
Friction Model by Using Fuzzy Differential
Equations

Barnabás Bede1,2, Imre J. Rudas2, and János Fodor2

1 Department of Mathematical Sciences
The University of Texas at El Paso

500 West University, El Paso, TX 79968, USA
bbede@utep.edu

2 Department of Intelligent Engineering Systems
John von Neumann Faculty of Informatics,
Budapest Tech Polytechnical Institution
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Abstract. In the present paper we propose a novel approach for mod-
eling friction, by using fuzzy differential equations under the strongly
generalized differentiability concept. The key point is a continuous fuzzy-
fication of the signum function. The lack of the uniqueness for the so-
lutions of a fuzzy differential equation allows us to choose the solution
which better reflects the behavior of the modeled real-world system, so
it allows us to incorporate expert’s knowledge in our model. Numeri-
cal solutions of the fuzzy differential equations modeling dry friction are
proposed. In order to show how the expert’s knowledge can be incorpo-
rated in the system, we study the dry friction equation with different
additional assumptions.

1 Introduction

The existing models of the friction forces show discontinuous variation at the zero
transition of the velocity (see e.g. [5], [19], [17], [11], [12]). The effects of friction
at low velocities are due to local properties of the materials and an accurate
model of these phenomena is possible by taking into account properties both at
the molecular and macroscopic level ([19], [16]). Since the information on the
molecular level is usually unavailable we have uncertianties. These uncertainties
are usually modeled by considering the friction force as a multivalued function
and in this case the equations of motion are considered as differential inclusions.
This approach is used in several works (see [1], [15], [8], etc.). The idea behind
using differential inclusions is substituting the signum function by a multivalued
function. This model often manifests chaotic behavior ([11], [10]).

The above discussion shows that the model of a system with friction is often
subject of non-statistical uncertainties. So, in order to model the behavior of a
system under the presence of the friction forces we have to take into account
these uncertainties. In order to take into account these uncertainties we propose

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 23–32, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



24 B. Bede, I.J. Rudas, and J. Fodor

in the present paper an alternative fuzzy model based on fuzzy differential equa-
tions (FDEs). Surely other techniques can be easily imagined (such as interval
methods) but these are subject of further research. Also, in our proposed method
it is possible to incorporate expert knowledge about the system under study and
this property can be turned into an advantage in future studies.

FDEs appear naturally as tools for modeling dynamical systems under un-
certainty. Till now, they are rarely used in modeling real-world systems since
their theory was developed relatively recently. Also, as it is shown in several
recent papers, FDEs are not just an easy extension of the theory of ODEs to
the fuzzy case (see e.g. [13], [14], [2]). This fact is also slowing down the ex-
tension of the applicability of FDEs. There are several different interpretations
of the notion of a FDE (for a discussion about them please refer to [2]). In
the present paper we will use the so called strongly generalized differentiability
concept introduced recently as a method which solved some problems with the
other FDE interpretations (H-derivative (see [18]) or fuzzy differential inclusions
(see [7])).

Strongly generalized differentiability was introduced in [3]. The strongly gen-
eralized derivative is defined for a larger class of fuzzy-number-valued functions
than the H-derivative and fuzzy differential equations can have solutions with
decreasing length of their support (this was not the case for the H-derivatve).
Also, contrary to the case of differential inclusions, the derivative concept for
fuzzy-number-valued function is defined and this makes this method more ap-
propriate for numerical computations. First order linear fuzzy differential equa-
tions are investigated in [4] and the behavior of their solutions motivate also the
use of the above cited results in the present paper for building a novel friction
model.

The key point in our discussion is how to fuzzify the classical model in order
to get meaningful conclusions. The key role in this fuzzification is played by the
frictional term in the equations of movement with friction. In the present paper,
following [7], we fuzzify in a heuristic way the Signum function, by making
this term also continuous fuzzy valued function. However we have gained the
continuity of the frictional term, since it is a fuzzy one, we obtain a fuzzy solution
for our model. The interpretation of this model is the fuzzy set of trajectories,
attainable by the system ([7]). The lack of uniqueness of the solution of a fuzzy
differential equation under the generalized differentiability concept at first sight
could be seen as a disadvantage. But it is turned into an advantage in the present
paper since we are able this way to include in our model knowledge based on
observations of the modeled system. In the present paper we do not deal with
the problem of control, this being subject of further research.

After a preliminary section we propose in Section 3 the heuristic fuzzy model
for friction forces with a discussion on dry friction. In Section 4 we present also
some preliminary results how friction is modeled by using the proposed approach.
We end up with some conclusions and further research topics.
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2 Preliminaries

We denote by RF the space of fuzzy numbers, i.e., fuzzy subsets of the real line
u : R → [0, 1], satisfying the following properties:

(i) u is normal i.e. ∃xu ∈ R with u (xu) = 1;
(ii) u is convex fuzzy set (i.e. u (tx + (1 − t) y) ≥ min {u (x) , u (y)}, ∀t ∈ [0, 1] ,

x, y ∈ R);
(iii) u is upper semi-continuous on R;
(iv) {x ∈ R : u (x) > 0} is compact, where A denotes the closure of A.
For 0 < r ≤ 1, denote [u]r = {x ∈ R; u(x) ≥ r} and [u]0 = {x ∈ R; u(x) > 0}.

Then it is well-known that for any r ∈ [0, 1], [u]r is a bounded closed interval.
For u, v ∈ RF , and λ ∈ R, the sum u + v and the product λ · u are defined by
[u + v]r = [u]r + [v]r, [λ · u]r = λ[u]r, ∀r ∈ [0, 1].

Let D : RF ×RF → R+∪{0}, D(u, v) = supr∈[0,1] max{|ur
−−vr

−|, |ur
+ −vr

+|},
be the Hausdorff distance between fuzzy numbers, where [u]r = [ur−, ur

+], [v]r =
[vr

−, vr
+]. In this case (RF , D) is a complete metric space. The above operations

and the metric space structure allows us to build a mathematical analysis over
the space of fuzzy numbers, however some problems appear due to the lack of
some properties.

The so called H-difference or Hukuhara difference will play a key role in the
present paper. Let us recall its definition.

Definition 1. (see e.g. [18]). Let x, y ∈ RF . If there exists z ∈ RF such that
x = y + z, then z is called the H-difference of x and y and it is denoted by x	 y.

In this paper the ”	” sign stands always for H-difference and let us remark that
x 	 y 
= x + (−1)y. We will denote for simplicity x + (−1)y by x − y.

Let us recall the definition of strongly generalized differentiability proposed
in [3].

Definition 2. Let f : (a, b) → RF and x0 ∈ (a, b). We say that f is strongly
generalized differentiable at x0, if there exists an element f ′(x0) ∈ RF , such that

(i) for all h > 0 sufficiently small, ∃f(x0 + h) 	 f(x0), f(x0) 	 f(x0 − h) and
the limits (in the metric D)

lim
h↘0

f(x0 + h) 	 f(x0)
h

= lim
h↘0

f(x0) 	 f(x0 − h)
h

= f ′(x0),

or
(ii) for all h > 0 sufficiently small, ∃f(x0)	 f(x0 +h), f(x0 −h)	 f(x0) and

the limits

lim
h↘0

f(x0) 	 f(x0 + h)
(−h)

= lim
h↘0

f(x0 − h) 	 f(x0)
(−h)

= f ′(x0),

or
(iii) for all h > 0 sufficiently small, ∃f(x0 + h) 	 f(x0), f(x0 − h) 	 f(x0)

and the limits

lim
h↘0

f(x0 + h) 	 f(x0)
h

= lim
h↘0

f(x0 − h) 	 f(x0)
(−h)

= f ′(x0),
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or
(iv) for all h > 0 sufficiently small, ∃f(x0)	 f(x0 +h), f(x0)	 f(x0 −h) and

the limits

lim
h↘0

f(x0) 	 f(x0 + h)
(−h)

= lim
h↘0

f(x0) 	 f(x0 − h)
h

= f ′(x0).

(division by h and (−h) is understood as the multiplication of a fuzzy number by
the scalars 1

h and − 1
h , respectively).

We say that a function is (i)-differentiable if it is differentiable as in the previous
Definition 2, (i), etc.

Concerning the existence of solutions of a fuzzy initial value problem un-
der generalized differentiability in [3] we have proved that under some relaxed
conditions (for which the reader is asked to consult [3]) the fuzzy initial value
problem {

y′ = f(x, y)
y(x0) = y0

has two solutions (one (i)-differentiable and the other one (ii)- differentiable)
y, y : [x0, x0 + r] → B(y0, q) and the successive iterations

y0(x) = y0

yn+1(x) = y0 +
∫ x

x0

f(t, yn(t))dt, (1)

and
y0(x) = y0

yn+1(x) = y0 	 (−1) ·
∫ x

x0

f(t, yn(t))dt (2)

converge to these two solutions respectively.
The FDEs will have in the present paper will have input data trapezoidal

fuzzy numbers. We recall that for a < b < c < d, a, b, c, d ∈ R, the trapezoidal
fuzzy number u = (a, b, c, d) determined by a, b, c and d is given such that ur

− =
a + (b − a)r and ur

+ = d − (d − c)r are the endpoints of the r−level sets, for all
r ∈ [0, 1].

3 The Heuristic Fuzzy Model of Friction

In this section we propose a fuzzy differential equation modeling dry friction,
model which is similar to the multivalued models in [1], [15] and the fuzzy model
in [7]. In our proposed model we will fuzzify the signum function similarly to, etc.
but simultaneously we transform it into a continuous term. As a consequence,
the signum function will be in our model continuous fuzzy-valued function and
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the friction force as well. The velocity and position will be solutions of a system
of FDEs and so, these are fuzzy terms.

The fuzzy differential equation modeling dry friction is

y′′ + αy′ + μ · Sgn(y′) + y = u(t), (3)

where α, μ ∈ R are positive constants, u(t) is a control signal and the signum
function Sgn(y′) is given by (4) in our model (for simplicity we do not show
the parameters ε, δ at each time they occur. The coordinate y : R → RF is
considered to be a trapezoidal fuzzy valued function. The initial conditions are
considered to be crisp values.

The trapezoidal-valued signum function is

Sgnε,δ(v) =

⎧⎪⎪⎨
⎪⎪⎩

−1, if v ≤ −ε
(−1, −1 + δ, 1 − δ, 1)	
	

(
− 2

ε , − 2+δ
ε , − δ

ε , 0
)

· v, if |v| < ε
1, if v > ε

. (4)

It is easy to see that

lim
ε,δ→0

Sgnε,δ(v) =

⎧⎨
⎩

−1, if v < 0
[−1, 1], if |v| = 0
1, if v > 0

,

which coincides with the interval-valued signum function proposed in [7] (the
convergence is understood surely only pointwise).

In order to solve the equation we rewrite it as a system of first order FDEs
as follows {

y′ = v
v′ = u(t) − αv − μ · Sgn(v) − y

,

with the initial conditions y(0) = y0 and v(0) = v0. Analogously to the proof
of the existence result in [3] a similar theorem can be proved for systems of
equations. As a conclusion, the above system may have locally several solutions

yn+1(t) = y0 +
∫ t

t0

vndt, or (5)

yn+1(t) = y0 	 (−1)
∫ t

t0

vndt, (6)

and

vn+1(t) = v0 +
∫ t

t0

(u(t) − αvn − μ · Sgn(vn) − yn)dt or (7)

vn+1(t) = v0 	 (−1)
∫ t

t0

(u(t) − αvn − μ · Sgn(vn) − yn)dt. (8)

In order to solve the problem we will employ a numerical method based on
the classical Euler method. We consider the approximation given by this method
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sufficient for our purposes. Surely theoretical study and implementation of more
sophisticated methods is subject of future research.

One step of the Euler’s method in our case is given by

y(t + h) = y(t) + hv(t), or (9)
y(t + h) = y(t) 	 (−1)hv(t) (10)

and

v(t + h) = v(t) + h(u(t) − αv(t) − μ · Sgn(v(t)) − y(t)) or (11)
v(t + h) = v(t) 	 (−1)h(u(t) − αv(t) − μ · Sgn(v(t)) − y(t)), (12)

h ∈ R being the step size.
Since there may exist locally two solutions, if both of them exist we have

to chose locally the one which better reflects the behavior of the real-world
system modeled by the given equation. The possibility of this choice, allows us
to incorporate further assumptions or observations about the behavior of the
system.

4 Experimental Results

In the present section we will examine the above proposed model. The lack of
uniqueness allows us to introduce is the system additional assumptions and based
on these assumptions we chose locally the solution according to a choice function.
As a measure of the uncertainty we have used the length of the 0-level set. So,
if we say increasing uncertainty we understand increasing length of the 0-level
set. Surely several other measures of the uncertainty exist in the literature.

We propose to use and compare experimentally several choice functions in
two experimental settings. These are as follows: In the first experimental setting
we have put u1(t) = sin(t), α1 = 1, μ1 = 0.4, ε1 = 0.0001, δ1 = 0.6 and in the
second one

u2(t) =

⎧⎨
⎩

5 if 0 ≤ t < 2
−5 if 2 ≤ t < 10
4 if 10 ≤ t ≤ 15

,

α2 = 2, μ2 = 1.4, ε2 = 0.01, and δ2 = 0.7.
In each of the Figures presented in the present paper, the upper graph repre-

sents the coordinate, while the lower graph will represents the velocity.
The choice functions which were tested in these experiments are described as

follows.
- First is choosing always the ”old” Hukuhara differentiable solution. Surely

this is the most inconvenient choice, since uncertainty cannot be decreasing
decrease under the Hukuhara differentiability concept ([7]). The experimental
results show this behavior expected from the theory.

- Second is choosing solutions with increasing support if the ”core”, i.e. mid-
point of the 1-level set is increasing in absolute value (this choice is based on the
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Fig. 1. Solution under the second choice function, first experiment
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Fig. 2. Solution under the second choice function, second experiment

hypothesis that the uncertainty increases together with the value). In our model
this is not consistent with the usual real behavior of the velocity. That is the
static friction appears at velocity 0 and in this case around zero the uncertainty
should increase (see Figs. 1, 2).

- The last choice is based on the expert opinion that when velocity is small the
uncertainty is increasing. According to this choice function we set a threshold
value for the velocity, under which we assume that the uncertainty increases.
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Fig. 3. Solution with the assumption that small velocity implies increasing uncertainty,
first experiment
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Fig. 4. Solution with the assumption that small velocity implies increasing uncertainty,
second experiment

Otherwise we allow uncertainty to decrease. This choice is the most well mo-
tivated by the physical properties of the system since the principal source of
uncertainty is the interaction at low velocities ([5], [12]). See Figs. 3, 4) for nu-
merical results in this case. Surely an experimental comparison will be necessary
in order to decide which choice function reflects better the real phenomena, but
this is subject of future research.
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5 Concluding Remarks

We have proposed a fuzzy model for dry friction and we have performed nu-
merical experiments on it. Surely a more accurate comparison with the available
experimental data and existing models is a subject of further research.

In the numerical experiments proposed in the present paper we have tested
several choice functions based on different assumptions. These assumptions were
crisp ones in this paper. As a next step in this research, we propose the use of
fuzzy rules in the choice functions together with the fuzzy differential equations
to build up a fuzzy model with the expert knowledge incorporated.
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