdf PN
(μ ,Σ) for l-dimensional random variables Z

is parameterized by a vector μ′ = (μ1 , μ2 , . . . , μl ) of means and a symmetric covari-
ance matrix Σ and is defined by

PN
(μ ,Σ)(Z = Z) =

(2π)−
l
2

(det Σ)
1
2
e−

1
2 (Z−μ)

T
(Σ)−1(Z−μ) . ()

The number of parameters to be estimated from data to fit the normal distribution
to selected individuals equals 1

2 l
2 + 3

2 l . A maximum likelihood estimation for the
normal pdf is obtained from a vector S of samples if the parameters are estimated by
the sample average and the sample covariance matrix [], []:

μ̂=
1
�S �

�S �−1

!
j=0
S j , Σ̂=

1
�S �

�S�−1

!
j=0
(S j − μ̂)(S j − μ̂)T ()

On the basis of the normal pdf, different probabilistic models can be estimated from
the selected individuals. The resulting EDAs are discussed in the following sections.

4.1 No Interactions

A univariate factorization of a multidimensional normal pdf is a product of several
independent univariate normal pdfs. This means that all covariances between two
normally distributed randomvariables Zi , Zj , i � j are .The variance of the ith allele
random variable is denoted by σ2i . Univariate factorizations of normal distributions
are defined as

P(Z) =
l

l
i=1

1
 
2πσi

e−2(
Zi−μi
σi
)
2

. ()

The first continuous EDA based on the normal pdf was proposed in []. The algo-
rithm is an adaptation of the binary PBIL algorithm ( []) to continuous domains.
The distribution of each allele is modeled by a univariate normal distribution. In the
initial phase of the optimization run, the variances are set to high values to stimulate
exploration of the search space. They are adapted in further generations with a geo-
metrically decaying schedule to enforce convergence. The means are adjusted with
a learning rule similar to the original discrete PBIL algorithm. New solutions are
generated allele by allele by sampling the values for each allele from the univariate
Gaussian distributions independently from each other.

A second adaptation of the binary PBIL algorithm is presented in []. In this
algorithm, a lower and an upper bound for each variable is given that defines a range
where values for the variables lie. A simple histogram model with two bins is main-
tained. The first bin corresponds to the lower half of the value range, the second bin
corresponds to the upper half of the value range. The binary random variables of the
PBIL algorithm correspond to the probability that a solution lies in the upper half of
the range. For example P(Z4 == 1) denotes the probability that the fourth allele has
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a value in the upper half of the initialization range. If the values converge towards
a single bin, then the bin sizes are adaptively resized to the half of that range, similar
to bisection. Sampling is again done allele by allele.

Another adaptation of PBIL to continuous spaces is proposed in []. A univari-
ate normal pdf is used for modeling the distribution of each allele independently
from each other as in []. In contrast to the latter, the variance and the mean are
updated with the same learning rule.

In [], the parameters of the univariate factorization are estimated from a set
of selected individuals with the standard maximum-likelihood estimator for mean
and variance. The approach of [] is more similar to the EDA principle than are
previous approaches. Similarly, the Univariate Marginal Distribution Algorithm in
theContinuousDomain (UMDAc ) was proposed in []. UMDAc is an adaptation of
theUMDAalgorithm [] to continuous domains.UMDAc estimates a single normal
pdf for the distribution of each of the l alleles using maximum-likelihood estimators
for mean and variance. New solutions are sampled allele by allele from the univariate
normal distributions.

4.2 Multivariate Interactions

To increase the modeling capabilities of the probabilistic model, research into more
involved probabilistic models on the basis of the normal pdf was conducted. To be
more specific, similar to the discrete domain, the model structure is no longer as-
sumed to be fixed, but is allowed to be flexible to a certain degree.This is achieved by
allowing for modeling multivariate interactions between continuous alleles. Conse-
quently, the probabilistic models comprehendmultivariate densities. For real-valued
optimization, marginal product factorization, Bayesian factorizations, and mixture-
based factorizations have been proposed.

Marginal product factorizations of the normal pdf are products of possibly multi-
variate normal densities where each allele random variable belongs to exactly one
factor. Similar to multivariate factorizations in the discrete problem domain, they
are defined for the continuous domain as:

P(Z) =
m

l
i=1

PN
(μv i ,Σvi ) , ()

where μv i denotes the �vi �-dimensional mean vector and Σv i the covariance matrix
of the ith partition. Multivariate factorizations of normals have first been proposed
in [].

Bayesian factorizations based on the normal pdf are referred to as Gaussian net-
works []. For real-valued optimization, the use of Gaussian networks has indepen-
dently been proposed by [] in the iterative density estimation evolutionary algo-
rithm (IDEA)-framework and in []. The latter uses a variant of the MIMIC algo-
rithm based on the normal pdf, called MIMICc, and unrestricted Gaussian networks
in the Estimation of Gaussian Network Algorithm (EGNA).

As a first approach to learning the Gaussian network, [] used an algorithm
by [] to build a factorization of the search distribution with minimum entropy.
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In this factorization, each variable is allowed to depend on at most one other vari-
able. In [], unrestricted Gaussian networks are used. A greedy factorization learn-
ing scheme in combination with a Bayesian Information Criterion metric is used to
learn the structure of theGaussian network. In [], themodel building process starts
with a complete factorization graph.Arcs are greedily removed from the factorization
based on a likelihood-ratio test.

Mixture distributions are weighted sums ofM � 1 pdfs. The probabilistic model
defined by a mixture distribution is a collection ς ofM (simpler) probabilistic model
structures ςm and a collection θ of M parameter vectors where m = 1, 2, . . . ,M.
A mixture distribution is then defined as

P(ς ,θ)(Z) =
M

!
m=1

βmP(ςm ,θm) , where ()

βm , 0, and
M
!
m=1

βm = 1. ()

The factors of this product are called mixture components, the weights βm are called
mixing coefficients. The interesting feature of mixture-based probabilistic models
is that they allow to model the distribution of solutions independently on different
peaks, potentially allowing a population to concentrate onmore than a single peak in
the search space. This is of special importance, if the search function is multimodal
and several basins of attraction should be investigated simultaneously. To achieve
this, mixture-based probabilistic models for continuous optimization have been pro-
posed by []. Clustering techniques like k-means clustering are used to divide the
population into M subpopulations from which the parameters for each of the mix-
ing components are estimated. Maximum likelihood estimates for () cannot be ob-
tained analytically. Instead, an iterative procedure defined in [] is used to obtain
the estimates for the mixing coefficients, the mean vector and the covariance matrix.

Real-valued mixture probability distributions have been used for multi-objective
optimization in [] and []. The results indicate that a mixture-based model can
effectively help to maintain diversity along the Pareto-frontier of a multi-objective
problem. Similar observations were made in [], where pdfs based on Parzen-
windows, which are similar to mixture distributions, are used.

Continuous EDAs can readily be used to solve permutation problems if a real-
valued representation of permutations is chosen [], [], []. These approaches
are, however, not very effective, as the commonly used “random-key” representation
is highly redundant [].

4.3 Enhancing the Efficiency of Continuous Estimation of Distribution Algorithms

Convergence Defects
For discrete search spaces, the use of Bayesian factorization based on frequency
counts has led to scalable evolutionary optimizers that outperform classical genetic
algorithms on a broad range of problems. It has been noted however, that simply
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estimating and sampling probabilistic models on the basis of the normal pdf as il-
lustrated in Sects. . and . does not automatically lead to efficient EDAs for the
continuous problem domain.

Analytical results on the convergence properties of the univariatemarginal distri-
bution algorithm in the continuous domain are available in [] and [].The analy-
sis of UMDAc revealed important peculiarities of continuous EDAs based on the
normal pdf.

To bemore precise, the performance of UMDAc depends heavily on the structure
of the area of the fitness function that UMDAc is currently exploring. We can regard
continuous search spaces as arrangements of two elemental structures: peaks (i.e.,
local and global optima) and slopes. At the beginning of the search, the EDA will
in general be approaching a local or global optimum by exploring a region that has
a slope-like function. Eventually the search focuses around an optimum (either local
or global) in its final phases, i.e., the region to be explored is shaped like a peak.

It has been shown that UMDAc can only reach the optimum if the set of search
points is close to the optimum [], []. The reason for this is that the mean of the
normal distribution that is estimated by UMDAc can only move a limited distance
before converging due to shrinking of the estimated variance. This means that on
slope-parts of the search space, UMDAc will perform extremely poor whereas on
peak-parts UMDAc will perform nicely. Both studies assume that UMDAc uses the
estimated normal density to generate new candidate solutions with no modification.

The bad performance of UMDAc when traversing a slope has caused poor ex-
perimental results. In fact, continuous EDAs that estimate and sample variants for
the normal distribution fail on some test problems of numerical optimization where
other evolutionary algorithms or classical gradient-based methods do not fail. This
was first noticed by [] and confirmed by [] and [].

On the Choice of Search Distributions
To account for the inability of the normal distribution to successfully exploit the
structure of some continuous fitness functions, [] introduced the notion of ade-
quacy and competency of a search distribution in EDAs.

Estimating the contours of the fitness landscapes on the basis of a probability
distribution, as done in any EDA, results in a probabilistic representation of the true
fitness landscape. The induced bias of an EDA is based on this internal probabilis-
tic representation. The restrictions of the model used and the estimation procedure
however cause the representation to be only an approximation of the optimal distri-
bution; the latter being a close representation of the contours of the fitness landscape.

A class of probability distributions is considered adequatewith respect to a given
optimization problem, if it is able to closelymodel the contours of the fitness function
of that problem with arbitrary exactness. If a probability distribution is inadequate,
then the estimated probabilistic representation of the fitness landscape can be (but
not necessarily has to be) misleading, because it is different from the true structure
of the problem. It should therefore be carefully assessed whether this density can be
seen as a reliable source of information for guiding the search.



 Continuous Estimation of Distribution Algorithms 

The density estimation procedure is considered competent if it is actually able
to obtain an estimate for the probability distribution that closely models the fitness
landscape and properly generalizes the sample set. This means that the probabilistic
representation of the true landscape is correct. Additional requirements to this end
are that the density estimation procedure is tractable with respect to the computation
time and the population-sizing requirement.

For solving discrete additively decomposable functions, probabilistic models
based on Bayesian networks are adequate. Moreover, for these problems the com-
monly adopted greedy way to build the Bayesian network is competent. For the con-
tinuous problem domain, we now assess briefly whether the normal pdf is compe-
tent and adequate for peaks and slopes; the two basic structures of continuous fitness
landscapes.

The normal pdf can match contour-lines of a single peak nicely as it always con-
centrates the search around its mean and therefore can contract around a single peak
with arbitrary exactness. If the search is initialized near the peak, selection can shift
the mean of the pdf onto the peak. Thus, the normal pdf is adequate for search on
a single peak. An estimation procedure based on the standard maximum-likelihood
estimates is competent, because by using the maximum-likelihood estimates for the
normal pdf, a properly generalizing estimate can be constructed from data in com-
putationally tractable time. As a result, the UMDAc algorithm is able to converge on
a peak, if it is initialized near to it. This agrees with initial results on research into
continuous EDAs [], [].

This becomes different for slope-like regions of the search space. Contour-lines
of slopes can not be matched with the normal pdf. The true structure is misrepre-
sented using a maximum-likelihood estimation as the normal kernel introduces an
additional basin of attraction around its mean. Estimates from the normal pdf are
thus a much less reliable source of information for guiding the search compared to
exploring a single peak. Relying the search on maximum-likelihood estimates of the
normal pdf potentially misleads the EDA and can cause premature convergence on
slope-like regions of the search space.

Recent Approaches
In order to solve the problem of premature convergence, a class of more involved
probability distributions could theoretically be introduced for use as a search distri-
bution in continuous EDAs. However, contours of continuous fitness landscapes can
be of virtually any shape. As universal approximation in arbitrary exactness is com-
putationally intractable, recently developed EDAs still stick to the use of the normal
pdf, but emphasize a more sensible tuning of the parameters of the normal distribu-
tion.

A self-adaptation approach adopted from evolution strategies is used in [] to
scale the variance after the distribution estimation. The results indicate that the per-
formance of the resulting algorithm is comparable to that of the evolution strategy
with covariance adaptation (CMA-ES, []), a state-of-the-art evolution strategy, on
separable univariate functions.
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A scheme that tries to approximate the Boltzmann distribution (see Sect. .) in
continuous spaces using the normal pdf is proposed in []. Note that the Factoriza-
tion Theorem and the related theoretical work is valid for discrete and continuous
domains. The results from [] indicate that indeed a more sensible tuning of the
parameters of the normal pdf that is not limited to using maximum-likelihood esti-
mates results in more efficient continuous EDAs.

The estimation scheme is modified in [] such that it maintains diversity in the
population by restricting the variances to values greater than . This reduces the risk
of premature convergence, because it directly enlarges the area that the algorithm is
exploring.

Graham et al. in [] propose to adaptively scale the covariance matrix after the
estimation process. The scaling of the variance is triggered on slope-like regions of
the search space and is disabled when the currently investigated region is shaped
like a peak. To identify which structure currently dominates the investigated region,
the use of ranked correlation estimates between density of the normal pdf and the
fitness values is proposed. The results on non-linear problems that can not be solved
by simple hill-climbing algorithms (e.g. Rosenbrock function in high dimensions)
show that the proposed algorithm scales with a low order polynomial depending on
the problem size. Computational results are very close to that of the CMA-ES [],
one of the leading algorithms in continuous evolutionary optimization.

All of the above approaches advance the class of problems that continuous EDA
are able to solve reliably. Amore sensible adaptation of the EDA principle to the con-
tinuous domain seems to be required to develop efficient continuous EDAs. Recently
obtained results are promising and indicate the potential of continuous EDAwhen it
comes to solving continuous optimization problems. Adaptation of the normal den-
sity in the continuous domain appears to be a central element of study for EDAs to
come.

4.4 Summary

The success of discrete EDAs has motivated researchers to adapt the EDA principle
to the continuous domain. A direct adaptation of the principle has however proven
not to be effective. In contrast to the discrete field, recent work shows that the model
structure is not as important as the right treatment of the model parameters. A more
sensible adjustment or alteration of the density estimation or sampling process for
continuous EDAs is required to advance the performance of continuous EDAs. Re-
cent approaches have proven to be successful and reliable for hard continuous non-
linear optimization problems.

5 Conclusions and Outlook

This chapter intended to serve as an introduction to estimation of distribution al-
gorithms. We discussed the major terms, concepts, and algorithms for the discrete
and the continuous problem domain and pointed out the difference between the two
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fields. State-of-the-art EDAs systematically outperform standard GAs with fixed re-
combination operators on hard additively decomposable problems. To be more spe-
cific, the total number of fitness evaluations that is required to reliably solve addi-
tively decomposable problems to optimality is often found to grow subquadratically
with respect to the problem size. In the continuous domain, the use of probabilistic
models has not directly led to effective optimizers. In contrast to the discrete prob-
lem domain, a more sensible adjustment of the estimated parameters is necessary to
avoid premature convergence and boost performance. State-of-the-art EDAs for the
continuous domain are mature, powerful optimizers for non-linear unconstrained
problems.

In future, we expect for the continuous domain, efficiency enhancements that are
guided by formal models. Most of the available results for the continuous domain are
still experimental. Developing formal models that help us to understand the dynam-
ics of continuous EDAs is a formidable, but promising task. Also, it will be important
to work out links between continuous EDAs and evolution strategies on the basis of
these theoretical results.

Currently, there is still a lack of research in constraint handling for both dis-
crete and continuous EDAs. Almost all real-world problems include (non)linear
(in)equality-constraints. It is still an openquestion, how constraints can be integrated
best into the EDA principle and whether and how available constraint handling lit-
erature (see [] for an overview) can readily be adopted or not. Also, it would be
interesting to see whether the probabilistic model itself can serve as a starting point
to develop constraint handling techniques. As an example, it would be nice to build
probabilistic models that have zero probabilities for infeasible solutions. From these
models, only feasible solutions can be sampled.

Most of the publications on EDAs come from the computer-science, EC-theory
and machine-learning community. This research has led to effective optimizers and
theoretical insights. In industry, however, the sGA and its variants are still predom-
inantly used, although EDA research has clearly shown us the boundaries of these
approaches. This is partly due to the fact that the EDA principle is relatively new
and still unknown in industry. In addition to existing applications of EDAs [], [],
[], [], [], [], [], [], more applications of EDAs to problems of industrial
relevance are needed that illustrate to practitioners the effectiveness of EDAs and
the drawback of classical approaches. Research on EDA applications will drive diffu-
sion of the EDA principle and establish EDA in the long run. A promising field for
EDA applications is that of simulation optimization, where virtual or physical simu-
lation models are coupled with optimizers [], [], [], []. The simulation model
is used as a black box that estimates the fitness of solutions. Simulation is a widely
adopted tool in industry, e.g., when it comes to evaluating cost and time in complex
manufacturing systems or supply networks. To this end it might prove helpful that
the simulation and the EDA community speak a similar language. Finally, EDAs that
are coupled with simulation models could readily benefit from the growing field of
efficiency enhancement techniques [].

The term problem decomposition and how it is understood in GA and EDA re-
search is still largely unknown in operations research. Consequently, the vast ma-
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jority of GA applications neglect an analysis of dependencies between decision vari-
ables. A decomposition analysis that utilizes the Factorization Theorem and related
techniques can answer questions that are important for every optimization practi-
tioner, e.g.:

. Is the overall optimization problem decomposable or separable?
. How do the decision variables interact?
. Which features at the phenotype level cause dependencies between alleles at the

genotype level?
. Which dependencies need to be considered in order to solve the problem reli-

ably?
. Does tight linkage pay off? Is there a natural way to obtain such a coding?
. What is the structure (size, overlap) of dependency sets in existing benchmark

instances? Is there a relationship between the observed hardness of a benchmark
instance and these (or other) characteristics?

As a concluding remark, we would like to stress the fact that the application of an
EDA to your problem of choice is easy. Most of the algorithms that we have discussed
in this chapter are available in standard scripting languages and can be downloaded
from the homepages of the respective authors.The implementations typically provide
documented interfaces for the integration of custom fitness functions.
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Abstract

Differential evolution (DE) and evolutionary programming (EP) are two major algo-
rithms in evolutionary computation. They have been applied with success to many
real-world numerical optimization problems. Neighborhood search (NS) is a main
strategy underpinning EP. There have been analyses of different NS operators’ char-
acteristics. Although DE might be similar to the evolutionary process in EP, it lacks
the relevant concept of neighborhood search. In this chapter, DE with neighbor-
hood search (NSDE) is proposed based on the generalization of NS strategy. The
advantages of NS strategy in DE are analyzed theoretically. These analyses mainly
focus on the change of search step size and population diversity after using neigh-
borhood search. Experimental results have shown thatDEwith neighborhood search
has significant advantages over other existing algorithms on a broad range of different
benchmark functions.NSDE’s scalability is also evaluated on a number of benchmark
problems, whose dimension ranges from  to .

Key words: Differential Evolution, Global Optimization, Evolutionary Algorithms,
Neighbourhood Search, Hybrid Algorithms

1 Introduction

Differential evolution (DE) is a simple yet effective global optimization algorithm
with superior performance in several real-world applications [,]. Several variations
of DE have been proposed to improve its performance. A self-adaptive strategy has
also been investigated to adapt between different variants of DE []. Although there
are only three strategy parameters (population size NP, crossover rate CR and muta-
tion scaling factor F), it was found that the performance of DE is very sensitive to the
setting of these control parameters. Zaharie [] analyzed how these control param-
eters influence the population diversity of DE, while [] used extensive experiments
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to study how the performance of DEs is affected by these factors. Although empirical
rules can be found for choosing these control parameters, they are not general and
therefore not suitable for practical applications.

There are two main steps in DE: mutation and crossover. The mutation will cre-
ate a trial vector for each individual, and then crossover will recombine each pair of
trial vectors and individuals to produce offspring. Since DE only uses discrete recom-
bination for crossover, mutation supplies the major power to make progress during
evolution. As another mutation-based strategy, evolutionary programming (EP) is
also a major branch of evolutionary computation. In EP, new offspring are obtained
by giving a perturbation to the original individuals. That means all offspring for the
next generation are generated in the neighborhood of current solutions. Thus EP
uses a neighborhood search (NS) strategy to improve the quality of solutions. The
characteristics of different NS operators have been analyzed in [,]. EP’s evolution-
ary behavior has shown that NS is an efficient operator for such a generate-and-test
method. However there is no definite neighborhood search concept in DE, and little
work has been done to investigate how this NS strategy will affect DE’s evolutionary
behaviors. Based on the success of the NS strategy in EP, the idea of DE with a similar
strategy deserves more investigation.

In this chapter, the common features of DE and EP are generalized into a uni-
form framework, and based on this understanding, DE with neighborhood search
(NSDE) is proposed to improve its neighborhood search ability. Then the advantages
of DE with neighborhood search are analyzed theoretically. These analyses mainly
focus on the change of search step size and population diversity after using a neigh-
borhood search (NS) strategy. Experimental evidence is also given to regarding the
evolutionary behavior of DE with neighborhood search on widely used benchmark
functions.

2 Preliminaries

2.1 Evolutionary Programming

Optimization by evolutionary programming (EP) can be summarized into twomajor
steps: first mutate the solutions in the current population, and then select the next
generation from the mutated and the current solutions [].

x′i( j) = x i( j) + η i( j)Nj(0, 1) ()

η′i( j) = ηi( j) exp(τ
′N(0, 1) + τNj(0, 1)) ()

where i � �1, . . . , μ	, μ is the population size, j � �1, . . . , n	, n is the dimension
of object parameters, N(0, 1) denotes a normally distributed one-dimensional ran-
dom number with mean zero and standard deviation one, and Nj(0, 1) indicates that
the random number is generated anew for each value of j. Usually, evolutionary pro-
gramming using Eqs. () and () is called classical evolutionary programming (CEP) .
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TheCauchy operator is introduced into Eq. () to substitute Gaussian mutation in [],
i.e. the update equation is replaced by:

x′i( j) = x i( j) + ηi( j)δ j ()

where δ j is a Cauchy random variable with the scale parameter t = 1 and is generated
anew for each j. EP using Cauchy mutations is called fast evolutionary programming
(FEP). IFEP (Improved FEP) based onmixing different mutation operators, and LEP
based on mutations with the Lévy probability distribution were also proposed in []
and [], respectively.

By Eq. () or Eq. (), we can find that new offspring are obtained by giving a per-
turbation to the original individual. This means all offspring for the next generation
are generated in the neighborhood of current solutions. Thus EP improves the quality
of solutions through a neighborhood search (NS) strategy. Operators such as Gaus-
sian Nj(0, 1) and Cauchy δ j are used to control the size and shape of the neighbor-
hood: η j is a self-adaptive scaling factor for the neighborhood size. The characteris-
tics of differentNS operators have been analyzed in [,]. How theseNS operators are
used will strongly affect EP’s performance. Based on the importance of the NS strat-
egy in EP, we intend to investigate whether such an NS strategy can be generalized
and used in other evolutionary algorithms.

2.2 Differential Evolution

Individuals are represented by D-dimensional vectors x i ,∀i � �1, . . . ,NP	 in DE,
where D is the number of optimization parameters and NP is the population size.
According to the description by Storn and Price [], the mutation and crossover of
original DE can be summarized as follows:

y i = x i1 + (x i2 − x i3) ċ F ()

z i( j) = �
y i( j), if Uj(0, 1) < CR
x i( j), otherwise ()

with i, i1 , i2 , i3 � [1,NP] are integers and mutually different. F � 0 is a real con-
stant factor to control the differential variation d i = x i2 − x i3 , and Uj(0, 1) denotes
a uniform random number between  and . To represent crossover result z i more
formally, we can define a Boolean maskM = (M(1),M(2), . . . ,M(D)) as follows:

M( j) = � 1, if Uj(0, 1) < CR
0, otherwise.

and then z i can be represented as:

z i = y i ċM + x i ċM = y i ċM + x i ċ (I −M)

= y i ċM + x i − x i ċM = x i − (x i − y i) ċM
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where I is an all-‘’ vector I = (1, . . . , 1)D . With these equations, we know that
M is a componential mask of vector (x i − y i). For each offspring, z i( j) = x i( j)
ifM( j) = 0, otherwise z i( j) = y i( j).This means crossover in DE can be regarded as
a selection process on the mutated components. After mutation DE performs a sub-
space selection process through crossover, and then it will search for better solutions
in the subspace.

Now, similarity can be found between the evolutionary processes of DE and EP.
Although there is no concept of neighborhood in DE, it has been carried out with
a scaling factor F that has some relation with DE’s search step size []. A large F
value is expected to increase the probability of escaping from local optima. However,
it also increases the perturbation of mutation, which will decrease DE’s convergence
speed. This is similar to the characteristics of neighborhood search operators used
in EP, except there F was restricted to a constant number. So within the selected
subspace after crossover, DE will have similar evolutionary behaviour to EP. Tomake
use of the successful neighborhood search (NS) operators in EP, the idea of DE with
similar NS strategy deserves more investigation.

3 DE with Neighborhood Search

3.1 Analyses of DE’s Search Characteristics

In Eq. (), note that the smaller the difference between parameters x i2 and x i3 , the
smaller the difference vector d i = x i2−x i3 and therefore the perturbation.Thatmeans
if the population becomes close to the optimum, the step length is automatically de-
creased. This is similar to the self-adaptive step size control found in evolutionary
programming. Based on this understanding, we can use an uniform mutation equa-
tion for DE and EP as follows:

x′i( j) = x i( j) + ξi( j) ψ ()

where ξi( j) means d i( j) (d i is the difference vector x i2 − x i3 ), and is η i( j) in EP.
ψ is a constant number F in DE, a Gaussian random number Nj(0, 1) in CEP , and
a Cauchy random number δ j in FEP .

Generalizing the analysis method for the mean search step size in [], the ex-
pected length of ψ jumps in the universal equation can be calculated as follows:

Eψ = Y
+�

−�

x Ψ(x) dx

where Ψ(x) is the distribution density function for generating the number ψ. When
Ψ(x) takes a Gaussian function and a Cauchy function , the expected length of Gaus-
sian and Cauchy jumps are . and +6, respectively. Obviously, Ψ(x) takes an im-
pulse function δ(x − F) in DE and the expected jump will be:

EDE = Y
+�

−�

x δ(x − F) dx = F
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Up to now we have shown the relation between scaling factor F and search step size
theoretically. After setting a value for F, the search step size will be determined di-
rectly. Since different optimization problems or even different stages of the same evo-
lution may demand different kinds of search step size, it is easy to understand why
the empirical value F = 0.5 is not always suitable, and DE with more universal NS
operators will have greater potential.

3.2 Mixing Search Biases of Different NS Operators

In Sect. ., we have given a uniform equation for DE and EP, and within the frame
we can generalize Eq. () to:

y i = x i1 + d i ċ ψ ()

where ψ denotes a NS operator, which can be substituted with any kind of neigh-
borhood search operator. The NS operator is used to control the size and shape of
neighborhood during the evolutionary process. Assume the density function of ψ is
fψ(x), then the probability of generating jumps l smaller than a specified step L and
larger than L will be:

P(l < L) = Y
+L

−L
fψ(x) dx

P(l � L) = Y
−L

−�

fψ(x) dx + Y
+�

+L
fψ(x) dx

With these equations, the probability of generating different jumps by the NS oper-
ator can be calculated, and thus we can achieve some basic search biases for different
NS operators. To show the expected advantages of changing the constant number
F to a NS operator, two widely used NS operator candidates will be analyzed here.
They are Gaussian random N(0, 1), and Cauchy random C(t = 1). The probabilities
of them generating different jumps are given in Fig. .

Fig. 1 The probability of generating different jumps for the given NS operators.
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First, fromFig.  we can observe that all of the NS operators aremore flexible than
the constant setting for F. Constant F can only produce fixed length jump steps, while
the two NS operators have the ability to produce many kinds of jump steps with dif-
ferent probabilities. For a common optimization problem, the probability is very low
that the fixed jump steps produced by F are just right for evolution. So NS operators
will be more universal than a constant setting for F. Deeper observation shows that
Gaussian random N(0, 1) is very localized. It is more likely to produce small jumps.
In contrast, Cauchy random C(t = 1) is more expandable. It has a greater probabil-
ity of producing long jumps. Small jumps will be beneficial when the current search
point is near the global optimum. However, as analyzed in [], convergence of the
evolution process will be very slow and will risk being trapped in some of the local
optima. Long jumps have the ability to escape from poor local optima and locate
a good near-global optimum. But this will be beneficial only when the global is suf-
ficiently far away from the current search point. Generally, the Cauchy operator will
perform better when far away from the global optimum, while the Gaussian operator
is better at finding a local optimum in a good region. It will therefore be beneficial to
mix different search methods but to also bias them differently. Here we change DE’s
mutation to:

y i = x i1 + �
d i ċ N(0.5, 0.5), if U(0, 1) < 0.5
d i ċ δ, otherwise. ()

where N(0.5, 0.5) denotes a normally distributed one-dimensional random number
with mean . and standard deviation ., and δ is a Cauchy random variable with
scale parameter t = 1. The parameters (0.5, 0.5) for the Gaussian operator are taken
after determining an empirical value for F in DE. Equation () introduces a neigh-
borhood search strategy that can produce many more kinds of step sizes, and this is
expected to be beneficial when dealing with real-world optimization problems. Here
the neighborhood search inspired DE is denoted NSDE .

Population diversity can be used to analyze the expected advantages of DE with
neighborhood search. It has been found that if ψ � F ċN(0, 1), the expected popula-
tion variance after mutation and crossover becomes:

E(Var(Y)) = 12F2 +
m − 1
m
3Var(x) ()

E(Var(Z)) = &2F2p −
2p
m
+
p2

m
+ 1'Var(x) ()

where m is the dimension of object parameters, and p is the value of crossover rate
CR. These equations are proved in [] in detail.

Similar analysis can be carried out when ψ is restricted to a constant number F.
For E((F ċ N(0, 1))2) = E(F2) = F2, the result for E(Var(Y)) and E(Var(Z)) will
remain the same as Eqs. () and (), i.e. the population diversity stays the same after
using the Gaussian NS operator. In Eq. (), the mutation will be determined by di
directly. For eachmutation, the object parameters can only change with step di . After
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introducing the Gaussian NS operator, DE’s search step size is determined not only
by difference vector di , but also by the NS operator N(0, 1). The operator can scale
di into many kinds of search step sizes, while the original constant number can only
produce a fixed step size d i ċ F. This will be an advantage when DE is searching for
the global optimum in an unknown environment, where no prior knowledge exists
about what search step size is prefered.

However, a localized Gaussian operator will only be beneficial when near the
small neighborhood of the global optimum. In contrast, the Cauchy operator can
overcome this limitation. For the Cauchy variable with scale parameter t = 1, we
know that

Var(δ) =
+�

Y
−�

x2
1

π(1 + x2)
dx = +6

E(δ2) = Var(δ) + (E(δ))2 = +6

So after changing ψ in Eq. () to a Cauchy random variable, it is easy to carry out the
expected population variance after mutation, and crossover that becomes:

E(Var(Y)) = E(Var(Z)) = +6

Obviously, the Cauchy operator is much more global than the Gaussian, so DE with
a Cauchy NS operator will have superior ability to escape from local optima. Equa-
tion () has considered not only a Gaussian operator , but also the Cauchy operator’s
search biases, so NSDE is expected to be more powerful when searching in an envi-
ronment without prior knowledge. In the next section, experiments will be provided
to test the performance of NSDE on a set of widely used benchmark functions.

4 Experimental Studies

Here experimental evidence is provided to study howneighborhood search operators
influence DE’s performance. We evaluate the performance of the proposed NSDE
algorithm on both classical test functions and the new set of functions provided by
CEC special session. NSDE follows Eq. () to replace F with NS operators, and
CR is set to U(,) to enhance DE’s subspace search ability, here U(,) stands for
a uniform random between  and .The algorithms used for comparison are classical
DE with empirical parameter setting [,] and other widely used algorithms such as
FEP, CMAES .

4.1 NSDE on classical benchmark functions

First we test NSDE’s performance on a set of  classical functions for numeric op-
timization. Functions f1 − f13 are high-dimensional problems. Functions f1 − f5 are
unimodal. Function f6 is the step function which has one minimum and is discon-
tinuous. Function f7 is a noisy quartic function where random[0, 1) is a uniformly
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distributed random variable in [0, 1). Functions f8 − f13 are multimodal functions
where the number of local minima increases exponentially with the problem dimen-
sion [, ]. Functions f14 − f23 are low-dimensional functions which have only a few
localminima [,]. Details of these functions can be found in the appendix to [].The
average experimental results of  independent runs are summarized in Tables –
(the results for FEP are taken from []).

For unimodal functions f1 − f7, it is apparent that the proposed NSDE performs
better than both DE and FEP. In particular, NSDE’s results on f1 − f4 are significantly
better than DE and FEP. It seems a large neighborhood search is efficient in speeding
up the evolutionary convergence on unimodal functions. However, NSDE performs
worse than DE on f5. This is a generalized Rosenbrock’s function, and there are cor-
relations between each pair of neighboring object parameters. It can be inferred that
the one-dimension based neighborhood search strategy has difficulty in optimizing
such functions. No strong conclusion can be drawn for f6 and f7. There is no signif-
icant difference among all the algorithms.

Table  shows the experimental results for functions f8 − f13. These functions are
multimodal functions with many local optima. Their landscapes appear to be very
“rugged” [], and are often regarded as being difficult to optimize. Figure  shows
the evolutionary processes of NSDE and DE for these functions. It can be observed
that DE stagnates rather early in the search andmakes little progress thereafter, while
NSDE keeps making improvements throughout the evolution. It appears that DE is
trapped in one of the local optima and is unable to get out. NSDE on the other hand,
has the ability to produce many kinds of search step sizes with neighborhood search
operators and thus has a higher probability of escaping from a local optimum when
trapped. A good near-global optimum is more likely to be found by NSDE. In terms
of detailed results in Table , NSDE performs significantly better than DE and FEP
on almost all these functions. It can be concluded that DE with neighborhood search
is more effective and efficient when searching in mutimodal functions with many
optima.

For multimodal functions with only a few local optima, such as f14 − f23, both
NSDE and DE have better performance than FEP, except that the three algorithms
performed exactly the same on f16, f17 and f19. NSDE have a similar performance
to classical DE. They performed exactly the same on six (i.e. f14 − f19) out of ten
functions. For the rest of the functions, NSDE performed better on f20, but was out-
performed by DE on f21 − f23. To trace why NSDE is inefficient on these  functions,
further experiments are conducted to observe its evolutionary behaviors. In these
experiments we give more computational effort to NSDE, and the results of  inde-
pendent runs are summarized in Table .

With a few more generations, NSDE can find the global optima of these func-
tions. Figure  shows the evolutionary processes for f21 − f23. It is clear that NSDE’s

�

Fig. 2 Evolution process of the mean best values found for unimodal functions f1 − f7. The
results were averaged over  runs. The vertical axis is the function value and the horizontal
axis is the number of generations
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Table 1 Comparison between NSDE, DE and FEP on f1 − f7. All results have been averaged
over  independent runs

Test # of NSDE DE # of FEP vs DE vs FEP

Func Gen’s Mean Mean Gen’s Mean t-test t-test

f1  7.10 �10−17 1.81 �10−13  5.70 �10−04 −10.84† −31.00†

f2  6.49 �10−11 6.43 �10−07  8.10 �10−03 −17.22† −74.38†

f3  7.86 �10−16 2.12 �10−12  1.60 �10−02 −10.86† −8.08†

f4  2.27 �10−09 4.61 �10−02  . −2.05† −4.24†

f5 20,000 5.90 �10−28  20,000 . 1.03 −6.10†

f6      0 0

f7  4.97 �10−03 4.84 �10−03  7.60 �10−03 0.52 −6.48†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test

Table 2 Comparison between NSDE, DE and FEP on f8 − f13. All results have been averaged
over  independent runs

Test # of NSDE DE # of FEP vs DE vs FEP

Func Gen’s Mean Mean Gen’s Mean t-test t-test

f8 1500 − 12,569.5 − 11,362.1 9000 − 12,554.5 −5.08† −2.02†

f9 3000 3.98 �10−02 . 5000 4.60 �10−02 −39.63† −0.22

f10 1500 1.69 �10−09 1.20 �10−07 1500 1.80 �10−02 −19.86† −60.61†

f11 1500 5.80 �10−16 1.97 �10−04 2000 1.60 �10−02 −1.00 −5.14†

f12 1500 5.37 �10−18 1.98 �10−14 1500 9.20 �10−06 −6.79† −18.07†

f13 1500 6.37 �10−17 1.16 �10−13 1500 1.60 �10−04 −7.39† −15.50†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test.

Table 3 Comparison between NSDE, DE and FEP on f14 − f23. All results have been averaged
over  independent runs

Test # of NSDE DE # of FEP vs DE vs FEP

Func Gen’s Mean Mean Gen’s Mean t-test t-test

f14  0.998 0.998  1.22 0 −2.80†

f15  .3.07 �10−04 .3.07 �10−04  .5.00 �10−04 0 −4.26†

f16  −1.03 −1.03  −1.03 0 0

f17  0.398 0.398  0.398 0 0

f18  3.00 3.00  3.02 0 −1.29

f19  −3.86 −3.86  −3.86 0 0

f20  −3.32 −3.28  −3.27 −4.97† −5.99†

f21  −9.68 −10.15  −5.52 4.58† −16.83†

f22  −10.33 −10.40  −5.52 1.49 −15.85†

f23  −10.48 −10.54  −6.57 2.91† −8.80†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test.
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Table 4 Further experiments for NSDE on f21 − f23. All results have been averaged over 
independent runs

Test # of NSDE # of DE FEP vs DE vs FEP
Func Gen’s Mean Gen’s Mean Mean t-test t-test
f21  −10.15  −10.15 −5.52  −20.59†

f22  −10.40  −10.40 −5.52  −16.28†

f23  −10.54  −10.54 −6.57  −8.94†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test

Fig. 3 Evolution process of the mean best values found for multimodal functions with many
local optima, i.e. f8− f13.The resultswere averaged over  runs.The vertical axis is the function
value and the horizontal axis is the number of generations
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convergence is a little slower than DE on these functions. The major difference be-
tween functions f8 − f13 and f14 − f23 is that f14 − f23 appears to be simpler than
f8 − f13 due to their low dimensionalities and a smaller number of local optima [].
But NSDE still spends some computational effort blindly to avoid being trapped in
local optima when optimizing these functions. This will weaken the search strength
in the direction towards the optimum. NSDE’s performance indicates that the ad-
vantages of introducing neighborhood search become insignificant on this class of
problems.

Scalability of an algorithm is also an important measurement of how good and
how applicable the algorithm is []. So further experimentswere conducted to evalu-
ate NSDE’s scalability against the growth of problem dimensions. We selected  scal-
able functions from the  benchmark functions. The dimensions D of them were set
to , ,  and , respectively. The computation times used by algorithms were
set to grow in the order of O(D) []. For example, for function f1,  generations
were set for D = 50,  for D = 100,  for D = 150, and  for D = 200.The
average results of  independent runs are summarized in Tables  and .

Fig. 4 The evolution process of the mean best values found for f21− f23 in further experiments.
The resultswere averaged over  runs.The vertical axis is the function value and the horizontal
axis is the number of generations
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For unimodal functions, NSDE outperformed DE on f1 − f3 and f6.The classical
DE has only advantages on f4 for dimensions  and . For functions f1 − f3,
NSDE gained better and better results from -D to -D, with the computational
time growth in the order of O(D). But such good scalability was not observed for
classical DE. Although DE appeared to achieve better results on the -D problem
than the -D, its performance became poorer for problems of -D and -D. For
function f6, NSDE found the optimum from -D to -D, while DE only found
the optimum for -D. For function f4, both NSDE and DE performed worse and
worse with the growth of dimensions. NSDE’s performance decreased faster than
DE. Function f4’s fitness value is determined by the maximum component of the
D-dimensional vector (see the definition of f4 []). Global evolutionary operator is
needed to make progress when optimizing this function. Maybe the neighborhood
search strategy in NSDE is too local to create better offspring for large scale f4.

Table  shows the results for multimodal functions with many local optima. As
mentioned in Sect. ., this class of functions are often regarded as being difficult to
optimize because the number of local optima increase exponentially as their dimen-
sion increases. It was encouraging to find NSDE outperformed DE on all of these
functions, from -D to -D. For function f8, NSDE’s results were not only closer

Table 5 Comparison between NSDE and DE on f1 – f6, with dimension D = 50, ,  and
, respectively. All results have been averaged over  independent runs

Test # of # of NSDE DE vs DE
Func Dim’s Gen’s Mean Std Mean Std t-test

f1

 2500 4.28 �10−18 7.86 �10−18 5.48 �10−15 4.05 �10−15 −9.56†

100 5000 2.07 �10−22 2.72 �10−22 2.91 �10−17 1.84 �10−17 −11.18†

150 7500 1.58 �10−25 2.48 �10−25 4.82 �10−17 4.70 �10−17 −7.25†

200 10,000 1.10 �10−27 1.47 �10−27 2.77 �10−15 5.26 �10−15 −3.72†

f2

50 2500 2.02 �10−11 1.49 �10−11 1.05 �10−07 3.44 �10−08 −21.58†

100 5000 1.58 �10−13 1.30 �10−13 7.45 �10−10 4.63 �10−10 −11.38†

 7500 2.27 �10−15 1.69 �10−15 2.13 �10−09 8.22 �10−09 −1.83†

 10,000 4.88 �10−17 3.49 �10−17 1.43 �10−07 6.50 �10−07 −1.56

f3

50 2500 1.35 �10−16 2.44 �10−16 1.15 �10−13 8.34 �10−14 −9.74†

100 5000 9.98 �10−21 1.55 �10−20 8.35 �10−16 6.79 �10−16 −8.70†

150 7500 1.12 �10−23 1.34 �10−23 4.57 �10−15 4.58 �10−15 −7.06†

200 10,000 1.08 �10−25 1.44 �10−25 1.89 �10−13 5.35 �10−13 −2.50†

f4

50 2500 1.12 �10+00 1.85 �10+00 4.86 �10+00 2.26 �10+00 −9.05†

100 5000 2.00 �10+01 6.10 �10+00 2.26 �10+01 4.44 �10+00 −2.43†

150 7500 3.34 �10+01 4.83 �10+00 3.09 �10+01 3.95 �10+00 2.81†

200 10,000 4.31 �10+01 6.20 �10+00 3.41 �10+01 3.32 �10+00 8.95†

f6

50 2500 0.00 �10+00 0.00 �10+00 0.00 �10+00 0.00 �10+00 0.00
100 5000 0.00 �10+00 0.00 �10+00 2.00 �10−02 1.41 �10−01 −1.00
150 7500 0.00 �10+00 0.00 �10+00 4.00 �10−02 1.98 �10−01 −1.43
200 10,000 0.00 �10+00 0.00 �10+00 4.02 �10+00 1.34 �10+01 −2.12†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test
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Table 6 Comparison between NSDE and DE on f8 – f11, with dimension D = 50, ,  and
, respectively. All results have been averaged over  independent runs

Test # of # of NSDE DE vs DE
Func Dim’s Gen’s Mean Std Mean Std t-test

f8

50 2500 − 20,946.80 16.70 − 15,928.00 3731.52 −9.51†

100 5000 − 41,860.40 69.50 − 31,729.30 7533.67 −9.51†

150 7500 − 62,568.70 216.56 − 54,961.90 5736.55 −9.37†

200 10,000 − 83,044.50 348.88 − 73,964.00 2124.57 −29.82†

f9

50 2500 6.57 �10−01 8.67 �10−01 3.23 �10+02 2.84 �10+01 −80.31†

100 5000 8.78 �10+00 3.11 �10+00 5.56 �10+02 1.04 �10+02 −37.18†

150 7500 2.69 �10+01 6.12 �10+00 3.46 �10+02 3.23 �10+02 −6.99†

200 10,000 5.30 �10+01 1.05 �10+01 1.61 �10+02 1.69 �10+01 −38.37†

f10

50 2500 3.74 �10−10 4.44 �10−10 1.64 �10−08 6.13 �10−09 −18.44†

100 5000 1.91 �10−12 1.02 �10−12 8.59 �10−10 4.41 �10−10 −13.74†

150 7500 4.81 �10−14 2.29 �10−14 3.09 �10−01 4.80 �10−01 −4.55†

200 10,000 2.04 �10−14 3.53 �10−15 1.48 �10+00 3.66 �10−01 −28.59†

f11

50 2500 0.00 �10+00 0.00 �10+00 1.97 �10−04 1.39 �10−03 −1.00

100 5000 0.00 �10+00 0.00 �10+00 5.92 �10−04 2.37 �10−03 −1.77†

150 7500 0.00 �10+00 0.00 �10+00 1.13 �10−03 3.16 �10−03 −2.53†

200 10,000 2.46 �10−04 1.74 �10−03 3.05 �10−03 8.14 �10−03 −2.38†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test.

to optimum, but also more stable than classical DE (see the values of Std. Dev and
t-test). For function f9, NSDE’s performance decreased a little as the dimensions in-
creased, but was still much better than DE. For function f10, NSDE showed similar
good scalability as for unimodal functions, i.e., its results became better and better
from -D to -D problems. For function f11, NSDE found the optimum for -D,
-D and -D problems, while DE never found the optimum for them. Although
NSDE failed to find the optimum for -D f11 , it still outperformedDE significantly.

4.2 NSDE on CEC2005’s Functions

To evaluate NSDE further, a new set of benchmark functions were used, including
 functions with different complexity []. Many of them are the shifted, rotated, ex-
panded or combined variants of classical functions. Functions f1 − f5 are unimodal
while the remaining  functions aremultimodal. The experimental results will com-
pare with not only classical DE, but also another widely used algorithm, CMAES.
DE and CMAES’s experimental results were provided in [, ]. To be consistent
with their experimental setting, experiments are conducted on all  30 − D prob-
lems, and we chose the function evaluations (FEs) to be 3.0 
10+05. Error value, i.e.
the difference between current fitness value and optimum value, is used to compare
algorithm’s performance. The average error values of  independent runs are sum-
marized in Tables –.
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For unimodal functions f1 − f5, the three algorithms have comparable perform-
ance. NSDE and DE have exactly the same results on the Shifted Sphere function f1.
NSDEperformed better on f2− f4, butwas outperformed byDEon f5. It is remarkable
that CMAES performed far better than NSDE on f3 and f5, but far worse on f4. One
possible reason is that CMAES and DE-based algorithms have very different search
biases on these functions. Later we will trace the reason through characteristics of
different functions.

For basic and expanded multimodal functions f6 − f14, the advantages of intro-
ducing neighborhood search are much more significant. In terms of experimental
results, NSDE outperformed DE on almost all functions except f7 and f12. Although
CMAES performed better on f6 − f8, and was outperformed by NSDE on the other
six functions f9 − f14. NSDE is superior on these multimodal functions, which is
consistent with the conclusions given for the classical functions.

After analyzing the characteristics of these functions, i.e. the first column of
Tables  and , it is found that DE has rather poor performance on rotated or non-

Table7 Comparison between NSDE, DE and CMAES on f1− f5. All results have been averaged
over  independent runs (S means the function is Shifted, R means Rotated, and N means
Non-separable)

CEC’ NSDE DE CMAES vs DE vs CMAES
Func Mean Mean Mean t-test t-test
f1(S/-/-) 0.00 �10+00 0.00 �10+00 5.28 �10−09 0 −26.9†

f2(S/-/N) 5.62 �10−08 3.33 �10−02 6.93 �10−09 −3.40† 3.78†

f3(S/R/N) 6.40 �10+05 6.92 �10+05 5.18 �10−09 −74.9† 11.4†

f4(S/-/N) 9.02 �10+00 1.52 �10+01 9.26 �10+07 −1.41 −2.76†

f5(-/-/N) 1.56 �10+03 1.70 �10+02 8.30 �10−09 15.3† 18.8†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test

Table8 Comparison betweenNSDE,DE andCMAESon f6− f14. All results have been averaged
over  independent runs (S means the function is Shifted, R means Rotated, and N means
Non-separable)

CEC’ NSDE DE CMAES vs DE vs CMAES
Func Mean Mean Mean t-test t-test
f6(S/-/N) 2.45 �10+01 2.51 �10+01 6.31 �10−09 −7.60† 4.57†

f7(S/R/N) 1.18 �10−02 2.96 �10−03 6.48 �10−09 3.41† 5.04†

f8(S/R/N) 2.09 �10+01 2.10 �10+01 2.00 �10+01 −6.42† 76.7†

f9(S/-/-) 7.96 �10−02 1.85 �10+01 2.91 �10+02 −1.77† −41.1†

f10(S/R/N) 4.29 �10+01 9.69 �10+01 5.63 �10+02 −3.22† −10.5†

f11(S/R/N) 1.41 �10+01 3.42 �10+01 1.52 �10+01 −7.28† −0.56
f12(S/-/N) 6.59 �10+03 2.75 �10+03 1.32 �10+04 2.76† −2.53†

f13(S/-/N) 1.62 �10+00 3.23 �10+00 2.32 �10+00 −9.25† −7.84†

f14(S/R/N) 1.32 �10+01 1.34 �10+01 1.40 �10+01 −5.14† −9.40†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test
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Table 9 Comparison between NSDE, DE and CMAES on f15 − f25. All results have been aver-
aged over  independent runs

CEC’ NSDE DE CMAES vs DE vs CMAES
Func Mean Mean Mean t-test t-test
f15 3.64 �10+02 3.60 �10+02 2.16 �10+02 0.15 6.59†

f16 6.90 �10+01 2.12 �10+02 5.84 �10+01 −6.26† 1.68
f17 1.01 �10+02 2.37 �10+02 1.07 �10+03 −5.15† −9.40†

f18 9.04 �10+02 9.04 �10+02 8.90 �10+02 0 1.52
f19 9.04 �10+02 9.04 �10+02 9.03 �10+02 0 0.61
f20 9.04 �10+02 9.04 �10+02 8.89 �10+02 0 1.65
f21 5.00 �10+02 5.00 �10+02 4.85 �10+02 0 2.21†

f22 8.89 �10+02 8.97 �10+02 8.71 �10+02 −2.00† 3.43†

f23 5.34 �10+02 5.34 �10+02 5.35 �10+02 0 −3.27†

f24 2.00 �10+02 2.00 �10+02 1.41 �10+03 0 −11.1†

f25 2.00 �10+02 7.30 �10+02 6.91 �10+02 .−7.09�10+03† −3.12†

† The value of t with  degrees of freedom is significant at α = 0.05 by a two-tailed test.

separable functions. CMAES has superior performance on f2, f3 and f5 − f7, but
still gained poor results on the remaining functions. As an improved version of DE,
although NSDE outperformed DE on some of these rotated or non-separable func-
tions, the results of f3, f5 − f8 and f12 are still unsatisfactory. Despite success in ex-
panding the neighborhood search ability, NSDE’s performance is still limited by the
inherited framework of original DE.

For hybrid composition functions f15 − f25, the results in Table  show that all
algorithms not only failed to locate the optimum, but also become trapped in local
optima that are far from optimum. These functions are much more difficult, and no
effective algorithms have yet been found to slve them []. A more detaile investi-
gation of the results shows that NSDE still outperformed DE on f17, f22, f25, and
outperformed CMAES on f17, f23 − f25. These functions are the hybrid composition
of basic rotated or non-separable functions. The reason why NSDE is inefficient on
some of these functions is as found in the analysis of f1 − f14, i.e. NSDE’s perfor-
mance on non-separable functions is limited by the inherited framework of DE. It is
interesting to note that NSDE’s results on f17 and f25 are much closer to the optimum
than those ofDE andCMAES.The strategy of introducing large jumps to escape from
local optima in NSDE is still useful even on some of these composition multimodal
functions.

5 Conclusions

This chapter proposesNSDE , an improved variation of classicalDE,which is inspired
by EP’s neighborhood search (NS) strategy. Gaussian and Cauchy NS operators are
introduced intoNSDE.The advantages of DEwith neighborhood search are analyzed
theoretically. It has been shown that NS operators will improve the diversity of DE’s
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search step size and population, which will be beneficial to escape from local optima
when searching in environments without prior knowledge of what search step size is
prefered.

Experimental evidence is also provided showing how the neighborhood search
(NS) strategy affectsDE’s evolutionary behavior. A total of widely used benchmark
problemswere employed to test NSDE’s performance. Our experimental results show
that DE with neighborhood search has significant advantages over classical DE.

Acknowledgement. The authors are grateful to Prof. P.N. Suganthan and Dr. Tang Ke for their
constructive comments on this chapter. This work is partially supported by the National Sci-
ence Foundation of China (Grant No.  and ).

References

. R. Storn, K. Price () Differential Evolution –A Simple and EfficientHeuristic Strategy
for Global Optimization over Continuous Spaces. Journal of Global Optimization, :–


. R. Thomsen () Flexible Ligand Docking using Differential Evolution. Proc. of the
 Congress on Evolutionary Computation, :–

. A.K. Qin, P.N. Suganthan () Self-adaptive Differential Evolution Algorithm for Nu-
merical Optimization. Proc. of the  Congress on Evolutionary Computation, :–


. D. Zaharie () Critical Values for the Control Parameters of Differential Evolution
Algorithms. Proc. ofMendel , th International Conference on Soft Computing, –


. R. Gämperle, S. D. Müller, P. Koumoutsakos () A Parameter Study for Differential
Evolution. Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation,
–

. X. Yao, Y. Liu, G. Lin () Evolutionary Programming Made Faster. IEEE Transactions
on Evolutionary Computation, ::–

. C. Lee, X. Yao () Evolutionary Programming Using Mutations Based on the Lévy
Probability Distribution. IEEE Transactions on Evolutionary Computation, ::–

. T. Bäck, H. P. Schwefel () An Overview of Evolutionary Algorithms for Parameter
Optimization. Evolutionary Computation, :–

. J. Vesterstrom, R. Thomsen () A Comparative Study of Differential Evolution, Par-
ticle SwarmOptimization, and Evolutionary Algorithms onNumerical BenchmarkProb-
lems. Evolutionary Computation, :–

. Y. Liu, X. Yao, Q. Zhao, T. Higuchi () Scaling Up Fast Evolutionary Programming
with Cooperative Coevolution. Proc. of the Congress on Evolutionary Computation,
:–

. P. N. Suganthan et al. () Problem Definitions and Evaluation Criteria for the CEC
 Special Session on Real-Parameter Optimization. http://www.ntu.edu.sg/home/
EPNSugan

. J. Rönkkönen, S. Kukkonen, K. V. Price () Real-Parameter Optimization with Differ-
ential Evolution. Proc. of the  Congress on Evolutionary Computation, :–



 Z. Yang, J. He, X. Yao

. A. Auger, S. Kern, N. Hansen () Performance Evoluation of an Advanced Local
Search Evolutionary Algorithm. Proc. of the  Congress on Evolutionary Computa-
tion, :–

. H. Nikolaus () Compilation of Results on the  CEC Benchmark Function Set.
http://www.ntu.edu.sg/home/EPNSugan



HiddenMarkovModels Training
Using Population-basedMetaheuristics

Sébastien Aupetit, Nicolas Monmarché, and Mohamed Slimane

Université François Rabelais de Tours, Laboratoire d’Informatique, Polytech’Tours,
Département Informatique,  Avenue Jean Portalis,  Tours, France.
{sebastien.aupetit, nicolas.monmarche, mohamed.slimane}@univ-tours.fr

Abstract

In this chapter, we consider the issue of Hidden Markov Model (HMM) training.
First, HMMs are introduced and then we focus on the particular HMM training
problem. We emphasize the difficulty of this problem and present various criteria
that can be considered. Many different adaptations of metaheuristics have been used
but, until now, few extensive comparisons have been performed for this problem.
We propose to compare three population-based metaheuristics (genetic algorithm,
ant algorithm and particle swarm optimization) with and without the help of a local
optimizer. These algorithms make use of solutions that can be explored in three dif-
ferent kinds of search space (a constrained space, a discrete space and a vector space).
We study these algorithms from both a theoretical and an experimental perspective:
parameter settings are fully studied on a reduced set of data and the performances of
algorithms are compared on different sets of real data.

Keywords: HiddenMarkovModel, LikelihoodMaximization, APIAlgorithm,Gen-
etic Algorithm, Particle Swarm Optimization

1 Introduction

HiddenMarkov models (HMMs) are statistical tools allowing one to model stochas-
tic phenomena. HMMs are in use in lots of domains [], such as speech recognition or
synthesis, biology, scheduling, information retrieval, image recognition or time series
prediction. Using HMMs in an efficient manner implies tackling an often neglected
but important issue: training of HMMs. In this chapter, this is what we are concerned
with, and we show how the training can be improved using metaheuristics.

This chapter is structured in three parts. We begin with an introduction to hid-
den Markov models, and associated notation and algorithms. We follow with an in-
ventory of metaheuristics used for HMMs training. Finally, we close the chapter by
tuning and comparing six adaptations of three population-based metaheuristics for
HMMs training.
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2 Hidden Markov Models (HMMs)

HiddenMarkovmodels have a long history behind them. In , A.A. Markov intro-
duced theMarkov chain theory [], but it is only since the s that the main princi-
ples and algorithms of HMMs have appeared [–]. Over time, many models [–]
have been derived from the original HMM in order to tackle specificities of particular
applications. In this chapter, we discuss a particular kind of HMM for which we give
the notation below. However, the techniques described below can easily be adapted
to other kinds of HMM.

2.1 Definition

Adiscrete hiddenMarkovmodel allows one tomodel a time series using two stochas-
tic processes: one is a Markov chain and is called the hidden process, the other is
a process depending on states of the hidden process and is called the observed pro-
cess.

Definition . Let S = �s1 , . . . , sN	 be the set of the N hidden states of the system and
let S = (S1 , . . . , ST) be aTuple of randomvariables defined onS. LetV = �v1 , . . . , vM	
be the set of M symbols that can be emitted by the system and let V = (V1 , . . . ,VT) be
a Tuple of random variables defined onV. A first-order discrete hidden Markov model
is then defined by:

• P(S1 = si): the probability of being in the hidden state si at the beginning of the
series,

• P(St = s j �St−1 = si): the probability of transiting from the hidden state si to the
hidden state s j between times t − 1 and t,

• P(Vt = v j �St = si) the probability of emitting the symbol v j at time t for the hidden
state si .

If the hiddenMarkovmodel is a stationary one then transition and emission probab-
ilities are time independent. Consequently, we can define, for all t � 1:

• A = (ai , j)1�i , j�N with ai , j = P(St = s j �St−1 = si),
• B = (bi( j))1�i�N ,1� j�M with bi( j) = P(Vt = v j �St = si) and
• Π = (π1 , . . . , πN)′ with πi = P(S1 = si).

A first-order stationary hidden Markov model denoted λ is then completely defined
by the triple (A, B, Π). In the following, we denote λ = (A, B, Π), the triple, and
use the term hiddenMarkov model (HMM) to design a first order stationary hidden
Markov model.

Let Q = (q1 , . . . , qT) � S
T be a sequence of hidden states of a HMM λ and

O = (o1 , . . . , oT) � V
T a sequence of observed symbols of the same HMM. The

probability  of the realization of the sequences Q and O for a given HMM λ is:
1 Formally, the HMM λ would be considered as the realization of a random variable P(V =

O, S = Q�l = λ). However, to simplify formulas, the random variable l will be omitted in
the following.
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P(V = O, S = Q�A, B, Π) = P(V = O, S = Q�λ). Dependencies between random
variables give:

P(V = O, S = Q�λ) = P(V = O�S = Q , λ)P(S = Q�λ)

= &
T

l
t=1

bqt(ot)' ċ &πq1
T−1

l
t=1

aqt ,qt+1' .

When the hidden state sequence is unknown, the likelihood of an observed se-
quence O of symbols for aHMM λ can be computed.The likelihood is the probability
that an observed sequence O was generated from the model and is given by:

P(V = O�λ) = !
Q�ST

P(V = O, S = Q�λ) .

For the classical use of HMMs, three main issues need to be solved:

• computing the likelihood, P(V = O�λ), of an observed sequenceO of symbols for
a HMM λ. This is efficiently done by the Forward algorithm or by the Backward
algorithm with a complexity of O(N2T) [];

• computing the hidden state sequence Q� that was the most likely followed to
generate the observed sequence O of symbols for the HMM λ. The sequence Q�
is defined by:

Q� = argmax
Q�ST

P(V = O, S = Q�λ) ,

and is efficiently determined by the Viterbi algorithm of a complexity O(N2T)
[]);

• learning/adjusting/training one or many HMMs from one or many observed se-
quences of symbols when the number of hidden states is known. Learning by
HMMs can be viewed as a constrained maximization of some criterion for which
constraints are due to the fact that models are parametrized by stochastic matri-
ces. Lots of criteria can be used to train HMMs, and a short review of the most
widely used criteria follows.

2.2 Training Criteria

Let O be the sequence of observed symbols to learn. Let Λ be the set of all HMMs
for a fixed number of hidden states N and a fixed number of symbols M. Five main
kinds of training criteria can be found in the literature:

• maximum likelihood criteria need, in their most simple forms, to find a HMM
λ� such that

λ� = argmax
λ�Λ

P(V = O�λ) .

Up to now, no method has been found that always finds such an optimal model
but there exist two algorithms (the Baum–Welch algorithm [] and the gradient
descent [,]) that can improve amodel. Iterative utilization of such algorithms
on an initial model allows one to find a local optimum for the criteria.
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• Maximization of the a posteriori probability requires finding aHMM λ� such that
λ� = argmax

λ�Λ
P(λ�V = O)

This criterion is linked to Bayesian decision theory [] and it can be rewritten
in many forms depending on the hypothesis. For simple forms, it can maximize
many independent likelihoods, but for more complex forms, it is not possible to
consider one or many likelihood maximizations. In such cases, one of the only
available ways to find an optimal model is to consider gradient descent. This ap-
proach has the disadvantage that only local optima can be found.

• Maximization of the mutual information allows the simultaneous training of
many HMMs in order tomaximize their discriminative power. Such criteria have
been used many times [, –]. Again, one of the only ways to tackle such cri-
teria is to consider gradient descent.

• Minimization of error rate of classification aims at reducing misclassification of
observed sequences in a class. Such an approach has beenusedmany times [,,
]. These criteria have two particular properties: no gradient can be computed
and they are not continuous. In order to tackle them, they are approximated by
functions for which a gradient can be computed. Then gradient descent is used
to find a model.

• The segmental k-means criterion [,] consists in finding aHMM λ� such that:
λ� = argmax

λ�Λ
P(V = O, S = Q�λ �λ)

with Q�λ the hidden state sequence obtained by the Viterbi algorithm [] for
the model λ. For this criterion, we try to find a model that maximizes the joint
probability of the observed sequence and the hidden state sequence that gener-
ates the observed sequence. This criterion is neither continuous nor derivable.
The approximation of the criterion by a derivable function is difficult. However,
there exists the segmental k-means algorithm [] that allows one to improve the
model. This algorithm is similar in its behaviors to the Baum–Welch algorithm
because it converges towards a local optimum of the criterion.

As we can see, many optimization criteria can be considered to train HMMs. Pre-
vious criteria are not the only ones but are the most widely used. For most criteria,
there does not exist an explicit way to find an optimal model, however, there exist
algorithms able to improve a model and there exists a way to find a local optimum.
In practical use, the local optima are sometimes sufficient but sometimes they are
not. It is necessary to find optimal models or at least to find models that are as good
as possible for the given criterion.

The difficulty remains in the fact that criteria are difficult to optimize. Let us take
one of the most simple criteria: the maximization of the likelihood. The criterion is
given by:

P(V = O�λ) = !
Q�ST

%πq1 ċ &
T−1
l
t=1

aqt ,qt+1' ċ &
T
l
t=1

bqt(ot)'* .

It is a polynomial of degree 2T using N(N + M + 1) continuous variables that are
constrained. When considering more complex criteria such as maximization of the
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a posteriori probability or maximization of the mutual information, the criterion be-
comes a function of many polynomials. Note that the degree of the polynomial de-
pends on the length of the data so themore data, themore difficult it is to find optimal
models. One way to find such models or at least to find the best possible models is
to adapt metaheuristics [] to explore the hidden Markov model space. This is the
aim of this chapter.

3 Training Hidden Markov Models with Metaheuristics

In this section, we introduce adaptations of metaheuristics that have been used to
train HMMs. To do so, we begin by presenting the three kinds of search spaces that
can be used, and follow with a brief review of the adaptations.

3.1 Search Spaces for HiddenMarkov Models Training

To train HMMs, three kinds of search spaces can be considered []: Λ, S
T and Ω.

To describe them, we consider HMMs with N hidden states and M symbols. The
observed sequence of T symbols is named O.

The search spaceΛ
The search space Λ is the most commonly used search space. It corresponds to the
triple (A, B, Π) of stochastic matrices defining a HMM. Λ is then isomorph to the
Cartesian product GN 
 (GN)

N 
 (GM)
N with GK the set of stochastic vectors of

dimension K. GK is convex so Λ is also convex.

The search spaceS
T

The search space S
T corresponds to the set of all sequences of hidden states of

length T.This space is discrete, finite and of size NT . A HMM is defined by a triple of
stochastic matrices so it is not possible to directly utilize elements of ST . In place, the
labeled training algorithm can be used to transform any point in S

T into a point
in Λ. Let be γ(Q) the model given by the labeled training algorithm from the
hidden state sequence Q � S

T and the observed sequence O of symbols. The set
γ(ST) = �γ(Q)�Q � S

T	 is a finite subset of Λ. It must be noted that γ is neither
injective nor surjective. As a consequence, it is not possible to use the Baum–Welch
algorithm with this space without losing consistency. It must be noted that γ(ST)
may not contain an optimal HMM for the criterion.

The search spaceΩ
The search space Ω was defined in order to furnish a vector space structure to train
HMMs []. LetGK be the set of stochastic vectors of dimension K. LetG�K be the set

2 The labeled training algorithm does a statistical estimation of probabilities from the hidden
state sequence and the observed sequence of symbols.
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of stochastic vectors of dimension K for which none of the coordinates is null that is
to say G

�

K = �x � GK �∀ i = 1..K , x i � 0	. We define rK � RK p R
K a regularization

function on R
K . If we denote rK(x)i the ith coordinate of the vector rK(x), we have:

rK(x)i = x i − max
j=1..K

x j

We define the set ΩK by ΩK = rK(RK) = �x � R
K �rK(x) = x	. Let qK � ΩK 
ΩK p

ΩK , rK � R 
 ΩK p ΩK and sK � ΩK 
 ΩK p ΩK be three symmetric operators
such that, for all (x , y) � (ΩK)

2 and c � R, we have:

x qK y = y qK x = rK(x + y)
c rK x = x rK c = rK(c ċ x)
x sK y = y sK x = rK(x − y) = x q (−1rK y)

(ΩK ,qK ,rK) is then a vector space. We define ψK � G
�

K p ΩK and ϕK � ΩK p
G
�

K two operators allowing to transform any point from G
�

K into a point in ΩK and
reciprocally using the following equations:

for all x � G
�

K , ψK(x)i = ln x i − max
j=1..K

ln x j ,

for all y � ΩK , ϕK(y)i =
exp y i

"
K
j=1 exp y j

.

Let Ω = ΩN
(ΩN)
N
(ΩM)

N and Λ� = G
�

N
(G
�

N)
N
(G�M)

N . By generalization of
the operatorsqK ,rK ,sK , ψK and ϕK to the Cartesian products Ω and Λ� (removing
the index K), it can be shown that (Ω,q,r) is a vector space and that ψ(Λ�) = Ω
and ϕ(Ω) = Λ�. It is important to note that Λ� ⊂ Λ. Figure  synthesizes these
transformations and relationships between spaces.

3.2 Metaheuristics for HiddenMarkov Models Training

Sevenmain kinds of genericmetaheuristics have been adapted to tackleHMMs train-
ing: simulated annealing (SA) [], tabu search (TS) [–], genetic algorithms
(GA) [, ], population-based incremental learning (PBIL) [, ], the API algo-
rithm [,] and particle swarm optimization (PSO) [,]. As can be seen, many

Fig. 1 Transformations and relationships between the HMM space and the vector space



 Description, Tuning and Comparison of Six Adaptations of Three Metaheuristics 

metaheuristics have been adapted. For some metaheuristics, many different adapta-
tions have been tried (see Table ). These adaptations do not all try to maximize the
same criterion, but the maximum likelihood criterion is nevertheless the criterion
most often used. Moreover, they do not explore the same search space, as can be seen
in Table . When considering these adaptations, we do not know which adaptation is
the most efficient. Indeed, they have not been extensively compared and no standard
dataset is available to allow cross-experiments. Moreover, even if a standard dataset
was available, we would be frustrated by the parametrization of algorithms, which
are in many cases an empirical choice. The choices do not guarantee efficiency. In
order to reduce overcome this problem, we propose in the next section, to tune and
to compare six adaptations of three metaheuristics.

4 Description, Tuning and Comparison of Six Adaptations
of Three Metaheuristics for HMMs Training

In the following, we consider as criterion the maximization of the likelihood. The
six adaptations that we propose to study are obtained from three population-based
metaheuristics: genetic algorithms, the API algorithm and particle swarm optimiza-
tion.

4.1 Genetic Algorithms

The form of the genetic algorithms [, ] that we consider, is described in [] and
synthesized in Fig. . This algorithm is the result of extension of the GHOSP algo-
rithm [], to which an optional step of mutation and/or optimization of parents by
the Baum–Welch algorithm was added. We consider two adaptations of this algo-
rithm.

The adaptations
The first adaptation of the GA, which we will call GA-A, explores the space Λ. The
chromosome associated with a HMM λ = (A, B, Π) is the matrix (Π A B) computed
by concatenating the three stochastic matrices of the model. The selection operator
is an elitist one. The crossover operator is a one point crossover (X) consisting in

Table 1 Adaptation of metaheuristics to train HMMs against the search space used

Algorithm � Search space Λ S
T

(Ω,�,�)

Simulated annealing [] []
Tabu search []
Genetic algorithms [, ] []
Population-based incremental learning []
API (artificial ants) [] [] []
Particle swarm optimization [] []



 S. Aupetit, N. Monmarché, M. Slimane

Fig. 2 Principle of the genetic algorithm for HMMs training

randomly choosing a horizontal cut point and exchanging corresponding parts (see
Fig. ). The mutation operator is applied to each coefficient of the chromosome ac-
cording to the probability pmut.When applied to a coefficient h, the operator replaces
h by the value (1− θ)h and adds the quantity θh to another coefficient (chosen uni-
formly) of the same stochastic constraint. For each mutation, the coefficient θ is uni-
formly chosen in [0; 1]. The optimization operator consists in doing NBW iterations
of the Baum–Welch algorithm on the individual.

The second adaptation, namedGA-B, explores theHMMs space usingS
T . A chro-

mosome is a sequence of hidden states labeling the observed sequence of symbols to
learn. The associated model is computed using the labeled training algorithm. The

Fig. 3 Principle of the one point crossover operator for GA-A
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selection operator is an elitist one. The crossover operator is the classical one point
crossover operator used for binary GA. The mutation operator modifies each state
of the sequence with a probability of pmut. When a modification is done, the new
state is uniformly chosen in the set S. The optimization of parents or children is not
considered because of the non-bijectivity of the labeled training algorithm.

Parametrization
Theparameters of both algorithms are:N (the size of the population), pmut (the mu-
tation probability),MutateParents (is the mutation operator applied to the parents?),
OptimizeParents (is the optimization operator applied to the parents?) andNBW (the
number of iterations of the Baum-Welch algorithm to use). The size of the parent
population is arbitrarily fixed to half of the total population.

4.2 The API Algorithm

The API algorithm [, ] is a metaheuristic inspired from the foraging behavior of
primitive ants: the Pachycondyla apicalis.When a prey is captured, the ant memorizes
the hunting site of the capture and goes back to the nest. The next time the ant leaves
the nest, it goes to the last successful hunting site and searches for prey. After many
unsuccessful trials for a hunting site, the ant forgets the site and searches for another
one. The number of trials before abandoning a site is called the local patience of an
ant. Periodically, the nest of the colony decays and it is moved to a new site. These
priciples are built into the API algorithm (see Algorithm ). Experiments conducted
in [] have shown that the size of the colony and the size of the memory of each
ant are statistically anti-correlated parameters. Consequently, without reduction of
generality, we can suppose that the size of the memory of each ant is .

We consider three adaptations of the API algorithm. To present them, it is only
necessary to define the initialization operator (used to define the initial nest position)
and to define the exploration operator.

The Adaptations
Thefirst adaptation [], named API-A, searches a model in Λ.The initial position of
the nest is obtained by uniformly choosing a model in the space Λ. The exploration
operator depends on a parameter called the amplitude. If we denote byA the ampli-
tude, then application of the operator consists in applying the function AMA to each
coefficient x of the model:

AMA(x) =

�����
�
�����

−v if v < 0
2 − v if v � 1
v otherwise

and v = x +A ċ (2U([0, 1[) − 1) .

U(X) represents an element uniformly chosen in the set X. Coefficients are normal-
ized by dividing each of them by the sum of coefficients of the associated stochastic
constraint. Finally, NBW iterations of the Baum–Welch algorithm can eventually be
applied to solutions.
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The second adaptation [], named API-B, explores the space S
T . The labeled

training algorithm is used as for algorithm GA-B. The initial position of the nest is
defined by uniformly choosing T states in the set S. The exploration operator for
a solution x � S

T and for an amplitude A � [0; 1] consists in modifying L states of
the sequence x. The number of states L is computed as L =min�A ċ T ċ U([0; 1]), 1	.
States to modify are uniformly chosen in the sequence. The modification of a state
is made by generating a new one uniformly in the set S. Solutions are not optimized
because of the non-bijectivity of the labeled training algorithm.

The third adaptation [], named API-C, explores the space Ω. The initial po-
sition of the nest is obtained by uniformly choosing a model in the space Λ�. The
exploration operator around a solution x � Ω for an amplitude A consists in choos-
ing a solution y = ψ(U(Λ�)) and in computing the position:

x q &
− lnU(]A; 1[)
��y��max

r y'

denoting by �� ċ ��max the classical max norm (maxi �x i �).

Algorithm TheAPI algorithm
. Randomly choose a position for the nest
. Empty the memory of each ant
. While all iterations are not all done do
. For each ant do
. If the ant has not already all its hunting sitesThen
. The ant chooses a new hunting site
. Else
. If the last exploration is a failureThen
. Uniformly choose a hunting site in memorized hunting sites
. Else
. Choose the last explored hunting site
. End If
. Explore a new solution around the hunting site
. If the new solution is better than the hunting siteThen
. Replace the hunting site by the new solution in the memory
. Else
. If there are too many failuresThen
. Forget the hunting site
. End If
. End If
. End If
. End For
. If it’s time to move the nestThen
. Move the nest to the best ever found solution
. Empty the memory of each ant
. End If
. EndWhile
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Fig. 4 Exploration principles for an ant in the API algorithm

Parametrization
The parameters of the algorithms are: N (the size of the colony), Ai

site (the ampli-
tude for the exploration operator to choose a new hunting site), Ai

local (the ampli-
tude for the exploration operator to choose a solution around a hunting site), TMove
(the number of iterations between two nest displacements), emax (the local patience
of a hunting site) andNBW (the number of iterations of the Baum–Welch algorithm
applied to each explored solution).

Two kinds of parameter settings of amplitudes are considered: the first one is
called homogeneous and the second one is called heterogeneous. For the homoge-
neous parameters, the amplitudes are the same for all ants. For the heterogeneous
parameters, amplitudes vary with the ant. If we suppose that ants are numbered from
1 toN then we have for all i = 1 . . .N :

Ai
site = 0.011

1
0.01

3
i�N

and Ai
local = A

i
site�10 .

4.3 Particle SwarmOptimization

Particle swarm optimization (PSO) [,] is a technique that consists in movingN
particles in a search space. Each particle has, at time t, a position denoted x i(t) and
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a velocity denoted v i(t). Let be x+i (t) the best position ever found by the particle i
until time t. Let be Vi(t) the set of particles of the neighborhood of the particle i at
time t and x̂ i(t) the best position ever seen by particles in the neighborhood Vi(t)
until time t. We have when maximizing the criterion f :

x̂ i(t) = arg max
x j�Vi(t)

f (x̂ j(t − 1))

The particular PSO that we consider is controlled by:

• three parameters ω, c1 and c2: ω controls the inertia of the velocity vector, c1 the
cognitive component and c2 the social component;

• the equations:
x i(t) = x i(t − 1) + x i(t − 1)

v i(t) = ω ċ v i(t − 1)
+ [c1 ċ U([0, 1])] ċ (x+i (t) − x i(t))
+ [c2 ċ U([0, 1])] ċ (x̂ i(t) − x i(t))

The Adaptation
Adaptation of particle swarm optimization to hidden Markov models training []
is done in the search space Ω. Algorithm  shows the PSO Algorithm.

Parametrization
The parameters of the algorithm areN (the number of particles), ω (the inertia par-
ameter), c1 (the cognitive parameter), c2 (the social parameter), V (the size of the
neighborhood of particles) and NBW (the number of iterations of the Baum–Welch
algorithm). The neighborhood is a circular social neighborhood. When the size of
the neighborhood is V , the neighborhood Vi(t) of the particle i at time t is constant
and equal to Vi . Vi is composed of the V�2 particles preceding the particle on the
circle and of the V�2 particles succeeding the particle on the circle. Figure  shows
the composition of the neighborhood of size 2 for the particles 1 and 5.

Fig. 5 Example of circular neighborhood of size  for the PSO
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Algorithm The PSO algorithm
. For each particle i do
. x i(0) = U(ψ(Λ))

. v i(0) = U(ψ(Λ))

. x+i (0) = x i(0)
. End For
. While all iterations are not done do
. For each particle do
. x′ = x i(t − 1) � v i(t − 1) // move
. x i(t) = ψ(BW(ϕ(x′))) // optimization
. v i(t) = x i(t) � x i(t − 1) // computation of the effective move
. If P(V = O�ϕ(x i(t))) � P(V = O�ϕ(x+i (t − 1))) Then
. x+i (t) = x i(t)
. Else
. x+i (t) = x+i (t − 1)
. End If
. End For
. For each particle do
. Compute the neighborhood Vi(t) at time t
. x̂ i(t) = x j(t)+ with j = argmaxk�Vi(t) P(V = O�ϕ(x+k (t)))
. v i(t) = ω � v i(t − 1)

� [c1 ċ U([0, 1])] � (x+i (t) � x i(t))
� [c2 ċ U([0, 1])] � (x̂ i(t) � x i(t))

. End For
. EndWhile

4.4 Analysis of Metaheuristics

The above metaheuristics are very similar since they use a population of agents or
solutions but differences in theHMMsearch spaces considered are important. Table 
summarizes the following discussion about metaheuristics main characteristics.

Table 2 Main properties of the algorithms

GA-HMM API-HMM PSO-HMM
How do agents interact? crossover nest move velocity vector update
When do agents interact? at each iteration every TMove iterations at each iteration
Who interacts? best ones from

elitist selection
the best one
ever found

the best one in a geo-
graphical neighborhood

How to explore
new solutions?

mutation local exploration random contribution to
velocity vector

How to exploit
solutions?

statistical rein-
forcement due
to the selection

use of nest and sites
to concentrate
exploitation

density of particles in
geographical locations

How to forget
unattractive zone?

memory limit, local
patience, nest move
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Interactions Between Solutions
InGA-HMM, interactions take placewith crossover between best solutions bymeans
of genes exchanges at each iteration. Consequently, interactions directly transfer
good properties from parents to children. In PSO-HMM, particle interactions are
made at each iteration through the velocity vector update step. Direct properties
of particles, such as their position, are not transmitted but directions toward good
solutions of the neighborhood are spread between particles. in contrast, interac-
tions in API-HMM are made only every TMove iterations when the nest is moved.
Interactions at each iteration, as for GA-HMM and PSO-HMM, can make all par-
ticles/solutions/agents move similarly in the search space and consequently reduce
diversity. Moreover, if many interesting search locations are found by particles, it is
possible that search effort is spread over all these locations, and because solutions can
be situated at opposite sides of the search space, particles would oscillate between
these locations. In some cases this distribution of effort may be useful to guarantee
convergence towards a near optimum.On the contrary, rare update, as inAPI-HMM,
can lead to a poorly guided search. However, the small number of interactions can re-
duce the time spent taking decisions between many sites: a decision is made between
many interesting sites when the nest moves. This can be bad for some problems be-
cause too strict decisions are made too rapidly. In both cases, the point in time at
which interactions take place can be a pro and a con for each algorithm. Sometimes,
it is important to hesitate in exploring many sites in parallel as for GA-HMM and
PSO-HMM; and sometimes hesitation reduces the effectiveness of the search.

Exploration of Solutions
Exploration of new solutions is made in the three algorithms by a guided random
search followed in some cases by a local optimization heuristic. For GA-HMM, the
exploration consists inmutation. For API-HMMa solution is generated in the neigh-
borhood of the particle. In a certain manner, local exploration in API-HMM plays
a similar role to the mutation operator in GA-HMM. In PSO-HMM, exploration is
obtained from velocity update where two components contribute to the new speed
vector with random coefficients. The local optimization consists in the application of
NBW iterations of the Baum–Welch algorithm.

Exploitation of Solutions
With GA-HMM, the exploitation of solutions is made by statistical reinforcement.
This reinforcement is due to the elitist selection and each individual represents a sam-
pling of the best solution locations. With PSO-HMM, the exploitation is made by
the geographical density of particles present in interesting zones. With API-HMM,
the exploitation is made through two mechanisms: the nest position and foraging
sites. Each mechanism can be viewed as hierarchical reinforcement. The nest deter-
mines the focal point around which ants perform searches. One ant’s site determines
the search area for this ant. The API-HMM has a particular capability that both the
other algorithms do not have: it can forget uninteresting search locations through
two mechanisms: patience on sites and nest moves. This can be very useful when
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the search is not profitable in order to rapidly search other locations or concentrate
around a better one.

4.5 Tuning of Algorithms

To experiment with the six adaptations for HMMS training, we need to proceed in
two steps. We begin by determining robust parameter settings on a reduced set of
data, and we follow this by evaluating and comparing the performance of various
adaptations on a bigger data set.

Estimated Probability Distribution to Compare Algorithm Parameterizations
Let fA,X be the probability distribution of the random variable measuring the per-
formance of the algorithmA for the parameter configuration X. Let Δv=x = (7, . . . ,7,
v = x ,7, . . . ,7) be the set of parameter configurations for which the parameter v has
the value x. We can define the probability distribution fA,Δv=x by:

fA,Δv=x =
1

�Δv=x �
!

X�Δv=x

fA,X

A parameter configuration X = (x1 , . . . , xK) for a stochastic algorithm Awill be said
to be robust if for all values xi , the probability distribution fA,Δvi=xi

has a high mean
and a low standard deviation.

Let EG = �(e1, g1), . . . , (eL , gL)	 be a set of realizations such that ei is a pa-
rameter configuration of Δv=x and gi is the associated measured performance (i.e.
the result of one run of A). The probability distribution fA,Δv=x can then be approxi-
mated by the probability distribution:

1
�EG� !

(e ,g)�EG
N(g , σ)

with N(m, s) the normal law of mean m and of standard deviation s. The standard
deviation is fixed to:

σ = 0.1 ċ & max
(e ,g)�EG

g − min
(e ,g)�EG

g'

in order to smooth the probability distribution and to reduce the need to consider
a huge EG set. Figure  presents the five probability distributions obtained for five
different mutation rates for the algorithm GA-B on the first image.

Protocol
In order to determine robust parameter configurations, it is sufficient to compare
probability distributions of performances. To do a fair comparison of algorithms, we
consider parameter configurations offering a similar chance to each algorithm.With-
out the Baum–Welch algorithm, algorithms evaluate approximately  HMMs
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Fig. 6 Approximated probability distribution of performances of five mutation rates for the
algorithm GA-B

(i.e.  runs of the Forward algorithm are made). With the Baum–Welch algo-
rithm, about  iterations of the Baum–Welch algorithm aremade ( or  iterations
are made for each explored solution). Observation sequences are computed from im-
ages of the ORL faces database [].The four faces of Fig.  have been used.These im-
ages are coded using  grey levels. We recoded them using  levels of grey and we
linearized them using principles described in Fig. . Many parameter configurations

Fig. 7 Linearization of an image into an observation sequence using blocks of 10 � 10 pixels
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Fig. 8 The first face of the first four persons of the ORL database []

have been used in those experiments. Robust parameter configurations obtained for
each algorithm on those four images are given in Table .

Table 3 Robust parameter configurations obtained for each algorithm

Genetic algorithms
NBW N pmut MutateParents OptimizeParents

AG-A 0 5 0.01 No No
AG-A 2 5 0.3 Yes Yes
AG-A 2 20 0.3 No Yes
AG-A 5 20 0.5 Yes Yes
AG-A 5 5 0.5 No Yes
AG-B N�A 5 0.01 No N/A

API algorithm
NBW N A

i
local A

i
site emax TMove Kind of amplitudes

API-A 0 50 0.1 0.1 1 15 homogeneous
API-A 2 5 0.1 0.1 4 15 homogeneous
API-A 5 20 0.1 0.1 4 15 homogeneous
API-A 0 2 N�A N�A 5 10 heterogeneous
API-A 2 5 N�A N�A 4 15 heterogeneous
API-A 5 5 N�A N�A 3 5 heterogeneous
API-B N�A 2 0.2 0.1 1 5 homogeneous
API-B N�A 2 N�A N�A 1 5 heterogeneous
API-C 0 2 0.9 0.8 1 5 homogeneous
API-C 2 20 0.1 0.2 4 5 homogeneous
API-C 5 50 0.1 0.2 4 15 homogeneous
API-C 0 2 N�A N�A 5 4 heterogeneous
API-C 2 20 N�A N�A 2 5 heterogeneous
API-C 5 50 N�A N�A 1 20 heterogeneous

Particle swarm optimization
NBW N ω c1 c2 V

PSO   . 1.5 2.5 
PSO   . 1.5 0 N/C
PSO   . 0 0.5 

N/A means not applicable. N/C means not characteristic
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4.6 Performances Comparison

Protocol
To compare adaptations of algorithms with the preceding parameter configuration,
we consider four sets of images. Each set is composed of  to  images whose charac-
teristics are given in Table . Images are recoded into  and  levels of grey and trans-
formed in sequence of symbols using principles described in Fig. . HMMs searched
have ,  and  hidden states.

To show the utility of metaheuristics compared to more classical training meth-
ods, we introduce three algorithms: Random, Random and Random. These al-
gorithms generate random HMMs and run, respectively ,  or  iterations of the
Baum–Welch algorithm on the HMMs. The algorithm finds the best HMM.

Performance Evaluation
For each algorithm, the sequences are learned many times and the mean of the loga-
rithm of the likelihood of the best model is computed. Let m(I,A) be this mean for
the sequence I and the algorithm A. Let A be the set of all compared algorithms. We
define e(I,A) by:

e(I,A) =
m(I,A) −min

X�A
m(I, X)

max
X�A

m(I, X) −min
X�A

m(I, X)

The value e(I,A)measures (on a scale from  to ) the efficiency of the algorithm A
for the sequence I given the best and the worst mean performances obtained by all
algorithms on that image. The most efficient algorithm of the set A gives e(I,A) = 1
whereas the worst one gives e(I,A) = 0. To compare algorithms, we propose to use
the measure ē(A) given below, denoting by I the set of all sequences,

ē(A) =
1
�I�
!
I�I
e(I,A)

Table  gives results of experiments considering  HMMs when the Baum–
Welch algorithm is not used and  HMMs when it is used.

Results and Discussion
Regarding the results, the algorithms can be split into three groups. The first group
contains mainly algorithms that do not use the Baum–Welch algorithm (BWA).
These algorithms give significantly lower performance than algorithms utilizing the

Table 4 Characteristics of images of the four datasets

Dataset Kind of content Dimensions (in pixel) Original levels of grey
[] Flowers 110�125 256
[] Geometric patterns 100�100 2
[] Landscapes 100�40 256
[] Cars [120; 266]�[73; 176] 256
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Table 5 Efficiency measures of algorithms

Algorithm A Mean ē(A) Standard deviation NBW Space
API-A 4.48% 7.30%  Λ
API-B 10.71% 16.67%  S

T

Random 14.27% 8.85%  Λ
AG-B 17.15% 15.77%  S

T

API-B 23.81% 15.00%  S
T

API-A 35.28% 15.04%  Λ
PSO 59.23% 14.39%  Ω
Random 67.94% 8.26%  Λ
API-C 81.24% 5.35%  Ω
Random 82.32% 6.92%  Λ
API-A 84.14% 9.21%  Λ
API-C 88.02% 4.34%  Ω
API-A 92.02% 7.54%  Λ
AG-A 92.50% 5.51%  Λ
AG-A 93.10% 5.52%  Λ
AG-A 95.16% 4.37%  Λ
AG-A 97.47% 1.62%  Λ
API-C 98.29% 1.25%  Ω
API-A 98.48% 0.87%  Λ
API-C 98.51% 1.27%  Ω
API-C 98.67% 1.10%  Ω
AG-A 98.67% 1.12%  Λ
API-C 98.89% 0.94%  Ω
PSO 99.22% 1.12%  Ω
API-A 99.46% 0.72%  Λ
PSO 99.53% 0.76%  Ω

BWA.API-A andAPI-B are worse than a random search, thus signifying that some-
times badly-guided exploration can beworse than pure random search.This example
shows that not allmetaheuristics arewell suited toHMMs training.The second group
contains algorithms achieving good, but not optimal, performance. Note that three
algorithms without BWA are members of this group.Thus, the use of the BWA is not
a necessary condition for good training performance, but it is a great help. The last
group contains algorithms achieving an efficiency of at least %. As we can see, they
all utilize the BWA with  or  iterations.

The experiments highlight many interesting properties.The space S
T seems to be

of no real use for HMMs training with a maximum likelihood criterion. The Λ and
Ω spaces can both be useful. Finally, we note that the more efficient the algorithm,
the less the standard deviation. This signifies that the most efficient algorithms are
good choices for HMMs training.

Algorithms without BWA spend more computing time than those with BWA.
So if we take into account computing time, we can conclude that the BWA is needed.
Whenworking with large HMMs, if training takes up toomuch time themethod will
not be considered. It is thus very important to know how efficient the algorithm is
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when not somany HMMs are explored. To evaluate this aspect, we present in Table 
results for the efficiency of algorithms utilizing the BWA when only  and 
iterations of the BWA are made.

As can be seen, not all algorithms are efficient whatever the number of iterations
of the Baum–Welch algorithm. Most interesting are the algorithms achieving high
efficiency every time and low standard deviation of the efficiency. The most efficient
algorithms in such conditions are, in decreasing order, API-A, API-A and AG-
A. In conrast, algorithms such as PSO, API-C, API-C are bad choices to use
with low numbers of iterations. The former algorithms utilize the search space Λ
whereas the latter utilize the search spaceΩ.This allows us to conclude that the search
space Λ ismore propitious for fast convergence. Again, we note that themost efficient
algorithms have the lowest standard deviations.

5 Conclusions

In this chapter, we have considered the training of hiddenMarkovmodels. In the first
part, we described hidden Markov models (HMMs) and some classical associated
algorithms. We then introduced the main criteria that are in use for HMMs training.
In the second part, we discussed literature reports on how metaheuristics have been
used to train HMMs. We also introduced the three search spaces that can be used to
find optimal models. They allow us to adopt three different search strategies because
of their properties: ST is discrete and finite, Λ is continuous, closed and convex, and
Ω is a vector space.

Table 6 Efficiency measures of algorithms for ,  and  iterations of the BWA

AlgorithmA  iterations  iterations  iterations
of the BWA of the BWA of the BWA

Mean ē(A) StdDev Mean ē(A) StdDev Mean ē(A) StdDev
Random 53.57% 53.35% 0.00% 0.00% 67.94% 8.26%
Random 81.67% 81.47% 50.26% 7.66% 82.32% 6.92%
API-A 82.18% 15.10% 61.47% 14.29% 84.14% 9.21%
API-A 73.65% 13.10% 76.38% 11.20% 92.02% 7.54%
AG-A 92.23% 5.27% 78.29% 9.34% 93.10% 5.52%
AG-A 81.37% 7.84% 81.18% 7.16% 95.16% 4.37%
AG-A 99.37% 1.15% 94.05% 2.69% 97.47% 1.62%
API-C N�A N�A 74.84% 8.13% 98.29% 1.25%
API-A 97.75% 2.36% 97.26% 1.93% 98.48% 0.87%
API-C N�A N�A 72.68% 9.42% 98.51% 1.27%
API-C 24.00% 17.37% 92.88% 3.38% 98.67% 1.10%
AG-A 76.33% 8.94% 94.31% 2.86% 98.67% 1.12%
API-C 3.48% 9.90% 92.71% 3.28% 98.89% 0.94%
PSO N�A N�A 84.18% 6.43% 99.22% 1.12%
API-A 98.82% 1.41% 98.24% 1.66% 99.46% 0.72%
PSO 64.00% 15.51% 99.34% 0.93% 99.53% 0.76%

N/A means not applicable. StdDev stands for standard deviation
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The use of metaheuristics for HMMs training has been reported in other works
and has produced promising results. In the third part of this chapter, we described
a comparative study of three population-based bio-inspiredmetaheuristics forHMMs
training. The first metaheuristic is a genetic algorithm that was originally designed
for discrete search spaces. The second is the API algorithm, designed to tackle any
kind of search spaces that possesses a neighborhood structure.The third metaheuris-
tic is particle swarm optimization, which was originally designed to search in vec-
tor spaces. The six adaptations resulting from the three metaheuristics and the three
search spaces allow exploitation of the various properties of the three search spaces.
We concentrate our comparison on a critical aspect: algorithm tuning. To obtain an
objective answer to this issue, we tuned a genetic algorithm, an ant-based method
and a particle swarm-based approach. Of course, we need to keep in mind that the
conclusions depend on the particular application domain that we have chosen: train-
ing HMMs using images, and using the criterion maximization of the likelihood.

Results from our experiments lead to the following conclusions.The search space
S
T is quite useless for HMMs training. Hybridization with the Baum–Welch algo-

rithm improves high performance models. However, when we consider criteria than
likelihood maximization that do not have a local optimizer or a too expensive lo-
cal optimizer, metaheuristics might be useful. Experiments show that the algorithms
furnishing the best models are not necessarily those converging the most rapidly.
Moreover, it has been shown that the search space Λ is more propitious for fast con-
vergence than other spaces.

Conclusions drawn from experiment results suggest a number of further investi-
gations. Are the results generalizable to other criteria, to other application domains,
to other kinds of HMMs and even to other metaheuristics? Even if some properties
seem to be quite generalizable, inevitably, they are not. Studies need to confirm them
and this study may be considered as a model for future comparative studies.
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Inequalities and Target Objectives for Metaheuristic
Search – Part I: Mixed Binary Optimization
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Abstract

Recent adaptive memory and evolutionary metaheuristics for mixed integer pro-
gramming have included proposals for introducing inequalities and target objectives
to guide the search. These guidance approaches are useful in intensification and di-
versification strategies related to fixing subsets of variables at particular values, and
in strategies that use linear programming to generate trial solutions whose variables
are induced to receive integer values. We show how to improve such approaches by
new inequalities that dominate those previously proposed and by associated target
objectives that underlie the creation of both inequalities and trial solutions.

We also propose supplementary linear programmingmodels that exploit the new
inequalities for intensification and diversification, and introduce additional inequal-
ities from sets of elite solutions that enlarge the scope of these models. Part I (the
present chapter) focuses on – mixed integer programming, and Part II covers the
extension to more general mixed integer programming problems. Our methods can
also be used for problems that lack convenient mixed integer programming formula-
tions, by generating associated linear programs that encode part of the solution space
in mixed binary or general integer variables

Keywords: Zero–oneMixed Integer Programming, Adaptive Search, Valid Inequal-
ities, Parametric Tabu Search

1 Notation and Problem Formulation

We represent the mixed integer programming problem in the form

(MIP) Minimize x0 = f x + g y
subject to

(x , y) � Z = �(x , y) � Ax + Dy , b	
x integer

We assume that Ax+Dy , b includes the inequalities Uj , x j , 0, j � N = �1, . . ., n	,
where some components ofUj may be infinite.The linear programming relaxation of
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(MIP) that results by dropping the integer requirement on x is denoted by (LP). We
further assume Ax+Dy , b includes an objective function constraint x0 � U0, where
the boundU0 is manipulated as part of a search strategy for solving (MIP), subject to
maintaining U0 < x�0 , where x�0 is the x0 value for the currently best known solution
x� to (MIP).

The current chapter focuses on the zero–one version of (MIP) denoted by (MIP:–
), in which Uj = 1 for all j � N . We refer to the LP relaxation of (MIP:–) likewise
as (LP), since the identity of (LP) will be clear from the context.

Several recent papers have appeared that evidence a sudden rekindling of inter-
est in metaheuristic methods for pure and mixed integer programming problems,
and especially problems in zero–one variables. The issue of identifying feasible in-
teger solutions is addressed in Fischetti, Glover and Lodi [] and Patel and Chin-
neck [], and the challenge of solving Boolean optimization problems, which em-
brace a broad range of classical zero–one problems, is addressed in Davoine, Ham-
mer and Vizvári [], and Hvattum, Løkketangen and Glover []. Metaheuristics for
general zero–one problems are examined in Pedroso [] and in Nediak and Eck-
stein [].The current chapter focuses on metaheuristic approaches from a perspec-
tive that complements (and contrasts with) the one introduced in Glover [].

In the following wemake reference to two types of search strategies: those that fix
subsets of variables to particular values within approaches for exploiting strongly de-
termined and consistent variables, and those that make use of solution targeting pro-
cedures. As developed here, the latter solve a linear programming problemLP(x′, c′)
that includes the constraints of (LP) (and additional bounding constraints in the
general (MIP) case) while replacing the objective function x0 by a linear function
v0 = c′x. The vector x′ is called a target solution, and the vector c′ consists of integer
coefficients c′j that seek to induce assignments x j = x′j for different variables with
varying degrees of emphasis.

We adopt the convention that each instance of LP(x′, c′) implicitly includes the
(LP) objective of minimizing the function x0 = f x + g y as a secondary objective,
dominated by the objective ofminimizing v0 = c′x, so that the true objective function
consists of minimizing ω0 = Mv0 + x0, where M is a large positive number. As an
alternative to working with ω0 in the form specified, it can be advantageous to solve
LP(x′, c′) in two stages.Thefirst stageminimizes v0 = c′x to yield an optimal solution
x = x′′ (with objective function value v′′0 = c′x′′), and the second stage enforces
v0 = v′′0 to solve the residual problem of minimizing x0 = f x + g y.

1 The vector c′ depends on x′. As will be seen, we define several different linear programs
that are treated as described here in reference to the problem LP(x′ , c′).

2 An effective way to enforce v0 = v′′0 is to fix all non-basic variables having non-zero reduced
costs to compel these variables to receive their optimal first stage values throughout the
second stage. This can be implemented by masking the columns for these variables in the
optimal first stage basis, and then to continue the second stage from this starting basis while
ignoring the masked variables and their columns. (The masked non-basic variables may
incorporate components of both x and y, andwill generally include slack variables for some
of the inequalities embodied in Ax+Dy � b.)The resulting residual problem for the second
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A second convention involves an interpretation of the problem constraints. Se-
lected instances of inequalities generated by approaches of the following sections will
be understood to be included among the constraints Ax+Dy , b of (LP). In our def-
inition of LP(x′, c′) and other linear programs related to (LP), we take the liberty of
representing the currently updated form of the constraints Ax +Dy , b by the com-
pact representation x � X = �x � (x , y) � Z	, recognizing that this involves a slight
distortion in view of the fact that we implicitly minimize a function of y as well as x
in these linear programs.

To launch our investigation of the problem (MIP:–) we first review previous
ideas for generating guiding inequalities for this problem in Sect.  and associated
target objective strategies Sect. . We then present new inequalities in Sect.  that
improve on those previously proposed. Section  describes models that can take ad-
vantage of these new inequalities to achieve intensification and diversification of the
search process. The fundamental issue of creating the target objectives that can be
used to generate the new inequalities and that lead to trial solutions for (MIP: –)
is addressed in Sect. . Section  shows how to generate additional inequalities by
“mining” reference sets of elite solutions to extract characteristics these solutions ex-
hibit in common. Supplemental strategic considerations are identified in Sect.  and
concluding remarks are given in Sect. .

2 Inequalities and Sub-optimization for Guiding Intensification
and Diversification Phases for (MIP:0–1)

Let x′ denote an arbitrary binary solution, and define the two associated index sets
N ′(0) = � j � N � x′j = 0	 and N ′(1) = � j � N � x′j = 1	. Then it is evident that the
inequality

!
j�N ′(0)

x j + !
j�N ′(1)

(1 − x j) , 1 ()

or equivalently

!
j�N ′(0)

x j − !
j�N ′(1)

x j , 1 − �N ′(1)� ()

eliminates the assignment x = x′ as a feasible solution, but admits all other binary
x vectors. The inequality () has been used, for example, to produce – “short hot
starts” for branch and bound by Spielberg andGuignard [] andGuignard and Spiel-
berg [].

stage can be significantly smaller than the first stage problem, allowing the problem for the
second stage to be solved very efficiently.

3 In some problem settings, the inclusion of the secondary objective x0 in v00 = Mv0 + x0 is
unimportant, and in these cases our notation is accurate in referring to the explicit mini-
mization of v0 = c′x.
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Remark . Let x denote an arbitrary binary solution, and define the norm L of x as

��x�� = ex , where e = (1, . . . , 1)

Note that the Hamming distance from the binary vectors x and x′ can be expressed
as

d(x , x′) = ��x − x′�� = (e − x′)x + (e − x)x′ .

Hence the constraint () can be written in the following form:

d(x , x′) = (e − x′)x + (e − x)x′ , 1.

Remark . The constraint () is called canonical cut on the unit hypercube by Balas
and Jeroslow [].The constraint () has been used also by Soyster, Lev and Slivka [],
Hanafi and Wilbaut [] and Wilbaut and Hanafi [].

To simplify the notation, we find it convenient to give () an alternative representa-
tion. Let e′ denote the vector given by

e′j = 1 − 2x
′

j , j � N

or equivalently

e′ = 1 − 2x′ ,

hence

e′j = 1 if x′j = 0 and e′j = −1 if x′j = 1.

Then, letting n′(1) = �N ′(1)�, we can also write () in the form

e′x , 1 − n′(1). ()

More generally, for any positive integer e′0 satisfying n , e′0 , 1, the binary vectors x
that lie at least a Hamming distance e′0 from x′ are precisely those that satisfy the
inequality

e′x , e′0 − n
′(1). ()

The inequality () has been introduced within the context of adaptive memory search
strategies (Glover [] to compel new solutions x to be separated from a given so-
lution x′ by a desired distance. In particular, upon identifying a reference set R =
�xr , r � R	, which consists of elite and diverse solutions generated during prior
search, the approach consists of launching a diversification strategy that requires new
solutions x to satisfy the associated set of inequalities

erx , er0 − n
r(1), r � R. ()

This system also gives a mechanism for implementing a proposal of Shylo [] to
separate new binary solutions by aminimum specified Hamming distance from a set
of solutions previously encountered.
4 See also Pardalos and Shylo [] and Ursulenko [].
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The inequalities of () constitute a form ofmodel embedded memory for adaptive
memory search methods where they are introduced for two purposes: (a) to generate
new starting solutions and (b) to restrict a search process to visiting solutions that
remain at specified distances from previous solutions. A diversification phase that
employs the strategy (b) operates by eventually reducing the er0 values to , in order
to transition from diversification to intensification. One approach for doing this is to
use tabu penalties to discourage moves that lead to solutions violating ().We discuss
another approach in the next section.

A more limiting variant of () arises in the context of exploiting strongly deter-
mined and consistent variables, and in associated adaptive memory projection strate-
gies that iteratively select various subsets of variable to hold fixed at specific values,
or to be constrained to lie within specific bounds (Glover []).This variant occurs by
identifying sub-vectors xr1 , xr2 , . . . , of the solutions xr (thus giving rise to associated
sub-vectors er1 , er2 , . . . , of er) to produce the inequalities

erh , erh0 − n
rh (1), r � R, h = 1, 2, . . . ()

The inequalities of () are evidently more restrictive than those of (), if the values
erh0 are chosen to have the same size as the values er0 (i.e., if e

rh
0 , e

r
0 for each r and h).

The inequalities () find application within two main contexts. The first oc-
curs within a diversification segment of alternating intensification and diversification
phases, where each intensification phase holds certain variables fixed and the ensu-
ing diversification divides each xr into two sub-vectors xr1 and xr2 that respectively
contain the components of xr held fixed and the components permitted to be free
during the preceding intensification phase.

The second area of application occurs in conjunction with frequency memory by
choosing three sub-vectors xr1 , xr2 and xr3 (for example) to consist of components of
solution xr that have received particular values with high, middle and low frequen-
cies, relative to a specified set of previously visited solutions. (The same frequency
vector, and hence the same way of sub-dividing the xr vectors, may be relevant for all
xr solutions generated during a given phase of search.) Our following ideas can be
implemented to enhance these adaptive memory projection strategies as well as the
other strategies previously described.

3 Exploiting Inequalities in Target Solution Strategies

We begin by returning to the simple inequality () given by

e′x , 1 − n′(1)

and show how to exploit it in a somewhat different manner.The resulting framework
also makes it possible to exploit the inequalities of () and () more effectively.

5 The formulas of Glover [] apply more generally to arbitrary integer solution vectors.
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Wemake use of solutions such as x′ by assigning them the role of target solutions.
In this approach, instead of imposing the inequality () we adopt the strategy of first
seeing how close we can get to satisfying x = x′ by solving the LP problem

LP(x′) � min
x�X

u0 = e′x

where as earlier, X = �x � (x , y) � Z	. We call x′ the target solution for this problem.
Let x′′ denote an optimal solution to LP(x′), and let u′′0 denote the corresponding
value of u0, i.e., u′′0 = e′x′′. If the target solution x′ is feasible for LP(x′) then it is
also uniquely optimal for LP(x′) and hence x′′ = x′, yielding u′′0 = −n′(1). In such
a case, upon testing x′ for feasibility in (MIP:–) we can impose the inequality ()
as indicated earlier in order to avoid examining the solution again. However, in the
case where x′ is not feasible for LP(x′), an optimal solution x′′ will yield u′′0 � −n′(1)
and we may impose the valid inequality

e′x , @u′′0 A. ()

The fact thatu′′0 � −n′(1)discloses that () is at least as strong as (). In addition, if the
solution x′′ is a binary vector that differs from x′, we can also test x′′ for feasibility
in (MIP:–) and then redefine x′ = x′′, to additionally append the constraint ()
for this new x′. Consequently, regardless of whether x′′ is binary, we eliminate x′′
from the collection of feasible solutions as well as obtaining an inequality () that
dominates the original inequality ().

Upon generating the inequality () (and an associated new form of () if x′′ is
binary), we continue to follow the policy of incorporating newly generated inequal-
ities among the constraints defining X, and hence those defining Z of (MIP:–).
Consequently, we assure that X excludes both the original x′ and the solution x′′.
This allows the problem LP(x′) to be re-solved, either for x′ as initially defined or for
a new target vector (which can also be x′′ if the latter is binary), to obtain another
solution x′′ and a new ().

It is worthwhile to use simple forms of tabu searchmemory based on recency and
frequency in such processes to decide when to drop previously introduced inequal-
ities, in order to prevent the collection of constraints from becoming unduly large.
Such approaches can be organized in a natural fashion to encourage the removal of
older constraints and to discourage the removal of constraints that more recently
or frequently have been binding in the solutions to the LP(x′) problems produced
(Glover and Laguna []). Older constraints can also be replaced by one or several
surrogate constraints.

The strategy for generating a succession of target vectors x′ plays a critical role
in exploiting such a process. The feasibility pump approach of Fischetti, Glover and
Lodi [] applies a randomized variant of nearest neighbor rounding to each non-
binary solution x′′ to generate the next x′, but does not make use of associated in-

6 This strategy is utilized in the parametric branch and bound approach of Glover [] and in
the feasibility pump approach of Fischetti, Glover and Lodi [].

7 For any real number z, �z and !z" respectively identify the least integer� z and the greatest
integer � z.
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equalities such as () and (). In subsequent sections we show how to identify more
effective inequalities and associated target objectives to help drive such processes.

3.1 Generalization to Include Partial Vectors andMore General Target Objectives

We extend the preceding ideas in two ways, drawing on ideas of parametric branch
and bound and parametric tabu search (Glover [, ]). First we consider partial x
vectors thatmay not have all components x j determined, in the sense of being fixed by
assignment or by the imposition of bounds. Such vectors are relevant in approaches
where some variables are compelled or induced to receive particular values, while
others remain free or are subject to imposed bounds that are not binding.

Relative to a given vector x′ thatmay contain both assigned and unassigned (free)
components, define N ′(0) = � j � N � x′j = 0	, N ′(1) = � j � N � x′j = 1	 and
N ′(Φ) = � j � N � x′j = Φ	, where x

′

j = Φ signifies that x′j is not assigned a value (i.e.,
is not subject to a binding constraint or target affecting its value). Accompanying the
vector x′ an associated target objective c′x where c′ is an integer vector satisfying the
condition

c′j � 0 if j � N ′(0),
c′j < 0 if j � N ′(1),
c′j = 0 if j � N ′(Φ).

The vector e′, given by e′j = 1 for j � N
′(0) and e′j = −1 for j � N

′(1), evidently con-
stitutes a special case. We couple the target solution x′ with the associated vector c′
to yield the problem

LP(x′ , c′) � min
x�X

v0 = c′x .

An optimal solution to LP(x′, c′), as a generalization of LP(x′), will likewise be de-
noted by x′′, and we denote the corresponding optimum v0 value by v′′0 (= c′x′′).
Finally, we define c′0 = @v′′0 A to obtain the inequality

c′x , c′0 . ()
By an analysis similar to the derivation of (), we observe that () is a valid inequality,
i.e., it is satisfied by all binary vectors that are feasible for (MIP:–) (andmore specif-
ically by all such vectors that are feasible for LP(x′, c′)), with the exception of those
ruled out by previous examination. We address the crucial issue of how to generate
the target objectives and associated target solutions x′ to produce such inequalities
that aid in guiding the search after first showing how to strengthen the inequalities
of ().

4 Stronger Inequalities and Additional Valid Inequalities
from Basic Feasible LP Solutions

Our approach to generate inequalities that dominate those of () is also able to pro-
duce additional valid inequalities from related basic feasible solution to the LP prob-
lem LP(x′, c′), expanding the range of solution strategies for exploiting the use of
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target solutions. We refer specifically to the class of basic feasible solutions that may
be called y-optimal solutions, which are dual feasible in the continuous variables y
(including in y any continuous slack variables that may be added to the formulation),
disregarding dual feasibility relative to the x variables. Such y-optimal solutions can
easily be generated in the vicinity of an optimal LP solution by pivoting to bring one
or more non-basic x variables into the basis, and then applying a restricted version
of the primal simplex method that re-optimizes (if necessary) to establish dual feas-
ibility relative only to the continuous variables, ignoring pivots that would bring x
variables into the basis. By this means, instead of generating a single valid inequality
from a given LP formulation such as LP(x′, c′), we can generate a collection of such
inequalities from a series of basic feasible y-optimal solutions produced by a series of
pivots to visit some number of such solutions in the vicinity of an optimal solution.

As a foundation for these results, we assume x′′ (or more precisely, (x′′, y′′)) has
been obtained as a y-optimal basic feasible solution to LP(x′, c′) by the bounded
variable simplex method ( Dantzig []). By reference to the linear programming basis
that produces x′′, which we will call the x′′ basis, define B = � j � N � x j is basic	
and NB = � j � N � x j is non-basic	. We subdivide NB to identify the two subsets
NB(0) = � j � NB � x′′j = 0	, NB(1) = � j � NB � x′′j = 1	. These sets have no
necessary relation to the sets N ′(0) and N ′(1), though in the case where x′′ is an
optimal basic solution to LP(x′, c′), we would normally expect from the definition
of c′ in relation to the target vector x′ that there would be some overlap between
NB(0) and N ′(0) and similarly between NB(1) and N ′(1).

The new inequality that dominates () results by taking account of the reduced
costs derived from the x′′ basis. Letting rc j denote the reduced cost for the variable
x j , the rc j values for the basic variables satisfy

rc j for j � B
and the rc j values for the non-basic variables assure optimality for x′′ under the con-
dition that they satisfy

rc j , 0 for j � NB(0)
rc j � 0 for j � NB(1).

Associated with NB(0) and NB(1), define
Δ j(0) = xrc jy for j � NB(0)
Δ j(0) = x−rc jy for j � NB(1).

Finally, to identify the coefficients of the new inequality, define the vector d′ and the
scalar d′0 by

d′j = c
′

j for j � B
d′j = c

′

j − Δ j(1) for j � NB(1)
d′j = c

′

j + Δ j(1) for j � NB(1)
d′0 = c′0 + !

j�NB(1)
Δ j(1).

8 We continue to apply the convention of referring to just the x-component x′′ of a solution
(x′′ , y′′), understanding the y component to be implicit.
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We then express the inequality as

d′ , d′0 . ()

We first show that () is valid when generated from an arbitrary y-optimal basic fea-
sible solution, and then demonstrate in addition that it dominates () in the case
where () is a valid inequality (i.e., where () is derived from an optimal basic fea-
sible solution). By our previously stated convention, it is understood that X (and
(MIP:–)) may be modified by incorporating previously generated inequalities that
exclude some binary solutions originally admitted as feasible.

Our results concerning () are based on identifying properties of basic solutions
in reference to the problem

LP(x′ , d′) � min
x�X

z0 = d′x .

Proposition . The inequality () derived from an arbitrary y-optimal basic feasible
solution x′′ for LP(x′ , c′) is satisfied by all binary vectors x � X, and excludes the solu-
tion x = x′′ when v′′0 is fractional.

Proof. We first show that the basic solution x′′ for LP(x′, c′) is an optimal solution to
LP(x′, d′). Let rd j denote the reduced cost for x j when the objective function z0 = d′x
for LP(x′, d′) is priced out relative to the x′′ basis, thus yielding rd j = 0 for j � B.
From the definitions of the coefficients d′j , and in particular from d′j = c

′

j for j � B,
it follows that the relation between the reduced costs rd′j and rc

′

j for the non-basic
variables is the same as that between the coefficients d′j and c

′

j ; i.e.,

rd′j = rc
′

j − Δ j(0) for j � NB(0)
rd′j = rc

′

j + Δ j(1) for j � NB(1).

The definitions Δ j(0) = xrc jy for j � NB(0) and Δ j(1) = x−rc jy for j � NB(1) thus
imply

rd j , 0 for j � NB(0)
rd j � 0 for j � NB(1).

This establishes the optimality of x′′ for LP(x′, d′). Since the d′j coefficients are all
integers, we therefore obtain the valid inequality

d′x , @z′′0 A.

The definition of d′ yields

d′x′′ = c′x′′ + !
j�NB(1)

Δ j(1)

and hence

z′′0 = v
′′

0 + !
j�NB(1)

Δ j(1).
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Since the Δ j(1) values are integers, z′′0 is fractional if and only if v′′0 is fractional, and
we also have

@z′′0 A = @v
′′

0 A + !
j�NB(1)

Δ j(1).

The proposition then follows from the definitions of c′0 and d′0. z

Proposition  has the following novel consequence.

Corollary . The inequality () is independent of the c′j values for the non-basic x vari-
ables. In particular, for any y-feasible basic solution and specified values c′j for j � B,
the coefficients d′0 and d′j of d

′ are identical for every choice of the integer coefficients
c′j , j � NB.

Proof. TheCorollary follows from the fact that any change in the value of c′j for a non-
basic variable x j (which must be an integer change) produces an identical change in
the value of the reduced cost rc j and hence also in the values Δ j(0) and −Δ j(1).The
argument of the Proof of Proposition  thus shows that these changes cancel out, to
produce the same final d′0 and d′ after implementing the changes that existed before
the changes. {|

In effect, since Corollary  applies to the situation where c′j = 0 for j � NB, it also
allows each d′j coefficient for j � NB to be identified by reference to the quantity
that results by multiplying the vector of optimal dual values by the corresponding
column Aj of the matrix A defining the constraints of (MIP), excluding rows of A
corresponding to the inequalities 1 , x j , 0. (We continue to assume this matrix is
enlarged by reference to additional inequalities such as () or () that may currently
be included in defining x � X.)

Now we establish the result that () is at least as strong as ().

Proposition . If the basic solution x′′ for LP(x′ , c′) is optimal, and thus yields a valid
inequality (), then the inequality () dominates ().

Proof. Weuse the fact that x′′ is optimal for LP(x′ , d′) as established byProposition .
When x′′ is also optimal for LP(x′, c′), i.e., the x′′ is dual feasible for the x variables
as well as being y-optimal, the reduced costs rc j satisfy rc j , 0 for j � NB(0) and
rc j � 0 for j � NB(1). The definitions of Δ j(0) and Δ j(1) thereby imply that these
two quantities are both non-negative. From the definitions of d′j and d

′

0 we can write
the inequality d′x , d′0 as

!
j�B

c′j x j + !
j�NB(0)

(c′j − Δ j(0))x j + !
j�NB(1)

(c′j + Δ j(1))x j , c′0 + !
j�NB(1)

Δ j(1). ()

From Δ j(0), Δ j(1) , 0, and from 1 , x j , 0, we obtain the inequalities Δ j(0)x j , 0
and −Δ j(1)x j , −Δ j(1). Hence

!
j�NB(0)

Δ j(0)x j + !
j�NB(1)

−Δ j(1)x j , !
j�NB(1)

−Δ j(1). ()
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Adding the left and right sides of () to the corresponding sides of () and clearing
terms gives

!
j�N

c′j x j , c
′

0

Consequently, this establishes that () implies (). z

As in the use of the inequality (), if a basic solution x′′ that generates () is a binary
vector that differs from x′, then we can also test x′′ for feasibility in (MIP:–) and
then redefine x′ = x′′, to additionally append the constraint () for this new x′.

The combined arguments of the proofs of Propositions  and  lead to a still
stronger conclusion. Consider a linear program LP(x′, h′) given by

LP(x′ , h′) � min
x�X

h0 = h′,

where the coefficients h′j = d
′

j (and hence = c′j) for j � B and, as before, B is defined
relative to a given y-optimal basic feasible solution x′′. Subject to this condition, the
only restriction on the h′j coefficients for j � NB is that they be integers. Then we can
state the following result.

Corollary . The x′′ basis is an optimal LP basis for LP(x′ , h′) if and only if

h′j , d
′

j for j � NB(0)
h′j � d

′

j for j � NB(1)

and the inequality () dominates the corresponding inequality derived by reference to
LP(x′ , h′).

Proof. Immediate from the proofs of Propositions  and . z

The importance of Corollary  is the demonstration that () is the strongest possible
valid inequality from those that can be generated by reference to a given y-optimal
basic solution x′′ and an objective function that shares the same coefficients for the
basic variables.

It is to be noted that if (MIP:–) contains an integer valued slack variable si upon
converting the associated inequality Aix + Di y , bi of the system Ax + Dy , b into
an equation – hence if Ai and bi consist only of integers and Di is the 0 vector –
then si may be treated as one of the components of the vector x in deriving (), and
this inclusion serves to sharpen the resulting inequality. In the special case where all
slack variables have this form, i.e., where (MIP:–) is a pure integer problem hav-
ing no continuous variables and all data are integers, then it can be shown that the
inclusion of the slack variables within x yields an instance of () that is equivalent
to a fractional Gomory cut, and a stronger inequality can be derived by means of
the foundation-penalty cuts of Glover and Sherali []. Consequently, the primary
relevance of () comes from the fact that it applies to mixed integer as well as pure
integer problems, and more particularly provides a useful means for enhancing tar-
get objective strategies for these problems. As an instance of this, we now examine
methods that take advantage of () in additional ways by extension of ideas proposed
with parametric tabu search.
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5 Intensification and Diversification Based on Strategic Inequalities

5.1 An Intensification Procedure

Consider an indexed collection of inequalities of the form of () given by

dpx , dp0 , p � P. ()

We introduce an intensification procedure that makes use of () by basing the in-
equalities indexed by P on a collection of high quality binary target solutions x′. Such
solutions can be obtained from past search history or from approaches for round-
ing an optimal solution to a linear programming relaxation (LP) of (MIP:–), using
penalties to account for infeasibility in ranking the quality of such solutions. The
solutions x′ do not have to be feasible to be used as target solutions or to generate in-
equalities. In Section  we give specific approaches for creating such target solutions
and the associated target objectives c′x that serve as a foundation for producing the
underlying inequalities.

Our goal from an intensification perspective is to find a new solution that is close
to those in the collection of high quality solutions that give rise to (). We introduce
slack variables sp , p � P, to permit the system () to be expressed equivalently as

dpx − sp = d
p
0 , sp , 0, p � P. ()

Then, assuming the set X includes reference to the constraints (), we create an In-
tensified LP Relaxation

min
x�X

s0 = !
p�P

wpsp

where the weights wp for the variables sp are selected to be positive integers.
An important variation is to seek a solution that minimizes the maximum devia-

tion of x from solutions giving rise to (). This can be accomplished by introducing
the inequalities

s0 , d
p
0 − d

px , p � P. ()

Assuming these inequalities are likewise incorporated into X, the Min(Max) goal is
achieved by solving the problem

min
x�X

s0 .

An optimal solution to either of these two indicated objectives can then be used as
a starting point for an intensified solution pass, performing all-at-once or successive
rounding to replace its fractional components by integers. 

9 The inclusion of () and () is solely for the purpose of solving the associated linear pro-
grams, and these temporarily accessed constraints do not have to be incorporated among
those defining Z.

10 Successive rounding normally updates the LP solution after rounding each variable in order
to determine the effects on other variables and thereby take advantage ofmodified rounding
options.
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5.2 A Diversification Analog

To create a diversification procedure for generating new starting solutions, we seek
an objective function to drive the search to lie as far as possible from solutions in the
region defined by (). For this purpose we introduce the variables sp as in (), but
utilize a maximization objective rather than a minimization objective to produce the
problem

max
x�X

s0 = !
p�P

wpsp .

The weights wp are once again chosen to be positive.
A principal alternative in this case consists of maximizing the minimum devi-

ation of x from solutions giving rise to (). For this, we additionally include the
inequalities

s0 � d
p
0 − d

px , p � P ()

giving rise to the problem
max
x�X

s0 .

The variable s0 introduced in () differs from its counterpart in (). In the case
where the degree of diversification provided by this approach is excessive, by driving
solutions too far away from solutions expected to be good, control can be exerted
through bounding X with other constraints, and in particular by manipulating the
bound U0 identified in Sect. .

6 Generating Target Objectives and Solutions

We now examine the issue of creating the target solution x′ and associated target ob-
jective c′x that underlies the inequalities of the preceding sections. This is a key de-
terminant of the effectiveness of targeting strategies, since it determines how quickly
and effectively such a strategy can lead to new integer feasible solutions.

Our approach consists of two phases for generating the vector c′ of the target
objective. The first phase is relatively simple and the second phase is more advanced.

6.1 Phase 1 – Exploiting Proximity

The Phase  procedure for generating target solutions x′ and associated target objec-
tives c′x begins by solving the initial problem (LP), and then solves a succession of
problems LP(x′, c′) by progressively modifying x′ and c′. Beginning from the linear
programming solution x′′ to (LP) (and subsequently to LP(x′, c′)), the new target
solution x′ is derived from x′′ simply by setting x′j = >x

′′

j ?, j � N , where >v? denotes
the nearest integer neighbor of v. (The value >.5? can be either  or , by employing
an arbitrary tie-breaking rule.)

Since the resulting vector x′ of nearest integer neighbors is unlikely to be feasi-
ble for (MIP:–), the critical element is to generate the target objective c′x so that
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the solutions x′′ to successively generated problems LP(x′, c′) will become progres-
sively closer to satisfying integer feasibility. If one ormore integer feasible solutions is
obtained during this Phase  approach, each such solution qualifies as a new best so-
lution x�, due to the incorporation of the objective function constraint x0 = U0 < x�0 .

The criterion of Phase  that selects the target solution x′ as a nearest integer
neighbor of x′′ is evidently myopic. Consequently, the Phase  procedure is intended
to be executed for only a limited number of iterations. However, the possibility exists
that for some problems the target objectives of Phase  may quickly lead to new inte-
ger solutions without invoking more advanced rules. To accommodate this eventu-
ality, we include the option of allowing Phase  to continue its execution as long as it
finds progressively improved solutions.

Phase  is based on the principle that some variables x j should be more strongly
induced to receive their nearest neighbors target values x′j than other variables. In
the absence of other information, we may tentatively suppose that a variable whose
LP solution value x′′j is already an integer or is close to being an integer is more likely
to receive that integer value in a feasible integer solution. Consequently, we are moti-
vated to choose a target objective c′x that will more strongly encourage such a vari-
able to receive its associated value x′j . However, the relevance of being close to an
integer value needs to be considered frommore than one perspective.

The targeting of x j = x′j for variables whose values x
′′

j already equal or almost
equal x′j does not exert a great deal of influence on the solution of the new LP(x′, c′),
in the sense that such a targeting does not drive this solution to differ substantially
from the solution to the previous LP(x′, c′). A more influential targeting occurs by
emphasizing the variables x j whose x′′j values are more “highly fractional”, and hence
which differ from their integer neighbors x′j by a greater amount. There are evidently
trade-offs to be considered in the pursuit of influence, since a variable whose x′′j value
lies close to .5, and hence whose integer target may be more influential, has the defi-
ciency that the likelihood of this integer target being the “right” target is less certain.
A compromise targeting criterion is therefore to give greater emphasis to driving x j
to an integer value if x′′j lies “moderately” (but not exceedingly) close to an integer
value. Such a criterion affords an improved chance that the targeted value will be ap-
propriate, without abandoning the quest to identify targets that exert a useful degree
of influence. Consequently, we select values λ0 and λ1 = 1 − λ0 that lie moderately
(but not exceedingly) close to 0 and 1, such as λ0 = 1�5 and λ1 = 4�5, or λ0 = 1�4 and
λ1 = 3�4, and generate c′j coefficients that give greater emphasis to driving variables
to 0 and 1 whose x′′j values lie close to λ0 and λ1.

The following rule creates a target objective c′x based on this compromise crite-
rion, arbitrarily choosing a range of 1 to 21 for the coefficient c′j . (From the standpoint
of solving the problem LP(x′, c′), this range is equivalent to any other range over
positive values from v to 21v, except for the necessity to round the c′j coefficients to
integers.)

Finally, replace the specified value of c′j by its nearest integer neighbor >c
′

j?.
The absolute values of c′j coefficients produced by the preceding rule describe

what may be called a batwing function – a piecewise linear function resembling the
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Algorithm  – Phase  Rule for Generating c′j
Choose λ0 from the range .1 � λ0 � .4, and let λ1 = 1 − λ0 .
if x′j = 0 (hence x′′j � .5) then

if x′′j � λ0 then
c′j = 1 + 20x′′j �λ0

else if x′′j � λ0 then
c′j = 1 + 20(.5 − x′′j )�(.5 − λ0)

end if
else if x′j = 1 (hence x′′j � .5) then

if x′′j � λ1 then
c′j = −(1 + 20(x′′j − .5)�(λ1 − .5))

else if x′′j � λ1 then
c′j = −(1 + 20(1 − x′′j )�(1 − λ1))

end if
end if

wings of a bat, with shoulders at x′′j = 0.5, wing tips at x′′j = 0 and x′′j = 1, and the
angular joints of the wings at x′′j = λ0 and x

′′

j = λ1. Over the x′′j domain from the left
wing tip at 0 to the first joint at λ0, the function ranges from 1 to 21, and then from
this joint to the left shoulder at 0.5 the function ranges from 21 back to 1. Similarly,
from the right shoulder, also at 0.5, to the second joint at λ1, the function ranges from
1 to 21, and then from this joint to the right wing tip at 1 the function ranges likewise
from 21 to 1. (The coefficient c′j takes the negative of these absolute values from the
right shoulder to the right wing tip.).

In general, if we let Tip, Joint and Shoulder denote the �c′j � values to be assigned
at these junctures (where typically Joint � Tip, Shoulder), then the generic form of
a batwing function results by replacing the four successive c′j values in the preceding
method by

c′j = Tip + (Joint − Tip)x
′′

j �λ0 ,
c′j = Shoulder + (Joint − Shoulder)(.5 − x

′′

j )�(.5 − λ0),
c′j = −(Shoulder + (Joint − Shoulder)(x

′′

j − .5)�(λ1 − .5)),
c′j = −(Tip + (Joint − Tip)(1 − x

′′

j )�(1 − λ1)).

The image of such a function more nearly resembles a bat in flight as the value of
Tip is increased in relation to the value of Shoulder, and more nearly resembles
a bat at rest in the opposite case. The function can be turned into a piecewise convex
function that more strongly targets the values λ0 and λ1 by raising the absolute value
of c′j to a power p � 1 (affixing a negative sign to yield c′j over the range from the
right shoulder to the right wing tip). Such a function (e.g., a quadratic function) more
strongly resembles a bat wing than the linear function.

11 Calibration to determine a batwing structure, either piecewise linear or nonlinear, that
proves more effective than other alternatives within Phase  would provide an interesting
study.
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Design of the Phase 1 Procedure

We allow the Phase  procedure that incorporates the foregoing rule for generating
c′j the option of choosing a single fixed λ0 value, or of choosing different values from
the specified interval to generate a greater variety of outcomes. A subinterval for λ0
centered around 0.2 or 0.25 is anticipated to lead to the best outcomes, but it can be
useful to periodically choose values outside this range for diversification purposes.

We employ a stopping criterion for Phase  that limits the total number of iter-
ations or the number of iterations since finding the last feasible integer solution. In
each instance where a feasible integer solution is obtained, the method re-solves the
problem (LP), which is updated to incorporate both the objective function constraint
x0 � U0 < x�0 and inequalities such as () that are generated in the course of solv-
ing various problems LP(x′, c′). The instruction “Update the Problem Inequalities”
is included within Phase  to refer to this process of adding inequalities to LP(x′, c′)
and (LP), and to the associated process of dropping inequalities by criteria indicated
in Sect. .

Algorithm  – Phase 
. Solve (LP). (If the solution x′′ to the first instance of (LP) is integer feasible, the method

stops with an optimal solution for (MIP:–).)
. Apply the Rule for Generating c′j, to each j � N , to produce a vector c′.
. Solve LP(x′ , c′), yielding the solution x′′. Update the Problem Inequalities.
. If x′′ is integer feasible: update the best solution (x� , y�) = (x′′ , y′′), update U0 < x�0 ,

and return to Step . Otherwise, return to Step .

A preferred variant of Phase  does not change all the components of c′ each
time a new target objective is produced, but changes only a subset consisting of k of
these components, for a value k somewhat smaller than n. For example, a reasonable
default value for k is given by k = 5. Alternatively, the procedure may begin with
k = n and gradually reduce k to its default value. Within Phase , as subsequently
noted, it can be appropriate to reduce k all the way to 1.

This variant of Phase  results by the following modification. Let c0 identify the
form of c′ produced by the Rule for Generating c′j , as applied in Step  of the Phase
 Procedure. Re-index the x j variables so that �c01 � , �c02 � , . . . , �c0n �, and let N(k) =
�1, . . . , k	, thus identifying the variables x j , j � N(k), as those having the k largest
�c0j � values.Then Phase  is amended by setting c′ = 0 in Step  and then setting c′j = c

0
j

for j � N(k) in Step , without modifying the c′j values for j � N − N(k). Relevant
issues for research involve the determination of whether it is better to better to begin
with k restricted or to gradually reduce it throughout the search, or to allow it to
oscillate around a preferred value. Different classes of problems will undoubtedly
afford different answers to such questions, and may be susceptible to exploitation
by different forms of the batwing function (allowing different magnitudes for the
Tip, Joint and Shoulder, and possibly allowing the location of the shoulders to be
different than the 0.5midpoint, with the locations of the joints likewise asymmetric).
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6.2 Phase 2 – Exploiting Reaction and Resistance

Phase  is based on exploiting the mutually reinforcing notions of reaction and resist-
ance. The term “reaction” refers to the change in the value of a variable as a result
of creating a target objective c′x and solving the resulting problem LP(x′, c′). The
term “resistance” refers to the degree to which a variable fails to react to a non-zero
c′j coefficient by receiving a fractional value rather than being driven to 0 or 1.

To develop the basic ideas, let NF identify the set of variables that receive frac-
tional values in the solution x′′ to the problem LP(x′, c′), given by NF = � j � N �
0 < x′′j < 1	, and let N ′(0, 1) identify the set of variables that have been assigned
target values x′j , given by N ′(0, 1) = N ′(0) - N ′(1) (or equivalently, N ′(0, 1) =
N ′−N ′(Φ)). Corresponding to the partition of N ′ into the sets N ′(Φ) and N ′(0, 1),
the set NF of fractional variables is partitioned into the sets NF(Φ) = NF D N ′(Φ)
and NF(0, 1) = NF D N ′(0, 1).

We identify two different sets of circumstances that are relevant to defining re-
action, the first arising where none of the fractional variables x j is assigned a target
x′j , hence NF = NF

′(Φ), and the second arising in the complementary case where
at least one fractional variable is assigned a target, hence NF(0, 1) � �. We start by
examining the meaning of reaction in the somewhat simpler first case.

ReactionWhen No Fractional Variables Have Targets

Our initial goal is to create a measure of reaction for the situation where NF =
NF′(Φ), i.e., where all of the fractional variables are unassigned (hence, none of
these variables have targets). In this context we define reaction to be measured by
the change in the value x′′j of a fractional variable x j relative to the value x

0
j received

by x j in an optimal solution x0 to (LP), as given by 

Δ j = x0j − x
′′

j .

Weobserve there is some ambiguity in this Δ j definition since (LP) changes as a result
of introducing new inequalities and updating the value U0 of the inequality x0 � U0.
Consequently, we understand the definition of Δ j to refer to the solution x0 obtained
by the most recent effort to solve (LP), though this (LP) may be to some extent out
of date, since additional inequalities may have been introduced since it was solved.
For reasons that will become clear in the context of resistance, we also allow the al-
ternative of designating x0 to be the solution to the most recent problem LP(x′, c′)
preceding the current one; i.e., the problem solved before creating the latest target
vector c′.

The reaction measure Δ j is used to determine the new target objective by re-
indexing the variables x j , j � NF = NF′(Φ), so that the absolute values �Δ j � are
in descending order, thus yielding �Δ1� , �Δ2� , . . . . We then identify the k-element
subset N(k) = �1, 2, . . . , k	 of NF that references the k largest �Δ j � values, where k =

12 These Δ j values are not to be confused with the Δ j(0) and Δ j(1) of Sect. .
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min(�NF�, kmax). We suggest the parameter kmax be chosen at most 5 and gradually
decreased to 1 as the method progresses.

The c′j coefficients are then determined for the variables x j , j � N(k), by the
following rule. (The constant 20 is the same one used to generate c′j values in the
Phase  procedure, and >v? again denotes the nearest integer neighbor of v.)

NF′(Φ) Rule for Generating c′j and x
′

j , j � N(k) (for N(k) ⊂ NF = NF
′(Φ)):

If Δ j , 0, set c′j = 1 + >20Δ j��Δ1�? and x′j = 0
If Δ j � 0, set c′j = −1 + >20Δ j��Δ1�? and x′j = 1.

When Δ j = 0, a tie-breaking rule can be used to determine which of the two op-
tions should apply, and in the special case where Δ1 = 0 (hence all Δ j = 0), the c′j
assignment is taken to be 1 or −1 for all j � N(k).

To determine a measure of reaction for the complementary case NF(0, 1) � �,
we first introduce the notion of resistance.

Resistance

A resisting variable (or resistor) x j is one that is assigned a target value x′j but fails to
satisfy x j = x′j in the solution x′′ to LP(x′, c′). Accordingly the index set for resisting
variables may be represented by NR = � j � N ′(0, 1) � x′′j � x

′′

j 	. If x
′′

j is fractional
and j � N ′(0, 1) then clearly j � NR (i.e., NF(0, 1) ⊂ NR). Consequently, the situa-
tion NF(0, 1) � � that was previously identified as complementary to NF = NF(Φ)
corresponds to the presence of at least one fractional resistor.

If a resistor x j is not fractional, i.e., if the value x′′j is the integer 1−x
′

j , we say that
x j blatantly resists its targeted value x′j . Blatant resistors x j are automatically removed
from NR and placed in the unassigned set N ′(Φ), setting c′ = 0. (Alternatively, a bla-
tant resistor may be placed in N ′(1 − x′j) by setting c

′

j = −c
′

j and x
′

j = 1 − x
′

j .) After
executing this operation, we are left with NR = NF(0, 1), and hence the condition
NF(0, 1) � � (which complements the condition NF = NF′(Φ)) becomes equiva-
lent to NR � �.

Let Vj identify the amount by which the LP solution value x j = x′′j violates the
target assignment x j = x′j ; i.e, Vj = x′′j if x′j = 0 (hence if c′j � 0) and Vj = 1 − x′′j if
x′j = 1 (hence if c

′

j < 0).We use the quantity Vj to define a resistance measure RMj for
each resisting variable x j , j � NR, that identifies how strongly x j resists its targeted
value x′j . Two simple measures are given by RMj = Vj , and RMj = �c j �Vj .

The resistance measure RMj is used in two ways: (a) to select specific variables
x j that will receive new x′j and c

′

j values in creating the next target objective; (b) to
determine the relative magnitudes of the resulting c′j values. For this purpose, it is
necessary to extend the notion of resistance by making reference to potentially resist-
ing variables (or potential resistors) x j , j � N ′(0, 1) − NR, i.e., the variables that have
been assigned target values x′j and hence non-zero objective function coefficients c′j ,
but which yield x′′j = x′j in the solution x′′ to LP(x′, c′). We identify a resistance
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measure RM0
j for potential resistors by reference to their reduced cost values rc j (as

identified in Sect. ):

RM0
j = −rc j for j � N ′(0) − NR and RM0

j = rc j for j � N ′(1) − NR.

We note that this definition implies RM0
j � 0 for potentially resisting variables. (Oth-

erwise, x j would be a non-basic variable yielding x′′j = 1 in the case where j � N ′(0),
or yielding x′′j = 0 in the case where j � N ′(1), thus qualifying as a blatant resistor
and hence implying j � NR.) The closer that RM0

j is to 0, the closer x j is to qualify-
ing to enter the basis and potentially to escape the influence of the coefficient c′j that
seeks to drive it to the value  or .Thus larger values of RM0

j indicate greater poten-
tial resistance. Since the resistance measures RMj are positive for resisting variables
x j , we see that there is an automatic ordering whereby RMp � RM0

q for a resisting
variable xp and a potentially resisting variable xq .

CombiningMeasures of Resistance and Reaction

The notion of reaction is relevant for variables x j assigned target values x j ( j �
N ′(0, 1)) as well as for those not assigned such values ( j � N ′(Φ)). In the case of
variables having explicit targets (hence that qualify either as resistors or potential re-
sistors) we combine measures of resistance and reaction to determine which of these
variables should receive new targets x′j and new coefficients c′j .

Let x0 refer to the solution x′′ to the instance of the problem LP(x′, c′) that was
solved immediately before the current instance; hence the difference between x0j
and x′′j identifies the reaction of x j to the most recent assignment of c′j values. In
particular, we define this reaction for resistors and potential resistors by

δ j = x′′j − x
0
j for x′j = 0 ( j � N

′(0))
δ j = x0j − x

′′

j for x′j = 1 ( j � N
′(1)).

If we use the measure of resistance RMj = Vj , which identifies how far x j lies from
its target value, a positive δ j implies that the resistance of x j has decreased as a result
of this assignment. Just as the resistance measure RMj is defined to be either Vj or
Vj �c′j �, the corresponding reaction measure Rδj can be defined by either Rδj = δ j or
Rδj = δ j �c′j �. Based on this we define a composite resistance–reaction measure RRj
for resisting variables as a convex combination of RMj and Rδj ; i.e., for a chosen
value of λ � [0, 1]:

RRj = λRMj + (1 − λ)Rδj , j � NR.

Similarly, for implicitly resisting variables, we define a corresponding compositemea-
sure RR0

j by

RR0
j = λRM

0
j + (1 − λ)Rδj , j � N ′(0, 1) − NR.

13 This is the “alternative definition” of x0 indicated earlier.
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In order to make the interpretation of λmore consistent, it is appropriate first to
scale the values of RMj , RM0

j and Rδj . If v j takes the role of each of these three values
in turn, then vj may be replaced by the scaled value vj = vj��Mean(v j)� (bypassing
the scaling in the situation where �Mean(vj)� = 0).

To give an effective rule for determining RRj and RR0
j , a few simple tests can

be performed to determine a working value for λ, as by limiting λ to a small num-
ber of default values (e.g., the three values 0, 1 and 0.5, or the five values that in-
clude 0.25 and 0.75).More advanced methods for handling these issues are described
in Sect. , where a linear programming post-optimization process for generating
stronger evaluations is given in Sect. ., and a target analysis approach for calibrating
parameters and combining choice rules more effectively is given in Sect. ..

Including Reference to a Tabu List

A key feature in using both RRj and RR0
j to determine new target objectives is to

make use of a simple tabu list T to avoid cycling and insure a useful degree of vari-
ation in the process. We specify in the next section a procedure for creating and up-
dating T, which we treat both as an ordered list and as a set. (We sometimes speak of
a variable x j as belonging toT, with the evident interpretation that j � T.) It suffices at
present to stipulate that we always refer to non-tabu elements of N ′(0, 1), and hence
we restrict attention to values RRj and RR0

j for which j � N
′(0, 1) − T. The rules for

generating new target objectives make use of these values in the following manner.
Because RRj and RR0

j in general are not assured to be either positive or negative,
we treat their ordering for the purpose of generating c′j coefficients as a rank order-
ing. We want each RRj value (for a resistor) to be assigned a higher rank than that
assigned to any RR0

j value (for a potential resistor). An easy way to do this is to define
a value RRj for each potential resistor given by

RRj = RR0
j − RR

0
1 + 1 −min

j�NR
RRj , j � N ′(0, 1) − NR.

The set of RRj values over j � N ′(0, 1) then satisfies the desired ordering for both
resistors ( j � NR) and potential resistors ( j � N ′(0, 1) − NR). (Recall that NR =
NF(0, 1) by having previously disposed of blatant resistors.)

For the subset N(k) of k non-tabu elements of N ′(0, 1) (hence of N ′(0, 1) − T)
that we seek to generate, the ordering over the subset NR−T thus comes ahead of the
ordering over the subset (N ′(0, 1)−NR)−T.This allows both resistors and potential
resistors to be included among those elements to be assigned new coefficients c′j and
new target values x′j , where the new c′j coefficients for resistors always have larger
absolute values than the c′j coefficients for potential resistors. If the set of non-tabu
resistors NR − T already contains at least k elements, then no potential resistors will
be assigned new c′j or x

′

j values.

Overview of Phase 2 Procedure

The rule for generating the target objective c′x that lies at the heart of Phase  is based
on carrying out the following preliminary steps, where the value kmax is determined
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as previously indicated: (a) re-index the variables x j , j � N ′(0, 1) − T, so that the
values RRj are in descending order, thus yielding RR1 , RR2 , . . . ; (b) identify the
subset N(k) = �1, 2, . . . , k	 of NR that references the k largest RRj values, where
k = min(�N ′(0, 1) − T�, kmax); (c) create a rank ordering by letting Rp , p = 1, . . . , r
denote the distinct values among the RRj , j � N(k), where R1 � R2 � . . . Rr , (r , 1).

Then the rule to determine the c′j and x
′

j values for the variables x j , j � N(k), is
given as follows:

N ′(0, 1) − T Rule for Generating c′j and x
′

j , j � N(k) (for NR = NF(0, 1) � �):

If x′j = 1, and RRj = Rp , set c′j = >1 + 20(r + 1 − p)�r? and re-set x′j = 0.
If x′j = 0, and RRj = Rp , set c′j = −>1 + 20(r + 1 − p)�r? and re-set x′j = 1.

We see that this rule assigns c′j coefficients so that the �c′j � values are the positive
integers >1 + 20(1�r)?, >1 + 20(2�r)?, . . . , >1 + 20(r�r)? = 21.

We are now ready to specify the Phase  procedure in overview, which incorpo-
rates its main elements except for the creation and updating of the tabu list T.

Algorithm  - Phase  Procedure in Overview
. Solve (LP). (Stop if the first instance of (LP) yields an integer feasible solution x′′ which

therefore is optimal for (MIP:–).) (If the solution x′′ to the first instance of (LP) is integer
feasible, the method stops with an optimal solution for (MIP:–).)

. There exists at least one fractional variable (NF � #). Remove blatant resistors if any
exist, from NR and transfer them to N ′(Φ) (or to N ′(1 − x′j)) so NR = NF(0, 1).
(a) If NF = NF(Φ) (hence NR = #), apply the NF(#) Rule for Generating c′j and

x′j , j � N(k), to produce the new target objective c′x and associated target vector x′ .
(b) If instead NR � #, then apply the N ′(0, 1) − T Rule for Generating c′j and x

′

j , j �

N(k), to produce the new target objective c′x and associated target vector x′.
. Solve LP(x′ , c′), yielding the solution x′′. Update the Problem Inequalities.
. If x′′ is integer feasible: update the best solution (x� , y�) = (x′′ , y′′), update U0 < x�0 ,

and return to Step . Otherwise, return to Step .

6.3 Creating andManaging the Tabu List T – Phase 2 Completed

We propose an approach for creating the tabu list T that is relatively simple but offers
useful features within the present context. As in a variety of constructions for hand-
ling a recency-based tabu memory, we update T by adding a new element j to the
first position of the list when a variable x j becomes tabu (as a result of assigning it
a new target value x′j and coefficient c′j), and by dropping the “oldest” element that
lies in the last position of T when its tabu status expires.

Our present construction employs a rule that may add and drop more than one
element from T at the same time. The checking of tabu status is facilitated by using
a vector Tabu( j) that is updated by setting Tabu( j) = true when j is added to T
and by setting Tabu( j) = f al se when j is dropped from T. (Tabu status is often
monitored by using a vector TabuEnd( j) that identifies the last iteration that ele-
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ment j qualifies as tabu, without bothering to explicitly store the list T, but the cur-
rent method of creating and removing tabu status makes the indicated handling of T
preferable.)

We first describe the method for the case where k = 1, i.e., only a single vari-
able x j is assigned a new target value (and thereby becomes tabu) on a given it-
eration. The modification for handling the case k � 1 is straightforward, as subse-
quently indicated. Two parameters Tmin and Tmax govern the generation of T, where
Tmax � Tmin , 1. For simplicity we suggest the default values Tmin = 2 and Tmax = n6.
(In general, appropriate values are anticipated to result by selecting Tmin from the
interval between  and  and Tmax from the interval between n5 and n7.)

The target value x′j and coefficient c′j do not automatically change when j is
dropped from T and x j becomes non-tabu. Consequently, we employ one other par-
ameter AssignSpan that limits the duration that x j may be assigned the same x′j
and c′j values, after which x′j is released from the restrictions induced by this as-
signment. To make use of AssignSpan, we keep track of when x j most recently
was added to T by setting TabuAdd( j) = iter, where iter denotes the current it-
eration value (in this case, the iteration when the addition occurred). Then, when
TabuAdd( j) + AssignSpan < iter, x j is released from the influence of x′j and c

′

j
by removing j from the set N ′(0, 1) and adding it to the unassigned set N ′(Φ). As
long as x j is actively being assigned new x′j and c

′

j values, TabuAdd( j) is repeatedly
being assigned new values of iter, and hence the transfer of j to N ′(Φ) is postponed.
We suggest a default value for AssignSpan between 1.5 
 Tmax and 3 
 Tmax; e.g.
AssignSpan = 2 
 Tmax.

To manage the updating of T itself, we maintain an array denoted TabuRe f resh
( j) that is initialized by setting TabuRe f resh( j) = 0 for all j � N . Then on any iter-
ation when j is added to T , TabuRe f resh( j) is checked to see if TabuRe f resh( j) <
iter (which automatically holds the first time j is added to T). When the condition is
satisfied, a refreshing operation is performed, after adding j to the front of T, that con-
sists of two steps: (a) the list T is reduced in size to yield �T� = Tmin (more precisely,
�T� � Tmin) by dropping all but Tmin the first elements of T; (b) TabuRe f resh( j) is
updated by setting TabuRe f resh( j) = iter+v, where v is a number randomly chosen
from the interval [AssignSpan, 2 
 AssignSpan]. These operations assure that fu-
ture steps of adding this particular element j to T will not again shrink T to contain
Tmin elements until iter reaches a value that exceeds TabuRe f resh( j). Barring the
occurrence of such a refreshing operation, T is allowed to grow without dropping
any of its elements until it reaches a size of Tmax. Once �T� = Tmax, the oldest j is
removed from the end of T each time a new element j is added to the front of T, and
hence T is stabilized at the size Tmax until a new refreshing operation occurs.

This approach for updating T is motivated by the following observation. The first
time j is added to T (when TabuRe f resh( j) = 0) T may acceptably be reduced in
size to contain not just Tmin elements, but in fact to contain only  element, and no

14 The small value of Tmin accords with an intensification focus, and larger values may be
selected for diversification. A procedure that modifies Tmax dynamically is indicated in
Sect. ..
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matter what element is added on the next iteration the composition of N ′(0, 1) can-
not duplicate any previous composition. Moreover, following such a step, the com-
position of N ′(0, 1) will likewise not be duplicated as long as T continues to grow
without dropping any elements. Thus, by relying on intervening refreshing opera-
tions with TabuRe f resh( j) = 0 and Tmin = 1, we could conceivably allow T to grow
even until reaching a size Tmax = n. (Typically, a considerable number of iterations
would pass before reaching such a state.) In general, however, by allowing T to reach
a size Tmax = n the restrictiveness of preventing targets from being reassigned for
Tmax iterations would be too severe. Consequently we employ the two mechanisms
to avoid such an overly restrictive state consisting of choosing Tmax < n and perform-
ing a refreshing operation that allows each j to shrink T more than once (whenever
iter grows to exceed the updated value of TabuRe f resh( j)) The combination of
these two mechanisms provides a flexible tabu list that is self-calibrating in the sense
of automatically adjusting its size in response to varying patterns of assigning target
values to elements.

The addition of multiple elements to the front of T follows essentially the same
design, subject to the restriction of adding only up to Tmin new indexes j � N(k)
to T on any iteration, should k be greater than Tmin. We slightly extend the earlier
suggestion Tmin = 2 to propose Tmin = 3 for kmax , 3.

One further comment is warranted concerning the composition of T.The organ-
ization of the method assures T ⊂ N ′(0, 1) and typically a good portion of N ′(0, 1)
lies outside T. If exceptional circumstances result in T = N ′(0, 1), the method drops
the last element of T so that N ′(0, 1) contains at least one non-tabu element.

Drawing on these observations, the detailed formof Phase  that includes instruc-
tions for managing the tabu list is specified below, employing the stopping criterion
indicated earlier of limiting the computation to a specified maximum number of it-
erations. (These iterations differ from those counted by iter, which is re-set to  each
time a new solution is found and the method returns to solve the updated (LP).)

The inequalities introduced in Sections  and  provide a useful component of
this method, but the method is organized to operate even in the absence of such
inequalities. The intensification and diversification strategies proposed in Section 
can be incorporated for solving more difficult problems.

The next section gives another way to increase the power of the foregoing pro-
cedure when faced with solving harder problems, by providing a class of additional
inequalities that are useful in the context of an intensification strategy.

7 Additional Inequalities for Intensification from an Elite Reference Set

We apply a somewhat different process than the type introduced in Section  to pro-
duce new inequalities for the purpose of intensification, based on a strategy of ex-
tracting (or “mining”) useful inequalities from a reference set R of elite solutions.
The goal in this case is to generate inequalities that reinforce the characteristics of
solutions found within the reference set. The resulting inequalities can be exploited
in conjunction with inequalities such as () and the systems ()–(). Such a com-
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Algorithm  – Complete Phase  Procedure
. Choose the values Tmin and Tmax and AssignSpan.
. Solve (LP). (Stop if the first instance of (LP) yields an integer feasible solution x′′, which

therefore is optimal for (MIP:–).) Set TabuRe f resh( j) = 0 for all j � N and iter = 0.
. There exists at least one fractional variable (NF � #). Remove each blatant resistor x j , if

any exists, fromNR and transfer it to N ′(Φ) (or to N ′(1− x′j)), yielding NR = NF(0, 1).
If j is transferred to N ′(Φ) and j � T , drop j from T . Also, if T = N ′(0, 1), then drop the
last element from T .
(a) If NF = NF(Φ) (hence NR = #), apply the NF(Φ) Rule for Generating c′j and

x′j , j � N(k).
(b) If instead NR = #, then apply the N ′(0, 1) − T Rule for Generating c′j and x

′

j , j �

N(k).
(c) Set iter = iter + 1. Using the indexing that produces N(k) in (a) or (b), add the

elements j = 1, 2, . . . , min(Tmin, k) to the front of T (so that T = (1, 2, . . . ) after the
addition). IfTabuRe f resh( j) < iter for any added element j, setTabuRe f resh( j) =

iter + v, for v randomly chosen between AssignLength and 2 � AssignSpan (for
each such j) and then reduce T to at most Tmin elements by dropping all elements in
positions � Tmin.

. Solve LP(x′ , c′), yielding the solution x′′. Update the Problem Inequalities.
. If x′′ is integer feasible: update the best solution (x� , y�) = (x′′ , y′′), update U0 < x�0 ,

and return to Step . Otherwise, return to Step .

bined approach gives an enhanced means for achieving the previous intensification
and diversification goals.

The basis for this inequality mining procedure may be sketched as follows. Let
Count j(v), for v � �0, 1	, denote the number of solutions in R (or more precisely in
an updated instance R′ of R), such that x j = v. We make use of sets J(0) and J(1)
that record the indexes j for the variables x j that most frequently receive the values
 and , respectively, over the solutions in R. In particular, at each iteration either
J(0) or J(1) receives a new index j� for the variable x j� that receives either the value
0 or the value 1 inmore solutions of R′ than any other variable; i.e., x j� is the variable
having the maximum Count j(v) value over solutions in R.

Associated with x j� , we let v� (= 0 or 1) denote the value v that achieves this
maximum Count j(v) value. The identity of j� and v� are recorded by adding j� to
J(v�).Then J(v�) is removed from future consideration by dropping it from the cur-
rent N ′, whereupon R′ is updated by removing all of its solutions x that contain the
assignment x j� = v�. The process repeats until no more solutions remain in R′. At
this point we have a minimal, though not necessarily minimum, collection of vari-
ables such that every solution in R satisfies the inequality () indicated in Step 
below.

7.1 GeneratingMultiple Inequalities

The foregoing Inequality Mining Method can be modified to generate multiple in-
equalities by the following simple design. Let n( j) be the number of times the variable
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Algorithm  – Inequality Mining Method (for the Elite Reference Set R)
. Begin with R′ = R,N ′ = N and J(0) = J(1) = #.
. Identify the variable x j� , j� � N ′, and the value v� = 0 or 1 such that

Count j�(v
�

) = max
j�N′ ,v��0,1�

Count j(v)

Add j� to the set J(v�).
. Set R′ = R′ − $x � R′ % x j� = v�& and N ′ = N ′ − $ j�&.
. If R′ = # or N ′ = # proceed to Step . Otherwise, determine the updated values of

Count j(v), j � N ′, v � $0, 1& (relative to the current R′ and N ′) and return to Step .
. Complete the process by generating the inequality

'

j�J(1)
x j + '

j�J(0)
(1 − x j) � 1 ()

x j appears in one of the instances of (). To initialize these values we set n( j) = 0
for all j � N in an initialization step that precedes Step . At the conclusion of Step ,
the n( j) values are updated by setting n( j) = n( j) + 1 for each j � J(0) - J(1).

In the simplest version of the approach, we stipulate that each instance of ()
must contain at least one x j such that n( j) = 0, thus automatically assuring every
instancewill be different. Let L denote a limit on the number of inequalitieswe seek to
generate. Then, only two simple modifications of the preceding method are required
to generate multiple inequalities.

(A)The method returns to Step  after each execution of Step ., as long as n( j) = 0
for at least one j � N , and as long as fewer than L inequalities have been generated;

(B) Each time Step  is visited immediately after Step  (to select the first variable
x j� for the new inequality), we additionally require n( j�) = 0, and the method
terminates once this condition cannot bemetwhen choosing the first x j� to com-
pose a given instance of (). Hence on each such “first execution” of Step , j� is
selected by the rule

Count j�(v�) = max
j�N ′ ,n( j)=0,v��0,1�

Count j(v).

As a special case, if there exists a variable x j such that x j = 1 (respectively, x j = 0) in
all solutions x � R, we observe that the foregoing method will generate the inequality
x j , 1 (respectively, x j � 0) for all such variables.

The foregoing approach can be given still greater flexibility by subdividing the
value n( j) into two parts, n( j � 0) and n( j � 1), to identify the number of times x j
appears in () for j � J(0) and for j � J(1), respectively. In this variant, the values
n( j � 0) and n( j � 1) are initialized and updated in a manner exactly analogous to the
initialization and updating of n( j).The restriction of the choice of j� on Step , imme-
diately after executing Step , is simply to require n( j� � v�) = 0, bymeans of the rule

Count j�(v�) = max
j�N ′ ,n( j
v)=0,v��0,1�

Count j(v).
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For additional control, the n( j � 0) and n( j � 1) values (or the n( j) values) can
also be constrained not to exceed some specified limit in subsequent iterations of
Step , in order to assure that particular variables do not appear a disproportionate
number of times in the inequalities generated.

7.2 Additional Ways for ExploitingR

It is entirely possible that elite solutions can lie in “clumps” in different regions. In
such situations, a more effective form of intensification can result by subdividing an
elite reference set R into different components by a clustering process, and then treat-
ing each of the individual components as a separate reference set.

One indication that R should be subdivided is the case where the Inequality Min-
ing Method passes from Step  to Step  as a result of the condition N ′ = �. If this
occurs when R′ � �, the inequality () is valid only for the subset of R given by
R−R′, which suggests that R is larger than it should be (or that toomany inequalities
have been generated). Clustering is also valuable in the context of using the inequal-
ities of () for intensification, by dividing the target solutions x′ underlying these
inequalities into different clusters.

There is, however, a reverse consideration. If clustering (or some other construc-
tion) produces an R that is relatively small, there may be some risk that the inequal-
ities () derived from R may be overly restrictive, creating a form of intensification
that is too limiting (and hence that has a diminished ability to find other good so-
lutions). To counter this risk, the inequalities of () can be expressed in the form
of goal programming constraints, which are permitted to be violated upon incurring
a penalty.

Finally, to achieve a greater degree of intensification, the Inequality Mining
Method can employ more advanced types of memory to generate a larger number
inequalities (or even use lexicographic enumeration to generate all inequalities of
the indicated form). Additional variation can be achieved by introducing additional
binary variables as products of other variables, e.g., representing a product such as
x1x2(1−x3) as an additional binary variable using standard rules (that add additional
inequalities to those composing the system ()). These and other advanced consid-
erations are addressed in the approach of satisfiability data mining (Glover []).

8 Supplemental Strategic Considerations

This section identifies a number of supplemental strategic considerations to enhance
the performance of the approaches described in preceding sections.

8.1 Dynamic Tabu Condition forTmax

The value of Tmax can be translated into a tabu tenure that varies within a specified
range, and that can take a different value each time a variable x j (i.e., its index j) is
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added to the tabu list T. This can be done by employing an array TabuEnd( j) ini-
tialized at  and updated as follows. Whenever j is added to T, a value v is selected
randomly from an interval [Ta , Tb ] roughly centered around Tmax. (For example, if
Tmax = n6 the intervalmight be chosen by setting Ta = n5 and Tb = n7). TabuEnd( j)
is assigned the new value TabuEnd( j) = v + iter. Subsequently, whenever j is ex-
amined to see if it belongs to T (signaled by Tabu( j) = true), if iter � TabuEnd( j)
then j is dropped from T.

In place of the rule that removes an element from T by selecting the element at
the end of the list as the one to be dropped, we instead identify the element to be
dropped as the one having the smallest TabuEnd( j) value. When j is thus removed
from T, we re-set TabuEnd( j) = 0.

The condition TabuEnd( j) , iter could be treated as equivalent to Tabu( j) =
true, and it would be possible to reference the TabuEnd( j) array in place of main-
taining the list T, except for the operation that drops all but the Tmin first elements
of T. Because of this operation, we continue to maintain T as an ordered list, and
manage it as specified. (Whenever an element is dropped from T, it is dropped as
if from a linked list, so that the relative ordering of elements remaining on T is not
disturbed.) Alternatively, T can be discarded if TabuEnd( j) is accompanied by an
array TabuStart( j), where TabuStart( j) = iter at the iteration where j becomes
tabu, thus making it possible to track the longevity of an element on T.

8.2 UsingModel EmbeddedMemory to Aid in Generating New Target Objectives

Wemay modify the specification of the c′j values in Phase  by using model embed-
ded memory, as proposed in parametric tabu search. For this, we replace the value
20 in the c′j generation rules of Sect.  by a value BaseCost which is increased on
each successive iteration, thus causing the new �c′j � values to grow as the number of
iterations increases. The influence of these values in driving variables to reach their
targets will thus become successively greater, and targets that have been created more
recently will be less likely to be violated than those created earlier. (The larger the ab-
solute value of c′j the more likely it will be that x j will not resist its target value x′j by
becoming fractional.)

Consequently, as the values �c′j � grow from one iteration to the next, the variables
that were given new targets farther in the past will tend to be the ones that become
resistors and candidates to receive new target values. As a result, the c′j coefficients
produced by progressively increasing BaseCost emulate a tabu search recency mem-
ory that seeks more strongly to prevent assignments fromchanging themore recently
that they have been made.

The determination of the c′j values can be accomplished by the same rules speci-
fied in Sect.  upon replacing the constant value  by BaseCost. Starting with
BaseCost = 20 in Step  of Phase , the value of BaseCost is updated each time
iter is incremented by 1 in Step  to give BaseCost = λ 
 BaseCost where the par-
ameter λ is chosen from the interval λ � [1.1, 1.3]. (This value of λ can be made
the same for all iterations, or can be selected randomly from such an interval at each
iteration.)
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To prevent the �c′j � values from becoming excessively large, the current �c′j � values
can be reduced once BaseCost reaches a specified limit by applying the following
rule.

Reset BaseCost = 20 and index the variables x j , j � N ′(0, 1) so that
�c′1� � �c′2� � . . . � �c′p � where p = �N ′(0, 1)�.

Define Δ j = �c′j� − �c′j+1� for j = 1, . . . , p − 1.
Select λ � [1.1, 1.3].
Set �c′p � = BaseCost and �c′j� = min(�c′j+1� + Δ j , λ�c′j+1�) for j = p − 1, . . . , 1.
Let sign(c′j) =“+” if x′j = 0 and sign(c′j) =“−” if x′j = 1, j � N ′(0, 1).
Finally, reset BaseCost = �c′1� (=max j�N′(0,1) �c′j�).

The new �c′j � values produced by this rule will retain the same ordering as the
original ones and the signs of the c′j coefficients will be preserved to be consistent
with the target values x′j .

In a departure for diversification purposes, the foregoing rule can be changed by
modifying the next to last step to become

Set �c′1 � = BaseCost and �c′j+1 � =min(�c′j � + Δ j+1 , λ�c′j �) for j = 1, . . . , p − 1

and concluding by resetting BaseCost = �c′p �.

8.3 Multiple Choice Problems

The Phase  procedure can be specialized to provide an improved method for han-
dling (MIP:–) problems that contain multiple choice constraints which take the
form

!
j�Nq

x j = 1, q � Q

where the sets Nq , q � Q, are disjoint subsets of N .
Starting with all j � Nq unassigned (hence Nq ⊂ N ′(Φ)), the specialization is

accomplished by only allowing a single j � Nq to be transferred fromN ′(Φ) toN ′(1).
Once this transfer has occurred, let j(q) denote the unique index j � N ′(1) D Nq
and let x j(q) denote a resisting variable, hence j(q) � NR. After disposing of blatant
resistors, we are assured that such a resisting variable satisfies j(q) � NF (i.e., x j(q)
is fractional).

We seek a variable x j� to replace x j(q) by selecting

j� = arg max j�NR�(Nq−� j(q)�)RRj − T

(note j � NR D (Nq − � j(q)	) implies j � N ′(0)), or if no such index j� exists,
selecting

j� = arg max j�N ′(Φ)�Nq
RRj − T .
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Then j� is transferred from its present set, N ′(0) or N ′(Φ), to N ′(1), and corres-
pondingly j(q) is transferred from N ′(1) to either N ′(1) or N ′(Φ). After the trans-
fer, j(q) is re-defined to be given by j(q) = j�.

8.4 Generating the Targets x′j and Coefficients c
′

j Post-optimization

More advanced evaluations for generating new target assignments and objectives for
the Phase  procedure can be created by using linear programming post-optimization.
The approach operates as follows.

The procedures described in Sect.  are used to generate a candidate set N(k) of
some number k of “most promising options” for further consideration. The resulting
variables x j , j � N(k), are then subjected to a post-optimization process to evaluate
them more thoroughly. We denote the value k for the present approach by k#, where
k# can differ from the k used in the component rules indicated in Sect. . (k# may
reasonably be chosen to lie between  and , though the maximum value of k# can be
adapted from iteration to iteration based on the amount of effort required to evaluate
the current variables that may be associated with N(k#).) By the nature of the process
described below, the value of k in Phase  will be limited to satisfy k � k#.

As in the Phase  procedure, there are two cases, one where no resistors exist and
N(k#) is composed of fractional variables from the set NF(Φ), and the other where
resistors exist and N(k#) is composed of resistors and potential resistors from the
set N ′(0, 1). To handle both of these cases, let cmax denote the absolute value of the
maximum c′j coefficient normally assigned on the current iteration, i.e., cmax = �c′1 �
where c′1 is identified by the indexing used to create the candidate set N(k#). Also,
let v′′0 (= c′x′′) denote the objective function value for the current solutions x′′ of
LP(c′, x′), where we include reference to the associated value x′′0 by including x0 as
a secondary objective, as discussed in Sect. . (Implicitly, v′′0 = c′x′′ + εx′′0 for some
small value ε.The reference to x′′0 is particularly relevant to the casewhere no resistors
exist, since then c′x′′ = 0.)

We then evaluate the assignment that consists of setting x′j = 0 and c′j = cmax

or setting x′j = 1 and c′j = −cmax for each j � N(k#), to determine the effect of
this assignment in changing the value of v′′0 upon solving the new LP(c′, x′) (i.e.,
the form of LP(c′, x′) that results for the indicated new value of x′j and c

′

j). To avoid
undue computational expense, we limit the number of iterations devoted to the post-
optimization performed by the primal simplex method to solve the new LP(c′, x′).
(The post-optimization effort is unlikely to be excessive in any event since the new
objective changes only the single coefficient c′j .)

Denote the new x′j and c
′

j values for the variable x j currently being evaluated by
x#j and c

#
j and denote the new v′′0 that results from the post-optimization process by

v#0 . Then we employ v#0 to evaluate the merit of the option of assigning x′j = x
#
j and

c′j = c
#
j .

Case . N(k#) ⊂ NF(Φ) (and there are no resistors).
Both of the options consisting of setting x#j = 0 and c#j = cmax and of setting
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x#j = 1 and c
#
j = −cmax exist for each j � N(k#). Denote the quantity v#0 for each

of these two options respectively by v#0( j � 0) and v#0( j � 1). Then we prefer to
make the assignment x#j = v

# where

v# = argmin
v��0,1�

v#0( j � v),

and we select the index j# � N(k#) for this assignment by

j# = argmax
j�N(k#)

EVj ,

where EVj is the evaluation given by EVj = �v#0( j � 0) − v#0( j � 1)�. (Greater
refinement results by stipulating that

min
v #0( j
1)

v#0( j � 0)

equals or exceeds a specified threshold value, such as the average of themin(v#0( j �
0), v#0( j � 1)) values over j � N(k#).)

Case . N(k#) ⊂ N ′(0, 1) − T (and resistors exist)
In this case only a single option exists, which consists of setting x#j = 1 − x

′

j and
setting c#j = cmax or −cmax according to whether the resulting x#j is  or . The
evaluation rule is therefore simpler than in Case : the preferred j# for imple-
menting the single indicated option is given simply by

j# = argmin j�N(k#)v
#
0 .

In both Case  and Case , if more than one x j is to be assigned a new target, the
elements of N(k#) can be ordered by the indicated evaluation to yield a subset that
constitutes the particular N(k) used in Phase  (where possibly k < k#).

The foregoing approach can be the foundation of an aspiration criterion for de-
termining when a tabu element should be relieved of its tabu status. Specifically,
for Case  the set N(k#) can be permitted to include some small number of tabu
elements if they would qualify to belong to N(k#) if removed from T. (k# might
be correspondingly increased from its usual value to allow this eventuality.) Then,
should the evaluation v#0( j � x#j ) be 0 for some such j � T, indicating that all vari-
ables achieve their target values in the solution to the associated problem LP(c′, x′),
and if no j � N(k#) − T achieves the same result, then the identified j � T may shed
its tabu status and be designated as the preferred element j# of Case .

8.5 Target Analysis

Target analysis is a strategy for creating a supervised learning environment to de-
termine effective parameters and choice rules (Glover and Greenberg []; Glover
and Laguna []). We refer to a target solution in the context of target analysis as an
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ultimate target solution to avoid confusion with the target solutions discussed in pre-
ceding sections of this chapter. Such an ultimate target solution, which we denote by
xt , is selected to be an optimal (or best known) solution to (MIP:–).The supervised
learning process of target analysis is applied to identify decision rules for a particu-
lar method to enable it to efficiently obtain solutions xt to a collection of problems
from a given domain. The approach is permitted to expend greater effort than nor-
mally would be considered reasonable to identify the solutions xt used to guide the
learning process (unless by good fortune such solutions are provided by independent
means).

Target analysis can be applied in the context of both the Phase  and Phase  pro-
cedures. We indicate the way this can be done for Phase , since the Phase  approach
is simpler and can be handled by a simplified variant. The target analysis operates
by examining the problems from the collection under consideration one at a time to
generate information that will then be subjected to a classification method to deter-
mine effective decision rules. At any given iteration of the Phase  procedure, we have
available a variety of types of information that may be used to compose a decision
rule for determining whether particular variables x j should be assigned a target value
of x′j = 0 or x

′

j = 1.The goal is to identify a classification rule, applied to this available
information, so that we can make correct decisions; i.e., so that we can choose x j to
receive its value in the solution xt , given by x′j = x

t
j .

Denote the information associated with a given variable x j as a vector I j (“I” for
“information”). For example, in the present setting, I j can consist of components
such as x′′j , x

0
j ,Vj , �c′j �, Δ j , RMj , λ j , RRj , Rλj, and so forth, depending on whether x j

falls in the category identified in Step (a) or Step (b) of the Phase  procedure.The
advanced information given by the values v#0( j � v) discussed in Sect. . is likewise
relevant to include. For those items of information that can have alternative defini-
tions, different components of I j can be created for each alternative. This allows the
classification method to base its rules on multiple definitions, and to identify those
that are preferred. In the case of parameterized evaluators such as RRj , different in-
stances of the evaluator can be included for different parameter settings (values of
λ), thus allowing preferred values of these parameters likewise to be identified. On
the other hand, some types of classification procedures, such as separating hyper-
plane methods, automatically determine weights for different components of I j and
for such methods the identification of preferred parameter values occurs implicitly
by reference to the weights of the basic components, without the need to generate
multiple additional components of I j .

From a general perspective, a classification procedure for Phase  may be viewed
as a method that generates two regions R(0) and R(1), accompanied by a rule (or
collection of rules) for assigning each vector of information I j to exactly one of these
regions. The goal is to compose R(0) and R(1) and to define their associated assign-
ment rule in such a fashion that I j will be assigned to R(0) if the correct value for
x j is given by xtj = 0, and will be assigned to R(1) if the correct value for x j is given
by xtj = 1. Recognizing that the classification procedure may not be perfect, and that
the information available to the procedure may not be ideal, the goal more precisely
is to make “correct assignments” for as many points as possible. We will not discuss
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here the relative merits of different types of classification methods, but simply keep
in mind that the outcome of their application is to map points I j into regions R(0)
and R(1). Any reasonable procedure is likely to do a very much better job of creat-
ing such a mapping, and hence of identifying whether a given variable x j should be
assigned the value  or , than can be accomplished by a trial and error process to
combine and calibrate a set of provisional decision rules. (An effort to simply “look
at” a range of different data points I j and figure out an overall rule for matching them
with the decisions x j = 0 and x j = 1 can be a dauntingly difficult task.)

In one sense, the classification task is easier than inmany classification settings. It
is not necessary to identify a correct mapping of I j into R(0) or R(1) for all variables
x j at any given iteration of Phase . If we can identify a mapping that is successful
for any one of the variables x j in the relevant category of Step (a) or Step (b) of the
Phase  procedure, then the procedure will be able to quickly discover the solution
xt . Of course, the mapping must be able to detect the fact that assigning a particu-
lar I j to R(0) or R(1) is more likely to be a correct assignment than one specified
for another I j . (For example, if a particular point I j is mapped to lie “deeply within”
a region R(0) (or R(1)), then the classification of I j as implying xtj = 0 (or x

t
j = 1) is

presumably more likely to be correct. In the case of a separating hyperplane proce-
dure, for instance, such a situation arises where a point lies far from the hyperplane,
hence deeply within one of the two half-spaces defined by the hyperplane.)

The points I j to be classified, and that are used to generate the regions R(0) and
R(1) (via rules that map the points into these regions), are drawn from multiple it-
erations and from applications of Phase  on multiple problems. Consequently, the
number of such data points can potentially be large and discretion may be required
to limit them to a manageable number. One way to reduce the number of points con-
sidered is to restrict the points I j evaluated to those associated with variables x j for
j � N(k). The smaller the value of kmax, the fewer the number of points generated at
each iteration to become inputs for the classification procedure. Another significant
way to reduce the number of points considered derives from the fact that wemay ap-
propriately create a different set of rules, and hence different regions R(0) and R(1),
for different conditions. A prominent example concerns the conditions that differen-
tiate Step (a) from Step (b).

Still more particularly, the condition NF = NF(Φ) of Step (a), which occurs
when there are no fractional resistors, can receive its own special treatment. In this
case we are concerned with determining target values for fractional variables that
are not currently assigned such x′j values. In an ideal situation, we would identify
an optimal target value x′j for some such variable at each step (considering the case
for kmax = 1, to avoid the difficulty of simultaneously identifying optimal x′j values
for multiple variables simultaneously), and Phase  would then discover the solution
xt almost immediately. In addition, no resistors would ever arise, and the condition
NF = NF(Φ) would be the only one relevant to consider at any step.

Consequently, to create a mapping and associated sets R(0) and R(1) for the
condition NF = NF(Φ), it is appropriate to control each iteration of Phase  for the
purpose of target analysis so that only “correct decisions” are implemented at each
iteration. Then the data points I j for j � NF(Φ) are based on information that is
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compatible with reaching the ultimate target xt at each step. (If an incorrect target x′j
were produced on some step, so that x j is induced to receive the wrong value, then
it could be that the “correct rule” for a new (different) variable xh would not be to
assign it the target x′h = xth , because the target x

′

h = 1 − xth might lead to the best
solution compatible with the previous assignment x j = x′j .)

Once such a controlled version of target analysis produces rules for classifying
vectors I j for j � N(Φ), then these decision rules can be “locked into” the Phase 
procedure, and the next step is to determine rules to handle the condition NR � � of
Step (b). Thus the target analysis will execute Phase  for its “best current version”
of the rules for determining assignments x j = x′j (which for Step (b) amounts to
determining which variables should reverse their assignments to set x′j = 1 − x′j).
This procedure can also be controlled to an extent to prevent the current collection
of x′j targets from diverging too widely from the xtj values. The resulting new rules
generated by the classification method can then be embedded within a new version
of Phase , and this new version can be implemented to repeat the target analysis and
thereby uncover still more refined rules.

This process can also be used to identify aspiration criteria for tabu search. Specif-
ically, an additional round of target analysis can be performed that focuses strictly on
the tabu variables x j , j � T on iterations where Step (b) applies. Then the classifica-
tion procedure identifies a mapping of the vectors I j for these tabu variables into the
regions R(0) and R(1). A version of Phase  can then use this mapping to identify
vectors I j for j � T that lie deeply within R(0) and R(1), and to override the tabu
status and drop j from T if I j lies in R(v) but x′j = 1 − v. This rule can be applied
with additional safety by keeping track of how often a tabu variable is evaluated as
preferably being assigned a target value that differs from its current assignment. If
such an evaluation occurs sufficiently often, then the decision to remove j from T
can be reinforced.

8.6 Incorporating FrequencyMemory

Tabu search methods typically incorporate frequency memory to improve their effi-
cacy, where the form of such memory depends on whether it is intended to support
intensification or diversification strategies.

Frequency memory already implicitly plays a role in the method for handling
the tabu list T described in Sect. ., since a variable that is frequently added to T is
automatically prevented from initiating a refreshing operation, and hence T will con-
tinue to grow up to its limit of Tmax elements until a variable that is less frequently
added (or more specifically, that has not been added for a sufficient duration) be-
comes a member of T and launches an operation that causes T to shrink.

We consider two additional ways frequency memory can be employed within the
Phase  procedure. The first supports a simple diversification approach by employ-
ing an array Target( j � v) to record how many iterations x j have been assigned the
target value v � �0, 1	 throughout previous search, or throughout search that has oc-
curred since x�0 was last updated. (The type of frequency memory is called residence
frequency memory.) The diversification process then penalizes the choice of an as-



 Fred Glover

signment x j = v for variables x j and associated values v for which Target( j � v) lies
within a chosen distance from

max
j�N ,v��0,1�

Target( j � v),

motivated by the fact that this maximum identifies a variable x j and value v such that
the assignment x j = v has been in force over a larger span of previous iterations than
any other target assignment.

A more advanced form of frequency memory that supports an intensification
process derives fromparametric tabu search.This approach creates an intensification
score InScore(x j = x#j ) associated with assigning x j the new target value x#j , and
takes into account the target assignments xh = x′h currently active for other variables
xh for h � N ′(0, 1) − � j	. The score is specifically given by

InScore(x j = x#j ) = !
h�N ′(0,1)−� j�

Freq(x j = x#j , xh = x
′

h)

where Freq(x j = x#j , xh = x
′

h) denotes the number of times that the assignments x j =
x#j and xh = x

′

h have occurred together in previously identified high quality solutions,
and more particularly in the elite solutions stored in the reference set R as described
in Sect. . Abstractly, Freq(x j = x#j , xh = x

′

h) constitutes a matrix with 4n2 entries
(disregarding symmetry), one for each pair ( j, h) and the  possible assignments of
– values to the pair x j and xh . However, in practice this frequency value can be gen-
erated as needed from R, without having to account for all assignments (all combinat-
ions of x j and xh = 0 and 1) since only a small subset of the full matrix entries will be
relevant to the set R. The portion of the full matrix relevant to identifying the values
Freq(x j = x#j , xh = x

′

h) is also further limited by the fact that the only variables x j
considered on any given iteration are those for which j � N(k)where k is a relatively
small number. (In the case treated in Step (b) of the Phase  Procedure, a further
limitation occurs since only the single x#j value given by x#j = 1 − x

′

j is relevant.)
By the intensification perspective that suggests the assignments that occur fre-

quently over the elite solutions in R are also likely to occur in other high quality
solutions, the value InScore(x j , x#j ) is used to select a variable x j to assign a new
target value x#j by favoring those variables that produce higher scores. (In particular,
the assignments x j = x#j for such variables occur more often in conjunction with the
assignments xh = x′h , h � N

′(0, 1) − � j	 over the solutions stored in R.)

9 Conclusions

Branch-and-bound (B&B) and branch-and-cut (B&C)methods have long been con-
sidered themethods of choice for solvingmixed integer programming problems.This
orientation has resulted in attracting contributions to these classical methods from
many researchers, and has led to successive improvements in these methods extend-
ing over a period of several decades. In recent years, these efforts to create improved
B&B and B&C solution approaches have intensified and have produced significant
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benefits, as evidenced by the existence of MIP procedures that are appreciably more
effective than their predecessors.

It remains true, however, that manyMIP problems resist solution by the best cur-
rent B&B and B&C methods. It is not uncommon to encounter problems that con-
found the leading commercial solvers, resulting in situations where these solvers are
unable to find even moderately good feasible solutions after hours, days, or weeks of
computational effort. As a consequence, metaheuristic methods have attracted atten-
tion as possible alternatives or supplements to the more classical approaches. Yet to
date, the amount of effort devoted to developing good metaheuristics for MIP prob-
lems is almost negligible compared to the effort being devoted to developing refined
versions of the classical methods.

The view adopted in this chapter is that metaheuristic approaches can benefit
from a change of perspective in order to perform at their best in the MIP setting.
Drawing on lessons learned fromapplying classicalmethods, we anticipate thatmeta-
heuristics can likewise profit from generating inequalities to supplement their basic
functions. However, we propose that these inequalities be used in ways not employed
in classical MIP methods, and indicate two principal avenues for doing this: the first
by generating the inequalities with reference to strategically created target solutions
and target objectives, as in Sects.  and , and the second by embedding these in-
equalities in special intensification and diversification processes, as in Sect.  and 
(which also benefit by association with the targeting strategies).

The use of such strategies raises the issue of how to compose the target solutions
and objectives themselves. Classical MIP methods such as B&B and B&C again pro-
vide a clue to be heeded, by demonstrating that memory is relevant to effective so-
lution procedures. However, we suggest that gains can be made by going beyond the
rigidly structured memory employed in B&B and B&C procedures. Thus we make
use of the type of adaptive memory framework introduced in tabu search, which of-
fers a range of recency and frequency memory structures for achieving goals associ-
ated with short term and long term solution strategies. Section  examines ways this
framework can be exploited in generating target objectives, employing both older
adaptive memory ideas and newer ones proposed here for the first time. Additional
opportunities to enhance these procedures described in Sect.  provide a basis for
future research.

Acknowledgement. I am grateful to Said Hanafi for a preliminary critique of this chapter and
for useful observations about connections to other work. I am also indebted to César Rego for
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