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Abstract. In this paper we study the impact of selecting different en-
tropy measures in the framework of intuitionistic fuzzy image process-
ing and especially in the process of intuitionistic fuzzification of images.
Different notions of entropy characterized by different properties are
reviewed and their behavior is thoroughly studied under the scope of per-
forming contrast enhancement. Finally, experimental results using gray-
scale images reveal the characteristics of the aforementioned measures.

1 Introduction

Entropy, a measure of information carried by a system, is a fundamental concept
in digital image processing. Therefore, it is not surprising that new theories, such
as fuzzy sets (FSs) theory, as well as their extensions, seek intuitive ways to adopt
and express the notion of entropy in their particular context.

Intuitionistic fuzzy image processing (IFIP), recently introduced in [1] and
[2], provides a flexible, yet solid, mathematical framework for dealing with the
vagueness present in a digital image. This is carried out by modelling the hes-
itancy characterizing image pixels, using Atanassov’s intuitionistic fuzzy sets
(A–IFSs) theory [3,4]. A–IFSs constitute a generalization of Zadeh’s fuzzy sets
(FSs) [5], by considering also corresponding degrees of hesitancy. It is this ad-
ditional degree of freedom that allows for the flexible modelling of imprecise
or/and imperfect information often present in images.

In this paper the different concepts of intuitionistic fuzzy entropy are reviewed
and their behavior is studied in the context of IFIP for performing contrast
enhancement. Evaluation of these measures using real-world images reveal their
particular characteristics that are to be exploited for different applications of
contrast enhancement in the context of IFIP.

This paper is organized as follows. In Sect. 2 elements of A–IFSs are presented
and their geometrical representation of in two- and three-dimensional spaces is
discussed. Sect. 3 reviews different concepts of entropy in the intuitionistic fuzzy
setting. An overview of the IFIP framework is presented in Sect. 4. Finally,
experimental results are given in Sect. 5, while conclusions are drawn in Sect. 6.
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2 Intuitionistic Fuzzy Sets

In this section, we briefly review the basic notions, concepts, and definitions of A–
IFSs, as well as their geometrical representations in two- and three-dimensional
spaces.

2.1 Elements of Intuitionistic Fuzzy Sets Theory

Definition 1. An FS Ã defined on a universe X may be given as [5]

Ã = {〈x, μÃ(x)〉|x ∈ X} , (1)

where μÃ(x) : X → [0, 1] is the membership function of Ã.

The membership function of Ã describes the degree of belongingness of x ∈ X
in Ã.

Definition 2. An A–IFS A defined on a universe X is given by [3,4]

A = {〈x, μA(x), νA(x)〉|x ∈ X} , (2)

where
μA(x) : X → [0, 1] and νA(x) : X → [0, 1] ,

with the condition
0 � μA(x) + νA(x) � 1 , (3)

for all x ∈ X.

The values of μA(x) and νA(x) denote the degree of belongingness and the degree
of non-belongingness of x to A, respectively. For an A–IFS A in X we call the
intuitionistic index of an element x ∈ X in A the following expression

πA(x) = 1 − μA(x) − νA(x) . (4)

We can consider πA(x) as a hesitancy degree of x to A [3,4]. From (4) it is evident
that

0 � πA(x) � 1 (5)

for all x ∈ X .
FSs can also be represented using the notation of A–IFSs. An FS Ã defined

on X can be represented as the following A–IFS

A = {〈x, μA(x), 1 − μA(x)〉|x ∈ X} , (6)

with πA(x) = 0 for all x ∈ X .

Definition 3. The complementary set Ac of A is defined as

Ac = {〈x, νA(x), μA(x)〉|x ∈ X} . (7)
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Fig. 1. Geometrical representation of an A–IFS A in X = {x}. (Adopted from [6].)

Throughout this paper by I FS (X) we denote the set of all A–IFSs defined
on X . Correspondingly, FS (X) is the set of all FSs on X , while 2X denotes
the set of all crisp sets.

Finally, Atanassov [4] proposed an operator, namely the Atanassov’s operator,
to de-construct an A–IFS into an FS.

Definition 4. If A ∈ I FS (X), then Dα : I FS (X) → FS (X), where

Dα(A) = {〈x, μA(x) + απA(x), νA(x) + (1 − α)πA(x)〉|x ∈ X} , (8)

with α ∈ [0, 1].

2.2 Geometrical Representation of A–IFSs

Generalizing Kosko’s [7] geometrical representation of FSs, Atanassov [4] pro-
posed a similar interpretation of A–IFSs in a Euclidean plane with Cartesian
coordinates. Szmidt and Kacprzyk [8] extended Atanassov’s approach by consid-
ering all three parameters of A–IFSs and proposed the geometrical representation
of A–IFSs as a mapping into a simplex in the unit cube. Moreover, they demon-
strated that Atanassov’s interpretation is simply the orthogonal projection of
the simplex of their definition into the Euclidean plane. Both representations
are illustrated in Fig. 1 for an A–IFS A in X = {x}.
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3 Notions of Entropy in the Intuitionistic Fuzzy Setting

Entropy plays an important role in digital image processing. Therefore, it comes
as no surprise that the notion of entropy constituted a fundamental aspect from
the beginning of the development of FSs theory. De Luca and Termini [9] were
the first to introduce an axiomatic skeleton of a nonprobabilistic entropy in the
setting of FSs theory that captured our intuition regarding the very essence of
fuzzy entropy.

As a natural consequence, the quest for entropy measures in the context of
A–IFSs was a very interesting topic that intrigued many researchers working
in this field. Burillo and Bustince [10] were the first to state and propose an
axiomatic skeleton of entropy for A–IFSs and interval-valued fuzzy sets.

Definition 5 (Burillo and Bustince [10]). A real function E : I FS (X) →
R

+ is called an entropy on I FS (X), if E has the following properties

(E1) E(A) = 0 if and only if A ∈ FS (X),
(E2) E(A) = Cardinal(X) if and only if μA(x) = νA(x) = 0 for all x ∈ X,
(E3) E(A) = E(Ac) for all A ∈ I FS (X),
(E4) E(A) � E(B) if μA(x) � μB(x) and νA(x) � νB(x) for all x ∈ X.

Motivated by De Luca and Termini’s set of axiomatic requirements, Szmidt and
Kacprzyk [8] proposed an alternative interpretation of entropy, accompanied by
a different set of axioms.

Definition 6 (Szmidt and Kacprzyk [8]). A real function E′ : I FS (X) →
R

+ is called an entropy on I FS (X), if E has the following properties

(E5) E′(A) = 0 if and only if A ∈ 2X,
(E6) E′(A) = 1 if and only if μA(x) = νA(x) for all x ∈ X,
(E7) E′(A) = E′(Ac) for all A ∈ I FS (X),
(E8) E′(A) � E′(B) if

μA(x) � μB(x) and νA(x) � νB(x) for μB(x) � νB(x)
or
μA(x) � μB(x) and νA(x) � νB(x) for μB(x) � νB(x) for all x ∈ X.

The aforementioned definition degenerates to De Luca and Termini’s definition
when FSs are considered. A generalized framework of Definition 6 was introduced
in [11]. Finally, it should be mentioned that a connection between the different
concepts of entropy for A–IFSs was explored and proved in [12].

3.1 Review of Intuitionistic Fuzzy Entropy Measures

Based on the aforementioned notions and definitions of entropy, different entropy
measures for A–IFSs were proposed in the literature. Along with their definition
of intuitionistic fuzzy entropy, Burillo and Bustince [10] proposed the following
entropy

E1(A) =
1
n

n∑

i=1

πA(xi) , (9)
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Fig. 2. Plots of entropy measures (a) E1, (b) E2, (c) E3, and (d) E4 for an A–IFS
defined in X = {x}

which satisfies the axiomatic requirements E1–E4 and expresses the degree of
intuitionism of the set A. In (9), the normalization factor 1

n has been added,
in order for the entropy E1 to lie in the [0, 1] interval. Additionally, Burillo and
Bustince proposed an alternative entropy measure given by

E2(A) =
1
n

n∑

i=1

(
1 − (μA(xi) + νA(xi)) e1−(μA(xi)+νA(xi))

)
. (10)

The first measure of entropy satisfying axioms E5–E8 was introduced by
Szmidt and Kacprzyk [8] as a ratio of distances between an A–IFS and its nearest
and farthest crisp sets, respectively. The aforementioned entropy is given by

E3(A) =
1
n

n∑

i=1

(
max Count (Ai ∩ Ac

i )
max Count (Ai ∪ Ac

i )

)
, (11)

where maxCount is the biggest cardinality of an A–IFS calculated using the
following formula

max Count(A) =
n∑

i=1

(μA(xi) + πA(xi)) (12)
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Fig. 3. Overview of the IFIP framework

and Ai denotes the single-element A–IFS corresponding to the i-the element xi

of the universe X , described as Ai = {〈xi, μA(xi), νA(xi)〉}; i.e. Ai is the i-th
“component” of A.

An inner product-based entropy measure, also satisfying the axiomatic re-
quirements of E5–E8, was introduced in [13] and is given by

E4(A) =
1
n

n∑

i=1

2μA(xi)νA(xi) + π2
A(xi)

π2
A(xi) + μ2

A(xi) + ν2
A(xi)

. (13)

Fig. 2 illustrates the aforementioned entropy measures using the geometrical
representation of A–IFSs described in Sect. 2.2 for a singe-element universe X =
{x}. The gray level of each point (μA(x), νA(x), πA(x)) on the simplex denotes the
entropyvalue of the setA={〈x, μA(x), νA(x)〉|x ∈ X} corresponding to thatpoint.

Finally, the entropy measures listed in this section, satisfying and expressing
different concepts of intuitionistic fuzzy entropy, will be evaluated in order to
assess their behavior, under the scope of performing contrast enhancement, using
the IFIP framework.

4 From Images to A–IFSs: Entropy Optimization

4.1 The Intuitionistic Fuzzy Image Processing Framework

Intuitionistic fuzzy image processing (IFIP) [1,2], involves in general a set of
operations carried out using the concepts and elements of A–IFSs theory. Fig. 3
shows an overview of the IFIP framework. In the first stage the image is trans-
ferred into the fuzzy domain and sequentially into the intuitionistic fuzzy do-
main, where the main processing is performed. The inverse procedure is carried
out in order to obtain the processed image in the gray-level domain. In this
paper we focus on the role of intuitionistic fuzzy entropy measures in the stage
of analyzing the image into its intuitionistic fuzzy components; i.e. the stage of
“intuitionistic fuzzification”.

4.2 Intuitionistic Fuzzification

In [2], an intuitionistic fuzzification scheme for constructing the A–IFS
corresponding to a gray-scale image was proposed, based on the optimization
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of its intuitionistic fuzzy entropy. In this section, we briefly describe the afore-
mentioned approach.

Let us consider an image A of size M × N pixels having L gray levels g
ranging between 0 and L − 1. The image can be considered as an array of fuzzy
singletons [14,15], with each element of the array denoting the membership value
of the corresponding pixel, with respect to an image property. For the task of
contrast enhancement we consider the property “brightness” of the intensity
levels. Therefore, the image in the fuzzy domain can be represented as the FS

Ã = {〈gij , μÃ(gij)〉|gij ∈ {0, . . . , L − 1}} , (14)

with i ∈ {1, . . . , M} and j ∈ {1, . . . , N}.
A basic procedure of IFIP is the derivation of a combination of membership

and non-membership functions that model the gray levels of the image in an
optimal way. The optimality is considered under the scope of maximizing the
intuitionistic fuzzy entropy of the image and thus it is called “maximum intu-
itionistic fuzzy entropy principle” [2]. The family of parametric membership and
non-membership functions, used for optimization, is given respectively by

μA(g; λ) = 1 − (1 − μÃ(g))λ (15)

and
νA(g; λ) = (1 − μÃ(g))λ(λ+1) , (16)

with λ � 0, where the membership function μÃ(g) of the fuzzified image is given
by

μÃ(g) =
g − gmin

gmax − gmin
. (17)

Moreover, the optimization criterion involved can be formulated as follows

λopt = arg max
λ�1

{E(A; λ)} , (18)

where E is an entropy measure.
After obtaining the optimal parameter λopt, the image is represented as the

following A–IFS

Aopt = {〈g, μA(g; λopt), νA(g; λopt)〉|g ∈ {0, . . . , L − 1}} . (19)

By applying Atanassov’s operator to the A–IFS Aopt, we obtain different rep-
resentations of the image in the fuzzy domain, depending on the parameter α
selected. The “maximum index of fuzziness intuitionistic defuzzification” proce-
dure was proposed in [12] for selecting the optimal parameter αopt, according to
the following scheme

αopt =

⎧
⎪⎨

⎪⎩

0 , if α′
opt < 0

α′
opt , if 0 � α′

opt � 1
1 , if α′

opt > 1
, (20)
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Fig. 4. (a) Under-exposed gray-scale image and images obtained using (b) the his-
togram equalization technique and the IFIP framework employing entropy (c) E1

(λopt = 6.71), (d) E2 (λopt = 6.87), (e) E3 (λopt = 11.30), and (f) E4 (λopt = 11.05)

where

α′
opt =

∑L−1
g=0 hÃ(g)πA(g; λopt) (1 − 2μA(g; λopt))

2
∑L−1

g=0 hÃ(g)π2
A(g; λopt)

, (21)

with hÃ being the histogram of the fuzzified image Ã.
Finally, the image in the gray-level domain is obtained as

g′ = (L − 1)μDαopt(Aopt)(g) , (22)

where

μDαopt(Aopt)(g) = αopt + (1 − αopt)μA(g; λopt) − αoptνA(g; λopt) , (23)

and g′, g are the new and initial intensity levels, respectively.

5 Experimental Results

The main purpose of this work is to explore the role of intuitionistic fuzzy en-
tropy in the process of intuitionistic fuzzification of images. Therefore, the afore-
mentioned intuitionistic fuzzy entropy measures, were applied to low-contrasted
images in order to perform contrast enhancement.
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Fig. 5. (a) Over-exposed gray-scale image and images obtained using (b) the histogram
equalization technique and the IFIP framework employing entropy (c) E1 (λopt = 1.60),
(d) E2 (λopt = 2.72), (e) E3 (λopt = 0.59), and (f) E4 (λopt = 0.45)

Figs. 4(a) and 4(b) depict an under-exposed image along with its histogram
equalized version. Figs. 4(c)–4(f) illustrate images processed using the IFIP
framework employing the intuitionistic fuzzy entropy measures E1, E2, E3, and
E4, respectively. One may observe that the images obtained using the IFIP
framework have been drastically enhanced, revealing high-frequency edges and
constant-intensity regions initially not visible due to the low contrast. Moreover,
employing the entropy measures E1 and E2, results in a more radical enhance-
ment of the initial image, with E2 exhibiting a slightly better performance.
Compared to the histogram-equalized image of Fig. 4(b) the IFIP framework
delivers better results for contrast enhancement.

On the other hand, for the over-exposed image of Fig. 5 one may observe
that even though entropies E1 and E2 enhance the initial image, the results
are not satisfactory compared to the ones obtained using entropy measures E3
and E4 or to the image derived by the histogram equalization technique. How-
ever, the IFIP framework equipped with the entropies E3 and E4 yields images
exhibiting an overall drastic, yet smooth, enhancement, in contrast with the
histogram-equalized image of Fig. 5(b), which appears to be somewhat not nat-
ural, possessing regions that have been over-enhanced.

As a final remark, we can outline that the performance of an entropy measure
depends more to the set of axioms that it conforms with, than to the form of the
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measure itself. By examining the corresponding images, as well as the values of
λopt, entropy E3 performs better for dark low-contrasted images, while E4 for
brighter ones. Finally, entropies satisfying properties E5–E8 exhibit in general
a better performance for any type of low-contrasted image.

6 Conclusions

In this paper we explored the role of entropy in the context of intuitionistic
fuzzy image processing. Different entropy measures for A–IFSs with different
characteristics were evaluated and their behavior to contrast enhancement of
low-contrasted images was examined. Finally, experimental results to real-world
images demonstrated that the different notions of intuitionistic fuzzy entropy
treat images in different ways, thus making the selection of the appropriate
entropy measure to be application-dependent.
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