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Abstract. In many problems the information can be imprecise and un-
certain simultaneously. Linguistic terms can be then used to represent
each one of these aspects. In some applications it is desirable to com-
bine imprecision and uncertainty into a single value which appropriately
describes the original information. We propose a method to combine im-
precision and uncertainty when they are expressed as trapezoidal fuzzy
numbers and the final goal is to obtain a normalized fuzzy number. This
property is very useful in several applications like flexible querying pro-
cesses, where the linguistic label used in the query is always normalized.

1 Introduction

The aim of this work is to propose a solution to the problem of uncertainty
qualification of fuzzy statements [4] when the certainty is expressed as a fuzzy
number. In a previous paper [6] we proposed a method to solve this problem
when the certainty is expressed as a real number. The main idea of this proposal
was the following. Let us suppose we have a fuzzy value A understood as acting
as a fuzzy restriction on the possible values of a variable X, and this value is
affected by a certainty degree, say α. Then, the problem is to represent a qualified
statement like ”it is α-certain that X is A”.

This situation can be formulated as a conditional expression, using the gen-
eralized modus ponens, in the following terms:

– if the certainty level is 1, then the value is A.
– if the certainty level is α < 1, then the value is T (A), where T (A) is a

transformation of the original fuzzy set A.

In this way, the qualified statements ”it is α-certain that X is A” is represented
as ”X is T(A)”.

Therefore, a natural way to solve the problem is to consider that the trans-
formation we are handling is T (A) defined as: μT (A)(x) = I(α, μA(x)) where I
is a material implication function which reflects the interpretation given to the
compatibility degree.
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There exist in the literature two main ways of dealing with imprecise and
uncertain data and can be interpreted as follows.

1. To truncate: if the datum is ”A with certainty α”, then T (A) is defined by
the membership function μT (A)(x) = min(α, μA(x)) which directly implies
that we are using Mamdani’s implication in our reasoning.

2. To expand: if we assume that α is a necessity, then T (A) is given by the
membership function μT (A)(x) = max(1 − α, μA(x)), which corresponds to
Kleene-Dienes’ implication as foundation of our reasoning.

These proposals can be useful in many applications, but they can also be in-
appropriate in many others. Thus, Mamdani’s implication obliges us to work with
non-normalized fuzzy values.Kleene-Dienes’ implication obliges to assign the same
possibility to all the points of the underlying domain independently from the dis-
tance to the support set of the fuzzy value. Therefore, the proposed solutions give
rise to a series of inconveniences: the interpretability, in some cases, and those ones
derived from the use of non-normalized or non-trapezoidal fuzzy sets.

As an alternative proposal, in [8,6] we proposed a certainty qualification
method that consists in increasing the imprecision around the support set of
value A depending on an uncertainty value, that is, the imprecision is distributed
according to a metric which takes into account the nearness to the original in-
formation. This proposal is based on the use of information measures that allow
us to transform the uncertainty of the fuzzy statement into imprecision. For ex-
ample, when we have the information that ”X is black” with certainty α, it is
not very convenient to assign a positive possibility to color white but to colors
near enough to black depending on value α.

Therefore, the process we proposed in [6] was to define T (A) in two steps:

1. First, by considering that the height of a fuzzy number is the certainty degree
associated to it [2,5], we use the certainty degree α associated to the fuzzy
value A to truncate it at level α. After this operation, we obtain a non-
normalized fuzzy set Aα. Nevertheless, the resulting fuzzy value remains
trapezoidal.

2. Since, in many applications, non-normalized fuzzy sets give rise to a series of
inconveniences, in a second step we normalize it. To do this, we assume that
uncertainty is being translated into imprecision under certain conditions.
The most important point to be considered is that the amount of infor-
mation provided by the fuzzy number remains equal before and after the
normalization process. Tα(A) will stand for the obtained normalized fuzzy
value, whose imprecision is, obviously, larger than Aα imprecision, as it has
been made completely true (its height is 1 again).

In fact, in the fuzzy querying process the linguistic labels used are always
normalized what makes it necessary that the stored data are also normalized in
order to carry out a semantically coherent matching computation.
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Fig. 1. Trapezoidal Fuzzy Number

2 Previous Results

A fuzzy value is a fuzzy representation about the real value of a property when

it is not precisely known. We will use
∼
IR to denote the set of fuzzy numbers.

The interval [aα, bα] (see figure 1) is called the α-cut of A. Therefore, fuzzy
numbers are fuzzy quantities whose α-cuts are closed and bounded intervals:
Aα = [aα, bα] with α ∈ (0, 1]. The set Supp(A) = {x ∈ IR | A(x) > 0} is called
the support set of A1 and h(A) denotes the height of the fuzzy number A. If
there is, at least, one point x verifying A(x) = 1 we say that A is a normalized
fuzzy number.

Usually, a trapezoidal shape is used in order to represent fuzzy numbers. This
representation is very useful as the fuzzy number is completely characterized by
five parameters (m1, m2, a, b) and the height h(A), as figure 1 shows. The interval
[m1, m2] (i.e, the set {x ∈ Supp(A) | ∀ y ∈ IR, A(x) ≥ A(y)}) will be called
modal set. The values a and b are called left and right spreads, respectively.

The basic idea underlying this work is that when a fuzzy number is not normal-
ized, the situation can be interpreted as a lack of confidence in the information
provided by such a number [2,5]. In fact, the height of the fuzzy number could
be considered as a certainty degree of the represented value, and this implies
that normalized fuzzy numbers represent imprecise quantities on which we have
complete certainty.

Since the first step in our proposal is to truncate, we can consider that the
truncated fuzzy number represents the imprecise information and moreover it
shows a certain level of uncertainty.

In [6], we show how uncertainty can be translated, using a suitable trans-
formation, into imprecision, taking into account that to reduce the uncertainty
about a fuzzy number implies to increase the imprecision of such number. This

1 In the rest of the paper A(x) will stand for μA(x).
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transformation is made in such a way that the amount of information provided
by the fuzzy number is the same before and after the modification.

Our idea is to transform the truncated fuzzy number in order to obtain a
completely certain fuzzy number.

As pointed out in the previous section, we are going to translate fuzzy un-
certainty into imprecision under given conditions. The most important of these
conditions is that the amount of information provided by the fuzzy number re-
mains equal before and after the transformation. Therefore, the first step is to
define an information function for fuzzy numbers.

In [6], we propose an axiomatic definition of information, partially inspired in
the theory of generalized information given by Kampé de Fériet [7] and that can
be related to the precision indexes [3] and the specificity concept introduced by
Yager in [11].

Definition 1. Let D ⊆
∼
IR | IR ⊆ D; we say that I : D −→ [0, 1] is an informa-

tion function on D if it verifies:

1. I(A) = 1, ∀ A ∈ IR
2. ∀ A, B ∈ D | h(A) = h(B) and A ⊆ B =⇒ I(B) ≤ I(A).

The information about fuzzy numbers may depend on different factors, in par-
ticular, on imprecision and certainty. In this work, we focus on general types of
information related only to these two factors.

Definition 2. The imprecision [5] of a fuzzy number is defined as follows:

∀ A ∈
∼
IR, imp(A) =

∫ h(A)

0
(bα − aα )dα

With respect to the height (certainty) and the imprecision of a fuzzy value, we
define the following general type of function [5]:

∀ A ∈
∼
IR, I(A) =

h(A)
k ∗ imp(A) + 1

where h(A) is A height, imp(A) is the imprecision associated to A and k 
= 0 is
a parameter which depends on the domain scale. This is the simplest function
that verifies the mentioned properties of information functions.

Once we have an information function on fuzzy numbers, we can use it to
define transformations which preserve the information amount it provides. The
idea is to find an equivalent representation of the considered fuzzy number in
such a way that we change uncertainty by imprecision keeping constant the
relationship between them, which is determined by the information function.

The aim of the transformations we are proposing in this section is, basically,
to be able to modify the height of a fuzzy number but keeping the information
contained in it.

The definition of transformation will be obtained from the condition of equal-
ity in the information but, as a first step, we must establish what we understand

for transformation of a fuzzy number on a subset of
∼
IR.
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Fig. 2. Transformation that increases imprecision

Definition 3. Let us consider α ∈ (0, 1] and the class of fuzzy numbers D ⊆
∼
IR.

We say that

Tα : D −→
∼
IR

is a transformation for an information function I on D, if it verifies that:

1. Tα(A) ∈ D
2. h(Tα(A)) = α
3. I(Tα(A)) = I(A), ∀ A ∈ D

We will note by τ the class of trapezoidal fuzzy numbers on IR. Given a fuzzy
number A ∈ τ , we are looking for the conditions that another fuzzy number B,
with fixed height α ∈ (0, 1], must hold to have the same information amount as
A. Assuming the following conditions:

1. modal imprecision is preserved,
2. the increase/decrease of imprecision is equally distributed in the right and

left sides of the fuzzy number independently from its shape,

we proposed in [6] the following transformation:

Definition 4. Let A ∈ τ such that

A = {(m1, m2, a, b), αA}

where m1, m2, a and b are shown in figure 1 and αA is the height of A.
Let α ∈ (0, 1] be. We will denote Δ(αA, α) = Δ and define

Tα(A) = {(m1, m2, a +
Δ

k
, b +

Δ

k
), α}

for those α in which the transformation makes sense.

In figure 2 it is shown how an increment of height produces an increment of
imprecision.

In the proposed transformation, the relation between certainty and impreci-
sion is the following:

– An increase of certainty means an increase of imprecision.
– A decrease of imprecision means a decrease of certainty.
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Fig. 3. Fuzzy Certainty on a Fuzzy Value: The scale used in both axels is not the same
for the sake of clarity

3 Fuzzy Uncertainty

Once, we know how to solve the qualification problem when the uncertainty is
represented as a real value, now the problem is to extend this process when
the uncertainty is represented as a fuzzy value. Thus, we want to translate the
information ”X is A is C”, when C is a fuzzy trapezoidal number, into ”X is
TC(A)”.

The difficulty is now to give a suitable procedure for computing TC(A) since
now C is a trapezoidal fuzzy number. To do this, we will consider that, for
any possible truncation level α, the membership function of the linguistic label
modifies in a certain way the certainty level. In fact we can assume that:

(X is A) is C ←→ ∀α ∈ [0, 1], X is A to a degree C(α), α ∈ [0, 1]

Figure 3 depicts the general problem we are trying to explain.
A possible way to solve this problem is to define TC(A) in such a way that

it summarizes the right side of the above sentence by means of some average.
It should be remarked that the membership function C(.) induces two fuzzy
measures (possibility/necessity) on the [0,1] interval and that the membership
function of any fuzzy number transformed at certainty level α can be considered
as a function depending on both α ∈ [0, 1] and x, which ranges on another real
interval. A method that allows the use of such average is the Sugeno’s integral.

In [10], Sugeno introduced the concept of fuzzy integral of a fuzzy measure
as a way to compute some kind of average value of a function in terms of the
underlying fuzzy measure. Obviously, fuzzy measures formally include possibil-
ity/necessity measures as special cases. Fuzzy integrals are interpreted as sub-
jective evaluations of objects where subjectivity is represented by means of fuzzy
measures.

The fuzzy integral over a referential set X of a function f(x) with respect to
a fuzzy measure g is defined as follows:

∫
X

f(x) ◦ g(.) = supα∈[0,1]{α ∧ g(Fα)}
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where Fα = {x|f(x) ≥ α}.
In the case that the measure g is a possibility defined by means of the mem-

bership function of a fuzzy set μ(x) with referential X, the Sugeno’s integral has
the following expression [9]:∫

X

f(x) ◦ g(.) = supx∈X(f(x) ∧ μ(x)).

On the other hand, if we assume the considered fuzzy measure g is a necessity
induced by the fuzzy set μ(x), then we have the following expression [9]:∫

X

f(x) ◦ g(.) = infx∈X(f(x) ∨ (1 − μ(x))).

As we have stated above, the basic idea of our approaches is to use the fuzzy
measures (possibility, necessity) induced by the membership function C(.) of
the linguistic evaluation of certainty, to compute the average of the transformed
fuzzy number, by means of Sugeno’s integral.

At this point, it is necessary to remark that the transformation process of any
fuzzy number A(.) with crisp certainty value α has two steps:

(i) Truncating the fuzzy number at the level α, obtaining an non-normalized
fuzzy number Aα(.).

(ii) Transforming Aα(.) into a normalized fuzzy number T (A).

The idea is the following. In a first step, we apply the Sugeno’s integral to the
function f(α, x) = Aα(x) with respect to the α variable, obtaining a possibly
non-normalized fuzzy number. This fuzzy number will be transformed into a
normalized one in the step ii. This process can be done in two different ways
depending on wether we use the possibility or the necessity measures to perform
the integral.

Thus, let ΠC(.) stand for the possibility measure induced by C and Tp(.)
stand for the mean of the truncated fuzzy numbers. Then we have:

Tp(x) =
∫
[0,1] A

α(x) ◦ ΠC(α) = supα∈[0,1](Aα(x) ∧ C(α)) =
= supα∈[0,1](A(x) ∧ α ∧ C(α)) = A(x) ∧ supα∈[0,1](α ∧ C(α))

If Cp = supα∈[0,1](α ∧ C(α)), then we finally have:

Tp(x) = A(x) ∧ Cp

which indicates that, in the case of the possibility measure, the mean of truncated
values is the result of truncating with an specific value which only depends on
the linguistic label C(.).

Alternatively, let NC(.) stand for the necessity measure induced by C and
Tn(.) stand for the mean of the truncated fuzzy numbers. Using expression in
section 3, we have:

Tn(x) =
∫
[0,1] A

α(x) ◦ NC(α) = infα∈[0,1](Aα(x) ∨ (1 − C(α))) =
= infα∈[0,1](A(x) ∧ α ∨ (1 − C(α))) = A(x) ∧ infα∈[0,1](α ∨ (1 − C(α)))
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If Cn = infα∈[0,1](α ∨ (1 − C(α))), then we finally have:

Tn(x) = A(x) ∧ Cn

which indicates that, also in the case of the necessity measure, the mean of
truncated values is the result of truncating with an specific value which only
depends on the linguistic label C(.)

With the previous expression we have got two proposals for making this trun-
cation or, what is the same, we obtain two different fuzzy values Tp(x) and Tn(x).
In this first step we have integrated the fuzzy uncertainty C in the truncation
process.

As it happens with all dual measures, the expert can choose either to work
with both of them or to decide which one is the most suitable for the purpose
of the system. In figure 4 we graphically show the results obtained considering
that the linguistic label C has a trapezoidal membership function.

After the truncation, it is necessary to perform the corresponding transfor-
mations in order to obtain a normalized fuzzy number. TN (.), TP (.) will stand
for the transformed Tn(.) and Tp(.), respectively. They can be directly obtained
by the process described in section 2.

Moreover, we can conclude that TN (.) offers us a more imprecise transformed
fuzzy number that TP (.) since

TP (.) ⊆ TN(.).



170 A. González et al.

4 Conclusions

We have addressed the problem of dealing with linguistic uncertainty associ-
ated with a fuzzy quantity. With the basic idea of transforming uncertainty into
imprecision, two possible approaches have been presented; all of them give trans-
formations of the initial fuzzy number that lead to normalized fuzzy numbers.
Explicit expressions of such transformed fuzzy numbers have also been obtained.
This is a particularly useful property from the storage point of view (e.g. within
the databases world or in a data warehousing context), since it provides us with
a simple and unified representation for both certain and uncertain fuzzy values.
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