Advances in the Geometrical Study of Rotation-Invariant T-Norms

Koen C. Maes and Bernard De Baets

Department of Applied Mathematics, Biometrics and Process Control Ghent University, Coupure links 653, B-9000 Gent, Belgium {Koen.Maes,Bernard.DeBaets}@UGent.be

Abstract. T-norm properties for left-continuous, increasing $[0, 1]^2 \rightarrow [0, 1]$ functions can be fully described in terms of contour lines. For a left-continuous t-norm T, the rotation-invariance property comes down to the continuity of its contour line C_0 . However, contour lines are inadequate to investigate the geometrical structure of these rotation-invariant t-norms. Enforced with the companion and zooms it is possible to totally reconstruct T by means of its contour line C_0 and its β -zoom, with β the unique fixpoint of C_0 .

Keywords: Rotation-invariant t-norm, contour line, companion, zoom, associativity.

1 Introduction

Originally, triangular norms were introduced in order to generalize the triangle inequality towards probabilistic metric spaces [15]. Nowadays, they are widely used in fuzzy set theory.

Definition 1. A triangular norm or t-norm T is an associative, commutative, increasing $[0,1]^2 \rightarrow [0,1]$ function that has neutral element 1.

So far only the class of continuous t-norms has been fully characterized (see e.g. [8]). In particular, this class comprises the three prototypical t-norms: the minimum operator $T_{\mathbf{M}}(x, y) = \min(x, y)$, the algebraic product $T_{\mathbf{P}}(x, y) = x y$ and the Lukasiewicz t-norm $T_{\mathbf{L}}(x, y) = \max(x + y - 1, 0)$.

A t-norm T is called left-continuous if all its partial functions $T(x, \bullet)$ (and hence also $T(\bullet, x)$) are left-continuous [8]. In most studies dealing with t-norms, it is required that the t-norms in question should be left-continuous. In monoidal t-norm based logic (MTL logic) for example, where the implication is defined as the residuum of the conjunction, left-continuous t-norms ensure the definability of the t-norm-based residual implicator [2].

The rotation-invariance of a left-continuous t-norm T is equivalent with the continuity and with the involutivity of its contour line C_0 that determines the intersection of T with the plane containing its domain $[0, 1]^2$. In particular, this contour line coincides with the residual negator of T and, therefore, rotation-invariant t-norms are of great interest to people working on involutive monoidal t-norm based logic (IMTL logic) [1,10] and fuzzy type theory [14].

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 543-552, 2007.

[©] Springer-Verlag Berlin Heidelberg 2007

2 Tools

Studying the structure of a (left-continuous) increasing $[0, 1]^2 \rightarrow [0, 1]$ function T, it is often worthwhile to observe this function from a different point of view. We present here three functions that describe T in an alternative way. They will prove to be indispensable for the decomposition and construction of rotation-invariant t-norms.

2.1 Contour Lines

Contour lines of an increasing $[0,1]^2 \rightarrow [0,1]$ function T are defined as the upper, lower, right or left limits of its horizontal cuts, *i.e.* the intersections of its graph by planes parallel to the domain $[0,1]^2$. Although there are four different types of contour lines, those determined by the upper limits of the horizontal cuts are of particular interest for the study of rotation-invariant t-norms [12].

Definition 2. [11] Let $a \in [0,1]$. The contour line C_a of an increasing $[0,1]^2 \rightarrow [0,1]$ function T is the $[0,1] \rightarrow [0,1]$ function defined by

$$C_a(x) = \sup\{t \in [0,1] \mid T(x,t) \le a\}.$$
 (1)

For a left-continuous t-norm T, the contour line C_a equals the partial function $I_T(\bullet, a)$ of the residual implicator I_T (see e.g. [4]). In particular, the contour line C_0 coincides with the residual negator N_T , defined by $N_T = I_T(\bullet, 0)$. Contour lines of a continuous t-norm T are also called *level functions* [9].

Property 1. [11,12] A contour line C_a , with $a \in [0,1]$, of an increasing $[0,1]^2 \rightarrow [0,1]$ function T satisfies the following properties:

- 1. C_a is decreasing.
- 2. $C_a \leq C_b$, for every $b \in [a, 1]$.
- 3. If T is left-continuous, then C_a is left-continuous.

The greatest merit of contour lines is that they can be used to express all tnorm properties in an alternative way. Further on, this will allow us to provide a geometrical interpretation of the associativity property. Dealing with contour lines of the type C_a the left-continuity of T is required.

Theorem 1. [11] For a left-continuous, increasing $[0,1]^2 \rightarrow [0,1]$ function T having absorbing element 0 the following characterizations hold:

- 1. T has neutral element $e \in [0,1]$ if and only if $e \leq C_a(x) \Leftrightarrow x \leq a$ and $C_a(e) = a$ hold for every $(x,a) \in [0,1]^2$.
- 2. T is commutative if and only if $C_a(x) < y \Leftrightarrow C_a(y) < x$ holds for every $(x, y, a) \in [0, 1]^3$.
- 3. T is associative if and only if $C_a(T(x,y)) = C_{C_a(x)}(y)$ holds for every $(x, y, a) \in [0, 1]^3$.

The characterization of the commutativity of T comes down to the **id**orthosymmetry of its contour lines [13]. Taking into account the tight correspondence between contour lines and the residual implicator of a left-continuous t-norm T, the above theorem expresses the associativity of T by means of the *portation law* (*i.e.* $I_T(T(x, y), z) = I_T(x, I_T(y, z))$, for every $(x, y, z) \in$ $[0, 1]^3)$ [5].

Corollary 1. [12] For a left-continuous t-norm T it holds for every $(x, y, z, a) \in [0, 1]^4$ that

$$T(x,y) \le C_a(z) \iff T(x,z) \le C_a(y)$$
. (2)

Jenei [7] has recently shown that, for a commutative, left-continuous, increasing $[0,1]^2 \rightarrow [0,1]$ function T that has absorbing element 0, Eq. (2) is equivalent with the associativity of T. Note that for his characterization the commutativity of T is required, this in contrast to our characterization in Theorem 1. His result can also be easily retrieved from the last two characterizations in Theorem 1.

2.2 The Companion

A second useful tool to study an increasing $[0,1]^2 \rightarrow [0,1]$ function T is its companion Q.

Definition 3. [12] The companion Q of an increasing $[0,1]^2 \rightarrow [0,1]$ function T is the $[0,1]^2 \rightarrow [0,1]$ function defined by

$$Q(x, y) = \sup\{t \in [0, 1] \mid C_t(x) \le y\}.$$

The following properties provide better insight into the geometrical structure of Q.

Property 2. [13] The companion Q of an increasing $[0,1]^2 \rightarrow [0,1]$ function T satisfies the following properties:

- 1. Q is increasing in both arguments.
- 2. $Q(x, y) = \inf\{T(x, u) \mid u \in [y, 1]\}, \text{ with } \inf \emptyset = 1.$
- 3. $T(x,y) \le Q(x,y)$, for every $(x,y) \in [0,1]^2$.
- 4. $Q(x, \bullet)$ is right-continuous for every $x \in [0, 1]$.
- 5. If T has neutral element 1, then $Q(x,y) \leq T_{\mathbf{M}}(x,y)$, for every $(x,y) \in [0,1] \times [0,1[$.

The second property allows to straightforwardly construct the graph of Q (*i.e.* $\{(x, y, Q(x, y)) \mid (x, y) \in [0, 1]^2\}$) from the graph of T (*i.e.* $\{(x, y, T(x, y)) \mid (x, y) \in [0, 1]^2\}$). It suffices to convert the partial functions $T(x, \bullet)$ into right-continuous functions and to replace the set $\{(x, 1, x) \mid x \in [0, 1]\}$ by $\{(x, 1, 1) \mid x \in [0, 1]\}$ as Q(x, 1) = 1 must hold for every $x \in [0, 1]$. Clearly, Q(x, y) = T(x, y) whenever $T(x, \bullet)$ is right-continuous in $y \in [0, 1]$. Every left-continuous increasing binary function T that has absorbing element 0 is totally determined by its companion Q. Note also that Q(x, 1) = 1 and Q(1, x) = x prevent Q from being commutative.

2.3 Zooms

Finally, every increasing $[0,1]^2 \to [0,1]$ function T is trivially described by its associated set of (a,b)-zooms.

Definition 4. Let T be an increasing $[0,1]^2 \to [0,1]$ function and take $(a,b) \in [0,1]^2$ such that a < b and $T(b,b) \leq b$. Consider an $[a,b] \to [0,1]$ isomorphism σ . The (a,b)-zoom $T^{(a,b)}$ of T is the $[0,1]^2 \to [0,1]$ function defined by

$$T^{(a,b)}(x,y) = \sigma \left[\max \left(a, T(\sigma^{-1}[x], \sigma^{-1}[y]) \right) \right] .$$

If b = 1 we simply talk about the a-zoom T^a of T.

Fig. 1. The $(\frac{1}{4}, \frac{3}{4})$ -zoom of $T_{\mathbf{L}}$

The graph of $T^{(a,b)}$ is determined by rescaling the set $\{(x, y, T(x, y)) | (x, y) \in [a, b]^2 \land a < T(x, y)\}$ (zoom in) into the unit cube (zoom out). Figure 1 illustrates this procedure for the Lukasiewicz t-norm $T_{\mathbf{L}}$, with $a = \frac{1}{4}$, $b = \frac{3}{4}$ and $\sigma = \varsigma$, where ς is the *linear rescaling* of [a, b] into [0, 1] (*i.e.* $\varsigma(x) = (x - a)/(b - a)$, for every $x \in [a, b]$). In our examples we will always use this linear rescaling function.

Whenever $T(b, b) \leq a$, the function $T^{(a,b)}$ is trivially constant: $T^{(a,b)}(x, y) = a$, for every $(x, y) \in [0, 1]^2$. For b = 1 the boundary condition $T(1, 1) \leq 1$ is always true such that the *a*-zoom of *T* is defined for every a < 1. Note that $T^0 = T_{\sigma^{-1}}$, where $T_{\sigma^{-1}}$ denotes the σ^{-1} -transform of *T* (*i.e.* $T_{\sigma^{-1}}(x, y) :=$ $\sigma[T(\sigma^{-1}[x], \sigma^{-1}[y])]).$

Since the (a, b)-zoom $T^{(a,b)}$ of an arbitrary increasing function T is totally determined by $T|_{[a,b]^2}$, its contour lines and companion can be computed from the contour lines and companion of T. In case $T^{(a,b)}$ has neutral element 1, we obtain a straightforward relationship between its contour lines and those of the original function T.

Property 3. Consider an increasing $[0,1]^2 \to [0,1]$ function T. Take $(a,b) \in [0,1]^2$, such that a < b and $T(b,b) \leq b$. Let σ be an arbitrary $[a,b] \to [0,1]$ isomorphism. If the (a,b)-zoom $T^{(a,b)}$ has contour lines $C_d^{(a,b)}$ and companion $Q^{(a,b)}$ then the following properties hold:

- 1. $T^{(a,b)}$ is increasing in both arguments.
- 2. $Q^{(a,b)}(x,y) = \sigma[Q(\sigma^{-1}[x], \sigma^{-1}[y])]$, for every $(x,y) \in [0,1]^2$ s.t. $C_0^{(a,b)}(x) \le y < 1$.
- 3. If T is left-continuous, then $T^{(a,b)}$ is left-continuous.
- 4. $C_d^{(a,b)}(x) = \sigma[C_{\sigma^{-1}[d]}(\sigma^{-1}[x])]$ holds if (a) $b = 1, T(1, a) \le a$ and $(x, d) \in [0, 1]^2$; (b) $T^{(a,b)}$ has neutral element 1 and $(x, d) \in [0, 1]^2$ s.t. d < x.
- 5. If T is associative and $\max(T(a,b), T(b,a)) \leq a$, then $T^{(a,b)}$ is also associative.

In accordance to Definition 4 we will usually denote the contour lines of $T^a (= T^{(a,1)})$ as $C^a (= C^{(a,1)})$ and its companion as $Q^a (= Q^{(a,1)})$. Zooms are extremely suited to study an increasing function T that satisfies $T \leq T_{\mathbf{M}}$. The restrictions $T(b,b) \leq b$ (Definition 4), $T(1,a) \leq a$ and $\max(T(a,b),T(b,a)) \leq a$ (Property 3) then trivially hold.

Definition 5. [6] A t-subnorm T is an associative, commutative, increasing $[0,1]^2 \rightarrow [0,1]$ function that satisfies $T \leq T_{\mathbf{M}}$.

Clearly, all t-norms are t-subnorms. Due to its boundary condition we can construct all (a, b)-zooms (a < b) of every t-subnorm. Moreover, all these (a, b)zooms are t-subnorms ass well.

Corollary 2. Consider $(a,b) \in [0,1]^2$ such that a < b. Then the (a,b)-zoom of a t-subnorm is a t-subnorm and the a-zoom of a t-norm is a t-norm.

The $(\frac{1}{4}, \frac{3}{4})$ -zoom in Fig. 1 is a t-subnorm but not a t-norm. No (a, b)-zoom, with b < 1, of the Lukasiewicz t-norm $T_{\mathbf{L}}$ can be a t-norm. The latter follows from the observation that $T^{(a,b)}$ has neutral element 1 whenever T(x,b) = T(b,x) = x, for every $x \in [a, b]$. Dealing with $T_{\mathbf{L}}$ this only occurs for b = 1. Otherwise, every (a, b)-zoom of the minimum operator $T_{\mathbf{M}}$ equals $T_{\mathbf{M}}$ itself.

3 Rotation-Invariant T-Norms

3.1 A Continuous Contour Line

Definition 6. [5] Let N be an involutive negator (i.e. an involutive decreasing $[0,1] \rightarrow [0,1]$ function). An increasing $[0,1]^2 \rightarrow [0,1]$ function T is called rotation invariant w.r.t. an involutive negator N if for every $(x, y, z) \in [0,1]^3$ it holds that

$$T(x,y) \le z \iff T(y,z^N) \le x^N$$
. (3)

This property was first described by Fodor [3]. Jenei [5] emphasized its geometrical interpretation by referring to it as the rotation-invariance of T w.r.t. N. Recently, Jenei [7] used Eq. (2) to define the (algebraical) rotation invariance property. However, as pointed out before, Eq. (2) merely expresses the associativity of T. As will be shown later on, a geometrical notion of rotation can be attributed to Eq. (3) but in general not to Eq. (2) **Theorem 2.** [12] For a left-continuous t-norm T, the following assertions are equivalent:

- 1. C_a is continuous.
- 2. C_a is involutive on [a, 1].
- 3. $T(x,y) = C_a(C_{C_a(x)}(y))$, for every $(x,y) \in [0,1]^2$ s.t. $C_a(x) < y$.
- 4. $T(x,y) \le z \iff T(x,C_a(z)) \le C_a(y)$, for every $(x,y,z) \in [a,1]^3$.
- 5. $Q(x,y) < C_a(z) \iff Q(x,z) < C_a(y)$, for every $(x,y,z) \in [a,1] \times [a,1]^2$.

The third assertion can be seen as an adjustment of the portation law. The fourth and fifth assertion are closely related to Eq. (2). If a = 0 then the additional restriction $C_0(x) < y$ in assertion 3 can be omitted. Furthermore, taking into account that $C_0 = N_T$, one can then recognize in assertion 4 the rotationinvariance of T w.r.t. its residual negator N_T . Jenei has proven that every tnorm T that is rotation-invariant w.r.t. an involutive negator N is necessarily left-continuous and $N_T = N$ [5]. Therefore, it becomes superfluous to mention the negator N explicitly. For a left-continuous t-norm T, its rotation-invariance is also equivalent with the continuity of its contour line C_0 (Theorem 2). Herein lies the true meaning of the rotation-invariance property. We briefly call a t-norm rotation invariant if it is left-continuous and has a continuous contour line C_0 . Note that the continuity of C_0 does not necessarily imply the left-continuity of T [12].

Theorem 3. Consider a left-continuous t-norm T and take $a \in [0, 1]$ such that $a < \alpha := \inf\{t \in [0, 1] \mid C_a(t) = a\}$. Then the following assertions are equivalent:

- 1. C_a is continuous on]a, 1].
- 2. C_a is involutive on $]a, \alpha[$.
- 3. $C_{q}(]a, \alpha[) =]a, \alpha[.$
- 4. $T^{(a,\alpha)}$ is a rotation-invariant t-norm.

In particular, if C_a is continuous then $\alpha = 1$.

To better comprehend the structure of t-norms that have a (partially) continuous contour line C_a we thus need to focus first on the structure of rotation-invariant t-norms. Studying these t-norms, Jenei provided a real breakthrough by introducing his rotation and rotation-annihilation construction [6]. Unfortunately, his decompositions and constructions were not able to describe all rotation-invariant t-norms [12,13]. The Lukasiewicz t-norm $T_{\rm L}$, for example, did not fit into his framework. We will present an alternative approach.

3.2 Decomposition Revisited

Let T be a rotation-invariant t-norm and β be the unique fixpoint of C_0 . As depicted in Fig. 2, we partition area $\mathcal{D} = \{(x, y) \in [0, 1]^2 \mid C_0(x) < y\}$ into four parts:

$$\mathcal{D}_{\rm I} = \{(x, y) \in [\beta, 1]^2 \mid C_\beta(x) < y\}, \mathcal{D}_{\rm II} = \{(x, y) \in [0, \beta] \times [\beta, 1] \mid C_0(x) < y\}, \mathcal{D}_{\rm III} = \{(x, y) \in [\beta, 1] \times [0, \beta] \mid C_0(x) < y\}, \mathcal{D}_{\rm IV} = \{(x, y) \in [\beta, 1]^2 \mid y \le C_\beta(x)\}.$$

Fig. 2. The partition $\mathcal{D} = \mathcal{D}_{I} \cup \mathcal{D}_{II} \cup \mathcal{D}_{III} \cup \mathcal{D}_{IV}$

Due to the left-continuity of T it is obvious that T(x, y) = 0 holds for every $(x, y) \notin \mathcal{D}$.

Theorem 4. [12] Consider a rotation-invariant t-norm T. Let σ be an arbitrary $[\beta, 1] \rightarrow [0, 1]$ isomorphism with β the fixpoint of C_0 . Then there exists a left-continuous t-norm \widehat{T} (with contour lines \widehat{C}_a) such that

$$T(x,y) = \begin{cases} \sigma^{-1} \left[\widehat{T}(\sigma[x], \sigma[y]) \right], & \text{if } (x,y) \in \mathcal{D}_{\mathrm{I}}, \\ C_0 \left(\sigma^{-1} \left[\widehat{C}_{\sigma[C_0(x)]}(\sigma[y]) \right] \right), & \text{if } (x,y) \in \mathcal{D}_{\mathrm{II}}, \\ C_0 \left(\sigma^{-1} \left[\widehat{C}_{\sigma[C_0(y)]}(\sigma[x]) \right] \right), & \text{if } (x,y) \in \mathcal{D}_{\mathrm{III}}, \\ 0, & \text{if } (x,y) \notin \mathcal{D}. \end{cases}$$
(4)

In particular, $\hat{T} = T^{\beta}$.

Note that the isomorphism σ is used to compute the β -zoom T^{β} of T. Geometrically, $T|_{\mathcal{D}_{\mathrm{I}}}$ is a rescaled version of $T^{\beta}|_{\mathcal{D}^{\beta}}$, where $\mathcal{D}^{\beta} = \{(x, y) \in [0, 1]^2 \mid 0 < T^{\beta}(x, y)\}$. $T|_{\mathcal{D}_{\mathrm{II}}}$ is obtained by rotating $T|_{\mathcal{D}_{\mathrm{I}}}$ 120 degrees to the left around the axis $\{(x, y, z) \in [0, 1]^2 \mid y = x \land z = 1 - x\}$. Similarly, rotating $T|_{\mathcal{D}_{\mathrm{II}}}$ 120 degrees to the right around this axis determines $T|_{\mathcal{D}_{\mathrm{III}}}$. As illustrated in [12], these rotations sometimes have to be reshaped to fit into the areas $\mathcal{D}_{\mathrm{II}}$ and $\mathcal{D}_{\mathrm{III}}$, respectively. The contour lines C_0 and C_{β} cause this reshaping. Solely the continuity of the contour line C_0 is responsible for the existence of the geometrical (transformed) rotations. T-norms such as the minimum operator T_{M} that do not have a continuous contour line do not have such geometrical symmetries. Therefore, only Eq. (3) and not Eq. (2) (see [7]) can be understood as the rotation-invariance property.

If T^{β} has no zero divisors, then \mathcal{D}_{IV} is empty and Eq. (4) totally determines T. These particular t-norms have also been (alternatively) described by Jenei [6]. Figure 3 depicts the decomposition of the *nilpotent minimum* $T^{\mathbf{nM}}(T^{\mathbf{nM}}(x,y) = 0$ whenever $x + y \leq 1$ and $T^{\mathbf{nM}}(x,y) = \min(x,y)$ elsewhere). The bold black lines in the figures indicate the partition $\mathcal{D} = \mathcal{D}_{\mathrm{I}} \cup \mathcal{D}_{\mathrm{II}} \cup \mathcal{D}_{\mathrm{III}}$ (for the nilpotent minimum $\mathcal{D}_{\mathrm{IV}} = \emptyset$).

Fig. 3. Decomposition of the nilpotent minimum T^{nM}

As illustrated in [12], $T|_{\mathcal{D}_{IV}}$ is in general not uniquely determined by C_0 and T^{β} . Examining numerous examples, we noticed that the filling-in of area \mathcal{D}_{IV} is uniquely fixed whenever both C_0 and C_{β} are continuous. Invoking Theorem 3 we can generalize our decomposition from [12] in the following way.

Theorem 5. Consider a rotation-invariant t-norm T for which C_{β} is continuous on $]\beta, 1]$, with β the unique fixpoint of C_0 . Let σ be an arbitrary $[\beta, 1] \rightarrow [0, 1]$ isomorphism. Then there exists a left-continuous t-norm \widehat{T} (with contour lines \widehat{C}_a and companion \widehat{Q}) such that \widehat{C}_0 is continuous on]0, 1] and

$$T(x,y) = \begin{cases} \sigma^{-1} \left[\widehat{T}(\sigma[x], \sigma[y]) \right], & \text{if } (x,y) \in \mathcal{D}_{\mathrm{I}}, \\ C_0 \left(\sigma^{-1} \left[\widehat{C}_{\sigma[C_0(x)]}(\sigma[y]) \right] \right), & \text{if } (x,y) \in \mathcal{D}_{\mathrm{II}}, \\ C_0 \left(\sigma^{-1} \left[\widehat{C}_{\sigma[C_0(y)]}(\sigma[x]) \right] \right), & \text{if } (x,y) \in \mathcal{D}_{\mathrm{III}}, \\ C_0 \left(\sigma^{-1} \left[\widehat{Q}(\widehat{C}_0(\sigma[x]), \widehat{C}_0(\sigma[y])) \right] \right), & \text{if } (x,y) \in \mathcal{D}_{\mathrm{IV}}, \\ 0, & \text{if } (x,y) \notin \mathcal{D}. \end{cases}$$
(5)

In particular, $\widehat{T} = T^{\beta}$ and \widehat{Q} must be commutative on $[0, \widehat{\alpha}]^2$, with $\widehat{\alpha} = \inf\{t \in [0, 1] \mid \widehat{C}_0(t) = 0\}.$

Geometrically, the filling-in of area \mathcal{D}_{IV} is obtained by rotating $T|_{\mathcal{D}_{\text{I}}\cap[\beta,\sigma^{-1}(\hat{\alpha})]^2}$ 180 degrees to the front around the axis $\{(x,y,z) \in [0,1]^3 \mid x+y=\beta + \sigma^{-1}[\hat{\alpha}] \land z=\beta\}$. In case C_{β} is continuous it holds that $\hat{\alpha}=1$ and the latter comes down to a 180 degree front-rotation of $T|_{\mathcal{D}_{\mathrm{I}}}$ around the axis $\{(x, y, z) \in [0, 1]^3 \mid x + y = \beta + 1 \land z = \beta\}$. Again, the contour lines C_0 and C_β can cause some additional reshaping.

Figure 4 depicts the decomposition of the Jenei t-norm $T_{1/4}^{\mathbf{J}}$ and the Lukasiewicz t-norm $T_{\mathbf{L}}$. $T_{1/4}^{\mathbf{J}}$ can be created from the nilpotent minimum by lowering its values on $[\frac{1}{4}, \frac{3}{4}]^2$ in such a way that its $(\frac{1}{4}, \frac{3}{4})$ -zoom equals $T_{\mathbf{L}}$. The bold black lines in the figures indicate the partition $\mathcal{D} = \mathcal{D}_{\mathbf{I}} \cup \mathcal{D}_{\mathbf{II}} \cup \mathcal{D}_{\mathbf{IV}}$.

Fig. 4. Decomposition of the Jenei t-norm $T_{1/4}^{\mathbf{J}}$ and the Łukasiewicz t-norm $T_{\mathbf{L}}$

The geometrical symmetries of a rotation-invariant t-norm T establish in fact its associativity. In this respect Eq. (5) can also be used to construct rotationinvariant t-norms. Inspired by the geometrical interpretation of Eq. (5), we have called this construction the *triple rotation method* [13]. As the construction of t-norms falls outside the scope of this paper, we will not go into detail here.

References

 F. Esteva, J. Gispert, L. Godo, and F. Montagna, On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic, Studia Logica 71 (2002), 199–226.

- F. Esteva and L. Godo, Monoidal t-norm based fuzzy logic: towards a logic for left-continuous t-norms, Fuzzy Sets and Systems 124 (2001), 271–288.
- 3. J. Fodor, A new look at fuzzy connectives, Fuzzy Sets and Systems 57 (1993), 141–148.
- 4. J. Fodor and M. Roubens, *Fuzzy preference modelling and multicriteria decision support*, Kluwer Academic Publishers, 1994.
- S. Jenei, Geometry of left-continuous t-norms with strong induced negations, Belg. J. Oper. Res. Statist. Comput. Sci. 38 (1998), 5–16.
- S. Jenei, How to construct left-continuous triangular norms state of the art, Fuzzy Sets and Systems 143 (2004), 27–45.
- 7. S. Jenei, On the geometry of associativity, Semigroup Forum, to appear.
- 8. E.P. Klement, R. Mesiar, and E. Pap, *Triangular norms*, Trends in Logic, Vol. 8, Kluwer Academic Publishers, 2000.
- E.P. Klement, R. Mesiar, and E. Pap, Different types of continuity of triangular norms revisited, New Mathematics and Natural Computation 1 (2005), 195–211.
- L. Lianzhen and L. Kaitai, Involutive monoidal t-norm based logic and R₀ logic, Internat. J. Intell. Systems **19** (2004), 491–497.
- K.C. Maes and B. De Baets, A contour view on uninorm properties, Kybernetika 42 (3) (2006), 303–318.
- K.C. Maes and B. De Baets, On the structure of left-continuous t-norms that have a continuous contour line, Fuzzy Sets and Systems, in press (DOI:10.1016/j.fss.2006.09.016).
- 13. K.C. Maes and B. De Baets, *The triple rotation method for constructing rotationinvariant t-norms*, Fuzzy Sets and Systems, submitted.
- 14. V. Novák, On fuzzy type theory, Fuzzy Sets and Systems 149 (2005), 235–273.
- B. Schweizer and A. Sklar, *Probabilistic metric spaces*, Elsevier Science, New York, 1983.