

Lecture Notes in Computer Science 4468
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Marcello M. Bonsangue
Einar Broch Johnsen (Eds.)

Formal Methods
for Open Object-Based
Distributed Systems

9th IFIP WG 6.1
International Conference FMOODS 2007
Paphos, Cyprus, June 6-8, 2007
Proceedings

13

Volume Editors

Marcello M. Bonsangue
Leiden University
Leiden Institute of Advanced Computer Science
2300 RA Leiden, The Netherlands
E-mail: marcello@liacs.nl

Einar Broch Johnsen
University of Oslo
Department of Informatics
PO Box 1080 Blindern, 0316 Oslo, Norway
E-mail: einarj@ifi.uio.no

Library of Congress Control Number: 2007927619

CR Subject Classification (1998): C.2.4, D.1.3, D.2, D.3, F.3, D.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-72919-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72919-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing 2007

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12072873 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the Ninth IFIP WG 6.1 International
Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS 2007). The conference is part of the federated conferences on Dis-
tributed Computing Techniques (DisCoTec), together with the Ninth Interna-
tional Conference on Coordination Models and Languages (COORDINATION
2007) and the Seventh IFIP International Conference on Distributed Applica-
tions and Interoperable Systems (DAIS 2007). It was organized by the Depart-
ment of Computer Science of the University of Cyprus, and it was held in Paphos,
Cyprus during June, 6-8, 2007. The event was the third federated DisCoTec con-
ference series, initiated in Athens in June 2005 and continued in Bologna in June
2006.

The goal of the FMOODS conferences is to bring together researchers and
practitioners whose work encompasses three important and related fields:

– Formal methods
– Distributed systems and
– Object-based technology

The 17 papers presented at FMOODS 2007 and included in this volume were
selected by the Programme Committee among 45 submissions. Each submission
was reviewed by at least three Programme Committee members. They all reflect
the scope of the conference and cover the following topics: semantics of object-
oriented programming; formal techniques for specification, analysis, and refine-
ment; model checking; theorem proving and deductive verification; type systems
and behavioral typing; formal methods for service-oriented computing; integra-
tion of quality of service requirements into formal models; formal approaches to
component-based design; and applications of formal methods.

The two invited speakers of FMOODS 2007, who also contributed to the
proceedings in this volume, were:

– Mariangiola Dezani-Ciancaglini of the University of Torino, Italy, who is well
known for her work on intersection-type assignment systems, which were
largely used as finitary descriptions of lambda-models. More recently, she is
interested in type systems for object-oriented languages and ambient calculi.
In this volume she contributed with a paper introducing session types for
object-oriented languages.

– Wolfgang Ahrend of the Chalmers Technical University, Sweden, who is
known for his involvement in the KeY project, which aims at a formal meth-
ods tool that integrates design, implementation, formal specification, and
formal verification of object-oriented software.

The conference was supported by IFIP, in particular by TC 6 and the work-
ing group WG 6.1. Thanks are due to John Derrick, Elie Najm, and George

VI Preface

Papadopoulos for their efforts in this respect. We are also grateful to the Univer-
sity of Cyprus and George Papadopoulos for organizing the event, the European
project IST-33826 CREDO (http://credo.cwi.nl) for sponsoring one invited
speaker, and the ITEA project Trust4All for sponsoring the participation of one
of the Programme Committee Chairs.

Finally we thank all authors for the high quality of their contributions, and
the Programme Committee members and the external reviewers for their help
in selecting the papers for this volume. The use of EasyChair as a conference
system was very helpful for organizing the technical programme and proceedings
of FMOODS 2007.

June 2007 Marcello Bonsangue
Einar Broch Johnsen

Conference Organization

Programme Chairs

Marcello Bonsangue
Einar Broch Johnsen

Programme Committee

Bernhard Aichernig
Alessandro Aldini
Frank de Boer
Eerke Boiten
John Derrick
Robert France
Reiko Heckel
Naoki Kobayashi
Zhiming Liu
Elie Najm
David Naumann
Uwe Nestmann
Erik Poll
Antonio Ravara
Arend Rensink
Ralf Reussner
Grigore Roşu
Bernhard Rumpe
Martin Steffen
Carolyn Talcott
Heike Wehrheim
Martin Wirsing
Wang Yi
Gianluigi Zavattaro
Elena Zucca

Local Organization

George Papadopoulos

VIII Organization

External Reviewers

Lacramioara Astefanoaei
Khaled Barbaria
Steffen Becker
Dénes Bisztray
Laura Bocchi
Mario Bravetti
Jan Broersen
Marzia Buscemi
Nadia Busi
Maura Cerioli
Feng Chen
Hung Dang Van
Alessandra Di Pierro
Sonia Fagorzi
Boris Gajanovic
Hans Groenniger
Claudio Guidi
Christian Haack
Christoph Herrmann
Mark Hills
Mohammad Mahdi Jaghoori
Jens Happe
Klaus Krogmann
Ruurd Kuiper

Marcel Kyas
Giovanni Lagorio
Xiaoshan Li
Francisco Martins
Björn Metzler
Roland Meyer
Yasuhiko Minamide
Kazuhiro Ogata
Luca Padovani
Razvan Popescu
Jaime Ramos
Gianna Reggio
Dirk Reiss
Birna van Riemsdijk
Ismael Rodriguez
Martin Schindler
Rudolf Schlatte
Marvin Schulze-Quester
Traian Florin Şerbănuţă
Frank Stomp
Sameer Sundresh
Vasco T. Vasconcelos
Naijun Zhan

Table of Contents

Invited Talks

Asynchronous Session Types and Progress for Object Oriented
Languages . 1

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida

KeY: A Formal Method for Object-Oriented Systems 32
Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle, and
Peter H. Schmitt

Model Checking

Verifying Distributed, Event-Based Middleware Applications Using
Domain-Specific Software Model Checking . 44

L. Ruhai Cai, Jeremy S. Bradbury, and Juergen Dingel

Model Checking of Extended OCL Constraints on UML Models in
SOCLe . 59

John Mullins and Raveca Oarga

Analysis of UML Activities Using Dynamic Meta Modeling 76
Gregor Engels, Christian Soltenborn, and Heike Wehrheim

Rewriting Logic

Distributed Applications Implemented in Maude with Parameterized
Skeletons . 91

Adrián Riesco and Alberto Verdejo

On Formal Analysis of OO Languages Using Rewriting Logic: Designing
for Performance . 107

Mark Hills and Grigore Roşu

Formal Modeling and Analysis of the OGDC Wireless Sensor Network
Algorithm in Real-Time Maude . 122

Peter Csaba Ölveczky and Stian Thorvaldsen

Components and Services

Adaptation of Open Component-Based Systems . 141
Pascal Poizat and Gwen Salaün

X Table of Contents

A Representation-Independent Behavioral Semantics for
Object-Oriented Components . 157

Arnd Poetzsch-Heffter and Jan Schäfer

A Formal Language for Electronic Contracts . 174
Cristian Prisacariu and Gerardo Schneider

Algebraic Calculi

A Mechanized Model of the Theory of Objects . 190
Ludovic Henrio and Florian Kammüller

Pict Correctness Revisited . 206
Philippe Bidinger and Adriana Compagnoni

Specification, Verfication and Refinenment

A Refinement Method for Java Programs . 221
Holger Grandy, Kurt Stenzel, and Wolfgang Reif

Refactoring Object-Oriented Specifications with Data and Processes 236
Thomas Ruhroth and Heike Wehrheim

A Sound and Complete Shared-Variable Concurrency Model for
Multi-threaded Java Programs . 252

Frank S. de Boer

Quality of Service

Performance-Oriented Comparison of Web Services Via Client-Specific
Testing Preorders . 269

Marco Bernardo and Luca Padovani

A Probabilistic Formal Analysis Approach to Cross Layer Optimization
in Distributed Embedded Systems . 285

Minyoung Kim, Mark-Oliver Stehr, Carolyn Talcott, Nikil Dutt, and
Nalini Venkatasubramanian

On Resource-Sensitive Timed Component Connectors 301
Sun Meng and Farhad Arbab

Author Index . 317

Asynchronous Session Types and Progress for
Object Oriented Languages�

Mario Coppo1, Mariangiola Dezani-Ciancaglini1, and Nobuko Yoshida2

1 Dipartimento di Informatica, Università di Torino
{coppo,dezani}@di.unito.it

2 Department of Computing, Imperial College London
yoshida@doc.ic.ac.uk

Abstract. A session type is an abstraction of a sequence of heterogeneous val-
ues sent over one channel between two communicating processes. Session types
have been introduced to guarantee consistency of the exchanged data and, more
recently, progress of the session, i.e. the property that once a communication
has been established, well-formed programs will never starve at communication
points. A relevant feature which influences progress is whether the communica-
tion is synchronous or asynchronous. In this paper, we first formulate a typed
asynchronous multi-threaded object-oriented language with thread spawning, it-
erative and higher order sessions. Then we study its progress through a new effect
system. As far as we know, ours is the first session type system which assures
progress in asynchronous communication.

1 Introduction

Distributed and concurrent programming paradigms are increasingly interesting, ow-
ing to the huge amount of distributed applications and services spread on the Internet.
This gives a strong motivation to the study of specifications and implementations of
these programs together with techniques for the formal verification of their properties.
One of the crucial aspects is that of protocol specification: this consists in checking the
coherence and safety of sequences of message interchanges that take place between a
number of parties cooperating in carrying out some specific task. The use of type sys-
tems to formalise this kind of protocols has interested many researchers: in particular,
session types [25,16] are recently focussed as a promising type discipline for structuring
hand-shake communications. Interaction between processes is achieved by specifying
corresponding sequences of messages through private channels. Such sequences are as-
sociated with session types, that assures that the two parties at each end of a channel
perform consistent and complementary actions. Session types are assigned to commu-
nication channels and are shared among processes. For example, the session type begin

.?int.!bool.end expresses that, after beginning the session, (begin), an integer will be
received (?int), then a boolean value will be sent (!bool), and finally it is closed (end).

� This work was partly funded by FP6-2004-510996 Coordination Action TYPES, EPSRC
GR/T03208, EPSRC GR/S55538, EPSRC GR/T04724, EPSRC GR/S68071, and EU IST–
2005–015905 MOBIUS project.

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 1–31, 2007.
c© IFIP International Federation for Information Processing 2007

2 M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida

Session types have been studied for several different settings, i.e., for π-calculus-
based formalisms [14,25,11,16,2], for CORBA [26], for functional languages [13,27],
for boxed ambients [10], and recently, for CDL, a W3C standard description language
for Web Services [4,28,3,24,17]. In [6] the notion of session types was investigated
in the framework of object oriented languages. Such an integration has been attempted
before only in [7,26] and more recently in [5].

The integration of type-safe communication patterns with object-oriented program-
ming idioms is done in [6] via the language MOOSE, a multi-threaded object-oriented
core language augmented with session types. The type system of MOOSE has been de-
signed not only to assure the type safety of the communication protocols, but also the
progress property, i.e. that a communication session, when started, is executed without
risk that processes in a session are blocked in a deadlock state. The first property is a
consequence of the subject reduction property, which has been shown to be a critical
one for calculi involving session types. A recent article [29] analyses this issue in de-
tails, comparing different reduction rules and typing systems appeared in the literature
[16,27,2,11].

The progress property, which also is an essential requirement for all kinds of ap-
plications, does not seem to have been considered before [6,7] in the literature. The
operational semantics of MOOSE, however, requires communications on a channel to
be synchronous, i.e. they can take place only when both processes involved in a com-
munication are ready to perform the corresponding action. This is a strong requirement
that can sometime generate deadlocks. Take for instance the parallel of the following
processes:

1 connect c0 begin.?int.end{
2 connect c1 begin.!int.end{
3 c0.send(3);
4 c1.receive
5 }
6 }

Q0

1 connect c0 begin.!int.end{
2 connect c1 begin.?int.end{
3 c1.send(5)
4 };
5 c0.receive
6 }

Q1

Here connect c0 opens the session over channel c0, c0.send(3) sends value 3 via
c0, and c0.receive receives a value via c0. These two processes in parallel, after having
opened one connection on channel c0 and one on channel c1, cannot mutually exchange
an integer on these channels. The resulting process would be stuck with the reduction
rules of [6], since Q0 and Q1 are both waiting for a receiving action to synchronise.

In this paper we consider an asynchronous version of MOOSE, named AMOOSE:
channels are buffered and can perform input and output actions at different times. This
extension allows the senders to send messages without being blocked, reducing an over-
head waiting for heavy synchronisation which the original synchronous session types
require. Session types with asynchronous communication over buffered channels have
been considered in [22,12] for functional languages, and in [9] for operating system ser-
vices, to enforce efficient and safe message exchanges. These papers do not consider the
progress property. In Java, this asynchronous semantics is found in many communica-
tion APIs such as Socket [19] and NIO [20]. Further, with the asynchrony, we naturally

Asynchronous Session Types and Progress for Object Oriented Languages 3

(type) t ::= C | bool | s | (s ,s)

(class) class ::= class C extends C { f̃ t̃ ˜meth }
(method) meth ::= tm (t̃ x̃ , ρ̃ ỹ) {e}
(expression) e ::= x | v | this | e ; e | e .f := e | e .f | e .m (ẽ) | new C

| new (s ,s) | NullExc | spawn { e } | connect a s {e}
| u .receive | u .send(e) | u .receiveS (x){e } | u .sendS (u)
| u .receiveIf {e }{e } | u .sendIf (e){e }{e }
| u .receiveWhile {e } | u .sendWhile (e){e }

(identifier) a ::= c | x

(channel) u ::= a | k+ | k−

(value) v ::= c | null | true | false | o | k+ | k−

(thread) P ::= e | P |P

(heap) h ::= [] | h :: [o �→ (C, f̃ : ṽ)] | h ::c | h :: [kp �→ v̄]

Fig. 1. Syntax, where syntax occurring only at runtime appears shaded

obtain more programs with progress: in the above example, for instance, the sending
actions transmit the output values to the buffered channels and running of Q0 and Q1 in
parallel can progress and reach safely its natural end.

In [6] a single type system was defined to assure both type safety and progress. These
two properties, however, are rather orthogonal: there seems to be no strong connection
between them. In this paper we have chosen to define a type system for type safety and
an effect system for progress. This de-coupling results in simpler systems and it allows
a better understanding of the conditions needed to assure each property.

Structure of the paper. The syntax and operational semantics of AMOOSE will be
introduced in Section 2, the typing system and the main definitions to formulate the
subject reduction property will be introduced in Section 3. Progress properties will be
discussed in Section 4. The complete proof of the subject reduction theorem is given in
the Appendix.

2 Syntax and Operational Semantics

2.1 Syntax

In Fig. 1 we describe the syntax of AMOOSE, which is essentially that of the lan-
guage MOOSE [6]; AMOOSE and MOOSE differ in the operational semantics, since
in AMOOSE output is asynchronous, and the exchange of data between processes is
realised via buffers in the queues associated to channels. We distinguish user syntax,
i.e., source level code, and runtime syntax, which includes null pointer exceptions,
threads and heaps.

4 M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida

Channels. We distinguish shared channels and live channels. They both can be param-
eters of procedures. We deviate from [6] introducing polarised live channels [11,29].
Shared channels are only used to decide if two threads can communicate. After a con-
nection is established the shared channel is replaced by a couple of fresh live channels
having a different polarity, + or −, one for each of the communicating threads. We de-
note by kp in the same thread both the receiving channel of polarity p and the sending
channel of opposite polarity p̄: this will be clear from the operational semantics. Note
that the meaning of polarities is different from that in [11], where polarities simply rep-
resent the two ends of a (unique) session channel. As a notational convention we will
always use c , . . . to denote shared channels and kp,kp

0,k
p
1, . . . to denote polarised live

channels.

User syntax. The metavariable t ranges over types for expressions, ρ ranges over
running session types, C ranges over class names and s ranges over shared session
types. Each session type s has one corresponding dual, denoted s , which is obtained
by replacing each ! (output) by ? (input) and vice versa. We introduce the full syntax of
types in § 3. Class and method declarations are as usual.

The syntax of user expressions e ,e ′ is standard but for the channel constructor
new (s ,s), which builds a fresh shared channel used to establish a private session,
and the communication expressions, i.e., connect u s{e} and all the expressions in the
last three lines.

The first line gives parameter, value, the self identifier this, sequence of expressions,
assignment to fields, field access, method call, and object creation. The values are chan-
nels, null, and the literals true and false. Thread creation is declared using spawn { e },
in which the expression e is called the thread body. The expression connect u s{e}
starts a session: the channel u appears within the term {e} in session communications
that agree with session type s . The remaining eight expressions, which realise the ex-
changes of data, are called session expressions, and start with “u . ”; we call u the
subject of such expressions. In the below explanation session expressions are pairwise
coupled: we say that expressions in the same pair and with the same subject are dual to
each other.

The first pair is for exchange of values (which can be shared channels): u .receive
receives a value via u , while u .send(e) evaluates e and sends the result over u . The
second pair expresses live channel exchange: in u .receiveS(x){e} the received channel
will be bound to x within e , in which x is used for communications. The expression
u .sendS(u ′) sends the channel u ′ over u . The third pair is for conditional communica-
tion: u .receiveIf {e}{e ′} receives a boolean value via channel u , and if it is true con-
tinues with e , otherwise with e ′; the expression u .sendIf (e){e ′}{e ′′} first evaluates
the boolean expression e , then sends the result via channel u and if the result was
true continues with e ′, otherwise with e ′′. The fourth is for iterative communication:
the expression u .receiveWhile{e} receives a boolean value via channel u , and if it is
true continues with e and iterates, otherwise ends; the expression u .sendWhile(e){e ′}
first evaluates the boolean expression e , then it sends its result via channel u and if the
result was true continues with e ′ and iterates, otherwise it ends.

Asynchronous Session Types and Progress for Object Oriented Languages 5

Runtime syntax. The runtime syntax (shown shaded in Fig. 1) extends the user syntax:
it adds NullExc to expressions, denoting the null pointer error; includes polarised live
channels; extends values to allow for object identifiers o , which denote references to
instances of classes; finally, introduces threads running in parallel. Single and multiple
threads are ranged over by P, P′. The expression P |P′ says that P and P′ are running in
parallel.

Heaps, ranged over h, are built inductively using the heap composition operator ‘::’,
and contain mappings of object identifiers to instances of classes, shared channels and
mappings of polarised channels to queues of values. In particular, a heap will contain
the set of objects and fresh channels, both shared and live, that have been created since
the beginning of execution. The heap produced by composing h :: [o �→ (C, f̃ : ṽ)] will
map o to the object (C, f̃ : ṽ), where C is the class name and f̃ : ṽ is a representation
for the vector of distinct mappings from field names to their values for this instance.
The heap produced by composing h :: c will contain the fresh shared channel c . The
heap produced by composing h :: [kp �→ ṽ] will map the live channel kp to the queue
ṽ . Heap membership for object identifiers and channels is checked using standard set
notation, we therefore write it as o ∈ h, c ∈ h, and kp ∈ h. Heap update for objects is
written h[o �→ (C, f̃ : ṽ)], for polarised channels h[k p �→ ṽ], and field update is written
(C, f̃ : ṽ)[f �→ v]. We assume that the heap is unordered, i.e. satisfying equivalences like

υ :: υ′ ≡ υ′ :: υ, h1 ≡ h′
1,h2 ≡ h′

2 ⇒ h1 :: h2 ≡ h′
1 :: h′

2

where υ denotes generic heap elements. With some abuse of notation the operator
“ :: ” denotes heap concatenation without making distinction between heaps and heap
elements.

2.2 Operational Semantics

This subsection presents the operational semantics of AMOOSE: the main difference
with respect to [6] is that in AMOOSE output is asynchronous and the values are ex-
changed through queues associated to live channels in the heap. In the reduction rules
then the heap plays an essential role also in communications.

We only discuss the more interesting rules. First we list the evaluation contexts.

E ::= [−] | E .f | E;e | E .f := e | o .f := E | E.m(ẽ) | o .m(ṽ ,E, ẽ)
| kp.send(E) | kp.sendIf (E){e}{e ′}

Since heaps associate queues only to live channels, we can reduce only session ex-
pressions whose subjects are live channels. Moreover shared channels are sent by send ,
while live channels are sent by sendS . For this reason there are no evaluation contexts
of the shapes E.send(e), kp.sendS(E) etc.

Fig. 2 defines auxiliary functions used in the operational semantics and typing rules.
We assume a fixed, global class table CT, which as usual contains Object as topmost
class.

Expressions. Fig. 3 shows the rules for execution of expressions which correspond to
the sequential part of the language. The rules not involving communications are stan-
dard [18,1,8], but for the addition of a fresh shared channel to the heap (rule NewS→).

6 M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida

Field lookup

fields(Object) = •
fields(D) = f̃ ′ t̃ ′ class C extends D {f̃ t̃ M̃} ∈ CT

fields(C) = f̃ ′t̃ ′, f̃ t̃

Method lookup

methods(Object) = •
methods(D) = M̃′ class C extends D {f̃ t̃ M̃} ∈ CT

methods(C) = M̃′,M̃

Method type lookup

class C extends D {f̃ t̃ M̃} ∈ CT tm (τ̃ x̃) {e} ∈ M̃

mtype(m ,C) = τ̃ → t

class C extends D {f̃ t̃ M̃} ∈ CT m 	∈ M̃

mtype(m ,C) = mtype(m ,D)

Method body lookup

class C extends D {f̃ t̃ M̃} ∈ CT t m (τ̃ x̃) {e} ∈ M̃

mbody(m ,C) = (x̃ ,e)

class C extends D {f̃ t̃ M̃} ∈ CT m /∈ M̃

mbody(m ,C) = mbody(m,D)

τ is either t or ρ.

Fig. 2. Lookup Functions

In rule NewC→ the auxiliary function fields(C) examines the class table and returns the
field declarations for C. The method invocation rule is Meth→; the auxiliary function
mbody(m ,C) looks up m in the class C, and returns a pair consisting of the formal pa-
rameter names and the method’s code. The result is the method body where the keyword
this is replaced by the object identifier o , and the formal parameters x̃ are replaced by
the actual parameters ṽ .

The operator “:” denotes queue concatenation without making distinction between
elements and queues. Thus v : ṽ ′ denotes a queue beginning with v and ṽ ′ : v a queue
ending with v .

The send communication rules put values in the queues associated to the live chan-
nels with the same names and opposite polarity of the expression subjects. The receive
communication rules instead take values in the queues associated to the expression
subjects. In rules SendS→ and ReceiveS→ standard values are exchanged from expres-
sions to queues. Rule SendSS→ puts a live channel in the queue: the opposite rule
ReceiveSS→ (see Fig. 4) is discussed below since it spawns a new thread. In the condi-
tional rules (SendSIf-true→, SendSIf-false→, ReceiveSIf-true→, ReceiveSIf-false→)
depending on the value of the boolean, the execution proceeds with either the first or

Asynchronous Session Types and Progress for Object Oriented Languages 7

Standard Reduction

Fld→

h(o) = (C, f̃ : ṽ)
o .fi ,h −→ v i ,h

Seq→

v ;e ,h −→ e ,h

FldAss→

h′ = h[o �→ h(o)[f �→ v]]
o .f := v ,h −→ v ,h′

NewC→

fields(C) = f̃ t̃ o 	∈ h

new C,h −→ o ,h :: [o �→ (C, f̃ : ˜init(t))]

NewS→

c 	∈ h

new (s ,s),h −→ c ,h ::c

Cong→

e ,h −→ e ′,h′

E[e],h −→ E[e ′],h′

Meth→

h(o) = (C, . . .) mbody(m ,C) = (x̃ ,e)
o .m(ṽ),h −→ e [o/this][ṽ/x̃],h

NullProp→

E[NullExc],h −→ NullExc ,h

NullFldAss→

null .f := v ,h −→ NullExc ,h
NullFld→

null .f ,h −→ NullExc ,h
NullMeth→

null.m(ṽ),h −→ NullExc ,h

In NewC→, init(bool) = false otherwise init(t) = null.

Asynchronous Communication Reduction

SendS→

kp.send(v),h :: [k p̄ �→ ṽ ′] −→ null,h :: [k p̄ �→ ṽ ′ : v]

ReceiveS→

kp.receive ,h :: [kp �→ v : ṽ ′] −→ v ,h :: [kp �→ ṽ ′]

SendSS→

kp.sendS(kq
0),h :: [k p̄ �→ ṽ ′] −→ null,h :: [k p̄ �→ ṽ ′ : kq

0]

SendSIf-true→

kp.sendIf (true){e1}{e2},h :: [k p̄ �→ ṽ] −→ e1,h :: [k p̄ �→ ṽ : true]

SendSIf-false→

kp.sendIf (false){e1}{e2},h :: [k p̄ �→ ṽ] −→ e2,h :: [k p̄ �→ ṽ : false]

ReceiveSIf-true→

kp.receiveIf {e1}{e2},h :: [kp �→ true : ṽ] −→ e1,h :: [kp �→ ṽ]

ReceiveSIf-false→

kp.receiveIf {e1}{e2},h :: [kp �→ false : ṽ] −→ e2,h :: [kp �→ ṽ]

SendSWhile→

kp.sendWhile(e){e1},h −→ kp.sendIf (e){e1;kp.sendWhile(e){e1}}{null},h

ReceiveSWhile→

kp.receiveWhile{e},h −→ kp.receiveIf {e ;kp.receiveWhile{e}}{null},h

Fig. 3. Expression Reduction

8 M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida

Struct
P |null ≡ P P |P1 ≡ P1 |P P |(P1 |P2) ≡ (P |P1) |P2 P ≡ P′ ⇒ P |P1 ≡ P′ |P1

Spawn→

E[spawn{ e }],h −→ E[null] |e ,h

Par→

P,h −→ P′,h′

P |P0,h −→ P′ |P0,h
′

Str→

P′
1 ≡ P1 P1,h −→ P2,h

′ P2 ≡ P′
2

P′
1,h −→ P′

2,h
′

Connect→

E1[connect c s{e1}] |E2[connect c s{e2}], h

−→ E1[e1[k
+
/c]] |E2[e2[k

−
/c]], h :: [k+ �→ ε] :: [k− �→ ε] k+, k− 	∈ h

ReceiveSS→

E[kp.receiveS (x){e}],h :: [kp �→ kq
0 : ṽ] −→ e [k

q
0/x] | E[null],h :: [kp �→ ṽ]

Fig. 4. Thread Reduction

the second branch. The iterative rules (SendSWhile→, ReceiveSWhile→) simply ex-
press the iteration by means of the conditional.

An elementary expression reduction is a reduction defined by any of the expression
reduction rules except rule Cong→.

Threads. The reduction rules for threads, shown in Fig. 4, are given modulo the stan-
dard structural equivalence rules of the π-calculus [21], written ≡. We define multi-step

reduction as: →→def= (−→ ∪ ≡)∗.
When spawn{ e } is the active redex within an arbitrary evaluation context, the

thread body e becomes a new thread, and the original spawn expression is replaced by
null in the context. This is expressed by rule Spawn→.

Rule Connect→ describes the opening of sessions: if two threads require a session on
the same shared channel name c with dual session types, then two new fresh live chan-
nels k+ and k− with the same name but opposite polarities are created and added to
the heap with empty queues. The freshness of the name k guarantees privacy and bilin-
earity of the session communication between the two threads. Finally, the two connect
expressions are replaced by their respective session bodies, where the shared channel c
has been substituted by the live channels k+ and k−, respectively.

In rule ReceiveSS→ one thread awaits to receive a live channel, which will be bound
to the variable x within the expression e . Notice that the receiver spawns a new thread
to handle the consumption of the delegated session. This strategy avoids deadlocks in
the presence of circular paths of session delegation [6].

We say that a heap h is balanced if kp ∈ h implies k p̄ ∈ h. We only consider balanced
heaps: it is easy to verify that reduction rules preserve balance of heaps.

Proposition 2.1. If P,h −→ P′,h′ and h is balanced, then h′ is balanced too.

Asynchronous Session Types and Progress for Object Oriented Languages 9

3 The Type Assignment System and Its Properties

The type system discussed in this section is designed to guarantee linearity of live chan-
nels and communication error freedom. These properties are consequences of the Sub-
ject Reduction Theorem. Instead this system does not assure progress, which we will
consider in next section.

3.1 Types

The full syntax of types is given in Fig. 5.

† ::= ! | ? direction
π ::= ε | π.π | †t | †〈π,π〉 | †〈π〉∗ | †(η) partial session type
η ::= π.end | †〈η,η〉 | π.η ended session type
ρ ::= π | η running session type
s ::= begin.η shared session type
θ ::= s | ρ session type
t ::= C | bool | s | (s ,s) standard type

Fig. 5. Syntax of types

Partial session types, ranged over by π, represent sequences of communications,
where ε is the empty communication, and π1.π2 consists of the communications in π1

followed by those in π2. We use † as a convenient abbreviation that ranges over {!,?}.
The partial session types !t and ?t express respectively the sending and reception of a
value of type t .

The conditional partial session type has the shape †〈π1 ,π2 〉. When † is !, †〈π1 ,π2 〉
describes sessions which send a boolean value and proceed with π1 if the value is true,
or π2 if the value is false; when † is ?, the behaviour is the same, except that the boolean
that determines the branch is to be received instead. The iterative partial session type
†〈π〉∗ describes sessions that respectively send or receive a boolean value, and if that
value is true continue with π, iterating, while if the value is false, do nothing.

The partial session types !(η) and ?(η) represent the exchange of a live channel,
and therefore of an active session, with remaining communications determined by the
ended session type η. Note that typing the live channel by η instead of π ensures that
this channel is no longer used in the sending thread.

An ended session type, η, is a partial session type concatenated either with end or
with a conditional whose branches in turn are both ended session types. It expresses a
sequence of communications with its termination, i.e., no further communications on
that channel are allowed at the end. A conditional ended session type allows to type
spawns or connects in the branches.

We use ρ to range over both partial session types and ended session types: we call it
a running session type.

A shared session type, s , starts with the keyword begin and has one or more end-
points, denoted by end. Between the start and each ending point, a sequence of session
parts describe the communication protocol.

10 M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida

A session type θ is a running session type or a shared session type.
Standard types, t , are either class identifiers (C), or booleans (bool), or shared ses-

sion types (s), or pairs of shared session types with their duals (i.e., (s ,s)).
Each session type θ has a corresponding dual, denoted θ, which is obtained as

follows

– ? =! ! =?
– begin.ρ = begin.ρ
– π.end = π.end π.†〈η1,η2〉 = π.†〈η1,η2〉
– ε = ε †t = †t †(η) = †(η) †〈π1,π2〉 = †〈π1,π2〉 †〈π〉∗ = †〈π〉∗ π1.π2 = π1.π2

Note that θ = θ′ if and only if θ′ = θ.
We type expressions and threads with respect to the global class table CT, as reflected

in the rules of Fig. 6 which define well-formed standard types. By dom(CT) we denote
the domain of the class table CT, i.e., the set of classes declared in CT. In Fig. 6 we
also define subtyping, <:, on class names: we assume that the subclassing is acyclic
as in [18]. In addition, we have (s ,s) <: s and (s ,s) <: s , as in standard π-calculus
channel subtyping rules [15]: a channel on which both communication directions are
allowed may also transmit data following only one of the two directions.

3.2 Typing Rules

The typing judgements for expressions and threads have two environments, i.e., they
have the shape:

Γ;Σ � e :t Γ;Σ � P :thread

where the standard environment Γ associates standard types to this, parameters and
objects, while the session environment Σ contains only judgements for channel names
and variables. Fig. 6 defines well-formedness of standard and session environments,
where the domain of an environment is defined as usual and denoted by dom().

In Fig. 7, Fig. 8 and Fig. 9 we give the typing rules for expressions and threads. In the
typing rules for expressions the session environments of the conclusions are obtained
from those of the premises and possibly other session environments using the concate-
nation operator, ◦, defined below. We consider different cases for the concatenation of
running session types since we want to avoid to have meaningless ε. As usual, ⊥ stands
for undefined.

– ρ◦ρ′ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ if ρ′ = ε
ρ′ if ρ = ε
ρ.end if ρ′ = ε.end and ρ is a partial session type
ρ.ρ′ if ρ is a partial session type
⊥ otherwise.

– Σ\ Σ′ = {u :Σ(u) |u ∈ dom(Σ)\dom(Σ′)}

– Σ◦ Σ′ =

⎧
⎨

⎩

Σ\ Σ′ ∪ Σ′ \ Σ ∪ {u :Σ(u)◦ Σ′(u) | u∈dom(Σ)∩dom(Σ′)}
if ∀u∈dom(Σ)∩dom(Σ′) : Σ(u)◦ Σ′(u) 	= ⊥;

⊥ otherwise.

Asynchronous Session Types and Progress for Object Oriented Languages 11

Well-formed Standard Types

Class
C ∈ dom(CT)

� C : tp

Wf-Session

� s : tp

Pair

� (s ,s) : tp

Bool

� bool : tp

Subtyping

(s ,s) <: s (s ,s) <: s

C ∈ dom(CT)
C <: C

C <: D D <: E

C <: E

class C extends D {f̃ t̃ M̃} ∈ CT

C <: D

Standard Environments and Well-formed Standard Environments

Γ ::= /0 | Γ,x :t | Γ,this : C | Γ,o : C

Emp

/0 � ok

EVar
� t : tp x 	∈ dom(Γ)

Γ,x : t � ok

EOid
C ∈ dom(CT) o 	∈ dom(Γ)

Γ,o : C � ok

Ethis
C ∈ dom(CT) this 	∈ dom(Γ)

Γ,this : C � ok

Session Environments and Well-formed Session Environments

Σ ::= /0 | Σ, u : ρ

SEmp

/0 � ok

SERC
u 	∈ dom(Σ)
Σ, u :ρ � ok

Fig. 6. Standard Types, Subtyping, and Environments

The concatenation of two running session types ρ and ρ′ is the unique running session
type (if it exists) which prescribes all the communications of ρ followed by all those of
ρ′. The concatenation only exists if ρ is a partial session type. The extension to session
environments is straightforward. The typing rules concatenate the session environments
to take into account the order of execution of expressions. We adopt the convention that
typing rules are applicable only when the session environments in the conclusions are
defined.

In the following we discuss the most interesting typing rules for expressions.
Rule Spawn requires that all sessions used by the spawned thread are finally con-

sumed, i.e., they are all ended session types. This is necessary in order to avoid con-
figurations that break the bilinearity condition. The consumption is guaranteed by the
condition ended(Σ), since we define:

ended(Σ) = ∀u :ρ ∈ Σ. ρ is an ended session type.

Rule Meth retrieves the type of the method m from the class table using the auxiliary
function mtype(m,C), defined in Fig. 2. The session environments of the premises are
concatenated with {u1 :ρ1, . . . ,um :ρm}, which represents the communication protocols
of the live channels u1, . . . ,um during the execution of the method body.

12 M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida

Typing Rules for Values

Null
Γ � ok � t : tp

Γ; /0 � null : t

Oid
Γ,o : C � ok

Γ,o : C; /0 � o : C

True
Γ � ok

Γ; /0 � true : bool

False
Γ � ok

Γ; /0 � false : bool

Chan
Γ � ok

Γ; /0 � c :s

Typing Rules for Standard Expressions

Var
Γ,x : t � ok

Γ,x : t � x : t

This
Γ,this : C � ok

Γ,this : C � this : C

Fld
Γ;Σ � e : C f t ∈ fields(C)

Γ;Σ � e .f : t

Seq

Γ;Σ � e : t Γ;Σ′ � e ′ : t ′

Γ;Σ◦Σ′ � e ;e ′ : t ′

FldAss
Γ;Σ � e : C Γ;Σ′ � e ′ : t f t ∈ fields(C)

Γ;Σ◦Σ′ � e .f := e ′ : t

NewC
Γ � ok C ∈ dom(CT)

Γ; /0 � new C : C

NewS
Γ � ok

Γ; /0 � new (s ,s) : (s ,s)

Spawn

Γ;Σ � e :t ended(Σ)
Γ;Σ � spawn{ e } :Object

NullPE
Γ � ok � t : tp
Γ; /0 � NullExc : t

Meth
Γ;Σ0 � e : C Γ;Σi � e i : t i i ∈ {1 . . .n} mtype(m ,C) = t 1, . . . ,t n,ρ1, . . . ,ρm → t

Γ;Σ0 ◦Σ1 . . .◦Σn ◦{u1 :ρ1, . . . ,um :ρm} � e .m(e1, . . . ,en,u1, . . . ,um) : t

Fig. 7. Typing Rules for Expressions I

Rule Conn ensures that a session body properly uses its shared channel according to
the required session type. The first premise says that the channel identifier used for the
session (a) can be typed with the appropriate shared session type (begin.η). The second
premise ensures that the session body can be typed in the restricted environment Γ\ a
with session environment containing a :η.

In rules ReceiveIF and SendIF both ρ1 and ρ2 are either partial session types or
ended session types – this is guaranteed by the syntax of conditional session types.

The rule WeakES, where ES stands for empty session, is necessary to type a branch
of a conditional expression, where the channel which is the subject of the conditional is
not used. Rule WeakE, where E stands for end, allows us to obtain ended session types
as predicates of session environments in order to apply rules Conn, Spawn and
ReceiveS.

Fig. 10 defines well-formed class tables. Rule M-ok type-checks the method bod-
ies with respect to a class C taking as environments the association between formal
parameters and their types and the association between this and C.

3.3 Subject Reduction

We will consider only reductions of well-typed expressions and threads. We define types
of run time entities in the standard way. The judgment is defined in Fig. 11. The judg-
ment h � v : t guarantees that the runtime value v has type t ; for objects we take

Asynchronous Session Types and Progress for Object Oriented Languages 13

Typing Rules for Communication Expressions

Conn
Γ � a :begin.η Γ\a ; Σ,a :η � e :t

Γ;Σ � connect a begin.η{e} :t

Send
Γ;Σ � e :t

Γ;Σ◦{u :!t } � u .send(e) : Object

Receive
Γ � ok � t : tp

Γ;{u : ?t } � u .receive :t

SendS
Γ � ok η 	= ε.end

Γ;{u ′ :η,u : !(η)} � u .sendS(u ′) : Object

ReceiveS
Γ\x ; Σ,x :η � e :t η 	= ε.end ended(Σ)

Γ;{u : ?(η)}◦Σ � u .receiveS(x){e} : Object

SendIf
Γ;Σ0 � e :bool Γ;Σ,u :ρi � e i :t i ∈ {1,2}
Γ;Σ0 ◦Σ,u :!〈ρ1 ,ρ2 〉 � u .sendIf (e){e1 }{e2 } :t

ReceiveIf
Γ;Σ,u :ρi � e i :t i ∈ {1,2}

Γ;Σ,u :?〈ρ1 ,ρ2 〉 � u .receiveIf {e1 }{e2 } :t

SendWhile
Γ; /0 � e :bool Γ;{u :π} � e ′ :t

Γ;{u :!〈π〉∗} � u .sendWhile(e){e ′} :t

ReceiveWhile
Γ;{u :π} � e :t

Γ;{u :?〈π〉∗} � u .receiveWhile{e} :t

Non-structural Typing Rules for Expressions

WeakES
Γ ; Σ � e :t u 	∈ dom(Σ)

Γ ; Σ,u :ε � e :t

WeakE
Γ;Σ,u :π � e :t

Γ;Σ,u :π.end � e :t

Sub
Γ;Σ � e :t t <: t ′

Γ;Σ � e :t ′

Fig. 8. Typing Rules for Expressions II

Start
Γ;Σ � e :t

Γ;Σ � e :thread

Par
Γ;Σi � Pi :thread (i = 1,2)

Γ;Σ1 ∪Σ2 � P1 |P2 :thread

Fig. 9. Typing Rules for Threads

subclasses into consideration in rule HObjSubs. The judgment h � o guarantees that
the object o is well-formed, i.e., that its fields contain values according to the declared
field types in C, the class of that object. Note that in rule HObjSubs the equality in the
first premise simply asserts that there is an object o in the heap h, while the conclusion
asserts that o is well-formed.

In order to formalise agreement between session environments and heaps, it is handy
to introduce some definitions. We start by determining the initial and the final parts of
a running session type.

14 M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida

M-ok
{this : C, x̃ : t̃ } ; {ỹ : ρ̃} � e :t

tm (t̃ x̃ , ρ̃ ỹ) {e} :ok in C

C-ok
M̃ : ok in C

class C extends D {f̃ t̃ M̃} : ok

CT-ok
class C extends D {f̃ t̃ M̃} : ok CT : ok

CT,class C extends D {f̃ t̃ M̃} : ok

Fig. 10. Well-formed Class Tables

HTrue

h � true : bool

HFalse

h � false : bool

HNull
C ∈ dom(CT)

h � null : C

HObj
h(o) = (C, . . .)

h � o : C

HObjSubs
h � o : C′ C′ <: C

h � o : C

WfObj
h(o) = (C, f̃ : ṽ) fields(C) = f̃ t̃ h � v i : t i

h � o

Fig. 11. Types of Runtime Entities

A basic session type (s-basic type for short) is a session type of the form †t or †(η)
or †〈ρ1,ρ2〉 or †〈π〉∗. Let β be a s-basic type. We denote with βψ a session type which
begins with β and has the form β.ρ or β.end or β. In these cases let us call ψ the
continuation of βψ. If βψ stands for β or β.end we say that the continuation ψ is light.
Further let us define

ψ� =

⎧
⎪⎨

⎪⎩

ρ if ψ stands for .ρ,

ε.end if ψ stands for .end
ε otherwise.

The core domain of a session environment Σ (notation cored(Σ)) is the set of subjects
in Σ whose predicates do not belong to {ε,ε.end}.

The channel range of an heap h (notation ranc(h)) is the set of live channels which
occur in h inside value queues:

ranc(h) = {kp | h(k q
0) = ṽ : kp :ṽ ′ for some k q

0, ṽ , ṽ ′}.

A heap h agrees with a session environment Σ if each value which is in the queue
associated to a live channel kp in h has the type expected by Σ(kp). We formalise this
by means of an inductive definition on the (sum of) the sizes of the queues associated
by h to the live channels in the core domain of Σ. The base step is when all these live
channels are associated to empty queues and there are no channels in the heap waiting
to be activated by receiveS expressions. In the induction cases each top value of a queue

Asynchronous Session Types and Progress for Object Oriented Languages 15

associated to a channel is checked against the running session type of that channel in
the environment. If this check fails the heap and the session environment do not agree,
otherwise both the queue and the environment are updated and the check is inductively
applied to the resulting heap and session environment. The induction terminates since
at each step a top value in a queue is popped out. Note that, when the considered value
is a channel kq

0 of type η, we add the statement kq
0 : η to the session environment: this

is necessary to type the expression receiving the channel kq
0. Clearly the order in which

the live channels in the heap are considered is not influential.

Definition 3.1. Fig. 12 defines the agreement A(Σ;h) of a session environment Σ with
a heap h.

A(Σ;h) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true if dom(Σ)∩ ranc(h) = /0
and ∀kp ∈ cored(Σ).h(kp) = ε

A(Σ[kp �→ ψ�];h[kp �→ ṽ ′]) if h(kp) = v : ṽ ′,v ∈ {true, false}
and Σ(kp) =?boolψ

A(Σ[kp �→ ψ�];h[kp �→ ṽ ′]) if h(kp) = o : ṽ ′,h(o) = (C′, f̃),C′ <: C
and Σ(kp) =?Cψ

A(Σ[kp �→ ψ�];h[kp �→ ṽ ′]) if h(kp) = c : ṽ ′,t ∈ {s ,(s ,s)} and Σ(kp) =?t ψ
A(Σ[kp �→ ψ�],kq

0 : η;h[kp �→ ṽ ′]) if h(kp) = kq
0 : ṽ ′, Σ(kp) =?(η)ψ and kq

0 /∈ dom(Σ)
A(Σ[kp �→ ρ1ψ�];h[kp �→ ṽ ′]) if h(kp) = true : ṽ ′ and Σ(kp) =?〈ρ1,ρ2〉ψ
A(Σ[kp �→ ρ2ψ�];h[kp �→ ṽ ′]) if h(kp) = false : ṽ ′ and Σ(kp) =?〈ρ1,ρ2〉ψ
A(Σ[kp �→ π.!〈π〉∗ψ�];h[kp �→ ṽ ′]) if h(kp) = true : ṽ ′ and Σ(kp) =?〈π〉∗ψ
A(Σ[kp �→ ψ�];h[kp �→ ṽ ′]) if h(kp) = false : ṽ ′ and Σ(kp) =?〈π〉∗ψ
false otherwise

Fig. 12. Agreement between Session Environments and Heaps

We are now able to formulate the agreement between environments and heaps though
the following rule:

WfHeap
∀o ∈ dom(h) : h � o ∀o ∈ dom(Γ) : h � o : Γ(o) A(Σ;h)

Γ;Σ � h

In the remaining of this section we outline the proof of subject reduction, while we
give full details and proofs in the Appendix.

Standard ingredients of Subject Reduction proofs are Generation Lemmas. The Gen-
eration Lemmas in this work are somewhat unusual, because, due to the non-structural
rules, when an expression is typed, the session environment used in the typing can be
augmented by ending partial session types or by introducing ε-predicates. For example,
Γ;Σ � x :t does not imply that Σ = /0; instead, it implies that cored(Σ) = /0.

16 M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida

In order to express the Generation Lemmas, we define the partial order � among
session environments, which basically reflects the differences introduced through the
application of nonstructural rules.

Definition 3.2 (Weakening Order �). Σ � Σ′ is the smallest partial order such that:
(1) if u /∈ dom(Σ), Σ � Σ,u : ε; and (2) Σ,u : π � Σ,u : π.end.

Note that � is defined in such a way that, if Σ is well-formed and Σ � Σ′, then also Σ′

is well-formed.
Generation Lemmas for standard expressions, communication expressions, and

processes are given in the Appendix (see Lemmas A.2, A.3 and A.4) and make use
of the relation �. For example, Γ;Σ � u .send(e):t implies t = Object and Γ;Σ′ � e :t ′

and Σ′ ◦ {u : !t } � Σ for some Σ′,t ′.
The following lemma states that the ordering relation � preserves the types of ex-

pressions and threads, and its proof is easy using the non structural typing rules and
Generation Lemmas.

Lemma 3.3 (Weakening). Let Σ � Σ′, then

1. Γ;Σ � e :t implies Γ;Σ′ � e :t ;
2. Γ;Σ � P :thread implies Γ;Σ′ � P :thread .

Using the above lemma and the Generation Lemmas one can show that structural equiv-
alence preserves typing.

Lemma 3.4 (Preservation of Typing under Structural Equivalence). If Γ;Σ � P :
thread and P ≡ P′, then Γ;Σ � P′ :thread .

Lemma 3.5 states that the typing derivation of E[e] can be obtained by composing the
subderivation of a typing for e , with a typing derivation for E[x]. Furthermore, Σ, the
environment used to type E[x], can be broken down into two environments, Σ = Σ1 ◦Σ2,
where Σ1 is used to type e and Σ2 is used to type E[x].

Lemma 3.5 (Subderivations). If Γ;Σ � E[e] : t , then there exist Σ1,Σ2 and t ′ such
that Σ = Σ1 ◦Σ2, and Γ;Σ1 � e :t ′ and Γ,x : t ′;Σ2 � E[x] :t , where x is a fresh variable
in E[−] and Γ.

On the other hand, Lemma 3.6 allows the combination of the typing of E[x] and the typ-
ing of e , provided that the contexts Σ1 and Σ2 used for the two typings can be composed
through ◦, and that the type of e is the same as that of x in the first typing.

Lemma 3.6 (Context Substitution). If Γ;Σ1 � e : t ′, and Γ,x : t ′;Σ2 � E[x] : t , and
Σ1 ◦ Σ2 is defined, then Γ;Σ1 ◦ Σ2 � E[e] :t .

For stating the Subject Reduction Theorem we need to introduce a partial order (called
evaluation order) between running session types which takes into account that session
types are consumed by reducing terms (Point 1). This evaluation order is also extended
to pairs of session environments and heaps in two ways. The first order (Point 2) requires
the types for the same live channels in the session environments are consistent through

Asynchronous Session Types and Progress for Object Oriented Languages 17

an expression reduction, i.e. that they take into account the consumed actions (first
case) and, in the case that a live channel is transmitted or received, that this is correctly
registered in the environment and in the heap (the other two cases). The second order
(Point 3) extends the first one taking into account that new live channels can be created
in a heap via evaluation of connect expressions.

Definition 3.7 (Evaluation Order)

1. � is defined as the smallest partial order on running session types such that: ε � ρ;
ε.end � η; πi � †〈π1,π2〉 (i ∈ {1,2}); ηi � †〈η1,η2〉 (i ∈ {1,2}); †〈π.〈π〉∗,ε〉 �
†〈π〉∗; and π � π′ implies π ◦ ρ � π′ ◦ ρ.

2. We define 〈Σ′;h′〉 � 〈Σ;h〉 if whenever kp, k p̄ ∈ h′ we have kp, k p̄ ∈ h and moreover
one of the following conditions is satisfied:
(a) kp :ρ′ ∈ Σ′ and kp :ρ ∈ Σ and ρ′ � ρ;
(b) kp ∈ cored(Σ′) and kp 	∈ cored(Σ) and kp 	∈ ranc(h′) and kp ∈ ranc(h);
(c) kp 	∈ cored(Σ′) and kp ∈ cored(Σ) and kp ∈ ranc(h′) and kp 	∈ ranc(h).

3. We define 〈Σ′;h′〉 �� 〈Σ;h〉 if whenever kp, k p̄ ∈ h′ we have:
– either kp, k p̄ ∈ h and one of the conditions (2a), (2b), (2c) is satisfied;
– or kp, k p̄ /∈ h and kp, k p̄ /∈ dom(Σ) and kp :ρ, k p̄ :ρ ∈ Σ′ for some ρ.

Note that � and �� as defined above are partial order relations.

We can now state the Subject Reduction theorem:

Theorem 3.8 (Subject Reduction)

1. Γ;Σ � e : t and Γ;Σ � h and e ,h −→ e ′,h′ via an expression reduction imply Γ′;Σ′ �
e ′ : t and Γ′;Σ′ � h′, where Γ ⊆ Γ′ and 〈Σ′;h′〉 � 〈Σ;h〉.

2. Γ;Σ � e : t and Γ;Σ � h and e ,h −→ e1 |e2,h′ via a thread reduction imply Γ;Σ �
e1 |e2 : thread and Γ′;Σ′ � h′ where 〈Σ′;h′〉 � 〈Σ;h〉.

3. Γ;Σ � P : thread and Γ;Σ � h and P,h −→ P′,h′ imply Γ′;Σ′ � P′ : thread and
Γ′;Σ′ � h′ where Γ ⊆ Γ′ and 〈Σ′;h′〉 �� 〈Σ;h〉.

The proof, given in the Appendix, is by induction on the derivation e ,h −→ e ′,h′ or
P,h −→ P′,h′. It uses the Generation Lemmas, the Subderivations Lemma, and the Con-
text Substitution Lemma, as well as further lemmas, stated and proven in the Appendix,
and which deal with properties of the relation �, of the operation ◦, weakening, and
substitutions.

4 Progress Properties

The Subject Reduction Theorem assures that, in well-typed processes, when a receiving
expression is executed, the input value is consistent with the type of receiving channel.
This does not guarantee that once a session started, all required communications will
be really executed: a process could be stuck in a deadlock even if it is well-typed. The
deadlock freedom is usually called progress in the literature, see e.g. [23]. Progress has
not been considered in most previous works on synchronous and asynchronous session
type systems [2,9,11,12,16,22,27]. Also in our system well typing does not guarantees
progress, as the following example shows.

18 M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida

Example 4.1. Take the following processes P0 and P1:

P0 = connect c 0 s0{connect c 1 s1{c1.receive ;c0.send(3)}}
P1 = connect c 0 s0{connect c 1 s1{c0.receive ;c1.send(5)}}

where s0 = begin.?int .end and s1 = begin.!int .end.
The process P0 |P1 running from an empty heap reduces to:

k+
1 .receive ;k+

0 .send(3) |k−
0 .receive ;k−

1 .send(5), []

which is stuck even if it is well-typed.

Following essentially ideas from [6] we propose an effect system which assures
progress of AMOOSE processes.

We consider a process being stuck if all its non terminated threads are waiting for a
communication on channels whose associated queues are empty, and which cannot be
fed by any sending expression. More formally we have the following notion.

Definition 4.2. A process P0 has the progress property if P0, [] →→ P,h implies that one
of the following holds.

– In P, all expressions are values, i.e., P ≡ ∏0≤i<n v i ;
– P,h −→ P′,h′;
– P throws a null pointer exception, i.e., P ≡ NullExc |Q;
– P stops with a connect waiting for its dual instruction, i.e., P≡E[connect c s{e}] |Q.

A process with the progress property can stop only if its component threads either have
terminated their associated computation leading to values or at least one of them either
throws an exception or it is waiting for a connection through the execution of a connect
statement. In this last case a new process entering the system can restart the computation
opening a new channel via the execution of the connect expression.

We now give a set of inference rules that assures that all processes satisfying them
have the progress property. A difference with [6,7] is that there the type system itself
was assuring the progress property, while here we separated the two goals. More inter-
estingly the asynchronicity of output allows more permissive requirements.

With the output being asynchronous, processes can only stop on receiving expres-
sions. For this reason we require that in the body of a session opened on channel c all
receiving expressions have c as a subject. In Example 4.1 we see that the expression
c0.receive is in the body of the session opened on channel c1. It is easy to verify that if
this expression is moved past the end of the session opened on c1, the resulting process
has the progress property. Note that swapping the sending and receiving expressions in
both P0 and P1 the resulting process would be stuck in the system of [6].

Output expressions can always be reduced, but they can in some cases produce dead-
locks by sending channels whose session expressions cannot be executed by the receiv-
ing process (see Example 4.4). For this reason we require that in the body of a session
opened on channel c all expressions sending channels have c as subject.

A method call must respect the same conditions, and this is assured by the new rules
for well-formed methods of Fig. 13.

Asynchronous Session Types and Progress for Object Oriented Languages 19

We will define formally in Definition 4.5 the notion of critical expression: for now a
critical expression is an expression which can produce deadlock if its use is not disci-
plined. Critical expressions are mostly session expressions, but also a method call can
be critical. The set containing the subject of a critical expression (this notion will be
generalised to method calls too) is said to be the hot set of the expression. As motivated
below, we will force all critical expressions occurring in the body a session to have the
same hot set containing only the channel on which the session has been opened. The
notion of hot set can be naturally propagated through composition and spawning.

A channel is used in an expression if it occurs in the expression as subject of a
session expression, or as a channel communicated by a sendS expression, or as actual
parameter with a running session type of a procedure call.

The judgements of our effect system have the form

e � U; H

where U (the used channel set) is the set of used channels in e and H is the hot set of
e . The set of used channels is motivated essentially by rule ReceiveS� (see Fig. 14).

We define the singleton-union of two hot sets H1 and H2 (notation H1 � H2) as:

H1 � H2 =

{
H1 ∪ H2 if H1 = H2 or H1 = /0 or H2 = /0,

undefined otherwise.

The used channels and the hot set of an expression are derived by the set of inference
rules given in Fig. 13 and 14. The key observations are:

– a channel which is subject of a critical subexpression of an expression must be used
in the whole expression (i.e., if e � U; H , then H ⊆ U);

– a channel which is used in a typed expression must be the subject of an assumption
in the session environment which types that expression (i.e., if e �U; H and Γ;Σ �
e :t , then U ⊆ dom(Σ)).

The rules in Fig. 13 are quite natural, except for those concerning method calls that
will be discussed later. Rule Seq� takes the union of the two used channel sets and the
singleton-union of the two hot sets.

As for the rules for communication expressions, note that a send expression can stay
everywhere, its hot set is then the hot set of the expression which is sent (rule Send�),
while the hot set of a receive expression is forced to be the set containing the subject of
the expression (rule Receive�).

We have two rules for the receiveS expressions. If the body of the receiveS expres-
sion has an empty hot set, then there are no restrictions on the possible channels used
in it (rule ReceiveSA�). Instead, if {x} is the hot set of the body of a receiveS(x) , then
we must require that no other channel is used in this body (rule ReceiveS�), as the
following example shows.

Example 4.3. Take the following processes P2 and P3:

P2 = connect c 0 s0{connect c 1 s1{c1.sendS(c0)}}
P3 = connect c 0 s0{connect c 1s1{c1.receiveS(x){x .receive ;

connect c 2 s2{c2.sendS(c0)}}}}

20 M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida

Well-Formed Methods

MCold�
e �U; /0 U ⊆ {ỹ}

tm (t̃ x̃ , ρ̃ ỹ) {e} is ok in C

MHot�
e �U; {y1} U ⊆ {y1}∪{ỹ}

tm (t̃ x̃ ,ρ1 y1, ρ̃ ỹ) {e} is ok in C

Progress Inference Rules for Values

Null�
null� /0; /0

Oid�
o� /0; /0

True�
true� /0; /0

False�
false� /0; /0

Chan�
c � /0; /0

Progress Inference Rules for Standard Expressions

Var�
x � /0; /0

This�
this� /0; /0

Fld�
e �U; H

e .f �U; H

Seq�
e �U; H e ′ �U′; H ′

e ;e ′ �U ∪U′; H � H ′

FldAss�
e �U; H e ′ �U′; H ′

e .f := e ′ �U ∪U′; H � H ′

NewC�
new C � /0; /0

NewS�
new (s ,s)� /0; /0

Spawn�
e �U; H

spawn{ e }�U; H

NullPE�
NullExc � /0; /0

MethCold�
e �U; H e i �Ui; Hi i ∈ {1 . . .n} mtype(m ,C) = t 1, . . . ,t n,ρ1, . . . ,ρm

�→ t

e .m(e1, . . . ,en,u1, . . . ,um)�U ∪U1 . . .∪Un ∪{u1, ...,um}; H � H1 . . .� Hn

MethHot�
e �U; H e i �Ui; Hi i ∈ {1 . . .n} mtype(m ,C) = t 1, . . . ,t n,ρ1, . . . ,ρm

⊕→ t

e .m (e1, . . . ,en,u1, . . . ,um)�U ∪U1 . . .∪Un ∪{u1, ...,um}; H � H1 . . .� Hn �{u1}

Fig. 13. Well-Formed Methods and Progress Inference Rules for Values & Standard Expressions

where s0=begin.?int .end and s1=begin.!(?int .end).end and s2=begin.!(!int .end).end.
The process P2 |P3 starting from an empty heap reduces to:

k+
0 .receive ;connect c 2 s2{c2.sendS(k−

0)}, [k+
0 �→ ε, k 0

− �→ ε]

which is stuck. But also the original program does agree neither with rule ReceiveS�
nor with rule ReceiveSA�. In fact in this case {x} and {c0} are respectively the hot set
and the set of used channels of the receiveS expression body.

This example shows also that two live channels with the same name and opposite
polarities can occur in the same thread.

The following example shows that some care must be taken also in handling the sendS
expressions, that can as well destroy progress. We avoid this by forcing the hot sets of
sendS expressions to contain their subjects.

Asynchronous Session Types and Progress for Object Oriented Languages 21

Progress Inference Rules for Communication Expressions

Conn�
e �U; H H ⊆ {a}

connect a s {e}�U \{a}; /0

Send�
e �U; H

u .send(e)�U ∪{u}; H

Receive�
u .receive �{u}; {u}

SendS�
u .sendS(u ′)�{u , u ′}; {u}

ReceiveS�
e �{x}; {x}

u .receiveS (x){e}�{u}; {u}
ReceiveSA�

e �U; /0
u .receiveS (x){e}�U \{x}∪{u}; {u}

SendIf�
e �U; H e i �Ui; Hi i ∈ {1,2}

u .sendIf (e){e1 }{e2 }�U ∪U1 ∪U2∪{u}; H � H1 � H2

ReceiveIf�
e i �Ui; Hi i ∈ {1,2}

u .receiveIf {e1 }{e2 }�U1 ∪U2∪{u}; H1 � H2 �{u}
SendWhile�
e � /0; /0 e ′ �U; H U ⊆ {u}
u .sendWhile(e){e ′}�{u}; H

ReceiveWhile�
e �U; H U ⊆ {u}

u .receiveWhile{e}�{u}; {u}

Fig. 14. Progress Inference Rules for Communication Expressions

Example 4.4. Let’s consider the following processes P4 and P5:

P4 = connect c 0 s0{connect c 1 s1{c0.sendS(c1)}}
P5 = connect c 0 s0{connect c 1 s1{c1.receive};c0.receiveS(x){x .send(3)}}

where s 0 = begin.!(!int .end).end and s1 = begin.!int .end. Then P4 |P5, starting from
an empty heap, reduces to

k−
1 .receive ;k−

0 .receiveS(x){x .send(3)}, [k+
0 �→ k 1

+, k 0
− �→ ε, k 1

+ �→ ε, k 1
− �→ ε]

which is stuck. Note that P4 cannot be typed since SendS� requires c0 as hot set.

The rules SendWhile� and ReceiveWhile� are justified by comparing them with the
typing rules SendWhile and ReceiveWhile (see Fig. 8) and taking into account that the
set of used channels must be a subset of the domain of the session environment.

According to the reduction rule Meth→ a method call corresponds to the replacement
of the method body for the call statement. So the used channels of the call can be
identified with its live channel parameters. A method can have a non-empty hot set if its
body contains critical expressions: in this case we convene the hot channel to be the first

22 M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida

channel parameter. A method tm (t̃ x̃ , ρ̃ ỹ) {e} is cold if it is well-formed according
to rule MCold� (i.e. if the hot set of its body is empty) and hot if it is well-formed
according rule MHot�, i.e. if the hot set of its body is {y 1}. We add this information to

the method type by decorating the arrow respectively by � and ⊕, i.e. we get t̃ , ρ̃ �→ t
and t̃ , ρ̃ ⊕→ t . The subject of a hot method call is the actual parameter which replaces
the formal parameter y 1.

A last remark concerns rule Spawn�, in which we require the hot set be preserved
in the spawned expression. Referring to Example 4.1, let P′

1 be the process obtained by
replacing c0.receive ;c1.send(3) with spawn{c0.receive ;c1.send(3)} in P1. Then P′

1
could be typed if in rule Spawn� the hot set of the conclusion would be the empty set,
but also P0 |P′

1 leads to a deadlock.
We can now formally define the notion of critical expression.

Definition 4.5. We say that an expression e is critical if it is either a receive , receiveS ,
receiveIf , sendS , receiveWhile expression or it is a hot method call. If e is a critical
expression, we denote by sub(e) its subject. A critical expression is live if its subject is
a live channel.

In the remaining of the present section we will show that the above rules assure the
progress property. Obviously we must consider computations whose starting process is
well-typed and closed.

We say that a process P is initial if P = ∏1≤i≤n e i, all e i are user expressions and
/0; /0 � P, [] and e i � /0; /0 (1 ≤ i ≤ n).

The following two lemmas can be easily proved by induction on derivations.
A direct subexpression of e is a subexpression of e which does not occur in the body

of a connect or receiveS .

Lemma 4.6. Let e � U; H .

1. If H = /0, then there are no critical direct subexpressions of e .
2. If H = {u}, then all critical direct subexpressions of e have u as subject.
3. All critical and live subexpressions of e are direct subexpressions of e .

We use ϕ to range over t , (η), 〈ρ,ρ′〉, and 〈π〉∗ and we define:

ϕ̂ =

⎧
⎪⎨

⎪⎩

t if ϕ = t ,

η if ϕ = (η),
bool otherwise.

By |ρ| we denote the number of symbols which occur in ρ.

Lemma 4.7. Assume /0; /0 � P, [] and P0, [] →→ P,h. Then there are Γ, Σ such that Γ;Σ �
P :thread , and Γ;Σ � h, and

1. ended(Σ) and
2. if kp ∈ cored(Σ), then one of the following conditions holds:

– Σ(kp) = Σ(k p̄);
– |Σ(kp)| > |Σ(k p̄)| and Σ(kp) =?ϕψ and h = h′ :: [kp �→ v : ṽ] and Γ; /0 � v : ϕ̂;

Asynchronous Session Types and Progress for Object Oriented Languages 23

– |Σ(k p̄)| > |Σ(kp)| and Σ(k p̄) =?ϕψ and h = h′ :: [k p̄ �→ v : ṽ] and Γ; /0 � v : ϕ̂;
– k p̄ /∈ dom(Σ) and k p̄ ∈ ranc(h).

A last definition is handy for taking into account the order in which expressions are
reduced.

Definition 4.8. Let e be an expression and e1, e2 be two subexpressions of e . We say
that e1 precedes e2 in e if, for some contexts C[−], E[−] and C′[−] we have e = C[e ′]
and e ′ = E[e1] = C′[e2].

Notice that the each expression precedes itself since we can choose all contexts as the
empty one.

Recall that, according to our notational conventions, live channels are denoted by kp.
In the following we convene that the fresh live channels created reducing a thread take
successive numbers according to the order of creation, i.e. they are named k 0, k 1,
This means that if P,h →→ Q,h′ →→ R,h′′ and k i is a channel created in the reduction
P,h →→ Q,h′, and k j is a channel created in the reduction Q,h′ →→ R,h′′, then i < j.

The following lemma relating the order of channel creation with their occurrences
as hot sets is the key of our progress proof.

Lemma 4.9. Let P0 be initial and P0, [] →→ P,h. Then

1. If e1 precedes e2 in P and e1 is a live critical expression and sub(e1) = kp
i , then

for all live channels k q
j occurring in e2 either i > j or i = j and p = q.

2. If a live channel kp
j is in the queue associated to a channel kq

i in h, then i > j.

Proof. By induction on the reduction. The induction step is by cases on the last reduc-
tion rule. We give the most interesting cases.

Case Connect→: If the last applied rule was Connect→, then the last step of the reduc-
tion was of the form:

E1[connect c s{e1}] |E2[connect c s{e2}] |P′, h
−→ E1[e1[k

+
i/c]] |E2[e2[k

−
i/c]] |P′, h :: [k i �→ ε]

for some P′, where i is the highest index among those occurring in P, h. The only new
channels in P are k p

i, where i is now the highest index and occurs only in subexpressions
of e l [k

p
i/c] (l = 1,2). All expressions that were preceded by e l are now preceded by

subexpressions of e l [k
p
i/c] (l = 1,2). Since the hot set of the connect expression has been

inferred by rule Conn�, then by Lemmas 4.6(2) and 4.6(3), all live critical expressions
inside e l[k

p
i/c] must have k p

i as subject. From this, and induction hypothesis, Point (1)
follows immediately. Point (2) is trivial by induction hypothesis.

Case ReceiveSS→: If the last applied rule was ReceiveSS→, then the last step of the
reduction was of the form:

E[k p
i .receiveS(x){e}],h :: [k p

i �→ k q
j : ṽ] −→ e [k

q
j/x] | E[null],h :: [k p

i �→ ṽ].

Note that Point (1) holds between subexpressions of E[null] by induction hypothesis.
As for e [k

p
j/x] we distinguish two cases.

24 M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida

(a) If the hot set of receiveS expression has been inferred by rule ReceiveSA�, then
by Lemma 4.6(1) in e [k

p
j/x] there are no live and critical subexpressions and Point

(1) holds trivially.
(b) If the hot set of receiveS expression has been inferred by rule ReceiveS�, then only

the channel k p
j can be live in e [k

p
j/x]. Thus Point (1) follows immediately.

In both cases Point (2) is trivial by induction hypothesis.

Case Meth→: If the last applied rule was Meth→ and the method has at least one live
channel has parameter, then the last step in the reduction was of the form:

E[o .m(ṽ ,kp
i , k̃)] |P′,h −→ E[e [o/this][ṽ/x̃][k

p
i/y1][k̃/ỹ]] |P′,h

where h(o) = (C, . . .) and mbody(m ,C) = (x̃ ,y 1, ỹ , e). The more interesting case is
when the hot set was inferred by rule MHot�. By definition o .m(ṽ ,kp

i , k̃) precedes all
expressions in E[−] and therefore, by induction hypothesis, the index i of its subject is
greater than the index of all live channels occurring in expressions in E[−]. By Lemma
4.6(2) and rule MHot� all critical expressions in e have y 1 as subject, that is replaced
by kp

i . Moreover note that all live channels kq
j with i 	= j replacing the formal param-

eters in e [o/this][ṽ/x̃][k
p
i/y1][k̃/ỹ] occur in the hot method call and then, by induction

hypothesis, j ≤ i. Point (1) follows then immediately. Point (2) is trivial.

Case Spawn→: If the last applied rule was Spawn→, then the last step in the reduction
was of the form:

E[spawn{ e }],h −→ E[null] |e ,h

and Points (1) and (2) follow immediately by induction hypothesis.

We conclude now with the desired progress theorem.

Theorem 4.10 (Progress). Assume P0 is initial and it satisfies the progress inference
rules. Then P0 has the progress property.

Proof. If P0 is initial we have /0; /0 � P0; []. Assume now that P0, [] →→ P,h. By the
subject reduction property we have Γ; Σ � P :thread and Γ; Σ � h for some Γ,Σ.

Suppose P ≡ NullExc |Q or P ≡ E[connect c s{e}] |Q. Then the proof is immediate.
Also P ≡ e |Q with e ,h −→ e ′,h′ is easy, since we get P,h −→ e ′ |Q,h′.

The only interesting case is P ≡ V |Q, where V is a parallel of values and Q is a
parallel of evaluation contexts containing irreducible session expressions. Note that an
irreducible process can only have a receiving expression in the evaluation context. Let
Q ≡ ∏1≤l≤n El[e l]. Let k i be the live channel name with the higher index which occurs
in P. By Lemma 4.9(1) a receiving expression e r having k p

i as subject must then be
in evaluation position of some thread Er[e r] of P and so there must be a statement
kp

i :?ϕψ ∈ Σ by Lemmas 3.5 and A.3. By Lemma 4.7(2) then:

(a) either h = h′ :: [kp
i �→ v : ṽ] and Γ; /0 � v : ϕ̂ , so the process cannot be stuck on a

receiving expression on kp
i ,

(b) or there must be a statement k p̄
i : !ϕψ ∈ Σ. This implies that that there must be a

sending subexpression e ′
s (sending a value of type ϕ̂) of some e s (1 ≤ s ≤ n) with

Asynchronous Session Types and Progress for Object Oriented Languages 25

subject k p̄
i that, by Lemma 4.9, cannot be blocked by any receiving expression,

except possibly a receiving expression with subject kp
i itself preceding e ′

s in e s.
This is impossible by Lemma 4.9(1).

Acknowlegments. The authors are indebted to Sophia Drossopoulou who first suggested
to explore asynchronous communication rules for sessions in object oriented languages.

References

1. Bierman, G., Parkinson, M., Pitts, A.: MJ: An Imperative Core Calculus for Java and Java
with Effects. Technical Report 563, Univ. of Cambridge Computer Laboratory (2003)

2. Bonelli, E., Compagnoni, A., Gunter, E.: Correspondence Assertions for Process Synchro-
nization in Concurrent Communications. Journal of Functional Programming 15(2), 219–248
(2005)

3. Carbone, M., Honda, K., Yoshida, N.: A Theoretical Basis of Communication-centered Con-
current Programming. Web Services Choreography Working Group mailing list, to appear as
a WS-CDL working report

4. Carbone, M., Honda, K., Yoshida, N.: Structured Communication-Centred Programming for
Web Services. In: ESOP’07. LNCS, Springer, Heidelberg, To appear (2007)

5. Dezani-Ciancaglini, M., Drossopoulou, S., Giachino, E., Yoshida, N.: Bounded Ses-
sion Types for Object-Oriented Languages. http://www.di.unito.it/ dezani/papers/
ddgy.pdf (2007)

6. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session Types for
Object-Oriented Languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp.
328–352. Springer, Heidelberg (2006)

7. Dezani-Ciancaglini, M., Yoshida, N., Ahern, A., Drossopoulou, S.: A Distributed Object
Oriented Language with Session Types. In: Nicola, R.D., Sangiorgi, D. (eds.) TGC 2005.
LNCS, vol. 3705, pp. 299–318. Springer, Heidelberg (2005)

8. Drossopoulou, S.: Advanced Issues in Object Oriented Languages Course Notes.
http://www.doc.ic.ac.uk/∼scd/Teaching/AdvOO.html

9. Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G.C., Larus, J.R., Levi, S.:
Language Support for Fast and Reliable Message-based Communication in Singularity OS.
In: Zwaenepoel, W. (ed.) EuroSys2006, ACM SIGOPS, pp. 177–190. ACM Press, New York
(2006)

10. Garralda, P., Compagnoni, A., Dezani-Ciancaglini, M.: BASS: Boxed Ambients with Safe
Sessions. In: Maher, M. (ed.) PPDP’06, pp. 61–72. ACM Press, New York (2006)

11. Gay, S., Hole, M.: Subtyping for Session Types in the Pi-Calculus. Acta Informatica 42(2/3),
191–225 (2005)

12. Gay, S., Vasconcelos, V.T.: A New Approach to Functional Session Types, http://www.di.
fc.ul.pt/ vv/papers/gay.vasconcelos:new-functional-sessions.pdf (2006)

13. Gay, S., Vasconcelos, V.T., Ravara, A.: Session Types for Inter-Process Communication. TR
2003–133, Department of Computing, University of Glasgow (2003)

14. Honda, K.: Types for Dyadic Interaction. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715,
pp. 509–523. Springer, Heidelberg (1993)

15. Honda, K.: Composing Processes. In: Steele, G.L. (ed.) POPL’96, pp. 344–357. ACM Press,
New York (1996)

16. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Disciplines for
Structured Communication-based Programming. In: Hankin, C. (ed.) ESOP 1998 and ETAPS
1998. LNCS, vol. 1381, pp. 22–138. Springer, Heidelberg (1998)

http://www.di.unito.it/~dezani/papers/ddgy.pdf
http://www.di.unito.it/~dezani/papers/ddgy.pdf
http://www.doc.ic.ac.uk/~scd/Teaching/AdvOO.html
http://www.di.fc.ul.pt/~vv/papers/gay.vasconcelos:new-functional-sessions.pdf
http://www.di.fc.ul.pt/~vv/papers/gay.vasconcelos:new-functional-sessions.pdf

26 M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida

17. Honda, K., Yoshida, N., Carbone, M.: Web Services, Mobile Processes and Types. EATCS
Bulletin, To appear (2007)

18. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a Minimal Core Calculus for Java
and GJ. ACM TOPLAS 23(3), 396–450 (2001)

19. S. Microsystems Inc. The Java Tutorial: All About Sockets. http://java.sun.com/docs/
books/tutorial/networking/sockets/

20. S. Microsystems Inc. New IO APIs. http://java.sun.com/j2se/1.4.2/docs/guide/
nio/index.html

21. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Parts I and II. Information
and Computation, vol. 100(1) (1992)

22. Neubauer, M., Thiemann, P.: Session Types for Asynchronous Communication. Universität
Freiburg (2004)

23. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge, MA (2002)
24. Sparkes, S.: Conversation with Steve Ross-Talbot. ACM Queue 4(2), 14–23 (2006)
25. Takeuchi, K., Honda, K., Kubo, M.: An Interaction-based Language and its Typing System.

In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.) PARLE 1994. LNCS,
vol. 817, pp. 398–413. Springer, Heidelberg (1994)

26. Vallecillo, A., Vasconcelos, V.T., Ravara, A.: Typing the Behavior of Objects and Com-
ponents using Session Types. In: Brogi, A., Jacquet, J.-M. (eds.) FOCLASA’02, ENTCS,
vol. 68(3), pp. 439–456. Elsevier, Amsterdam (2002)

27. Vasconcelos, V.T., Gay, S., Ravara, A.: Typechecking a Multithreaded Functional Language
with Session Types. Theorical Computer Science 368(1-2), 64–87 (2006)

28. Web Services Choreography Working Group. Web Services Choreography Description Lan-
guage. http://www.w3.org/2002/ws/chor/

29. Yoshida, N., Vasconcelos, V.T.: Language Primitives and Type Disciplines for Structured
Communication-based Programming Revisited. In: SecRet’06, ENTCS, Elsevier, Amster-
dam, To appear (2007)

A Proof of Subject Reduction

Lemma A.1. 1. Σ1 � Σ′
1, and Σ′

1 ◦Σ2 defined, imply Σ1 ◦Σ2 defined, and Σ1 ◦Σ2 �
Σ′

1 ◦ Σ2 .
2. Σ∪Σ′ � ok and /0 � Σ′ imply Σ � Σ∪Σ′.

Proof. Easy from Definition 3.2.

Lemma A.2. (Generation for Standard Expressions)

1. Γ;Σ � x :t implies /0 � Σ and x :t ′ ∈ Γ for some t ′ <: t .
2. Γ;Σ � c :t implies /0 � Σ and t is a shared session type.
3. Γ;Σ � null :t implies /0 � Σ.
4. Γ;Σ � v :t with v ∈ {true, false} implies /0 � Σ and t = bool .
5. Γ;Σ � o :t implies /0 � Σ and o :C∈ Γ for some C<: t .
6. Γ;Σ � NullExc :t implies /0 � Σ.
7. Γ;Σ � this :t implies /0 � Σ and this :C ∈ Γ for some C <: t .
8. Γ;Σ � e1;e2 : t implies Σ = Σ1 ◦ Σ2, and t = t 2 and Γ;Σi � e i : t i for some Σi,t i

(i ∈ {1,2}).
9. Γ;Σ � e .f := e ′ : t implies Σ = Σ1 ◦ Σ2, and Γ;Σ1 � e : C and Γ;Σ2 � e ′ : t with

f t ∈ fields(C) for some Σ1,Σ2,C.

http://java.sun.com/docs/books/tutorial/networking/sockets/
http://java.sun.com/docs/books/tutorial/networking/sockets/
http://java.sun.com/j2se/1.4.2/docs/guide/nio/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/nio/index.html
http://www.w3.org/2002/ws/chor/

Asynchronous Session Types and Progress for Object Oriented Languages 27

10. Γ;Σ � e .f :t implies Γ;Σ � e :C and f t ∈ fields(C) for some C.
11. Γ;Σ � e .m(e1, . . . ,en,u1, . . . ,um) :t (n,m ≥ 0), implies Γ;Σ0 � e :C, and

Γ;Σi � e i :t i for 1 ≤ i ≤ n, and Σ0 ◦ Σ1 . . .◦ Σn ◦ {u1 :ρ1, . . . ,um :ρm} � Σ and
mtype(m ,C) = t 1, . . . ,t n,ρ1, . . . ,ρm → t , for some Σ0,Σi,t i,u j,ρ j,C (1 ≤ i ≤ n,
1 ≤ j ≤ m).

12. Γ;Σ � new C :t implies /0 � Σ and C<: t .
13. Γ;Σ � new (s ,s) :t implies /0 � Σ and (s ,s)<: t .
14. Γ;Σ � spawn{ e } : t implies ended(Σ′), Σ′ � Σ, t = Object and Γ;Σ′ � e : t for

some Σ′, t ′.

Proof. By induction on typing derivations. The inductive step is by case analysis over
the shape of the expression being typed, and then over the last rule applied. For all points
the proof is non trivial only in the cases in which the last applied rule is a non-structural
one. We just show one paradigmatic case of the inductive step.

(14) If the expression being typed has the shape spawn{ e }, let’s consider the case
in which the last applied rule is WeakES, the other cases are similar. Then

Γ;Σ � spawn{ e } :t
Γ;Σ,u :ε � spawn{ e } :t

By induction hypothesis there exist Σ′, t ′, such that Σ′ � Σ, and ended(Σ′) and t =
Object and Γ;Σ′ � e : t ′. Since Σ � Σ,u : ε the property follows immediately by transi-
tivity of � .

Lemma A.3. (Generation for Communication Expressions)

1. Γ;Σ � connect a s {e} :t implies s = begin.η, and Γ; /0 � a :begin.η and Γ\a ;Σ,a :
η � e :t , for some η.

2. Γ;Σ � u .receive :t implies {u : ?t } � Σ.
3. Γ;Σ � u .send(e) : t implies t = Object and Γ;Σ′ � e : t ′ and Σ′ ◦ {u : !t ′} � Σ for

some Σ′,t ′.
4. Γ ; Σ � u .receiveS(x){e} : t implies t = Object and Γ \ x ; Σ′,x :η � e : t ′ and

ended(Σ′,x :η) and {u : ?(η)} ◦ Σ′ � Σ for some Σ′,t ′, η 	= ε.end.
5. Γ ; Σ � u .sendS(u ′) : t implies t = Object and {u ′ : η,u :!(η)} � Σ for some η 	=

ε.end.
6. Γ;Σ � u .receiveIf {e1 }{e2 } : t implies Γ;Σ′,u : ρi � e i : t (i ∈ {1,2}) and Σ′,u :

?〈ρ1 ,ρ2 〉 � Σ for some Σ′,ρ1 ,ρ2 .
7. Γ;Σ � u .sendIf (e){e1 }{e2 } : t implies Γ;Σ1 � e : bool and Γ;Σ2,u : ρi � e i : t

(i ∈ {1,2}) and Σ1 ◦ Σ2,u :!〈ρ1 ,ρ2 〉 � Σ for some Σ1,Σ2,ρ1 ,ρ2 .
8. Γ;Σ � u .receiveWhile{e} : t implies Γ;{u : π} � e : t and {u :?〈π〉∗} � Σ for some

π.
9. Γ;Σ � u .sendWhile(e){e ′} : t implies Γ; /0 � e : bool and Γ;{u : π} � e ′ : t and

{u :!〈π〉∗} � Σ for some π.

Proof. Similar to that of Lemma A.2.

Lemma A.4. (Generation for Threads)

1. Γ;Σ � e :thread implies Γ;Σ � e :t for some type t .

28 M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida

2. Γ;Σ � P1 |P2 : thread implies Σ = Σ1 ∪ Σ2, and Γ;Σi � Pi : thread (i ∈ {1,2}) for
some Σ1, Σ2 .

Proof. All three cases are trivial.

Lemma 3.4 (Preservation of Typing under Structural Equivalence). If Γ;Σ � P :
thread and P ≡ P′, then Γ;Σ � P′ :thread .

Proof. By induction on the proof of P ≡ P′. If the proof is obtained by the commu-
tativity or associativity the property follows by easily by Lemmas A.4(2). The case
of composition with a fixed process is trivial. In the case of composition with null, if
Γ; Σ � P :thread we have immediately Γ; Σ � P |null :thread .

As for the opposite direction assume Γ; Σ � P |null : thread . Then there are Σ1,Σ2

such that Σ = Σ1 ∪ Σ2 and Γ; Σ1 � P : thread and Γ; Σ2 � null : thread . By Lemma
A.2(3) we have that /0 � Σ2 and then, by Lemma A.1(2), Σ1 � Σ1 ∪ Σ2. By applying
Lemma 3.3(2) to Γ; Σ1 � P : thread we conclude Γ;Σ1 ∪Σ2 � P :thread .

Lemma A.5 (Preservation of Typing under Substitution)

1. If Γ,x :t ; Σ � e :t ′ and Γ ; /0 � v :t , then Γ ; Σ � e [v/x] :t ′.
2. If Γ\u ; Σ � e :t and kp 	∈ dom(Σ), then Γ ; Σ[kp

/u] � e [kp
/u] :t .

3. If Γ,this :C ; Σ � e :t and Γ ; /0 � o :C, then Γ ; Σ � e [o/this] :t .

Proof (1), (2) and (3) are proven by induction on derivations.

Lemma 3.5 (Subderivations). If Γ;Σ � E[e] : t , then there exist Σ1,Σ2 and t ′ such
that Σ = Σ1 ◦Σ2, and dom(Σ1) = cored(Σ1), and Γ;Σ1 � e :t ′ and Γ,x : t ′;Σ2 � E[x]:t ,
where x is a fresh variable in E[−],Γ.

Proof. By induction on E , and using Generation Lemmas. For example, if E = [−];e ′,
then Γ;Σ � e ;e ′ : t implies Σ = Σ1 ◦ Σ2 and Γ;Σ1 � e : t ′ and Γ;Σ2 � e ′ : t by Lemma
A.2(8). We conclude Γ,x :t ′;Σ2 � x ;e ′ :t by rules Var and Seq.

Lemma 3.6 (Context Substitution). If Γ;Σ1 � e : t ′, and Γ,x : t ′;Σ2 � E[x] : t , and
Σ1 ◦ Σ2 is defined, then Γ;Σ1 ◦ Σ2 � E[e] :t .

Lemma A.6. 1. Let kp 	∈ cored(Σ′) and Σ′ ◦ {kp :ρ} � Σ. Then Σ(kp) = ρψ and Σ′ �
Σ[kp �→ ψ�] for some light ψ.

2. Let {kp :ρ} ◦ Σ′ � Σ. Then Σ(kp) = ρψ and Σ′ � Σ[kp �→ ψ�] for some ψ.

Proof. All cases are easy. In case (1) note that Σ′(kp) can be either undefined or ε.

Lemma A.7. Let e ,h −→ e ′,h′ via an elementary expression reduction. Then Γ;Σ � e :
t and Γ; Σ � h imply Γ′;Σ′ � e ′ : t and Γ′; Σ′ � h′, where Γ ⊆ Γ′ and 〈Σ′;h′〉 � 〈Σ;h〉.

Proof. The proof is by cases on the kind of expression reduction. We consider two
paradigmatic cases.
Rule SendS→.
Let e = kp.send(v) and h = h′′ :: [k p̄ �→ ṽ ′]. We have:

kp.send(v),h′′ :: [k p̄ �→ ṽ ′] −→ null,h′′ :: [k p̄ �→ ṽ ′ : v]

Asynchronous Session Types and Progress for Object Oriented Languages 29

By Lemmas A.3(3) and A.2(1)-(4) we have t = Object and for some Σ′′,t ′:
1) Γ;Σ′′ � v : t ′,
2) /0 � Σ′′,
3) Σ′′ ◦ {kp :!t ′} � Σ.

By 2), 3), and Lemma A.6(1) we get:
4) Σ(kp) =!t ′ψ with ψ light,
5) /0 � Σ[kp �→ ψ�].

Let Γ′ = Γ, Σ′ = Σ[kp �→ ψ�] and h′ = h′′ :: [k p̄ �→ ṽ ′ : v].
By 5), rule Null and Lemma 3.3(1):

6) Γ; Σ′ � null :t .
By Definition 3.1 A(Σ′;h′) trivially holds, since cored(Σ′) = /0 and dom(Σ′) =
dom(Σ). Moreover Σ(kp) =!t ′ψ and Σ(kp) = ψ� imply 〈Σ′;h′〉 � 〈Σ;h〉.

Rule SendSS→.
Let e = kp.send(kq

0) and h = h′′ :: [k p̄ �→ ṽ]. We have:

kp.sendS(kq
0),h

′′ :: [k p̄ �→ ṽ] −→ null,h′′ :: [k p̄ �→ ṽ : kq
0]

By Lemmas A.3(5) we have t = Object and for some η 	= ε.end:
1) {kp :!(η),kq

0 :η} � Σ.
By 1), and Lemma A.6(1) (note that η is ended) we get:

2) Σ(kp) =!(η)ψ with ψ light,
3) Σ(kq

0) = η,
4) /0 � Σ\ kq

0[k
p �→ ψ�].

Let Γ′ = Γ, Σ′ = Σ\ kq
0[k

p �→ ψ�] and h′ = h′′ :: [k p̄ �→ ṽ : kq
0].

By 4), rule Null and Lemma 3.3(1):
5) Γ; Σ′ � null :t .

By Definition 3.1 A(Σ′;h′) trivially holds, since cored(Σ′) = /0 and kq
0 /∈ dom(Σ′).

Lastly we get 〈Σ′;h′〉 � 〈Σ;h〉 from Σ(kp)=!t ′ψ and Σ′(kp)=ψ� and kq
0 ∈ cored(Σ)

(which implies kq
0 	∈ ranc(h) by A(Σ;h)) and kq

0 	∈ cored(Σ′) and kq
0 ∈ ranc(h′) .

It is handy to extend to heaps the concatenation operator defined for running session
types and session environments at page 10.

Definition A.8 (Heap Concatenation). The concatenation of two heaps h and h′ (no-
tation h ◦ h′) is the minimal heap such that:

– h ◦ h′(o) = (C, f̃ : ṽ) if h(o) = (C, f̃ : ṽ) and o 	∈ h′;
– h ◦ h′(o) = (C, f̃ : ṽ) if h′(o) = (C, f̃ : ṽ) and o 	∈ h;
– c ∈ h ◦ h′ if c ∈ h and c 	∈ h′;
– c ∈ h ◦ h′ if c ∈ h′ and c 	∈ h;
– h ◦ h′(kp) = ṽ : ṽ ′ if h(kp) = ṽ and h′(kp) = ṽ ′;
– h ◦ h′(kp) = ṽ if h(kp) = ṽ and kp 	∈ h′;
– h ◦ h′(kp) = ṽ if h′(kp) = ṽ and kp 	∈ h.

From Definitions 3.1, 3.7 and A.8 we can easily show:

Lemma A.9. 1. A(Σ1 ◦Σ2;h) implies h = h1 ◦h2 and A(Σ1;h1) and A(Σ2;h2) for some
h1,h2.

30 M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida

2. A(Σ1 ◦ Σ2;h1 ◦ h2) and A(Σ1;h1) and 〈Σ1;h1〉 � 〈Σ′
1;h′

1〉 imply A(Σ′
1 ◦ Σ2;h′

1 ◦ h2)
and 〈Σ1 ◦ Σ2;h1 ◦ h2〉 � 〈Σ′

1 ◦ Σ2;h′
1 ◦ h2〉.

Theorem 3.8. (Subject Reduction)

1. Γ;Σ � e : t and Γ;Σ � h and e ,h −→ e ′,h′ via an expression reduction imply Γ′;Σ′ �
e ′ : t and Γ′;Σ′ � h′, where Γ ⊆ Γ′ and 〈Σ′;h′〉 � 〈Σ;h〉.

2. Γ;Σ � e : t and Γ;Σ � h and e ,h −→ e1 |e2,h′ via a thread reduction imply Γ;Σ �
e1 |e2 : thread and Γ′;Σ′ � h′ where 〈Σ′;h′〉 � 〈Σ;h〉.

3. Γ;Σ � P:thread and Γ;Σ � h and P,h −→ P′,h′ imply Γ′;Σ′ � P′ :thread and Γ′;Σ′ �
h′ where Γ ⊆ Γ′ and 〈Σ′;h′〉 �� 〈Σ;h〉.

Proof. (1) An arbitrary expression reduction is of the shape E[e],h −→ E[e ′],h′ where
e ,h −→ e ′,h′ is an elementary expression reduction. The proof follows from Lemmas
A.7, 3.5, and 3.6 using Lemma A.9.
(2) We consider the case of rule ReceiveSS→, in which we have h = h′′ :: [kp �→ kq

0 : ṽ]
and:

E[kp.receiveS (x){e1}],h′′ :: [kp �→ kq
0 : ṽ] −→ e1[k

q
0/x] | E[null],h′′ :: [kp �→ ṽ].

By Lemma 3.5 there are Σ1, Σ2,t ′ such that:
1) Σ = Σ1 ◦ Σ2,
2) Γ; Σ1 � kp.receiveS(x){e1} :t ′,
3) Γ,y :t ′; Σ2 � E[y] :t .

By Lemma A.3(4) and 2) we get t ′ = Object and
4) Γ\ x ; Σ′

1,x :η � e1 :t ′′,
5) ended(Σ′

1,x :η),
6) {kp :?(η)} ◦ Σ′

1 � Σ1,
for some Σ′

1,t
′′,η 	= ε.end.

Notice that A(Σ;h) implies:
7) kq

0 	∈ dom(Σ)
and then by 1) and 6) we get:

8) kq
0 	∈ dom(Σ′

1) and kq
0 	∈ dom(Σ2).

1) and 6) imply by Lemma A.1(1)
9) {kp :?(η)} ◦ Σ′

1 ◦ Σ2 � Σ
and then by Lemma A.6(2) for some ψ:

10) Σ(kp) =?(η)ψ,
11) Σ′

1 ◦ Σ2 � Σ[kp �→ ψ�].
5) implies by definition of ◦:

12) Σ′
1 ◦ Σ2 = Σ′

1 ∪Σ2

and then using 7), 8) and 11):
13) Σ′

1,k
q
0 :η∪Σ2 � Σ[kp �→ ψ�],kq

0 :η.
Let Γ′ = Γ, Σ′ = Σ[kp �→ ψ�],kq

0 :η and h′ = h′′ :: [k p̄ �→ ṽ].
Applying Lemma A.5(2) to 4) and 8) we derive:

14) Γ; Σ′
1,k

q
0 :η � e1[k

q
0/x] :t ′′.

By rule Null we have Γ; /0 � null :t ′ and then by 3) and Lemma 3.6 we get:
15) Γ; Σ2 � E[null] :t .

By applying rules Start and Par to 14) and 15) we derive:

Asynchronous Session Types and Progress for Object Oriented Languages 31

16) Γ;Σ′
1,k

q
0 :η∪Σ2 � e1[k

q
0/x] |E[null] : thread

which implies by 13) and Lemma 3.3(2):
17) Γ;Σ′ � e1[k

q
0/x] |E[null] : thread .

By Definition 3.1 A(Σ′;h′) = A(Σ;h). Lastly we get 〈Σ′;h′〉 � 〈Σ;h〉 from Σ(kp) =
?(η)ψ and Σ′(kp) = ψ� and kq

0 ∈ ranc(h).

(3) The interesting case is when the reduction is obtained by an application of rule
Connect→:

E1[connect a s{e1}] |E2[connect a s{e2}], h
−→ E1[e1[k

+
/a]] |E2[e2[k

−
/a]], h :: [k+ �→ ε] :: [k− �→ ε] k+,k− 	∈ h

By Lemma A.4(2) and (1) we have for some Σi,t i:
1) Σ = Σ1 ∪Σ2,
2) Γ; Σi � Ei[connect u s{e i}] : t i (i = 1,2).

By Lemma 3.5 there are Σ1
i ,Σ2

i ,t
′
i and fresh x i (i = 1,2) such that:

3) Σi = Σ1
i ◦ Σ2

i ,
4) Γ; Σ1

i � connect a s{e i} : t ′
i,

5) Γ,x i :t ′
i; Σ2

i � E[x i] : t i.
By Lemma A.3(1) we have for some η:

6) s = begin.η,
7) Γ\ a ; Σ1

i , a :ηi � e i : t ′
i,

where η1 = η and η2 = η.
Let Γ′ = Γ, Σ′ = Σ,kp :η,k p̄ :η and h′ = h :: [k+ �→ ε] :: [k− �→ ε].
Let now ki stand for k+ if i = 1 and for k− if i = 2. Since the ki are fresh by 7) and
Lemma A.5(2) we have:

8) Γ; Σ1
i , k

i :ηi � e i[k
i
/a] : t ′

i,
and from 5) and 8), by Lemma 3.6:

9) Γ; Σi, ki :ηi � Ei[e i[k
i
/a]] :t i.

In fact note that (Σ1
i , k

i : ηi) ◦ Σ2
i must be defined since Σ1

i ◦ Σ2
i is defined and ki is

fresh. For the same reason (Σ1
i , k

i :ηi)◦ Σ2
i = Σi, ki :ηi. From 9) by rules Start and

Par we get:
10) Γ; Σ′ � E1[e1[k

+
/a]] |E2[e2[k

−
/a]] :thread .

By Definition 3.1 A(Σ;h) implies A(Σ′;h′) since the heaps h and h′ only differ for
[k+ �→ ε] :: [k− �→ ε]. Lastly 〈Σ′;h′〉 �� 〈Σ;h〉 by the last clause of Definition 3.7(3).

KeY: A Formal Method for

Object-Oriented Systems

Wolfgang Ahrendt1, Bernhard Beckert2, Reiner Hähnle1, and Peter H. Schmitt3

1 Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

{ahrendt,reiner}@chalmers.se
2 Department of Computer Science

University of Koblenz
beckert@uni-koblenz.de

3 Department of Theoretical Computer Science
University of Karlsruhe
pschmitt@ira.uka.de

Abstract. This paper gives an overview of the KeY approach and high-
lights the main features of the KeY system. KeY is an approach (and a
system) for the deductive verification of object-oriented software. It aims
for integrating design, implementation, formal specification and formal
verification as seamlessly as possible. The intention is to provide a plat-
form that allows close collaboration of conventional and formal software
development methods.

1 Introduction

The KeY Approach and System. This paper gives an overview of the KeY
approach and highlights the main features of the KeY system.

KeY is an approach (and a system) for the deductive verification of object-
oriented (OO) software. It aims for integrating design, implementation, formal
specification and formal verification as seamlessly as possible. The intention is
to provide a platform that allows close collaboration of conventional and formal
software development methods.

Recently, version 1.0 of the KeY system has been released in connection
with the KeY book [3]. The KeY system is written in Java and runs on all
usual architectures. It is available under GPL and can be downloaded from
www.key-project.org.

Towards an Integration of Formal Methods in Software Engineering.
KeY is primarily not a stand-alone tool, but a plugin to (currently two) well-
known CASE tools: Borland Together and the Eclipse IDE. Users can develop a
whole software project, comprised of specifications as well as implementations,
entirely within either of the mentioned CASE tools. The KeY plugin then offers
the extended functionality to generate proof obligations from selected parts of

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 32–43, 2007.
c© IFIP International Federation for Information Processing 2007

beckert@uni-koblenz.de
pschmitt@ira.uka.de
www.key-project.org

KeY: A Formal Method for Object-Oriented Systems 33

specifications and verify them with the KeY prover. The KeY verification com-
ponent, being the core of the KeY system, can also be used as a stand-alone
prover.

KeY supports the OMG standard Object Constraint Language (OCL) [26]
for specification as well as the Java Modeling Language (JML) [19], which is
increasingly used in industrial contexts [5]. Translation of specifications from
OCL and JML into logic, as well as the synthesis of a variety of proof obligations,
is completely automatic. The same is true, to a large extent, for proof search. In
addition, KeY features a syntax-directed editor for OCL that can render OCL
expressions in several natural languages while they are being edited. It is even
possible to translate OCL expressions automatically into fragments of English
and German. This means that KeY provides a common tool and conceptual base
for developers and formal methods specialists. The architecture and interfaces
of KeY are depicted in Fig. 1.

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a
Fig. 1. Architecture and interfaces of the KeY system

2 Full Coverage of a Real World Language

To ensure acceptance among practitioners it is essential to support an indus-
trially relevant programming language as the verification target. We chose Java
Card source code [7] because of its importance for security- and safety-critical
applications. We refrained from using a home-spun sublanguage of Java, because
it is unrealistic to assume that applications are written in it.

34 W. Ahrendt et al.

The KeY prover and its calculus [3, Chapt. 3] support the full Java Card 2.2.1
language. This includes all object-oriented features, Java Card’s transaction
mechanism, the (finite) Java integer types, abrupt termination (local jumps and
exceptions) and even a formal specification (both in OCL [18] and JML1) of the
essential parts of the Java Card API. In addition, some Java features that are
not part of Java Card are supported as well: multi-dimensional arrays, Java class
initialisation semantics, char and String types. In short, if you have a sequen-
tial Java program without dynamic class loading and floating point types, then
it is (in principle) possible to verify it with KeY.

3 Beyond Hoare Logic

KeY is a deductive verification system, meaning that its core is a theorem prover,
which proves formulae of a suitable logic. Different deductive verification ap-
proaches vary in the choice of the used logic. The KeY approach uses Dynamic
Logic (DL) [14], which (like Hoare Logic [16]) is transparent with respect to the
programs that are subject to verification. Programs are neither abstracted away
into a less expressive formalism such as finite-state machines nor are they embed-
ded into a general purpose higher-order logic. Instead, the logic and the calculus
“work” directly on the source code. This transparency is extremely helpful for
proving problems that require a certain amount of human interaction.

DL is a particular kind of modal logic. Different parts of a formula are evalu-
ated in different worlds (states), which vary in the interpretation of functions and
predicates. DL differs, however, from standard modal logic in that the modalities
are “indexed” with pieces of program code, describing how to reach one world
(state) from the other. Syntactically, DL extends full first-order logic with two
additional (mix-fix) operators: 〈 . 〉 . (diamond) and [.] . (box). In both cases, the
first argument is a program, whereas the second argument is another DL formula.
A formula 〈p〉ϕ is true in a state s if execution of p terminates normally when
started in s and results in a state where ϕ is true. As for the other operator, a
formula [p]ϕ is true in a state s if execution of p, when started in s, does either
not terminate normally or results in a state where ϕ is true.2

DL is closed under all its connectives. For instance, in a DL formula 〈p〉ϕ, the
post-condition ϕ may by any DL formula again, like in 〈p〉〈q〉ψ. Also, arbitrary
connectives can enclose box or diamond as in the following formula which states
equivalence of p and q w.r.t. the “output”, the program variable x.

∀ val . (〈p〉 x = val ↔ 〈q〉 x = val) (1)

A frequent pattern of DL formulae is ϕ → 〈p〉ψ, stating that the program p,
when started from a state where ϕ is true, terminates with ψ being true after-
wards. The formula ϕ → [p]ψ, on the other hand, does not claim termination,
and has exactly the same meaning as the Hoare triple {ψ} p {φ}.
1 See http://www.cs.ru.nl/~woj/software/software.html
2 These descriptions have to be generalised when non-deterministic programs are con-

sidered, which is not the case here.

http://www.cs.ru.nl/~woj/software/software.html

KeY: A Formal Method for Object-Oriented Systems 35

Unlike most other variants of DL, KeY DL comprises programs from a real
language, namely Java Card. Concretely, p is a sequence of (zero, one, or more)
Java Card statements. Accordingly, the logic is called Java Card DL. The fol-
lowing is an example of a Java Card DL formula:

o1.f < o2.f → 〈int t=o1.f; o1.f=o2.f; o2.f=t;〉 o2.f < o1.f (2)

It says that, when started in any state where the integer field f of o1has a smaller
value than o2.f, the statement sequence“int t=o1.f; o1.f=o2.f; o2.f=t;” ter-
minates, and afterwards o2.f is smaller than o1.f.

The main advantage of DL over Hoare logic is increased expressiveness: one
can express not merely program correctness, but also security properties [8,20],
correctness of program transformations, or the validity of assignable clauses.
Also, a pre- or post-condition can contain programs themselves, for instance to
express that a linked structure is acyclic. A full account of Java Card DL is
found in the KeY book [3, Chapt. 3].

KeY interfaces with OCL as well as JML specifications, by translating them
(and the specified Java code) into proof obligations in Java Card DL. Following
Fig. 1 from the right to the left, we have essentially four scenarios, varying in
the origin of the DL proof obligations (POs):

(i) Hand-crafted POs, to be loaded from .key files.
(ii) Automatically generated POs

(a) from JML-augmented Java source files, using
– the JML browser of the KeY stand-alone system.
– Eclipse with the KeY plug-in.

(b) from OCL-augmented UML diagrams and Java source files, using Bor-
land Together with KeY extensions.

4 Symbolic Execution

The actual verification process in KeY can be viewed as symbolic execution of
source code. Unbounded loops and recursion are handled by induction over data
structures occurring in the verification target. Alternatively, partial correctness
of loops can also be shown by a rule that uses invariants. Symbolic execution
plus induction as a verification paradigm was originally suggested for informal
usage by Burstall [6]. The idea to use dynamic logic as a basis for mechanising
symbolic execution was first realized in the Karlsruhe Interactive Verifier (KIV)
tool [15]. Symbolic execution is extremely suitable for interactive verification,
because proof progress corresponds to program execution, which makes it easy
to interpret intermediate stages in a proof and failed proof attempts.

Most program logics (e.g., Hoare Logic, wp-calculus) have in common that the
state change effected by a program translates, at some point, into substitutions
applied to formulae. In the KeY approach to symbolic execution, the application
of substitutions is delayed as much as possible; instead of using substitutions, the
state change effect of a program is made syntactically explicit and accumulated

36 W. Ahrendt et al.

in a construct called updates. The role of updates is to record the effects of (a
certain path in) the execution of a program. Only when symbolic execution has
completed are updates turned into substitutions. We omitted updates so far in
the discussion of DL and introduce them by example now.

For instance, when proving formula (2), the prover will after some steps con-
struct the following sequent as an intermediate goal (slightly adjusted for pre-
sentation):3

o1.f < o2.f � {t:=o1.f}〈o1.f=o2.f; o2.f=t;〉 o2.f < o1.f (3)

The expression “t:=o1.f” is an update, which in this case represents the effect
of the symbolically executed initialisation statement. Executing the next Java
statement leads to nested (consecutive) updates “{t:=o1.f}{o1.f:=o2.f}”,
which are merged into one parallel update:

o1.f < o2.f � {t:=o1.f || o1.f:=o2.f}〈o2.f=t;〉 o2.f < o1.f (4)

Soon after, we have

o1.f < o2.f � {t:=o1.f || o1.f:=o2.f}{o2.f:=t}〈〉 o2.f < o1.f (5)

This time, the update merging step results in:

o1.f < o2.f � {o1.f:=o2.f || o2.f:=o1.f}〈〉 o2.f < o1.f (6)

Two things have happened. First, in a parallelisation step, t:=o1.f has been
applied to o2.f:=t. Second, t:=o1.f has been simplified away. This is justified,
because t does not appear in the post-condition. Finally, the empty modality
〈〉 is removed. Only thereafter, the parallel update “meets” the post-condition,
and is applied as a substitution, leading to a trivially true sequent.

The second component of symbolic execution, next to updates, is program
transformation. Java (Card) is a complex language, and the calculus for Java
Card DL performs program transformations to resolve all the complex constructs
of the language, breaking them down to simple effects that can be moved into
updates. For instance, in the case of try-catch blocks, symbolic execution pro-
ceeds on the “active” statement inside the try block, until normal or abrupt
termination of that block triggers different transformations.

Loops can be dealt with by using invariants in the traditional Hoare style.
Alternatively, the calculus allows to combine unwinding with induction, which
we come to in the following section.

5 KeY Is Not Merely a VCG

The KeY system is not merely a verification condition generator (VCG), but a
theorem prover for program logic that combines a variety of automated reason-
ing techniques. The KeY prover differs from most other deductive verification
3 KeY uses a sequent style calculus, see below. For now, it is sufficient to read the

sequent arrow � as an implication.

KeY: A Formal Method for Object-Oriented Systems 37

systems in that symbolic execution of programs, first-order reasoning, arithmetic
simplification, external decision procedures, and symbolic state simplification are
interleaved. This interleaving takes place on the level of proof strategies, but also
on the level of individual rules.

To illustrate the latter point, we discuss a few rules of our sequent calculus.
Sequents have the form φ1, . . . , φn � φ′

1, . . . , φ
′
m, with two (possibly empty) lists

of formulae connected by the sequent arrow �. The meaning of a sequent is that
at least one of the φ′

1, . . . , φ
′
m follows from the conjunction of the φ1, . . . , φn. An

example of a rule in the sequent calculus for Java Card DL is the induction rule
over natural numbers:

Γ � φ(0), Δ Γ � ∀n.(φ(n) → φ(n + 1)), Δ

Γ � ∀n.φ(n), Δ
(7)

The meaning of a sequent calculus rule is that, in order to prove a sequent
matching the conclusion of the rule (here “Γ � ∀n.φ(n), Δ”), it is sufficient
to prove all premisses (two in this case). As usual, the rules are actually rule
schemas and appear properly instantiated in the context of a concrete proof.

But what has the induction rule (7) to do with Java Card DL, as it looks
like a pure first-order rule? The point is that φ matches an arbitrary formula in
Java Card DL, possibly containing Java Card code (in a modality). And indeed,
this rule can be employed for handling loops in φ. After applying (7), one proof
branch handles the “loop exit” case. In the other branch, the step case is handled,
where the loop is unwound once using the loop unwind rule:

Γ � 〈π if (e) {p while(e) p} ω〉φ, Δ
Γ � 〈π while(e) p ω〉φ, Δ

(8)

This is the interplay of symbolic execution and induction which is best de-
scribed by the title of Burstall’s original paper [6]: “Program proving as hand
simulation with a little induction.”

6 User-Friendly Graphical User Interface

In spite of a high degree of automation (see Sect. 8), in many cases there are
significant, non-trivial tasks left for the user. For that purpose, the KeY system
provides a user-friendly graphical user interface (GUI). When proving a property
which is too involved to be handled fully automatically, certain rule applications
need to be performed in an interactive manner, in dialogue with the system. This
is the case when either the automated strategies are exhausted, or else when the
user deliberately performs a strategic step (like a case distinction) manually,
before automated strategies are invoked (again).

In the case of human-guided rule application, the user is asked to solve tasks
like: selecting a proof rule to be applied, providing instantiations for the proof
rule’s schema variables, or providing instantiations for quantified variables of
the logic. The system, and its advanced GUI, are designed to support these

38 W. Ahrendt et al.

Fig. 2. Screenshot of the GUI of the KeY prover

steps well. For instance, the selection of the right rule, out of over 1500(!), is
greatly simplified by allowing the user to highlight any subexpression of the
proof goal simply by positioning the mouse. In the screenshot of the GUI of the
KeY prover displayed in Fig. 2, a try-catch statement is highlighted. The first
active statement in it, the if statement, appears in grey.

A dynamic context menu will offer only those few rules that apply to this
expression, in this case, the rule for a statement within a try-catch block that
is not a throw. Furthermore, the menus provide tooltips for each rule. When
it comes to interactive variable instantiation, drag-and-drop mechanisms greatly
simplify and speed-up the usage of the instantiation dialogues, and in some
cases even allow to omit explicit rule selection. For example, if the user drags an
equation onto a term, the system will try to rewrite the term with the equation.
And if the user drags a term onto a quantifier, the system will try to instantiate
the quantifier with this term.

Other supported forms of interaction in the context of proof construction are
the inspection of proof trees, the pruning of proof branches, stepwise backtrack-
ing, and the triggering of proof reuse.

7 A Simple High-Level Rule Language

The implementation of the sequent proof rules in the KeY prover is closely re-
lated to the pragmatics of interaction within the GUI as described in the previous

KeY: A Formal Method for Object-Oriented Systems 39

section. The rules are written in a high-level language, called the “taclet lan-
guage.” Each rule is represented as one taclet. Besides the conventional declar-
ative semantics, taclets have an operational semantics that defines their prag-
matics in automatic and interactive proof search. The following example shows
a “modus ponens” rule in textbook notation (left) and as a taclet (right):

Γ, φ, ψ � Δ
Γ, φ, φ → ψ � Δ

\find (p −> q ==>) // implication in antecedent
\assumes (p ==>) // side condition
\replacewith(q ==>) // action on focus
\heuristics(simplify) // strategy information

This example taclet consists of four clauses. The arrow “==>”, appearing in
three of them, is the KeY system’s representation of the sequent arrow �. Within
taclets, “==>” is used to indicate whether a matching formula appears on the
left- or right-hand side of the sequent.

The find clause specifies the potential application focus. The taclet will be
offered to the user when selecting a matching focus and if a formula men-
tioned in the assumes clause is present in the sequent. The action clauses
replacewith and add (not present in this example) allow modifying (or replac-
ing) the formula in focus, as well as adding additional formulae. The heuristics
clause records information for the parameterised automated proof search
strategy.

Taclets are not only used to represent calculus rules, but also lemmata. The
latter can be proven correct against the provided taclets [4]. The taclet language
is quickly mastered and makes the rule base easy to maintain and extend. A full
account of the taclet language is given in the KeY book [3, Chapt. 4].

8 Automated Proof Search

For automated proof search, a number of predefined strategies are available in
KeY using different rule sets that are, for example, optimised to symbolically
executing loop-free programs or proving pure first-order formulae.

In order to better interleave interactive and automated proof construction,
KeY uses a proof confluent sequent calculus, which means that automated proof
search does not require backtracking over rule applications. The taclet language
and application mechanism are designed in such a way that the user can write
only rules with local effects on sequents, and the handling of meta variables,
skolemisation, constraints, etc. is taken care of automatically, to reduce the risk
of inadvertently introducing rules which damage confluence.

The automated search for quantifier instantiations uses meta variables4 that
are place-holders for terms. Instead of backtracking over meta-variable instan-
tiations, instantiations are postponed to the point where the whole proof can
be closed, and an incremental global closure check is used. Rule applications

4 This kind of variables are known in the tableau theorem proving community under
the name of “free variables” [10].

40 W. Ahrendt et al.

requiring particular instantiations (unifications) of meta variables are handled
by attaching unification constraints to the resulting formulas [11].

There is a back end to SMT-LIB syntax5 for proving near-propositional proof
goals with external decision procedures.

9 Customisable Verification

The KeY system offers to customise the rule set used for verification. For in-
stance, the user can choose between different semantics of the primitive Java
integer types byte, short, int, long, and char. Options are: the mathematical
integers (easy to verify, but not a faithful model of Java and, hence, unsound),
mathematical integers with overflow check (sound, reasonably easy to verify,
but unable to verify programs that depend on Java’s finite ring semantics), and
a faithful semantics of Java integers (sound, complete, but difficult to verify).
KeY1.0 comes with the mathematical integer semantics chosen as default option,
to optimise usability for beginners. However, for a sound treatment of integers,
the user should switch to either of the other semantics. Alternatively, one can
employ the proof reuse feature of KeY, to first construct a proof using the mathe-
matical integer option, and then replay the proof with the mathematical overflow
semantics selected.

Other examples where one can customise the degree of faithfulness, versus
simplicity, are object creation, and null pointer treatment.

10 A Broader Perspective on Verification

One of the most important insights we gained from our work is the realisation
that verification technology with symbolic execution can be seen as the base
technology of a whole range of applications in software analysis, many of which
are more automatic than full verification. In the future we will develop the KeY
system into a general software analysis platform where formal verification is only
one of many analysis techniques.

For example, in the area of model-based test case generation [2,9] the prover is
used to compute path conditions and to identify infeasible paths. Fully automatic
white-box unit test generation for Java Card is possible based on approximative
attempts at formal verification of the implementation under test [9]. White-box
testing can also be done by combining deduction-based specification extraction
and black-box testing, i.e., one generates specifications for given programs and
then uses these specifications as input for black-box testing tools [2].

Another usage of verification is in security analysis [8], where the absence
and presence of secure information flow including information declassification
is shown. Since many security analyses are implemented on the basis of type

5 See http://combination.cs.uiowa.edu/smtlib/

http://combination.cs.uiowa.edu/smtlib/

KeY: A Formal Method for Object-Oriented Systems 41

systems [23] it is promising to try to combine the advantages of type-based and
deduction-based methods. In [13] it is shown that dynamic logic can serve as a
common framework where such a combination can be realized.

Most of the time, verification attempts are not successful, because the spec-
ification or the implementation contains bugs. In this case, it is extremely valu-
able for the user to obtain information from failed proof attempts without
having to wade through large proof trees. Generating counter examples for
failed proofs, so-called “disproving” of programs, is only started to being ex-
plored [22].

It is also possible to cast symbolic program execution to the user interface
and the functionality offered by a symbolic source code debugger. One can then
set breakpoints, watches, and inspect the intermediate program state. But in
contrast to a conventional debugger, such a truly symbolic debugger is based on
a symbolic execution tree and can represent not only one program run, but all
possible program runs [1]. We expect interesting synergies on both sides from
combining verification with debugging.

11 Applications

Among the major achievements in program verification using the KeY system
are the treatment of the Demoney case study, an electronic purse application
provided by Trusted Logic S.A. [3, Chapt. 14] and the verification of a Java
implementation of the Schorr-Waite graph marking algorithm [3, Chapt. 15].
This algorithm, originally developed for garbage collectors, has recently become
a popular benchmark for program verification tools. As far as we are aware, the
KeY study provides the first verification of an executable Java implementation.
A case study [17] performed within the HIJA project6 included formal verifi-
cation of the lateral module of a flight management system being part of the
on-board control software from Thales Avionics. Recently, for the first time an
implementation of the Mondex banking card case study [24] was verified with
the KeY prover [25].

The flexibility of KeY w.r.t. the used logic and calculus manifests itself in
the fact that the prover has been chosen as a reasoning engine for a variety
of other logics. These include the mechanisation of a logic for Abstract State
Machines [21] and the implementation of a calculus for simplifying OCL con-
straints [12]. A version of the KeY prover that supports the C programming
language will be released later this year.

KeY is also very useful for teaching logic, deduction, and formal methods.
Its graphical user interface makes KeY easy to use for students. They can step
through proofs using different degrees of automation (using the full verification
calculus or just the first-order core rules). The authors have been successfully
teaching courses for several years using the KeY system. An overview and course
materials are available at www.key-project.org/teaching.

6 See http://www.hija.info

www.key-project.org/teaching
http://www.hija.info

42 W. Ahrendt et al.

References

1. Baum, M.: A verifying debugger. Master’s thesis, Department of Computer Science,
Institute for Theoretical Computer Science, to appear (2007)

2. Beckert, B., Gladisch, C.: White-box testing by combining deduction-based spec-
ification extraction and black-box testing. In: Gurevich, Y. (ed.) Proceedings, In-
ternational Conference on Tests and Proofs (TAP), Zürich, Switzerland. LNCS,
Springer, Berlin Heidelberg New York (2007)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

4. Beckert, B., Klebanov, V.: Must program verification systems and calculi be veri-
fied?. In: Proceedings, 3rd International Verification Workshop (VERIFY), Work-
shop at Federated Logic Conferences (FLoC), Seattle, USA (2006)

5. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer 7(3), 212–232 (2005)

6. Burstall, R.M.: Program proving as hand simulation with a little induction. In:
Information Processing, vol. 74, pp. 308–312. Elsevier, Amsterdam, North-Holland
(1974)

7. Chen, Z.: Java Card Technology for Smart Cards: Architecture and Programmer’s
Guide. In: Java Series, June 2000, Addison-Wesley, London, UK (2000)

8. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of secure
information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol. 3450,
pp. 193–209. Springer, Heidelberg (2005)

9. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich, Y.
(ed.) Proceedings, International Conference on Tests and Proofs (TAP), Zürich,
Switzerland. LNCS, Springer, Berlin Heidelberg New York (2007)

10. Fitting, M.C.: First-Order Logic and Automated Theorem Proving, 2nd edn.
Springer, New York (1996)

11. Giese, M.: Incremental closure of free variable tableaux. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 545–560. Springer,
Heidelberg (2001)

12. Giese, M., Larsson, D.: Simplifying transformations of OCL constraints. In: Briand,
L., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, Springer, Heidelberg (2005)

13. Hähnle, R., Pan, J., Rümmer, P., Walter, D.: Integration of a security type system
into a program logic. In: Montanari, U., Sanella, D. (eds.) Proc. Trustworthy Global
Computing, Lucca, Italy. LNCS, Springer, Berlin Heidelberg (2007)

14. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
15. Heisel, M., Reif, W., Stephan, W.: Program verification by symbolic execution and

induction. In: Morik, K. (ed.) Informatik Fachberichte. Proceedings, 11th German
Workshop on Artificial Intelligence, vol. 152, Springer, Berlin Heidelberg (1987)

16. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580, 583 (1969)

17. Hunt, J.J., Jenn, E., Leriche, S., Schmitt, P., Tonin, I., Wonnemann, C.: A case
study of specification and verification using JML in an avionics application. In:
Rochard-Foy, M., Wellings, A. (eds.) Proceedings, 4th Workshop on Java Tech-
nologies for Real-time and Embedded Systems (JTRES). ACM Press, New York
(2006)

18. Larsson, D., Mostowski, W.: Specifying Java Card API in OCL. In: Schmitt, P.H.
(ed.) OCL 2.0 Workshop at UML 2003, ENTCS, vol. 102C, pp. 3–19. Elsevier,
Amsterdam, North-Holland (2004)

KeY: A Formal Method for Object-Oriented Systems 43

19. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P.: JML Reference Manual. Draft Revision 1.200 (February
2007)

20. Mostowski, W.: Formalisation and verification of Java Card security properties in
dynamic logic. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 357–371.
Springer, Heidelberg (2005)

21. Nanchen, S., Schmid, H., Schmitt, P., Stärk, R.F.: The ASMKeY prover. Technical
Report 436, Department of Computer Science, ETH Zürich (2004)

22. Rümmer, P., Shah, M.A.: Proving programs incorrect using a sequent calculus for
Java Dynamic Logic. In: Gurevich, Y. (ed.) Proceedings, International Conference
on Tests and Proofs (TAP), Zürich, Switzerland. LNCS, Springer, Berlin Heidel-
berg (2007)

23. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5–19 (2003)

24. Stepney, S., Cooper, D., Woodcock, J.: An electronic purse: Specification, refine-
ment, and proof. Technical monograph PRG-126, Oxford University Computing
Laboratory (July 2000)

25. Tonin, I.: Verifying the Mondex Case Study: the KeY approach. Technical re-
port, Department of Computer Science, Institute for Theoretical Computer Science
(April 2007)

26. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Mod-
els Ready for MDA. In: Object Technology Series, August 2003, Addison-Wesley,
London, UK (2003)

Verifying Distributed, Event-Based Middleware

Applications Using Domain-Specific
Software Model Checking�

L. Ruhai Cai, Jeremy S. Bradbury, and Juergen Dingel

School of Computing, Queen’s University
Kingston, Ontario, Canada

{cai,bradbury,dingel}@cs.queensu.ca

Abstract. The success of distributed event-based infrastructures such
as SIENA and Elvin is partially due to their ease of use. Even novice
users of these infrastructures not versed in distributed programming can
quickly comprehend the small and intuitive interfaces that these systems
typically feature. However, if these users make incorrect assumptions
about how the infrastructure services work, a mismatch between the in-
frastructure and its client applications occurs, which may manifest itself
in erroneous client behaviour. We propose a framework for automatically
model checking distributed event-based systems in order to discover mis-
match between the infrastructure and its clients. Using the SIENA event
service as an example, we implemented and evaluated our framework by
customizing the Bandera/Bogor tool pipeline. Two realistic Java appli-
cations are implemented to test and evaluate the framework.

1 Introduction

The notion of an event has established itself as a successful communication and
integration mechanism. In modern, object-oriented systems, events are often
present on the language-, component-, and middleware-level. For instance, events
are indispensable for GUI programming, allow the easy customization of frame-
works such as Eclipse though “plug-ins” that implement some “EventListener”
interface, provide the basis for the implementation of many design patterns (e.g.,
the model-view-controller and observer patterns), and are an important means
of communication in many object-oriented middleware infrastructures such as
CORBA, Elvin, and Siena. Events even form a central ingredient to the model
of computation underlying UML 2 [17].

In this paper, we address the challenge of verifying applications that have
been built on top of a distributed, event-based infrastructure. The analysis of
these kinds of system is necessary, because clients are often concurrent which
increases the complexity and the likelihood of unwanted behaviour. Moreover,
an application running on top of an event-based infrastructure will only function
� This work was supported by the Natural Sciences and Engineering Research Council

of Canada (NSERC).

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 44–58, 2007.
c© IFIP International Federation for Information Processing 2007

Verifying Distributed, Event-Based Middleware Applications 45

correctly if it uses the services of the infrastructure appropriately and does not
make any incorrect assumptions on how the service works. Despite the complex-
ity of their underlying implementation, distributed event-based infrastructures
typically have a small and intuitive interface. Unfortunately, the intuitive nature
of the interface can be misleading. This observation is supported by one of the
authors of the distributed event-based infrastructure SIENA [4]:

“...people make a lot of assumptions on the order in which they will
receive events. In other words, they program their applications with a
synchronous communication model in mind, and end up getting weird
results when events queue up and get delivered in an unexpected order.”

For instance, SIENA clients may assume that events are delivered in the same
order in which they have been sent, or that they will never receive an event
to which they have unsubscribed. In reality, SIENA is considered a best-effort
service and does not maintain the order of events. Therefore, clients using SIENA
must be designed and implemented accordingly [5]:

“...the implementation of SIENA must not introduce unnecessary delays
in its processing, but it is not required to prevent race conditions induced
by either the external delay or the processing delay. Clients of SIENA
must be resilient to such race condition; for instance, they must allow
for the possibility of receiving a notification for a canceled subscription.”

The goal of our research is to develop a framework to discover if clients make
incorrect assumptions about the event service and if a mismatch between the
service and its clients has occurred that prevents the overall application from
behaving as desired. Unfortunately, it can be very difficult to discover this kind
of architectural mismatch and to determine that, for instance, the clients are
not robust enough to handle possible race conditions. The main reasons include:
First, clients are often concurrent which can render conventional testing meth-
ods insufficient. Second, the distributed nature of these systems prevents the
straight-forward application of more sophisticated quality assurance techniques
such as randomized testing, model checking, or static analysis. For instance, to
be able to analyze a single client its environment has to be modeled. However,
the construction of a correct and adequate environment model typically is quite
difficult. Third, implementations of middleware infrastructures are large and
complicated enough that the automatic extraction of a model is not feasible.

Our approach to analyzing distributed event-based systems leverages the sys-
tem architecture to split the analysis into two smaller tasks. In one task, we
summarize the behaviour of the infrastructure services with a manually created
finite-state machine model and verify that the clients function correctly when
composed with this model. In the resulting system, communication between
distributed clients via the event service is replaced by message-passing between
parallel threads. Automatic model extraction and optimization are used as much
as possible to ensure that the resulting model is accurate and tractable. In the
second task, we verify that the implementation of the event infrastructure con-
forms to the model. In this paper, we focus on the first task and leave the second

46 L.R. Cai, J.S. Bradbury, and J. Dingel

for future work. In particular, we suggest to accomplish the first task by means
of a semi-automatic framework that leverages the increasing power, maturity,
availability, and customizability of software model checkers.

To prove the viability of the framework, we implemented it for use with the
SIENA event service. A customized version of the Bandera/Bogor tool pipeline is
used for model extraction, optimization, and analysis. While the default version
of the pipeline provided most of the required functionality, the model extraction
phase had to be customized to allow for the automatic integration of different
event service/infrastructure models. Moreover, the Indus slicer and the Bogor
model checker were customized.

Model checking has already been suggested as an analysis technique for event-
based systems using the implicit-invocation architecture [10,1]. However, the
scope of this previous work was limited to systems with centralized event services
and did not attempt to analyze realistic distributed event services. Moreover, the
systems analyzed by previous work were idealized examples while our work is
applied directly on actual implementations. A third contribution of our work
is the application of domain-specific software model checking techniques and a
detailed description of the customizations necessary for using a state-of-the-art
software model checker.

We will first provide a description of distributed event-based systems and the
Bandera/Bogor pipeline in Section 2. In Section 3, we outline our conceptual
framework before describing an implementation of the framework for the SIENA
event service using the Bandera/Bogor model checking pipeline. In Section 4,
we evaluate our implementation using a chat program and a peer-to-peer file
sharing system. In Section 5, we discuss related work and in Section 6 we provide
conclusions and future work.

2 Background

2.1 Distributed Event-Based Systems

There are two basic kinds of clients in an event-based system: publishers and
subscribers. Publishers publish events or notifications, to the event service, and
subscribers subscribe with the event service to the type of events they are inter-
ested in. When the event service receives a notification from a publisher, it goes
through all subscriptions and dispatches the event to those who have subscribed
to it. Publishers announce events without knowing the identity of the sub-
scriber components and do not wait for any response from subscribers. Therefore,
event-based systems allow for anonymous, asynchronous communication which in
turn provides loose coupling between client components and thus ensures
maintainability.

There are three main types of distribute event-based systems [15]: co-located
middleware – the event service is in the same address space as the clients (e.g.,
mSECO [11]); single separated middleware – the event service is located on a sin-
gle machine while the clients are distributed on other machines (e.g., CORBA);

Verifying Distributed, Event-Based Middleware Applications 47

multiple separated middleware – clients and event service are distributed and ex-
ecute on different machines or address spaces (e.g., SIENA). While our approach
could be applied to all three types of system, we chose SIENA because both the
clients and middleware are distributed making it a challenging architecture in
which to discover mismatch.

SIENA. In SIENA, the event service is implemented with one or more servers
connected in a hierarchical, acyclic peer-to-peer, generic peer-to-peer or hybrid
topology. Events in a SIENA system are attribute-value pairs. A client can sub-
scribe to an event by sending a subscription, which contains the filter patterns
that specify the types of events it wants to receive. A filter pattern is a set of (at-
tribute, operator, value) triples. The operator is normally a binary comparison
operator, such as “=”, “>”. Each triple specifies the value range for an attribute
and all triples in a filter are combined conjunctively. The event message noti-
fications and filters are used in SIENA to publish events, subscribe to a given
filter, unsubscribe from a filter, advertise intent to generate events that match a
filter and to unadvertise the publishing of events that will match a filter. In our
work we are only interested in the publication and subscription of events and
do not handle advertisements. As discussed earlier, client application developers
often make incorrect assumptions regarding the behaviour of the SIENA event
service. The most prominent incorrect assumptions appear to be:

1. “A client will not receive notifications to which it is not subscribed.”
2. “Notifications will be delivered in the order in which they have been sent.”
3. “Notifications are never lost.”

Later in this paper, we will focus on discovering mismatch due to the first two
assumptions in our chat program and peer-to-peer file sharing system.

2.2 Domain-Specific Model Checking with Bandera/Bogor

The Bandera/Bogor tool pipeline is a set of tools for automatically extracting
finite-state models from Java source code for model checking [7,16]. The pipeline
has an open structure and the order of the tools in the pipeline is determined
in a configuration file by specifying that the output of one tool forms the in-
put of the next tool in the pipeline. Tools can easily be added to or removed
from the pipeline by modifying the configuration file. The main tools in the
Bandera/Bogor tool pipeline are:

– Soot: translates Java class into Jimple, an intermediate representation suit-
able for optimization.

– Indus: slices the Jimple code.
– J2B: transforms the Jimple code into BIR, the input language for the model

checker Bogor.
– Bogor: model checks the BIR models.

48 L.R. Cai, J.S. Bradbury, and J. Dingel

Conceptual
Framework for
Architectural

Mismatch

Event Service violates property
(Architectural Mismatch)

Event Service satisfies property
(No Architectural Mismatch)

Client Implementations (1..N)

Event Service Model (ESM)

Expected Client Behavior Property
(e.g., global invariant, assertion)

Fig. 1. Conceptual Framework

This pipeline is ideal for our research because both the transformation from
Java to BIR and the model checking using Bogor is highly flexible can easily be
customized to better support SIENA programs written in Java. The J2B tool,
for instance, allows the user to add arbitrary BIR code to the model and to
replace portions of the automatically generated BIR code. Bogor, on the other
hand, can be extended with new primitive types, expressions and commands to
provide better support for the modeling of different domains. Moreover, Bogor
has a highly modular, open architecture which allows, for instance, new search
algorithms or optimizations to be swapped in. We will discuss our specific cus-
tomization of the Bandera/Bogor tool pipeline in Section 3.1.

3 Conceptual Framework

The input and output required and produced by our conceptual framework is
given in Figure 1. Specifically, our framework requires three input artifacts:

1. Client implementations: we use actual implementations of client components
written in a program language like Java.

2. Event service model (ESM): The ESM is assumed to be formulated in the in-
put language of the model checker employed in the framework. Moreover, the
ESM is assumed to correctly capture the behaviour of the event infrastruc-
ture from a client’s perspective. At the moment, the framework offers no
validation to ensure the implementation of the infrastructure actually con-
forms to the ESM.

3. Expected client behavior properties: A formal specification of a property that
some or all of the clients need to satisfy. Only incorrect client assumptions
that cause this property to fail will lead to mismatch that our framework
is able detect. While property specifications could be provided using any
formalism that the model checker understands (e.g., LTL, CTL, Buechi Au-
tomata), in this paper, we will assume that the specification is given as a
global system invariant or an assertion.

The conceptual framework will take the client component implementations
and transform them into the input language for model checking. During the
transformation, common optimizations include slicing and various abstraction
techniques such as data and predicate abstraction are used to reduce the state
space. The client component models produced via transformation are integrated
with the manually created event service model (ESM). The combined system

Verifying Distributed, Event-Based Middleware Applications 49

model (client models + ESM) is input to a model checker that verifies the ex-
pected client behavior properties and reports any violations together with a
counter example. The conceptual framework allows client applications to be
checked for different incorrect assumptions through the use of different ESMs.
For instance, to see if the correct behaviour of the clients depends on the preser-
vation of the event order, an ESM is built which does not preserve event order.
To determine if a client is resilient to message loss, an ESM is built in which
messages can get lost.

It is important to note the advantages and disadvantages of using a manually
created ESM. A clear disadvantage is that the conformance of the infrastructure
to the ESM is not checked. If the ESM does not reflect the behaviour of the
infrastructure, our analysis may provide spurious results. Moreover, user effort
is required to construct the ESM. However, despite the availability of automatic
model extractors such as Bandera’s J2B tool, the automatic extraction of an
ESM suitable for model checking from the infrastructure code is currently not
an option, due to the size, complexity and typically distributed nature of event
infrastructures. A manually created ESM, on the other hand, will be consid-
erably more succinct. Moreover, one ESM could be used for checking several
applications so that the cost of building it can be amortized across multiple
uses. In conclusion, we feel that a manually created ESM is the best option, and
note conformance checking between ESM and the infrastructure implementation
as an important direction for future work.

3.1 Example Implementation of Framework Using Bandera/Bogor

In this section, we will describe an implementation of our conceptual framework
using a customization of the Bandera/Bogor tool pipeline (see Figure 2). To
test the feasibility of the framework, we chose Java client applications that use
SIENA as the underlying distributed event-based infrastructure.

Client application transformation and optimization. The Java source
code of the client application is translated into a BIR model for model checking
using Soot to translate from Java to Jimple, Indus to slice and optimize the Jim-
ple representation, and J2B to translate the sliced Jimple into the BIR modeling
language.

Event service model creation. The behaviour of the SIENA event service
is captured by manually created BIR models (ESMi). The SIENA ESM (see
Figure 3) is quite small (less than 100 LOC of BIR code) and simple. It uses
two data structures to handle the events, a communication channel between the
client and the service model, and an event set to store the events at the server
before they are dispatched. As we discussed in Section 1, SIENA event service
does not guarantee the order of dispatching of events. By using an event set,
we will be able to exhaustively check all dispatching orders of the events. Since
events will be removed from the set in every possible order, a regular FIFO queue
is sufficient to simulate the communication channel. Bogor extensions are used to
implement the event set and the message queue. The SIENA ESM is developed

50 L.R. Cai, J.S. Bradbury, and J. Dingel

Fig. 2. Software model checking framework for SIENA

Fig. 3. Event Service Model (ESM) and Client Model Interaction for SIENA

Verifying Distributed, Event-Based Middleware Applications 51

function ThinClient.subscribe (Pattern p) {
loc loc0: invoke initialize()

goto loc1;
loc loc1: do invisible {

sub := new Event;
sub.pattern := p.pattern;
sub.type := EVENT TYPE.SUBSCRIBE;
Set.add<Event>(events, sub);

} return;
}

Fig. 4. Subscribe method in the event service model

as an active thread that waits for the arrival of events and handles them based
on their types. The current implementation of the model only supports three
types of event operations: subscribe, unsubscribe and publish. Note that in our
examples, we do not check if clients are resilient to message loss. To do that, an
ESM would have to be created in which message can get lost. Recall that the
ESM for SIENA is independent of the client applications so the same ESM can
be reused to check for mismatch in all SIENA client applications.

Client model and ESM integration. The integration of the automatically
generated client application model and the ESM to form a system model happens
in the J2B tool. Recall that that the main function of the J2B tool is to translate
Jimple code into BIR models. After the BIR models are generated for the client
application, the J2B tool allows the user to replace methods and threads in the
models with user specified methods or threads. It also allows the user to add
additional BIR extensions, global variables, methods and threads to the existing
BIR model. The SIENA ESM is added as a BIR addition. In order to integrate
the client and service models, the methods on the client side that handle the
communication between the client and the service need to be replaced. The
SIENA implementation provides a standard ThinClient class as an interface for
the SIENA client to exchange events with the SIENA event service. Thus we
only need to replace all the methods in the ThinClient class. As the ThinClient
is standard, the replacement can be reused for different client applications with
minor customization. Figure 4 shows the subscribe method in the ESM that will
be invoked instead of the subscribe method in SIENA when Bogor carries out
its analysis. A large portion of the code of the ThinClient class handles low level
socket communication. As all methods of the ThinClient class will be replaced,
there is no need to translate this code into BIR. Thus only method stubs are
kept for the ThinClient class.

Model and property integration. A property that a client application is
expected to satisfy is provided as an assertion or global invariant. On the one
hand, an assertion can be inserted manually into the BIR code at the appropriate
place. Typically, we want to check if the behaviour carried out in response to
the receipt of a notification is correct. Therefore, the assertion is often placed

52 L.R. Cai, J.S. Bradbury, and J. Dingel

Table 1. A comparison of the Java source and BIR model sizes for our examples

Example program # pro-
cesses

Java
classes

Java
LOC

average #
BIR LOC

average #
relevant
BIR LOC

Chat program 3 11 906 8974 1815
Peer-to-peer file sharing system 3 16 1188 8133 2426

in the notify() method of a client (see Figure 3). which is called whenever the
client receives a notification from the event service. On the other hand, a global
invariant is inserted into an active monitor thread that is added to the integrated
client and service models.

Model checking the system model. The combined client model and ESM
is checked by the Bogor model checker with respect to the assertion or global
property invariant. We will discuss specific model checking results as well as the
relationship between property failures and architectural mismatch in the next
section during our evaluation of two real Java applications that use the SIENA
event service.

4 Evaluation

To evaluate the effectiveness of our implementation of the framework two re-
alistic examples are provided – a chat example and a peer-to-peer file sharing
system. Table 1 indicates the size of each example implementation as well as the
size of the BIR models. For each example the average BIR model size is given
which correspond to the average of the optimized model sizes for each property.
Additionally, the average relevant model size column refers to the average por-
tion of the BIR model that corresponds to actual client source code and excludes
the details related to included Java library files.

4.1 Chat Program

Description. In this program, there are an arbitrary number of distributed
clients, which can subscribe, unsubscribe, create and close chat rooms, and post
messages to and display messages from the chat rooms. The system uses the
SIENA event service for message exchange. The basic events in the system are
SubscribeChatRoom, UnSubscribeChatRoom, CreateChatRoom, CloseChatRoom
and PostMessage. Each client acts as both a publisher and a subscriber and
maintains a list of all active chat rooms.

Our chat program has a GUI interface to display posted messages for each chat
room. Unfortunately, the current version of Bandera does not support the Java
Swing library, which is used to build the GUI for this program. However, issues
of architectural mismatch in SIENA client applications like the chat program
require analyzing and model checking the interaction between the client and

Verifying Distributed, Event-Based Middleware Applications 53

the SIENA event service not the GUI interface. Therefore, for the purposes of
our analysis we separate the GUI from the rest of the application.To facilitate
the removal of the GUI code, we assume hat the client has been implemented
using the MVC (Model-View-Controller) architecture, which provides a clean
separation between the view (GUI) component and the model and control part of
the system. Recall that transforming client applications into client BIR models in
Bandera requires as input the client application byte code. Thus, the application
must compile even with the GUI code removed. A skeleton of the GUI classes
needs to be kept with all method body and the Java Swing class names removed.
This is a manual preprocessing step that is done prior to using our framework.
Additionally, some of the skeleton GUI classes are replaced with BIR code during
the model integration to simulate any interaction between the GUI and the
controller that is required during model checking.

Analysis. For the chat program we consider the analysis of two properties both
of which demonstrates architectural mismatch between chat client applications
and the SIENA event service.

c1 : ChatClient s: SIENA c2: ChatClient

subscribe

publish(create)

notify(close)
publish(close)

notify(create)

(create, close)

Fig. 5. Counter example for Chat
Rooms Close Correctly

c1 : ChatClient s : SIENA c2 : ChatClient

subscribe(room1)

publish(room1)
notify(room1)

publish(room2)

publish(room1)

subscribe(room2)

notify(room2)

notify(room1)

unsubscribe(room1)

Fig. 6. Counter example for Dis-
played Msgs Always for Current-
Chat Room

Property 1 : Chat rooms are always closed properly. In this case, the client creates
a chat room and then closes it. We use a set to store the list of chat rooms which
the client maintains. When a chat room is created, the chat room number is
added to the list, and when it is closed, it is removed from the list. In this
example, the room list is empty at the beginning and there is only one chat
room being created and closed. Therefore, the set will be empty if the chat room
is closed properly. The property is expressed as an assertion, which is inserted
into the notify() method of the client:

assert allEventsDelivered -> chatRoomList.isEmpty();

where -> denotes implication. The analysis of the chat program with this as-
sertion using our framework shows that the assertion fails because the event

54 L.R. Cai, J.S. Bradbury, and J. Dingel

service does not preserve event order. The CreateChatRoom and RemoveChat-
Room events are not commutative. If the events are delivered in the right order,
a chat room will be created and closed properly. But if the order is reversed,
as shown in Figure 5, the chat room remains open after these two events are
delivered. In conclusion, the correct functioning of the operation of closing chat
room relies on an implicit assumption (preservation of message order) which is
not satisfied by the SIENA event service.

Property 2 : Displayed messages are always for the current chat room. There
are two steps involved in switching chat rooms: unsubscription from the current
chat room and subscription to a new chat room. This property is expressed as
an assertion which is again located in the client’s notify() method:

assert (PostMessage.roomName == currentRoomName);

This assertion states that the room name of the incoming message is the cur-
rent room name and is evaluated whenever a message is received. The analysis
using our framework shows that this assertion fails with a counter example as
shown in Figure 6. Since it is possible in SIENA for the client to receive unsub-
scribed events, it is possible for the client to receive messages for the previous
chat room after switching to a new chat room. If these messages are not processed
properly, as is the case in our example, they might be displayed in the wrong
chat room.

4.2 Peer-to-Peer File Sharing Example

Description. In the paper [13], the author shows how to use SIENA to implement
a file-sharing service similar to Gnutella – a well-known peer-to-peer file sharing
service. This example was also used in other research on compositional reasoning
of descriptions of architectural middleware [3]. Following the ideas in [13], we have
implemented a prototype of a peer-to-peer file sharing service as a client applica-
tion of SIENA. In this prototype, a client can play two roles: file provider (sub-
scriber) and query originator (publisher). There are three message types, which
are mapped to the communication events of the underlying event-based system.
First, Offer messages are sent out by file providers as a subscription of queries.
An offer message describes the files located on a host. Second, Query messages
are publications that a query originator sends to describe the files it is interested
in with patterns. A query message publication will be delivered by the event ser-
vice to all file providers who offer the files matching the patterns. Third, Response
messages are generated by the file provider and sent back to the query originator
via the event service. A response message is actually a notification that contains
the detailed description of the files, which match the query as well as a return
address, which will be used by the query originator.

Similar to the chat program, the peer-to-peer file sharing example has a GUI
interface, that we have implemented using the MVC pattern. Also, since we are
mainly concerned with the mismatch between the client and the SIENA event
service, the actual file sharing portion of the program is irrelevant and thus not
implemented.

Verifying Distributed, Event-Based Middleware Applications 55

Analysis. We evaluate potential mismatch between SIENA and the peer-to-
peer client applications by evaluating two properties.

Property 1 : The displayed responses are for the current search. This property is
an assertion located in the notify() method of the query originator:

assert (currentQuery.pattern == Notification.pattern);

The model checking result shows that this assertion fails. When the query
originator starts a query, it sends out the query and subscribes to the response
from the file provider. The user of a query originator may choose to stop re-
ceiving responses to the current query and start a new query by unsubscribing
the old response and sending out a new query (as shown in Figure 7). With
SIENA, a query originator may receive unsubscribed responses. However, due
to architectural mismatch, the query originator in this example assumes that no
unsubscribed responses will be received and that all received responses will be
displayed as the responses for the current query.

Property 3 : No queries are received after a file provider revokes the offer. This
property is expressed with the following assertion in the notify() method of the
file provider:

assert offerRevoked(p) -> (Notification.pattern != p);

Model checking using the framework determines that the assertion is violated
with the counter example shown in Figure 8. Consider a file provider that stops
sharing certain files by sending a revokeOffer(pattern) event (i.e., an unsubscrip-
tion). In our example the SIENA event service sends out a response every time
a query is received assuming no queries for the offer will be received after it is
revoked. But since this is not always the case files can still be shared after being
revoked.

: FileProvider : SIENA : QueryOriginator

offer(f1,f2)

query(f1)

response(f1)

response(f2)

query(f2)

query(f1)

subscribe(f1)

unsubscribe(f1)

query(f2)

subscribe(f2)

response(f1)

response(f2)

Fig. 7. Counter example for Dis-
played Responses For Current Search

: FileProvider : SIENA : QueryOriginator

offer(f1)

query(f1)

query(f1)
subscribe(f1)

response(f1)
response(f1)

revokeoffer(e1)

Fig. 8. Counter example for No
Queries After Revoke Offer

56 L.R. Cai, J.S. Bradbury, and J. Dingel

Table 2. Anaylsis results for all global system invariants and assertions

Global system invariant or assertion Result Time # of Reason for
(h:m:s:) states mismatch

Chat program
Chat Rooms Close Correctly False 00:25:53 67291 Reordering
Displayed Msgs Always For Curr Room False 01:23:23 222566 Unsubscription

Peer-to-peer file sharing system
Received Responses For Current Search False 00:00:43 2379 Unsubscription
No Queries After Revoke Offer False 00:01:08 3008 Unsubscription

4.3 Summary

We have successfully used our framework to identify architectural mismatch be-
tween two realistic client applications and the SIENA event service. The counter
examples produced were used to locate the bugs and correct the programs.
Table 2 summarizes the results of our analysis together with some relevant met-
rics. All of the timing results were achieved on a Linux system with 5 GB of
memory and four 3 GHz processors.

One drawback to our current approach is limitations of applying it to GUI-
basd event systems. For both of our GUI examples a limited amount of manual
modification of either the input Java code or the the generated BIR model was
required and we have not considered how to check applications that do not use
the MVC pattern. Moreover, our SIENA model does currently not support the
advertise and unadvertise operations and complex filters available in SIENA.
Finally, state space explosion only allowed minimal configurations with only 3
processes to be analyzed. Nonetheless, we believe that we have presented a viable
approach to the discovery of architectural mismatch in distributed event-based
system implementations and that most of the limitations mentioned above can
be mitigated or even removed with further research.

5 Related Work

Several existing projects have focused on model checking event-based systems
using publish/subscribe architectures [10,1,12,21]. The work started by Garlan,
Khersonsky and Kim [10] and later extended by Bradbury and Dingel [1] focuses
on model checking systems with a centralized event services, not distributed.
Further extensions to this work have allowed for the model checking of event
systems written in a special purpose language, IIL [21]. The Cadena project
uses an approach to model checking systems that use CORBA [12]. Similar to
our project, Cadena uses Bogor as a model checker, however, unlike our work
Cadena requires manual specification of component behavior. Another related
project by Caporuscio et al. focuses on compositional model checking of mid-
dleware specifications but does not consider middleware implementations which
is the focus of our paper [3]. Other related work in the area of event-based sys-
tems includes a semi-automatic approach to the analysis of GUI systems using

Verifying Distributed, Event-Based Middleware Applications 57

Bandera/Bogor [8], and several approaches to the analysis of distributed Java
that use remote method invocation [18,6]. Another related project in the area of
model checking software architectures is CHARMY which allows for the specifi-
cation of UML-like diagrams for system design and verification [14].

Previous work on discovering architectural mismatch has primarily focused
on specification-based approaches. For example, discovering mismatch using ar-
chitecture description languages (ADLs) [19,20]. Our approach differs from this
work in that we allow for the discovery of mismatch in existing applications and
do not require the manual specification of all component and connector assump-
tions, instead we require only a global system invariant or assertion. and the
manual construction of the ESM. Our approach does not require specification of
any of the client applications.

6 Conclusions and Future Work

In this paper, we have proposed an approach for the discovery of architectural
mismatch between an event-based system and its clients based on invalid as-
sumptions the client makes about the behaviour of the event service. We have
described a proof-of-concept implementation of this approach that targets the
Java version of the SIENA event service and uses a customized version of the
Bandera/Bogor tool pipeline. Finally, we have demonstrated the viability of the
approach by evaluating our implementation on several case studies – a chat
program and a file-sharing application.

Our implementation leverages the increasing maturity of software model
checking tools in general and the customizability and power of the Bandera/
Bogor tool pipeline in particular. The biggest drawback of our approach is its
reliance on a manually created event service model that correctly captures the
relevant aspects of the behaviour of the event service. Currently, the conformance
of the event service to its model is not checked, but it is conceivable that ideas
from model-based testing (e.g., [2]) or conformance checking (e.g., [9]) could be
used to address this issue. Additional directions for future work include: increase
the degree of automation of the framework, and evaluation of the framework on
other event-based infrastructures such as CORBA.

Acknowledgments

We would like to thank the members of the SAnToS Laboratory at Kansas State
University for support in customizing the Bandera/Bogor tool pipeline.

References

1. Bradbury, J.S., Dingel, J.: Evaluating and improving the automatic analysis of
implicit invocation systems. In: Proc. of ESEC/FSE 2003, pp. 78–87 (2003)

2. Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N.,
Veanes, M.: Model-based testing of object-oriented reactive systems with Spec
Explorer. Technical report, Microsoft Research (2005)

58 L.R. Cai, J.S. Bradbury, and J. Dingel

3. Caporuscio, M., Inverardi, P., Pelliccione, P.: Compositional verification of
middleware-based software architecture descriptions. In: Proc. of ICSE 2004, pp.
221–230 (2004)

4. Carzaniga, A.: Personal e-mail correspondance with J. Dingel. Feb. 9 (2005)
5. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area

event notification service. ACM Trans. on Comp. Sys. 19(3), 332–383 (2001)
6. Cassidy, T., Cordy, J., Dean, T., Dingel, J.: Source transformation for concur-

rency analysis. In: Proc. of the Int. Work. on Language Descriptions, Tools and
Applications (LDTA 2005) (April 2005)

7. Corbett, J.C., Dwyer, M.B., Hatcliff, J., et al.: Bandera: extracting finite-state
models from java source code. In: Proc. of ICSE ’00, pp. 439–448 (2000)

8. Dwyer, M.B., Robby, Tkachuk, O., Visser, W.: Analyzing interaction orderings
with model checking. In: Proc. of ASE 2004, pp. 154–163 (2004)

9. Fournet, C., Hoare, C., Rajamani, S., Rehof, J.: Stuck-free conformance. In: Alur,
R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, Springer, Heidelberg (2004)

10. Garlan, D., Khersonsky, S., Kim, J.: Model checking publish-subscribe systems.
In: Ball, T., Rajamani, S.K. (eds.) The Int. SPIN Work. on Model Checking of
Software (SPIN 2003). LNCS, vol. 2648, Springer, Heidelberg (2003)

11. Haahr, M., Meier, R., Nixon, P., Cahill, V., Jul, E.: Filtering and scalability in the
ECO distributed event model. In: Proc. of the Int. Symp. on Soft. Eng. for Parallel
and Distributed Systems (PDSE ’00), p. 83 (2000)

12. Hatcliff, J., Deng, X., Dwyer, M.B., Jung, G., Ranganath, V.P.: Cadena: an inte-
grated development, analysis, and verification environment for component-based
systems. In: Proc. of ICSE 2003, pp. 160–173 (May 2003)

13. Heimbigner, D.: Adapting publish/subscribe middleware to achieve Gnutella-like
functionality. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259,
pp. 176–181. Springer, Heidelberg (2001)

14. Inverardi, P., Muccini, H., Pelliccione, P.: Charmy: an extensible tool for architec-
tural analysis. In: Proc. of ESEC/FSE-13, pp. 111–114 (2005)

15. Meier, R., Cahill, V.: Taxonomy of distributed event-based programming systems.
The Computer Journal 48(5), 602–626 (2005)

16. Robby, Dwyer, M., Hatcliff, J.: Bogor: an extensible and highly-modular software
model checking framework. In: Proc. of ESEC/FSE-11, pp. 267–276 (September
2003)

17. Selic, B.: On the semantic foundations of standard uml 2.0. In: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems(SFM-
RT 2004). LNCS, vol. 3185, pp. 181–199. Springer, Heidelberg (2004)

18. Stoller, S.D., Liu, Y.A.: Transformations for model checking distributed Java pro-
grams. In: Dwyer, M.B. (ed.) Model Checking Software. LNCS, vol. 2057, Springer,
Heidelberg (2001)

19. Uchitel, S., Yankelevich, D.: Enhancing architectural mismatch detection with as-
sumptions. In: Proc. of the Int. Conf. and Work. on the Engineering of Computer
Based Systems, pp. 138–146 (April 2000)

20. Zhang, B., Ding, K., Li, J.: An XML-message based architecture description lan-
guage and architectural mismatch checking. In: Proc. of Comp. Soft. and Applica-
tions Conf. (COMPSAC 2001), pp. 561–566 (October 2001)

21. Zhang, H., Bradbury, J.S., Cordy, J.R., Dingel, J.: Using source transformation to
test and model check implicit-invocation systems. Special Issue on Source Code
Analysis and Manipulation, Science of Computer Programming 62(3), 209–227
(Oct. 2006)

Model Checking of Extended OCL Constraints
on UML Models in SOCLe�

John Mullins1,�� and Raveca Oarga2

1 INRIA Rhône-Alpes, Domaine Scientifique de la Doua, Bât. Léonard de Vinci,
21, av. Jean Capelle - 69621 Villeurbanne Cedex. France

2 École Polytechnique de Montréal, Campus de l’U. de Montréal, Pavillon Mackay-Lassonde,
2500, Chemin de Polytechnique - Montréal (Qc) Canada, H3T 1J4

Abstract. We present the first tool that offers dynamic verification of extended
OCL constraints on UML models. It translates a UML model into an Abstract State
Machine (ASM) which is transformed by an ASM simulator into an abstract
structure called UML-valued OO TransitionSystem (OOTSUML). The Extended
Object Constraints Language (EOCL) is interpreted on computation trees of this
OOTSUML allowing for the statement of both OCL expressions modelling the
system and OO primitives binding it to UML on the one hand, and safety or live-
ness constraints on the computation trees of the UML/OCL model on the other
hand. An on-the-fly model checking algorithm, which provides the capability to
work, at any time, on as small a possible subset of states as necessary, has been
integrated into the tool.

1 Introduction

1.1 Motivation

Why use UML/OCL. In recent years, the Unified Modeling Language (UML) has been
accepted as a de facto standard for object-oriented software design. The UML notation
supports designers by allowing them to express both structural and behavioral aspects
of their design, through class diagrams and statechart diagrams respectively. Based on
mathematical logic, the Object Constraint Language (OCL) is a notation embedded in
UML allowing constraint specifications such as well-formedness conditions (e.g. in the
definition of UML itself), and contracts between parts of the modeled system (e.g. class
invariants or the pre- and post-condition methods).

Why use formal methods in UML/OCL. Furthermore, used alongside formal method-
based tools, UML/OCL also offers a unique opportunity for developing complex or crit-
ical software systems with high quality standards in an industrial context. Such systems
require a high level guarantee that they can cope with their specifications from end to
end of the development cycle.

� The SOCLe project is sponsored by Defence Research and Development Canada (DRDC)
(Government of Canada).

�� Corresponding author. On leave from École Polytechnique de Montréal. Supported by an
NSERC individual research grant (Government of Canada).

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 59–75, 2007.
c© IFIP International Federation for Information Processing 2007

60 J. Mullins and R. Oarga

1.2 Related Work

In this section we describe various proposed tools and promising verification frame-
works that integrate UML/OCL in some way. These are divided into the following cate-
gories related to the depth of integration. First, tools performing UML model checking
of logic where OCL is not embedded. Second, proposals to embed or extend OCL in a
clean and systematic way, to take liveness properties into account, which have model
checking in mind but where verification issues are not extensively discussed. Finally,
UML tools for OCL constraints that support something other than model checking as a
validation technique. (Due to space limitations, these are discussed in Appendix A-1).

Model checking of UML without OCL. All these tools are based on translation of UML
models into the modeling language of some model checking tool. While some of them
opt explicitly for the specification language of the model checker itself to specify prop-
erties e.g.([1, 2, 3], others define methods based on the diagrammatic capabilities of
UML to specify properties before verification [4, 5, 6].

The tool proposed in [2] maps the static part of a UML model, including OCL ex-
pressions on the object diagrams, onto an ASM and offers static verification including
syntactic correctness according to the well-formedness constraints of the UML meta-
model, and coherence of the object diagram with respect to the class diagram. However,
OCL expressions are not integrated in the UML semantics, and are not evaluated as the
model evolves. The statecharts modeling the behavior, are mapped onto SMV. Similarly,
in [1] a subset of UML statechart diagrams is translated into Promela, the modeling
language of the SPIN model checker. Specifications are then expressed in LTL (Linear
Temporal Logic), the specification language of SPIN, for checking. UMC (UML on-the-
fly Model Checking, [3]) is an environment that integrates the JACKmodel checker into
UML. UMC also translates UML statecharts restricted to signals (no method calls or
returns), into labeled transition systems, the modeling language of JACK, while prop-
erties are specified in ACTL, the specification language for JACK.

In [4], the authors propose an architecture for UML model checking based on a trans-
lation of UML models into IF, a language for the modeling and verification of hierar-
chical extended communicating automata. In IF, properties are specified by means of
automata called observer automata, that are expressive enough to specify safety prop-
erties. Furthermore, an extension of UML, (observers classes), has been proposed to
verify safety properties, which would then be translated along with the UML model
into IF. The resulting IF automata are then translated into the specification language
of equivalence-checkers like EVALUATOR. In [5], the authors propose vUML. This tool
translates a restricted form of UML statechart diagrams into Promela. To express prop-
erties, statechart diagram annotations called stereotypes are used. The annotated state-
chart diagram is then translated into LTL before the model checking is done with SPIN.
In HUGO [6], a restricted form of UML statechart diagrams is translated into Promela.
Collaboration diagrams are used to specify properties. These are more expressive than
vUML stereotypes. They allow some sequence patterns between objects and statecharts
events to be described, but are not expressive enough to specify more complex prop-
erties. Collaboration diagrams are then translated into a Büchi automaton and SPIN
solves on-the-fly the emptiness problem for the automata resulting from the synchro-
nization of the Promela automata with the Büchi automaton.

Model Checking of Extended OCL Constraints on UML Models in SOCLe 61

Toward model checking OCL and beyond. There are also many logical extensions of
OCL with modalities [7, 8, 9] or translations of OCL into modal logic [10].

In [10], an object-based version of CTL called BOTL is used. BOTL, in contrast to
EOCL does not extend OCL by temporal operators. Instead, it translates a fragment
of OCL into BOTL. This means that temporal extensions of OCL could be translated
into BOTL as well, but such extensions are not provided. Hence, verification issues
for these extensions cannot be addressed. The purpose of BOTL is model checking of
existing OCL. A strength of this work is that it provides a clear and precise object-based
operational model which we reuse in OOTSUML with minor modifications together
with extensions to cope with inheritance.

In [8] Oμ(OCL) is presented. Thus extends OCL with temporal constructs using ob-
servational μ-calculus, a two-level temporal logic in which temporal features at the
higher level interact with the domain specific logic OCL at the lower level. Even though
Oμ(OCL) was clearly designed with verification in mind, verification issues have not
been extensively discussed in the paper. The strength of this work is that it provides a
unified framework to design new logics combining the cleanly dynamic power of the
μ-calculus with the static expressiveness of OCL (which we reuse in EOCL with minor
modifications to cope with OOTSUML and CTL). In [7], the authors present an OCL
extension, also based on CTL. This extension concerns system behavior modeled with
statecharts, but evolution of attributes is not considered. In [9], an extension of OCL
with elements of a bounded linear temporal logic is proposed. The semantics of this ex-
tension is given with respect to sequences of states representing the UML model history.
However, the authors do not discuss how to compute these sequences from the model’s
behavioral diagrams.

SOCLe: model checking OCL on UML. Starting from a clean framework drawn from
the above second category proposals and taking advantage of lessons learned from the
above first category proposals, we present the first UML model checker of EOCL.

1.3 Content of the Paper

The work presented in this paper only addresses tool-related issues: The specification
of an extended Object Constraint Language (EOCL) (Sec. 2) i.e. its syntax (Sec. 2.2),
and operational semantics (Sec. 2.3) in terms of a transition system extended with state
labels denoting UML-typed values (OOTSUML) (Sec. 2.1), together with some illus-
trations of how this language might be used in practice to support a wider range of
constraints on OO systems (Sec. 2.4); the sketch of the basic principles of the static
(Sec. 3.1) and dynamic (Sec. 3.2) semantics of the modeling language UML on an Ab-
stract State Machine (ASM); and a short overview of the SOCLe tool by itself (Sec. 4).
A quick demonstration of the tool is given in Appendix A-2 while Sec. 5 provides the
conclusion.

Out of the scope of the paper. Due to space limitations, the on-the-fly model checking
algorithm of EOCL on OOTSUML that is implemented in the tool is not presented
here. The reader is referred to [11] for a systematic presentation of this algorithm, but
in summary, it is a version of Vergauven and Lewi’s on-the-fly linear time CTL model

62 J. Mullins and R. Oarga

checking algorithm [12] extended to cope with OOTSUML and EOCL. The ASM se-
mantics of UML itself are presented only to the extent necessary for understanding the
way a OOTSUMLis uniformly generated from an UML/OCL model. For further details
on Abstract State Machines, the reader is referred to [13] and [14] for a formal presen-
tation of the ASM semantics of UML as implemented in the tool.

2 Extended OCL

We are now going to design logic that concentrates on the essential features of an
object-oriented system (Sec. 2.2). Accordingly, we will define the semantics of this
logic (Sec. 3) using a model called UML-valued Object-Oriented Transition System
(OOTSUML), which will be as simple as possible (Sec. 2.1) i.e. containing only the
features of UML semantics addressable by the logic and nothing more. The degree of
parallelism or the manner of method invocation, for example, need not be parts of
OOTSUML.

2.1 The Abstract Operational Model

Let us start with some notations that we will use in the paper:

– Σc, a finite set of class names ranged over by c;
– Σm, a finite set of method names ranged over by m;
– V , a finite set of variables;
– �h, a partial order over Σc called inheritance relation;
– �o, a partial order over Σc × Σm called overriding relation compatible with �h:

(�h-compatibility), if (c, m) �o (c′, m′) then m = m′ and c �h c′

(i.e. an instance of method may only override a homonym in a superclass);
– N , a countable indexing set ranged over by i, j, . . .;
– C = Σc × N , the set of instances of classes;
– M = C × Σm × N , the set of instances of methods;
– E = C + M the set of UML entities;

As a first approximation, an OOTSUML can be seen as a transition system whose
states are labeled with UML-typed values. A set Type of basic UML types is also defined:

τ ∈ Type = Void | Int | Bool | Objc | Metc,m | L(τ) (1)

where types Void, Int and Bool are defined in the usual way and, for every c ∈ Σc

and m ∈ Σm,

V alObj
c

= {c′ : c′ �h c} × N
V alMet

c,m

= V alObj
c × {m′ : m′ �o m} × N

are respectively the set of all objects of the class c and the set of all instances of the
method m of objects of the class c. Finally, L(τ) is the type of lists of type τ , with
element [] (the empty list) and h :: w (for the list having the element h as head and the

Model Checking of Extended OCL Constraints on UML Models in SOCLe 63

list w as tail). We will denote by V al, the universe of values i.e. V al = ∪τ∈TypeV alτ ,
and by V al⊥ its extension with the undefined value (⊥). Finally, letting the symbol ⇀
denote a partial function, we define the class signature function C ×M in the following
way:

C × M : Σc ⇀ [V ⇀ Type] × [Σm ⇀ [[V ⇀ Type] ⇀ Type]]

which associates to a class c, the declaration C(c) of its attributes, and the declaration
M(c) of its methods that is, for each method of the class, the declaration of its formal
parameters and the type of its return parameter1.

Definition 1. A UML-valued Object-Oriented Transition System (OOTSUML) is a
structure OT = 〈S, R, s0〉 such that:

– S is a set of states. To each state s ∈ S, are associated functions ρs, σs, γs and hs

such that:

• ρs : V ⇀ V al, a valuation of attributes and method parameters in s;
• σs : C ⇀ [V ⇀ V al], a valuation of objects active in s consistent with C × M

and ρs (Cs will denote the domain of σs);
• γs : M ⇀ [[V ⇀ V al] ⇀ V al⊥], a valuation of instances of methods active

in s consistent with C × M and ρs (Ms will denote the domain of γs and
γs(m).f , the value in s of the parameter f in the instance of method m);

• hs : M ⇀ S × {◦, •}, a history which associates to each instance of method
active in s, a pebble and the state where this instance is or has been called.
If s is the last state for the instance before being returned, the pebble is • and
otherwise, it is ◦. The history will provide more particularly a concise and
elegant way to define the OCL operator @pre. It has to be consistent with �h

and �o i.e.:
(�h-consistency) If (c, i, m, j) ∈ Ms then m ∈ C(c) or (m ∈ C(c′) and

c �h c′) (i.e. an instance of a method can be inherited);
(�o-consistency) If (c, i, m, j) ∈ Ms and (c, m) �o (c′, m′) then

∀i,j∈N (c, i, m′, j)
∈ Ms

(i.e. the instance of an overriding method inhibits any instance of overrid-
den ones);

– R ⊆ S × S is a transition relation
– s0 ∈ S is the initial state.

A computation or run r in an OOTSUML OT is an infinite sequence of states r =
s0s1s2 · · · such that (si, hi, si+1, hi+1) ∈ R, for each i. We denote by r[i], the (i + 1)-
th element, si, of the path, and by Run(OT) the set of all computation paths in OT .
We denote by Runs(OT) the subset of Run(OT) that comprises the computation
paths starting from s ∈ S.

1 Let functions f1 : X → Y1 and f2 : X → Y2. The function f1 × f2 : X → Y1 × Y2 is the
function defined by f1 × f2(x) = (f1(x), f2(x)).

64 J. Mullins and R. Oarga

2.2 Extended OCL Syntax

We propose an extension of OCL (EOCL) working on OOTSUML. EOCL is an exten-
sion of OCL with CTL temporal operators and some first-order features. It is two-level
logic: intuitively, the upper level is CTL extended with quantifiers (the set of tempo-
ral formulae Fexp), and the lower level is a significant fragment of OCL expressions
as defined in [15] (the set of state formulae Pexp). In order to get a clean separation
of OCL expressions from purely temporal properties, we restrict OCL expressions to
appearances within temporal operators or as atomic formulae of CTL. EOCL is largely
inspired by BOTL [10] but is based on an instantiation of the temporal extension frame-
work proposed in [8], and takes into account inheritance and overriding in its semantics.
The EOCL syntax is given in Fig. 1.

e(∈ Pexp) ::= x | v | e.a | ω(e1, . . . , en) | e1 → iterate {x1 ; x2 = e2 | e3 } | e) |
e @pre | e.owner | act(e)

ϕ(∈ Fexp) ::= e | ¬φ | φ ∧ ψ | ∀z � τ : φ | EXφ | E[φUψ] | A[φUψ]

Fig. 1. EOCL syntax

The set of types of OCL expressions is the same one as the UML type set defined
in Eq. 1. We write e � τ to denote that expression e ∈ Pexp has the type τ . We
refer the reader to [11] for a complete definition of the typing function �. The rest of
this section is devoted to an informal description of the meaning of state and temporal
formulae. We postpone to Sec. 2.3 the formal description of operational semantics based
on OOTSUML.
State formulae Pexp

– x is a variable in V . These include self , a special variable in OCL referring to the
current context, fields of objects, parameters of methods and local variables;

– v is a value in V al⊥;
– e.f is a field/parameter navigation. If e is an object (resp. a list of objects), then f

is a field (resp. a list of fields). If e is a method (resp. a list of methods), then f is a
parameter (resp. a list of parameters);

– ω(e1, . . . en) stands for the application of any n-ary operator on booleans, integers
or lists.

– the iterate construct is the OCL main collection operator; It lets variable x1 iterate
through values of the collection denoted by e1, stores successive values of e3 in
variable x2 (which first evaluates to e2), and returns the final value of x2. The
iterate construct is quite expressive and is used to encode additional collection
operators (size, forall, exists, filter), that are also supported by SOCLe.

– @pre is a typical OCL operator. It refers to the value of a property at the method
call, and may be applied in a postcondition at the method return;

– act(e) signifies that the object or method instance e is currently active. An object
becomes active when it is created and becomes inactive when it dies, whereas a
method becomes active when it is invoked (pushed onto a calling stack) and be-
comes inactive after it has returned a value (is popped from the calling stack).

– e.owner denotes the object executing the method e.

Model Checking of Extended OCL Constraints on UML Models in SOCLe 65

Temporal formulae Fexp. A formula is built inductively from boolean state formulae
(e ∈ Pexp and e � Bool), classical propositional logic operators (¬, ∧, etc.), CTL
temporal operators (AX, EU, etc.), and type domain quantifiers. The temporal operators
have the following intuitive meaning:

– EXφ holds in s if there is a state next to s such that the formula φ holds;
– E[φUψ] holds in s if there is a path starting from s such that φ holds until ψ holds;
– A[φUψ] holds in s if for every path starting from s, φ holds until ψ holds;
– ∀z � τ : φ holds in s if φ holds for all occurrences z of type τ ∈ Type;

The other usual auxilliary operators are obtained by combining these basic operators. It
has to be noted that type domains being generally infinite, quantifier scopes are also so.

2.3 Extended OCL Semantics

Let OT = 〈S, R, s0〉, an OOTSUML. The semantics of state formulae is defined by
the function [[]] : Pexp → [S → V al⊥] defined as follows:

[[v]]s = v
[[x]]s = ρs(x)
[[ω(e1, . . . en)]]s = ω([[e1]]s . . . [[en]]s)
[[e.f]]s = σs((c, i))(f) if [[e]]s = (c, i)

= γs((c, i, m, j)).f if [[e]]s = (c, i, m, j)
[[e.owner]]s = (c, i), where [[e]]s = (c, i, m, j)
[[act(e)]]s = True iff [[e]]s ∈ Cs + Ms

[[e1→iterate{x1; x2 = e2 | e3}]]s
= [[for x1 ∈ [[e1]]s do x2 := e3]]ρs[x2 �→[[e2]]s]

where

[[for x1 ∈ [] do x2 := e]]s = [[x2]]s
[[for x1 ∈ h :: w do x2 := e]]s = [[for x1 ∈ w do x2 := e]]ρs[x2 �→[[e]]ρs[x1 �→h]]

and ρs[x �→ e] stands for the state obtained from s by evaluating x to e in ρs. Finally
for any instance of method (c, i, m, j):

[[e@pre]]s =
{

[[e]]s′ if (c, i, m, j) ∈ dom(γs)and hs(c, i, m, j) = (s′, •)
⊥ otherwise

The semantics of temporal formulae (Fig. 2) is given by the relation � ⊆ S ×Fexp

2.4 Applying EOCL

Constraints are conditions which have to be fulfilled by the system. An OCL constraint
is defined as being in a context. We denote by Cexp, the set of constraints defined by
the following:

66 J. Mullins and R. Oarga

s � e ⇐⇒ [[e]]s = True
s � ¬φ1 ⇐⇒ s � φ1

s � φ1 ∧ φ2 ⇐⇒ (s � φ1) and (s � φ2)
s � ∀z � τ : φ1 ⇐⇒ s � φ1[z 	→ v] for all v ∈ V alτ

s � EXφ1 ⇐⇒ ∃r∈Runs(OT)r[1] � φ1

s � E[φ1Uφ2] ⇐⇒ ∃r∈Runs(OT)

∃j≥0r[j] � φ2 ∧ ∀0≤k<jr[k] � φ1

s � A[φ1Uφ2] ⇐⇒ ∀r∈Runs(OT)

∃j≥0r[j] � φ2 ∧ ∀0≤k<jr[k] � φ1

Fig. 2. Semantics of temporal formulae

κ(∈ Cexp) ::= context C inv e | context C :: M pre e1 post e2

where C ∈ Σc is the context of an invariant, M ∈ Σm is the context of a pre/postcon-
dition and e, e1, e2 are boolean OCL expressions. Below, we illustrate how an OCL
constraint has its counterpart in EOCL.

Invariant. An invariant is a condition which has to be fulfilled by the system when-
ever an instance of the context, or of a class inherited from the context is active, and
no method of self is executing. Since the OOTSUML semantics of EOCL takes into
account inheritance, this can be expressed by the following constraint:
context C inv e ≡

AG[∀z � ObjC : act(z) : ((∀m1 ∈ z.M1 : . . . ∀mn ∈ z.Mk) :
(¬act(m1) ∧ . . . ¬act(mn)) ⇒ e]

where

– ∀m ∈ z.M : e stands for the formula ∀m � MetC,M : (z.owner = m) ⇒ e
– z is an active object of the class C;
– {M1, . . . Mk} is the set of the methods of the class C;
– {m1, . . .mn} is the set of instances of the methods of the class C.

Pre/postcondition. A pre/postcondition is verified if for each instance of M of the class
C, the post-condition holds when M is returned whenever the pre-condition held when
M was called. This can be expressed by the following constraint:

context C :: M pre e1 post e2 ≡
∀z � ObjC : act(z) : ∀m ∈ z.M :
AG[call(m) ⇒ AX[AG[return(m)] ⇒ e2]]

where

– call(m) stands for the formula ¬act(m) ∧ EX[act(m) ∧ e1];
– return(m) stands for the formula act(m) ∧ AX[¬act(m)];
– z is an object of the class C;
– m is an occurrence of the method M of the object z.

Model Checking of Extended OCL Constraints on UML Models in SOCLe 67

Extended OCL constraints. EOCL allows the expression of liveness properties. For
instance a template after/eventually could stand for the following property: whenever
e1 is verified during the life of any instance of C then eventually e2 will also be verified
during its life. This could be expressed as the extended constraint:

context C after e1 eventually e2 ≡
AG[e1 ⇒ A[True U e2]]

3 ASM Semantics of UML

Why use ASM to define UML. While designing semantics of logic requires as simple
a model as possible, modeling UML by contrast, requires formalism that, like ASM,
has already proved to be a simple and uniform fashion of modeling the operational
semantics of models as complex as programming languages. ASM will allow a rich,
succinct and understandable operational semantics of UML to be written. In this section,
we present UML and its ASM semantics. The UML semantics are presented only to the
extent necessary for understanding the way an OOTSUML is uniformly generated from
an UML/OCL model. The reader is referred to [13, 14] for a more formal presentation of
the ASM semantics of UML and the integration of OCL into this semantics.

An ASM state is a collection of sorts, and a set of enumerated functions for these sorts.
ASM evolution is specified by a transition rule built from predicates, control sub-rules
and update sub-rules. Predicates are evaluated according to the current interpretation of
the ASM state enumerated functions. Control rules supporting non-determinism choose
a set of update rules to be applied. Update rules modify the interpretation of the current
ASM state functions, yielding successor states.

Basic model elements, such as class or method names, are mapped to sorts. More
complex elements, such as method declarations and statechart transitions, are trans-
lated into enumerated functions. The object diagram is mapped to a specific subset
of these functions, and represents the initial configuration of the UML model (Sec. 3.1).
From a configuration, successor configurations are computed by evaluating an ASM rule
that captures the dynamic semantics of UML models (Sec. 3.2). Edges are labeled with
statechart transitions fired as the UML model evolves.

3.1 Static Semantics of UML

The UML models supported by the tool must contain exactly one class diagram, one
statechart diagram for each class, and one object diagram. In this section we illustrate
the main features of the static semantics of these three diagrams through the modeling
of a simple object-oriented component acting as a small memory cell.

Class Diagram. Fig. 3 presents the supported features of the class diagram. Class
Cell models a simple memory cell with assignment, retrieval and incrementation. Class
BackupCell models an extended memory cell with a restore functionality. Notice how
class C lient is tagged with the thread stereotype. As a result, a calling stack will be
associated with all instances of this class.

68 J. Mullins and R. Oarga

Fig. 3. Example of a class diagram

The first step to create the ASM specification is to map class, method and field names
to the following ASM sorts (note that an association is mapped to a field of the owner
class), which implement states of the abstract model defined in Sec.2.1. More particu-
larly, heap implements σ while stack implements γ.

sort C lassName = {Cell,BackupCell,C lient}
sort F ieldName = {content, backup, bc}
sort M ethName = {set, get, inc, restore}

(2)

Remaining information, like the inheritance relation �h and overriding relation �o,
is then extracted, and additional functions are implemented. Here are some partially
enumerated examples:

fun �h = BackupCell �→ Cell,Cell �→ Cell, . . .
fun �o = Cell/set �→ Cell/set,BackupCell/set �→ Cell/set, . . .
fun lookup = BackupCell, inc �→ Cell,BackupCell, set �→ BackupCell, . . .

(3)

These functions are then used to define the important lookup function indicating
whether or not refined or inherited behavior will be executed following a method call.

Statechart Diagrams. Similarly, statechart diagrams are mapped to ASM sorts and
functions. Fig. 4 shows supported features for this diagram. Notice how functionalities
of the memory cell are modeled by sub-states specifying the behavior of a method.
Method inc, for example, is modeled in three steps: transition ct3 retrieves the current
value of field content by calling method get; transition ct4 increments that current
value by calling method set; finally, transition ct5 waits for method set to return and
terminates method inc.

The control flow of a statechart is specified by states and transitions. The basic con-
dition for a transition to be fired is that its source state be active. The basic response to
firing a transition is the activation of its target state. In the case of a composite state,
the initial states it encompasses are also activated. This control flow of statecharts is

Model Checking of Extended OCL Constraints on UML Models in SOCLe 69

Fig. 4. Example of a statechart diagram

inspired by Harel’s statecharts [16] and is statically elaborated and stored in ASM func-
tions. The compiler determines, for example, which states are activated and which
deactivated when firing a transition:

fun act = ct1 �→ {}, ct3 �→ {cs1}, . . .
fun deact = ct1 �→ {CellSet}, ct3 �→ {ci3}, . . .

(4)

In addition, transitions are labeled with a trigger, a guard and a list of actions. Trig-
gers refer to signals (atomic events), method calls or method returns. For example, the
actions of a transition labeled with trigger inc, will model that method’s instructions.
Guards are boolean OCL expressions. The syntax of OCL expressions used on the UML
models is given by Fig. 5, and their semantics are expressed in Sec. 2.2.

e(∈ Eexp) ::= v | x | ω(e1, . . . , en) | e . f | e1 → iterate {x1 ; x2 = e2 | e3 }

Fig. 5. OCL expressions syntax

The tool supports the following actions: method call/return, field assignment, object
creation/deletion, and signal emission. Actions are specified in part by OCL expressions,
which enable the designer to model high-level behavior by using non-determinism. In
a method call action, for instance, an OCL expression specifies a collection of possible
receiver objects, from which the actual receiver is chosen non-deterministically.

Finally, statechart compiling includes a fair amount of static verification: i) stat-
echarts are inspected to ensure they are well-formed, ii) OCL expressions are type-
checked to ensure that guards are boolean expressions, that parameters of method calls
are well-typed, etc. iii) triggers and actions are analyzed to ensure consistency with the
class diagram methods and field declarations.

Object Diagram. An object diagram is mapped to ASM sorts and functions that hold
the UML model configuration. Fig. 6 shows such a diagram with all features covered by
the tool. It models a simple configuration in which a client accesses two memory cells.

70 J. Mullins and R. Oarga

Fig. 6. Example of an object diagram

ASM functions as, class, heap and stack hold active states, object types, field en-
vironments, and calling stacks, (one for each thread - in this case only object c is a
thread), respectively.

fun as = bc1 �→ {ci1, ci2, . . .}, c �→ {cli1}, . . .
fun class = bc1 �→ BackupCell, c �→ C lient, . . .
fun heap = bc1, content �→ 0, bc1, backup �→ 0, . . .
fun stack = c �→ 〈(run, ∅, ⊥, c)〉

(5)

Note how the calling stack of object c contains method run in the initial configura-
tion to ensure that the thread is active.

3.2 Dynamic Semantics of UML

The ASM transition rule that captures a UML model’s dynamic semantics is structured
roughly as follows: i) choose the current thread, ii) select the current object and cur-
rent statechart, iii) choose one of the enabled transitions and iv) fire the transition. It
sketches some of the ASM rules that are used to implement the transition relation of the
abstract operational model defined in Sec. 2.1.

Sub-rules i) and iii) use a non-deterministic choice to model thread-level and state-
chart-level concurrency. Sub-rules i) models a simple thread scheduler. The current
object õ is selected from an active thread’s calling stack, i.e. õ would be executing a
method. Sub-rules iii) computes the transition interleaving of a statechart’s concurrent
regions.

In sub-rule ii), the current statechart is either the statechart of the current object’s
class or the statechart of one of its superclasses if inherited behavior is to be executed
(this is decided according to the lookup function of Eq. 3). This mechanism captures
behavioral inheritance, an important feature of object-orientation.

Sub-rule iii) dynamically determines whether a transition is enabled. The basic con-
dition that the source state is active, is checked against the current value of function as
(Eq. 5). Moreover, a transition is enabled if a) its trigger corresponds to an active event,
b) its guard is satisfied, and c) all of its actions can be fired. An assignment action, for
example, will not be fired if it violates the multiplicity requirement (see Fig. 3).

Model Checking of Extended OCL Constraints on UML Models in SOCLe 71

In sub-rule iv), the selected transition t̃ is fired. The basic effect of deactivating
and activating states is captured by updating function as using the statically elaborated
functions act and deact (Eq. 4): as(õ) := (as(õ) \ deact(t̃)) ∪ act(t̃).

Then, the transition’s action list is iterated and every action is fired. Objects are
created by using the sort extensions mechanism of the ASM formalism, and by updating
function heap (Eq. 5) accordingly. If an object creation action a of the form “new f ” is
fired by the current object õ, for example, the following ASM sub-rule updates the UML
model configuration:

extend Objects with x do
heap(õ, f) := x :: heap(õ, f) (6)

The assignment action uses the OCL expression evaluation function and updates
function heap (Eq. 5) accordingly. For example, if an assignment action a of the form
“content := self.content + i” is fired by the current object õ, the following ASM
sub-rule updates the UML model configuration: heap(õ, content) := [[a.e]]ρ. This
sub-rule uses function [[]]ρ to evaluate a.e, the OCL expression of the assignment ac-
tion (in this case “self.content + i”), and updates function heap (Eq. 5). Function [[]]ρ
evaluates an OCL expression by recursively evaluating its sub-expressions relative to the
current UML configuration and a variable assignment ρ. The environment always maps
the variable self to the current object õ. In this case it also maps variable i to the value
of the formal parameter of method inc as indicated on the calling stack. As the function
is external, it uses ASM functions to access the current UML model configuration, but is
not enumerated in the ASM state.

4 The Tool SOCLe

The SOCLe tool is divided into three main modules: i) an XmiToAsm compiler, ii) a
specialized ASM interpreter and iii) an on-the-fly EOCL model checker. This architec-
ture is depicted in Fig. 7. UML models are expressed in the XML Metadata Interchange
format, which is supported by most UML CASE tools.

The verification process has two phases: i) the UML model is translated into an ASM
specification according to its UML model static semantics, and ii) an execution graph
implementing OOTSUML is generated from the ASM specification while OCL con-
straints are verified on-the-fly by this execution graph. The model checker implements
a version of the Vergauven and Levi’s on-the-fly linear time CTL model checking al-
gorithm [12], that is extended to cope with OOTSUML and EOCL, thus improving
an earlier version of SOCLe presented in [17], which is based on a naive approach to
verification of OCL extended with fixed points to express temporal contracts.

The tool also includes a graphical user interface embedded into ArgoUML, a cus-
tomizable open-source UML CASE tool developed by Tigris2. It allows the designer to
visualize verification results and inspect the model’s execution graph. A short demon-
stration of the tool is given in Appendix A-2. It compares the performance of the on-
the-fly approach in Fig. 8 with the naive approach in Fig. 9, in the verification of the

2 http://argouml.tigris.org/

72 J. Mullins and R. Oarga

UML Editing Tool
UML Compiler

ASM InterpreterModel-Checker

UML Model (.xmi)

OCL Constraints (.xmi)

Executable UML Model (.asm)

Execution GraphModel-Checking Diagnosis

Designer

ASM Rule (.asm)

Fig. 7. Tool architecture

Fig. 8. The SOCLe tool diagnosis - μ-calculus

following invariant stating informally that the backup value of the attribute backup is
always smaller than or equal to content:

context: BackupCell
inv: self.Cell/content <= self.BackupCell/backup

Finally, it should be noted that an extensive case-study on a simplified caveat-sepa-
ration system has been carried out for Defence Research and Development Canada
(DRDC) - Valcartier, as an illustrative example of possible application of SOCLe in the
design of secure software. The full case-study has been reported in [18].

Model Checking of Extended OCL Constraints on UML Models in SOCLe 73

Fig. 9. The SOCLe tool diagnosis - EOCL -logic

5 Conclusion and Future Work

In this paper we have presented the main issues related to SOCLe, an EOCL model-
checker of UML models. Firstly, an extension of OCL interpreted into an OO Transition
System with UML-type values, in which inheritance and overriding are considered as
possibly leading to richer interpretations of extended OCL constraints, where these OO
features will have to be taken into account in practice for such things as invariance veri-
fication. Secondly, illustrations of how the ASM based semantics of UML models capture
complex features of UML such as concurrency, inheritance, overriding, and object cre-
ation; and integrate an OCL expression evaluation function that is defined relative to the
UML configuration, thus generating an implementation of OOTSUML which includes
EOCL models. Finally, the architecture of the tool itself is presented.

We have not extensively discussed the scheme for transformation from ASM to
OOTSUML in this paper. Considerable further work is needed to prove the correct-
ness of this transformation. Alongside this, we may directly extract an OOTSUML

that represents a UML model saved as XML. Also, abstraction and symbolic techniques
to check whether or not the OOTSUML satisfies an EOCL formula have to be devel-
oped. Because EOCL incorporates OCL as its lower-level logic, abstraction and sym-
bolic techniques used to check CTL or real-time CTL formulae could be extended to
EOCL formulae in a quite simple way.

74 J. Mullins and R. Oarga

References

[1] Latella, D., Majzik, I., Massink, M.: Automatic verification of a behavioural subset of UML
statechart diagrams using the SPIN model-checker. The International Journal of Formal
Methods 11, 637–664 (1999)

[2] Shen, W., Compton, K., Huggins, J.K.: A tool for supporting UML static and dynamic
model checking. In: IEEE International Computer Software and Applications Confer-
ence (COMPSAC), Oxford, England, pp. 147–152. IEEE Computer Society, Los Alamitos
(2002)

[3] Gnesi, S., Mazzanti, F.: On the fly model checking of communication UML state machine.
In: Second ACIS International Conference on Software Engineering Research, Manage-
ment and Applications (SERA2004) (2004)

[4] Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: Tools and applications II: The if tool. In:
Bernardo, M., Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems.
LNCS, vol. 3185, Springer, Heidelberg (2004)

[5] Lilius, J., Paltor, I.P.: vUML: a tool for verifying UML models. In: IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pp. 255–258. IEEE Com-
puter Society, IEEE Computer Society (1999)

[6] Schäfer, T., Knapp, A., Merz, S.: Model Checking UML State Machines and Collabora-
tions. In: CAV 2001. ENTCS, vol. 55 (3), Springer, Heidelberg (2001)

[7] Flake, S., Mueller, W.: An OCL extension for real-time constraints. In: Clark, T., Warmer,
J. (eds.) Object Modeling with the OCL: The Rationale behind the Object Constraint Lan-
guage, pp. 150–171. Springer, Heidelberg (2002)

[8] Bradfield, J., Filipe, J.K., Stevens, P.: Enriching OCL using observational mu-calculus. In:
Kutsche, R.D., Weber, H. (eds.) ETAPS 2002 and FASE 2002. LNCS, vol. 2306, pp. 203–
217. Springer, Heidelberg (2002)

[9] Ziemann, P., Gogolla, M.: An OCL extension for formulating temporal constraints. Tech-
nical Report 1/03, Universität Bremen (2003)

[10] Distefano, D., Katoen, J.P., Rensink, R.: On a temporal logic for object-based systems.
In: Smith, S.F., Talcott, C.L. (eds.) Formal Methods for Open Object-Based Distributed
Systems IV - Proc. FMOODS’2000, Kluwer Academic Publishers, Dordrecht (2000)

[11] Oarga, R.: On-the-fly verification of extended OCL constraints over UML models. École
Polytechnique de Montréal, Université de Montréal (In French) (2005)

[12] Vergauwen, B., Lewi, J.: A Linear Local Model Checking Algorithm for CTL. In: Best, E.
(ed.) CONCUR 1993. LNCS, vol. 715, pp. 447–461. Springer, Heidelberg (1993)

[13] Cavarra, A., Riccobene, E., Scandurra, P.: Mapping UML into abstract state machines: a
framework to simulate UML. Studia Informatica Universalis. 3(3), 367–398 (2004)

[14] Bergeron, M.: An ASM semantics for UML/OCL. Master’s thesis, École Polytechnique de
Montréal, Université de Montréal (2004)

[15] OMG: Response to the UML 2.0 OCL RfP (ad/2000-09-03). Technical Report ad/2002-05-
09 (2002)

[16] Harel, D., Naamad, A.: The STATEMATE Semantics of Statecharts. ACM Transactions on
Software Engineering and Methodology 5, 293–333 (1996)

[17] Azambre, D., Bergeron, M., Mullins, J.: Validating UML and OCL models in SOCLe by
simulation and model checking. In: Lilius, J., et al., (eds.) Proc. of MOMPES’05, 2nd Inter-
national Workshop on Model Based Methodologies for Pervasive and Embedded Software.
Number 39 in General Publications, TUCS, pp. 67–76 (2005)

[18] Painchaud, F., Azambre, D., Bergeron, M., Mullins, J., Oarga, R.: Socle: Integrated design
of software applications and security. In: Proceedings of The Tenth International Command
and Control Research and Technology Symposium (ICCRTS 2005) (2005)

Model Checking of Extended OCL Constraints on UML Models in SOCLe 75

A-1 UML and OCL Tools for Objectives Other than Model
Checking

Some tools support OCL expressions and constraints, but with different objectives in
mind (e.g. [1, 2, 3]).

The KeY tool [1] integrates deductive verification techniques within UML/OCL. It
translates OCL constraints into dynamic logic for Java CARD, a proper subset of Java
for smart-card applications and embedded systems (to specify proof obligations), and
provides a state-of-the-art theorem prover to perform verification. The USE tool [2]
offers the evaluation of OCL expressions and constraints on manually constructed ob-
ject models and sequence diagrams. The OCLE tool [3] offers validation of OCL well
formedness, profile and methodological rules, defined at the meta-model level on UML
models, and i.e., static semantic validation of OCL constraints on UML models.

References

[1] Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W., Mostowski,
W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Technical Report 2003-05, Depart-
ment of Computing Science, Chalmers University of Technology and Göteborg University
(2003)

[2] Gogolla, M., Richters, M., Bohling, J.: Tool Support for Validating UML and OCL Models
Through Automatic Snapshot Generation. In: SAICSIT ’03: Proceedings of the 2003 annual
research conference of the South African institute of computer scientists and information
technologists on Enablement through technology, South African Institute for Computer Sci-
entists and Information Technologists, pp. 248–257 (2003)

[3] Chiorean, D., Pasca, M., Carcu, A., Botiza, C., Moldovan, S.: Ensuring UML Models Con-
sistency Using The OCL Environment. In: UML 2003 - OCL Workshop (2003)

A-2 A Quick Tool Demonstration

As an illustration of the on-the-fly approach compared to the naive one, consider the
verification of the following invariant stating informally, that the backup value of the
attribute backup is always smaller than or equal to content:

context: BackupCell
inv: self.Cell/content <= self.BackupCell/backup

Fig. 8 and 9 provide illustrations of the screen-shots obtained using both approaches
for verifying this invariant. With the on-the-fly EOCL verification algorithm, a counter-
example is found after exploration of only eleven states of the model, while the naive
fixed point OCL extension verification algorithm requires exploration of the full state
space of the model (4630 states).

Analysis of UML Activities Using

Dynamic Meta Modeling

Gregor Engels, Christian Soltenborn, and Heike Wehrheim

Universität Paderborn, Institut für Informatik,
33098 Paderborn, Germany

{engels,christian,wehrheim}@upb.de

Abstract. Dynamic Meta Modeling (DMM) is a universal approach to
defining semantics for languages syntactically grounded on meta models.
DMM has been designed with the aim of getting highly understandable
yet precise semantic models which in particular allow for a formal analy-
sis. In this paper, we exemplify this by showing how DMM can be used
to give a semantics to and define an associated analysis technique for
UML Activities.

Keywords: UML, semantics, behavior, verification, DMM.

1 Introduction

Dynamic Meta Modeling (DMM) [1,2] has been introduced as a general con-
cept for defining the behavioral semantics of languages syntactically based on
meta models. Meta models are formalisms for specifying the correct syntax of
programs (or more generally, models). They allow for a high-level description of
syntax abstracting from the concrete way of writing models. This is of particular
importance for tool-independent model descriptions and for transformations be-
tween models. Meta models have thus become the core instrument in the MDA
initiative of the OMG [3]. DMM extends meta models for defining syntax of lan-
guages with concepts for describing their dynamic semantics. While the primary
target of DMM was the UML, the method was designed as to work for any meta
model based formalism, thus being universally applicable. The designers set out
to define a method which is highly understandable yet formal and precise. The
former property was ment for keeping the advantages of visual modeling in the
semantics (non-experts should be able to understand semantics); the latter was
particularly important for a formal analysis of models.

In this paper, we exemplify the DMM’s ability of allowing for a formal analysis
by means of defining an automatic analysis technique for UML Activities. For
doing so, we first give a DMM semantics to UML Activities following [2]. DMM
is conceptually based on graph transformations [4], which fits well to the visual
appeal of Activities themselves, and more generally of meta models. In contrast
to previous approaches to giving semantics for UML Activites [5,6,7], DMM
is able to precisely formalise the intricate traverse-to-completion semantics of
Activities [8]. The semantic domain for Activities are transitions systems whose

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 76–90, 2007.
c© IFIP International Federation for Information Processing 2007

Analysis of UML Activities Using Dynamic Meta Modeling 77

states are graphs representing the Activities and their current runtime states.
The use of the general domain of transition systems allows for a direct application
of concepts for comparing models (using notions of equivalence on transition
systems) as well as specifying properties of models (e.g. via temporal logics
interpreted on transition systems).

The definition of the semantics is the basis for the subsequent development of
an automatic analysis technique. Rather than analyzing for individual properties
of particular models, we are interested in defining a general quality criterion for
Activities. To this end, we identify properties of Activities which characterise
”good” models in the main application area of Activities, namely workflow mod-
eling. Workflows describe business processes in companies. Activities modeling
workflows have to adhere to particular requirements, some of which can be syn-
tactically checked (e.g. whether there is a unique initial and a unique final action)
but others referring to the execution of Activities (viz. their semantics). Follow-
ing an approach of van der Aalst [9] we develop a correctness criterion called
soundness covering several crucial properties of Activities modeling workflows.
Soundness is defined on the particular form of transition systems generated by
the DMM semantics for UML Activities.

Our objective is then to get a fully automatic check for soundness. Starting
from an Activity modeling a workflow, the soundness analysis should essentially
be carried out by tools. Instead of building a new tool from scratch, we choose an
existing tool (GROOVE [10]) as the basis for our analysis. GROOVE allows for
the construction, simulation and verification of transition systems specified via
graphs and graph transformations. Verification currently includes CTL model
checking [11]. The use of GROOVE thus necessitates a transformation of our
soundness criterion into CTL formulas which are then checked on the generated
transition systems. We prove correctness of this transformation as to ensure
analysis of the correct property.

The paper is structured as follows. The next section gives an introductory
example of an UML Activity modeling a workflow. On this we will informally
discuss our soundness criterion in general, and already formally define those
parts referring to the syntax. Section 3 explains the approach of Dynamic Meta
Modeling, and defines the semantics for UML Activities. Section 4 is concerned
with the verification of soundness: we give the formal definition of sound Ac-
tivities by means of their DMM specification. The transformation of soundness
into CTL formulas is the main topic of section 5: we show how to perform the
transformation and prove its correctness. Additionally, the section explains the
usage of tools, in particular GROOVE. The last section concludes and discusses
related work.

2 The Idea of Soundness

The purpose of this section is to introduce our notion of workflow modeling
using UML Activities, and to discuss the soundness property in the context of
that definition. Recall from the introduction that we have chosen soundness as

78 G. Engels, C. Soltenborn, and H. Wehrheim

ProcessClaim

check
claim

check
policy

send
money

send letter

archive

[ok]

[ok]

[not ok]

[not ok]

Fig. 1. Workflow “Process claim” as a UML Activity

a generic indication of quality: according to van der Aalst [9,12], every workflow
should be sound, regardless of its concrete semantic domain.

We use a workflow which will serve as a running example for the rest of our
paper; it describes the processing of an insurance claim in a strongly simplified
way and is depicted as a UML Activity in figure 1. The meaning of figure 1 is
supposed to be as follows:

If a claim arrives at an insurance company, two things need to be
checked: does the customer have an appropriate policy, and is the claim
itself valid? To speed up processing of the claim, the checks are performed
in parallel (check policy and check claim). Only if both checks succeed,
money will be sent to the customer (send money). If at least one of the
checks fails, a letter will be sent to the customer explaining why the claim
has been rejected (send letter). At the very end, the claim is archived
(archive).

Before we present our criteria for sound UML Activities, we need to give a
basic idea of their semantics (we will look into this in more detail in section 3).
The UML specification [13] states that “Activities have a Petri-like semantics”,
i.e., the semantics is based on token flow. When an Activity is executed, the
InitialNode (solid circle) creates a token, which corresponds to a case to be
handled by the workflow. That token is then routed through the Activity. Tasks
are depicted by rounded rectangles (they are called Actions in the UML termi-
nology). ForkNode and JoinNode (vertical bars) represent parallelity, i.e., they
copy respectively join the arriving tokens. DecisionNode and MergeNode (dia-
monds) are used to route tokens. ActivityFinalNodes (dotted circle) consume
arriving tokens.

The reader not familiar with UML Activities should note the ease of under-
standing figure 1. The expert might notice that we only use a subset of UML
Activities, i.e., the FundamentalActivities, BasicActivities and Interme-
diateActivities packages, since the elements of these packages suffice to model
many kinds of workflows.

At first glance the presented workflow seems reasonable. But what about
its objective quality? Or, more generally: what properties should an arbitrary

Analysis of UML Activities Using Dynamic Meta Modeling 79

workflow at least have to be considered high-quality? In the following, we discuss
the soundness property suggested by van der Aalst [9,12]. In his opinion, every
workflow should fulfill some basic requirements:

1. The workflow should have well-defined pre- and postconditions.
2. The workflow should not contain any useless elements.
3. If the end condition is reached, no more tasks should be processed.
4. The end condition should finally be reached.

Requirements 1, 2, and 4 are self-explanatory. For requirement 3, assume that
tasks are still processed after the end condition has been reached: these tasks
obviously do not contribute to the result of the workflow. The work involved in
performing these tasks is therefore wasted.

Taking the semantics described above into account, it is straightforward to
translate van der Aalst’s soundness definition into the world of UML Activities.
A UML Activity is considered to be sound if the following conditions hold:

1. The Activity must have exactly one InitialNode and ActivityFinalNode.
2. Any Action must be executed under at least one possible execution of the

Activity.
3. If a token arrives at the ActivityFinalNode, no more tokens are left in the

Activity.
4. A token finally arrives at the ActivityFinalNode.

Note that in practice, requirement 1 does not restrict the modeler: more than one
InitialNode can be modeled equivalently by one InitialNode and a ForkNode
producing the desired number of tokens (ActivityFinalNode and JoinNode
accordingly).

The requirements formulated above put restrictions on both the syntax and
the semantics of a sound Activity: requirement 1 restricts the structure, and
the other requirements restrict how the Activities must behave to be considered
sound.

Since structural restrictions are usually easy to verify, their verification will
not be discussed further. The behavioral restrictions are more interesting: to
verify them, we need a formal semantics of the behavior of UML Activities. In
the next section, we will dicuss the definition of such a semantics by means of
Dynamic Meta Modeling (DMM). Section 4 will then show how this semantics
can be used to formalize the behavioral restrictions, and section 5 will show how
to verify the restrictions in an automatic way.

3 Dynamic Meta Modeling

The most important prerequisite for automatically analyzing the behavior of
models is that the behavior is specified formally. Moreover, to allow advanced
language users to understand the precise semantics of their models, the specifi-
cation should be as easily understandable as possible. Dynamic Meta Modeling
aims at fulfilling these seemingly contradictory requirements by combining two

80 G. Engels, C. Soltenborn, and H. Wehrheim

different approaches into one semantics description technique: denotational mod-
eling and operational rules.

DMM is targeted at languages having an abstract syntax which is defined by
means of a meta model as suggested by the OMG, i.e., a model describing the
elements the language itself consists of. Sentences of the language must then be
consistent with the meta model. Often MOF [14] is used for the specification
of meta models, which is basically a subset of UML class diagrams. To follow
the OMG layered model, the language’s meta model is level M2, the level of the
concrete syntax (i.e., an object diagram consistent to the class diagram of level
M2) is M1, and the visualization of the concrete syntax (in our case, the picture
of the UML Activity) is level M0.

In DMM, the static semantics of a language is specified using Denotational
Meta Modeling. This means that the semantic domain has its own meta model,
to which the meta model describing the Visual Modeling language is mapped.
The meta model of the semantic domain often is an enhanced version of the
meta model of the language itself. For example, we will see below that the
Activity’s semantic domain meta model has additional elements like Token and
Offer, which allow to express certain states of execution of the Activity under
consideration.

The dynamic semantics is then specified by developing a set of operational
rules which describe how instances of the semantic domain meta model change in
time. For this, the instances are mapped to typed graphs [15], i.e., graphs whose
nodes are typed over the semantic domain meta model. The operational rules
are then defined as graph transformation rules, working on the derived typed
graphs.

Since the typed graphs represent states of execution of the Activity, the de-
scribed specification technique allows for the computation of transition systems
representing the precise behavior of the investigated models. The operational
rules result in transitions between these states. The resulting transition systems
can then be verified for certain properties, as we will see in section 4. The overall
concept of DMM is depicted in figure 2.

In the following, we give insight into our DMM semantics specification of UML
Activities. Note that we did not specify a semantics for all Activity elements
as defined in the UML 2.0 specification [13] yet. We basically implemented the
the FundamentalActivities, BasicActivities and IntermediateActivities
packages.

Figure 3 shows an excerpt of the semantic domain meta model we have de-
veloped to express the behavior of Activities (elements depicted in bold are
enhancements to the original meta model). While developing that meta model,
we have followed the textual description of the Activity’s semantics provided
as part of the UML specification [13]. Most importantly, the following concepts
have been implemented:

– The execution of an Activity is controlled by the class ActivityExecution,
which is a composition of the elements needed to describe the states of
execution (see below).

Analysis of UML Activities Using Dynamic Meta Modeling 81

Semantics Definition

Syntax
Definition

Transition System

States

Expression

Model elements

Dynamic Semantics

conforms to

Static Semantics

conforms to

Meta Model
Graph Transformation

Rules

semantic
 mapping

Enhanced Meta Model

Language

Model (Instance)

Fig. 2. Overview of the DMM approach

– As expected, the token flow is realized by introducing a Token class. Since
according to the UML specification, a token can only rest at a subset of
the Activity elements, an abstract class BufferNode is added to the type
hierarchy of those elements.

– The token flow within Activities follows the concept of traverse-to-comple-
tion. In a nutshell, this means that tokens are only offered to edges. An offer
traverses the Activity up to the next BufferNode, moving its token only
if such a node is found. In this way, tokens can not get “stuck” within the
Activity in some sense. This behavior is implemented by the Offer class and
a couple of other constructs.

Figure 4 shows an example DMM rule implementing the semantics of the
DecisionNode. A DMM rule consists of a signature, a number of pre- and post-
conditions and an optional number of invocations of other DMM rules (note
that the presented rule does not have invocations). Slightly simplified, the rule
matches an instance graph if a morphism from the preconditions into the in-
stance graph can be found. If this is the case, the graph will be modified: ele-
ments marked {new} are created, and elements marked {destroyed} are deleted.
In our case, the offer on the incoming edge will be deleted, and a new offer will
be created on the outgoing edge, corresponding to the fact that the offer has
passed the DecisionNode. Figure 5 illustrates this process: the left part shows a
visualization of the Activity’s behavior, the right part shows the matching part
of our example model before and after applying the rule of figure 4.

The derived graph represents the next state of execution. Since a
DecisionNode has only one incoming, but several outgoing edges, an arriving
offer will be routed to all of them: the rule matches every combination of the
only incoming and one of the outgoing edges, and produces several new states.

82 G. Engels, C. Soltenborn, and H. Wehrheim

Activity

ActivityExecution

ActivityNode

ActivityEdge

TokenOffer

BufferNode

ControlNode DecisionNode

ObjectNode

Action

1
source

1

0..*

0..*

belongs to

1

1
carries

0..1

1

carries

0..*

0..*

executes

1

0..*

0..*
1

target

1
0..*

Fig. 3. Enhanced UML Activity meta model

decisionNode.flow()

decisionNode:DecisionNode:ActivityEdge :ActivityEdge

:Offer

carries

{destroyed}
sourcetarget

carries {new}

Fig. 4. DMM rule decisionNode.flow()

check claim

check claim

:MergeNode

checkClaim:Action

:ForkNode

:ActivityEdge

:ActivityEdge

:ActivityEdge :DecisionNode

source

target

source

:Token :Offer

carries

:MergeNode

checkClaim:Action

:ForkNode

:ActivityEdge

:ActivityEdge

:ActivityEdge :DecisionNode

source

target

source

:Token :Offer
carries

decisionnode.flow()

Fig. 5. Application of rule decisionNode.flow()

From the transition system’s point of view, the result is a branch, represent-
ing all possible executions of the Activity at that point. Figure 5 shows one
possible application of rule decisionnode.flow(). In this case, the offer is routed

Analysis of UML Activities Using Dynamic Meta Modeling 83

along the top edge of the DecisionNode. The right part of that figure shows two
consecutive states of the Activity.

The resulting transition system represents the complete behavior of the Ac-
tivity under consideration. It will be the basis for analysis of the Activity, using
standard techniques such as model checking. In the next section, we show how
to verify a transition system representing a concrete Activity for soundness.

4 Sound UML Activities

Up to now, we have informally defined soundness for UML Activities in section 2,
and we have introduced our formal semantics of Activity’s behavior in the last
section. In the following, we will use this semantics to formally define soundness,
and we will then translate the soundness conditions into CTL formulas in order
to be able to verify the formula’s validity with a model checker.

Our goal is to be able to make statements about states of execution of the
Activity under investigation. We do this in an indirect way: we do not speak
about the states themselves, but about rules which match states. As we have
seen in the last section, a rule only matches a state (i.e., a graph) if a morphism
between the preconditions of the rule and the state can be found. In other words:
if a rule matches a state, we know that the preconditions of that rule hold within
the state, which means that we have knowledge about the state itself. As we will
see in section 5, the model checker provided by GROOVE [16] works exactly this
way: it verifies CTL formulas where the atomic propositions are applications of
the graph transformation rules used to calculate the transition system under
investigation.

Note that the described approach does not restrict the verification process:
every property p which can be formulated as a precondition of a rule can be
verified by adding a special rule r which has p not only as its pre-, but also as its
postcondition (i.e., its application does not change the state). A state s fulfilling
p will result in a self-transition (s, s) labeled r. Therefore, if we assume some
reasonable kind of fairness (see e.g. [17]), checking for the application of r is
equivalent to finding a state for which p holds.

Before we present our definition of soundness, we need to introduce the idea
of some DMM rules from our semantics definition, and we need to define some
predicates. Note that from now on, we slightly simplify our original results (see
[18] for a more comprehensive coverage of the content of this section).

First, recall from section 2 that for an Activity to be considered sound, a token
must finally arrive at the ActivityFinalNode, and at that moment, no other
tokens must be left in the Activity. Recall also that ActivityFinalNodes con-
sume all arriving tokens. To implement this behavior, we have defined two rules
whose task is to destroy arriving tokens as desired: finalnode.destroyToken1()
and finalnode.destroyToken2(). Both rules match if a token arrives at an
ActivityFinalNode; the difference between them is that the former only
matches if exactly one token is flowing within the (whole) Activity, and the
latter matches if two or more tokens are flowing. We can use this difference to

84 G. Engels, C. Soltenborn, and H. Wehrheim

define the desired behavior: an Activity is sound if, under all its possible exe-
cutions, rule finalnode.destroyToken1() matches at some point in time, and rule
finalnode.destroyToken2() never matches. Note that the rules’ implementation
guarantees that whenever these rules are applied, no other rules can be applied
afterwards. This is in compliance with the UML specification which says that a
token arriving at an ActivityFinalNode immediately ends the Activity.

The other requirement for soundness is that a sound Activity does not contain
any useless elements. Since Actions are the elements of Activities where actual
work is performed, we slightly relax that requirement by only requiring no useless
Actions. In our semantics, the execution of an Action is mainly implemented by
the rule N.start(), where N is the name of that Action (note that every Action
has its own rule). We therefore define an Activity to be sound if, under all its
possible executions, the rule N.start() matches at some point in time for every
Action of the Activity.

Having said that, we need to define some predicates which will prove helpful
when formalizing our soundness definition:

Definition 1. Let r be a DMM rule, s a state of a UML Activity as described
in section 3, i.e., a graph which is typed over the enhanced meta model. Let v
be a vertex of that graph.

1. If r matches the state s, then matches(r, s) is true.
2. If v’s type is Action or a subtype of Action, then isAction(v) is true.
3. Let isAction(v) be true. Then name(v) represents the name of the Action

represented by v.
4. If s is the state derived from an application of rule finalnode.destroyToken1(),

then isF inal(s) is true.

Now we are ready to present our formal definition of soundness for UML Activ-
ities.

Definition 2 (Sound Activity). Let A be a UML Activity with exactly one
InitialNode and ActivityFinalNode, s0 the state of A with only a token on
the InitialNode, and Vs0 the vertices of the graph s0. Let TS = (S, →, s0) be
the transition system induced by the DMM rule set as described in section 3 (S
contains exactly those states reachable from s0). A is sound if and only if the
following conditions hold:

1. ∀s ∈ S : (∃s′ ∈ S : s →∗ s′ ∧ matches(finalnode.destroyToken1(), s′)) ∨
isF inal(s)

2. ∀s ∈ S : ¬matches(finalnode.destroyToken2(), s)
3. ∀v ∈ Vs0 : isAction(v) ∧ name(v) = N ⇒ ∃s ∈ S : matches(N.start(), s)

Let us briefly discuss the relation between the informal soundness definition from
section 2 and definition 2. Condition 1 ensures that from all states s, a state s′

is reachable such that rule finalnode.destroyToken1() can be applied to it. If this
is the case, we know that a token will finally reach the ActivityFinalNode. As
rule finalnode.destroyToken2() is never applied, we also know that at this point

Analysis of UML Activities Using Dynamic Meta Modeling 85

in time, no other token is left in the Activity. The predicate isF inal(s) of condi-
tion 1 takes care of the state derived from applying rule finalnode.destroyToken1():
it is needed because since no other rule can be applied to s (see above), the first
part of the condition does not hold. Condition 3 makes sure that for every
Action, a state s ∈ S exists where that Action is executed. Since S contains all
states reachable from s0 (and no more), we know that all Actions are executed
under at least one of the possible executions of A.

5 Utilizing the GROOVE Toolset

Our final goal is to have an automatic check for soundness. Hence we need a tool
which, given a set of graph transformation rules, can generate the transition
system according to our semantics and inspect it with respect to our conditions.
For this, we have chosen to use the tool GROOVE. GROOVE is a shortcut for
“GRaphs for Object-Oriented VErification” and has been developed by Arend
Rensink at the University of Twente [19]. It offers a collection of tools for han-
dling graph transformations: the Generator computes a transition system out of
a start graph and a set of graph transformation rules, the Editor allows to edit
the graphs and rules, and the Imager visualizes them. The Simulator integrates
these tools, and the Model Checker allows for the verification of CTL formulas
over the generated transition systems. As expected, we mainly utilize GROOVE’s
Generator and Model Checker (see figure 6 for the complete workflow).

To use the model checker for checking soundness, we first need to translate the
conditions of definition 2 into CTL, i.e., the notion of temporal logic GROOVE
understands. Note that the Model Checker works as described in the last sec-
tion: it verifies CTL formulas over the application of graph transformation rules.
Before we can translate our soundness definition into the language GROOVE
understands, we need some prerequisites. We start by defining the computations
of a transition system:

Definition 3 (Computations). Let TS = (S, →, s0) be a DMM transition
system as defined in definition 2. The set of computations Comp(s0) is defined
as follows:

Comp(s0) := {s0s1s2 . . . : (si, si+1) ∈→}

Comp(s0) contains all possible computations starting with state s0.

Now we briefly define the CTL formulas we will use to express our conditions.
Note that this is only a subset of CTL.

Definition 4 (CTL formulas). Let TS = (S, →, s0) be a DMM transition
system as defined in definition 2. Let Comp(s0) be the set of computations as
in definition 3, and let p be some atomic proposition. Then

TS |= AF(p) :⇔ ∀s0s1 · · · ∈ Comp(s0)∃k ∈ N : p holds in sk

TS |= AG(p) :⇔ ∀s0s1 · · · ∈ Comp(s0)∀k ∈ N : p holds in sk

TS |= EF(p) :⇔ ∃s0s1 · · · ∈ Comp(s0)∃k ∈ N : p holds in sk

86 G. Engels, C. Soltenborn, and H. Wehrheim

In case of finite computations, k accordingly has to be restricted to the length
of the computation. AF stands for “On All paths Finally. . . ”, AG stands for
“On All paths Globally. . . ” and EF stands for “There Exists a path such that
Finally. . . ”.

We are now ready to formulate our theorem.

Theorem 1. Let A be a UML Activity with exactly one InitialNode and
ActivityFinalNode, s0 the state of A with only a token on the InitialNode.
Let N1, . . . , Nk be the names of the Actions contained in A. Let TS = (S, →, s0)
be the transition system induced by the DMM rule set as described in section 3
(S contains exactly those states which are reachable from s0). A is sound if and
only if the following CTL formulas hold for TS:

1. TS |= AF(finalnode.destroyToken1())
2. TS |= AG(¬finalnode.destroyToken2())
3. TS |= EF(N1.start()) ∧ · · · ∧ EF(Nk.start())

Proof. We start by showing the equivalence of the first condition of definition 2
and theorem 1. First, we can also write

∀s∈S : (∃s′ ∈ S : s →∗ s′ ∧ matches(finalnode.destroyToken1(), s′)) ∨ isF inal(s)

as

∀s∈S : (∃k ∈ N : s → s1 → · · · → sk ∧ matches(finalnode.destroyToken1(), sk))
∨ isF inal(s)

Since the above holds for all states s ∈ S, S contains all states reachable from
the initial state, and rule flowfinal.destroyToken1() is always the last rule in a
computation, we can write this as

∀s0s1 · · · ∈ Comp(s0)∃k ∈ N : matches(finalnode.destroyToken1(), sk)

Following definition 4, we can now formulate our property as a CTL formula
over the application of rule flowfinal.destroyToken1():

TS |= AF(finalnode.destroyToken1())

Now it is easy to see how conditions 2 and 3 of definition 2 can be translated
into temporal logic: since condition 2 holds for all states, it must also hold for
all computations. We can therefore write the condition as

∀s0s1 · · · ∈ Comp(s0)∀k ∈ N : ¬matches(finalnode.destroyToken2(), sk)

As above, this can be translated into temporal logic:

TS |= AG(¬finalnode.destroyToken2())

Analysis of UML Activities Using Dynamic Meta Modeling 87

The last condition of definition 2 states that for all Actions, there is some state
s ∈ S such that the start rule of that very Action matches. Let N1, . . . , Nk be
the names of the Actions. Since we do not know anything about state s except
that it exists, we can only conclude:

∃s0s1 · · · ∈ Comp(s0)∃k ∈ N : matches(Ni.start(), sk)

(i = 1, . . . , k). We can again translate this into CTL:

TS |= EF(Ni.start()) �

Now we have everything needed to verify our running example introduced in
section 2 for soundness. As it turns out, the example is not sound: the GROOVE
model checker reports that conditions 1 and 2 of theorem 1 do not hold. In other
words: there are paths within the transition system where rule finalnode.destroy-
Token1() is never applied, and also states where rule finalnode.destroyToken2()
matches. Intuitively, this means that there is at least one situation where a token
arrives at the ActivityFinalNode, but there are more tokens left in the Activity.

A further investigation of the example shows the reasons for this: first, if one
of the checks succeeds and the other fails, we end up in a state where a token
is stuck at the JoinNode. For this situation, both conditions do not hold: the
arriving token is consumed by applying rule finalnode.destroyToken2(), and since
the other token is stuck, it will not be consumed (in particular not by applying
rule finalnode.destroyToken1()).

Second, if both checks fail, two tokens will arrive at the ActivityFinalNode,
again violating condition 2 of theorem 1. Note that in this case, two letters will be
sent to the customer, which is obviously not the desired behavior. Note also that
the second token will be consumed by applying rule finalnode.destroyToken1()
(i.e., condition 1 is not violated).

It remains to discuss the chain of tools we developed for the automatic verifi-
cation of Activities. As mentioned in the introduction, DMM has been developed
mainly having the UML in mind. This is reflected in figure 6 by using the UML
meta model both as input for the semantics editor and the modeling tool: the
purpose of the former is to develop operational rules by means of graph trans-
formation rules which are typed over an extension of that meta model (as we
have done for UML Activities). The latter utilizes the meta model to verify the
syntactical correctness of the models. Note that this might be a typical use of
DMM, but basically every meta model can be incorporated into a DMM-based
semantics definition.

The semantics editor delivers a complete semantics to the property checker,
including a mapping from the original into the enhanced meta model. This map-
ping is then used to transform a model instance (in our case: a UML Activity)
into a start graph typed over the enhanced meta model.

The start graph as well as the graph transformation rules serve as input for
the GROOVE generator. As the name suggests, a transition system is generated,
having graphs as states and transitions between these states. The transitions are
labeled with the name of the applied rule.

88 G. Engels, C. Soltenborn, and H. Wehrheim

Fig. 6. Tool chain

The generated transition system represents the complete semantics of the
input model. It can either be investigated manually by visualizing it with the
GROOVE simulator (e.g. to understand the precise semantics of a certain part
of a model), or automatic verification techniques can be used.

For the latter, the first step is to identify the properties to be modified, and
to formulate them with the help of the DMM property editor. The property
checker then generates a set of rules and a start graph, from which the GROOVE
generator will compute the transition system. Next, the GROOVE model checker
is utilized to verify whether the properties hold on the computed transition
system (for the example of figure 1, the whole procedure took 13.7 seconds). The
result of the verification process can then be used by the modeler to improve her
model.

6 Conclusion

In this paper we have shown how to use dynamic meta modeling for 1) defining
a semantics for a modeling formalism based on a given meta model, and 2)
carrying out an analysis on the resulting semantics. As application, we used
UML Activities which pose a particular challenge for semantics definitions due
to their traverse-to-completion behavior introduced in UML 2.0. For the analysis,
we have chosen a general quality criterion (soundness) for workflows which are
a typical modeling domain for UML Activities. As a result, we now have a tool
chain which allows for the automatic analysis of soundness for workflows (using
the GROOVE toolset for the generation of the transition system as well as for
model checking).

Related work. There have been several apporaches to define a formal semantics
for UML Activities. Störrle et al. [20,21,5] try to use Petri nets as the semantic
domain for Activities: they conclude that due to the traverse-to-completion se-
mantics introduced in UML 2.0, a mapping from Activities into Petri nets is not

Analysis of UML Activities Using Dynamic Meta Modeling 89

possible. Eshuis [22] translates Activity Diagrams from UML 1.5 into the input
language of the model checker NuSVM [23], giving Activities a statechart-like
semantics as stated by the UML 1.5 specification, and uses that semantics for
verification of certain properties. Similarly, [6] and [7] do not treat UML 2.0
Activities, but their 1.5 predecessors.

Our approach is different to the ones described above in two ways: first, we
use DMM to define the dynamic semantics of UML Activities. The resulting
specification is formal and easily understandable and can therefore not only be
used for automatic analysis of models at design-time, but also as reference for
advanced language users. Note that our specification implements the traverse-
to-completion concept for token flow as suggested by the UML 2.0 specification.

Second, our analysis technique for DMM-based semantics allows to easily
formulate requirements on the models under consideration: all needed is an un-
derstanding of UML object diagrams as well as a basic knowledge in CTL. For
instance, to make sure that a certain object structure does never occur when
executing a model, that object structure is formulated as an object diagram
which serves as the pre- and the postcondition of a DMM rule R (as described
in section 4). Using a basic CTL construct, the whole requirement can then be
formulated like this: AG(NOT R).

Outlook. Since DMM can be used as a semantics specification technique for every
visual modeling language based on meta-models, we plan to explore different
applications of the described analysis technique. First, the integration of different
languages will be explored, e.g. for consistency checks. Second, we are interested
in the definition of domain specific languages as extensions of already existing
languages. In this area, we plan to use our analysis technique to ensure that
extensions of languages describing behavior do not break the behavior of the
base languages.

References

1. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic Meta-Modeling: A
Graphical Approach to the Operational Semantics of Behavioral Diagrams in UML.
In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000 - The Unified Modeling Language.
LNCS, vol. 1939, Springer-Verlag, Heidelberg (Oct. 2000)

2. Hausmann, J.H.: Dynamic Meta Modeling. PhD thesis, University of Paderborn
(2005)

3. OMG: Model Driven Architecture. http://www.omg.org/mda/
4. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Handbook of Graph

Grammars and Computing by Graph Transformation, Applications, Languages and
Tools, vol. 2. World Scientific Publisher, Singapore (1999)

5. Störrle, H.: Semantics of Control-Flow in UML 2.0 Activities. In: VL/HCC, pp.
235–242. IEEE Computer Society Press, Los Alamitos (2004)

6. Bolton, C., Davies, J.: On Giving a Behavioural Semantics to Activity Graphs.
In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, Springer,
Heidelberg (2000)

http://www.omg.org/mda/

90 G. Engels, C. Soltenborn, and H. Wehrheim

7. Börger, E., Cavarra, A., Riccobene, E.: An ASM Semantics for UML Activity
Diagrams. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 293–308. Springer,
Heidelberg (2000)

8. Hausmann, J.H., Störrle, H.: Towards a Formal Semantics of UML 2.0 Activities.
Software Engineering 2005 P-64, 117–128 (2005)

9. van der Aalst, W.: Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.)
ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

10. Rensink, A.: The GROOVE Simulator: A Tool for State Space Generation. In:
Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp.
479–485. Springer, Heidelberg (2003)

11. Clarke, E., Emerson, E., Sistla, A.: Automatic Verification of Finite State Con-
current Systems Using Temporal Logic Specifications: A Practical Approach. In:
Conference Record of the Tenth Annual ACM Symposium on Principles of Pro-
gramming Languages, pp. 117–126. ACM Press, New York (1983)

12. van der Aalst, W., van Hee, K.: Workflow Management - Models, Methods, and
Systems. The MIT Press, Cambridge (2002)

13. Object Management Group: UML Specification V2.0. http://www.omg.org/
technology/documents/modeling spec catalog.htm (2005)

14. Object Management Group: The MOF Specification. http://www.omg.org/
cgi-bin/doc?formal/00-04-03 (2004)

15. Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Padberg, J.: The Category
of Typed Graph Grammars and its Adjunctions with Categories. In: Cuny, J.E.,
Ehrig, H., Engels, G., Rozenberg, G. (eds.) Graph Grammars and Their Applica-
tion to Computer Science. LNCS, vol. 1073, pp. 56–74. Springer, Heidelberg (1994)

16. Kastenberg, H., Rensink, A.: Model checking dynamic states in GROOVE. In:
Valmari, A. (ed.) Model Checking Software (SPIN). LNCS, vol. 3925, pp. 299–305.
Springer, Heidelberg (2006)

17. Kindler, E., van der Aalst, W.: Liveness, Fairness, and Recurrence in Petri Nets.
Inf. Process. Lett. 70(6), 269–270 (1999)

18. Soltenborn, C.: Analysis of UML Workflow Diagrams with Dynamic Meta Modeling
techniques. Master’s thesis, University of Paderborn (2006)

19. Rensink, A.: GROOVE: A Graph Transformation Tool Set for the Simulation and
Analysis of Graph Grammars. Available at http://www.cs.utwente.nl/~groove
(2003)

20. Störrle, H., Hausmann, J.H.: Towards a Formal Semantics of UML 2.0 Activities.
In: Liggesmeyer, P., Pohl, K., Goedicke, M. (eds) Software Engineering. LNI., GI,
vol. 64 pp. 117–128 (2005)

21. Störrle, H.: Semantics and Verification of Data Flow in UML 2.0 Activities. Electr.
Notes Theor. Comput. Sci. 127(4), 35–52 (2005)

22. Eshuis, R.: Symbolic model checking of UML Activity diagrams. ACM Trans.
Softw. Eng. Methodol. 15(1), 1–38 (2006)

23. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An Opensource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

http://www.omg.org/technology/documents/modeling_spec_catalog.htm
http://www.omg.org/technology/documents/modeling_spec_catalog.htm
http://www.omg.org/cgi-bin/doc?formal/00-04-03
http://www.omg.org/cgi-bin/doc?formal/00-04-03
http://www.cs.utwente.nl/~groove

Distributed Applications Implemented in Maude

with Parameterized Skeletons�

Adrián Riesco and Alberto Verdejo

Facultad de Informática
Universidad Complutense de Madrid, Spain
ariesco@fdi.ucm.es, alberto@sip.ucm.es

Abstract. Algorithmic skeletons are a well-known approach for imple-
menting parallel and distributed applications. Declarative versions typ-
ically use higher-order functions in functional languages. We show here
a different approach based on object-oriented parameterized modules in
Maude, that receive the operations needed to solve a concrete problem
as a parameter. Architectures are conceived separately from the skele-
tons that are executed on top of them. The object-oriented methodology
followed facilitates nesting of skeletons and the combination of architec-
tures. Maude analysis tools allow to check at different abstraction levels
properties of the applications built by instantiating a skeleton.

Keywords: Algorithmic skeletons, parameterization, distributed
applications, Maude.

1 Introduction

Most interesting computer systems today, as well as those of the future, are dis-
tributed in nature, including the Internet, cellular and PDA communications,
biological and bio-tech computations, international trade, multi-national corpo-
rate databases, and multi-user games. The main goal of a distributed computing
system is to connect users and resources in a transparent, open, and scalable
way. Ideally this arrangement is drastically more fault tolerant and more pow-
erful than many stand-alone computer systems.

Parallel algorithms divide the problem into subproblems, pass them to many
processors and collect the results back together at the end. An algorithmic skele-
ton [3,14] is an abstraction shared by a range of applications which can be exe-
cuted in a parallel way. The aim is to obtain generic schemes that allow parallel
programming where the user does not have to handle low level features like
communication and synchronization.

A skeleton can be executed on different architectures/topologies. However,
there is often a most suitable architecture for each skeleton that takes advantage
of the task distribution specified by it. In our implementation we have opted

� Research supported by MEC Spanish project DESAFIOS (TIN2006-15660-C02-01)
and Comunidad de Madrid program PROMESAS (S0505/TIC/0407).

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 91–106, 2007.
c© IFIP International Federation for Information Processing 2007

92 A. Riesco and A. Verdejo

to separate the definition of the architectures from the skeletons, allowing us to
combine them in several ways.

Rewriting logic [10] was proposed in the early nineties as a unified model
for concurrency in which several well-known models of concurrent and distrib-
uted systems can be represented in a common framework. Maude [2] is a high
level, general purpose language and high performance system supporting both
equational and rewriting logic computations. It can be used to specify in a nat-
ural way a wide range of software models and systems, and since (most of) the
specifications are directly executable, Maude can also be used to prototype those
systems. It has already been used to specify and analyze distributed applications
and protocols [4,12]. The recently incorporated support in Maude for communi-
cation with external objects makes many other application areas (such as mobile
computing and distributed agents) ripe for system development in Maude.

We show here how distributed applications can be implemented in Maude by
means of object-oriented parameterized skeletons, that receive the operations
needed to solve a concrete problem as a parameter. These operations usually are
part of the sequential version of the concrete applications, thus encouraging code
reusability. The use of Maude allows us to have the description of the architec-
ture, the definition of the skeleton, and the implementation of the application
solving a problem in the same high-level language. Moreover, since Maude has
a well-defined semantics, we obtain a good basis for formal reasoning. Tools for
doing some kinds of this reasoning in an automatic way and the possibility to
define the properties the applications have to fulfill are also provided by Maude.

Typically, declarative implementations of skeletons are based on functional
languages (like Eden [9], GpH [16], or PMLS [11]) that naturally represent skele-
tons as higher-order functions. These languages also allow to prove skeletons
correctness [13]. Although rewriting logic is not a higher-order framework, the
parameterization features provided by Maude allow to achieve similar results.
From a “more practical” world, skeletons have recently been proposed for Java
in the JaSkel language [8]. It uses object-oriented features like inheritance and
abstract classes to present the skeletons in a hierarchical way that allows the
user to instantiate them with concrete applications. We follow a very similar
approach which provides an important advantage. The skeletons implemented,
analyzed, and proved correct in Maude can then be translated to a language
such as JaSkel with little effort.

Below we describe Maude’s main features, specially the object-oriented no-
tation used in the rest of the paper. How to implement different architectures
is shown in Section 2. Parameterized skeletons are described and instantiated
in Section 3. Section 4 shows how to check properties of the architectures and
the skeletons. Finally, we present some conclusions and future work. For more
detailed explanations of all the topics shown in this paper, see [15].

1.1 Maude

In Maude [2] the state of a system is formally specified as an algebraic data
type by means of an equational specification. In this kind of specification we

Distributed Applications Implemented in Maude 93

can define new types (by means of keyword sort(s)); subtype relations between
types (subsort); operators (op) for building values of these types; and equations
(eq) that identify terms built with these operators.

The dynamic behavior of such a distributed system is then specified by rewrite
rules of the form t −→ t′ if C, that describe the local, concurrent transitions of
the system. That is, when a part of a system matches the pattern t and satisfies
the condition C, it can be transformed into the corresponding instance of the
pattern t′.

Regarding object-oriented specifications, classes are declared with the syntax
class C | a1:S1,. . ., an:Sn, where C is the class name, ai is an attribute
identifier, and Si is the sort of the values this attribute can have. An object is
represented as a term < O : C | a1 : v1, . . ., an : vn > where O is the
object’s name, belonging to a set Oid of object identifiers, and the vi’s are
the current values of its attributes. Messages are defined by the user for each
application (introduced with syntax msg).

In a concurrent object-oriented system the concurrent state, which is called a
configuration, has the structure of a multiset made up of objects and messages
that evolves by concurrent rewriting. The rewrite rules specify the behavior
associated with the messages. The general form of such rules is

M1 . . . Mn 〈O1 : F1 | atts1〉 . . . 〈Om : Fm | attsm〉

−→ 〈Oi1 : F ′
i1 | atts ′

i1〉 . . . 〈Oik : F ′
ik

| atts ′
ik

〉 〈Q1 : D1 | atts ′′
1 〉 . . . 〈Qp : Dp | atts ′′

p〉

M ′
1 . . . M ′

q if C

where k, p, q ≥ 0, and the Ms are message expressions. The result of applying a
rewrite rule is that the messages M1, . . . , Mn disappear; the state and possibly
the class of the objects Oi1 , . . . , Oik

may change; all the other objects Oj vanish;
new objects Q1, . . . , Qp are created; and new messages M ′

1, . . . , M
′
q are sent.

By convention, the only object attributes made explicit in a rule are those
relevant for that rule. We use here the Full Maude object-oriented notation [2].
However, the actual implementation of the skeletons is in Core Maude because
Full Maude does not support external objects. The complete Maude code can
be found in http://maude.sip.ucm.es/skeletons.

Maude modules can be parameterized with one or more parameters, each
of which is expressed by means of one theory that defines the interface of the
module, that is, the structure and properties required of an actual parameter.
Views are used to specify how a particular module is claimed to satisfy a theory.

Maude is reflective, that is, it can be represented into itself in such a way that
a module in Maude may be data for another Maude module. This functionality
has been efficiently implemented in the predefined module META-LEVEL, where
concepts such as reduction or rewriting are reified by means of functions.

2 Different Architectures

In this section we show how distributed configurations, made up of located
configurations, can be built in Maude, in such a way that the architecture

http://maude.sip.ucm.es/skeletons

94 A. Riesco and A. Verdejo

is transparent to the skeletons we will execute on top of it. Thus, the same
skeleton can be run over different architectures.

Each located configuration is executed in a Maude process, and they are
connected through sockets. Maude supports (bidirectional) sockets as external
objects, and offers messages for interacting with them. However, these sockets
do not preserve message boundaries, so we have extended their functionality by
implementing “buffered sockets” with this feature [15]. In the following sections
we present how we use these sockets to define different architectures.

A first approach to really distributed architectures in Maude was shown in [5].
However, those architectures were mixed with the applications. Here, we improve
our approach by implementing them in an application-independent way.

2.1 Common Infrastructure

In this section we show the elements that are common to all the architectures
we define below. They basically correspond to the way messages are redirected
to reach their addresses. The different parts among the architectures correspond
to the way the locations are connected.

We assume that each located configuration contains one and only one router,1

plus messages and possibly objects of other classes. The names of routers range
over the sort Loc (subsort of Oid), and have the form l(IP, N) with the string IP
the IP address of the host machine and N a number. We assume global uniqueness
of routers names in a distributed configuration. We can communicate the name
of a location by using the message new-socket.

Objects situated in a located configuration L must have as identifier a value
o(L, N) of sort Oid, where N is a number not used to name other objects in L.
All objects can communicate with each other by using the message to_:_, that
has as arguments the identifier of the addressee and a term of sort Contents.

msg new-socket : Loc -> Msg .
msg to_:_ : Oid Contents -> Msg .

Maude sockets can only transmit strings, so we must translate all the messages
into strings and convert them back once they are received. To do it in a general
way (independently of the concrete application) we use the reflective features of
Maude. Concretely, we use a (metarepresented) module with the definition of all
the operators used to construct messages that are going to be transmitted. But,
since each application (each skeleton, in our case) needs different messages, we
define a parameterized module, that receives as a parameter the syntax of the
transferred data in a module MOD required by the SYNTAX theory.

fth SYNTAX is
inc META-LEVEL . op MOD : -> Module .
endfth

The Router class (that will be specialized in the different architectures) is
defined as follows:
1 We identify the router and the location where it is.

Distributed Applications Implemented in Maude 95

class Router | state : RouterState, port : Nat,
neighbors : Map{Loc,Oid}, defNeighbor : Maybe{Oid} .

where the predefined parametric sort Map{Loc,Oid} represents partial functions
from view Loc to view Oid (that identifies sockets in this case) and Maybe{Oid}
is a sort that adds a default value null to Oid. A router may be in states
idle, waiting-connection, or active, although other values can be added
in concrete architectures. The attribute port keeps information about the port
through which a server can offer its services or a client can ask for them. To solve
the routing problem we assume a very general approach consisting in having a
routing table in each router, that gives the socket through which a message must
be sent if one wants to reach a particular location. The neighbors attribute
maintains such a routing table as a map associating socket object identifiers
to location identifiers. As we will see, each concrete architecture will use the
new-socket message to update this attribute.

The following rule describes how a message is redirected through the appro-
priate socket. If a message is sent to an object o(L, N) and the message is in a
location L’, with L �= L’, that is directly connected to L (LSPF[L] �= undefined),
then the message is sent through the socket LSPF[L] after converting it to a string
with the function msg2string, that uses the MOD constant from the theory.

crl [redirect] :
to o(L, N) : C
< L’ : Router | state : active, neighbors : LSPF >

=> < L’ : Router | > Send(LSPF[L], L’, msg2string(to o(L, N) : C))
if L =/= L’ /\ LSPF[L] =/= undefined .

In case there is no socket associated to a particular location in the map
neighbors, there can be a default socket stored in the attribute defNeighbor.
Nevertheless, the value of the defNeighbor attribute may also be unspecified.

When a router sees a Received message that is not new-socket, it extracts
the string (by means of the function string2msg) putting a new message in the
configuration, and keeps listening with a new Receive message.

crl [Received] :
Received(L, SOCKET, DATA) < L : Router | >

=> < L : Router | > string2msg(DATA) Receive(SOCKET, L)
if not new-socket?(DATA) .

2.2 Star Architecture

The architecture we present here consists of a location with a server router, and
several locations with client routers. The server is connected to all clients, and
each client is connected only to the server. That is, we have a star network, with
the center redirecting the messages between the nodes.

We distinguish between the center and the nodes by declaring two subclasses
of Router: StarCenter, with no additional attributes; and StarNode, with

96 A. Riesco and A. Verdejo

an attribute center, that keeps the center’s IP address. These classes define
how the locations are connected by filling the neighbors and defNeighbor
attributes.

The center plays the server role from the point of view of the sockets so it
declares itself as a server socket, offering its services on port. Once it receives
a CreatedSocket message, it becomes active and sends a message indicating
that it is ready to accept clients through the server socket. In the rule below, in
addition to sending messages AcceptClient (to continue accepting clients) and
Receive (for receiving messages from the accepted client), the center sends to
the node the message new-socket communicating its identifier.

rl [AcceptedClient] :
AcceptedClient(L, SOCKET, IP, NEW-SOCKET)
< L : StarCenter | state : active >

=> < L : StarCenter | > AcceptClient(SOCKET, L) Receive(NEW-SOCKET, L)
Send(NEW-SOCKET, L, msg2string(new-socket(L))) .

When a new-socket message is received from a node with its name L’, it is
stored in the neighbors attribute.

crl [Received] :
Received(L, SOCKET, DATA)
< L : StarCenter | state : active, neighbors : LSPF >

=> < L : StarCenter | neighbors : insert(L’, SOCKET, LSPF) >
Receive(SOCKET, L)

if new-socket(L’) := string2msg(DATA) .

When a StarNode is created, it first tries to establish a connection with the
center by sending a message that uses the IP address and the port of the center,
reaching the state waiting-connection. The response is handled by the follow-
ing rule connected, where the node also sends the new-socket message right
after the socket is created. Nodes start listening with the Receive message.

rl [connected] :
CreatedSocket(L, SOCKET-MANAGER, SOCKET)
< L : StarNode | state : waiting-connection >

=> < L : StarNode | state : active > Receive(SOCKET, L)
Send(SOCKET, L, msg2string(new-socket(L))) .

Finally, nodes make the connection with the center the default one.

2.3 Ring Architecture

In a ring topology, each node is connected to two nodes, the previous and the
next one. We show here how to implement a unidirectional ring where each node
receives data from the previous one and sends data to the next one.

In this architecture, each node must be declared as a (Maude) server for the
previous one and as a (Maude) client of the next one. However, to declare a

Distributed Applications Implemented in Maude 97

node as a client it needs another one working as a server, which is impossible
for the Maude instance that is first executed. We have decided to distinguish
between the last Maude instance executed (which knows that all other instances
are already running) and the other ones by declaring two subclasses of Router:

- RingNode defines the behavior of all the nodes but the last one.2 They first
declare themselves as servers and then wait until someone asks to be their
client. Once they have accepted a client, they try to be clients themselves of
the next node in the ring.

- RingLast defines the behavior of the last node, that asks the next one to be
its server, and then waits to be a server itself.

Both RingNode and RingLast will reach the same states, although in different
order (thus they need the same attributes), and will declare themselves as servers
at start-up, so we define first a superclass RingRouter containing the common
behavior. It is a subclass of Router with attributes nextIP and nextPort that
keep, respectively, the IP address and the port of the next node in the ring. The
port attribute inherited from class Router is the port used by the ring objects
to declare themselves as servers and accept clients through it. We also declare
new router states connecting2next and waiting4previous.

When a node is accepted as client, it keeps the socket in the attribute
defNeighbor, in order to use it to redirect all the messages, and reaches the
active state. In this architecture the neighbors attribute is not used; the ring
nodes are just connected by defNeighbor, thus obtaining a unidirectional ring.

2.4 Centralized Ring Architecture

We show here a special ring architecture, where in addition to the ring we have
a central server connected to each location, so we have a mixture of the two
previous architectures. We have tried to reuse them as much as possible. We use
the class StarCenter from the star architecture for the ring center; and we reuse
the classes RingNode and RingLast described above for the nodes in the ring.

We define a new class CRingRouter in charge of connecting to a central
server. We will combine the behavior of this new class with the classes RingNode
and RingLast from the ring architecture. This new class has new attributes
centerIP and centerPort, with the IP address and port of the center; new
states connecting2center and waiting4center; and rules for connecting to
the central node. When it is in connecting2center state, it tries to connect to
the center and reaches waiting4center. Once the connection has been created,
it sends a new-socket message and reaches the active state.

Now we look for a class that behaves as a CRingRouter and as a RingNode (or
as a RingLast, if it is the last node). To obtain it, we define a new class CRNode,
which is a subclass of both CRingRouter and RingNode (and a new class CRLast,
which is a subclass of CRingRouter and RingLast). These new classes behave
2 Although in a ring there is no “last” node, we refer to the order in which the nodes

must be started to be executed.

98 A. Riesco and A. Verdejo

as the corresponding nodes in the ring, and once they are connected behave as
clients of the center. However, we found the problem that all those classes finish
in the active state, so some of the rules could not be applied. We solve it by
renaming the active state in the ring nodes to connecting2center, so the rules
in CRingRouter can be applied after the ring connections has been established.

omod CENTRALIZED-RING-NODE{M :: SYNTAX} is
pr CENTRALIZED-RING{M} .
pr RING-NODE{M} * (op active to connecting2center) .
class CRNode | . subclass CRNode < CRingRouter RingNode .
endom

In the following section we will show how these architectures can be used to
execute skeletons on top of them. In [15], we also show how a concrete distributed
application can be implemented directly in Maude (without skeletons).

3 Parameterized Skeletons

An important characteristic of skeletons is their generality, that is, the possibility
of using them in different applications. For this, most skeletons are parameterized
by functions and have a polymorphic type. We accomplish this goal by means
of parameterized modules whose parameter includes the characterization of the
problem. We apply our methodology to three kinds of skeletons [14]:

Data-parallel skeletons: The source of parallelism is the distribution of data
between processors and the application of the same operation to all portions
of the data. We show the farm skeleton with and without fixed data.

Systolic skeletons: The systolic skeletons are used in algorithms in which par-
allel computation and global synchronization steps alternate. We show the
ring version of the systolic skeleton.

Task-parallel skeletons: The source of parallelism is the decomposition of a
task into different subtasks which can be done in parallel. These subtasks
need not be identical. We have implemented three task-parallel skeletons:
divide and conquer (shown here), branch and bound, and pipeline.

Indications of the most appropriate architecture for each skeleton will be given
in the following sections.

3.1 Farm Skeleton

We show here how to implement a skeleton with replicated workers and fixed
data. There is a master that initially sends the fixed data and some subproblems
to all the workers. Each time a task is finished by a worker, the subresult is sent
to the master, where it is combined with the partial result already computed,
and then new work is given to that worker, reducing the initial problem. Thus,
the tasks are delivered on demand, obtaining an even distribution of the work
to be done. In order to have a direct communication between the master and

Distributed Applications Implemented in Maude 99

the workers the star architecture is the most appropriate one, with the master
located in the center and the workers in the nodes.

Each concrete application must define a module fulfilling the RW_FD-PROBLEM
theory, that requires the sorts FixData (containing the data common to all the
subproblems), Problem (refering to the initial problem), SubProblem (repre-
senting the smaller problems solved by the workers), Result (keeping the final
result), and SubResult (corresponding to the results obtained by the workers).

The operations required by the theory are: new-work, that extracts a new
subproblem from the current problem; reduce, that updates the current prob-
lem making it smaller; do-work, that given a subproblem and the fixed data
solves the former; combine, that merges the current (partial) result with a new
subresult, given the subproblem that was solved (this operation must be com-
mutative3, in the sense that the final result cannot depend on the order in which
the combinations are performed, because the subresults may arrive unordered);
and finished?, that checks if the problem has already been solved.

We declare the messages fixData and new-work for sending the fixed data
and new tasks to the workers, and finished for communicating the subresults
to the master.

The skeleton receives as another parameter the SYNTAX theory, that will be
used by the architecture. First, classes for the master and the workers are defined.
The workers have the list with unfinished subproblems (nextWorks), the fixed
data (fixData), that initially is null, and the master identifier.

class RW_FD-Worker | nextWorks : SubProblemList,
fixData : Maybe{FixData}, master : Oid.

The master stores the fixed data (fixData, that cannot be null), the current
unsolved problem, the partial result, the list of idle workers, and the number
of initial tasks assigned to each worker (numWorks).4

class RW_FD-Master | fixData : P$FixData, problem : P$Problem,
result : P$Result, workers : OidList, numWorks : Nat.

The first action the master must take is to deliver the fixed data and the
initial tasks to the workers:

rl [new-worker] :
< O : RW_FD-Master | fixData : FD, problem : P, workers : W OL,

numWorks : N >
=> < O : RW_FD-Master | problem : update(P, N), workers : OL >

(to W : fixData(FD)) sendTasks(W, P, N).

where sendTasks and update are equationally defined operations that generate
the messages with the initial tasks and reduce the problem accordingly. While
the list of unfinished tasks of a worker is not empty, it must do the following one
and send the subresult to the master.
3 This requirement is represented in the theory by means of an equation [15].
4 P$Sort means that Sort comes from the parameter P.

100 A. Riesco and A. Verdejo

rl [do-work] :
< W : RW_FD-Worker | fixData : FD, master : O, nextWorks : SP SPL >

=> < W : RW_FD-Worker | nextWorks : SPL >
to O : finished(W, SP, do-work(SP, FD)).

The other tasks of the master are to compose the subresults from the workers
and give them more work if it is possible.

Ray tracing instantiation. We can implement this well-known case study
by starting from part of the sequential implementation included in module
ROWTRACER [15] solving the problem for one row by means of function traceRow,
and extending it in such a way that it fulfills the requirements from theory
RW_FD-PROBLEM. The sort Pair is declared to define the initial problem (the
highest and the lowest y), while World defines the fixed data (the width of the
screen, the camera, and the list of figures). A partial function from floats (identi-
fying rows) to colored rows is used to represent the final result. To instantiate the
module we create a view [2] and define the mapping between sorts and operators
with different names from those in the theory:

view RayTracer from RW_FD-PROBLEM to RAYTRACING-PROBLEM is
sort Problem to Pair. sort SubProblem to Float.
sort Result to Map{Float,ColorRow}. sort SubResult to ColorRow.
sort FixData to World.
op do-work to trace-row. op new-work to sub-problem.
op combine(R:Result, SP:SubProblem, SR:SubResult) to

term insert(SP:Float, SR:ColorRow, R:Map{Float,ColorRow}).
endv

Finally, we instantiate the module RW_FD-SKELETON and use the star architec-
ture. RT-Syntax is a view that encapsulates the syntax of transmitted messages.

mod RAYTRACING-SKELETON is
pr RW_FD-SKELETON{RayTracer, RT-Syntax}.
pr STAR-ARCH-STAR-CENTER{RT-Syntax}.
pr STAR-ARCH-STAR-NODE{RT-Syntax}.
endm

Euler instantiation. In some problems the fixed data is not needed; we have
implemented a slightly modified skeleton to deal with this situation.

The Euler number ϕ(x) is the number of natural numbers smaller than x
that are relatively prime to x. We are interested in computing

∑n
i=1 ϕ(i). We

distribute the problem by considering as a single work to calculate each ϕ(i).
The only sort involved in this problem is Nat, so every sort in the skeleton is
mapped to it. The operations are very simple too: a new work of the problem N
is just N; we reduce the problem by subtracting 1; the work that must be done
is the function euler from module EULER; combining two results is just adding
them; and we have finished when the number reaches 0.

Distributed Applications Implemented in Maude 101

view Euler from RW-PROBLEM to EULER is
sort Problem to Nat. sort SubProblem to Nat.
sort Result to Nat. sort SubResult to Nat.
op new-work(N:Problem) to term N:Nat.
op reduce(N:Problem) to term sd(N:Nat, 1). op do-work to euler.
op combine(R:Result,S:SubProblem,SR:SubResult) to term R:Nat + SR:Nat.
op finished?(N:Problem) to term (N:Nat == 0).
endv

Calculating ϕ(x) may be quite faster than communicating it, so it is possible
that most of the computation time is used in communication. To avoid this prob-
lem we can make the granularity of the works coarser by computing more than
one Euler number in each step. To do this we only need to make small changes
in the instantiation module, while obviously the skeleton remains unmodified.
We show here an example where we calculate the sum of 20 Euler numbers in
each step with a new function euler20.

view Euler20 from RW-PROBLEM to EULER20 is
...

op do-work to euler20.
op reduce(N:Problem) to term (if N:Nat > 20 then sd(N:Nat, 20)

else 0 fi).
endv

3.2 Systolic Skeleton

In this skeleton, a master divides the problem among all the workers, that are
organized in a circular list because they must share some data through it. When
the workers have both initial and shared data (the first shared data is produced
by the worker itself), they do their work, combine the partial result, and give
the new shared data to the next worker. When a worker finishes all its tasks, it
sends its subresult to the master, that will combine them in order.

We define a theory that requires the following sorts: Problem and Result
represent the initial and final data; SharedData corresponds to the data that is
passed by all the workers; and Pair is a wrapper of Result and SharedData.

The theory defines the following operations: divide splits the initial prob-
lem into a list of problems; initialSharedData extracts from the initial data
the shared one; do-work computes, given the initial and the shared data, a
partial result and the shared data to be communicated to the next worker;
combine, used by the workers, merges the current partial result with a new
one; combine-all, used by the master, merges all the partial results from the
workers; and finished? checks if the worker has finished all its tasks.

We need the following messages: initial-work communicates the initial data
to the workers; shared-data delivers the shared data to the next worker; and
finished sends a result to the master, once the worker has finished.

This skeleton uses the classes SWorker and SMaster with attributes that allow
the workers to keep the partial results and send and receive the shared data in
order, and the master to collect and combine the results in order.

102 A. Riesco and A. Verdejo

The first thing that must be done by the master is to divide the initial problem
into a list of problems, that are delivered to all the workers, which first store
each problem and extract the initial shared data. Once the worker has shared
data it can do a new work and send the updated shared data to the next worker,
forgetting its own. When the next shared data arrives, it is checked if the work
is not finished, in which case the worker keeps the shared data. Finally, when
the master has received all the results, it merges them.

In this case, the centralized ring architecture is the most appropriate one: the
workers are located in the ring nodes and the master in the center. Examples
can be found in [15].

3.3 Divide and Conquer

Divide and conquer algorithms clearly offer good potential for parallel evalu-
ation. It is not difficult to see that recursively defined subproblems may be
evaluated in parallel if sufficient processors are available. The whole execution
of a divide and conquer algorithm amounts to the evaluation of a dynami-
cally evolving tree of processes, one for each subproblem generated. However,
we show an implementation based on the replicated workers scheme, that al-
lows a balanced distribution of the leaves of the problem tree. This implemen-
tation is suitable when decomposition of the problems and the composition
of the results are irrelevant compared to the resolution of the subproblems.
The master divides the initial problem into subproblems, that are delivered to
the workers. The structure of the subproblems is kept in a tree in order to
be able to combine their subresults in the appropriate order and get the final
result.

We define a theory with operators that allow the skeleton to generate and solve
the problem tree. The sorts Problem and Result define the initial and final data.
The function divide splits a problem into a list of subproblems, finishing when
the problem isTrivial. Each trivial task is computed with solve. The function
combine merges a list of subresults into a new subresult.

Only two messages are used: finished communicates new results to the mas-
ter, while new-work transmits new tasks to the workers.

This skeleton defines the classes DCMaster and DCWorker, with attributes
that allow the master to keep the tree of results and the workers to transmit
the results with their corresponding identifier. First, the master must trans-
form the initial problem into a list of subproblems, and create the initial result
tree, that initially has all its nodes without data. Once the list of problems has
been calculated, the master must transmit the initial tasks to the workers. Even-
tually, a task is finished and sent to the server, that inserts it in the result tree,
merging the subresults if possible [15].

Since this skeleton is based on replicated workers, the most suitable architec-
ture for the applications that instantiate it (examples are shown in [15]) is the
star architecture. When the cost of the composition of the subresults is relevant,
a hierarchical architecture with more levels could be more convenient.

Distributed Applications Implemented in Maude 103

4 Formal Analysis of Distributed Applications

Formal verification is the process of checking whether a design satisfies some
requirements (properties). In order to formally verify a distributed system, it
must first be converted into a simpler “verifiable” format. To do that in Maude,
we must be able to represent the whole system in one single term. We have
provided an algebraic specification of sockets [15] and represented the processes
(hosts in the distributed version) as objects of a class Process identified by the
name of the location it represents, and with a single attribute conf keeping the
configuration in that host separated from the others. The implementation of the
distributed applications can be executed using these “simulated” sockets without
changes. By doing this, we can check the properties of a system that is almost
equal to the distributed one. However, we can trust some of the components of
the whole system, and then abstract them, representing only the “suspicious”
elements. These different abstraction levels speed up the checking process.

Model checking [1] is used to formally verify finite-state concurrent systems.
It has several important advantages over mechanical theorem provers or proof
checkers; the most important is that the procedure is completely automatic. The
main disadvantage is the state space explosion, that can make it unfeasible to
model check a system except for very simple cases. For this reason, several state
space reduction techniques have been investigated. We use one based on the
idea of invisible transitions [7], that generalizes a similar notion in partial order
reduction techniques. By using this technique we can select a set of rewriting
rules that fulfill some properties (such as termination, confluence, and coherence)
and convert them into equations, thus reducing the number of states.

Maude’s model checker [6] allows us to prove properties on Maude specifi-
cations. The properties to be checked are described by using Linear Temporal
Logic (LTL) [1]. Then, the model checker can be used to check whether a given
initial state, represented by a Maude term, fulfills a given property. To use the
model checker we just need to make explicit two things: the intended sort of
states (Configuration in our case), and the relevant state predicates, that is,
the relevant atomic propositions. The latter are defined by means of equations
that specify when a configuration C satisfies a property P , C |= P .

Sometimes all the power ofmodel checking is not needed. Another Maude analy-
sis tool is the search command, that allows exploration (following a breadth-first
search strategy) of the reachable states in different ways. By using the search
command we can check invariants [2]. If an invariant holds, then we know that
something “bad” can never happen, namely, the negation ¬I of the invariant is
impossible. Thus, if the command search init =>* C such that not I(C) has no
solution, then I holds.

4.1 Analyzing Architectures

Architectures have been designed independently from the skeletons, and this
allows to check properties over them. We show here some simple properties of
the centralized ring architecture. Other properties on different architectures can
be proved using the same methodology.

104 A. Riesco and A. Verdejo

Using the model checker. We want to check the behavior of the centralized
ring when a node in the ring sends a message to another ring node. To study it
we use an initial configuration with one of the nodes in the ring with an object
and another with a message for it. Some of the nodes will be traversed by the
message and others never will be traversed (at least the center). We define the
property has-msg, that checks if a given location contains messages.

op has-msg : Loc -> Prop .
eq C < L : Process | conf : C’ (to O : CNT) > |= has-msg(L) = true .
eq C |= has-msg(L) = false [owise] .

We define the LTL formulas specifying the properties. The formula F(L) below
expresses that L receives a message exactly once, and then redirects it, where U
represents the until, ~ the negation, and [] the henceforth LTL operators.

eq F(L) = ~ has-msg(L) U (has-msg(L) /\ (has-msg(L) U [] ~ has-msg(L))) .

The formula F’(L) states that L never contains a message and F’’(L) states
that a message reaches L and stays there. They are defined in a similar way as
above. We check this property in an example with five nodes in the ring (l(ipi,
0), i ∈ 1..5), and a message from l(ip4, 0) to an object in the location l(ip2,
0), so it must traverse l(ip5, 0) and l(ip1, 0). The center l(ip0, 0) and
l(ip3, 0) must receive no message. Therefore we use the following command:

red modelCheck(init, F(l(ip4, 0)) /\ F(l(ip5, 0)) /\ F(l(ip1, 0)) /\
F’(l(ip0, 0)) /\ F’(l(ip3, 0)) /\ F’’(l(ip2, 0)) .

result Bool: true

Using the search command. We can check now that the connection between
each node in the ring and the center is direct. In the configuration above, we place
an object in the center and a message for it in the ring node l(ip4, 0). We con-
sider as an invariant (equationally defined) the property messages-invariant,
that states that all the nodes in the ring (except the one sending the message)
never contain a message in their configuration. The command to check the in-
variant is:

search init2 =>* C such that not messages-invariant(l(ip4, 0), C) .

4.2 Analyzing Skeletons

In order to check properties of the skeleton instantiations, we can consider the
sequential version of the concrete application as the specification of the prob-
lem and the distributed, skeleton version as the implementation. We use the
search command to analyze that in all possible executions of an instantiated
skeleton (which introduces nondeterminism) the final result obtained coincides
with the result of the deterministic sequential version. We define for each skele-
ton a getResult operation that, given a final configuration, returns the result

Distributed Applications Implemented in Maude 105

kept in the master. We use it to compare the results from the sequential and the
distributed implementation, although the comparison can be non trivial [15].

In the Euler example, getResult returns a natural number, that we have to
compare with the result from the specification. The search command used is:

search initial(7) =>! C such that getResult(C) =/= sumEuler(7).

In the mergesort application, used to instantiate the divide and conquer skele-
ton, the postcondition is simple enough to avoid the use of the sequential version
to prove the correctness of the skeleton. We can define an ordered predicate that
checks if a list is sorted and has the same components as another and use it in
the search command:

search init(gen(1000)) =>! C s.t. not ordered(getResult(C), gen(1000)).

5 Conclusions

We have presented the implementation of some static architectures using sockets,
that Maude supports as external objects. We are currently developing more
complex, fault-tolerant architectures, where nodes can join and leave.

We have implemented several skeletons as parameterized modules that re-
ceive as parameters the operations solving each concrete problem. This allows
us to instantiate the same skeleton for a concrete problem in different ways, for
example varying its granularity.

From the Maude side, we show that truly distributed applications can be
implemented and that the recently incorporated support for parameterization
in Core Maude can be applied to more complex applications. From the point of
view of skeleton development, we describe a methodology to specify, prototype,
and check skeletons that can be later implemented in other languages such as
Java (we plan to study in the near future which is the best way to achieve this).

We have tested the skeletons with some examples, using three 2 GHz PowerPC
G5 and two 1.25 GHz PowerPC G4, obtaining a speed-up of 2.5. Although this
speed-up is not remarkable, we observed in the executions that all the processors
were always busy, so most of the time was wasted in manipulating the transmit-
ted data. We have to study how to improve the efficiency; the profiling feature
in Maude allows a detailed analysis of which rules are most expensive to execute
in a given application.

Mobile Maude [5], an extension of Maude allowing mobile computation, has
also been used to implement skeletons, where the master and the workers were
implemented as mobile objects that travelled through the architecture [15]. They
had an attribute with the concrete code of the application. Although the same
generality as in the work presented in this paper was obtained, the main draw-
back was lack of efficiency due to the reflection levels introduced.

Finally, we have started to study how our skeletons can be nested by using the
object-oriented inheritance features provided by Maude. We are also investigat-
ing how to prove properties of the skeletons independently of the instantiations,
by means of rule induction.

106 A. Riesco and A. Verdejo

References

1. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

2. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: Maude Manual (Version 2.2), December 2005. http://maude.cs.uiuc.edu/
maude2-manual (2005)

3. Cole, M.: Algorithmic Skeletons: Structure Management of Parallel Computations.
MIT Press, Cambridge (1989)

4. Denker, G., Meseguer, J., Talcott, C.: Formal specification and analysis of active
networks and communication protocols: The Maude experience. In: Proc. DARPA
Information Survivability Conference and Exposition DICEX 2000, Hilton Head,
South Carolina, January 2000, vol. 1, pp. 251–265. IEEE, NJ, New York (2000)

5. Durán, F., Riesco, A., Verdejo, A.: A distributed implementation of Mobile Maude.
In: Denker, G., Talcott, C. (eds.) Proc. Sixth Int. Workshop on Rewriting Logic
and its Applications, WRLA 2006, ENTCS, pp. 35–55. Elsevier, Amsterdam (2006)

6. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In:
Gadducci, F., Montanari, U. (eds.) Proc. Fourth Int. Workshop on Rewriting Logic
and its Applications, WRLA 2002, Pisa, Italy, September 19–21, 2002, vol. 71, pp.
115–141. Elsevier, Amsterdam (2002)

7. Farzan, A., Meseguer, J.: State space reduction of rewrite theories using invisible
transitions. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp.
142–157. Springer, Heidelberg (2006)

8. Ferreira, J.F., Sobral, J.L., Proença, A.J.: JaSkel: A Java skeleton-based framework
for structured cluster and grid computing. In: CCGRID’06: Proceedings of the
Sixth IEEE International Symposium on Cluster Computing and the Grid, pp.
301–304. IEEE Computer Society, Los Alamitos, CA (2006)

9. Loogen, R., Ortega-Mallén, Y., Peña, R., Priebe, S., Rubio, F.: Parallelism ab-
stractions in Eden. In: [14], chapter 4, pp. 95–129

10. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96(1), 73–155 (1992)

11. Michaelson, G., Scaife, N., Bristow, P., King, P.: Nested algorithmic skeletons
from higher order functions. Parallel Algorithms and Applications 16(2-3), 181–
206 (2001)

12. Ölveczky, P., Meseguer, J., Talcott, C.: Specification and analysis of the AER/NCA
active network protocol suite in Real-Time Maude. Formal Methods in System
Design 29, 253–293 (2006)

13. Peña, R., Segura, C.: Reasoning about skeletons in Eden. In: Parallel Computing:
Current & Future Issues of High-End Computing, Proceedings of the International
Conference ParCo 2005, NIC Series 33, pp. 851–858 (2006)

14. Rabhi, F.A., Gorlatch, S.: Patterns and Skeletons for Parallel and Distributed
Computing. Springer, Heidelberg (2002)

15. Riesco, A., Verdejo, A.: Parameterized skeletons in Maude. TR 1/07, Dpto.
Sistemas Informáticos y Computación, Universidad Complutense de Madrid
http://maude.sip.ucm.es/skeletons/psm.pdf (2007)

16. Trinder, P.W., Loidl, H.W., Pointon, R.F.: Parallel and distributed Haskells. Jour-
nal of Functional Programming 12(4-5), 469–510 (2002)

http://maude.cs.uiuc.edu/maude2-manual
http://maude.cs.uiuc.edu/maude2-manual
http://maude.sip.ucm.es/skeletons/psm.pdf

On Formal Analysis of OO Languages Using

Rewriting Logic: Designing for Performance

Mark Hills and Grigore Roşu

Department of Computer Science
University of Illinois at Urbana-Champaign, USA

201 N Goodwin Ave, Urbana, IL 61801
{mhills,grosu}@cs.uiuc.edu

http://fsl.cs.uiuc.edu

Abstract. Rewriting logic provides a powerful, flexible mechanism for
language definition and analysis. This flexibility in design can lead to
problems during analysis, as different designs for the same language fea-
ture can cause drastic differences in analysis performance. This paper
describes some of these design decisions in the context of KOOL, a con-
current, dynamic, object-oriented language. Also described is a general
mechanism used in KOOL to support model checking while still allowing
for ongoing, sometimes major, changes to the language definition.

Keywords: object-oriented languages, language design, analysis, model
checking, rewriting logic.

1 Introduction

With the increase in multi-core systems, concurrency is becoming a more im-
portant topic in programming languages and formal methods research. Rewrit-
ing logic [14,13], an extension of equational logic with support for concurrency,
provides a computational logic for defining, reasoning about, and executing con-
current systems. While these can be fairly simple systems, entire programming
languages, such as object-oriented languages, can be defined as rewrite theories,
allowing tools designed to work with generic rewrite specifications to work with
the defined programming languages as well.

While there has been much work on analysis and verification techniques with
rewriting logic [16,17,5,15], much of this work has not focused on programming
languages, or has used simpler, sometimes trivial, languages. Exceptions to this
include work on program verification for Java [6], Java bytecode in the JVM [7],
and CML [2], a concurrent extension to the ML programming language.

Even with these papers focused on real languages, very little information is
given on why certain design decisions were made. For the language designer
looking to define object-oriented languages using rewriting logic, this is a major
shortcoming. Since even small changes to a rewriting logic definition can have
major impacts on the ability to analyze programs, making appropriate decisions
when defining the language is vitally important. In addition, little information

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 107–121, 2007.
c© IFIP International Federation for Information Processing 2007

http://fsl.cs.uiuc.edu

108 M. Hills and G. Roşu

is available about specifically object-oriented definitions; while the work on Java
[6] obviously qualifies, the JVM operates at a much lower level, and the model
of computation used by CML, based around the strict functional language ML,
differs from that used by standard object-oriented languages.

In this paper, we have set out to start filling this gap by providing information
on increasing the analysis performance of rewrite logic definitions for object-
oriented languages, specifically in the context of Maude [3,4], a high-performance
rewriting logic engine. We start in Section 2 by providing a brief introduction
to rewriting logic, showing the relationship between rewriting logic and term
rewriting and explaining the crucial distinction between equations and rules.
Section 3 then provides a brief introduction to KOOL, a concurrent, object-
oriented language that will be the focus of the experiments in this paper.

In Section 4, we highlight the search capabilities of Maude by showing some
examples of its use. Search provides a breadth-first search over a program’s state
space, providing an ability to search for program states matching certain con-
ditions (output of a certain value, safety condition violation) that, due to the
potentially infinite state space of the program, may not be possible with model
checking. Section 5 then discusses model checking of OO programs in rewriting
logic, using the classic dining philosophers problem. To improve the performance
of search and model checking, Section 6 discusses two potential performance im-
provements important in the context of object-oriented languages: auto-boxing
of scalar values for use in a pure object-oriented language, and optimizing mem-
ory access for analysis performance. Section 7 concludes the paper.

2 Rewriting Logic

This section provides a brief introduction to term rewriting and rewriting logic.
Term rewriting is a standard computational model supported by many systems;
rewriting logic [14,13] organizes term rewriting modulo equations as a complete
logic and serves as a foundation for programming language semantics [17,18].

2.1 Term Rewriting

Term rewriting is a method of computation that works by progressively changing
(rewriting) a term. This rewriting process is defined by a number of rules –
potentially containing variables – which are each of the form: l → r. A rule can
apply to the entire term being rewritten or to a subterm of the term. First, a
match within the current term is found. This is done by finding a substitution, θ,
from variables to terms such that the left-hand side of the rule, l, matches part
or all of the current term when the variables in l are replaced according to the
substitution. The matched subterm is then replaced by the result of applying
the substitution to the right-hand side of the rule, r. Thus, the part of the
current term matching θ(l) is replaced by θ(r). The rewriting process continues
as long as it is possible to find a subterm, rule, and substitution such that θ(l)
matches the subterm. When no matching subterms are found, the rewriting

On Formal Analysis of OO Languages Using Rewriting Logic 109

process terminates, with the final term being the result of the computation.
Rewriting, like other methods of computation, can continue forever.

There exist a plethora of term rewriting engines, including ASF [21], Elan [1],
Maude [3,4], OBJ [8], Stratego [22], and others. Rewriting is also a fundamental
part of existing languages and theorem provers. Term rewriting is inherently
parallel, since non-overlapping parts of a term can be rewritten at the same
time, and thus fits well with current trends in architecture and systems.

2.2 Rewriting Logic

Rewriting logic is a computational logic built upon equational logic which pro-
vides support for concurrency. In equational logic, a number of sorts (types) and
equations are defined. The equations specify which terms are considered to be
equal. All equal terms can then be seen as members of the same equivalence
class of terms, a concept similar to that from the λ calculus with equivalence
classes based on α and β equivalence. Rewriting logic provides rules in addition
to equations, used to transition between equivalence classes of terms. This allows
for concurrency, where different orders of evaluation could lead to non-equivalent
results, such as in the case of data races. The distinction between rules and equa-
tions is crucial for analysis, since terms which are equal according to equational
deduction can all be collapsed into the same analysis state. Rewriting logic is
connected to term rewriting in that all the equations and rules of rewriting logic,
of the form l = r and l ⇒ r, respectively, can be transformed into term rewriting
rules by orienting them properly (necessary because equations can be used for
deduction in either direction), transforming both into l → r. This provides a
means of taking a definition in rewriting logic and a term and ”executing” it.

In this paper we focus on the use of Maude [3,4], a rewriting logic language
and engine. Beyond the ability to execute a program based on a rewriting logic
definition, Maude provides several capabilities which make it useful for defining
languages and performing formal analysis of programs. Maude allows commuta-
tive and associative operations with identity elements, allowing straight-forward
definitions of language features which make heavy use of sets and lists, such as
sets of classes and methods and lists of computational tasks. Maude’s support
for rewriting logic provides a natural way to model concurrency, with potentially
competing tasks (memory accesses, lock acquisition, etc) defined as rules. Also,
Maude provides built-in support for model checking and breadth-first state space
exploration, which will be explored further starting in Section 4.

3 KOOL

KOOL is a concurrent, dynamic, object-oriented language, loosely inspired by,
but not identical to, the Smalltalk language [9]. KOOL includes support for stan-
dard imperative features, such as assignment, conditionals, and loops with break
and continue. KOOL also includes support for many familiar object-oriented fea-
tures: all values are objects; all operations are carried out via message sends;

110 M. Hills and G. Roşu

Program P ::= C∗ E

Class C ::= class X is D
∗

M
∗ end | class X extends X

′ is D
∗

M
∗ end

Decl D ::= var {X,}+ ;

Method M ::= method X is D
∗

S end | method X ({X
′,}+) is D

∗
S end

Expression E ::= X | I | F | B | Ch | Str | (E) | new X | new X ({E,}+) |
self | E Xop E′ | E.X(())? | E.X({E,}+) | super() |
super.X(())? | super.X({E,}+) | super({E,}+)

Statement S ::= E <- E′; | begin D∗ S end | if E then S else S′ fi |
if E then S fi | try S catch X S end | throw E ; |
for X <- E to E′ do S od | while E do S od | break; |
continue; | return; | return E; | S S′ | E; | assert E; | X: | spawn E ; |
acquire E ; | release E ; | typecase E of Cs

+ (else S)? end

Case Cs ::= case X of S

X ∈ Name, I ∈ Integer, F ∈ Float, B ∈ Boolean, Ch ∈ Char, Str ∈ String, Xop ∈ Operator Names

Fig. 1. KOOL Syntax

message sends use dynamic dispatch; single inheritance is used, with a desig-
nated root class named Object; methods are all public, while fields are all pri-
vate outside of the owning object; and scoping is static, yet declaration order for
classes and methods is unimportant. KOOL allows for the run-time inspection of
object types via a typecase construct, and includes support for exceptions with
a standard try/catch mechanism.

3.1 KOOL Syntax

class Factorial is
method Fact(n) is

if n = 0 then return 1;
else return n * self.Fact(n-1);
fi

end
end

console << (new Factorial).Fact(200)

Fig. 2. Recursive Factorial, KOOL

The syntax of KOOL is shown in Figure 1.
The lexical definitions of literals are not
included in the figure to limit clutter,
but are standard (for instance, booleans
include both true and false, strings are
surrounded with double quotes and char-
acters with single quotes, etc). Message
sends are specified in a Java-like syntax
except for methods named after opera-
tors, which are always binary and can
be used infix (such as a + b instead of
a.+(b)). Because of this, very few operators are predefined, and operators all
have the same precedence and associativity. Finally, semicolons are used as state-
ment terminators, not separators, and are only needed where the end of a state-
ment may be ambiguous – at the end of an assignment, for instance, or at the
end of each statement inside a branch of a conditional, but not at the end of the
conditional itself, which ends with fi.

On Formal Analysis of OO Languages Using Rewriting Logic 111

To get a feel for the language, a sample program is shown in Figure 2. A
new class Factorial is defined with a method Fact that calculates the factorial
of the parameter n. After the class definition is the main program expression,
which creates a new object of class Factorial, invokes method Fact with the
parameter 200, and then writes the output to the predefined console object
using the output operation, << (borrowed from C++). This operation invokes
the toString method on its parameter and returns itself as the method result,
allowing chaining of output operations (such as console << "Value = " << 3).

State

StringList

ControlEnvironment

StringList Store ClassSet

MethodStack ExceptionStack LoopStackContinuation

Object Name

cset
memoutput

input

k mstack estack
lstack

Nat

nextloc

Thread

env control
obj

class

t

LockSet

LockTupleSet

busy

holds

Fig. 3. KOOL State Infrastructure

3.2 KOOL Semantics

The semantics of KOOL is defined using Maude equations and rules, with the
current program state represented as a ”soup” of sometimes nested terms rep-
resenting the current computation, memory, the environment, locks held, etc. A
visual representation of this term, the state infrastructure, is shown in Figure 3;
state components needed specifically for concurrency are shaded.

eq stmt(if E then S else S’ fi) = exp(E) -> if(S,S’) .
eq val(primBool(true)) -> if(S,S’) = stmt(S) .
eq val(primBool(false)) -> if(S,S’) = stmt(S’) .

crl t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =>
t(control(k(val(V) -> K) CS) TS) mem(Mem)

if V := Mem[L] /\ V =/= undefined .

Fig. 4. Sample KOOL Rules

Figure 4 shows examples
of the equations and rules
which make up the KOOL
semantics. Lists of compu-
tations, called continuations,
are formed using the -> op-
erator, with the head of the
list to the left. The first three
equations (represented with
eq) process a conditional.
The first indicates the value
of the guard expression E must be computed before a branch is selected. The
guard is put at the left end of the list, where it will be computed by rules spe-
cific to the type of expression, while the branches S and S’ are saved for later use

112 M. Hills and G. Roşu

by putting them into an if continuation item. The second and third equations
execute the appropriate branch based on whether the guard evaluated to true
or false. The fourth, a conditional rule (represented with crl), represents the
lookup of a memory location. The rule states that, if the next computation
step in this thread is to look up the value at location L, and if that value is V
(:= binds V to the result of reducing Mem[L], the memory lookup operation),
and if V is not undefined (i.e. L is a properly defined location), the result of the
computation is the value V. CS and TS match the unreferenced parts of the control
and thread state, respectively, while K represents the rest of the computation in
this thread. Note that, since the fourth rule represents a side-effect, it can only
be applied when it is the next computation step in the thread (it is at the head
of the continuation), while the first three, which don’t involve side-effects, can
be applied at any time.

3.3 KOOL Implementation

There is an implementation of KOOL available at our website [11], as well as
a web-based interface to run and analyze KOOL programs such as those pre-
sented here. There is also a companion technical report [10] that explains the
syntax and semantics in detail. When run, a KOOL program is first parsed us-
ing SDF [21], which we have found better supports the complexities of real
programming-language syntax than the parser included with Maude. SDF gen-
erates an abstract syntax tree that is then turned into Maude “prefix” form
using a custom C program. The runkool program coordinates this process and
handles the invocation of Maude, running in different modes (execution, search,
etc.) based on command-line parameters and returning the program output.

4 Breadth-First Search in KOOL

class ThreadGame is
var x;

method ThreadGame is
x <- 1;

end

method Add is
while true do x <- x + x; od

end

method Run is
spawn(self.Add); spawn(self.Add);
console << x;

end
end
(new ThreadGame).Run

Fig. 5. Thread Game, KOOL

The thread game is a concurrency problem
defined as follows: take a single variable, say
x, initialized to 1. In two threads, repeat
the assignment x <- x + x forever. In an-
other thread, output the value of x. What
values is it possible to output? As has been
proved [19], it is possible to output any nat-
ural number ≥ 1. In KOOL, spawn is used
to execute an arbitrary expression, often
a message send, in a new thread. Threads
are the main unit of concurrency in KOOL,
with each thread containing its own exe-
cution context (current class, environment,
etc), and all threads accessing a shared store.
A KOOL version of the thread game is shown
in Figure 5.

On Formal Analysis of OO Languages Using Rewriting Logic 113

To check to see if a specific value can be output, one could run the program.
Given enough runs, the value of interest may be generated, but this is highly
inefficient. Model checking will not help here either, since this is an infinite state
system, and the value may not be along the first (depth-first) search path chosen.
Maude’s search capability can be used, though, either to enumerate possible
values (obviously not all possible values here) or to search for a specific value.
For instance, searching for 10 yields a result, indicating that 10 is one of the
possible values; a sample run showing this is presented in Figure 6.

./runkool examples/ThreadGame.kool -t 10

... term omitted ...
Solution 1 (state 2294)
states: 3381 rewrites: 310427 in 14388ms cpu
SL:[StringList] --> "10"

Fig. 6. Thread Game Sample Run

Another example of the usefulness
of search is illustrated by the pro-
gram in Figure 7. This program is fi-
nite state, so all possible results can
be enumerated. When search is used
here, requesting all possible final re-
sults, three are returned: both 100
and 200 can be output, and an asser-
tion can be thrown if the thread run-
ning Changer sets the value to 200

between the time the value is set to 100 and the time the next line, with the
assert statement, is executed.

class WrappedInt is
var wval;

method WrappedInt(n) is
wval <- n;

end

method setWVal(n) is
wval <- n;

end

method toString is
return wval.toString();

end

method =(n) is
return wval = n;

end
end

class Changer is
method Run(n) is

n.setWVal(200);
end

end

class Main is
method Run is

var x;
x <- new WrappedInt(5);
spawn ((new Changer).Run(x));
x.setWVal(100);
assert(x = 100);
console << x;

end
end

./runkool examples/Spawn7.kool -s

... term and some stats omitted ...
Solution 1 (state 1964)
SL:[StringList] --> "100"

Solution 2 (state 2430)
SL:[StringList] --> "200"

Solution 3 (state 2490)
SL:[StringList] --> "AssertException thrown: Assertion triggered"

Fig. 7. Assertions and Search in KOOL

114 M. Hills and G. Roşu

class Fork is
end

class Philosopher is
method Run(id,left,right) is

while (true) do
hungry:
acquire left;
acquire right;

eating:
release left;
release right;

od
end

end

class Main is
var l1, l2;
var p1, p2;

method Run is
l1 <- new Fork;
l2 <- new Fork;

p1 <- new Philosopher;
p2 <- new Philosopher;

spawn(p1.Run(1,l1,l2));
spawn(p2.Run(2,l2,l1));

end
end

(new Main).Run

Fig. 8. Dining Philosophers in KOOL

5 Model Checking KOOL

A canonical example for concurrency is the Dining Philosophers problem. A
simple version of this problem, with just two philosophers, is shown written in
KOOL in Figure 8. In KOOL, locks can be acquired on any object using acquire.
Here we create a Fork class with no methods or properties; we can create objects
of this class and then acquire locks on the objects, representing taking a fork. The
Philosopher class just contains a single method, Run, which enters an infinite
loop that cycles through two states: hungry (wants to acquire forks) and eating
(has acquired forks). Once a philosopher eats, it releases the locks using release,
putting down the forks. The Main class also contains a Run method; this method
creates the necessary forks and philosophers, and then uses the spawn statement
to run each philosopher in its own thread.

We would like to determine if this program can deadlock. Using Maude’s
model checking capabilities, we can write properties over the program state
which can then be used in LTL formulae. For instance, we could create a prop-
erty named deadlocked, and then write a formula like ”[]�deadlocked” (it’s
always the case that we are not deadlocked). A problem with this is that the
program state is very complex; it contains all current class definitions, run-
time information for each thread, global information for the program (such as
memory), and other bookkeeping information. It isn’t always obvious how to
properly write a property using this information. Here, for instance, we would
need to detect when we are trying to acquire a fork by looking into the compu-
tation directly, meaning we would need to base the property on the definition
of lock acquisition, and formulate this in terms of acquiring a pair of locks. An-
other problem is that, if we change the state definition as we are modifying the
language design, we risk having to change defined properties to match the new
state, breaking the modularity of language definitions. A possible solution in this
case is to use Maude’s search capabilities, described in Section 4, but this is not

On Formal Analysis of OO Languages Using Rewriting Logic 115

a general solution, since other properties of interest (starvation, for instance)
cannot be checked in this way.

A solution that resolves these problems is to use label statements, shown in
Figure 8 as identifiers followed by a colon (such as hungry: or eating:), to assist
in model checking. This idea is used by other model checkers as well – SPIN [12],
for instance, also uses labels. The language semantics then include a rule (not an
equation, since this takes us into a non-equivalent state which should be detected
during verification) which sets a component of the thread state to the value of the
label when the label is encountered. This allows properties to be stated directly
in terms of the labels – here, for instance, freedom from deadlock means that
upon reaching the hungry label it is always the case that the thread eventually
reaches the eating label. This requires much less detailed knowledge about the
state, since only label names, included in the program source, need to be known.
It also insulates model checking from state changes, as long as the part of the
state dealing with labels is not modified. The tradeoff is a potential degradation
of performance, since the label semantics are defined in terms of rules, and rule
application adds additional states to the state space. In cases where additional
performance is needed, it is still possible to write predicates directly against the
state, avoiding the use of labels. Again, though, these predicates may be quite
complicated, and may require ongoing maintenance as the language evolves.

Using this notion of progress for deadlock freedom, the appropriate LTL for-
mula for the two philosopher problem is then:

progress(2,hungry,eating)∨progress(3,hungry,eating)
where 2 and 3 are the thread IDs and progress(n,l1,l2) means that thread n
eventually reaches l2 whenever it reaches l1. Thread IDs are needed since LTL
lacks quantification – i.e. there is no way to say that, ∀n.progress(n,l1,l2).
The thread running first has ID 1, and each spawn adds 1 to this.

while true do
hungry:
if (id % 2 = 0) then
acquire left;
acquire right;

else
acquire right;
acquire left;

fi

eating:
release left;
release right;

od

Fig. 9. Dining Philoso-
phers, Deadlock-Free

Running the model checker with this program and
formula, we will get a counterexample, since it is in
fact possible to deadlock (when the first philosopher
grabs the first fork and the second grabs the second).
Times for the model checker to find counterexam-
ples, by philosopher count, are given in Figure 12. A
fix to the code in the Philosopher class Run method
is shown in Figure 9, with ”odd” philosophers taking
the forks in one order and ”even” philosophers in the
other. Unfortunately, due to the initial language de-
sign, which focused more on executability and less on
verification, it is not possible to verify this fix with the
model checker – it will run for a time and then crash
due to resource exhaustion. This will be addressed in
Section 6, where modifications to the design to im-
prove verification performance will be explored. With

these modifications in place, the model checker will return true given the LTL
formula for deadlock freedom shown above.

116 M. Hills and G. Roşu

6 Tuning the Model

The ability to model check and search programs using language definitions in
rewriting logic is very closely tied to the performance of the definition. There
are two general classes of performance improvement: improvements that im-
pact execution speed, and improvements that impact analysis speed, which may
even slightly reduce typical execution speed. Two examples of improvements are
presented here, both of which have appeared in various forms in programming
languages but not, to our knowledge, in rewriting logic language specifications.
First, auto-boxing is introduced to the language. This allows operations on scalar
types, which are represented in KOOL as objects, to be performed directly on
the underlying values for many operations (standard arithmetic operations, for
instance), while still allowing method calls to be used on an object representa-
tion of the scalar where needed. Although mainly useful in dynamic languages
like KOOL, this technique can also be used to perform automatic coercions be-
tween scalar and object types in statically-typed languages. Second, memory is
segregated into two pools, a shared and an unshared pool. Rules are used when
accessing or modifying memory in the shared pool, since these changes could
lead to data races, while equations are used for equivalent operations on the
unshared pool. This follows the intuition that changes to unshared memory lo-
cations in a thread cannot cause races. This change may or may not improve
execution performance, but has a dramatic impact on analysis performance.

6.1 Auto-boxing

In KOOL, all values, including those typically represented as scalars in languages
like Java, are objects. This means that a number like 5 is represented as an ob-
ject, and an expression like 5 + 7 is represented as a method call. Primitive
operations are defined which extract the primitive values ”hidden” in the ob-
jects (i.e. the actual number 5, versus the object that represents it), perform
the operation on these primitive values, and create a new object representing
the result. This provides a ”pure” object-oriented model, but requires additional
overhead, including additional accesses to memory to retrieve the primitive val-
ues and create the new object for the result. Since memory accesses are modeled
as rules in the definition, this also increases model checking and search time by
increasing the number of states that need to be checked.

To improve performance, auto-boxing can be added to KOOL. This allows val-
ues such as 5 to be represented as scalars – i.e. directly as the primitive values.
A number of operations can then be performed directly on the primitive repre-
sentation, without having to go through the additional steps described above.
For numbers, this includes arithmetic and logical operations, which are some of
the most common operations applied to these values. Operations which cannot
be performed directly can still be treated as message sends; the scalar value
is automatically converted to an object representing the same value, which can
then act as a message target to handle the method. Since boxing can occur auto-
matically, by default values, including those generated as the result of primitive

On Formal Analysis of OO Languages Using Rewriting Logic 117

operations, are left un-boxed, in scalar form. This all happens behind the scenes,
allowing KOOL programs to remain unchanged.

eq k(exp(f(F)) -> K) = k(newPrimFloat(primFloat(F)) -> K) .
--

eq k(exp(f(F)) -> K) = k(val(fv(F)) -> K) .
eq k(val(fv(F),fv(F’)) -> toInvoke(n(’+)) -> K) = k(val(fv(F + F’)) -> K) .
eq k(val(fv(F),Vl) -> toInvoke(Xm) -> K) =

k(newPrimFloat(primFloat(F)) -> boxWList(Vl) -> toInvoke(Xm) -> K) [owise] .

Fig. 10. Example Definition Changes, Auto-boxing

An example of the rule changes to enable auto-boxing is found in Figure 10.
The first equation is without auto-boxing. Here, when a floating point number F
is encountered, a new floating point object of class Float is created to represent
F using newPrimFloat. Any operations on this object, such as adding two floats,
will involve a message send. The next three rules are with auto-boxing enabled.
In the second equation, instead of creating a new object for F, we return a scalar
value. The third equation shows an example of an intercepted method call. When
a method is called, the target and all arguments are evaluated, with the method
name held in the toInvoke continuation item. Here, + has been invoked with
a target and argument that both evaluate to scalar float values, so we will use
the built-in float + operation instead of requiring a method call. In the fourth
equation, the boxing step is shown – here, a method outside of those handled
directly on scalars has been called with the floating-point scalar value as the
target, in which case a new object will be created just like in the first equation
([owise] will ensure that we will try this as a last resort). Once created, the
new object, and the values being sent as arguments (held in boxWList), will be
used to perform a standard method call.

Auto-boxing has a significant impact on performance. Figure 12 shows the
updated figures for verification times with this change in place. Not only is this
faster than the solution without auto-boxing in all cases, but it is now also
possible to verify deadlock freedom for up to 5 philosophers, which was not
possible with the prior definition.

6.2 Memory Pools

Memory in the KOOL definition is represented using a single global store for
an entire program. This is fairly efficient for normal execution, but for model
checking and search this can be more expensive than needed. This is because all
interactions with the store must use rules, since multiple threads could compete
to access the same memory location at the same time. However, many memory
accesses don’t compete – for instance, when a new thread is started by spawning
a method call, the method’s instance variables are only seen by this new thread,
not by the thread that spawned it. What is needed, then, is a modification to the
definition that will allow rules to be used where they are needed – for memory
accesses that could compete – while allowing equations to be used for the rest.

118 M. Hills and G. Roşu

To do this, memory in KOOL can be split into two pools: a shared memory
pool, containing all memory accessible by more than one thread at some point
during execution, and a non-shared memory pool, containing memory that is
known to be accessed by at most one thread. To add this to the definition, an
additional global state component is added to represent the shared memory pool,
and the appropriate rules are modified to perform memory operations against
the proper memory pool. Correctly moving memory locations between the pools
does require care, however, since accidentally leaving memory in the non-shared
pool could cause errors during verification.

The strategy we take to move locations to the shared pool is a conservative
one: any memory location that could be accessed by more than one thread,
regardless of whether this actually happens during execution, will be moved
into the shared pool. There are two scenarios to consider. In the first, the spawn
statement executes a message send. In this scenario, locations accessible through
the message target (an object), as well as locations accessible through the actual
parameters of the call, are all moved into the shared pool. Note that accessible
here is transitive – an object passed as a parameter may contain references to
other objects, all of which could be reached through the containing object. In
many cases this will be more conservative than necessary; however, there are
many situations, such as multiple spawns of message sends on the same object,
and spawns of message sends on self, where this will be needed. The second
scenario is where the spawn statement is used to spawn a new thread containing
an arbitrary expression. Here, all locations accessible in the current environment
need to be moved to the shared pool, including those for instance variables and
those accessible through self. This covers all cases, including those with message
sends embedded in larger expressions (since the target is in scope, either directly
or through another object reference, it will be moved to the shared pool).

This strategy leads to a specific style of programming that should improve
verification performance: message sends, not arbitrary expressions, should be
spawned, and needed information should be passed in the spawn statement to
the target, instead of set through setters or in the constructor. This is because
the object-level member variables will be shared, while instance variables and
formal parameters will not. This brings up a subtle but important distinction –
the objects referenced by the formal parameters will be shared, but not the para-
meters themselves, which are local to the method, meaning that no verification
performance penalty is paid until the code needs to ”look inside” the referenced
objects. Looking inside does not include retrieving a referenced object for use in
a lock acquisition statement (however, acquisition itself is a rule).

Figure 11 shows one of the two rules changed to support the memory pools
(the other, for assignment, is similar), as well as part of the location reassignment
logic. The first rule, which is the original lookup rule, retrieves a value V from
a location L in memory Mem. The location must exist, which accounts for the
condition – if L does not exist, looking up the current value with Mem[L] will
return undefined. CS and TS match the rest of the control and thread states,
respectively. The second and third equation and rule replace this first to support

On Formal Analysis of OO Languages Using Rewriting Logic 119

crl t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =>
t(control(k(val(V) -> K) CS) TS) mem(Mem) if V := Mem[L] /\ V =/= undefined .

--
ceq t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =

t(control(k(val(V) -> K) CS) TS) mem(Mem) if V := Mem[L] /\ V =/= undefined .

crl t(control(k(llookup(L) -> K) CS) TS) smem(Mem) =>
t(control(k(val(V) -> K) CS) TS) smem(Mem) if V := Mem[L] /\ V =/= undefined .

ceq t(control(k(reassign(L,Ll) -> K) CS) TS) mem(Mem) smem(SMem) =
t(control(k(reassign(Ll,Ll’) -> K) CS) TS) mem(unset(Mem,L)) smem(SMem[L <- V])

if V := Mem[L] /\ V =/= undefined /\ Ll’ := valLocs(V) .

ceq t(control(k(reassign(L,Ll) -> K) CS) TS) mem(Mem) smem(SMem) =
t(control(k(reassign(Ll) -> K) CS) TS) mem(Mem) smem(SMem)

if V := SMem[L] /\ V =/= undefined .

eq k(reassign(empty) -> K) = k(K) .

Fig. 11. Example Definition Changes, Memory Pools

Ph No Optimizations Auto-boxing Auto-boxing + Memory Pools

States Counter DeadFree States Counter DeadFree States Counter DeadFree

2 61 0.645 NA 35 0.64 0.798 7 0.621 0.670

3 1747 0.723 NA 244 0.694 3.610 30 0.637 1.287

4 47737 1.132 NA 1857 1.074 40.279 137 0.782 5.659

5 NA 6.036 NA 14378 4.975 501.749 634 1.629 34.415

6 NA 68.332 NA 111679 49.076 NA 2943 7.395 218.837

7 NA 895.366 NA 867888 555.791 NA 13670 47.428 1478.747

8 NA NA NA NA NA NA 63505 325.151 NA

Single 3.40 GHz Pentium 4, 2 GB RAM, OpenSuSE 10.1, kernel 2.6.16.27-0.6-smp, Maude 2.2. Times

in seconds, Ph is philosopher count, Counter is time to generate counter-example, DeadFree is time

to verify the program is deadlock free, state count based on Maude search results, NA means the

process either crashed or was abandoned after consuming most system memory.

Fig. 12. Dining Philosophers Verification Times

the shared and unshared memory pools. The second is now an equation, since the
memory under consideration is not shared. The third is a rule, since the memory
is shared. This shared pool is represented with a new part of the state, smem.
The last three equations represent the reassignment of memory locations from
the unshared to the shared pool, triggered on thread creation and assignment
to shared memory locations. In the first, the location L and its value are in
the unshared pool, and are moved to the shared pool. If the value is an object,
all locations it holds references to are also added to the list of locations that
must be processed. The second represents the case where the location is already
in the shared pool. In this case, nothing is done with the location. The third
equation applies only when all locations have been processed, indicating we
should continue with the computation (with K).

This strategy could be improved with additional bookkeeping. For instance, no
information on which threads share which locations is currently tracked. Tracking

120 M. Hills and G. Roşu

this information could potentially allow a finer-grained sharing mechanism, and
could also allow memory to be un-shared when threads terminate. However,
even with the current strategy, we still see some significant improvements in
verification performance. These can be seen in Figure 12. Note that, in every
case, adding the shared pool increases performance, in many cases dramatically.
It also allows additional verification – checking for a counterexample works for
8 philosophers, and verifying deadlock freedom in the fixed solution can be done
for up to 7 philosophers.

7 Conclusions and Future Work

In this paper we have shown how rewriting logic can be used for verification and
analysis of a non-trivial concurrent object-oriented language. We have also shown
ways in which run-time and verification performance can be improved, in this
case by adding auto-boxing of scalar values in a pure object-oriented language
and by segregating accesses of shared and non-shared memory locations. We
believe the ideas presented here can be used during the design of other rewriting
logic definitions of object-oriented languages as a means to improve performance.

There is much future work in this area, some of which was touched on in
the paper. Better methods of sharing and un-sharing memory would help in the
analysis of longer running programs, and could potentially be used for other
purposes as well, such as in the analysis of garbage collection schemes. Also,
while we achieve a reduction in the state space by the use of equations to col-
lapse equivalent states, work on techniques like partial order reduction in the
context of rewriting logic specifications would help to improve performance fur-
ther. There has also been some work, in the context of real-time systems, on
using different state representations at different points in evaluation to improve
analysis performance [20]; it would be interesting to see if similar techniques
could be used in language definitions, where the lack of time steps would make
it more challenging to determine when the state could be reconfigured. Finally,
a method to determine that specification transformations are semantics preserv-
ing would be valuable, especially if it could be done automatically using the
language specifications.

Acknowledgments. We thank the anonymous reviewers for their helpful com-
ments, which have improved the quality of this paper. We also thank the NSF
for their support through grants NSF CCF-0448501 and NSF CNS-0509321.

References

1. Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.-E., Ringeissen, C.: An
overview of ELAN. ENTCS, vol. 15 (1998)

2. Chalub, F., Braga, C.: A Modular Rewriting Semantics for CML. In: Proceedings
of the 8th. Brazilian Symposium on Programming Languages (May 2004)

On Formal Analysis of OO Languages Using Rewriting Logic 121

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,
J.: Maude: specification and programming in rewriting logic. Theoretical Computer
Science 285, 187–243 (2002)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The Maude 2.0 System. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76–87. Springer, Heidelberg (2003)

5. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL Model Checker. In:
Gadducci, F., Montanari, U. (eds.) Proc. 4th. Intl. Workshop on Rewriting Logic
and its Applications. ENTCS, vol. 71, Elsevier, Amsterdam (2002)

6. Farzan, A., Chen, F., Meseguer, J., Roşu, G.: Formal Analysis of Java Programs in
JavaFAN. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 501–505.
Springer, Heidelberg (2004)

7. Farzan, A., Meseguer, J., Roşu, G.: Formal JVM Code Analysis in JavaFAN. In:
Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp.
132–147. Springer, Heidelberg (2004)

8. Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.-P.: Introducing
OBJ. In: Software Engineering with OBJ: algebraic specification in action, Kluwer
Academic Publishers, Dordrecht (2000)

9. Goldberg, A., Robson, D.: Smalltalk-80: the language and its implementation,
Boston, MA, USA. Addison-Wesley Longman Publishing Co., Inc., London, UK
(1983)

10. Hills, M., Roşu, G.: KOOL: A K-based Object-Oriented Language. Technical Re-
port UIUCDCS-R-2006-2779, University of Illinois at Urbana-Champaign (2006)

11. Hills, M., Rosu, G.: KOOL: Language Homepage. http://fsl.cs.uiuc.edu/KOOL
12. Holzmann, G.J.: The Model Checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–

295 (1997)
13. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theo-

retical Computer Science 285, 121–154 (2002)
14. Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency.

Theoretical Computer Science 96(1), 73–155 (1992)
15. Meseguer, J.: Software Specification and Verification in Rewriting Logic. In: Broy,

M., Pizka, M. (eds.) Models, Algebras, and Logic of Engineering Software, Markto-
berdorf, Germany, July 30 – August 11, 2002, pp. 133–193. IOS Press, Amsterdam
(2003)

16. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational Abstractions. In: Baader,
F. (ed.) Automated Deduction – CADE-19. LNCS (LNAI), vol. 2741, pp. 2–16.
Springer, Heidelberg (2003)

17. Meseguer, J., Roşu, G.: Rewriting Logic Semantics: From Language Specifications
to Formal Analysis Tools. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS
(LNAI), vol. 3097, pp. 1–44. Springer, Heidelberg (2004)

18. Meseguer, J., Roşu, G.: The rewriting logic semantics project. Theoretical Com-
puter Science, to appear (2006)

19. Moore, J.S.: http://www.cs.utexas.edu/users/moore/publications/
thread-game.html

20. Rodŕıguez, D.E.: On Modelling Sensor Networks in Maude. In: Proceedings of
WRLA’06, Elsevier, Amsterdam, to appear (2006)

21. van den Brand, M.G.J., Heering, J., Klint, P., Olivier, P.A.: Compiling language
definitions: the ASF+SDF compiler. ACM TOPLAS 24(4), 334–368 (2002)

22. Visser, E.: Program Transf. with Stratego/XT: Rules, Strategies, Tools, and Sys-
tems. In: Domain-Specific Program Generation, pp. 216–238 (2003)

http://fsl.cs.uiuc.edu/KOOL
http://www.cs.utexas.edu/users/moore/publications/thread-game.html
http://www.cs.utexas.edu/users/moore/publications/thread-game.html

Formal Modeling and Analysis of the OGDC

Wireless Sensor Network Algorithm in
Real-Time Maude

Peter Csaba Ölveczky and Stian Thorvaldsen

Department of Informatics, University of Oslo
peterol@ifi.uio.no, stianth@ifi.uio.no

Abstract. This paper describes the application of Real-Time Maude
to the formal specification, simulation, and further formal analysis of
the sophisticated state-of-the-art OGDC wireless sensor network algo-
rithm. Wireless sensor networks in general, and the OGDC algorithm in
particular, pose many challenges to their formal specification and analy-
sis, including novel communication forms, treatment of geographic areas,
time-dependent and probabilistic features, and the need to analyze both
correctness and performance. Real-Time Maude extends the rewriting
logic tool Maude to support formal specification and analysis of object-
based real-time systems. This paper explains how we formally specified
OGDC in Real-Time Maude, how we could simulate our specification
to perform all the analyses done by the algorithm developers using the
network simulation tool ns-2, and how we could perform further formal
analyses which are beyond the capabilities of simulation tools. A remark-
able result is that our Real-Time Maude simulations seem to provide a
much more accurate estimate of the performance of OGDC than the ns-2
simulations. To the best of our knowledge, this is the first time a formal
tool has been applied to an advanced wireless sensor network algorithm.

1 Introduction

This paper describes the application of Real-Time Maude [17,15] to the formal
specification, simulation, and further formal analysis of the state-of-the-art opti-
mal geographical density control (OGDC) wireless sensor network algorithm [22].
To the best of our knowledge, this work represents the first formal modeling and
analysis effort of such a complex wireless sensor network system.

A wireless sensor network (WSN) consists of many small, cheap, and low-
power sensor nodes that use wireless technology (usually radio) to communicate
with each other [2]. Given the increasing sophistication of WSN algorithms—and
the difficulty of modifying an algorithm once the sensor network is deployed—
there is a clear need to use formal methods to validate system performance and
functionality prior to implementing such algorithms.

In [19] we advocate the use of the language and tool Real-Time Maude [15,17],
which extends the rewriting logic-based Maude [3] tool to real-time systems, to
formally specify, simulate, and further analyze WSN algorithms. The Real-Time

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 122–140, 2007.
c© IFIP International Federation for Information Processing 2007

Formal Modeling and Analysis 123

Maude specification language emphasizes expressiveness and ease of specifica-
tion. The data types of a system are defined by equational specifications. In-
stantaneous transitions are defined by rewrite rules, and time elapse is defined
by “tick” rewrite rules. Real-Time Maude supports the specification of distrib-
uted object-oriented systems, which is ideal for modeling a network system. The
high-performance Real-Time Maude tool provides a range of analysis techniques,
including: timed rewriting for simulation purposes; timed search for reachabil-
ity analysis; and time-bounded linear temporal logic model checking. Real-Time
Maude has been used to model and analyze a set of advanced real-time systems,
such as large communication protocols [18,8] and scheduling algorithms [13].
Such analysis has found subtle design errors not uncovered during traditional
simulation and testing. We argue in [19] that Real-Time Maude’s expressive
specification formalism, and the ease with which new forms of communication
can be defined, should make it ideal to model WSN systems.

Jennifer Hou suggested to us her OGDC algorithm [22] for WSNs as a chal-
lenging modeling and analysis task. OGDC is a sophisticated state-of-the-art
algorithm that tries to maintain complete sensing coverage of an area for as long
as possible by switching nodes on and off. It has been simulated by the algorithm
developers Zhang and Hou using the simulation tool ns-2 [12,4].

The OGDC algorithm is an advanced algorithm whose formal specification,
simulation, and analysis pose a set of challenges, including:

1. Modeling—and computing with—spatial entities such as coverage areas, an-
gles, and distances.

2. Modeling broadcast communication with transmission delays and limited
transmission range.

3. Modeling time-dependent behavior, such as use of timers, transmission de-
lays, and power consumption.

4. Modeling probabilistic behaviors. For example, sensor nodes volunteer to
start with certain probabilities, and different values are supposed to be “ran-
dom values, drawn from a uniform distribution.”

5. Simulating and analyzing systems with hundreds of sensor nodes.
6. Analyzing both correctness and, in particular, performance.

This is indeed a challenging set of modeling and analysis tasks. This paper
shows how Real-Time Maude met these challenges. In particular, during simula-
tions of the algorithm, we are able to do in Real-Time Maude all the performance
analyses that Zhang and Hou performed using the wireless extension of the net-
work simulation tool ns-2 [12]. In addition, we have subjected the algorithm to
time-bounded reachability analysis and temporal logic model checking.

By modeling transmission delays (which play a significant role in the defi-
nition of the OGDC algorithm), and by comparing our performance measures
with the ns-2 simulation results, we found a discrepancy which could be ex-
plained by a (minor) weakness in the algorithm if the ns-2 simulations did
not take the transmission delays into account.1 To test this hypothesis, we also
1 We have not received information of whether the ns-2 simulations actually took the

transmission delays into account, only that it is likely that they did not.

124 P.C. Ölveczky and S. Thorvaldsen

performed Real-Time Maude simulations without considering transmission de-
lays. The results of these simulations are quite similar to the ns-2 simulations. It
is therefore tempting to conjecture that our original simulations provide a much
more accurate estimate of the performance of OGDC than the ns-2 simulations.

Related work. Our work represents—to the best of our knowledge—the first
formal modeling and analysis of such a sophisticated WSN algorithm as OGDC.
Some attempts at using formal methods on WSNs have focused on modeling
TinyOS using automaton-based formalisms (see, e.g., [5]), or have considered
simple diffusion protocols for discovering routing trees [11]. Our paper [19] ex-
plains related work in more detail. That paper also suggests that Real-Time
Maude might be a good candidate for formally modeling WSNs, and shows how
certain features of such networks, including locations, distances, and communi-
cation can be easily modeled in Real-Time Maude. In contrast, this paper focuses
on the OGDC case study: It shows how the general techniques suggested in [19]
can be applied to specify OGDC; on how advanced features, such as coverage
areas, can be modeled in Real-Time Maude; on additional analysis efforts; and
on understanding the relationship between the results obtained by Real-Time
Maude simulations and by ns-2 simulations. Lately, there has been some initial
efforts applying Real-Time Maude to WSNs elsewhere [6,20].

2 Real-Time Maude

A Real-Time Maude timed module specifies a real-time rewrite theory [14] of the
form (Σ, E, IR,TR), where:

– (Σ, E) is a membership equational logic [10] theory with Σ a signature2 and
E a set of conditional equations. The theory (Σ, E) specifies the system’s
state space as an algebraic data type. (Σ, E) must contain a specification of
a sort Time modeling the time domain (which may be dense or discrete).

– IR is a set of labeled conditional instantaneous rewrite rules specifying the
system’s instantaneous (i.e., zero-time) local transitions, each of which is
written crl [l] : t => t′ if cond, where l is a label. Such a rule specifies
a one-step transition from an instance of t to the corresponding instance of t′,
provided the condition holds. The rules are applied modulo the equations E.3

– TR is a set of tick (rewrite) rules, written with syntax

crl [l] : {t} => {t′} in time τ if cond .

that model time elapse. {_} is a built-in constructor of sort GlobalSystem,
and τ is a term of sort Time that denotes the duration of the rewrite.

2 i.e., Σ is a set of declarations of sorts, subsorts, and function symbols (or operators).
3 E is a union E′ ∪A, where A is a set of equational axioms such as associativity, com-

mutativity, and identity, so that deduction is performed modulo A. Operationally, a
term is reduced to its E′-normal form modulo A before any rewrite rule is applied.

Formal Modeling and Analysis 125

The initial states must be ground terms of sort GlobalSystem and must be
reducible to terms of the form {t} using the equations in the specifications. The
form of the tick rules then ensures uniform time elapse in all parts of the system.

In object-oriented Real-Time Maude modules, a class declaration

class C | att1 : s1, ... , attn : sn .

declares a class C with attributes att1 to attn of sorts s1 to sn. An object of class
C in a given state is represented as a term < O : C | att1 : val1, ..., attn : valn >
where O is the object’s identifier, and where val1 to valn are the current val-
ues of the attributes att1 to attn. In a concurrent object-oriented system, the
state, which is usually called a configuration, is a term of the built-in sort
Configuration. It has typically the structure of a multiset made up of objects
and messages. Multiset union for configurations is denoted by a juxtaposition
operator (empty syntax) that is declared associative and commutative, so that
rewriting is multiset rewriting supported directly in Real-Time Maude. The dy-
namic behavior of concurrent object systems is axiomatized by specifying each
of its concurrent transition patterns by a rewrite rule. For example, the rule

rl [l] : m(O,w) < O : C | a1 : x, a2 : O’, a3 : z > =>
< O : C | a1 : x + w, a2 : O’, a3 : z > dly(m’(O’),x) .

defines a family of transitions in which a message m, with parameters O and w, is
read and consumed by an object O of class C. The transitions have the effect of
altering the attribute a1 of the object O and of sending a new message m’(O’)
with delay x (see [17]). “Irrelevant” attributes (such as a3, and the right-hand
side occurrence of a2) need not be mentioned in a rule.

Timed modules are executable under reasonable assumptions, and Real-Time
Maude provides a spectrum of analysis capabilities. We summarize below the
Real-Time Maude analysis commands used in our case study.

Real-Time Maude’s timed “fair” rewrite command simulates one behavior of
the system up to a certain duration. It is written with syntax

(tfrew t in time <= τ .)

where t is the initial state and τ is a ground term of sort Time.
Real-Time Maude’s timed search command uses a breadth-first strategy to

search for states that are reachable from a given initial state t within time τ ,
match a search pattern, and satisfy a search condition. The command which
searches for one state satisfying the search criteria has syntax

(tsearch [1] t =>* pattern such that cond in time <= τ .)

Real-Time Maude also extends Maude’s linear temporal logic model checker [3]
to check whether each behavior “up to a certain time,” as explained in [17],
satisfies a temporal logic formula. State propositions are terms of sort Prop, and
their semantics should be given by (possibly conditional) equations of the form

126 P.C. Ölveczky and S. Thorvaldsen

{statePattern} |= prop = b

for b a term of sort Bool, which defines the state proposition prop to hold in
all states {t} where {t} |= prop evaluates to true. A temporal logic formula
is constructed by state propositions and temporal logic operators such as True,
False, ~ (negation), /\, \/, -> (implication), [] (“always”), <> (“eventually”),
and U (“until”). The time-bounded model checking command has syntax

(mc t |=t formula in time <= τ .)

for t the initial state and formula the temporal logic formula.
Finally, the find latest command finds how long it takes, in the worst case,

to reach a desired state.

3 Overview of the OGDC Algorithm

In a two-dimensional plane, a node with sensing range rs can sense events in
a circular coverage area with radius rs. It is desirable that the coverage areas
of the active nodes cover the entire area to be monitored (the “sensing area”)
for as long as possible. A large number of nodes is often deployed to extend the
lifetime of a wireless sensor network, so that some nodes can be intentionally
“put to sleep” to save power. A node that is inactive can be switched on when
needed. The process of periodically choosing the nodes that can be put to sleep
while maintaining coverage (and connectivity) of the sensing area is called the
density control process. The OGDC algorithm [22] is a state-of-the-art density
control algorithm, developed by Zhang and Hou, that tries to select the set of
active nodes such that their coverage areas provide the minimum amount of
overlap.

The network lifetime is divided into rounds, where each round is divided
into a node selection phase and a steady state phase. The node selection phase
begins with each node having status “undecided” and probabilistically choosing
whether or not to volunteer to be a starting node. Each node that volunteers sets
its backoff timer to a small value. The node then becomes active when its backoff
timer expires, and broadcasts a power-on message which contains the location of
the node and a random direction. When an “undecided” node receives a power-
on message, it checks if its entire coverage area is covered by the surrounding
active nodes, in which case the node becomes inactive. Otherwise, it sets its
backoff timer depending on how close the node is to the optimal position w.r.t.
the nodes that are currently active. The timer value is set to a gradually larger
value as the distance increases and the direction deviates. When the backoff
timer of a node expires, the node becomes active and broadcasts a power-on
message that may cause other nodes to reset their backoff timers or to become
inactive. The network enters the steady state phase when each node is either
active or inactive. When a round is over, the density control process starts over
again.

Formal Modeling and Analysis 127

Fig. 1. The bitmap for a node’s coverage area

4 The Real-Time Maude Specification of OGDC

This section presents a sample of our specification of the OGDC algorithm.4

General techniques for modeling typical WSN features, such as distances and
communication, are described in [19].

4.1 Modeling Locations

We can represent a location in the plane as a term x.y, for rational numbers x
and y, of the following sort Location:5

sort Location .
op _._ : Rat Rat -> Location .

4.2 Modeling Areas Using Bitmaps

A significant part of the OGDC algorithm consists of checking whether a node’s
coverage area is completely covered by the coverage areas of other active nodes,
since this determines whether or not a node can be switched off. Zhang and Hou
suggest in a preliminary version of [22] to use a bitmap to model a node’s coverage
area. A coverage area is divided into a grid, and each bit in the bitmap represents
the center of a grid square. The Real-Time Maude tool is not a graphical tool,
but with proper use of the format operator attribute [3], a bitmap can be given
an intuitive appearance as shown in Fig. 1. We define a bitmap as a term of sort
Bitmap, which consists of a list of BitLists6, which in itself is a list of Bits. A
Bit has one of three values: t if the location of the bit is covered by at least one
4 Our specification is explained in detail in [21]. The entire executable Real-Time

Maude specification can be found at http://www.ifi.uio.no/RealTimeMaude/OGDC.
5 Underbars in the declarations of operators such as . denote the places of arguments

for “mix-fix” function symbols.
6 Each BitList corresponds to a “row” in the bitmap.

http://www.ifi.uio.no/RealTimeMaude/OGDC

128 P.C. Ölveczky and S. Thorvaldsen

other active node, f if the location is not covered, or the bit ’ that is used to
“pad” the circles as shown in Fig. 1. The sort Bitmap is thus defined as follows:

sorts Bitmap BitList Bit . subsort Bit < BitList .

ops t f ’ : -> Bit [ctor] .

op nil : -> BitList [ctor] .

op __ : BitList BitList -> BitList [ctor assoc id: nil format (o s o)] .

op |_| : BitList -> Bitmap [ctor format (ni o o o)] .

op nil : -> Bitmap [ctor] .

op __ : Bitmap Bitmap -> Bitmap [ctor assoc id: nil] .

The location of each bit is computed from the location of the node which is the
center of the bitmap. A function updateBitmap updates a node’s bitmap when
the node receives a power-on message (see rule recPowerOn1) by setting each bit
within the sensing range of the sender to t. The node then also checks whether
its (updated) bitmap is completely covered by its neighbors. This is done by
the function coverageAreaCovered, which returns false if some bit is ‘f’ and
returns true otherwise (owise):

vars BITL BITL’ : BitList . vars BM BM’ : Bitmap .
op coverageAreaCovered : Bitmap -> Bool .
eq coverageAreaCovered(BM | BITL f BITL’ | BM’) = false .
eq coverageAreaCovered(BM) = true [owise] .

We choose to have 1 meter between each bit in a bitmap, which results in bitmaps
with 400 bits (including the ’ bits) since the sensing range of a node is 10 meters.

4.3 The Definition of Sensor Node Objects

We model sensor nodes as objects of the class WSNode. A sensor node does not
have an explicit identifier but can be identified by its location. We let locations be
object identifiers by giving the subsort declaration subsort Location < Oid .

class WSNode | backoffTimer : TimeInf, coverageArea : Bitmap,

uncoveredCrossings : CrossingSet,

remainingPower : Nat, neighbors : NeighborSet,

roundTimer : TimeInf, status : Status,

volunteerProb : Rat, hasVolunteered : VolunteerStatus .

The attribute names are self-explanatory: backoffTimer denotes the time
remaining until the node must perform an action; coverageArea contains the
node’s coverage area; remainingPower denotes the amount of power the node
has left; roundTimer is the time remaining of the round; status denotes the
node’s status, which is either on, off, or undecided; volunteerProb gives the
probability for the node to volunteer as a starting node; and hasVolunteered
denotes whether the node has volunteered as a starting node.

Formal Modeling and Analysis 129

4.4 Modeling Time and Time Elapse

We follow the guidelines in [17] for modeling time-dependent behaviors in object-
oriented specifications. Time elapse is modeled by the tick rule

var C : Configuration . var T : Time .
crl [tick] : {C} => {δ(C, T)} in time T if T <= mte(C) .

The function δ defines the effect of time elapse on a configuration, and the
function mte defines the maximum amount of time that can elapse before some
action must take place. These functions distribute over the objects and messages
in a configuration and must be defined for single objects. The tick rule advances
time nondeterministically by any amount T less than or equal to mte(C). Be-
fore executing the system, a time sampling strategy guiding the application of
the tick rule must be defined (see Section 5.1). We import the built-in module
NAT-TIME-DOMAIN-WITH-INF, which defines the time domain Time to be the nat-
ural numbers, with an additional constant INF (for ∞) of a supersort TimeInf.

The function δ is defined on a WSNode object by decreasing its timers and
amount of remaining power according to the time that has elapsed:

vars L L’ : Location . var T : Time . vars TI TI’ : TimeInf .

var P : NzNat . var S : Status . vars M N : Nat . var D : Int .

var V : VolunteerStatus . var R : Rat . var NBS : NeighborSet .

eq δ(< L : WSNode | remainingPower : N, status : S,

backoffTimer : TI, roundTimer : TI’ >, T)

=

< L : WSNode | remainingPower : if S == on then N monus (idlePower * T)

else N monus (sleepPower * T) fi,

backoffTimer : TI monus T, roundTimer : TI’ monus T > .

The constants idlePower and sleepPower denote the amount of power the
node consumes per time unit (millisecond) when the node is active and inactive,
respectively. The function monus is defined by x monus y = max(0, x − y).

The function mte is defined so that time cannot advance when a node is in its
volunteering process (undecided)—forcing the node to enter this process at the
start of each round—and otherwise cannot advance beyond the expiration time
of a timer, or beyond the time when the node would run out of power:

eq mte(< L : WSNode | backoffTimer : TI, roundTimer : TI’, status : S,
remainingPower : P, hasVolunteered : V >) =

if V == undecided then 0 else
min(TI, TI’, if S == on then ceiling(P / idlePower)

else ceiling(P / sleepPower) fi) fi .

4.5 Modeling Communication

The informal description of the OGDC algorithm says that nodes broadcast mes-
sages within the radio range. Furthermore, a node does not know its neighbors.

130 P.C. Ölveczky and S. Thorvaldsen

Most time related parameters in OGDC are set according to the transmission
time of a message, which is assumed to be the same for all broadcast transmis-
sions. This is a clear indication that transmission delays must be captured in the
model. In [19] we show how such “area broadcast” with transmission delay Δ
can be easily modeled in Real-Time Maude. The idea is that the sender l sends
a “broadcast message” broadcast m from l, where m is the message content,
into the configuration. This broadcast message is then defined to be equivalent
to a set of single messages dly(msg m from l to l′, Δ), one such message for
each sensor node l′ within the radio range of l.

Since the description of OGDC does not discuss packet collisions, and only
mentions that OGDC also should work in the presence of message losses, we
have not modeled problems that are due to packet collisions.

4.6 Probabilistic Behaviors

The OGDC algorithm exhibits probabilistic behaviors in that (i) some actions are
performed with probability p, and (ii) some values are supposed to be set to “ran-
dom values, drawn from a uniform distribution . . . ” As mentioned, Real-Time
Maude does not provide explicit support for specifying probabilistic behavior.
Instead, for simulation purposes, we define a function random, which generates
a sequence of numbers pseudo-randomly and which satisfies Knuth’s criteria for
a “good” random number generator [7]. The state must then contain an object
of a class RandomNGen with an attribute seed which stores the ever-changing
“seed” for random. Probabilistic behaviors can then be modeled by “sampling”
a value from the given interval using the random function. For the purpose of
specifying all possible behaviors, we could have—but have not, due to the re-
sulting large reachable state spaces that would have made exhaustive analysis
unfeasible—modeled probabilistic behavior by nondeterministic behavior by (i)
letting a probabilistic action be enabled as long as the probability of it being
performed is greater than 0, and (ii) by letting the “random” value be a new
variable, only occurring in the right-hand side of the rewrite rule, which can be
given any value in the desired interval.

4.7 Defining the Dynamic Behavior of the OGDC Algorithm

The dynamic behavior of the OGDC algorithm is modeled in Real-Time Maude
by 11 rewrite rules, 3 of which are given below.

At the start of each round of the OGDC algorithm, each node is in state
undecided and must decide whether or not to volunteer as a starting node. This
part of the protocol is described as follows in [22]:

A node volunteers to be a starting node with probability p if its power exceeds
a pre-determined threshold Pt. [...] If a sensor node volunteers, it sets a backoff
timer to τ1 seconds, where τ1 is uniformly distributed in [0, Td]. When the
timer expires, the node changes its state to “ON”, and broadcasts a power-on
message. [...] The power-on message sent by the starting node contains (i) the

Formal Modeling and Analysis 131

position of the sender and (ii) the direction α along which the second working
node should be located. This direction is randomly generated from a uniform
distribution in [0, 2π]. [...] If the node does not volunteer itself to be a starting
node, it sets a timer of Ts seconds. [...]

This part of the OGDC algorithm is probabilistic, since a node decides to
volunteer with probability p. We simulate such probabilistic behavior in the
following rewrite rules by checking whether the next pseudo-random number
generated in the system, modified to a value between 0 and 999 (randomProb(M),
defined as random(M) rem 1000), is less than R, where R denotes the current
volunteering probability multiplied by 1000. The first rule models the start of
the “starting node selection” phase when the node’s hasVolunteered attribute
is undecided:

rl [volunteer] :
< L : WSNode | remainingPower : P, volunteerProb : R,

hasVolunteered : undecided >
< Random : RandomNGen | seed : M >

=>
(if (randomProb(M) < R) and (P > powerThreshold or R == 1000)
then < L : WSNode | backoffTimer : randomTimer(random(M)),

hasVolunteered : true >
else < L : WSNode | backoffTimer : Ts, hasVolunteered : false,

volunteerProb : doubleProb(R) >
fi)
< Random : RandomNGen | seed : random(random(M)) > .

The node must also have sufficient remaining power (P > powerThreshold), or
its volunteer probability must have reached 1 (R == 1000). If the node volun-
teers, it sets its backoff timer to a random value between 0 and Td by the function
randomTimer. If the node does not volunteer, it sets its backoff timer to Ts. The
seed is also updated, so that the next application of this (or any other) rule will
draw a completely different random number.

A node becomes active when its backoff timer expires. If the node volunteered
as a starting node, it broadcasts a power-on message that contains the node’s
location and a random direction:

rl [startingNodePowerOn] :
< L : WSNode | remainingPower : P, backoffTimer : 0,

hasVolunteered : true >
< Random : RandomNGen | seed : M >

=>
< L : WSNode | remainingPower : P monus transPower,

backoffTimer : INF, status : on >
< Random : RandomNGen | seed : random(M) >
broadcast (powerOnWithDirection randomDirection(M)) from L .

The node consumes transPower amount of power when it broadcasts a message.
The actions taken when a node receives a power-on message are described as

follows in [22]:

132 P.C. Ölveczky and S. Thorvaldsen

When a sensor node receives a power-on message, if the node is already
“ON”, or it is more than 2 rs away from the sender node, it ignores the mes-
sage; otherwise it adds this node to its neighbor list, and checks whether or not
all its neighbors’ coverage disks completely cover its own coverage disk. If so,
the node sets its state to “OFF” and turns itself off. Otherwise [...]

The next rule models the case where the receiver has status undecided and its
coverage area becomes entirely covered by its active neighbors (including the
sender of the current power-on message). In this case, the node turns itself off:

crl [recPowerOn1] :
(msg (powerOnWithDirection D) from L’ to L)
< L : WSNode | status : undecided, neighbors : NBS, bitmap : BM >
=>
< L : WSNode | status : off, neighbors : NBS (L’ starting (D >= 0)),

bitmap : updateBitmap(L, BM, L’), backoffTimer : INF >
if (L withinTwiceTheSensingRangeOf L’)

/\ coverageAreaCovered(updateBitmap(L, BM, L’)) .

5 Simulation and Formal Analysis of OGDC

This section describes how the OGDC algorithm can be subjected to the follow-
ing kinds of formal analysis in Real-Time Maude:

1. Monte Carlo simulation, with probabilistic behavior simulated using our
pseudo-random number generator, by timed fair rewriting. In particular, we
show how Real-Time Maude can perform all the simulations done by Zhang
and Hou on the wireless extension of the network simulation tool ns-2.

2. Time-bounded reachability analysis and temporal logic model checking of
all possible behaviors from some initial state with respect to the particular
values generated by the pseudo-random generator. That is, our analysis is
incomplete since we do not analyze all possible behaviors for a given net-
work topology, but only those that can take place with the specific choice of
pseudo-random numbers used to simulate the probabilistic behavior. Never-
theless, such analysis covers many different behaviors from a given state.

In our experiments, we use the same values for parameters such as sensing range
(10m), length of a round (1000 seconds), power consumption, transmission times,
etc., as in the ns-2 simulations in [22]. In those simulations, 100 to 1000 nodes
were “uniformly randomly distributed” in a 50m × 50m sensing area.

5.1 Defining Initial States and the Time Sampling Strategy

To easily simulate large sensor networks with different node locations and initial
seeds, we define a function genInitConf to generate initial states. The term
genInitConf(n,seed) defines a configuration with n sensor nodes scattered at
pseudo-random locations within the sensing area, as well as a RandomNGen object

Formal Modeling and Analysis 133

with starting seed computed from the initial seed seed. (An initial state must
also add the operator {_}.) We can therefore generate initial states with any
number of nodes, and/or place them in different locations, by just changing the
parameters n and/or seed in genInitConf.

In the following definition, each generated sensor node location x. y will have
0 ≤ x ≤ Xsize and 0 ≤ y ≤ Ysize (since rem is the remainder function):

op genInitConf : Nat Nat -> Configuration .
op genInitConf : Nat Nat Nat -> Configuration .

vars M SEED N : Nat .

eq genInitConf(N, SEED) = genInitConf(N, SEED, N) .

ceq genInitConf(M, SEED, N) =
if M == 0 then
--- no more nodes to generate; generate RandomNGen object:

< Random : RandomNGen | seed : SEED >
else --- more nodes to generate:

< L : WSNode | remainingPower : lifetime, status : undecided,
neighbors : none, bitmap : initBitmap(L),
uncoveredCrossings : none, backoffTimer : INF,
roundTimer : roundTime, volunteerProb : 1000 / N,
hasVolunteered : undecided >

--- and generate the remaining M-1 nodes:
genInitConf(M - 1, random(random(SEED)), N)

fi
if L := random(SEED) rem (Xsize + 1) . --- x part of L

random(random(SEED)) rem (Ysize + 1) . --- y part of L

Each generated WSNode gets the appropriate initial values for its attributes.
The third argument to the genInitConf in the main equation is needed to store
the total number of nodes in the system (N) so that the volunteerProb attribute
gets the correct initial value.

A time sampling strategy guiding the execution of the tick rule must be chosen
before any analysis can take place. Since all events in the OGDC algorithm
happen at specific times, we have shown in [16] that we can “fast forward”
between these events without losing any interesting behaviors. Therefore, in our
analysis, we use the maximal time sampling strategy declared by the Real-Time
Maude command (set tick max def roundTime .) which advances time as
much as possible, and corresponds to “event-driven simulation.”

5.2 The ns-2 Simulations of OGDC in Real-Time Maude

In [22], Zhang and Hou use the network simulation tool ns-2 [12], with the
wireless extension developed by the CMU Monarch group [4], to simulate the
OGDC algorithm and measure the following essential performance metrics:

134 P.C. Ölveczky and S. Thorvaldsen

– The number of active nodes and the percentage of sensing area coverage
provided by those nodes at the end of the first round.

– The percentage of sensing area coverage and the total amount of remaining
power for the whole system throughout the network’s lifetime.

– The total time during which at least α percent of the sensing area is covered.
(This can be done in the same way as the first two, and is not treated
here.)

We cannot use Real-Time Maude’s timed rewrite command directly to perform
the corresponding analysis, since these performance metrics should be measured
at different points in time throughout the lifetime of the system, and since the
metrics themselves do not appear explicitly in the state. Therefore, we add to
the initial state a record object that uses a timer to compute a performance
metric at the same time (e.g., just before the end of the round) in each round
during a simulation of the OGDC algorithm. The computed values are stored
in an attribute of the record object as a list n1 ++ n2 ++ · · · ++ nk, where ni

denotes the value of the metric at the end of round i. Given a sort NatList of
lists of natural numbers, with concatenation operator _++_ and empty list nil,
we can declare the record object class as follows:

class RecActNodes | activeNodes : NatList, timer : TimeInf .
ops r1 r2 r3 : -> Oid [ctor] . --- names of record objects

The following rule applies when the timer of the record object expires. It
computes and stores the number of active nodes in the system, and resets the
timer in order for it to be expire again at the same time in the next round:

var SYSTEM : Configuration . var NL : NatList . var O : Oid .
rl [computeNumActiveNodes] :

{< O : RecActNodes | activeNodes : NL, timer : 0 > SYSTEM}
=>
{< O : RecActNodes | activeNodes : NL ++ numActiveNodes(SYSTEM),

timer : roundTime > SYSTEM} .

The function numActiveNodes computes the number of active nodes in a
configuration. In the same way, we define record object classes RecCoverage%
and RecTotalPower, which compute, respectively, the percentage of the sens-
ing area covered by the active nodes and the total amount of power in the
system.

The first simulations in [22] investigate the number of active nodes and the
percentage of coverage in the first round of the algorithm. The following timed
fair rewrite command simulates a system with 600 nodes (in a 50m×50m sensing
area) until the end of the first round of the protocol (in time < roundTime).
The initial state contains two record objects, whose metrics will be computed
when their timers expire just before the end of the first round (roundTime - 1):

Formal Modeling and Analysis 135

Maude> (tfrew {genInitConf(600, 1)
< r1 : RecActNodes | activeNodes : nil,

timer : roundTime - 1 >
< r2 : RecCoverage% | cov% : nil, timer : roundTime - 1 >}

in time < roundTime .)

Result ClockedSystem :
{< r1 : RecActNodes | activeNodes : 45 , timer : 1000000 >
< r2 : RecCoverage% | cov% : 100 , timer : 1000000 >
... } in time 999999

As shown in the analysis messages, 45 of the 600 deployed nodes became
active nodes and together provided 100% coverage of the sensing area.

Zhang and Hou then measure how coverage and total remaining power changes
over time. The following rewrite command simulates 50 rounds of the algorithm
(in time < roundTime * 50) with 200 nodes in the 50m × 50m sensing area:

Maude> (tfrew {genInitConf(200, 313)
< r1 : RecCoverage% | cov% : nil, timer : roundTime - 1 >
< r2 : RecTotalPower | power : nil, timer : roundTime - 1 >}

in time < roundTime * 50 .)

Result ClockedSystem :
{< r1 : RecCoverage% | cov% : 100 ++ ... ++ 100 ++ 98 ++ ... ++ 100 ++ 94

++ 88 ++ ... ++ 13 ++ 0 ++ ... ++ 0) , ... >
< r2 : RecTotalPower | power : 384639803547 ++ 370475585958 ++ ...

++ 371677818 ++ 0 ++ ... ++ 0) , ... >
... } in time 49999999

The result shows that the nodes can provide 100% coverage for 19 rounds,
with a decrease of coverage in certain intermediate rounds.

5.3 Comparison with the ns-2 Simulations

The table on the next page compares our simulation results with the ns-2 sim-
ulation results in [22]. Our simulations show a higher number of active nodes
(more than twice as many, in fact) and a correspondingly shorter network life-
time. Furthermore, in contrast to the ns-2 simulations, we get more active nodes
when more nodes are deployed in the same area. These differences cannot be ex-
plained by us ignoring packet collisions in our simulations, since [22] states that
“the number of working nodes may increase” in the presence of message losses.
The most plausible explanation for the different results is instead the following:
In OGDC, if two nodes are close to one another, then the difference between
their backoff timers is smaller than the transmission delay. If transmission de-
lays are ignored during the simulations, potentially because the simulation tool
makes it inconvenient to simulate such delays, then only one of the neighbors will
become active. However, if, as in our case, we capture transmission delays, then
the backoff timer of the “worse” node will expire before it receives the power-on
message from the “better” node, and, hence, both nodes will become active.

136 P.C. Ölveczky and S. Thorvaldsen

We have, unfortunately, not been able to get an answer to whether or not
the ns-2 simulations in [22] actually took the transmission delays into account,
although the second author told us it is quite likely that they did not. Therefore,
we have also performed the simulations without transmission delays (by just
removing the dly-part from the single messages created by the broadcast). The
following table shows the results of the ns-2 simulations, as well as of the Real-
Time Maude simulations both with and without transmission delays, for finding
the number of active nodes at the end of the first round for 200, 400, and 600
nodes in the same 50m × 50m area. For the Real-Time Maude simulations,
each number represents the average result of five simulations, obtained by using
five different initial seeds (and hence getting five different placements of the
nodes):

Number of nodes in sensing area 200 400 600

active nodes in ns-2 simulations 17 18 18

active nodes in Real-Time Maude simulations with trans. delay 34 45 55

active nodes in Real-Time Maude simulations without trans. delay 21 22 22

Indeed, the results of the Real-Time Maude simulations that ignore transmis-
sion delays are quite similar to the results of the ns-2 simulations. It is therefore
tempting to conjecture that our Real-Time Maude simulations with transmission
delays give a reasonably accurate estimate of the performance of OGDC in such
a setting. In that case, one can conclude that the results of ns-2 simulations are
actually quite misleading and that our formal model provides a more accurate
simulation setting for OGDC than ns-2 with the wireless extension.

5.4 Further Real-Time Maude Analysis of the OGDC Algorithm

We give some examples of how we can further formally analyze correctness and
worst-case performance of the OGDC algorithm by using Real-Time Maude’s
search and model checking capabilities. Due to the large states involved, we
restrict such analyses to systems with 5 to 6 nodes (in a 25m×25m area), which
is much fewer nodes than in a real WSN. Nevertheless, exhaustive analysis with
3 to 4 nodes has uncovered subtle bugs in cryptographic protocols [9] and other
kinds of network protocols (e.g., [18]).

The following find latest command finds the latest possible time the net-
work enters the steady state phase (such that steadyStatePhase(...)), and
thereby also finds out whether this phase is always reached in the first round.

Maude> (find latest {genInitConf(6, 75)} =>* {C:Configuration}
such that steadyStatePhase(C:Configuration)

in time < roundTime .)

Result: { ... } in time 372

Formal Modeling and Analysis 137

That is, the system will reach the steady state phase in at most 372 ms. One
round of the OGDC algorithm is 1000 seconds, which means that the network
spends most of its lifetime performing its sensing task.

Another correctness requirement is that the network stays in the steady state
phase throughout the first round, once this phase has been reached. We use Real-
Time Maude’s temporal logic model checker, and define an atomic proposition
steady-state to hold when the network is in steady state phase:

op steady-state : -> Prop [ctor] .
eq {C} |= steady-state = steadyStatePhase(C) .

The following command checks whether all states following a state in the
steady state phase are also in this phase (A => B is an abbreviation for [](A
-> B)).

Maude> (mc {genInitConf(5,341)} |=t (steady-state => [] steady-state)
in time < roundTime .)

Result Bool : true

The most important correctness criterion is that the entire sensing area is
covered by the active nodes when the system is in the steady state phase (and all
nodes together cover the entire area and each node has power to last to the end of
the round). The following command searches for a state which is in steady state
but where the entire 20m×20m sensingArea is not covered by the active nodes:

Maude> (tsearch [1]

{genInitConf(5,97)} =>* {C:Configuration}

such that steadyStatePhase(C:Configuration) /\

not coverageAreaCovered(updateArea(sensingArea,

C:Configuration))

in time < roundTime .)

The function updateArea updates the bitmap by changing bits that are cov-
ered by the active nodes in C to t. The command returned ‘No solution.’

Performance figures. The following table shows, for each command presented in
this paper, and for the above search command with a different topology (given
by seed 1) which does not cover the sensing area: the number of sensor nodes;
execution time; and memory usage when executed on a 3.6 GHz Intel Xeon:

tfrew 1 rd tfrew 1 rd tfrew 1 rd tfrew 50 rds find mc tsearch tsearch
200 400 600 200 6 5 6, s=1 5, s=7197

180 sec 1243 sec 5034 sec 4931 sec 4187 sec 26 sec 679 sec 227 sec

85 MB 100 MB 112 MB 93 MB 525 MB 147 MB 1.3 GB 430 MB

The paper [22] does not mention the performance of their ns-2 simulations.

138 P.C. Ölveczky and S. Thorvaldsen

6 Concluding Remarks

Wireless sensor networks are a new kind of network whose modeling, simulation,
and/or analysis pose a set of challenges to both network simulation tools and
formal tools. OGDC is a state-of-the-art WSN algorithm where new forms of
communication and advanced data types must be captured at an appropriate
level of abstraction. In this paper we have shown how OGDC was formally
specified, simulated, and analyzed using Real-Time Maude. To the best of our
knowledge, this is the first formal analysis of an advanced WSN algorithm. Our
formal specification captures the behavior of the algorithm at a high level of
abstraction and—being precise, intuitive, and operational—could make a good
starting point for an implementation of the OGDC algorithm on sensor networks.

We could measure all performance metrics measured in the ns-2 simulations
in [22] during our “Monte Carlo” simulations. Our simulations showed signif-
icantly worse performance of the OGDC algorithm than the ns-2 simulations.
Trying to understand why—unlike in the ns-2 simulations—we got more ac-
tive nodes when more nodes were deployed in the same sensing area, we found
that the “tie-breaking” mechanism in OGDC does not break many ties when
transmission delays are taken into account. To check this hypothesis, we also
simulated OGDC in Real-Time Maude in a setting without transmission delays,
and got results that were similar to the ns-2 results. It is therefore quite likely
that our simulations, which take the delays into account, provide much more ac-
curate performance estimates than the ns-2 simulations that may have ignored
such delays. Furthermore, based on communication with Jennifer Hou, it seems
that developing the Real-Time Maude specification and performing the Real-
Time Maude analysis required much less effort than using a specialized network
simulation tool to analyze OGDC.

Our work should continue in different directions. First, we focus on simplicity
and elegance when modeling coverage areas and defining functions on such areas.
There is a price to pay for this when we have hundreds of nodes, each with a
bitmap with 400 “bits.” Therefore, more efficient representations of coverage
areas should be developed. This would enable us to perform search and model
checking on larger networks.

Second, we have not modeled probabilistic behaviors as such, but have used a
“sampling” technique for simulation purposes. This means that we cannot reason
about probabilistic properties. We should therefore combine Real-Time Maude
with methods and tools for probabilistic systems, such as PMaude [1], and should
develop methods to fruitfully analyze probabilistic real-time specifications.

Finally, we should also capture message losses due to packet collisions.

Acknowledgments. We are grateful to Jennifer Hou for suggesting the OGDC
algorithm as a challenging modeling task, and for discussions on sensor net-
works, to José Meseguer for discussions on modeling communication in sensor
networks, and to the anonymous reviewers for helpful comments on earlier ver-
sions of this paper. Support by the Research Council of Norway is also gratefully
acknowledged.

Formal Modeling and Analysis 139

References

1. Agha, G., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language for
probabilistic object systems. In: Proc. QAPL’05 (2005)

2. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: A survey. Computer Networks 38, 393–422 (2002)

3. Clavel, M., Dúran, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Tal-
cott, C.: Maude Manual (Version 2.2), December 2005. http://maude.cs.uiuc.edu
(2005)

4. CMU monarch extensions to ns. http://www.monarch.cs.cmu.edu/
5. Coleri, S., Ergen, M., Koo, T.J.: Lifetime analysis of a sensor network with hybrid

automata modelling. In: WSNA ’02, ACM Press, New York (2002)
6. Kim, M., Dutt, N., Venkatasubramanian, N.: Policy construction and validation for

energy minimization in cross layered systems: A formal method approach. In: IEEE
RTAS’06 Work-in-Progress Session, pp. 25–28. IEEE Computer Society Press, Los
Alamitos (2006)

7. Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms, 2nd
edn., vol. 2. Addison-Wesley, London, UK (1981)

8. Lien, E.: Formal modelling and analysis of the NORM multicast protocol using
Real-Time Maude. Master’s thesis, Dept. of Linguistics, University of Oslo (2004)

9. Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol.
Information Processing Letters 56, 131–133 (1995)

10. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, Springer, Heidel-
berg (1998)

11. Nair, S., Cardell-Oliver, R.: Formal specification and analysis of performance vari-
ation in sensor network diffusion protocols. In: MSWiM ’04, ACM Press, New York
(2004)

12. ns-2 network simulator. http://www.isi.edu/nsnam/ns
13. Ölveczky, P.C., Caccamo, M.: Formal simulation and analysis of the CASH schedul-

ing algorithm in Real-Time Maude. In: Baresi, L., Heckel, R. (eds.) FASE 2006 and
ETAPS 2006. LNCS, vol. 3922, pp. 357–372. Springer, Heidelberg (2006)

14. Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in
rewriting logic. Theoretical Computer Science 285, 359–405 (2002)

15. Ölveczky, P.C., Meseguer, J.: Specification and analysis of real-time systems using
Real-Time Maude. In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004.
LNCS, vol. 2984, Springer, Heidelberg (2004)

16. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for Real-Time Maude.
In: Proc. WRLA’06 (2006)

17. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation, To appear (2007)

18. Ölveczky, P.C., Meseguer, J., Talcott, C.L.: Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. Formal Methods in
System Design 29, 253–293 (2006)

19. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling and analysis of wireless sensor
network algorithms in Real-Time Maude. In: IPDPS 2006, IEEE, NJ, New York
(2006)

http://maude.cs.uiuc.edu
http://www.monarch.cs.cmu.edu/
http://www.isi.edu/nsnam/ns

140 P.C. Ölveczky and S. Thorvaldsen

20. Rodŕıguez, D.E.: On modelling sensor networks in Maude. In: Proc. WRLA 2006
(2006)

21. Thorvaldsen, S., Ölveczky, P.C.: Formal modeling and analysis of the
OGDC wireless sensor network algorithm in Real-Time Maude. Manuscript.
http://www.ifi.uio.no/RealTimeMaude/OGDC (Oct. 2005)

22. Zhang, H., Hou, J.C.: Maintaining sensing coverage and connectivity in large sensor
networks. Wireless Ad Hoc and Sensor Networks: An International Journal, vol. 1
(2005)

http://www.ifi.uio.no/RealTimeMaude/OGDC

Adaptation of Open Component-Based Systems

Pascal Poizat1,2 and Gwen Salaün3

1 IBISC FRE 2873 CNRS – University of Evry Val d’Essonne, France
2 ARLES project, INRIA Rocquencourt, France

pascal.poizat@inria.fr
3 Department of Computer Science, University of Málaga, Spain

salaun@lcc.uma.es

Abstract. Software adaptation aims at generating software pieces
called adaptors to compensate interface and behavioural mismatch be-
tween components or services. This is crucial to foster reuse. So far,
adaptation techniques have proceeded by computing global adaptors for
closed systems made up of a fixed set of components. This is not satisfac-
tory when the systems may evolve, with components entering or leaving
it at any time, e.g., for pervasive computing. To enable adaptation on
such systems, we propose tool-equipped adaptation techniques for the
computation of open systems adaptors. Our proposal also support incre-
mental adaptation to avoid the computation of global adaptors.

1 Introduction

Compared to hardware components, software components (or services) are sel-
dom reusable as is due to possible mismatch that may appear at different lev-
els [10]: signature, behaviour, quality of service and semantics. Once detected,
mismatch has to be corrected. However, it is not possible to impact directly on
the components source due to their black-box nature. Software adaptation [27,10]
aims at generating, as automatically as possible, pieces of software called adap-
tors which are used to solve mismatch in a non intrusive way. To this purpose,
model-based adaptation techniques base upon behavioural component interface
descriptions and abstract properties of the adaptation called adaptation contracts
or mappings. Dedicated middleware [2] can be used to put the adaptation process
into action once an adaptor model (or implementation) has been obtained, but
this is out of scope here.

Existing (global) adaptation approaches [27,21,14,8,11] proceed by generating
a global adaptor for the whole system which is seen as a closed one. First of all
this is costly. Moreover, when a component uses a service which does not relate
through mapping to the other components’ services, then either its use is pre-
vented by adaptation (to avoid deadlock), or it is made internal (related events
sent by the component are absorbed by the adaptor). Taking into account that
new components, and hence new services, may be available in the future is not
possible. Global adaptation approaches suffer from the fact that the adaptor has
to be computed each time something changes in the system and are therefore
not efficient in contexts such as pervasive systems [20], where services are not

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 141–156, 2007.
c© IFIP International Federation for Information Processing 2007

142 P. Poizat and G. Salaün

fixed or known from scratch. They may evolve, e.g., depending on the mobil-
ity of the user –moving around, different services are discovered and may be
used, or on connectivity or management issues –some services may be tempo-
rary or definitely unavailable. In this paper we address these issues by extending
a previous work for the adaptation of closed systems [11] in order to support
(i) the adaptation of open systems and accordingly, (ii) an incremental process
for the integration and adaptation of open software components. The definitions
and algorithms we present have been implemented in Adaptor [1], our tool for
model-based adaptation.

The paper is structured as follows. Section 2 presents our open systems com-
ponent model and our adaptation techniques for such systems. In Section 3,
we present the incremental adaptation of open systems, addressing the addition
and the removal of components. Incremental adaptation has an added value at
design-time, where the integration of components is known to be a difficult task,
which gets worse when components have not been designed altogether from the
beginning and therefore when adaptation connectors are needed. This typical
use of the incremental adaptation of open systems is illustrated in Section 4. We
end with comparison of related work and concluding remarks.

2 Open Systems Adaptation

In this section we address the adaptation of open systems. We first recall a formal
model for basic sequential components originating from [11]. Then we define an
open composition model on top of it thanks to the definition of (i) compositional
vectors, (ii) open synchronous product and (iii) open component-based systems
and their semantics. In a second step, our adaptation algorithms are presented.

2.1 Components

Alphabets, the basis for interaction, correspond to an event-based signature. An
alphabet A is a set of service names, divided in provided services, A? (elements
denoted as e?), required services, A! (elements denoted as e!) and internal actions
(denoted with τ). The mirror operation on an alphabet element is defined as
e? = e!, e! = e?, and τ = τ . Moreover, for an alphabet A, A = {e | e ∈ A}.

Component interfaces are given using a signature and a behavioural interface.
A signature is a set of operation profiles as in usual component IDLs. This set
is a disjoint union of provided operations and required operations. Behavioural
interfaces are described in a concise way using a sequential process algebra,
sequential CCS: P ::= 0 | a?.P | a!.P | τ.P | P1+P2 | A, where 0 denotes
termination, a?.P (resp. a!.P) a process which receives a (resp. sends it) and
then behaves as P, τ.P a process which evolves with the internal action τ (also
denoted using tau in figures) and behaves as P, P1+P2 a process that acts either
as P1 or P2, and A the call to a process defined by an equation A = P, enabling
recursion. The CSS notation is extended using tags to support the definition
of initial ([i]) and final states ([f]). 0 and 0[f] are equivalent. In order to
define adaptation algorithms, we use the process algebra operational semantics

Adaptation of Open Component-Based Systems 143

to retrieve Labelled Transition Systems (LTS) from the interfaces, i.e., tuples
〈A, S, I, F, T 〉 where A is the alphabet (set of communication events), S is the
set of states, I ∈ S is the initial state, F ⊆ S is the set of final states, and
T ⊆ S × A × S are the transitions. The alphabet of a component LTS is built
on this component’s signature. This means that for each provided operation p
in the signature, there is an element p? in the alphabet, and for each required
operation r, an element r!.

2.2 Open Component Systems

Vectors are an expressive mechanism to denote communication and express cor-
respondences between events in different processes. In this work vectors are ex-
tended to take into account open systems and keep track of their structuring.
For this purpose, vectors are defined with reference to an (external) alphabet
which relates component events to composite systems external interfaces (see
Defs. 3 and 4, below).

Definition 1 ((Compositional) Vector). A compositional vector (or vector
for short) v for a set of LTSs Li = 〈Ai, Si, Ii, Fi, Ti〉 , i ∈ {1, . . . , n} and an
(external) alphabet Aext is an element of Aext × (A1 ∪ {ε}) × . . . × (An ∪ {ε}).
Such a vector is denoted e : 〈l1, . . . , ln〉 where e ∈ Aext and for every i in
{1, . . . , n}, li ∈ Ai ∪ {ε}. ε is used in vectors to denote a component which does
not participate in a communication.

The definition of an open synchronous product yields a tree-shaped structure
for labels which makes it possible to keep trace of the structuring of composite
components. When needed we may restrict to the observable part of labels,
defined as obs(e : 〈l1, . . . , ln〉) = e. Moreover, labels of simple LTS can be
related to composite ones using l : 〈l〉 for any label l.

Definition 2 (Open Synchronous Product). The open synchronous product
of n LTSs Li, i ∈ {1, . . . , n} with reference to a set of vectors V (defined over
these LTSs and an external alphabet Aext) is the LTS Π((L1, . . . , Ln) , Aext, V) =
〈A, S, I, F, T 〉 such that: A = Aext × A1 × . . . × An, S = S1 × . . . × Sn, I =
(I1, . . . , In), F = F1 × . . . × Fn, and T contains a transition ((s1, . . . , sn), e :
〈a1, . . . , an〉 , (s′1, . . . , s

′
n)) iff there is a state (s1, . . . , sn) in S, there is a vector

e : 〈l1, . . . , ln〉 in V and for every i in {1, . . . , n}:
– if li = ε then s′i = si and ai = ε,
– otherwise there is a transition (si, ai, s

′
i) with obs(ai) = li in Ti.

Remark. In practice, we reduce S (resp. F) to elements of S (resp. F) which
are reachable from I using T .

Example 1. Let us suppose we have two LTSs, L1 and L2, with one transition
each: (I1, a?, S1) for L1 and (I2, b!, S2) for L2. Different sets of vectors may
express different communication semantics:
– {τ : 〈a?, b!〉} (services a? and b! being synchronised) will produce a product

LTS with a single transition: ((I1, I2) , τ : 〈a?, b!〉 , (S1, S2));

144 P. Poizat and G. Salaün

– {a? : 〈a?, ε〉 , b! : 〈ε, b!〉} (services a? and b! left open to the environment)
will produce a product LTS with four transitions:
((I1, I2) , a? : 〈a?, ε〉 , (S1, I2)), ((I1, I2) , b! : 〈ε, b!〉 , (I1, S2)),
((S1, I2) , b! : 〈ε, b!〉 , (S1, S2)), ((I1, S2) , a? : 〈a?, ε〉 , (S1, S2)).

If we take this second case into account and make a product with an LTS L3
with two transitions, (I3, c!, S3) and (S3, d?, S′

3), and vectors {τ : 〈a?, c!〉 , τ :
〈b!, d?〉}, we get a product LTS with two transitions:

(((I1, I2) , I3) , τ : 〈a? : 〈a?, ε〉 , c!〉 , ((S1, I2) , S3)),
(((S1, I2) , S3) , τ : 〈b! : 〈ε, b!〉 , d?〉 , ((S1, S2) , S′

3)).

Composites denote sets of hierarchical connected open components.

Definition 3 (Composite (or Open Component System)). A composite
is a tuple 〈C, Aext, Bint, Bext〉 where:

– C is a set of component instances, i.e., an Id-indexed set of LTS Li, i ∈ Id
(Id usually corresponds to the integers {1, . . . , n}),

– Aext is an (external) alphabet,
– Bint is a set of vectors, with each vector e : 〈l1, . . . , ln〉 in Bint being such that

e = τ , there is some i in {1, . . . , n} such that li �= ε and there is at most one
j in {1, . . . , n}\{i} such that lj �= ε. Bint denotes internal (hidden) bindings
between the composite sub-components, When clear from the context, such
vectors can be denoted as couples (li, lj),

– Bext is a set of vectors, with each vector e : 〈l1, . . . , ln〉 in Bext being such
that e �= τ , there is some i in {1, . . . , n} such that li �= ε, and for every k in
{1, . . . , n}\{i}, lk = ε. Bext denotes external bindings between the compos-
ite sub-components and the composite interface itself. When clear from the
context, such vectors can be denoted as couples (e, li).

Our structure of composites supports (through model transformation) existing
hierarchical ADLs such as the Fractal one [9] or UML 2.0 component
diagrams [17]. Note that with reference to these models we have an exact corre-
spondence between their notions of component ports and component interfaces
in what we call alphabets. Our model for bindings is more expressive than the
Fractal ADL or UML 2.0 ones as we enable bindings between services with dif-
ferent names, which is mandatory to support adaptation.

Example 2. Let us take a component system described in an ADL (Fig. 1)
where a batch processing client interacts with a database server to perform SQL
requests. Our graphical notation is inspired from Fractal ADL, yet a textual
notation is also supported. This model can be transformed into the following
composite structure:

〈 {Client,SQLServer}, {launch?,exitCode!},
{(log!,id?), (request!,sqlQuery?), (reply?,sqlValues!), (reply?,sqlError!), (end!, ε)},
{(launch?,run?), (exitCode!,exitCode!)} 〉.

Open synchronous product is used to give a formal semantics to composites.

Adaptation of Open Component-Based Systems 145

id?

sqlQuery?

sqlValues!

sqlError!

SQLServer

SQLServer[i,f] = id?.QueryPerformer
QueryPerformer = sqlQuery? .

(tau.sqlValues!.SQLServer
+ tau.sqlError!.SQLServer)

request!

log!

reply?

end!

exitCode!

exitCode!launch?

run?

Client

Cx = tau.request!.reply?.Cx
Client[i] = run?.log!.Cx

 + tau.end!.exitCode!.0

Fig. 1. The Client and SQLServer Example Architecture

Definition 4 (Composite Semantics). The semantics of a composite C =
〈C, Aext, Bint, Bext〉 is the LTS L(C) = Π(C, Aext, V) with V = Bint ∪ Bext ∪ Bτ

where Bτ =
⋃

i∈{1,...,n}{bτ,i} and bτ,i = τ : 〈l1, . . . , ln〉 where li = τ and lk = ε

for every k in {1, . . . , n}\{i}.

In presence of several hierarchical levels (composites of composites), composite
sub-components are first translated into LTSs using their semantics (Def. 4), e.g.,
the semantics of a composite C = 〈{C1, . . . , Cn}, Aext, Bint, Bext〉 where some Ci

is a composite can be obtained replacing Ci by L(Ci) in C.

2.3 Mismatch and Mappings

Composition correctness is defined in the literature [10] either at the composition
model level – using deadlock freedom – or at the components’ protocols level –
using compatibility or substitutability notions. As we want to use compositions
in finding ways to correct mismatching components, we rely on the first ap-
proach. States without outgoing transitions are legal if they correspond to final
states of the composed components. Therefore, we define deadlock (and hence
mismatch) for a composite with a semantics 〈A, S, I, F, T 〉 as a state s ∈ S of the
composition which has no outgoing transition (� ∃ (s, l, s′) ∈ T) and is not final
(s �∈ F). A deadlock is a state of the composition in which respective component
protocols are incompatible, due to signature and/or behavioural mismatch. Note
that if the former one can be solved using correspondences and renaming, the
latter one requires more subtle techniques. This is also the case when correspon-
dences evolve over time (e.g., in Example 4 below, id? in SQLServer corresponds
first to log! in Client and later on to nothing).

Example 3. Let us get back to the composite presented in Example 2. Mismatch
in the example is due first to mismatching names. Moreover, even with an agree-
ment on the service names, the fact that the client works in a connected mode
(sending its log only once and disconnecting with end) while the server works
in a non connected mode (requiring an id at each request) will also lead to be-
havioural mismatch after the first request of the client has been processed by
the server.

146 P. Poizat and G. Salaün

We propose regular expressions of open vectors as the means to express adapta-
tion contracts. A regular expression (or regex for short) over some basic domain
D is the set of all terms build on: d (ATOM), R1.R2 (SEQUENCE), R1 + R2
(CHOICE), R1∗ (ITERATION) and N (USE), with d ∈ D, R1 and R2 being
regular expressions, and N being an identifier referring to a regex definition
N = R. Such definitions can be used to structure regex but we forbid recursive
definitions for operational reasons.

Definition 5 ((Adaptation) Mapping). An adaptation mapping (or map-
ping for short) for a composite C = 〈C, Aext, Bint, Bext〉 is a couple (V, R) where
V is a set of (compositional) vectors for the LTSs in C and Aext, and R is a
regular expression over V .

Example 4. To work our system out, one easily guesses that the client has first
to be launched, to connect, the system then runs for some time and finally the
client disconnects and exits. This is specified for example using the mapping
M=vlaunch.vcx.Mrun.vdx.vexit with vectors vlaunch=launch?:<run?, ε >, vcx= τ :<log!,id?>,
vdx= τ :<end!, ε >, and vexit=exitCode!:<exitCode!, ε >. Yet, it is more complicated
to know what should be done while the system runs (Mrun), excepted of course
that events are exchanged for requests/results and that somehow a reset (resend-
ing the client identification) should be used. Therefore, one may choose to keep
this part of the mapping abstract: Mrun= (vreq+vres+verr+vreset)* with vectors vreq=

τ :<request!,sqlQuery?>, vres= τ :<reply?,sqlValues!>, verr= τ :<reply?,sqlError!>, and
vreset= τ :< ε,id?>.

Discussion on the mapping notation. Mappings are made up of the de-
finition of possible correspondences (vectors) and a dynamic description over
such correspondences (regex). Several behavioural languages may be used to
this purpose. We have presented regex for their simplicity. However, the only
requirement for the algorithms presented in Section 2.4 to work is to be able to
obtain from the mapping an LTS where transitions are labelled by vectors (Al-
gorithm 1, line 13). Currently, Adaptor supports both regex and the direct use
of LTS. Message Sequence Charts (MSC) where arrows are labelled by vectors
are a user-friendly alternative. LTS can be obtained from MSC using, e.g., [24].
We are also investigating the use of techniques from the composition of Web
services [6] in order to get automatically possible correspondences between ser-
vices (vectors) and ease the user task in the context of end-user composition in
pervasive systems.

2.4 Algorithms

Using a mapping and component behavioural interfaces, an adaptor can be gen-
erated automatically for a closed system following results from, e.g., [21,14,8,11].
Here, our algorithms (Alg. 1 and 2) enable adaptation on open systems. Algo-
rithm 1, works by translating into a Petri net [16] the constraints of a correct
adaptor. This choice is done as Petri nets enable to see messages exchanged be-
tween components as resources of the adaptor, to de-synchronise messages and

Adaptation of Open Component-Based Systems 147

Algorithm 1. build PetriNet

inputs mapping M , components C1, . . . , Cn with each Ci = 〈Ai, Si, Ii, Fi, Ti〉
outputs Petri net N
1: N := empty PetriNet() // all remaining actions operate on N
2: for all Ci = 〈Ai, Si, Ii, Fi, Ti〉 , i ∈ {1, . . . , n} do
3: for all sj ∈ Si do add a place [i@s j] end for
4: put a token in place [i@I i] // Ii is the initial state of Ci

5: for all a! ∈ Ai do add a place ??a end for
6: for all a? ∈ Ai do add a place !!a end for
7: for all (s, e, s′) ∈ Ti with l = obs(e) do
8: add a transition with label l, an arc from place [i@s] to the transition and

an arc from the transition to place [i@s’]
9: if l has the form a! then add an arc from the transition to place ??a end if

10: if l has the form a? then add an arc from place !!a to the transition end if
11: end for
12: end for
13: LR = (AR, SR, IR, FR, TR) := get LTS from regex(R) // see [13]
14: for all sR ∈ SR do add a place [R@s R] end for
15: put a token in place [R@I R] // IR is the initial state of LR

16: for all tR = (sR, e : 〈e1, . . . , en〉 , s′
R) ∈ TR with ∀i ∈ {1, . . . , n} li = obs(ei) do

17: add a transition with label e, an arc from place [R@s R] to the transition and
an arc from the transition to place [R@s’ R]

18: for all li do
19: if li has the form a! then add an arc from place ??a to the transition end if
20: if li has the form a? then add an arc from the transition to place !!a end if
21: end for
22: end for
23: for all (fr, f1, . . . , fn) ∈ FR × F1 × . . . × Fn do
24: add a (loop) accept transition with arcs from and to each of the tuple elements
25: end for
26: return N

Algorithm 2. build adaptor

inputs mapping M , components C1, . . . , Cn with each Ci = 〈Ai, Si, Ii, Fi, Ti〉
outputs adaptor Ad = 〈A, S, I, F, T 〉
1: N := build PetriNet(M, {C1, . . . , Cn}) // see Algorithm 1
2: if bounded(N) then L := get marking graph(N)
3: else L := add guards(get cover graph(N)) end if
4: Ad :=reduction(remove paths to dead states(L))
5: return Ad

therefore support reordering when required. The encoded adaptor constraints
are as follows. First, the adaptor must mirror each component interface (places
and transitions are generated from component interfaces, lines 2–12). It must
also respect the adaptation contract specified in the mapping (places and tran-
sitions are generated, lines 14–22, from an LTS description of the mapping

148 P. Poizat and G. Salaün

obtained in line 13). Algorithm 2 works out the building of the adaptor from
this net using several functions. bounded checks if a Petri net is bounded. If so,
its marking graph is finite and can be computed (get marking graph); if not,
then we rely on an abstraction of it, a cover graph (get cover graph), where
the ω symbol abstracts any token number > 0. Due to the over-approximation
of cover graphs, add guards is used on them to add a guard [#??a>1] (#??a
meaning the number of tokens in place ??a) on any a! transition leaving a state
where #??a is ω. remove paths to dead states recursively removes transitions
and states yielding deadlocks. The optimising of resulting adaptors is achieved
thanks to reduction techniques (reduction). Branching reduction [25] is the
most appropriate choice as it does not require a strict matching of τ transi-
tions like strong equivalence. In addition, branching equivalence is the strongest
of the weak equivalences, therefore properties restricted to visible actions (e.g.,
deadlock freedom, but also safety and fair liveness) are preserved by reduction
modulo branching equivalence.

Example 5. We present in Figure 2 the Petri net generated for the Client and
SQLServer example. To help the reader, we present separately the different parts
of the net which are generated for Client (top left), SQLServer (top right) and
the mapping (bottom left). The accept transition and the dashed places are used
to glue the three subnets. The resulting adaptor is also shown (bottom right). It
is more complex than its contract, which demonstrates the need for automatic
adaptation processes as presented here.

Our algorithms are supported by Adaptor which relies on ETS [18] for open prod-
uct computation, TINA [7] for the marking and cover graph computation, and
on CADP [12] for adaptor reduction. Due to the computation of marking/cover
graphs for the Petri net encodings, this algorithm is in theory exponential in the
size of the Petri net, which in turn is related to the sum of the sizes of the compo-
nent protocols and their alphabets (

∑
i∈{1,...,n+1}(|Si| + |Ai|)). Yet, in practice,

the adapted components are sequential, hence parts of generated Petri nets are
1-bounded which lowers the complexity. The incremental mechanism for adap-
tation we present in the next section also helps in minimising the complexity of
computing adaptors.

3 Incremental Adaptation of Open Component Systems

We may now describe an incremental adaptation approach suitable to open sys-
tems. At design-time, it helps in the design and integration of component-based
systems, grounding on automatic adaptor-connector generation. At run-time, it
avoids the computation of global adaptors and supports evolving systems.

3.1 Architectural Style

The definition of an architectural style is the support for the description, rea-
soning and implementation of software architectures. As far as design-time in-
cremental adaptation is concerned, resulting design architectural models will

Adaptation of Open Component-Based Systems 149

 run!

 log?

 tau tau

 exitCode?

 reply!

 end? request?

 ??exitCode

 ??end
 ??request

 !!reply

 ??log

 !!run

 accept

 accept

 ??sqlError ??sqlValues

 !!sqlQuery

 !!id

 sqlError? sqlValues?

 tau tau

 sqlQuery!

 id!

 tau tau exitCode! launch?

 accept

 tau

 tau tau

 tau

 ??request

 !!sqlQuery

 ??sqlError

 !!reply

 ??sqlValues

 !!id

 ??end ??log !!run ??exitCode launch?

 log?

 run!

 end? accept

 exitCode! exitCode?

sqlError?

sqlValues?

request?sqlQuery! reply!

id!

id!

reply! reply!
sqlError?

sqlValues?

 sqlQuery!

 id!

 request?

 id!
 request?

Fig. 2. The Client and Server Example Adaptor Generation

respect our style. As far as run-time incremental adaptation is concerned, com-
munication mechanisms are constrained by it.

Two kinds of entities are distinguished: components and adaptors. Compo-
nents implement the system’s functionalities or services. Adaptors are used as
intermediates to avoid deadlock and enforce different coordination policies whose
properties are specified in an abstract way in mappings. A component is only
connected to its adaptor, and interacts with the rest of the system through it. If
the component does not require adaptation, our approach automatically gener-
ates a no-op adaptor which reproduces from an external point of view exactly the
same behaviour as the component. Adaptors can be connected to other adaptors
in order to ensure the system’s global correctness.

To support implementation or run-time adaptation, two kinds of interactions
have to be distinguished at an adaptor level: with its component and with other
adaptors. Adaptors have to agree on a common implementation communication
protocol to communicate altogether. Mismatch between components which has
been solved thanks to adaptors should not be transferred to a mismatch between

150 P. Poizat and G. Salaün

adaptors which should communicate correctly by construction. Prefixing will help
there. Communications with the environment are prefixed by the component
identifier and communications with other adaptors are prefixed by the identifier
of the components these adaptors are in charge of. As far as communication
between adaptors and components is concerned, communications are not prefixed
as adaptation should be transparent for the adapted component. The use of
prefixing is demonstrated in Section 4 on our application.

3.2 Assessment

Adaptors may impose service restriction due to the application of the function
removing paths to dead states in the adaptation algorithm (Alg. 2, line 4). These
are hard to detect by hand and assessment procedures are therefore required to
help the designer (for design-time adaptation) or the end-user (for run-time adap-
tation). We propose tool-supported procedures based on alphabet comparison
and property checking.

Alphabet-based assessment and comparisons may be used either to check
the adapted system for services or more specifically to compare the adapted
component with reference to the original one. In the first case we may check
either successfully synchronised services (obtained hiding in LTSs any transition
e :< l1, . . . , ln > where there is only one i such that li �= ε) or actions left open to
the environment, possibly new services provided by composites (obtained hiding
in LTSs any transition e :< l1, . . . , ln > where there are at least two different
li �= ε). Comparison between original and adapted components can be performed
on the same basis (internal or external comparison) through difference between
their respective alphabets.

Property checking is a finer grained technique and may efficiently be used
to detect more subtle architectural flaws. Classical properties such as liveness
properties (e.g., any request will eventually be satisfied, see Sect. 4 for an appli-
cation of this) can be easily formalised reusing patterns [15], and then checked
against the adapted system model (LTS) using model-checkers. An interesting
benefit is that, when the property is unsatisfied, model-checkers return back a
counter-example sequence of service calls that may help modifying mappings.

3.3 Addition and Suppression of Components

In this section, we present the algorithms for the addition and for the suppres-
sion of components. In the addition algorithm (Alg. 3), a component (Cn+1)
is adapted and integrated into an existing composite (possibly empty). Adap-
tation is performed using only the component to be added, a given mapping
and adaptors of components referred to in the mapping. Assessment is used to
check the result of the integration. It is important to note that, as a prelimi-
nary step, automatically built mappings can be proposed. When the system is
empty, a no-op mapping,

(
V, (

∑
v∈V v)∗

)
with V = {(Cn+1:e, e) | e ∈ ACn+1},

simply wraps the added component. When there are already components to
communicate with in the system, a trivial mapping,

(
V, (

∑
v∈V v)∗

)
with V =

Adaptation of Open Component-Based Systems 151

Algorithm 3. addition
inputs composite C = 〈{C1, AC1, . . . , Cn, ACn}, Aext, Bint, Bext〉, component Cn+1

output new composite Ca = 〈{C1, AC1, . . . , Cn, ACn, Cn+1, ACn+1}, Aa
ext, B

a
int, B

a
ext〉

1: repeat
2: M := get mapping()// designer or end-user given
3: ACn+1 :=build adaptor (M, get cn’ed adaptors from mapping(M)∪{Cn+1})
4: B′

ext := get externals from mapping(M)
5: Aa

ext := Aext ∪ {e | (e, e′) ∈ B′
ext}

6: Ba
int := Bint∪ get internals from mapping(M)

7: Ba
ext := Bext ∪ B′

ext

8: Ca := 〈{C1, AC1, . . . , Cn, ACn, Cn+1, ACn+1}, Aa
ext, B

a
int, B

a
ext〉

9: until assess or stop(Ca)// human-interaction may stop the process
10: return Ca

Algorithm 4. suppression
inputs composite C = 〈{C1, AC1, . . . , Cn, ACn}, Aext, Bint, Bext〉, Ck,k∈{1,...,n}
output new composite C′

1: {C1, . . . , Cm} := reachable(Ck , C,added after(Ck, C))
2: C′ := build composite(added before(Ck, C))
3: for all Ci,i∈{1,...,m} do C′ := addition(C′, Ci) end for
4: return C′

{(Ci:e, e) | Ci:e ∈ Aext ∧ e ∈ ACn+1}, can be tested. In this algorithm, func-
tion get cn’ed adaptors from mapping iterates over the set of vectors V of the
mapping M . For each v in V , if v respects the form given for Bint in Definition 3,
we can obtain a couple (li, lj) and then, looking at the n adaptors alphabets, de-
termine the adaptor li corresponds to. Function get externals from mapping
(resp. get internals from mapping) returns the set of couples (e, li) (resp.
(li, lj)) from the vectors e : 〈l1, . . . , ln〉 of the mapping M that respect the
form given for Bext (resp. Bint) in Definition 3. The suppression algorithm
(Alg. 4) first computes all the components that have been added after the com-
ponent to be removed, and are reachable (in terms of the architectural graph
topology) from it. The suppression may impact all these components, there-
fore their corresponding adaptors are successively updated if needed using the
component addition algorithm. In this algorithm we use the following functions.
Function added after (resp. before) returns the ordered set of all compo-
nents of the composite C added after (resp. before) the component Ck. Function
reachable returns all components of the composite C present in a given filtering
set (added after results) which are reachable from the component Ck. Finally,
build composite is used to build a composite applying the addition algorithm
on an ordered set of components (result of added before in the algorithm),
and reusing mappings from the former composite construction. Mappings are
therefore kept with adaptors while building the system. Removing a component
induces the suppression of its adaptor, but also the update of all the adaptors

152 P. Poizat and G. Salaün

interacting with it. In the worst case, this corresponds to recompute all adaptors
which is as costly as the regular case in global adaptation approaches where the
adaptor is always recomputed.

4 Application

We have validated our approach on several examples: the dining philosopher
problem, a video-on-demand system, a pervasive music player system, and sev-
eral versions of a library management application. We present here a simplified
version of the latter one. The system manages loans in a library. Components
were chosen non recursive (this corresponds to the notion of transactional ser-
vices) to obtain readable resulting adaptors.

The first component, LIB, tests if a book is available in the library or has been
borrowed by a user.

LIB[i,f] = isBorrowed?. (available!.0 + borrowed!.0)

A no-op adaptor, ALIB, is first computed using a no-op mapping generated
automatically as presented in Section 3.3. Then, a second component, SUB, is
added. It is used as a front-end to the LIB component and checks if a user is
a subscriber of the library. If not, SUB replies with the notAvailable! message,
otherwise it tests if the requested book is borrowed or available.

SUB[i,f] = info?.isRegistered?.(isBorrowed!.SUB_AUX + notAvailable!.0)
SUB_AUX = (notBorrowed?.available!.0 + borrowed?.notAvailable!.0)

It is obvious that the components present both name and protocol mismatch,
therefore the trivial mapping fails assessment. We recall that events are pre-
fixed except for those corresponding to interactions between the adaptor and
its component (see Section 3.1). To work the mismatch out, a mapping M1=

(v1.v2.(v3+v4.(v5.v6+v7.v3)))* is proposed, with vectors

v1 = SUB:info? : <LIB:ε, info?>
v2 = SUB:isRegistered? : <LIB:ε, isRegistered?>
v3 = SUB:notAvailable! : <LIB:ε, notAvailable!>
v4 = τ : <LIB:isBorrowed?, isBorrowed!>
v5 = τ : <LIB:available!, notBorrowed?>
v6 = SUB:available! : <LIB:ε, available!>
v7 = τ : <LIB:borrowed!, borrowed?>

In Figure 3 we present the architecture resulting from our incremental inte-
gration and adaptation process. The left hand part is related to the architecture
after the addition of SUB and its adaptor, ASUB. The overall figure corresponds
to the final architecture (after all components have been added, see BOR below).
The architecture is computed automatically using Algorithm 3.

It was not possible to give all binding names (Aext, Bint, Bext) in the figure
due to lack of place. However, bindings here are between ports of same name
as the architectures are correct by construction using adaptation. The adaptor
ASUB generated from M1 is shown in Figure 4.

A third component, BOR, receives requests for loans and checks if the book can
be borrowed or not (id! stands for identifiers of the user and book).

Adaptation of Open Component-Based Systems 153

LIB

step 2 architecture (after adding SUB) step 3 architecture (after adding BOR)

L
IB

:i
sB

o
rr

o
w

ed
?

L
IB

:a
va

ila
b

le
!

L
IB

:b
o

rr
o

w
ed

!

S
U

B
:i

n
fo

?

S
U

B
:i

sR
eg

is
te

re
d

?

S
U

B
:n

o
tA

va
ila

b
le

!

S
U

B
:a

va
ila

b
le

!

B
O

R
:r

eq
u

es
t?

B
O

R
:a

g
re

e!

B
O

R
:r

ef
u

se
!

is
B

o
rr

o
w

ed
?

av
ai

la
b

le
!

b
o

rr
o

w
ed

!

in
fo

?
is

R
eg

is
te

re
d

?

BORSUB

is
B

o
rr

o
w

ed
!

n
o

tA
va

ila
b

le
!

n
o

tB
o

rr
o

w
ed

?
av

ai
la

b
le

!
b

o
rr

o
w

ed
?

n
o

tA
va

ila
b

le
!

re
q

u
es

t?
ch

ec
k!

id
!

u
n

av
ai

la
b

le
?

re
fu

se
!

av
ai

la
b

le
?

ag
re

e!

ALIB ASUB ABOR

Fig. 3. The Library Example Architecture

 SUB:isRegistered?

 notAvailable?

 available?

LIB:isBorrowed!

 borrowed!
 isBorrowed?

 LIB:borrowed?

SUB:notAvailable!

SUB:available!

notBorrowed!

LIB:available?

notAvailable?

 info! SUB:isRegistered?

 SUB:info?

 info!

isRegistered!

accept

Fig. 4. The Library Example Adaptor

BOR[i,f] = request?.check!.id!.
(unavailable?.refuse!.0 + available?.agree!.0)

Component BOR can be connected to component SUB using the mapping M2

to make all three components work together. Note in the mapping below that
reordering is needed since BOR sends first the check! message and then informa-
tion about the request id!, whereas SUB accepts first info?, and then the request
message isRegistered?. Therefore, the following sequence belongs to the ABOR

adaptor: check?.id?.SUB:info!.SUB:isRegistered!.

M2 = v1.v2.v3.(v4.v5+v6.v7)*

v1 = BOR:request?:<SUB:ε,request?> v5 = BOR:refuse!:<SUB:ε,refuse!>
v2 = τ:<SUB:isRegistered?,check!> v6 = τ:<SUB:available!,available?>
v3 = τ:<SUB:info?,id!> v7 = BOR:agree!:<SUB:ε,agree!>
v4 = τ:<SUB:notAvailable!,unavailable?>

Now, let us illustrate assessment procedures on the system made up of the
three components, and their corresponding adaptors. This system is quite simple
(33 states, 60 transitions, and 25 labels) since the adaptation process has removed

154 P. Poizat and G. Salaün

all incorrect interactions. External alphabet contains messages BOR:request?,
BOR:agree!, BOR:refuse!, and also all the messages left observable in the previ-
ous steps, i.e., LIB:isBorrowed?, LIB:available!, etc. The synchronised alphabet
contains all the remaining messages which are connected internally. In addition,
the system is deadlock-free and verifies the following liveness property:

[true*](["BOR:request?"]
(mu X. (<true> true and [not ("BOR:agree!" or "BOR:refuse!")]X)))

It states that messages BOR:request! are always followed after a finite number
of steps either by a message BOR:agree? or BOR:refuse?. Basically, this means
that all requests are always replied, which corresponds to the classic pattern
“AG request⇒EF reply” encoded in μ-calculus. This property was automati-
cally checked using Evaluator the model-checker of CADP. Consequently, the BOR

adaptor is validated, and the final correct architecture is as presented earlier on.
Let us now remove component SUB. This can be done for update purposes or

just because the loan check is simplified not to take into account that the user
has to be a subscriber. BOR is the only connected component added after SUB.
A new mapping is given for component BOR to connect it directly to component
LIB, M2’ = v1.v2.v3.(v4.v5+v6.v7)* with vectors

v1 = BOR:request?:<LIB:ε,request?> v5 = BOR:refuse!:<LIB:ε,refuse!>
v2 = τ:<LIB:isBorrowed?,check!> v6 = τ:<LIB:available!,available?>
v3 = τ:<LIB:ε,id!> v7 = BOR:agree!:<LIB:ε,agree!>
v4 = τ:<LIB:borrowed!,unavailable?>

The corresponding adaptor is computed, the new system assessed successfully,
and we end up with a system made up of components LIB, BOR, and their respec-
tive adaptors. To check how the approach integrates in a complete development
process, the system has been implemented in COM/DCOM using the adaptor
models to obtain their code.

5 Related Work

Since Yellin and Strom’s seminal paper [27], adaptation techniques [21,14,8]
have been proposed to correct component mismatch building adaptors. In [11] we
made significant advances with an approach supporting name mismatch, system-
wide adaptation (more than two components) and event reordering. Yet, all these
approaches require the computation of a global adaptor, which is costly, and none
supports open systems, which prevents application to pervasive systems.

In [22], component wrappers are composed to augment connector behaviour.
This has been revisited in [23], providing automation, but still with a cen-
tralised global adaptor as starting point, as for [4] where adaptor distribution
is addressed. Several theoretical works have focused on the incremental con-
struction of systems and dynamic reconfiguration [5,3,26]. However, these pro-
posals only address syntactic adaptation (via name translation or morphisms)
and cannot be used to solve behavioural mismatch. In [19], we have proposed
a methodology to help designers in the incremental construction of component-
based systems where adaptors are required. The definition of open systems, their

Adaptation of Open Component-Based Systems 155

composition and related adaptation algorithms were not supported. Incremental-
ity was achieved using implicit vectors exporting in adaptors all the component
services in order to make the design process compatible with adaptation as de-
fined in [11]. This limits the application of [19] at design-time where the set of
components to be integrated is known.

6 Conclusion

The integration of software components often requires a certain degree of adapta-
tion. Adaptation approaches have addressed closed systems and the distribution
of global adaptors but to our knowledge, none supports open systems. Thus,
they are not well suited to systems where components or services may enter and
leave at any time, such as pervasive ones. To address this issue, we have pro-
posed here (i) a formalising of component-based open systems which thereafter
supports, (ii) an extension of software adaptation to open systems, and (iii) an
incremental integration process which avoids the computation of global adap-
tors. The adaptation solutions we propose are supported by a tool, Adaptor. In
its current version, Adaptor can deal with both closed systems and open systems.
This tool and its set of validation examples (approx. 70 examples, 25,000 lines
of XML specifications) are freely available from [1].

Our main perspectives concern the application of our model-based adapta-
tion techniques to service oriented architectures for pervasive computing. First,
relations between adaptation models and implementation languages have to be
studied. We have done some experiments using COM/DCOM but Web services
are more relevant in this area. The combination of adaptation with semantic
composition solutions such as [6] is also an interesting perspective to support
not only behavioural but also semantic correctness. To end, end-user composi-
tion is a crucial issue in pervasive computing. The support in Adaptor for the use
of other adaptation contract formalisms, as presented in Section 2.3 is therefore
an interesting perspective.

Acknowledgements. This work has been supported by the French National
Network for Telecommunication Research. Adaptor has been developed with
S. Beauche. We thank M. Tivoli for the COM/DCOM encoding of the case study
and C. Canal for fruitful discussions.

References

1. The Adaptor tool (LGPL licence). Available from P. Poizat’s Webpage
2. Agha, G.: Special Issue on Adaptive Middleware. CACM 45(6), 30–64 (2002)
3. Aguirre, N., Maibaum, T.: A Logical Basis for the Specification of Reconfigurable

Component-Based Systems. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621,
Springer, Heidelberg (2003)

4. Autili, M., Flammini, M., Inverardi, P., Navarra, A., Tivoli, M.: Synthesis of Con-
current and Distributed Adaptors for Component-based Systems. In: Gruhn, V.,
Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, Springer, Heidelberg (2006)

156 P. Poizat and G. Salaün

5. Back, R.J.: Incremental Software Construction with Refinement Diagrams. Tech-
nical Report 660, Turku Center for Computer Science (2005)

6. Ben Mokhtar, S., Georgantas, N., Issarny, V.: Ad Hoc Composition of User Tasks
in Pervasive Computing Environments. In: Gschwind, T., Aßmann, U., Nierstrasz,
O. (eds.) SC 2005. LNCS, vol. 3628, Springer, Heidelberg (2005)

7. Berthomieu, B., Ribet, P.-O., Vernadat, F.: The tool TINA – Construction of
Abstract State Spaces for Petri Nets and Time Petri Nets. International Journal
of Production Research, vol. 42(14), 2741–2756 (2004)

8. Bracciali, A., Brogi, A., Canal, C.: A Formal Approach to Component Adaptation.
Journal of Systems and Software 74(1), 45–54 (2005)

9. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The Fractal
Component Model and Its Support in Java. Software Practice and Experience, vol.
36(11-12), 1257–1284 (2006)

10. Canal, C., Murillo, J.M., Poizat, P.: Software Adaptation. L’Objet. Special Issue
on Software Adaptation 12(1), 9–31 (2006)

11. Canal, C., Poizat, P., Salaün, G.: Synchronizing Behavioural Mismatch in Soft-
ware Composition. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS,
vol. 4037, Springer, Heidelberg (2006)

12. Garavel, H., Lang, F., Mateescu, R.: An Overview of CADP 2001. EASST Newslet-
ter 4, 13–24 (2002)

13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison Wesley, London, UK (1979)

14. Inverardi, P., Tivoli, M.: Deadlock Free Software Architectures for COM/DCOM
Applications. Journal of Systems and Software 65(3), 173–183 (2003)

15. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
Heidelberg (1995)

16. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

17. Objet Management Group. Unified Modeling Language: Superstructure. version
2.0, formal/05-07-04 (August 2005)

18. Poizat, P.: Eclipse Transition Systems. RNRT project STACS deliverable (2006)
19. Poizat, P., Salaün, G., Tivoli, M.: An Adaptation-based Approach to Incrementally

Build Component Systems. In: Proc. of FACS’06 (2006)
20. Satyanarayanan, M.: Pervasive Computing: Vision and Challenges. IEEE Personal

Communications 6(8), 10–17 (2001)
21. Schmidt, H.W., Reussner, R.H.: Generating Adapters for Concurrent Component

Protocol Synchronization. In: Proc. of FMOODS’02, Kluwer Academic Publishers,
Dordrecht (2002)

22. Spitznagel, B., Garlan, D.: A Compositional Formalization of Connector Wrappers.
In: Proc. of ICSE’03, ACM Press, New York (2003)

23. Tivoli, M., Autili, M.: SYNTHESIS, a Tool for Synthesizing Correct and Protocol-
Enhanced Adaptors. L’Objet. 12(1), 77–103 (2006)

24. Uchitel, S., Kramer, J., Magee, J.: Synthesis of Behavioural Models from Scenarios.
IEEE Transactions on Software Engineering 29(2), 99–115 (2003)

25. van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimu-
lation Semantics. Journal of the ACM 43(3), 555–600 (1996)

26. Wermelinger, M., Lopes, A., Fiadeiro, J.L.: A Graph Based Architectural
(Re)configuration Language. In: Proc. of ESEC/FSE’01, ACM Press, New York
(2001)

27. Yellin, D.M., Strom, R.E.: Protocol Specifications and Components Adaptors.
ACM Transactions on Programming Languages and Systems 19(2), 292–333 (1997)

A Representation-Independent

Behavioral Semantics for
Object-Oriented Components

Arnd Poetzsch-Heffter and Jan Schäfer�

University of Kaiserslautern
{poetzsch,jschaefer}@informatik.uni-kl.de

Abstract. Behavioral semantics abstracts from implementation details
and allows to describe the behavior of software components in a repre-
sentation-independent way. In this paper, we develop a formal behavioral
semantics for class-based object-oriented languages with aliasing, sub-
classing, and dynamic dispatch. The code of an object-oriented compo-
nent consists of a class and the classes used by it. A component instance
is realized by a dynamically evolving set of objects with a clear boundary
to the environment. The behavioral semantics is expressed in terms of
the messages crossing the boundary. It is defined as an abstraction of an
operational semantics based on an ownership-structured heap. We show
how the semantics can be used to define substitutability in a program
independent way.

1 Introduction

The behavior of object systems is often described as a set of loosely coupled
objects with encapsulated state that communicate via messages. However, this
conceptual view is only partially reflected by existing object-oriented program-
ming languages. Most of them are trimmed for efficient implementation of local
computations. Their semantics is usually given in terms of state-transitions based
on global heaps. As they do not support clear boundaries between parts of the
heap, modular reasoning and abstraction of representation aspects is much more
difficult than in a loosely coupled setting.

If runtime components have well-defined boundaries, their behavior can be
completely defined in terms of their reaction to incoming message sequences.
Considering only the messages that a client sends to a component makes the
semantics independent from the representation of the component states. Such
behavioral semantics has three advantageous properties:

1. Different component implementations can be compared based on the mes-
sage behavior. Thus, an explicit coupling relation between the states of the
implementations as it is needed in state-based approaches (see in particular
the seminal paper [3] on representation independence for OO-programs) is

� Supported by the Deutsche Forschungsgemeinschaft (German Research Foundation).

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 157–173, 2007.
c© IFIP International Federation for Information Processing 2007

158 A. Poetzsch-Heffter and J. Schäfer

not necessary. This simplifies the notion of behavioral substitutability for
components.

2. Behavioral semantics provides a suitable semantical basis for behavioral com-
ponent specifications, i.e. for specifications that describe component behavior
without referring to the implementation.

3. It simplifies modular analysis, because it is easier to abstract from the execu-
tion environment of the component. In particular, we can analyze component
implementations without knowing their program contexts.

In this paper, we present an approach to behavioral semantics with the above
properties for imperative object-oriented languages like Java and C# that sup-
port references, aliasing, subclassing, dynamic dispatch, and recursive types and
methods. The main technical challenges were (a) to find a simple, yet powerful
notion of runtime components, (b) to support callbacks, and (c) to use well-
established semantical techniques for the definition of the behavioral semantics.

Approach and Overview. A runtime component in our approach is called a box.
A box consists of an owner object and a set of other objects. A box is created
together with its owner by instantiating the class of its owner. Boxes are tree-
structured, that is, a box b can have so-called inner boxes. We distinguish two
kinds of classes, normal classes and box classes (annotated by the keyword box).
The instantiation of a normal class creates an object in the current box, that is,
in the box of the current this-object. The instantiation of a box class creates a
new inner box of the current box together with its owner. For simplicity, we do
not support the direct creation of objects outside the current box. Such nonlocal
creations can only be done by using a method. Note that this is similar to a
distributed setting with remote method invocation.

Our approach only uses structural aspects of ownership (similar to [5]). It does
not enforce confinement. In particular, our semantical model allows arbitrary
references going into and out of a box (In this respect, it is more flexible than
that of [3]). For type systems enforcing box confinement, we refer to [21].

The operational semantics for boxes distinguishes between local method calls
and calls on objects of other boxes (Sec. 2). From this semantics, we develop a
behavioral semantics in two steps (Sec. 3). In the first step, we abstract from box
states and consider the concrete message histories at box boundaries. In the sec-
ond step, we abstract from object identifiers and box environments, getting a se-
mantics that is independent of the program context a component is used in. The
remaining sections of the paper show how the semantics can be used to define sub-
stitutability (Sec. 4) and contain a discussion of related work and the conclusions.

2 Operational Semantics for Boxes

In this section, we present the operational semantics for our object-oriented core
language. Most parts of the semantics follow the reductional style of [13]. The
semantics has two new features: (a) It structures the heap into box-local sub-
heaps. (b) It handles non-local method invocations by call and return messages
crossing the box boundaries. It can express arbitrary sequences of callbacks.

A Representation-Independent Behavioral Semantics 159

P ::= L programs

L ::= [box] class C extends C′ {D f ; M} classes

M ::= C m(C x){e} methods
e ::= expressions

x variables
| null null constant
| (C)e cast
| new C object/box creation
| e.f field access
| e.f = e field update
| let x = e in e variable binding
| e.m(e) method call

C, D class names

Fig. 1. Abstract syntax

2.1 Syntax and Typing

The abstract syntax of our language is shown in Fig. 1. We use similar notations
as Featherweight Java (FJ) [14]. A bar indicates a sequence: L = L1, L2, . . . , Ln,
where the length is defined as |L| = n. Similar, C f ; is equal to C1 f1; . . . ; Cn fn.
If there is some sequence x, we write xi for any element of x. We sometimes write
x·x for adding x to sequence x, and x◦x′ for the concatenation of two sequences.
The empty sequence is denoted by •. front returns a sequence without the last
element, and last returns the last element of a sequence, i.e. x = front(x)·last(x).
We often apply a function f on a sequence of elements that is only defined on
single elements. This means to apply f to each element of the sequence and
return the sequence of the results, e.g. f(x1, . . . , xn) = f(x1) · f(x2) · · · · f(xn).
We sometimes treat sequences as sets, e.g. if we write x1 ⊆ x2, both sequences
are implicitly treated as sets.

Our language supports stateful objects, aliasing, inheritance, and dynamic
dispatch. It is similar to other core formalizations of Java, namely FJ [14] and
ClassicJava [13]. The main difference is the distinction between box and nor-
mal classes that provides the structuring of the heap into boxes. A set of classes
L is called declaration complete iff all names used in L have a declaration in L. A
program in our language is a declaration complete set of classes L. The smallest
declaration complete program for a class C is called the code base of C. In this
paper, code bases for the box classes are used as a simple notion of program
components. In practice, the code base of a box class would be structured by
module systems separating the box-local part and the code bases of the inner
boxes. We consider this (interesting) aspect beyond the scope of this paper.

Contextual constraints and typing rules are essentially as in Java. The subtype
relation will be denoted by <:, i.e. C <: D means that C is a subtype of D. We
assume that the most general class Object is a normal class without fields and
methods. A subclass of a box class has to be as well a box class. We do not
support overloading of methods and require that an overriding method has the
same signature as the overridden method. We do not consider field hiding, so

160 A. Poetzsch-Heffter and J. Schäfer

b ::= o | globox boxes
o ::= 〈j, b, C〉 objects
v ::= o | null values
O ::= v object states
B ::= 〈ES,OS, IB〉 box states

ES ::= r execution stacks

OS ::= j �→ O object stores

IB ::= j �→ B inner boxes
n ::= messages

o → o′.m(v) call message
| o ← o′.m:v return message

e ::= ... | result | o reduction expressions
t ::= n | r terms
r ::= o → o′.m{e} call
j object identifier

Fig. 2. Dynamic entities and extended expression syntax

all fields declared in a class must have names different from the inherited fields.
A method only has a single body expression which is also the return value of
the method. Expressions can be variables, the null constant, cast expressions,
new-expressions, field accesses, field updates, let-expressions, and method calls.
If the class in a new-expression is a box class, a a new box together with its
owner object is created; otherwise, a normal object is created in the current
box. Let-expressions support local variables and sequential composition.

class(〈 , , C〉) = C owner(〈 , b, 〉) = b
box class C extends C′ {. . .}

boxClass(C)

boxClass(class(o))

box(o) = o

¬boxClass(class(o))

box(o) = owner(o)

class C extends C′ { D f ; . . .}
fields(C) = D f ◦ fields(C′)

class C extends {. . . D m(D x){e} . . .}
method(C,m) = D m(D x){e}

class C extends C′{. . . M} m /∈ M

method(C,m) = method(C′, m)

owner(b) = b′

b ≺ b′
b ≺ b′ b′ ≺ b′′

b ≺ b′′
address(o → o′.m(v)) = box(o′)
address(o ← o′.m:v) = box(o)

Fig. 3. Auxiliary functions

2.2 Operational Semantics

Our operational semantics supports the structuring of the heap into boxes. Its
central feature is box locality: the rules only refer to the heap parts of the current

A Representation-Independent Behavioral Semantics 161

box and its inner boxes. Box locality is a prerequisite for the abstraction tech-
nique in Sec. 3. The semantics is mainly given in reductional small-step style,
that is, we represent an evaluation state by a partially evaluated expression over
dynamic values and by the states of the created objects. Fig. 2 contains the
needed definitions. A box is either represented by its owner object or by the
constant globox denoting the global box that contains all other boxes. An ob-
ject is uniquely defined by an identifier j and by its box b. To avoid an extra
mapping from objects to their classes, we add the class name as a third com-
ponent to the object representation. Two objects 〈j1, b1, C1〉 and 〈j2, b2, C2〉 are
different iff j1 �= j2 or b1 �= b2. Working with identifiers that only need to be
unique within the box allows to create new objects in a box without knowing
the identifiers of outside objects or objects in inner boxes.

The state of an object is represented by the values for its fields. The state of
a box b consists of its execution state, the state of the objects with owner b and
the state of the inner boxes. The execution state is a stack of pending method
executions. It is used to handle callbacks. For example, if a method executing in
box b leads to a call on an object outside of b, this call can call back on b’s objects
and so forth. Calls to and returns from methods on non-local objects are handled
by messages. To represent partially-evaluated expression, the expression syntax
of Fig. 2 is extended. An expression can be an object or the keyword result
indicating that the expression expects the result of a pending call.

Figure 3 shows auxiliary functions needed by our semantics. The box function
returns the box of an object o. Objects o of box classes represent their own
box. Otherwise the box is represented by the object’s owner. The relation b ≺ b′

expresses that b is a direct or indirect inner box of b′. The reflexive closure of
≺ is denoted by �. An object o is called box-local to box b iff box(o) = b. In
particular, the owner of a box b is box-local to b (see fourth rule in Fig. 3). It is
in box b iff box(o) � b. Otherwise, o is outside of b.

Messages. A message o → o′.m(v) contains the sender, o, the receiver, o′, the
method name m, and the method parameters v. We distinguish between call
messages (→) and return messages (←). Note that for return messages the
sender of the message is the object which originally called the message, and the
receiver is the receiver of that call, because the original receiver sends the answer
back to the original sender. The explicit representation of the sender allows to
avoid a stack mechanism. Stacks in combination with callbacks would breach
box locality and cause a problem for the abstraction in Sec. 3.

The address a of a message n is the box of the object to which the arrow
points. A message n that has either the sender or the receiver in a box b is
called an ingoing message for b if a is in b. and an outgoing message otherwise.
The receiver object and the method parameters of a message n are called the
parameters, params(n), of n. Non-null parameters that are in b are called inner
parameters of n, the others are called outer parameters, denoted by inner(b, n)
and outer(b, n) respectively. We say that a return message matches a call message
if the method names, the sender objects and the receiver objects are the same.

162 A. Poetzsch-Heffter and J. Schäfer

Judgements and Rules. To achieve box locality, we seperate the state of a box
from the state of the enclosing boxes and guarantee that execution in a box b
only modifies objects in b. The semantical rules specify two different judgements.
The outside view to a box is represented by the judgement

b � (B, n) ⇓ (B′, n′)

expressing the fact that sending message n to box b in box state B leads to a
terminating execution in b with a reply message n′ that has an address outside
b. B′ is the state of b when n′ is sent. For example, the message n could be
a call and n′ the corresponding return or an intermediate call to an outside
object. Analogous to a judgement of big-step operational, the judgement allows
to abstract from the execution steps within boxes.

Execution within a box is formalized by a reduction semantics. A triple b:B, t is
called a configuration consisting of a box b, its state B, and a term t representing
an execution to be performed in b. A single execution step has the form:

b:B, t � b:B′, t′

We write �∗ for the transitive, reflexive closure of �. Note that a reduction
step only modifies the state of box b. States of other boxes remain unchanged.
In the semantics, so-called evaluation contexts represent partially evaluated ex-
pressions. An evaluation context E is an expression with a “hole” [] somewhere
inside the expression. We write E [e] to mean that the hole in E is replaced by
expression e. A hole in E can only appear in certain positions defined as follows:

E ::= [] | (T)E | E .f | E .f = e | v.f = E | let x = E in e | E .m(e) | v.m(v, E , e)

Similar to the evaluation context E , we define a context R as a call with a
hole, and we write R�e� to replace that hole by an expression e.

R ::= o → o′.m{E}

The rules for the reduction relation are given in Fig. 4. The upper part de-
scribes the evaluation of expressions, the lower part the handling of calls, returns,
and messages. Casts are only allowed for box-local objects (r-cast-obj). Thus,
casts cannot be used to distinguish outside objects. This property will be used
in Sec. 3 for the abstraction of outside objects (cf. the proof of the Abstraction
Lemma). A more flexible cast rule would complicate the abstraction. Instantiat-
ing a normal class (r-new-obj) adds a new object to the object state of the box.
Instantiating a box class adds a new box and object with an initial box state to
the inner boxes. The new object identifier has to be unique with respect to all
objects having the same owner. Note that in both cases a new object identifier
can be determined based on box-local information. Rules r-field-read and r-

field-write only allow field access on box-local objects. Thus, object creations
and field updates only need box-local information and only affect box-local state.
All other effects have to achieved via method calls.

A Representation-Independent Behavioral Semantics 163

r-cast-null

b:B, R�(C)null� � b:B, R�null�

r-cast-obj

box(o) = b class(o) <: C

b:B, R�(C)o� � b:B, R�o�

r-new-obj

¬boxClass(C) j /∈ (dom(OS) ∪ dom(IB))

fields(C) = D f |null| = |f | o = 〈j, b, C〉
b:〈ES, OS, IB〉, R�new C� � b:〈ES, OS[j �→ null], IB〉, R�o�

r-new-box

boxClass(C) j /∈ (dom(OS) ∪ dom(IB))

fields(C) = D f |null| = |f | o = 〈j, b, C〉 B = 〈•, {j �→ null}, ∅〉
b:〈ES, OS, IB〉, R�new C� � b:〈ES, OS, IB [j �→ B]〉, R�o�

r-field-read

o = 〈j, , C〉 box(o) = b fields(C) = D f OS(j) = v

b:〈ES, OS, IB〉, R�o.fi� � b:〈ES, OS, IB〉, R�vi�

r-field-write

o = 〈j, , C〉 box(o) = b fields(C) = D f OS(j) = v

b:〈ES,OS, IB〉, R�o.fi = v� � b:〈ES, OS[j �→ [v/vi]v], IB〉, R�v�

r-let

b:B, R�let x = v in e� � b:B, R�[v/x]e�

r-send-call-msg

ES′ = o′′ → o.m{E [result]} · ES

b:〈ES,OS, IB〉, o′′ → o.m{E [o′.m′(v)]} � b:〈ES′, OS, IB〉, o → o′.m′(v)

r-send-rtrn-msg

b:B, o → o′.m{v} � b:B, o ← o′.m:v

r-exec-call-msg

box(o) = b method(class(o),m) = m(x){e}
b:B, o′ → o.m(v) � b:B, o′ → o.m{[o/this, v/x]e}

r-exec-rtrn-msg

box(o) = b ES = (o′′ → o.m{e}) · ES′

b:〈ES, OS, IB〉, o ← o′.m′:v � b:〈ES′, OS, IB〉, o′′ → o.m{[v/result]e}

r-forward-inner

address(n) � b′ b′ = 〈j, b, 〉 b′ � (IB(b′), n) ⇓ (B′, n′)

b:〈ES, OS, IB〉, n � b:〈ES,OS, IB [j �→ B′]〉, n′

r-box-big-step

b:B, n �∗ b:B′, n′ address(n′) �� b

b � (B, n) ⇓ (B′, n′)

Fig. 4. Rules of the operational semantics

164 A. Poetzsch-Heffter and J. Schäfer

A method call is treated by sending a message with the current receiver as
sender (r-send-call-msg). The evaluation state o′′→ o.m{E [result]} of the cur-
rent method exection is recorded on the box-local execution stack. The place-
holder result marks the position for the result. If the body of a method is fully
evaluated, a return message is sent (r-send-rtrn-msg). If the receiver of a call
message is in box b (r-exec-call-msg), the method is executed with the actual
parameters. A return message with address in b pops the pending call from the
execution stack, substitutes the result, and continues evaluation (r-exec-rtrn-

msg). According to rule r-forward-inner, a message n with an address in an
inner box b′ of b is forwarded to b′. If it terminates with a reply message n′,
the state of b′ is updated and n′ is handled in b. The last three rules cannot
be applied if the address of a message n′ is outside b. This is the case in which
box-local execution terminates with reply method n′ (r-box-big-step).

A program is called executable iff it contains a class of the form: class
Main extends Object { D main(C p){e}}. It is executed with start configu-
ration globox:〈•, {jp → input, . . . , j0 → •}, ∅〉, o0 → o0.main(op) where o0 =
〈j0, globox,Main〉, op = 〈jp, globox, C〉, and j0 and jp are distinct object identi-
fiers. “input” denotes the field values of the parameter object op, and the dots
indicate the possibility to have additional objects in the start configuration that
are referenced by op. This allows to encode interesting input in the absence of
primitive data types. Program execution can have three outcomes :

1. It can terminate normally in a configuration globox:B′, o0 ← o0.main:v, i.e.
with terminated method main and return value v.

2. It can end up in some configuration different from the above such that no
rule is applicable (e.g. a field access on a nonlocal object). We consider this
as abortion. For space limitation, we do not handle such exceptional cases
explicitly.

3. It can diverge.

It is easy to verify that in any configuration at most one rule is applicable. Thus,
the semantics is deterministic. Although determinism is not needed in principle
for our approach, having a deterministic language simplifies the presentation in
the following sections.

3 Behavioral Semantics for Boxes

In the following, we assume that an executable program P is given containing a
box class C with code base K. We define a behavioral semantics for C and K,
which is independent of the representation of the box states and independent of
the environment in which C is used. The latter is not yet achieved because in
general the box state encoding still uses identifiers of objects from classes not
belonging to C. We reach this goal in three steps. First, we define a so-called in-
terface semantics which takes a box, a box state, and a message for the box and
results in the next state of the box and its answer message. This semantics is di-
rectly based on our big-step judgement from above. In a second step we abstract

A Representation-Independent Behavioral Semantics 165

from the state of the box by using so-called concrete message histories. A his-
tory represents the state of a box without referring to the objects of the box and
their field values. The history semantics defines how a message n is executed in
a box b with a history H . Histories still refer to box and object identifiers. Third,
we abstract from boxes, their execution environments, and object identifiers by
defining abstract histories. An abstract history is essentially an equivalence class
of concrete histories of boxes with the same box class. Abstract histories are
used to define a precise behavioral semantics: Given an abstract history and an
abstracted message, it yields the abstract answer of a box class.

The interface semantics isem for boxes is defined as a partial function from
boxes, box states, and messages to outcomes, oc, where the outcome is either
a pair consisting of a box state and a reply message or one of the constants
ABORT or DIVERGE. More precisely:

Definition 1 (Interface Semantics). Let b be a box, B a state of b and n an
ingoing message for b. We define the interface semantics, isem, as

isem(b, B, n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B′, n′ if b � (B, n) ⇓ (B′, n′)
ABORT if b:B, n �∗ b:B′, n′ and there are

no B′′, n′′ with b:B′, n′ � b:B′′, n′′

DIVERGE otherwise

3.1 History-Based Semantics

To become representation-independent we define a semantics that does not di-
rectly refer to the state of a box. The idea is to reconstruct the state from the
incoming messages of a box by starting with an empty state and sequentially
applying the isem semantics:

state(b, •) = 〈∅, ∅, ∅〉
state(b, n · n) = B′ if state(b, n) = B and isem(b, B, n) = B′, n′

state(b, n · n) = undefined otherwise

It is clear that not every arbitrary sequence of incoming messages for a box, leads
to a valid state. In particular, only objects that have been earlier exposed by a
method call or return are permitted as parameters and a return message has to
match the last callback from the box. Valid sequences of incoming messages are
called concrete histories.

Definition 2 (Concrete History, Admissible Message). A concrete his-
tory H is a quadruple consisting of a box b, denoted by box(H), a sequence of
incoming messages, ims(H), a sequence of pending calls, pcs(H), and a sequence
of exposed objects, exp(H). Every concrete history H with box(H) = b satisfies
the following conditions:

– If ims(H) = •, then pcs(H) = • and exp(H) = {b}.
– If ims(H) = n1, . . . , nz, then

166 A. Poetzsch-Heffter and J. Schäfer

1. there is a concrete history H ′ with box(H ′) = b and
ims(H ′) = n1, ..., nz−1.

2. nz is admissible for H ′, which means that
(a) nz is an ingoing message for b
(b) inner(b, nz) ⊆ exp(H ′)
(c) if nz is a return message then nz matches last(pcs(H ′))

3. isem(b, state(b, ims(H ′)), nz) = (B, n)
4. exp(H) = exp(H ′) ◦ inner(b, n)

5. pcs(H) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pcs(H ′) if nz is a call, and n is a return
pcs(H ′) · n if nz is a call, and n is a call
front(pcs(H ′)) if nz is a return and n is a return
front(pcs(H ′)) · n if nz is a return, and n is a call

Based on the notions of concrete histories, we define a representation-indepen-
dent semantics for boxes. The big advantage of a representation independency
is that it allows to compare two boxes with different representations without the
need to relate their representations (see [3]).

Definition 3 (History-Based Semantics). Let H be a concrete history with
box(H) = b. Let n be an admissible message for H. We define the history-based
semantics, hsem, as

hsem(H, n) =

{
n′ if oc = (B, n′)
oc otherwise

where oc = isem(b, state(b, ims(H)), n)

3.2 Behavioral Semantics

The incoming message sequence of a concrete history still contains objects and
types that depend on the execution environment. In order to abstract from con-
crete objects we introduce abstract objects õ. An abstract object is represented
by a natural number i, and a subscript indicating whether it is an inner or outer
object with respect to a certain box.

õ ::= iin | iout

The precise types of the objects are not recorded, as we want to compare
histories for implementations with different types. The needed type information
can be derived from the method signature in an abstract message, which is
defined as follows. Let C be a box class with code base K, and let D be a class
in K; abstract messages ñ of C have the form

ñ ::= õ.D::m(ṽ) | D::m:ṽ

The left one is a call message and the right one is a return message. A message
ñ is an ingoing call if õ is an inner object, otherwise it is an outgoing call. The
method parameters ṽ are abstract objects or null (abstract values). The function

A Representation-Independent Behavioral Semantics 167

inner on abstract messages returns the set of abstract inner objects occurring
as parameters of the message. params return the message parameters, i.e. õ · ṽ.
D::m denotes method m in class D. This class qualification of method names
is needed because the receiver type is no longer represented and methods in
incomparable classes may have the same name.

Let η be a bijection from concrete objects to abstract objects. We say that a
concrete message n corresponds to an abstract message ñ, denoted by n �η ñ, if
and only if the method names and message kinds are the same, the class qualifi-
cation of ñ is the largest supertype of the receiver in which the method is defined,
and the parameters are the same under η, i.e. η(params(n)) = params(ñ).

Definition 4 (History Abstraction). Let H be a concrete history. An ab-
straction G of H consists of a sequence of incoming abstract messages imsa(G),
a sequence of pending abstract calls pcsa(G), and a sequence of exposed abstract
objects expa (G) such that the following conditions are satisfied:

– There exists a bijection η from concrete objects occurring in H as parameters
of messages or as exposed objects, and abstract objects occurring in G, such
that

η(o) =

{
iin if o � b

iout otherwise

– η(exp(H)) = expa (G)
– ims(H) �η imsa(G)
– pcs(H) �η pcsa(G)

We call G an abstract history for a box class C iff G is an abstraction of some
concrete history H with class(box(H)) = C.

In general, there are many different abstractions of a concrete history, as the
object numbers of abstract messages can be arbitrarily chosen. To give every
concrete history a unique abstraction, we define a normalization of abstract
histories. To normalize an abstract history G we rename all message numbers
appearing in G in such a way that the first occurring number is 1 and all following
numbers are always advanced by 1. By absHis(H) we denote the normalized
abstraction of concrete history H and call the resulting history a normalized
abstract history.

Given a concrete history H and a concrete message n, where all parameters of
n already occur in H , we define the function absMsg(H, n) to result in abstract
message ñ as follows: let G = absHis(H) and let η be the bijection of Def. 4;
then ñ is an abstract message that corresponds to n, and the parameters in n are
equal to the abstract parameters in ñ under bijection η. If there are new objects
in n which are not in the domain of η, η is extended in a normalized way.

Given a concrete history H and an admissible message n for H . Let oc =
hsem(H, n). We denote the abstraction of outcome oc by absOutcome(oc, H, n).
If oc ∈ {ABORT ,DIVERGE}, then absOutcome(oc, H, n) = oc. Otherwise, we
abstract the message oc w.r.t. H and n in the same way as we defined absMsg .

The central property of our abstraction is formulated by the following lemma.
It states that abstract histories can express the behavior of a box class and its

168 A. Poetzsch-Heffter and J. Schäfer

code base independent of the box instances and of the program in which the box
is used. More precisely:

Lemma 1 (Abstraction). Let C be a box class with code base K, and P1 and
P2 be two programs containing K. Let b1 and b2 be boxes of C in executions of
P1 and P2 resp.; furthermore let H1 and H2 be concrete histories for b1 and b2
such that absHis(H1) = absHis(H2). If n1 and n2 are admissible messages for
H1 and H2 resp. with absMsg(H1, n1) = absMsg(H2, n2), then

absOutcome(hsem(H1, n1), H1, n1) = absOutcome(hsem(H2, n2), H2, n2) .

Proof. A detailed formal proof is beyond the scope of this paper. Here, we give
an outline of the central ideas. The proof runs by induction on the length of H1
(note |ims(H1)| = |ims(H2)|). Let Hk

i denote the prefix of Hi containing the
first k messages.

Induction invariant: For all k ∈ {0, . . . , |ims(H1)|} there exists a bijection βk

from the objects and boxes occurring in state(b1, ims(Hk
1)) to the objects and

boxes occurring in state(b2, ims(Hk
2)) such that

class(o) = class(βk(o)) for the objects in state(b1, ims(Hk
1))

state(b1, ims(Hk
1)) = state(b2, ims(Hk

2)) ↓ βk

where state(b2, ims(Hk
2)) ↓ βk denotes the box state that is obtained from

state(b2, ims(Hk
2)) by replacing all objects o and boxes b by βk(o) and βk(b).

The induction basis follows from rule r-new-box. Induction step: Because
of absMsg(Hk

1 , nk
1) = absMsg(Hk

2 , nk
2), both messages are of the same kind.

If they are call messages the receiver has to be an object oi in bi. Because
the messages nk

i are admissible, oi is in exp(Hk
i), thus, o1 is in the domain

of βk so that class(o1) = class(o2). Thus, absHis(Hk
1) = absHis(Hk

2) yields
that the methods are the same, in particular, they have the same signature.
Thus, the parameter lists have the same length. For parameter objects p1 of n1
that already occur in Hk

1 , absHis(Hk
1) = absHis(Hk

2) yields that βk(p1) = p2.
Parameter objects not occurring in Hk

1 or Hk
2 are outside objects (otherwise

they are present in exp(Hk
i)). Note that they may have different dynamic types.

Because of absHis(Hk
1) = absHis(Hk

2), there is a bijection from the parameter
objects not occurring in Hk

1 to those not occurring in Hk
2 that is consistent with

the position in the parameter list of nk
i . By βk

+ we denote the extension of βk to
the object not occurring in Hk

1 . A similar construction has to be done, if nk
i are

return messages. In that case, the pending call sequence is used to identify the
addressees of the messages.

Now, we have corresponding start states state(b1, ims(Hk
1)) and state(b2,

ims(Hk
2)) with corresponding incoming messages. The rules of Fig. 4 keep the

correspondence, because none of the rules depend on the concrete object or box
identifiers or on the concrete type of outside objects (that is the reason why we
do not allow to cast outside objects). Thus, either both executions abort, diverge,
or produce corresponding replies, that is replies with the same abstraction. ��

A Representation-Independent Behavioral Semantics 169

Based on the Abstraction Lemma we formulate a behavioral semantics for box
classes. Let G be an abstract history. An abstract message ñ is called admissible
for G if and only if

– ñ is an ingoing abstract message, and
– inner(ñ) ⊆ expa(G), and
– if ñ is a return, i.e. ñ = D::m:ṽ, then it matches the last pending call, i.e.

last(pcsa (G)) = iout.D::m(ṽ), for some abstract values ṽ.

Definition 5 (Behavioral Semantics). Let G be a normalized abstract history
and let ñ be an admissible message for G. We define the behavioral semantics,
bsem, as

bsem(G, ñ) = absOutcome(hsem(H, n), H, n)

where H is any concrete history for a box b with G = absHis(H), and n is any
admissible concrete message for H with ñ = absMsg(H, n).

Lemma 2. bsem is well-defined.

Proof. Let G be a normalized abstract history and ñ be an abstract admissi-
ble message for G. By definition there exists a concrete history H with G =
absHis(H). If we can show that it is possible to choose an admissible message n
for H with ñ = absMsg(H, n), the Abstraction Lemma provides well-definedness,
because it guarantees that the abstract outcome does not depend on the choice
of H and n.

Let ηG be the bijection of G. If ñ is an ingoing call, then choose an arbitrary
outside sender, and choose arbitrary outside objects for outer parameters not
handled by ηG. Use all other objects according to η−1

G given by imsa (G). Oth-
erwise if ñ is an ingoing return D::m:ṽ, then let o → o′.m(v) = last(pcs(H))
and let last(imsa (G)) = iout.D::m(ṽ). The compatibility of pcs(G) yields that
o ← o′.m:v is an admissible message where v = η−1

G (ṽ) if v ∈ dom(ηG) or v is
some correctly typed object not in dom(ηG) otherwise. ��

4 Substitutability

In this section, we discuss how our behavioral semantics can be exploited to
handle substitutability in object-oriented programming. Central for the exploita-
tion is the representation independency of the semantics based on a well-defined
boundary of the runtime components.

A program component K1 can be substituted by another component K2 in a
program context P if both components have the same behavior in all executions
of P . The application of this notion of substitutability to existing OO-languages
faces two problems: 1. Beyond classes, there is no suitable standard concept
of a program component; and considering only single classes does not scale. 2.
Defining “same behavior” without a sufficiently abstract notion of behavior is
doable but complex (see [3] and the discussion in Sec. 5).

170 A. Poetzsch-Heffter and J. Schäfer

Our approach gives answers to both problems. A code base of a box class C
is a well-defined notion for flexible program components. Having an explicit be-
havioral semantics makes it straightforward to define substitutability and equiv-
alence for box classes:

Definition 6 (Substitutability, Equivalence). Let C1 and C2 be two box
classes with code bases K1 and K2 such that C1 = C2 or C2 is a subclass of C1.
(C2, K2) is called a behavioral substitute of (C1, K1) iff

– every abstract history G of C1 is an abstract history of C2 and
– bsem(C1, G, ñ) = bsem(C2, G, ñ) for every abstract history G of C1 and

every admissible abstract message ñ of G.

Two code bases K1 and K2 for a class C are called equivalent iff (C, K1) is a
behavioral substitute of (C, K2) and vice versa.

Of course, a behavioral substitute can have more behavior. For example, class
C2 or objects exposed by C2 can have more methods. Thus, they have more ad-
missible messages. However, these messages cannot be used in program contexts
in which C1 is eligible.

Intuitively, a software component SC2 is substitutable for a component SC1
if replacing a usage of SC1 in a program by a usage of SC2 yields an equivalent
program. As we only have a notion of equivalence for box classes, this intuitive
meaning gets the following formulation in our setting:

Lemma 3 (Substitution). Let D, C1, and C2 be box classes with code bases
K, K1, and K2 such that C1 is used in K and C2 is a subclass of C1. Let K ′

be the code base for D obtained by replacing a creation expression new C1() by
new C2() in K (as K ′ is declaration complete it includes K2). If (C2, K2) is a
behavioral substitute of (C1, K1), then (D, K) and (D, K ′) are equivalent.

A proof of the lemma is beyond the scope of this paper. It basically shows that
in any context of an executable program an instance of D with code base K can
simulate an instance of D with code base K ′ and vice versa. As in the proof of
the Abstraction Lemma, it is crucial that we permit downcasts of an object o
only in o’s box and that we do not provide an instance-of operator. Consider
for example a program context in which (D, K) exposes an owned C1-object o1
and (D, K ′) exposes an owned C2-object o2 instead. Casting o1 and o2 in this
context to C2 would yield different outcomes and the simulation would fail.

Discussion. The main point of our notion of behavior and substitutability is
that the abstraction needed to compare different implementations is given by
the behavioral semantics and is independent of the components to be compared
and the contexts in which they should execute. Thus, one can do the comparison
without component specific coupling relations or specifications.

In one respect, our notion is less flexible than notions of substitutability that
are based on classical component specifications. Whereas in our setting admis-
sibility of messages is defined only in terms of the operational semantics, com-
ponent specifications can and usually do restrict the set of admissible messages

A Representation-Independent Behavioral Semantics 171

by preconditions. Looking at it the other way round, by refining the notion of
admissible message, our approach could be used as a semantics for behavioral
specifications of program components where a specification defines:

1. The set of possible abstract component states.
2. The admissible messages in a state (using preconditions).
3. The reply to messages and the abstract state in which the reply is sent.

Abstract components states represent and possibly further abstract histories. As
a specification can exclude some messages by preconditions, a specification al-
lows less histories than the semantics. The central difference between the classical
pre-postcondition approach for behavioral subtyping (see [18]) and a specifica-
tion technique based on our approach is the treatment of callbacks and effects
to the environment. The extensions to the classical approach treat callbacks by
supporting controlled dependencies across abstraction boundaries (see e.g. [4]).
Our approach suggests to focus on the messages crossing the component bound-
ary. This will simplify the verification of the component and shift part of the
burden to the program that connects the components under consideration.

5 Related Work

In [3], Banerjee and Naumann show how confinement properties based on owner-
ship-structures can be exploited to define and verify the equivalence of program
components. Like in our approach, they use a semantics-based notion of own-
ership. Different is the technique to establish the equivalence result. They use
relations for coupling execution states and a simulation-based proof technique
whereas we abstract the implementations separately and compare the abstrac-
tions. The work in [3] and our approach both aim at substitutability for compo-
nents of scalable size. Other work investigate refinement and inheritance relations
on the level of classes (see in particular [2]).

Using message sequences to characterize state and behavior of software com-
ponents is not a new idea (see e.g. [12] and later [10]). Nierstrasz defines the
notion of request substitutability based on request sequences [20]. Broy uses call
and return messages to characterize the behavior of methods in a component
specification framework ([8]). Abraham et al. investigate interface behavior for
a concurrent object calculus in [1]. Like we do, they use call and return mes-
sages crossing component boundaries and stacks to handle callback scenarios,
but object identifiers are only abstracted with respect to alpha-conversion.

A large core of literature explores behavioral subtyping for object-oriented
programming based on class and method specifications. That is, the behavioral
subtype relation is not defined in terms of the semantics of the given classes,
but in terms of programmer defined specifications that abstract class behavior
(see [18]). These techniques build on specification languages for object-oriented
programs (e.g. JML for Java [16], Spec# for C# [6]). Leavens and Naumann de-
scribe the relation between specification, semantics, and behavioral subtyping in
a very concise way [15]. A specification technique with refinement that explicitly
handles outgoing messages is developed in [9].

172 A. Poetzsch-Heffter and J. Schäfer

Ownership concepts were originally developed to check confinement properties
by type systems: see [11] for an introduction and overview; [7] for a system
to check concurrency properties; and [24, 21] for a type system and an type
inference technique to check boxes. Boogie [5] and other approaches to modular
reasoning (see e.g. [19, 17] use ownership structures to define the semantics of
object invariants, to control the dependencies of specification statements, and to
partition the heap. The importance to modularize reasoning and analysis based
on heap structuring is shown as well by [22], which develops a logic for partial
heaps, and by [23] which presents a modular static analysis to identify structural
invariants of heap-manipulation programs.

6 Conclusions

We presented a behavioral semantics for flexible object-oriented components
with multiple ingoing and outgoing read-write references. The semantics is ob-
tained by a two step abstraction from an extended operational semantics. The
semantics formalizes the behavioral aspects that are relevant to a user of the
component. We discussed the relation to substitutability and specification-based
behavioral subtyping.

A semantics based notion of component behavior has the advantage that it can
be used by all language-processing tools and techniques. The abstraction from
the execution environment is important for modular static analysis techniques.
It guarantees that a “most general client” that generates all admissible message
sequences for the component can be used for static analysis. Future work in-
clude the refinement of the component model, in particular the transfer of inner
boxes from one box to another, the enhancement of our specification and check-
ing techniques, and an extension of the approach to concurrent object-oriented
programming.

Acknowledgments. We thank Peter Müller and the anonymous reviewers for their
helpful comments.

References

[1] Ábrahám, E., Grüner, A., Steffen, M.: Abstract interface behavior of object-
oriented languages with monitors. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS
2006. LNCS, vol. 4037, pp. 218–232. Springer, Heidelberg (2006)

[2] Back, R.-J., Mikhajlova, A., von Wright, J.: Class refinement as semantics of
correct object substitutability. Formal aspects of computing 12(1), 18–40 (2000)

[3] Banerjee, A., Naumann, D.A.: Ownership confinement ensures representation in-
dependence for object-oriented programs. Journal of the ACM 52(6), 894–960
(2005)

[4] Barnett, M., Naumann, D.A.: Friends need a bit more: Maintaining invariants over
shared state. In: Kozen, D., Shankland, C. (eds.) MPC 2004. LNCS, vol. 3125, pp.
54–84. Springer, Heidelberg (2004)

A Representation-Independent Behavioral Semantics 173

[5] Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. Journal of Object Technology, vol.
3(6) (2004)

[6] Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, Springer, Heidelberg (2004)

[7] Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Pre-
venting data races and deadlocks. In: Proc. OOPSLA 2002, pp. 211–230. ACM
Press, New York (2002)

[8] Broy, M.: A core theory of interfaces and architecture and its impact on object
orientation. In: Reussner, R., Stafford, J.A., Szyperski, C.A. (eds.) Architecting
Systems with Trustworthy Components. LNCS, vol. 3938, pp. 26–47. Springer,
Heidelberg (2006)

[9] Büchi, M.: Safe Language Mechanisms for Modularization and Concurrency. PhD
thesis, Turku Centre for Computer Science (May 2000)

[10] Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Jurdzinski, M., Mang, F.Y.C.:
Interface compatibility checking for software modules. In: Brinksma, E., Larsen,
K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 428–441. Springer, Heidelberg (2002)

[11] Clarke, D.: Object Ownership and Containment. PhD thesis, University of New
South Wales (July 2001)

[12] de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE-9, pp. 109–120.
ACM Press, New York (2001)

[13] Flatt, M., Krishnamurthi, S., Felleisen, M.: A programmer’s reduction semantics
for classes and mixins. Formal Syntax and Semantics of Java 1523, 241–269 (1999)

[14] Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A minimal core calculus
for Java and GJ. TOPLAS 23(3), 396–450 (May 2001)

[15] Leavens, G.T., Naumann, D.A.: Behavioral subtyping, specification inheritance,
and modular reasoning. Technical Report TR06-20a, Computer Science, Iowa
State University (2006)

[16] Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML a behavioral
interface specification language for Java. SIGSOFT Softw. Eng. Notes 31(3), 1–38
(2006)

[17] Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M.
(ed.)Proc.ECOOP2004.LNCS, vol. 3086, pp. 491–516. Springer,Heidelberg (2004)

[18] Liskov, B., Wing, J.: A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems 16(6), 1811–1841 (1994)

[19] Müller, P.: Modular Specification and Verification of Object-Oriented Programs.
LNCS, vol. 2262. Springer, Heidelberg (2002)

[20] Nierstrasz, O.: Regular types for active objects. In: Proc. OOPSLA ’93, October
1993, pp. 1–15. ACM Press, New York (1993)

[21] Poetzsch-Heffter, A., Geilmann, K., Schäfer, J.: Inferring ownership types for en-
capsulated object-oriented program components. In: Program Analysis and Com-
pilation, Theory and Practice: Essays Dedicated to Reinhard Wilhelm. LNCS,
vol. 4444, Springer, Heidelberg (2007)

[22] Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proceedings of LICS’02, pp. 55–74 (2002)

[23] Rinetzky, N., Poetzsch-Heffter, A., Ramalingam, G., Sagiv, M., Yahav, E.: Modu-
lar shape analysis for dynamically encapsulated programs. In: European Sympo-
sium on Programming (ESOP’07), March 2007, Springer, Heidelberg (2007)

[24] Schäfer, J., Poetzsch-Heffter, A.: A parameterized type system for simple loose
ownership domains. Journal of Object Technology, June 2007, to appear (2007)

A Formal Language for Electronic Contracts�

Cristian Prisacariu and Gerardo Schneider

Dept. of Informatics – Univ. of Oslo,
P.O. Box 1080 Blindern, N-0316 Oslo, Norway
cristi@ifi.uio.no, gerardo@ifi.uio.no

Abstract. In this paper we propose a formal language for writing elec-
tronic contracts, based on the deontic notions of obligation, permission,
and prohibition. We take an ought-to-do approach, where deontic op-
erators are applied to actions instead of state-of-affairs. We propose an
extension of the μ-calculus in order to capture the intuitive meaning
of the deontic notions and to express concurrent actions. We provide a
translation of the contract language into the logic, the semantics of which
faithfully captures the meaning of obligation, permission and prohibition.
We also show how our language captures most of the intuitive desirable
properties of electronic contracts, as well as how it avoids most of the
classical paradoxes of deontic logic. We finally show its applicability on
a contract example.

1 Introduction

With the imminent use of Internet as a means for developing cross-organizational
collaborations and virtual communities engaged in business, new challenges arise
to guarantee a successful integration and interoperability of such virtual orga-
nizations. Service-oriented architectures (SOA) is becoming more and more the
trend in this arena. Entities participating in a SOA have no access to com-
plete information, including information for checking the reliability of the ser-
vice provider and/or service consumer. For instance, a service consumer has no
access to the code implementing the service, and is therefore unable to examine,
much less verify, the service implementation to have assurance of its compliance
with his/her needs. This motivates the need of establishing an agreement before
any transaction is performed, through a contract, engaging all participants in
the transaction under the commitments stipulated in such a document, which
must also contain clauses determining penalties in case of contract violations. A
service provider may also use a contract template (i.e., a yet-to-be-negotiated
contract) to publish the services it is willing to provide. As a service specification,
a contract may describe many different aspects of a service, including functional
properties and also non-functional properties like quality of service (QoS).

In order to advance towards a reliable SOA, we need to be able to write
contracts which can be “understood” by the software engaged in the negotiation
� Partially supported by the Nordunet3 project “Contract-Oriented Software Devel-

opment for Internet Services”.

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 174–189, 2007.
c© IFIP International Federation for Information Processing 2007

A Formal Language for Electronic Contracts 175

process, and later may be used by virtual organizations responsible for ensuring
that the contract is respected. In other words, contracts should be amenable to
formal analysis and thus written in a formal language.

There are currently several different approaches aiming at defining a formal
language for contracts, the most promising approach, in our opinion, being the
one based on logics. A logic for contracts not necessarily has to be based on, or
extend, deontic logic, but must contain notions like obligation, permission, and
prohibition, and preserve their intuitive properties. Formalizing the usual nor-
mative (deontic) notions of obligation, permission and prohibition is not an easy
task as witnessed by the extensive research conducted by the deontic community
both from the philosophical and the logical point of view, starting as early as
1926 [17].1 In what follows we discuss some of the problems and challenges that
appear when defining electronic contracts (e-contracts).

In early papers (e.g. [33]) the approach was to relate the normative notions
of obligation, permission and prohibition in a similar way as the quantifiers all,
some and no, and the modalities necessary, possible and impossible. This was
the bases of the so-called Standard Deontic Logic (SDL) which builds up on
propositional classical logic, leading to a nice formalization but also to many
paradoxes which still continue to challenge philosophers, logicians and computer
scientists.

Besides avoiding paradoxes, one of the first issues to take into account when
formalizing normative notions is whether we want to represent (names of) human
actions or (sentences describing) states of affairs, product of a human action.
The former is usually known as ought-to-do and the latter as ought-to-be. For
example “Jones ought to pay the money” is an ought-to-do sentence, while ”It
ought to be the case that Jones pays the money” is an ought-to-be sentence. In
general the relationship between both representations is not as obvious as in the
above example and the translation from one to the other is much more involved.
The discussion among philosophers and logicians is far from an end in what
concerns the decision of whether one approach is better than the other, or even
if both should coexist in the same reasoning system. In many e-contracts it is
more natural to find statements of ought-to-do kind; where the subject is stated
explicitly (the supplier, the client), the actions (that are permitted or forbidden)
are visible, and also in many cases there might be an object. There may also be
cases where an ought-to-be approach gives a more concise expression, like in QoS
contracts where we may have statements expressing quantitative restrictions like
the average bandwidth should be more than 20kb/s.

Contracts contain clauses which by definition are violable (if we have the
guarantee that nobody will violate them, contracts would be useless). Hence,
contrary-to-duty obligations (CTD) and contrary-to-prohibitions (CTP) are im-
portant aspects to be considered. CTDs are statements that represent the fact
that obligations might not be respected where CTPs are similar statements
which deal with prohibitions that might be violated. Both constructions specify

1 Mally’s work is considered a precursor of Deontic Logic, though it is widely accepted
that modern Deontic Logic started with the work by G.H. von Wright [33].

176 C. Prisacariu and G. Schneider

the obligation/prohibition to be fulfilled and which is the reparation/penalty to
be applied in case of violation.

Other problems to be considered when formalizing deontic notions are the
study of their interrelation (duality and definition in terms of each other), the
understanding of their truth-value (even the discussion whether it is reasonable
to talk about the truth-value of such notions), and the difference between “must”
and “ought”.

Since we are concerned with formal definition of e-contracts we are definitely
on a terrain where many of the philosophical problems of the deontic logic are
not present. In this paper we take a first step towards the definition of a formal
contract language following an ought-to-do approach. Our starting point is [5],
where a fix-point characterization of obligation, permission and prohibition is
given, based on the modal μ-calculus, allowing the definition of the deontic
notions over regular actions.

The main contribution of this paper is the definition of a contract language
with the following properties:
1. The language avoids most of the classical paradoxes of deontic logic;
2. It is possible to express in the language obligations, permission and prohibi-

tion over concurrent actions keeping their intuitive meaning;
3. Obligation of disjunctive and conjunctive actions is defined compositionally;
4. The definition and semantics of obligation does not contain action negation;
5. It is possible to express CTDs and CTPs;
6. The language has a formal semantics given in a variant of the propositional

μ-calculus.

Other side contributions are:
1. We revisit the relations between the deontic notions, providing new insights

into how they should be related in the context of e-contracts;
2. We give special attention to the disjunction on obligations, to which we

provide a natural and precise interpretation;
3. We extend the propositional μ-calculus with the possibility of expressing

concurrent and deterministic actions.

The paper is organized as follows. In Section 2 we start by presenting an
example of a partial contract, we then informally discuss some of the desirable
properties a contract language should have, and finally present our formal lan-
guage for writing contracts. In Section 3 we present a variant of the μ-calculus,
with its syntax and semantics, and we give a translation of the contract lan-
guage into the logic. In Section 4 we show that our language avoids many of
the paradoxes and that it satisfies most of the desirable properties listed in Sec-
tion 2. Before concluding, we present in Section 5 the modeling of the example
of Section 2 using our contract language.

2 A Formal Language for Contracts

We start by presenting an example, we then list desirable properties for defining
a contract language and we describe informally the kind of actions that are

A Formal Language for Electronic Contracts 177

needed for our language. In the last subsection we present the syntax of the
language for writing e-contracts and the intuition behind it.

2.1 A Contract Example

In what follows we provide part of a contract between a service provider and
a client, where the provider gives access to Internet to the client. We consider
two parameters of the service: high and low, which denote the client’s Internet
traffic. We abstract away from several technical details as how it is measured
the Internet traffic. We will consider only the following clauses of the contract:

1. Whenever the Internet traffic is high then the client must pay x $ imme-
diately, or the client must notify the service provider by sending an e-mail
specifying that he will pay later.

2. In case the client delays the payment, after notification he must immediately
lower the Internet traffic to the low level, and pay later 2 ∗ x $.

3. If the client does not lower the Internet traffic immediately, then the client
will have to pay 3 ∗ x $.

4. The provider is forbidden to cancel the contract without previous written
notification by normal post and by e-mail.

5. The provider is obliged to provide the services as stipulated in the contract,
and according to the law regulating Internet services.

A formalization of the above will be presented in Section 5.

2.2 Desirable Properties of a Language for Contracts

In what follows we use + for choice among actions, O(a) to denote the obligation
of performing a given action a, and similarly for permission P (a) and prohibition
F (a). A more precise definition will be given later.

General Requirements: We list first some general intuitive properties we should
have, and others we should avoid, when formalizing deontic notions in contracts.

We want to avoid as many logical paradoxes as possible2, in particular: the
Ross paradox (i.e., O(a) ⇒ O(a + b))3, and the free choice paradox (i.e.,
P (a) ⇒ P (a + b)). Syntactically disallow the classical disjunction between de-
ontic modalities. Obligation should be defined only on actions, not on formulas
(which, as argued in the deontic community, would avoid several of the present
paradoxes). Conjunction on obligations should imply executing the obliged ac-
tions at the same time (not to violate any of the obligations). Obligation of a
sequence of actions should imply the obligation of all the subsequent actions.
Allow specification of reparations for violations of obligations and prohibitions.
Allow the definition of conditional obligations (i.e., ϕ ⇒ O(a)). Obligation
2 For a list of classical paradoxes see [28].
3 The symbol “ ⇒ ” is not part of our contract language and we use it informally as a

shortcut for “if-then” or “implies”.

178 C. Prisacariu and G. Schneider

should imply permission. Do not define permission and obligation in terms of
each other (see von Wright’s argument [34]). Defining permission in terms of
prohibition is natural and desirable.

Properties of Electronic Contracts: In the philosophical and pure logic contexts
we find many reasonable discussions related to deontic operators, which we claim
can be avoided given that we are restricted to e-contracts. In what follows we
provide arguments for restricting syntactically the occurrence in the contract
language of certain expressions involving obligation, permission and prohibition
applied to actions.

It is not natural to have in contracts statements like one is NOT obliged to
perform an action, thus ¬O(a) should not occur in a contract. A statement like
one is NOT permitted to do something can be rewritten as one is forbidden
to do something; ¬P (a) ≡ F (a). Also one is NOT forbidden to do an action
can be rewritten as one is permitted to do the action; thus we should consider
¬F (a) ≡ P (a). We adhere thus to the usual approach of defining permission and
prohibition as one being the negation of the other.

It is not intuitive to have the + under the F operator. Consider for example
the following norm: In Europe it is forbidden one of the following actions (but
not both): to drive on the left side of the road (dl), or to drive on the right side
(dr) which can be represented as F (dl + dr). The problem is that it is not clear
under which circumstances each one of the actions can be taken. The natural
way to exclusively forbid the choice between two actions is to relate each of
the actions with its context. So, the above sentence could be rewritten as: In
the United Kingdom it is forbidden to drive on the right side of the road. In the
rest of Europe (except United Kingdom) it is forbidden to drive on the left side
of the road. Which can be formalized as: ϕUK ⇒ F (dr) and ϕREU ⇒ F (dl).
Where ϕUK and ϕREU are mutually exclusive. On the other hand, it is possible
to forbid two actions a and b simultaneously by imposing F (a) ∧ F (b).

Moreover, we argue that in contracts it is not common to find statements that
may be formalized using an exclusive OR operator ⊕ between prohibitions. If we
take the formula F (a)⊕F (b) to mean that either is forbidden a or forbidden b but
not forbidden both then one case of the statement is F (a) ∧ ¬F (b) which, using
the above equivalence between P and ¬F is F (a) ∧ P (b). This means that one
has the permission to do b. Similar from the second case, one may conclude that
it is permitted to do a. In the end, the formula F (a) ⊕ F (b) does not explicitly
prohibit anything, making its use completely meaningless and dangerous.

2.3 Actions

Our practical requirements to represent actions found in e-contracts force us
to make some changes to the classical dynamic algebra [27]. We first drop the
Kleene star (iteration) as it is unnatural to have it under the deontic operators.
A second difference involves the inclusion of concurrent actions.

Our action algebra has a set of atomic actions denoted by L, a set B of formulas
in the Boolean algebra, and the action operators which define the compound

A Formal Language for Electronic Contracts 179

actions: + for choice of two actions4, · for sequence of actions, & for concurrent
execution of two atomic actions. The test operator ? is applied to elements of B
and generates actions of L. For brevity we often drop the sequence operator and
instead of α ·β we just write αβ. We also define action negation α of a compound
action α as the action given by all the immediate traces that take us outside the
trace of α [5] and is formally defined using a canonic form of the actions.

2.4 The Contract Language

We aim at the definition of a precise syntax of a contract language, with a
translation into a logic in order to be able to reason about it. We define the
contract language CL, and provide a set of rewriting rules in order to simplify
and minimize the number of expressions in the language.

Definition 1 (Contract Language Syntax). A contract is defined by:

Contract := D ; C
C := φ | CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C

CO := O(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := F (δ) | CF ∨ [δ]CF

The syntax of CL closely resembles the syntax of a modal (deontic) logic. Though
this similarity is clearly intentional since we are driven by a logic-based approach,
CL is not a logic. In what follows we provide an intuitive explanation of the CL
syntax; a more precise meaning will be given later through the translation into
an extension of the propositional μ-calculus.

A contract consists of two parts: definitions (D) and clauses (C). Note that we
deliberately let the definitions part underspecified in the syntax above. D speci-
fies the assertions (or conditions) and the atomic actions present in the clauses.
φ denotes assertions and ranges over Boolean expressions including arithmetic
comparisons, like the budget is more than 200$. For now we let the atomic ac-
tions underspecified, which for our purposes can be understood as consisting of
three parts: the proper action, the subject performing the action, and the target
of (or, the object receiving) such an action. Note that, in this way, the partners
involved in a contract are encoded in the actions.

C is the general contract clause. CO, CP , and CF denote respectively obligation,
permission, and prohibition clauses. ∧ and ⊕ may be thought as the classical
conjunction and exclusive disjunction, which may be used to combine obligations
and permissions. For prohibition CF we have ∨, again with the classical meaning
of the corresponding operator. α is a compound action with syntax as given in
Section 2.3, while δ denotes a compound action not containing any occurrence of
+. Operationally, we consider that atomic actions do not require time for their
execution, i.e., the atomic actions are instantaneous. A concurrent action is also
instantaneous, so it can be seen as atomic. Note that syntactically ⊕ cannot
4 We do not distinguish between internal (free) choice and external (imposed) choice.

180 C. Prisacariu and G. Schneider

Table 1. Compositional rules

(1) O(α + β) ≡ O(α) ⊕ O(β)
(2) O(a&b) ≡ O(a) ∧ O(b)
(3) O(αβ) ≡ O(α) ∧ [α]O(β)
(4) P (α + β) ≡ P (α) ⊕ P (β)
(5) P (αβ) ≡ P (α) ∧ 〈α〉P (β)
(6) F (αβ) ≡ F (α) ∨ [α]F (β)

Table 2. Rewriting rules for obligation O

(1) O(a) ∧ O(b) � O(a&b)
(2) O(a) ∧ O(a&b) � O(a&b)
(3) O(a) ∧ (O(a) ⊕ O(b)) � O(a)
(4) O(a) ∧ O(a) � O(a)
(5) O(a) ⊕ O(a) � O(a)
(6) O(c) ∧ (O(a) ⊕ O(b)) � (O(c) ∧ O(a)) ⊕ (O(c) ∧ O(b))
(7) (⊕iO(ai)) ∧ (⊕jO(bj)) � ⊕i,j(O(ai) ∧ O(bj)) ai 	= bj

appear between prohibitions and + cannot occur under F , as we have discussed
in Section 2.2.

We borrow from Propositional Dynamic Logic (PDL) the syntax [α]φ to rep-
resent that after performing α (if it is possible to do so), φ must hold. The [·]
notation allows having a test, where [φ?]C must be understood as φ ⇒ C. 〈α〉φ
captures the idea that there must be the possibility of executing α, in which case
φ must hold afterwards. Following temporal logic (TL) [23] notation we have U
(until) and © (next) with intuitive semantics as in TL. Thus C1 U C2 states that
C1 should hold until C2 holds. ©C intuitively states that the C should hold in
the next moment, usually after something happens. We can define �C (always)
and ♦C (eventually) for expressing that C holds everywhere and sometimes in
the future, respectively.

The rules of Table 1 are guided by common usage in electronic contracts and
provides an equivalence relation between different syntactic expressions, which
might also be interpreted as a means to define certain constructs compositionally.
Note that concurrent actions are compositional only under obligation; there are
no similar rules for F and P . Note that F has no rule for + because exclusive
choice does not appear under F . For an intuition and examples for these rules
we refer to the extensive discussions in the technical report [28].

We give in Table 2 a set of rewriting rules for simplifying CO expressions.
Rules (1)-(3) are guided by the common examples found in real contracts, rules
(4)-(5) are the usual contraction rules, and the rules (6)-(7) basically give the
distributivity of conjunction over the exclusive disjunction.

To express CTDs we provide the following notation, Oϕ(α), which is syn-
tactic sugar for O(α) ∧ [α]ϕ stating the obligation to execute α, and the repa-
ration ϕ in case the obligation is violated, i.e. α is not performed. The reparation

A Formal Language for Electronic Contracts 181

may be any contract clause. Similarly, CTP statements Fϕ(α) can be defined as
Fϕ(α) = F (α) ∧ [α]ϕ, where ϕ is the penalty in case the prohibition is violated.
Notice that it is possible to express nested CTDs and CTPs.

In CL, we can write conditional obligations, permissions and prohibitions in
two different ways. Just as an example let us consider conditional obligations.
The first kind is represented as [α]O(β), which may be read as “after performing
α, one is obliged to do β”. The second kind is modeled using the test operator ?:
[ϕ?]O(α), representing “If ϕ holds then one is obliged to perform α”. Similarly
for permission and prohibition.

3 The Underlying Logic for the Contract Language

3.1 Yet Another Propositional μ-Calculus

We take the classical propositional μ-calculus as defined by Kozen [13] and we
extend it with concurrent actions and special propositional constants. We call
this extension Cμ. We consider a special set L, which we call atomic actions and
denote by a, b, c, We add a set of propositional constants which we denote
by Pc. To capture true concurrency we extend the set L with concurrent sets
which are finite subsets of atomic actions with the intuitive meaning that all the
atomic actions inside a concurrent set are executed concurrently (at the same
time).

Definition 2 (concurrent sets). A concurrent action set, denoted by γ (pos-
sibly indexed), is a finite subset of the set of atomic actions L, γ = {a1, . . . , an}
where ai ∈ L. The concurrent sets γ ∈ 2L are the labels of Cμ.

The syntax of Cμ is given by:

ϕ := P | Z | Pc | � | ¬ϕ | ϕ ∧ ϕ | [γ]ϕ | νZ.ϕ(Z)

where P represents propositional variables, Z represents state variables, � is the
constant proposition denoting true, and [γ]ϕ is the formula stating that after ex-
ecuting the concurrent set γ, ϕ holds. νZ.ϕ(Z) is the greatest fix-point, and the
other syntactic constructs come from propositional logic. The constant propo-
sitions are added in order be able to capture the deontic operators of CL. Pc

contains two distinguished kind of constants: obligation constants Oa and pro-
hibition constants Fa, which are uniquely indexed by the atomic actions a ∈ L.
The constant propositions are interpreted in the same way as the propositional
variables of P as a set of states where the constant proposition holds. The intu-
ition of the obligation constants is that when the system is in a state s and by
action a it gets to a state t where Oa holds then we may conclude that in the
state s the system has the obligation to execute action a. Similarly, Fa denotes
the fact that action a is prohibited.

Note that Cμ includes the classical μ-calculus because if γ = {a} then [γ]ϕ ≡
[a]ϕ, and Pc can be considered as a subset of P . We also have the usual dualities:

182 C. Prisacariu and G. Schneider

ϕ ∨ ψ
def
= ¬(¬ϕ ∧ ¬ψ)

〈γ〉ϕ def
= ¬[γ]¬ϕ

μZ.ϕ(Z)
def
= ¬νZ.¬ϕ(¬Z)

The interpretation of the above syntactic constructs follows the standard set-
theoretical approach [13]. The formulas are interpreted over a structure denoted
by T . Given a set Prop = P ∪ Pc of propositions, and a set of atomic actions L,
T = (S, R2L , VProp, V), where S is the set of states (worlds), R2L : 2L → S × S
is the function assigning to each concurrent set γ of 2L a relation over S (i.e.,
R2L(γ) ⊆ S × S, γ ∈ 2L), VProp : Prop → 2S is the interpretation of the
propositions, and V is a valuation function assigning to each state variable a set
of states. The valuation V [Z := S] maps variable Z to the states set S and in
the rest it agrees with V . For the sake of notation instead of R2L(γ) we write
Rγ . The semantics of each syntactic construct of Cμ over a structure T is:

‖�‖TV = S ; ‖P‖TV = VProp(P) ; ‖Z‖TV = V(Z) ; ‖Pc‖TV = VProp(Pc)

‖¬ϕ‖TV = S \ ‖ϕ‖TV
‖ϕ ∧ ψ‖TV = ‖ϕ‖TV ∩ ‖ψ‖TV
‖[γ]ϕ‖TV = {s | ∀t ∈ S. (s, t) ∈ Rγ ⇒ t ∈ ‖ϕ‖TV }
‖νZ.ϕ‖TV =

⋃
{S ⊆ S | S ⊆ ‖ϕ‖TV[Z:=S]}

‖ϕ ∨ ψ‖TV = ‖ϕ‖TV ∪ ‖ψ‖TV
‖〈γ〉ϕ‖TV = {s | ∃t ∈ S. (s, t) ∈ Rγ ∧ t ∈ ‖ϕ‖TV }
‖μZ.ϕ‖TV =

⋂
{S ⊆ S | S ⊇ ‖ϕ‖TV[Z:=S]}

Note that R2L for singleton concurrent sets behaves the same as RL for actions
of μ-calculus. In this case, for the sake of brevity instead of R{a} we just write Ra.
Also, we often use as shorthand for a concurrent set inside dynamic operators
and we write [a, b]ϕ instead of [{a, b}]ϕ. Furthermore, we have the following
restriction for the constant propositions of the form Fa and Oa: Constants Fa

and Oa are incompatible, that is their interpretations as sets is disjoint:

‖Fa‖TV ∩ ‖Oa‖TV = ∅, ∀a ∈ L. (1)

The intuition drawn from e-contracts is that it is not possible to be obliged to
do something and at the same time be forbidden to do the same thing. The above
description gives the following natural result: 1) Oa ⇒ ¬Fa and 2) Fa ⇒ ¬Oa.

Action logics like PDL, and consequently propositional μ-calculus, are usually
non-deterministic. From the point of view of modeling contracts it is natural to
adopt a deterministic variant of an action logic because it does not make sense
to specify different outcomes for the same action in a contract. The determinism
of Cμ requires to have only one transition from one state labeled with a concur-
rent set. Formally we restrict R2L to assign to each concurrent set only partial

A Formal Language for Electronic Contracts 183

Table 3. The translation function fT from CL to Cμ

(1) fT (O(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1Oai)
(2) fT (CO ⊕ CO) = fT (CO) ∧ fT (CO)

(3) fT (P (&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1¬Fai)
(4) fT (CP ⊕ CP) = fT (CP) ∧ fT (CP)
(5) fT (F (&n

i=1ai)) = [{a1, . . . , an}](∧n
i=1Fai)

(6) fT (F (δ) ∨ [β]F (δ)) = fT (F (δ)) ∨ fT ([β]F (δ))
(7) fT (C1 ∧ C2) = fT (C1) ∧ fT (C2)

(8) fT (©C) = [any]fT (C)
(9) fT (C1 U C2) = μZ.fT (C2) ∨ (fT (C1) ∧ [any]Z ∧ 〈any〉�)
(10) fT ([&n

i=1ai]C) = [{a1, . . . , an}]fT (C)
(11) fT ([(&n

i=1ai)α]C) = [{a1, . . . , an}]fT ([α]C)
(12) fT ([α + β]C) = fT ([α]C) ∧ fT ([β]C)
(13) fT ([ϕ?]C) = fT (ϕ) ⇒ fT (C)

functions (not relations), i.e., for any (s, t), (s, t′) ∈ Rγ then t = t′. Naturally a
compound action may have several ending worlds, both in the interpretation of
the actions as relations [9] or the actions as trajectories [26]. Note that (s, t) ∈
Ra and (s, t′) ∈ R{a,b} does not introduce non-determinism.

3.2 Translating the Language into the Logic

Because of the special status of the concurrent actions, the compositionality
rules of Table 1, and the rewriting rules of Table 2, we choose to translate O,
P , and F over both atomic actions a and concurrent actions a&b. We also need
to translate the ⊕ over obligation and permission as well as the ∨ operator over
prohibition.

We consider a translation function fT from expressions of CL into formulas
of Cμ. In Table 3 lines (1)-(6) we give the translation of the basic deontic con-
structs of CL (CO, CP and CF). Note that the translation of concurrent actions
a&b uses concurrent sets and we use a concise notation which, for example, for
atomic actions under O would give fT (O(a)) = 〈a〉Oa —we abuse the notation
and denote the atomic actions as conjunction over only one ai. Lines (7)-(13)
show the translation of the other CL expressions, where any is the special action
which is interpreted as the union of all actions in L with the intuition of doing
any action. The conjunction is translated as the corresponding conjunction op-
erator of Cμ, next © uses the action any, and until U is translated using a
fix-point expression as usual. We give separate translations for each compound
action inside the dynamic box operator of CL. The translation is similar to the
translation of PDL into μ-calculus.

Note that with this translation one cannot give a truth value to an obligation
O(a) of an action (or a permition or prohibition), because the truth value of its
translation 〈a〉Oa can be determined only after the execution of the action. This
is in accordance with the classical semantics of the deontic modalities [33].

184 C. Prisacariu and G. Schneider

4 Properties of the Contract Language

In this section we show some of the properties CL enjoys, as well as how the
language avoids most of the important deontic paradoxes and the undesirable
properties listed in Section 2.2. Most of the proofs are omitted and can be found
in [28].

Proposition 1 ensures that it is not needed to use negation on deontic oper-
ators, while Proposition 2 establishes the standard relation between obligations
and permissions.

Proposition 1. The following statements are valid in CL:

a) P (α) ≡ ¬F (α)
b) F (α) ≡ ¬P (α).

Proof: The proof follows from the translation of P (α) and F (α) into the logic
and the duality between the μ-calculus operators [·] and 〈·〉. �

Proposition 2. The following statement is valid in CL: O(α) ⇒ P (α).

Proof: The proof follows from the translations of O(α) and P (α) into the logic.
Moreover, the proof makes use of the equation (1) of the incompatibility of Oa

and Fa constants. �

The following two results express that CL does not allow the derivation of certain
undesirable properties.

Proposition 3. The following implications do not hold in CL:

a) P (a) ⇒ P (a&b)
b) F (a) ⇒ F (a&b).

Proof: We give a counter example to show that the implication is not possible,
i.e., we give a model in the logic which is a model for the translation of the first
CL formula and is not a model for the translation of the second CL formula.

For a) consider (s, t) ∈ Ra and (s, t′) ∈ R{a,b} with t �∈ ‖Fa‖TV and t′ ∈
‖Fa‖TV ∩ ‖Fb‖TV . Consider the model M which has states S = {s, t, t′} and two
relations: for action a, Ra = {(s, t)} and for action {a, b}, R{a,b} = {(s, t′)}. M
is a model for the first formula but is not a model of the second formula.

For b) we change the above model such that t ∈ ‖Fa‖TV and t′ �∈ ‖Fa‖TV . M
is a model of the first formula but is not a model for the second formula. �

Proposition 4. The following implications do not hold in CL:

a) F (a&b) ⇒ F (a)
b) P (a&b) ⇒ P (a).

A Formal Language for Electronic Contracts 185

Proof: The proof is similar to the proposition above. �

The following proposition expresses that the most important paradoxes of de-
ontic logic are avoided in our contract language, either because there are not
expressible in the language or because they are simply excluded by the transla-
tion into the underlying logic.

Proposition 5. The following paradoxes are avoided in CL:

– Ross’s paradox
– The Free Choice Permission paradox
– Sartre’s dilemma
– The Good Samaritan paradox.
– Chisholm’s paradox
– The Gentle Murderer paradox

5 Example

We formalize here the example introduced in Section 2.1. As part of the formal-
ization of a contract in CL we first have to define the assertions and actions:

φ = the Internet traffic is high
p = client pays x $
d = client delays payment
n = client notifies by e-mail
l = client lowers the Internet traffic
s = provider provides the service as stipulated in the contract
c = provider cancels the contract
e = provider sends a written notification to the client by e-mail
w = provider sends a written notification to the client by normal post

The five clauses of the example are written in CL as follows:

1. �(φ ⇒ O(p + (d&n)))
2. �([d, n](O(l) ∧ [l]♦(O(p) ∧ [p]O(p))))
3. �([{d, n} · l]♦(O(p) ∧ [p]O(p) ∧ [p · p]O(p)))5

4. �(F (c) ∧ [w, e]P (c))
5. �O(s).

Remarks: 1) Formulas 2. and 3. are rather long because we can not represent in
CL quantitative information like pay two times. We could use the & operator over
actions with the same intuition as in logics of resources (e.g. linear logic [10]) and
for obliged to pay twice we could write in CL O(p&p) instead of O(p) ∧ [p]O(p)
which is more concise and natural.
5 The formulas 2 and 3 may be combined in a single formula using CTDs:
�([d, n](Oϕ(l) ∧ [l]♦(O(p) ∧ [p]O(p)) where ϕ = O(p) ∧ [p]O(p) ∧ [p · p]O(p).

186 C. Prisacariu and G. Schneider

2) Though it is not apparent at first sight the contract allows the client to go from
low to high Internet traffic many times and pay the penalty (2 ∗x $) only once.6
The problem is that after the client lowers the Internet traffic, he might get a
high traffic again and postpone the payment till a future moment. To avoid this
situation we should add a clause specifying that “after getting a high Internet
traffic, if the client postpones the payment then he can get a high traffic again
only after having paid”. In CL this might be expressed by changing formulas 2
and 3 above as:

2’ �([d, n](O(l) ∧ [l]¬φU (O(p) ∧ [p]O(p)))
3’ �([{d, n} · l](¬φU (O(p) ∧ [p]O(p) ∧ [p · p]O(p))).

This example shows the importance of being able to model check a contract,
which may be done only if the contract is written in a formal language, e.g. CL.

3) Notice that our contract language lacks the possibility of expressing time
constraints. More involved clauses like the client must pay within 7 days, or
the client is forbidden to pass more than 10 times per month from low to high
Internet traffic, can only be expressed here by introducing time, special variables
and simulate a counter. For model checking purposes we would like to include
the possibility to express these properties directly in the logic and an extension
with real-time would be desirable.

6 Conclusion

In this paper we have presented a formal language for writing contracts, and
have provided a formal semantics through the translation of the language into
a variant of the propositional μ-calculus extended with concurrent actions. The
use of a variant of the μ-calculus as a semantic framework for our language is
not casual. The logic has nice properties: it is decidable [15], has a complete
axiomatic system [32], and a complete Gentzen-style proof system [31]. Our
language avoids most of the classical paradoxes, and enjoys all the nice properties
listed in Section 2.2. To our knowledge no other work in the field has achieved
such goals. Given that our application domain is that of electronic contracts, we
have also given arguments for restricting syntactically and semantically certain
uses of (and relations between) obligations, permissions and prohibitions, usually
considered in philosophical and logical discussions.

Related Work: There are currently several different approaches aiming at defining
a formal language for contracts. Some works concentrate on the definition of
contract taxonomies [1,2,30], while others look for formalizations based on logics
(e.g. classical [8], modal [7], deontic [12,22] and defeasible logic [11,29]). Other
formalizations are based on models of computation (e.g. FSMs [21] and Petri
Nets [6]). None of the above has reached enough maturity as to be considered

6 See the technical report [28] for a more detailed explanation.

A Formal Language for Electronic Contracts 187

the solution to the problems of formal definition of contracts. Some provide a
good framework for monitoring but lack a formal semantics and a reasoning
system; others have nice proof systems and model theory, but not mechanism
for monitoring or negotiation; many of the deontic-based approaches put too
much emphasis on the logical properties and neglect the practical side, including
monitoring. None of them captures all the intuitive properties of e-contracts we
have described, while avoiding the most important paradoxes.

The idea of using a propositional constant in an action-based logic for giving
semantics to the deontic notions was first presented in [19], where the special
constant V (corresponding to our Fa) was added to denote an “undesirable state-
of-affairs” in the current state. We have, in addition, the constants Oa which are
used to define obligation not in terms of action negation but using the diamond
modal operator, deviating from other approaches (e.g., [4,19]).

Our work is closely related to those based on logic, and in particular to [5].
Due to lack of space and since part of the motivation of our work is to overcome
some of the problems of the approach of Broersen et al in [5], we contrast our
approach in detail only w.r.t. this paper. Broersen et al introduce a very in-
teresting characterization of obligation, permission and prohibition by following
an ought-to-do approach based on a deontic logic of regular actions. The idea
is to use the μa-calculus as a basis and then define obligation, permission and
prohibition over regular expressions on actions. The main differences w.r.t. our
approach are the following. (a) There is no notion of contract language, only
characterization of obligation, permission and prohibition in the logic. (b) The
only deontic primitive is permission over atomic actions; obligation is defined as
an infinite conjunction of negation of permission over actions not in the scope
of the negation. We avoid this infinite conjunction by defining both prohibition
and obligation as primitive (and using the propositional constants Oa and Fa at
the semantic level) and prohibition as negation of permission. (c) All the deontic
operators are defined over regular actions, including the Kleene star. We con-
sider it is not natural to have starred actions under the deontic notions, we have
thus dropped it. (d) Obligation on the choice of actions is not compositional; it
is compositional in our case. (e) There is no conjunction over actions, i.e., it is
not possible to express concurrent actions, which is the case in our approach. (f)
The approach uses disjunction over actions. We have decided to use the exclu-
sive or instead. (g) Negation on actions (meaning “not performing an action”)
is defined as a complement of the (infinite) set of actions. In our case the set
of actions is finite, at the language level. (h) CTDs cannot be defined unless an
extension of the μa-calculus is considered. In our setting both CTDs and CTPs
are easily defined. (i) The semantics of obligation, permission and prohibition
is given in terms of properties over traces, instead of over an extension of the
Kripke structure as in our case.

For a nice overview of the history, problems and different approaches on de-
ontic logic see [34]. The chapter of McNamara in the Handbook of the History of
Logic contains a general description of the topic, mainly the different paradoxes
arising under SDL [20]. For a discussion on CTDs see [24] and references therein.

188 C. Prisacariu and G. Schneider

Future Work: Our work is a first step towards a more ambitious task, and we be-
lieve the formalism chosen will allow us to achieve the following goals. The first
extension is to add real-time to be able to express and reason about contracts with
deadlines. Other immediate extension is the syntactic distinction in the signature
of the definition part of CL between subjects, proper actions and objects. This
would permit to make queries (and model check properties) for instance about
all the rights and obligations of a given subject, or determine under which con-
ditions somebody is obliged/forbidden to perform something. We have not con-
sidered in this paper the problem of negotiation nor monitoring of contracts. We
believe these are important features of a contract language which must be taken
into account in future work. Concerning actions, we got inspiration from the works
on dynamic logics [25]. We would like to deepen the study of the action algebra to
make the distinction between the intuitive meaning of conjunction under obliga-
tion, permission and prohibition. Further investigation is also needed to charac-
terize negation on actions, both for capturing and distinguishing the ideas of “not
doing something” and “doing something but a given action”, which are not dif-
ferentiated in our current approach. We want to explore the proof system of the
Cμ logic, and to extend existing model checkers for μ-calculus [3,18] to analyze
contracts as mentioned in the remarks of our example.

References

1. Aagedal, J.: Quality of Service Support in Development of Distributed Systems.
PhD thesis, Dept. of Informatics, Faculty of Mathematics and Natural Sciences,
University of Oslo (2001)

2. Beugnard, A., Jézéquel, J.M., Plouzeau, N.: Making components contract aware.
IEEE 32, 38–45 (1999)

3. Biere, A.: mu-cke - efficient mu-calculus model checking. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 468–471. Springer, Heidelberg (1997)

4. Broersen, J.: Action negation and alternative reductions for dynamic deontic logics.
J. Applied Logic 2, 153–168 (2004)

5. Broersen, J., Wieringa, R., Meyer, J.J.C.: A fixed-point characterization of a de-
ontic logic of regular action. Fundam. Inf. 48, 107–128 (2001)

6. Daskalopulu, A.: Model Checking Contractual Protocols. In: Breuker, L.R., Leenes,
R., Winkels, R. (eds.) Legal Knowledge and Information Systems, JURIX 2000.
Frontiers in Artificial Intelligence and Applications, vol. 48, pp. 35–47. IOS Press,
Amsterdam, Trento, Italy (2000)

7. Daskalopulu, A., Maibaum, T.S.E.: Towards Electronic Contract Performance. In:
Legal Information Systems Applications, 12th International Conference and Work-
shop on Database and Expert Systems Applications, pp. 771–777. IEEE, NJ, New
York (2001)

8. Davulcu, H., Kifer, M., Ramakrishnan, I.V.: CTR-S: A Logic for Specifying Con-
tracts in Semantic Web Services. In: WWW04. pp. 144–153 (2004)

9. Fischer, M.J., Ladner, R.E.: Propositional modal logic of programs. In: STOC’77,
pp. 286–294. ACM Press, New York (1977)

10. Girard, J.Y.: Linear logic. Theor. Compu. Sci. 50, 1–102 (1987)
11. Governatori, G.: Representing business contracts in RuleML. International Journal

of Cooperative Information Systems 14, 181–216 (2005)

A Formal Language for Electronic Contracts 189

12. Governatori, G., Rotolo, A.: Logic of violations: A gentzen system for reasoning
with contrary-to-duty obligations. Australian Journal of Logic 4, 193–215 (2006)

13. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27,
333–354 (1983)

14. Kozen, D.: Kleene algebra with tests. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS’97) 19, 427–443 (1997)

15. Kozen, D., Parikh, R.: A decision procedure for the propositional μ-calculus. In:
Clarke, E.M., Kozen, D. (eds.) 4th Workshop on Logics of Programs. LNCS,
vol. 164, pp. 313–325. Springer, Heidelberg (1983)

16. Kozen, D.: On kleene algebras and closed semirings. In: Rovan, B. (ed.) Mathemat-
ical Foundations of Computer Science 1990. LNCS, vol. 452, pp. 26–47. Springer,
Heidelberg (1990)

17. Mally, E.: Grundgesetze des Sollens. Elemente fer Logik des Willens. Graz:
Leuschner & Lubensky (1926)

18. Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular
alternation-free μ-calculus. Sci. Comp. Program. 46(3), 255–281 (2003)

19. Meyer, J.J.C.: A different approach to deontic logic: Deontic logic viewed as a
variant of dynamic logic. Notre Dame Journal of Formal Logic 29, 109–136 (1988)

20. McNamara, P.: Deontic logic. In: Gabbay, D.M., Woods, J. (eds.) Handbook of
the History of Logic, vol. 7, pp. 197–289. North-Holland Publishing, Amsterdam
(2006)

21. Molina-Jimenez, C., Shrivastava, S., Solaiman, E., Warne, J.: Run-time Monitor-
ing and Enforcement of Electronic Contracts. Electronic Commerce Research and
Applications 3, 108–125 (2004)

22. Paschke, A., Dietrich, J., Kuhla, K.: A Logic Based SLA Management Framework.
In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,
vol. 3729, Springer, Heidelberg (2005)

23. Pnueli, A.: Temporal logic of programs. In: FOCS’77, pp. 46–57. IEEE, NJ, New
York (1977)

24. Prakken, H., Sergot, M.: Contrary-to-duty obligations. Studia Logica 57, 91–115
(1996)

25. Pratt, V.R.: Semantical considerations on floyd-hoare logic. In: FOCS’76, pp.
109–121. IEEE, NJ, New York (1976)

26. Pratt, V.R.: A practical decision method for propositional dynamic logic: Prelim-
inary report. In: STOC’78, pp. 326–337. ACM Press, New York (1978)

27. Pratt, V.R.: Dynamic algebras and the nature of induction. In: STOC’80, pp.
22–28. ACM Press, New York (1980)

28. Prisacariu, C., Schneider, G.: Towards a formal definition of electronic contracts.
Technical report 348, Department of Informatics, University of Oslo (2007)

29. Song, I., Governatori, G.: Nested rules in defeasible logic. In: Adi, A., Stouten-
burg, S., Tabet, S. (eds.) RuleML 2005. LNCS, vol. 3791, pp. 204–208. Springer,
Heidelberg (2005)

30. Tosic, V.: On Comprehensive Contractual Descriptions of Web Services. In:
IEEE International Conference on e-Technology, e-Commerce, and e-Service, pp.
444–449. IEEE, NJ, New York (2005)

31. Walukiewicz, I.: A Complete Deductive System for the μ-Calculus. PhD thesis,
Warsaw University (1993)

32. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional
μ-calculus. In: LICS’95, pp. 14–24. IEEE, NJ, New York (1995)

33. Wright, G.H.V.: Deontic logic. Mind 60, 1–15 (1951)
34. Wright, G.H.V.: Deontic logic: A personal view. Ratio Juris 12, 26–38 (1999)

A Mechanized Model of the Theory of Objects

Ludovic Henrio and Florian Kammüller

CNRS – I3S – INRIA, Sophia-Antipolis
and

Technische Universität Berlin

Abstract. In this paper we present a formalization of Abadi’s and
Cardelli’s theory of objects in the interactive theorem prover Isabelle/
HOL. Our motivation is to build a mechanized HOL-framework for the
analysis of a functional calculus for distributed objects. In particular,
we present (a) a formal model of objects and its operational semantics
based on de Bruijn indices (b) a parallel reduction relation for objects
(c) the proof of confluence for the theory of objects reusing Nipkow’s
HOL-framework for the lambda calculus. We expect this framework to
be highly reusable and allow further development and mechanized proofs
of various aspects of object theory, e.g., distribution, aspect orientation,
typing.

1 Introduction

“A Theory of Objects” [1] defines the ς-calculus for the abstract and precise
characterization of object oriented languages. The ς-calculus is a computation
model for object oriented programming in the same way as the λ-calculus models
functional programming.

Ever since its creation, the ς-calculus has evolved in many ways. First, [1]
already provides a wide range of different extensions for the basic ς-calculus
(e.g., [2] and [3]), summarized in the book [1]. The Theory of Objects has also
been adopted by many as the lingua franca for the theory of object oriented
programming and has been taken as a basis for further experimentation and
development. For example, Gordon and Hankin extended the ς-calculus towards
the paradigm of parallel programming [15]. More recently, the ς-calculus has
been incorporated into the ASP calculus that is a theoretical basis for distributed
objects [11], and also into higher-level flavors like aspect-orientation [19].

On the mechanized proofs side, a formalization of the imperative variant of
the ς-calculus has been defined in Coq [13], this work proves type safety for the
imperative ς-calculus, but do not provide any result concerning determinism.

The objective of this paper is to provide a sound foundation and formalization
of the ς-calculus. We also expect this work to ground further formalizations of
extensions and concepts relying on the ς-calculus, and to impact significantly on
the mechanized proofs related to such extensions. We are particularly interested
in the design of distributed versions of the ς-calculus, and as such, in proving

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 190–205, 2007.
c© IFIP International Federation for Information Processing 2007

A Mechanized Model of the Theory of Objects 191

confluence first for the ς-calculus in order to lift the mechanization to paral-
lelized object calculi. Indeed, in the presence of distributed objects, confluence
is recognized as a particularly interesting topic as highlighted in [12,6].

For those projects, and more generally aiming at a wide use of a mechanized
theory of objects, we present here a formalization and confluence proof of the
untyped ς-calculus. It uses a framework for confluence in Isabelle/HOL [20],
and is partially inspired by an earlier attempt on the formalization of the ς-
calculus [14]. However, this formalization is quite different from the preceding
attempt; and, considering confluence, object-orientation required specific devel-
opments in order to adapt the existing confluence framework.

Our contribution in this paper is the following:

– Basically, this article defines a sound formalization of the ς-calculus;
– it provides a confluence proof for the ς-calculus;
– and it demonstrates how Nipkow’s framework for confluence in Isabelle/HOL

can be adapted in order to support object-orientation.

A first idea could consist in proving confluence in the ς-calculus by relying
on its translation into the λ-calculus [2] which is confluent. However, objects are
lost in the translation into the λ-calculus, which prevents us from concluding
about the confluence in the object world (no function has been defined yet for
bringing back a lambda term into an object world – which is a priori impos-
sible). Moreover, a mechanized model adapted to objects allows us to aim at
several crucial properties on objects, like typing, confluence of concurrent object
languages, etc. We detail some of these perspectives in Section 5.

In this paper we first introduce Isabelle/HOL [21] and the ς-calculus in Sec-
tion 2 to provide sufficient technical detail for the understanding of the exposi-
tion. Then, in Section 3 we present the model as expressed in the input language
of Isabelle/HOL. Section 4 introduces confluence proofs, as provided by the
framework of Tobias Nipkow [20], and then presents the derivation of confluence
for the ς-calculus. The Isabelle/HOL mechanization is available at one of the
authors’ web page [18].

2 Preliminaries

In this section we introduce Isabelle/HOL and the functional ς-calculus; both
with regard to the elements that are relevant for the understanding of the re-
mainder of the paper.

2.1 Isabelle/HOL

The interactive theorem prover Isabelle has foremost been constructed as a
generic tool to provide a framework for the creation of specialized theorem
provers for various application logics. However, besides Isabelle/ZF, an embed-
ding of Zermel-Fraenkel set theory it is the instantiation to Higher Order Logic
(HOL), called Isabelle/HOL, that is nowadays most widely used. In particular

192 L. Henrio and F. Kammüller

for computer science applications, where typing comes in naturally, HOL is well-
suited as it provides a logic with types. The following meta-logical formula is an
example illustrating the universal quantification with

∧
, higher order variables P

and Q, and implication =⇒ (the square brackets �� act as a pseudo-conjunction).
∧

P Q x. � P x; Q x � =⇒ P x

Moreover, the object logic HOL contains the classical logic constructors, like
−→ for implication, ∀ and ∃ for quantification, ∧ for conjunction, and ∨ for
disjunction.

To illustrate Isabelle/HOL syntax, we sketch the definition of a list datatype:

datatype α list = Nil ("[]")
| Cons α (α list) (infixr "#" 65)

The above definition introduces the type list over an arbitrary type of elements.
The datatype definition introduces two constructors: Nil and Cons. The code
in brackets behind the constructors declares the pretty printing syntax enabling
for example the use of x # l for a constructed list.

Among the internally generated rules for a datatype specification there are
induction rules for recursive types like the above and injectivity rules for the
constructors.

Functions over a datatype may be defined as primitive recursive functions. As
an illustrative example consider the function that appends two lists to form a
new one:

consts append :: [α list, α list] ⇒ α list (infixr "@" 65)

Next, the semantics of this function is given by the two classical equations below.
Before the colon : optional rule names are specified for later reference.

primrec
append_Nil: [] @ l = l
append_Cons: (x # l1) @ l2 = x # (l1 @ l2)

2.2 Functional ς-Calculus

The Theory of Objects consists in various ς-calculi that are aimed to be as
“simple and fruitful as λ-calculi” [2]. Rather than using the λ-calculus to encode
objects and their behaviour in a way that is overly complicated, the ς-calculus
takes objects as primitive.

The kernel calculus that we model in this paper includes object definition,
method invocation, and method override. An object consists of a set of labeled
methods. A method is a function with one formal parameter that represents self,
i.e., the object in which the method is contained. The ς-calculus relies on the
following syntax.

a, b ::= [lj = ς(xj)bj]j∈1..n object definition
| a.lj (j ∈ 1..n) method call
| a.lj := ς(x)b (j ∈ 1..n) update

A Mechanized Model of the Theory of Objects 193

Object fields are not defined as they are considered as degenerate methods
not using its self parameter. Therefore selection of a field or invocation (call)
of a method are identical. Similarly method override and field update are also
interchangeable. We quote next the so-called primitive semantics of objects [2].
For a gentler introduction we refer to the following section where we introduce
the ς-calculus step by step in Isabelle/HOL.

Let o ≡ [lj = ς(xj)bj]
j∈1..n (lj distinct).

o is an object with method names lj and methods ς(xj)bj

o.lj →β bj{xj ← o} (j ∈ 1..n) selection / method call

o.lj := ς(x)b →β [lj = ς(x)b, li = ς(xi)b
i∈(1..n)−{j}
i] (j ∈ 1..n) update / override

Note that it is possible to encode the ς-calculus into λ-calculus which already
features a good formalization and a confluence proof in Isabelle/HOL [20]. How-
ever, as stated by Abadi and Cardelli, as soon as one is interested in typing
issues for the ς-calculus, the encoding into the λ-calculus is not sufficient. Even
more importantly such an encoding is not a good solution because, as objects
are lost in the translation, getting properties back to the original object world
is generally impossible.

We are also interested in bringing the proof of confluence presented in the
following to the parallel and concurrent object world. This is one of the first long-
term goals of such a formalization. Moreover, in this context the translation to
the λ-calculus is even less adapted than for the classical ς-calculus. For example,
in ASP, the notions of objects and concurrency are unified, and as objects are
lost in the translation into the λ-calculus, expressing ASP semantics on such a
translation is impossible.

3 Isabelle/HOL Model

In this section we introduce the formalization of the ς-calculus with de Bruijn
indices [7]. We then show how substitution is formalized on the de Bruijn object
terms and how it works technically based on lifting. Finally, we define the re-
duction relation →β and show some first proof results concerning the transitive,
reflexive closure →∗

β of →β .
The formalization of the ς-calculus by Ehmety [14] in Isabelle/ZF, seems to

have followed the earlier formalization of the λ-calculus in Isabelle/HOL [20]. It
also uses de Bruijn indices but does not provide any proof. Although, Ehmety’s
definition of ς-terms, substitution, and the reduction relation has been performed
in Isabelle/ZF, they are close enough to Nipkow’s λ-formalization in HOL and
can be used here. However, we deviate from Ehmety in that we choose lists
instead of maps for representing objects.

3.1 Object Terms Using de Bruijn Indices

de Bruijn indices are very useful for implementation of calculi with abstraction
as they abstract from variable names. A variable is replaced by a natural number

194 L. Henrio and F. Kammüller

that represents the distance — in terms of nesting depth — of this variable to its
binder. Thereby terms contain only numbers, no variable; α-conversion becomes
obsolete. This is a considerable advantage as α-conversion is a difficult prob-
lem both from a practical point of view and for mechanical proofs. α-conversion
has triggered recent research activities on integrating nominal techniques for
handling calculi with binders [24,23]. There, classes of terms equivalent by α-
conversion are represented by a bijective set; the idea to abandon the some-
what superfluous distinctness created by different variable names is similar to
de Bruijn indices. The survey [8] provides a comparison with close regard to
theorem proving and shows that de Bruijn indices do still have some advantages
when it comes to pragmatics.1 Moreover, Nipkow’s framework for confluence of
λ-calculus already uses de Bruijn indices, thus adapting ς-calculus to de Bruijn
indices allows us to reuse most of the generic part of Nipkow’s framework.

De Bruijn indices are best explained by an example. Consider the following
term on the left side in the well known form of λ-calculus with variables and its
equivalent on the right side with de Bruijn indices.2

λx.λy.(λz. x z)y = Abs(Abs(Abs(V ar 2)$(V ar 0))(V ar 0))

Note that, different variables may be represented by the same number, e.g., z
and x both are V ar 0 . De Bruijn indices relieves one from having to deal with
α-conversion: for example both λx.x and its α-equivalent λy.y are represented
by Abs(V ar0). The downside of de Bruijn indices is that substitution, crucial
for the definition of application, is rather complicated to define: a term has to
be “lifted”, i.e. his “variables” have to be increased by one, when it moves into
the scope of an abstraction in the process of substitution. We will encounter this
definition for ς in the next subsection.

In the ς-calculus, abstraction is used to represent the self of an object as a
parameter in a method ς(x)b that is replaced by the current enclosing object
when this method is called. This abstraction will be represented by de Bruijn
indices. Hence, variables are represented as natural numbers. The type dB of
ς-terms in Isabelle/HOL is given by the following datatype declaration where
Label is just a type synonym for nat, the type of natural numbers.

datatype dB = Var nat
| Obj (dB list)
| Call dB Label
| Upd dB Label dB

The constructor Var builds-up a new term dB from a nat representing the de
Bruijn index of the variable. The constructor Obj takes a list of fields or meth-
ods as parameters; even a method ς(x)b having a formal parameter x is a simple
dB term: there is an implicit abstraction for each field of each object, this is due
to the fact that each field is a method with a unique parameter. The constructor

1 However, it is planned for future work to experiment with nominal techniques.
2 We use here the constructors V ar, Abs, and $ for variables, abstractions, and

application as in Isabelle/HOL .

A Mechanized Model of the Theory of Objects 195

for invocation Call selects a field given by a label in a dB term representing an
object. Field update (method override) Upd replaces a labeled field in an object
by another value, i.e., a dB term. This informal semantics will be formally en-
coded by the definition of the reduction relation →β in Section 3.3. In order to
define the reduction we need to define substitution on these de Bruijn terms.
The fact that we use a list to represent the indexed set of labeled fields in an
object will be discussed at the end of this section in 3.4.

3.2 Substitution

As de Bruijn indices discard the use of formal parameters, substitution has to be
performed by adapting the numbers representing variables when a term is moved
between different layers of the nested scopes of abstraction. This movement
occurs precisely when a variable has to be substituted by a term containing a free
variable inside the scope of an abstraction. Therefore the notion of substitution
is chained with the notion of lifting. We declare the following two constants in
Isabelle/HOL.

subst :: [dB, dB, nat] ⇒ dB ("_[_’/_]" [300, 0, 0] 300)
lift :: [dB, nat] ⇒ dB

Because of the declared mixfix syntax, we can write t[s/n] to express that in a
term t the variable represented by n shall be replaced by s. Before defining the
semantics of substitution we need to define the lifting of a term. A lifting carries
a parameter n representing the cut between free and bound variable numbers in
the term that shall be lifted. The operation lift is defined by the following set
of primitive recursive equations describing the effect of lifting over the various
cases of object terms.

liftVar: lift (Var i) k = (if i < k then Var i else Var (i + 1))
liftObj: lift (Obj f) k = (Obj (map (λ x. lift x (k + 1)) f))
liftCall: lift (Call a l) k = Call (lift a k) l
liftUpd: lift (Upd a l b) k = Upd (lift a k) l (lift b (k + 1))

A variable is only lifted when it is free, i.e. when its representing number is
greater or equal to the “cut” parameter. The “cut” parameter is increased in
the recursive call when an abstraction scope is entered. This is the case when
the lift function enters inside a method in an object, and when a field is updated
by a method. Note that we increase only on the right side of an update because
the left side will always be an object seen as a reference whereas the right side
is a method.3

From the definition of lift, substitution can be defined as follows.

subst_Var: Var i [s/k] =
if k < i then Var (i - 1) else if i = k then s else Var i

subst_Obj: Obj f [s/k] = Obj (map (λ x. x[(lift s 0)/(k+1)]) f)

3 For clarity, we use here the map function in liftObj. In reality this is rejected by
Isabelle/HOL as it violates the primitive recursion scheme. An individual primitive
recursive function map lift has to be defined.

196 L. Henrio and F. Kammüller

subst_Call: Call a l [s/k] = Call (a [s/k]) l
subst_Upd: Upd a l b [s/k] = Upd (a [s/k]) l (b [lift s 0 / k+1])

The idea is that a term s is lifted if it is substituted inside an abstraction scope,
i.e., inside an object and at the right side of an update. The lifting is always
initiated with “cut” parameter 0 as initially the outermost free variable when
entering a scope.4 The decrementation in the equation for Var in cases of free
variables greater than the “cut” parameter is necessary because substitution is
only used by the relation →β that we present next: each time substitution is
applied a level of abstraction is lost. In general, defining a substitution outside
→β is not meaningful for a de Bruijn term.

3.3 Reduction Relation

Once substitution is defined the reduction relation can easily be specified. We
first declare a relation beta as a set of pairs of terms, and then define s →β t,
meaning (s, t) ∈ beta.

consts beta :: (dB × dB) set
translations
s →β t == (s, t) ∈ beta
s →∗

β t == (s, t) ∈ beta∗

The relation beta is now defined by an inductive definition. Given a set in
Isabelle/HOL, an inductive definition defines a set by inductively specifying its
content. Such a definition consists of a set of rules adhering to certain well-
formedness criteria. The definition of the set is then implicitly given by the
smallest set closed under those rules. As a consequence, induction schemes can
be automatically provided by Isabelle/HOL. We profit from the natural style
that is defined for lists in Isabelle/HOL: for example to extract the lth method
of an object Obj f we can write f ! l. Similarly the update of the lth method
by t is Obj (f [l := t]).

inductive beta
intros
beta: l < length f =⇒ Call (Obj f) l →β (f!l)[(Obj f)/0]
upd : Upd (Obj f) l a →β Obj (f [l := a])
sel : s →β t =⇒ Call s l →β Call t l
updL: s →β t =⇒ Upd s l u →β Upd t l u
updR: s →β t =⇒ Upd u l s →β Upd u l t
obj : s →β t =⇒ Obj (f [l := s]) →β Obj (f [l := t])

The central and most interesting rule of the reduction is the first rule beta that
calls a method on an object. An evaluation of o.l consists in taking the lth field,
say ς(x)b, of the object o. Evaluation of the method call consist in evaluating b
where o substitutes the formal self parameter x. The other rules define the reduc-
tion relation beta to be a congruence, i.e., we can reduce terms inside contexts.

4 The problem and solution mentioned in footnote 3 also apply to the map in subst.

A Mechanized Model of the Theory of Objects 197

For the investigation of the reduction relation, in particular for confluence, we
need to investigate the transitive, reflexive closure →∗

β of →β . Isabelle/HOL pro-
vides sufficient support in its theory database for reasoning about relations. For
example, for any relation R of type (α×α)set the reflexive, transitive closure may
be constructed as R∗; corresponding theorems and induction scheme are provided.

Congruence Rules for →∗
β. For the transitive reflexive closure →∗

β of →β the
following congruence rules can be derived.

s →∗
β s’ =⇒ Call s l →∗

β Call s’ l
s →∗

β s’ =⇒ Upd s l u →∗
β Upd s’ l u

s →∗
β s’ =⇒ Upd u l s →∗

β Upd u l s’
� u →∗

β u’; s →∗
β s’ � =⇒ Upd u l s →∗

β Upd u’ l s’
s →∗

β s’ =⇒ Obj(f [l := s]) →∗
β Obj(f [l := s’])

The last rule is a direct transposition of the rule obj of →β to its transitive
closure →∗

β . For the use in the confluence proofs however the following derived
rule is more suitable because it reflects the stepwise change of an object.

� n < length f; f ! n →∗
β x � =⇒ Obj (f) →∗

β Obj (f[n := x])

3.4 Extensions for Typing

Evidently, in our HOL model we use lists for the fields of an object where the
original Theory of Objects prescribes a sequence of labels mapping to terms. This
representation is not quite adequate with respect to typing issues The reasons
for this deviation are pragmatic. The type system of classical HOL as encoded
in Isabelle/HOL is such that all functions are total. Hence, the type usually
used for maps is the Map-type that mimics a partial function type by the total
function type α⇒(β option) where β option is the lifting of an arbitrary type
β given by the following datatype.

datatype α option = None | Some α

The option type together with pattern matching enables a smooth treatment
of partiality sufficient for many applications.

In the earlier ZF-formalization of ς-calculus [14], this option type had been
used to model the map contained in an object. Unfortunately, there is no natural
and nicely embedded version of finite maps available in Isabelle. It appears
that in most proofs, eventually, the finiteness is not necessary to reach the results.
Unfortunately, in our case, finiteness is a necessary prerequisite (see for example
the lemma of Section 4.4).

Furthermore, lists are well supported, their syntax is very close to maps, and
finally using list update, we implicitly respect the “domain” of a map, i.e., an
update out of bounds is ignored as described in the following theorem.

∧
i. length xs ≤ i =⇒ xs[i:=x] = xs

Moreover, there are several inductions on lists available: structural list induction,
mutual structural induction, structural induction in reverse form, i.e., over l @
[x], and an induction over the length of lists. Clearly, we could have defined a

198 L. Henrio and F. Kammüller

0

1
...

n

� �
� �

...
...

� �

f!0
f!1
...

f!n

l0
l1
...

ln

Fig. 1. Extension of object by map to labels for typing

type for finite maps, or a class of finite types and assume maps in that class. In
any case, we would have had to construct this infrastructure first, i.e., datatype
but also an adequate framework allowing us to reason about this datatype before
being able to begin with the formalization of the ς-calculus.

On the other hand, the inadequacy of our model is not irreversible. In fact
we can add types later on by extending an object Obj f with an additional map
from list indices to labels. The principle of this combined mapping is depicted
in Figure 1.

As the list selection λi. l ! i represents a function, and the map from in-
dices to labels is injective, we can invert it and associate to each label a unique
term. In [1], types of objects are defined by their labels, and we can easily provide
an extension for typing by integrating labels in our model as explained above.
The proof of confluence will not be influenced by such a change. From a general
point of view, dealing with natural numbers instead of labels simplifies the han-
dling of the formalization. Currently we build an extension of Isabelle/HOL by
finite maps and corresponding induction schemes to represent labels.

4 Confluence Proof

4.1 Nipkow’s Framework

Tobias Nipkow provides in [20] a framework for the proof of Church-Rosser
properties in Isabelle/HOL. By “framework” we mean that his formalization is in
large parts reusable. Although he formalizes only the classical λ-calculus and its
operational semantics, the proof of confluence is mainly conducted on a generic
level using the polymorphic relation type (α×α)set. Therefore, it constitutes a
reusable proof enabling the reduction of a confluence proof to central lemmata
as shown in this section.

Nipkow follows in his formalization the classical way of proving Church-Rosser
as explained in Barendregt’s book [4][Chapter 3]. Apparently, it is also this proof
method, originated by Tait and Martin-Löf, that is used by Abadi and Cardelli
for proving Church-Rosser [2]. Nipkow moreover formalizes an alternative ap-
proach of the so-called complete developments due to Takahashi, which is shorter
and more elegant on paper. Concerning the mechanical proof there is no gain
because the classical proof is solved almost automatically by Isabelle.

We give an outline of the main properties of the framework for confluence
proofs. The property square is a predicate over four relations describing conflu-
ence of a relation in its most general from.

A Mechanized Model of the Theory of Objects 199

square :: [(α × α)set, (α × α)set, (α × α)set, (α × α)set] ⇒ bool
square R S T U ==
∀ x y. (x, y)∈ R −→ (∀ z. (x, z)∈ S −→ (∃ u. (y, u)∈ T ∧ (z, u)∈ U))

The square predicate is used as a primitive in proofs. Indeed, it enables a rea-
soning similar to graphical arguments where we express confluence as usually
depicted in paper proof.

In general, and also in our case, we want to prove the square with just one
relation (the transitive, reflexive closure of the reduction relation) at each edge.
Therefore, commute reduces the square to just two relations and diamond to one.
Finally confluence is defined as a square over the reflexive transitive closure of
a relation.

commute :: [(α × α)set, (α × α)set] ⇒ bool
commute R S == square R S S R
diamond :: (α × α)set ⇒ bool diamond R == commute R R
confluent :: (α × α)set ⇒ bool confluent R == diamond (R∗)

The original Church-Rosser property describes that any two terms that are
connected by the relation or its inverse have a common reduct.

Church_Rosser :: (α × α) set ⇒ bool
Church_Rosser R ==

∀ x y. (x, y) ∈ (R ∪ R−1)∗ −→ (∃ z. (x, z) ∈ R∗ ∧ (y, z) ∈ R∗)

The following general theorem represents the classical equivalence between the
Church-Rosser property and confluence, i.e., diamond property of the closure of
the reduction relation.
Church_Rosser_confluent: Church_Rosser R = confluent R

The following theorem provides a further possible way of ensuring confluence
of a relation T. Indeed, proving the diamond property of a relation R in between
T and its reflexive transitive closure is sufficient to ensure that T is confluent.

diamond_to_confluence: � diamond R; T ⊆ R; R ⊆ T∗ � =⇒ confluent T

The classical trick already used in the application for the λ-calculus is to
use a so-called parallel reduction for R for which the diamond property is true.
Indeed, in general, the original reduction relation does not verify diamond T,
and proving diamond T∗ directly is very difficult. Thanks to the above theorem,
we only have to show the inclusion of the parallel reduction relation in between
the original reduction relation T and its transitive, reflexive closure.

4.2 Parallel Reduction

In order to reuse the full extent of Nipkow’s framework we have to define a
parallel reduction relation for the ς-calculus. In general, a parallel reduction
relation is a relation similar to the original reduction relation, but able to reduce
several sub-term of the original term: it applies reduction at several possible
places at the same time. Hence, the main difficulty is to find such a relation that
parallelizes the original relation — and define this relation in such a way that it

200 L. Henrio and F. Kammüller

matches the provisos of Theorem diamond to confluence, i.e., lies in between
the original reduction beta and its transitive, reflexive closure beta∗.

The parallel reduction relation for the ς-calculus that we use is very similar
to its equivalent in the λ-calculus: it applies reduction →β on any subset of
the possible reduction places in parallel. In other words, the parallel reduction
applies itself recursively at all possible reduction places, and includes the reflexive
relation. It is defined as follows:

syntax
par_beta :: ([dB, dB] => bool) (infixl "⇒β" 50)

translations
s ⇒β t == (s, t) ∈ par_beta

inductive par_beta
intros

var: Var n ⇒β Var n
obj: � length s = length s’; ∀ l < length s. s!l ⇒β s’!l �

=⇒ Obj s ⇒β Obj s’
upd: � s ⇒β s’; t ⇒β t’ � =⇒ Upd s l t ⇒β Upd s’ l t’
upd’: � Obj s ⇒β Obj s’; t ⇒β t’ �

=⇒ (Upd (Obj s) l t) ⇒β (Obj (s’ [l := t’]))
sel: s ⇒β t =⇒ Call s l ⇒β Call t l
beta: � Obj f ⇒β Obj f’; l < length f’ �

=⇒ Call (Obj f) l ⇒β (f’ ! l)[(Obj f’)/0]

4.3 Inclusion Lemmata and Diamond Property of par beta

Nipkow’s framework provides the general structure for the proof of confluence
for a reduction relation on terms. To summarize the preceding section, showing
confluence is reduced to showing that the parallel reduction par beta is between
beta and beta∗ (beta ⊆ par beta ⊆ beta∗) and that the diamond property
holds for par beta.

We cannot get much more (for free) from the framework. However, we can
try to follow the outline of the proofs of these properties in the case of the λ-
calculus. In Nipkow’s proof all three lemmata are solved almost automatically
by Isabelle, but, in the case of the ς-calculus, we need to interact more and to
prove some cases manually.

The proof of beta ⊆ par beta is performed using induction and Isabelle’s
classical reasoner. It needs decisively more guidance than the original proof.

The other inclusion par beta ⊆ beta∗ is in principle comparable. However,
it revealed a lemma that we needed to prove separately (see Section 4.4).

The diamond property diamond par beta finally is rather long and technical
in our case. There are a considerable number of combinations between the dif-
ferent constructors leading to numerous cases in the case analysis. Like Nipkow
we start the global proof by unfolding the definitions of diamond, commute, and
square, and applying par beta induction on the unfolded goal. In contrast to
Nipkow, where the rest is done automatically by one application of the classi-
cal reasoner, we need to guide the prover on the remaining subgoals. A typical
subgoal is the following:

A Mechanized Model of the Theory of Objects 201

� length s = length s’; (1)
∀ l<length s. s!l ⇒β s’!l −→
(∀ z. s!l ⇒β z −→ (∃ u. s’!l ⇒β u ∧ z ⇒β u))

� =⇒ ∀ z. Obj s ⇒β z −→ ∃ u. Obj s’ ⇒β u ∧ z ⇒β u)

This goal basically means that the diamond property can be lifted to objects,
provided it is verified (by recurrence) on all the fields of the object. To solve this
goal we use an inversion lemma for objects:

� Obj s ⇒β z � =⇒ ∃ lz. length s = length lz ∧ z = Obj lz

The application of this lemma gives a witness z = Obj lz with Obj s ⇒βObj z.
Unfortunately the proviso for the right lower half of the diamond square in the
goal (1) (∀z. s!l ⇒βz −→(∃u. s’ ! l ⇒βu ∧z ⇒βu)) is too fine grained.
We need another technical lemma that transforms this proviso into the existence
of a list of elements.

(∃ lu. length lu = length s ∧
(∀ l < length s. s’!l ⇒β lu!l ∧ lz!l ⇒β lu!l))

Using the witness list lu we can then insert Obj lu as the existential witness
that represents the lower right corner of the diamond square (u in the goal (1)).

For the remaining two subgoals Obj s’ ⇒βObj lu, and Obj lz ⇒βObj lu
we simply apply twice the object reduction lemma that we present in the next
section,and has, in fact, already been derived for the proof of par beta ⊆ beta∗.

4.4 Object Reduction Lemma

In the proof of par beta ⊆ beta∗ and the diamond property for par beta we
encounter the following subgoal:

� length f = length g; ∀ l < length f. f!l →∗
β g!l � (2)

=⇒ Obj f →∗
β Obj g

This goal trivially occurs when reduction for objects can be applied; such a
reduction reduces simultaneously all fields of an object. Using the recurrence
hypothesis, we can infer that each of the field can be obtained by beta∗, and
we want to prove that this can be lifted to the level of the object (roughly:
→∗

β→∗
β . . . →∗

β = →∗
β).

Although seemingly obvious it is not trivial to prove. We first derive the
following lemma that describes the witness of a list that keeps record of all steps
in a →β step by step transformation from the field map f to the field map g.
This transformation is described graphically in Figure 2.
lemma rtrancl_beta_obj_lem:
� length f = length g; ∀ l < length f. f!l →∗

β g!l � =⇒
∀ k ≤ length f.

(∃ ob. length ob = (k + 1) ∧
(∀ obi. obi mem ob −→ length obi = length f) ∧
(ob ! 0 = f) ∧ (Obj (ob ! 0) →∗

β Obj (ob ! k)) ∧
(take k (ob ! k) = take k g) ∧
(drop k (ob ! k) = drop k f))

202 L. Henrio and F. Kammüller

[

length(f) + 1 elements
︷ ︸︸ ︷

f , f

g

, f

g

, . . . ,

f

g , g

]

Fig. 2. List of stepwise transformations

The functions take and drop are predefined list operators. Given a natural
number n and a list l the application take n l returns the list containing the n
first elements of l; drop n l returns the rest of l when the first n are dropped.
Using the existence of a list ob for each n ≤ length f we can prove the initial
subgoal (2) using the lemma rtrancl beta obj lem instantiated with length
f. Having the existence of ob, we then only need to infer that its last element is
equal to g.

4.5 Confluence

The proof of the confluence property for the ς-calculus is, thanks to Nipkow’s
framework, simply achieved by proving the theorem diamond to confluence
appropriately instantiated.

� diamond par_beta; beta ⊆ par_beta; beta ⊆ beta∗ �=⇒ confluent beta

The provisos of this main theorem, i.e., diamond par beta, beta ⊆ par beta,
and par beta ⊆ beta∗ are the lemmata described in the penultimate section
and just have to be plugged in. Thereby we have shown that the reduction
relation →β for the ς-calculus as defined here is Church-Rosser. This corresponds
to the result in the original paper [2][Theorem 2.1-1].

5 Conclusion, Impact and Perspectives

In this paper we have presented the formalization of the ς-calculus in Isabelle/
HOL using a de Bruijn notation. We have formalized the syntax and its opera-
tional semantics and proved confluence. We did profit from the mechanization of
the proof of confluence for the λ-calculus. The latter could be used as a basis for
our proofs, but confluence of an object oriented calculus required us additional
development compared to the simpler case of λ-calculus, in particular, a par-
ticular induction had to be developed for the parallel reduction of fields inside
an object. We used a pragmatic representation of lists to contain the fields of
an object. Although differing from the original Theory of Objects we argue that

A Mechanized Model of the Theory of Objects 203

no harm is done. Besides a mechanical verification of the ς-calculus the value
of our contribution is as a basis for future mechanical models of object oriented
languages.

Perspectives and impact of a mechanized ς-calculus. A direct motivation for the
mechanization of the ς-calculus is given by the project Ascot [17] for the me-
chanically supported analysis of aspect-oriented languages. We intend to use the
formalization of the ς-calculus as presented in this paper to model and examine
type safety of a core aspect calculus.

Another classical extension of this work consists in bringing all the typing
theory presented in [1] into the Isabelle/HOL framework for ς-calculus in order
to mechanize the proofs of subject reduction and type properties exhibited ten
years ago by Abadi and Cardelli.

Finally, a lot of theoretical results have been the objective of previous research
on object calculi, e.g., [22,10,9] for concurrency, [5] for mobility, [16] for a bisim-
ilarity relation, etc. Those results generally rely on a calculus very close to the
ς-calculus (and sometimes on the ς-calculus itself). Thanks to the mechanized
aspect of our model, we think our framework can be used in the future to verify
and perhaps improve the properties shown in those various contexts.
Why determinism? ASP calculus as a direct extension of this work. In the pres-
ence of distribution, confluence is a particularly interesting question. Therefore
we are interested in proving confluence first for the ς-calculus in order to lift the
mechanization to distributed object calculi. In practice, this work should first
lead to a mechanized version of the ASP calculus [11,12]. This calculus extends
the imperative ς-calculus [1] by adding distribution primitives. It mainly relies
on the aggregation of objects into so-called activities, and asynchronous method
calls between such activities, futures acting as promised replies associated to such
calls. The ASP-calculus is the theoretical basis for active objects as implemented
in the ProActive library. A first step in order to build a mechanized version of
ASP could consist in investigating a simpler functional version of ASP, for this
we plan to rely on the framework presented in this paper.

In this domain, we proved the realizability of such a perspective by designing
a functional version of the ASP calculus, realizing a mechanized model for such
a calculus, and we provided first proofs such as well-formedness of this calculus.
From a practical point of view, this consists in extending the ς-calculus with an
Active primitive, and the semantics by allowing to: create new activities, perform
remote method calls, and retrieve remote results. Our first major and innovative
objective is to design and prove the determinism of a functional active object
calculus; such a proof will be grounded on the local determinism property proved
in this paper. On a longer term point of view we expect to reuse this result to
prove new confluence properties, holding on part of the calculus, and based on
a distinction between some functional and some imperative services provided by
the distributed objects.

Acknowledgment. We would like to thank Larry Paulson for providing us the
formalization of the ς-calculus in Isabelle/ZF written by Ehmety.

204 L. Henrio and F. Kammüller

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg (1996)

2. Abadi, M., Cardelli, L.: A Theory of Primitive Objects. DEC Research Labs, TR
(1995)

3. Abadi, M., Cardelli, L.: An imperative object calculus. In: Mosses, P.D.,
Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT
1995, LNCS, vol. 915, Springer, Heidelberg (1995)

4. Barendregt, H.P.: The Lambda Calculus, its Syntax and Semantics. North-Holland,
2nd edition (1984)

5. Briais, S., Nestmann, U.: Mobile objects must move safely. Formal Methods for
Open Object-Based Distributed Systems IV. In: Proceedings of FMOODS’2002,
University of Twente, the Netherlands, Kluwer Academic Publishers, Dordrecht
(2002)

6. Niehren, J., Schwinghammer, J., Smolka, G.: A concurrent lambda calculus with
futures. Theoretical Computer Science 364(3), 338–356 (Nov. 2006)

7. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae 34, 381–392 (1972)

8. Berghofer, S., Urban, C.: A Head-to-Head Comparison of de Bruijn Indices and
Names. In: Head-to-Head, A. (ed.) Proceedings of the International Workshop on
Logical Frameworks and Meta-Languages: Theory and Practice. LFMTP 2006.
ENTCS, Elsevier, North-Holland, Amsterdam (2006)

9. Di Blasio, P., Fisher, K.: A calculus for concurrent objects. In: International Con-
ference on Concurrency Theory (1996)

10. Cardelli, L.: A language with distributed scope. In: Conference Record of the 22nd
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL’95) (1995)

11. Caromel, D., Henrio, L.: A Theory of Distributed Objects. Springer, Heidelberg
(2005)

12. Caromel, D., Henrio, L., Serpette, B.P.: Asynchronous and deterministic objects.
In: Proceedings of the 31st ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, ACM Press, New York (2004)

13. Ciaffaglione, A., Liquori, L., Miculan, M.: Reasoning about Object-based Calculi
in (Co)Inductive Type Theory and the Theory of Contexts. Journal of Automated
Reasoning. To appear (2007)

14. Ehmety, S.O.: Theory of objects in Isabelle/ZF. Unpublished theory files (1999)

15. Gordon, A.D., Hankin, P.D.: A concurrent object calculus: reduction and typing.
In: concurrent, A. (ed.) Proceedings HLCL’98. ENTCS, 1998, Elsevier, Amsterdam
(1998)

16. Gordon, A.D., Rees, G.D.: Bisimilarity for a first-order calculus of objects with
subtyping. In: Conference Record of the 23rd ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages (POPL’96), ACM Press, New York
(1996)

17. Jähnichen, S., Kammüller, F.: Ascot: Formal, mechanical foundation of aspect-
oriented and collaboration-based languages. Project with the German Research
Foundation (DFG) (2006)

18. Kammüller, F.: Author’s web-page. http://swt.cs.tu-berlin.de/~flokam
(2006)

http://swt.cs.tu-berlin.de/ ~ flokam

A Mechanized Model of the Theory of Objects 205

19. Ligatti, J., Walker, D., Zdancewic, S.: A type-theoretic interpretation of pointcuts
and advice. In: Science of Computer Programming: Special Issue on Foundations
of Aspect-Oriented Programming, Springer, Heidelberg (2006)

20. Nipkow, T.: More Church Rosser Proofs. Journal of Automated Reasoning 26,
51–66 (2001)

21. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL, LNCS, vol. 2283. Springer,
Heidelberg (2002)

22. Pierce, B.C., Turner, D.N.: Concurrent objects in a process calculus. In: Ito, T.,
Yonezawa, A. (eds.) TPPP 1994, LNCS, vol. 907, Springer, Heidelberg (1995)

23. Urban, C. et al.: Nominal Methods Group. Project funded by the German Re-
search Foundation (DFG) within the Emmy–Noether Programme, Web-page at
http://www4.in.tum.de/~urbanc/Nominal/ (2006)

24. Urban, C., Tasson, C.: Nominal Techniques in Isabelle/HOL. In: Nieuwenhuis, R.
(ed.) (CADE 2005), LNCS (LNAI), vol. 3632, Springer, Heidelberg (2005)

http://www4.in.tum.de/ ~ urbanc/Nominal/

Pict Correctness Revisited�

Philippe Bidinger1 and Adriana Compagnoni2

1 VERIMAG, Grenoble, France
2 Stevens Institute of Technology, Hoboken, NJ, USA

Abstract. The Pict programming language is an implementation of the
π-calculus in which executions of π-calculus terms are specified via an ab-
stract machine. An important property of any concurrent programming
language implementation is the fair execution of threads. After defining
fairness for the π-calculus, we show that Pict abstract machine execu-
tions implement fair π-calculus executions. We also give new proofs of
soundness and liveness for the Pict abstract machine.

1 Introduction

The π-calculus [14,17] is a minimal language designed to capture and model key
concepts of communicating concurrent systems in a formal setting. It empha-
sizes channel-based communication, dynamic channel creation and the ability to
communicate channels as data. Pict [19,16] is a high-level programming language
purely based on π-calculus primitives, as well as to explore the applicability of
theoretical work on type systems. Pict’s runtime environment is based on a for-
mal abstract machine specification, but little emphasis has been placed on its
correctness.

The correctness of a programming language runtime is critical since, in order
to be able to reason about programs, we need the guarantee that programs are
executed according to their semantics. Correctness results of implementations
usually relate executions of terms in a high-level language to its implementa-
tion in a low-level language. The low-level language can be an existing process
calculus, or like in Pict, an abstract machine specification.

In recent years, many process calculi based on the π-calculus have been intro-
duced to study the dynamics of existing or new paradigms of computation, such
as distributed computing, global computing, or component-based programming.
Much work has been done on the distributed implementation of these calculi
[5,7,22,20,10,8,11,12,1]. On the other hand, since the definition of Pict, there
has been no new insight for the local implementation of these calculi. There-
fore, Pict is still a reference implementation of the π-calculus, and we think that
proving its correctness is a first step toward more general proofs of correctness
of implementations of these calculi.

The π-calculus is a concurrent language where concurrency is modeled using
a non-deterministic reduction relation. The Pict Abstract Machine (PAM) im-
plements a particular scheduling strategy that corresponds to a subset of the
� This work was funded in part by the US Army under contract W15QKN-05-D-0011.

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 206–220, 2007.
c© IFIP International Federation for Information Processing 2007

Pict Correctness Revisited 207

possible executions in the π-calculus. It is therefore impossible to state an exact
correspondence between π-calculus executions and PAM executions. Instead, we
will prove the correctness of the abstract machine with three properties:

– A soundness property that states that PAM executions correspond to valid
π-calculus executions.

– A liveness property that ensures that the abstract machine is not stuck when
its state corresponds to a π-calculus term that can reduce.

– A fairness property that characterizes PAM executions among possible
π-calculus executions.

These properties are fairly standard but have not been proven for Pict yet (see
section 5 for details). The main contribution of this paper lies in the statement
and proof of a fairness property for Pict. To our knowledge, no implementation
of a process calculus has been proven fair so far, although fairness is conjectured
in [21,19]. Moreover, the technique we propose is general enough to be adapted
to similar settings.

Informally, we say that an execution is weakly fair if a prefixed process able
to communicate continuously will eventually do so. An execution is strongly fair
if a prefixed process able to communicate infinitely often will eventually do so.
Consider for instance the π-calculus term

x!(a) | ∗x?(z).x!(z) | y!(0) | y?(z).0

where ∗P represents replicated input. There are valid infinite executions in which
the communication on y never takes place even though at any time this commu-
nication is possible. Similarly, in the term

x!(a) | ∗x?(z).y!(z) | ∗y?(z).x!(z) | ∗x?(z).x!(z)

there are infinite executions in which the communication on the last process
never takes place, even though such a communication might happen infinitely
often (but not continuously). The intuitive expectation of a programmer is that
all processes running in parallel will be interleaved fairly and so such executions
are considered unsatisfactory.

Stating a fairness property for the π-calculus is not immediate. The definition
of the π-calculus makes it difficult to identify subprocesses within a process,
and in particular, it is difficult to state properties about fair executions of these
processes. When considering π-calculus processes, mainly two kinds of confusion
can arise.

– Processes are identified up to renaming of bound names and lead to possible
confusion of channels. For instance, we have

νx.νy.x!() | y!() | R → νx.νy.x!() | R′

Because of possible renamings of x and y, we do not know which channel
reacted.

208 P. Bidinger and A. Compagnoni

– Confusion of structurally equivalent processes.

P = x!() | x?().x!() | ∗x?().x!()
P ′ = x!() | x?().x!() | x?().x!() | ∗x?().x!()

We have P ≡ P ′ and P ′ → P , and we do not know which receivers react
with x!().

A possible solution is to define an auxiliary calculus in which prefixes are anno-
tated with labels in such a way that labels uniquely denote prefixes and that this
property is invariant throughout reduction [4,3]. A live action of a term is then
defined as a couple of labels corresponding to prefixed processes that can react.
An infinite labeled execution is strongly fair if there are no labels appearing in
an infinity of live actions.

2 Fairness in the π-Calculus

2.1 The π-Calculus

We suppose given a set of names N ranged over by x, y, We define the set of
π-calculus processes P as follows:

P, Q, . . . ::= 0 | π.P | νx.P | P | P

π ::= x!(y) | x?(y) | ∗x?(y)

The π-calculus evaluation contexts are given by:

E ::= · | νx.E | P | E | E | P

The operational semantics is defined as the smallest relation such that rules in
Figure 2 hold. It makes use of a structural equivalence relation defined as the
smallest equivalence relation satisfying the rules in Figure 1. As usual, fn(P)
denotes the set of free names of process P , and =α equates two processes that
differ only by their bound names. We write E[P] for the context E in which the
hole . has been substituted with P .

(P | Q) | R ≡ P | (Q | R) S.Par.Assoc P | Q ≡ Q | P S.Par.Com

P | 0 ≡ P S.Par.Nil νx.0 ≡ 0 S.Nu.Nil νx.νy.P ≡ νy.νx.P S.Nu.Com

x �∈ fn(Q)

(νx.P) | Q ≡ νx.P | Q
S.Nu.Par

P =α Q

P ≡ Q
S.α

P ≡ Q

E[P] ≡ E[Q]
S.Ctx

Fig. 1. Structural Equivalence

Without loss of generality, we restrict the usual replication operator to input
processes. Rule R.Rep models communication with a replicated input process.

Pict Correctness Revisited 209

x!(y).P | x?(z).Q → P | Q{y/z}
R.Red

x!(y).P | ∗x?(z).Q → P | Q{y/z} | ∗x?(z).Q
R.Rep

P → Q

E[P] → E[Q]
R.Ctx

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q
R.Str

Fig. 2. Reduction Relation

2.2 A Labeled π-Calculus

Informally, a fair execution of a process is an execution in which no subprocess
is ready to participate in a communication infinitely often. To formalize this
statement, we need to identify in a process the subprocesses that can participate
in a communication, and keep track of their identities throughout reductions.

To do so, we follow [4,3] and define a labeled version of the π-calculus in which
prefixes are annotated with labels. A label has to identify a prefix uniquely in an
entire execution of a process. In other words, not only do prefixes have distinct
labels in a process, but when new prefixes are created, their labels are new with
respect to all the labels in the past execution of the term. We then characterize
the labels belonging to prefixes that can participate in a communication. Finally,
we give the definition of fairness.

We denote by L a set of labels such that L ∩ N = ∅. We use Pf (L) to denote
the finite subsets of L. A labeled process is a pair made of a π-calculus process in
which prefixes are labeled, and a finite set of labels. The set of labeled processes
LP is generated by the grammar given below.

C, D, . . . ::= P , L
P , Q, . . . ::= 0 | πl.P | νx.P | P | P

l ∈ L

L ∈ Pf (L)

We also extend contexts with labels and we denote labeled contexts E.
We need several auxiliary functions. The function lab returns the set of all

labels of a process or a context. The function unl erases all labeling information
from a labeled process.

In order to ensure that labels occur uniquely in a process, we define a well-
formation predicate wf as the smallest relation on LP such that rules in Figure 3
hold. We write A � B for A ∪ B when A ∩ B = ∅. A labeled process C is said
to be well-formed if we have wf(C). We denote by WFP the set of well-formed
labeled processes.

The operational semantics is defined in the same way as for the π-calculus
via a structural equivalence relation ≡ and a reduction relation →, both binary

210 P. Bidinger and A. Compagnoni

wf(0, L)
Wf.Nil

lab(P) � lab(P
′
) ⊆ L

wf(P | P
′
, L)

Wf.Par

wf(P, L)

wf(νx.P , L)
Wf.New

wf(P , L)

wf(πl.P , L � {l})
Wf.Prefix

Fig. 3. Well-Formed Labeled Process

relations over LP. The structural equivalence is defined, as before, as the smallest
equivalence relation that verifies rules in Figure 1 (where prefixes are labeled and
equivalent processes have the same set of labels). The reduction relation is the
smallest relation that verifies the rules in Figure 4. The main difference with the
unlabeled reduction relation appears in the rule LR.Rep for replicated input in
which fresh labels are generated.

x!(y)l.P | x?(z)l′ .Q, L → P | Q{y/z}, L
LR.Red

α injective and L′ = L � α(L)

x!(y)l.P | ∗x?(z)l′ .Q, L → P | Q{y/z} | α(∗x?(z)l′ .Q), L′ LR.Rep

P , L → P
′
, L′ lab(E) ⊆ L

E[P], L → E[P
′
], L′ LR.Ctx

D ≡ D′ D′ → C′ C′ ≡ C

D → C
LR.Str

Fig. 4. Labeled Reduction Relation

Labeling is stable under reduction and structural equivalence. Hence, in the
following, we consider only well-formed processes.

Lemma 1 (Stability of Labeling)

(i) If C ≡ D and C ∈ WFP, then D ∈ WFP.
(ii) If C → D and C ∈ WFP, then D ∈ WFP.

The following lemma shows that the labeling system has been designed so that
no label can occur more than once in a labeled term, and once a label disappears,
it does not reappear in the system.

Lemma 2 (Uniqueness of Labeling)

(i) If C ∈ WFP then no label l occurs more than once in C.
(ii) If C ∈ WFP, C →∗ C′ →∗ C′′ and l ∈ lab(C) ∩ lab(C′′), then l ∈ lab(C′).

The labeled π-calculus is a conservative extension of the π-calculus. A labeled
process has exactly the same reductions as the corresponding unlabeled process.
Moreover, we can label any process into a well-formed labeled process.

Pict Correctness Revisited 211

Proposition 1 (Operational Correspondence). Let P ∈ P and C ∈ WFP
such that P = unl(C). We have

(i) P → P ′ implies ∃C′ ∈ LP such that C → C′ and unl(C′) = P ′.
(ii) C → C′ implies P → unl(C′).

Proposition 2 (Existence of a Labeling). For all P ∈ P there exists C ∈
WFP such that unl(C) = P .

We now define the live actions of a labeled process. A live action is a pair of
labels corresponding to prefixed processes that can immediately react.

Definition 1 (Live Actions). The set of live actions of a labeled process C =
P , L is defined as

LA(C) ={{l, l′}/C ≡ νx̃.y!(v)l.P 0 | y?(z)l′ .P 1 | P 2, L
or C ≡ νx̃.y!(v)l.P 0 | ∗y?(z)l′ .P 1 | P 2, L}

We also define the set of labels belonging to a live action as

L(C) = {l ∈ x/x ∈ LA(C)}

The following lemma states a correspondence between live actions and
reductions.

Lemma 3. C → C′ for some C′ if and only if LA(C) �= ∅.

Definition 2 (Execution). For an arbitrary relation →, an execution is a se-
quence of terms T0, T1, . . ., possibly infinite, such that T0 → . . . → Tn →

We can now define a strong fairness property for the labeled calculus. An exe-
cution is fair if a prefix cannot potentially participate in a reduction infinitely
often. According to this definition, we only need to consider infinite executions.

Definition 3 (Strong Fairness in the Labeled π-calculus). An infinite
execution C0 → . . . → Cn → . . . is fair if for any strictly increasing sequence
(un)n∈N, we have

⋂
n∈N

L(Cun) = ∅.

An execution in the π-calculus is fair if it corresponds to a fair execution in the
labeled calculus.

Definition 4 (Strong Fairness in the π-calculus). An infinite execution
P0 → . . . → Pn → . . . is fair if there is a fair execution C0 → . . . → Cn → . . .
such that ∀i ∈ N.unl(Ci) = Pi.

212 P. Bidinger and A. Compagnoni

3 Abstract Machine

3.1 Syntax and Operational Semantics

The syntax of the Pict abstract machine is given in Figure 5 and follows closely
[19] 1. A machine state, or PAM term, consists of a queue of π-calculus processes
P (the runqueue), a heap H and a set of names N . A heap is a function that maps
channel names to processes queues. We denote by M the set of machine states.
We often omit the set of names N in PAM terms when it is not important, in
particular in reduction rules where it remains unchanged. We also write P :: Q for
the appending of P and Q. The operational semantics is defined via two reduction

M ::= 〈P , H, N〉 State

P , Q, . . . ::=[] | P :: P Processes Queue

H ::= {x → Px}x∈N Heap

Fig. 5. Syntax of PAM Terms

relations, defined as the smallest binary relations over machine states that satisfy
the inference rules given in Figure 6. Intuitively, the relation � corresponds to
the implementation of ≡, whereas → implements the actual communication. An
actual implementation of this abstract machine does not need to distinguish these
relations and would implement →=� � →, but this distinction will help us to
prove correctness properties. In rule AM.New, we suppose there is a function
freshn : Pf(N) → N such that freshn(N) /∈ N . We also suppose that names
generated by the freshn function never appear in the π-calculus processes in
the PAM term (this could be enforced by defining a new syntactic category of
names).

We refer the reader to [19,16] for detailed explanations of these rules. We
briefly summarize here the main ideas. An execution of the abstract machine
starts with an empty heap (we denote it with H[]) that maps all names to empty
queues of processes, and a runqueue containing the π-calculus process to be
executed. Depending on the form of the process at the top of the runqueue, and
the state of the heap, exactly one rule can apply. The execution stops when the
runqueue is empty.

A nil process is discarded from the runqueue (rule AM.Nil). Parallel com-
position of processes is split into two processes that are split in the runqueue
(rule AM.Par). Rule AM.New implements name restriction by generating new
fresh names. When the first term of the runqueue is a prefixed process willing
to communication on a name x, there are two possible cases.If there is no corre-
sponding process in the heap, the process is pushed on the heap queue for x (rules
AM.PushMessage, AM.PushReceiver, AM.PushRepReceiver). If there is
a corresponding process in the heap queue (the first element), the communication

1 In particular, this presentation makes use of synchronous communications.

Pict Correctness Revisited 213

is performed and the continuation of the receiver and sender are placed in the
runqueue (rules AM.Com1, AM.RCom1, AM.Com2, AM.RCom2).

We can show that processes appearing in an association x → P are of the
form π.P , where all prefixes are either output on x, or input (replicated or not)
on x. Moreover, this property is invariant by reduction. In the following, we only
consider machine states of this form. We also suppose that H is finite. Moreover,
we can notice that the relation → is deterministic. In particular, generated fresh
names are fully determined by the function freshn in rule AM.New.

〈0 :: Q, H〉 � 〈Q, H〉
AM.Nil

〈(P | Q) :: Q, H〉 � 〈P :: Q :: Q, H〉
AM.Par

z = freshn(N)

〈νx.P :: Q, H, N〉 � 〈P{z/x} :: Q, H, N � {z}〉
AM.New

P =[] ∨ P = x?(z).Q :: P ′ ∨ P = ∗x?(z).Q :: Q
〈x?(y).P :: Q, H ⊕ {x → P}〉 � 〈Q, H ⊕ {x → P :: x?(y).P}〉

AM.PushReceiver

P =[] ∨ P = x!(z).Q :: P ′

〈x!(y).P :: Q, H ⊕ {x → P}〉 � 〈Q, H ⊕ {x → P :: x!(y).P}〉
AM.PushMessage

P =[] ∨ P = x?(z).Q :: P ′ ∨ P = ∗x?(z).Q :: P ′

〈∗x?(y).P :: Q, H ⊕ {x → P}〉 � 〈Q, H ⊕ {x → P :: ∗x?(y).P}〉
AM.PushRepReceiver

P = x!(z).Q :: P ′

〈x?(y).P :: Q, H ⊕ {x → P}〉 → 〈P{z/y} :: Q :: Q, H ⊕ {x → P ′}〉
AM.Com1

P = x!(z).Q :: P ′

〈∗x?(y).P :: Q, H ⊕ {x → P}〉 → 〈∗x?(y).P :: Q :: P{z/y} :: Q, H ⊕ {x → P ′}〉
AM.RCom1

P = x?(z).Q :: P ′

〈x!(y).P :: Q, H ⊕ {x → P}〉 → 〈P :: Q :: Q{y/z}, H ⊕ {x → P ′}〉
AM.Com2

P = ∗x?(z).Q :: P ′

〈x!(y).P :: Q, H ⊕ {x → P}〉 → 〈P :: Q :: Q{y/z}, H ⊕ {x → P ′ :: ∗x?(z).Q}〉
AM.RCom2

Fig. 6. PAM Reduction Rules

3.2 Labeled Abstract Machine

We define a labeled version of the Pict abstract machine and essentially follow
section 2. This auxiliary calculus is a technical tool, and it is only used for proving
the correctness of the abstract machine. Its syntax is defined by adding labels to
π-calculus processes appearing in PAM terms. We also extend PAM terms with
a finite set of labels. We write LM for the set of labeled PAM terms, and we use
M and its variants to range over them.

214 P. Bidinger and A. Compagnoni

M ::= 〈P , H, N , L〉 State

P , Q, . . . ::=[] | P :: P Processes Queue

H ::= {x → Px}x∈N Heap

L ∈ Pf(L)

We define the set of well-formed PAM terms in Figure 7 and call it WFM. Re-
duction of labeled PAM terms is defined almost exactly as for the unlabeled
calculus, apart from the rules AM.RCom1 and AM.RCom2. The functions lab
and unl extend as expected on processes queues, heaps and machine states.

wf(P) wf(H) lab(P) � lab(H) ⊆ L
wf(〈P, H, N , L〉)

WF.State

wf(P) wf(P) lab(P) ∩ lab(P) = ∅
wf(P :: P)

WF.ProcQueue

∀x, y ∈ N.x �= y =⇒ lab(H(x)) ∩ lab(H(y)) = ∅ ∀x ∈ N.wf(H(x))

wf(H)
WF.Heap

Fig. 7. Well-Formed PAM Term

Lemma 4 (Stability of Labeling)

(i) If M ≡ M′
and M ∈ WFM, then M′ ∈ WFM.

(ii) If M → M′
and M ∈ WFM, then M′ ∈ WFM.

Proposition 3 (Operational Correspondence). Let M ∈ M and M ∈
WFM such that M = unl(M). If ⇒ denotes either → or �, we have

(i) M ⇒ M′ implies there is M′ ∈ LM such that M ⇒ M′
and unl(M′

) = M′.
(ii) M ⇒ M′

implies M ⇒ unl(M′
).

We now define the live actions of a labeled PAM term as the live actions of a
corresponding π-calculus term. Intuitively, {l, l′} is a live action whenever there
are two matching prefixed processes somewhere in the PAM term that could
potentially react.

Definition 5 (Live Actions). The set of live actions of a labeled PAM term
M is defined as

LA(M) = LA([[M]]r)

Pict Correctness Revisited 215

P = x!(z)l′ .Q :: P ′
α injective and L′ = L � α(L)

〈∗x?(y)l.P :: Q, H ⊕ {x → P}, L〉 →
〈α(∗x?(y)l.P) :: Q :: P{z/y} :: Q, H ⊕ {x → P ′}, L′〉

AM.RCom1

P = ∗x?(z)l′ .Q :: P ′
α injective and L′ = L � α(L)

〈x!(y)l.P :: Q, H ⊕ {x → P}, L〉 →
〈P :: Q :: Q{y/z}, H ⊕ {x → P ′

:: α(∗x?(z)l′ .Q)}, L′〉

AM.RCom2

Fig. 8. Labeled PAM Reduction Rules

where [[.]]r is defined inductively on the structure of M.

[[〈P , H, N , L〉]]r = νN .[[P]]r | [[H]]r, L
[[[]]]r = 0

[[P :: P]]r = P | [[P]]r

[[{x → Px}x∈N]]r =|x∈N [[Px]]r

We also define the set of labels belonging to a live action as L(M) = {l ∈ x/x ∈
LA(M)}.

Lemma 5. If LA(M) �= ∅ then ∃M′
. M �∗ → M′

.

The following theorem can be seen as a fairness property for the labeled abstract
machine.

Theorem 1. If M0 → . . . → Mn → . . . is an infinite execution then for any
strictly increasing sequence (un)n∈N, we have

⋂
n∈N

L(Mun) = ∅

The proof is technical but it relies on intuitive ideas. Informally, it follows from
two key properties of the abstract machine reduction system:

– If a process πl.P appears in an evaluation context in the runqueue, it will
eventually reach the top of the runqueue.

– The heap queues are organized following a FIFO policy.

4 Correctness

From an operational point of view, the correctness of an abstract machine can
be stated by relating abstract machine executions of a process P with π-calculus
executions of the same process P executed by the abstract machine. The ini-
tial state of an abstract machine running P is 〈P, H[]〉, hence we introduce the
following translation function.

216 P. Bidinger and A. Compagnoni

Definition 6. (Translation from π-calculus to PAM)

[[P]] = 〈P ::[], H[], ∅〉 [[P , L]] = 〈P ::[], H[], ∅, L〉

The first property we consider is the soundness of the abstract machine with
respect to the calculus. Intuitively, this means that abstract machine executions
correspond to valid π-calculus executions. If a machine state M, corresponding
to a process state P , reduces to a machine state M′, then M′ must correspond
to a process state P ′ where P reduces to P ′. One reduction in the π-calculus
may be implemented by several reductions of the abstract machine. In order to
model a one-to-one correspondence, we identify two kinds of reductions. Admin-
istrative reductions denoted by � model structural equivalence. Communica-
tion reductions are denoted by →. We will establish a correspondence between
the relations �∗ → over PAM terms and → over π-calculus terms. For that,
we define a relation M � P to mean that P corresponds to M, read M
implements P .

We still need to define the relation �. It has to be convincing enough that it
effectively relates equivalent process state and machine state. It should at least
enjoy the following two properties:

– [[P]] � P and – If M � M′ and M � P then M′ � P .

The first property follows the idea that the initial state of an abstract ma-
chine executing [[P]] is P . The second property follows the intuition that � is
a structural, or administrative, reduction and that abstract machine states still
implement the same π-calculus process after such reductions. We define � as the
smallest relation enjoying these two properties.

Definition 7. M � P ⇐⇒ [[P]] �∗ M.

The definition of � extends naturally to labeled processes.
Note that we do not have a notion of observables, although it would make the

correspondence relation � more convincing. However, it should be straightfor-
ward to define an observation predicate on π-calculus processes and PAM terms
(such as those in [1,7,11]) and show that � preserves the observables.

The following lemma relates the live actions of a labeled PAM term and a
labeled process it implements.

Lemma 6. If M � C then LA(M) = LA(C).

To prove the soundness property, we need a translation function from PAM terms
to π-calculus processes. This function is very similar to [[.]]r. We do not give its
full definition here but the following lemma states the properties needed for the
proof of soundness.

Lemma 7. There exists a function [[.]]−1 from M to P such that

– M � [[M]]−1

– [[[[P]]]]−1 ≡ P

Pict Correctness Revisited 217

– if M � M′ then [[M]]−1 ≡ [[M′]]−1

– if M → M′ then [[M]]−1 → [[M′]]−1.

Theorem 2 (Soundness). If (M �∗ → M′ ∧ M � P) then (∃P ′.P → P ′ ∧
M′ � P ′).

Proof. The theorem follows from [[P]] �∗ → M =⇒ (∃P ′.P → P ′ ∧ M � P ′)
which is a consequence of Lemma 7 with P ′ = [[M]]−1.

This property is not sufficient to prove the correctness of the abstract machine.
Other properties are needed to characterize which executions of the π-calculus
are actually implemented. First, a liveness property ensures that a PAM term is
never blocked when it corresponds to a π-calculus term that can reduce.

Theorem 3 (Liveness). If P → P ′ ∧ M � P then ∃M′.M �∗ → M′.

Proof. We first prove: P → P ′ =⇒ ∃M.[[P]] �∗ → M. If P → P ′, we have
C → C′ with unl(C) = P and unl(C′) = P ′, by propositions 2 and 1. Moreover,
by Lemma 6, LA([[C]]) = LA(C) with LA(C) �= ∅, by Lemma 3. We deduce
[[C]] �∗ → M′

for some M′
, by Lemma 5. We conclude, by Proposition 3, that

[[P]] = unl([[C]]) �∗ → unl(M′
).

We know now that [[P]] �∗ M′′ → M′ for some M′′ and M′. Moreover
we have [[P]] �∗ M, by definition of M � P . Because → is deterministic, we
conclude M �∗ [[P]] �∗ M′′ → M′.

Finally, our main result is a fairness theorem.

Theorem 4 (Fairness). If M0 �∗ → . . . �∗ → Mn �∗ → . . . is an infinite
execution then there exists a fair execution P0 → . . . → Pn → . . . such that
Mi � Pi for all i.

Proof. Let M0 �∗ → . . . �∗ → Mn �∗ → . . . be an infinite execution. we have
an execution M0 �∗ → . . . �∗ → Mn �∗ → . . . such that for all i, unl(Mi) =
Mi, by Proposition 3.

The soundness theorem (Theorem 2) extends to the labeled calculus and gives
us an execution C0 → . . . → Cn → . . . such that

M0 �∗ �→
��

�
��

M1 �∗ �→
��

�
��

M2 �∗ �→
��

�
��

. . .

C0 → �� C1 → �� C2 → �� . . .

From Lemma 6, we have LA(Ci) = LA(Mi) for all i. Then we deduce from
Theorem 1 that the execution C0 → . . . Cn → . . . is fair. By erasing the labels
in both executions, we deduce the result.

218 P. Bidinger and A. Compagnoni

5 Related Work

Comparison with Pict. Correctness results in [19] include a soundness and a
liveness property based on the translation function [[.]]r from PAM terms to π-
calculus terms given in Definition 5:

(i) M → M′ =⇒ [[M]]r ≡ [[M′]]r ∨ [[M]]r → [[M′]]r

(ii) P → P ′ =⇒ ∃M. [[P]] → M

However, these properties are not sufficient for proving soundness or liveness.
The first property means that we can build a π-calculus reduction from a PAM
reduction, but does not prove that PAM reductions implement π-calculus re-
ductions. A property relating M and [[[[M]]r]], such as our Lemma 7 is missing.
The second property tells us that if P reduces to P ′, there is a PAM reduction
[[P]] → M . However, the property cannot be applied on more than the first step
of execution, as we do not know if there is P ′′ such that P → P ′′ and [[P ′′]] = M.

In [18], the Pict abstract machine is proven correct using a notion of testing,
and a realistic model of the interactions between the abstract machine and its
environment. However, they do not consider fairness issues.

Fairness. Fairness has been defined using labels in CCS [3] and in the π-calculus
[4,2]. We essentially followed the same idea but our presentation is simpler as we
annotate labeled terms with a set of labels that allow us to generate fresh labels
in the replication rules, without relying on a structured labeling language.

In [13], fairness is defined for the π-calculus by considering normal reductions
where α-equivalence is restricted and tags similar to labels are used to distin-
guish processes. Fresh tags are generated using the π-calculus name restriction
operator.

Correctness of Abstract Machine. There have been several recent papers devoted
to the formal description of implementations of process calculi based on the π-
calculus or the Ambient calculus. In addition to Pict, one can notably cite the
Jocaml distributed implementation of the Join calculus [6,5], the Join calculus
implementation of Mobile Ambients [7], Nomadic Pict [22,20], the abstract ma-
chine for the M-calculus [10], the Fusion Machine [8], the PAN and GCPAN
abstract machines for Safe Ambients [11,12], the CAM abstract machine for
Channel Ambients [15] and the abstract machine for the Kell calculus [1]. Most
of these works [7,22,20,10,8,11,12,15,1] deal with distributed implementations of
calculi, rather than local implementation of concurrent processes like in Pict.
They are defined by a translation to a low-level calculus or abstract machine.
Their correctness is proven in terms of bisimilary that does not apply to our set-
ting, since Pict implementation makes deterministic choice and PAM reductions
do not match all π-calculus reductions. Implementations that consider schedul-
ing of processes are given in [15,10]. In [15], a soundness result is given similar
to the one given in Pict. In [10], scheduling of processes is done as in Pict using
FIFO lists, but no proof of correctness is given.

Pict Correctness Revisited 219

6 Conclusion

In this paper, we first defined strong fairness in the π-calculus. We then proved
that Pict abstract machine executions are sound with respect to π-calculus ex-
ecutions and that they enjoy fairness and liveness properties. These correctness
results for Pict are new and in particular, fairness has not been proven for any
implementation of process calculi based on the π-calculus. We believe that these
techniques are simple and general enough to be adapted to other calculi.

Very little work has been done on the scheduling of processes in the π-calculus
or its variants. For future research, we will investigate alternative scheduling
strategies. In particular, we would like to extend Pict and its implementation
with priority constraints. Processes could be prioritized in order to allocate more
processor time to more important processes. In Pict, even though executions are
strongly fair, in a term P | Q, P can monopolize the processor usage by spawning
new subprocesses much faster than Q. One can imagine annotated processes like
in Ph | Ql where the annotations are taken into account by the scheduler. Such
a scheme would fit naturally in a calculus with hierarchical localities such as [1].
For instance, a term of the form a[b[P] | c[Q]] can be interpreted as two (possibly
untrusted) agents b and c executed by a site a. The parent site a should be able
to control the processor usage of the agents it is executing.

Most correctness results of the implementations of process calculi with locali-
ties concern their distributed implementation, but do not deal with the correct-
ness of their local implementation, i.e. the scheduling of processes. On the other
hand, Pict defines a local implementation. It would be interesting to consider cor-
rectness results combining these two approaches. We are currently investigating
the proof of a refined abstract machine based on [1].

Acknowledgments. We are grateful to Healfdene Goguen, Benjamin Pierce,
Alan Schmitt and Jean-Bernard Stefani, as well as the anonymous reviewers, for
their comments on earlier drafts. We thank Pablo Garralda, whose PhD thesis
work inspired us to use labeled processes to study fairness [9].

References

1. Bidinger, P., Schmitt, A., Stefani, J.-B.: An abstract machine for the Kell calculus.
In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005, LNCS, vol. 3535, pp. 43–58.
Springer, Heidelberg (2005)

2. Cacciagrano, D., Corradini, F., Palamidessi, C.: Fairpi. In: Proceedings of EX-
PRESS’06, ENTCS (2006)

3. Costa, G., Stirling, C.: Weak and strong fairness in CCS. In: Chytil, M.P., Koubek,
V. (eds.) MFCS 1984, LNCS, vol. 176, pp. 245–254, Springer, Heidelberg (1984)

4. Corradini, F., Cacciagrano, D.R.: Fairness in the pi-calculus. Technical report,
Dipartimenti di Informatica, Università di L’Aquila, TR 005/2004 (2004)

5. Le Fessant, F.: JoCaml: Conception et Implantation d’un Langage à Agents Mo-
biles. PhD thesis, Ecole Polytechnique (2001)

220 P. Bidinger and A. Compagnoni

6. Fournet, C., Gonthier, G., Levy, J.J., Maranget, L., Remy, D.: A calculus of mobile
agents. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996, LNCS, vol. 1119, pp.
406–421. Springer, Heidelberg (1996)

7. Fournet, C., Levy, J.J., Schmitt, A.: An asynchronous distributed implementation
of mobile ambients. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses,
P.D. (eds.) TCS 2000, LNCS, vol. 1872, pp. 348–364. Springer, Heidelberg (2000)

8. Gardner, P., Laneve, C., Wischik, L.: The fusion machine. In: Brim, L., Jančar, P.,
Křet́ınský, M., Kucera, A. (eds.) CONCUR 2002, LNCS, vol. 2421, pp. 418–433.
Springer, Heidelberg (2002)

9. Garralda, P.: Boxed Ambients for Global Computing. PhD thesis, Stevens Institute
of Technology, New Jersey, USA (2007)

10. Germain, F., Lacoste, M., Stefani, J.B.: An abstract machine for a higher-order dis-
tributed process calculus. In: Proceedings of the EACTS Workshop on Foundations
of Wide Area Network Computing (F-WAN) (July 2002)

11. Giannini, P., Sangiorgi, D., Valente, A.: Safe ambients: abstract machine and dis-
tributed implementation. Sci. Comput. Program. 59(3), 209–249 (2006)

12. Hirschkoff, D., Pous, D., Sangiorgi, D.: A correct abstract machine for safe ambi-
ents. In: COORDINATION, pp. 17–32 (2005)

13. Kobayashi, N.: A type system for lock-free processes. Inf. Comput. 177(2), 122–159
(2002)

14. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts I and II.
Inf. Comput. 100(1), 1–78 (1992)

15. Phillips, A., Yoshida, N., Eisenbach, S.: A distributed abstract machine for boxed
ambient calculi. In: Schmidt, D. (ed.) ESOP 2004, LNCS, vol. 2986, Springer,
Heidelberg (Apr. 2004)

16. Pierce, B.C., Turner, D.N.: Pict: A programming language based on the pi-calculus.
In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language and Interaction:
Essays in Honour of Robin Milner, pp. 455–494. MIT Press, Cambridge (2000)

17. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

18. Sewell, P.: On implementations and semantics of a concurrent programming lan-
guage. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997, LNCS, vol. 1243,
pp. 391–405. Springer, Heidelberg (1997)

19. Turner, D.: The polymorphic π-calculus: Theory and implementation. Technical
report, University of Edinburgh, GB (1996)

20. Unyapoth, A., Sewell, P.: Nomadic Pict: Correct Communication Infrastructures
for Mobile Computation. In: Proceedings ACM Int. Conf. on Principles of Pro-
gramming Languages (POPL), pp. 116–127. ACM Press, New York (2001)

21. Wischik, L.: Explicit Fusions: Theory and Implementation. PhD thesis, Computer
Laboratory, University of Cambridge, Cambridge (2001)

22. Wojciechowski, P., Sewell, P.: Nomadic Pict: Language and Infrastructure. IEEE
Concurrency 8(2), 42–52 (2000)

A Refinement Method for Java Programs

Holger Grandy, Kurt Stenzel, and Wolfgang Reif

Lehrstuhl für Softwaretechnik und Programmiersprachen
Institut für Informatik, Universität Augsburg

86135 Augsburg Germany
{grandy,stenzel,reif}@informatik.uni-augsburg.de

Abstract. We present a refinement method for Java programs which
is motivated by the challenge of verifying security protocol implementa-
tions. The method can be used for stepwise refinement of abstract spec-
ifications down to the level of code running in the real application. The
approach is based on a calculus for the verification of Java programs for
the concrete level and Abstract State Machines for the abstract level. In
this paper we illustrate our method by the verification of a M-Commerce
application for buying movie tickets using a mobile phone written in
J2ME. For verification we use KIV, our interactive theorem prover [1].

1 Introduction

Refinement is an established method for proving algorithms correct. A concrete
specification is a refinement of a more abstract specification if every state change
that can be performed on the concrete level is also possible on the abstract level.
State based refinement methods (e.g. [8] [30] [3]) have been used in numerous
case studies for the verification of algorithmic correctness. The underlying theory
and the methods for applying those approaches, also on the level of tool support,
are elaborated and widely used.

Much less work has been done on refinement methods for the verification of
Java implementations. Although there are many examples of Java [17] program
verification, e.g. [16] [5] [6] [22] [15], the authors are not aware of a larger case
study of interactive verification using a refinement framework for proving full
functional correctness of a Java program respecting an abstract specification.

In the field of security protocol implementations the past has shown that
implementation flaws are very common and can be very subtle. In this paper, we
present a general refinement method for Java programs inspired by the challenge
of verifying security protocol implementations. The method is illustrated by
the verification of a Java M-Commerce application, the Cindy1 case study. The
refinement approach is not limited to the field of security protocols. Using the
mechanisms described below we can prove functional correctness for all kinds of
programs with input, output and state change.

1 Cinema Handy (Handy is the German word for mobile phone).

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 221–235, 2007.
c© IFIP International Federation for Information Processing 2007

222 H. Grandy, K. Stenzel, and W. Reif

The paper is organized as follows: Section 2 presents the case study,
Section 3 illustrates the specifications for refinement and proof obligations. Sec-
tion 4 describes the mapping of abstract data types to Java classes. Section 5
presents some difficulties the refinement method has to solve stemming from
this mapping and Section 6 gives some details on the verification of the case
study. Finally, Section 7 compares the approach to related work and Section 8
concludes.

2 The Cindy Case Study

With Cindy users can

Fig. 1. The Cindy Application

buy cinema tickets using
mobile phones. A user
can order a ticket using a
Java application running
on the device. Payment
can be done using the
usual phone bill. After
having ordered a tic-
ket it is sent to the
mobile phone as a MMS
(Multimedia Messaging
Service) message. The
ticket contains the movie
data and an additional unique identifier for the ticket. It can be displayed on
the phone using a two-dimensional data matrix barcode and is scanned at the
entrance to the cinema directly from the display using a barcode scanner. This
kind of application exists e.g. in the Netherlands [2]. Additionally, the German
railway company, Deutsche Bahn, has recently implemented a similar service for
buying train tickets using a mobile phone.

One important question for the cinema is, of course, how to avoid fraud. The
idea is simple: Every ticket contains a nonce, a unique random number that is
too long to guess. Therefore it is virtually impossible to ‘forge’ a ticket.

Full details on the abstract model of Cindy as well as the details on the
verification of security properties on this abstract level (which follows our ap-
proach for the verification of security protocols called Prosecco) can be found
in [10]. The next section describes the approach for verifying an implementation
of Cindy running on a mobile phone written in J2ME.

3 Abstract and Concrete Specification Levels

We assume the reader is roughly familiar with data refinement theory, which in
this section we will adopt to Java programs using the notation based on [9].

The abstract level is given as a data type ADT = (GS, AS, AINIT, {AOPi}i∈I,
AFIN) consisting of a set of global states GS and a set of (local) states AS. Total

A Refinement Method for Java Programs 223

relations AINIT ⊆ GS × AS and AFIN ⊆ AS × GS initialize and finalize the data
type. AOPi ⊆ AS × AS (using an index i ∈ I) are the operations possible on the
data type. In the specification of the Cindy example different agents are involved
modelling the different protocol participants. Every agent has a type type(agent)
(the type can be cellphone, cinema, user or attacker). The index set I of AOPi now
consists of the different agents, where e.g. AOPcellphone(n) denotes the protocol
steps of the cellphone agent with number n.

On the conrete level, one agent in the protocol model is replaced by his Java
implementation. So the concrete level is given similarly as CDT = (GS, CS, CINIT,
{COPi}i∈I, CFIN), where one COPi is a Java implementation. Details will be given
later in Sect. 3.2.

Our operations are total so we use the approach of [13] and a forward sim-
ulation R ⊆ AS × CS leading to the following proof obligations for refinement
correctness:

– CINIT ⊆ AINIT o
9 R (“initialization”)

– ∀ i ∈ I. R o
9 COPi ⊆ AOPi o

9 R (“correctness”)
– R o

9 CFIN ⊆ AFIN (“finalization”)

3.1 The Abstract Level

The state as : AS consists of a function astate : agent → Atype(agent) that maps
each agent to its internal state in Atype(agent) For an agent of type cellphone
this is e.g. the list of current tickets stored on a phone and its phone number.
Additionally, as contains the current context actxt : context of the communica-
tion infrastructure (connections and inputs for every agent that represent the
messages that are currently in transit). Together as = astate × actxt. The global
state GS contains only the list of tickets of the phones, since we want to show
that this list is the same on both levels. GS is ignored in AINIT, AFIN extracts
the list of tickets sold so far from GS.

The abstract specification of the functionality of the protocol in Cindy is given
as an Abstract State Machine (ASM) [4] consisting of models for all the different
agents in the scenario. Although not being used directly by the refinement theory,
we use the different rules of this ASM to define the operations AOPagent. The
ASM for Cindy is described in [10], so we only give a slight introduction here.

The interesting part of the abstract ASM specification for this paper is the
step of an agent of type cellphone because this is the agent that will be refined
to Java. An excerpt of the according ASM rule for the cellphone agent which
actually loads a ticket on the mobile phone is:

APROGcellphone(agent, tickets, inputs){
let indoc = first(inputs(agent)) in

inputs(agent) := rest(inputs(agent))
if is load message(indoc) ∧ #tickets(agent) < MAXTICKETS
then tickets(agent) := tickets(agent) + getPart(2, indoc)
else . . . // other protocol steps }

224 H. Grandy, K. Stenzel, and W. Reif

In this example, astate for the cellphone agent is given by the state function
tickets, which stores the list of tickets of every agent. The context actxt is given by
the inputs state function, which maps every agent to his current input messages.
First an input message indoc is taken from the input (APROGcellphone is only
called when the input is non-empty) and the list of input messages is shortened.
If the input message has the correct structure of a message to load a ticket
(is load message(indoc)) and there is space in the list of tickets of the actual
agent (#tickets(agent) < MAXTICKETS) then the ticket contained in the input
document (getPart(2, indoc)) is added to the list of tickets. For the refinement
theory presented in this paper it is sufficient to know that the specification
of Cindy consists of ASM rules APROGagent for every agent, which define the
input/output behavior and the state changes of agent for every protocol step.

We use the Theorem Prover KIV [1] for our approach. In KIV, Abstract State
Machines are modeled using Dynamic Logic (DL). In DL, the formula 〈α〉 φ
states, that φ holds after the execution of program α. APROGagent is in fact a
DL procedure. To integrate this into the data refinement theory presented above
we define the operation AOPagent of ADT using APROGagent:

AOPagent(astate, actxt, astate′, actxt′) ↔
〈APROGagent(astate, actxt)〉 (astate = astate′ ∧ actxt = actxt′)

3.2 The Concrete Level

We now refine our abstract agent specification to Java. This works by step-
wise replacement of an agent type and its abstract protocol step specification
AOPagent by a Java implementation for agent, preserving every other part of the
specification. In this paper, this is illustrated by the refinement of the cellphone
agent type. Accordingly, the concrete level is a mixture of steps of agents, that
are already replaced by a Java program (cellphone agent here) and other agents
(the cinema server or the attacker), that are still preserved as on the concrete
level. So the concrete state cs and the concrete operations COPagent are a mixture
of Java implementation and abstract specification.

A concrete state cs : CS is defined as cs = cstate × cctxt with cctxt : context
and cstate : agent → Btype(agent). The context needs to be preserved like in the
abstract level because the communication infrastructure is not implementable
(it is a model of messages currently in transit). The state of a Java program is
stored in an algebraic data type called store in KIV. A store can be seen as the
equivalent of the heap of a Java virtual machine (in our case the JVM running
on a mobile phone). All the runtime information about pointer structures is
contained inside the store. Full details on the store and on the Java Calculus
implemented in KIV can be found in [27] [26]. On the concrete level the state of a
refined agent is now replaced by a store st : store. The state of non-refined agents
remains the same as on the abstract level. This means that Bcellphone = store and
Bagenttype = Aagenttype for agenttype
= cellphone. Because we now integrate a Java
implementation of an agent in our model, we have to do a data transformation
step from the abstract data types specifying input and output of the agent into

A Refinement Method for Java Programs 225

the Java store and vice versa. The inputs of the cellphone agent (given by actxt
on the abstract level) need to be mapped to Java data types representing the
same input on the programming language level. This is done by a ASM rule
called TOSTORE. The reverse transformation has to be done for the output,
called FROMSTORE. More details on this transformation will be discussed later
in section 4.

The Java method step() is the protocol implementation of the cellphone agent.
For the sake of understandability the implementation itself will be presented
later in Sect. 6. Java method calls are written in the Java calculus in KIV as
〈st ; step()〉 φ, which states that formula φ holds after the execution of method
step() in the context of store st . Together with TOSTORE and FROMSTORE,
we now define COPagent as:

COPagent(cstate, cctxt, cstate′, cctxt′) ↔
if ¬ is refined(agent) then

AOPagent(cstate, cctxt, cstate′, cctxt′)
else (∃ st, st′. st = TOSTORE(cctxt, cstate(agent)) ∧

〈st; step()〉 (st = st′) ∧
cstate′ = cstate[agent �→ st′] ∧
cctxt′ = FROMSTORE(st′, cctxt))

COPagent is defined to be the same operation as on the abstract level (AOPagent)
for all agents, that are not refined (¬ is refined(agent), for example the cinema).
When agent is one of the agents, that are refined (is refined(agent), here the
cellphone), the COPagent is defined using a Java implementation and TOSTORE
and FROMSTORE operations: the inputs are transformed into Java objects in
the store (TOSTORE(cctxt, cstate(agent))). Then a Java method call step() im-
plementing the protocol and starting in this store st must result in a store st′,
which is given by cstate′ (cstate′ = cstate[agent �→ st′]). The output of the Java
program is extracted from the store using FROMSTORE and this output forms
the new concrete context cctxt′.

3.3 Proof Obligations for the Example

Fig. 2 gives an overview of the refinement proof obligations in Cindy for initial-
ization, finalization and for the steps of the cinema agent (that is not refined in
the example) and of the cellphone agent (which is refined to Java). The circle-like
arrows illustrate the refinement proof obligations of commutating sub-diagrams.
Fig. 2 also shows the operations TOSTORE and FROMSTORE before and after
the Java method step() of the cellphone implementation is executed.

All together the main proof obligation for the refinement of the cellphone
agent now is:

R(astate, actxt, cstate, cctxt)
∧ st = TOSTORE(cctxt, cstate(agent))
∧ 〈st; step()〉 (st = st′)
∧ cstate′ = cstate[agent �→ st′]

226 H. Grandy, K. Stenzel, and W. Reif

ABSTRACT LEVEL

cs5 cs6

gs’

as6as5as4as3as2as

gs R R R R R R

CONCRETE LEVEL

AOP(cellphone)

COP(cellphone)

AFIN

new Protocol()

TOSTORE FROMSTORE
step()

AOP(cinema)

COP(cinema)
CINIT

AINIT

CFIN

cs2cs cs3 cs4

Fig. 2. Refinement diagram

∧ cctxt′ = FROMSTORE(st′, cctxt) →
∃ astate′, actxt′. AOPagent(astate, actxt, astate′, actxt′)

∧ R(astate′, actxt′, cstate′, cctxt′)

If the retrieve relation holds for two states and the concrete level performs
a sequence of TOSTORE, the actual protocol step step() and FROMSTORE,
resulting in state cstate′ × cctxt′, then there must be the possibility to perform a
similar step on the abstract level (AOP) which leads to a state astate′ × actxt′ in
which the retrieve relation holds again. More details on the proof of this property
will be given in Sect. 6.

Fig. 2 also shows the constructor call of the Java class implementing the
protocol (new Protocol()), which is called during CINIT. We have to prove that
the constructor call of the Java implementation performs the same initializa-
tion steps as AINIT for the refined agent type. This proof obligation is omitted
here because it is very similar to the main proof obligation above (excepting
TOSTORE and FROMSTORE because there is no input or output for the con-
structor).

One important point for the proof of our obligations is the definition of the
retrieve relation R. It has to express how the state of the Java program and
the abstract state of the protocol ASM relate to each other. Since we focus on
security protocols, we can give a generic template for this relation. It is:

R(astate, actxt, cstate, cctxt) ↔
actxt = cctxt ∧ AINV(astate, actxt) ∧ CINV(cstate, cctxt) ∧
(∀ agent.if is refined(agent) then extract(cstate(agent)) = astate(agent)

else cstate(agent) = astate(agent))

The relation states the following: The extract function gets the state of the agent
from the store (more precisely it looks at the fields of the classes implementing the
protocol and converts those fields back into an abstract state). The state on the
abstract level (astate(agent)) must be equal to the corresponding value in the store
(extract(cstate(agent))), if agent is one of the agents that have a Java implemen-
tation. For the other agents the state on the concrete level must be exactly equal
to the abstract level. The context (like the inputs of the agents) must be equal in
every case. Additionally we need an invariant on the abstract state (AINV) and

A Refinement Method for Java Programs 227

an invariant on the concrete state (CINV) that is preserved by every step. The
invariants basically state that everything is well-formed and reasonable for our
application, e.g. the list of tickets contains only tickets, not other entries.

By proving the refinement, security properties of the abstract ASM specifi-
cation level now can be transfered to the implementation level via the retrieve
relation R. If a property is e.g. invariant for astate(agent) it is also invariant for
extract(cstate(agent)) because of the refinement. In general, it is known that not
all security properties are preserved under refinement (see e.g. [19]), but those
problems arise only when the granularity changes during refinement. This is not
the case in our refinement approach, because in our model both the abstract
ASM rules and the concrete implementation steps are atomic operations of the
same granularity, which last from the receiving of input to the sending of out-
put for every agent. We do not consider attacks on the implementation which
take place during the execution of a protocol step. This would mean changing
of memory contents of the devices during execution and would of course allow
a lot more attacks. Also we do not consider problems like power failures of the
mobile phone in the middle of a protocol step execution.

4 Data Type Mapping to the Concrete Level

Java programs and Abstract State Machines use different internal types. On the
one hand we have the Java class hierarchy (consisting of interfaces and classes)
and primitive types, on the other hand we have algebraically specified abstract
data types and state functions for the abstract specification level.

For our M-Commerce example same external behavior means sending of the
same output messages in reply to the same input messages. On the abstract
level input and output are specified using an abstract data type called document.
This data type is quite similar to the messages used in [23] or [7]. It is specified
algebraically as follows:

document = intdoc(.int : int)
| keydoc(.key : key)
| noncedoc(.nonce : nonce)
| secretdoc(.secret : secret)
| hashdoc(.doc : document)
| encdoc(.key : key; .doc : document)
| sigdoc(.key : key; .doc : document)
| doclist(.list : documentlist)

A document can contain an arbitrary large integer (intdoc). The intdoc type
is also used to model arbitrary data since every data can be represented as
an integer. Documents can also contain a key (keydoc), a nonce (noncedoc) or
a secret (secretdoc). Furthermore a document can be the result of a crypto-
graphic hashing operation (hashdoc) or can be an encrypted document with a
certain key (encdoc) or a signature of a document with a certain key (sigdoc).
To model composition of messages our document type also contains a type

228 H. Grandy, K. Stenzel, and W. Reif

doclist containing a list of other documents. In our ASM model the inputs of all
agents are represented as an ASM state function inputs : agent → documentlist
(which is a part of the context described in section 3).

On the concrete level a natural representation of the abstract document data
type is a class hierarchy which is directly implementing our abstract data type.
The Cindy application relies on the security of GSM communication which al-
ready supports encryption of all sent messages. Therefore the protocol of Cindy
only uses the type intdoc for modelling the ticket data or concepts like phone
numbers, and noncedoc for modelling the unique identifier of the ticket. Addi-
tionally, the doclist type is used for composing those basic documents to MMS
messages.

The class hierarchy we use

− nonce : Nonce

NonceDoc * Nonce

− value : byte[]

1

Doclist
Document

<<abstract>>
*

*

IntDoc

− value : byte[]

− Document[] docs

Fig. 3. Document Classes

in the implementation of Cin-
dy is shown in Figure 3. We
implement every constructor
of the abstract data type doc-
ument by a separate Java
class type for exactly that
type of document. For our
general refinement approach
to security protocols the
other document types are im-
plemented as well but omit-
ted here. In addition to input/output behavior we furthermore have to prove
that the same state changes are performed on both levels. In the Cindy example
the state of the mobile phone consists of a list of documents representing tickets
which are currently stored on the phone. This list is specified using the doclist
abstract type on the abstract level, respectively implemented by the Doclist class
for the concrete state. The state function tickets : agent → documentlist specifies
this for the abstract level (part of astate(cellphone) as explained in Section 3).
In addition the state function inputs : agent → documentlist is relevant for the
refinement because it contains the input messages of each agent. Those two func-
tions have to be taken into account for the refinement and have to be transformed
to Java data types. Using the abstract data types and the store we define map-
ping functions for the transformation of the abstract data type into the concrete
pointer structure inside the store and vice versa. The store defines a mapping
of keys to values. Store keys are a combination of a reference (a memory ad-
dress) and a class field or a array index. Getting the value for the field f of the
instance at reference r is written as st[r.f]. The lookup for static fields can be
written as st[.f]. The value can be a primitive value or a reference to another
class instance or an array. The operations for the transformation of documents
are called addDoc : document × store → reference × store and getDoc : reference
×store → document (all operations below are specified algebraically). addDoc
for e.g. the IntDoc class type works as follows:

A Refinement Method for Java Programs 229

addDoc-intdoc:
[r1, r2] = newrefs(2, st) →

addDoc(intdoc(i), st) =
r1 × addobj(r1, IntDoc, .value × r2,

addarray(r2, byte type, int2bytes(i), st))

Adding an Intdoc with value i to the store works by adding an object of class
IntDoc via the operation addobj : reference × type × fieldvalues× store → store.
The reference r1 of this new object must not be already contained in the store
([r1, r2] = newrefs(2, st)). The actual value i of the Intdoc is encoded as an ar-
ray of bytes. This array must also be added to the store via the operation
addarray : reference × type × arrayvalues × store → store. The reference r2 of this
array must also be a new reference in the store (. . . = newrefs(2, st)). The ar-
ray values are obtained by transforming the integer i to a sequence of bytes
(int2bytes(i)). The function addDoc additionally returns the reference r1 of the
IntDoc instance as well as the store because we have to know where the new
instance is placed inside the store.

The getDoc function for the IntDoc type works the other way:

getDoc-intdoc:
r
= null ∧ st[r.type] = IntDoc →

getDoc(r, st) = intdoc(bytes2int(getbytearray(st[r.value], st)))

Getting the document of type IntDoc (st[r.type] = IntDoc, where .type is a
special field containing the type information of a reference) back from the store
is done by first getting the byte array representing the value from the store
(getbytearray(st[r.value]). The resulting byte sequence is transformed to an integer
using the operation bytes2int and the resulting integer value is used to construct
the Intdoc.

The operations TOSTORE and FROMSTORE basically use addDoc and getDoc
to transform the input messages of the agents into the Java store. Additionally
getDoc implements the extract function described in Section 3 in the retrieve
relation of the refinement for the list of tickets of an agent. This works because in
Cindy both input/output messages and the state are specified using documents.

5 Additional Attacks on the Concrete Level

An interesting observation is the fact that when implementing the data types
by pointer structures there are more possible values on the concrete level than
on the abstract level. The reason is that on the concrete level there can be
pointer structures that do not have any abstract counterpart. One example for
this fact are instances of class IntDoc which contain a null pointer in their value
field. Since the value field is the counterpart of the abstract value of the integer
contained in the IntDoc and since null does not represent a number this document
has no counterpart. In the following we will call those additional inputs invalid.
A refinement respecting only valid inputs would not be correct because in the

230 H. Grandy, K. Stenzel, and W. Reif

real world other inputs than the abstract ones may be sent by an attacker and
may cause implementation errors or security leaks.

The solution for this problem is to consider the invalid inputs on the concrete
level by implementing a check on the input which checks whether the concrete
input has an abstract counterpart. We add an additional document type ⊥ (rep-
resenting all the invalid inputs) and specify that the abstract level performs an
error treatment (e.g. a reset operation on the internal state) when receiving ⊥.
Then the concrete step which receives an invalid input (and discovers this using
the input check) has to be a refinement of the abstract error treatment step. With
such a refinement nothing bad can happen on the concrete level when receiving
invalid inputs. The TOSTORE operation now relates ⊥ to all invalid documents.
An attacker sending ⊥ on the abstract level is now able to send any invalid doc-
ument on the concrete level. Formally, the predicate validDoc : reference × store
specifies whether a pointer structure represents an abstract document. The re-
sult r × st of addDoc always satisfies validDoc(r, st). The check for valid inputs is
done in the receive() method in the Java implementation. Therefore the imple-
mentation of receive() must satisfy:

Receive-correct:
. . . // reference r is a valid communication interface in st
∧ st = st0 →

〈st; r0 = r.receive(); 〉
st = st0[.input, null] ∧
((validDoc(st0[.input], st0) → r0 = st0[.input]) ∧
(¬ validDoc(st0[.input], st0) → r0 = null))

If the input is a valid representation (validDoc(...)) of an abstract document,
the return value r0 of receive is the reference which was added in the TOSTORE
operation (st0[.input]). Otherwise null is returned. Additionally receive sets the
input buffer to null (st[.input, null]).

It is not desirable to verify the correctness of a concrete input/output checker
again for every single application. E.g. all our security protocol implementations
use the document class type as the input type. We have used this type for the
implementation of Cindy and also e.g. for the implementation of the Mondex [28]
application. Also, a real implementation would not directly send pointer struc-
tures but do some kind of encoding (e.g. to byte arrays or XML, which is then
sent by MMS). The data checker can be integrated in such a transformation func-
tion. We provide an implementation for such a transformation and data check
layer which can be verified separately. This enables us to split the refinement
proof into two layers. In the first layer the refinement of an abstract specification
of the protocol into an implementation working on the document class type is
shown using receive-correct as an assumption. The second refinement adds the
transformation and data check layer. Then TOSTORE has to add an encoding
of the input document instead of a pointer structure to the store. The receive
method has to check this input and transform it into a pointer structure. Then

A Refinement Method for Java Programs 231

the property of receive above can be proven using correctness properties of the
check and transformation layer.

6 Details on the Cindy Refinement and Implementation

Sect. 3 showed an excerpt of the ASM specification for the cellphone agent, which
covers storing of new tickets on the cell phone. The J2ME implementation2 of
this protocol step is:

public class Protocol {
private Doclist tickets; // bought tickets
...

public void step(){
if(comm.available()){
Document inmsg = comm.receive();
phoneStep(inmsg);}}

private void phoneStep(Document inmsg) {
Document originator = inmsg.getPart(1);
inmsg = inmsg.getPart(2);
Doclist ticket = getTicket(inmsg);
if(ticket != null && tickets.len() < MAXTICKETLEN){
tickets = tickets.attach(ticket);}

... //other protocol steps}

private Doclist getTicket(Document indoc) {
if(indoc != null && indoc.is_comdoc()){
byte[] ins = indoc.getPart(1).getValue();
if(ins.length == 1 && ins[0] == LOADTICKET){
Document indoc2 = indoc.getPart(2);
if(indoc2 != null && indoc2.len() == 2){
Document indoc21 = indoc2.getPart(1);
Document indoc22 = indoc2.getPart(2);
if(indoc21 != null && indoc21.is_intdoc() &&

indoc22 != null && indoc22.is_noncedoc()){
return indoc2;}}}}

return null;}}

The method step() is the top-level method for executing a protocol step. First
it tests whether input is available. If there is an input available the receive
method is executed and phonestep() is called with the input. This method now
tests the structure of the input using getTicket() method. getTicket() returns
the data part of the input document if it was a valid representation of a ticket
and null otherwise. phonestep() then adds the returned data to the list of actual
tickets if the input was valid.
2 This source code is running on any J2ME mobile phone. We have tested it on Nokia

3250 and Sony Ericsson W550i. The receive operation uses the J2ME API to access
the MMS messages of the mobile phone.

232 H. Grandy, K. Stenzel, and W. Reif

The proof structure now is the following: Starting with the proof obligation
given by the refinement theory in Sect. 3 we first symbolically execute the ab-
stract and the concrete level. The cases for the non-refined agents (such as the
attacker) are trivial because they are the same in both specifications. For the re-
fined agent we come to the proof obligation shown in Sect. 3.3. We then formulate
theorems for each Java method which relate the behavior of the method to the
abstract counterpart of its input. The corresponding theorem for the load-ticket
protocol step is for example:

is load message(first(inputs(agent))) ∧ st1 = store(agent) ∧
st = TOSTORE(inputs, st1) ∧ INV(st1) ∧ . . .
→ 〈st; Protocol.step(); 〉

(getDoc(st[Protocol.tickets], st) =
tickets(agent) + first(inputs(agent))

∧ st[.input] = null ∧ INV(st))

If the actual input document (first(inputs(agent))) is a correct load message
(is load message) on the abstract level and if this document is added to the
store via TOSTORE then the step method performs the correct state change: It
computes the correct ticket list (the new ticket attached to the old tickets). Also
the input was deleted (st[.input] = null). Additionally an invariant that holds
before the execution of the method (INV(st)) holds again afterwards.

With such theorems the refinement proof obligation is divisible in different
proof obligations for every protocol step. After applying those theorems we sym-
bolically execute the corresponding abstract ASM step. This results in an up-
dated abstract state which has to be proven to relate to the Java store which is
given by the theorem above via retrieve relation R. Using this technique the whole
proof becomes feasible. The whole case study consists of around 1000 lines of code.
The implementation of Cindy itself consists of around 350 lines of code. The rest
is the implementation of the document classes and some utility classes (e.g. for
handling byte arrays). The verification of the refinement starting with the cre-
ation of the concrete and abstract specification of the protocol and ending with
the refinement proof took around one and a half man months with KIV. The case
study consists of 329 theorems which took 11408 proof steps. 4655 of those steps
were done by the user. The degree of automation thereby is nearly 60 %. We ex-
pect a much higher degree of automation for upcoming case studies because of the
high re-usability of the Document implementation and the corresponding library.

7 Related Work

Related work concerning the verification of Java programs was already men-
tioned in Section 1. Here we focus on related work concerning refinement ap-
proaches for security protocols:

[20] describes a similar approach for Java Smart Cards. The authors specify
protocols using a high level specification language for proving security properties
and a more concrete one which works on the level of byte arrays. They specify

A Refinement Method for Java Programs 233

lengths and contents of messages using byte arrays and then use static program
analysis on the JavaCard implementation to decide whether the implementation
is correct. This approach is limited to the very specific class of protocols the
specification language allows while our approach allows any abstract specification
using all the possibilities of algebraic specifications on KIV [18]. Additionally,
because of the automated analysis and the fact that implementation correctness
is undecidable this approach cannot give reliable answers in every case.

[29] uses the Spi Calculus for specifying security protocols and a code gener-
ation engine to transform this specification to an implementation, also mapping
abstract messages to Java objects. Code generation yields large implementations
that are less readable than our code and cannot be optimized without losing cor-
rectness guarantess. Their mapping to concrete data types is not formally verified
and does not address the problem of invalid inputs on the concrete level.

[14] presents an approach to verify that a JavaCard implementation respects
a protocol specification given by a finite state machine. This approach cannot
directly transfer security proofs from the abstract specification to the implemen-
tation level, because they basically show that the Java program sends certain
message types in the right order but do not show that those messages and the
internal state of the implementation have the right contents.

The Mondex [21] case study has recently received a lot of attention because its
tool supported verification has been set up as a challenge for today’s verification
tools [31]. The original refinement proofs using Z have been done on a very de-
tailed level by hand [28]. In [25] and [24] we show that the same verification can
be done with good tool support and in a short period of time using KIV. An exten-
sion of Mondex using our Prosecco approach can be found in [12]. The Mondex
refinement basically splits a world view of an application into components imple-
menting a protocol. But even the lowest level of the Mondex case study is a only an
abstract specification of the communication protocol of the involved parties that
does not contain cryptographic operations. The approach presented here can be
used to do an additional refinement for Mondex adding a real implementation.
Details on our implementations of Mondex can be found in [11].

8 Conclusion

We presented a refinement method for Java programs instantiating data refine-
ment. The method is based on a calculus for Java verification and Abstract State
Machines using the interactive theorem prover KIV. While the approach is not
bounded to KIV only and the method itself could be transfered to other Java
verification systems, KIV’s strong support for ASM verification, Java verifica-
tion and algebraic specifications as well as its large library for security protocol
verification makes it an efficient tool for this approach.

As discussed in Sect. 3 our approach transfers security properties for the
abstract specification down to running Java code. Furthermore, we have shown
how to handle invalid inputs that only exist on the concrete level of Java pointer
structures. We have demonstrated that the method is suitable for handling case

234 H. Grandy, K. Stenzel, and W. Reif

studies of relevant size. Further work includes the incorporation of the method
into further verification case studies like Mondex.

References

1. Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system de-
velopment with KIV. In: Maibaum, T. (ed.) ETAPS 2000 and FASE 2000, LNCS,
vol. 1783, Springer, Heidelberg (2000)

2. Tickets on your Mobile. [last seen 2007-03-16] URL: http://www.beep.nl (2007)
3. Bolton, C., Davies, J., Woodcock, J.C.P.: On the refinement and simulation of data

types and processes. In: Araki, K., Galloway, A., Taguchi, K. (eds.) Proceedings
of the International conference of Integrated Formal Methods (IFM), pp. 273–292.
Springer, Heidelberg (1999)

4. Börger, E., Stärk, R.F.: Abstract State Machines—A Method for High-Level Sys-
tem Design and Analysis. Springer-Verlag, Heidelberg (2003)

5. Breunesse, C., Jacobs, B., van den Berg, J.: Specifying and verifying a decimal rep-
resentation in Java for smart cards. In: Kirchner, H., Ringeissen, C. (eds.) AMAST
2002, LNCS, vol. 2422, Springer, Heidelberg (2002)

6. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Rustan, K.,
Leino, M., Poll, E.: An overview of jml tools and applications. In: Burdy, L., Arts,
T., Fokkink, W. (eds.) (FMICS ’03). Eighth International Workshop on Formal
Methods for Industrial Critical Systems. Electronic Notes in Theoretical Computer
Science, vol. 80, Elsevier, Amsterdam (2003)

7. Burrows, M., Abadi, M., Needham, R.M.: A Logic of Authentication. Technical
report, SRC Research Report 39 (1989)

8. de Roever, W., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods
and their Comparison. Cambridge Tracts in Theoretical Computer Science, vol. 47.
Cambridge University Press, Cambridge (1998)

9. Derrick, J., Boiten, E.: Refinement in Z and in Object-Z: Foundations and
Advanced Applications. FACIT. Springer, Heidelberg (2001)

10. Grandy, H., Haneberg, D., Reif, W., Stenzel, K.: Developing Provably Secure
M-Commerce Applications. In: Müller, G. (ed.) ETRICS 2006, LNCS, vol. 3995,
pp. 115–129. Springer, Heidelberg (2006)

11. Grandy, H., Moebius, N., Bischof, M., Haneberg, D., Schellhorn, G., Stenzel,
K., Reif, W.: The Mondex Case Study: From Specifications to Code. Technical
Report 2006-31, University of Augsburg, 2006. URL: http://www.informatik.
uni-augsburg.de/lehrstuehle/swt/se/publications/ (2006)

12. Haneberg, D., Schellhorn, G., Grandy, H., Reif, W.: Verification of Mondex Elec-
tronic Purses with KIV: From Transactions to a Security Protocol. Technical
Report 2006-32, University of Augsburg, 2006. URL: http://www.informatik.
uni-augsburg.de/lehrstuehle/swt/se/publications/ (2006)

13. Jifeng, H., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: Robinet, B.,
Wilhelm, R. (eds.) Proc. ESOP 86, LNCS, vol. 213, pp. 187–196. Springer, Heidel-
berg (1986)

14. Hubbers, E., Oostdijk, M., Poll, E.: Implementing a Formally Verifiable Security
Protocol in Java Card. In: Hutter, D., Müller, G., Stephan, W., Ullmann, M. (eds.)
Security in Pervasive Computing, LNCS, vol. 2802, Springer, Heidelberg (2004)

15. Huisman, M.: Verification of java’s abstractcollection class: a case study. In: Boiten,
E.A., Möller, B. (eds.) MPC 2002, LNCS, vol. 2386, Springer, Heidelberg (2002)

http://www.beep.nl
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/

A Refinement Method for Java Programs 235

16. Jacobs, B., Marche, C., Rauch, N.: Formal verification of a commercial smart
card applet with multiple tools. In: Rattray, C., Maharaj, S., Shankland, C. (eds.)
AMAST 2004, LNCS, vol. 3116, Springer, Heidelberg (2004)

17. Joy, B., Steele, G., Gosling, J., Bracha, G. (eds.): The Java (tm) Language Speci-
fication, 2nd edn. Addison-Wesley, London (2000)

18. KIV homepage. http://www.informatik.uni-augsburg.de/swt/kiv.
19. Mantel, H.: Preserving Information Flow Properties under Refinement. In: Pro-

ceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, USA
(2001)

20. Marlet, R., Le Metayer, D.: Verification of Cryptographic Protocols Implemented
in JavaCard. In: Proceedings of the e-Smart conference (e-Smart 2003), Sophia
Antipolis (2003)

21. MasterCard International Inc. Mondex. URL: http://www.mondex.com.
22. Mostowski, W.: Rigorous development of java card applications. In: Clarke, T.,

Evans, V., Lano, K. (eds), Proceedings, Fourth Workshop on Rigorous Object-
Oriented Methods, London, UK (2002)

23. Paulson, L.C.: The Inductive Approach to Verifying Cryptographic Protocols. J.
Computer Security 6 (1998)

24. Schellhorn, G., Grandy, H., Haneberg, D., Moebius, N., Reif, W.: A system-
atic verification Approach for Mondex Electronic Purses using ASMs. Techni-
cal Report 2006-27, Universität Augsburg, 2006. URL: http://www.informatik.
uni-augsburg.de/lehrstuehle/swt/se/publications/ (2006)

25. Schellhorn, G., Grandy, H., Haneberg, D., Reif, W.: The Mondex Challenge: Ma-
chine Checked Proofs for an Electronic Purse. In: Misra, J., Nipkow, T., Sekerinski,
E. (eds.) FM 2006, LNCS, vol. 4085, pp. 16–31. Springer, Heidelberg (2006)

26. Stenzel, K.: A formally verified calculus for full Java Card. In: Rattray, C., Maharaj,
S., Shankland, C. (eds.) AMAST 2004, LNCS, vol. 3116, Springer, Heidelberg
(2004)

27. Stenzel, K.: Verification of Java Card Programs. PhD thesis, Uni-
versität Augsburg, Fakultät für Angewandte Informatik, URL:
http://www.opus-bayern.de/uni-augsburg/volltexte/2005/122/, or
http://www.informatik.uni-augsburg.de/forschung/dissertations/ (2005)

28. Stepney, S., Cooper, D., Woodcock, J.: AN ELECTRONIC PURSE Spec-
ification, Refinement, and Proof. Technical monograph PRG-126, Ox-
ford University Computing Laboratory, July 2000. http://www-users.cs.
york.ac.uk/~susan/bib/ss/z/monog.htm (2000)

29. Tobler, B., Hutchison, A.: Generating Network Security Protocol Implementations
from Formal Specifications. In: CSES 2004 2nd International Workshop on Certi-
fication and Security in Inter-Organizational E-Services at IFIPWorldComputer-
Congress, Toulouse, France (2004)

30. Woodcock, J.C.P., Davies, J.: Using Z: Specification, Proof and Refinement. Pren-
tice Hall International Series in Computer Science. Prentice-Hall, Englewood Cliffs
(1996)

31. Woodcock, J.: First steps in the verified software grand challenge. IEEE Com-
puter 39(10), 57–64 (2006)

http://www.informatik.uni-augsburg.de/swt/kiv
http://www.mondex.com
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/
http://www.opus-bayern.de/uni-augsburg/volltexte/2005/122/
http://www.informatik.uni-augsburg.de/forschung/dissertations/
http://www-users.cs.york.ac.uk/~susan/bib/ss/z/monog.htm
http://www-users.cs.york.ac.uk/~susan/bib/ss/z/monog.htm

Refactoring Object-Oriented Specifications with

Data and Processes�

Thomas Ruhroth and Heike Wehrheim

Department of Computer Science
University of Paderborn

33098 Paderborn, Germany
{ruhroth,wehrheim}@uni-paderborn.de

Abstract. Refactoring is a method for improving the structure of pro-
grams/specifications as to enhance readability, modularity and reusabil-
ity. Refactorings are required to be behaviour-preserving in that – to
an external observer – no difference between the program before and
after refactoring is visible. In this paper, we develop refactorings for
an object-oriented specification formalism combining a state-based lan-
guage (Object-Z) with a process algebra (CSP). In contrast to OO-
programming languages, refactorings moving methods or attributes up
and down the class hierarchy, in addition, need to change CSP processes.
We formally prove behaviour preservation with respect to the failures-
divergences model of CSP.

1 Introduction

Refactoring is a technique which has long been used by programmers to improve
the structure of their code once it got unreadable. The word ”refactoring” as
a general term for frequently occurring clean-up operations on programs has
been coined by Fowler [Fow04]. The book [Fow04] collects a large number of
refactorings operating on different levels: the level of methods only, those of
classes and of the class hierarchy. As Fowler puts it, all these refactorings ”should
not change the externally visible behaviour of a program”. For programs, this
type of behaviour preservation is checked via testing: there are a number of tests
associated with every (part of a) program which are being run before and after
the refactoring. An application of a particular refactoring thus does not a priori
guarantee behaviour preservation but has to be tested.

This is different for refactorings for formal specifications: the formal semantics
allows for a proof of correctness of a refactoring, and thus ensures behaviour
preservation. Thus, while refactorings for OO-programs are usually stated via
an example, refactorings for formal specifications are given by pairs of templates
describing before and after state of a refactoring. These template pairs are proven
to guarantee behaviour preservation with respect to the formal semantics of
� This work was partially funded by the German Research Council DFG under grant

WE 2290/6-1.

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 236–251, 2007.
c© IFIP International Federation for Information Processing 2007

Refactoring Object-Oriented Specifications with Data and Processes 237

the specification language. Thus, whenever some parts of a specification are
an instantiation of a before template, they can be replaced with the proper
instantiation of the corresponding after template. Additional constraints might
constrain the application of the pattern. An overview of these kind of formal
approaches to refactoring can be found in [MT04], in particular [MS04] and
[MS06] follow this approach for Object-Z specifications, one of the formalisms
we will be interested in here. While a lot of the approaches surveyed in [MT04]
show behaviour-preservation only for specific properties (e.g. certain invariants
of classes or relationships between objects), the basis for the correctness proof of
[MS04] is the notion of data refinement [dE98, DB01] in Object-Z. Refinement
exactly guarantees the intended substitutability requirement: for an external
observer the classes before and after refactoring are not different, and this holds
for any kind of (external) observation on the class.

In this paper, we study refactorings for a formal specification language which
in addition to state-based descriptions in Object-Z [Smi00] allows for a descrip-
tion of the dynamic behaviour via the process algebra CSP [Hoa85, Ros97]. This
combination, called CSP-OZ [Fis97], has a semantics defined in terms of the
failures-divergences model of CSP. The integration of two orthogonal formalisms
gives us a convenient way of modelling both data, methods and the ordering of
method executions. For the refactorings, this additional view in our specifica-
tions however imposes additional complexity. A change on the Object-Z side
most often requires a corresponding change in the process. This in particular
applies to refactorings on the level of the class hierarchy where the movement of
a method up or down the hierarchy may involve a corresponding move of CSP
process parts up or down classes.

As our notion of correctness of refactorings, we use refinement as well as it
guarantees the required behaviour preservation. In the combination CSP-OZ,
the appropriate notion of refinement is however process refinement (failures-
divergences refinement), coming from the CSP semantics. Refactorings are only
correct if they preserve the failures-divergences semantics of all involved classes,
up to refinement. We aim at defining generally usable templates for refactorings
such that correctness is guaranteed for every concrete instantiation. Here, we
present a general proof strategy for CSP-OZ refactorings based on an expan-
sion into CSPZ given in [Fis00], which in turn is based on a similar semantics
for Object-Z [Smi00]. This proves to be a convenient approach since (most of
the) refactorings can thus be shown to be correct by syntactical rewritings of
schemas only. We, however, also present a correctness proof for a refactoring
which involves an explicit construction of a refinement. The whole approach is
exemplified with a CSP-OZ specification in which we refactor single classes as
well as introduce a class hierarchy via refactoring.

2 Background

We start with a first part of our case study by which we introduce the formalism
CSP-OZ, its semantics and the notion of refinement. The following, only partially

238 T. Ruhroth and H. Wehrheim

given class specification is describing one part of a manufacturing system, namely
a store. Stores are holding workpieces which can be loaded/deloaded from and to
autonomous transportation agents. For this, we first of all need two basic types
for workpieces and for names of transportation agents (Hts): [WP ,Hts]. The
class Store is a CSP-OZ class consisting of a CSP part describing the dynamic
behaviour (ordering of operations) of the class, and an Object-Z part describing
the static behaviour (data and operations). Parts not relevant for our refactorings
are being omitted (written as ...).

Store
chan load : [wp? : WP] chan deload : [wp! : WP]
chan info : ...

main
c= Loading ||| Info

Loading c= load → Loading � deload → Loading
Info c= info → Info

store : F WP ; ...

#store ≤ 100

Init
store = ∅

load
Δ(store)
wp? : WP

#store < 100
store ′ = store ∪ {wp?}

deload
Δ(store)
wp! : WP

wp! ∈ store
store ′ = store \ {wp!}

info =̂ . . . [Giving information on current state to environment]

The specification consists of a declaration of the interface of the class as a
number of channels for communication with other classes (viz. objects). Here,
channels load , deload and info are declared together with their signatures. After
this, a CSP process main is given defining the dynamic behaviour of the class
(viz. its objects). For class Store this is an interleaving (|||) of the processes
Loading and Info. Process Info just repeatedly executes operation info (→ is
the prefix operator describing sequencing), and process Loading consists of an
external choice (�) over either a load or a deload .

The remaining part of the specification defines the variables (sometimes also
called fields) in the state schema (a variable store with an invariant fixing the
size of the store), the initial values (in the init schema) and the operations. An
operation schema typically consists of a Δ-list, declaring the variables which
are allowed to be changed, and input and output variables (denoted by ? and !,
respectively) together with a predicate defining constraints on state changes.
Here, primed variables denote variables in the after state. For instance, operation
load is allowed to change variable store, has an input variable wp? and a predicate
stating the precondition of the operation (store has not to be full) and the

Refactoring Object-Oriented Specifications with Data and Processes 239

outcome (the workpiece in the input is added to the store). In addition, CSP-
OZ allows to specify inheritance relationships between classes (not present here),
denoted by inherit superclassname.

Semantics. This combination of CSP and Object-Z has a well-defined semantics
in terms of the failures-divergences model of CSP [Fis00]. The semantics is de-
fined by first translating a CSP-OZ specification to CSPZ (a CSP dialect with Z
syntax for expressions and declarations), from which the failures and divergences
are then derived. For proving the correctness of our refactorings we only need
to go to the level of CSPZ, thus we will only explain this part. The basic idea
is to model the CSP part and the Object-Z part of the CSP-OZ specification
in CSPZ. These two parts can then be combined into a semantics of the whole
CSP-OZ specification using the parallel composition operator (A‖B) of CSP.
More specifically, the semantics of a CSP-OZ class C is

proc(C) = procC (C)Chans(procC (C))‖Chans(procZ (C))procZ (C),

where procC (C) is the semantics of the CSP part and procZ (C) those of the
Object-Z part. The function Chans computes the channels used in a process
expression, and A‖B , A,B set of events, is the parallel composition allowing the
left process to communicate on events in A and the right in B with synchronisa-
tion on events in the intersection. Thus CSP and Object-Z part synchronise on
joint operations. The semantics procC is either simply the CSP process main (if
the class has no superclass), or the parallel composition of main with the main
process of the superclass S , again synchronising on common operations:

procC (C) = mainChans(main)‖Chans(procC (S))procC (S)

The semantics of the Object-Z part (procZ) is defined by first mapping Object-
Z constructs to Z and then transforming them to CSPZ. In this paper we will in
particular use the functions init() and state(), which map Object-Z constructs
to pure Z schemas. The function init() gives a Z schema representing the initial-
isation, and state() a Z schema representing the state of the class. These and
some other functions are used within procZ . Due to lack of space, we omit these
definitions here, for details and rules see [Smi00, Fis00].

Refinement. Correctness, viz. behaviour preservation of refactorings, is in our
setting defined via refinement [dE98, DB01]. Refinement guarantees substitutabil-
ity: while internal representations may change, the changes should not be ex-
ternally visible. Since refactorings are usually applicable in both directions (a
method pushed up to a superclass or down to the subclasses), we need refinement
in both directions.

For the specification formalism CSP-OZ, two notions of refinement are of
importance: data refinement from Object-Z and failures-divergences refinement
from CSP. We start with the former. Data refinement is defined as substitutabil-
ity of one specification by another, and usually proven by forward and backward
simulations. Here, we just need forward simulations and thus give this definition

240 T. Ruhroth and H. Wehrheim

only. It assumes to have two Object-Z classes A and C given (or the Object-Z
parts of two CSP-OZ classes), which both consist of a state schema, an initialisa-
tion schema and some operation schemas: A = (AState,AInit , {AOpi}i∈I) and
C = (CState,CInit , {COpi}i∈I), where I is some index set for operations.

Definition 1. C is a forward simulation of A, A �D C, if there is a retrieve
relation R between AState and CState such that the following hold:

1. Initialisation: ∀CState • CInit ⇒ (∃AState • AInit ∧ R),
2. Applicability: ∀ i ∈ I , ∀AState,CState • R ⇒ (preAOpi ⇔ preCOpi),
3. Correctness: ∀ i ∈ I , ∀AState,CState,CState ′ •

R ∧ COpi ⇒ ∃AState ′ • R′ ∧ AOpi .

Basically, the idea is to find a relation between the variables in A and C such that
the operations in C are applicable in a state if and only those in A are applicable
in a related state, and the execution of an operation in C can correspondingly be
carried out in A leading to related states again. While the definition of variables
and operations may have been changed in C , its externally visible behaviour
cannot be distinguished from A.

Data refinement, or more specifically forward simulation, is used when we need
to look at the Object-Z part of a CSP-OZ specification in isolation. In the com-
bination, the basis for a definition of refinement is the semantics for CSP-OZ,
i.e. the failures-divergences model of CSP. Again, we will not actually compute
failures and divergences of processes, but work on the level of CSP processes
only. For CSP processes P and Q , we write P �FD Q if Q is a process (failures-
divergences) refinement of P .

Finally, we need to know the relationship between these two kinds of refine-
ment. A lot of research has recently been carried out on the comparison of data
and process refinement, the relevant result here is the following (from [Fis00]).

Theorem 1. Let A, C be Object-Z parts of CSP-OZ classes. Then

A �D C ⇒ procZ (A) �FD procZ (C) .

Furthermore, process refinement is preserved under parallel composition
([Ros97]), which is the operator used for combining the processes of CSP and
Object-Z part.

Theorem 2. Let P1,P2,Q1,Q2 be CSP processes, A,B sets of events. Then

P1 �FD Q1 ∧ P2 �FD Q2 ⇒ P1A‖BP2 �FD Q1A‖BQ2 .

As a consequence, we can separately show a data refinement relationship on the
Object-Z parts and a process refinement on the CSP parts, and obtain a process
refinement for the combination. Thus refactorings operating on the Object-Z
part alone can be proven correct without having to look into the CSP part.

Refactoring Object-Oriented Specifications with Data and Processes 241

3 Case Study

Next, we continue our example and extend it with another class. These two
classes are then the starting point for our refactorings. The second class specifies
machines in the manufacturing system. Similar to stores, machines can load and
deload workpieces. The machine is furthermore an active entity as it actively
seeks to find some transportation agent for a job. The CSP process Acq below
describes the events carried out for an acquisition of a transportation agent (es-
sentially getting offers from agents, choosing the offer with the smallest cost and
ordering this agent), their exact meaning is however not relevant for our aims. In
between these operations, loading, processing and deloading of workpieces takes
place. The operator ; denotes sequential composition. The variables orderTo
and offers are used for the acquisition of transporation agents.

Machine
chan load : [wp? : WP] chan deload : [wp! : WP]
chan offer , process , choose, order . . .

main
c= Acq; (load → process → Acq); (deload → main)

Acq c=|||h:Hts offer .h → Skip; choose → order → Skip

wp : WP
orderTo : Hts
offers : seq(Hts × N)

Init
offers = 〈 〉

load
Δ(wp)
wp? : WP

wp′ = wp?

deload
wp! : WP

wp! = wp

There are some obvious similarities between this class and class Store: both
store workpieces (Store up to a hundred, Machine only one) and both load
and deload workpieces. We could thus think of having a common superclass
for both classes describing these common functionalities. This would result in
a specification which does not duplicate the description of two operations, and
there would be a single point in the specification in which changes to these
operations have to be made (for instance during a refinement to code). Our
objective is thus now to introduce a common superclass to Store and Machine,
and move common variables and operations to this superclass. This goal is in
the following achieved through a number of successive refactorings.

First refactoring. Looking at the two definitions of operations load and deload ,
which are candidates for operations of the superclass, we see that they are

242 T. Ruhroth and H. Wehrheim

different. Our first refactoring thus works towards making them similar. In
Machine we change state, init schema and operations to

store : F WP
orderTo : Hts
offers : seq(Hts × N)

#store ≤ 1

Init
store = ∅

offers = 〈 〉

load
Δ(store)
wp? : WP

#store < 1
store ′ = store ∪ {wp?}

deload
Δ(store)
wp! : WP

wp! ∈ store
store ′ = store \ {wp!}

Instead of having a variable of type WP we now have a set of WPs of size
one. This looks like a data refinement on the Object-Z side but it is not. The
preconditions of load and deload in the Object-Z part are strengthened: while
previously both operations were always enabled, they are now only enabled when
store is currently empty or filled, respectively. Due to the blocking semantics of
Object-Z such a change becomes visible to an observer: operation load might
sometimes be disabled. Fortunately, in connection with the CSP part it is a cor-
rect refinement since the CSP part ensures an alternating execution of load and
deload , thus the blocking has already been present in the previous specification
of Machine. The correctness of this transformation, i.e. behaviour preservation,
can be proven using a technique presented in [DW06]. We thus will not further
look at the correctness of this refactoring.

Second refactoring. Our next refactoring tackles the remaining difference be-
tween Store and Machine as far as the field store is concerned. We carry out the
refactoring “Replace Magic Number with Symbolic Constant” [Fow04] in both
classes, replacing the numbers 100 and 1 by a variable capacity which is then
initially set to the respective value. The relevant part of Store looks like this
(similarly for Machine):

Store

store : F WP
capacity : N

#store ≤ capacity

Init
. . .
capacity = 100

. . . [plus replacing the number in load]

Third Refactoring. Looking at Store and Machine we now see that they share
similar variables and methods. Hence a superclass can be extracted from them,

Refactoring Object-Oriented Specifications with Data and Processes 243

and variables, part of the initialisation and methods pulled upwards to this
class. The next refactoring (called ”Extract Superclass”) is a combination of
four smaller refactorings (all from [Fow04]): “Extract Class” creates an empty
class (Station) and makes Store and Machine inherit from this class, ”Pull Up
Field” moves variables store and capacity from subclasses to superclass, ”Pull
Up Init” moves initialisation of store to superclass (but not of capacity since this
is different in the two subclasses) and finally ”Pull Up Method” moves methods
load and deload up to Station (shown next, omitting interface declaration).

Station

store : F WP
capacity : N

#store ≤ capacity

Init
store = ∅

load
Δ(store)
wp? : WP

#store < capacity
store ′ = store ∪ {wp?}

deload
Δ(store)
wp! : WP

wp! ∈ store
store ′ = store \ {wp!}

Both Store and Machine inherit from Station, i.e.

Store
inherit Station
. . .

Machine
inherit Station
. . .

and both do not contain definitions of load , deload , store and capacity anymore
(being inherited from Station), only the initialisation of capacity remains in the
subclasses as it differs in the two classes.

Fourth Refactoring. Last, we have to look at the CSP part. The two classes have
quite different CSP parts, in particular both also refer to operations other than
load and deload . Thus neither the CSP part of Store nor that of Machine can be
completely moved to the superclass. However, one part of Store could potentially
be moved to Station, namely we could define the CSP part in Station as

main
c= Loading

Loading c= load → Loading
� deload → Loading ,

and change the CSP part of Store to main
c= Info. This refactoring is called ”Pull

up CSP” (not from [Fow04]); it is moving one part of a parallel composition
in a CSP process of a subclass to a superclass. However, due the semantics of

244 T. Ruhroth and H. Wehrheim

inheritance (parallel composition of CSP parts of sub- and superclass) this affects
the CSP part of Machine as well. We have to make sure that the CSP process
obtained by this parallel composition is equivalent to the old CSP process. To
this end, we first rephrase the CSP part of Machine (refactoring ”Rephrase
CSP”, not from [Fow04]) to a form where this parallel composition is explicitly
visible and show behaviour preservation for this transformation. In Machine
we get

main
c= LoadingChans(Loading)‖Chans(Work)Work

Loading c= load → Loading � deload → Loading
Work c= Acq; (load → process → Acq); (deload → Work)
Acq c=|||h:Hts offer .h → Skip; choose → order → Skip

Equivalence, i.e. refinement in both directions, between this new and the old
process of Machine can be automatically shown using the CSP model checker
FDR [FDR97]. Then, Loading can be moved upwards to superclass Station from
both Store and Machine preserving the overall semantics.

4 Correctness of Refactorings

In the example above we have seen several different refactorings, affecting only
the CSP part, only the Object part or both parts.

Object-Z. Refactorings which only affect the classes being changed are called
inner refactorings. Such inner refactorings of the Object-Z part can be easily
derived from the inner refactorings of Object-Z itself (using an approach pre-
sented in [Ruh06]), and can - due to Theorem 1 - proven correct by looking at
the Object-Z part in isolation. Four refactorings of the example fulfil this con-
dition: ”Pull Up Field”, ”Pull Up Method”, ”Pull Up Init” and ”Replace Magic
Number with Symbolic Constant”. Here we just prove correctness of ”Pull Up
Field”, the other proofs are similar.

All of our refactorings will be formally described by a template consisting
of three parts: A (possibly empty) condition stating application conditions for
the refactoring, and two patterns of specifications stating the before and after
state of the refactoring. In the patterns we will not have concrete variables, but
metavariables which can be instantiated in an arbitrary way. The template for
”Pull Up Field” describes how and when a variable v can be moved from (one
or more) subclasses to a superclass.

Condition:

v �∈ vars(state(superbefore)) ∧ v �∈ vars(state(sub2before))
∃ v : T • pv

vars(pv) ⊂ {v} ∪ vars(state(superbefore))

Refactoring Object-Oriented Specifications with Data and Processes 245

Before:

superbefore

vdefsuper

vconssuper

sub1before+
inherit superbefore

vdefsub1
v : T

vconssub1
pv

sub2before∗
inherit superbefore

vdefsub2

vconssub2

After:

superafter

vdefsuper
v : T

vconssuper
pv

sub1after+
inherit superafter

vdefsub1

vconssub1

sub2after∗
inherit superafter

vdefsub2

vconssub2

This refactoring assumes that there is a superclass superbefore with at least
one subclass of type sub1before (denoted by +, regular expression) and zero,
one or more subclasses of type sub2before (denoted by ∗). The subclasses of type
sub1before all have a field v with the same type T and a predicate pv constraining
the values of v . In addition they may have other (differing) fields (summarised in
vdefsub1) with predicates vconssub1 over them. Note that the predicate vconssub1
may also constrain variable v . Subclasses of type sub2before and the superclass
all do not have the variable v in their state schema. Furthermore, the condition
requires that there is at least one possible value for v such that the predicate pv

is fulfilled. The after template describes the specification after the refactoring:
field v and its predicate pv have been pulled upwards into the superclass. Note
that when applying this refactoring to our example, we first pull up one variable
(e.g. store) and an empty predicate (true), and in the second step the other
variable (here capacity) and the predicate #store ≤ capacity.

For correctness, we need to prove that the superclass and all subclasses re-
main equivalent (wrt. refinement) under this transformation. We do this in three
steps: first, we show that the classes which previously have included the variable
remain the same, second, we prove the same for the classes which have not pre-
viously included the variable (i.e. sub2), and third, we have to prove equivalence
for the superclass. We start with proving equivalence for a class of type sub1. The
important part is to prove that the semantics of the state does not change, i.e.
state(sub1before) = state(sub1after). Using the semantics rules from the language
definition (Chapter 4) of [Smi00] we can transform the left part of the equation:

246 T. Ruhroth and H. Wehrheim

state(sub1before)
= [self : sub1before] ∧ (state(superbefore)/(self))

• state([v : T ; vdefsub1 | vconssub1; pv])
= [self : sub1before] ∧ (state(superbefore)/(self))

• state([v : T | pv]) • state([vdefsub1 | vconssub1])
= [self : sub1before] ∧ ((state(superbefore) ∧ state([v : T | pv]))/(self))

• state([vdefsub1 | vconssub1)
= [self : sub1before] ∧ state([vdefsuper ; v : T | vconssuper ; pv])/(self))

• state([vdefsub1 | vconssub1)
= [self : sub1after] ∧ (state(sub1after)/(self))

• state([vdefsub1 | vconssub1)
= state(sub1after)

Essentially, the state of the class, which owns the variable v before applying the
refactoring does not change through this refactoring. From this we conclude that
the class before and after the refactoring are equivalent (under data refinement).

Next, we prove that classes which did not include the variable, are equivalent
before and after applying the refactoring. This is more complicated than the
first part because we have to show that the enhanced state does not change the
behaviour. Here we have to use another proof technique because the class does
not remain equivalent as far as its state is concerned. It is to be proven that
the class before and after applying the refactoring are refinements of each other
using forward simulation. Here, we only prove that sub2before is a refinement of
sub2after . We have to show that there is a schema R, which fulfils the conditions
of Definition 1. The state of the refactored class is the old state combined with
the variable v and some predicates pv :

state(sub2before) ∧ [v : t | pv] ≡ state(sub2after)

For this, we choose R to be the identity on the variables of sub2before. We imme-
diately get init(sub2before) = init(sub2after) and sub2before .Opi = sub2after .Opi ,
because the definition is not modified and the variable v is not used in any of
them. We begin with the initialisation condition from Definition 1:

∀ state(sub2before) • init(sub2before) ⇒ ∃(state(sub2after) • init(sub2after) ∧ R)
≡

∀ state(sub2before) • init(sub2before)
⇒ ∃(state(sub2before) ∧ [v : T | pv] • init(sub2before) ∧ R)

≡ {sub2before and init(sub2before) do not use v}
∀ state(sub2before) • init(sub2before)
⇒ (state(sub2before) ∧ init(sub2before) ∧ ∃ v : T | pv • R)

≡ { Definition of R}
∀ state(sub2before) • init(sub2before)

⇒ (state(sub2before) ∧ init(sub2before) ∧ ∃ v : T • pv)

Refactoring Object-Oriented Specifications with Data and Processes 247

≡ ∃ v : T • pv

≡ { Assumption }
true

We omit the simple proof of applicability and go straight to the proof of the
correctness condition of forward simulation:

∀ state(sub2after), state(sub2before), state(sub2before)′ • R ∧ sub2before .Opi

⇒ ∃ state(sub2after)′ • R′ ∧ sub2after .Opi

≡
∀ state(sub2before ∧ [v : T | pv]), state(sub2before), state(sub2before)′

•R ∧ sub2before .Opi ⇒ ∃ state(sub2before ∧ [v : T | pv])′ • R′ ∧ sub2after .Opi

≡
∀ state(sub2before ∧ [v : T | pv]), state(sub2before), state(sub2before)′

•R ∧ sub2before .Opi ⇒ ∃ state(sub2before ∧ [v : t | p])′ • R′ ∧ sub2before.Opi

≡ { Definition of R and v is not in Δ}
∀[v : T | pv], state(sub2before), state(sub2before)′ • R ∧ sub2before .Opi

⇒ ∃[v : t | p]′ • v = v ′

≡ { Assumption }
∀[v : T | pv], state(sub2before), state(sub2before)′ • R ∧ sub2before .Opi

⇒ true
≡ true

Thus we have proven that the class sub2before is a refinement of sub2after . The
proof for the common superclass is analogous to the proof of sub2. In a similar
way we can prove correctness of the other inner refactorings on the Object-Z
part, e.g. ”Replace magic number with Symbolic Constant”, ”Pull Up Method”
and ”Pull Up Init”.

CSP. Next we will look at a refactoring only changing the CSP part of a class.
This kind of refactoring is used here in two ways. First, we may want to transform
the CSP part to an equivalent one within the CSP-OZ class (”Rephrase CSP”).
We use ”Rephrase CSP” to bring the CSP part into a shape, in which we can
apply the second CSP refactoring, namely ”Pull Up CSP”. Both can be proven
by concentrating on the CSP part alone (Theorem 1). Hence, we can simply
prove that the CSP part before and after applying the refactoring is the same.

For ”Rephrase CSP” there are two possibilities: we have to show that the
CSP-part before and after refactoring is equivalent wrt. the failures-divergences
semantics of CSP, and this can either be done by using some of the equivalence
rules of CSP (see e.g. [Ros97]) or explicitly asking the CSP modelchecker FDR
(which we have done for our example). The second CSP refactoring we use in
the example is ”Pull Up CSP”. This refactoring is described by the following
template (with empty condition).

Before:

superbefore
main

c= R
subbefore+
inherit superbefore
main

c= PsubChans(P)‖Chans(Q)Q

248 T. Ruhroth and H. Wehrheim

After:

superafter
main

c= QChans(Q)‖Chans(R)R

subafter+
inherit superafter
main

c= Psub

The template assumes to have a superclass superbefore and a (nonzero) number
of subclasses subbefore which all have their CSP processes defined as the parallel
composition of some specific process Psub and one joint process Q . The process
Q can then be pulled upwards to the superclass.

We can prove the correctness of this refactoring again by looking at the CSP
part in isolation. We thus simply prove that the CSP part before and after ap-
plying the refactoring is the same. The proof uses the definition of the semantics
of inheritance (parallel composition of sub- and superclass).

procC (subbefore) = (PChans(P)‖Chans(Q)Q)Chans(P‖Q)‖Chans(R)R
= {Chans(XChans(X)‖Chans(Y)Y) = Chans(X) ∪ Chans(Y)}

(PChans(P)‖Chans(Q)Q)Chans(P)∪Chans(Q)‖Chans(R)R

= {x‖y − assoc from [Ros97]}
PChans(P)‖Chans(Q)∪Chans(R)(QChans(Q)‖Chans(R)R)

= {Chans(XChans(X)‖Chans(Y)Y) = Chans(X) ∪ Chans(Y)}
PChans(P)‖Chans(Q‖R)(QChans(Q)‖Chans(R)R)

= procC (subafter)

Extract Superclass. Finally, we show correctness of a refactoring which changes
both CSP and Object-Z part of a class. ”Extract Superclass” is a complex refac-
toring. First we introduce an empty superclass, then we use the refactorings
”Pull Up Method”, ”Pull Up Field” and ”Pull Up CSP”. The latter three are
also normal refactorings which we have already treated above. Therefore, we
only have to prove correctness of the introduction of a new empty superclass
(with template given below).
Before:

subbefore
main

c= PE

After:

superafter
main

c= Skip
subafter
inherit superafter
main

c= PE

Refactoring Object-Oriented Specifications with Data and Processes 249

Fortunately, this new superclass does not add new functionality, so we only
have to prove that both the CSP and Object-Z part will not be changed. First
we prove this for the CSP part:

procC (subafter) = PEChans(PE)‖Chans(Skip)Skip
= PEChans(PE)‖{�}Skip
= PE ≡ procC (subbefore)

For the Object-Z part correctness trivially holds since the superclass does
not introduce new constraints on the Object-Z part. Thus we have proven that
the introduction of an empty superclass is behaviour preserving as well, which
finishes the correctness proofs for the refactorings of our example. These proofs
exemplarily show all possible types of correctness proofs for CSP-OZ refactor-
ings: most of them proceed by syntactically rewriting of (state, init or operation)
schemas or CSP processes. Some of them, however, explicitly need the construc-
tion of a refinement relation.

5 Conclusion

In this paper we have shown how to carry out refactorings in object-oriented spec-
ifications involving a state-based as well as a behaviour-oriented part. Refactor-
ings thus concerned either only one of the specification parts (CSP or Object-Z)
or both. We have shown correctness of (some of) these refactorings by proving a
refinement relationship between before and after specification. This guarantees
the desired behaviour preservation.

Related work. Refactoring is a widely used technique in program design and
development. An overview over different approaches to refactoring is given in
[MT04]. The use of data refinement as a correctness criterion for refactorings
is also followed in Cornèlio, Cavalcanti et. al. [Cor04, CCS02] and McComb
[MS04, McC04]. Cornèlio defines refactorings and proves their correctness for
a refinement-based object-oriented language (ROOL), McComb and Smith use
Object-Z. While in particular the latter approach is close to ours, both languages
are state based formalisms only and do not include dynamic aspects, like CSP-
OZ does. A different approach to correctness of refactorings is taken by Bannwart
and Müller [BM06]. They show that particular pre- and post-conditions can be
derived from a refactoring and used to ensure correctness by inserting them as
assertions into programs. Then they are able to implement a runtime check of
the correctness of refactorings.

A frequently used formal approach to refactorings is the application of graph
transformations (e.g. [HT04, KHE03, MEDJ05, SD06, BM06a]). Graph trans-
formation rules can be used to describe refactorings when the specification can
be seen as a graph (e.g. in case of UML diagrams). They however cannot deal
with data-specific conditions, and most often do not treat different views, like
the data and process view we have here.

250 T. Ruhroth and H. Wehrheim

References

[BM06a] Baar, T., Markovic̀., S.: A Graphical Approach to Prove the Semantic
Preservation of UML/OCL Refactoring Rules. Technical report, Ecole
Polytechnique Fédérale de Lausanne (2006)

[BM06] Bannwart, F., Müller, P.: Changing Programs Correctly: Refactoring with
Specifications. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 492–507. Springer, Heidelberg (2006)

[CCS02] Cornélio, M.L., Cavalcanti, A.L.C., Sampaio, A.C.A.: Refactoring by
Transformation. In: REFINE’2002. Eletronic Notes in Theoretical Com-
puter Science, vol. 70, Elsevier, Amsterdam (2002)

[Cor04] Cornélio, M.L.: Refactorings as Formal Refinment. PhD thesis, Universi-
dade Federal de Pernambuco (2004)

[DB01] Derrick, J., Boiten, E.A.: Refinement in Z and Object-Z. Springer, Heidel-
berg (2001)

[dE98] de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof
Methods and their Comparison. CUP (1998)

[DW06] Derrick, J., Wehrheim, H.: Model Transformations Incorporating Multiple
Views. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019,
pp. 111–126. Springer, Heidelberg (2006)

[FDR97] Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2
User Manual (Oct. 1997)

[Fis97] Fischer, C.: A combination of Object-Z and CSP. In: FMOODS ’97, vol. 2,
pp. 423–438. Chapman & Hall, Sydney, Australia (1997)

[Fis00] Fischer, C.: Combination and Implementation of Processes and Data: from
CSP-OZ to Java. PhD thesis, University of Oldenburg (2000)

[Fow04] Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-
Wesley, London (2004)

[Hoa85] Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall, Engle-
wood Cliffs (1985)

[HT04] Heckel, R., Thöne, S.: Behavior-preserving refinement relations between
dynamic software architectures. In: 17th Int. Workshop on Algebraic De-
velopment Techniques, pp. 1–27 (2004)

[KHE03] Küster, J., Heckel, R., Engels, G.: Defining and validating transforma-
tions of UML models. In: HCC, pp. 145–152. IEEE Computer Society, Los
Alamitos (2003)

[McC04] McComb, T.: Refactoring Object-Z Specifications. In: Wermelinger, M.,
Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, p. 69. Springer,
Heidelberg (2004)

[MEDJ05] Mens, T., Van Eetvelde, N., Demeyer, S., Janssens, D.: Formalizing
refactorings with graph transformations. Journal of Software Mainte-
nance 17(4), 247–276 (2005)

[MS04] McComb, T., Smith, G.: Architectural Design in Object-Z. In: Australian
Software Engineering Conference (ASWEC’04), pp. 77–86. IEEE Com-
puter Society Press, Los Alamitos (2004)

[MS06] McComb, T., Smith, G.: Refactoring object-oriented specifications: A
process for deriving designs. Technical Report SSE-2006-01, University of
Queensland, Australia (May 2006)

[MT04] Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Soft-
ware Eng. 30(2), 126–139 (2004)

Refactoring Object-Oriented Specifications with Data and Processes 251

[Ros97] Roscoe, W.: The Theory and Practice of Concurrency. Prentice-Hall, En-
glewood Cliffs (1997)

[Ruh06] Ruhroth, Th.: Refactoring Object-Z Specifications. In: 18th Nordic Work-
shop on Programming Theory (2006)

[SD06] Van Der Straeten, R., D’Hondt, M.: Model refactorings through rule-based
inconsistency resolution. In: Bézivin, J. (ed.) Proceedings of the 2006 ACM
Symposium on Applied Computing, pp. 71210–1217. ACM Press, New
York (2006)

[Smi00] Smith, G.: The Object-Z Specification Language. KAP (2000)

A Sound and Complete Shared-Variable

Concurrency Model for Multi-threaded
Java Programs

F.S. de Boer

CWI, Amsterdam, Netherlands
F.S.de.Boer@cwi.nl

Abstract. In this paper we discuss an assertional proof method for
multi-threaded Java programs. The method extends the proof theory
for sequential Java programs with a generalization of the Owicki/Gries
interference freedom test to threads in Java.

1 Introduction

We present a simple proof method which captures the main aspects of the multi-
threaded flow of control in Java. In the object-oriented programming language
Java instances of thread classes can be dynamically allocated and start their own
thread of control. A thread class (defined as an extension of the public built-in
Java class ’Thread’) defines a run method and a call of the start method creates
a new thread of computation initiated by the execution of the run method. The
following Java syntax,

class MyThread extends Thread {
...
public void run() {
· · · }
...
}

specifies a thread class ’MyThread’ with a run method. The following code would
then create a thread and start it running:

MyThread t = new MyThread();
t.start();

The thread executing this code continues its own execution, i.e., it does not wait
for the start method to return. Operationally, a thread is described by a stack
of calls generated by the run method. In this model of computation the different
threads share the global object structure which consists of the values of the
instances variables of the dynamically allocated objects and the static variables
of the classes.

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 252–268, 2007.
c© IFIP International Federation for Information Processing 2007

A Sound and Complete Shared-Variable Concurrency Model 253

Our proof method consists of annotating each class definition of the given
program with assertions which express certain global properties of the dynam-
ically allocated program variables. Such an annotated class definition is locally
correct if certain verification conditions hold which characterize the sequential
flow of control within one thread. On the other hand, reasoning about the multi-
threaded flow of control within an object involves a global interference freedom
test. This test is modeled after the corresponding test in [13] for concurrent
systems consisting of a statically fixed number of processes which interact via
shared variables.

The main contribution of this paper is the generalization of the interference
freedom test to dynamic thread creation. Furthermore, this paper also provides a
formal justification of this generalization in terms of soundness and completeness
proofs.

Related work. To the best of our knowledge the only other (proven) sound
and complete proof method for annotated multi-threaded Java programs is de-
scribed in [1]. The proof method in [1] combines the Owicki&Gries method for
shared variable concurrency with the proof method for Communicating Sequen-
tial Processes (CSP) as introduced in [4]. The latter proof method is used to
reason about method calls in terms of message passing between objects. By
restricting to Java programs that have no static variables and do not allow
dereferencing, in [1] objects only interact via message passing. Consequently the
interference freedom test in [1] only involves the local state of an object. In con-
trast, in this paper we extend the proof method for sequential Java programs,
which is based on the standard proof theory of recursive procedures (see [2]),
with a global interference freedom test. In other words, the main difference is
that the proof method in [1] is based on a model of concurrent objects (along the
lines of [8]) whereas the proof method in this paper is strictly thread-based. The
model of concurrent objects integrates shared-variable concurrency and message
passing, whereas the thread-based model integrates shared-variable concurrency
with recursive method call. We think the latter integration more faithfully cap-
tures the semantics of the Java programming language.

2 Assertions

Assertions are used to annotate the control points of method bodies. In this
paper we abstract from the syntax of assertions (we denote by ¬, ∧, → the
logical connectives of negation, conjunction and implication). An assertion P
is evaluated in a configuration. A configuration γ consists of an object structure
and a local context. For every existing object an object structure assigns values
to its instance variables (static variables belong to the object representing their
class). A local context assigns values to the the local variables of the method. The
local variables of a method include its formal parameters. We view the keyword
’this’ as an implicit local variable which denotes the current object. We denote by

γ |= P

254 F.S. de Boer

that the configuration γ satisfies the assertion P . An assertion is valid, denoted
by |= P , if γ |= P , for every configuration γ.

For a (sequential) statement S in Java, we denote by

WP(S, P)

the weakest precondition which guarantees that every terminating execution of S
satisfies P . Formally, this weakest precondition is semantically defined in terms
of a structural operational semantics for transitions

〈S, γ〉 → γ′

where γ denotes an initial configuration and γ′ denotes the resulting configu-
ration of the execution of S. Note that the current object is given by the local
context of the initial configuration. Given such an operational semantics, we
have the following standard definition

γ |= WP(S, P) if and only if γ′ |= P , for 〈S, γ〉 → γ′

We refer to [6] for a weakest precondition calculus which formalizes aliasing
and object creation at an abstraction level that coincides with that of the Java
programming language.

In this paper, we denote by Pσ the result of applying the substitution σ to
the assertion P . An application of a substitution

[e1/u1, . . . , en/un]

simply consists of replacing simultaneously every occurrence of the local variable
ui by the corresponding expression ei.

3 Proof-Outlines

A proof-outline is a correctly annotated program. An annotation of a multi-
threaded Java program associates with every sub-statement S (appearing in a
method body) a precondition Pre(S) and a postcondition Post(S). Validation
of verification conditions establish the correctness of an annotated program.
We first discuss the verification condition which establishes that assertions are
interference free. Then we discuss the verification conditions which establish that
assertions specify correctly the sequential control flow.

Interference Freedom Test

In order to characterize the interference between different threads we assume
that each method has a distinguished local variable ’thread’ which is used to
identify the executing thread. A thread itself is uniquely identified by the initial
object executing its run method (in Java calling the start method twice on an
object throws the exception ’ IllegalThreadStateException’).

A Sound and Complete Shared-Variable Concurrency Model 255

We define an assertion P to be invariant over the execution of a statement S
by a different thread if the following verification condition holds:

|= (P ∧ Pre(S) ∧ thread! = thread′) → WP(S, P)

For notational convenience, we implicitly assume that the local variables of P
and Pre(S) are named apart by ’priming’ the local variables of P . Note that these
local variables include ’this’ and ’thread’, which are thus renamed in P by ’this′’
and ’thread′’. Furthermore, it is important to note that an unqualified instance
variable x of the class of the current object denoted by ’this’, is transformed by
this renaming into ’this′.x’.

The above verification condition models the situation that the execution of
the thread denoted by the fresh local variable ’thread′’ in the object denoted by
the fresh local variable ’this′’ is interleaved by the execution of the statement S
by the thread denoted by the distinguished local variable ’thread’ in the object
denoted by the distinguished local variable ’this’. That we are dealing with two
different threads is simply described by the disequality thread! = thread′.

Example 1. As a (very) simple example, given a boolean instance variable ’b’,
the assertion ’thread.b’ is invariant over the execution of an assignment ’thread.
b=false’ by another thread. This is captured by the valid verification condition

|= (thread′.b ∧ thread! = thread′) → WP(thread.b=false, thread′.b)

Example 2. In example 7 we introduce an instance variable ’lock’ to reason about
synchronized methods. This variable stores the identity of the thread that owns
the lock of the object. That is, for every synchronized method we have the
invariant

thread==lock

With this additional information any annotation of a synchronized method is
trivially interference free:

|= (thread′ == lock ∧ thread == lock ∧ thread! = thread′) → false

Local Correctness
An annotated program is locally correct if the verification conditions hold which
characterize the sequential flow of control within one thread. We have the stan-
dard verification conditions which characterize control structures like sequential
composition, choice, and iteration constructs.

Method invocation and return. Without loss of generality, we restrict discussion
to the verification conditions for method calls

x = e0.m(e1, . . . , en)

256 F.S. de Boer

where x is an instance variable or a local variable, and e0, e1, . . . , en are expres-
sions without side-effect and which are not affected by the call itself. Further-
more, we assume that the formal parameters of the method m are read-only.
Given such a call we denote by σ the (simultaneous) substitution

[e0, e1, . . . , en/this, u1, . . . , un]

This substitution describes the context switch which consists of passing control
to the callee, modeled by substituting every occurrence of ’this’ by e0, and initial-
izing the formal parameters u1, . . . , un of the method m, modeled by substituting
every local variable ui by ei, i = 1, . . . , n.

Let S denote the body of the method m. We have the following verification
condition for the precondition P of the call x = e0.m(e1, . . . , en):

|= P → Pre(S)σ

Here we assume that the local variables of the precondition Pre(S) of the method
body, excluding the formal parameters of the method and the local variables
’thread’ and ’this’, are named apart from those in P . Note that the distinguished
local variable ’thread’ thus may occur both in the precondition P of the caller
and the precondition Pre(S) of the callee. We do not need to distinguish these
different occurrences because the local variable ’thread’ in both preconditions
denotes the same thread executing the method call.

Example 3. Consider the precondition

account.lock==thread

of a call

newbalance=account.add(amount)

of a synchronized method. This precondition can be obtained from the precon-
dition

lock == thread

of the body of the method ’add’ simply by replacing the (implicit) local variable
’this’ by the expression ’account’, which transforms the expression ’lock’ into the
expression ’account.lock’

Furthermore, we have the following verification condition for the postcondition
Q of a call x = e0.m(e1, . . . , en):

|= Post(S)σ → WP(x = return, Q)

As above, we assume that the local variables of the postcondition Post(S) of
the method body, excluding the formal parameters of the method and the local
variables ’thread’ and ’this’, are named apart from those in Q. Note that since
the formal parameters are read-only and the actual parameters are not affected
by the call itself, we can apply the subsitution σ modeling the context switch

A Sound and Complete Shared-Variable Concurrency Model 257

and parameter passing. The distinguished local variable ’return’ is used to store
temporarily the return value. That is, the precondition P and the postcondition
Q of a return statement are validated by the verification condition

|= P → Q[e/return]

where e denotes the return value.

Example 4. Consider the postcondition

lock == thread ∧ return == balance + u

of the body S of the synchronized method ’add’ (’u’ denotes its formal parame-
ter). Applying the context switch and parameter passing of the call

newbalance=account.add(amount)

we obtain the assertion

account.lock == thread ∧ return == account.balance + amount

This assertion clearly implies the weakest precondition of the assignment ’new-
balance=return’ and the postcondition

account.lock == thread ∧ newbalance == account.balance + amount

of the call.

Auxiliary Variables
In general to prove the correctness of a program we need auxiliary variables
which are used to describe certain properties of the flow of control.

Example 5 (Mutual exclusion). Consider the run method defined by

run(){
sem.acquire();S;sem.release() }

where sem is a static binary semaphore (initialized to 1). In order to prove that
no two threads are executing the critical section S in the body of the run method
we introduce a static variable ’in’ which stores the set of threads that are in their
critical section (it is initialized to the empty set). We extend the run method as
follows:

run(){
[sem.acquire();in.add(thread)];S;[sem.release();in.remove(thread)] }

The brackets are used to indicate statements which are assumed to be executed
atomically, that is without interleaving. Note that without loss of generality we
can indeed assume that between acquiring (or releasing) the semaphore and the
corresponding update of the auxiliary variable no other threads are interleaved.

258 F.S. de Boer

Mutual exclusion then can be expressed by the assertion Mutex defined by

in.size == sem ∧ 0 <= sem ∧ sem <= 1

Note that in the assertion language, the static variable ’sem’ is simply an
integer variable, which takes the values 0 or 1.

The assertion Mutex is introduced as an invariant of the run method which
annotates all its interleaving points, that is, the start and end of the body of the
run method itself, and the start and end of the critical section S.

For the proof of the local correctness of the annotation we use the following
(standard) characterization of the weakest precondition of a postcondition Q (of
the operations for acquiring and releasing the semaphore):

WP(sem.acquire(), Q) = (sem == 1 → Q[0/sem])

and
WP(sem.release(), Q) = (sem == 0 → Q[1/sem])

Local correctness of the invariant Mutex then is expressed by the verification
conditions

|= Mutex → WP(sem.acquire(); in.add(thread), Mutex)

and
|= Mutex → WP(sem.release(); in.remove(thread), Mutex)

Next we note that these local verification conditions which establish Mutex
as an invariant of the run method, (trivially) imply the verification conditions
for the interference freedom test:

|= (Mutex ∧ thread! = thread′) → WP(sem.acquire(); in.add(thread), Mutex)

and

|= (Mutex ∧ thread! = thread′) → WP(sem.release(); in.remove(thread), Mutex)

In other words, using a local invariant like Mutex makes the inteference free-
dom test redundant.

Auxiliary variables are also used to describe the semantics of built-in mecha-
nisms in Java. Below we describe the semantics for starting a thread, the execu-
tion of synchronized methods, and the semantics of the synchronization mecha-
nism of wait and notify methods.

Start method. In order to describe the specific semantics of the start method, we
assume that each thread class has a boolean auxiliary instance variable ’Alive’
which indicates that the start method of the object has been called and its
run method has not yet terminated. Otherwise it is false. It is initialized to
’false’ by the constructor method. Note that in Java starting a running thread
throws an exception. Since, for technical convenience only, this paper restricts
to invariance properties of normal executions of multi-threaded Java programs,
we can describe the semantics of the start method simply by the code

A Sound and Complete Shared-Variable Concurrency Model 259

if !e.Alive {
e.Alive=true;e.start }
else { abort }

Correspondingly, we append the body of a run method by the assignment ’Alive=
false’. We have the following (standard) verification condition of the ’abort’
statement: For arbitrary postcondition Q

|= false → Q

Note that this verification condition validates any postcondition.
The precondition of a call e.start of the start method is validated like the

precondition of an ordinary call, as described above. The postcondition Q of the
call e.start is simply validated by the verification condition

|= P → Q

where P denotes its precondition.

Example 6. Clearly we can validate by means of the above verification condition
for method calls, for every run method, the precondition

thread = this ∧ this.Alive

Consequently, every local assertion of a run method is trivially invariant over
any local assignment of any run method: For example, the local assertion ’b’,
where ’b’ is an instance variable, is invariant over an assignment b=false in any
run method, because

|= (this′.b ∧ thread′ = this′ ∧ thread = this ∧ thread! = thread′) → WP(b = false, this′.b)

trivially holds (note that the antecedent implies this! = this′).

Example 7 (Synchronized methods). In order to describe the specific seman-
tics of synchronized methods in Java, we introduce an auxiliary (instance) vari-
able ’lock’ which belongs to the class of the method and which stores the identity
of the thread owning the lock. Since a thread releases the lock of an object only
when it has finished executing its synchronized methods the thread has called on
the object, we also need an auxiliary (instance) variable ’count’ which belongs
to the class of the thread and which denotes the number of called synchronized
methods in the thread. Every method invocation e0!m(e1, . . . , en) involving a
synchronized method m is prefixed with an await statement

await e0.lock==thread || e0.lock==null{
e0.lock=thread;thread.count++ }

The boolean condition states that either the thread already owns the lock or the
lock is not yet initialized (i.e., is ’free’).

On the other hand, every synchronized method ends with the execution of the
await statement

260 F.S. de Boer

await true {
thread.count-=1; if thread.count==0 { lock=null}}

We extend our notion of proof outlines with the following standard verification
condition for await statements

|= (P ∧ b) → WP(S, Q)

where P and Q denote the precondition and the postcondition of the await
statement, b denotes its boolean condition and S denotes its main body.

Since the evaluation of the boolean guard of an await-statement and the execu-
tion of its body are assumed to be atomic we only need to apply the interference
freedom test to the pre- and postcondition of the await-statement itself.

Example 8 (Wait and notify). A thread which owns the lock of an object can
release it by calling the wait method on the object. It has to wait until another
thread owning the lock calls the ’notify’ or ’notifyAll’ method on this object.
In order to describe the semantics of this mechanism we denote by ’wait’ an
auxiliary instance variable of the object which is used to store the set of objects
waiting for its lock. The semantics of a call

e.wait()

then is described by the following statement

if lock==thread{
u=e;u.lock=null;u.wait.add(thread) }
else { abort };
await u.lock==null & !u.wait.contains(thread) {
u.lock=thread}

Here ’u’ is a ’fresh’ local variable used to keep the identity of the object.
This statement first checks whether the thread owns the lock. If so, the thread
simply releases the lock and is added to the set of waiting threads. If the thread
does not own the lock the execution is aborted because we only consider normal
executions (e.g., we abstract from exceptions). The await statement waits for
the lock to be free and for the thread to be removed from the set of waiting
threads. A call

e.notifyAll()

of the ’notifyAll’ method is modeled by the statement

if lock==thread{
e.wait.clear()}
else { abort }

which removes all waiting threads (in case the executing thread owns the lock).
In order to model a call

A Sound and Complete Shared-Variable Concurrency Model 261

e.notify()

which involves an arbitrary choice of the thread to be notified, we introduce an
(abstract) set operation ’removeAny()’ which removes an arbitrary element from
a set. We then can model the above call by the statement

if lock==thread{
e.wait.removeAny() }
else { abort }

Given a precondition P , a postcondition Q of a statement

e.wait.removeAny()

is validated by the verification condition

|= (P ∧ e.wait.contains(any)) → WP(e.wait.remove(any), Q)

By definition of the validity of assertions the ’fresh’ local variable ’any’ is here
implicitly universally quantified.

In general, auxiliary variables can be introduced as local variables, instance vari-
ables and static variables. Assignments to auxiliary variables can be introduced
which are side-effect free (e.g., assignments which do not involve methods calls
or object creation) and which do not affect the flow of control of the given pro-
gram. It is important to note that we also allow auxiliary variables as additional
formal parameters of method definitions. Such auxiliary variables can be used
to reason about invariance properties of method calls.

Example 9 (Faculty function). Consider for example the following recursive
method for computing the faculty function.

fac() {
if x>0 { x-=1;this.fac();x++;y=y*x } else { y=1 }}

Here ’x’ and ’y’ are instance variables. Upon termination ’y’ stores the faculty of
the value stored by ’x’. In order to prove that the value of ’x’ upon termination
equals its old value, we introduce as auxiliary variable a formal parameter u and
extend the method by

fac(u) {
if x>0 { x-=1;this.fac(u-1);x++;y=y*x } else { y=1 }}

We then can express the above invariance property by introducing the assertion
’u==x’ both as precondition and the postcondition of the method body. This
specification of the method body can be validated by introducing ’u==x+1’
as the precondition and the postcondition of the recursive call. We have the
following trivial verification conditions for method invocation and return

|=u==x+1→u-1==x and |=u-1==x→u==x+1

where the assertion ’u-1==x’ results from replacing the formal parameter ’u’ in
’u==x’ by the actual parameter ’u-1’.

262 F.S. de Boer

4 Soundness and Completeness

In this section we sketch soundness and completeness proofs. These proofs are
based on a formal semantics of multi-threaded Java programs. This semantics
is described in terms of a structural operational semantics which defines a tran-
sition relation on global states. A global state Θ of a program consists of a set
of threads and an object structure which specifies for every existing object the
values of its instance variables. Operationally, a thread is a stack of closures, i.e.,
pairs (S, τ) consisting of a statement S and a local context τ specifying the val-
ues of the local variables of S. For any two closures (S, τ) and (S′, τ ′) belonging
to the same thread we have that

τ(thread) = τ ′(thread)

because the local variable ’thread’ denotes the initial object (executing its run
method). That is, for the bottom closure (S0, τ0) of a thread we have that

τ0(thread) = τ0(this)

The thread itself is executing the closure on top of the call stack, which is also
called its active closure. All other closures represent pending calls. The details
of the definition of the global transition relation

Θ → Θ′

which represents the execution of an atomic statement by one thread in Θ re-
sulting in the global state Θ′, are straightforward and omitted (see also [1]).

For notational convenience only, we assume throughout this section that every
interleaving point of the given program is uniquely labeled. Such labels we denote
by l, l′, By

l : S : l′

we denote a statement S with its start and end labeled by l and l′, or the label
l itself (’: S : l′’ thus being optional). A label on its own marks the termination
of a method body. The assertion annotating an interleaving point l we denote
by @l.

Soundness
Let π be an annotated program. A global state Θ satisfies an annotated program
π, denoted by

Θ |= π

if for every thread in the global state Θ with active closure (l : S : l′, τ), we have

γ |= @l

where γ denotes the configuration consisting of the global object structure of Θ
and the local context τ . Roughly, a global state satisfies an annotated program if
every thread satisfies the assertion annotating the statement of its active closure.
We can now state the following theorem.

A Sound and Complete Shared-Variable Concurrency Model 263

Theorem 1 (Soundness). For any correctly annotated program π (possibly
extended with auxiliary variables),

Θ |= π and Θ → Θ′ implies Θ′ |= π

Roughly, this theorem states the invariance of the assertions of a correctly an-
notated program. The proof involves a straightforward but tedious case analysis
of the computation step.

Completeness
Conversely, we show completeness by proving the correctness of an extended
program annotated with so-called reachability predicates. These predicates are
introduced in [3] and [12] and adapted to (extended) multi-threaded Java pro-
grams as follows: Given a program we define for every interleaving point l the
predicate @l by

γ |= @l
if there exists a reachable global state Θ that realizes the object structure
of γ and that contains a thread with an active closure (l : S : l′, τ), where
τ is the local context of γ.

A global state Θ is reachable if there exists a partial computation

Θ0 →∗ Θ

starting from a fixed initial global state Θ0. Here →∗ denotes the reflexive,
transitive closure of →.

Using the encoding techniques of [14] it can be shown that the above reachabil-
ity predicates can be expressed in the assertion language. Of particular interest
to note here is that pure methods,. i.e., methods that do not affect the program
state, in assertions greatly facilitates such an encoding.

By a straightforward, though tedious, induction on the length of the com-
putation we can prove that a program annotated with the above reachability
predicates is locally correct. The main case of interest is a proof of the verifica-
tion condition

|= (@l)σ → WP(x = return, @l′)

for validating the postcondition of a method call x = e0.m(e1, . . . , en). The label
l marks the end of the method body of m and l′ the termination of the call.
The context switch and parameter passing are modeled by the substitution σ
(as described above). In order to validate this verification condition we extend
every method definition with an additional formal parameter which stores the
local context of the caller and an additional parameter for passing the label
identifying the call. The local context of the caller, i.e., the values of its local
variables, are stored in an array. These additional formal parameters we denote
by ’con’ and ’lab’ (run methods contain these variables as local variables). In
order to initialize the local context of the callee (to be passed in subsequent
calls), we add to each method the following initialization:

264 F.S. de Boer

Objects [] mycontext;
mycontext=new Objects[n+1];
mycontext[0]=u1;
...
mycontext[n-1]=un;
mycontext[n]=con;
mycontext[n+1]=lab;

Here u1, . . . , un are the formal parameters of the method (as specified by the
given program). A call x = e0.m(e1, . . . , en) is extended by

x = e0.m(e1, . . . , en, mycontext, l′)

(the label l′ marks its termination). Note that in Java arrays are objects, e.g.,
the actual parameter ’mycontext’ is an object which refers to an array.

The additional parameters ensure that the predicate (@l)σ indeed describes
the return of the method m to the given call (σ is also extended with these new
parameters). To see this, let

γ |= (@l)σ

By the usual substitution lemma of the logic underlying the assertion lan-
guage, this is equivalent to

γ |= WP(ū = ē, @l)

where ū = ē denotes the sequence of assignments corresponding to the substitu-
tion σ. Let

〈ū = ē, γ〉 → γ′

that is, γ′ is the resulting configuration of the execution of the statement ū = ē
in γ. It follows that

γ′ |= @l

Note that the local context τ ′ of the configuration γ′ in fact denotes the result
of switching the context from the caller back to the callee.

By the above definition of the reachability predicates it follows that there
exists a partial computation

Θ0 →∗ Θ′

that realizes the object structure of γ′ (which equals that of γ) and that contains
an active closure (l, τ ′) which marks the termination of the body of m.

From
〈ū = ē, γ〉 → γ′

it follows immediately that

τ ′(con) = τ(mycontext) and τ ′(lab) = l′

So we know that this invocation of m has been called by the given call state-
ment. More specifically, we know that Θ′ contains a thread

· · · (x = return; l′ : S : l′′, τ)(l, τ ′)

A Sound and Complete Shared-Variable Concurrency Model 265

Let
Θ′ → Θ

be the computation step which models the context switch from callee to caller.
That is, the closure (l, τ ′) is removed from the above call stack. Since Θ realizes
the object structure of γ we conclude that

γ |= WP(x = return, @l′)

Remains to show that the reachability predicates are interference free. More
specifically, we have to show that for any interleaving points l and l′, with l′

marking the start of an atomic statement S, we have

|= (@l′ ∧ @l ∧ thread! = thread′) → WP(S, @l′)

Roughly, this verification condition states that if one thread reaches l′ and
if another thread reaches l, then l′ is still reachable after the execution of the
statement S. This follows trivially if there exists one computation where both
threads reach l′ and l at the same time. However, in general this is not the
case, e.g., the reachability of l′ may require a scheduling of the threads which is
incompatible with the reachability of l.

Example 10 (Scheduling). Consider a thread class with the following method

run() {
if race() {l1 : S1} else {l2 : S2}}

The labels l1 and l2 denote the start of the ’then’ and the ’else’ branch, respec-
tively. The synchronized method ’race’ is defined by

race() {
u=b;
if b==true { b=false };
return u }

where ’u’ is a local variable and ’b’ is a static variable. which is initially true. Let
the main method of the program initialize ’b’ to ’true’ and then simply create
two instances of the thread class and start their run methods. Let τ be a local
context such τ(thread) and τ(thread′) are two different instances of the thread
class. Let t = τ(thread) or t = τ(thread′). Clearly, in both cases there exists a
reachable global state Θ in which ’b=false’ holds and which contains the active
closure (l1 : S1, τ

′), where τ ′(thread) = t. But there exists no reachable global
state in which both threads are at l1 at the same time.

Therefore we introduce a static auxiliary variable ’sched’ which records the
scheduling of the threads. We introduce this variable as a vector of objects in the
class containing the main method. Every read or write operation which involves
access to the global object structure is extended with an update which adds the
identity of the executing thread.

266 F.S. de Boer

Example 11. Returning to the above example, we note that this additional
scheduling information implies that

|= (@l′1 ∧ @l1 ∧ thread! = thread′) → false

(the predicate @l′1 refers to the thread denoted by the fresh local variable
’thread′’). Note that @l′1 implies that ’sched’ stores the thread denoted by
’thread′’ first, whereas @l1 stores the thread denoted by the distinguished local
variable ’thread’ first.

Note that the interleaving of the local computations of the threads, i.e., the
computations which only access the local context of the active closures and which
do not access the global object structures (the static variables and the instance
variables of the existing objects), does not affect the global computation. More
specifically, the variable ’sched’ enforces the following confluence property of the
global transition relation.

Lemma 1 (Confluence). Let π be a multi-threaded Java program extended
with the auxiliary variable ’sched’ for recording the scheduling of threads, as
described above. Furthermore, let the object structures of the global states Θ and
Θ′ assign the same value to the variable ’sched’. It follows that if

Θ0 →∗ Θ and Θ0 →∗ Θ′

then there exists a global state Θ′′ such that

Θ →∗ Θ′′ and Θ′ →∗ Θ′′

Furthermore, these partial compotations only consist of local compouations steps
which do not involve (read or write) access to the global object structure.

We can now prove the following theorem which states that the reachability pred-
icates are interference free.

Theorem 2. For any labeled statements l : S and l′ : S′ of a program extended
with the auxiliary variable ’sched’ we have

|= (@l′ ∧ @l ∧ thread′! = thread) → WP(S, @l′)

Proof. Let
γ |= @l′ ∧ @l ∧ thread! = thread′

By definition of the reachability predicates @l′ and @l there exists partial com-
putations

Θ0 →∗ Θ and Θ0 →∗ Θ′

starting from a fixed initial global state Θ0, such that (l : S, τ) is the active
closure of the thread τ(thread) , whereas the (l′ : S′, τ ′) is the active clo-
sure of τ(thread′). Here τ denotes the local context of the configuration γ and
τ ′(u) = τ(u′), for every local variable (remember that primed local variables are

A Sound and Complete Shared-Variable Concurrency Model 267

introduced in order to avoid name clashes between the local variables of @l and
@l′). Furthermore, the global object structure of γ is realized in both the global
states Θ and Θ′. The auxiliary variable ’sched’ thus has the same value in the
global object structures of Θ and Θ′. By the above lemma, there exists a global
state Θ′′ which can be reached from both Θ and Θ′ by local computations only.
But then we can also backtrack the local computation steps of the two threads
(denoted by τ(thread) and τ(thread′)) and obtain a reachable global state in
which τ(thread) is about to execute S and τ(thread′) the statement S′. Clearly,
the thread denoted by τ(thread′) is still about to execute S′ in the global state
which results from the execution of S by τ(thread). It follows by definition of
the reachability predicates that

γ′ |= @l′

where γ′ consists of the object structure resulting from the execution of S′ (by
τ(thread)) and the initial local context τ ′ (of τ(thread′)).

5 Conclusion and Future Work

In this paper we presented a sound and complete proof method for multi-
threaded Java programs. The proof method distinguishes a local level which
is based on a Hoare logic for the sequential flow of control of (recursive) method
calls within one thread and a global level which deals with interference between
threads. The formal justification of the proof method is based on a formal se-
mantics of Java programs annotated with assertions.

The proof method incorporates the use of auxiliary variables. These variables
are used to capture specific aspects of the flow of control. Of particular interest is
their use introduced in this paper as additional formal parameters to describe the
sequential flow of control of (recursive) method calls within one thread. This use
allows a complete characterization of method calls in a multi-threading context.
More specifically, in this paper we introduced such a characterization in terms
of the reachability predicates instead of the strongest postcondition as is used in
the seminal completeness proof of Gorelick ([9]) for recursive procedure calls in
a sequential context (see also [2]).

In general, auxiliary variables can be used to extend the proof method in
a systematic manner to other mechanisms like synchronized methods, wait and
notify methods, and further details of the underlying memory model as described
in [10].

Future work. The main challenge is integrated tool support for the annotation
of multi-threaded Java programs with assertions (as provided by [11]), the auto-
matic generation of the verification conditions and (semi)automated validation
of these conditions using theorem proving (as provided by [7,5]).

268 F.S. de Boer

References

1. Abraham, E., de Boer, F.S., de Roever, W.P., Steffen, M.: An assertion-based proof
system for mutithreaded Java. Theoretical Computer Science vol. 331 (2005)

2. Apt, K.R.: Ten years of Hoare logic: a survey — part I. ACM Transactions on
Programming Languages and Systems 3(4), 431–483 (1981)

3. Apt, K.R.: Formal justification of a proof system for Communicating Sequential
Processes. Journal of the ACM 30(1), 197–216 (1983)

4. Apt, K.R., Francez, N., de Roever, W.P.: A proof system for Communicating Se-
quential Processes. ACM Transactions on Programming Languages and Systems 2,
359–385 (1980)

5. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware, LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

6. de Boer, F.S.: A WP-calculus for OO. In: Thomas, W. (ed.) ETAPS 1999 and
FOSSACS 1999. LNCS, vol. 1578, Springer, Heidelberg (1999)

7. The Extended Static Checker for Java (ESC/Java). URL: http://secure.ucd.ie/
products/opensource/ESCJava2.

8. Gerth, R.T., de Roever, W.-P.: Proving monitors revisited: A first step towards
verifying object oriented systems. Fundamenta informaticae IX, North-Holland,
pp. 371–400 (1986)

9. Gorelick, G.A.: A complete axiomatic system for proving assertions about recur-
sive and non-recursive programs. Technical Report 75, Department of Computer
Science, University of Toronto (1975)

10. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL 2005.
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ACM Press, New York (2005)

11. The Java Modeling Language (JML). URL of the JML home page:
http://www.cs.iastate.edu/~leavens/JML.

12. Owicki, S.: A consistent and complete deductive system for the verification of
parallel programs. Proceedings of the eighth annual ACM symposium on Theory
of computing. ACM Press, New York (1976)

13. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs. Acta
Informatika 6, 319–340 (1976)

14. Tucker, J.V., Zucker, J.I. (eds.): Program Correctness over Abstract Data Types,
with Error-State Semantics. CWI Monograph Series. Centre for Mathematics and
Computer Science, vol. 6. North-Holland, Amsterdam (1988)

http://secure.ucd.ie/products/opensource/ESCJava2.
http://secure.ucd.ie/products/opensource/ESCJava2.
http://www.cs.iastate.edu/~leavens/JML.

Performance-Oriented Comparison

of Web Services
Via Client-Specific Testing Preorders

Marco Bernardo and Luca Padovani

Università di Urbino – Italy
Istituto di Scienze e Tecnologie dell’Informazione

Abstract. The behavior of a Web service can be described by means of a
contract, which is a specification of the legal interactions with the service.
Given a repository of Web services, from the client viewpoint a proper
service selection should be based on functional as well as non-functional
aspects of the interactions. In this paper we provide a technique that
enables a client both to discover compatible services and to compare them
on the basis of specific performance requirements. Our technique, which
is illustrated on a simple probabilistic calculus, relies on two families
of client-specific probabilistic testing preorders. These are shown to be
precongruences with respect to the operators of the language and not to
collapse into equivalences unlike some more general probabilistic testing
preorders appeared in the literature.

1 Introduction

The recent trend in Web services is fostering a computing scenario where clients
must be able to search at run time services that provide specific capabilities.
This scenario requires Web services to publish their capabilities in some known
registry and it entails the availability of powerful search operations for capa-
bilities. Possible capabilities that one would like to search concern the format
of the exchanged messages, the protocol – or contract – required to interact
successfully with the service, and, when considering QoS-aware Web services,
capabilities describing non-functional aspects of the service.

The Web Service Description Language (wsdl) [11,10,9] and the Web Service
Conversation Language (wscl) [1] are examples of standardized technologies
for describing the interface exposed by a service. Such a description includes the
service location, the format (or schema) of the exchanged messages, the transfer
mechanism to be used (e.g. soap-rpc, or others), and the contract. Both wsdl

and wscl documents can be published in registries [2,13] so that they can be
searched and queried.

This immediately asks for a definition of compatibility between different pub-
lished contracts. It is necessary to define precise notions of contract similarity and
compatibility and use them to perform service discovery. Unfortunately, neither
wsdl nor wscl can effectively define these notions, for the very simple reason

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 269–284, 2007.
c© IFIP International Federation for Information Processing 2007

270 M. Bernardo and L. Padovani

that they do not provide any formal characterization of their contract languages.
This calls for a mathematical foundation of contracts and formal relationships
between clients and contracts, which have been investigated in [16,7,8].

With respect to non-functional aspects of Web services, neither wsdl nor
wscl take them into account. In fact, a few extensions have been proposed in
the literature [18,15] to enrich service descriptions, in particular wsdl interfaces
and uddi registries, with QoS aspects. In some cases, a “QoS certifier” takes
care of certifying the QoS claims of Web services that register themselves with
it. Anyway, the QoS aspects are necessarily quantified on the basis of an “average
client” interacting with the service, whereas the behavior of each specific client,
especially in involved interactions, may result in significant deviations from the
declared – possibly certified – quantities.

To overcome this limitation – which may cause many clients to make a wrong
service selection – it is first of all necessary that the service contracts are enriched
with the description of performance aspects. In fact, to make principled choices
a specific client cannot only rely on claims like “the response time is 93 msec”,
but needs to see in the service contract more low-level performance details, like
e.g. an estimate of the probability with which at a certain branching point a
service behaves in a given way rather than in a different one.

In this paper we propose a technique by means of which, given a specific client
and a repository of Web services whose contracts embody QoS details, the client
can detect the presence of compatible services in the repository and, if any, order
them on the basis of certain performance requirements that are of interest to
the client.

The formal machinery that we develop to implement the technique relies on
a basic weighted process calculus to describe client and service contracts. The
calculus comprises weighted active and passive actions [6,3] and its only oper-
ators are termination, action prefix, and alternative composition. Weights are
associated with actions to express performance aspects, with a generative inter-
pretation in the case of active actions and a reactive interpretation in the case
of passive actions [17]. As far as active actions are concerned, generative weights
can be given a time-abstract interpretation (probabilities) or a continuous-time
interpretation (rates of exponentially distributed durations). In the first case, the
performance model underlying the interaction of a client with a service is a finite
discrete-time Markov chain, while in the second case it is a finite continuous-time
Markov chain [19].

A probabilistic variant of testing preorder [14] is then employed both to verify
the compatibility of a service with a client and to order compatible services
on the basis of client-specific performance properties. Testing preorder is an
effective means to achieve the second objective in practice. In fact, a client –
suitably enriched with success decorations in the appropriate places – can be
viewed as a test that different services pass with different probabilities. Those
probabilities precisely characterize the client-specific quality guarantees provided
by the various services.

Performance-Oriented Comparison of Web Services 271

On the theoretical side, the peculiarity of our probabilistic testing preorder,
which is shown to be a precongruence with respect to the operators of the basic
weighted process calculus, is that of being test specific. In other words, its defin-
ition does not exhibit any universal quantification over tests. Therefore we have
to do with as many test-specific probabilistic testing preorders as there are tests.
An important consequence is that our probabilistic testing preorders do not col-
lapse into equivalences. This happened for instance with the testing preorder
for fully generative probabilistic processes of [12], as two processes can be in a
certain relation with respect to a test and in the opposite relation with respect
to another test. As another example, the testing preorder for continuous-time
Markovian processes of [4] suffered from a similar problem, as it is not possible
to define it in a way that is consistent with all the reward-based performance
measures.

This paper is organized as follows. In Sect. 2 we define the basic weighted
process calculus for describing the functional and performance aspects of client
and service contracts. In Sect. 3 we define two families of client-specific proba-
bilistic testing preorders, one for the time-abstract case and one for the conti-
nuous-time case, and we investigate their precongruence properties. In Sect. 4 we
show how to use the two families of client-specific probabilistic testing preorders
for compatibility verification. In Sect. 5 we exhibit some examples in which the
two families of client-specific probabilistic testing preorders are used to order
different services that are compatible with the same client. Finally, in Sect. 6 we
provide some concluding remarks.

2 Basic Language for QoS-Aware Contracts

In this section we introduce the syntax and the semantics for a very simple
weighted process calculus called WPC, which we shall use to formalize the be-
havior of client and service contracts in a way that takes performance aspects
into account. WPC builds on a set Name of action names including τ for invisi-
ble actions, which will be ranged over by a, b. Its set of operators is formed only
by termination, action prefix, and alternative composition.

Similarly to [6,3], an action of WPC can be either active or passive. An active
action represents an activity undertaken by a process, either locally or in coop-
eration with other processes. By contrast, a passive action models a situation in
which a process waits for another process to initiate some activity in which the
former is involved as well.

Performance aspects are described by associating a positive real number –
which we call weight – with each action and by assuming that the execution
probability of each action is proportional to the number associated with it. More
precisely, according to the terminology of [17], the choice among active actions is
assumed to be generative, i.e. weights are considered across active actions with
arbitrary names. By contrast, the choice among passive actions is assumed to

272 M. Bernardo and L. Padovani

be reactive, i.e. weights are considered only within sets of passive actions having
the same name. Thus, the choice between two passive actions having different
names is nondeterministic.

An active action will be denoted by <a, w> with the generative weight w ∈
RI >0, while a passive action will be denoted by <a, ∗u> with the reactive weight
u ∈ RI >0. Since in WPC an invisible action can only represent a local activity,
it cannot be passive, i.e. it will be of the form <τ, w>. We note that the choice
between two observable actions is external – in the sense that it can be influenced
by the environment – independently from the fact that the actions are active or
passive. Instead, the choice between two invisible actions is internal.

The generative weights associated with the active actions can be given a time-
abstract interpretation or a continuous-time interpretation. In the first case, they
represent non-normalized probability values and the preselection policy applies.
This simply means that the choice among several simultaneously enabled active
actions is solved probabilistically on the basis of action weights. In the second
case, the weights represent the rates of the exponential distributions quantifying
the durations of the actions. In this case the race policy applies, which means
that the fastest action among the enabled ones will be executed. It can be shown
that also in the second case each enabled action has an execution probability
proportional to its weight. Moreover, the average sojourn time for a term turns
out to be the inverse of the sum of the weights of the actions enabled by the
term.

Definition 1. The set P of the process terms of WPC is generated by the fol-
lowing syntax:

P ::= 0 | <a, w>.P | <b, ∗u>.P | P + P

where b �= τ .

The semantics for WPC can be defined in the usual operational style, provided
that the multiplicity of each transition – corresponding to the number of different
proofs for the derivation of the transition – is taken into account. The reason
is that the idempotency law P + P = P no longer holds when dealing with
probabilistic processes. As an example, in the continuous-time case, a term like
<a, 4.6>.P + <a, 4.6>.P is not equivalent to <a, 4.6>.P but to <a, 9.2>.P ,
because the average sojourn time for <a, 4.6>.P + <a, 4.6>.P is 1/9.2.

As a consequence, the behavior of each WPC term is given by a multitransition
system, whose states correspond to process terms and whose transitions are
labeled with actions. Observed that the null term 0 cannot execute any action
– hence the corresponding labeled multitransition system is just a state with no
transitions – we now provide the semantic rules for the other operators of WPC:

– Action prefix: <a, w>.P (resp. <b, ∗u>.P) can execute an action named a
(resp. b �= τ) and then behaves as P :

<a, w>.P
a,w

−−−→ P <b, ∗u>.P
b,∗u

−−−→ P

Performance-Oriented Comparison of Web Services 273

– Alternative composition: P1 + P2 behaves as either P1 or P2 depending on
whether P1 or P2 executes an action first:

P1
a,w

−−−→ P ′

P1 + P2
a,w

−−−→ P ′
P1

b,∗u

−−−→ P ′

P1 + P2
b,∗u

−−−→ P ′

P2
a,w

−−−→ P ′

P1 + P2
a,w

−−−→ P ′
P2

b,∗u

−−−→ P ′

P1 + P2
b,∗u

−−−→ P ′

Example 1. Consider a service computing the greatest common divisor and a ser-
vice computing the square root. Their contracts are described in WPC as follows:

S1(w1) = <gcd, ∗1>.<op1, ∗1>.<op2, ∗1>.<res, w1>.<end, 1>.0
S2(w2) = <sqrt, ∗1>.<op, ∗1>.(<τ, 1>.<res, w2>.<end, 1>.0 +

<τ, 1>.<error, 1>.0)

where we use passive actions to model messages that are sent from the client to
the service, and we use active actions to model messages that are sent from the
service back to the client.

The contract S1(w1) describes the behavior of a service that computes the
greatest common divisor of two positive integer numbers, with w1 representing
the performance of the service in completing the operation. The service is linear:
the conversation is wrapped between actions gcd and end that delimit the actual
exchange of information between client and service.

The need for an explicit end action to signal a terminated interaction is not
immediately evident. The problem arises when a contract has the form:

<τ, w′>.0 + <τ, w′′>.<a, w>.P

because a client interacting with a service that exposes this contract cannot
distinguish a completed interaction where the service has internally decided to
behave like 0 from an interaction where the service has internally decided to
perform the a action, but it is taking a long time to respond. By providing an
explicit end action signaling a completed interaction, the service tells the client
not to wait for further messages. This way of modeling a completed interaction
is consistent with the wscl language, which accounts for an explicit termination
message called “empty”.

The contract S2(w2) describes the behavior of a service that computes the
square root of a real number, with w2 representing again the performance of
the service in completing the operation. After the number has been sent from
the client, the service internally decides whether the operation can be completed
successfully, by sending the result back to the client, or if the computation ter-
minates either because the input is invalid (the number is less than zero) or for
any other reason (the computational capacity of the service has been exceeded).
Invisible actions allow us to model such kind of so-called internal choices.

Finally, we can combine the two contracts and define:

S1(w1) + S2(w2)

274 M. Bernardo and L. Padovani

that describes the behavior of services providing both operations. Because of the
actions gcd and sqrt that uniquely determine the kind of operation to carry on,
clients can decide which operation to invoke. In other words, this is a so-called
external choice.

3 Client-Specific Probabilistic Testing Preorders

In this section we define two families of client-specific probabilistic testing pre-
orders for WPC and we investigate their precongruence property.

3.1 Interaction System of a Service and a Client

Given a service S and a client C both formalized in WPC, their interaction can
be described by means of their parallel composition, which we denote by S ‖ C.
If we view C as a test and we mark some of its terminal states as successful,
then we can talk about the probability with which S passes the test, which
corresponds to the QoS guarantee provided by S when interacting with C.

From now on, clients will thus be formalized through the set Ps of terms
generated by the following syntax:

P ::= 0 | s |
∑

i∈I

<ai, w̃i>.Pi

where the zeroary operator “s” stands for successful termination, I is a finite
non-empty set, and w̃i stands for a generative or reactive weight (in the second
case ai �= τ). The use of a guarded alternative composition operator – instead
of an action prefix operator and a binary alternative composition operator – is
necessary to avoid terms like 0 + s that are ambiguous for the computation of
the probability of passing a test.

The intended meaning of S ‖ C is that S and C have to communicate on any
observable action name. If at a certain point the set of observable action names
enabled by the current derivative of S is disjoint from the set of observable action
names enabled by the current derivative of C, and neither the S derivative nor
the C derivative can evolve autonomously by performing an invisible action,
then the service requested by C cannot be completed by S.

More precisely, in order for them to be executable, the observable active ac-
tions of the current derivative of S (resp. C) must be matched by passive actions
of the current derivative of C (resp. S) having the same name. This leads to the
generative-reactive synchronization mode described in [6] for time-abstract prob-
abilistic processes and in [3] for continuous-time probabilistic processes. This
synchronization mode is defined by the following two operational rules:

S
b,w

−−−→ S′ C
b,∗u

−−−→ C′

S ‖ C
b,w· u

weightp(C,b)

−−−−−−−−−−−−→ S′ ‖ C′

S
b,∗u

−−−→ S′ C
b,w

−−−→ C′

S ‖ C
b,w· u

weightp(S,b)

−−−−−−−−−−−−→ S′ ‖ C′

Performance-Oriented Comparison of Web Services 275

where the weight of P ∈ {S, C} with respect to passive actions of name b �= τ is
defined as follows:

weightp(P, b) =
∑

{| u | ∃P ′. P
b,∗u

−−−→ P ′ |}

In addition, we have two operational rules for the autonomous evolution of S
(under the constraint that C has not terminated yet) and of C when performing
an invisible action:

S
τ,w

−−−→ S′ C /∈ {0, s}

S ‖ C
τ,w

−−−→ S′ ‖ C

C
τ,w

−−−→ C′

S ‖ C
τ,w

−−−→ S ‖ C′

The constraint on the autonomous evolution of S is motivated by the fact that
nothing can change from the point of view of passing a test once the test has
reached its termination.

Definition 2. Let S ∈ P and C ∈ Ps. The interaction system of service S and
client C is process term S ‖ C, where we say that:

– A configuration is a state of the labeled multitransition system underlying
S ‖ C, which is formed by a service part and a client part.

– A configuration is successful iff its client part is “s”.

3.2 Computations: Execution Probability and Average Duration

A computation is a sequence of transitions that can be executed starting from
S ‖ C. We say that two computations are independent of each other if it is not the
case that one of them is a proper prefix of the other one. Moreover we say that
a computation is successful if so is its last configuration. We denote by C(S, C),
IC(S, C), and SC(S, C) the multisets of the computations, of the independent
computations, and of the successful computations of S ‖ C, respectively.1

Let us define the length of a computation as the number of transitions occur-
ring in it. From the fact that recursion is not allowed and the finitely-branching
structure of S and C, it immediately follows that C(S, C) is finite and all of its
computations have finite length. Moreover, SC(S, C) ⊆ IC(S, C) because of the
maximality of the length of the successful computations.

Two important quantities that can be associated with each computation are
its execution probability and – in the continuous-time case – its average duration.
Below we provide their inductive definitions.

Definition 3. Let S ∈ P, C ∈ Ps, and c ∈ C(S, C). The probability of execut-
ing c is the product of the execution probabilities of the transitions of c, which
is defined by induction on the length of c through the following RI]0,1]-valued
function:

prob(c) =

{
1 if length(c) = 0

w
weightt(S ‖ C) · prob(c′) if c ≡ S ‖ C

a,w
−−−→ c′

1 Since transitions have multiplicities, computations also have multiplicities.

276 M. Bernardo and L. Padovani

where the total weight of S ‖ C is defined as follows:

weight t(S ‖ C) =
∑

{| w | ∃a, S′, C′. S ‖ C
a,w

−−−→ S′ ‖ C′ |}

We also define the probability of executing a computation of K as:

prob(K) =
∑

c∈K

prob(c)

for all K ⊆ IC(S, C).

Definition 4. Let S ∈ P, C ∈ Ps, and c ∈ C(S, C). Assume a continuous-time
interpretation for all the generative weights occurring in S and C. The aver-
age duration of c is the sequence of the average sojourn times2 in the states
traversed by c, which is defined by induction on the length of c through the fol-
lowing (RI >0)∗-valued function:

time(c) =

{
ε if length(c) = 0

1
weightt(S ‖ C) ◦ time(c′) if c ≡ S ‖ C

a,w
−−−→ c′

where ε is the empty average duration and ◦ is the sequence concatenation opera-
tor. We also define the multiset of the computations of K whose average duration
is not greater than θ as:

K≤θ = {| c ∈ K | length(c) ≤ length(θ) ∧
∀i = 1, . . . , length(c). time(c)[i] ≤ θ[i] |}

for all K ⊆ C(S, C) and θ ∈ (RI >0)∗.

Example 2. Consider three potential clients of the services S1(w1) and S2(w2)
introduced in Ex. 1, whose contracts are described in WPC as follows:

C1,s = <gcd, 1>.<op1, 1>.<op2, 1>.<res, ∗1>.<end, ∗1>.s
C2,s = <sqrt, 1>.<op, 1>.(<res, ∗1>.<end, ∗1>.s + <error, ∗1>.s)
C3,s = <sqrt, 1>.<op, 1>.<res, ∗1>.<end, ∗1>.s

It is easy to see that:

SC(S1(w1), C1,s) = {S1(w1) ‖ C1,s
gcd,1

−−−→ ·
op1,1

−−−→ ·
op2,1

−−−→ ·
res,w1
−−−→ ·

end,1
−−−→ 0 ‖ s}

SC(S2(w2), C2,s) = {S2(w2) ‖ C2,s
sqrt,1
−−−→ ·

op,1
−−−→ ·

τ,1
−−−→ ·

res,w2
−−−→ ·

end,1
−−−→ 0 ‖ s,

S2(w2) ‖ C2,s
sqrt,1
−−−→ ·

op,1
−−−→ ·

τ,1
−−−→ ·

error,1
−−−→ 0 ‖ s}

SC(S2(w2), C3,s) = {S2(w2) ‖ C3,s
sqrt,1
−−−→ ·

op,1
−−−→ ·

τ,1
−−−→ ·

res,w2
−−−→ ·

end,1
−−−→ 0 ‖ s}

from which we derive that prob(SC(S1(w1), C1,s) = prob(SC(S2(w2), C2,s) = 1
and prob(SC(S2(w2), C3,s)) = 1

2 .

2 The average sojourn time of a term is the inverse of the sum of the weights of the
actions enabled by the term.

Performance-Oriented Comparison of Web Services 277

3.3 Preorder Definition

We are now in a position to define two families of client-specific probabilistic
testing preorders – one for the time-abstract case and one for the continuous-
time case – which can be used by the clients to order the services on the basis of
the QoS levels resulting from the interaction with them. This is helpful from the
client viewpoint to select the service providing the best performance guarantees.

Definition 5. Let S1, S2 ∈ P and C ∈ Ps. We say that S1 is probabilistic testing
less than S2 with respect to C in the time-abstract case, written S1 �C

PT,ta S2, iff:
prob(SC(S1, C)) ≤ prob(SC(S2, C))

Definition 6. Let S1, S2 ∈ P and C ∈ Ps. Assume a continuous-time interpre-
tation for all the generative weights occurring in S1, S2, and C. We say that
S1 is probabilistic testing less than S2 with respect to C in the continuous-time
case, written S1 �C

PT,ct S2, iff for all θ ∈ (RI >0)∗:
prob(SC≤θ(S1, C)) ≤ prob(SC≤θ(S2, C))

3.4 Precongruence Property

We conclude by proving that the two families of client-specific probabilistic test-
ing preorders are precongruences with respect to the operators of WPC. The
result will be presented for the time-abstract case only, as in the continuous-
time case it is similar.

As far as action prefix is concerned, the result is formulated in a non-standard
way. The reason is that we do not have to do with a standard testing preorder
with universal quantification over all tests, but with a family of client-specific
testing preorders. Thus, whenever two interaction systems S1 ‖ C and S2 ‖ C
perform a transition that causes C to evolve to C′, the two derivative interaction
systems can no longer be compared with respect to C, but have to be compared
with respect to C′.

In the following, we denote by C
p

===⇒ C′ the fact that client C can evolve to
C′ with probability p after executing a finite sequence of zero or more invisible
transitions. The probability p is computed as a product of ratios, each of which
relates to an invisible transition in the sequence and is given by the weight of the
transition itself divided by the sum of the weights of all the invisible transitions
departing from the source state of the considered transition. In the case in which
C′ = C, we let p = 1.

Theorem 1. Let S1, S2 ∈ P and C ∈ Ps. Whenever for all C
pi===⇒ Ci

b,∗ui,j

−−−→ Ci,j

it holds S1 �Ci,j

PT,ta S2, then <b, w>.S1 �C
PT,ta <b, w>.S2 for all b �= τ and

w ∈ RI >0.

Theorem 2. Let S1, S2 ∈ P and C ∈ Ps. Whenever for all C
pi===⇒ Ci

b,wi,j

−−−→ Ci,j

it holds S1 �Ci,j

PT,ta S2, then <b, ∗u>.S1 �C
PT,ta <b, ∗u>.S2 for all b �= τ and

u ∈ RI >0.

278 M. Bernardo and L. Padovani

Theorem 3. Let S1, S2 ∈ P and C ∈ Ps. Whenever for all C
pi===⇒ Ci it holds

S1 �Ci

PT,ta S2, then <τ, w>.S1 �C
PT,ta <τ, w>.S2 for all w ∈ RI >0.

In the case of the alternative composition, precongruence is achieved only for
pairs of interaction systems satisfying certain weight-related constraints. More
precisely, such constraints are concerned with the total active weight of a service
S when evolving locally or interacting with a client C:

Ws(S, C) =
∑

S
a,w
−−−→ S′

{| w | a = τ ∨ ∃u, C′. C
a,∗u

−−−→ C′ |}

and with the total active weight of a client C when interacting with a service S
alternative to another service R:

Wc(C, S, R) =
∑

C
b,w−−−→ C′

{| w · weightp(S,b)
weightp(S,b)+weightp(R,b) | ∃u, S′. S

b,∗u

−−−→ S′ |}

Theorem 4. Let S1, S2 ∈ P and C ∈ Ps. Whenever for all C
pi===⇒ Ci it holds

S1 �Ci

PT,ta S2 with Ws(S1, Ci) = Ws(S2, Ci) and weightp(S1, b) = weightp(S2, b)
for all b �= τ such that Ci enables an active b-action, then S1 + S �C

PT,ta S2 + S

and S + S1 �C
PT,ta S + S2 for all S ∈ P.

The constraint “Ws(S1, Ci) = Ws(S2, Ci)” is strictly necessary to achieve pre-
congruence with respect to alternative composition. Consider e.g. the following
terms:

S1 = <a, 40>.0 + <b, 60>.0
S2 = <a, 5>.0 + <b, 5>.0
S = <a, 1>.0 + <b, 9>.0
C = <a, ∗1>.s + <b, ∗1>.0

where the only invisible transition sequence of the client is C
1===⇒ C with:

Ws(S1, C) = 40 + 60 = 100 �= 10 = 5 + 5 = Ws(S2, C)

Then we have:
prob(SC(S1, C)) = 40

100 = 0.4 < 0.5 = 5
10 = prob(SC(S2, C))

but:
prob(SC(S1+S, C)) = 40

110 + 1
110 ≈ 0.37 > 0.3 = 5

20 + 1
20 = prob(SC(S2+S, C))

Similarly, the constraint “weightp(S1, b) = weightp(S2, b) for all b �= τ such that
Ci enables an active b-action” is strictly necessary. Consider e.g. the following
terms:

S1 = <a, 4>.0 + <b, 6>.0 + <c, ∗1>.0
S2 = <a, 5>.0 + <b, 5>.0 + <c, ∗50>.0
S = <c, ∗55>.<d, ∗1>.0
C = <a, ∗1>.s + <b, ∗1>.0 + <c, 10>.<d, 10>.s

Performance-Oriented Comparison of Web Services 279

where the only invisible transition sequence of the client is C
1===⇒ C with:

Ws(S1, C) = 4 + 6 = 10 = 5 + 5 = Ws(S2, C)

and:
weightp(S1, c) = 1 �= 50 = weightp(S2, c)

Then we have:
prob(SC(S1, C)) = 4

20 = 0.2 < 0.25 = 5
20 = prob(SC(S2, C))

but:
prob(SC(S1 + S, C)) = 4

20 + 10
20 · 55

56 ≈ 0.69 >

> 0.51 ≈ 5
20 + 10

20 · 55
105 = prob(SC(S2 + S, C))

4 Compatibility Verification

The selection of the service providing the best performance guarantees for a
client has to be preceded by a phase during which the client searches the Web
service registry for all the services that are compatible with it. Such services are
the ones that ensure the complete satisfaction of the client request.

Compatibility is a functional property that can be verified with the time-
abstract family of client-specific probabilistic testing preorders. The first step
consists of building a canonical service that ensures the termination of the client
along each of its branches. The second step consists of searching the Web service
registry for all the services that – with respect to a variant of the client in which
all of its terminal states are made successful – are not less than the canonical
service. In other words, the canonical service is the search key for the Web service
registry of the considered client.

The canonical service is formalized as the dual of the client, which is obtained
from the client by making passive (resp. active) all of its observable active (resp.
passive) actions, by eliminating all of its invisible actions, and by changing to
0 all of its successful terminal states. All the generative and reactive weights
occurring in the dual are set to 1, as their values are unimportant for the sake
of termination. In the following we denote by obs(C) the fact that at least one
observable action occurs inside client C.

Definition 7. Let S ∈ P, C ∈ Ps, and Cs be the everywhere-successful variant
of C. We say that S is compatible with C iff:

prob(SC(S, Cs)) = 1

Definition 8. Let C ∈ Ps. The dual of C is defined by induction on the syn-
tactical structure of C as follows:

dual(0) = 0
dual(s) = 0
dual(

∑

i∈I

<bi, ∗ui>.Ci +
∑

j∈J

<bj , wj>.Cj +
∑

k∈K

<τ, wk>.Ck) =

=
∑

i∈I

<bi, 1>.dual(Ci) +
∑

j∈J

<bj , ∗1>.dual(Cj) +
∑

k∈K,obs(Ck)
dual(Ck)

280 M. Bernardo and L. Padovani

where: bj �= τ for j ∈ J ; I, J , and K are pairwise disjoint with I ∪ J ∪ K finite
and non-empty; the term on the right-hand side of the last clause is 0 if all the
three index sets are empty.

Lemma 1. Let C ∈ Ps. Whenever dual(C) is deterministic, then dual(C) ‖ Cs
has as many maximal computations as Cs and all of them are successful.

Note that the determinism of dual(C) is essential. Consider e.g. the following
pair composed of a client and its dual:

C = <τ, 1>.<a, 1>.<b, 1>.0 + <τ, 1>.<a, 1>.<c, 1>.0
dual(C) = <a, ∗1>.<b, ∗1>.0 + <a, ∗1>.<c, ∗1>.0

Then dual(C) ‖ Cs deadlocks after the interaction of the first (resp. second)
passive a-action of dual (C) with the second (resp. first) active a-action of Cs.

Theorem 5. Let S ∈ P and C ∈ Ps. Whenever dual(C) is deterministic and
dual(C) �Cs

PT,ta S, then S is compatible with C.

Example 3. Consider the three clients whose everywhere-successful variants are
shown in Ex. 2. In order to check the compatibility of these clients with respect
to the services defined in Ex. 1 we have to compute their dual contracts:

dual (C1) = <gcd, ∗1>.<op1, ∗1>.<op2, ∗1>.<res, 1>.<end, 1>.0
dual (C2) = <sqrt, ∗1>.<op, ∗1>.(<res, 1>.<end, 1>.0 + <error, 1>.0)
dual (C3) = <sqrt, ∗1>.<op, ∗1>.<res, 1>.<end, 1>.0

Now we have that:

SC(dual (C2), C2,s) = { dual (C2) ‖ C2,s
sqrt,1
−−−→ ·

op,1
−−−→ ·

res,1
−−−→ ·

end,1
−−−→ 0 ‖ s,

dual (C2) ‖ C2,s
sqrt,1
−−−→ ·

op,1
−−−→ ·

error,1
−−−→ 0 ‖ s}

hence:

1 = prob(SC(dual (C2), C2,s)) ≤ prob(SC(S2(w2), C2,s) = 1

that is:

dual(C2) �C2,s
PT,ta S2(w2)

from which we conclude that service S2(w2) is compatible with client C2. On
the other hand:

SC(dual(C3), C3,s) = {dual(C3) ‖ C3,s
sqrt,1
−−−→ ·

op,1
−−−→ ·

res,1
−−−→ ·

end,1
−−−→ 0 ‖ s}

and
1
2 = prob(SC(S2(w2), C3,s)) < prob(SC(dual(C3), C3,s)) = 1

that is service S2(w2) is not compatible with client C3. Indeed, the client C3
blindly assumes that the service always completes the operation successfully,
but this assumption may prove fatal if the service proposes an error action. By
similar arguments, it is easy to verify that S1(w1) is compatible with C1, and
that S1(w1) + S2(w2) is compatible with both C1 and C2.

Performance-Oriented Comparison of Web Services 281

5 Selecting the Best Compatible Service

While the time-abstract family of client-specific probabilistic testing preorders
allows us to reason about the probability that a client interacts with a service
following a given computation, the family of continuous-time preorders allows
us to reason about the average duration of any of such computations. In this
section we present a few examples that show how the continuous-time preorders
can be used to sort compatible services according to their performance, and we
stress the importance of the client’s contract in the selection of the best service.

Example 4. We have seen that S1(w1)+S2(w2) is compatible with C2. Consider
now the following variant of C2:

C′
2 = <sqrt, 1>.<op, 1>.(<res, ∗1>.<end, ∗1>.s + <error, ∗1>.0)

Then, for all c ∈ SC(S1(w1) + S2(w2), C′
2), we have:

time(c) = 1 ◦ 1 ◦ 1
2 ◦ 1

w2
◦ 1

from which we notice that greater values for the parameter w2 guarantee smaller
interaction times with the service.

Example 5. Observed that for all c ∈ SC(S1(w1) + S2(w2), C1,s) we have:

time(c) = 1 ◦ 1 ◦ 1 ◦ 1
w1

◦ 1

it is easy to find w′
1, w′

2, w′′
1 , w′′

2 such that:

S1(w′
1) + S2(w′

2) �C′
2

PT,ct S1(w′′
1) + S2(w′′

2)

and:

S1(w′′
1) + S2(w′′

2) �C1,s
PT,ct S1(w′

1) + S2(w′
2)

that is, the relative ordering between services may depend upon clients. This ex-
ample shows that the usual probabilistic testing preorder, with universal quan-
tification over all the tests, is not suitable to be used in our framework for
selecting the best service.

Example 6. In previous work that relate the contracts of different services [7,8,16],
services are typically ordered according to their ability of guaranteeing the ter-
mination of the client. In our framework such a relation can be roughly stated
as follows (recall that Cs is the everywhere-successful variant of C, see Def. 7):

S � S′ iff ∀C. prob(SC(S, Cs)) = 1 ⇒ prob(SC(S′, Cs)) = 1

meaning that the set of clients that S is compatible with is a subset of the set
of clients that S′ is compatible with. If we consider a service whose contract is:

S3 = <sqrt, ∗1>.<real, ∗1>.<error, 1>.0

we can state, for instance, that S2(w2) � S3. Indeed, a client that success-
fully terminates when interacting with S2(w2) must take into account all of the

282 M. Bernardo and L. Padovani

possible behaviors of S2(w2). Since, roughly speaking, contract S3 is “more de-
terministic” than S2(w2), a client that successfully terminates when interacting
with S2(w2) does so also when interacting with S3. However, it is hardly the
case that S3 can be considered “better” than S2(w2), as it simply reports a
failure regardless of the client’s input. While � makes sense from a purely func-
tional point of view (client termination is guaranteed if S2(w2) is replaced by
S3) it makes little sense when QoS aspects are taken into account. By appropri-
ately placing the “s” operator in the client’s contract, both abstract-time and
continuous-time preorder families can be used for sorting services according to
the client’s expectations (obtaining a result rather than an exception).

6 Conclusion

In this paper we have presented a technique for using a simple weighted process
calculus to reason about the compatibility and the performance of services with
respect to potential clients. The technique is directly related to and extends
previous work on contracts [7,8] and session types [16]. On the practical side,
one contribution of the paper is to provide a formal foundation that subsumes
and refines existing mechanisms for specifying and assessing QoS aspects of Web
services, by associating performance parameters with the single actions occurring
during the conversation between a client and a service, rather than with the
service as a whole. On the theoretical side, we have provided a motivation for
the study of test-specific relations, which do not collapse into equivalences. This
allows us to use such relations for ordering services in non-trivial ways according
to a specific client’s expectations, so as to maximize the client’s satisfaction.

There are several directions for further investigations, we mention three of
them. First, the weighted process calculus presented in this paper can be ex-
tended with a recursion operator, so as to make the language suitable for mod-
eling more realistic scenarios where clients and services perform arbitrarily long
interactions adhering to some regular pattern. It is reasonable to expect that
this extension does not significantly affect the theory developed so far, and that
the results proved in the finite case still hold once the usual annoyances deriving
from recursion (such as divergence) have been appropriately taken care of.

Second, the notion of dual contract that we have formalized in Sect. 4 only
provides a sufficient condition that guarantees the termination of a client when
interacting with a service, however there is strong evidence that this notion can
be relaxed. Since the dual contract is used as a search key in a Web service
registry, it is desirable to find the smallest (or principal) key so as to maximize
the number of services that are found to be greater than or equal to the key,
according to the time-abstract preorder.

Third, we have not taken into account any aspect concerning the composi-
tion of Web services. Because of their very nature, it is often the case that
several Web services have to be assembled together to accomplish a given task.
Hence, it is interesting to investigate whether (some variant of) the weighted
process calculus presented in this paper is suitable to reason about QoS aspects of

Performance-Oriented Comparison of Web Services 283

compound services. In this respect, the fact that the probabilistic testing pre-
orders happen to be precongruences with respect to the operators of the process
calculus (action prefix and alternative composition) is particularly important,
as this property guarantees that the substitution of a component service with
another providing better performance does not compromise the performance of
the compound service as a whole.

References

1. Banerji, A., Bartolini, C., Beringer, D., Chopella, V., et al.: Web Ser-
vices Conversation Language (wscl) 1.0”, 2002. http://www.w3.org/TR/2002/
NOTE-wscl10-20020314 (2002)

2. Beringer, D., Kuno, H., Lemon, M.: Using wscl in a uddi Registry 1.0,
UDDI Working Draft Best Practices Document, 2001. http://xml.coverpages.
org/HP-UDDI-wscl-5-16-01.pdf (2001)

3. Bernardo, M., Bravetti, M.: Performance Measure Sensitive Congruences for
Markovian Process Algebras”. Theoretical Computer Science 290, 117–160 (2003)

4. Bernardo, M., Cleaveland, R.: “A Theory of Testing for Markovian Processes. In:
Palamidessi, C. (ed.) CONCUR 2000, LNCS, vol. 1877, pp. 305–319. Springer,
Heidelberg (2000)

5. Booth, D., Liu, C.K.: Web Services Description Language wsdl Version 2.0 Part 0:
Primer, 2006. http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327 (2006)

6. Bravetti, M., Aldini, A.: Discrete Time Generative-Reactive Probabilistic Processes
with Different Advancing Speeds”. Theoretical Computer Science 290, 355–406
(2003)

7. Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: “A Formal Account of Con-
tracts for Web Services”. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM
2006, LNCS, vol. 4184, pp. 148–162. Springer, Heidelberg (2006)

8. Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for Web Services.
In: Proc. of the 5th ACM SIGPLAN Workshop on Programming Language Tech-
nologies for XML (PLAN-X 2007), pp. 37–49. ACM Press, New York (2007)

9. Chinnici, R., Haas, H., Lewis, A.A., Moreau, J.-J., et al.: Web Services Descrip-
tion Language (wsdl) Version 2.0 Part 2: Adjuncts, 2006. http://www.w3.org/
TR/2006/CR-wsdl20-adjuncts-20060327 (2006)

10. Chinnici, R., Moreau, J.-J., Ryman, A., Weerawarana, S.: Web Services
Description Language (wsdl) Version 2.0 Part 1: Core Language 2006.
http://www.w3.org/TR/2006/CR-wsdl20-20060327 (2006)

11. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Ser-
vices Description Language (wsdl) 1.1, 2001. http://www.w3.org/TR/2001/
NOTE-wsdl-20010315 (2001)

12. Cleaveland, R., Dayar, Z., Smolka, S.A., Yuen, S.: Testing Preorders for Proba-
bilistic Processes. Information and Computation 154, 93–148 (1999)

13. Colgrave, J., Januszewski, K.: Using wsdl in a uddi Registry, techni-
cal note, 2004. http://www.oasis-open.org/committees/uddi-spec/doc/tn/
uddi-spec-tc-tn-wsdl-v2.htm (2004)

14. de Nicola, R., Hennessy, M.: Testing Equivalences for Processes. in Theoretical
Computer Science 34, 83–133 (1983)

15. Dustdar, S., Schreiner, W.: A Survey on Web Services Composition. International
Journal of Web. and Grid Services 1, 1–30 (2005)

http://www.w3.org/TR/2002/NOTE-wscl10-20020314
http://www.w3.org/TR/2002/NOTE-wscl10-20020314
http://xml.coverpages.org/HP-UDDI-wscl-5-16-01.pdf
http://xml.coverpages.org/HP-UDDI-wscl-5-16-01.pdf
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060327
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060327
http://www.w3.org/TR/2006/CR-wsdl20-20060327
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm

284 M. Bernardo and L. Padovani

16. Gay, S., Hole, M.: Subtyping for Session Types in the π-calculus. Acta Informat-
ica 42, 191–225 (2005)

17. Van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, Generative and Stratified
Models of Probabilistic Processes. Information and Computation 121, 59–80 (1995)

18. Ran, S.: A Model for Web Services Discovery with QoS. ACM SIGecom Ex-
changes 4, 1–10 (2003)

19. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, Princeton (1994)

A Probabilistic Formal Analysis Approach to

Cross Layer Optimization in Distributed
Embedded Systems�

Minyoung Kim1, Mark-Oliver Stehr2, Carolyn Talcott2,
Nikil Dutt1, and Nalini Venkatasubramanian1

1 University of California, Irvine, USA
{minyounk,dutt,nalini}@ics.uci.edu

2 SRI International, USA
{stehr,clt}@csl.sri.com

Abstract. We present a novel approach, based on probabilistic for-
mal methods, to developing cross-layer resource optimization policies
for resource limited distributed systems. One objective of this approach
is to enable system designers to analyze designs in order to study de-
sign tradeoffs and predict the possible property violations as the system
evolves dynamically over time. Specifically, an executable formal spec-
ification is developed for each layer under consideration (for example,
application, middleware, operating system). The formal specification is
then analyzed using statistical model checking and statistical quantita-
tive analysis, to determine the impact of various resource management
policies for achieving desired end-to-end QoS properties. We describe
how existing statistical approaches have been adapted and improved to
provide analyses of given cross-layered optimization policies with quan-
tifiable confidence. The ideas are tested in a multi-mode multi-media
case study. Experiments from both theoretical analysis and Monte-Carlo
simulation followed by statistical analyses demonstrate the applicability
of this approach to the design of resource-limited distributed systems.

Keywords: Probabilistic Formal Methods, Statistical Analysis, Cross-
layer Optimization, Resource Management.

1 Introduction

The next generation of distributed applications will be built around massive scale
distributed environments with heterogeneous systems (servers, desktops, mobile
devices, sensors, wireless access points, routers, etc.) and networks (WLAN,
LAN, WAN, etc.). Such networked applications span multiple domains rang-
ing from mission critical applications for military command/control and disaster
response to general purpose end-user applications including education, entertain-
ment, and commerce. An overarching characteristic of these applications are that

� This work was partially supported by NSF award CNS-0615438 and CNS-0615436.

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 285–300, 2007.
c© IFIP International Federation for Information Processing 2007

286 M. Kim et al.

they are often data intensive and rich in multimedia content with images, GIS
(Geographical Information Systems)-based satellite imagery, video and audio
data that is fused together from disparate distributed information sources. The
content-rich data are expected to be obtained from, delivered to and processed
on resource-constrained devices (sensors, PDAs, cellular handsets) carried by
users in the distributed network. The dual goals of ensuring adequate applica-
tion QoS (expressed as timeliness, reliability and accuracy) and ensuring optimal
resource utilization at all levels of the system presents significant challenges in
system design.

A holistic approach to understanding timing in such systems is essential for
several reasons. Firstly, applications are often confronted with end-to-end hard
or soft real-time needs. Secondly, existing techniques for timing analysis do not
account for the spectrum of granularities of timing which can vary by orders of
magnitude across layers. Thirdly, several system level optimizations for effective
utilization of distributed resources can interfere with the timing properties of
executing applications. For instance, dynamic voltage scaling mechanisms slow
down processors to achieve power-savings but at the cost of increased execution
times for tasks. Also, knowledge of timing parameters at the different levels
can dramatically improve the performance of applications that often execute in
constrained environments where CPU, memory, network and device energy is
limited.

Our prior experience developing algorithms for managing QoS/power trade-
offs in distributed mobile multimedia applications [1,2] has given us valuable
insights into the issues to be addressed. A preliminary study [3] demonstrated
the need for integration of formal methods with experimentally based cross-layer
optimization methods [1,2]. Systematic analysis based on well-defined models en-
sures that corner-cases are covered and allows bounds for critical performance
parameters to be determined. Our long term goal is to develop a formal method-
ology to specify and analyze timing constraints at each level, and to correlate
timing properties across levels. Furthermore, the formal analyses will be inte-
grated with simulation and experimental methods for developing and adapting
system designs. Multimedia applications operated on battery-powered mobile
devices are viewed as one of the key application drivers for these next genera-
tion distributed systems. Such mobile multimedia applications provide a rich set
of QoS/power issues at multiple abstraction levels. Thus, although we intend our
approach to be widely applicable, we begin by developing and evaluating formal
specification models in the context of distributed multimedia applications.

Our approach is to start with an executable formal model specifying a space
of possible behaviors and analyze these possible behaviors using probabilis-
tic/statistical techniques, paying attention to the mathematical meaning of the
results. We use the Maude [4] rewriting logic formalism to develop executable
specifications that are the basis for subsequent analysis. We have developed two
probabilistic formal analysis techniques: statistical model checking and statisti-
cal quantitative analysis. These analysis results enable policy-based operation
and adaptation as well as parameter setting of selected policies.

A Probabilistic Formal Analysis Approach to Cross Layer Optimization 287

ksaTlortnoC

wolfataD

lortnoCgniludehcS

yrevileDretemaraP

edoMreyalP3PM

rekaepS3PM
redoceD

eliF
redaeR

metsySlanimreTaidemitluMedom-itluM

resU
ecafretnI

noitucexE
lortnoC

noitcennoC
gnildnaH

oediV
enohP

DOV
reyalP

3PM
reyalP

liamE
tneilCSMS

rekaepS

yalpsiD362.H
redoceD

3PM
redoceD
edoMreyalPDOV

krowteN

edoMenohPoediV

aremaC

.ciM

362.H
redocnE

rekaepS

yalpsiD362.H
redoceD
327.G
redoceD

327.G
redocnE

xuM xumeDkrowteN

Fig. 1. Case Study: MMMT (Multi-Mode Multimedia Terminal)

This paper contains the following contributions:

– a first attempt to integrate probabilistic formal methods with cross-layer
optimization;

– adaptation and improvement of existing statistical approaches for statistical
model-checking and statistical quantitative analysis;

– modeling, simulation and analysis of a fairly complex system.

The rest of this paper is organized as follows: we start by presenting a multi-
mode multimedia communication system as a case study. Next, we describe the
modeling effort and specification details of our case study. We then introduce our
formal analysis beginning with a brief review of theory, followed by our imple-
mentation and experimental results. The last section summarizes our approach
and discusses future research directions.

2 Case Study: Multi-Mode Multimedia Terminal

Figure 1 shows an example of a multi-mode multimedia terminal (MMMT) sys-
tem [5] that we are using as a research vehicle. The figure depicts a hierarchical
composition of tasks within the MMMT system. At the top level, three types of
hierarchical tasks are defined to specify each mode of operation: soft real-time
(a videophone, a VoD player, an MP3 player), event-driven (email client), and
time-critical emergency messaging (SMS-Short Message Services). Three other
tasks are also specified at the top level for user interface, connection handling,
and task execution control. In addition, each mode of operation consists of mul-
tiple tasks as shown in the figure. This type of application requires frequent task
set changes based on user input and/or node/network conditions (e.g., residual
power level, packet drop rate, noise level, etc.). As an example, a high-end video-
phone mode would be able to better meet its timing constraints at maximum

288 M. Kim et al.

CPU performance while receiving packets via a reliable channel. However, if
residual power level dropped or packet loss rate increased significantly, then we
might need to save energy by reducing QoS or suspending some tasks. A user also
can explicitly change modes and assign different priorities for each task/mode.

We distinguish between two types of optimizations:

– vertical composition, which depicts QoS/energy relationships in a single task,
but across several vertical layers of abstraction, and

– horizontal composition, which depicts the QoS/energy relationships across
multiple tasks in a dynamic environment

In the context of our driver application (MMMT), vertical composition needs
to address the application’s QoS requirement across layers in the context of
resource management constraints. On the other hand, horizontal composition
addresses QoS properties between multiple tasks that may be assigned priorities
dynamically based on QoS and resource constraints. In this paper, we restrict our
discussion to the videophone mode. Horizontal extension for a complete MMMT
system remains a topic of future research.

The resource management policies that are used in the different layers include:
a specific video encoding/decoding algorithm at the application layer; network
monitoring at the middleware layer; DPM (Dynamic Power Management) and/or
DVS (Dynamic Voltage Scaling)1 at the OS layer [6]. Network traffic shaping
and/or trans-coding at the middleware layer can be also utilized. Each policy
has parameters that can be used to fine-tune the behavior. In addition, there
are hardware parameters that can be set.

For instance, we consider proactive PBPAIR (Probability Based Power Aware
Intra Refresh) [7] as an application layer policy. The PBPAIR scheme inserts
intra-coding (i.e., coding without reference to any other frame) to enhance the
robustness of the encoded bitstream at the cost of compression efficiency. Intra-
coding improves error resilience, but it also contributes to reducing encoding
energy consumption since it does not require motion estimation2 (which is the
most power consuming operation in a predictive video compression algorithm).
The additional proactive feature means that we have a priori information on
the user’s mobility (e.g., current zone, speed and trajectory, etc.) and network
situation (e.g., packet loss rate, delay, etc.) that later will be used for selection
among policies and related parameter tuning before the user enters a new zone.
If PBPAIR is selected as an application layer policy, then algorithm-specific pa-
rameters such as Intra threshold value must be chosen for appropriate execution.
Note that the parameter selection at one layer affects other layers. For exam-
ple, PBPAIR increases intra-coding by lowering the Intra threshold parameter
1 DPM puts a device into a low power/performance state to save energy when the

device is not serving any request during a suitably long time-period determined by
the shutdown and wakeup overhead of the device. DVS aims at saving energy by
scaling down the supply voltage and frequency when the system is not fully loaded.

2 In predictive coding, motion estimation eliminates the temporal redundancy due to
high correlation between consecutive frames by examining the movement of objects
in an image sequence to try to obtain vectors representing the estimated motion.

A Probabilistic Formal Analysis Approach to Cross Layer Optimization 289

when there is high network packet loss (monitored at middleware layer), which
impacts DVS decision at OS layer since the execution profile of the application
is changed.

3 Formal Modeling and Analysis for Cross Layer
Optimization

3.1 What to Model

In this subsection, we explain which features of the MMMT case study will be
formally modeled at each layer.

– Application Layer - Proactive PBPAIR: As an application policy, we
utilize proactive PBPAIR. It takes the user’s QoS expectation, the network
packet loss rate, and raw video sequences as inputs to generate a bitstream
robustly encoded against network transmission errors. Therefore, our formal
specification needs to generate the execution profile (e.g., when does en-
coding start/end? how much time is required?). Particularly, we specify an
encoding workload profile as a distribution function. For example, we model
actual execution time by a uniform distribution between best case execution
time (BCET) and worst case execution time (WCET). We also consider a
Gaussian distribution with the average and boundary value.

– Middleware Layer - Network Monitoring: As briefly mentioned, the
middleware layer deals with network status monitoring. We define mobility
as a triple (current zone, speed, trajectory) to identify the network situation
in the current zone and to anticipate the next zone based on user’s speed and
trajectory. Zone information includes network delay, packet drop rate within
the particular zone. Specifically, network transmission delay is modeled as
exponential inter-arrival time (Poisson) with mean.

– OS Layer - Power Management: Various DPM and DVS power manage-
ment schemes assuming a worst-case scenario are modeled at the OS layer.
The OS layer generates slack time information based on workload from the
application layer. This slack time will be used later to reduce energy con-
sumption while guaranteeing QoS requirements for the next frame. Since we
are targeting multitask environments, we need to specify various scheduling
algorithms (for horizontal composition) like EDF (Earliest Deadline First)
and RM (Rate Monotonic).

– Hardware Layer - Enabling Technology: To support a DPM and DVS
strategy at the OS layer, we assume that the enabling technology (e.g.,
voltage scalable processor, power-state controllable network card, etc.) is
available at hardware layer. In the case of a micro-processor, wakeup/sleep
delay and power overhead for a state transition, DVS characteristics (i.e.,
power consumption for different operating mode/voltage-frequency) should
be modeled. As a result of execution, the hardware layer reports residual
energy to upper layers.

290 M. Kim et al.

3.2 Modeling Using Maude

Our formal modeling approach utilizes Maude [8] to formally specify the envi-
ronmental changes as well as the policies/parameter settings that can be made
at each of these levels in isolation and for the combined layers. Maude is a spec-
ification language based on rewriting logic with supporting analysis tools. The
Maude system has been used in the specification and analysis of a wide range of
logics, languages, architectures and distributed systems [9,4].

Rewriting logic [10] is a simple logic well-suited for distributed system spec-
ification. The state space of a distributed system is formally specified as an
algebraic data type by giving a set of sorts (types), operations, and equations.
The dynamics of such a distributed system is then specified by rewrite rules of
the form

t → t′ if c

where t, t’ are terms (patterns) that describe the local, concurrent transitions
possible in the system, and c is a condition constraining the application of the
rule. Specifically, when a part of the distributed state matches the pattern t,
and satisfies c, then this part can change to a new local state t’. Rewriting
logic specifications are executable, as proofs in rewriting logic are carried out by
applying rewrite rules which can also be viewed as steps of a computation.

The Maude system is based on a very efficient rewriting engine, support-
ing use of executable models as prototypes. It also provides the capability to
search the state space reachable from some initial state by the application of
rewrite rules. This can be used to find reachable states satisfying a user-defined
property. The system also includes an efficient model-checker for checking prop-
erties expressed in linear temporal logic. The Maude system, its documenta-
tion, and related papers and applications are available from the Maude website
http://maude.cs.uiuc.edu.

In the object-oriented specification style supported by Maude, the system
state (configuration) is typically represented as a multiset of objects and mes-
sages. Passage of time is modeled by functions that update the configuration
appropriately, for example decrementing timers or decreasing remaining power.
Rules can either be instantaneous or tick rules of the form

C → delta(C, T) in time T if T ≤ mte(C)

where C is a term representing the system configuration. This tick rule advances
time non-deterministically, according to a chosen time sampling strategy, by a
time T less than or equal to mte(C), the maximal time allowed to elapse in
one step, in configuration C, and alters the system state, C, using the function
delta3. Both delta and mte are user-defined to capture how time passes in a
particular model.

Figure 2 shows a PBPAIR object in the Maude specification for the application
layer. In Maude syntax, objects have the general form

< ObjectName : ClassName | Attribute1 : V alue1, ..., Attributen : V aluen >

3 The idea of a tick rule is taken from Real-Time Maude [11].

 http://maude.cs.uiuc.edu

A Probabilistic Formal Analysis Approach to Cross Layer Optimization 291

*** Variables
vars initWCETProfile initBCETProfile : Map .

vars T T’ : Nat .

vars I I’ Q TH miss cm cmc cmm lost lm clc clm : Int .

*** Object
< PBPAIR : Application |

WCET : initWCETProfile, *** worst case execution time

BCET : initBCETProfile, *** best case execution time

accEncTime : T, *** accumulated encoding time

seqN : I, *** sequence number

Timer : T’, *** next frame arrival time

IntraTh : TH, *** intra threshold (parameter)

Qsize : Q, *** encoding queue size

bufferedReq : I’, *** buffered frame (initialized as 1
2 × Qsize)

deadlineMiss : miss, *** total number of deadline misses

consecutiveMiss : cm, *** current consecutive deadline misses

consecutiveMissCount : cmc, *** incidence of consecutive deadline miss

consecutiveMissMax : cmm, *** maximum consecutive deadline miss

lostReq : lost, *** total number of lost requests

consecutiveLost : cl, *** current consecutive lost requests

consecutiveLostCount : clc, *** incidence of consecutive lost request

consecutiveLostMax : clm, *** maximum consecutive lost request

>

Fig. 2. Maude Specification: Application Layer

*** Property checker
op batteryExpires : Configuration → Bool .
eq batteryExpires(< CPU : HW | residualEnergy : F, atts > C:Configuration)

= (if (F ≤ 0.0) then true else false fi) .

*** Observer
msg Obs : Bool → Msg .
msg EnergyConsumption : Float → Msg .
msg BatteryExpires : Bool → Msg .

rl [cpuObs] :
< CPU : HW | consumedEnergy : F, policy : P, atts >
⇒
EnergyConsumption(F)
BatteryExpires(batteryExpires(< CPU : HW | consumedEnergy : F, atts >)) .

Fig. 3. Maude Specification: Property Checker and Observer

where ObjectName is an object identifier, ClassName is a class identifier, and
each ’Attribute : Value’ pair specifies attribute identifier and its value. The object
PBPAIR in Figure 2 has attributes like WCET, BCET for generating workload
profile.

At the end of each execution, we examine the final configuration of a Maude
specification that has several objects and messages. From those objects and
messages, we need to extract meaningful data – observables. Observables can be

292 M. Kim et al.

Algorithm 1. Java Foreign Interface for Observables Extraction

public static void main (String args[])
{

Maude.initialize(“filename.maude”);
mod = Maude.findModule(ModuleName);
clockedSystem = init(mod, seed);
conf = extractConfiguration(mod, clockedSystem);
printObservables(mod, conf);

}

properties or values. For example, to check whether the battery expires or not at
the end of the execution, we need to check the residualEnergy attribute in CPU
object at hardware layer. If the value for the residualEnergy attribute is positive,
then the battery does not expire. Otherwise, the batteryExpires property returns
true meaning the system used up the battery. We encode the check of properties
into the model so that the result contains true or false depending on whether
a property holds or not. On the other hand, if we want to have the energy
consumption rather than the answer for property hold, we can utilize the observer
such as the one shown in Figure 3. The observer replaces each object with suitable
messages that have data values for the observables. For example, deadlineMiss
and lostReq in Figure 2 are observables for this kind.

Furthermore, we use the Maude API, a foreign language interface to embed
the Maude rewriting engine into larger applications, to extract observables from
the Maude execution and generate statistics of results. Specifically, we use a
Java/Maude interface that calls Maude as a dynamic library. The Algorithm 1
gives a simplified overview of this procedure. At the beginning, the initialize
function of the API initializes the Maude engine and loads the formal specifi-
cation. Then findModule is used to locate the appropriate module identified by
ModuleName. Now, the init function uses other functions of the Maude API to
perform rewriting from a suitable initial configuration until a terminal configu-
ration is reached. A random seed will be embedded in the initial configuration
to initialize the random number generator that determines which execution path
is selected in the model. The init function returns the result of executing the
model as a clockedSystem. The associated configuration will be used for data
extraction by extractConfiguration. In summary, the Java interface provides a
convenient way to deal with data extraction and subsequent processing.

3.3 Analysis

In this section, we explain two statistical evaluation methods that we imple-
mented: statistical model checking and statistical quantitative analysis. For sta-
tistical model checking, probabilistic properties such as “Probability that a sys-
tem can survive with given residual energy in t time units is more than θ %”
will be examined. In case of statistical quantitative analysis, we estimate the
expected value of certain observables such as “Average energy consumption in t
time units within confidence interval (δ) and error bound (α)”.

A Probabilistic Formal Analysis Approach to Cross Layer Optimization 293

Statistical Theory Background and Our Implementation. To evaluate a
stochastic system properly, we need to remove non-quantifiable non-determinism
[12]. We replace all non-determinism with probabilistic choices and stochastic
timed operations in the tick rule4.

– Statistical Model Checking: We use statistical model checking to verify
probabilistic properties, more precisely hypothesis testing based on Monte-
Carlo simulation results. In hypothesis testing, we test whether the probabil-
ity p of a property under examination is above or below the threshold θ. We
can formulate this as the problem of testing the hypothesis H : p ≥ θ against
the alternative hypothesis K : p < θ. Specifically, we implemented two statis-
tical model checking techniques in our framework: sequential testing [13] and
black-box testing [14]. Sequential testing generates sample execution paths un-
til its answer can be guaranteed to be correct within the required error bounds.
Black-box testing instead computes a quantitative measure of confidence for
given samples. Here, black-box means that the system cannot be controlled to
generate execution traces, or trajectories, on demand starting from arbitrary
states. The implementation of sequential testing and black-box testing can be
found as part of the Ymer [15,16] and VeStA [14] tools, respectively.

– Statistical Quantitative Analysis: Statistical evaluation can be perfor-
med with a large quantity of data that follows a normal distribution, and
hence allows the estimation of the expected value and our confidence. To
determine the mathematical soundness of the approximation, we perform a
Jarque-Bera (JB) normality test [17]. The normality is determined by testing
the null hypothesis (that the sample in vector X comes from a normal dis-
tribution with unknown mean and variance) against the alternative (that it
does not come from a normal distribution). The JB test computes the p-value
(the smallest level of significance at which a null hypothesis may be rejected)
from the JB test statistic and χ2 (chi-square) distribution. One rejects the
null hypothesis if the p-value is smaller than or equal to the significance level
α. For example, a p-value=0.05 indicates that the probability of getting a
value of test statistics as extreme as or more extreme than that observed is
at most 5% if the null hypothesis is actually true. Once normality of the data
is ensured with high confidence, for a large enough number of sample traces
n, the approximate average falls inside a (1 - α)100% confidence interval

(x̄ − Zα
2 ,n−1

s√
n

, x̄ + Zα
2 ,n−1

s√
n

)

where x̄ is the average of the sample variables, s is samples’ standard devia-
tion, and Zα

2 ,n−1 is a standard score (also called Z-score or normal score) of
normal distribution [18]. To obtain the desired confidence, we want the size
of this (1 - α)100% confidence interval to be less than or equal to δ, that is:

4 Non-determinism that is not probabilistic in nature would require the exploration
of all possibilities and is currently not supported in our approach. Hence, we use
sufficient conditions similar to those of [12] to guarantee the absence of this form of
non-determinism.

294 M. Kim et al.

Algorithm 2. Statistical Quantitative Analysis

Input: error bound α, confidence interval δ, observable under consideration
Output: Expected value E[observable]
initialize d as a negative number;
while (d > δ)
{

trace generation until normality test succeeds;
d = 2Z α

2 ,n−1
s√
n

;
}
return the average of observable;

2Zα
2 ,n−1

s√
n

≤ δ.

Our Focus: Simplified Formulae and On-demand Sample Generation

– Statistical Model Checking: We note that both, the Ymer and VeStA
tools, target complex properties of stochastic systems. For instance, those
tools take properties specified in a temporal logic, namely Continuous Sto-
chastic Logic (CSL), for Continuous Time Markov Chains (CTMC) [19] sys-
tem specifications. The reason is that they want to support complex property
checking, (e.g., nested temporal/probabilistic operators, and also a form of
hybrid model checking in-between numerical and statistical methods), even
though the idea of hypothesis testing based on Monte-Carlo simulation does
not need to be tied to any specific specification model or temporal logic.
This can be an overkill when it comes to analyzing practical optimization
problems, if we only test simple properties such as “Probability that a system
can survive with a given residual energy in t time units is more than θ %”.
Those formulae are essentially a restricted version of CSL without nesting.
Indeed we found no need for nested formulae or an exact numerical solution
for our application domain.

– Statistical Quantitative Analysis: The Pseudocode 2 shows the statisti-
cal quantitative analysis algorithm [12]. As we mentioned earlier, to approx-
imate the expected value by the mean of n samples such that the size of (1
- α)100% confidence interval is bounded by δ, the sample data should follow
normal distribution [18]. For the normality test, we need to have a sufficiently
large data set. Since the trace generation takes most of the evaluation time,
we generate sample traces only if more samples are required (i.e., JB test
cannot accept or reject the normality of data.)5. By generating traces on
demand, we can significantly reduce the evaluation time since it is linearly
proportional to the trace generation time (i.e., Monte-Carlo simulation time
with a different seed).

4 Experiments

To demonstrate the applicability of our framework to the QoS/energy tradeoff
management, we are exploring several aspects of the system optimization. Our
5 Besides, we use the average value from the randomly chosen traces. This random

selection may affect the normality test. However, we believe the effect is negligible.

A Probabilistic Formal Analysis Approach to Cross Layer Optimization 295

formal executable specification (Maude) and evaluation method can serve as a
simulation study as well as a statistical guarantee for the design. The outcome
of the formal analysis helps us determine the right blend of policies/parameter
settings that will enable better QoS and better energy efficiency. The following
items are examples of the various facets that we want to address.

– Effect of cross-layer optimization: To evaluate the effect of the cross layer
optimization, first we need to quantify the impact of the optimization at
each layer and their composition.

– Effect of confidence requirements: Statistical model checking involves errors
by its nature (e.g., the probability of false negatives, the probability of false
positives, etc.). Likewise, statistical quantitative analysis provides the answer
with confidence interval and error bound. Confidence requirements for the
answer have an effect on the number of samples needed, which in turn affects
the solution quality and the evaluation time.

– Effect of worst case vs. average case analysis: Currently, we model energy
optimization policies (e.g., DVS, DPM, etc.) to reduce energy consumption
while satisfying the QoS requirements even in the worst case scenario. How-
ever, typical multimedia applications finish execution much earlier than the
worst case execution time in most of the situations, which allows more ag-
gressive optimization based on an average case execution scenario.

– Effect of constraint relaxation: QoS degradation due to optimization is some-
times not noticeable from the viewpoint of an end user (e.g., a user may not
recognize video quality drop from a single deadline miss for the video decod-
ing.). In such a case, we can relax system’s QoS constraints to enable further
optimization.

In the following subsections, we will explain experimental results that illus-
trate the effect of cross-layer optimization. We model PBPAIR as an application
layer policy as well as various power management schemes – Greedy, Cluster,
DVS – as OS layer policies. In the Greedy scheme, the power manager shuts
down whenever the device is idle, while the Cluster scheme tries to aggregate idle
periods to maximize energy efficiency. The DVS scheme lowers supply voltage as
long as the deadline constraint is satisfied. The arrival of incoming processing re-
quests from the network is modeled as a Poisson process with an average arrival
rate. When the processor runs at full speed, the execution times of the tasks are
modeled as a normal (Gaussian) distribution with the average of (BCET+WCET)

2
and the boundary value of 3 × δ, where δ represents the standard deviation.
For other types of distributions, we can simply change the Maude operator for
the distribution function. A subset of the MMMT system – video encoder and
decoder for videophone mode – is modeled with the workload variation of a PB-
PAIR encoder [7] and an H.263 decoder [20]. The network zone information is
assumed to be given and the DVS capable hardware implementation is from [21].
The experiments were carried out on a 2.8 GHz Pentium 4 processor running
Linux.

296 M. Kim et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

R
el

at
iv

e
E

ne
rg

y
C

on
su

m
pt

io
n

Buffer Size (Frame)

Energy Consumption

1 2 3 4 5 6 7 8

dvs+pbpair
greedy+pbpair
cluster+pbpair

dvs+no

greedy+no
cluster+no
always−on

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

D
ea

dl
in

e
M

is
s

R
at

io
 (

%
)

Buffer Size (Frame)

Decoder Average Deadline Miss Ratio

1 2 3 4 5 6 7 8

dvs+pbpair
greedy+pbpair
cluster+pbpair

always−on+pbpair
dvs+no

greedy+no
cluster+no

always−on+no

(b)

Fig. 4. Monte-Carlo Simulation: Effect of Cross Layer Optimization

4.1 Experimental Results

Monte-Carlo Simulation. Monte-Carlo simulation in Maude is done with
the fair rewrite command that generates one possible behavior of the system,
starting from a given initial state using a user specified seed for sampling from
distributions. Figure 4(a) presents the energy profiles according to the different
policies and buffer sizes. DVS with PBPAIR outperforms other policies from
the perspective of relative energy consumption with respect to Always-on (i.e.,
without any policy). QoS measures such as average deadline miss ratio are also
examined to evaluate the effect of cross layer optimization. Figure 4(b) shows
that PBPAIR combined with any OS layer policy delivers more timely decod-
ing than any OS layer policy without PBPAIR. Detailed experimental results
on QoS aspects are omitted due to space limitations [22]. Note that the num-
ber of possible traces depends on the random seed generator and runtime is
linearly proportional to the single trace generation time (i.e., Maude rewriting
time from initial state). If we consider the rate of 50 frames each (5 frames/sec)
for both encoding and decoding, single trace generation takes around 400-500
msecs. Therefore, it is infeasible to produce all possible traces to evaluate policy
and parameter changes in dynamic situations. This led us to propose statistical
approaches with quantifiable confidence for our evaluation/decision.

Statistical Model Checking. Statistical model checking enables quick detec-
tion of problematic situations (e.g., battery expiration) that can arise due to the
selection of policy/parameter settings. As an example of sequential testing, we
performed statistical model checking of the property

Probability [battery expires < 0.1]

with arguments α = 0.05 (false negative), β = 0.05 (false positive), θ = 0.1
(threshold), and δ = 0.01 (indifference region), respectively. Sequential testing
accepts the hypothesis H1: p � θ - δ with 133 traces, that is the batteryExpires
property checker in Figure 3 gives false for all traces. With the same 133 traces

A Probabilistic Formal Analysis Approach to Cross Layer Optimization 297

(a) Energy Consumption:
[nSample = 100] Fail to reject Ho (p-value = 0.821)
E[Energy Consumption] = 3.7121E9 (α = 5.0%, d = 0.036%)

(b) Decoder Average Deadline Miss Ratio:
[nSample = 100] Reject Ho (p-value = 0.035)
[nSample = 110] Fail to reject Ho (p-value = 0.194)
E[Decoder Avg Deadline Miss Ratio] = 0.2032 (α = 5.0%, d = 0.466%)

(c) Decoder Maximum Consecutive Lost:
[nSample = 100] Fail to reject Ho (p-value = 0.884)
[nSample = 100] (d = 0.01053) > (δ = 0.01)
[nSample = 110] (d = 0.01002) > (δ = 0.01)
[nSample = 121] (d = 0.00958) ≤ (δ = 0.01)
E[Decoder Maximum Consecutive Lost] = 3.2314 (α = 5.0%, d = 0.958%)

Fig. 5. Statistical Quantitative Analysis

that were generated for sequential testing, black-box testing also confirms the
formula with error of 8.20E-7. The run time for each statistical model checking
is 10-20 msecs in addition to the sample generation, which indicates that this is
a feasible proposition for the on-the-fly adaptation.

Statistical Quantitative Analysis. In Section 3.3, we explained the pre-
requisite and theoretical background for the statistical quantitative analysis and
this section provides experimental results on that. Specifically, we test normality
of data before we apply the central limit theorem to approximate the expected
value by the average of sample mean. We first generate an initial number of
sample traces for JB normality test followed by additional trace generation until
the normality test succeeds. The p-value should be more than or equal to the
error bound (α) to accept normality of given data set (i.e., fail to reject the
null hypothesis Ho). If we can not statistically limit the confidence interval by δ
(while loop condition in Pseudocode 2), we produce more samples on-demand.

The Figure 5(a) and 5(b) show our statistical quantitative analysis results
with arguments of α (error bound) and δ (confidence interval) as 5% and 1%,
respectively. In Figure 5(a), the observable EnergyConsumption passes the nor-
mality test with 100 initial samples since its p-value (0.821) is more than er-
ror bound α (0.05). The resulting confidence interval d (0.036%) is less than
the desired value δ (1%). Therefore, we can estimate the expected value for
EnergyConsumption within error bound and confidence interval. On the other
hand, in case of the DecoderAvgDeadlineMissRatio observable (Figure 5(b)),
we need to generate more samples (10% in this experiment) since the first JB
test fails. Even if the sample data follows a normal distribution, we may need
more samples for limiting the confidence interval by δ. Figure 5(c) presents such
a case. The confidence interval from initial samples (d) is 1.053% and the desired
interval (δ) is 1%. Therefore, more samples are generated until d is less
than δ.

298 M. Kim et al.

5 Previous and Related Work

In our previous work (FORGE project [1]), we have identified interaction pa-
rameters between the different computational levels that can facilitate effective
cross-layer coordination. Specifically, we have studied how to annotate applica-
tion data with specific information that can be used to improve power efficiency
and how to optimize parameters in various layers (e.g., image quality in appli-
cation layer, the compressed size in network layer, and execution time/power
consumption in hardware layer) [2]. We also explored the trade-off between the
error resiliency level, compression efficiency, and power consumption for stream-
ing multimedia applications [7]. To leverage our prior effort, we are integrating
formal methods with cross-layer optimization in a unified framework.

Previous work on statistical model checking for stochastic systems includes
PMaude (Probabilistic Maude) [23,12], a rewriting-based specification language
for modeling probabilistic concurrent and distributed systems. The associated
tool, VeStA [14], was developed to statistically analyze various quantitative
aspects of models such as those specified in PMaude using a query language
QuaTEx (Quantitative Temporal Expression) [12] based on CSL (Continuous
Stochastic Logic). However, this approach does not provide any procedure by
which they can determine the sample size required to achieve normality.
Moreover, the authors approximate the expected average by applying Student’s
T -distribution. This is unnecessary since as the sample size n grows, the T -
distribution approaches the normal distribution with mean 0 and variance 1.
Therefore, we extended their approach by an on-demand sample generation that
can compute the sample size sufficient to guarantee the normality of data, and
utilize the normal distribution to obtain the error bound and confidence interval.

Ymer [15,16] implements statistical techniques, based on discrete event simu-
lation and sequential acceptance sampling for CSL model checking. The system
is modeled by continuous-time Markov chains (CTMCs) and generalized semi-
Markov processes (GSMPs). Properties are expressed using Continuous Stochas-
tic Logic (CSL). Ymer also integrates numerical techniques to solve nested CSL
queries, by including the hybrid engine of the PRISM [24] tool for CTMC model
checking. This, however, limits the modeling power compared with our approach.
On the other hand, the expressive power of the Maude language (extended with
probability and time) opens a wide spectrum of applications that are beyond
the scope of Markovian models.

6 Summary and Future Work

This paper presents the results of the first phase of a project to develop formal
analytical methods for understanding cross-layer and end-to-end timing issues
in highly distributed systems incorporated resource limited devices, and to inte-
grate these methods into the design and adaptation processes for such systems.
We have developed new analysis techniques that combine statistical and formal
methods and applied them in a case study treating the videophone mode of a
multi-mode multimedia terminal. The results are encouraging, as the underlying

A Probabilistic Formal Analysis Approach to Cross Layer Optimization 299

formal executable models are moderately simple to develop, and the analyses
seem feasible.

Ongoing and future work in this project includes:

– modeling and analysis of the remaining modes of the MMMT (Section 2) as
well as scheduling policies and sharing of resources between tasks.

– carrying out a trade-off analysis on the effect of confidence requirements,
worst case vs. average case execution models, and constraint relaxation (as
discussed in Section 4).

– integration of formal analysis with the simulation framework that includes
real system prototypes. This will result in a feedback loop that includes the
formal models, simulation, and monitoring of running systems for analysis
of system behavior and optimizing choice of policies and parameters.

References

1. Forge Project: http://forge.ics.uci.edu
2. Mohapatra, S., Cornea, R., Oh, H., Lee, K., Kim, M., Dutt, N.D., Gupta, R.,

Nicolau, A., Shukla, S.K., Venkatasubramanian, N.: A cross-layer approach for
power-performance optimization in distributed mobile systems. In: International
Parallel and Distributed Processing Symposium (IPDPS ’05)

3. Kim, M., Dutt, N., Venkatasubramanian, N.: Policy construction and validation
for energy minimization in cross layered systems: A formal method approach. In:
Real-Time and Embedded Technology and Applications Symposium (RTAS ’06)
Work-in-Progress Session. pp. 25–28 (2006)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All about maude, a high-performance logical framework. LNCS, vol. 4350.
Springer, Berlin Heidelberg New York (2007)

5. Kim, D., Kim, M., Ha, S.: A Case Study of System Level Specification and Software
Synthesis of Multimode Multimedia Terminal. In: Embedded Systems for Real-
Time Multimedia (ESTImedia ’03). pp. 57–64 (2003)

6. Kim, M., Ha, S.: Hybrid Run-time Power Management Technique for Real-time
Embedded System with Voltage Scalable Processor. ACM SIGPLAN Notices 36(8),
11–19 (2001)

7. Kim, M., Oh, H., Dutt, N., Nicolau, A., Venkatasubramanian, N.: PBPAIR: an
energy-efficient error-resilient encoding using probability based power aware intra
refresh. SIGMOBILE Mob. Comput. Commun. Rev. 10(3), 58–69 (2006)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003, LNCS vol. 2706,
Springer, Heidelberg (2003)

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: specification and programming in rewriting logic. Theoretical
Computer Science 285(2), 187–243 (2002)

10. Meseguer, J.: Conditional Rewriting Logic as a unified model of concurrency. The-
oretical Computer Science 96(1), 73–155 (1992)

11. Real-Time Maude 2.2: http://www.ifi.uio.no/RealTimeMaude.
12. Agha, G.A., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language

for probabilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2), 213–239
(2006)

http://forge.ics.uci.edu
http://www.ifi.uio.no/RealTimeMaude

300 M. Kim et al.

13. Wald, A.: Sequential tests of statistical hypotheses. Annals of Mathematical Sta-
tistics 16(2), 117–186 (1945)

14. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004, LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004)

15. Younes, H.: Ymer: A statistical model checker. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005, LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)

16. Younes, H., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical
probabilistic model checking. International Journal on Software Tools for Technol-
ogy Transfer (STTT) 8(3), 216–228 (2006)

17. Jarque, C., Bera, A.: A test for normality of observations and regression residuals.
Internat. Statist. Rev. 55(2), 163–172 (1987)

18. Hogg, R., Craig, A.: Introduction to Mathematical Statistics. 5th edn. (1995)
19. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time

Markov chains. ACM Trans. Comput. Logic 1(1), 162–170 (2000)
20. Image Process Lab. Univ. British Columbia: TMN 10 (H.263+), ver. 3.2.0 (1998)
21. http://www.intel.com/design/pca/prodbref/252780.htm
22. Kim, M., Stehr, M.O., Talcott, C., Dutt, N., Venkatasubramanian, N.: Model-

ing and Exploiting Cross-Layer Optimization in Distributed Embedded Systems.
Technical Report SRI-CSL-07-02, SRI International (Feb. 2007)

23. Kumar, N., Sen, K., Meseguer, J., Agha, G.: A rewriting based model for proba-
bilistic distributed object systems. In: Najm, E., Nestmann, U., Stevens, P. (eds.)
FMOODS 2003, LNCS, vol. 2884, pp. 32–46. Springer, Heidelberg (2003)

24. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM A tool for automatic
verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006 and ETAPS 2006, LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

http://www.intel.com/design/pca/prodbref/252780.htm

On Resource-Sensitive Timed Component Connectors�

Sun Meng and Farhad Arbab

CWI, Kruislaan 413, Amsterdam, The Netherlands
{Meng.Sun,Farhad.Arbab}@cwi.nl

Abstract. In this paper we introduce a formal model for reasoning about re-
source sensitive timed component connectors. We extended the constraint au-
tomata model, which is used as the semantic model for the exogenous channel-
based coordination language Reo, through integrating both resource and time in-
formation. This model allows to specify both the interactions that take time to
be performed and timeouts. Moreover, the model reflects resource issues, such
as bandwidth or allocated memory, that may affect the time needed for interac-
tions when specifying the timed behavior of connectors. The time duration that
an interaction takes is represented by a function on the available resources. In ad-
dition to the formalism, we also discuss compositional reasoning and present two
notions of simulation to relate different connectors from functional and resource-
sensitive temporal perspectives respectively.

Keywords: Coordination, Constraint Automata, Resource-Sensitive Timed
Constraint Automata, Simulation.

1 Introduction

One important challenge of the software engineering field is the so called Service Ori-
ented Computing (SOC) [11]. In SOC, applications are developed by coordinating the
behaviour of autonomous services distributed over an overlay network. Coordination
models and languages provide a formalization of the “glue code” that interconnects the
services and organizes the mutual interactions between them in a distributed processing
environment, and are extremely important to the success of SOC. Several coordination
models have been proposed in the literature. For example, Reo [3,5] offers a powerful
glue language for implementation of coordinating component connectors based on a
calculus of mobile channels. However, most of them were concerned only with func-
tional aspects of the connectors. This means that nothing was said about Quality of
Services [12], e.g., the duration of the interaction. As a consequence, only functional
properties of coordination could be investigated.

Coordination of services requires service consumers to discover service providers
that satisfy both given functional and non-functional requirements, including costs and
QoS requirements such as time that a service takes to perform a certain action. Timing

� The work reported in this paper is supported by a grant from the GLANCE funding program
of the Dutch National Organization for Scientific Research (NWO), through project CooPer
(600.643.000.05N12).

M.M. Bonsangue and E.B. Johnsen (Eds.): FMOODS 2007, LNCS 4468, pp. 301–316, 2007.
c© IFIP International Federation for Information Processing 2007

302 M. Sun and F. Arbab

constraints are always required to be satisfied in different service oriented applications
and the time consumed during the execution of a service falls into one of the following
two categories:

– The service consumes time while it performs actions. The time may depend on the
availability of resources. For example, the time for downloading a file from a server
depends on the bandwidth of the network.

– The time passes while the system waits for a reaction from the environment. In
particular, the service can change the system’s state if an interaction is not received
before a certain amount of time. For example, the connection to some server (like
internet banking) might be disconnected if it does not receive any requirement for
a long time due to the security reason.

In this paper we consider the temporal issues of Reo which allow the specifier to
define how the behavior of channels and component interfaces can be affected by both
categories of temporal aspects. Although there are a plethora of timed extensions of
classical models [1,16,17], most of them only specify one temporal aspects: Time is
either associated with actions or associated with delays/timeouts. We present a formal-
ism based on constraint automata, allowing us to take into account both temporal issues
considered before, and specify in a natural way both aspects of temporal properties for
connectors. Furthermore, a new contribution in this paper is that resources may influ-
ence the timing property of the behavior. Therefore the execution of an interaction may
take different time values if the available resources are different.

The choice of Reo as the coordination language (and therefore constraint automata
as its operational semantic model) is motivated by the fact that (1) it allows exogenous
coordination and arbitrary user defined primitives, and (2) it is unique among other
models in allowing arbitrary combination of synchrony and asynchrony in coordination
protocols. This, for instance, facilitates multi-party transactions through Reo’s inherent
propagation of synchrony and exclusion constraints.

We also propose a formal simulation relation allowing to systematically compare
connectors given by resource sensitive timed constraint automata. The notion of simu-
lation of ordinary constraint automata has already been studied in the literature [2,4,5].
However, to the best of our knowledge, none of them take resource issues into account.
Here, we propose new techniques specifically devoted to resource sensitive timed con-
nectors. Regarding functional simulation we have to consider not only language inclu-
sion as discussed in [5], but also the possible timeouts.

Taking resources and time into account, the simulation relation in our model can be
used to check the standard refinement pattern: Having a certain requirement in mind,
it is often quite easy to depict a resource sensitive timed constraint automaton A that
describes the allowed behavior. In this sense, A can serve as specification for a Reo
circuit that is to be designed. A Reo circuit G is viewed to be correct (w.r.t. specifica-
tion A) iff the resource sensitive timed constraint automaton AG for G does not show
any behavior that is forbidden by the specification, where both functional behavior and
temporal behavior are considered.

The rest of the paper is organized as follows: In Section 2 we recall the basic con-
cepts of ordinary constraint automata. Resource sensitive timed constraint automata are

On Resource-Sensitive Timed Component Connectors 303

introduced in Section 3. In Section 4 we present the simulation relation in our model and
provide the congruence result with respect to the composition operators. In Section 5
we consider related research work. We conclude in Section 6 with a brief discussion of
some further work.

2 Constraint Automata

Constraint automata (CA) were introduced in [5] as a formalism to capture the oper-
ational semantics of channel-based component connectors in Reo. This section sum-
marizes the basis concepts of constraint automata. Constraint automata are variants of
labelled transition systems where transitions are augmented with pairs N, g rather than
action labels. The states of a constraint automata stand for the network configurations,
e.g., the contents of the buffers for FIFO channels. The transition labels N, g can be
viewed as sets of I/O-operations that will be performed in parallel. More precisely, N
is a set of nodes in the network where data-flow is observed simultaneously, and g is
a boolean condition on the observed data items. Transitions going out of a state s rep-
resent the possible data-flow in the corresponding configuration and its effect on the
configuration.

CA use a finite set N of nodes. The nodes can play the role of input and output ports
of components and connectors, but they can appear outside the interfaces of components
as intermediate stations of the network where several channels are glued together and
the transmission of data items can be observed. In the sequel, we assume a finite and
non-empty set Data consisting of data items that can be transferred through channels.
A data assignment denotes a function δ : N → Data where ∅ �= N ⊆ N . We write
δA for the data item assigned to node A ∈ N under δ and DA(N) for the set of all data
assignments for node-set N . CA use a symbolic representation of data assignments by
data constraints which mean propositional formulas built from the atoms dA = dB ,
dA ∈ P or dA = d where A, B are nodes, dA and dB are symbols for the observed data
item at node A and d ∈ Data, P ⊆ Data (and the standard boolean connectors ∧, ∨,
¬, etc.). For a node set N , DC(N) denotes the set of data constraints that only refer to
the terms dA for A ∈ N .

Definition 1. A constraint automaton over the data domain Data is a tuple A =
(S, S0, N , −→) where S is a set of states, also called configurations, S0 ⊆ S is the set
of its initial state, N is a finite set of nodes, −→⊆

⋃
N⊆N S × {N} × DC(N) × S,

called the transition relation.

A transition fires if it observes data items in its respective ports/nodes of the component

and according to the observed data, the automaton may change its state. We write s
N,g−→

s′ instead of (s, N, g, s′) ∈−→ and refer to N as the node-set and g the guard for the

transition. By an instance of s
N,g−→ s′ we mean a transition of the form s

N,δ−→ s′

where δ is a data assignment for the nodes in N with δ |= g. Here the symbol |= stands
for the satisfaction relation which results from interpreting data constraints over data
assignments.

304 M. Sun and F. Arbab

{B}

B
empty

A

d =d
{A}

s(d)

d =dB

A

Fig. 1. Constraint Automata for FIFO Channel

The intuitive operational behavior of a constraint automaton can be specified by its
runs. A run in a constraint automaton is defined as a (finite or infinite) sequence of
consecutive transition instances

r = s0
N0,δ0−→ s1

N1,δ1−→ s2
N2,δ2−→ . . .

We require that runs are either infinite or finite runs where the last state sn does not
have any outgoing transition where the node set N only consists of mixed nodes. This
requirement can be understood as a maximal progress assumption for the mixed nodes.

Figure 1 shows a CA for a FIFO1 channel AB in Reo, which is given in the left
of the picture. Node A serves as input port where data items can be written into the
channel while B can be regarded as output port where the stored data item is taken out
and delivered to the environment. State empty represents the configuration in which
the buffer is empty, while state s(d) stands for the configuration where data element d
is stored in the buffer. The CA given here is a parametric version with meta symbols for
data items (Formal definition can be found at [5]).

Sender Receiver
B

M6 M5

Med
M2M1 M3 M4

A

Fig. 2. The Components of Parrow’s Protocol

Example 1. As another example, we consider the Parrow’s Protocol (PP) [18], which
is a simplified version of the well-known Alternating Bit Protocol (ABP). PP provides
an error free communication over a medium that might lose messages. Figure 2 shows
the components that are involved in this protocol. Data elements from a set Msg are
communicated between a Sender and a Receiver. Once the Sender reads a message from
its port A, it sends this datum through the communication medium Med to the Receiver,
which sends the message out through its port B. The communication medium Med is
faulty, thus a message sent through Med can turn up as an error message. Every time
the Receiver receives a message via Med, it sends an acknowledgement to the Sender.
For simplicity it is assumed that acknowledgements are never lost. We model three
components and the three synchronous channels by CA. The pictures are given as in
Figure 3.

On Resource-Sensitive Timed Component Connectors 305

{A}
Receiver{M1}

{M6}

{M6}
{M4} {B}

{M5}

{M4}{M5}Medium

Sender

{M2}

{M3}
d =d or d =!

Synchronous channels

{M1,M2} {M3,M4} {M5,M6}

d =dA

M1d =d

d =dd =dM4 B

d =succM5

d =!M5 d =!M4

d =dM2

d =!M6

d =succM6

M3 M3

d =dM1 M2
d =dM3 M4 d =dM5 M6

Fig. 3. The Constraint Automata for the Components and Channels in Parrow’s Protocol

Constructing complex connectors out of simpler ones is done by the join operation
in Reo. Joining two nodes destroys both nodes and produces a new node on which all of
their coincident channel ends coincide. Each channel in Reo is mapped to a constraint
automaton. We now show how Reo’s join operation can be realized by the product
construction of constraint automata.

The product for two given constraint automata A1 = (S1, s0,1, N1, −→1) and A2 =
(S2, s0,2, N2, −→2) is defined as a constraint automaton A1 �� A2 with the
components

(S1 × S2, 〈s0,1, s0,2〉, N1 ∪ N2, −→)

where −→ is given by the following rules:

– If s1
N1,g1−→ 1 s′1, s2

N2,g2−→ 2 s′2, N1 ∩ N2 = N2 ∩ N1 �= ∅ and g1 ∧ g2 is satisfiable,

then 〈s1, s2〉
N1∪N2,g1∧g2
−−−−−−−→ 〈s′1, s′2〉.

– If s1
N,g−→1 s′1, where N ∩ N2 = ∅ then 〈s1, s2〉

N,g−→ 〈s′1, s2〉.
– If s2

N,g−→2 s′2, where N ∩ N1 = ∅ then 〈s1, s2〉
N,g−→ 〈s1, s

′
2〉.

The first rule is applied when there are two transitions in the automata which can be
fired together. This happens only if there is no shared name in the two automata that
is present on one of the transitions but not present on the other one. In this case the
transition in the resulting automaton has the union of the name sets on both transitions,
and the data constraint is the conjunction of the data constraints of the two transitions.
The second rule is applied when a transition in one automaton can be fired indepen-
dently of the other automaton, which happens when the names on the transition are not
included in the other automaton. The third rule is symmetric to the second one. A para-
metric picture for the product of the CA of the Sender, the Receiver, the Medium and
the synchronous channels in Example 1 is given in Figure 4.

306 M. Sun and F. Arbab

{A} {M1,M2} {M3,M4} {B}

{M5,M6}
d =d =succ

{M5,M6} {M3,M4}

d =dA d =d =dM1 M2 d =d =dM3 M4 d =dB

d =d =!M5 M6
d =d =!M3 M4

M5 M6

Fig. 4. The Product of Constraint Automata for the Components and Channels in Fig.3

Another operator that is helpful for abstraction purposes and can be used in Reo
to build connectors from networks by declaring the internal topology of the network
as hidden is the hiding operator. Hiding takes an input a constraint automaton A =
(S, s0, N , −→) and a non-empty node-set M ⊆ N . The result is a constraint automa-
ton hide(A , M) that behaves as A except that data flow at the nodes A ∈ M is made

invisible. Formally, hide(A , M) = (S, s0, N \ M, −→M , Q0,M) where s
N̄,ḡ−→M s′

iff there exists a transition s
N,g−→ s′ such that N̄ = N \ M and ḡ = ∃M [g]. Here

∃M [g] stands short for
∨

δ∈DA(M) g[dA/δ.A|A ∈ M], where g[dA/δ.A|A ∈ M] de-
notes the syntactic replacement of all occurrences of dA in g for A ∈ M with δ.A.
Therefore, ∃M [g] formalizes the set of data assignments for N̄ that are obtained from
a data assignment δ for N where g holds by dropping the assignments for the nodes in
N ∩ M .

3 Resource-Sensitive Timed Constraint Automata

In this section, we present an extension of the constraint automata model for Reo cir-
cuits that yields the basis for reasoning about resources in temporal behavior of channel-
based component connectors. Resource-Sensitive Timed Constraint Automata (RSTCA
for short) rely on the assumption that the execution time of interactions depends on the
available resources, while timeout is also permitted. As we have indicated previously,
we will add new dimensions to the CA model such that the temporal properties can be
properly specified. We consider both timeout behavior and the time being taken when
the interactions being executed in the system evolution. The time values will not only
depend on the corresponding operation to be performed and the state that the system
resides in. Therefore, we have two types of transitions:

– interactive transitions where the time needed for the interaction depends on the
available resource value, and

– timeout transitions where the system can evolve after a given time while no inter-
action happens.

On Resource-Sensitive Timed Component Connectors 307

Before touching the technical details for RSTCA, we first consider a mathematical
account of the notion of resource. According to [19], the following properties are rea-
sonable requirements for a model of resource:

– A set R of resource elements;
– A (partial) combination ◦ : R × R ⇀ R of resource elements;
– A comparison � of resource elements; and
– A zero resource element e.

which correspond to a preordered partial commutative monoid (R, ◦, e, �), subject to
the condition that if r � s and r′ � s′ then r ◦ r′ � s ◦ s′. For simplicity, we use
(N, +, 0, ≤) as the model of resource in the following. A resource assignment for re-
source r is given by r : n which means that n units of resource r is available. In general,
a resource assignment is a tuple of resource assignments 〈r1 : n1, r2 : n2, · · · , rk : nk〉
for resources r1, r2, · · · , rk . A resource constraint rc for resource r1, r2, · · · , rk is a
conjunction of atoms of the form ri �� m where ��∈ {<, ≤, >, ≥, =}. RA denotes
the set of all resource assignments and RC the set of all resource constraints. We use
the symbol |= for the satisfaction relation for resource constraints which results from
interpreting resource constraints over resource assignments. The judgement r : n |= rc
is read as “resource assignment r : n is sufficient to satisfy rc”. We say that a resource
constraint rc is satisfiable if there exists a resource assignment x such that x |= rc.
The monoidal structure allows us to define a multiplicative conjunction ⊗ on resource
constraints, which is given by

r : n |= rc1 ⊗ rc2 iff there are two assignments r : n1 and r : n2 such that

n1 ◦ n2 � n, and r : n1 |= rc1 and r : n2 |= rc2

The semantics of such a multiplicative conjunction is: the n units of resource r is suf-
ficient to satisfy rc1 ⊗ rc2 just in case that it can be divided into two parts n1 and n2
such that n1 units of r satisfies rc1 and n2 units of r satisfies rc2.

During the rest of the paper we will use the following notation: T = R≥0 ∪ {∞} is
the domain to define time values. We write R |rc for the subset of R in which all the
elements satisfy the resource constraint rc and {R → T} for the function space from
R to T, i.e., the set of possible functions with domain R and codomain T.

Definition 2 (Resource-Sensitive Timed Constraint Automata). A RSTCA is defined
as a tuple

T = (S, S0, N , R, −→)

where S is a countable set of control states (also called locations), S0 ⊆ S is the set of
initial states, N is a finite set of nodes, R is a finite set of resource names, and the edge

−→⊆ (S × T × S) ∪ (
⋃

N⊆N

S × {N} × DC(N) × RC × {R → T} × S)

denotes the transitions and we have two types of transitions:

– timeout transitions: s
t−→ s′ where t ∈ T;

308 M. Sun and F. Arbab

– interactive transitions: s
N,g,rc,C

−−−−−−−→ s′ where N, g are as in ordinary constraint
automata, rc is the resource constraint that should be satisfied to trigger the execu-
tion of the transition, and C : R |rc→ T returns the time value that the transition
need to be completed, which depends on the available resource values.

A configuration in T is a pair 〈s, x〉 where s ∈ S is a state and x is the tuple of resource
assignments.

For each state s, the timeout transition s
t−→ s′ indicates the time that the system can

remain at the state s waiting for an interaction to happen and the state to which the sys-
tem evolves if no interaction happens on time. An interactive transition represents a set
of possible interactions given by the transition instances that result by replacing the data
constraint g with a data assignment δ where g holds, and replace resource constraint rc
with a resource assignment x at state s which satisfies rc respectively. The time dura-
tion for executing the such a transition instance will be C(x). Furthermore, available re-
source values might be changed throughout the computation and communication. Thus,
we posit the existence of a modification function μ, in which μ(N, δ, x) = x′ has the
interpretation that the effect of the interaction δ at port N on resource x is to modify it
to x′.

We also assume that the interactive transitions always have a higher priority than
timeout transitions, and if a RSTCA T have both an interactive transition and a timeout
transition s

t−→ s′ at a state s, it means that the system will stay at state s for t time
units and evolve to state s′ if the interactive transition is not enabled in this duration. But
at any time point in [0, t), if it can interact with another system by taking the interactive
transition, the interaction will happen immediately and the system will move to another
state. This idea is represented in Figure 5, where t1 ∈ [0, t) and the behavior of the
RSTCA on the left side is in fact like on the right side, i.e., the system remembers what
it can do at state s in the duration [0, t) and do it whenever it is possible, and forget it at
time t, when it arrives at a new state s′.

N,g,rc,C

t t
ss

s’’

s’s’
1

s’’

N,g,rc,C N,g,rc,C

1t−t
s

Fig. 5. Timeout and Interactive Transitions

A state is called terminal iff it has no outgoing interactive transitions and allows the
possibility for unbounded passage of time, i.e., timeout transitions are not allowed in it.

Given a state s and resource assignment x, a transition instance 〈s, x〉
N,δ,C(x)

−−−−−−−→
〈s′, x′〉 denotes that if the N -interaction is available, g holds for data assignment δ and

On Resource-Sensitive Timed Component Connectors 309

the resource assignment x satisfies rc, then the transition happens after C(x) units of
time, the new state will be s′ and the available resource after the transition is given
by x′.

Definition 3. For a given RSTCA T , suppose s0 be a state and c0 = 〈s0, x〉 a possible
configuration of T . A tuple (c0, N, δ, t̄, t, c) is a step of T for the state s0 if there exists
a configuration c = 〈s, x′〉 and k ≥ 1 states s1, s2, · · · , sk such that for all 1 ≤ j ≤ k

we have sj−1
tj−→ sj , and there exists a transition 〈sk−1, x〉

N,δ,C(x)
−−−−−−−→ 〈s, x′〉 such

that t̄ = [
∑k−1

j=1 tj ,
∑k

j=1 tj) and t = C(x). We denote by Steps(T , s) the set of steps
of T for the state s.

We say that a timed s-run of T is a (finite or infinite) sequence of successive steps
of T starting in state s. Formally, a timed s-run is a sequence of steps as

(c0, N0, δ0, t̄0, t0, c1), (c1, N1, δ1, t̄1, t1, c2), · · · (1)

where c0 = 〈s, x〉 for some possible resource assignment x at state s. We denote
by TR(T , s) the set of timed s-runs of T . In addition, we say that the sequence
(N0, δ0, t̄0), (N1, δ1, t̄1), · · · is a functional s-run of T if there is a timed s-run of
T as given in (1).

Intuitively, a step is an interactive transition proceeded by zero or more timeout tran-
sitions. The duration t̄ in a step (c0, N, δ, t̄, t, c) where c0 = 〈s0, x0〉 and c = 〈s, x〉
indicates the possible time values when an interaction could start. Additionally, timed
runs include both time values which inform us about possible timeouts (denoted by the
intervals t̄i) and the time consumed to execute the interactive transitions in each step of
the run.

For the same timed run in a RSTCA, there may exist different instances which are
obtained by instantiating every time interval t̄i by a concrete time value t̂i ∈ t̄i.

Definition 4. Suppose (c0, N0, δ0, t̄0, t0, c1), (c1, N1, δ1, t̄1, t1, c2), · · · is a timed run
for a given RSTCA T , the sequence (c0, N0, δ0, t̂0, t0, c1), (c1, N1, δ1, t̂1, t1, c2), · · ·
is an instanced timed run if for all i, t̂i ∈ t̄i. Additionally, we say that the sequence
(N0, δ0, t̂0), (N1, δ1, t̂1), · · · is a instanced functional run of T .

Example 2. Figure 6 shows a resource-sensitive timed variant for the CA of the compo-
nents and channels of Parrow’s Protocol. Here we assume that the internal computation
of Sender takes tS time units, while the exact time of the Medium and Receiver are
tM and tR respectively. For all the other interactive transitions of the components, we
assume that there is no constraints on the resources and the transitions are performed
immediately. For the three synchronous channels, we assume that the communication
time depends on the bandwidth, i.e., the amount of data that can be transferred over a
certain period of time. In this example, the resource constraint for these channels is that
the bandwidth w should be more than 10k/s, and the duration for the interaction over
every synchronous channel is 1/w time units.

We now explain how to construct a RSTCA via product and hiding. In the following we
assume that the common nodes are those where data flow has to be synchronized.

310 M. Sun and F. Arbab

{M6}

d =!

Sender

d =d
{A}

t

{M6}
d =succ

Medium
{M2}

d =d or d =!
{M3}

t
{M5} {M4}

d =!

{M4}

t
{B}

d =d

{M5}

Receiver

Synchronous channels

{M1,M2}
d =d
w>10k/s
1/w

{M3,M4}

w>10k/s
1/w

{M5,M6}

w>10k/s
1/w

A S

d =d
{M1}

M1

M6

M6

M

d =dM2

M3 M3

M1 M2 d =dM3 M4 d =dM6M5

d =succ

d =d

M5

M4

M4d =!M5

R

B

Fig. 6. The RSTCA for the Components and Channels in Fig.3

Definition 5. Let T1 = (S1, S
1
0 , N1, R, −→1) and T2 = (S2, S

2
0 , N2, R, −→2) be

two RSTCA, their product T1 �� T2 is the RSTCA T = (S, S0, N , R, −→) where
S = S1 ×S2, S0 = S1

0 ×S2
0 , N = N1 ∪N2 and the interactive transitions are defined

by the following synchronization and interleaving rule:

– If s1
N1,g1,rc1,C1
−−−−−−−→1 s′1, s2

N2,g2,rc2,C2
−−−−−−−→2 s′2, N1 ∩ N2 = N2 ∩ N1 �= ∅, g1 ∧ g2 and

rc1 ⊗ rc2 are satisfiable, then 〈s1, s2〉
N1∪N2,g1∧g2,rc1⊗rc2,C1	C2
−−−−−−−−−−−−−−−−−−−−→ 〈s′1, s′2〉.

– If s1
N,g,rc,C

−−−−−−−→1 s′1, where N ∩ N2 = ∅ then 〈s1, s2〉
N,g,rc,C

−−−−−−−→ 〈s′1, s2〉.
– If s2

N,g,rc,C
−−−−−−−→2 s′2, where N ∩ N1 = ∅ then 〈s1, s2〉

N,g,rc,C
−−−−−−−→ 〈s1, s

′
2〉.

and the following rules for timeout transitions:

s1
t1−→ s′1, s2

t2−→ s′2, t1 = t2 = t

〈s1, s2〉 t−→ 〈s′1, s′2〉

s1
t1−→ s′1, s2

t2−→ s′2, t1 < t2

〈s1, s2〉
t1−→ 〈s′1, s2〉, s2

t2−t1−→ s′2

s1
t1−→ s′1, s2

t2−→ s′2, t1 > t2

〈s1, s2〉
t2−→ 〈s1, s′2〉, s1

t1−t2−→ s′1

The interleaving rules are in the style of labelled transition systems. They formalize
the case where no synchronization is required since no common nodes are involved.
The synchronization rule expresses the synchronization case which means that both
automata have to “agree” on the I/O-operations at their common nodes, while the I/O-
operations at their individual nodes is arbitrary. In the synchronization, C1�C2 depends
on the allocation of resources: if resource assignment r : n satisfies rc1 ⊗ rc2, then

On Resource-Sensitive Timed Component Connectors 311

C1 � C2(r : n) = max{C1(r : n1), C2(r : n2)} where n1 ◦ n2 � n and r : n1 |= rc1,
r : n2 |= rc2. In general, there may be different allocation strategies that satisfy the
condition. Thus, for every such allocation, there is a corresponding value for C1�C2(r :
n). To decide the exact time value, the concept of scheduler is needed. The details are
not of importance here and we will leave the problem of how scheduling can be included
in the RSTCA framework as future work.

Note that the definition for this composition operator is an extension of the original
product of constraint automata, which has the feature of being neither parallel nor se-
quential. But it is more powerful than classical sequential and parallel operators and is
the source of the expressive power of Reo: not only it does the sequential composition
of asynchronous steps, it simultaneously also composes synchronous steps in parallel.
More discussions on the reason for this form of composition can be found at [5].

{A}
t t

{M5,M6} {M3,M4}

w>10k/s
1/w

w>10k/s
1/w

1/w
w>10k/s

{M1,M2}

{M3,M4}

w>10k/s
1/w

td =d
{B}

{M5,M6}

w>10k/s
1/w

B R

d =d =dM3 M4

d =d =dM1 M2

S

d =d =succM5 M6

d =dA M

d =d =!M5 M6 d =d =!M3 M4

Fig. 7. The Product of the RSTCA for the Components and Channels in Fig.3

Example 3. Consider the RSTCA for the components and channels of Parrow’s Proto-
col as given in Figure 6. Composing them together via the product operator yields the
RSTCA as given in Figure 7.

The effect of hiding a node that is internal is that data flow at that node is no longer
observable from outside. However, the resource is still consumed and the time being
taken should remain the same whether or not the node is hidden.

Definition 6. The hiding operator takes as input a RSTCA T = (S, S0, N , R, −→)
and a non-empty node-set M ⊆ N . The result is a RSTCA hide(T , M) that be-
haves as T except that data flow at the nodes A ∈ M is made invisible. Formally,
hide(T , M) = (S, S0, N \ M, R, −→M) where

– s
N̄,ḡ,rc,C

−−−−−−−→M s′ iff there exists a transition s
N,g,rc,C

−−−−−−−→ s′ such that N \ M =
N̄ and ḡ = ∃M [g]. Here ∃M [g] stands short for

∨
δ∈DA(M) g[dA/δ.A|A ∈ M],

where g[dA/δ.A|A ∈ M] denotes the syntactic replacement of all occurrences of
dA in g for A ∈ M with δ.A.

and the timeout transition s
t−→M s′ iff there exists a timeout transition s

t−→ s′.

312 M. Sun and F. Arbab

4 Simulation

Simulation relations were first introduced by Milner in [14] for the purpose of compar-
ing programs, and widely used later to show abstraction and refinement between models
and specifications. They provide a sufficient condition for language inclusion that can
be established with low complexity, and their precongruence properties are suited for
compositional reasoning. In [5] simulation relations for ordinary constraint automata
were defined to verify if two automata are language equivalent or the language of one is
contained in the language of the other. In this section we propose a notion of resource-
sensitive timed simulation as a way to guarantee not only the inclusion of languages
induced by Reo circuits, but also a higher (or at least equal) performance. For example,
we may ask a connector implementation to be always faster than what is required by
the specification when the same resource is consumed, where both the specification and
the implementation are given as RSTCA.

We first consider the non-timed version of simulation for ordinary constraint au-
tomata. As discussed in [5], one constraint automaton T is simulated by another con-
straint automaton A if all the languages that are accepted by T are also accepted by A .
In addition to the non-timed simulation, we require some time conditions to hold. For
example, we may hope a constraint automata (the implementation) to be always faster
than the time constraints imposed by another (the specification) while no more resource
is needed. Additionally, we may require that the implementation always complies with
the timeouts established by the specification.

We first introduce the functional simulation relation �f where only functional aspects
of a system are considered while the performance aspects such as the time needed for
an interaction are ignored. However, we should note that the time that a system spends
waiting for the environment to react has the possibility to affect the behavior of the
system. This is because the time may cause a timeout transition and change the system
from one state to another. Therefore, a simulation relation focusing on the functional
behavior must also take into account the maximal time the system can stay in each state.

Definition 7. For a given RSTCA T = (S, S0, N , R, −→), the functional simulation
is defined as the coarsest binary relation �f⊆ S × S, such that for all s1, s2 ∈ S with
s1 �f s2 and all N ⊆ N , δ ∈ DA(N), resource assignment x and t ∈ T,

– if 〈s1, x〉 N,δ,t−→ 〈s′1, μ(N, δ, x)〉, then there exists s′2 ∈ S and t′ ∈ T, such that

〈s2, x〉 N,δ,t′

−→ 〈s′2, μ(N, δ, x)〉 and s′1 �f s′2,

– if s1
t−→ s′1, then there exists s′2, such that s2

t−→ s′2 and s′1 �f s′2.

One RSTCA T2 functionally simulates another RSTCA T1 (denoted as T1 �f T2) iff
every initial state of T1 is functionally simulated by an initial state of T2

1.

Note that the idea underlying Definition 7 is that if one RSTCA T2 functionally simu-
lates T1, then T1 does not allow any behavior that is forbidden in T2. In the following,
we introduce another notion of simulation for RSTCA, which focuses on not only func-
tional behavior, but also resource-related timing properties. The simulation establishes

1 Here we assume that T1 and T2 rely on the same set of names and resources.

On Resource-Sensitive Timed Component Connectors 313

requests over the function from resource values to time values corresponding to the
performance of the interactive transitions if they are in the same context of resources.

Definition 8. For a given RSTCA T = (S, S0, N , R, −→), the (strong) simulation is
defined as the coarsest binary relation �⊆ S × S, such that for all s1, s2 ∈ S with
s1 � s2 and all N ⊆ N , δ ∈ DA(N), a resource assignment x and t ∈ T,

– if 〈s1, x〉 N,δ,t−→ 〈s′1, μ(N, δ, x)〉, then there exists s′2 ∈ S and t′ ∈ T, such that

t ≤ t′ and 〈s2, x〉 N,δ,t′

−→ 〈s′2, μ(N, δ, x)〉 and s′1 � s′2,

– if s1
t−→ s′1, then there exists s′2, such that s2

t−→ s′2 and s′1 � s′2.

One RSTCA T2 simulates another RSTCA T1 (denoted as T1 � T2) iff every initial
state of T1 is simulated by an initial state of T2.

From Definition 7 and 8, we can easily derive the following result:

Corollary 1. Any strong simulation is also a functional simulation.

{A}
d =d
w>10k/s

1/w

3

{B}
d =d
w>10k/s

1/w

3

{A}

w>10k/s
2/w

{B}

w>10k/s
1/w

A

B

d =dA

d =dB

1

1

1s

s’

s’’

s

s’

s’’

2

2

2

Fig. 8. Simulation

Example 4. We consider the two RSTCA given in Figure 8 for two different implemen-
tations of a FIFO channel offered by two providers. Here, state s1 functionally simulates
state s2 in the same figure, but does not (strongly) simulate it. But on the other direction,
we have both s1 �f s2 and s1 � s2.

We shall need the familiar property that simulation is a congruence with respect to
the product and hiding operators, that is, in our setting, represented by the following
theorem:

Theorem 1. If T1 � T ′
1 , and T2 � T ′

2 , then

(1) T1 �� T2 � T ′
1 �� T ′

2 ,
(2) hide(T1, M) � hide(T ′

1 , M).

Proof. The proof is carried out by constructing witnessing simulations. We consider the
following relation

R = {(〈s1, s2〉, 〈s′1, s′2〉) : s1 � s′1, s2 � s′2}

for (1) and show it to be a simulation.

314 M. Sun and F. Arbab

We only consider the synchronization case. The proof for interleaving and time out

transitions are similar. If 〈〈s1, s2〉, x〉 N,δ,t−→ 〈〈ŝ1, ŝ2〉, μ(N, δ, x)〉 is a transition in
T1 �� T2, then according to Definition 5, there exists N1, N2 ⊆ N , resource con-

straints rc1, rc2, and some function C1 and C2, such that s1
N1,g1,rc1,C1
−−−−−−−→1 ŝ1 and

s2
N2,g2,rc2,C2
−−−−−−−→2 ŝ2 are transitions in T1 and T2, respectively, where N = N1 ∪ N2, δ

satisfies g1 ∧ g2, x satisfies rc1 ⊗ rc2, and there exists an allocation of resources such
that C1 �C2(x) = t. Since s1 � s′1, s2 � s′2, it follows that there exist C′

1 and C′
2, such

that s′1
N1,g1,rc1,C′

1−−−−−−−→1 ŝ′1 and s′2
N2,g2,rc2,C′

2−−−−−−−→2 ŝ′2 for some ŝ′1 and ŝ′2 are transitions in
T1 and T2 respectively, and ŝ1 � ŝ′1, ŝ2 � ŝ′2. Moreover, if we consider the same allo-
cation of resources, then we have C1 ≤ C′

1 and C2 ≤ C′
2 due to Definition 8. Therefore,

C′
1 � C′

2(x) ≥ t. Let t′ = C′
1 � C′

2(x), then 〈〈s′1, s′2〉, x〉 N,δ,t′

−→ 〈〈ŝ′1, ŝ′2〉, μ(N, δ, x)〉
is a transition in T ′

1 �� T ′
2 and (〈s1, s2〉, 〈s′1, s′2〉) ∈ R.

To prove (2) it suffices to show that given a RSTCA T = (S, S0, N , R, −→), any
simulation � for T is also a simulation for hide(T , M). By considering Definition 6,
we can obtain the result easily.

5 Related Work

Some timed models have been proposed for coordinating services with real-time proper-
ties. For example, Arbab et al. [2] proposed an operational semantics for Reo in terms of
Timed Constraint Automata (TCA) and introduced a temporal logic for specifying and
verifying real-time properties or connectors. Orthogonally, a Continuous-Time Con-
straint Automata (CCA) model was proposed in [6], which integrates the features of
continuous-time Markov Chains, and introduces a stochastic variant of the constraint
automata model where transitions might have a certain delay according to some prob-
ability distribution over a continuous time domain. [8] presented an approach for auto-
matic translation from web service choreography description to timed automata. There
are also some work on time extensions of finite state machines [17], timed interface
automata [7], etc. These models have the implicit assumption that unbounded resources
are available. However, in practice, real-time systems are always restricted by resources.
To deal with this problem, several approaches have been proposed to integrate real-time
models with the scheduling and resource allocation, which aim to facilitate reason-
ing about systems sensitive to real-time and resource related properties. For example,
[10] proposed a compositional model for reasoning about schedulers which allocate re-
sources to tasks, but it is only suitable to analyse asynchronous systems because it is
based on an asynchronous language. [9] defined a hierarchy of resource models to han-
dle the resource allocation and reclamation. However, the models are relatively abstract
and not compositional. [13] introduced a timed extension of the extended finite state
machine model and a testing methodology, taking into account the temporal issues as
we discussed in this paper. However, there is no discussion about compositionality for
that model.

As in Continuous-Time Constraint Automata model [6], we also have two types of
transitions in the RSTCA model describing interactive transitions and timeout

On Resource-Sensitive Timed Component Connectors 315

transitions. The difference consists of two aspects: On one hand, our model of time-
out transitions is not restricted to Markovian transitions, instead we use time variables
to describe the time information, which can be more general and satisfy other kinds of
distributions. On the other hand, the time that an interactive transition will take is not
just a simple time value describing time passage, but depends on the available resources.

6 Conclusion

In this paper we provided an operational model for reasoning about resource and time
information related to component connectors under the assumption that the time dura-
tion for interactions depends on the available resources. We defined the RSTCA model
for this purpose, together with notions of simulation that are preserved under the com-
position operators product and hiding. Since these are the only operators needed for
compositional construction of networks in the channel-based coordination language
Reo, our framework fits well in this context and provides the basis for resource-sensitive
performance analysis of component connectors.

In terms of future work, what we would like to do in the next step is the integration
of our model and the stochastic timed model as in [6]. Another issue we intend to study
is to investigate some resource allocation and consumption strategies, like scheduling
[15]. Development of special models and logics for reasoning about resource-sensitive
timed features in Reo will also be studied.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)

2. Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and Temporal Logics for Timed Compo-
nent Connectors. In: Cuellar, J.R., Liu, Z. (eds.) SEFM2004. 2nd International Conference
on Software Engineering and Formal Methods, pp. 198–207. IEEE Computer Society Press,
Los Alamitos (2004)

3. Arbab, F.: Reo: A Channel-based Coordination Model for Component Composition. Mathe-
matical Structures in Computer Science 14(3), 329–366 (2004)

4. Arbab, F., Baier, C., Rutten, J., Sirjani, M.: Modeling component connectors in reo by con-
straint automata (extended abstract). In: Brogi, A., Jacquet, J.-M., Pimentel, E. (eds.) Pro-
ceedings of FOCLASA 2003, the Foundations of Coordination Languages and Software Ar-
chitectures. ENTCS, vol. 97, pp. 25–46. Elsevier, Amsterdam (2003)

5. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by con-
straint automata. Science of Computer Programming 61, 75–113 (2006)

6. Baier, C., Wolf, V.: Stochastic Reasoning About Channel-Based Component Connectors.
In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006, LNCS, vol. 4038, pp. 1–15.
Springer, Heidelberg (2006)

7. de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: Sangiovanni–Vincentelli,
A.L., Sifakis, J. (eds.) EMSOFT 2002, LNCS, vol. 2491, pp. 108–122. Springer, Heidelberg
(2002)

8. Diaz, G., Pardo, J.-J., Cambronero, M.-E., Valero, V., Cuartero, F.: Automatic Translation
of WS-CDL Choreographies to Timed Automata. In: Bravetti, M., Kloul, L., Zavattaro, G.
(eds.) EPEW 2005 and WS-FM 2005, LNCS, vol. 3670, pp. 230–242. Springer, Heidelberg
(2005)

316 M. Sun and F. Arbab

9. Jin, N., He, J.: Resource Semantic Models for Programming Languages. Technical Report
277, UNU/IIST (April 2003)

10. Lowe, G.: Scheduling-oriented models for real-time systems. The Computer Journal 38, 443–
456 (1995)

11. Papazoglou, M.P., Georgakopoulos, D.: Service Oriented Computing. Comm. ACM 46(10),
25–28 (2003)

12. Menascé, D.A.: Composing Web Services: A QoS View. IEEE Internet Computing 8(6),
88–90 (2004)

13. Merayo, M.G., Núñez, M., Rodrı́guez, I.: Extending efsms to specify and test timed systems
with action durations and timeouts. In: Najm, E., et al. (eds.) FORTE 2006, LNCS, vol. 4229,
pp. 372–387. Springer, Heidelberg (2006)

14. Milner, R.: An algebraic definition of simulation between programs. In: Cooper, D.C. (ed.)
Proceedings of the 2nd International Joint Conference on Artifiial Intelligence, London, UK.
William Kaufmann, British Computer Society (1971)

15. Mousavi, M.R., Reniers, M.A., Basten, T., Chaudron, M.R.V.: PARS: A Process Algebra
with Resources and Schedulers. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003, LNCS,
vol. 2791, pp. 134–150. Springer, Heidelberg (2003)

16. Núñez, M., Rodrı́guez, I.: Conformance testing relations for timed systems. In: Grieskamp,
W., Weise, C. (eds.) FATES 2005, LNCS, vol. 3997, pp. 103–117. Springer, Heidelberg
(2006)

17. Park, J.C., Miller, R.E.: Synthesizing protocol specifications from service specifications in
timed extended finite state machines. In: Park, J.C., Miller, R.E. (eds.) 17th IEEE Interna-
tional Conference on Distributed Computing Systems, ICDCS’97, pp. 253–260. IEEE Com-
puter Society, Los Alamitos (1997)

18. Parrow, J.: Fairness Properties in Process Algebra. PhD thesis, Uppsala University, Sweden
(1985)

19. Pym, D., Tofts, C.: A calculus and logic of resources and processes. Formal Aspects of
Computing 18, 495–517 (2006)

Author Index

Ahrendt, Wolfgang 32
Arbab, Farhad 301

Beckert, Bernhard 32
Bernardo, Marco 269
Bidinger, Philippe 206
Bradbury, Jeremy S. 44

Cai, L. Ruhai 44
Compagnoni, Adriana 206
Coppo, Mario 1

de Boer, F.S. 252
Dezani-Ciancaglini, Mariangiola 1
Dingel, Juergen 44
Dutt, Nikil 285

Engels, Gregor 76

Grandy, Holger 221

Hähnle, Reiner 32
Henrio, Ludovic 190
Hills, Mark 107

Kammüller, Florian 190
Kim, Minyoung 285

Meng, Sun 301
Mullins, John 59

Oarga, Raveca 59
Ölveczky, Peter Csaba 122

Padovani, Luca 269
Poetzsch-Heffter, Arnd 157
Poizat, Pascal 141
Prisacariu, Cristian 174

Reif, Wolfgang 221
Riesco, Adrián 91
Roşu, Grigore 107
Ruhroth, Thomas 236

Salaün, Gwen 141
Schäfer, Jan 157
Schmitt, Peter H. 32
Schneider, Gerardo 174
Soltenborn, Christian 76
Stehr, Mark-Oliver 285
Stenzel, Kurt 221

Talcott, Carolyn 285
Thorvaldsen, Stian 122

Venkatasubramanian, Nalini 285
Verdejo, Alberto 91

Wehrheim, Heike 76, 236

Yoshida, Nobuko 1

	Title
	Preface
	Conference Organization
	Table of Contents
	Asynchronous Session Types and Progress for Object Oriented Languages
	Introduction
	Syntax and Operational Semantics
	Syntax
	Operational Semantics

	The Type Assignment System and Its Properties
	Types
	Typing Rules
	Subject Reduction

	Progress Properties
	Proof of Subject Reduction

	KeY: A Formal Method for Object-Oriented Systems
	Introduction
	Full Coverage of a Real World Language
	Beyond Hoare Logic
	Symbolic Execution
	KeY Is Not Merely a VCG
	User-Friendly Graphical User Interface
	A Simple High-Level Rule Language
	Automated Proof Search
	Customisable Verification
	A Broader Perspective on Verification
	Applications

	Verifying Distributed, Event-Based Middleware Applications Using Domain-Specific Software Model Checking
	Introduction
	Background
	Distributed Event-Based Systems
	Domain-Specific Model Checking with Bandera/Bogor

	Conceptual Framework
	Example Implementation of Framework Using Bandera/Bogor

	Evaluation
	Chat Program
	Peer-to-Peer File Sharing Example
	Summary

	Related Work
	Conclusions and Future Work

	Model Checking of Extended OCL Constraints on UML Models in SOCLe
	Introduction
	Motivation
	Related Work
	Content of the Paper

	Extended OCL
	The Abstract Operational Model
	Extended OCL Syntax
	Extended OCL Semantics
	Applying EOCL

	ASM Semantics of UML
	Static Semantics of UML
	Dynamic Semantics of UML

	The Tool SOCLe
	Conclusion and Future Work
	References

	Analysis of UML Activities Using Dynamic Meta Modeling
	Introduction
	The Idea of Soundness
	Dynamic Meta Modeling
	Sound UML Activities
	Utilizing the GROOVE Toolset
	Conclusion

	Distributed Applications Implemented in Maude with Parameterized Skeletons
	Introduction
	Maude

	Different Architectures
	Common Infrastructure
	Star Architecture
	Ring Architecture
	Centralized Ring Architecture

	Parameterized Skeletons
	Farm Skeleton
	Systolic Skeleton
	Divide and Conquer

	Formal Analysis of Distributed Applications
	Analyzing Architectures
	Analyzing Skeletons

	Conclusions

	On Formal Analysis of OO Languages Using Rewriting Logic: Designing for Performance
	Introduction
	Rewriting Logic
	Term Rewriting
	Rewriting Logic

	KOOL
	KOOL Syntax
	KOOL Semantics
	KOOL Implementation

	Breadth-First Search in KOOL
	Model Checking KOOL
	Tuning the Model
	Auto-boxing
	Memory Pools

	Conclusions and Future Work

	Formal Modeling and Analysis of the OGDC Wireless Sensor Network Algorithm in Real-Time Maude
	Introduction
	Real-Time Maude
	Overview of the OGDC Algorithm
	The Real-Time Maude Specification of OGDC
	Modeling Locations
	Modeling Areas Using Bitmaps
	The Definition of Sensor Node Objects
	Modeling Time and Time Elapse
	Modeling Communication
	Probabilistic Behaviors
	Defining the Dynamic Behavior of the OGDC Algorithm

	Simulation and Formal Analysis of OGDC
	Defining Initial States and the Time Sampling Strategy
	The ns-2 Simulations of OGDC in Real-Time Maude
	Comparison with the ns-2 Simulations
	Further Real-Time Maude Analysis of the OGDC Algorithm

	Concluding Remarks

	Adaptation of Open Component-Based Systems
	Introduction
	Open Systems Adaptation
	Components
	Open Component Systems
	Mismatch and Mappings
	Algorithms

	Incremental Adaptation of Open Component Systems
	Architectural Style
	Assessment
	Addition and Suppression of Components

	Application
	Related Work
	Conclusion

	A Representation-Independent Behavioral Semantics for Object-Oriented Components
	Introduction
	Operational Semantics for Boxes
	Syntax and Typing
	Operational Semantics

	Behavioral Semantics for Boxes
	History-Based Semantics
	Behavioral Semantics

	Substitutability
	Related Work
	Conclusions

	A Formal Language for Electronic Contracts
	Introduction
	A Formal Language for Contracts
	A Contract Example
	Desirable Properties of a Language for Contracts
	Actions
	The Contract Language

	The Underlying Logic for the Contract Language
	Yet Another Propositional μ -Calculus
	Translating the Language into the Logic

	Properties of the Contract Language
	Example
	Conclusion

	A Mechanized Model of the Theory of Objects
	Introduction
	Preliminaries
	Isabelle/HOL
	Functional ς -Calculus

	Isabelle/HOL Model
	Object Terms Using de Bruijn Indices
	Substitution
	Reduction Relation
	Extensions for Typing

	Confluence Proof
	Nipkow's Framework
	Parallel Reduction
	Inclusion Lemmata and Diamond Property of par_beta
	Object Reduction Lemma
	Confluence

	Conclusion, Impact and Perspectives

	Pict Correctness Revisited
	Introduction
	Fairness in the π-Calculus
	The π-Calculus
	A Labeled π -Calculus

	Abstract Machine
	Syntax and Operational Semantics
	Labeled Abstract Machine

	Correctness
	Related Work
	Conclusion

	A Refinement Method for Java Programs
	Introduction
	The Cindy Case Study
	Abstract and Concrete Specification Levels
	The Abstract Level
	The Concrete Level
	Proof Obligations for the Example

	Data Type Mapping to the Concrete Level
	Additional Attacks on the Concrete Level
	Details on the Cindy Refinement and Implementation
	Related Work
	Conclusion

	Refactoring Object-Oriented Specifications with Data and Processes
	Introduction
	Background
	Case Study
	Correctness of Refactorings
	Conclusion

	A Sound and Complete Shared-Variable Concurrency Model for Multi-threaded Java Programs
	Introduction
	Assertions
	Proof-Outlines
	Soundness and Completeness
	Conclusion and Future Work

	Performance-Oriented Comparison of Web Services Via Client-Specific Testing Preorders
	Introduction
	Basic Language for QoS-Aware Contracts
	Client-Specific Probabilistic Testing Preorders
	Interaction System of a Service and a Client
	Computations: Execution Probability and Average Duration
	Preorder Definition
	Precongruence Property

	Compatibility Verification
	Selecting the Best Compatible Service
	Conclusion

	A Probabilistic Formal Analysis Approach to Cross Layer Optimization in Distributed Embedded Systems
	Introduction
	Case Study: Multi-Mode Multimedia Terminal
	Formal Modeling and Analysis for Cross Layer Optimization
	What to Model
	Modeling Using Maude
	Analysis

	Experiments
	Experimental Results

	Previous and Related Work
	Summary and Future Work

	On Resource-Sensitive Timed Component Connectors
	Introduction
	Constraint Automata
	Resource-Sensitive Timed Constraint Automata
	Simulation
	Related Work
	Conclusion

	Author Index

