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Abstract. T-norm properties for left-continuous, increasing [0, 1]2 →
[0, 1] functions can be fully described in terms of contour lines. For a
left-continuous t-norm T , the rotation-invariance property comes down
to the continuity of its contour line C0. However, contour lines are inade-
quate to investigate the geometrical structure of these rotation-invariant
t-norms. Enforced with the companion and zooms it is possible to totally
reconstruct T by means of its contour line C0 and its β-zoom, with β
the unique fixpoint of C0.
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1 Introduction

Originally, triangular norms were introduced in order to generalize the triangle
inequality towards probabilistic metric spaces [15]. Nowadays, they are widely
used in fuzzy set theory.

Definition 1. A triangular norm or t-norm T is an associative, commutative,
increasing [0, 1]2 → [0, 1] function that has neutral element 1.

So far only the class of continuous t-norms has been fully characterized (see
e.g. [8]). In particular, this class comprises the three prototypical t-norms: the
minimum operator TM(x, y) = min(x, y), the algebraic product TP(x, y) = x y
and the �Lukasiewicz t-norm TL(x, y) = max(x + y − 1, 0).

A t-norm T is called left-continuous if all its partial functions T (x, •) (and
hence also T (•, x)) are left-continuous [8]. In most studies dealing with t-norms,
it is required that the t-norms in question should be left-continuous. In monoidal
t-norm based logic (MTL logic) for example, where the implication is defined as
the residuum of the conjunction, left-continuous t-norms ensure the definability
of the t-norm-based residual implicator [2].

The rotation-invariance of a left-continuous t-norm T is equivalent with the
continuity and with the involutivity of its contour line C0 that determines the
intersection of T with the plane containing its domain [0, 1]2. In particular, this
contour line coincides with the residual negator of T and, therefore, rotation-
invariant t-norms are of great interest to people working on involutive monoidal
t-norm based logic (IMTL logic) [1,10] and fuzzy type theory [14].
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2 Tools

Studying the structure of a (left-continuous) increasing [0, 1]2 → [0, 1] function T ,
it is often worthwhile to observe this function from a different point of view. We
present here three functions that describe T in an alternative way. They will
prove to be indispensable for the decomposition and construction of rotation-
invariant t-norms.

2.1 Contour Lines

Contour lines of an increasing [0, 1]2 → [0, 1] function T are defined as the upper,
lower, right or left limits of its horizontal cuts, i.e. the intersections of its graph
by planes parallel to the domain [0, 1]2. Although there are four different types
of contour lines, those determined by the upper limits of the horizontal cuts are
of particular interest for the study of rotation-invariant t-norms [12].

Definition 2. [11] Let a ∈ [0, 1]. The contour line Ca of an increasing [0, 1]2 →
[0, 1] function T is the [0, 1] → [0, 1] function defined by

Ca(x) = sup{t ∈ [0, 1] | T (x, t) ≤ a} . (1)

For a left-continuous t-norm T , the contour line Ca equals the partial function
IT (•, a) of the residual implicator IT (see e.g. [4]). In particular, the contour line
C0 coincides with the residual negator NT , defined by NT = IT (•, 0). Contour
lines of a continuous t-norm T are also called level functions [9].

Property 1. [11,12] A contour line Ca, with a ∈ [0, 1], of an increasing [0, 1]2 →
[0, 1] function T satisfies the following properties:

1. Ca is decreasing.
2. Ca ≤ Cb, for every b ∈ [a, 1].
3. If T is left-continuous, then Ca is left-continuous.

The greatest merit of contour lines is that they can be used to express all t-
norm properties in an alternative way. Further on, this will allow us to provide
a geometrical interpretation of the associativity property. Dealing with contour
lines of the type Ca the left-continuity of T is required.

Theorem 1. [11] For a left-continuous, increasing [0, 1]2 → [0, 1] function T
having absorbing element 0 the following characterizations hold:

1. T has neutral element e ∈ ]0, 1] if and only if e ≤ Ca(x) ⇔ x ≤ a and
Ca(e) = a hold for every (x, a) ∈ [0, 1]2.

2. T is commutative if and only if Ca(x) < y ⇔ Ca(y) < x holds for every
(x, y, a) ∈ [0, 1]3.

3. T is associative if and only if Ca(T (x, y)) = CCa(x)(y) holds for every
(x, y, a) ∈ [0, 1]3.
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The characterization of the commutativity of T comes down to the id-
orthosymmetry of its contour lines [13]. Taking into account the tight corre-
spondence between contour lines and the residual implicator of a left-continuous
t-norm T , the above theorem expresses the associativity of T by means of
the portation law (i.e. IT (T (x, y), z) = IT (x, IT (y, z)), for every (x, y, z) ∈
[0, 1]3) [5].

Corollary 1. [12] For a left-continuous t-norm T it holds for every (x, y, z, a) ∈
[0, 1]4 that

T (x, y) ≤ Ca(z) ⇔ T (x, z) ≤ Ca(y) . (2)

Jenei [7] has recently shown that, for a commutative, left-continuous, increasing
[0, 1]2 → [0, 1] function T that has absorbing element 0, Eq. (2) is equivalent
with the associativity of T . Note that for his characterization the commutativity
of T is required, this in contrast to our characterization in Theorem 1. His result
can also be easily retrieved from the last two characterizations in Theorem 1.

2.2 The Companion

A second useful tool to study an increasing [0, 1]2 → [0, 1] function T is its
companion Q.

Definition 3. [12] The companion Q of an increasing [0, 1]2 → [0, 1] function
T is the [0, 1]2 → [0, 1] function defined by

Q(x, y) = sup{t ∈ [0, 1] | Ct(x) ≤ y} .

The following properties provide better insight into the geometrical structure
of Q.

Property 2. [13] The companion Q of an increasing [0, 1]2 → [0, 1] function T
satisfies the following properties:

1. Q is increasing in both arguments.
2. Q(x, y) = inf{T (x, u) | u ∈ ]y, 1]}, with inf ∅ = 1.
3. T (x, y) ≤ Q(x, y), for every (x, y) ∈ [0, 1]2.
4. Q(x, •) is right-continuous for every x ∈ [0, 1].
5. If T has neutral element 1, then Q(x, y) ≤ TM(x, y), for every (x, y) ∈

[0, 1] × [0, 1[.

The second property allows to straightforwardly construct the graph of Q (i.e.
{(x, y, Q(x, y)) | (x, y) ∈ [0, 1]2}) from the graph of T (i.e. {(x, y, T (x, y)) |
(x, y) ∈ [0, 1]2}). It suffices to convert the partial functions T (x, •) into right-
continuous functions and to replace the set {(x, 1, x) | x ∈ [0, 1]} by {(x, 1, 1) |
x ∈ [0, 1]} as Q(x, 1) = 1 must hold for every x ∈ [0, 1]. Clearly, Q(x, y) = T (x, y)
whenever T (x, •) is right-continuous in y ∈ [0, 1[. Every left-continuous increasing
binary function T that has absorbing element 0 is totally determined by its
companion Q. Note also that Q(x, 1) = 1 and Q(1, x) = x prevent Q from being
commutative.
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2.3 Zooms

Finally, every increasing [0, 1]2 → [0, 1] function T is trivially described by its
associated set of (a, b)-zooms.

Definition 4. Let T be an increasing [0, 1]2 → [0, 1] function and take (a, b) ∈
[0, 1]2 such that a < b and T (b, b) ≤ b. Consider an [a, b] → [0, 1] isomorphism σ.
The (a, b)-zoom T (a,b) of T is the [0, 1]2 → [0, 1] function defined by

T (a,b)(x, y) = σ
[
max

(
a, T (σ−1[x], σ−1[y])

)]
.

If b = 1 we simply talk about the a-zoom T a of T .
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4 )-zoom of TL

The graph of T (a,b) is determined by rescaling the set {(x, y, T (x, y)) | (x, y) ∈
[a, b]2 ∧ a < T (x, y)} (zoom in) into the unit cube (zoom out). Figure 1 illustrates
this procedure for the �Lukasiewicz t-norm TL, with a = 1

4 , b = 3
4 and σ = ς,

where ς is the linear rescaling of [a, b] into [0, 1] (i.e. ς(x) = (x − a)/(b − a),
for every x ∈ [a, b]). In our examples we will always use this linear rescaling
function.

Whenever T (b, b) ≤ a, the function T (a,b) is trivially constant: T (a,b)(x, y) = a,
for every (x, y) ∈ [0, 1]2. For b = 1 the boundary condition T (1, 1) ≤ 1 is
always true such that the a-zoom of T is defined for every a < 1. Note that
T 0 = Tσ−1 , where Tσ−1 denotes the σ−1-transform of T (i.e. Tσ−1(x, y) :=
σ[T (σ−1[x], σ−1[y])]).

Since the (a, b)-zoom T (a,b) of an arbitrary increasing function T is totally
determined by T |[a,b]2, its contour lines and companion can be computed from
the contour lines and companion of T . In case T (a,b) has neutral element 1, we
obtain a straightforward relationship between its contour lines and those of the
original function T .

Property 3. Consider an increasing [0, 1]2 → [0, 1] function T . Take (a, b) ∈
[0, 1]2, such that a < b and T (b, b) ≤ b. Let σ be an arbitrary [a, b] → [0, 1]
isomorphism. If the (a, b)-zoom T (a,b) has contour lines C

(a,b)
d and companion

Q(a,b) then the following properties hold:
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1. T (a,b) is increasing in both arguments.
2. Q(a,b)(x, y) = σ[Q(σ−1[x], σ−1[y])], for every (x, y) ∈ [0, 1]2 s.t. C

(a,b)
0 (x) ≤

y < 1.
3. If T is left-continuous, then T (a,b) is left-continuous.
4. C

(a,b)
d (x) = σ[Cσ−1 [d](σ−1[x])] holds if

(a) b = 1, T (1, a) ≤ a and (x, d) ∈ [0, 1]2;
(b) T (a,b) has neutral element 1 and (x, d) ∈ [0, 1]2 s.t. d < x.

5. If T is associative and max(T (a, b), T (b, a)) ≤ a, then T (a,b) is also associa-
tive.

In accordance to Definition 4 we will usually denote the contour lines of T a(=
T (a,1)) as Ca(= C(a,1)) and its companion as Qa(= Q(a,1)). Zooms are extremely
suited to study an increasing function T that satisfies T ≤ TM. The restrictions
T (b, b) ≤ b (Definition 4), T (1, a) ≤ a and max(T (a, b), T (b, a)) ≤ a (Property 3)
then trivially hold.

Definition 5. [6] A t-subnorm T is an associative, commutative, increasing
[0, 1]2 → [0, 1] function that satisfies T ≤ TM.

Clearly, all t-norms are t-subnorms. Due to its boundary condition we can con-
struct all (a, b)-zooms (a < b) of every t-subnorm. Moreover, all these (a, b)-
zooms are t-subnorms ass well.

Corollary 2. Consider (a, b) ∈ [0, 1]2 such that a < b. Then the (a, b)-zoom of
a t-subnorm is a t-subnorm and the a-zoom of a t-norm is a t-norm.

The (1
4 , 3

4 )-zoom in Fig. 1 is a t-subnorm but not a t-norm. No (a, b)-zoom, with
b < 1, of the �Lukasiewicz t-norm TL can be a t-norm. The latter follows from the
observation that T (a,b) has neutral element 1 whenever T (x, b) = T (b, x) = x,
for every x ∈ ]a, b]. Dealing with TL this only occurs for b = 1. Otherwise, every
(a, b)-zoom of the minimum operator TM equals TM itself.

3 Rotation-Invariant T-Norms

3.1 A Continuous Contour Line

Definition 6. [5] Let N be an involutive negator ( i.e. an involutive decreasing
[0, 1] → [0, 1] function). An increasing [0, 1]2 → [0, 1] function T is called ro-
tation invariant w.r.t. an involutive negator N if for every (x, y, z) ∈ [0, 1]3 it
holds that

T (x, y) ≤ z ⇔ T (y, zN) ≤ xN . (3)

This property was first described by Fodor [3]. Jenei [5] emphasized its geomet-
rical interpretation by referring to it as the rotation-invariance of T w.r.t. N .
Recently, Jenei [7] used Eq. (2) to define the (algebraical) rotation invariance
property. However, as pointed out before, Eq. (2) merely expresses the associa-
tivity of T . As will be shown later on, a geometrical notion of rotation can be
attributed to Eq. (3) but in general not to Eq. (2)
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Theorem 2. [12] For a left-continuous t-norm T , the following assertions are
equivalent:
1. Ca is continuous.
2. Ca is involutive on [a, 1].
3. T (x, y) = Ca(CCa(x)(y)), for every (x, y) ∈ [0, 1]2 s.t. Ca(x) < y.
4. T (x, y) ≤ z ⇔ T (x, Ca(z)) ≤ Ca(y), for every (x, y, z) ∈ [a, 1]3.
5. Q(x, y) < Ca(z) ⇔ Q(x, z) < Ca(y), for every (x, y, z) ∈ [a, 1] × [a, 1[2.

The third assertion can be seen as an adjustment of the portation law. The fourth
and fifth assertion are closely related to Eq. (2). If a = 0 then the additional
restriction C0(x) < y in assertion 3 can be omitted. Furthermore, taking into
account that C0 = NT , one can then recognize in assertion 4 the rotation-
invariance of T w.r.t. its residual negator NT . Jenei has proven that every t-
norm T that is rotation-invariant w.r.t. an involutive negator N is necessarily
left-continuous and NT = N [5]. Therefore, it becomes superfluous to mention
the negator N explicitly. For a left-continuous t-norm T , its rotation-invariance
is also equivalent with the continuity of its contour line C0 (Theorem 2). Herein
lies the true meaning of the rotation-invariance property. We briefly call a t-norm
rotation invariant if it is left-continuous and has a continuous contour line C0.
Note that the continuity of C0 does not necessarily imply the left-continuity
of T [12].
Theorem 3. Consider a left-continuous t-norm T and take a ∈ [0, 1] such that
a < α := inf{t ∈ [0, 1] | Ca(t) = a}. Then the following assertions are equivalent:
1. Ca is continuous on ]a, 1].
2. Ca is involutive on ]a, α[.
3. Ca(]a, α[) =]a, α[.
4. T (a,α) is a rotation-invariant t-norm.

In particular, if Ca is continuous then α = 1.
To better comprehend the structure of t-norms that have a (partially) continuous
contour line Ca we thus need to focus first on the structure of rotation-invariant
t-norms. Studying these t-norms, Jenei provided a real breakthrough by intro-
ducing his rotation and rotation-annihilation construction [6]. Unfortunately, his
decompositions and constructions were not able to describe all rotation-invariant
t-norms [12,13]. The �Lukasiewicz t-norm TL, for example, did not fit into his
framework. We will present an alternative approach.

3.2 Decomposition Revisited

Let T be a rotation-invariant t-norm and β be the unique fixpoint of C0. As
depicted in Fig. 2, we partition area D = {(x, y) ∈ [0, 1]2 | C0(x) < y} into four
parts:

DI = {(x, y) ∈ ]β, 1]2 | Cβ(x) < y} ,

DII = {(x, y) ∈ ]0, β]× ]β, 1] | C0(x) < y} ,

DIII = {(x, y) ∈ ]β, 1]× ]0, β] | C0(x) < y} ,

DIV = {(x, y) ∈ ]β, 1[2| y ≤ Cβ(x)} .
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Fig. 2. The partition D = DI ∪ DII ∪ DIII ∪ DIV

Due to the left-continuity of T it is obvious that T (x, y) = 0 holds for every
(x, y) �∈ D.

Theorem 4. [12] Consider a rotation-invariant t-norm T . Let σ be an arbitrary
[β, 1] → [0, 1] isomorphism with β the fixpoint of C0. Then there exists a left-
continuous t-norm T̂ (with contour lines Ĉa) such that

T (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ−1
[
T̂ (σ[x], σ[y])

]
, if (x, y) ∈ DI ,

C0

(
σ−1

[
Ĉσ[C0(x)](σ[y])

])
, if (x, y) ∈ DII ,

C0

(
σ−1

[
Ĉσ[C0(y)](σ[x])

])
, if (x, y) ∈ DIII ,

0, if (x, y) �∈ D .

(4)

In particular, T̂ = T β.

Note that the isomorphism σ is used to compute the β-zoom T β of T . Geo-
metrically, T |DI is a rescaled version of T β|Dβ , where Dβ = {(x, y) ∈ [0, 1]2 |
0 < T β(x, y)}. T |DII is obtained by rotating T |DI 120 degrees to the left around
the axis {(x, y, z) ∈ [0, 1]2 | y = x ∧ z = 1 − x}. Similarly, rotating T |DI

120 degrees to the right around this axis determines T |DIII . As illustrated in
[12], these rotations sometimes have to be reshaped to fit into the areas DII and
DIII, respectively. The contour lines C0 and Cβ cause this reshaping. Solely the
continuity of the contour line C0 is responsible for the existence of the geomet-
rical (transformed) rotations. T-norms such as the minimum operator TM that
do not have a continuous contour line do not have such geometrical symme-
tries. Therefore, only Eq. (3) and not Eq. (2) (see [7]) can be understood as the
rotation-invariance property.

If T β has no zero divisors, then DIV is empty and Eq. (4) totally determines T .
These particular t-norms have also been (alternatively) described by Jenei [6].



550 K.C. Maes and B. De Baets

Figure 3 depicts the decomposition of the nilpotent minimum TnM (T nM(x, y) =
0 whenever x + y ≤ 1 and TnM(x, y) = min(x, y) elsewhere). The bold black
lines in the figures indicate the partition D = DI ∪ DII ∪ DIII (for the nilpotent
minimum DIV = ∅).
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Fig. 3. Decomposition of the nilpotent minimum TnM

As illustrated in [12], T |DIV is in general not uniquely determined by C0 and
T β. Examining numerous examples, we noticed that the filling-in of area DIV is
uniquely fixed whenever both C0 and Cβ are continuous. Invoking Theorem 3
we can generalize our decomposition from [12] in the following way.

Theorem 5. Consider a rotation-invariant t-norm T for which Cβ is continu-
ous on ]β, 1], with β the unique fixpoint of C0. Let σ be an arbitrary [β, 1] → [0, 1]
isomorphism. Then there exists a left-continuous t-norm T̂ (with contour lines
Ĉa and companion Q̂) such that Ĉ0 is continuous on ]0, 1] and

T (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ−1
[
T̂ (σ[x], σ[y])

]
, if (x, y) ∈ DI ,

C0

(
σ−1

[
Ĉσ[C0(x)](σ[y])

])
, if (x, y) ∈ DII ,

C0

(
σ−1

[
Ĉσ[C0(y)](σ[x])

])
, if (x, y) ∈ DIII ,

C0

(
σ−1

[
Q̂(Ĉ0(σ[x]), Ĉ0(σ[y]))

])
, if (x, y) ∈ DIV ,

0, if (x, y) �∈ D .

(5)

In particular, T̂ = T β and Q̂ must be commutative on [0, α̂[2, with α̂ = inf{t ∈
[0, 1] | Ĉ0(t) = 0}.

Geometrically, the filling-in of area DIV is obtained by rotating T |DI∩[β,σ−1(α̂)]2

180 degrees to the front around the axis {(x, y, z) ∈ [0, 1]3 | x + y = β +
σ−1[α̂] ∧ z = β}. In case Cβ is continuous it holds that α̂ = 1 and the latter
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comes down to a 180 degree front-rotation of T |DI around the axis {(x, y, z) ∈
[0, 1]3 | x + y = β + 1 ∧ z = β}. Again, the contour lines C0 and Cβ can cause
some additional reshaping.

Figure 4 depicts the decomposition of the Jenei t-norm T J
1/4 and the �Lukasie-

wicz t-norm TL. T J
1/4 can be created from the nilpotent minimum by lowering its

values on [14 , 3
4 ]2 in such a way that its (1

4 , 3
4 )-zoom equals TL. The bold black

lines in the figures indicate the partition D = DI ∪ DII ∪ DIII ∪ DIV.
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Fig. 4. Decomposition of the Jenei t-norm T J
1/4 and the �Lukasiewicz t-norm TL

The geometrical symmetries of a rotation-invariant t-norm T establish in fact
its associativity. In this respect Eq. (5) can also be used to construct rotation-
invariant t-norms. Inspired by the geometrical interpretation of Eq. (5), we have
called this construction the triple rotation method [13]. As the construction of
t-norms falls outside the scope of this paper, we will not go into detail here.
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