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Abstract. We focus on possibilistic/fuzzy optimality in the framework
of mathematical programming problem with a possibilistic objective fun-
ction. We observe the interaction between possibilistic objective function
values. Two optimality concepts, possible and necessary optimalities are
reviewed. The necessary soft optimality is investigated.

1 Introduction

Possibilistic programming treats ambiguous parameters in programming prob-
lems. Various approaches have been proposed to possibilistic programming
problems (see, for example, [1]). As stochastic programming approaches are
classified into chance constrained programming approaches, recourse problem
(two-stage problem) approaches and distribution problem approaches, possi-
bilistic programming approaches can be classified into modality constrained
programming approaches, recourse problem approaches and optimization ap-
proaches. Many of possibilistic programming approaches can be regarded as spe-
cial cases of modality constrained programming approaches. Therefore, modality
constrained programming approaches have well-investigated by many authors,
so far. Optimization approaches have more or less investigated and recourse
problem approaches have little investigated. Many overviews of possibilistic/
fuzzy programming approaches are devoted for modality programming appro-
aches which are more tractable than the others.

In this paper, we review and investigate optimization approaches. In optimiza-
tion approaches, we analyze the range of optimal solutions with respect to the
fluctuation of uncertain parameters. We restrict ourselves to linear programming
problems with ambiguous objective function coefficients. First, we observe the
induced interaction in the comparison between possibilistic objective function
values. Then, possibly and necessarily optimal solutions are defined. Possible
and necessary optimality tests are given. Finally, necessarily soft optimal solu-
tions are investigated as a relaxed concept of necessarily optimal solutions.

2 Comparison of Possibilistic Objective Function Values

In this paper, we treat the following linear programming problem with ambiguous
objective function coefficients:

maximize γTx, subject to Ax ≤ b, (1)
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where A = (aij) is an m × n matrix and b = (b1, . . . , bm)T. x = (x1, . . . , xn)T is
a decision variable vector. Moreover, γ = (γ1, . . . , γn)T is a vector of ambiguous
coefficients. We assume that we know γ realizes in a bounded n-dimensional
fuzzy set Γ . Such a vector γ is said to be a possibilistic variable vector restricted
in Γ . For the sake of simplicity, the feasible region of Problem (1) is denoted
by X . The membership function μΓ of fuzzy set Γ is assumed to be upper
semi-continuous. The boundedness of fuzzy set Γ is characterized by

∀ε > 0, ∃r ∈ R; {c ∈ Rn : μΓ (c) ≥ ε} ⊂ {c ∈ Rn : ||c|| < r}. (2)

Given a solution x �= 0, by the extension principle, its objective function value
is given as a fuzzy set Y (x) having the following membership function:

μY (x)(y) = sup
c

{μΓ (c) : cTx = y}. (3)

There are various ways to compare two fuzzy numbers Z1 and Z2 For example,
based on the possibility theory, the following two indices are obtained:

POS(Z1 ≥ Z2) = sup
r1,r2

{min(μZ1(r1), μZ2(r2)) : r1 ≥ r2}, (4)

NES(Z1 ≥ Z2) = 1 − sup
r1,r2

{min(μZ1(r1), μZ2(r2)) : r1 < r2}. (5)

where μZ1 and μZ2 are membership functions of Z1 and Z2. Possibility degree
POS(Z1 ≥ Z2) shows to what extent Z1 is possibly larger than or equal to Z2.
Similarly, Necessity degree NES(Z1 ≥ Z2) shows to what extent Z1 is necessar-
ily larger than or equal to Z2. When Z1 and Z2 are closed intervals [zL

1 , zR
1 ]

and [zL
2 , zR

2 ], respectively, we have the following equivalences which show their
meanings and difference remarkably:

POS(Z1 ≥ Z2) = 1 ⇔ zR
1 ≥ zL

2 , NES(Z1 ≥ Z2) = 0 ⇔ zL
1 < zR

2 . (6)

A comparison index between two fuzzy numbers is often applied to the com-
parison of possibilistic objective function values discarding their interaction in
literature. Next example demonstrates the inadequacy caused by the desertion
of the interaction.

Example 1. Let n = 2 and Γ = [1, 2] × [−2, −1]. Namely, we consider a case
when each objective function coefficient is given by a closed interval. Consider
two feasible solutions x1 = (2, 1)T and x2 = (3, 1)T. We have Y (x1) = [0, 3] and
Y (x2) = [1, 5]. Let us apply (6) discarding the interaction between Z1 = Y (x1)
and Z2 = Y (x2). We obtain POS(Z1 ≥ Z2)= 1 which implies that the objective
function value of x1 can be larger than or equal to that of x2. On the other
hand, we have

cTx1 = 2c1 + c2 < 3c1 + c2 = cTx2, ∀c1 ∈ [1, 2], ∀c2 ∈ [−2, −1]. (7)

This insists that the objective function value of x1 can never be larger than
or equal to that of x2. Because the realized values of c1 and c2 are common
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independent of the selection of a feasible solution to Problem (1), the latter
result is correct. Therefore, the direct application of index POS(Z1 ≥ Z2) is not
adequate for the problem setting.

Similarly, from (6), we obtain NES(Z2 ≥ Z1)= 0. This implies that there
exists (c1, c2)T ∈ Γ such that the objective function value of x2 is less than that
of x1. However, this is neither true. As is shown in (7), for all (c1, c2)T ∈ Γ , the
objective function value of x2 is larger than that of x1.

Now we emphasize the reason why indices defined by (4) and (5) do not work
in Example 1. Let ζ1 and ζ2 be possibilistic variables restricted by Z1 and Z2. In
(4) and (5), it is implicitly assumed that ζ2 is independent of ζ1 and vice versa.

In Example 1, we set Z1 = Y (x1) and Z2 = Y (x2). Namely, they are possible
ranges of ζ1 = γTx1 and ζ2 = γTx2, respectively. Both ζ1 and ζ2 depend on the
possibilistic variable vector γ restricted by Γ = [1, 2]× [−2, −1]. Because of this
fact, the implicit assumption in (4) and (5) does not hold. For example, when
ζ1 = γTx1 = 0, the possible values of γ ∈ Γ are in

{(c1, c2)T ∈ R2 : 2c1 + c2 = 0, 1 ≤ c1 ≤ 2, −2 ≤ c2 ≤ −1} = {(1, −2)}.

Namely, from the information ζ1 = 0, in this case, we know that γ uniquely
takes (1, −2)T. Therefore, the value ζ2 takes is also uniquely known, i.e., ζ2 =
(1, −2)x1 = 1. Generally, when ζ1 = q, the possible range of ζ2 is given by

{3c1 + c2 : 2c1 + c2 = q, 1 ≤ c1 ≤ 2, −2 ≤ c2 ≤ −1}.

This range varies depending on ζ1-value q. Therefore, ζ2 interacts with ζ1. Sim-
ilarly, ζ1 interacts with ζ2.

Since the implicit assumption of (4) and (5) does not hold, indices defined
by (4) and (5) cannot be applied without any modification. For the comparison
between possibilistic objective function values, the following modified indices [2]
are adequate:

POS(γTx1 ≥ γTx2) = sup
c

{μΓ (c) : cTx1 ≥ cTx2}, (8)

NES(γTx1 ≥ γTx2) = 1 − sup
c

{μΓ (c) : cTx1 < cTx2}. (9)

In literature, the desertion exemplified in Example 1 often appears when pos-
sibilistic objective function values are compared. Moreover, we note that under
other interpretations of fuzzy coefficients, the discussion about the inadequacy is
not valid. For example, when a fuzzy objective function is regarded as a collec-
tion of objective functions, e.g., a collection of utility functions of many decision
makers, the above discussion does not make sense.

3 Possibly and Necessarily Optimal Solutions

We define an optimal solution set S(c) of Problem (1) with respect to γ = c by

S(c) =
{

x ∈ X : cTx = max
y∈X

cTy

}
. (10)
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Fig. 1. A possibly optimal solution Fig. 2. A necessarily optimal solution

Using S(c), we can define the following two optimal solution sets ΠS and NS
to Problem (1) when Γ is a crisp set:

ΠS =
⋃
c∈Γ

S(c), NS =
⋂
c∈Γ

S(c). (11)

x ∈ ΠS implies that there exists c ∈ Γ to which x is an optimal solution.
Namely, x ∈ ΠS can be optimal for at least one possible realization of γ, and
then, it is called a possibly optimal solution. On the other hand, x ∈ NS implies
that for all c ∈ Γ , x is optimal. Namely, x ∈ NS is always optimal for all possible
realizations of γ, and then it is called a necessarily optimal solution. We have
NS ⊆ ΠS.

Example 2. Consider Problem (1) where A and b are defined by

A =
(

3 3 0 −1 0
4 1 1 0 −1

)T

, b = (42, 24, 9, 0, 0)T, (12)

and Γ is given by

Γ = {(c1, c2)T : 3.5 ≤ 2c1 + c2 ≤ 5.5, 3.4 ≤ c1 + 2c2 ≤ 6,
−1 ≤ c1 − c2 ≤ 1.3, 1 ≤ c1 ≤ 2, 0.8 ≤ c2 ≤ 2.2}. (13)

As shown in Fig. 1, (x1, x2)T = (6, 6)T is optimal for (c1, c2)T ∈ Γ such that
3c2 ≤ 4c1, and (x1, x2)T = (2, 9)T is optimal for (c1, c2)T ∈ Γ such that 3c2 ≥
4c1. Moreover, all solutions on line segment between those solutions are optimal
for (c1, c2)T ∈ Γ such that 3c2 = 4c1. Therefore, we have infinitely many possibly
optimal solutions on the line segment. However, we have no necessarily optimal
solution.

On the other hand, we consider Γ defined by

Γ = {(c1, c2)T : c1 + c2 ≥ 3, c1 ≥ c2, c1 ≤ 2c2, c1 ≤ 2.5, c2 ≤ 2}. (14)
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In this case, as shown in Fig. 2, (x1, x2)T = (6, 6)T is optimal for all c ∈
Γ . Namely, the solution is a necessarily optimal solution. From NS ⊆ ΠS,
(x1, x2)T = (6, 6)T is also a possibly optimal solution.

As shown in Example 2, it is possible that infinitely many possibly optimal
solutions exist and that no necessarily optimal solution exists.

In order to show the need of possible and necessary optimality, we continue to
treat a case when Γ is crisp. In modality constrained programming problems [1],
various treatments of possibilistic objective functions are proposed. In crisp case,
lower and upper bounds and the center values are often optimized and the width
of the possible range of objective function values is minimized. Many approaches
may regard a complete optimal solution to the following biobjective program-
ming problem maximizing lower and upper bounds of objective function value
as the most reasonable solution, if it exists:

maximize
x∈X

(
min
c∈Γ

cTx, max
c∈Γ

cTx

)
(15)

Next example shows that, even if a complete optimal solution to Problem (15)
exists, it is not always the most reasonable solution to Problem (1).

Example 3. Consider Problem (1) with the following A and b:

A =
(

1 3 0 −1 0
1 1 1 0 −1

)T

, b = (12, 24, 9, 0, 0)T (16)

Moreover, Γ is defined by

Γ = {(c1, c2)T : 7c1 − 5c2 ≤ 4, c2 ≤ 2, −3c1 + 5c2 ≥ 2, c1 ≥ 1}. (17)

Consider (1, 1)T and (3, 3)T ∈ Γ . For all c ∈ Γ , we have (1, 1)T ≤ c ≤ (3, 3)T.
Therefore, Problem (15) becomes

maximize
x∈X

(x1 + x2, 3x1 + 3x2). (18)

As shown in Fig. 3, x0 = (6, 6)T is a complete optimal solution to Problem (15).
However, in Fig. 3, the shaded region of Γ where x0 becomes optimal is much
smaller than the other region of Γ . The possibly optimal solution set in this
problem is shown as the line segment between points (6, 6)T and (3, 9)T. Then,
x0 is even extreme in the possibly optimal solution set. From these points of
view, x0 is not necessarily the most reasonable solution.

As shown in Example 3, a complete optimal solution to Problem (15) is not
always the most reasonable solution. When a necessarily optimal solution exists,
it is the most reasonable solution since it is optimal for all possible realizations
of γ. On the other hand, a possibly optimal solution is a solution optimal for
at least one possible realization of γ, therefore, it can be regarded as a solution
with minimum rationality. To sum up, possible optimality is the minimum re-
quirement for the optimal solution to Problem (1) while necessary optimality is
the ideal.
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Fig. 3. Solution (6, 6)T in Example 3

Now let us describe possibly and necessarily optimal solutions when Γ is a
fuzzy set. In this case, both possibly optimal solution set ΠS and necessarily
optimal solution set NS become fuzzy sets define by the following membership
functions (see [3]):

μΠS(x) =

{
sup

c
{μΓ (c) : x ∈ S(c)} , if x ∈ X,

0, if x �∈ X,
(19)

μNS(x) =

{
inf
c

{1 − μΓ (c) : x �∈ S(c)} , if x ∈ X,

0, if x �∈ X.
(20)

Obviously, we have μNS(x) ≤ μΠS(x), i.e., NS ⊆ ΠS. We also obtain the
following stronger relation:

μNS(x) > 0 ⇒ μΠS(x) = 1. (21)

This comes from a relation between possibility and necessity, i.e., if an event is
somehow necessary, it should be totally possible.

An optimal solution to a linear programming problem with an objective func-
tion cTx is a feasible solution satisfying cTx ≥ cTy for all y ∈ X , in other
words, there is no feasible solution y ∈ X such that cTy > cTx. Applying (8)
and (9), for x ∈ X , we have the following properties which corresponds to the
property of the optimal solution mentioned above:

μΠS(x) = inf
y∈X

POS(γTx ≥ γTy) = 1 − sup
y∈X

NES(γTy > γTx), (22)

μNS(x) = inf
y∈X

NES(γTx ≥ γTy) = 1 − sup
y∈X

POS(γTy > γTx), (23)

where POS(γTx1 > γTx2) and NES(γTx1 > γTx2) are defined by (8) and (9)
with replacements of ‘≥’ and ‘≤’ with ‘>’ and ‘<’, respectively.
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4 Possible and Necessary Optimality Tests

Possible and necessary optimalities are fundamental criteria for the solution
selection as described earlier. It is worthwhile to calculate degrees of possible
and necessary optimalities μΠS(x) and μNS(x) for justifying the selection of a
solution x ∈ X .

Let Aj· be the j-th row of A. Using the optimality condition of the linear
programming problem, the necessary and sufficient condition for x ∈ X to be
x ∈ S(c) is given as (see [3])
(a) There exists j ∈ {1, . . . , m} such that Aj·x − bj = 0.
(b) There exists v ≥ 0 such that AT

0 v = c, where A0 is a submatrix of A
composed all rows Aj· such that Aj·x − bj = 0.

In what follows, we consider x ∈ X satisfying (a). From (b), we have

μΠS(x) = sup
v

{μΓ

(
AT

0 v
)

: v ≥ 0}, (24)

μNS(x) = inf
c

{1 − μΓ (c) : ∀v ≥ 0, AT
0 v �= c}. (25)

From the boundedness of Γ , the upper semi-continuity of μΓ and (24), μΠS(x)
can be obtained as the optimal value of

maximize h, subject to AT
0 v ∈ [Γ ]h, v ≥ 0. (26)

We consider a special case when Γ is characterized by membership function,

μΓ (c) = min
k=1,...,p

ϕ(dT
k c). (27)

where p > n and ϕ : R → [0, 1] is an upper semi-continuous non-increasing
function satisfying limr→+∞ ϕ(r) = 0. We define a pseudo-inverse of ϕ, ϕ∗ :
[0, 1] → Rn ∪ {+∞} by ϕ∗(h) = supr{r : ϕ(r) ≥ h}. Then, we have

c ∈ [Γ ]h ⇔ dT
k c ≤ ϕ∗(h), k = 1, . . . , p (28)

Hence, we obtain the optimal value of Problem (26) as ϕ(ŝ) by calculating the
optimal value ŝ of the following linear programming problem:

minimize s, subject to dT
k AT

0 v ≤ s, k = 1, . . . , p, v ≥ 0. (29)

On the other hand, from (25), we have

μNS(x) ≥ h ⇔
(
μΓ (c) > 1 − h ⇒ ∃v ≥ 0; AT

0 v = c
)
. (30)

Let (Γ )1−h = {c : μΓ (c) > 1 − h}. Then, from (30), we have

μNS(x) = sup

{
h : sup

c∈(Γ )1−h

inf
v≥0

|AT
0 v − c| ≤ 0

}

= max
{

h : max
c∈cl(Γ )1−h

min
v≥0

|AT
0 v − c| ≤ 0

}
, (31)
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where cl(Γ )1−h is the closure of (Γ )1−h. From the boundedness of (Γ )1−h and
the continuity of |AT

0 v−c|, we replaced ‘(Γ )1−h’, ‘sup’ and ‘inf’ with ‘cl(Γ )1−h’,
‘max’ and ‘min’, respectively.

Consider Γ defined by (27). We have

c ∈ cl(Γ )1−h ⇔ dT
k c ≤ ϕ̄∗(1 − h), k = 1, . . . , p, (32)

where we define ϕ̄∗ : [0, 1] → Rn ∪ {+∞} by

ϕ̄∗(h) =
{

supr{r : ϕ(r) > h}, if h < 1
−∞ if h = 1.

(33)

Since Γ is bounded, cl(Γ )1−h becomes a polytope. Let V (cl(Γ )1−h) be a set
of vertices of cl(Γ )1−h. Then any point in cl(Γ )1−h can be expressed as a
convex combination of points in V (cl(Γ )1−h). Therefore, for any Q such that
V (cl(Γ )1−h) ⊆ Q(h) ⊆ cl(Γ )1−h, we have

max
c∈cl(Γ )1−h

min
v≥0

|AT
0 v − c| ≤ 0 ⇔ max

c∈Q(h)
min
v≥0

|AT
0 v − c| ≤ 0 (34)

If there is a set mapping Q(h) = {cj(h), j = 1, . . . , u} such that V (cl(Γ )1−h)
⊆ Q(h) ⊆ cl(Γ )1−h for any h ∈ (0, 1], we have μNS(x) = minj=1,...,u hj , where
hj is the optimal value of the following linear programming problem:

maximize h, subject to AT
0 v = cj(h), v ≥ 0. (35)

We may define cj(h) of Q(h) as the c-value of an optimal solution to the
following linear programming problem with respect to Pj composed of n elements
from {1, . . . , p}:

minimize
∑
k∈Pj

sk, subject to dT
k c+sk = ϕ̄∗(1−h), sk ≥ 0, k = 1, . . . , p. (36)

We have (n
p) Pj ’s. Therefore, Q(h) is a finite set with at most u = (n

p) elements
cj(h) for each h ∈ (0, 1].

Since maximizing h is equivalent to maximizing ϕ̄∗(1 − h), introducing Prob-
lem (36) into Problem (35), we obtain the following two-phase linear program-
ming problem with a sufficiently small positive number ε:

maximize −
∑
k∈Pj

sk + εs, subject to
{

AT
0 v = c, dT

k c + sk = s,
v ≥ 0, sk ≥ 0, k = 1, 2, . . . , p

(37)

Let s(Pj) be s-value at an optimal solution to Problem (37). Then we have
μNS(x) = minj=1,2,...,u(1 − ϕ(s(Pj))).

As shown above, μNS(x) can be obtained by solving multiple linear program-
ming problems. However, it requires to solve (n

p) problems and thus, it will not
be very efficient. A more efficient method can be designed based on global opti-
mization techniques.

We have described computation methods for degrees of possible and necessary
optimalities. It is also interesting to obtain all possibly and necessarily optimal
solutions. In [4], an enumeration method for possibly optimal extreme pints is
proposed.
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5 Necessarily Soft Optimal Solution

As described before, there is no guarantee that a necessarily optimal solution
x such that μNS(x) > 0 while it is the most reasonable solution. Even if it
exists, μNS(x) is often small. This is because the requirement for the necessary
optimality is very strong.

In real world problems, suboptimal solutions are often sufficiently good. Based
on this idea, we proposed necessarily soft optimal solutions [5] in which the
optimality of necessarily optimal solutions is relaxed to the suboptimality.

Let S̃(c) be a fuzzy optimal solution set to linear programming problem with
objective function coefficients c. Its membership function can be defined by

μS̃(c)(x) =

⎧⎨
⎩

μDif

(
max
y∈X

cTy − cTx

)
, if x ∈ X,

0, otherwise,
(38)

where μDif : R → [0, 1] is an upper semi-continuous non-increasing func-
tion. Equation (38) is based on the difference from the optimal value. We may
have a similar approach based on the ratio to the optimal value. When ∀c ∈
Γ ; maxx∈X cTx > 0, we may define

μS̃(c)(x) =

⎧⎪⎪⎨
⎪⎪⎩

μRat

⎛
⎝ cTx

max
y∈X

cTy

⎞
⎠ , if x ∈ X,

0, otherwise,

(39)

where μRat : (−∞, 1] → [0, 1] is upper semi-continuous non-decreasing function.
Using a fuzzy optimal solution set S̃(c), a necessarily soft optimal solution

set [5] ÑS is defined by the following membership function:

μ
ÑS

(x) = inf
c

max
(
1 − μΓ (c), μS̃(c)(x)

)
, (40)

where when S̃(c) is defined by (39), we assume for all c such that μΓ (c) > 0
maxy∈X cTy > 0.

Based on the necessary soft optimality, the best solution can be an optimal
solution to the following problem:

maximize
x∈X

μ
ÑS

(x) (41)

The solution is called a best necessarily soft optimal solution.
Now let us consider a case when Γ is a crisp set. In this case, for any μDif and

μRat, Problems (41) with (38) and (39) are reduced to the following problems,
respectively:

minimize
x∈X

R(x) = max
c∈Γ, y∈X

cTy − cTx, maximize
x∈X

F (x) = min
c∈Γ

cTx

max
y∈X

cTy
. (42)
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Those problems are called a minimax regret problem and a maximin regret ratio
problem. Those problems have the following good properties:

(a) R(x) = 0 (F (x) = 1) if and only if x is a necessarily optimal solution.
(b) R(x) ≥ 0, ∀x ∈ X (F (x) ≤ 1, ∀x ∈ X).
(c) Any optimal solution is a possibly optimal solution.

From those properties, optimal solutions to those problems are regarded as pos-
sibly optimal solutions minimizing the deviation from necessary optimality.

The minimax regret problem and maximin regret ratio problem include non-
convex programs as their subproblems so that they are not very tractable. How-
ever, a solution algorithms based on a relaxation procedure has already proposed.
To solve Problem (41), we further introduce the idea of bisection method to a
solution method for (42). A solution algorithm converges a relaxation procedure
and a bisection method simultaneously has proposed (see [5,6]).

6 Concluding Remarks

In this paper, we have reviewed and investigated the optimization approach
to possibilistic/fuzzy programming problems. The formulated problems in this
approach often include nonconvex subproblems so that applications of global
optimization techniques are promising. On the other hand, by the development
of interior point method, the range of tractable problems is enlarged. Solution
methods for possibilistic/fuzzy optimization problems can also be developed by
the introduction of new solution approaches.

The author acknowledges that this work has been partially supported by the
Grant-in-Aid for Scientific Research (B) No. 17310098.
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