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Abstract. A pattern tree [I] is a tree which propagates fuzzy terms us-
ing different fuzzy aggregations. Each pattern tree represents a structure
for an output class in the sense that how the fuzzy terms aggregate to
predict such a class. Unlike decision trees, pattern trees explicitly make
use of t-norms (i.e., AND) and t-conorms (OR) to build trees, which is
essential for applications requiring rules connected with t-conorms ex-
plicitly. Pattern trees can not only obtain high accuracy rates in classifi-
cation applications, but also be robust to over-fitting. This paper further
extends pattern trees approach by assigning certain weights to different
trees, to reflect the nature that different trees may have different confi-
dences. The concept of weighted pattern trees is important as it offers an
option to trade off the complexity and performance of trees. In addition,
it enhances the semantic meaning of pattern trees. The experiments on
British Telecom (BT) customer satisfaction dataset show that weighted
pattern trees can slightly outperform pattern trees, and both of them are
slightly better than fuzzy decision trees in terms of prediction accuracy.
In addition, the experiments show that (weighted) pattern trees are ro-
bust to over-fitting. Finally, a limitation of pattern trees as revealed via
BT dataset analysis is discussed and the research direction is outlined.

1 Introduction

Most of the existing fuzzy rule induction methods including fuzzy decision trees
[9) (the extension of the classic decision tree induction method by Quinlan [6])
focus on searching for rules which only use t-norm operators [7] such as the MIN
and algebraic MIN. Disregarding of the t-conorms such as MAX and algebraic
MAX is due to the fact that any rule using t-conorms can be represented by
several rules which use t-norms only. This is certainly true and it is helpful to
simplify the rule induction process by considering t-norms only. However, it may
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fail to generate important rules in which fuzzy terms are explicitly connected
with t-conorms. Research has been conducted to resolve this problem. For ex-
ample, Kéczy, Vamos and Biré [3] have proposed fuzzy signatures to model the
complex structures of data points using different aggregation operators including
MIN, MAX, and average etc. Mendis, Gedeon and Kéczy [4] have investigated
different aggregations in fuzzy signatures. Nikravesh [5] has presented evolution-
ary computation (EC) based multiple aggregator fuzzy decision trees.

Huang and Gedeon [1] have first introduced the concept of pattern trees and
proposed a novel pattern tree induction method by means of similarity mea-
sures and different aggregations. This paper extends that work to assign certain
weights to different pattern trees. As a result, it enhances the semantic meaning
of pattern trees and makes them more comprehensible for users. The experi-
ments on BT customer satisfaction dataset show that weighted pattern trees
can slightly outperform pattern trees. In addition, this paper shows that pattern
trees and weighted pattern trees perform more consistently than fuzzy decision
trees. The former are capable of generating classifiers with good generality, while
the latter can easily fall into the trap of over-fitting. In fact, weighted pattern
trees with only two or three tree levels (depth of tree) are good enough for most
experiments carried out in this paper. This provides a very transparent way to
model real world applications.

The rest of the paper is arranged as follows: Section 2l provides the definitions
for similarity, aggregations and pattern trees, and briefly outlines the pattern tree
induction method. Readers may refer to [I[[2] for detailed discussion. Section
suggests the concept of weighted pattern trees and shows how to use them
for classification. Section Ml presents the experimental results over BT customer
satisfaction dataset. Finally, Section Bl concludes the paper and points out further
research work.

2 Definitions and Pattern Tree Induction

Let A and B be two fuzzy sets [10] defined on the universe of discourse U. The
root mean square error (RMSE) of fuzzy sets A and B can be computed as

RMSE(A, B) = \/Z?—l(/‘fl(%‘) — np(2;))? "

)
m

where x;, j = 1,...,m, are the crisp values discretized in the variable domain,
and p14(z;) and pp(xz;) are the fuzzy membership values of «; for A and B. The
RMSE based fuzzy set similarity can thus be defined as

S(A,B) =1— RMSE(A, B). (2)

The larger the value of S(A, B), the more similar A and B are. As ppa(z;), us(z;)
€ [0,1], 0 < S(4, B) <1 holds according to () and (). Note that the pattern
tree induction follows the same principle if alternative fuzzy set similarity defi-
nitions such as Jaccard are used.
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Fuzzy aggregations are logic operators applied to fuzzy membership values
or fuzzy sets. They have three sub-categories, namely t-norm, t-conorm, and
averaging operators such as weighted averaging (WA) and ordered weighted av-
eraging (OWA) [§].

Triangular norms were introduced by Schweizer and Sklar [7] to model dis-
tances in probabilistic metric spaces. In fuzzy sets theory, triangular norms (t-
norm) and triangular conorms (t-conorm) are extensively used to model logical
operators and and or. The basic t-norm and t-conorm pairs which operate on two
fuzzy membership values a and b, a,b € [0, 1] are shown in Table [l Although

Table 1. Basic t-norms and t-conorms pairs

Name t-norm t-conorm
MIN/MAX min{a, b} =aAb max{a,b} =aVb
Algebraic AND/OR ab a+b—ab
Lukasiewicz maz{a+b—1,0} min{a+0b,1}
EINSTEIN ) (af;fab) ﬁfb

the aggregations shown only apply to a pair of fuzzy values, they can apply
to multiple fuzzy values as they retain associativity. The definition of WA and
OWA are shown as follows:

Definition 1. A WA operator of dimension n is a mapping E : R" — R,
that has an associated n-elements vector w = (w1, wa, ..., wy)T, w; € [0,1],
1<i<mn, and 331" wi =1 so that E(as,...,a,) = Y7, wja;.

Definition 2. An OWA operator [8] of dimension n is a mapping F : R" — R,

that has an associated n-elements vector w = (w1, wa, ..., wy)", w; € [0,1],
1<i<mn, and 33;_  w; =1 so that F(ay,...,a,) =30 wiby, where bj is the
Jth largest element of the collection {ai,...,a,}.

A fundamental difference of OWA from WA aggregation is that the former does
not have a particular weight w; associated for an element, rather a weight is
associated with a particular ordered position of the element.

A pattern tree is a tree which propagates fuzzy terms using different fuzzy
aggregations. Each pattern tree represents a structure for an output class in the
sense that how the fuzzy terms aggregate to predict such a class. The output
class is located at the top as the root of this tree. The fuzzy terms of input
variables are on different levels (except the top) of the tree. They use fuzzy
aggregations to aggregate from the bottom to the top (root). Assume two fuzzy
variables A and B each have two fuzzy linguistic terms A4, and B;, i = {1,2},
and the task is to classify the data samples to either class X or Y. Fig. [[l shows
two example pattern trees, with one for class X and the other for Y. It can be
seen that pattern trees are built via the aggregation of fuzzy terms. For example,
the pattern tree for X is equivalent to fuzzy rule (By A As) V Ay = X.
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Fig. 1. Two example pattern trees

For a classification application which involves several output classes, the
worked model should have as many pattern trees as the number of output classes,
with each pattern tree representing one class. When a new data sample is tested
over a pattern tree, it traverses from the bottom to the top and finishes with a
truth value, indicating a degree to which this data sample belongs to the output
class of this pattern tree. The output class with the maximal truth value is cho-
sen as the prediction class. For example, consider that a fuzzy data A; = 0.8,
Ay = 0.2, By =0, and By = 1 is given for classification. As the truth values of
this data over pattern trees for class X and Y are 0.8 and 0.2 respectively, X is
chosen as the output class.

The pattern tree induction method as proposed in [I][2] is briefly outlined
as follows. Readers may refer to [I][2] for detailed discussion. Without losing
generality, assume a dataset has n input variables A;, ¢ = 1,2,...,n and one
output variable B. Further assume that input variables have m fuzzy linguistic
terms denoted as A;j, 1 = 1,2,...,n, and j = 1,2,...,m, and output variable
has k fuzzy or linguistic terms denoted as B;, j = 1,2,..., k. That is, each data
point is represented by a fuzzy membership value vector of dimension (nm + k).
The task is to build k pattern trees for the k output classes (fuzzy or linguistic
terms).

The process of building a pattern tree, say for class By, is described as follows:

1. From fuzzy term set S = {4;;},1=1,2,...,n,and j =1,2,...,m, choose a
fuzzy linguistic term Ay ;» € S, which has the highest similarity to the output
class By as the initial tree. The fuzzy term set is updated as S =& — Ay .
The exclusion of fuzzy term Ay from S is to prevent Ay j from being used
more than once in the tree.

2. Try aggregating the current tree with all fuzzy linguistic terms at set S in
turn with different aggregations. Grow the current tree using the term A; ;
from set S and aggregation which together lead to the highest similarity.
The fuzzy term set is updated as S =S — Ay .

3. Keep applying 2 until no fuzzy term and aggregation lead to a higher simi-
larity than the current one.

The above actually presents the induction for simple pattern trees. Its extension,
the general pattern trees induction [2], considers to aggregate not only fuzzy
terms, but also other pattern trees. In general, simple pattern trees not only
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produce high prediction accuracy, but also preserve compact tree structures,
while general pattern trees can produce even better accuracy, but as a compro-
mise produce more complex tree structures. Subject to the particular demands
(comprehensibility or performance), simple pattern trees and general pattern
trees provide an highly effective methodology for real world applications.

3 Weighted Pattern Trees

The classification using pattern trees discussed in section ] is based on the as-
sumption that all pattern trees each have the same confidence on predicting
a particular class, though it is not always the case in real world applications.
Weighted trees are introduced to resolve this problem. For each tree, the sim-
ilarity of such tree to the output class is served as a degree of confidence, to
reflect how confident to use this tree to predict such a class. For example, if
the two trees in Fig. [[l have similarities of 0.1 and 0.8 respectively, they can be
called weighted pattern trees with weights of 0.1 and 0.8. The prediction using
weighted pattern trees is the same as that using pattern trees, except that the
final truth values are multiplied by the weights of trees. As an example, let’s
revise the classification problem in section B} consider classifying the fuzzy data
A1 =0.8, A2 = 0.2, By =0, and By = 1 over pattern trees (with weights of 0.1
and 0.8) in Fig. [l its truth values over pattern trees for class X and Y change
to 0.08 and 0.16 respectively, and Y (rather than X) is therefore chosen as the
output class. This reflects the fact that, if a tree has a low weight, even an in-
put data has a high firing strength over such pattern tree, the prediction is not
confident. Note that this example is merely used to show how weighted pattern
trees work. In practice, a pattern tree with weight of 0.1 may not be trusted to
predict a class.

The concept of weighted pattern trees is important. It offers an option to
trade off the complexity and performance of pattern trees. The pattern tree
building process can stop at very compact trees, if it detects that the similarities
(weights) of such trees are already larger than a user pre-defined threshold.
In addition, it enhances the comprehensibility of pattern trees. For example
consider the construction of the pattern tree for class Y in Fig. [Il assume that
the tree growing from the primitive tree Bs = Y to Ba A As = Y leads to
the weight increase from 0.6 to 0.8, this gradual change can be interpreted in a
comprehensible way:

IF B = B, THEN it is possible that class =Y, (3)
IF B = By AND A = Ay THEN it is very possible that class =Y, (4)

if users pre-define semantic ranges of weights, say less possible: [0,0.3), possible:
[0.3,0.7), and very possible: [0.7,1]. Thus, the graduate change of confidence of
pattern trees can be monitored from the pattern tree induction process. This
provides a very transparent way for fuzzy modeling.
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4 Experimental Results

In this section, different variants of pattern trees, namely simple pattern trees,
weighted simple pattern trees, pattern trees, and weighted pattern trees, are
applied to a sample customer satisfaction dataset from BT. This dataset has a
total of 26 input parameters representing ease of contact, problem understand-
ing, service quality, repair time, and overall event handling. Among the input
parameters, 6 are numerical parameters and the rest 20 are category ones, with
the number of possible values being from 2 up to 17. The output parameter
consists of 7 classes reflecting varying degrees of customer satisfaction.

The BT customer satisfaction dataset has 16698 data points in total. Let ds,
ds-odd and ds-even be the datasets which contain the whole, the odd numbered,
and the even numbered data points respectively. The number of data per class
for these three datasets are shown in Table 2l with ci, i = 0,...,6 standing for
class 7. As can be seen, this dataset is not well balanced as the number of data

Table 2. Number of data per class for ds, ds-odd and ds-even datasets

cO | cl | c2 [c3]| cd |cH|cb
ds 1895|7289(4027|382(1361 (853|891
ds-odd | 949 |3659(1990|197| 660 [448|446
ds-even| 946 [3630{2037|185| 701 [405]|445

per class varies significantly. The experiments of (weighted) pattern trees are
carried out in three combinations of training-test datasets, namely, odd-even,
even-odd, and ds-ds. In all experiments, a simple fuzzification method based on
three evenly distributed trapezoidal membership functions for each numerical
input parameter is used to transform the crisp values into fuzzy values. All
aggregations as listed in Table[[lare allowed and the similarity measure as shown
in @) is used.

4.1 Prediction Accuracy and Overfitting

The prediction accuracy and rule number of the fuzzy decision trees (FDT) with
respect to the number of data points per leaf node (used as criteria to terminate
the training), over different combinations of training-test sets are shown in Fig.
It reveals that in general the larger number of data points per leaf node, the more
compact of the decision trees would be, thus leading to more general trees. The
prediction accuracy of pattern trees (PT) and weighted pattern trees (WPT)
with respect to different tree levels, over different combinations of training-test
sets is shown in Fig. Bl It reveals that (simple) pattern trees maintain good
generality even their structure becomes complex.

The experiments show that weighted pattern trees and pattern trees perform
roughly the same. In fact, the former slightly outperform the latter. Table B3]
shows the highest prediction accuracy of fuzzy decision trees, (weighted) sim-
ple pattern trees and (weighted) pattern trees over different combinations of
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Fig. 3. Prediction accuracy of pattern trees and weighted pattern trees with different
tree levels

Table 3. Highest prediction accuracy of fuzzy decision tree, pattern trees, and weighted
pattern trees

FDT SimPT PT

no weight|weight [no weight|weight
odd-even|50.62%(51.19% |51.45%(51.89% |51.92%
even-odd|50.47%|51.92%  52.47%|51.93%  |52.37%
ds-ds 71.36%|51.82%  152.09%|51.88% 152.18%

training-test sets. Both weighted and un-weighed pattern trees can obtain higher
prediction accuracy than fuzzy decision trees in odd-even and even-odd combi-
nations. However, if considering ds-ds combination, fuzzy decision trees perform
much better. This just reflects the overfitting of fuzzy decision trees, since fuzzy
decision trees generate large differences in classification accuracy between the
odd-even, even-odd combinations and ds-ds one. The reason is that decision tree
induction considers only a portion of the whole training dataset in choosing the
branches at low levels of trees. The lack of using the whole training dataset



402 7. Huang et al.

inevitably prevents the method finding generalized tree structures for all the
dataset. In contrast, pattern trees make use of the whole data in building each
level of the tree, which ensures the tree to keep good generality for classifications.
Therefore, even complex pattern trees do not suffer from over-fitting.

In addition, the experiments show that (weighted) pattern trees tend to con-
verge to a accuracy rate when the number of tree level becomes large. It has no
trend of overfitting. This property is essential to ensure a stable, compact and
effective fuzzy model for the problem at hand. In fact, (weighted) pattern trees
with two or three level perform very well for all conducted experiments. That
means, pattern trees which consist of maximal 22 = 8 leaf nodes can perform
well, in contrast to tens, or even hundred rules used in fuzzy decision trees. This
provides a superb solution to achieve a highly effective as well as compact fuzzy
model.

4.2 Approximate Accuracy

Section [£1] presented the prediction accuracy of trees in a very strict way. That
is, if and only if a data is predicted exactly as its class, this prediction is counted
as a correct one. In other words, there is no distinction between “close” errors
and “gross” errors. In BT customer dataset, this distinction is necessary as it
reflects how far the prediction is away from the actual class. It is much worse
if a data of class 0 is mis-predicted to class 5 rather than to class 1. To resolve
this problem, three accuracy estimations, namely accuracy 1, accuracy 2, and
accuracy 3 are employed to estimate prediction accuracy which has no tolerance
(the same as the one used in Section L)), tolerance of adjacent mis-prediction,
and tolerance of mis-prediction within two closest neighbor classes in either
direction, respectively. For example in the BT dataset, the mis-prediction of a
class 0 data to class 2 is still counted as a correct prediction in the estimation
of accuracy 3, although it is not counted in either accuracy 1 or accuracy 2.
Table @] shows the highest prediction accuracy of fuzzy decision trees, (weigh-
ted) simple pattern trees and (weighted) pattern trees over odd-even combination
of training-test sets (the results on even-odd and ds-ds combinations are simi-
lar and thus omitted). Both weighted and unweighted pattern trees can obtain
higher prediction accuracy than fuzzy decision trees in estimation of accuracy 1
and 2. In estimation of accuracy 3, weighted pattern trees perform the best, and
fuzzy decision trees outperform unweighted pattern trees. Generally, accuracy 2

Table 4. Highest prediction accuracy of fuzzy decision trees, pattern trees, and
weighted pattern trees over odd-even training-test combination

FDT SimPT PT

no weight|weight |no weight|weight
accuracy 1(50.62%51.19% |51.45%(51.89% |51.92%
accuracy 2|84.02%|84.08%  |84.68%|84.44%  |84.82%
accuracy 3/92.13%91.74%  192.70%(91.85%  192.29%
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and 3 are consistent with accuracy 1. Pattern trees with a high value of accuracy
1 usually have high values of accuracy 2 and 3. This table also shows that both
fuzzy decision trees and pattern trees can obtain over 80% prediction accuracy
if the closest error can be tolerated.

4.3 Interpretation of Pattern Trees

Each pattern tree can be interpreted as a general rule. Considering building level
5 simple pattern trees using odd dataset, 7 simple pattern trees can be obtained,
with each representing one output class. Fig. Fl shows the tree for class 0. The
ellipses are the input parameters and the rectangle is the output class 0. Over
each branch, i and F'i, 7 =0, ..., are category values and fuzzy terms associated
with each input parameter. All aggregators as shown in Table [[] are allowed to
be used in pattern trees. For example, A AND is algebraic AND, and WA 0.84
is weighted average with weight vector w = (0.84,0.16).

Fig. 4. Pattern tree for class 0 using odd dataset

Fig. @ roughly indicates that one example combination yielding highly satis-
fied customers are: no call re-routing, fast fault reporting time, high technician
competence, being well-informed through the repair process, and high satisfac-
tion with company/product in general. Here, we say roughly, as we use different
aggregations such as weighted average (WA), ordered weighted average (OWA),
algebraic and (A AND) etc. rather than simple AND.

These 7 pattern trees obtains an accuracy of 51.46%. In particular, the confu-
sion table is shown in Table Bl where SA and SP are number of data for actual
and predicted classes respectively.

4.4 Limitation

It is a little strange that no prediction is made to c0 for all test data. From
table B it can be seen that nearly all data (884 out of 946 in fact) with class 0
are mis-classified to class 1. A first intuition is to raise the weight of pattern tree
for class 0. However, this does not work; the raise does not only lead to the data
of class 0 to be classified correctly, but also lead to the majority of data of class
1 to be classified as class 0. Considering that there are 3630 data of class 1 and
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Table 5. Confusion table for pattern tree prediction using odd-even combination

Prediction

cO] ¢l | ¢2 [c3|cd|[cH5|c6|SA
c0|0|884| 51 |0]| 3| 2| 6 |946

¢l |0(3283[309|0| 10| 15|13 (3630
c2|0|1122| 751 | 1|53 | 72|38 |2037

Actual| c3|0| 59 | 94 |0| 6 |20 | 6 | 185
c4|0]122[395|1|30|104|49 | 701

c5 | 0| 50 | 142|023 [120] 70 | 405

c6 0| 35 [129 0|37 [131(113] 445
SP|0[5555|1871] 2 [162]464[295|8349
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Fig. 5. Fired values of first 50 data points per class in even dataset over pattern trees
constructed from odd dataset

only 946 data of class 0 in even dataset, the raise of weight for class 0 tree would
therefore cause more mis-classifications. This can be seen in Fig. Bl where the
fired values of first 50 data points per class in even dataset over pattern trees
constructed from odd dataset are shown. The real class line indicates the real
classes of the data; for example, data numbered from 0 to 49 have class 0, and
those from 50 to 99 have class 1.

The phenomena of no prediction on particular classes also occurs in fuzzy
decision trees. Considering the highest accuracy of 50.62% which fuzzy decision
trees can obtain over odd-even combination, no data is predicted to ¢3, ¢4 or
¢5, due to the small fraction of data points in those classes.

Table 6. Confusion table for prediction of both fuzzy decision trees and pattern trees
using new training and test datasets

Prediction

c0| ¢l | SA
cO| 0| 884|884
Actual| cl | 1 [3282]3283
SP|1[4166]4167
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An interesting experiment is carried out trying to improve the prediction
accuracy for class 0 in Table Bl The data of classes 0 and 1 in odd dataset are
selected as a new training dataset, and the data which are of classes 0 and 1
in even dataset and are classified as class 1 in Table [l are selected as a new
test dataset. Both fuzzy decision trees and pattern trees are applied to the new
training data and tested over the new test data. Surprisingly, they obtain the
same highest accuracy of 78.76%. Table [l shows the confusion table, which only
has one data predicted as class 0 (and it is wrong actually). It can be concluded
that the data of class 0 and class 1 can not be separated properly by either fuzzy
decision trees or pattern trees.

5 Conclusions

This paper further extends pattern trees approach by assigning certain weights
to different trees. The concept of weighted pattern trees is important as it not
only offers an option to trade off the complexity and performance of trees, but
also enhances the semantics of pattern trees.

The experiments on British Telecom customer satisfaction dataset show that
weighted pattern trees can slightly outperform pattern trees, and both of them
are slightly better than fuzzy decision trees in terms of prediction accuracy. In
addition, the experiments show that (weighted) pattern trees are robust to over-
fitting. In practice, weighted pattern trees with only two or three tree levels
are good enough for most experiments carried out in this paper. This of course
provides a very transparent way to model the problems at hand.

Further research on assignment of weights to pattern trees is necessary. The
current version simply makes use of similarity measures as weights. More so-
phisticated assignment may be more suitable and can therefore lead to higher
accuracy.
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