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Preface

This book comprises a selection of papers from IFSA 2007 on new methods and
theories that contribute to the foundations of fuzzy logic and soft computing.
These papers were selected from over 400 submissions and constitute an impor-
tant contribution to the theory and applications of fuzzy logic and soft com-
puting methodologies. Soft computing consists of several computing paradigms,
including fuzzy logic, neural networks, genetic algorithms, and other techniques,
which can be used to produce powerful intelligent systems for solving real-world
problems. The papers of IFSA 2007 also make a contribution to this goal.

This book is intended to be a major reference for scientists and engineers
interested in applying new computational and mathematical tools to achieve
intelligent solutions to complex problems. We consider that this book can also
be used to get novel ideas for new lines of research, or to continue the lines of
research proposed by the authors of the papers contained in the book.

The book is divided into 14 main parts. Each part contains a set of papers on
a common subject, so that the reader can find similar papers grouped together.
Some of these parts comprise the papers of organized sessions of IFSA 2007 and
we thank the session organizers for their incredible job in forming these sessions
with invited and regular paper submissions.

In Part I, we begin with a set of papers on the “Relation Between Interval
and Fuzzy Techniques” from a session organized by Vadik Kreinovich and Hung
T. Nguyen. This set of papers show important results on the relations between
interval and fuzzy techniques, which has become very important lately in part
because of the progress of interval type-2 fuzzy logic.

In Part II, we have a set of papers on “Intuitionistic Fuzzy Sets and Their
Applications” from a session organized by Eulalia Szmidt and Janusz Kacprzyk.
These papers show important theoretical results, as well as novel applications of
intuitionistic fuzzy logic. The area of intuitionistic fuzzy logic has also become
a potential area of promissory results for the future of fuzzy logic.

In Part III, we have a collection of papers on the topic of “The Application of
Fuzzy Logic and Soft Computing in Flexible Querying” from a session organized
by Guy DeTre and Slawek Zadrozny. These papers show important theoretical
results and applications of fuzzy logic and soft computing in achieving flexible
querying for database systems. The area of flexible querying has become an
important subject for achieving intelligent interfaces with human users and for
managing large databases.

In Part IV, we have a collection of papers on “Philosophical and Human Sci-
entific Aspects of Soft Computing” from a session organized by Vesa A. Niska-
nen. These papers show the interesting relationships between the philosophical
aspects of soft computing and the formal-scientific aspects of soft computing.
Papers on this subject are very important because they help in understanding
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the area of soft computing, and also enable new theories and methods in this
area to be proposed.

In Part V, we have a collection of papers on “Search Engine and Information
Processing and Retrieval” from a special FLINT session organized by Masoud
Nikravesh. These papers describe important contributions on search engines for
the Web, summarization, computing with words and granular computing, for
information processing and retrieval. Papers on these subjects are very important
theoretically as well as for applications because of the importance of Web search
for documents and images.

In Part VI, we have a set of papers on “Perception-Based Data Mining and
Decision-Making” from a session organized by Ildar Batyrshin, Janusz Kacprzyk,
and Ronald R. Yager. These papers constitute an important contribution to data
mining and linguistic summarization using fuzzy logic. Papers on these subjects
are very important because data mining and building summaries are necessary
in managing large amounts of data and information.

In Part VII, we have a collection of papers on “Joint Model-Based and Data-
Based Learning: The Fuzzy Logic Approach” from a session organized by Joseph
Aguilar-Martin and Julio Waissman Vilanova. These papers describe important
contributions to solving the problems of learning in different types of models
using fuzzy logic. Also, the new learning methods are applied to different appli-
cations. Learning from data and models is very important for solving real-world
problems.

In Part VIII, we have a group of papers on “Fuzzy/Possibilistic Optimiza-
tion” from a session organized by Weldon Lodwick. These papers describe impor-
tant theoretical results and applications of fuzzy optimization. The optimization
problem is considered from the point of view of fuzzy logic, which gives better
results than traditional approaches.

In Part IX, we have a group of papers on the subject of “Fuzzy Trees” from a
session organized by Ziheng Huang and Masoud Nikravesh. These papers show
important theoretical results and applications of fuzzy trees. The use of fuzzy
trees is very important as a model of human decision making and for this reason
can have many real-world applications.

In Part X, we have a collection of papers on “Fuzzy Logic Theory” that
describe different contributions to the theory of fuzzy logic. These papers show
mainly theoretical results on fuzzy logic that can help advance the theory and/or
provide fundamental tools for possible solutions to real-world problems.

In Part XI, we have a set of papers on “Type-2 Fuzzy Logic” that describe
several contributions to the theory and applications of interval type-2 fuzzy logic.
The papers represent an important contribution to the state of the art in this
area, and also show that real problems can be solved using interval type-2 fuzzy
logic.

In Part XII, we have a group of papers on “Fuzzy Logic Applications” that
show a wide range of applications of fuzzy logic theory. The papers describe in
detail important real-world problems that have been solved satisfactorily with
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fuzzy systems. Also, the fuzzy solutions are shown to be better than traditional
solutions to these problems.

In Part XIII, we have a collection of papers on “Neural Networks and Con-
trol” that comprise theoretical contributions on neural networks and intelligent
control, as well as real applications of these areas. The papers represent an im-
portant contribution to the state of the art in neural network and intelligent
control.

In Part XIV, we have a collection of papers on “Intelligent Agents, Knowledge
Bases and Ant Colony Optimization” that comprise important contributions in
these fields. These papers show theoretical results and important applications
of intelligent agents and knowledge-based systems. Also, there are papers on
ant colony optimization that show the application of this type of evolutionary
methods.

We end this preface by thanking all the people who helped or encouraged us
during the writing of this book. We would like to thank our colleagues working in
soft computing, who are too many to mention individually. Of course, we thank
the supporting agencies in our countries for their help during this project. We
would like to thank our institutions, for always supporting our projects.

March 2007 Patricia Melin
Oscar Castillo

Luis T. Aguilar
Janusz Kacprzyk

Witold Pedrycz
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Roberto Sepúlveda Cruz, CITEDI-IPN, Tijuana

List of Additional Reviewers

Troels Andreassen, Denmark
Gloria Bordogna, Italy
Jesús Campana, Spain
Eliseo Clementini, Italy
Oscar Cordon, Spain
Fabio Crestani, Switzerland
Guy De Tre, Belgium
Marcin Detyniecki, France
Axel Hallez, Belgium
Enrique Herrera-Viedma, Spain
Janusz Kacprzyk, Poland
Donald Kraft, USA
Zongmin Ma, China
Luis Mancilla, Mexico
Milan Mares, Czech Republic
Nicolas Marin, Spain

Christophe Marsala, France
Maria-Jose Martin-Bautista, Spain
Tom Matthe, Belgium
Oscar Montiel, Mexico
Adam Niewiadomski, Poland
Gabriella Pasi, Italy
Frederick E. Petry, USA
Olivier Pivert, France
Olga Pons, Spain
Ellie Sanchez, France
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Fuzzy Classifier with Probabilistic IF-THEN Rules . . . . . . . . . . . . . . . . . . . 666
Hexin Lv, Bin Zhu, and Yongchuan Tang

Fuzzy Adaptive Search Method for Parallel Genetic Algorithm Tuned
by Evolution Degree Based on Diversity Measure . . . . . . . . . . . . . . . . . . . . 677

Yoichiro Maeda and Qiang Li

Fuzzy Controller for Robot Manipulators . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
Basil M. Al-Hadithi, Fernando Mat́ıa, and Agust́ın Jiménez
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1 Estimating Variance Under Interval and Fuzzy
Uncertainty: Motivations and Known Results

Computing statistics is important. Traditional data processing in science and
engineering starts with computing the basic statistical characteristics such as
the population mean and population variance:

E =
1
n

·
n∑

i=1

xi V =
1
n

·
n∑

i=1

(xi − E)2.

Additional problem. Traditional engineering statistical formulas assume that we
know the exact values xi of the corresponding quantity. In practice, these values
come either from measurements or from expert estimates. In both case, we get
only approximations x̃i to the actual (unknown) values xi.

Whenweuse these approximate values x̃i �= xi to compute the desired statistical
characteristics such as E and V , we only get approximate valued Ẽ and Ṽ for these
characteristics. It is desirable to estimate the accuracy of these approximations.

Case of measurement uncertainty. Measurements are never 100% accurate. As a
result, the result x̃ of the measurement is, in general, different from the (unknown)
actual value x of the desired quantity. The difference Δx

def= x̃ − x between the
measured and the actual values is usually called a measurement error.

The manufacturers of a measuring device usually provide us with an upper
bound Δ for the (absolute value of) possible errors, i.e., with a bound Δ for
which we guarantee that |Δx| ≤ Δ. The need for such a bound comes from the
very nature of a measurement process: if no such bound is provided, this means
that the difference between the (unknown) actual value x and the observed value
x̃ can be as large as possible.

Since the (absolute value of the) measurement error Δx = x̃ − x is bounded
by the given bound Δ, we can therefore guarantee that the actual (unknown)
value of the desired quantity belongs to the interval [x̃ − Δ, x̃ + Δ].

Traditional probabilistic approach to describing measurement uncertainty. In
many practical situations, we not only know the interval [−Δ, Δ] of possible
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values of the measurement error; we also know the probability of different values
Δx within this interval [7].

In practice, we can determine the desired probabilities of different values of
Δx by comparing the results of measuring with this instrument with the results
of measuring the same quantity by a standard (much more accurate) measuring
instrument. Since the standard measuring instrument is much more accurate
than the one use, the difference between these two measurement results is prac-
tically equal to the measurement error; thus, the empirical distribution of this
difference is close to the desired probability distribution for measurement error.

Interval approach to measurement uncertainty. As we have mentioned, in many
practical situations, we do know the probabilities of different values of the mea-
surement error. There are two cases, however, when this determination is not
done:

– First is the case of cutting-edge measurements, e.g., measurements in fun-
damental science. When a Hubble telescope detects the light from a dis-
tant galaxy, there is no “standard” (much more accurate) telescope floating
nearby that we can use to calibrate the Hubble: the Hubble telescope is the
best we have.

– The second case is the case of measurements on the shop floor. In this case, in
principle, every sensor can be thoroughly calibrated, but sensor calibration
is so costly – usually costing ten times more than the sensor itself – that
manufacturers rarely do it.

In both cases, we have no information about the probabilities of Δx; the only
information we have is the upper bound on the measurement error.

In this case, after performing a measurement and getting a measurement result
x̃, the only information that we have about the actual value x of the measured
quantity is that it belongs to the interval x = [x̃−Δ, x̃+Δ]. In this situation, for
each i, we know the interval xi of possible values of xi, and we need to find the
ranges E and V of the characteristics E and V over all possible tuples xi ∈ xi.

Case of expert uncertainty. An expert usually describes his/her uncertainty by
using words from the natural language, like “most probably, the value of the
quantity is between 6 and 7, but it is somewhat possible to have values between
5 and 8”. To formalize this knowledge, it is natural to use fuzzy set theory,
a formalism specifically designed for describing this type of informal (“fuzzy”)
knowledge [3,6].

As a result, for every value xi, we have a fuzzy set μi(xi) which describes
the expert’s prior knowledge about xi: the number μi(xi) describes the expert’s
degree of certainty that xi is a possible value of the i-th quantity.

An alternative user-friendly way to represent a fuzzy set is by using its α-cuts
{xi | μi(xi) > α} (or {xi | μi(xi) ≥ α}). For example, the α-cut corresponding to
α = 0 is the set of all the values which are possible at all, the α-cut corresponding
to α = 0.1 is the set of all the values which are possible with degree of certainty
at least 0.1, etc. In these terms, a fuzzy set can be viewed as a nested family of
intervals [xi(α), xi(α)] corresponding to different level α.
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Estimating statistics under fuzzy uncertainty: precise formulation of the problem.
In general, we have fuzzy knowledge μi(xi) about each value xi; we want to find the
fuzzy set corresponding to a given characteristic y = C(x1, . . . , xn). Intuitively,
the value y is a reasonable value of the characteristic if y = f(x1, . . . , xn) for some
reasonable values xi, i.e., if for some values x1, . . . , xn, x1 is reasonable, and x2

is reasonable, . . . , and f = f(x1 . . . , xn). If we interpret “and” as min and “for
some” (“or”) as max, then we conclude that the corresponding degree of certainty
μ(y) in y is equal to μ(y) = max{min(μ1(x1), . . . , μn(xn))|C(x1, . . . , xn) = y}.

Reduction to the case of interval uncertainty. It is known that the above formula
(called extension principle) can be reformulated as follows: for each α, the α-cut
y(α) of y is equal to the range of possible values of C(x1, . . . , xn) when xi ∈ xi(α)
for all i. Thus, from the computational viewpoint, the problem of computing the
statistical characteristic under fuzzy uncertainty can be reduced to the problem
of computing this characteristic under interval uncertainty; see, e.g., [2].

In view of this reduction, in the following text, we will consider the case of
interval uncertainty.

Estimating statistics under interval uncertainty: a problem. In the case of inter-
val uncertainty, instead of the true values x1, . . . , xn, we only know the intervals
x1 = [x1, x1], . . . ,xn = [xn, xn] that contain the (unknown) true values of the
measured quantities. For different values xi ∈ xi, we get, in general, different val-
ues of the corresponding statistical characteristic C(x1, . . . , xn). Since all values
xi ∈ xi are possible, we conclude that all the values C(x1, . . . , xn) corresponding
to xi ∈ xi are possible estimates for the corresponding statistical characteris-
tic. Therefore, for the interval data x1, . . . ,xn, a reasonable estimate for the
corresponding statistical characteristic is the range

C(x1, . . . ,xn) def= {C(x1, . . . , xn) | x1 ∈ x1, . . . , xn ∈ xn}.

We must therefore modify the existing statistical algorithms so that they com-
pute, or bound these ranges.

Estimating mean under interval uncertainty. The arithmetic average E is a
monotonically increasing function of each of its n variables x1, . . . , xn, so its
smallest possible value E is attained when each value xi is the smallest possible
(xi = xi) and its largest possible value is attained when xi = xi for all i.
In other words, the range E of E is equal to [E(x1, . . . , xn), E(x1, . . . , xn)]. In

other words, E =
1
n

· (x1 + . . . + xn) and E =
1
n

· (x1 + . . . + xn).

Estimating variance under interval uncertainty. It is known that the problem
of computing the exact range V = [V , V ] for the variance V over interval data
xi ∈ [x̃i −Δi, x̃i +Δi] is, in general, NP-hard; see, e.g., [4,5]. Specifically, there is
a polynomial-time algorithm for computing V , but computing V is, in general,
NP-hard.
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In many practical situations, there are efficient algorithms for computing V :
e.g., an O(n · log(n)) time algorithm exists when no two narrowed intervals

[x−
i , x+

i ], where x−
i

def= x̃i − Δi

n
and x+

i
def= x̃i +

Δi

n
, are proper subsets of one

another, i.e., when [x−
i , x+

i ] �⊆ (x−
j , x+

j ) for all i and j [1].

2 Hierarchical Case: Formulation of the Problem

Hierarchical case: description. In some practical situations, we do not know
the individual values of the observations xi, we only have average values cor-
responding to several (m < n) groups I1, . . . , Im of observations. Typically, for
each group j, we know the frequency pj of this group (i.e., the probability that
a randomly selected observation belongs to this group), the average Ej over this
group, and the standard deviation σj within j-th group.

Hierarchical case: analysis. In this case, the overall average E can be described
as

E =
1
n

·
n∑

i=1

xi =
1
n

·
m∑

j=1

∑

i∈Ij

xi.

By definition of the group average Ej , we have Ej =
1
nj

·
∑

i∈Ij

xi, where nj = pj ·n

denotes the overall number of elements in the j-th group. Thus,
∑

i∈Ij

xi = nj ·Ej =

pj · n · Ej , hence

E =
m∑

j=1

pj · Ej . (1)

Similarly, the overall variance V = σ2 can be described as

V =
1
n

·
n∑

i=1

x2
i − E2 =

1
n

·
m∑

j=1

∑

i∈Ij

x2
i − E2.

For each j and for each i ∈ Ij , we have xi = (xi − Ej) + Ej , hence x2
i =

(xi − Ej)2 + E2
j + 2(xi − Ej) · Ej . Therefore,

∑

i∈Ij

x2
i =

∑

i∈Ij

(xi − Ej)2 + nj · E2
j + 2Ej ·

∑

i∈Ij

(xi − Ej).

The first sum, by definition of population variance σj , is equal to nj · σ2
j ; the

third sum, by definition of the population mean, is equal to 0. Thus,
∑

i∈Ij

x2
i =

nj · (σ2
j + E2

j ), where nj = pj · n, and thus,

V = VE + Vσ, (2)
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where
VE

def= ME − E2, (3)

ME
def=

m∑

j=1

pj · E2
j , (4)

Vσ
def=

m∑

j=1

pj · σ2
j . (5)

Hierarchical case: situation with interval uncertainty. It is reasonable to consider
the situations when we only know the values Ej and σj with interval uncertainty,
i.e., when we only know the intervals Ej = [Ej , Ej ] and [σj , σj ] that contain the
actual (unknown) values of Ej and σj . In such situations, we must find the ranges
of the possible values for the population mean E (as described by the formula
(1)) and for the population variance V (as described by the formula (2)).

Analysis of the interval problem. The formula (1) that describes the dependence
of E on Ej is monotonic in Ej . Thus, we get an explicit formula for the range
[E, E] of the population mean E:

E =
m∑

j−1

pj · Ej ; E =
m∑

j−1

pj · Ej .

Since the terms VE and Vσ in the expression for V depend on different vari-
ables, the range [V , V ] of the population variance V is equal to the sum of the
ranges [V E , V E ] and [V σ, V σ] of the corresponding terms:

V = V E + V σ; V = V E + V σ.

Due to similar monotonicity, we can find an explicit expression for the range
[V σ, V σ] for Vσ:

V σ =
m∑

j=1

pj · (σj)
2; V σ =

m∑

j=1

pj · (σj)2.

Thus, to find the range of the population variance V , it is sufficient to find the
range of the term VE . So, we arrive at the following problem:

Formulation of the problem in precise terms.

GIVEN:

– an integer m ≥ 1;

– m numbers pj > 0 for which
m∑

j=1

pj = 1; and

– m intervals Ej = [Ej , Ej ].
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COMPUTE the range VE = {VE(E1, . . . , Em) | E1 ∈ E1, . . . , Em ∈ Em}, where

VE
def=

m∑

j=1

pj · E2
j − E2; E

def=
m∑

j=1

pj · Ej .

3 Main Result

Since the function VE is convex, we can compute its minimum V E on the box
E1×. . .×Em by using known polynomial-time algorithms for minimizing convex
functions over interval domains; see, e.g., [8].

For computing maximum V E , even the particular case when all the values pj

are equal p1 = . . . = pm = 1/m, is known to be NP-hard. Thus, the more general
problem of computing V E is also NP-hard. Let us show that in a reasonable class
of cases, there exists a feasible algorithm for computing V E .

For each interval Ej , let us denote its midpoint by Ẽj
def=

Ej + Ej

2
, and its

half-width by Δj
def=

Ej − Ej

2
. In these terms, the j-th interval Ej takes the

form [Ẽj − Δj , Ẽj + Δj ].
In this paper, we consider narrowed intervals [E−

j , E+
j ], where

E−
j

def= Ẽj − pj · Δj , E+
j

def= Ẽj + pj · Δj .

We show that there exists an efficient O(m · log(m)) algorithm for computing V E

for the case when no two narrowed intervals are proper subsets of each other,
i.e., when [E−

j , E+
j ] �⊆ (E−

k , E+
k ) for all j and k.

Algorithm.

– First, we sort the midpoints Ẽ1, . . . , Ẽm into an increasing sequence. Without
losing generality, we can assume that

Ẽ1 ≤ Ẽ2 ≤ . . . ≤ Ẽm.

– Then, for every k from 0 to m, we compute the value V
(k)
E = M (k) − (E(k))2

of the quantity VE for the vector E(k) = (E1, . . . , Ek, Ek+1, . . . , Em).
– Finally, we compute V E as the largest of m + 1 values V

(0)
E , . . . , V

(m)
E .

To compute the values V
(k)
E , first, we explicitly compute M (0), E(0), and V

(0)
E =

M (0) − E(0). Once we computed the values M (k) and E(k), we can compute

M (k+1) = M (k) + pk+1 · (Ek+1)
2 − pk+1 · (Ek+1)2

and
E(k+1) = E(k) + pk+1 · Ek+1 − pk+1 · Ek+1.
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4 Proof

Number of computation steps.

– It is well known that sorting requires O(m · log(m)) steps.
– Computing the initial values M (0), E(0), and V

(0)
E requires linear time O(m).

– For each k from 0 to m − 1, we need a constant number O(1) of steps to
compute the next values M (k+1), E(k+1), and V

(k+1)
E .

– Finally, finding the largest of m + 1 values V
(k)
E also requires O(m) steps.

Thus, overall, we need

O(m · log(m)) + O(m) + m · O(1) + O(m) = O(m · log(m)) steps.

Proof of correctness. The function VE is convex. Thus, its maximum V E on the
box E1 × . . . × Em is attained at one of the vertices of this box, i.e., at a vector
(E1, . . . , Em) in which each value Ej is equal to either Ej or to Ej .

To justify our algorithm, we need to prove that this maximum is attained at
one of the vectors E(k) in which all the lower bounds Ej precede all the upper
bounds Ej . We will prove this by reduction to a contradiction. Indeed, let us
assume that the maximum is attained at a vector in which one of the lower
bounds follows one of the upper bounds. In each such vector, let i be the largest
upper bound index followed by the lower bound; then, in the optimal vector
(E1, . . . , Em), we have Ei = Ei and Ei+1 = Ei+1.

Since the maximum is attained for Ei = Ei, replacing it with Ei = Ei − 2Δi

will either decrease the value of VE or keep it unchanged. Let us describe how
VE changes under this replacement. Since VE is defined in terms of M and E,
let us first describe how E and M change under this replacement. In the sum
for M , we place (Ei)2 with

(Ei)
2 = (Ei − 2Δi)2 = (Ei)2 − 4 · Δi · Ei + 4 · Δ2

i .

Thus, the value M changes into M + ΔiM , where

ΔiM = −4 · pi · Δi · Ei + 4 · pi · Δ2
i . (6)

The population mean E changes into E + ΔiE, where

ΔiE = −2 · pi · Δi. (7)

Thus, the value E2 changes into (E + ΔiE)2 = E2 + Δi(E2), where

Δi(E2) = 2 · E · ΔiE + (ΔiE)2 = −4 · pi · E · Δi + 4 · p2
i · Δ2

i . (8)

So, the variance V changes into V + ΔiV , where
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ΔiV = ΔiM − Δi(E2) = −4 · pi · Δi · Ei + 4 · pi · Δ2
i + 4 · pi · E · Δi − 4 · p2

i · Δ2
i =

4 · pi · Δi · (−Ei + Δi + E − pi · Δi).

By definition, Ei = Ẽi + Δi, hence −Ei + Δi = −Ẽi. Thus, we conclude that

ΔiV = 4 · pi · Δi · (−Ẽi + E − pi · Δi). (9)

So, the fact that ΔiV ≤ 0 means that

E ≤ Ẽi + pi · Δi = E+
i . (10)

Similarly, since the maximum of VE is attained for Ei+1 = Ei+1, replacing it with
Ei+1 = Ei+1 + 2Δi+1 will either decrease the value of VE or keep it unchanged.
In the sum for M , we replace (Ei+1)

2 with

(Ei+1)2 = (Ei+1 + 2Δi+1)2 = (Ei+1)
2 + 4 · Δi+1 · Ei+1 + 4 · Δ2

i+1.

Thus, the value M changes into M + Δi+1M , where

Δi+1M = 4 · pi+1 · Δi+1 · Ei+1 + 4 · pi+1 · Δ2
i+1. (11)

The population mean E changes into E + Δi+1E, where

Δi+1E = 2 · pi+1 · Δi+1. (12)

Thus, the value E2 changes into E2 + Δi+1(E2), where

Δi+1(E2) = 2 · E · Δi+1E + (Δi+1E)2 = 4 · pi+1 · E · Δi+1 + 4 · p2
i+1 · Δ2

i+1. (13)

So, the term VE changes into VE + Δi+1V , where

Δi+1V = Δi+1M − Δi+1(E2) =

4 · pi+1 · Δi+1 · Ei+1 + 4 · pi+1 · Δ2
i+1 − 4 · pi+1 · E · Δi+1 − 4 · p2

i+1 · Δ2
i+1 =

4 · pi+1 · Δi+1 · (Ei+1 + Δi+1 − E − pi+1 · Δi+1).

By definition, Ei+1 = Ẽi+1−Δi+1, hence Ei+1+Δi+1 = Ẽi+1. Thus, we conclude
that

Δi+1V = 4 · pi+1 · (Ẽi+1 − E − pi+1 · Δi+1). (14)

Since VE attains maximum at (E1, . . . , Ei, Ei+1, . . . , Em), we have Δi+1V ≤ 0,
hence

E ≥ Ẽi+1 − pi+1 · Δi+1 = E−
i+1. (15)

We can also change both Ei and Ei+1 at the same time. In this case, from
the fact that VE attains maximum, we conclude that ΔVE ≤ 0.

Here, the change ΔM in M is simply the sum of the changes coming from Ei

and Ei+1:
ΔM = ΔiM + Δi+1M, (16)
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and the change in E is also the sum of the corresponding changes:

ΔE = ΔiE + Δi+1E. (17)

So, for
ΔV = ΔM − Δ(E2),

we get

ΔV = ΔiM + Δi+1M − 2 · E · ΔiE − 2 · E · Δi+1E − (ΔiE)2 − (Δi+1E)2−

2 · ΔiE · Δi+1E.

Hence,

ΔV = (ΔiM −2 ·Ei ·ΔiE − (ΔiE)2)+(Δi+1M −2 ·Ei+1 ·Δi+1E − (Δi+1E)2)−

2 · ΔEi · ΔEi+1,

i.e.,
ΔV = ΔiV + Δi+1V − 2 · ΔiE · Δi+1E. (18)

We already have expressions for ΔiV , Δi+1V , ΔiE, and Δi+1E, and we already
know that E−

i+1 ≤ E ≤ D+
i . Thus, we have D(E) ≤ 0 for some E ∈ [E−

i+1, E
+
i ],

where

D(E) def= 4·pi ·Δi ·(−E+
i +E)+4·pi+1 ·Δi+1 ·(E−i + 1−E)+8·pi ·Δi ·pi+1 ·Δi+1.

Since the narrowed intervals are not subsets of each other, we can sort them
in lexicographic order; in which order, midpoints are sorted, left endpoints are
sorted, and right endpoints are sorted, hence E−

i ≤ E−
i+1 and E+

i ≤ E+
i+1.

For E = E−
i+1, we get

D(E−
i+1) = 4 · pi · Δi · (−E+

i + E−
i+1) + 8 · pi · Δi · pi+1 · Δi+1 =

4 · pi · Δi · (−E+
i + E−

i+1 + 2 · pi+1 · Δi+1).

By definition, E−
i+1 = Ei+1 − pi+1 · Δi+1, hence E−

i+1 + 2 · pi+1 · Δi+1 = E+
i+1,

and
D(E−

i+1) = 4 · pi · Δi · (E+
i+1 − E+

i ) ≥ 0.

Similarly,
D(E+

i ) = 4 · pi+1 · Δi+1 · (E−
i+1 − E+

i ) ≥ 0.

The only possibility for both values to be 0 is when interval coincide; in this
case, we can easily swap them. In all other cases, all intermediate values D(E)
are positive, which contradicts to our conclusion that D(E) ≤ 0. The statement
is proven.

Acknowledgments. This work was supported in part by NSF grants EAR-
0225670 and DMS-0532645 and by the Texas Department of Transportation
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Abstract. The CESTAC method and its implementation known as
CADNA software have been created to estimate the accuracy of the
solution of real life problems when these solutions are obtained from nu-
merical methods implemented on a computer. The method takes into
account uncertainties on data and round-off errors. On another hand a
theoretical model for this method in which operands are gaussian vari-
ables called stochastic numbers has been developed. In this paper nu-
merical examples based on the Lagrange polynomial interpolation and
polynomial computation have been constructed in order to demonstrate
the consistency between the CESTAC method and the theory of stochas-
tic numbers. Comparisons with the interval approach are visualized.

1 Introduction

The CESTAC method is an approach to deal with numerical problems involv-
ing uncertainties. It has been created to estimate the accuracy of the solution
of real life problems when these solutions are obtained from numerical meth-
ods implemented on a computer. Such applications to real life problems can be
found in [4], [6], [10] and [11]. This method is of Monte-Carlo-type and consists
in performing each arithmetic operation several times using an arithmetic with
a random rounding mode, see [2], [12], [13]. In other words, real numbers are
considered as random values with some prescribed probabilities. In the simplest
case one considers gaussian distributed random values, so-called stochastic num-
bers. Stochastic numbers possess only two probability parameters: mean value
and standard deviation, and allow for simple arithmetic operations over them.
Working with them can be considered as a particular case of granular computing
in the same way as it has been done for intervals [9]. The difference is that here,
intervals are confidence intervals and the operations on them are also different.
The classical operations on gaussian continuous functions is called Stochastic
Arithmetic or more precisely Continuous Stochastic Arithmetic (CSA).

In the CESTAC method a stochastic number is represented by several, say k,
samples xj , j = 1, ..., k, representing a given number x. The operations on these

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 13–22, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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samples are those of the computer in use followed by a random rounding. The
samples are randomly generated in a known confidence interval. The mean value
x is the best approximation of the exact value x and the number of significant
digits on x is computed by:

Cx = log10

(√
k |x|

σ τη

)
, (1)

wherein

x =
1
k

k∑

j=1

xj , σ2 =
1

k − 1

k∑

j=1

(xj − x)2

and τη is the value of the Student distribution for k−1 degrees of freedom and a
probability level 0.95. This type of computation on samples approximating the
same value is called Discrete Stochastic Arithmetic (DSA).

Operations on stochastic numbers are used as a model for operations on impre-
cise numbers, i. e. real numbers containing an unknown error, which is supposed
to be centered gaussian with a known standard deviation. Some fundamental
properties of stochastic numbers are considered in [3], [14].

This work is part of a more general one, which consists in studying the al-
gebraic structures induced by the operations on stochastic numbers in order
to provide a good algebraic understanding of the performance of the CESTAC
method [1], [7], [8].

The operations addition and multiplication by scalars are well-defined for
stochastic numbers and their properties have been studied in some detail. More
specifically, it has been shown that the set of stochastic numbers is a commuta-
tive monoid with cancelation law in relation to addition. The operator multipli-
cation by −1 (negation) is an automorphism and involution. These properties
imply a number of interesting consequences, see, e. g. [7], [8].

In the sequel we first briefly present some algebraic properties of the system of
stochastic numbers with respect to the arithmetic operations addition, negation,
multiplication by scalars, multiplication between two stochastic numbers and
the relation inclusion. This theoretical results are the bases for the numerical
experiments presented in the second part of the paper.

2 Stochastic Arithmetic Theory (SAT) Approach

A stochastic number a is written in the form a = (a′; a′′). The first component
a′ is interpreted as mean value, and the second component a′′ is the standard
deviation. A stochastic number of the form (a′; 0) has zero standard deviation
and represents a (pure) mean value, whereas a stochastic number of the form
(0; a′′) has zero mean value and represents a (pure) standard deviation. In this
work we shall always assume a′′ ≥ 0; however, in some cases it is convenient
to consider negative standard deviations. Denote by S the set of all stochastic
numbers, S = {(a′; a′′) | a′ ∈ R, a′′ ∈ R

+}.
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Linear operations. For two stochastic numbers (m1; s1), (m2; s2), s1, s2 ≥ 0,
we define addition by

(m1; s1) + (m2; s2)
def
= (m1 + m2;

√
s2
1 + s2

2), (2)

Multiplication by real scalars γ ∈ R is defined by:

γ ∗ (m1; s1)
def
= (γm1; |γ|s1). (3)

In particular multiplication by −1 (negation) is

− 1 ∗ (m1; s1) = (−m1; s1), (4)

and subtraction of (m1; s1), (m2; s2) is:

(m1; s1) − (m2; s2)
def
= (m1; s1) + (−1) ∗ (m2; s2) = (m1 − m2;

√
s2
1 + s2

2). (5)

Symmetric stochastic numbers. A symmetric (centered) stochastic number
has the form (0; s), s ∈ R. The arithmetic operations (2)–(5) show that mean
values subordinate to familiar real arithmetic whereas standard deviations induce
a special arithmetic structure that deviates from the rules of a linear space. If we
denote addition of standard deviations defined by (2) by “⊕” and multiplication
by scalars by “∗”, that is:

s1 ⊕ s2 =
√

s2
1 + s2

2, (6)

γ ∗ s1 = |γ|s1, (7)

then we can say that the space of standard deviations is an abelian additive
monoid with cancellation, such that for any two standard deviations s, t ∈ R

+,
and real α, β ∈ R:

α ∗ (s ⊕ t) = α ∗ s ⊕ α ∗ t,

α ∗ (β ∗ s) = (αβ) ∗ s,

1 ∗ s = s,

(−1) ∗ s = s,
√

α2 + β2 ∗ s = α ∗ s ⊕ β ∗ s.

Examples. Here are some examples for computing with standard deviations:

1 ⊕ 1 =
√

2, 1 ⊕ 2 =
√

5, 3 ⊕ 4 = 5, 1 ⊕ 2 ⊕ 3 =
√

14.

Note that s1 ⊕ s2 ⊕ ... ⊕ sn = t is equivalent to s2
1 + ... + s2

n = t2.

Multiplication of two stochastic numbers. The product of two stochastic
numbers (m1; s1), (m2; s2), s1, s2 ≥ 0, is defined as:

(m1; s1) s∗ (m2; s2)
def
=

(
m1m2;

√
m2

2s1
2 + m1

2s2
2 + s2

1 s2
2

)
. (8)
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Some properties of the multiplication of stochastic numbers are the following:
It is easy to show that associativity holds. If X, Y, Z are stochastic numbers

then the proof that Xs∗(Y s∗Z) = (Xs∗Y )s∗Z is a straightforward calculation.
Concerning the distributivity with addition, it can be seen that it is not true

in general. More specifically, the difference Xs∗(Y + Z) − (Xs∗Y + Xs∗Z) has
the form (0; s), s �= 0, i. e. it is a symmetric stochastic number. Anyhow, if we
denote by Ω the set of symmetric stochastic numbers and the relation between
two stochastic numbers defined by: X ∼ Y

def
= X − Y ∈ Ω, then it can be

shown that relation “∼” is an equivalence and that distributivity holds for the
corresponding equivalence classes. A ring structure can thus be obtained for
these equivalence classes.

Inclusion. Inclusion of stochastic numbers plays important roles in applica-
tions. We next discuss two relations for inclusion of stochastic numbers. The so-
called interval inclusion (briefly: i-inclusion) is defined for X1 = (m1; s1), X2 =
(m2; s2) ∈ S, by:

X1 ⊆i X2 ⇐⇒ |m2 − m1| ≤ s2 − s1. (9)

Note that addition is i-inclusion isotone, that is: X1 ⊆ X2 implies X1 + Y ⊆
X2 + Y [1]. However, it is easy to see that inverse inclusion isotonicity does not
hold, i. e. X1 + Y ⊆ X2 + Y does not imply X1 ⊆ X2. If we want that

X1 ⊆ X2 ⇐⇒ X1 + Y ⊆ X2 + Y

holds in S, then the inclusion relation “⊆s” between two stochastic numbers
should be defined by

X1 ⊆s X2 ⇐⇒ (m2 − m1)2 ≤ s2
2 − s2

1. (10)

Relation (10) will be called stochastic inclusion, briefly: s-inclusion.

Proposition 1. Addition and multiplication by scalars are (inverse) inclusion
isotone (invariant with respect to s-inclusion).

Proof. Denote X1 = (m1; s1), X2 = (m2; s2), X = (m; s) ∈ S. We shall prove
that

X1 ⊆s X2 ⇐⇒ X1 + X ⊆s X2 + X.

According to (2)

X1 + X = (m1; s1) + (m; s) = (m1 + m;
√

s2
1 + s2),

X2 + X = (m2; s2) + (m; s) = (m2 + m;
√

s2
2 + s2),

and according to (10) X1 + X ⊆s X2 + X is equivalent to

((m2 + m) − (m1 + m))2 ≤ (s2
2 + s2) − (s2

1 + s2),
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that is (m2 − m1)2 ≤ s2
2 − s2

1, which means that X1 ⊆s X2.

The equivalence X1 ⊆s X2 ⇐⇒ γ ∗ X1 ⊆s γ ∗ X2 is proved similarly. �
We shall next compare relations (10) and (9). To this end we introduce an end-
point presentation.

End-point presentation. We shall next look for an end-point presentation for
stochastic inclusion. This presentation may be useful when dealing with confi-
dence intervals. The confidence interval corresponding to the stochastic number
(m; s) is [m − γs, m + γs], where γ > 0 is a chosen number (usually γ ≈ 2). For
simplicity in the sequel we assume γ = 1, which corresponds to usual compact
intervals on R.

Recall that the relation between the end-point presentation of an interval
A = [a−, a+] ⊆ R and its mid-point/radius presentation A = (a′; a′′) is given
by:

a− = a′ − a′′, a+ = a′ + a′′;

a′ = (a− + a+)/2, a′′ = (a+ − a−)/2.

Recall also the relation a+a− = a′2 − a′′2.
The i-inclusion (9) admits a simple end-point presentation, namely for A ⊆i B

condition |b′ −a′| ≤ b′′ −a′′ is presented in end-point form as b− ≤ a−, a+ ≤ b+.
We next look for an end-point presentation for the s-inclusion (10): A ⊆s B ⇐⇒
(b′ − a′)2 ≤ b′′2 − a′′2.

The condition (b′ − a′)2 ≤ b′′2 − a′′2 can be written as b′2 − b′′2 + a′2 + a′′2 ≤
2a′b′. Replacing b′2 − b′′2 = b+b−, a′ = (a− + a+)/2, a′′ = (a+ − a−)/2, etc. we
obtain: 2b+b− + a+2 + a−2 ≤ (a+ + a−)(b+ + b−). Thus the end-point condition
for s-inclusion obtains the form:

A ⊆s B ⇐⇒ a+2 + a−2 + 2b+b− ≤ (a+ + a−)(b+ + b−),

equivalently: A ⊆s B ⇐⇒ 2(b+b− − a+a−) ≤ (a+ + a−)(b+ + b− − a+ − a−).

Proposition 2. Interval inclusion (9) implies stochastic inclusion (10).

Proof. We sketch the proof for proper stochastic numbers. Assume that A =
(a′; a′′) is i-included in B = (b′; b′′), A ⊆i B, which according to (9) means
|b′ − a′| ≤ b′′ − a′′. We have to show that (10) holds true. Note first that from
(9) we have 0 ≤ a′′ ≤ b′′. Now from |b′ − a′| ≤ b′′ − a′′ we have (b′ − a′)2 ≤
(b′′ − a′′)2 ≤ (b′′ − a′′)(b′′ + a′′) = b′′2 − a′′2. �
As a consequence from Proposition 2, stochastic addition is i-inclusion isotone.

3 Application: Lagrange Interpolation

The goal of this section is to compare the results obtained with the theory de-
veloped in this paper, which is named Continuous Stochastic Arithmetic (CSA),
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with respective results obtained with the CESTAC method and with interval
arithmetic [3], [12]–[14].

As said before, in the CESTAC method, each stochastic variable is represented
by a k-tuple of gaussian random values with known mean value m and standard
deviation σ. The method also uses a special arithmetic called Discrete Stochastic
Arithmetic (DSA), which acts on the above mentioned k-tuples.

Within the scope of granular computing [15], as seen above, CSA operates on
stochastic numbers and is directly derived from operations on independent gaus-
sian random variables. Hence a stochastic number is a granule and continuous
stochastic arithmetic is a tool for computing with these granules.

Within the same point of view, in DSA which is used in the CESTAC method,
a granule is composed by a k-tuple representing k samples of the same mathemat-
ical result of an arithmetic operator implemented in floating point arithmetic.
These samples differ from each other because the data are imprecise and because
of different random rounding. The operator acting on these granules is a floating
point operator corresponding to the exact arithmetical operator which is per-
formed k times in a synchronous way with random rounding. Thus the result is
also a granule. This granule is called a discrete stochastic number. It has been
shown that DSA operating on discrete stochastic numbers possesses many prop-
erties (but not all) of real numbers; in particular the notion of stochastic zero
has been defined [12]–[14]. The CADNA library merely implements the DSA [2].

To compare the two models, a specific library has been developed which im-
plements both continuous and discrete stochastic arithmetic. The computations
are done separately. The CSA implements the mathematical rules defined in
Section 2.

The comparison has been first done on the Lagrangian interpolation method.
Let (xi, yi), i = 1, ..., n, be a set of n pairs of numbers where all xi are

different. The Lagrangian polynomial p at the point t is:

p(t) = y0l0(t) + y1l1(t) + · · · + ynln(t), li(t) =

∏
i�=j(t − xj)∏

i�=j(xi − xj)
.

We consider the situation when the values of yi are imprecise and xi are
considered exact.

For all examples presented below, we take n = 11; the exact x-values are
defined as xi = i, i = 1, ..., n, and the imprecise values yi are close to 1. This
means that in the interval case all intervals yi have a midpoint 1, whereas in the
stochastic case they have a mean value 1.

3.1 Interval Approach

Assume first that some guaranteed bounds are given for the yi’s in the form of
intervals Yi, that is yi ∈ Yi, i = 1, ..., n. Then it is well-known that at each t

p(t) ∈ P (t) = l0(t) ∗ Y0 + l1(t) ∗ Y1 + · · · + ln(t) ∗ Yn.
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Fig. 1. Lagrange, Interval computations
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Fig. 2. Lagrange, Interval+CSA
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Fig. 3. Lagrange DSA 3 samples+CSA
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Fig. 4. Lagrange DSA 5 samples+CSA
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Fig. 5. Lagrange DSA 10 samples+CSA
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Fig. 6. Lagrange DSA 30 samples+CSA

The computation of the interval polynomial P (t) has been performed with
the Intlab implementation [5] of interval arithmetic. The maximum error on the
Yi value is ierr = 0.02. With the case Yi = [1 − ierr; 1 + ierr] = constant and
xi = i, i = 1, ..., 11, the upper and lower bounds of P are shown on Fig. 1. In
this example so-called naive interval arithmetic produces exact (sharp) bounds.
Normally, naive interval arithmetic produces pessimistic bounds. In most cases,
such sharp bounds cannot be obtained by naive interval arithmetic and more
sophisticate methods should be used.
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3.2 The Continuous Stochastic Arithmetic

Corresponding computations are performed on stochastic numbers with the
CSA. As seen in the preceding sections, this approach is based on operations
defined on gaussian random variable (m; σ). It is well-known that 95% of the sam-
ples of a such variable are inside the interval [m−2σ, m+2σ]. Thus, to compare
the results with the interval approach, the value of σ is taken σ = ierr/2 = 0.01,
so that (m; σ) is equal to (1; 0.01).

The computation has been performed with our specific implementation of
CSA. The gray lower and upper curves in the Fig. 2 represent the results of
the CSA computation. Each point of the lower curve (respectively the upper
curve) is equal to m − 2σ (respectively m + 2σ). More specifically, a set of
values (mP (ti); σP (ti)) is obtained. Each point of the lower curve (respectively
the upper curve) on Fig. 2 is equal to mP (ti) − 2σP (ti) (respectively mP (ti) +
2σP (ti)).

3.3 The Discrete Stochastic Arithmetic

The last goal is to compare the results obtained with CSA and those obtained
with the CESTAC method with k samples, i.e. with DSA, k taking successively
the values 3, 5, 10, 30. The results obtained for each value of k are reported
in figures 3–6 in which the lower and upper curves obtained with the CSA are
shown. All figures are composed of two sub-figures. The left sub-figure shows
the curves obtained as result of the k samples. The right part compares the
computed mean value and standard deviation obtained from the k-samples to
the theoretical mean value and standard deviation obtained with CSA.

As observed from the figures, if P (ti) is the mean value of the samples obtained
at point ti with the DSA for the computation of P (ti), then we always have:
mP (ti) − 2σP (ti) ≤ P (ti) ≤ mP (ti) + 2σP (ti). Thus the numerical experiment
shows clearly that the continuous stochastic arithmetic is a good model for the
CESTAC method.

4 Computation of a Polynomial

In the above section it has been shown experimentally that the theory of stochas-
tic numbers is consistent with the CESTAC method for linear computation. We
show now that it is also true in the non-linear case with the computation of the
value of a polynomial. Anyhow it must be noted that an hypothesis of the theory
is that the stochastic numbers involved in the operations are independent. This
hypothesis is clearly not fulfilled in the case of the computation of a polyno-
mial. So one can expect that the order of magnitude of the results are the same
for the theoretical and experimental result but that there may be anyhow some
differences. In fact these differences may exist but are rather small.

A great number of polynomials have been tested for which the results are
always consistent. As an example the results obtained with DSA (experimental),
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CSA (theoretical) and the values provided by the CADNA software for the two
simple polynomials:

p(x) = x2 − 2x + 1,
q(x) = x3 − 3x2 + 3x − 1

are reported in Table 1 and Table 2. The values of the polynomials have been
computed for several values of x with the CADNA software implementing the
CESTAC method (i. e. with the DSA) and with the CSA. In the DSA case,
the mean value and standard deviation of the result are reported for k = 3 and
k = 20 samples. The values provided by the CADNA software are those obtained
with the DSA with k = 3 which are printed with as many significant digits as
computed by the software, i. e. according to formula (1).

When the value is non-significant then the symbol @.0 is printed.

Table 1. Values of p(x) = x2 − 2x + 1 computed with DSA and CSA

x DSA 3 samples DSA 20 samples CSA CADNA3

(2; 0.0001) (1.000015; 0.000232) (0.999896; 0.000197) (1.000000; 0.000346) 0.100E + 001
(2; 0.001) (0.999401; 0.003352) (0.999789; 0.002116) (1.000000; 0.003464) 0.10E + 001
(2; 0.01) (0.999779; 0.018623) (1.000769; 0.020472) (1.000000; 0.034641) 0.90E + 000
(2; 0.1) (0.853213; 0.104408) (0.961586; 0.131396) (1.000000; 0.346411) @.0

(10; 0.01) (80.92840; 0.023482) (81.02938; 0.165771) (81.00000; 0.142832) 0.81E + 002
(10; 0.1) (81.58815; 1.031574) (81.58087; 1.851930) (81.00000; 1.428320) 0.8E + 002

Table 2. Values of q(x) = x3 − 3x2 + 3x − 1 computed with DSA and CSA

x DSA 3 samples DSA 20 samples CSA CADNA3

(2; 0.0001) (0.999796; 0.000196) (1.000075; 0.000374) (1.000000; 0.001136) 0.999E + 000
(2; 0.001) (1.001783; 0.002189) (0.999558; 0.002989) (1.000000; 0.011367) 0.10E + 001
(2; 0.01) (1.018297; 0.029464) (0.989954; 0.028460) (1.000000; 0.113670) 0.1E + 001
(2; 0.1) (1.361246; 0.503563) (1.013540; 0.313214) (1.000000; 1.136706) @.0

(10; 0.01) (728.7242; 4.028841) (729.4479; 1.780299) (729.0000; 1.783594) 0.72E + 003
(10; 0.1) (720.1993; 23.03887) (726.4653; 22.87894) (729.0000; 17.83594) 0.7E + 003

5 Conclusion

Starting from a minimal set of empirically known facts related to stochastic
numbers, we formally deduce a number of properties and relations. We inves-
tigate the set of all stochastic numbers and show that this set possesses nice
algebraic properties. We point out to the distinct algebraic nature of the spaces
of mean-values and standard deviations. Based on the algebraic properties of the
stochastic numbers we propose a natural relation for inclusion, called stochastic
inclusion. Numerical examples based on Lagrange interpolation and polynomial
computation demonstrate the consistency between the CESTAC method and
the presented theory of stochastic numbers. This is one more justification for
the practical use of the CADNA software.
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Abstract. In the present paper we propose a novel approach for mod-
eling friction, by using fuzzy differential equations under the strongly
generalized differentiability concept. The key point is a continuous fuzzy-
fication of the signum function. The lack of the uniqueness for the so-
lutions of a fuzzy differential equation allows us to choose the solution
which better reflects the behavior of the modeled real-world system, so
it allows us to incorporate expert’s knowledge in our model. Numeri-
cal solutions of the fuzzy differential equations modeling dry friction are
proposed. In order to show how the expert’s knowledge can be incorpo-
rated in the system, we study the dry friction equation with different
additional assumptions.

1 Introduction

The existing models of the friction forces show discontinuous variation at the zero
transition of the velocity (see e.g. [5], [19], [17], [11], [12]). The effects of friction
at low velocities are due to local properties of the materials and an accurate
model of these phenomena is possible by taking into account properties both at
the molecular and macroscopic level ([19], [16]). Since the information on the
molecular level is usually unavailable we have uncertianties. These uncertainties
are usually modeled by considering the friction force as a multivalued function
and in this case the equations of motion are considered as differential inclusions.
This approach is used in several works (see [1], [15], [8], etc.). The idea behind
using differential inclusions is substituting the signum function by a multivalued
function. This model often manifests chaotic behavior ([11], [10]).

The above discussion shows that the model of a system with friction is often
subject of non-statistical uncertainties. So, in order to model the behavior of a
system under the presence of the friction forces we have to take into account
these uncertainties. In order to take into account these uncertainties we propose
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in the present paper an alternative fuzzy model based on fuzzy differential equa-
tions (FDEs). Surely other techniques can be easily imagined (such as interval
methods) but these are subject of further research. Also, in our proposed method
it is possible to incorporate expert knowledge about the system under study and
this property can be turned into an advantage in future studies.

FDEs appear naturally as tools for modeling dynamical systems under un-
certainty. Till now, they are rarely used in modeling real-world systems since
their theory was developed relatively recently. Also, as it is shown in several
recent papers, FDEs are not just an easy extension of the theory of ODEs to
the fuzzy case (see e.g. [13], [14], [2]). This fact is also slowing down the ex-
tension of the applicability of FDEs. There are several different interpretations
of the notion of a FDE (for a discussion about them please refer to [2]). In
the present paper we will use the so called strongly generalized differentiability
concept introduced recently as a method which solved some problems with the
other FDE interpretations (H-derivative (see [18]) or fuzzy differential inclusions
(see [7])).

Strongly generalized differentiability was introduced in [3]. The strongly gen-
eralized derivative is defined for a larger class of fuzzy-number-valued functions
than the H-derivative and fuzzy differential equations can have solutions with
decreasing length of their support (this was not the case for the H-derivatve).
Also, contrary to the case of differential inclusions, the derivative concept for
fuzzy-number-valued function is defined and this makes this method more ap-
propriate for numerical computations. First order linear fuzzy differential equa-
tions are investigated in [4] and the behavior of their solutions motivate also the
use of the above cited results in the present paper for building a novel friction
model.

The key point in our discussion is how to fuzzify the classical model in order
to get meaningful conclusions. The key role in this fuzzification is played by the
frictional term in the equations of movement with friction. In the present paper,
following [7], we fuzzify in a heuristic way the Signum function, by making
this term also continuous fuzzy valued function. However we have gained the
continuity of the frictional term, since it is a fuzzy one, we obtain a fuzzy solution
for our model. The interpretation of this model is the fuzzy set of trajectories,
attainable by the system ([7]). The lack of uniqueness of the solution of a fuzzy
differential equation under the generalized differentiability concept at first sight
could be seen as a disadvantage. But it is turned into an advantage in the present
paper since we are able this way to include in our model knowledge based on
observations of the modeled system. In the present paper we do not deal with
the problem of control, this being subject of further research.

After a preliminary section we propose in Section 3 the heuristic fuzzy model
for friction forces with a discussion on dry friction. In Section 4 we present also
some preliminary results how friction is modeled by using the proposed approach.
We end up with some conclusions and further research topics.
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2 Preliminaries

We denote by RF the space of fuzzy numbers, i.e., fuzzy subsets of the real line
u : R → [0, 1], satisfying the following properties:

(i) u is normal i.e. ∃xu ∈ R with u (xu) = 1;
(ii) u is convex fuzzy set (i.e. u (tx + (1 − t) y) ≥ min {u (x) , u (y)}, ∀t ∈ [0, 1] ,

x, y ∈ R);
(iii) u is upper semi-continuous on R;
(iv) {x ∈ R : u (x) > 0} is compact, where A denotes the closure of A.
For 0 < r ≤ 1, denote [u]r = {x ∈ R; u(x) ≥ r} and [u]0 = {x ∈ R; u(x) > 0}.

Then it is well-known that for any r ∈ [0, 1], [u]r is a bounded closed interval.
For u, v ∈ RF , and λ ∈ R, the sum u + v and the product λ · u are defined by
[u + v]r = [u]r + [v]r, [λ · u]r = λ[u]r, ∀r ∈ [0, 1].

Let D : RF ×RF → R+∪{0}, D(u, v) = supr∈[0,1] max{|ur
−−vr

−|, |ur
+ −vr

+|},
be the Hausdorff distance between fuzzy numbers, where [u]r = [ur−, ur

+], [v]r =
[vr

−, vr
+]. In this case (RF , D) is a complete metric space. The above operations

and the metric space structure allows us to build a mathematical analysis over
the space of fuzzy numbers, however some problems appear due to the lack of
some properties.

The so called H-difference or Hukuhara difference will play a key role in the
present paper. Let us recall its definition.

Definition 1. (see e.g. [18]). Let x, y ∈ RF . If there exists z ∈ RF such that
x = y + z, then z is called the H-difference of x and y and it is denoted by x	 y.

In this paper the ”	” sign stands always for H-difference and let us remark that
x 	 y 
= x + (−1)y. We will denote for simplicity x + (−1)y by x − y.

Let us recall the definition of strongly generalized differentiability proposed
in [3].

Definition 2. Let f : (a, b) → RF and x0 ∈ (a, b). We say that f is strongly
generalized differentiable at x0, if there exists an element f ′(x0) ∈ RF , such that

(i) for all h > 0 sufficiently small, ∃f(x0 + h) 	 f(x0), f(x0) 	 f(x0 − h) and
the limits (in the metric D)

lim
h↘0

f(x0 + h) 	 f(x0)
h

= lim
h↘0

f(x0) 	 f(x0 − h)
h

= f ′(x0),

or
(ii) for all h > 0 sufficiently small, ∃f(x0)	 f(x0 +h), f(x0 −h)	 f(x0) and

the limits

lim
h↘0

f(x0) 	 f(x0 + h)
(−h)

= lim
h↘0

f(x0 − h) 	 f(x0)
(−h)

= f ′(x0),

or
(iii) for all h > 0 sufficiently small, ∃f(x0 + h) 	 f(x0), f(x0 − h) 	 f(x0)

and the limits

lim
h↘0

f(x0 + h) 	 f(x0)
h

= lim
h↘0

f(x0 − h) 	 f(x0)
(−h)

= f ′(x0),
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or
(iv) for all h > 0 sufficiently small, ∃f(x0)	 f(x0 +h), f(x0)	 f(x0 −h) and

the limits

lim
h↘0

f(x0) 	 f(x0 + h)
(−h)

= lim
h↘0

f(x0) 	 f(x0 − h)
h

= f ′(x0).

(division by h and (−h) is understood as the multiplication of a fuzzy number by
the scalars 1

h and − 1
h , respectively).

We say that a function is (i)-differentiable if it is differentiable as in the previous
Definition 2, (i), etc.

Concerning the existence of solutions of a fuzzy initial value problem un-
der generalized differentiability in [3] we have proved that under some relaxed
conditions (for which the reader is asked to consult [3]) the fuzzy initial value
problem {

y′ = f(x, y)
y(x0) = y0

has two solutions (one (i)-differentiable and the other one (ii)- differentiable)
y, y : [x0, x0 + r] → B(y0, q) and the successive iterations

y0(x) = y0

yn+1(x) = y0 +
∫ x

x0

f(t, yn(t))dt, (1)

and
y0(x) = y0

yn+1(x) = y0 	 (−1) ·
∫ x

x0

f(t, yn(t))dt (2)

converge to these two solutions respectively.
The FDEs will have in the present paper will have input data trapezoidal

fuzzy numbers. We recall that for a < b < c < d, a, b, c, d ∈ R, the trapezoidal
fuzzy number u = (a, b, c, d) determined by a, b, c and d is given such that ur

− =
a + (b − a)r and ur

+ = d − (d − c)r are the endpoints of the r−level sets, for all
r ∈ [0, 1].

3 The Heuristic Fuzzy Model of Friction

In this section we propose a fuzzy differential equation modeling dry friction,
model which is similar to the multivalued models in [1], [15] and the fuzzy model
in [7]. In our proposed model we will fuzzify the signum function similarly to, etc.
but simultaneously we transform it into a continuous term. As a consequence,
the signum function will be in our model continuous fuzzy-valued function and
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the friction force as well. The velocity and position will be solutions of a system
of FDEs and so, these are fuzzy terms.

The fuzzy differential equation modeling dry friction is

y′′ + αy′ + μ · Sgn(y′) + y = u(t), (3)

where α, μ ∈ R are positive constants, u(t) is a control signal and the signum
function Sgn(y′) is given by (4) in our model (for simplicity we do not show
the parameters ε, δ at each time they occur. The coordinate y : R → RF is
considered to be a trapezoidal fuzzy valued function. The initial conditions are
considered to be crisp values.

The trapezoidal-valued signum function is

Sgnε,δ(v) =

⎧
⎪⎪⎨

⎪⎪⎩

−1, if v ≤ −ε
(−1, −1 + δ, 1 − δ, 1)	
	

(
− 2

ε , − 2+δ
ε , − δ

ε , 0
)

· v, if |v| < ε
1, if v > ε

. (4)

It is easy to see that

lim
ε,δ→0

Sgnε,δ(v) =

⎧
⎨

⎩

−1, if v < 0
[−1, 1], if |v| = 0
1, if v > 0

,

which coincides with the interval-valued signum function proposed in [7] (the
convergence is understood surely only pointwise).

In order to solve the equation we rewrite it as a system of first order FDEs
as follows {

y′ = v
v′ = u(t) − αv − μ · Sgn(v) − y

,

with the initial conditions y(0) = y0 and v(0) = v0. Analogously to the proof
of the existence result in [3] a similar theorem can be proved for systems of
equations. As a conclusion, the above system may have locally several solutions

yn+1(t) = y0 +
∫ t

t0

vndt, or (5)

yn+1(t) = y0 	 (−1)
∫ t

t0

vndt, (6)

and

vn+1(t) = v0 +
∫ t

t0

(u(t) − αvn − μ · Sgn(vn) − yn)dt or (7)

vn+1(t) = v0 	 (−1)
∫ t

t0

(u(t) − αvn − μ · Sgn(vn) − yn)dt. (8)

In order to solve the problem we will employ a numerical method based on
the classical Euler method. We consider the approximation given by this method
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sufficient for our purposes. Surely theoretical study and implementation of more
sophisticated methods is subject of future research.

One step of the Euler’s method in our case is given by

y(t + h) = y(t) + hv(t), or (9)
y(t + h) = y(t) 	 (−1)hv(t) (10)

and

v(t + h) = v(t) + h(u(t) − αv(t) − μ · Sgn(v(t)) − y(t)) or (11)
v(t + h) = v(t) 	 (−1)h(u(t) − αv(t) − μ · Sgn(v(t)) − y(t)), (12)

h ∈ R being the step size.
Since there may exist locally two solutions, if both of them exist we have

to chose locally the one which better reflects the behavior of the real-world
system modeled by the given equation. The possibility of this choice, allows us
to incorporate further assumptions or observations about the behavior of the
system.

4 Experimental Results

In the present section we will examine the above proposed model. The lack of
uniqueness allows us to introduce is the system additional assumptions and based
on these assumptions we chose locally the solution according to a choice function.
As a measure of the uncertainty we have used the length of the 0-level set. So,
if we say increasing uncertainty we understand increasing length of the 0-level
set. Surely several other measures of the uncertainty exist in the literature.

We propose to use and compare experimentally several choice functions in
two experimental settings. These are as follows: In the first experimental setting
we have put u1(t) = sin(t), α1 = 1, μ1 = 0.4, ε1 = 0.0001, δ1 = 0.6 and in the
second one

u2(t) =

⎧
⎨

⎩

5 if 0 ≤ t < 2
−5 if 2 ≤ t < 10
4 if 10 ≤ t ≤ 15

,

α2 = 2, μ2 = 1.4, ε2 = 0.01, and δ2 = 0.7.
In each of the Figures presented in the present paper, the upper graph repre-

sents the coordinate, while the lower graph will represents the velocity.
The choice functions which were tested in these experiments are described as

follows.
- First is choosing always the ”old” Hukuhara differentiable solution. Surely

this is the most inconvenient choice, since uncertainty cannot be decreasing
decrease under the Hukuhara differentiability concept ([7]). The experimental
results show this behavior expected from the theory.

- Second is choosing solutions with increasing support if the ”core”, i.e. mid-
point of the 1-level set is increasing in absolute value (this choice is based on the
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Fig. 1. Solution under the second choice function, first experiment
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Fig. 2. Solution under the second choice function, second experiment

hypothesis that the uncertainty increases together with the value). In our model
this is not consistent with the usual real behavior of the velocity. That is the
static friction appears at velocity 0 and in this case around zero the uncertainty
should increase (see Figs. 1, 2).

- The last choice is based on the expert opinion that when velocity is small the
uncertainty is increasing. According to this choice function we set a threshold
value for the velocity, under which we assume that the uncertainty increases.
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Fig. 3. Solution with the assumption that small velocity implies increasing uncertainty,
first experiment
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Fig. 4. Solution with the assumption that small velocity implies increasing uncertainty,
second experiment

Otherwise we allow uncertainty to decrease. This choice is the most well mo-
tivated by the physical properties of the system since the principal source of
uncertainty is the interaction at low velocities ([5], [12]). See Figs. 3, 4) for nu-
merical results in this case. Surely an experimental comparison will be necessary
in order to decide which choice function reflects better the real phenomena, but
this is subject of future research.
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5 Concluding Remarks

We have proposed a fuzzy model for dry friction and we have performed nu-
merical experiments on it. Surely a more accurate comparison with the available
experimental data and existing models is a subject of further research.

In the numerical experiments proposed in the present paper we have tested
several choice functions based on different assumptions. These assumptions were
crisp ones in this paper. As a next step in this research, we propose the use of
fuzzy rules in the choice functions together with the fuzzy differential equations
to build up a fuzzy model with the expert knowledge incorporated.
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Abstract. In interval computations, at each intermediate stage of the
computation, we have intervals of possible values of the corresponding
quantities. In our previous papers, we proposed an extension of this tech-
nique to set computations, where on each stage, in addition to intervals
of possible values of the quantities, we also keep sets of possible values
of pairs (triples, etc.). In this paper, we show that in several practical
problems, such as estimating statistics (variance, correlation, etc.) and
solutions to ordinary differential equations (ODEs) with given accuracy,
this new formalism enables us to find estimates in feasible (polynomial)
time.

1 Formulation of the Problem

Need for data processing. In many real-life situations, we are interested in the
value of a physical quantity y that is difficult or impossible to measure directly.
Examples of such quantities are the distance to a star and the amount of oil in
a given well. Since we cannot measure y directly, a natural idea is to measure
y indirectly. Specifically, we find some easier-to-measure quantities x1, . . . , xn

which are related to y by a known relation y = f(x1, . . . , xn); this relation may
be a simple functional transformation, or complex algorithm (e.g., for the amount
of oil, numerical solution to a partial differential equation). Then, to estimate
y, we first measure or estimate the values of the quantities x1, . . . , xn, and then
we use the results x̃1, . . . , x̃n of these measurements (estimations) to compute
an estimate ỹ for y as ỹ = f(x̃1, . . . , x̃n)

Computing an estimate for y based on the results of direct measurements is
called data processing; data processing is the main reason why computers were
invented in the first place, and data processing is still one of the main uses of
computers as number crunching devices.
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Measurement uncertainty: from probabilities to intervals. Measurement are never
100% accurate, so in reality, the actual value xi of i-th measured quantity can
differ from the measurement result x̃i. Because of these measurement errors
Δxi

def= x̃i − xi, the result ỹ = f(x̃1, . . . , x̃n) of data processing is, in general,
different from the actual value y = f(x1, . . . , xn) of the desired quantity y.

It is desirable to describe the error Δy
def= ỹ − y of the result of data pro-

cessing. To do that, we must have some information about the errors of direct
measurements.

What do we know about the errors Δxi of direct measurements? First, the
manufacturer of the measuring instrument must supply us with an upper bound
Δi on the measurement error. If no such upper bound is supplied, this means
that no accuracy is guaranteed, and the corresponding “measuring instrument”
is practically useless. In this case, once we performed a measurement and got
a measurement result x̃i, we know that the actual (unknown) value xi of the
measured quantity belongs to the interval xi = [xi, xi], where xi = x̃i − Δi and
xi = x̃i + Δi.

In many practical situations, we not only know the interval [−Δi, Δi] of pos-
sible values of the measurement error; we also know the probability of different
values Δxi within this interval. This knowledge underlies the traditional engi-
neering approach to estimating the error of indirect measurement, in which we
assume that we know the probability distributions for measurement errors Δxi.

In practice, we can determine the desired probabilities of different values of
Δxi by comparing the results of measuring with this instrument with the results
of measuring the same quantity by a standard (much more accurate) measuring
instrument. Since the standard measuring instrument is much more accurate
than the one use, the difference between these two measurement results is prac-
tically equal to the measurement error; thus, the empirical distribution of this
difference is close to the desired probability distribution for measurement error.
There are two cases, however, when this determination is not done:

– First is the case of cutting-edge measurements, e.g., measurements in fun-
damental science. When we use the largest particle accelerator to measure
the properties of elementary particles, there is no “standard” (much more
accurate) located nearby that we can use for calibration: our accelerator is
the best we have.

– The second case is the case of measurements in manufacturing. In principle,
every sensor can be thoroughly calibrated, but sensor calibration is so costly
– usually costing ten times more than the sensor itself – that manufacturers
rarely do it.

In both cases, we have no information about the probabilities of Δxi; the only
information we have is the upper bound on the measurement error.

In this case, after we performed a measurement and got a measurement result
x̃i, the only information that we have about the actual value xi of the measured
quantity is that it belongs to the interval xi = [x̃i−Δi, x̃i+Δi]. In such situations,
the only information that we have about the (unknown) actual value of y =
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f(x1, . . . , xn) is that y belongs to the range y = [y, y] of the function f over the
box x1 × . . . × xn:

y = [y, y] = f(x1, . . . ,xn) def= {f(x1, . . . , xn) | x1 ∈ x1, . . . , xn ∈ xn}.

The process of computing this interval range based on the input intervals xi

is called interval computations; see, e.g., [4].

Case of fuzzy uncertainty and its reduction to interval uncertainty. An expert
usually describes his/her uncertainty by using words from the natural language,
like “most probably, the value of the quantity is between 3 and 4”. To formalize
this knowledge, it is natural to use fuzzy set theory, a formalism specifically
designed for describing this type of informal (“fuzzy”) knowledge [5].

In fuzzy set theory, the expert’s uncertainty about xi is described by a fuzzy
set, i.e., by a function μi(xi) which assign, to each possible value xi of the i-th
quantity, the expert’s degree of certainty that xi is a possible value. A fuzzy set
can also be described as a nested family of α-cuts xi(α) def= {xi | μi(xi) > α}.

Zadeh’s extension principle can be used to transform the fuzzy sets for xi into a
fuzzy set for y. It is known that for continuous functions f on a bounded domain,
this principle is equivalent to saying that for every α, y(α)= f(x1(α), . . . ,xn(α)).
In other words, fuzzy data processing can be implemented as layer-by-layer in-
terval computations.

In view of this reduction, in the following text, we will mainly concentrate on
interval computations.

Outline. We start by recalling the basic techniques of interval computations and
their drawbacks, then we will describe the new set computation techniques and
describe a class of problems for which these techniques are efficient. Finally, we
talk about how we can extend these techniques to other types of uncertainty
(e.g., classes of probability distributions).

2 Interval Computations: Brief Reminder

Interval computations: main idea. Historically the first method for computing
the enclosure for the range is the method which is sometimes called “straight-
forward” interval computations. This method is based on the fact that inside
the computer, every algorithm consists of elementary operations (arithmetic op-
erations, min, max, etc.). For each elementary operation f(a, b), if we know the
intervals a and b for a and b, we can compute the exact range f(a,b). The
corresponding formulas form the so-called interval arithmetic:

[a, a] + [b, b] = [a + b, a + b]; [a, a] − [b, b] = [a − b, a − b];

[a, a] · [b, b] = [min(a · b, a · b, a · b, a · b), max(a · b, a · b, a · b, a · b)];

1/[a, a] = [1/a, 1/a] if 0 �∈ [a, a]; [a, a]/[b, b] = [a, a] · (1/[b, b]).
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In straightforward interval computations, we repeat the computations forming
the program f step-by-step, replacing each operation with real numbers by the
corresponding operation of interval arithmetic. It is known that, as a result, we
get an enclosure Y ⊇ y for the desired range.

From main idea to actual computer implementation. Not every real number can be
exactly implemented in a computer; thus, e.g., after implementing an operation of
interval arithmetic, we must enclose the result [r−, r+] in a computer-representable
interval: namely, we must round-off r− to a smaller computer-representable value
r, and round-off r+ to a larger computer-representable value r.

Sometimes, we get excess width. In some cases, the resulting enclosure is exact;
in other cases, the enclosure has excess width. The excess width is inevitable
since straightforward interval computations increase the computation time by
at most a factor of 4, while computing the exact range is, in general, NP-hard

[6], even for computing the population variance V =
1
n

·
n∑

i=1

(xi − x)2, where

x =
1
n

·
n∑

i=1

xi [3]. If we get excess width, then we can use more sophisticated

techniques to get a better estimate, such as centered form, bisection, etc. [4].

Reason for excess width. The main reason for excess width is that intermediate
results are dependent on each other, and straightforward interval computations
ignore this dependence. For example, the actual range of f(x1) = x1 − x2

1 over
x1 = [0, 1] is y = [0, 0.25]. Computing this f means that we first compute
x2 := x2

1 and then subtract x2 from x1. According to straightforward interval
computations, we compute r = [0, 1]2 = [0, 1] and then x1 −x2 = [0, 1] − [0, 1] =
[−1, 1]. This excess width comes from the fact that the formula for interval
subtraction implicitly assumes that both a and b can take arbitrary values within
the corresponding intervals a and b, while in this case, the values of x1 and x2

are clearly not independent: x2 is uniquely determined by x1, as x2 = x2
1.

3 Constraint-Based Set Computations

Main idea. The main idea behind constraint-based set computations (see, e.g.,
[1]) is to remedy the above reason why interval computations lead to excess
width. Specifically, at every stage of the computations, in addition to keeping
the intervals xi of possible values of all intermediate quantities xi, we also keep
several sets:

– sets xij of possible values of pairs (xi, xj);
– if needed, sets xijk of possible values of triples (xi, xj , xk); etc.

In the above example, instead of just keeping two intervals x1 = x2 = [0, 1], we
would then also generate and keep the set x12 = {(x1, x

2
1) | x1 ∈ [0, 1]}. Then,
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the desired range is computed as the range of x1 − x2 over this set – which is
exactly [0, 0.25].

To the best of our knowledge, in interval computations context, the idea of
representing dependence in terms of sets of possible values of tuples was first
described by Shary; see, e.g., [7] and references therein.

How can we propagate this set uncertainty via arithmetic operations? Let us
describe this on the example of addition, when, in the computation of f , we
use two previously computed values xi and xj to compute a new value xk :=
xi +xj . In this case, we set xik = {(xi, xi +xj) | (xi, xj) ∈ xij}, xjk = {(xj , xi +
xj) | (xi, xj) ∈ xij}, and for every l �= i, j, we take

xkl = {(xi + xj , xl) | (xi, xj) ∈ xij , (xi, xl) ∈ xil, (xj , xl) ∈ xjl}.

From main idea to actual computer implementation. In interval computations,
we cannot represent an arbitrary interval inside the computer, we need an en-
closure. Similarly, we cannot represent an arbitrary set inside a computer, we
need an enclosure.

To describe such enclosures, we fix the number C of granules (e.g., C = 10).
We divide each interval xi into C equal parts Xi; thus each box xi×xj is divided
into C2 subboxes Xi ×Xj . We then describe each set xij by listing all subboxes
Xi × Xj which have common elements with xij ; the union of such subboxes is
an enclosure for the desired set xij .

This implementation enables us to implement all above arithmetic operations.
For example, to implement xik = {(xi, xi + xj) | (xi, xj) ∈ xij}, we take all the
subboxes Xi ×Xj that form the set xij ; for each of these subboxes, we enclosure
the corresponding set of pairs {(xi, xi + xj) | (xi, xj) ∈ Xi × Xj} into a set
Xi ×(Xi +Xj). This set may have non-empty intersection with several subboxes
Xi × Xk; all these subboxes are added to the computed enclosure for xik. Once
can easily see if we start with the exact range xij , then the resulting enclosure
for xik is an (1/C)-approximation to the actual set – and so when C increases,
we get more and more accurate representations of the desired set.

Similarly, to find an enclosure for

xkl = {(xi + xj , xl) | (xi, xj) ∈ xij , (xi, xl) ∈ xil, (xj , xl) ∈ xjl},

we consider all the triples of subintervals (Xi,Xj ,Xl) for which Xi × Xj ⊆ xij ,
Xi × Xl ⊆ xil, and Xj × Xl ⊆ xjl; for each such triple, we compute the box
(Xi + Xj) × Xl; then, we add subboxes Xk × Xl which intersect with this box
to the enclosure for xkl.

Limitations of this approach. The main limitation of this approach is that when
we need an accuracy ε, we must use ∼ 1/ε granules; so, if we want to compute
the result with k digits of accuracy, i.e., with accuracy ε = 10−k, we must con-
sider exponentially many boxes (∼ 10k). In plain words, this method is only
applicable when we want to know the desired quantity with a given accuracy
(e.g., 10%).
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Cases when this approach is applicable. In practice, there are many problems
when it is sufficient to compute a quantity with a given accuracy: e.g., when
we detect an outlier, we usually do not need to know the variance with a high
accuracy, an accuracy of 10% is more than enough.

Let us describe the case when interval computations do not lead to the exact
range, but set computations do – of course, the range is “exact” modulo accuracy
of the actual computer implementations of these sets.

Example: estimating variance under interval uncertainty. Suppose that we know
the intervals x1, . . . ,xn of possible values of x1, . . . , xn, and we need to compute

the range of the variance V =
1
n

·M− 1
n2

·E2, where M
def=

n∑
i=1

x2
i and E

def=
n∑

i=1

xi.

A natural way to to compute V is to compute the intermediate sums Mk
def=

k∑
i=1

x2
i and Ek

def=
k∑

i=1

xi. We start with M0 = E0 = 0; once we know the pair

(Mk, Ek), we compute (Mk+1, Ek+1) = (Mk +x2
k+1, Ek +xk+1). Since the values

of Mk and Ek only depend on x1, . . . , xk and do not depend on xk+1, we can
conclude that if (Mk, Ek) is a possible value of the pair and xk+1 is a possi-
ble value of this variable, then (Mk + x2

k+1, Ek + xk+1) if a possible value of
(Mk+1, Ek+1). So, the set p0 of possible values of (M0, E0) is the single point
(0, 0); once we know the set pk of possible values of (Mk, Ek), we can compute
pk+1 as {(Mk + x2, Ek + x) | (Mk, Ek) ∈ pk, x ∈ xk+1}. For k = n, we will get
the set pn of possible values of (M, E); based on this set, we can then find the

exact range of the variance V =
1
n

· M − 1
n2

· E2.

What C should we choose to get the results with an accuracy ε · V ? On each
step, we add the uncertainty of 1/C; to, after n steps, we add the inaccuracy of
n/C. Thus, to get the accuracy n/C ≈ ε, we must choose C = n/ε.

What is the running time of the resulting algorithm? We have n steps; on each
step, we need to analyze C3 combinations of subintervals for Ek, Mk, and xk+1.
Thus, overall, we need n · C3 steps, i.e., n4/ε3 steps. For fixed accuracy C ∼ n,
so we need O(n4) steps – a polynomial time, and for ε = 1/10, the coefficient at
n4 is still 103 – quite feasible.

Comment. When the accuracy increases ε = 10−k, we get an exponential in-
crease in running time – but this is OK since, as we have mentioned, the problem
of computing variance under interval uncertainty is, in general, NP-hard.

Other statistical characteristics. Similar algorithms can be presented for comput-
ing many other statistical characteristics. For example, for every integer d > 2,

the corresponding higher-order central moment Cd =
1
n

·
n∑

i=1

(xi − x)d is a linear

combination of d moments M (j) def=
n∑

i=1

xj
i for j = 1, . . . , d; thus, to find the exact

range for Cd, we can keep, for each k, the set of possible values of d-dimensional
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tuples (M (1)
k , . . . , M

(d)
k ), where M

(j)
k

def=
k∑

i=1

xj
i . For these computations, we need

n · Cd+1 ∼ nd+2 steps – still a polynomial time.

Another example is covariance C =
1
n

·
n∑

i=1

xi · yi − 1
n2

·
n∑

i=1

xi ·
n∑

i=1

yi. To

compute covariance, we need to keep the values of the triples (Ck, Xk, Yk), where

Ck
def=

k∑
i=1

xi · yi, Xk
def=

k∑
i=1

xi, and Yk
def=

k∑
i=1

yi. At each step, to compute the

range of

(Ck+1, Xk+1, Yk+1) = (Ck + xk+1 · yk+1, Xk + xk+1, Yk + yk+1),

we must consider all possible combinations of subintervals for Ck, Xk, Yk, xk+1,
and yk+1 – to the total of C5. Thus, we can compute covariance in time n ·C5 ∼
n6.

Similarly, to compute correlation ρ = C/
√

Vx · Vy, we can update, for each k,

the values of (Ck, Xk, Yk, X
(2)
k , Y

(2)
k ), where X

(2)
k =

k∑
i=1

x2
i and Y

(2)
k =

k∑
i=1

y2
i are

needed to compute the variances Vx and Vy. These computations require time
n · C7 ∼ n8.

Systems of ordinary differential equations (ODEs) under interval uncertainty. A
general system of ODEs has the form ẋi = fi(x1, . . . , xm, t), 1 ≤ i ≤ m. Interval
uncertainty usually means that the exact functions fi are unknown, we only
know the expressions of fi in terms of parameters, and we have interval bounds
on these parameters.

There are two types of interval uncertainty: we may have global parame-
ters whose values are the same for all moments t, and we may have noise-like
parameters whose values may different at different moments of time – but al-
ways within given intervals. In general, we have a system of the type ẋi =
fi(x1, . . . , xm, t, a1, . . . , ak, b1(t), . . . , bl(t)), where fi is a known function, and we
know the intervals aj and bj(t) of possible values of ai and bj(t).

Example. For example, the case of a differential inequality when we only know
the bounds f

i
and f i on fi can be described as f̃i(x1, . . . , xn, t)+ b1(t)·Δ(x1, . . . ,

xn, t), where f̃i
def= (f

i
+ f i)/2, Δ(t) = (f i − f

i
)/2, and b1(t) = [−1, 1].

Solving systems of ordinary differential equations (ODEs) under interval uncer-
tainty. For the general system of ODEs, Euler’s equations take the form xi(t +
Δt) = xi(t)+Δt·fi(x1(t), . . . , xm(t), t, a1, . . . , ak, b1(t), . . . , bl(t)). Thus, if for ev-
ery t, we keep the set of all possible values of a tuple (x1(t), . . . , xm(t), a1, . . . , ak),
then we can use the Euler’s equations to get the exact set of possible values of
this tuple at the next moment of time.

The reason for exactness is that the values xi(t) depend only on the previous
values bj(t − Δt), bj(t − 2Δt), etc., and not on the current values bj(t).
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To predict the values xi(T ) at a moment T , we need n = T/Δt iterations.
To update the values, we need to consider all possible combinations of m+k+l

variables x1(t), . . . , xm(t), a1, . . . , ak, b1(t), . . . , bl(t); so, to predict the values at
moment T = n ·Δt in the future for a given accuracy ε > 0, we need the running
time n · Cm+k+l ∼ nk+l+m+1. This is is still polynomial in n.

Other possible cases when our approach is efficient. Similar computations can
be performed in other cases when we have an iterative process where a fixed
finite number of variables is constantly updated.

In such problems, there is an additional factor which speeds up computations.
Indeed, in the modern computers, fetching a value from the memory, in general,
takes much longer than performing an arithmetic operation. To decrease this time,
computers have a hierarchy of memories – from registers from which the access
is the fastest, to cash memory (second fastest), etc. Thus, to take full use of the
speed of modern processors, we must try our best to keep all the intermediate
results in the registers. In the problems in which, at each moment of time, we can
only keep (and update) a small current values of the values, we can store all these
values in the registers – and thus, get very fast computations (only the input values
x1, . . . , xn need to be fetched from slower-to-access memory locations).

Comment. The discrete version of the class of problems when we have an iter-
ative process where a fixed finite number of variables is constantly updated is
described in [8], where efficient algorithms are proposed for solving these discrete
problems – such as propositional satisfiability. The use of this idea for interval
computations was first described in Chapter 12 of [6].

Additional advantage of our technique: possibility to take constraints into ac-
count. Traditional formulations of the interval computation problems assume
that we can have arbitrary tuples (x1, . . . , xn) as long as xi ∈ xi for all i. In
practice, we may have additional constraints on xi. For example, we may know
that xi are observations of a smoothly changing signal at consequent moments
of time; in this case, we know that |xi − xi+1| ≤ ε for some small known ε > 0.
Such constraints are easy to take into account in our approach.

For example, if know that xi = [−1, 1] for all i and we want to estimate the
value of a high-frequency Fourier coefficient f = x1 − x2 + x3 − x4 + . . . − x2n,
then usual interval computations lead to en enclosure [−2n, 2n], while, for small
ε, the actual range for the sum (x1 − x2) + (x3 − x4) + . . . where each of n
differences is bounded by ε, is much narrower: [−n · ε, n · ε] (and for xi = i · ε,
these bounds are actually attained).

Computation of f means computing the values fk = x1−x2+. . .+(−1)k+1 ·xk

for k = 1, . . . At each stage, we keep the set sk of possible values of (fk, xk), and
use this set to find

sk+1 = {(fk + (−1)k · xk+1, xk+1) | (fk, xk) ∈ sk & |xk − xk+1| ≤ ε}.

In this approach, when computing f2k, we take into account that the value x2k

must be ε-close to the value xk and thus, that we only add ≤ ε. Thus, our
approach leads to almost exact bounds – modulo implementation accuracy 1/C.
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In this simplified example, the problem is linear, so we could use linear pro-
gramming to get the exact range, but set computations work for similar non-
linear problems as well.

4 Possible Extension to p-Boxes and Classes of
Probability Distributions

Classes of probability distributions and p-boxes: a reminder. Often, in addition
to the interval xi of possible values of the inputs xi, we also have partial infor-
mation about the probabilities of different values xi ∈ xi. An exact probabil-
ity distribution can be described, e.g., by its cumulative distribution function
Fi(z) = Prob(xi ≤ z). In these terms, a partial information means that instead
of a single cdf, we have a class F of possible cdfs.

A practically important particular case of this partial information is when, for
each z, instead of the exact value F (z), we know an interval F(z) = [F (z), F (z)]
of possible values of F (z); such an “interval-valued” cdf is called a probability
box, or a p-box, for short; see, e.g., [2].

Propagating p-box uncertainty via computations: a problem. Once we know the
classes Fi of possible distributions for xi, and a data processing algorithms
f(x1, . . . , xn), we would like to know the class F of possible resulting distri-
butions for y = f(x1, . . . , xn).

Idea. For problems like systems of ODES, it is sufficient to keep, and update,
for all t, the set of possible joint distributions for the tuple (x1(t), . . . , a1, . . .).

From idea to computer implementation. We would like to estimate the values with
some accuracy ε ∼ 1/C and the probabilities with the similar accuracy 1/C. To
describe a distribution with this uncertainty, we divide both the x-range and the
probability (p-) range into C granules, and then describe, for eachx-granule, which
p-granules are covered. Thus, we enclose this set into a finite union of p-boxes
which assign, to each of x-granules, a finite union of p-granule intervals.

A general class of distributions can be enclosed in the union of such p-boxes.
There are finitely many such assignments, so, for a fixed C, we get a finite
number of possible elements in the enclosure.

We know how to propagate uncertainty via simple operations with a finite
amount of p-boxes [2], so for ODEs we get a polynomial-time algorithm for
computing the resulting p-box for y.

For p-boxes, we need further improvements to make this method practical. For-
mally, the above method is polynomial-time. However, it is not yet practical
beyond very small values of C. Indeed, in the case of interval uncertainty, we
needed C2 or C3 subboxes. This amount is quite feasible even for C = 10.

To describe a p-subbox, we need to attach one of C probability granules
to each of C x-granules; these are ∼ CC such attachments, so we need ∼ CC

subboxes. For C = 10, we already get an unrealistic 1010 increase in computation
time.
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Abstract. This paper continues investigation of systems of fuzzy inter-
val logics based on the Checklist Paradigm semantics of Bandler and Ko-
hout [1] [2]. While the early papers dealt with checklist paradigm based
interval systems containing commutative AND and OR, this paper is the
fifth in the series of papers in which we have been describing the systems
in which these connective types are non-commutative. In the present
paper we investigate non-commutative interval system generated from
implication operators based on the Checklist Paradigm measure m3 of
Bandler and Kohout. This system includes the well-known Early Zadeh
implication operator (PLY) which is not contrapositive. While the com-
mutative systems can be sufficiently characterized by an 8-element group
of transformations, the non-commutative systems require the 16 element
group S2×2×2×2.

1 Introduction

The major theme of this paper is a non-commutative interval system generated
from implication operators based on the measure m3 of Bandler and Kohout
by the group transformations provided by the group S2×2×2×2. This system in-
cludes the well-known Early Zadeh implication operator (PLY) which is not con-
trapositive. It generates system of connectives which forms a subgroup S2×2×2

of the 16 element group S2×2×2×2. Non-contrapositivity of PLY induces non-
commutativity of AND and OR connectives under the group transformations.
Section 2.2 deals with group transformations of this system, while section 4 de-
scribes the system and also overviews three different classifications of connectives
of this interval system.

1.1 Interval Logics Generated by the Checklist Paradigm

In 1979 Bandler and Kohout [3] derived five interesting systems from ab initio
principles based on the Checklist paradigm. The structure of each of these fuzzy
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interval systems is generated by a distinct measure that performs the summa-
rization of the information contained in certain well-defined binary structures
called fine structures. See the Appendix below for the definitions of the measures
we refer to in this section. The interval produced by a measure mi pair of con-
nectives of one type can be generically characterized by the following inequality:

conbot ≤ mi ≤ contop

For example, Bandler and Kohout [3] listed the following five inequalities linking
the interval bounds for implication operators →bot, →top with corresponding
measures1 mi, i = {1, 2, 3, 4, 5}:

1. The Kleene-Dienes implication(KD) and �Lukasiewicz implication (�L) respec-
tively, are attainable lower and upper bounds of m1:
min(1, 1 − a + b) ≥ m1(→) ≥ max(1 − a, b)

2. A certain new function of (a, b) and the Goguen-Gaines (G43) implication
(the left-hand side) are respectively attainable lower and upper bounds of
m2:
min(1, b/a) ≥ m2(→) ≥ max(0, (a + b − 1)/a),

3. Another function of (a, b) and the Early Zadeh implication (EZ) are respec-
tively attainable lower and upper bounds of m3:
max[min(a, b), 1 − a] ≥ m3(→) ≥ max(a + b − 1, 1 − a).

4. Still another function of (a, b) and the Wilmott implication (W) respectively,
are attainable lower and upper bounds of m4:
min[max(a + b − 1, 1 − a), max(b, 1 − a − b)] ≤ m4(→) ≤ min[max(1 −
a, b), (max(a, (1 − b), min(b, 1 − a)))]

5. Yet another function of (a, b) and one of G43 respectively, are attainable
lower and upper bounds of m5:
max[min(1, b/a), 1 − a] ≥ m5(→) ≥ max[(a + b − 1)/a, 1 − a].

The above quoted paper [3] gave the impetus for more systematic investigation
of the systems of connectives that can be generated for above listed implicational
intervals by group transformations. The formal semantics for all the interval
systems so far described in various papers by Bandler and Kohout, Kohout
and Bandler and also by Kohout and Kim are derived by means of an exact
mathematical method, which also has a sound ontological and epistemological
base. It is based on the checklist paradigm introduced by Bandler and Kohout
[3],[4],[5],[6]. In order to make this paper self-explanatory, a brief overview of the
Checklist Paradigm is provided in the Appendix. The definitions of measures
mi, i = {1, 2, 3, 4, 5} is also presented in the Appendix.

2 The Structure of Some Classes of Fuzzy Interval Logic
Systems

The checklist paradigm puts ordering on the pairs of distinct implication opera-
tors and other pairs of connectives. Hence, it provides a theoretical justification
of interval-valued approximate inference.
1 See the Appendix below for the definitions of the measures we refer to in this section.
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The interval logic given by the pair of TOP and BOT connectives has as its
membership function a fuzzy valued function μFuzz : X −→ F(R), with the
rectangular shape. Hence it is a special case of fuzzy sets of the second type. We
shall call such a logic system checklist paradigm fuzzy logic of the second type,
or proper interval fuzzy logic [7]. In this paper we deal only with the interval
system based on m3, the conditions of a collapse of the interval system into a
point system will be presented elsewhere.

2.1 Group Transformations of Logics

Logic transformations are useful in investigating the mutual interrelationships
of logic connectives. The global structure of systems of logic connectives can
be fruitfully studied by employing the abstract group properties of their group
transformations. Transformations are functors that, taking one connective as the
argument will produce another connective.

Definition 1. Logic Group Transformations: Symmetric (Piaget)
Let f be any one of the 10 two-argument propositional connectives of a logic
system, and ¬ be an involutive negation. Then we define the following trans-
formations over f:

1. I(f) = f(x, y); Identity Transformation;
2. D(f) = ¬f(¬x, ¬y); Dual Transformation;
3. C(f) = f(¬x, ¬y); Contradual Transformation;
4. N(f) = ¬f(x, y); Negation Transformation;

The transformations {I, D, C, N} are called identity, dual, contradual, negation
transformation, respectively. It is well known that for the crisp (2-valued) logic
these transformations determine the Piaget group. These transformations are
symmetric in their arguments. This group of transformations is a concrete real-
ization of the abstract Klein 4-element group.

In Definition 1 above we have listed the set of the transformations Tp =
{I, D, C, N}. Adding new non-symmetrical transformations to those defined by
Piaget enriches the algebraic structure of logical transformations. In 1979 Kohout
and Bandler[8],[9] added the following non-symmetric operations to the above
defined four symmetrical transformations:

Definition 2. Logic Group Transformations: non-symmetric (Kohout and Ban-
dler [8],[9]

1. LC(f) = f(¬x, y); Left Contradual;
2. RC(f) = f(x, ¬y); Right Contradual;
3. LD(f) = ¬f(¬x, y); Left Dual;
4. RD(f) = ¬f(x, ¬y); Right Dual.

This yields a new 8-element group of transformations. This enlarged set of trans-
formations T = {I, D, C, N, LC, RC, LD, RD} forms 8-element group {T, ◦}
called S2×2×2 group. For its group operations table, see e.g. [12], page 159.
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2.2 Commutative vs Non-commutative Systems

It is obvious that a non-commutative system of logic has to contain two AND
and also two OR connectives. As a consequence of non-commutativity it will
also contain two implication operators (denoted by right arrows →) and two co-
implication operators operators ←. As the consequence some other connectives
will be also in duplicate. We denote the duplicate connectives by bullets attached
to the symbol of the connective. For the purpose of capturing non-commutativity,
a new transformation will be introduced, namely a commutator K that is added
to the eight already introduced transformations:

This is applied to AND and OR connectives. The following expression is the
equational definition of the commutator. It has two parts2

Definition 3. Commutator

1. syntactic For any connective *, the commutator yields K(a ∗ b) = b ∗ a.
2. sematic If a connective is non-commutative then val(a∗b) �= val(b∗a) where

val(a ∗ b), val(b ∗ a) ∈ [0, 1].

Definition 4. Equational Definition of Notation for Non-Commutative Systems
of AND and OR:

a&•b = K(a&b) = b&a; a ∨• b = K(a ∨ b) = b ∨ a.

Definition 5. An implication operator is contrapositive, if its valuation satisfies
the semantic equality

a → b = ¬b → ¬a.

Otherwise, it is non-contrapositive.

We can approach this in a more general way. In order to do this we first shall
use definition of logic group transformations from Sec. 2.1.

Commutativity involves restrictions on transformations of connectives, as does
the contrapositivity. In the abstract group (see [7]), these restrictions are ex-
pressed abstractly as congruences. It is convenient to express such restrictions
equationally.

Theorem 1. Link between commutativity and contrapositivity [12]

1. For any contrapositive →, the following equality holds:

C[K(a → b)] = K[C(a → b)] = a → b

2. For a non-contrapositive →, the following equality holds:

K(C(K(C(a → b)))) = a → b

Proof. For the proofs of (1) and (2), see Kohout and Kim 1997 [12].

2 We assume as usual in fuzzy logic [11] that the connectives are truth-functional.
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When an implication operator, say → is non-contrapositive, the AND and OR
connectives generated by the application of the group-compliant logic transfor-
mation T to → are non-commutative.

The implication operators listed in Sec. 1.1 above have the following
properties [3]:

1. The implication operators generated by measures m1, m4, m5 are contrapos-
itive.

2. The implication operators generated by measures m2, m3 lack the contra-
positivity.

3. The Kleene-Dienes implication operator (which we shall denote by PLY {m1,
T op, KD}) giving the upper bound of the interval is obtained in system
generated m1 can be obtained by the upper contrapositivization of PLY {m3,
T op, EZ}.

4. The Wilmott implication operator (which we shall denote by PLY {m4, T op,
W}) giving the upper bound of the interval is obtained in system generated
m4 can be obtained by the lower contrapositivization of PLY {m3, T op, EZ}.
(For definitions of the upper and lower contrapozitivation see [3]).

3 A Brief Overview of the Previous Work

3.1 Commutative Interval Systems Generated by the Checklist
Paradigm Measures

While the transformation a non-commutative interval system generated from
implication operators based on the measure m3 of Bandler and Kohout by the
group transformations provided by the group S2×2×2×2. This system includes the
well-known Early Zadeh implication operator (PLY) which is not contrapositive.
It generates system of connectives which forms a subgroup S2×2×2 of the 16 ele-
ment group S2×2×2×2. Non-contrapositivity of PLY induces non-commutativity
of AND and OR connectives under the group transformations.

System Generated by m1 Measure. All sixteen interval connective pairs
generated by m1 involving the interval pair of Kleene-Dienes and Lukasiewicz
implication operators have been first investigated by Bandler and Kohout in
detail in [4] as well as in several subsequent papers [5],[6]. The interval logic
system based on m1 are globally characterized by the group transformations
captured by S2×2×2 [9]. Detailed investigation of this system appeared in [1]
and [10]. The exhaustive examination of all congruences yielding the subgroups
that characterize individual types of connectives of the m1 system was presented
in [7]. Applications of the interval system m1 have been discussed in [13],[2] and
elsewhere.

Systems Generated by m4 and m5 Measures. These systems have con-
trapositive implication operators. As stated above (c.f. Sec.1.1 and Sec. 2.1),
the Wilmott implication operator PLY {m4, T op, W} ) giving the upper bound
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of the interval is obtained by the lower contrapositivization of the Early Zadeh
operator PLY {m3, T op, EZ}.

On the other hand, a →4′ b = max[min(1, b/a), 1 − a] operator of the type
PLY {m5, T op, G43′} giving the upper bound of the interval in the system m5

is obtained by the lower contrapositivization of the Goguen-Gaines implication
operator PLY {m3, T op, G43}. (see Sec. 1.1 above and for more details [3].)

More General Link Between Commutativity of AND, OR and PLY.
As a consequence of Theorem 5 of Sec. 2.1 above we have the following theorem.

Theorem 2. Let S2×2×2 be represented by the set of transformations T =
{I, N, C, D, LC, RC, LD, RD} applied to the set CON= {&, ∨, ↓, |, →, ←, →| , ←|}.
Then, if → is contrapositive, the corresponding & and ∨ in CON must be com-
mutative.

Proof. See L.J. Kohout and E. Kim [12], p.240, Theorem 2.

Commutative Interval Systems Generated by the Checklist.

3.2 Non-commutative Interval Systems Generated by the Checklist
Paradigm

Characterization by a 16-Element S-Group. As indicated by Theorem 5
in Sec. 2.1 above, the relationship between implication → and co-implication ←
connectives that are not contrapositive is more complex than for contrapositive
ones. Indeed, the assumption of semantic equality (c.f Definition 3 in Sec. 2.1)
factories the equality of Theorem 5-(2), thus yielding the congruence on group
of transformations captured by Theorem 5-(1). This suggests that the group
of transformations for systems with non-commutative AND and OR will have
higher complexity.

We have seen [10],[7] that for a contrapositive, → the corresponding & and ∨
in CON must be commutative. In this case, the effect of transformations T =
{I, N, C, D, LC, RC, LD, RD} applied to the set CON= {&, ∨, ↓, |, →, ←, →| , ←|}
is captured algebraically by the 8-element group S2×2×2.

On the other hand, in the case of non-commutative systems, one needs to
introduce the commutator K. Then the application of T+K = {I, N, C, D, LC,
RC, LD, RD, K} to its system of connectives yields the 16-element group
S2×2×2×2. The group multiplication table of this group appeared in [12] as well
as in some of our subsequent publications.

System Generated by m2 Measure. What is indeed the case for the fuzzy
interval logic system based on the Checklist paradigm measure m3 was shown
in 1997 by Kohout and Kim in [12].

Theorem 3. The closed set of connectives generated by {→G43, ←G43, K} is a
representation of the 16 element abstract group S2×2×2×2.

Proof. See L.J. Kohout and E. Kim [12].
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This theorem involves the non-contrapositive pair of Goguen-Gaines implication
a →G43 b = min(1, b/a) and co-implication operator a ←G43 b = min(1, a/b)
together with the commutator K.

Earlier, in 1992, Kohout and Bandler proved the following theorem:

Theorem 4 (Kohout & Bandler [9]). The closed set of connectives generated
from the ply-top implication operator a →G43 b = min(1, b/a) by the transfor-
mation T is listed below. This set of connectives together with T is a realization
of the abstract group S2×2×2.

→ = I(→4) = min(1, b/a)
←• = C(→4) = min(1, 1 − b/1 − a)
←|• = D(→4) = max(0, b − a/1 − a)
→| = N(→4) = max(0, a − b/a)
∨ = LC(→4) = min(1, b/1 − a)
↓ = LD(→4) = max(0, 1 − a − b/1 − a)
| = RC(→4) = min(1, 1 − b/a)
& = RD(→4) = max(0, a + b − 1/a).

Although the above transformation of PLY yields an 8 element group, this
groups S2×2×2 does not subsume the whole system but is only a subgroup of
the larger 16 element group S2×2×2×2 that characterizes the whole m3 based
interval fuzzy logic system. The co-implication operator ←G43 generates another
8-element subgroup (see [14],[15]).

System Generated by m3 Measure. Implication operators in this system
are non-contrapositive, hence the AND and OR connectives turn out to be non-
commutative. The rest of this paper is concerned with investigation of this system.

4 Non-commutative System of Fuzzy Interval Logic
Generated by m3 Containing Early Zadeh Implication

4.1 An Overview of the System m3

All the connectives of the non-commutative interval system based on m3 mea-
sure are listed in Table 1. The system listed in the table was obtained by the
application of the set of transformations
T = {I, N, C, D, LC, RC, LD, RD} to the TOP and BOT implication operators
→ {TOP, m3, EZ},
→ {BOT, m3} and the corresponding co-implication operators derived by the
checklist paradigm – c.f. Bandler and Kohout [3], Theorem 6.3-(3).

The graph of transformations which displays the efect of transformations on
the individual connectives is given in Fig. 1.

The effect of the commutator K can be read directly from this graph. For
example, we have a → b = K(a ← b), a ← b = K(a → b), a&•b = K(a&b), ...
a ↓ b = K(a | b), etc.

The Table 1 clearly indicates which are the TOP and which are the BOT con-
nectives. It also distinguishes Maxdiag from Mindiag connectives, a distinction



50 E. Kim and L.J. Kohout

Table 1. System of Fuzzy Interval Logic based on m3

T Type Maxdiag Mindiag Type

I → max(min(a, b), 1 − a) ≥ max(a + b − 1, 1 − a) →
N →| min(max(1 − a, 1 − b), a) ≤ min(2 − (a + b), a) →|
C ←• max(min(1 − a, 1 − b), a) ≥ max(1 − (a + b), a) ←•

D ←•| min(max(a, b), 1 − a) ≤ min(a + b, 1 − a) ←•|
LC ∨ max(min(1 − a, b), a) ≥ max(b − a, a) ∨
RC | max(min(a,1 − b), 1 − a)) ≥ max(a − b, 1 − a) |
LD ↓ min(max(a,1 − b), 1 − a) ≤ min(1 − b + a, 1 − a) ↓
RD & min(max(1 − a, b), a) ≤ min(1 − a + b, a) &

T Type Maxdiag Mindiag Type

I ← max(min(a, b), 1 − b) ≥ max(a + b − 1, 1 − b) ←
N ←| min(max(1 − a, 1 − b), b) ≤ min(2 − (a + b), b) ←|
C →• max(min(1 − a, 1 − b), b) ≥ max(1 − (a + b), b) →•

D →•| min(max(a, b), 1 − b) ≤ min(a + b, 1 − b) →•|
LC |• max(min(1 − a, b), 1 − b) ≥ max(b − a, 1 − b) |•
RC ∨• max(min(a,1 − b), b) ≥ max(a − b, b) ∨•

LD &• min(max(a,1 − b), b) ≤ min(1 − b + a, b) &•

RD ↓• min(max(1 − a, b), 1 − b) ≤ min(1 − a + b, 1 − b) ↓•

that stems from the mathematics of the Checklist Paradigm. (See the Appendix
for the explanation of these concepts). It is important for classification of prop-
erties of individual connectives.

4.2 Classification of Connectives

We have 3 kinds of classification of connectives generated by the checklist
paradigm semantics, namely,

Interval-Based. TOP-BOT interval pair giving the bounds on the values of
the interval. See Table 1 in Sec.4

Group Transformation-Based. which stems from group transformations (see
Sec 2.2) and is performed by examining the subgroups of the transformation
group S2×2×2×2.

Constraint-Based. Maxdiag-Mindiag pair: provides the classification of con-
nectives in Checklist Paradigm based systems of interval fuzzy logics system
into 2 classes, namely the Max-diagonal class (MAXD) and the Min-diagonal
class (MinD). This classification stems directly from the meta-logical features
of the mathematics of the Checklist Paradigm and is induced by the char-
acteristics of the fine structure of the checklist paradigm captured by the
Maxdiag and Mindiag constraint tables which determine the interval pairs
of the connectives (see the Appendix below).

Both, the Interval based and the Constraint based (i.e. Maxdiag/Mindiag)
classification of connectives of m3 system which can be seen in the Table 1
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Fig. 1. Graph of Group Transformations for Interval System m3

display the classification of the m3 system of interval connectives into 2 classes,
namely the Max-diagonal class (MAXD) and the Min-diagonal class (MinD).
This classification is derived for MAXDIAG and MINDIAG constraint tables
discussed above in section 2.1.

Closed Systems of Connectives in the Interval System m3. We shall now
recall some useful definitions that appeared explicitly or implicitly in previous
papers.

Definition 6 (Closed Set). Bandler and Kohout [9]
Let T be a family of group transformations. Given a logic connective (or a

set of connectives) CON, one can generate a new set of connectives T (CON)
by the application of T to CON. This set is closed, iff after the i-th applica-
tion T (CON)i = T (CON)i−1 where i ≥ 1. We shall denote this closed set by
Clo(CON, T ).

We say that Clo(CON, T ) is the closed set of connectives with respect to T
generated by CON

Definition 7 (Elementary Closed Set). Kohout and Kim [10],[7]
A subset B of a set A of connectives is an elementary closed set iff it is a

knot in A. This means that (i) any element in B is reachable from any other ele-
ment in B, and (ii) no element outside B is reachable from B by any number of
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applications of transformation T. The closure is relative with respect to applica-
tion of a specific set of transformations T .

Definition 8 (Pure Set of Connectives). Kohout and Kim [10],[7]
A pure set of connectives is a set that contains (i) only the connectives of

one classification type (e.g. only TOP, or only BOT, or only Min-diag, or only
Max-diag, etc.). (ii) It is an elementary closed set.

Theorem 5. Classification of TOP Connectives

1. Let T1 = {I, C, LC, RC}. Then Clo(→TOP , T1) = {→TOP , ←•
TOP , ∨TOP ,

|TOP } is the Maxdiag set closed with respect to T1 generated by →TOP .
2. Let T2 = {I, C, LC, RC}. Then Clo(←TOP , T ) = {←TOP , →•

TOP , |•TOP ,
∨•

TOP } is the Maxdiag set closed with respect to T generated by ←TOP .

Theorem 6. Classification of BOT Connectives

1. Let T1 = {I, C, LC, RC}. Then Clo(→BOT , T ) = {→BOT , ←•
BOT , ∨BOT ,

|BOT } is the Mindiag set closed with respect to T generated by →BOT .
2. Let T2 = {I, C, LC, RC}. Then Clo(←BOT , T2) = {←BOT , →•

BOT , |•BOT ,
∨•

BOT } is the Mindiag set closed with respect to T2 generated by ←BOT .

Theorem 7. All closed sets of Theorem 12 and 13 are Pure sets of connectives.

Proof. (i) They are closed (by Th. 12 and 13. (ii) They are elementary closed
sets. This follows from the properties of the S2×2×2×2 group. The group has one
element of order 1 (namely I) and 15 elements of order 2. (iii) Each of the sets
contains only the TOP or BOT connectives. Each of these sets contains only
Maxdig or Mindiag connectives.

4.3 Types of Logic

The logic which has as its membership function a real valued function that
yields a single point as the value of a logic formula, in the way analogous to the
assignment of values to the elements of ordinary fuzzy sets (i.e. fuzzy sets of the
first type) is called a singleton logic, or checklist fuzzy logic of the first kind.

In the logic of 2nd type the atomic object, the basic element of the valuation
space is a subset of a rectangular shape. In the logic of the 1st type, the atomic
object is a singleton.
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Appendix: Mathematics of the Checklist Paradigm

A number of distinct interval systems of fuzzy logics arise when the fuzzy mem-
bership function μ(S) of a fuzzy proposition S is interpreted as a summarization
of a two-valued (also called crisp) logical n-tuple that represents a checklist that
records yes-no answers to n questions concerning the truth status of a logic
statement. The structure of the checklist with answers can be conveniently cap-
tured by a contingency table. Putting different measures on the contingency
tables generate different fuzzy logic systems.
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Definition 9. Checklist A checklist template Q is a finite family of properties
〈Q1, Q2, ..., Qi, ..., Qn〉; With a template Q, and a given proposition A, one can
associate a specific checklist QA = 〈Q, A〉 which pairs the template Q with a given
proposition A. A valuation gA of a checklist QA is a function from Q to {0, 1}.

Definition 10. Let us denote by symbol aQ the degree δ(A) to which the propo-
sition A holds with respect to a template Q. This degree is given by the formula

aQ = δ(A(Q)) =
n∑

i=1

qA
i

where n=card Q and qA
i = gA(Pi). Obviously, qA

i ∈ {0, 1}.

Definition 11. Fine structure
A fine valuation structure a pair of propositions A, B with respect to the

template Q is a function gQ
A,B from Q into{0, 1} assigning to each attribute Pi the

ordered pair of its values 〈qA
i , qB

i 〉. The cardinality of the set of all attributes Pi

such that gQ
A,B(Qi) = 〈j, k〉 will be denoted by αj,k. (Obviously, qA

i , qB
i ∈ {0, 1},

but αj,k ∈ [0, n]).

We have the following constraint on the values: α00 + α01 + α10 + α11 = n.
Further, we define r0 = α00 + α01, r1 = α10 + α11, These entities can be dis-
played systematically in a contingency table. In such a table, the inner fine-
summarization structure consists of the four αj,k appropriately arranged, and of
margins c0, c1, r0, r1 as shown below:

No for B Yes for B Row total

No for A α00 α01 r0

Yes for A α10 α11 r1

Column Total c0 c1 n

Now let F be any logical propositional function of propositions A and B.
For i, j ∈ {0, 1}, let f(i, j) be the classical truth value of F for the pair (i, j)
of truth values; let u(i, j) = αi,j/n . Then we define the (non-truth-functional)
fuzzy assessment of the truth of the proposition F (A, B) to be

mfin(F (A, B)) =
∑

i,j
f(i, j) · uij

This assessment operator will be called the value of the fine structure.



Non-commutative System of Fuzzy Interval Logic 55

The four interior cells α00, α01, α10, α11 of the constraint table constitute its
fine structure; the margins r0, r1, c0, c1 constitute its coarse structure (see Fig.
above). As shown elsewhere [3],[4],[5],[6] the coarse structure imposes bounds
upon the fine structure, without determining it completely. Hence, associated
with the various logical connectives between propositions are their extreme val-
ues. Thus we obtain the inequality restricting the possible values of mi(F ):

conbot ≤ mfin(F ) ≤ contop
where con is the name of connective represented by f(i, j).

When the fine structure is not available, we can still determine the bounds
on the possible values from the values of the coarse structure that appear as the
margins in the contingency table (see figure above).

Maxdiag and Mindiag Constraints. The bounds on the values of the interior
of the contingency table are displayed in the two constraint structures, labeled
as MINDIAG and MAXDIAG. The first is obtained by minimizing the values of
the diagonal of the contingency table, the second by maximizing these.

1 − a 0 1 − a

a − b b a

1-b b 1

MAXDIAG if b ≤ a

1 − b b − a 1 − a

0 a a

1 − b b 1

MAXDIAG if b ≥ a

0 1 − a 1 − a

1 − b a + b − 1 a

1 − b b 1

MINDIAG if a + b ≥ 1

1 − (a + b) b 1 − a

a 0 a

1 − b b 1

MINDIAG if a + b ≤ 1

The above seen MAXDIAG and MINDIAG tables that summarize the solu-
tions of constraint inequalities can be conveniently used for direct readout of
various pairs of TOP and BOT connectives (as demonstrated e.g. in [7]).

In general, MINDIAG and MAXDIAG constraint structures can be computed
by solving the constraint inequalities involving the variables of the fine structure
displayed in the contingency table. For the proofs and further explanation see
[3],[4],[6].

A List of Measures Used in Bandler and Kohout [3]. Referring to the
contingency table above in this Appendix, let us define ulk = αlk/n. This is used
to define the following measures that yield implication interval connectives (see
Sec. 1.1 above):

1. m1(F ) = 1 − (α10/n)
2. If for con type we choose an implication again, but only the evaluation ”by

performance” (that is, we are only concerned with the cases in which the
evaluation of A is 1), we obtain m2 = u11/(u10 + u11)

3. Still another contracting measure which distinguishes the proportion of sat-
isfactions “by performance”, u(1, 1), and “by default”, u00 + u01, we obtin
m3 = u11

∨
(u00 + u01)).

4. The lower contrapositivization of m3 yields m4 = (u11

∨
(u00 + u01))

∧
(u00∨

(u01 + u11))
5. Yet another measure arises by taking for the ”performance” part the less

conservative m2, giving m5 = m2

∨
(u00 + u11).
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Abstract. The algebra of truth values for fuzzy sets of type-2, due to
Zadeh, contains as subalgebras those of type-1 and of interval-valued
fuzzy sets. It also contains many other interesting subalgebras, some
of which could possibly serve as a basis of a useful fuzzy set theory.
This paper is about one such subalgebra which we call the subalgebra
of points, and which generalizes type-1. We investigate it as an algebra,
and determine its automorphism group. In particular, we show that is it
a characteristic subalgebra and that its automorphisms are exactly those
induced by automorphisms of the containing truth value algebra of fuzzy
sets of type-2.
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1 Introduction

Type-2 fuzzy sets—that is, fuzzy sets with fuzzy sets as truth values were in-
troduced by Zadeh [9] in 1975, and have been the subject of many papers. A
basic mathematical treatment is given in [6] and it subalgebras and their au-
tomorphisms are the subject of [7,8]. There are several subalgebras of special
interest, including copies of the truth value algebra of ordinary type-1 fuzzy and
sets and of the truth value algebra of interval-valued fuzzy sets. These are not
only subalgebras, but are characteristic in the sense that every automorphism
of the algebra induces an automorphism of each of these subalgebras, making
them very special subalgebras, further testimony to the “correctness” of Zadeh’s
generalization. Subalgebras in general are of interest because each could serve
as the basis of a fuzzy set theory, where a fuzzy set in this theory is a mapping
of a universal set into this subalgebra.

This paper is about one special subalgebra. It is a generalization of the truth
value algebra of type-1 fuzzy sets. The elements of the truth value algebra of
type-2 fuzzy sets are all functions [0, 1] → [0, 1]. The elements of the truth value
algebra of type-1 fuzzy sets correspond to the characteristic functions of points.
That is, they are those functions that are non-zero at exactly one point and have
value 1 at that point. The algebra concerned with here is the algebra of those
functions which are non-zero at exactly one point but can have any value in
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(0, 1] at that point. This is indeed a subalgebra of the algebra of truth values of
type-2 fuzzy sets, and is more general than that of the type-1 truth values. This
subalgebra and its automorphisms are principal topics of this paper. It plays a
special role in the development of the general theory of the truth value algebra
of type-2 fuzzy sets since obviously every mapping [0, 1] → [0, 1] is the pointwise
join of elements of this subalgebra. It is especially important to understand this
subalgebra and its automorphisms in determining the automorphisms of the
larger algebra.

Elements of the algebra of points will be represented by a pair of points from
the unit interval which is reminiscent of interval-valued fuzzy sets. But, as you
will see, the operations are not the same, and the algebra of points has quite
different properties than the algebra of intervals.

The basic mathematical properties of the truth value algebra of type-2 fuzzy
sets are given in [6]. We begin with a review of some relevant definitions.

2 Type-2 Fuzzy Sets

The algebra of truth values for fuzzy sets of type-2 is the set of all mappings
of [0, 1] into [0, 1] with operations certain convolutions of operations on [0, 1].
These operations are as follows.

Definition 1. The algebra of truth values for type-2 fuzzy sets is the
algebra

M = ( [0, 1][0,1]
, �, �,∗ ,0̄, 1̄) (1)

where the operations are defined by

1. (f � g) (x) = sup {f (y) ∧ g (z) : y ∨ z = x}
2. (f � g) (x) = sup {f (y) ∧ g (z) : y ∧ z = x}
3. f∗(x) = sup {f (y) : 1 − y = x}
4. 1̄ (x) = 1 if x = 1 and 1̄ (x) = 0 if x �= 1
5. 0̄ (x) = 1 if x = 0 and 0̄ (x) = 0 if x �= 0

Note that f∗(x) = f(1−x). A fuzzy subset of type-2 of a set S is a mapping
f : S → [0, 1][0,1], and operations on the set F2(S) of all such fuzzy subsets are
given pointwise from the operations in M. Thus we have the algebra F2(S) =
(Map(S, [0, 1][0,1]), �, �,∗ ,0̄, 1̄) of fuzzy subsets of type-2 of the set S. The
same equations hold in F2(S) as in M.

Determining the properties of the algebra M is a bit tedious, but is helped by
introducing the following auxiliary operations.

Definition 2. For f ∈ M, let fL and fR be the elements of M defined by

fL(x) = sup {f (y) : y ≤ x}
fR(x) = sup {f (y) : y ≥ x}
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Note that fL is monotone increasing and that fR is monotone decreasing, and
these are the pointwise smallest such functions above f . With this definition,
the operations � and � in M can be expressed in terms of the pointwise max
and min of functions in two ways, as follows.
Theorem 1. The following hold for all f, g ∈ M.

f � g =
(
f ∧ gL

)
∨

(
fL ∧ g

)
= (f ∨ g) ∧

(
fL ∧ gL

)
(2)

f � g =
(
f ∧ gR

)
∨

(
fR ∧ g

)
= (f ∨ g) ∧

(
fR ∧ gR

)

Using these auxiliary operations, it is fairly routine to verify the following basic
properties of the algebra M. The details may be found in [6].
Corollary 1. The following hold for f, g, h ∈ M.

1. f � f = f and f � f = f
2. f � g = g � f and f � g = g � f
3. 1̄ � f = f and 0̄ � f = f
4. f � (g � h) = (f � g) � h and f � (g � h) = (f � g) � h
5. f � (f � g) = f � (f � g)
6. f∗∗ = f
7. (f � g)∗ = f∗ � g∗ and (f � g)∗ = f∗ � g∗

It is not known whether or not every equation satisfied by M is a consequence
of these; that is, whether or not these equations form an equational base for the
variety generated by M. It is also not known whether or not the variety generated
by M is generated by a finite algebra. (See [3] for background on varieties.)

3 The Subalgebra P of Points

As indicated in the introduction, this paper is about the subalgebra of those
functions, called points, which are non-zero at exactly one element of their
domain, but can have any value in (0, 1] at that element. This is indeed a subal-
gebra, and our concern is with its properties, its automorphisms, and its being
a characteristic subalgebra of M.

It is a generalization of the truth value algebra of type-1 fuzzy sets—the
subalgebra of points with value 1, and seems to be a reasonable candidate for
applications. For a function in P, its support could be viewed as degree of mem-
bership, and its value as level of confidence. This generalizes type-1 fuzzy sets,
where the “level of confidence” is always 1.

One feature of our development is realizing this subalgebra as an algebra of
pairs with simple pointwise operations. This is elaborated on below.

Definition 3. The points of M are those functions that are non-zero at exactly
one point of the domain [0, 1]. We denote by 〈a, p〉 the function that has value p
at a and is 0 elsewhere.

Note that 〈0, 1〉 and 〈1, 1〉 are the functions previously denoted by 0̄ and 1̄,
respectively. Also,
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1. 〈a, p〉L (x) = 0 if x < a, 〈a, p〉L (x) = p if x ≥ a

2. 〈a, p〉R (x) = p if x ≤ a, 〈a, p〉R (x) = 0 if x > a

Proposition 1. Let P denote the set of points of M. Then

P = (P, �, �,∗ , 〈0, 1〉 , 〈1, 1〉 ) (3)

is a subalgebra of M.

Proof. The constants of M, 〈0, 1〉 and 〈1, 1〉, are in P. Also,

〈a, p〉 � 〈b, q〉 = (〈a, p〉 ∨ 〈b, q〉) ∧ 〈a, p〉L ∧ 〈b, q〉L = 〈a ∨ b, p ∧ q〉
〈a, p〉 � 〈b, q〉 = (〈a, p〉 ∨ 〈b, q〉) ∧ 〈a, p〉R ∧ 〈b, q〉R = 〈a ∧ b, p ∧ q〉

〈a, p〉∗ = 〈1 − a, p〉

Thus P is closed under all of the operations of M.

We call the subalgebra P the subalgebra of points of M. From the formulas
in the proof above, we see that P may be regarded as the algebra

P = ([0, 1] × (0, 1] , �, �,∗ , 〈0, 1〉 , (1, 1)) (4)

with operations �, �, and ∗ given by

〈a, p〉 � 〈b, q〉 = 〈a ∨ b, p ∧ q〉 (5)
〈a, p〉 � 〈b, q〉 = 〈a ∧ b, p ∧ q〉

〈a, p〉∗ = 〈1 − a, p〉

Viewing the elements of P as pairs is conceptually simpler, not involving the
notions of points being functions and operations being convolutions. We just
operate with pairs of elements from the unit interval with the basic operations
coming directly from ordinary max and min. Of course P satisfies the properties
of Corollary 1. By [6], since points are convex functions, P also satisfies the
distributive laws

〈a, p〉 � (〈b, q〉 � 〈c, r〉)=(〈a, p〉 � 〈b, q〉) � (〈a, p〉 � 〈c, r〉) (6)
〈a, p〉 � (〈b, q〉 � 〈c, r〉)=(〈a, p〉 � 〈b, q〉) � (〈a, p〉 � 〈c, r〉)

The algebra P is not a lattice, because the absorption laws (x � y) � x = x and
(x � y) � x = x fail to hold. For example, if q < p,

(〈a, p〉 � 〈b, q〉) � 〈a, p〉 = 〈a ∨ b, q〉 � 〈a, p〉 = 〈a, q〉 �= 〈a, p〉 (7)

By Corollary 1,

(〈a, p〉 � 〈b, q〉) � 〈a, p〉 = (〈a, p〉 � 〈b, q〉) � 〈a, p〉 (8)
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so the other absorption law fails as well. However, the properties that do hold say
that P is a distributive De Morgan bisemilattice [1]. The algebra P inherits
the De Morgan laws (Corollary 4, property 7) from M. A semilattice is a set
with one binary operation that is associative, commutative and idempotent. The
two semilattices involved here are monoids (each has an identity)

P1 = ([0, 1] × (0, 1] , �, 〈1, 1〉) and P2 = ([0, 1] × (0, 1] , �, 〈0, 1〉) (9)

These two semilattices induce the same partial order on P, namely 〈a, p〉  〈b, q〉
if and only if a ≤ b and p ≥ q.

4 P is a Characteristic Subalgebra of M

We have shown in [7,8] that several interesting subalgebras of M are character-
istic subalgebras—that is, they are taken to themselves by every automorphism
of M. Intuitively, this means that these subalgebras sit in M is a very special
way. These include the subalgebra of singletons (characteristic functions of one-
element sets), of interval-valued fuzzy sets (characteristic functions of closed
intervals), of normal functions, of convex functions, and of convex normal func-
tions, among others. In fact, we have shown this to be true in a more general
setting, namely in the algebra M =

(
[0, 1][0,1], �, �, 0̄, 1̄)

)
that does not include

the negation ∗. We will assume until further notice that the opera-
tions do not include ∗. That is, we will be concerned with the subalgebra
P = ([0, 1] × (0, 1] , �, �, 〈0, 1〉 , 〈1, 1〉) with operations given by

〈a, p〉 � 〈b, q〉 = 〈a ∨ b, p ∧ q〉 and 〈a, p〉 � 〈b, q〉 = 〈a ∧ b, p ∧ q〉 (10)

Note that if A is a subalgebra of M and A without ∗ is a characteristic subalgebra
of M, then A is a characteristic subalgebra of the algebra M.

One subalgebra of P is the algebra S = {[0, 1] × {1} , �, �, 〈0, 1〉 , 〈1, 1〉} , that
is, the elements of P with second coordinate 1. This subalgebra is called the
subalgebra of singletons, and is isomorphic to I = ([0, 1] , ∧, ∨, 0, 1) via x →
〈x, 1〉.

We show now that P is a characteristic subalgebra of M. It follows, then,
that P is a characteristic subalgebra of M. In the following section, we determine
precisely the automorphisms of P, and we show that they are all induces by
automorphisms of M.

Theorem 2. Let ϕ ∈ Aut(M) and 〈a, p〉 be a point function at a. Then ϕ(〈a, p〉)
is a point function.

Proof. From [7] we know that automorphisms of M induce automorphisms of
the subalgebra of singletons. Specifically, ϕ (〈a, 1〉) = 〈ϕs(a), 1〉 for some ϕs ∈
Aut (I). Note that

〈a, p〉 � 〈a, 1〉 = 〈a ∨ a, p ∧ 1〉 = 〈a, p〉 and 〈a, p〉 � 〈a, 1〉 = 〈a ∧ a, p ∧ 1〉 = 〈a, p〉
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So we have

ϕ (〈a, p〉) = ϕ (〈a, p〉 � 〈a, 1〉)
= ϕ (〈a, p〉) � ϕ (〈a, 1〉)
= ϕ (〈a, p〉) � 〈ϕs(a), 1〉
= (ϕ (〈a, p〉) ∨ 〈ϕs(a), 1〉) ∧ ϕ (〈a, p〉)L ∧ 〈ϕs(a), 1〉L

Therefore, ϕ (〈a, p〉) = 0 to the left of ϕs(a) since this is the case for 〈ϕs(a), 1〉L.
Similarly, using 〈a, p〉 � 〈a, 1〉 = 〈a, p〉, ϕ (〈a, p〉) = 0 to the right of ϕs(a).
Therefore, ϕ (〈a, p〉) is a point function at ϕs(a).

Corollary 2. The algebra P is a characteristic subalgebra of M, and the algebra
P is a characteristic subalgebra of M.

Since ϕs is an automorphism of the unit interval, we also have the following.

Corollary 3. For each p ∈ (0, 1], and ϕ ∈ Aut (M), ϕ (〈0, p〉) is a point function
at 0 and ϕ (〈1, p〉) is a point function at 1.

5 Automorphisms of P

The fact that P is a characteristic subalgebra of M says that every automorphism
of M induces an automorphism of P. But does P have any other automorphisms?
That is, does every automorphism of P extend to one of M.

For α, β ∈ Aut (I), and f ∈ M, define αL (f) by αL (f) (x) = α (f (x)) and
βR (f) (x) = f (β (x)). Then αL and βR are both automorphisms of M. (In [8]
we showed that every automorphism of M is of the form αLβR.) If ϕ is an
automorphism of M and ϕ = αLβR, then αLβR (〈a, p〉) =

〈
β−1 (a) , α (p)

〉
. To

see this, recall that 〈a, p〉 is the function defined by 〈a, p〉 (a) = p and 〈a, p〉 (x) =
0 if x �= a. Then for x ∈ [0, 1]

αLβR (〈a, p〉) (x) = α (〈a, p〉 (β (x))) =
{

0 if β (x) �= a
α (p) if β (x) = a

(11)

=
〈
β−1 (a) , α (p)

〉
(x)

Thus every pair of automorphisms of the unit interval yields an automorphism
of P. We will now show that every automorphism of P comes about this way.

In order to determine the automorphisms of P, it is convenient to determine
the irreducibles elements of P. An element 〈a, p〉 is join irreducible if 〈a, p〉 =
〈b, q〉�〈c, r〉 implies that 〈a, p〉 = 〈b, q〉 or 〈a, p〉 = 〈c, r〉. Similarly, 〈a, p〉 is meet
irreducible if 〈a, p〉 = 〈b, q〉 � 〈c, r〉 implies that 〈a, p〉 = 〈b, q〉. An element
〈a, p〉 is irreducible if it is both join and meet irreducible. It is easy to see that
irreducible elements are taken to irreducible elements by automorphisms.
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Theorem 3. The irreducibles of P are exactly the singletons—that is, the points
of the form 〈a, 1〉 for a ∈ [0, 1].

Proof. For any point 〈a, p〉 ∈ P, we have

〈a, p〉 = 〈a, 1〉 � 〈0, p〉 = 〈a, 1〉 � 〈1, p〉

If p < 1, then 〈a, p〉 �= 〈a, 1〉. Also at least one of 〈0, p〉 and 〈1, p〉 is different
from 〈a, p〉. Thus, in this case, 〈a, p〉 is either join or meet reducible or both. For
p = 1, suppose

〈a, 1〉 = 〈b, q〉 � 〈c, r〉

Then q ∧ r = 1 implies that q = r = 1, and a = b ∨ c implies a = b or a = c, so
〈a, 1〉 is join irreducible. And if

〈a, 1〉 = 〈b, q〉 � 〈c, r〉

then q ∧ r = 1 implies that q = r = 1, and a = b∧ c implies a = b or a = c. Thus
〈a, 1〉 is both join and meet irreducible, and hence irreducible.

Since an automorphism must take irreducible elements to irreducible elements,
the singletons are a characteristic subalgebra of P. But this subalgebra is iso-
morphic to the unit interval, so we have the following.

Corollary 4. Every automorphism of P induces an automorphism of I by its
action on singletons.

We already had this result for automorphisms ϕ of M, and called the induced
automorphism on the unit interval ϕs. We will continue to use that notation
for automorphisms ϕ of P. Thus for every automorphism ϕ of P, ϕ (〈a, 1〉) =
〈ϕs (a) , 1〉 for any a ∈ [0, 1]. Note that if α ∈ Aut (I), then α−1

R (〈a, p〉) =
〈α (a) , p〉 is an automorphism of P, so every such α is realized as a ϕs, in fact,
α =

(
α−1

R

)
s
.

Call p the height of 〈a, p〉 for 〈a, p〉 ∈ P.

Theorem 4. For any a, b ∈ [0, 1] and ϕ ∈ Aut (P), the points ϕ(〈a, p〉) and
ϕ(〈b, p〉) have the same height.

Proof. We may as well assume that a ≤ b. Then

〈a, p〉 � 〈b, p〉 = 〈a ∨ b, p ∧ p〉 = 〈b, p〉 and 〈a, p〉 � 〈b, p〉 = 〈a ∧ b, p ∧ p〉 = 〈a, p〉

Write ϕ (〈a, p〉) = 〈c, q〉 and ϕ (〈b, p〉) = 〈d, r〉. Then

ϕ (〈a, p〉 � 〈b, p〉) = ϕ (〈a, p〉) � ϕ (〈b, p〉) = 〈c ∨ d, q ∧ r〉
= ϕ (〈b, p〉) = 〈d, r〉
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which implies q ≥ r. And

ϕ (〈a, p〉 � 〈b, p〉) = ϕ (〈a, p〉) � ϕ (〈b, p〉) = 〈c ∧ p, q ∧ r〉
= ϕ (〈a, p〉) = 〈c, q〉

which says r ≥ q. Thus r = q—that is, they have the same height.

Since this height depends only on p, it is a function. which we will call ϕk. We
extend this function to the unit interval by defining ϕk (0) = 0.

Theorem 5. If ϕ ∈ Aut (P ), then ϕk ∈ Aut (I).

Proof. Suppose p ≤ q. Then ϕ (〈a, p〉 � 〈a, q〉) = ϕ (〈a, p ∧ q〉) = ϕ (〈a, p〉) is a
point of height ϕk(p), and

ϕ (〈a, p〉 � 〈a, q〉) = ϕ (〈a, p〉) � ϕ 〈a, q〉 = 〈b, ϕk(p)〉 � 〈c, ϕk(q)〉
= 〈b ∨ c, ϕk(p) ∧ ϕk(q)〉

is a point of height ϕk(p) ∧ ϕk(q). Thus ϕk(p) ∧ ϕk(q) = ϕk(p), so ϕk is an
increasing function. It is also clearly one-to-one. We have already observed that
ϕk (1) = 1. Thus, extending ϕk to the unit interval with the definition ϕk (0) = 0
yields an automorphism of I.

Corollary 5. ϕ(〈a, p〉) = 〈ϕs(a), ϕk(p)〉.

Thus every automorphism ϕ of P induces an automorphism ϕk of I by its action
on the heights of points.

Lemma 1. If ϕ ∈ Aut (P) then ϕ (〈0, p〉) = 〈0, ϕk (p)〉.

Proof. Writing 〈0, p〉 = 〈0, 1〉 � 〈0, p〉, we get

ϕ (〈0, p〉) = ϕ (〈0, 1〉) � ϕ (〈0, p〉) = 〈0, 1〉 � 〈ϕs(0), ϕk (p)〉
= 〈0, ϕk (p)〉

Theorem 6. Automorphisms of P are of the form ϕ (〈a, p〉) = 〈α (a) , β (p)〉 for
α, β ∈ Aut (I).

Proof. Let ϕ ∈ Aut (P) and write 〈a, p〉 = 〈a, 1〉 � 〈0, p〉. Then

ϕ (〈a, p〉) = ϕ (〈a, 1〉) � ϕ (〈0, p〉) = 〈ϕs (a) , 1〉 � 〈0, ϕk (p)〉
= 〈ϕs (a) , ϕk (p)〉

By the results above, both ϕs and ϕk are automorphisms of the unit interval,
and ϕ = (ϕk)L

(
ϕ−1

s

)
R
.
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This establishes a one-to-one correspondence between Aut (P) and Aut (I)2. It
is routine to show that this correspondence preserves composition of functions.
It is also easy to see that ϕ commutes with ∗ if and only if ϕs commutes with ′.
This gives the following:

Corollary 6. Aut (P) ≈ Aut (I)2 and Aut (P) ≈ Aut (I) × Aut (I).

6 Summary

In this paper we investigated a special subalgebra of the truth value algebra of
type-2 fuzzy sets, namely, the algebra P of points which generalizes type-1 fuzzy
sets We showed that this subalgebra of M, and that its automorphism group is
isomorphic to Aut (I)×Aut (I), where I is the unit interval with the usual order.
These same facts hold for these algebras with the usual negation added to their
type.

Computations in this algebra of points are simple compared to general type-
2 computations, and there could be some interesting applications of fuzzy sets
with P as the algebra of truth values. The additional parameter, which we called
height, is a conservative measure, as the height of the meet or join of finitely
many of these functions has the minimum height.

With universal set {0, 1, 2, 3, 4, 5}, the fuzzy subset “close to 0” might be
modeled by the function

(sometimes written as 〈1, 1〉 /0+〈1, 0.8〉/1+〈0.8, 1〉 /2+〈0.4, 0.8〉/3+〈0.2, 0.8〉/4
+〈0, 1〉 /5). Operations between two such fuzzy sets depend only on the elements
in the range. So, for example, “close to 0” or “close to 3” might be

⎡

⎢⎢⎢⎢⎢⎢⎣

0 〈1, 1〉
1 〈1, 0.8〉
2 〈0.8, 1〉
3 〈0.4, 0.8〉
4 〈0.2, 0.8〉
5 〈0, 1〉

⎤

⎥⎥⎥⎥⎥⎥⎦
�

⎡

⎢⎢⎢⎢⎢⎢⎣

0 〈0, 1〉
1 〈0.2, 0.8〉
2 〈0.8, 1〉
3 〈1, 1〉
4 〈0.8, 1〉
5 〈0.2, 0.8〉

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

0 〈1, 1〉
1 〈1, 0.8〉
2 〈0.8, 1〉
3 〈1, 0.8〉
4 〈0.8, 0.8〉
5 〈0.2, 0.8〉

⎤

⎥⎥⎥⎥⎥⎥⎦

In this toy example, it is not very intuitive why the doubt about the degree to
which 3 is close to 0 should affect the confidence in which 3 is close to 3, but it
is our hope that practitioners might find situations that this setting models in
a useful way.



Points with Type-2 Operations 65

References

1. Brzozowski, J.A., De Morgan Bisemilattices, ISMVL, 30th IEEE International Sym-
posium on Multiple-Valued Logic (2000) 173.

2. Gehrke, M., Walker, C., and Walker, E., Some Comments on Interval-Valued Fuzzy
Sets, International Journal of Intelligent Systems 11(1996) 751-759.

3. McKenzie, R., McNulty, G., Taylor, W., Algebras, Lattices, Varieties, Vol. I,
Wadsworth, Inc., Belmont, California (1987).

4. Walker, C. and Walker, E., Algebraic Structures on Fuzzy Sets of Type-2, Proceed-
ings of the International Conference on Fuzzy Information Processing, Vol. 1, Liu,
Chen, Ying, and Cai, eds., (FIP 2003), pp. 97-100.

5. Walker, C. and Walker, E., Algebraic Properties of Type-2 Fuzzy Sets, Proceed-
ings of the Third International conference on Intelligent Technologies and Third
Vietnam-Japan Symposium on Fuzzy Systems and Applications, Hanoi Vietnam,
December 3-5, 2002, Nguyen Hoang Phuong, Hung T. Nguyen, Nguyen Cat Ho,
Pratit Santiprabhob, eds., (InTech/VJFuzzy’2002), p. 9.

6. Walker, C., and Walker, E., The Algebra of Fuzzy Truth Values, Fuzzy Sets and
Systems, 149 (2005) 309-347.

7. Walker, C., and Walker, E., Automorphisms of the Algebra of Fuzzy Truth Values,
International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 14(6)
(2006) 711-732.

8. Walker, C., and Walker, E., Automorphisms of the Algebra of Fuzzy Truth Values
II, preprint

9. Zadeh, L., The Concept of a Linguistic Variable and Its Application to Approximate
Reasoning, Inform Sci. 8 (1975) 199-249.





Part II

Intuitionistic Fuzzy Sets
and Their Applications



Atanassov’s Intuitionistic Fuzzy Sets as a

Classification Model
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Abstract. In this paper we show that Atanassov’s Intuitionistic Fuzzy
sets can be viewed as a classification model, that can be generalized in
order to take into account more classes than the three classes considered
by Atanassov’s (membership, non-membership and non-determinacy).
This approach will imply, on one hand, to change the meaning of these
classes, so each one will have a positive definition. On the other hand, this
approach implies the possibility of a direct generalization for alternative
logics and additional valuation states, being consistent with Atanassov’s
focuss. From this approach we shall stress the absence of any structure
within those three valuation states in Atanassov’s model. In particular,
we consider this is the main cause of the dispute about Atanassov’s
model: acknowledging that the name intuitionistic is not appropriate,
once we consider that a crisp direct graph is defined in the valuation
space, formal differences with other three-state models will appear.

Keywords: Atanassov’s Intuitionistic Fuzzy Sets, Interval Valued Fuzzy
Sets, Type-2 Fuzzy Sets, L-Fuzzy sets.

1 Introduction

The fuzzy scientific community has been attending with great interest the re-
cent dispute about Atanassov’s Intuitionistic Fuzzy Sets [6,14]. This model was
originally proposed by Atannassov [4] as a generalization of Zadeh’s Fuzzy Sets
[27].

According to Atanassov [4,5], given a set of objects X , each object x ∈ X is be-
ing described by means of the degree of membership, μ(x) ∈ [0, 1], together with
the degree of non-membership, ν(x) ∈ [0, 1], not imposing as Zadeh that these
two values should sum up to 1 (i.e., Atanassov does not assumes that the degree
of non-membership is the standard negation of the degree of membership, ν(x) =
1−μ(x), ∀x ∈ X). On the contrary, a remaining degree on non-determinacy (hes-
itation margin) is allowed by Atanassov, π(x) = 1−μ(x)− ν(x) ∈ [0, 1], ∀x ∈ X .

Atanassov’s model has deserved a serious consideration from theoretical and
applied researchers: as pointed out in [7], his papers have more than 1000 ref-
erences in scientific papers, see also [5]. Nevertheless, we should acknowledge
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that the term intuitionistic is not appropriate in Atanassov’s model (see [9]). A
proper intuitionistic model was proposed in [23].

Moreover, Atanassov’s proposal is not fully clear about the meaning and esti-
mation of the degrees of non-membership and non-determinacy (see, e.g., [14]).

In addition, Atanassov’s model, see [13,17], is equivalent to interval valued
fuzzy sets [22,24], which are defined by the family of mappings

μ : X −→ Int([0, 1])

where Int([0, 1]) is the set of all closed subintervals in [0, 1] and μ(x) represents
the plausible range of the degree to which object x ∈ X verifies a certain fuzzy
property.

This paper is organized as follows: in section 2 we propose to consider
Atanassov’s model as a classification model with two main valuation states, plus
non-determinacy. In section 3 we propose a direct generalization of his model,
allowing more than two main valuation states and providing such a valuation
space with a directed graph. In section 4 we stress the consequences of the non-
existence of such a graph in Atanassov’s model, which we consider the main
cause of the confusion with other models. Finally, we conclude with some addi-
tional comments about other Atanassov’s assumptions that help to explain why
such a demanded structure does not seem relevant under his approach.

2 Partition-Based Classification Models

Following [2], we consider here a finite valuation space C of valuation states,
fuzzy in nature but well defined from a representation point of view, in such a
way that for each object x ∈ X we can evaluate the degree μx(c) ∈ [0, 1] to
which such an object verifies properties defining each class c ∈ C. No restriction
is imposed by definition on these degrees of membership, but the possibility of
modifying those values through learning (see also [1]).

In order to be properly defined, each one of those valuation spaces (perhaps
represented by a linguistic label), should be positively defined. From this point
of view, Atanassov’s non-membership should be changed into a dual or opposite
class, different than negation. For example, the opposite of tall is short and the
opposite of good is bad. Neither negation of tall is short or the negation of good
is bad.

Let us remind here that the concept of fuzzy partition, introduced by Rus-
pini [21] in order to generalize the classical crisp partition concept, assumes the
existence of a discrete family C of classes, in such a way that

∑

c∈C
μc(x) = 1, ∀x ∈ X

holds. Each object x ∈ X may belong to several classes -to certain degrees-, and
the total degree of membership is distributed among all classes (a crisp partition
will appear whenever μc(x) ∈ {0, 1}, ∀c ∈ C, ∀x ∈ X).



Atanassov’s Intuitionistic Fuzzy Sets as a Classification Model 71

Hence, we can characterize Atanassov’s model by means of a mapping

μ : X −→ [0, 1] × [0, 1]

meanwhile its two coordinates never sum more that 1. But notice that Atanassov
is giving a true role to non-determinacy. Hence, Atanassov should be more likely
introduced as a mapping

μ : X −→ [0, 1] × [0, 1] × [0, 1]

which defines a Ruspini’s partition [21] on X , i.e.,

μ(x) + ν(x) + π(x) = 1, ∀x ∈ x

The introduction of such an extra non-determinacy state is from our point of
view a key characteristic of Atanassov’s approach. We propose here to associate
ignorance to this state, in such a way that whenever there is no information
the degree of membership is concentrated in this state, from which learning
will evolve (decreasing the degree of ignorance and increasing the degrees of
membership to the main valuation states). Ignorance should be the initial state
of a necessary learning process about degrees of membership.

More important is to realize that those valuation states are related between
them, defining a particular structure. Quite often the main valuation states define
a linear ordering.

In particular, it should be noted that most of us assume as granted a linear
order within those two main classes Atanassov considers (membership is being
associated to 1 which is higher than 0, which is associated to non-membership).
One may think this is not a relevant issue when only two classes are taken into
account, but we are stressing that Atanassov’s model refers to three classes,
and moreover, what happens if the number of states is bigger? For example,
we could introduce a middle state between membership and non-membership,
as in Lukasiewicz logic. The introduction of an extra evaluation state brings a
question about where this new state should be allocated with respect to the other
evaluation states. This structure must be specified, as the structure of objects
(see, e.g., [18,19]).

Therefore (see [20] for more details), we claim here that more attention should
be devoted to those type-2 fuzzy sets given by a mapping

μ : X → [0, 1]C

where

A1 X is a well-defined non-empty, but finite, set of objects such that
A1.1 There exists a crisp directed graph (X , P) showing physical immediacy

between two distinct objects x, y ∈ X (pxy = 1 in case there is immediacy
between x, y ∈ X and pxy = 0 otherwise).

A1.2 There exists a logic on X allowing a consistent evaluation of questions
about objects.
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A2 C is a finite valuation space, with at least three elements, such that
A2.1 There is a crisp directed graph (C, R), in such a way that rij = 1 in case

there is immediacy between i, j ∈ C and rij = 0 otherwise.
A2.2 There exists a logic in C, allowing a consistent evaluation of questions

about valuation states.
A3 There exists an ignorance state I ∈ C such that

A3.1 For every i ∈ C there exist a path connecting I with i.
A3.2 μx(I) = 1, ∀x ∈ X , and μx(i) = 0, ∀x ∈ X , ∀i �= I, when there is no

available information (complete ignorance).

Notice that we are not specifying any of the above two logics for objects and
classes, although we must point out that results must be consistent. Moreover,
according to [1], they should allow the quality evaluation of the classification we
have obtained. Of course there is a variety of possible consistent logics supporting
a more general notion of partition than the one due to Ruspini [21] (see, e.g.,
[10,12]), but notice we are imposing almost no restriction in our model. Most
standard assumptions can be possible, if existing and desired, only after a more
or less long learning process.

The key argument at this stage is to note that no operation is allowed between
non related objects (under the recursive arguments of [3,11], for example, we
should be considering only chains of immediate values). Most authors use to
assume that disjunction and conjunction should be based on a unique t-conorm
and a unique t-norm, respectively (see [8,16]), so calculus is commutative and
associative. But aggregation based upon OWA operators [26] or uninorms [25]
can also be an alternative to be considered.

Since most authors do not refer to any structure for objects we can assume,
by default, the following condition on the family of objects.

B1 X is a well-defined non-empty, but finite, set of objects such that its associ-
ated crisp directed graph (X , P) verifies that pxy = 0, ∀x �= y, so reference to
the structure of objects can be avoided (no immediacy between two objects).

Analogously, most authors aggregate states without taking care of any struc-
ture. So we can assume, by default, the following condition on the family of
classes.

B2 C is a finite valuation space, with at least three elements, such that its
associated crisp directed graph (C, R) verifies that for all i �= j, either rij = 1
holds or rji = 1 holds (or both), so reference to the structure of states can be
partially avoided (there is immediacy between every two valuation states).

A common family of structures for valuation states will be the linear structure,
where C−{I} defines a linear order. We can find in the literature many alternative
valuation structures fitting our model. For example, depending on the role we
associate to the average state in the standard 5-value scale (None, Poor, Average,
Very and Complete), we may need an additional ignorance state in order to fit
our model and Atanassov’s approach.
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Classical 4 epistemic valuation structure with four states (truth “T ”, falsehood
“F”, ignorance “I” and contradiction “C”, see e.g. [15]) is a nice example in order
to show that the structure connecting states should not be avoided. There are
several possible alternatives on how states are related between them, and our
classification problem will change if such a directed graph is modified. Such a
directed graph is related to learning, and it is usually needed in order to fix
meaning of each state (notice anyway that the ignorance state plays a different
role than the main valuation states or classes).

3 Atanassov Fuzzy Sets

The absence of a directed graph in Atanassov’s model does not allow, from our
point of view, to fix the exact meaning of his approach, producing as we shall
show a natural confusion.

For example, we can find in the literature three relevant models based on a
three-stated valuation space: Atanassov’s fuzzy sets, interval valued fuzzy sets
and Lukasiewicz logic. But the relation between these three states in interval
valued fuzzy sets and states in Lukasiewicz model is different than their relation
in Atanassov’s model. Each one of these three models shows a middle state, but
each one of these middle states is “in the middle” of each valuation space in a
different way. It will be again important to realize that disjunction (a part of
the required logic) between the two non-ignorance states may be not allowed, in
case these two states are not connected (in this case the question if the negation
of ignorance equals the disjunction of the two main valuation states has no
sense, since this second value is not defined). Notice for example that the initial
estimation of a degree of membership within interval valued fuzzy sets should
be associated to the whole interval, posterior information will allow to declare
that certain values are either too big or too small, but these two extreme states
do not show a natural connection in the standard real line representation.

4 Final Comments

First of all, note that, on one hand, Atanassov’s non-membership has been asso-
ciated here to duality, so both main valuation states are positively defined (let
us remind again that short is the dual notion for tall, and in no way short should
be confused with not tall).

On the other hand, Atanassov’s indeterminacy has been also given a particular
meaning (ignorance state).

Then, notice that Atanassov does not make any reference to object connec-
tives, so condition B1 applies. Condition B2 also applies (objects are not con-
nected but states are all connected).

Hence, we can maintain Atanassov’s approach allowing a more general space
of states, and still we should choose a particular directed graph in this space.

Another choice we have to make is about the logic within the space of states.
Atanassov assumes Lukasiewicz logic, which is applied once by definition the



74 J. Montero, D. Gómez and H. Bustince

three degrees of membership sum up to 1. Under this condition it seems that
Atanassov does not need to make explicit the underlying structure. But in fact
both main (non-ignorance) valuation states are aggregated in his model, so they
are assumed to be connected. Otherwise their aggregation should not be evalu-
ated (this is the case in interval valued fuzzy Sets).

If Atanassov’s approach is extended into this more general context, we would
be concluding that both interval valued fuzzy sets and his own model are different
particular cases. Confusion can be therefore justified because of a number of
particular choices introduced in his original model. In addition, not specifying the
structure of the state of spaces does not allow in our opinion to fix meanings, so
depending on the context different intuitions may appear in practical situations.
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1. A. Amo, D. Gómez, J. Montero and G. Biging (2001): Relevance and redundancy
in fuzzy classification systems. Mathware and Soft Computing 8:203–216.

2. A. Amo, J. Montero, G. Biging and V. Cutello (2004): Fuzzy classification systems.
European Journal of Operational Research 156:459–507.

3. A. Amo, J. Montero, and E. Molina (2001): Representation of consistent recursive
rules. European Journal of Operational Research 130:29–53.

4. K.T. Atanassov (1983): Intuitionistic fuzzy sets. In: V. Sgurev, ed., VII ITKR’s
Session, Sofia, June 1983 (deposed in Central Science and Technical Library, Bul-
garian Academy of Sciences, 1697/84, in Bulgarian).

5. K.T. Atanassov (1999): Intuitionistic Fuzzy sets, Physica-Verlag., Heidelberg, New
York.

6. K.T. Atanassov (2005): Answer to D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk
and H. Prade’s paper, Terminological difficulties in fuzzy set theory - the case of
intuitionistic fuzzy sets. Fuzzy Sets and Systems 156:496–499.

7. K.T. Atanassov (in press): A personal view on intuitionistic fuzzy sets. In H.
Bustince, F. Herrera and J. Montero, eds.: Fuzzy Sets and Their Extensions: Rep-
resentation, Aggregation and Models, Springer Verlag, Berlin.

8. T. Calvo, A. Kolesarova, M. Komornikova and R. Mesiar, Aggregation operators
(2002): properties, classes and construction methods. In T. Calvo, G. Mayor and
R. Mesiar, Eds.: Aggregation Operators, Springer; 3–104.

9. G. Cattaneo and D. Ciucci (in press): Basic intuitionistic principles in fuzzy set
theories and its extensions (a terminological debate on Atanassov IFS). Fuzzy sets
and Systems.

10. P. Cintula (2005): Basics of a formal theory of fuzzy partitions. Proceedings
EUSFLAT’05 Conference, Technical University of Catalonia, Barcelona; pp.
884–888.

11. V. Cutello and J. Montero (1999): Recursive connective rules. Int. J. Intelligent
Systems 14:3–20.

12. B. De Baets and R. Mesiar (1998): T-partitions. Fuzzy Sets and Systems 97:
211–223.

13. G. Deschrijver and E.E. Kerre (2003): On the relationship between some extensions
of fuzzy sets theory. Fuzzy Sets and Systems 133:227–235.



Atanassov’s Intuitionistic Fuzzy Sets as a Classification Model 75

14. D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. Prade (2005): Terminological
difficulties in fuzzy set theory - the case of intuitionistic fuzzy sets. Fuzzy Sets and
Systems 156:485–491.

15. P. Fortemps and R. Slowinski (2002): A graded quadrivalent logic for ordinal pref-
erence modelling: Loyola-like approach. Fuzzy Optimization and Decision making
1:93–111.

16. E.P. Klement, R. Mesiar and E. Pap (2002): Triangular Norms, Kluwer Academic
Publishers, Dordrecht.

17. J.M. Mendel (2007): Advances in type-2 fuzzy sets and systems. Information Sci-
ences 117:84–110.

18. J. Montero (1986): Comprehensive fuzziness. Fuzzy Sets and Systems 20:89–86.
19. J. Montero (1987): Extensive fuzziness. Fuzzy Sets and Systems 21:201–209.
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Abstract. The classical classification problem with nominal data is con-
sidered. First, to make the problem practically tractable, some transfor-
mation into a numerical (real) domain is performed using a frequency
based analysis. Then, the use of a fuzzy sets based, and – in particu-
lar - an intuitionistic fuzzy sets based technique is proposed. To better
explain the procedure proposed, the analysis is heavily based on an ex-
ample. Importance of the results obtained for other areas exemplified by
decision making and case based reasoning is mentioned.

1 Introduction

We deal with a classification problem, a “meta-problem” in many areas, no-
tably computer science, decision making, etc., with nominal (categorical) data.
In nominal data, names (usually belonging to a small set) are assigned to ob-
jects as labels. Initially, the only comparison possible is that if the names are
the same, the two data items belong to the same category, otherwise they are
different, i.e. “equality” or “inequality”.

A number of approaches to classification with nominal data have been pro-
posed (cf. Bock and Diday [3]). Basically, they boil down to some trickery to
obtain a numeric assessment of nominal values, or maybe rather relations be-
tween them. Some solutions can also be found in the context of database queries
and linguistic database summarization in Zadrożny [24].

For instance, in Li and Biswas [13] a similarity-based agglomerative cluster-
ing (SBAC) is proposed based on a similarity measure proposed by Goodall
for biological taxonomy that gives a greater weight to uncommon feature value
matches in similarity computations and makes no assumptions of the underly-
ing distributions of the feature values. An agglomerative algorithm is used to
derive a dendrogram, and then using a heuristic technique a partition of the
data is extracted. Fountoukis, Bekakos and Kontos [9] present an extension of
the well known decision tree approach to classification. Cheng et al. [4] propose
how to define a good distance (dissimilarity) measure between patterns with
nominal attributes by using adaptive dissimilarity matrices for measuring dis-
similarities between nominal values. These matrices are learned via optimizing
an error function on training samples. This is different than the conventionally
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employed value difference metric (VDM) used to define a real-valued distance
measure on nominal values. De Carvalho et al. [5], [6], [7] proposed some prox-
imity measures based on histograms. Ichino and Yaguchi [11] used a Minkowski
metric, and then extended their analysis in Ichino, Yaguchi and Diday [12] to
obtain a fuzzy classifier. Quinlan’s [15] ID3 algorithm proved to be effective to
handle both numeric and nominal data but it can be viewed to fail to handle a
“topological” aspect of knowledge as it does not consider how sure the classifi-
cation is, what the most typical example is, etc. To deal with these issues one
has to resort to numeric analysis, notably via a similarity/proximity measure.
Narazaki and Ralescu [14] proposed an alternative model which involves two
stages: the configuration stage mapping the symbolic problem into a numerical
domain by devising an appropriate distance measure, and then the classification
of examples via the distance measure developed.

Here we propose two alternative approaches to the classification of nominal
data attempting to involve merits of those approaches above using fuzzy sets (cf.
Zadeh [23] ), and intuitionistic fuzzy sets (cf. Atanasov [1], [2]).

2 A Brief Introduction to A-IFSs

One of the possible generalizations of a fuzzy set in X (Zadeh [23]), given by

A
′
= {< x, μA′ (x) > |x ∈ X} (1)

where μA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A
′
, is an A-IFS,

i.e. Atanassov’s intuitionistic fuzzy set, (Atanassov [1], [2]) A given by

A = {< x, μA(x), νA(x) > |x ∈ X} (2)

where: μA : X → [0, 1] and νA : X → [0, 1] such that 0<μA(x) + νA(x)<1,
and μA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-
membership of x ∈ A, respectively.

Obviously, each fuzzy set may be represented by the following A-IFS A = {<
x, μA′ (x), 1 − μA′ (x) > |x ∈ X}. For each A-IFS in X , we will call

πA(x) = 1 − μA(x) − νA(x) (3)

an intuitionistic fuzzy index (or a hesitation margin) of x ∈ A, and it expresses
a lack of knowledge of whether x belongs to A or not (cf. Atanassov [2]). It is
obvious that 0<πA(x)<1, for each x ∈ X .

An A-IFS gives us an additional degree of freedom, i.e. a possibility to repre-
sent more aspects of imperfect knowledge – cf. Szmidt and Kacprzyk’s papers,
given in the references, where applications of intutionistic fuzzy sets to group
decision making, negotiations, etc. are presented.

Distances are clearly of utmost importance, and to be more specific we will
use the normalized Euclidean distance between intuitionistic fuzzy sets A, B in
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X = {x1,x2, . . . , xn} (Szmidt and Kacprzyk [17],[20]):

qIFS(A, B) = (
1
2n

n∑

i=1

(μA(xi) − μB(xi))2 + (νA(xi) − νB(xi))2 +

+ (πA(xi) − πB(xi))2)
1
2 (4)

where, clearly, qIFS(A, B) ∈ [0, 1]; we can also use different normalized distances
(cf. Szmidt and Kacprzyk [17],[20])).

3 A Brief Description of the Problem

For clarity we present the problem considered, i.e. classification with nominal
data, using the famous Quinlan’s [15] example, the so-called “Saturday Morn-
ing”. We have objects described by attributes. Each attribute measures a fea-
ture and takes on discrete, mutually exclusive values. For example, if the objects
were “Saturday Mornings” and the classification involved the weather, possible
attributes might be [15]:

– outlook, with values {sunny, overcast, rain},
– temperature, with values {cold, mild, hot},
– humidity, with values {high, normal}, and
– windy, with values {true, false},

Taken together, the above attributes provide a zeroth-order language for char-
acterizing objects in the universe (the attributes are nominal). A particular
Saturday morning, an example, might be described as: outlook: overcast; tem-
perature: cold; humidity: normal; windy: false. Each object (example) belongs
to one of mutually exclusive classes, C. We assume that there are only two
classes, i.e., C = {P, N}, where: P denotes the set of positive examples, and
N – that of negative examples. There are 14 training examples as shown in
Table 1. Each training example e is represented by the attribute-value pairs, i.e.,
{(Ai, ai,j); i = 1, . . . , li} where Ai is an attribute, ai,j is its value – one of pos-
sible j values (for each i-th attribute j can be different, e.g., for outlook: j = 3,
for humidity: j = 2 etc.).

First, we propose, making use of the frequency description of the problem
(cf. Table 2), to express the data in terms of two fuzzy sets - Pos+ (a fuzzy
set describing the positive examples P ) and Pos− (a fuzzy set describing the
negative examples N). In its spirit the method proposed is close to that of De
Carvalho et al. [5], [6], [7] who use histograms to derive some proximity measures.

The frequency measure (Table 2) used for description of the data (Table 1):

f(Ai, ai,j , C) = V (C; Ai = ai,j)/pC (5)

where C = {P, N}; V (C; Ai = ai,j) – the number of training examples of C for
which Ai = ai,j ; pC – the number of the training examples of C.
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Table 1. The “Saturday Morning” data from Quinlan [15]

No. Attributes Class
Outlook Temperature Humidity Windy

1 sunny hot high false N
2 sunny hot high true N
3 overcast hot high false P
4 rain mild high false P
5 rain cool normal false P
6 rain cool normal true N
7 overcast cool normal true P
8 sunny mild high false N
9 sunny cool normal false P
10 rain mild normal false P
11 sunny mild normal true P
12 overcast mild high true P
13 overcast hot normal false P
14 rain mild high true N

Table 2. The frequencies obtained

Outlook Temperature Humidity Windy
S O R H M C H N T F

Positive 2/9 4/9 3/9 2/9 4/9 3/9 3/9 6/9 3/9 6/9

Negative 3/5 0 2/5 2/5 2/5 1/5 4/5 1/5 3/5 2/5

3.1 Solution Via Two Fuzzy Sets

Based on the frequency measure (5) - cf. Table 2, we convert relative frequency
distribution functions into fuzzy sets (cf. Yamada’s [22]). In effect, the data
(Table 2) can be expressed in terms of two fuzzy sets: Pos+ - for the data
belonging to class P , and Pos− - for the data belonging to class N . The results
are given in Table 3. Finally, we classify an example either to P or N assigning
to each attribute the values: 1, -1, or 0 according to the following rule:

ai,j =

⎧
⎨

⎩

1 if Pos+ > Pos−

−1 if Pos+ < Pos−

0 otherwise
(6)

Applying rule (6) to the data in Table 3, we assign: S = −1, O = 1, R = 1;
H = −1, M = 0, C = 1; H = −1, N = 1; T = −1, F = 1, and in result we
obtain the description of “Saturday Morning” data in the form given in Table 4.To
classify the examples, we calculate the centers of gravity CG(P ) and CG(N) for
both classes (P and N , respectively) while the i-th element of CG(C) for category
C is calculated in the following way:

CG(C)i =
p∑

j=1

eC
i,j/pC (7)
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Table 3. The possibilities obtained

Outlook Temperature Humidity Windy
S O R H M C H N T F

Pos+: ”Positive” possibilities (for P ) 0.67 1 0.89 0.67 1 0.89 0.67 1 0.67 1

Pos−: ”Negative” possibilities (for N) 1 0 0.8 1 1 0.6 1 0.4 1 0.8

Table 4. The “Saturday Morning” example derived by the transformation employed

No. Attributes Class
Outlook Temperature Humidity Windy

1 -1 -1 -1 1 N
2 -1 -1 -1 -1 N
3 1 -1 -1 1 P
4 1 0 -1 1 P
5 1 1 1 1 P
6 1 1 1 -1 N
7 1 1 1 -1 P
8 -1 0 -1 1 N
9 -1 1 1 1 P
10 1 0 1 1 P
11 -1 0 1 -1 P
12 1 0 -1 -1 P
13 1 -1 1 1 P
14 1 0 -1 -1 N

where C = {P, N}; eC
i,j is the attribute value of Ai of the j-th training example

of C among its pC positive training examples (for each class, respectively).
We obtain the following centers of gravity (cf. Table 4):

CG(P ) = (5/9, 1/9, 3/9, 3/9) CG(N) = (−1/5, −1/5, −3/5, −1/5) (8)

Knowing CG(C) we can calculate the normalized Euclidean distances q(e,
CG(C)) between each example e and the centers of gravity, and then to classify
example e according to the following rule:

e ∈ C if q(e, CG(C)) = min
Cj

q(e, CG(Cj)) (9)

where q(e, CG(Cj)) = (1
4

4∑
i=1

(ei − CG(Cj)i)2)
1
2 ; j denotes the class (P or N), i

is the number of an attribute.
The results are given in Table 5. We can see that in several cases some prob-

lems occured. First, it was not possible to classify example 3 because the dis-
tances to both centers are for this examples the same.

Next, examples 6 and 12 are incorrectly classified which is an obvious result
of the model – the same examples (6 and 7, 12 and 14 – Table 4) belong to
different classes.
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Table 5. The “Saturday Morning” data – the Euclidean distances between the exam-
ples and the centers of gravity (cf. the approach proposed in Section 3.1)

No. Distance Class
from CG(P) from CG(N) learned real

1 0.86 0.6 N N
2 0.95 0.51 N N
3 0.68 0.68 ? P
4 0.55 0.62 P P
5 0.49 0.93 P P
6 0.63 0.87 P N
7 0.63 0.87 P P
8 0.76 0.53 N N
9 0.72 0.87 P P
10 0.37 0.83 P P
11 0.76 0.7 ? P
12 0.69 0.53 N P
13 0.54 0.87 P P
14 0.69 0.53 N N

To summarize, the proposed method based on fuzzy sets exhibits some inher-
ent deficiencies, and is not sufficient.

3.2 Solution Based on Frequency Measures

The use of histograms and frequency measures for dealing with nominal data
is quite popular (cf. De Carvalho and Souza [7]). In our context, Narazaki and
Ralescu [14] proposed for the frequency measures given in (5) to assign to each
attribute either 1, 0 or -1 due to:

ai,j =

⎧
⎨

⎩

1 if f(Ai, ai,j , P ) > f(Ai, ai,j , N)
−1 if f(Ai, ai,j , P ) < f(Ai, ai,j , N)
0 otherwise

(10)

Using (10) the following assignments were done: S = −1, O = 1, R = −1; H =
−1, M = 1, C = 1; H = −1, N = 1; T = −1, F = 1, and we have underlined
the attributes the values of which are different from those assigned in Section 3.1
(previously, the values assigned were: R = 1, M = 0). The counterpart centers
of gravity (different from (8)) are:

CG(P ) = (−1/9, 5/9, 3/9, 3/9) CG(N) = (−1, 1/5, −3/5, −1/5) (11)

An example is classified due to the rule

e ∈ C if m(e, C) = max
Cj

m(e, Cj) (12)
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Table 6. The memberships values (12) – cf. Narazaki and Ralescu [14].

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m(e,C) 0.43 0.37 0.52 0.46 0.61 0.52 0.59 0.46 0.61 0.61 0.52 0.51 0.59 0.36

Class: learned N N P N P P P N P P P P P N

Class: real N N P P P N P N P P P P P N

Table 7. The counterpart intuitionistic fuzzy model

Outlook Temperature Humidity Windy
S O R H M C H N T F

Hesitation margins 0.67 0 0.69 0.67 1 0.49 0.67 0.4 0.67 0.8

membership values 0 1 0.2 0 0 0.4 0 0.6 0 0.2

non-membership values 0.33 0 0.11 0.33 0 0.11 0.33 0 0.33 0

where m(e, C) = q(e, CG(C))/
∑
j

q(e, CG(Cj)). The advantage is that all the ex-

amples are univocally described. The final results are presented in Table 6. For-
mally, only examples 4 and 6 are incorrectly classified. But, as a result of a deeper
analysis outlined in Narazaki and Ralescu [14], five examples were pointed out (the
examples for which the values of m(e, C) are underlined in Table 6) as belonging
neither to positive nor to negative ones. Existence of such doubtful “disguised”
cases, even if finally classified correctly, speaks against the method e.g., if applied
in case based reasoning while only the reliable examples should be considered.

3.3 Solution Via Intuitionistic Fuzzy Sets

Now we will use A-IFSs to describe and classify the “Saturday Morning” data.
First, we use an algorithm proposed in Szmidt and Baldwin [16] to assign the
parameters of an A-IFS model which describes the attributes (with the relative
frequency distributions given in Table 2 as the starting point of the algorithm).
The results are given in Table 7. A description of attributes in terms of A-IFSs
(Table 7) is used for further calculations.

The main idea is to depart from the traditional assignment: 1, 0, -1 as in
Sections 3.1 and 3.2, and use the values of all the three functions describing
IFSs, i.e. the values of the membership and nonmembership degrees, and of the
hesitation margin. So we have a table in which instead of the value “-1” for
“sunny” (cf. Table 4), we have a description in terms of intuitionistic fuzzy
sets (cf. Table 7), i.e., (μ(.), ν(.), π(.)); for instance, (0, 0.33, 0.67) is for “sunny”.
After the construction of the table in which the attributes of each example are
expressed in terms of the intuitionistic fuzzy sets, we calculate the centers of
gravity, CG(.), using the same method as in the previous Sections 3.1 and 3.2.

The centers of gravity, in terms of the A-IFSs, CG(.) = (Outlook, T em-
perature, Humidity, Windy) are [cf. (7)] are, for the examples from class P and
N , respectively:

CG(P ) = ((0.5, 0.1, 0.4), (0.1, 0.1, 0.8), (0.4, 0.1, 0.5), (0.1, 0.1, 0.8)) (13)
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Table 8. The “Saturday Morning” example – results obtained from the intuitionistic
fuzzy ( CG(.): (13)–(14))

No. Distance Class Dissimilarity
from CG(P) from CG(N) learned real

1 0.151 0.067 N N 0.44
2 0.156 0.058 N N 0.37
3 0.151 0.216 P P 0.7
4 0.130 0.079 N P 0.61
5 0.114 0.139 P P 0.82
6 0.119 0.136 P N 0.88
7 0.145 0.245 P P 0.6
8 0.152 0.075 N N 0.5
9 0.138 0.137 P P 1
10 0.106 0.128 P P 0.83
11 0.139 0.122 N P 0.9
12 0.16 0.22 P P 0.73
13 0.131 0.238 P P 0.55
14 0.136 0.072 N N 0.53

CG(N) = ((0.1, 0.2, 0.7), (0.1, 0.1, 0.8), (0.1, 0.3, 0.6), (0.1, 0.2, 0.7)) (14)

Comparing the above CG(P ) and CG(N) we can notice that attribute 2, (Tem-
perature), does not help much in the classification as in both cases the values are
the same, i.e. ((0.1, 0.1, 0.8) for both CG(P ) and CG(N)).

The order of the most discriminative attributes (it can be given after calcu-
lating the distances (4) between the respective components of the CG(P )s and
CG(N)s) is, from the most to the least discriminative one: Outlook, Humidity,
Windy, Temperature. This result is fully consistent with the results obtained in
[15] while looking for the order of checking the attributes by calculating a sta-
tistical property called information gain. It can easily be checked that for the
centers of gravity obtained in the two previous methods it does not happen.

Having the centers of gravity, we calculate the distances of each example from
both the centers of gravity, and classify an example according to the rule:

e ∈ C if q(e, CG(C)) = min
Cj

q(e, CG(Cj)) (15)

where q(e, CG(Cj)) is given by (4), Cj denotes the class (P or N). The results
are given in Table 8 (the distances to the closer CG(P ) – significantly closer,
i.e. such that the difference between the distances to both CG(P ) justifies the
classification – are underlined).

Last column of Table 8 contains the measure of dissimilarity calculated as:

min
Cj

q(e, CG(Cj))/ max
Cj

q(e, CG(Cj))

and a motivation of using this measure is given in [19].
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As it can be seen in Table 8, the examples are properly classified if dissimi-
larity is less than 0.84. This is not fulfilled for examples: 6, 9, and 11 which are
incorrectly classified.

The only exception is example 4 (dissimilarity is less than 0.84). The A-IFS
approach better renders details concerning small changes of distances to the
centers of gravity because it involves three indices.

Notice that both the previous methods had the problem with example 4 which
is not “reliable”. Even if the fuzzy approach (cf. Table 5) turned out to be success-
ful, i.e. classified the case properly, the distances to both the centers of gravity
were almost the same (an “unstable” situation). The frequency based approach
(cf. Table 6) gave incorrect classification (but with an advice given in [14] to
learn the system to classify the example properly). Only the A-IFS approach
definitely pointed out the example as a “troublesome” one – the classification is
done incorrectly while using the proper indicators (e.g, the respective distances
supporting the incorrect classification). In effect a user obtains a hint not to rely
on the example (e.g., in the sense of using it in case based reasoning).

3.4 Conclusions

We proposed how to deal with nominal attributes in classification, using – for
clarity – a popular example, the so called “Saturday Morning” by Quinlan [15].
We proposed a fuzzy, and then intuitionistic fuzzy approach (cf. Atanassov [2]).
We compared the new methods proposed with the one based on frequency anal-
ysis due to Narazaki and Ralescu [14].

However, it seems that the effectiveness, measured as the number of correctly
classified examples, is not to be considered as the only criterion. The reliabil-
ity is relevant, and in this respect the use of the intuitionistic fuzzy sets may
be justified as we can not only indicate “unstable” cases but to somehow trace
sources of that instability. This may be relevant in the context of many appli-
cations, notably in case based reasoning when, for instance, correctly classified
but unstable cases should not be added to the library of cases.
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Abstract. This paper proposes an automated approach for construct-
ing the intuitionistic fuzzy histograms (IF -histograms) of a gray-scale
digital image, based on the notion of intuitionistic fuzzy numbers (IF -
numbers). A method for constructing parametric IF -numbers from their
fuzzy counterparts using intuitionistic fuzzy generators (IFGs) is also
presented, using an entropic optimization criterion. Finally, experimen-
tal results demonstrate the ability of the proposed approach to obtain
efficiently the IF -histograms of gray-scale images.

1 Introduction

Since Zadeh introduced fuzzy sets (FSs) theory [1], many theories treating im-
precision have been proposed. Among the various extensions of FSs, Atanassov’s
intuitionistic fuzzy sets (A–IFSs) [2,3,4] provide a flexible and intuitive frame-
work to deal with vagueness originating out of imperfect or/and imprecise in-
formation. The sound advantage of A–IFSs is that they are consistent with the
human behavior of decision making, expressing the fact that linguistic negation
does not always coincides with logical negation.

Digital image processing algorithms can be roughly classified into two main
categories; histogram- and pixel-based approaches. Many of the algorithms
consider and depend solely on the histogram of the image. Histogram-based
techniques are characterized by their simplicity and speed compared to their
pixel-based counterparts. Therefore, the concept of histogram, as a descriptor
of the underlying statistics of images, is very important in the context of image
processing.

In this paper, a novel method for constructing the intuitionistic fuzzy his-
tograms (IF -histograms) of digital images is presented. The method is based
on the concept of intuitionistic fuzzy numbers (IF -numbers) and intuitionistic
fuzzy generators (IFGs).

The paper is organized as follows. In Sect. 2 the basic elements of A–IFSs
theory are outlined and the concept of intuitionistic fuzzy generators is briefly
discussed. Sect. 3 presents the concepts of fuzzy numbers (F -numbers) and fuzzy
histogram (F -histogram), as well as their intuitionistic fuzzy equivalents. An

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 86–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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entropic optimization approach for selecting the optimal IF -number to construct
the IF -histogram is also described. Finally, experimental results are given in
Sect. 4, while conclusions are drawn in Sect. 5.

2 Atanassov’s Intuitionistic Fuzzy Sets

In this section, we briefly describe the basic notions, concepts, and definitions of
A–IFSs theory.

Definition 1. An FS Ã defined on a universe X may be given as [1]

Ã = {〈x, μÃ(x)〉|x ∈ X} , (1)

where μÃ(x) : X → [0, 1] is the membership function of Ã.

The membership function of Ã describes the degree of belongingness of x ∈ X
in Ã.

Definition 2. An A–IFS A defined on a universe X is given by [2,3,4]

A = {〈x, μA(x), νA(x)〉|x ∈ X} , (2)

where
μA(x) : X → [0, 1] and νA(x) : X → [0, 1] ,

with the condition
0 � μA(x) + νA(x) � 1 , (3)

for all x ∈ X.

The values of μA(x) and νA(x) denote the degree of belongingness and the degree
of non-belongingness of x to A, respectively. For an A–IFS A in X we call the
intuitionistic index of an element x ∈ X in A the following expression

πA(x) = 1 − μA(x) − νA(x) . (4)

We can consider πA(x) as a hesitancy degree of x to A [2,3,4]. From (4) it is
evident that

0 � πA(x) � 1 (5)

for all x ∈ X .
FSs can also be represented using the notation of A–IFSs. An FS Ã defined

on X can be represented as the following A–IFS

A = {〈x, μA(x), 1 − μA(x)〉|x ∈ X} , (6)

with πA(x) = 0 for all x ∈ X .

Definition 3. The complementary set Ac of A is defined as

Ac = {〈x, νA(x), μA(x)〉|x ∈ X} . (7)

Finally, throughout this paper by I FS (X) we denote the set of all A–IFSs
defined on X . Correspondingly, FS (X) is the set of all FSs on X .
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2.1 Intuitionistic Fuzzy Generators

Definition 4 (Bustince et al. [5]). A function ϕ : [0, 1] → [0, 1] will be called
intuitionistic fuzzy generator (IFG) if

ϕ(x) � 1 − x (8)

for all x ∈ X.

The first characterization theorem of IFGs is stated as follows.

Theorem 1 (Bustince et al. [5]). Let ϕ : [0, 1] → [0, 1]. Then, ϕ is a contin-
uous IFG if and only if there exists a continuous function f : [0, 1] → [0, 1] such
that

– f(x) � x for all x ∈ [0, 1],
– ϕ(x) = (f ◦ N) for all x ∈ X,

where N denotes the standard negation, N : [0, 1] → [0, 1] given by N(x) = 1−x
for all x ∈ X.

Furthermore, an A–IFS can be constructed from an FS and an IFG according
to the following theorem.

Theorem 2 (Bustince et al. [5]). Let Ã be an FS on the universe X �= ∅,
and let ϕ be an IFG. Then, the set

A = {〈x, μÃ(x), ϕ (μÃ(x))〉|xi ∈ X} (9)

is an A–IFS on X.

3 The Quest for the Intuitionistic Fuzzy Histograms

3.1 From Fuzzy Numbers to Fuzzy Histograms

A fuzzy number, hereinafter denoted as F -number, g̃ is an FS of the real line
that is normal and convex. Different forms of F -numbers can be constructed
[6,7]. In this paper we consider symmetrical F -numbers, which are conceptually
suitable to represent the notion of gray level “approximately g”. A symmetrical
triangular F -number can be defined as

μg̃(x) = max
{

0, 1 − |x − g|
p

}
, (10)

where the positive real parameter p controls the shape of the F -number. Fig. 1(a)
illustrates the notion of F -number “approximately 100” for different values of
the parameter p.

By modelling gray levels using F -numbers, the notion of histogram of a dig-
ital image can be extended into a fuzzy setting [8,9]. The fuzzy histogram (F -
histogram) of a digital image is a sequence hF

A(g) and is given according to the
following definition.
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Fig. 1. (a) F -number “approximately 100” with p = 5 (gray line) and p = 10 (black
line) and (b) corresponding IF -number for p = 5 and λ = 3. For Fig. 1(b) lower and
upper membership functions are denoted by gray and black lines, respectively.

Definition 5. The F -histogram of an image A is a sequence hF
A(g) given by

hF
A(g) �

∣∣∣∣{〈(i, j), μA
g̃ (gij)〉|i ∈ {1, . . . , M}, j ∈ {1, . . . , N}

}∣∣∣∣ , (11)

with g ∈ {0, . . . , L − 1}, where || · || stands for the cardinality of an FS and g is
the gray level of the image.

Moreover, hF
A(g) denotes the frequency of occurrence of gray level “approximately

g”. It should be stressed out that due to its definition, the F -histogram fails to be
a probability density function. Therefore, in order for the F -histogram to meet
the aforementioned requirement the following normalized version is obtained as

h̄F
A(g) =

hF
A(g)

∑L−1
k=1 hF

A(k)
, (12)

with g ∈ {0, . . . , L − 1}, where L is the number of gray levels of the image.

3.2 Intuitionistic Fuzzy Numbers

The notion of intuitionistic fuzzy numbers (IF -numbers) has been thoroughly
studied by many researchers. In this work, we present a method for constructing
IF -numbers from an F -number using the concept of IFGs. A similar approach
was employed in [10] for constructing the A–IFS that optimally models the
intensity levels of an image.

Let us consider the continuous function f(x) = xλ, with λ � 1. One can
clearly verify that f(x) � x and f : [0, 1] → [0, 1] for all x ∈ [0, 1], under the
condition of λ � 1. Thus, according to Theorem 1, the following IFG is obtained

ϕ(x) = (1 − x)λ , (13)

where x ∈ [0, 1] and λ � 1.
Based on the F -number of (10) and considering the IFG of (13), we derive a

two-parameter IF -number with membership function

μ′
g̃(x) = max

{
0, 1 − |x − g|

p

}
(14)
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and a non-membership given by

ν′
g̃(x) =

(
1 − max

{
0, 1 − |x − g|

p

})λ

. (15)

Motivated by the notion of interval-valued fuzzy sets (IVFSs) [11], we employ an
alternative, more intuitive, representation of IF -numbers, by considering their
upper and lower membership functions, instead of the membership and non-
membership ones, described respectively by

μ̌′
g̃(x) = μ′

g̃(x) (16)

and
μ̂′

g̃(x) = 1 − ν′
g̃(x) , (17)

for all x ∈ X .

3.3 Intuitionistic Fuzzy Histograms

Deriving the optimal IF -number for the construction of the IF -histogram of the
image must encompass optimization of both membership and non-membership
functions on the basis of a common parameter. Therefore, taking into account the
involution property of fuzzy complements [6,7], the following modified versions
of the membership and non-membership functions of (14) and (15) are used,
described by

μg̃(x; λ) = 1 −
(

1 − max
{

0, 1 − |x − g|
p

})λ−1

(18)

and

νg̃(x; λ) =
(

1 − max
{

0, 1 − |x − g|
p

})λ(λ−1)

, (19)

with λ � 1. Fig. 1(b) depicts the IF -number corresponding to the F -number
“approximately 100” of Fig. 1(a) for p = 5 and λ = 3, using the representation
involving upper and lower membership functions.

By varying the free parameter λ of (18) and (19), different IF -numbers can be
generated and consequently different IF -histograms can be derived. Therefore,
an optimization criterion is needed in order to obtain the optimal value of λ,
for which the generated IF -histograms model the image under consideration in
an optimal way. In the proposed approach we apply a modified version of the
maximum intuitionistic fuzzy entropy principle introduced in [10].

Among other researchers, Burillo and Bustince [12] were the first to state and
propose an axiomatic skeleton of entropy for A–IFS and IVFSs.

Definition 6 (Burillo and Bustince [12]). A real function E : I FS (X) →
R

+ is called an entropy on I FS (X), if E has the following properties
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– E(A) = 0 if and only if A ∈ FS (X),
– E(A) = Cardinal(X) if and only if μA(x) = νA(x) = 0 for all x ∈ X,
– E(A) = E(Ac) for all A ∈ I FS (X),
– E(A) � E(B) if μA(x) � μB(x) and νA(x) � νB(x) for all x ∈ X.

Additionally, they proposed an entropy measure for A–IFSs satisfying their set
of axiomatic requirements, given by

E(A) =
∑

x∈X

πA(x) , (20)

which expresses the degree of intuitionism of the set A. It should be mentioned
that in [13] and [14] different sets of axiomatic requirements were given in order
for a measure to be qualified as an entropy in the setting of A–IFSs theory.

Vlachos and Sergiadis [10] introduced the following definition of an image A
of size M × N pixels having L gray levels g ranging between 0 and L − 1 in the
setting of A-IFSs theory, by generalizing its corresponding representation using
FSs proposed in [15,16,17].

Definition 7. An image A is described by the A–IFS

A = {〈gij , μA(gij), νA(gij)〉|gij ∈ {0, . . . , L − 1}} , (21)

with i ∈ {1, . . . , M} and j ∈ {1, . . . , N}, where μA(gij) and νA(gij) denote the
degrees of membership and non-membership of the (i, j)-th pixel to the set A
associated with an image property.

Considering the IF -numbers of (18) and (19) for modelling the gray levels of
the image A and taking also into account that the image can be considered as an
array of intuitionistic fuzzy singletons, the entropy of the image can be written
as

E(A) =
L−1∑

g=0

hA(g)Eg(A; g) , (22)

where

Eg(A; g) =
L−1∑

k=0

hA(k)
(
1 − μA

g̃ (k; g) − νA
g̃ (k; g)

)
, (23)

for each g ∈ {0, . . . , L − 1}, with hA being the crisp histogram of the image.
From (22) and taking into account (23), as well as (18) and (19), we obtain

that

E(A; λ) =
L−1∑

g=0

(
hA(g)

L−1∑

k=0

hA(k)

((
1 − max

{
0, 1 − |k − g|

p

})λ−1

−
(

1 − max
{

0, 1 − |k − g|
p

})λ(λ−1)
)) , (24)
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where the entropy E(A; λ) of the image A is also considered as a function of the
free parameter λ. The entropy of (24) serves as the optimization criterion for
selecting the optimal parameter λopt. This criterion can be formulated as

λopt = arg max
λ�1

{E(A; λ)} . (25)

Having obtained λopt, the IF -histograms of the image are defined as follows.

Definition 8. For an image A, the lower (minimum) IF -histogram is given by

ȟIF
A (g) �

∣∣∣∣{〈(i, j), μA
g̃ (gij)〉|i ∈ {1, . . . , M}, j ∈ {1, . . . , N}

}∣∣∣∣ , (26)

while the upper (maximum) IF -histogram as

ĥIF
A (g) �

∣∣∣∣{〈(i, j), 1 − νA
g̃ (gij)〉|i ∈ {1, . . . , M}, j ∈ {1, . . . , N}

}∣∣∣∣ . (27)

Practically, the upper and lower IF -histograms are computed using the formulas

ȟIF
A (g) =

L−1∑

k=0

hA(k)μA
g̃ (k) (28)

and

ĥIF
A (g) =

L−1∑

k=0

hA(k)
(
1 − νA

g̃ (k)
)

, (29)

respectively. It is evident that since μA
g̃ (g) � 1− νA

g̃ (g) for all g ∈ {0, . . . , L−1},
it follows immediately from (28) and (29) that ȟIF

A (g) � ĥIF
A (g).

Moreover, corresponding normalized IF -histograms are defined as

¯̌hIF
A (g) =

ȟIF
A (g)

∑L−1
k=0

(
ĥIF

A (k) − ȟIF
A (k)

) (30)

and
¯̂
hIF

A (g) =
ĥIF

A (g)
∑L−1

k=0

(
ĥIF

A (k) − ȟIF
A (k)

) . (31)

As a result, the estimated frequency of occurrence of the gray level “approxi-
mately g” is given by the interval [¯̌hIF

A (g), ¯̂hIF
A (g)]. We can interpret the above

interval as the possible frequency of occurrence of intensity level “approximately
g”, with its lower bound corresponding to the minimum possible frequency of
occurrence of gray level “approximately g” and the upper one to the maximum
possible frequency of occurrence of gray level “approximately g”. The aforemen-
tioned normalization factor was selected in order for the sequence of the lengths
of the [¯̌hIF

A (g), ¯̂hIF
A (g)] intervals, to constitute a probability density function over
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(a) (b) (c)

Fig. 2. Gray-scale test images of size 256 × 256 pixels with 8 bits-per-pixel gray-tone
resolution
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Fig. 3. (a) Intuitionistic fuzzy entropy curve for the image of Fig. 2(a), used for ob-
taining the optimal parameter λopt of the IF -numbers for the construction of the
IF -histograms. (b) IF -number expressing the gray level “approximately 100” for p = 5
and λopt = 2.62. Lower and upper membership functions are denoted by gray and
black lines, respectively. (c) Normalized crisp histogram for the image of Fig. 2(a). (d)
Corresponding lower (gray line) and upper (black line) normalized IF -histograms for
the aforementioned values of parameters p and λopt.

the gray-level range. Finally, it should be mentioned that the difference between
¯̂
hIF

A and ¯̌hIF
A allows also for the definition of the hesitancy histogram of the

image.
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Fig. 4. (a) Normalized crisp histogram for the image of Fig. 2(b). (b) Corresponding
lower (gray line) and upper (black line) normalized IF -histograms for p = 5 and
λopt = 2.54.
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Fig. 5. (a) Normalized crisp histogram for the image of Fig. 2(c). (b) Corresponding
lower (gray line) and upper (black line) normalized IF -histograms for p = 5 and
λopt = 2.60.

4 Experimental Results

For the simulations we considered gray-scale images of size 256×256 pixels with
8 bits-per-pixel gray-tone resolution, shown in Fig. 2. The entropic optimization
criterion for obtaining the optimal parameter λopt of the IF–numbers is shown
in Fig. 3(a). The derived IF–number, depicted in Fig. 3(b), is used to model the
gray levels, as well as to construct the IF–histograms of the image expressing
its intuitionistic fuzzy statistics. Finally, Figs. 3(c) and 3(d) illustrate the nor-
malized crisp and IF–histograms of the image of Fig. 2(a), while Figs. 4 and 5
the ones corresponding to the images of Figs. 2(b) and 2(c), respectively.

5 Conclusions

In this paper we introduced the notion of the IF -histograms of a digital image.
An entropic optimization method was also proposed for constructing the optimal
IF -number using the concept of IFGs. Application of the proposed scheme to
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gray-scale images demonstrated its ability to model efficiently their gray levels,
allowing for the extension of image statistics into the intuitionistic fuzzy setting.
Since histogram is a key concept in digital image processing, it is expected that
its proposed intuitionistic fuzzy extension will find wide application in many
diverse image processing tasks. Finally, our future work involves a thorough
study of the concepts presented in this paper in view of performing intuitionistic
fuzzy histogram equalization.
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Abstract. Atanassov’s intuitionistic fuzzy sets (A-IFSs) have been used
recently to determine the optimal threshold value for gray-level image
segmentation [1]. Atanassov’s intuitionistic fuzzy index values are used
for representing the unknowledge/ignorance of an expert on determining
whether a pixel of the image belongs to the background or the object
of the image. This optimal global threshold of the image is computed
automatically, regardless of the actual image analysis process.

Although global optimal thresholding techniques give good results un-
der experimental conditions, when dealing with real images having several
objects and the segmentation purpose is to point out some application-
specific information, one should use heuristic techniques in order to obtain
better thresholding results.

This paper introduces an evolution of the above mentioned technique
intended for use with such images. The proposed approach takes into
account the image and segmentation specificities by using a two-step
procedure, with a restricted set of the image gray-levels.

Preliminary experimental results and comparison with other methods
are presented.

Keywords: Fuzzy Sets Theory Applications, Atanassov’s Intuitionis-
tic Fuzzy Sets (A-IFSs), computer Vision, Pattern Recognition, Digital
Image Processing.

1 Introduction

Many image analysis techniques take as starting point a segmentation of the im-
age, that is, the image is decomposed into meaningful parts for further analysis,
resulting in the partition of the set of pixels in the image into a finite set of
regions (subsets) according to a certain criterion.

In reality, the segmentation of digital images is the process of dividing an
image into disjoined parts, regions or subsets so that each one must satisfy a
distinct and well-defined property or attribute.

The most commonly used strategy for segmenting images is global threshold-
ing that refers to the process of partitioning the pixels in an image into object
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and background regions on the basis of the different intensity levels of gray of
the pixels in the image. This partition is made by establishing a threshold, in
such a way that all the pixels with intensity greater or equal than the threshold
belong to the background (or to the object) and all the pixels with intensity
lower than the threshold belong to the object (or to the background).

Extensive research has been conducted in this research field over the last
years, and many types of segmentation techniques have been proposed in the
literature, each one of them based on a certain methodology to classify the
regions [2,3,4,5,6].

The proposed approach is an evolution/extension of the methodology, based
on Atanassov’s intuitionistic fuzzy sets (A-IFSs), presented in [1] intended for use
with specific images within a particular image analysis process. This approach
uses a two-step procedure, applying the methodology presented in [1] first to all
the image pixels and then to a restricted set of the original image gray-levels’ set.

2 Image Threshold Computation by Modelizing
Knowledge/Unknowledge by Means of A-IFSs

Being (x, y) the coordinates of each pixel on the image Q, and being q(x, y) the
gray level of the pixel (x, y) so that 0 ≤ q(x, y) ≤ L−1 for each (x, y) ∈ Q where
L is the image grayscale, many methods have been proposed for determining the
threshold t of an image considering fuzzy set theory as an efficient tool in order
to obtain a good segmentation of the image considered. The most commonly
algorithm used to obtain the threshold is the one that uses the concept of fuzzy
entropy and its main steps are the following:
(a) Assign L fuzzy sets Qt to each image Q. Each one is associated to a level of
intensity t, (t = 0, 1, · · · , L − 1), of the grayscale L used.
(b) Calculate the entropy of each one of the L fuzzy sets Qt associated with Q.
(c) Take, as the best threshold gray level t, associated with the fuzzy set corre-
sponding to the lowest entropy.

The main problem of this algorithm is the step (a). In [1] this problem is solved
using A-IFSs in the following way: In order to choose/construct the membership
function of each pixel of the image to the associated fuzzy set, three numerical
values are assigned to each one of them.

– A value for representing the expert knowledge of the membership of the pixel
to the background. A membership function, constructed by the expert using
dissimilarity functions, is used to obtain this value (see [7]).

– Dissimilarity functions are also used by the expert to construct a membership
function to retrieve a value for representing the expert knowledge of the
membership of the pixel to the object.

– The expert knowledge/ignorance, in determining the above mentioned mem-
bership functions, is represented by a third value obtained trough Atanassov’s
intuitionistic index.
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The value represented by Atanassov’s intuitionistic index indicates the knowl-
edge/ignorance of the expert when assigning a pixel either to the background
or the object, so that, when the expert is absolutely sure that a pixel belongs
either to the background or the object the Atanassov’s intuitionistic index asso-
ciated with that pixel has the value of zero. This value increases with respect to
the unknowledge/ignorance of the expert as to whether the pixel belongs to the
background or the object. So, if the expert doesn’t know if a pixel belongs to
the background or the object, its membership to both must be represented with
the value 0.5, and in such conditions, it is said that the expert used the greatest
unknowledge/ignorance/intuition allowed in the construction of the membership
functions, of the set associated with that pixel, to the background and the object
resulting in a Atanassov’s Intuitionistic Fuzzy Index maximum value. For this
reason, A-IFSs (Atanassov’s Intuitionistic Fuzzy Set [9,10]) are used.

In a second stage, the entropy values of each one of the L A-IFSs associated
with the image are calculated. In this methodology, entropy on A-IFSs is inter-
preted as a measure of the degree of a A-IFS that a set has with respect to the
fuzzyness of the said set (see [8]). Under these conditions the entropy will be null
when the set is a FSs and will be maximum when the set is totally intuitionistic.

Finally, the gray level t associated with the fuzzy set with the lowest entropy
is selected for the best threshold.

A possible implementation of this methodology [1], and the one used in this
work, is now presented.

(Step A) - Construct L fuzzy sets QBt associated with the background and
L fuzzy sets QOt associated with the object. Each one of these fuzzy sets is
associated with a gray level t of the grayscale L used. The membership functions
of these sets are defined by means of restricted dissimilarity functions and the
expressions are:

μQBt(q) = F

(
d

(
q

L − 1
,
mB(t)
L − 1

))

μQOt(q) = F

(
d

(
q

L − 1
,
mO(t)
L − 1

))

where

mB(t) =

∑t
q=0 qh(q)

∑t
q=0 h(q)

(1)

mO(t) =

∑L−1
q=t+1 qh(q)

∑L−1
q=t+1 h(q)

(2)

and
F (x) = 1 − 0.5x

being h(q) the number of pixels of the image with the gray level q.
Note that F (x) is only one of the possible F functions that could be used

(see [1]).
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(Step B) - As it has been said before, the unknowledge/ignorance of the expert
in the construction of the fuzzy sets (in Step A) is represented by means of
Atanassov’s intuitionistic fuzzy index (π), meaning that, it is considered that
μQBt (μQOt) indicates the expert’s degree of knowledge of the pixel belonging to
the background (object).

If the expert is certain of the pixel belonging to the background or the object,
then the value of π must be zero. The value of π increases as the unknowl-
edge/ignorance of the expert grows. However, the unknowledge/ignorance must
have the least possible influence on the choice of the membership degree, so, in
this implementation, in the worst case, the unknowledge will have a maximum
influence of 25 percent.

Under these conditions, the following expression is used to calculate π:

π(q) = (1 − μQBt(q))(1 − μQOt(q)).

Again, this expression is only one of the possible ones (see [1]).

(Step C ) - Construct an A-IFS, using π, with each one of the fuzzy sets QBt

and QOt.

Q̃Bt = {(q, μQ̃Bt
(q), νQ̃Bt

(q))|q = 0, 1, · · · , L − 1}, given by
μQ̃Bt

(q) = μQBt(q)
νQ̃Bt

(q) = 1 − μQ̃Bt
(q) − π(q) = (1 − μQBt(q)) · μQOt(q)

and

Q̃Ot = {(q, μQ̃Ot
(q), νQ̃Ot

(q))|q = 0, 1, · · · , L − 1}, given by
μQ̃Ot

(q) = μQOt(q)
νQ̃Ot

(q) = 1 − μQ̃Ot
(q) − π(q) = (1 − μQOt(q)) · μQBt(q)

(Step D) - Calculate the entropy IE of each one of the L Atanassov’s intu-
itionistic fuzzy sets, using the following expression, so that 0 ≤ IE(Q̃Bt) ≤ 0.25.

IE(Q̃Bt) =
1

N × M

L−1∑

q=0

h(q)(1 − μQBt(q))(1 − μQOt(q)) (3)

where N × M are the image dimensions in pixels.

(Step E) - Finally, the gray level associated with the Atanassov’s intuitionistic
fuzzy set Q̃Bt of lowest entropy IE is chosen as the best threshold.

3 Materials and Methods

In the image processing system boarded in this work, the main goal is to perform
kinematic analysis for the left hindlimb in treadmill walking rats. The method
used for the analysis of the hindlimb movement involved the placing of markers
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on the skin surface overlying joints under analysis. These markers are to be
tracked by the system in order to characterize the hindlimb movement [11,12,13].

Image sequences acquired at the usual rate of 25 images per second are insuf-
ficient to characterize the rat’s hindlimb movement, particularly due to aliasing
phenomena’s. In order to avoid this aliasing problem, a high-speed digital image
camera (Redlake PCI 1000S, San Diego, USA) was used to record the rat gait
at 125 frames per second, resulting in images of 480 × 420 pixels codified in 8
bits (256 gray levels).

Due to the high speed acquisition, other problems arise in contrast, noise,
illumination, resolution, etc., resulting in noisy images with imprecision on the
gray levels that conducts to fuzzy boundaries and ill defined regions, which makes
the current approach to the segmentation of such images the natural approach.

4 Proposed Approach

4.1 First Step

In this step the pixels belonging to the background of the image are identified
and withdraw from the image. In order to do so, the methodology presented in
section 2 is applied to the image.

However, the threshold value th, computed at this point, is not used to seg-
ment the image, but to bind the original histogram of the image. Thus, all pixels
below th value are ”extracted” from the original histogram, hence their presence
in the image will be ignored for further processing at step two. All other pixels
(greater then th) will remain with their original gray level.

If we denote by P the number of pixels below threshold th, then

P =
th∑

q=0

h(q)

and the new image to be processed in step two is a N×M−P image with L−th gray
levels, where q(x, y) is the gray level of the pixel (x, y) so that th ≤ q(x, y) ≤ L−1
for each (x, y) ∈ Q, and where [th + 1, · · · , L − 1] is the image grayscale.

4.2 Second Step

At this stage, the same methodology is applied to image resulting from the First
Step. In order to apply the section2 methodology, the following adjustments
where made:

In Step A, L − th fuzzy sets QBt associated with the background and L − th
fuzzy sets QOt associated with the object are constructed, instead of the original
L fuzzy sets. Also, equations 2 and 2 become:

mB(t) =

∑t
q=th qh(q)

∑t
q=th h(q)

mO(t) =

∑L−1
q=th+t+1 qh(q)

∑L−1
q=th+t+1 h(q)

respectively.
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(a)

Image A Image B Image C Image D

(b)

th=104 th=111 th=62 th=62

(c)

th=21 th=12 th=28 th=27

0 255 0 255 0 255 0 255

(d1)

th=66 th=67 th=35 th=56

(d2)

(d3)

th=189 th=188 th=220 th=199

Fig. 1. (a) Original image (b) Binary image obtained with the Otsu algorithm (c)
Binary image obtained with Kittlers algorithm (d1) Histogram of the original image,
where the gray portion represents the gray level intensities that were ”removed” from
the image (d2) Resulting image after the First Step (d3) Binary image obtained with
the proposed algorithm after the Second Step
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In Step B and Step C although all expressions remain the same, note that
q ∈ [th + 1, · · · , L − 1].

In Step D equation 3 become

IE(Q̃Bt) =
1

N × M

L−1∑

q=th+1

h(q)(1 − μQBt(q))(1 − μQOt(q))

5 Experimental Results

In order to test the performance of the proposed approach, four images, pre-
senting contrast problems (more prone to difficulties), from the walking rats’
sequences were selected and used as test images. Each one of these images is
part of a sequence of images where the rat gait is recorded and is analyzed
by tracking the markers placed on the rats in each image. The purpose of the
segmentation step in this process is to point out those markers.

We also compare the obtained results with non fuzzy well known methodolo-
gies, the Otsu technique [14] and the clustering-based Kittler method [15]. The
original images and the results of the used techniques are illustrated in Fig. 1.

The results obtained with the Otsu (Fig.1b) and Kittler (Fig.1c) methodolo-
gies do not perform well in identifying the rats markers. Only in one situation
(Image B with Otsu method) the markers are clearly identified for further pro-
cessing. On the contrary, the proposed methodology (Fig.1d3) succeeds in iden-
tifying the markers for all the images and, thus, is more reliable for the necessary
further processing in order to extract the markers position in the image.

6 Conclusions and Future Work

The problem of segmentation in spite of all the work over the last decades, is
still an important research field in image processing mostly due to the fact that
finding a global optimal threshold is not trivial, and is indeed a very difficult
task. One of the most commonly used strategy for segmenting images is global
thresholding that refers to the process of partitioning the pixels in an image
into regions on the basis of the different intensity levels of gray of the pixels in
the regions without distinguishing the pixels within a region, even if their gray
values are significantly different in the original image. For this reason, finding an
algorithm that can be successfully applied to all kinds of images is a difficult task
that, probably, will never be accomplished. Thus, it is suitable to develop new
threshold techniques, or new extensions to the existing ones, that can effectively
lead us to an optimal threshold within the specificities of one’s application.

Although the previous methods presented give good results under experimen-
tal conditions, they do not always take into account the specificities of the image
analysis process in which it is going to be applied. The new approach presented,
successfully intended to endow the algorithm with heuristic techniques that en-
able to adapt the algorithm with the particular image analysis process.
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The preliminary results show that all of the tested images can be properly seg-
mented according to our image analysis process needs and application purpose.
Further work is intended, focusing on the adaptation of the proposed algorithm
towards a multi-threshold approach and to color image segmentation.[9].
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Abstract. In this paper we study the impact of selecting different en-
tropy measures in the framework of intuitionistic fuzzy image process-
ing and especially in the process of intuitionistic fuzzification of images.
Different notions of entropy characterized by different properties are
reviewed and their behavior is thoroughly studied under the scope of per-
forming contrast enhancement. Finally, experimental results using gray-
scale images reveal the characteristics of the aforementioned measures.

1 Introduction

Entropy, a measure of information carried by a system, is a fundamental concept
in digital image processing. Therefore, it is not surprising that new theories, such
as fuzzy sets (FSs) theory, as well as their extensions, seek intuitive ways to adopt
and express the notion of entropy in their particular context.

Intuitionistic fuzzy image processing (IFIP), recently introduced in [1] and
[2], provides a flexible, yet solid, mathematical framework for dealing with the
vagueness present in a digital image. This is carried out by modelling the hes-
itancy characterizing image pixels, using Atanassov’s intuitionistic fuzzy sets
(A–IFSs) theory [3,4]. A–IFSs constitute a generalization of Zadeh’s fuzzy sets
(FSs) [5], by considering also corresponding degrees of hesitancy. It is this ad-
ditional degree of freedom that allows for the flexible modelling of imprecise
or/and imperfect information often present in images.

In this paper the different concepts of intuitionistic fuzzy entropy are reviewed
and their behavior is studied in the context of IFIP for performing contrast
enhancement. Evaluation of these measures using real-world images reveal their
particular characteristics that are to be exploited for different applications of
contrast enhancement in the context of IFIP.

This paper is organized as follows. In Sect. 2 elements of A–IFSs are presented
and their geometrical representation of in two- and three-dimensional spaces is
discussed. Sect. 3 reviews different concepts of entropy in the intuitionistic fuzzy
setting. An overview of the IFIP framework is presented in Sect. 4. Finally,
experimental results are given in Sect. 5, while conclusions are drawn in Sect. 6.

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 104–113, 2007.
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2 Intuitionistic Fuzzy Sets

In this section, we briefly review the basic notions, concepts, and definitions of A–
IFSs, as well as their geometrical representations in two- and three-dimensional
spaces.

2.1 Elements of Intuitionistic Fuzzy Sets Theory

Definition 1. An FS Ã defined on a universe X may be given as [5]

Ã = {〈x, μÃ(x)〉|x ∈ X} , (1)

where μÃ(x) : X → [0, 1] is the membership function of Ã.

The membership function of Ã describes the degree of belongingness of x ∈ X
in Ã.

Definition 2. An A–IFS A defined on a universe X is given by [3,4]

A = {〈x, μA(x), νA(x)〉|x ∈ X} , (2)

where
μA(x) : X → [0, 1] and νA(x) : X → [0, 1] ,

with the condition
0 � μA(x) + νA(x) � 1 , (3)

for all x ∈ X.

The values of μA(x) and νA(x) denote the degree of belongingness and the degree
of non-belongingness of x to A, respectively. For an A–IFS A in X we call the
intuitionistic index of an element x ∈ X in A the following expression

πA(x) = 1 − μA(x) − νA(x) . (4)

We can consider πA(x) as a hesitancy degree of x to A [3,4]. From (4) it is evident
that

0 � πA(x) � 1 (5)

for all x ∈ X .
FSs can also be represented using the notation of A–IFSs. An FS Ã defined

on X can be represented as the following A–IFS

A = {〈x, μA(x), 1 − μA(x)〉|x ∈ X} , (6)

with πA(x) = 0 for all x ∈ X .

Definition 3. The complementary set Ac of A is defined as

Ac = {〈x, νA(x), μA(x)〉|x ∈ X} . (7)
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μ

μ

ν

ν

π

Fig. 1. Geometrical representation of an A–IFS A in X = {x}. (Adopted from [6].)

Throughout this paper by I FS (X) we denote the set of all A–IFSs defined
on X . Correspondingly, FS (X) is the set of all FSs on X , while 2X denotes
the set of all crisp sets.

Finally, Atanassov [4] proposed an operator, namely the Atanassov’s operator,
to de-construct an A–IFS into an FS.

Definition 4. If A ∈ I FS (X), then Dα : I FS (X) → FS (X), where

Dα(A) = {〈x, μA(x) + απA(x), νA(x) + (1 − α)πA(x)〉|x ∈ X} , (8)

with α ∈ [0, 1].

2.2 Geometrical Representation of A–IFSs

Generalizing Kosko’s [7] geometrical representation of FSs, Atanassov [4] pro-
posed a similar interpretation of A–IFSs in a Euclidean plane with Cartesian
coordinates. Szmidt and Kacprzyk [8] extended Atanassov’s approach by consid-
ering all three parameters of A–IFSs and proposed the geometrical representation
of A–IFSs as a mapping into a simplex in the unit cube. Moreover, they demon-
strated that Atanassov’s interpretation is simply the orthogonal projection of
the simplex of their definition into the Euclidean plane. Both representations
are illustrated in Fig. 1 for an A–IFS A in X = {x}.



The Role of Entropy in Intuitionistic Fuzzy Contrast Enhancement 107

3 Notions of Entropy in the Intuitionistic Fuzzy Setting

Entropy plays an important role in digital image processing. Therefore, it comes
as no surprise that the notion of entropy constituted a fundamental aspect from
the beginning of the development of FSs theory. De Luca and Termini [9] were
the first to introduce an axiomatic skeleton of a nonprobabilistic entropy in the
setting of FSs theory that captured our intuition regarding the very essence of
fuzzy entropy.

As a natural consequence, the quest for entropy measures in the context of
A–IFSs was a very interesting topic that intrigued many researchers working
in this field. Burillo and Bustince [10] were the first to state and propose an
axiomatic skeleton of entropy for A–IFSs and interval-valued fuzzy sets.

Definition 5 (Burillo and Bustince [10]). A real function E : I FS (X) →
R

+ is called an entropy on I FS (X), if E has the following properties

(E1) E(A) = 0 if and only if A ∈ FS (X),
(E2) E(A) = Cardinal(X) if and only if μA(x) = νA(x) = 0 for all x ∈ X,
(E3) E(A) = E(Ac) for all A ∈ I FS (X),
(E4) E(A) � E(B) if μA(x) � μB(x) and νA(x) � νB(x) for all x ∈ X.

Motivated by De Luca and Termini’s set of axiomatic requirements, Szmidt and
Kacprzyk [8] proposed an alternative interpretation of entropy, accompanied by
a different set of axioms.

Definition 6 (Szmidt and Kacprzyk [8]). A real function E′ : I FS (X) →
R

+ is called an entropy on I FS (X), if E has the following properties

(E5) E′(A) = 0 if and only if A ∈ 2X,
(E6) E′(A) = 1 if and only if μA(x) = νA(x) for all x ∈ X,
(E7) E′(A) = E′(Ac) for all A ∈ I FS (X),
(E8) E′(A) � E′(B) if

μA(x) � μB(x) and νA(x) � νB(x) for μB(x) � νB(x)
or
μA(x) � μB(x) and νA(x) � νB(x) for μB(x) � νB(x) for all x ∈ X.

The aforementioned definition degenerates to De Luca and Termini’s definition
when FSs are considered. A generalized framework of Definition 6 was introduced
in [11]. Finally, it should be mentioned that a connection between the different
concepts of entropy for A–IFSs was explored and proved in [12].

3.1 Review of Intuitionistic Fuzzy Entropy Measures

Based on the aforementioned notions and definitions of entropy, different entropy
measures for A–IFSs were proposed in the literature. Along with their definition
of intuitionistic fuzzy entropy, Burillo and Bustince [10] proposed the following
entropy

E1(A) =
1
n

n∑

i=1

πA(xi) , (9)
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Fig. 2. Plots of entropy measures (a) E1, (b) E2, (c) E3, and (d) E4 for an A–IFS
defined in X = {x}

which satisfies the axiomatic requirements E1–E4 and expresses the degree of
intuitionism of the set A. In (9), the normalization factor 1

n has been added,
in order for the entropy E1 to lie in the [0, 1] interval. Additionally, Burillo and
Bustince proposed an alternative entropy measure given by

E2(A) =
1
n

n∑

i=1

(
1 − (μA(xi) + νA(xi)) e1−(μA(xi)+νA(xi))

)
. (10)

The first measure of entropy satisfying axioms E5–E8 was introduced by
Szmidt and Kacprzyk [8] as a ratio of distances between an A–IFS and its nearest
and farthest crisp sets, respectively. The aforementioned entropy is given by

E3(A) =
1
n

n∑

i=1

(
max Count (Ai ∩ Ac

i )
max Count (Ai ∪ Ac

i )

)
, (11)

where maxCount is the biggest cardinality of an A–IFS calculated using the
following formula

max Count(A) =
n∑

i=1

(μA(xi) + πA(xi)) (12)
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Fig. 3. Overview of the IFIP framework

and Ai denotes the single-element A–IFS corresponding to the i-the element xi

of the universe X , described as Ai = {〈xi, μA(xi), νA(xi)〉}; i.e. Ai is the i-th
“component” of A.

An inner product-based entropy measure, also satisfying the axiomatic re-
quirements of E5–E8, was introduced in [13] and is given by

E4(A) =
1
n

n∑

i=1

2μA(xi)νA(xi) + π2
A(xi)

π2
A(xi) + μ2

A(xi) + ν2
A(xi)

. (13)

Fig. 2 illustrates the aforementioned entropy measures using the geometrical
representation of A–IFSs described in Sect. 2.2 for a singe-element universe X =
{x}. The gray level of each point (μA(x), νA(x), πA(x)) on the simplex denotes the
entropyvalue of the setA={〈x, μA(x), νA(x)〉|x ∈ X} corresponding to thatpoint.

Finally, the entropy measures listed in this section, satisfying and expressing
different concepts of intuitionistic fuzzy entropy, will be evaluated in order to
assess their behavior, under the scope of performing contrast enhancement, using
the IFIP framework.

4 From Images to A–IFSs: Entropy Optimization

4.1 The Intuitionistic Fuzzy Image Processing Framework

Intuitionistic fuzzy image processing (IFIP) [1,2], involves in general a set of
operations carried out using the concepts and elements of A–IFSs theory. Fig. 3
shows an overview of the IFIP framework. In the first stage the image is trans-
ferred into the fuzzy domain and sequentially into the intuitionistic fuzzy do-
main, where the main processing is performed. The inverse procedure is carried
out in order to obtain the processed image in the gray-level domain. In this
paper we focus on the role of intuitionistic fuzzy entropy measures in the stage
of analyzing the image into its intuitionistic fuzzy components; i.e. the stage of
“intuitionistic fuzzification”.

4.2 Intuitionistic Fuzzification

In [2], an intuitionistic fuzzification scheme for constructing the A–IFS
corresponding to a gray-scale image was proposed, based on the optimization
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of its intuitionistic fuzzy entropy. In this section, we briefly describe the afore-
mentioned approach.

Let us consider an image A of size M × N pixels having L gray levels g
ranging between 0 and L − 1. The image can be considered as an array of fuzzy
singletons [14,15], with each element of the array denoting the membership value
of the corresponding pixel, with respect to an image property. For the task of
contrast enhancement we consider the property “brightness” of the intensity
levels. Therefore, the image in the fuzzy domain can be represented as the FS

Ã = {〈gij , μÃ(gij)〉|gij ∈ {0, . . . , L − 1}} , (14)

with i ∈ {1, . . . , M} and j ∈ {1, . . . , N}.
A basic procedure of IFIP is the derivation of a combination of membership

and non-membership functions that model the gray levels of the image in an
optimal way. The optimality is considered under the scope of maximizing the
intuitionistic fuzzy entropy of the image and thus it is called “maximum intu-
itionistic fuzzy entropy principle” [2]. The family of parametric membership and
non-membership functions, used for optimization, is given respectively by

μA(g; λ) = 1 − (1 − μÃ(g))λ (15)

and
νA(g; λ) = (1 − μÃ(g))λ(λ+1) , (16)

with λ � 0, where the membership function μÃ(g) of the fuzzified image is given
by

μÃ(g) =
g − gmin

gmax − gmin
. (17)

Moreover, the optimization criterion involved can be formulated as follows

λopt = arg max
λ�1

{E(A; λ)} , (18)

where E is an entropy measure.
After obtaining the optimal parameter λopt, the image is represented as the

following A–IFS

Aopt = {〈g, μA(g; λopt), νA(g; λopt)〉|g ∈ {0, . . . , L − 1}} . (19)

By applying Atanassov’s operator to the A–IFS Aopt, we obtain different rep-
resentations of the image in the fuzzy domain, depending on the parameter α
selected. The “maximum index of fuzziness intuitionistic defuzzification” proce-
dure was proposed in [12] for selecting the optimal parameter αopt, according to
the following scheme

αopt =

⎧
⎪⎨

⎪⎩

0 , if α′
opt < 0

α′
opt , if 0 � α′

opt � 1
1 , if α′

opt > 1
, (20)



The Role of Entropy in Intuitionistic Fuzzy Contrast Enhancement 111

(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) Under-exposed gray-scale image and images obtained using (b) the his-
togram equalization technique and the IFIP framework employing entropy (c) E1

(λopt = 6.71), (d) E2 (λopt = 6.87), (e) E3 (λopt = 11.30), and (f) E4 (λopt = 11.05)

where

α′
opt =

∑L−1
g=0 hÃ(g)πA(g; λopt) (1 − 2μA(g; λopt))

2
∑L−1

g=0 hÃ(g)π2
A(g; λopt)

, (21)

with hÃ being the histogram of the fuzzified image Ã.
Finally, the image in the gray-level domain is obtained as

g′ = (L − 1)μDαopt(Aopt)(g) , (22)

where

μDαopt(Aopt)(g) = αopt + (1 − αopt)μA(g; λopt) − αoptνA(g; λopt) , (23)

and g′, g are the new and initial intensity levels, respectively.

5 Experimental Results

The main purpose of this work is to explore the role of intuitionistic fuzzy en-
tropy in the process of intuitionistic fuzzification of images. Therefore, the afore-
mentioned intuitionistic fuzzy entropy measures, were applied to low-contrasted
images in order to perform contrast enhancement.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) Over-exposed gray-scale image and images obtained using (b) the histogram
equalization technique and the IFIP framework employing entropy (c) E1 (λopt = 1.60),
(d) E2 (λopt = 2.72), (e) E3 (λopt = 0.59), and (f) E4 (λopt = 0.45)

Figs. 4(a) and 4(b) depict an under-exposed image along with its histogram
equalized version. Figs. 4(c)–4(f) illustrate images processed using the IFIP
framework employing the intuitionistic fuzzy entropy measures E1, E2, E3, and
E4, respectively. One may observe that the images obtained using the IFIP
framework have been drastically enhanced, revealing high-frequency edges and
constant-intensity regions initially not visible due to the low contrast. Moreover,
employing the entropy measures E1 and E2, results in a more radical enhance-
ment of the initial image, with E2 exhibiting a slightly better performance.
Compared to the histogram-equalized image of Fig. 4(b) the IFIP framework
delivers better results for contrast enhancement.

On the other hand, for the over-exposed image of Fig. 5 one may observe
that even though entropies E1 and E2 enhance the initial image, the results
are not satisfactory compared to the ones obtained using entropy measures E3

and E4 or to the image derived by the histogram equalization technique. How-
ever, the IFIP framework equipped with the entropies E3 and E4 yields images
exhibiting an overall drastic, yet smooth, enhancement, in contrast with the
histogram-equalized image of Fig. 5(b), which appears to be somewhat not nat-
ural, possessing regions that have been over-enhanced.

As a final remark, we can outline that the performance of an entropy measure
depends more to the set of axioms that it conforms with, than to the form of the
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measure itself. By examining the corresponding images, as well as the values of
λopt, entropy E3 performs better for dark low-contrasted images, while E4 for
brighter ones. Finally, entropies satisfying properties E5–E8 exhibit in general
a better performance for any type of low-contrasted image.

6 Conclusions

In this paper we explored the role of entropy in the context of intuitionistic
fuzzy image processing. Different entropy measures for A–IFSs with different
characteristics were evaluated and their behavior to contrast enhancement of
low-contrasted images was examined. Finally, experimental results to real-world
images demonstrated that the different notions of intuitionistic fuzzy entropy
treat images in different ways, thus making the selection of the appropriate
entropy measure to be application-dependent.
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Abstract. Intuitionistic fuzzy special sets is a special case of intuitionis-
tic fuzzy sets. In this paper, under the framework of information systems,
the relationship between intuitionistic fuzzy special sets and rough sets is
analyzed. Based on basic intuitionistic fuzzy special sets of information
systems, intuitionistic fuzzy special σ-algebra are generated, and rough
sets are embedded in the intuitionistic fuzzy special σ-algebra. Naturally,
distances (e.g., Hamming distance or Euclidean distance) of intuitionistic
fuzzy special sets in intuitionistic fuzzy special σ-algebra can be used to
evaluate predication rules of information systems which is an important
subject of rough set theory.

1 Introduction

As generalization of fuzzy sets, intuitionistic fuzzy sets use the degree of mem-
bership and nonmembership of object x [1]-[10]. In some cases, intuitionistic
fuzzy sets has more advantages than classical fuzzy sets in describing uncertain
concepts. Rough sets theory (RST) proposed by Z. Pawlak is an important the-
ory for data mining [11], [12]. In the process of uncertain information, fuzzy sets
theory and rough sets theory both have advantages, respectively.

Formally, intuitionistic fuzzy subset A is A = {(x, μA(x), νA(x))|x ∈ X}, in
which, X is domain, μA : X → [0, 1] and νA : X → [0, 1] are membership
function and nonmembership function of object x in A such that ∀x ∈ X , 0 ≤
μA(x)+νA(x) ≤ 1. Intuitionistic fuzzy special subset (IFSS) is A = {X, A1, A2},
in which, X �= ∅, A1 ⊆ X , A2 ⊆ X and A1 ∩ A2 = ∅.

1. ∀B ⊂ X , define B′ = 〈X, B, Bc〉 (Bc is the complement of B in X), then
B ←→ B′. This means that IFSS is extension of classical subset.

2. Let A = {X, A1, A2} be IFSS, define

μA1(x) =
{

1 if x ∈ A1

0 otherwise, νA2(x) =
{

1 if x ∈ A2

0 otherwise, (1)

then {(x, μA1(x), νA2(x))|x ∈ X} such that ∀x ∈ X , due to A1 ∩ A2 = ∅,
μA1(x)+ νA2(x) = 1 or 0, hence, IFSS is a special case of intuitionistic fuzzy
sets.

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 114–121, 2007.
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In IFSS, the following operations can be defined [4]: Let A = 〈X, A1, A2〉, B =
〈X, B1, B2〉 and {Ai|i ∈ J}, where Ai = 〈X, A1

i , A
2
i 〉 be IFSS on X , then

1. A ⊂ B if and only if A1 ⊂ B1 and A2 ⊃ B2;
2. A = B if and only if A ⊂ B and A ⊃ B;
3. A = 〈X, A2, A1〉;
4. ∅− = 〈X, ∅, X〉, X− = 〈X, X, ∅〉;
5. ∪Ai = 〈X, ∪A1

i , ∩A2
i 〉, ∩Ai = 〈X, ∩A1

i , ∪A2
i 〉;

6. A − B = A ∩ B.

Based on the above operations of IFSS, intuitionistic fuzzy special σ-algebra can
be defined as following

Definition 1. [4] Intuitionistic fuzzy special σ-algebra Φ on X is such that

a) X− ∈ Φ;
b) If A ∈ Φ, then A ∈ Φ;
c) If ∀n ∈ N , A1, · · · , An ∈ Φ, then ∪n

i=1Ai ∈ Φ.

2 Representation of Rough Set Based on IFSS

Rough sets are defined on information systems. Formally, an information system
is expressed as a quaternion denoted as (U, A, V, f), where U is a non-empty set
of objects, A is a non-empty finite set of attributes, V =

⋃
a∈A Va and Va is the

domain of a, f : U × A → V is information function. In (U, A, V, f), ∀a ∈ A
and xi, xj ∈ U , define xi ∼a xj if and only if f(x1, a) = f(x2, a), then ∼a is an
equivalence relation on U . As we known, intersection of equivalence relations is
also equivalence relation, hence, ∼A, which is intersection of all ∼a (a ∈ A), is
an equivalence relation on U , denotes U/ ∼A= {Uk|k = 1, · · · , n}, where Uk is
an equivalence class. Based on U/ ∼A, ∀X ⊆ U , define

X =
⋃

{Uk ∈ U/ ∼A |Uk ⊆ X}, X =
⋃

{Uk ∈ U/ ∼A |Uk ∩ X �= ∅}, (2)

when X �= X, (X, X) is ∼A rough set. In (2), due to X ⊆ X, X ∩ (U − X) = ∅
is obviously. Hence, 〈U, X, U − X〉 is IFSS based on ∼A, this means that in the
framework of U/ ∼A, ∀X ⊆ U , there is the following one to one mapping

(X, X) ←→ 〈U, X, U − X〉. (3)

Definition 2. Let (U, A, V, f) be an information system, ∀X ⊆ U , 〈U, X, U−X〉
is called IFSS representation of (X, X).

As a special case, (U i, U i) ←→ 〈U, U i
θ, (U

i
θ)

c〉 = 〈U, U i
θ,

⋃
j �=i U j

θ 〉.

Definition 3. Let (U, A, V, f) be an information system, U/ ∼A= {Uk|k =
1, · · · , n}. If 〈U, Uk1 , Uk2〉 such that Uk1 , Uk2 ∈ U/ ∼A and k1 �= k2, then
〈U, Uk1 , Uk2〉 is called basic IFSS based on ∼A. Denote B∼A = {〈U, Uk1 , Uk2〉|Uk1 ,
Uk2 ∈ U/ ∼A, k1 �= k2}.
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In the Definition, for a fixed (U, A, V, f), if |U/ ∼A | = n, then |B∼A | = n(n−1).
Let a class of recursive set Φ(B∼A) such that

1. ∀〈U, Uk1 , Uk2〉 ∈ B∼A , 〈U, Uk1 , Uk2〉 ∈ Φ(B∼A);
2. If 〈U, A1, B1〉, 〈U, A2, B2〉 ∈ Φ(B∼A), then

〈U, A1, B1〉 ∩ 〈U, A2, B2〉 = 〈U, A1 ∩ A2, B1 ∪ B2〉 ∈ Φ(B∼A).

3. If 〈U, A1, B1〉 ∈ Φ(B∼A), then 〈U, A1, B1〉 = 〈U, B1, A1〉 ∈ Φ(B∼A).

Property 1. ∀〈U, A1, B1〉 ∈ Φ(B∼A), A1 ∩ B1 = ∅, i.e., 〈U, A1, B1〉 is IFSS.

Proof. According to structure of 〈U, A1, B1〉 ∈ Φ(B∼A) and 〈U, Uk1 , Uk2〉 =
〈U, Uk2,Uk1 〉 ∈ B∼A

a) If there exists 〈U, Uk1 , Uk2〉 ∈ B∼A such that 〈U, A1, B1〉 = 〈U, Uk1 , Uk2〉,
then A1 ∩ B1 = ∅, 〈U, A1, B1〉 is IFSS.

b) If there exist 〈U, Uk1 , Uk′
1〉, · · · , 〈U, Ukm , Uk′

m〉 ∈ B∼A such that 〈U, A1, B1〉
=

⋂m
i=1〈U, Uki , Uk′

i〉, ∀i, ki �= k′
i, then

A1 ∩ B1 = (
m⋂

i=1

Uki)
⋂

(
m⋃

i=1

Uk′
i) =

m⋃

j=1

((
m⋂

i=1

Uki) ∩ Uk′
j ),

in (
⋂m

i=1 Uki) ∩ Uk′
j , due to Ukj ∩ Uk′

j = ∅, hence, every (
⋂m

i=1 Uki) ∩ Uk′
j = ∅,

〈U, A1, B1〉 is IFSS.
c) If there exist 〈U, A1, B1〉, 〈U, A2, B2〉 ∈ Φ(B∼A) such that 〈U, A1, B1〉 =⋂m

i=1〈U, Uki , Uk′
i〉, 〈U, A2, B2〉 =

⋂r
j=1〈U, U lj , U l′j 〉 and 〈U, A3, B3〉 = 〈U, A1, B1〉

∩〈U, A2, B2〉, then

A3 ∩ B3 = (A1 ∩ A2)
⋂

(B1 ∪ B2) = ((A1 ∩ A2) ∩ B1)
⋃

((A1 ∩ A2) ∩ B2),

according to b), A3 ∩ B3 = ∅, 〈U, A3, B3〉 is IFSS.
d) If there exist 〈U, A1, B1〉, 〈U, A2, B2〉 ∈ Φ(B∼A) such that 〈U, A3, B3〉 =

〈U, A1, B1〉 ∩ 〈U, A2, B2〉 or 〈U, A3, B3〉 = 〈U, A1, B1〉 ∩ 〈U, A2, B2〉, then

A3 ∩ B3 = (B1 ∩ A2)
⋂

(A1 ∪ B2) = ((B1 ∩ A2) ∩ A1)
⋃

((B1 ∩ A2) ∩ B2), or

A3 ∩ B3 = (B1 ∩ B2)
⋂

(A1 ∪ A2) = ((B1 ∩ B2) ∩ A1)
⋃

((B1 ∩ B2) ∩ A2),

according to c), A3 ∩ B3 = ∅, 〈U, A3, B3〉 is IFSS.

Theorem 1. Φ(B∼A) is an intuitionistic fuzzy special σ-algebra generated by
B∼A .

Proof. According to Φ(B∼A), a) and c) of Definition 1 need to be proved. Fixed
k1, k

′
1 ∈ N , then ∀k2(�= k1) ∈ N and ∀k′

2(�= k′
1) ∈ N , 〈U, Uk1 , Uk2〉 ∈ B∼A and

〈U, Uk′
1 , Uk′

2〉 ∈ B∼A , hence,
n⋂

k2 �=k1,k2=1

〈U, Uk1 , Uk2〉 = 〈U, Uk1 ,
n⋃

k2 �=k1,k2=1

Uk2〉 ∈ Φ(B∼A),

n⋂

k′
2 �=k′

1,k′
2=1

〈U, Uk′
1 , Uk′

2〉 = 〈U, Uk′
1 ,

n⋃

k′
2 �=k′

1,k′
2=1

Uk′
2〉 ∈ Φ(B∼A).
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Due to Uk1 ∩ Uk′
1 = ∅ and

(
n⋃

k2 �=k1,k2=1

Uk2)
⋃

(
n⋃

k′
2 �=k′

1,k′
2=1

Uk′
2) = U,

〈U, ∅, U〉 = 〈U, Uk1 ,

n⋃

k2 �=k1,k2=1

Uk2〉
⋂

〈U, Uk′
1 ,

n⋃

k′
2 �=k′

1,k′
2=1

Uk′
2〉 ∈ Φ(B∼A),

U− = 〈U, U, ∅〉 = 〈U, ∅, U〉 ∈ Φ(B∼A).

For c) of Definition 1, due to

〈U, Uk1 , Uk2〉
⋃

〈U, Uk′
1 , Uk′

2〉 = 〈U, Uk1 , Uk2〉
⋂

〈U, Uk′
1 , Uk′

2〉 ∈ Φ(B∼A).

Property 2. In Φ(B∼A),

1. 〈U, ∅, ∅〉 ∈ Φ(B∼A);
2. ∀U i ∈ U/ ∼A, 〈U, U i, (U i)c〉 ∈ Φ(B∼A);
3. ∀X ⊆ U , 〈U, ∅, X〉, 〈U, ∅, X〉 ∈ Φ(B∼A);
4. ∀X ⊆ U , 〈U, X, U − X〉 ∈ Φ(B∼A).

Proof. Let X = {Uk′
1 , · · · , Uk′

m}, then

〈U, ∅, X〉 =
m⋂

i=1

〈U, Uki , Uk′
i〉 = 〈U,

m⋂

i=1

Uki ,

m⋃

i=1

Uk′
i〉, (4)

in which, ∃i and j such that ki �= kj . The others can be proved similarly.

Based on intuitionistic fuzzy special σ-algebra Φ(B∼A), measures on Φ(B∼A)
can be defined.

Definition 4. [13] ∀A = 〈U, A1, A2〉 ∈ Φ(B∼A), define μ : Φ(BUθ) → [0, ∞) as
following:

μ(A) = 1 +
|A1|
|U | − |A2|

|U | , (5)

then μ is a measure on Φ(B∼A), where |X | is cardinality of X.

For 〈U, A1, B1〉, 〈U, A2, B2〉 ∈ Φ(B∼A), the distance between 〈U, A1, B1〉 and
〈U, A2, B2〉 can be defined similarly as in intuitionistic fuzzy sets [14]-[20], e.g.,
Hamming distance and Euclidean distance,

d1 =
∑

x∈U

|μA1(x) − μA2(x)| + |νB1(x) − νB2(x)| + |πC1(x) − πC2(x)|, (6)

d2 =
√∑

x∈U

(μA1(x) − μA2(x))2 + (νB1(x) − νB2(x))2 + (πC1(x) − πC2(x))2(7)

where, πC1(x) = 1−μA1(x)− νB1(x) and πC2(x) = 1−μA2(x)− νB2(x). In intu-
itionistic fuzzy sets, μ∗, μ∗ and π∗ are fuzzy sets. In intuitionistic fuzzy special
sets, μ∗, μ∗ and π∗ are characteristic functions of ∗, i.e., the forms of (1).
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3 Prediction Based on the Distance of IFSS

As a special case of information system, decision information systems 〈U, Ω, V, f〉
are widely used in application. In decision information systems, attributes Ω are
divided by two parts: one is called condition attribute set, denoted by Q; the
other is called decision attribute set, denoted by D. From real world application
point of view, the prediction problem is expressed as following [12]

– given a decision attribute d ∈ D, which is the “best” attribute set C ⊆ Q
to predict the d-value of an object x ∈ U , given the values of x under the
features contained in Q?

The prediction problem raises two questions:

– Which subsets C of Q are candidates to be such a “best attribute set”?
– What should a metric look like to determine and select the “best attribute

set”?

In this paper, the distance of IFSS is used to solve the prediction problem.
Suppose that all information of decision information system I = 〈U, Q∪D, V, f〉
are known, let C = {c1, · · · , ck} ⊆ Q and d ∈ D, decision rule is expressed as

R : c1 ∧ · · · ∧ ck −→ d. (8)

According to the above discussions, equivalence relations ∼C , ∼d and ∼C∪{d}
on U can be obtained in 〈U, C ∪ {d}, V, f〉, denote

U/ ∼C = {U1
C , · · · , Um

C }, U/ ∼d= {U1
d , · · · , Un

d }, (9)
U/ ∼C∪{d} = {U1

C∪{d}, · · · , U
p
C∪{d}}. (10)

For every Um′

C ∈ U/ ∼C and Un′

d ∈ U/ ∼d, based on U/ ∼C∪{d}, their rough set,
i.e., (Um′

C , Um′
C ) and (Un′

d , Un′
d ), can be obtained, respectively. By (3), IFSS repre-

sentations of (Um′

C , Um′
C ) and (Un′

d , Un′
d ), i.e., 〈U, Um′

C , U −Um′
C 〉 and 〈U, Un′

d , U −
Un′

d 〉, can be obtained, respectively. Based on U/ ∼C∪{d}, (9) can be rewritten
as following

U/ ∼C = {〈U, U1
C , U − U1

C〉, · · · , 〈U, Um
C , U − Um

C 〉}, (11)

U/ ∼d = {〈U, U1
d , U − U1

d 〉, · · · , 〈U, Un
d , U − Un

d 〉}. (12)

For every 〈U, Um′

C , U − Um′
C 〉 ∈ U/ ∼C and 〈U, Un′

d , U − Un′
d 〉 ∈ U/ ∼d, using

(6) and (7), their Hamming distance dH
m′n′ and Euclidean distance dE

m′n′ can be
calculated, respectively, denote

dH
C,d =

∑m
m′=1

∑n
n′=1 dH

m′n′

mn
, (13)

dE
C,d =

∑m
m′=1

∑n
n′=1 dE

m′n′

mn
. (14)
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(13) and (14) are average values of Hamming distances and Euclidean distances
about rule R : c1 ∧ · · · ∧ ck −→ d, respectively.

From the standpoint of logical systems, c1∧· · ·∧ck −→ d is logical proposition.
Considering information system 〈U, C ∪{d}, V, f〉, c1 ∧ · · · ∧ ck −→ d is meaning
when all objects, which have attributes c1, · · · , ck−1 and ck, are asserted to own
attribute d. From the standpoint of information theory, if c1 ∧ · · · ∧ ck −→ d

is considered as knowledge, then 〈U, Um′

C , U − Um′
C 〉 ∈ U/ ∼C and 〈U, Un′

d , U −
Un′

d 〉 ∈ U/ ∼d can be regarded as certain information about objects have or not
attributes {c1, · · · , ck} and {d} based on the knowledge, respectively. Hence, from
objects point of view, dH

m′n′ (or dE
m′n′) express similarity degree of the certain

information between conditions and conclusion of c1 ∧ · · · ∧ ck −→ d. In this
paper, dH

C,d (or dE
C,d) are selected as evaluation index of rule c1 ∧ · · · ∧ ck −→ d,

i.e., for a fixed decision attribute d, the “best” attribute set C ⊆ Q is such that

dH
C,d = min{dH

C1,d, · · · , dH
Cs,d}, (15)

dE
C,d = min{dE

C1,d, · · · , dE
Cs,d}, (16)

in which, C1, · · · , Cs ⊆ Q are candidates to predict d.
Example 1. Table 1 [12] is a heart disease diagnosis information system, the
condition attributes are S: smoker and BMI: avoirdupois, the decision attribute
is HD: heart disease.

Table 1. Heart disease diagnosis information system.

No S BMI HD

1 no normal no

2 no obese no

3 no normal no

4 no obese no

5 yes normal yes

6 yes normal yes

7 yes obese no

8 yes obese yes

9 no normal no

In Table 1, the following equivalence classes can be obtained: {S} : {1, 2, 3, 4,
9}, {5, 6, 7, 8}; {BMI} : {1, 3, 5, 6, 9}, {2, 4, 7, 8}; {S, BMI} : {1, 3, 9}, {2, 4},
{5, 6}, {7, 8}; {HD} : {1, 2, 3, 4, 7, 9}, {5, 6, 8}.

There are three candidates to predict HD, i.e.,

S −→ HD, BMI −→ HD, S ∧ BMI −→ HD.

For S −→ HD, the equivalence classes are {1, 2, 3, 4, 9}, {5, 6, 8} and {7},
according to (11) and (12), the following can be obtained

U/ ∼S = {〈U, {1, 2, 3, 4, 9}, {5, 6, 7, 8}〉, 〈U, {5, 6, 7, 8}, {1, 2, 3, 4, 9}〉},
U/ ∼HD = {〈U, {1, 2, 3, 4, 7, 9}, {5, 6, 8}〉, 〈U, {5, 6, 8}, {1, 2, 3, 4, 7, 9}〉},
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By (6) and (7),

dH
11(〈U, {1, 2, 3, 4, 9}, {5, 6, 7, 8}〉, 〈U, {1, 2, 3, 4, 7, 9}, {5, 6, 8}〉) = 2,

dE
12(〈U, {1, 2, 3, 4, 9}, {5, 6, 7, 8}〉, 〈U, {1, 2, 3, 4, 7, 9}, {5, 6, 8}〉) =

√
2,

the others can be calculated similarly,

dH
S,HD =

dH
11 + dH

12 + dH
21 + dH

22

4
= 9,

dE
S,HD =

dH
11 + dH

12 + dH
21 + dH

22

4
=

√
2 + 4
2

.

For BMI −→ HD and S ∧ BMI −→ HD, average values of Hamming
distances and Euclidean distances can be obtained similarly, respectively, see
Tabel 2.

Table 2. Average values of prediction rules

Hamming distance Euclidean distance

{S} → {HD} 9
√

2+4
2

{BMI} → {HD} 21
2

2
√

2+2
√

10+
√

14
4

{S, BMI} → {HD} 9 3
√

2+4
√

3+2
√

6+
√

10+4
8

According to Table2, if using Hamming distance, then the “best” attribute set,
which is used to predict HD, is {S} or {S, BMI}. If using Euclidean distance,
then the “best” attribute set is {S}. The conclusion is same as in [12].

4 Conclusion

In this paper, under the framework of information systems, intuitionistic fuzzy
special σ-algebra are generated by basic IFSS of information systems, and rough
sets are embedded in the intuitionistic fuzzy special σ-algebra. Hamming dis-
tance (or Euclidean distance) of intuitionistic fuzzy special sets in intuitionistic
fuzzy special σ-algebra are used to evaluate predication rules of information
systems.
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Abstract. We address a novel issue for logic programming, namely the
problem of evaluating ranked top-k queries. The problem occurs for in-
stance, when we allow queries such as “find cheap hotels close to the
conference location” in which vague predicates like cheap and close oc-
cur. Vague predicates have the effect that each tuple in the answer set
has now a score in [0,1]. We show how to compute the top-k answers in
case the set of facts is huge, without evaluating all the tuples.

Keywords: Logic Programming, Fuzzy, Top-k retrieval.

1 Introduction

In this paper we address a novel issue for Logic Programs (LPs) with a huge
set of facts, namely the problem of evaluating ranked top-k queries. In classical
logic programming, an answer to a query is a set of tuples that satisfy a query.
Each tuple may or may not satisfy the predicates in the query. However, very
often the information need of a user involves so-called fuzzy/vague predicates. For
instance, a user may have the following information need: “Find cheap hotels
near to the conference location”. Here, cheap and near are fuzzy predicates.
Unlike the classical case, tuples satisfy now these predicates to a score (usually
in [0, 1]). In the former case the score may depend, e.g., on the price, while in
the latter case it may depend e.g. on the distance between the hotel location
and the conference location.

Therefore, a major problem we have to face with in such cases is that now
an answer is a set of tuples ranked according to their score. This poses a new
challenge in case we have to deal with a huge amount of facts. Indeed, virtually
every tuple may satisfy a query with a non-zero score and, thus, has to be ranked.
Of course, computing all these scores, ranking them and then selecting the top-k
ones is not feasible in practice.

In this work, we address the top-k retrieval problem for Datalog. At the
extensional level, each fact may have a score, while at the intentional level rules
describe the domain of application. Queries are conjunctive queries in which
vague predicates may occur.
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2 Preliminaries

The formalism we consider is defined as follows. The score space (i.e. truth space)
is S = [0, 1]. We anticipate informally that an interpretation will assign a score
(i.e. truth) to a ground atom and that the answers to a query (i.e. ground
instances of an atom) will be ranked (in decreasing order) according to their
scores.

A term is either a variable or a constant.
Let VE and VI be disjoint sets of n-ary extensional and intentional predicate

symbols, respectively. An atom is of the form p(t1, . . . , tn), where p is an n-ary
predicate symbol and all tj are terms. An atom is ground if no variable occurs
in it. A logic program P is made out of an extensional database (EDB), PE , and
an intentional database (IDB), PI . The extensional database is a set of facts of
the form r(c) ← b, where r(c) is a ground atom, r is an extensional predicate
and b ∈ S is a score value. The intuition here is that b is the assigned score to
tuple c in relation r. For convenience, for each n-ary extensional predicate r,
we represent the facts r(c1, . . . , cn) ← b in P by means of a relational n + 1-ary
table Tr, containing the records 〈c1, . . . , cn, b〉. Thus, the table contains all the
instances of r together with their scores. We assume that there cannot be two
records 〈c1, . . . , cn, b1〉 and 〈c1, . . . , cn, b2〉 in Tr with b1 �= b2 (in case their are,
we remove the one with the lower score). Each table is sorted in descending order
with respect to the scores. Usually, the score of a tuple in a relation has been
computed (possibly off-line) by a specific system. For instance, we may have an
underlying image retrieval system that for each identified object in an image has
m scores, one for each of the m attributes (see, e.g. [8]).

The intentional database is a set of rules in which all variables in the head do
also appear in the rule body. To facilitate the reading, we first give an example of
rule with its intended meaning and then provide the formal definition. Assume
we would like to represent the set of good conference hotels q(x), which are
hotels close to the conference location. Assume that we have a relational table of
hotels, their location and their price, a table of conferences and their location, a
distance table reporting the distance among two locations, and two tables for the
extensional predicates, cheap and close, whose instances are scored with respect
to the following functions, where the former depends on the price, while the
latter depends on the distance: scheap(p) = max(0, 1 − p/200), and sclose(d) =
max(0, 1 − d/2000). Then following rule may be a candidate rule: for a given
conference c

q(h) ← min[hotel(h, hLoc, price), conference(c, cLoc),

distance(hLoc, cLoc, d)] · cheap(price) · close(d).

Essentially, in the above rule, the score of q(h) is determined by taking the min
of the first three atoms and then take the product of it with the last expres-
sion. This is similar as it happens in top-k retrieval in the context of relational
databases [3,4,6]: the data is represented in relational tables and the SQL query
language is extended to allow to express a scoring function, which may use the
values occurring in the retrieved records, to compute the final score of the re-
trieved record.
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So, let F be a set of total score combination functions, i.e. computable func-
tions 1 f : [0, 1]n → [0, 1] used to manipulate score values, e.g. min, max, ·, +, . . ..
Score combination functions will have a fixed interpretation, i.e. we will consider
them as built-in functions. Then an intentional database is a set of rules of form
p(x) ← f(A1, . . . , An), where (i) p is an intentional predicate; (ii) Ai is an atom
q(t) and t is a tuple of terms (q is either an intentional or an extensional predi-
cate symbol); and (iii) f is a score combination function, which is assumed to be
monotone in its arguments. Note that the extensional predicates do not occur in
the head of rules of the intentional database. Essentially, we do not allow that
the fact predicates occurring in PE can be redefined by PI . A classical rule is
one in which f is min.

From the semantics point of view, the Herbrand universe HP of P is the set
of constants appearing in P . If there is no constant symbol in P then consider
HP = {c}, where c is an arbitrary chosen constant. The Herbrand base BP of P
is the set of ground instantiations of atoms appearing in P (ground instantiations
are obtained by replacing all variable symbols with constants of the Herbrand
universe). Let P∗ be the set of ground rule instantiations obtained from P . Note
that P∗ is always finite. An interpretation I is a partial mapping from intentional
and extensional atoms to [0, 1] (we recall that for a constant c, I(c) = c). Note
that, as I may be a partial function, some atoms may not have a score. Alterna-
tively, we may assume I to be a total function. We use the former formulation
to distinguish the case where a tuple c may be retrieved, though the score is 0,
from the tuples which do not satisfy the query and, thus, would be not retrieved.
In particular, if a tuple does not belong to an extensional relation then its score
is assumed to be undefined, while if I is total, then the score of this tuple would
be 0. We denote with def(I) the set of ground atoms on which I is defined. We
say that I is a model of P , denoted I |= P , iff for all facts A ← b ∈ PE , I(A) ≥ b
and for all rules A ← f(A1, . . . , An) ∈ PI such that all I(Ai) are defined,
I(A) ≥ f(I(A1), . . . , I(An)) holds (note that the function f ∈ F has a fixed in-
terpretation, which we identify with f itself). We say that an interpretation I is
a minimal model of P iff I |= P and for any other model J of P , def(I) ⊆ def(J)
and for all A ∈ def(I) I(A) ≤ J(A) holds. 2 It is not difficult to see that there is
an unique minimal model MP of P . The proof is based on the existence of a par-
tial monotone immediate consequence operator TP , whose fixed-points are mod-
els of P : for any ground atom A ∈ BP TP(I)(A) = max{I(ϕ) | A ← ϕ ∈ P∗},
where max ∅ is undefined (P∗ is finite, so max can be used).

A query is an intentional predicate symbol q. The answer set of q w.r.t. P is
defined as the set ans(q, P) of tuples 〈c, s〉 ∈ HP × . . . × HP × [0, 1] such that
MP(q(c)) = s (the score of c is s in the minimal model).

Example 1. Given the logic program P = {(q(x) ← 0.5 · (p(x) + r(x))), (p(a) ←
0.9), (p(b) ← 0.2), (r(b) ← 0.4)} then MP(p(a)) = 0.9, MP(p(b)) = 0.2,

1 With computable we mean that for any input, the value of f can be determined in
finite time.

2 The least interpretation is unique and is I⊥, where def(I⊥) = ∅, i.e. I⊥ is undefined
everywhere.
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MP(r(b)) = 0.4, MP(q(b)) = 0.3 and ans(q, P) = {〈b, 0.3〉}, while ans(p, P) =
{〈a, 0.9〉, 〈b, 0.2〉}. If MP has to be a total interpretation then additionally
MP(r(a)) = 0, MP(q(a)) = 0.45 and 〈a, 0.45〉 ∈ ans(q, P).

Example 2. Given the logic program P = {(q(x) ← (q(x) + 1)/2), (p(a) ← 0.4)}
then MP(p(a)) = 0.4, MP(q(a)) = 1 and ans(q, P) = {〈a, 1〉}. Note that P
exhibits a well-known behaviour, requiring ω steps of TP iterations to obtain the
minimal model [5,13].

The basic reasoning service that mainly concerns us is:

Top-k retrieval: Given P , retrieve the top-k ranked tuples of the answer set
of q w.r.t. the score, denoted ansk(q, P) = Topk(ans(q, P)).

We note that retrieving the top-k answers of an extensional predicate symbol r
is trivial as we have just to retrieve the first k tuples in the relational table Tr

associated to r. Hence, we restrict top-k retrieval to intentional predicates only.

3 Top-k Information Retrieval

We next provide an incremental top-down top-k query answering algorithm.
Note that, as Example 2 shows, computing an answer (and, thus, the top-k
answers) may not be possible in finite time in general. A usual way to overcome
this situation is to rely on bounded score combination functions f , i.e. for all
i, f(x1, . . . , xn) ≤ xi. In this case it can be shown that the least-fixed point is
reached after a finite number of Tp iterations [9].

To start with, we use the usual relation “directly depends on” among pred-
icate symbols, i.e. given P , we say that predicate symbol p directly depends on
predicate symbol q if there is a rule in P such that p occurs in the head of it
and q occurs in the body of it. The relation depends on is the transitive closure
of “directly depends on”. The dependency graph of P is a directed graph where
nodes are predicate symbols and the set of edges is the “directly depends on”
relation. The program is recursive if there is a cycle in the dependency graph
(i.e. there is p depending on p). We also say that P is deterministic if for each
intentional predicate symbol p there is at most one rule in P having p in its head.

A practical useful case is when the logic program contains only classical rules,
except for the rules having the query in the head. This depicts the scenario
when a top-k query involving vague predicates is issued on top of a classical
logic program (deductive database), as for the “find cheap hotels” example. We
call such programs classical top-k programs. The top-k retrieval problem for non-
recursive classical top-k programs has been addressed in [11], were it has been
shown that for a non-recursive classical top-k program P and query predicate q,
ansk(q, P) can be determined in LogSpace w.r.t. the size of PE.

The procedure is based on a query reformulation step, in which a rule involving
the query predicate in the head is reformulated by replacing an atom A in the
body by means of the rule body φ, for A ← φ ∈ P , and finally applying a top-k
algorithm for relational databases to the obtained query transformations.
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For the more general case, this simple strategy is no longer possible. Of course,
we always have the possibility to compute all answers (whenever termination
is guaranteed), to rank them and to select the top-k ones only. However, this
requires to compute the score of all answers. We would like to avoid this in cases
in which the extensional database is large and potentially too many tuples would
satisfy the query. A distinguishing feature of our query answering procedure is
that we do not determine all answers by discovering all proofs as e.g. in [5,13], but
rather apply a variant of so-called memoing techniques developed for classical
logic programming –see, e.g. [15] for an overview. Essentially, the basic idea of
our procedure is to collect, during the computation, all answers incrementally
together in a similar way as it is done for classical Datalog. Hence, for instance,
we do not rely on any notion of atom unification, but rather iteratively access
relational tables using relational algebra.

The presentation of our algorithm proceeds as follows. We present a top-
k answering procedure for deterministic logic programs (at most one rule per
predicate symbol p in the head). Due to lack of space we are not able to include
also the more general case of non-deterministic LPs as well (more than one rule
per predicate symbol p in the head), which will be included in an extended ver-
sion of the paper. For this latter case, we just show the problem introduced and
outline the solution for it. For the rest of this paper we will assume that the score
combination functions are bounded, to avoid such cases as shown in Example 2.

Given r : q(x) ← φ ∈ P , with s(q, r) we denote the set of sons of q w.r.t. r,
i.e. the set of intentional predicate symbols occurring in φ. With p(q) we denote
the set of parents of q, i.e. the set p(q) = {pi: q ∈ s(pi, r)} (the set of predicate
symbols directly depending on q).

Top-k Query Answering for Deterministic LPs. The procedure TopAnswers is
detailed in Table 1. The procedure uses some auxiliary functions and data struc-
tures: (i) the variable rankedList contains, for each intentional predicate p, the
current top-ranked tuples together with their score. For each p, the tuples 〈c, s〉
in rankedList(p) are ranked in decreasing order with respect to the score s. We
do not allow 〈c, s〉 and 〈c, s′〉 to occur in rankedList(p) with s �= s′ (if so, we
remove the tuple with the lower score); (ii) the variable dg collects the predicate
symbols the query predicate q depends on; (iii) the array variable exp traces
the rule bodies that have been “expanded” (the predicate symbols occurring in
the rule body are put into the active list); (iv) the variable in keeps track of the
predicate symbols that have been put into the active list so far due to an expan-
sion (to avoid, to put the same predicate symbol multiple times in the active list
due to rule body expansion). There are other variables, which however do play
a role in the procedure getNextTuple only (see Table 1), and are defined in the
TopAnswers procedure as they act as global variables. We will discuss them in
detail once we address the getNextTuple procedure later on.

Overall, the procedure works as follows. Assume, we are interested in deter-
mining the top-k answers of q(x). We start with putting the predicate symbol q
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Table 1. The top-k query answering procedure

Procedure TopAnswers(P, q, k)
Input: Logic program P, query predicate q, k ≥ 1;
Output: Mapping rankedList such that rankedList(q) contains top-k answers of q
Init: δ = 1, for all rules r : p(x) ← φ in P do

if p intentional then rankedList(p) = ∅, Q(p, r) := ∅;
if p extensional then rankedList(p) = Tp endfor

1. loop
2. A := {q}, dg := {q}, in := ∅, rL′ := rankedList, for all rules r : p(x) ← φ do exp(p, r) = false;
3. while (A �= ∅) do
4. select p ∈ A where r : p(x) ← φ, A := A \ {p}, dg := dg ∪ s(p, r);
5. Δr := getNextTuple(p, r)
6. if Δr �= ∅ then rankedList(p) := rankedList(p) ∪ Δr, A := A ∪ (p(p) ∩ dg);
7. if not exp(p, r) then exp(p, r) = true, A := A ∪ (s(p, r) \ in), in := in ∪ s(p, r);

endwhile
8. Update threshold δ;
9. until (rankedList(q) does contain k top-ranked tuples with score above δ) or (rL′ = rankedList);
10. return top-k ranked tuples in rankedList(q);

Procedure getNextTuple(p, r)
Input: Intentional predicate symbol p and rule r : p(x) ← f(A1, . . . , An) ∈ P;
Output: Next tuple satisfying the body of the r together with the score
Init: Let pi be the predicate symbol occurring in Ai;
1. if Q(p, r) �= ∅ then

〈t, s〉 := getTop(Q(p, r)), remove 〈t, s〉 from Q(p, r), return {〈t, s〉} fi
loop

2. Generate the set T of all new join tuples t, using all tuples seen so far in all rankedList(pi) using symmetric hash join
3. for all t ∈ T do
4. s := compute the score of p(t) using f ;
5. if neither 〈t, s′〉 ∈ rankedList(p) nor 〈t, s′〉 ∈ Q(p, r) with s ≤ s′ then insert 〈t, s〉 into Q(p) endfor

until Q(p, r) �= ∅ or no new valid join tuple can be generated
6. if Q(p, r) �= ∅ then 〈t, s〉 := getTop(Q(p, r)), remove 〈t, s〉 from Q(p), return {〈t, s〉} else return ∅ fi

in the active list of predicate symbols A. At each iteration step we select a new
predicate p from the queue A and get a new tuple (getNexTuple(p, r)) satisfying
the rule body r whose head contains p with respect to the answers gathered
so far. If the evaluation leads to a new answer for p (Δr �= ∅), we update the
current answer set rankedList(p) and add all predicates pj directly depending
on p to the queue A. At some point the active list will become empty and we have
actually found correct answers of q(x). A threshold will be used to determine
when we can stop retrieving tuples. Indeed, the threshold determines when any
newly retrieved tuple for q scores lower than the current top-k and, thus, cannot
modify the top-k ranking (step 9). So, step 1 loops until we do not have k answers
above the threshold or, two successive loops do not modify the current set of
answers (step 9). Step 2 initializes the active list of predicates. Step 3. loops
until no predicate has to be processed anymore. In step 4, we select a predicate
symbol to be processed. In step 5, we retrieve the next answer for p. If a new
answer has been retrieved (step 6, Δr �= ∅) then we update the current answer
set rankedList(p) and add all predicates pj, that directly depend on p, to the
queue A. In step 7, we put once all intentional predicate symbols appearing in
the rule body of p in the active list for further processing.

We next describe the getNextTuple procedure (see Table 1). It’s main purpose
is, given a predicate symbol p and a rule r : p(x) ← φ, to get back the next
tuple (and its score) satisfying the conditions of the rule r. The procedure is a
generalization of the analogous getNext procedure described in [4] and uses the
so-called symmetric Hash Rank Join (HRJN) algorithm. This is not surprising
as the list of atoms in a rule body may be seen as multiple joins together with
a scoring function.
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Let us first describe the intuition behind the procedure. For the sake of illustra-
tive purposes assume that the rule r associated to p is p(x) ← p1(x, y) ·p2(y, z) ∈
P . The idea is as follows:

1. We incrementally generate new valid join combinations 〈x, y, z〉 from the tu-
ples in rankedList(p1) and rankedList(p2) using some join strategy. In
particular, as [4], we alternatively access first rankedList(p1) and then
rankedList(p2). We select the next unseen tuple in rankedList(p1) and
then build all join combinations with the tuples seen so far in
rankedList(p2). Then we select the next unseen tuple in rankedList(p2)
and then build all join combinations with the tuples seen so far in
rankedList(p1) and so on until we find some valid join tuples (Q(p, r) �= ∅).

2. The join tuples and their scores will be put in the queue Q(p, r) and the
top-ranked one is returned.

Specifically, in step 1, whenever we already have some tuples in the queue Q(p, r)
of p (obtained by a previous call) then we just return the top-ranked one. Ties are
split randomly. In step 2 we generate all candidate joins, involving all seen tuples
of the predicates occurring in the rule body of p. For each of them we compute
its score (step 4). We put the results on the queue Q(p, r) (step 5) and return
the top-ranked one. As Q(p, r) may still contain answers for p, the next time we
ask for a next tuple with respect to p and r, we access Q(p, r) directly (step 1).

Finally, threshold δ is determined as follows. It is computed as in [4]. Suppose
that for the query predicate q we have a rule r : q(x) ← f(p1, . . . , pn) ∈ P . Let
t⊥i be the last tuple seen in rankedList(pi), while let t�i be the top ranked one
in rankedList(pi). With ti.score we indicate the tuple’s score. Then δ is the
maximum of the following n values:

δ1 = f(t⊥
1 .score, t�

2 .score, . . . , t�
n .score)

δ2 = f(t�
1 .score, t⊥

2 .score, . . . , t�
n .score)

...
...

...

δn = f(t�
1 .score, t�

2 .score, . . . , t⊥
n .score) .

For instance, for q(x) ← p1(x, y) · p2(y, z) ∈ P we have

δ1 = t⊥
1 .score · t�

2 .score

δ2 = t�
1 .score · t⊥

2 .score

δ = max(δ1, δ2) .

It is not difficult to see that whenever we consider a new join combination,
its score will be below to δ. Indeed, if we consider a new join tuple using the
next unseen tuple from rankedList(p1) and a seen tuple in rankedList(p2), its
score will be below δ1, while if we consider a new join tuple using the next unseen
tuple from rankedList(p2) and a seen tuple in rankedList(p1), its score will be
below δ2. Therefore, overall the score will be below δ. It is thus not surprising
that whenever we have top-k answers for q with score above δ we can stop the
retrieval process (see step 9 of TopAnswers). This property can be generalized
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to n-ary joins (see [4], Theorem 4.2.1). For the sake of illustrative purposes, let
us consider the following abstract examples.

Example 3. Assume that we have the following query rule q(x) ← min(r1(x, y),
r2(y, z)), where q is the query predicate and r1, r2 are extensional predicates
with tables (with millions of tuples)

recId r1 r2
1 a b 1.0 m h 0.95
2 c d 0.9 m j 0.85
3 e f 0.8 f k 0.75
4 l m 0.7 m n 0.65
5 o p 0.6 p q 0.55

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

The table below reports a top-2 retrieval computation. The left table reports data
related to each loop in the TopAnswers procedure, while the other shows at each
iteration the execution getNextTuple (rj(i) means that we access the i-th tuple
in relation rj). The first call of getNextTuple(q) requires several alternative
accesses to ri before a tuple can be found (〈e, k, 0.75〉). In the second call we
get immediately two candidate tuples. In the third call, as Q(q, r) �= ∅ we get
immediately the next candidate (〈l, j, 0.7〉). Finally, in the fourth call, we retrieve
〈l, n, 0.65〉. As now rankedList(q) contains 2 answers above the threshold of
0.7, we can stop and return {〈e, k, 0.75〉, 〈l, h, 0.7〉}. Note that no new retrieved
answer may have a score above 0.7. Indeed, the next one would be 〈o, q, 0.55〉
and, thus, not all tuples are processed (which would be unfeasible in practice).

TopAnswers
Iter A p Δr rankedList(p) δ

1. q q 〈e, k, 0.75〉 〈e, k, 0.75〉 0.8
2. q q 〈l, h, 0.7〉 〈e, k, 0.75〉, 〈l, h, 0.7〉 0.75
3. q q 〈l, j, 0.7〉 〈e, k, 0.75〉, 〈l, h, 0.7〉, 〈l, j, 0.7〉 0.75

4. q q 〈l, n, 0.65〉 〈e, k, 0.75〉, 〈l, h, 0.7〉,
〈l, j, 0.7〉, 〈l, n, 0.65〉 0.7

getNextTuple
Iter pi 〈ti, si〉 Q(p, r)

1. r1 r1(1) −
r2 r2(1) −
r1 r1(2) −
r2 r2(2) −
r1 r1(3) −
r2 r2(3) 〈e, k, 0.75〉

2. r1 r1(4) 〈l, h, 0.7〉, 〈l, j, 0.7〉
3. − − 〈l, j, 0.7〉
4. r2 r2(4) 〈l, n, 0.65〉

From computational point of view, by a similar analysis as in [9], it can be shown
that TopAnswer is exponential with respect to |P| (combined complexity), but
polynomial in |PE | (data complexity), and we have:

Proposition 1. Given a deterministic logic program P in which all scoring
functions are bounded, then TopAnswers(P , q, k) terminates with
TopAnswers(P , q, k) = ansk(q, P).

Top-k Query Answering for General LPs. We first illustrate the problem that is
introduced in the case a predicate symbol p is in the head of multiple rules and
then sketch how we solve it. Our top-k retrieval algorithm is based on the fact
that whenever we find a new instance 〈c, s〉 for a predicate p occurring in P , any
successive retrieved instance 〈c′, s′〉 for p is scored lower than 〈c, s〉, i.e. s′ ≤ s
(the fact that score combination functions are bounded is crucial here), which
allows us to apply the stopping criteria based on a threshold. Unfortunately, if



Towards Vague Query Answering in Logic Programming 133

p is in the head of more than one rule this is no longer true. Indeed, clearly two
rules p(x) ← φ1 and p(x) ← φ2 are equivalent to the rule p(x) ← max(φ1, φ2),
and max is not a bounded score combination function. So, it is not difficult
to find an example where given a retrieved instance 〈c, s〉 for p, a successive
retrieved instance 〈c′, s′〉 for p may have a score higher than 〈c, s〉, i.e. s′ > s.

Example 4. Consider the seven rules q(x) ← t1(x), q(x) ← p1(x), p1(x) ← t2(x),
t1(a) ← 0.4, t1(b) ← 0.3, t2(c) ← 0.5, t2(d) ← 0.2. A naive extension of our
procedure, may retrieve first 〈a, 0.4〉 for q, second 〈c, 0.5〉, third 〈b, 0.3〉 and,
eventually 〈d, 0.2〉.

As we can see in the above example, it may not be guaranteed that any successive
retrieved tuple for q is scored lower than the previous one. However, there is still
a simple strategy to overcome to this problem. In fact, note that any successively
retrieved tuple for rule r1 : q(x) ← t1(x) is scored lower than the one retrieved
before for r1. Similarly, any successively retrieved tuple for rule r2 : q(x) ← p1(x)
is scored lower than the one retrieved before for r2. Therefore, one strategy may
be to gather at least one answer for each of the rules r1 and r2 and only then
merge the retrieved answers for r1 and r2 to build the answers for q. This will
guarantee that successively retrieved answers for r1 and r2 are scored lower
than the already retrieved ones for q. Of course, the threshold δ for q is now
δ = max(δr1 , δr2}, where δr1 and δr2 are computed as previously for rule r1 and
r2, respectively. The detailed procedure will be described in more detail in an
extended work.

4 Conclusions

The problem of top-k retrieval will be an important problem, e.g. in logic-based
(multimedia) information retrieval. We have addressed this issue in the context
of logic programs. We are unaware of any other work addressing this problem
for many-valued (recursive) logic programs (for non-recursive logic programs,
see [11,14]), computing the answers iteratively accessing relational tables using
relational algebra (and, thus, is not resolution-based).

Major topics for future research include: (i) can we refine our strategy in case
the score combination functions are not bounded? (ii) How can we deal with
aggregates (maybe relying on [7])? (iii) Can we apply similar ideas to other
popular logical formalism, such as Description Logics (DLs) [1] (the only work
we know about are [12,10]) and their combination with LPs?
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Abstract. This paper presents a conceptual querying approach with
reference to a document collection where the target is the concepts ap-
pearing in documents, rather than the documents in the collection. An
ontology formalism and a special notion of ”instantiated ontology” are
introduced. The latter is a structure reflecting the content in the docu-
ment collection in that; it is a restriction of a general world knowledge
ontology to the concepts instantiated in the collection. The notion of
ontology-based similarity is briefly described and a language for naviga-
tion and retrieval of concepts in the ontology is presented.

1 Introduction

In this paper we address an approach to conceptual querying where a set of con-
cepts can be examined. The general idea is to restrict a general world knowledge
ontology to the given set of concepts – extending this with relations and related
concepts – and thereby providing a structure, a so-called instantiated ontology,
for navigation and further investigation of the concepts. Conceptual investiga-
tion of a set of documents can be performed by extracting the set of concepts
appearing in the documents and by providing means for navigation and retrieval
within the set of extracted concepts.

For this purpose a language for navigation and retrieval of concepts in the
ontology is presented that include constructs for investigating connected and
close concepts to a given concept. Closeness is based on the notion of similarity
that is briefly introduced and further described in [1]. Extraction of concepts
from text is not covered in this paper and we refer to [2,3] for a discussion on
this issue.

One important application aimed is to provide a tool for investigating and
describing content of any collection of documents with reference to general world
knowledge resources such as WordNet.

2 Representation of Ontologies

The purpose of the ontology in this context is to define and relate concepts that
may appear in the document collection or in queries to this.
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We define a generative ontology framework where a basis ontology situates
a set of atomic term concepts A in a concept inclusion lattice. A concept lan-
guage (description language) defines a set of well-formed concepts, including
both atomic and compound term concepts.

The concept language used here, Ontolog[4], is a lattice-algebraic descrip-
tion language. Its basic elements are concepts and binary relations between con-
cepts. The algebra introduces two closed operations on concept expressions ϕ
and ψ [4]:

– conceptual sum (ϕ + ψ), interpreted as the concept being ϕ or ψ
– conceptual product (ϕ × ψ), interpreted as the concept being ϕ and ψ

also called join and meet respectively. Relationships r are introduced alge-
braically by means of a binary operator (:), known as the Peirce product (r : ϕ),
which combines a relation r with an expression ϕ. The Peirce product is used as
a factor in conceptual products, as in x× (r : y), which can be rewritten to form
the feature structure x[r : y], where [r : y] is an attribution of the concept x.

Compound concepts can be formed by attribution. Given atomic concepts A
and semantic relations R , the set of well-formed terms L is:

L = {A} ∪ {x[r1 : y1, ..., rn : yn]|x ∈ A, ri ∈ R, yi ∈ L}

Compound concepts can thus have multiple as well as nested attributions.
For instance with R= {wrt,chr,cby,tmp, loc, . . .}1 and A ={entity, physi-
cal entity, abstract entity, location, town, cathedral, old} we get:

L = {entity, physical entity, abstract entity, location, town, cathedral, old,

. . . , cathedral [loc : town ,chr : old ], cathedral [loc : town[chr : old ]], . . .}

3 Modelling Ontologies

The objective here is to provide instantiated ontologies as targets for concep-
tual querying and the approach is to establish a general ontology and derive
instantiated ontologies by restriction to sets of concepts.

3.1 The General Ontology

Sources for knowledge base ontologies may have various forms. Typically a tax-
onomy can be supplemented with, for instance, word and term lists as well as
dictionaries for definition of vocabularies and for handling of morphology. The
well-known and widespread resource WordNet [5] is among the more interesting
and useful resources for general ontologies.

We will not go into details on the modeling here but just assume the presence
of a taxonomy T over the set of atomic concepts A. T and A expresses the
domain and world knowledge provided.
1 For with respect to, characterized by, caused by, temporal, location, respectively.



On Browsing Domain Ontologies for Information Base Content 137

Based on T̂ the transitive closure of T we can generalize to an inclusion
relation ”≤” over all well-formed terms of the language L by the following [6]:

“ ≤ “ = T̂
∪{<x[. . . , r : z], y[. . .]> | <x[. . .], y[. . .]>∈ T̂ }
∪{<x[. . . , r : z], y[. . . , r : z]> | <x[. . .], y[. . .]>∈ T̂ }
∪{<z[. . . , r : x], z[. . . , r : y]> | <x, y>∈ T̂ }

where repeated . . . denote zero or more attributes of the form ri : wi.
The general ontology O = (L, ≤, R) thus encompasses a set of well-formed

expressions L derived in the concept language from a set of atomic concepts
A, an inclusion relation generalized from the taxonomy relation in T , and a
supplementary set of semantic relations R. For rεR, we obviously have x[r : y] ≤
x, and that x[r : y] is in relation r to y. Observe that O is generative and that
L therefore is potentially infinite.

3.2 Instantiated Ontology

Given a general ontology O = (L, ≤, R) and a set of concepts C the instantiated
ontology OC = (LC , ≤C , R) is a restriction of O to cover only the concepts in
C and corresponds to ”upper expansion” LC of C in O

LC = C ∪ {x|y ∈ C, y ≤ x}
“ ≤C “ = {(x, y)|x, y ∈ LC , x ≤ y}

Thus OC is not generative. ”≤C” may be represented by a minimal set
”≤′

C”⊆”≤C” such that ”≤C” is derivable from ”≤′
C” by means of transitivity

of ”≤” and monotonicity of attribution:

transitivity : x ≤ y, y ≤ z ⇒ x ≤ z

monotonicity : x ≤ y ⇒ z[r : x] ≤ z[r : y]

Figure 1 shows an example of an instantiated ontology. The general ontology
is based on (and includes) WordNet and the ontology shown is ”instantiated”
wrt. the following set of concepts:

C = {cathedral [loc : town[chr : old ]], abbey,

fortification [chr : large,chr : old ], stockade}

3.3 Deriving Similarity

A domain ontology, that reflects a document collection, may provide an excellent
means to survey and give perspective to the collection. However as far as access
to documents is concerned ontology reasoning is not the most obvious evaluation
strategy as it may well entail scaling problems. Applying measures of similarity
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Fig. 1. An instantiated ontology based on a Wordnet ontology and
the set of instantiated concepts {cathedral [loc : town [chr : old ]], abbey,
fortification [chr : large,chr : old ], stockade}

derived from the ontology is a way to replace reasoning with simple computation
still influenced by the ontology.

One obvious way to measure similarity in ontologies, given the graphical rep-
resentation, is to evaluate the distance between the concepts being compared,
where a shorter distance implies higher similarity and vice versa.

A number of different ontological similarity measures along this line have
over the years been proposed. Shortest Path Length [7] forms the basis of a
group of measures classified as path length approaches. The Weighted Shortest
Path [8] is a generalization of Shortest Path Length where weights are assigned
to relations in the ontology. Two different alternatives are Information Con-
tent [9] and Weighted Shared Nodes [10], where the former uses the probability
of encountering concepts in a corpus to define the similarity between concepts,
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and the latter uses the density of concepts shared by the concepts being compared
to measure the similarity.

4 Querying Ontologies

In a framework where the domain of a database is reflected in a knowledge base,
for instance as expressed in an ontology, obviously not only the database, but
also the domain ontology may in some cases be the target of interest for queries.
Knowledge about existence of concepts, how concepts are related and about
similarities between concepts may be relevant to users. In addition knowledge
about the actual content of the database can be viewed through the ontology
simply by means of revealing only concepts that exist in the database. In other
words the instantiated ontology plays a specific role here, since it constitute the
means by which the user can obtain a conceptual view of the database content –
navigating through all the concepts and relations actually instantiated and only
those.

4.1 Conceptual Querying

In developing a conceptual querying approach we restrict here to considerations
involving explicitly specified concepts and seek appropriate operators to support
questions of interest. The main issue is expressivity and observations may (at
least to some extend) be generalized to other means of querying such as NL and
logic-based approaches.

Questions of interest concerning an ontology typical refer to existence of, and
connectivity among concepts. To identify categories of queries we distinguish
three aspects that should be covered by the expressivity of the language: basic
lattice operations, unified operations involving also connectivity by other rela-
tions, and soft closeness operations involving concept similarities.

The basic operations are mainly strict taxonomy and lattice operations con-
cerning connectivity along inclusion only.

Features attached by semantic relations may as well be of interest when query-
ing the ontology and the unified relation operations involves also connectivity
through these. For instance querying connectivity on concepts yellow and bird
would possibly lead to nothing (or anything) in the strict inclusion interpre-
tation, but reveal whether a bird with the feature yellow can be found in the
database when the relation chr is taken into account.

Soft closeness operations involve similarity measuring. Having introduced on-
tology based similarity measuring degrees of closeness, we can, apart from crisp
(connectivity), also distinguish soft (similarity) questions dealing with sets of
similar, rather than sets of connected concepts.

Thus to encircle a suggested set of operators we obviously have numerous pos-
sibilities. Below we consider possible operations related to the three mentioned
aspects in order.
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Basic Operations. Keeping in mind that our focus is on instantiated ontolo-
gies comprising concepts actually instantiated, the most simple questions should
be to the existence of concepts. In [11] Trissl and Leser introduces the categories
of reachability, ancestor- or successor set and Least common ancestor of two or
more nodes (multiple concepts). Reachability is to verify whether a given concept
has another as ancestor, for instance “Is cat a mammal”. Ancestor/Successor set
for a given node is the set of all ancestors/successors nodes respectively. For in-
stance the successors of “animal” answer the question“ What animal do we have”.
Least common ancestor is of interest when a common origin of two or more nodes
should be computed. For instance, we could verify that cat and dog are connected
through a least common ancestor mammal, while cat and snake first join in animal.
Since we are considering lattice ontologies rather than only strict hierarchical tax-
onomies, concepts are not only upwards but may also be downwards connected.
We should therefore at least include a greatest common successor. For instance
we could investigate what colors dogs come in by extracting the set of greatest
common successors of dog and color.

Expressions to cover the two first categories are straightforward and our on-
tology formalization, conceptual algebra, comprises the operators + (conceptual
sum) and × (conceptual product) operators for the two latter categories. We
therefore only need in addition to cover ancestor/successor set expressions as
suggested below.

Assuming an ontology OD over a concept set D and concepts c, c1, c2 and
concept set C the basic query operations are:

– Existence c evaluate existence of c
– Reachability c1 ≤ c2 evaluate to true if c2 is reachable from (is an ancestor

of) c1

– Ancestor set c� denotes any ancestor of c
– Successor set c� denotes any successor to c
– Ancestor-Successor set c∗ denotes any ancestor or successor to c
– Any ∗ denotes any concept c
– Least common ancestor c1 + c2 denotes the conceptual sum (join), that

is the least common ancestor to c1 and c2

– Greatest common successor c1 × c2 denotes the conceptual product
(meet), that is the greatest common successor of c1 and c2

Questions involving the operators �, �, ∗ such as c �, c �, c∗, ∗ are open
queries leading to sets of concepts meeting the specifications. With reference to
figure 1 simple examples of queries applying these operators and answers are the
following.

– town[chr : old ] = {town[chr : old ]}
– large[chr : stockade ] = {}
– building�= {building, structure, artifact, physical entity, entity}
– place of worship�= {place of worship, church, cathedral, abbey, cathe-

dral [loc : town], cathedral [loc : town [chr : old ]]}
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– cathedral [loc : town�] = {cathedral [loc : town],
cathedral [loc : town[chr : old ]]}

– church�[loc : * ] = {cathedral [loc : town] cathedral [loc : town[chr : old ]]}
– fortification [chr : old ] + fortress [chr : big ] = defensive structure

Unified Relation Operations. The operations above provide means for nav-
igation directly along the inclusion relation and indirectly along semantic rela-
tions attaching features to concepts. We can pose questions like x[chr : ∗] and
x[chr : y �] leading to all concepts x[chr : y] ∈ LC respectively all concepts
x[chr : z] ∈ LC with z ≤ y. However to navigate directly along feature connec-
tions we need either means for specifying which relations to traverse or means
for combining different relations into one unified connectivity. Again the possi-
bilities for language constructs are many. In this context we will only focus on a
unified approach. We choose here to introduce two categories:

– Unified least common ancestor c1 +′ c2 denotes the conceptual sum of
c1 and c2 in the unified lattice where all connections (inclusion as well as
features) are combined and considered ordering

– Unified greatest common successor c1 ×′ c2 denotes the conceptual
product of c1 and c2 in the unified lattice where all connections are combined
and considered ordering

Apart from exploiting features through the connectivity they represent, we
might also be interested in the specific values they take. If we want, for instance
to know about colors of animals we can of course retrieve the set of all the colored
animals, but in some cases it would be more convenient rather to receive the set
of colors. For this purpose we introduce an unfold construct:

– Unfold. The set of concepts appearing as features for a given concept. For
instance xINc[CHR : x] denotes the set of concepts appearing as CHR-
features to the concept c.

Again with reference to figure 1 simple examples of queries applying the above
operators are the following.

– fortification [chr : old ] + town[chr : old ] = physical entity
– fortification [chr : old ] +′ town [chr : old ] = old
– region ×′ age = {town[chr : old ]}
– (oldness ×′ defensive structure)�= {fortification [chr : old ], forti-

fication[chr : large,chr : old ]}
– fortification [chr : * ] = {fortification [chr : old ], fortification [chr : large]}
– x IN fortification [chr : x ] = {old, large}

Soft Closeness Operations. All operations mentioned above deal with con-
nectedness among concepts. Thus given two concepts our interest is whether
these are connected or not – with no regard to the length of the connecting
path. Closeness is about involving similarity – typically influenced by length of
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connecting path. While connectedness is expressed by crisp sets, closeness may
involve degree of similarity and is thus more conveniently expressed as fuzzy sets
or, alternatively, crisp sets derived as cuts from fuzzy sets.

Closeness operations may simply be supported by one additional operator
sim(c), for simplicity introduced here as a cut, assuming a default threshold
applied.

– Similarity sim(c). The set of concepts similar to a given concept (according
to measure in use) c.

Examples of closeness operations on the instantiated ontology in figure 1 are
the following.

– sim(fortress [chr : big ]) = {fortress [chr : big ], fortress,
fortification [chr : large]}

– stockade�[chr : sim(big)] = {fortification [chr : large]}

4.2 Summarizing Descriptions

Conceptual querying as introduced with the operations sketched above concerns
retrieval of concepts appearing in an instantiated ontology. If D is a document
or a set of documents and C is the set of concepts appearing in D, then C can be
considered as a description of D and through queries to OC we can investigate
in more detail aspects of this description.

Also of interest, when investigating what D is all about, is an entire summary
of D. Of course C in itself is such a summary, but it may be huge. Among
simple alternative summary approaches is to list the most frequent concepts
in C. However since OC defines a structure over C and in addition contains
more general concepts not included in C obviously we should attempt to apply
OC in summarizing D.

To approach an ontology-based summary, first of all observe that if we have
two connected concepts as for instance {cat, dog} their least common ances-
tor (lca), lca({cat, dog}) = animal2 may be a good summarizing description of
these. More generally, our approach to summarizing a description of a set of con-
cepts3 C = {c1, . . . , cn} is to cluster C into Ĉ = {Ĉ1, . . . , Ĉk} = {{c11, . . . , c1n1},
. . . , {ck1, . . . , cknk

}} and provide the set of least common ancestors (lca) for each
cluster as description {ĉ1, . . . , ĉk} = {lca(Ĉ1), . . . , lca(Ĉk)}.

So the challenge, in providing summarizing descriptions, is to find good clus-
tering principles. Based on preliminary investigations we introduce two different
clustering approaches; connectivity clustering and similarity clustering to be
covered in more detail in a subsequent paper.

Connectivity Clustering Description is clustering based solely on the ontol-
ogy OC . For a set of concepts C = {c1, . . . , cn} a description δ(C) = {ĉ1, . . . , ĉk}
is a connectivity clustering description if {ĉ1, . . . , ĉk} = {lca(Ĉ1), . . . ,
lca(Ĉk)} where {Ĉ1, . . . , Ĉk} is a clustering of C such that
2 lca({c1, . . . , cn}) = c1 + . . . + cn.
3 Perhaps the set of concepts C appearing in a document or a set of documents D.
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∀i, j : ĉi ≮ ĉj

∀i¬∃j, k, x : x ∈ LC ∧1 � j < k � n∧1 � i � k∧cj < x∧ck < x∧x < ĉi

thus δ(C) is a ”most specific generalization” of C and to obtain an appropriate
description of C we might have to apply δ several times. At some point m we
have that δm(C) = .

With reference to figure 1 we have for instance (notice that entity = ):

– C = {church, fortification[chr : old ], stockade, fortress [chr : big ]}
– δ(C) = {church, fortification, fortress[chr : big ]}
– δ2(C) = {church, defensive structure}
– δ3(C) = {structure}
– δ4(C) = {entity}

One alternative option is to provide clusters based on the unified structure
considering all connections through all relations in the ontology rather than only
inclusion as assumed above.

Similarity Clustering is a clustering based on a given similarity measure
rather than on direct connectivity in the ontology. Thus any approach to clus-
tering a set applying a distance measure can be used.

Classical clustering techniques divides the concepts in C into crisp clusters,
where each concept ci belongs to exactly one cluster. An alternative approach is
to use fuzzy clustering, such as Fuzzy C-Means Clustering [12].

One obvious challenge in introducing fuzzy clustering is how to derive the least
common ancestor of a fuzzy cluster. In principle all concepts in C could belong to
every fuzzy cluster, and thus the least common ancestor would then be identical
for all the clusters. One solution to this would be, for each candidate lcaL, to
aggregate over the membership grades of the concepts covered (subsumed) by L
and to pick the candidate(s) achieving the highest score.

5 Conclusion

In this paper we have sketched a query language that extends the conceptual
algebra presented as the ontology representation formalism. The main goal is to
provide means for querying concepts describing documents, rather than querying
documents directly. We present also the notion of instantiated ontology – a
conceptual structure reflecting the content of a given document collection and
therefore in particular well suited as target for conceptual querying. A special
similarity construct in the language can be used to denote sets of concepts and
to provide summarizing descriptions of sets of documents or concepts.

The language presented is preliminary and needs to be further refined, however
the formalization of most operators is straightforward. Of particular interest,
as topic for future research, is investigation and further refinement of similarity
measures and of clustering techniques (ontology as well as fuzzy) for summarizing
description.
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In addition further work should be guided by experiments within a framework
that include a realistic general world knowledge resource. Currently the one of
the best candidates is probably WordNet because it is quite general with a good
coverage of common language. However, since WordNet is more to be considered
as a network than as an ontology, more profound domain-ontologies such as
those available in bioscience and medicine should also be tested as general world
knowledge resources.
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Abstract. Tree mining consists in discovering the frequent subtrees
from a forest of trees. This problem has many application areas. For
instance, a huge volume of data available from the Internet is now de-
scribed by trees (e.g. XML). Still, for several documents dealing with the
same topic, this description is not always the same. It is thus necessary
to mine a common structure in order to query these documents. Biology
is another field where data may be described by means of trees. The
problem of mining trees has now been addressed for several years, lead-
ing to well-known algorithms. However, these algorithms can hardly deal
with real data in a soft manner. Indeed, they consider a subtree as fully
included in the super-tree. This means that all the nodes must appear.
In this paper, we extend this definition to fuzzy inclusion based on the
idea that a tree is included to a certain degree within another one, this
fuzzy degree being correlated to the number of matching nodes.

1 Introduction

Tree mining is a subfield of data mining aiming at discovering automatically
all the subtrees that appear frequently in a database of trees. This research
area has several applications, including the discovery of mediator schemas. The
background in this research is mainly constituted by the work by Asai et al.
and Zaki et al.[2,10,13,17,18]. This work address the problem of tree mining
considering several ways to define when a tree S is included within another one
T . Inclusion is then decided depending on the way ancestry and brotherhood are
considered. In this respect, the authors distinguish between approaches where
(i) either all the pair of connex nodes in the tree S must be found in T with
no intermediate node, (ii) or some intermediate nodes are accepted. Figure 1
illustrates this difference.

The work from the literature is then twofolded, considering both:

– the representation of the trees,
– the extraction of frequent subtrees.
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Fig. 1. Traditional tree inclusion

It should be noted that designing efficient algorithms to tackle the problem
of extracting frequent subtrees is highly correlated to the representation of the
trees, as this representation may help scanning the trees. The process of ex-
tracting frequent subtrees is based on the Apriori process[1], which is a recursive
process. It can be divided into the following steps: for each size of trees (i) gener-
ation of candidates and (ii) validation of candidates. A candidate is a tree that is
considered as being potentially frequent. The candidates of size k are built based
on the frequent subtrees of size k − 1. This family of methods is well-known and
has been applied for tree mining. However, all the existing methods consider
that a tree is or is not included within another one, which is too restrictive
to be efficient and relevant. We first propose the concept of fuzzy tree mining,
which has been introduced in [11]. This concept has been detailed in [12], where
we have defined a fuzzy ancestor-descendant relation (fuzzy vertical path). In
this paper, we consider another way to softenize the tree inclusion definition by
considering that some nodes may be discarded (partial inclusion). In classical
approaches, all the nodes of a subtree S must be included in a tree T if S is in-
cluded in T . For instance, Figure 2 shows a tree S that will not be considered as
being included in T . However, we argue that this is too restrictive when mining
data from the real world where imperfections are often present. For instance, in
Figure 2 S has 75% of its nodes included in T .

A

C E

F

B

A

D C E

S T

Fig. 2. Partial Inclusion

The challenging part of our work is that we want to remain efficient, in the
framework of fuzzy data mining. The paper is organized as follows: Section 2
recalls the existing work on tree mining and our previous work on dealing with
fuzzy tree mining. Section 3 introduces the necessary definitions for dealing with
partial inclusion. Section 4 introduces the algorithms we design for extracting
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frequent subtrees from a tree database in a soft manner by considering partial
inclusion. Finally, Section 5 concludes this work and presents our future working
directions.

2 Background

In this section, we recall from the literature and from previous work the basic
definitions of tree mining and the ways trees can be represented.

2.1 Tree Mining

A tree is a connected graph containing no cycle. A tree is composed by nodes,
which are linked by edges such that their exists a particular node called root and
such that all the nodes but the root are composed by sub-trees. A tree is said
to be an ordered tree if the children from a node are ordered. A tree is said to
be an unordered tree otherwise.

Let L = {a, b, c, ...} be a set of labels. A labeled ordered tree is a tree T =
(r, N, B, L, �) where: r is the root, N is the set of nodes, B is the set of edges
such that B ⊆ N2, (L : N → L) is a mapping from the set of labels L to the set
of nodes N , and � is an ordered relation between brother nodes.

Tree Mining refers to the process of extracting all the subtrees that appear
frequently in a database D of trees. The frequency is computed using the notion
of support: Given a database D, the support of a tree S is the proportion of trees
from the database where S is embedded:

Support(S) =
# of trees where S is embedded

# of trees in D

S is said to be frequent if Support(S) ≥ σ where σ is a user-defined minimal
support threshold.

Several kinds of tree inclusion can be defined [3], depending on the way an-
cestors and siblings are considered. For instance, [18] defines the inclusion as
follows:

Definition 1. A tree S is embedded into a tree T if there exists an injective
and total function φ : NS → NT such as for all n, m ∈ NS:

– φ keeps the labels: LS(n) = LT (φ(n));
– φ keeps the relations ancestor-descendant: (n, m) ⇐⇒ (φ(n), φ(m));
– φ keeps order relations: (n �S m) ⇐⇒ (φ(n) �T φ(m)).

As highlighted in [11], fuzzy data mining can help when mining frequent subtrees
from a tree database. Four ways to soften classical approaches has been proposed:

– ancestor-descendant degree: in classical approaches, a node is or is not an
ancestor of another one. In our approach, we propose to indicate by a degree
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between 0 and 1 to which extent a node is an ancestor of another one,
meaning that if there are too many nodes between them, then this degree
will decrease.

– sibling ordering degree: in classical approaches, nodes are or are not searched
in the initial order. In our approach, we propose to indicate by a degree the
sibling disorder.

– partial inclusion: in classical approaches, all the nodes from the candidate
must be in the tree. In our approach, we propose to soften this rule by
considering the degree to which the nodes are embedded in the tree.

– Node similarity: in classical methods, a node label is or is not the same as
another one. In our approach, we propose to soften this by indicating by a
degree to which extent two nodes are similar (e.g. based on a taxonomy).

The ancestor-descendant degree has been studied in [12]. In the rest of this
paper, we focus on the partial inclusion.

Algorithms. Several algorithms have been designed to address the problem of
tree mining: TreeMiner in [18], FreqT in [2], Chopper [14], FreeT reeMiner [5]
and CMTreeMiner [4]. All of them are based on a process consisting of the
following two iterative or recursive steps: generation of candidates and validation
of candidates. This process starts from the candidates that contain only one
node, to discover the frequent 1-node subtrees, which are used to build the 2-
node candidates, and so on.

These two steps have been studied. The generation of candidates is either
based on methods that build trees containing n nodes by considering one tree
containing n − 1 nodes and adding another node, or is based on methods that
mix two subtrees containing n nodes and sharing n − 1 nodes to build a new
candidate subtree containing n + 1 nodes.

The validation aims at checking whether a tree is embedded within another
one. Several approaches have been proposed. In our previous work, we have
defined some algorithms that are based on the idea of anchoring: we try to
anchor the root of the subtree until we find a node that matches. Then the
following nodes are tested until (i) it is no more possible to find some remaining
nodes for matching, or (ii) an incompability has been detected or (iii) the subtree
fully matches.

2.2 Tree Representation

Several ways of representing trees have been proposed to support the algorithms
cited above. The representation impacts the two steps discussed above (genera-
tion and validation of candidates). However, it may be the case that the repre-
sentation is too rich and requires too much memory (e.g. representing trees as
strings). We have thus proposed in previous work a low-memory representation
of trees: RSF. This representation is defined below.
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When representing a tree T , we keep in mind the following property: all the
nodes but the root have one and only one predecessor. We propose thus to use two
vectors to represent a tree, as proposed in [15]. The first vector is denoted by st.
It stores the position of each node predecessor. Nodes are numbered considering a
depth-first traversal. The root is numbered as being at position 0, with st[0] = −1
since it has no predecessor. The values st[i], i = 1, 2, ..., k − 1 correspond to all
other predecessor positions, as shown on Figure 3.

This representation provides a constant-time method to retrieve the prede-
cessor of a node. Moreover, it allows us to find directly the most right leaf when
considering an index k. Finally, when visiting the tree, it is possible to build all
direct links from predecessors to descendants.

(−1)

st

lb

−1

2 3 410

0 1 2 0

0

1

2

3

4

T

racine feuille la
plus à droiteB A

A

C

A

A B A C A

Fig. 3. Representation of a Tree

The second vector is denoted by lb. It is used to store all the tree labels.
lb[i], i = 0, 1, ..., k − 1 are the labels of each node ni ∈ T .

The data structure we have chosen needs very low memory since it is re-
duced to the size of 2|T |. Moreover, it has good properties when mining frequent
subtrees.

As presented in [12], in order to manage trees as efficiently as possible, each
tree T is transformed into a binary representation denoted by TB where each
node cannot have more than two children [9]. For this purpose, we propose the
following transformation: the first child of a node is put as the left-hand child
while the other children are put in the right-hand path, as illustrated in Fig. 4 b).

Encoding Binary Trees. Once the tree has been transformed into a binary
tree, nodes must be encoded in order to be retrieved. The encoding is then used
first in order to identify each node and second in order to determine whether a
node is a child or a brother. In order to do so, we consider the Huffman algorithm
[8] which we slightly modify in order to fit our needs. The root has address 1. The
other node addresses are computed by concatenating the father address with: 1
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Fig. 4. Example of a Binary Tree Transformation and Node Addressing

if it is a child (left-hand path) and 0 otherwise (right-hand path), as shown on
Fig. 4 c).

3 FTMnodes: Definitions

In this paper, we formally extend the definition of tree inclusion to partial inclu-
sion based on the number of nodes that are matched. Partial inclusion is defined
as follows:

Definition 2. Given a null value ⊥, a tree S is partially embedded into a tree
T with a degree δ(S, T ) if there exists an injective and total function φ : NS →
NT ∪ ⊥ such that for all n, m ∈ N :

– φ keeps the labels: LS(n) = LT (φ(n)) or φ(n) = ⊥;
– φ keeps the relations ancestor-descendant: (n, m) ⇐⇒ (φ(n), φ(m)) or

(φ(n), φ(m)) = ⊥;
– φ keeps the order relations:

(n �S m) ⇐⇒ (φ(n) �T φ(m)) or (φ(n) �T φ(m)) = ⊥;

– δ(S, T ) = |{n∈S : φ(n) �=⊥}|
# of nodes in S .

From this definition, it is possible to define the support of a subtree, as follows:

Definition 3. Given a database D and a tree S, the support of S in D is given
by:

Support(S) = AggT∈D(δ(S, T ))

where Agg is a function of aggregation.

For instance, we may use Ordered Weighted Aggregators (also known as OWA)
[16]. An OWA operator of dimension n is a mapping

F : Rn → R

that has an associated n vector W = (w1, w2, . . . , wn)T such that wi ∈ [0, 1]
and

∑n
i=1 wi = 1. We have F (a1, a2, . . . , an) =

∑n
j=1 wj · bj where bj is the jth

largest value of the ai.
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For instance, the average may be applied:

Support(S) =
∑

T∈D δ(S, T )
# of trees in D

In fact, we consider a thresholded Σ-count so that:

– a tree cannot be considered as being embedded within another one if the
number of embedded nodes is too low,

– the degree to which a tree is embedded within another one is taken into
account.

We thus have:

Definition 4. Given a database D, a threshold τ and a tree S, the support of
S in D is given by:

Support(S) =
∑

T∈D

(ατ (δ(S, T )))

where

ατ (x) =
{

0 if x > τ
x otherwise

4 FTMnodes: Algorithms

Note that in the classical case, mining totally included trees allows to cut in the
database scan since whenever a node cannot be matched, there is not necessary
to look for the other ones. In our approach, outliers are accepted, which may be
considered as a drawback considering scalability. However, it is still possible to
cut off the search when the proportion has been overpassed.

As defined previously, we consider that a tree cannot be considered as being
embedded within another one if the number of matching nodes is not greater
than a user-defined threshold τ . This definition not only guarantees the qual-
ity of the research from a semantic point of view, but it also guarantees the
scalability of our approach. Indeed, it is then possible to draw the property of
anti-monotonicity which is the basis of levelwise algorithms. We have the follow-
ing properties:

Considering that the first n nodes of tree S matched to nodes from T , and
that π% of the nodes of S have been matched, then the first n + 1 nodes of S
cannot be embedded in T to a proportion greater than π.

This property comes from the fact that if it has not been possible to match ν
nodes among the first n nodes of S, then the number of nodes being not matched
when going ahead in the process to the first n + 1 nodes will either be equal or
will be greater (equal to ν + 1).

As a consequence, whenever the threshold τ is overpassed, the process can be
stopped for this path as it will never be considered in the thresholded

∑
-count.
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Fig. 5. Several ways of including S in {T1, T2, T3} with τ = 0.75 (at least 3 nodes out
of 4)

Note that it may be the case that a subtree is included within another one
in different manners, as illustrated by Figure 5. In this case, the best degree of
inclusion will be considered and this best degree is found by maintaining all the
possible ways of inclusion until all the solutions have been considered as studied
in [7] when considering fuzzy sequential patterns.
The following process is thus considered in our approach (algorithms 1 and 2):

– anchoring
– for each possible anchor, for each node n in S to be matched

• scan the nodes of T until n is matched, start another way to find the
other possible matches,

• if no match is possible then go to the next node in n and increment the
number of mismatched nodes

• if the number of mismatched nodes is greater than the threshold τ or if
T has been fully scanned, then discard this anchor

– compute the best inclusion from non discarded anchoring paths

Data: S //subtree to validate,
T //tree from database

Result: true //if S is embedded within T

M // mapping set of S within T ;
foreach node m ∈ NT do

n ← root(S);
if L(n) = L(m) then

PartialInclusionDegree(S, T, n, m, M);
M ←

⋃
M ;

return the best inclusion {M ∈ M|MIN{M.mismatchedNodes}};

Algorithm 1. Anchoring

Note that our approach is consistent, meaning that if τ = 1 (i.e. all the nodes
must be mapped), then our algorithms are exactly the same as the ones defined
in the crisp case [6].



Fuzzy Tree Mining: Go Soft on Your Nodes 153

Data: S //subtree to validate, T //tree from database,
n, m //anchoring point, n ∈ S to m ∈ T ,
M //occurrence of S

M [n] ← m;
n ← n + 1;
if n <= |S| then

P ← {w : w ∈ T such that L(w) = L(n) and m � w and ancestor(w) =
M [ancestor(n)]};

if P �= ∅ then
foreach node w ∈ P do

PartialInclusionDegree(S, T, n, w, M);

else
M.mismatchedNodes ← M.mismatchedNodes + 1;
if M.mismatchedNodes >= τ then

exit;

else
PartialInclusionDegree(S, T, n, m, M);

return;

Algorithm 2. PartialInclusionDegree

5 Conclusion

In this paper, we have detailed our previous work on fuzzy tree mining by giving
the necessary definitions and algorithms in order to address the partial inclusion.
Partial inclusion is a big deal in tree mining as it is not possible to consider full
matches in real applications. However, it is necessary to remain scalable as the
volumes of data being considered in real databases is huge. We thus design so-
lutions based on levelwise algorithms, which consider anti-monotonic properties
that guarantee the scalability. The algorithms presented here are currently im-
plemented, and it is possible to conclude that this approach allows the extraction
of more frequent subtrees (as fuzziness is introduced) while remaining scalable.
Future work include the comparison of the results depending on the choices of
the aggregation function. This comparison will be lead both on the quality of
frequent subtrees and on runtime, as some aggregation functions are easier to
compute than other ones.
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Abstract. This paper concerns the modelling of fuzzy information in
geographic databases. In the past, a theoretical model for fuzzy regions
has been presented, along with various operations useful in a geographic
database: union, intersection, topology, bounding rectangle, etc. and fea-
sible models for implementation based on this theoretical model. Now,
the attention is directed at some of the problems that can occur when
determining numerical properties of fuzzy regions: what type of result is
expected (and desired), and how does this impact the definitions of the
operations. As an example, the definition of the surface area of a fuzzy
set is studied in more detail.

1 Fuzzy Regions

1.1 Introduction

Geographic Information Systems (GIS for short) or are complex pieces of
software, consisting basically of a database (with optimisations to work with
geographic information) and a complex query-engine which allows for graphi-
cal input and output of information ([6], [8]). These systems are often used to
model geographic features, both static or slow-changing like soil composition,
as dynamic and fast changing, like traffic models, flow of water and weather
systems. As these systems are used to reflect reality, the currently used crisp
data models are sometimes inadequate [5]; consider for example the soil compo-
sition: where does one type of soil stops, and another type of soil begins? Several
concepts have been developed to improve on the traditional model, by allowing
regions with undetermined boundaries to be modelled ([1], [2], [7]). To achieve
this, we introduced fuzzy regions, which make use of fuzzy set theory to model
uncertainty or imprecission regarding the points belong to it.

1.2 Fuzzy Regions

To allow for richer modelling of reality, we presented a model theoretical model
that incorporates fuzzy set theory with spatial information. Traditionally, a re-
gion in a GIS is modelled by means of its outline, a concept that was maintained
in many extensions ([1], [2]). However, a region can also be considered to be a
set of locations (namely all the locations that belong to the region). Using this
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as the basic concept of a region, a fuzzy region is easily extended as a fuzzy set
of locations (i.e. a fuzzy set over R

2).

Definition 1. Let A ⊆ U the set of all the points that will belong to the region
(this is a crisp set). The crisp set (or region) A is then generalized to a fuzzy
set (or region) Ã, defined as:

Ã = {(p, μÃ(p))|p ∈ U, μ(Ã)(p) > 0} (1)

where

μÃ : U → ]0, 1]
p �→ μÃ(p)

Here, U is the universe of all locations p; the membership grade μÃ(p) expresses
the extent to which p belongs to the fuzzy region.

Note that the membership grades of a fuzzy region are interpreted veristic [3]: all
points belong to the set, but some to a greater extent than others. A fuzzy region in
which the membership grades are interpreted possibilistic [3], can be considered to
represent a point at an imprecise or uncertain location, a fuzzy point: each location
represented by this fuzzy set is a possible location for a point, with the membership
grade indicating the possibility. For this paper, only fuzzy regions are considered.

For fuzzy regions, implementable models have been developed, as well as a
number of operations; for both the models and operations we refer to [9], [10].
These operations included intersection, union, bounding rectangle, etc. This pa-
per concerns the surface area of a fuzzy region, and the possible problems that
need to be taken into account. To define the surface area, the α-cut of a fuzzy re-
gion is needed. As a fuzzy region is in essence a fuzzy set over a two dimensional
domain, the α-cut definitions are straightforward.

Definition 2. The weak α-cut of a fuzzy region Ã is defined as:

Ãα = {x|μÃ(x) ≥ α, ∀x}

Definition 3. The strong α-cut of a fuzzy set Ã is defined as:

Ãα = {x|μÃ(x) > α, ∀x}
1.3 Fuzzy Numbers

A classic concept in fuzzy set theory is the concept of fuzzy numbers. In general,
a fuzzy number is a fuzzy set over the domain of the real numbers R, that
represents numbers close to a given number. By definition ([4]), a fuzzy number
B is defined as a fuzzy set over R that satisfies the following three properties:

– B is normalized, i.e. there is at least one element x for which μA(x) = 1
– ∀α ∈]0, 1] : Bα is a closed interval
– the support B0 of B must be bounded

The first property indicates that the concept of the set of real numbers close
to a given number is fully satisfied by at least one number: the given number
itself. The other two properties allow for the definition of meaningful arithmetic
operations in terms of standard arithmetic operations and interval calculus ([4]).
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Ã Ãα

Fig. 1. Illustration of a fuzzy region. Grey scales are used to indicate the membership
grade: the darker the colour, the higher the membership grade. For clarity, the outline
of the region is also shown.

2 Numeric Properties: Surface Area

In GIS, a number of operations are possible. Some return a new region (like
the set-operations intersection, union, etc. or geo-spatial operations (minimum
bounding rectangle, convex hull, etc.), whereas others return numeric values (sur-
face area, distance between two objects, etc.). In this paper, the latter operations
are considered, more specifically, the surface of a fuzzy region.

2.1 Different Interpretations of the Surface Area

The surface area of a fuzzy region lends itself to two interpretations; depending
on the interpretation of the fuzzy region. If the fuzziness in the region used to
represent uncertainty regarding the points, this uncertainty should be reflected in
the surface area. Consequently, the surface area will be a fuzzy number, where the
possibility distribution is dependant of the uncertainty that occurs in the fuzzy
region. On the other hand, if the fuzziness is used to represent intrinsic fuzziness,
there is no uncertainty regarding the surface area, hence it will yield a crisp
number. This crisp number is an extension of the concept of fuzzy cardinality.

2.2 Surface Area Yields a Fuzzy Result

Concept. The fuzzy surface area S̃f of a fuzzy region Ã in the first interpreta-
tion will result in a fuzzy number (indicated by f) that represents the possible
surface areas. This interpretation is meaningful in a system capable of working
with fuzzy numbers and fuzzy arithmetic. Current system don’t have this func-
tionality, but this interpretation is just one part of our model for fuzzy regions; in
which a GIS with support for fuzzy information is developed. Fuzzy arithmetic
allows to work with numbers that are imprecise (or uncertain); each number is
represented by a membership function (which associates membership grades in
the range [0, 1] with crisp numbers). This membership function is a model for
the uncertainty or imprecision of the number: higher membership grades (up to
1) mean a high certainty or precision, lower membership grades (down to 0) in-
dicate a low certainty or precision. Using a fuzzy number to represent the area of
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a fuzzy region makes sense: any imprecision or uncertainty in the region should
be reflected in the number representing this surface area.

To obtain the fuzzy result, first all possible surface areas for the given region
must be considered; these are obtained from all the possible α-cuts of the fuzzy
region.

For this first definition, only the weak α-cut (definition 2)is needed. As each
weak α-cut is a crisp region, the surface area of it can be calculated and is denoted
S(Aα), ∀α. With each possible surface area, an appropriate membership grade
is associated. This leads to the definition.

Definition 4.

S̃f (Ã) = {(S(Ãα), μS̃f (Ã)(S(Ãα))), ∀α ∈]0, 1]} (2)

where

μS(Ãα) : R → [0, 1]

x �→ sup{α|α ∈]0, 1] ∧ S(Ãα) = x}

and S represents the operation that yields the surface area of a crisp region.

At every α level, the above definition holds the (crisp) area of the matching α
level of the fuzzy region. This is illustrated in fig. 2.

Ãα Ã0Ã1Ã 1

α

S(Ã )0S(Ã )αS(Ã )1
(a) (b)

Fig. 2. Illustration of the surface area of a fuzzy region: (a) the fuzzy region illustrated
using contourlines; the line of only one α-cut is shown, (b) the surface area as obtained
from the above definition

For future computations, is would be useful to have a fuzzy number as the
result of a fuzzy surface area: calculations with different surface areas can be
performed using fuzzy arithmetic ([4]). It must now be verified if the result
satisfies the properties of a fuzzy number.

– The result is always normalized, even if there are no points p in the fuzzy
region Ã for which μÃ(p) = 1 (i.e. it is not a normalized fuzzy region), the
result of the surface area using this definition will yield a normalized fuzzy
set:

sup{α|α ∈]0, 1] ∧ S(Ãα) = x} (3)

equals 1 for for x = 0.



Numerical Properties of Fuzzy Regions: Surface Area 159

– The support is bounded.
– However, not every α-cut of the result yields a closed interval; a simple

example suffices to illustrate the problems. Consider a fuzzy region Ã defined
by a number of points with membership grade 1 and a number of points with
membership grade 0.5 (as illustrated on fig. 3a). The fuzzy surface area using
the above definition would yield:

S̃f (Ã) = {(s, 1), (s, 0.5)} (4)

with s the surface area of the square (illustrated on fig.3b). It is now easily
verified that:

∀α ∈]0, 0.5[: (S̃f (Ã))α is not a closed interval (5)

Ã
ÃαÃ1

1

α

S(Ã )αS(Ã )1
(b)

1

α

S(Ã )αS(Ã )1
(a) (c)

Fig. 3. Illustration of the surface of a discontinuous fuzzy region: (a) the fuzzy region,
(b) the surface area as obtained from the first definition, (c) the surface area as obtained
from the second definition

Note that this problem does not occur if the points at a given membership grade
less than 1 form a one dimensional object: i.e. if the membership grades are strictly
decreasing from the center outward. In fig. 2a, all the points at any given member-
ship grade in ]0, 1[ form a closed line. In fig. 3a however, the points at membership
grade 0.5 form a two dimensional structure (a filled square in this case).

Alternative Definition. Similarly as before, the surface areas of the different
α-levels are considered; however this time both the strong and the weak α-cuts
are required (definition 2, 3).

The weak and the strong α-cut of a fuzzy region Ã both yield a crisp region,
denoted Ãα respectively Ãα. For these crisp regions and for every α ∈]0, 1]:

S(Ãα) ≤ S(Ãα) (6)
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where S is the notation for the calculation of the surface area of a crisp region.
The equality only occurs if S(Ãα − Ãα) = 0; this happens if the points p for
which μÃ(p) = α form a one dimensional object. This allows us to define the
surface area as:

Definition 5.
S̃f(Ã) = {(x, μS̃f (Ã)(x)), ∀α ∈]0, 1]} (7)

where

μS̃f (Ã)(x) : R → [0, 1] (8)

x �→

⎧
⎨

⎩

1 if x = S(Ã1)
sup{α|S(Ãα) ≤ x ≤ S(Ãα)}
0 elsewhere

(9)

The main difference with the previous definition is that all surface areas x be-
tween S(Ãα) and S(Ãα) are considered and assigned an appropriate membership
grade. This grade is the largest α for which the x ∈ [S(Ãα), ≤ S(Ãα)]. Again,
the properties of fuzzy numbers must be verified.

– The result is always normalized; if there are no points p for which μÃ(p) = 1,
then μSf (Ã)(0) = 1.

– The support is bounded.
– Contrary to the previous case, every α-cut for α ∈]0, 1] yields a closed inter-

val. To illustrate with the simple example from the previous paragraph, the
fuzzy surface area obtained using this alternate definition yields:

S̃f (Ã) = {(s, 1)} ∪ {(x, 0.5)|x ∈]s, 2s]} (10)

with s the surface area of each of the squares. This membership function is
illustrated on fig. 3c.
For α ∈]0, 0.5[, the strong α-cut results in the interval [s, 2s].
For α ∈ [0.5, 1], the strong α-cut yields the (degenerate) interval [1, 1].

2.3 Surface Area Yields a Crisp Result

In the second interpretation, the fuzziness is used to indicate the intrinsic vague-
ness of a region. The surface area therefore becomes a crisp number. This number
takes all points into consideration, where the membership grade for each point
determines how much is will contribute: a point with a membership grade 0.5 will
only contribute half of what a point with membership grade 1 will contribute. In
a discrete set, this number resembles the fuzzy cardinality, but for infinite sets
this needs to be extended.

The notation for this surface calculation is S̃c.

S̃c(Ã) =
∫

p∈U

(p μÃ(p))dp (11)
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For the simple example in fig. 3a, the result will be 0.5s + 1s = 1.5s, where s is
the crisp surface area of each square.

This notion can be interesting, either depending on the interpretation given to
the fuzzy region and/or the surface area, as well as for future calculations. The
fact that the result is a crisp number makes it easier to integrate this operation
with systems that are unable to work with fuzzy arithmetic.

3 Conclusion

When extending a geographic system to work with fuzzy regions, it is interesting
to have operations that yield a crisp number for crisp regions yield a fuzzy num-
ber for fuzzy regions. In this paper, the intuitive definition for the surface area
of a fuzzy region has been considered, and it was shown that this not necessarily
yields a fuzzy number. Similar issues occur with other numeric properties, such
as the distance to a fuzzy region. To overcome this for the surface area, an alter-
native definition has been presented. It was also illustrated that this alternative
definition yields result which in all cases is a fuzzy number.
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Abstract. In many problems the information can be imprecise and un-
certain simultaneously. Linguistic terms can be then used to represent
each one of these aspects. In some applications it is desirable to com-
bine imprecision and uncertainty into a single value which appropriately
describes the original information. We propose a method to combine im-
precision and uncertainty when they are expressed as trapezoidal fuzzy
numbers and the final goal is to obtain a normalized fuzzy number. This
property is very useful in several applications like flexible querying pro-
cesses, where the linguistic label used in the query is always normalized.

1 Introduction

The aim of this work is to propose a solution to the problem of uncertainty
qualification of fuzzy statements [4] when the certainty is expressed as a fuzzy
number. In a previous paper [6] we proposed a method to solve this problem
when the certainty is expressed as a real number. The main idea of this proposal
was the following. Let us suppose we have a fuzzy value A understood as acting
as a fuzzy restriction on the possible values of a variable X, and this value is
affected by a certainty degree, say α. Then, the problem is to represent a qualified
statement like ”it is α-certain that X is A”.

This situation can be formulated as a conditional expression, using the gen-
eralized modus ponens, in the following terms:

– if the certainty level is 1, then the value is A.
– if the certainty level is α < 1, then the value is T (A), where T (A) is a

transformation of the original fuzzy set A.

In this way, the qualified statements ”it is α-certain that X is A” is represented
as ”X is T(A)”.

Therefore, a natural way to solve the problem is to consider that the trans-
formation we are handling is T (A) defined as: μT (A)(x) = I(α, μA(x)) where I
is a material implication function which reflects the interpretation given to the
compatibility degree.
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There exist in the literature two main ways of dealing with imprecise and
uncertain data and can be interpreted as follows.

1. To truncate: if the datum is ”A with certainty α”, then T (A) is defined by
the membership function μT (A)(x) = min(α, μA(x)) which directly implies
that we are using Mamdani’s implication in our reasoning.

2. To expand: if we assume that α is a necessity, then T (A) is given by the
membership function μT (A)(x) = max(1 − α, μA(x)), which corresponds to
Kleene-Dienes’ implication as foundation of our reasoning.

These proposals can be useful in many applications, but they can also be in-
appropriate in many others. Thus, Mamdani’s implication obliges us to work with
non-normalized fuzzy values.Kleene-Dienes’ implication obliges to assign the same
possibility to all the points of the underlying domain independently from the dis-
tance to the support set of the fuzzy value. Therefore, the proposed solutions give
rise to a series of inconveniences: the interpretability, in some cases, and those ones
derived from the use of non-normalized or non-trapezoidal fuzzy sets.

As an alternative proposal, in [8,6] we proposed a certainty qualification
method that consists in increasing the imprecision around the support set of
value A depending on an uncertainty value, that is, the imprecision is distributed
according to a metric which takes into account the nearness to the original in-
formation. This proposal is based on the use of information measures that allow
us to transform the uncertainty of the fuzzy statement into imprecision. For ex-
ample, when we have the information that ”X is black” with certainty α, it is
not very convenient to assign a positive possibility to color white but to colors
near enough to black depending on value α.

Therefore, the process we proposed in [6] was to define T (A) in two steps:

1. First, by considering that the height of a fuzzy number is the certainty degree
associated to it [2,5], we use the certainty degree α associated to the fuzzy
value A to truncate it at level α. After this operation, we obtain a non-
normalized fuzzy set Aα. Nevertheless, the resulting fuzzy value remains
trapezoidal.

2. Since, in many applications, non-normalized fuzzy sets give rise to a series of
inconveniences, in a second step we normalize it. To do this, we assume that
uncertainty is being translated into imprecision under certain conditions.
The most important point to be considered is that the amount of infor-
mation provided by the fuzzy number remains equal before and after the
normalization process. Tα(A) will stand for the obtained normalized fuzzy
value, whose imprecision is, obviously, larger than Aα imprecision, as it has
been made completely true (its height is 1 again).

In fact, in the fuzzy querying process the linguistic labels used are always
normalized what makes it necessary that the stored data are also normalized in
order to carry out a semantically coherent matching computation.
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1

A

m -a m

α

aα αm2 m  +b1 1 2b

h(A)

Fig. 1. Trapezoidal Fuzzy Number

2 Previous Results

A fuzzy value is a fuzzy representation about the real value of a property when

it is not precisely known. We will use
∼
IR to denote the set of fuzzy numbers.

The interval [aα, bα] (see figure 1) is called the α-cut of A. Therefore, fuzzy
numbers are fuzzy quantities whose α-cuts are closed and bounded intervals:
Aα = [aα, bα] with α ∈ (0, 1]. The set Supp(A) = {x ∈ IR | A(x) > 0} is called
the support set of A1 and h(A) denotes the height of the fuzzy number A. If
there is, at least, one point x verifying A(x) = 1 we say that A is a normalized
fuzzy number.

Usually, a trapezoidal shape is used in order to represent fuzzy numbers. This
representation is very useful as the fuzzy number is completely characterized by
five parameters (m1, m2, a, b) and the height h(A), as figure 1 shows. The interval
[m1, m2] (i.e, the set {x ∈ Supp(A) | ∀ y ∈ IR, A(x) ≥ A(y)}) will be called
modal set. The values a and b are called left and right spreads, respectively.

The basic idea underlying this work is that when a fuzzy number is not normal-
ized, the situation can be interpreted as a lack of confidence in the information
provided by such a number [2,5]. In fact, the height of the fuzzy number could
be considered as a certainty degree of the represented value, and this implies
that normalized fuzzy numbers represent imprecise quantities on which we have
complete certainty.

Since the first step in our proposal is to truncate, we can consider that the
truncated fuzzy number represents the imprecise information and moreover it
shows a certain level of uncertainty.

In [6], we show how uncertainty can be translated, using a suitable trans-
formation, into imprecision, taking into account that to reduce the uncertainty
about a fuzzy number implies to increase the imprecision of such number. This

1 In the rest of the paper A(x) will stand for μA(x).
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transformation is made in such a way that the amount of information provided
by the fuzzy number is the same before and after the modification.

Our idea is to transform the truncated fuzzy number in order to obtain a
completely certain fuzzy number.

As pointed out in the previous section, we are going to translate fuzzy un-
certainty into imprecision under given conditions. The most important of these
conditions is that the amount of information provided by the fuzzy number re-
mains equal before and after the transformation. Therefore, the first step is to
define an information function for fuzzy numbers.

In [6], we propose an axiomatic definition of information, partially inspired in
the theory of generalized information given by Kampé de Fériet [7] and that can
be related to the precision indexes [3] and the specificity concept introduced by
Yager in [11].

Definition 1. Let D ⊆
∼
IR | IR ⊆ D; we say that I : D −→ [0, 1] is an informa-

tion function on D if it verifies:

1. I(A) = 1, ∀ A ∈ IR
2. ∀ A, B ∈ D | h(A) = h(B) and A ⊆ B =⇒ I(B) ≤ I(A).

The information about fuzzy numbers may depend on different factors, in par-
ticular, on imprecision and certainty. In this work, we focus on general types of
information related only to these two factors.

Definition 2. The imprecision [5] of a fuzzy number is defined as follows:

∀ A ∈
∼
IR, imp(A) =

∫ h(A)

0

(bα − aα )dα

With respect to the height (certainty) and the imprecision of a fuzzy value, we
define the following general type of function [5]:

∀ A ∈
∼
IR, I(A) =

h(A)
k ∗ imp(A) + 1

where h(A) is A height, imp(A) is the imprecision associated to A and k 
= 0 is
a parameter which depends on the domain scale. This is the simplest function
that verifies the mentioned properties of information functions.

Once we have an information function on fuzzy numbers, we can use it to
define transformations which preserve the information amount it provides. The
idea is to find an equivalent representation of the considered fuzzy number in
such a way that we change uncertainty by imprecision keeping constant the
relationship between them, which is determined by the information function.

The aim of the transformations we are proposing in this section is, basically,
to be able to modify the height of a fuzzy number but keeping the information
contained in it.

The definition of transformation will be obtained from the condition of equal-
ity in the information but, as a first step, we must establish what we understand

for transformation of a fuzzy number on a subset of
∼
IR.
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Fig. 2. Transformation that increases imprecision

Definition 3. Let us consider α ∈ (0, 1] and the class of fuzzy numbers D ⊆
∼
IR.

We say that

Tα : D −→
∼
IR

is a transformation for an information function I on D, if it verifies that:

1. Tα(A) ∈ D
2. h(Tα(A)) = α
3. I(Tα(A)) = I(A), ∀ A ∈ D

We will note by τ the class of trapezoidal fuzzy numbers on IR. Given a fuzzy
number A ∈ τ , we are looking for the conditions that another fuzzy number B,
with fixed height α ∈ (0, 1], must hold to have the same information amount as
A. Assuming the following conditions:

1. modal imprecision is preserved,
2. the increase/decrease of imprecision is equally distributed in the right and

left sides of the fuzzy number independently from its shape,

we proposed in [6] the following transformation:

Definition 4. Let A ∈ τ such that

A = {(m1, m2, a, b), αA}

where m1, m2, a and b are shown in figure 1 and αA is the height of A.
Let α ∈ (0, 1] be. We will denote Δ(αA, α) = Δ and define

Tα(A) = {(m1, m2, a +
Δ

k
, b +

Δ

k
), α}

for those α in which the transformation makes sense.

In figure 2 it is shown how an increment of height produces an increment of
imprecision.

In the proposed transformation, the relation between certainty and impreci-
sion is the following:

– An increase of certainty means an increase of imprecision.
– A decrease of imprecision means a decrease of certainty.
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Fig. 3. Fuzzy Certainty on a Fuzzy Value: The scale used in both axels is not the same
for the sake of clarity

3 Fuzzy Uncertainty

Once, we know how to solve the qualification problem when the uncertainty is
represented as a real value, now the problem is to extend this process when
the uncertainty is represented as a fuzzy value. Thus, we want to translate the
information ”X is A is C”, when C is a fuzzy trapezoidal number, into ”X is
TC(A)”.

The difficulty is now to give a suitable procedure for computing TC(A) since
now C is a trapezoidal fuzzy number. To do this, we will consider that, for
any possible truncation level α, the membership function of the linguistic label
modifies in a certain way the certainty level. In fact we can assume that:

(X is A) is C ←→ ∀α ∈ [0, 1], X is A to a degree C(α), α ∈ [0, 1]

Figure 3 depicts the general problem we are trying to explain.
A possible way to solve this problem is to define TC(A) in such a way that

it summarizes the right side of the above sentence by means of some average.
It should be remarked that the membership function C(.) induces two fuzzy
measures (possibility/necessity) on the [0,1] interval and that the membership
function of any fuzzy number transformed at certainty level α can be considered
as a function depending on both α ∈ [0, 1] and x, which ranges on another real
interval. A method that allows the use of such average is the Sugeno’s integral.

In [10], Sugeno introduced the concept of fuzzy integral of a fuzzy measure
as a way to compute some kind of average value of a function in terms of the
underlying fuzzy measure. Obviously, fuzzy measures formally include possibil-
ity/necessity measures as special cases. Fuzzy integrals are interpreted as sub-
jective evaluations of objects where subjectivity is represented by means of fuzzy
measures.

The fuzzy integral over a referential set X of a function f(x) with respect to
a fuzzy measure g is defined as follows:

∫

X

f(x) ◦ g(.) = supα∈[0,1]{α ∧ g(Fα)}
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where Fα = {x|f(x) ≥ α}.
In the case that the measure g is a possibility defined by means of the mem-

bership function of a fuzzy set μ(x) with referential X, the Sugeno’s integral has
the following expression [9]:

∫

X

f(x) ◦ g(.) = supx∈X(f(x) ∧ μ(x)).

On the other hand, if we assume the considered fuzzy measure g is a necessity
induced by the fuzzy set μ(x), then we have the following expression [9]:

∫

X

f(x) ◦ g(.) = infx∈X(f(x) ∨ (1 − μ(x))).

As we have stated above, the basic idea of our approaches is to use the fuzzy
measures (possibility, necessity) induced by the membership function C(.) of
the linguistic evaluation of certainty, to compute the average of the transformed
fuzzy number, by means of Sugeno’s integral.

At this point, it is necessary to remark that the transformation process of any
fuzzy number A(.) with crisp certainty value α has two steps:

(i) Truncating the fuzzy number at the level α, obtaining an non-normalized
fuzzy number Aα(.).

(ii) Transforming Aα(.) into a normalized fuzzy number T (A).

The idea is the following. In a first step, we apply the Sugeno’s integral to the
function f(α, x) = Aα(x) with respect to the α variable, obtaining a possibly
non-normalized fuzzy number. This fuzzy number will be transformed into a
normalized one in the step ii. This process can be done in two different ways
depending on wether we use the possibility or the necessity measures to perform
the integral.

Thus, let ΠC(.) stand for the possibility measure induced by C and Tp(.)
stand for the mean of the truncated fuzzy numbers. Then we have:

Tp(x) =
∫
[0,1]

Aα(x) ◦ ΠC(α) = supα∈[0,1](Aα(x) ∧ C(α)) =
= supα∈[0,1](A(x) ∧ α ∧ C(α)) = A(x) ∧ supα∈[0,1](α ∧ C(α))

If Cp = supα∈[0,1](α ∧ C(α)), then we finally have:

Tp(x) = A(x) ∧ Cp

which indicates that, in the case of the possibility measure, the mean of truncated
values is the result of truncating with an specific value which only depends on
the linguistic label C(.).

Alternatively, let NC(.) stand for the necessity measure induced by C and
Tn(.) stand for the mean of the truncated fuzzy numbers. Using expression in
section 3, we have:

Tn(x) =
∫
[0,1]

Aα(x) ◦ NC(α) = infα∈[0,1](Aα(x) ∨ (1 − C(α))) =
= infα∈[0,1](A(x) ∧ α ∨ (1 − C(α))) = A(x) ∧ infα∈[0,1](α ∨ (1 − C(α)))
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Fig. 4. Upper and lower measures

If Cn = infα∈[0,1](α ∨ (1 − C(α))), then we finally have:

Tn(x) = A(x) ∧ Cn

which indicates that, also in the case of the necessity measure, the mean of
truncated values is the result of truncating with an specific value which only
depends on the linguistic label C(.)

With the previous expression we have got two proposals for making this trun-
cation or, what is the same, we obtain two different fuzzy values Tp(x) and Tn(x).
In this first step we have integrated the fuzzy uncertainty C in the truncation
process.

As it happens with all dual measures, the expert can choose either to work
with both of them or to decide which one is the most suitable for the purpose
of the system. In figure 4 we graphically show the results obtained considering
that the linguistic label C has a trapezoidal membership function.

After the truncation, it is necessary to perform the corresponding transfor-
mations in order to obtain a normalized fuzzy number. TN (.), TP (.) will stand
for the transformed Tn(.) and Tp(.), respectively. They can be directly obtained
by the process described in section 2.

Moreover, we can conclude that TN (.) offers us a more imprecise transformed
fuzzy number that TP (.) since

TP (.) ⊆ TN(.).
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4 Conclusions

We have addressed the problem of dealing with linguistic uncertainty associ-
ated with a fuzzy quantity. With the basic idea of transforming uncertainty into
imprecision, two possible approaches have been presented; all of them give trans-
formations of the initial fuzzy number that lead to normalized fuzzy numbers.
Explicit expressions of such transformed fuzzy numbers have also been obtained.
This is a particularly useful property from the storage point of view (e.g. within
the databases world or in a data warehousing context), since it provides us with
a simple and unified representation for both certain and uncertain fuzzy values.
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Abstract. In this paper, weighted aggregation of extended possibilistic
truth values will be presented. The impact of the weights on both con-
junctive and disjunctive aggregation will be handled, and special care will
be given to the case where both conjunctive and disjunctive aggregation
are mixed together. The problems that can arise will be illustrated and
solutions will be proposed.

1 Introduction

Databases are continuously growing in size, and, using traditional querying tech-
niques, users are confronted with difficulties to find the information they are
looking for. So, more and more, users are realising the benefits of using flexible
querying systems. Flexible querying has many aspects, but this paper will only
focus on one of them, namely weighted aggregation. In general, a flexible query
will impose several different (flexible) selection criteria or (fuzzy) constraints,
which can all have a different importance, indicated by the user. Weighted ag-
gregation will combine all individual satisfaction grades of the respective con-
straints, taking into account their possible importance value, to produce a global
satisfaction grade for the entire query [1].

This paper will not handle about the evaluation of selection criteria, but
about the aggregation of the results of the evaluation of the individual selection
criteria (which can be flexible or not). It is assumed the satisfaction grades of
the individual selection criteria are known or calculated in advance, and as such,
no assumption needs to be made about the underlying database. As logical
framework, Extended Possibilistic Truth Values will be applied. They can be
used to model the satisfaction grades of the flexible constraints and as such,
they will be the input (and outcome) of the aggregation.

In Section 2, the basics of Extended Possibilistic Truth Values (EPTVs) will be
presented, together with their arithmetic rules and basic aggregation operators.
Section 3 will then focus on weighted aggregation, presenting how weights have
an impact on EPTVs, what problems can arise when applying the weights and
how to solve these problems. Finally, Section 4 presents some conclusions.
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2 Extended Possibilistic Truth Values

2.1 Extended Truth Values

In traditional Boolean logic, with truth values ‘True’ (T ) and ‘False’ (F ), every
proposition is considered to be either true or false. If I = {T, F} is the set of
truth values, and P the universe of propositions, then we can define the truth
value of a proposition by means of a function t as follows:

t : P → I : p �→ t(p)

t(p) equals to T if p is true, i.e. if p corresponds to reality. Otherwise t(p) equals
to F .

However, when evaluating propositions it is often the case that the truth value
of a proposition cannot be determined as being either true or false. For instance,
consider the proposition “Person X scored more than 8/10 on a math test”. If
it is known for sure that the person did not take the test, the truth value of the
proposition is neither true nor false, but the proposition is inapplicable. For these
kind of cases the set I will be extended to I∗ = {T, F, ⊥}, where the additional
truth value, ⊥, represents inapplicable or undefined. The extended truth value
t∗(p) of a proposition p ∈ P can then be defined as follows:

t∗ : P → I∗ : p �→ t∗(p)
where

– t∗(p) = T , if p corresponds to reality, i.e. if p is true;
– t∗(p) = F , if p does not correspond to reality, i.e. if p is false;
– t∗(p) = ⊥, if p is (partially) inapplicable, is undefined or does not exist; in

these cases it is not meaningful to decide whether or not p corresponds to
reality; in this case p is neither true or false, but inapplicable.

The arithmetic rules for extended truth values are as follows:

– Negation:
∀ p ∈ P : t∗(NOT p) = ¬(t∗(p))

where ¬ : I∗ → I∗ : x �→ ¬(x) is defined by the truth table

x ¬x
T F
F T
⊥ ⊥

– Conjunction:
∀ p, q ∈ P : t∗(p AND q) = t∗(p) ∧ t∗(q)

where ∧ : I∗ × I∗ → I∗ : (x, y) �→ x ∧ y is defined by the truth table

∧ T F ⊥
T T F ⊥
F F F F
⊥ ⊥ F ⊥
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– Disjunction:
∀ p, q ∈ P : t∗(p OR q) = t∗(p) ∨ t∗(q)

where ∨ : I∗ × I∗ → I∗ : (x, y) �→ x ∨ y is defined by the truth table

∨ T F ⊥
T T T T
F T F ⊥
⊥ T ⊥ ⊥

2.2 Extended Possibilistic Truth Values

In the real world there are a lot of situations where one cannot unambiguously
say that a proposition is either completely true, completely false or completely
inapplicable. Often there is some form of uncertainty about the truth value of
a proposition. Example are “his/her score on the math test was high”, “the
house is cheap”, etc. To adequately model the uncertainty about the truth value
of a proposition, extended possibilistic truth values can be used. The concept
‘extended possibilistic truth value’ (EPTV) [2] is defined as a (normalized) possi-
bility distribution over the universal set I∗ = {T, F, ⊥} of extended truth values.
With the understanding that P represents the universe of all propositions and
℘̃(I∗) denotes the set of all possible fuzzy sets that can be defined over the set
I∗ = {T, F, ⊥}, the Extended Possibilistic Truth Value t̃∗(p) of a proposi-
tion p ∈ P can then be defined as follows:

t̃∗ : P → ℘̃(I∗) : p �→ t̃∗(p)

which associates a fuzzy set t̃∗(p) with each proposition p ∈ P . The fuzzy set
t̃∗(p) represents a possibility distribution; its membership grades are interpreted
as grades of uncertainty:

∀ x ∈ I∗ : πt∗(p)(x) = μt̃∗(p)(x)

or
∀ p ∈ P : πt∗(p) = t̃∗(p)

Generally, an extended possibilistic truth value is a fuzzy set of the form

t̃∗(p) = {(T, μt̃∗(p)(T )), (F, μt̃∗(p)(F )), (⊥, μt̃∗(p)(⊥))} (1)

where μt̃∗(p)(T ) represents the possibility that proposition p is true, μt̃∗(p)(F )
represents the possibility that proposition p is false and μt̃∗(p)(⊥) represents the
possibility that some parts of p are not applicable, undefined or not supplied.

In this way, EPTVs provide an epistemological representation of the truth of
a proposition, which allows to reflect the knowledge about the actual truth and
additionally allow to explicitly deal with those cases where the truth value of a
proposition is (partly) inapplicable.
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An overview of some special values of EPTVs is given in table 1. As an
example, consider the modelling of an unknown truth value by the possibility
distribution {(T, 1), (F, 1)}, which denotes that it is completely possible that the
proposition is true (T ), or it is also completely possible that the proposition is
false (F ).

Table 1. Special cases of EPTVs

t̃∗(p) Interpretation

{(T, 1)} p is true
{(F, 1)} p is false

{(T, 1), (F, 1)} p is unknown
{(⊥, 1)} p is undefined

{(T, 1), (F, 1), (⊥, 1)} no information

In the context of flexible database querying, EPTVs can be used to model the
satisfaction grade with which a database record satisfies a flexible constraint,
imposed by a user query [4]. In general, a flexible query will impose several dif-
ferent selection criteria, interconnected by logical operators for negation (NOT ),
conjunction (AND) and disjunction (OR). The logical operators for EPTVs are
given in [2,3,7]. In this paper we will consider (conjunctive and disjunctive) ag-
gregation based on t-norms and t-conorms. With (i, u) a (t-norm, t-conorm)
pair, the operators can be defined as follows:

– Negation:
∀ p ∈ P : t̃∗(NOT p) = ¬̃(t̃∗(p))

where ¬̃ : ℘̃(I∗) → ℘̃(I∗) : Ṽ �→ ¬̃(Ṽ ) is calculated as follows:

μ¬̃(Ṽ )(T ) = μṼ (F )
μ¬̃(Ṽ )(F ) = μṼ (T )
μ¬̃(Ṽ )(⊥) =μṼ (⊥)

– Conjunction:
∀ p, q ∈ P : t̃∗(p AND q) = t̃∗(p)∧̃t̃∗(q)

where ∧̃ : ℘̃(I∗) × ℘̃(I∗) → ℘̃(I∗) : (Ũ , Ṽ ) �→ Ũ ∧̃ Ṽ is calculated as follows:

μŨ ∧̃Ṽ (T ) = i(μŨ (T ), μṼ (T ))
μŨ ∧̃Ṽ (F ) = u(μŨ (F ), μṼ (F ))

μŨ∧̃Ṽ (⊥) = u

⎛

⎝u

(
i(μŨ (T ), μṼ (⊥)),
i(μŨ (⊥), μṼ (T ))

)
,

i(μŨ (⊥), μṼ (⊥))

⎞

⎠
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– Disjunction:
∀ p, q ∈ P : t̃∗(p OR q) = t̃∗(p)∨̃t̃∗(q)

where ∨̃ : ℘̃(I∗) × ℘̃(I∗) → ℘̃(I∗) : (Ũ , Ṽ ) �→ Ũ ∨̃ Ṽ is calculated as follows:

μŨ∨̃Ṽ (T ) = u(μŨ (T ), μṼ (T ))
μŨ∨̃Ṽ (F ) = i(μŨ (F ), μṼ (F ))

μŨ ∨̃Ṽ (⊥) = u

⎛

⎝u

(
i(μŨ (F ), μṼ (⊥)),
i(μŨ (⊥), μṼ (F ))

)
,

i(μŨ (⊥), μṼ (⊥))

⎞

⎠

Examples of suitable t-(co)norms are:

– Zadeh t-(co)norm:
iZa(x, y) = min(x, y)
uZa(x, y) = max(x, y)

– Probabilistic t-(co)norm:
iPb(x, y) = x · y
uPb(x, y) = x + y − x · y

3 Weighted Aggregation of EPTVs

In flexible querying, besides introducing preferences inside query conditions, us-
ing flexible constraints and resulting in an EPTV, it is also possible to take
into account preferences between query criteria, using weights to indicate the
difference in importance of the different criteria. So weights wi can be attached
to the individual conditions Ci, with wi ∈ [0, 1]. wi = 1 means condition Ci is
fully important, while wi = 0 means condition Ci is not important at all and
can be forgotten. In order to have an appropriate scaling, it is assumed that
maxi wi = 1.

In what follows, a shortcut notation (μt̃∗(Ci)(T ); μt̃∗(Ci)(F ); μt̃∗(Ci)(⊥)) will be

used for an EPTV, in stead of
{
(T, μt̃∗(Ci)(T )), (F, μt̃∗(Ci)(F )), (⊥, μt̃∗(Ci)(⊥))

}
.

3.1 Weight Impact

Suppose that all individual query conditions have been evaluated, resulting each
in an EPTV. When aggregating the individual EPTVs, the respective weights
have to be taken into account. Let g be the operator that represents the influence
of the weights on the individual EPTVs:

g : [0, 1] × ℘̃(I∗) → ℘̃(I∗) :
(
wi, t̃

∗(Ci)
)

�→ g
(
wi, t̃

∗(Ci)
)

Let gT , gF and g⊥ represent the impact of a weight on the individual membership
grades (μt̃∗(Ci)(T ), μt̃∗(Ci)(F ), μt̃∗(Ci)(⊥) respectively) of an EPTV:

gT : [0, 1] × [0, 1] → [0, 1] : (wi, t) �→ gT (wi, t)
gF : [0, 1] × [0, 1] → [0, 1] : (wi, f) �→ gF (wi, f)
g⊥ : [0, 1] × [0, 1] → [0, 1] : (wi, b) �→ g⊥(wi, b)

with t = μt̃∗(Ci)(T ), f = μt̃∗(Ci)(F ) and b = μt̃∗(Ci)(⊥).
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In order to be a suitable operator, g needs to meet following requirements [5,6]:

– for weight 1, all membership grades must remain unchanged:

g
(
1, t̃∗(Ci)

)
= t̃∗(Ci)

– for weight 0, the EPTV needs to be mapped to the neutral element for the
aggregation ((1; 0; 0) in case of conjunction, but (0; 1; 0) in case of disjunction:

g
(
0, t̃∗(Ci)

)
= (1; 0; 0) in case of conjunction

g
(
0, t̃∗(Ci)

)
= (0; 1; 0) in case of disjunction

– the operators gT , gF and g⊥ need to be monotonic in the membership grades
(with g• either gT , gF or g⊥ and x1, x2 membership grades of T , F or ⊥
respectively):

∀w, x1, x2 ∈ [0, 1] : x1 ≥ x2 ⇒ g•(w, x1) ≥ g•(w, x2)

– the operators gT , gF and g⊥ need to be monotonic in the weight (with g•
either gT , gF or g⊥ and x the membership grade of T , F or ⊥ respectively):

∀w1, w2, x ∈ [0, 1] : w1 ≥ w2 ⇒ g•(w1, x) ≥ g•(w2, x)
or

∀w1, w2, x ∈ [0, 1] : w1 ≥ w2 ⇒ g•(w1, x) ≤ g•(w2, x)

depending on the kind of the aggregation and the kind of operator (for either
T , F or ⊥)

Implicator functions fim and coimplicator functions f co
im can be used to model

the influence of weights. fim and f co
im are [0, 1]-valued extension of Boolean im-

plication and coimplication, and hence can be rewritten as fim(x, y) = ¬x ∨ y
and f co

im(x, y) = ¬fim(¬x, ¬y) = ¬(¬(¬x) ∨ ¬y) = ¬x ∧ y. When looking at the
extreme points x = 0 and x = 1, fim(x, y) reduces to 1 (x = 0) and y (x = 1),
while f co

im(x, y) reduces to y (x = 0) and 0 (x = 1). So, the implicator, with
x = w, can be used in the cases where the membership degree should remain
unchanged for x = 1 and should be drawn towards 1 for x = 0 (μ(T ) in case
of conjunction, μ(F ) in case of disjunction, with x = w and y the respective
membership degree). The coimplicator on the other hand, with x = 1 − w, can
be used in the cases where the membership degree should remain unchanged
for x = 0 and should be drawn towards 0 for x = 1 (μ(F ) and μ(⊥) in case of
conjunction, μ(T ) and μ(⊥) in case of disjunction, with x = 1 − w and y the
respective membership degree).

The impact of a weight on an EPTV can then be defined as follows [5]:

– Weight operator for conjunction

g∧ : [0, 1] × ℘̃(I∗) → ℘̃(I∗)
(w, Ṽ ) �→ g∧(w, Ṽ )
where:

μg∧(w,Ṽ )(T ) = fim(w, μṼ (T ))
μg∧(w,Ṽ )(F ) = f co

im(1 − w, μṼ (F ))
μg∧(w,Ṽ )(⊥) = f co

im(1 − w, μṼ (⊥))
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– Weight operator for disjunction

g∨ : [0, 1] × ℘̃(I∗) → ℘̃(I∗)
(w, Ṽ ) �→ g∨(w, Ṽ )
where:

μg∨(w,Ṽ )(T ) = f co
im(1 − w, μṼ (T ))

μg∨(w,Ṽ )(F ) = fim(w, μṼ (F ))
μg∨(w,Ṽ )(⊥) = f co

im(1 − w, μṼ (⊥))

Some interesting implicators and coimplicators are:

– Kleene-Dienes: fimKD (x, y) = max(1 − x, y)
f co

imKD
(x, y) = min(1 − x, y)

– Reichenbach implicator:
fimRb

(x, y) = 1 − x + x · y
f co

imRb
(x, y) = (1 − x) · y

– Gödel implicator:
fimGo(x, y) =

{
1 if x ≤ y
y otherwise

f co
imGo

(x, y) =
{

0 if x ≥ y
y otherwise

As an example consider the weight operator for conjunction based on the
Kleene-Dienes implicator:

g∧(w, Ṽ ) = {max(1 − w, μṼ (T )); min(w, μṼ (F )); min(w, μṼ (⊥))}

It is easy to see that this is indeed a monotonic operator, where the result for
w = 1 will reduce to {μṼ (T ); μṼ (F ); μṼ (⊥)} and for w = 0 to {1; 0; 0}, as was
required for a suitable conjunction weight operator.

Using the definitions of the weight operators g∧ and g∨, and the aggrega-
tion operators ∧̃ and ∨̃, an extended operator for weighted conjunction ∧̃w and
disjunction ∨̃w of EPTVs can now be defined:

∧̃w : ([0, 1] × ℘̃(I∗))2 → ℘̃(I∗)
((w1, Ṽ1), (w2, Ṽ2)) �→ g∧(w1, Ṽ1) ∧̃ g∧(w2, Ṽ2)

(2)
∨̃w : ([0, 1] × ℘̃(I∗))2 → ℘̃(I∗)

((w1, Ṽ1), (w2, Ṽ2)) �→ g∨(w1, Ṽ1) ∨̃ g∨(w2, Ṽ2)

3.2 Combining Different Types of Aggregation

The operators presented thus far are suitable for the aggregation of weighted
selection criteria, as long as one stays within one type of aggregation (either
conjunctive or disjunctive). This follows from the fact that the impact of the
weights can be calculated before the actual aggregation itself. So, after applying
the weight operators, it is like working with ‘regular’ EPTVs and all properties
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(associativity, commutativity) of the weighted aggregation are implied by the
underlying aggregation operators ∧̃ and ∨̃.

However, this is no longer the case when combining conjunctions and disjunc-
tions together. This can be seen in following simple examples ( (w, t̃∗(Ci)) stands
for the EPTV resulting from the evaluation of condition Ci, with weight w).

Example 1.

a)
[(

0, t̃∗(C1)
)

∧̃w (
0, t̃∗(C2)

)]
∨̃w (

1, t̃∗(C3)
)

Intuitively, this should reduce to t̃∗(C3), since constraints with weight 0 can
be forgotten. However, if we blindly apply the definitions given in 3.1, this
leads to (EPTV (1; 0; 0) is neutral element of conjunction):

[(1; 0; 0) ∧̃ (1; 0; 0)] ∨̃ t̃∗(C3)
Further calculation leads to:

(1; 0; 0) ∨̃ t̃∗(C3) = (1; 0; 0), not the expected t̃∗(C3)

b)
[(

0, t̃∗(C1)
)

∨̃w (
0, t̃∗(C2)

)]
∧̃w (

1, t̃∗(C3)
)

Intuitively, this should reduce to t̃∗(C3), since constraints with weight 0 can
be forgotten. However, if we blindly apply the definitions given in 3.1, this
leads to (EPTV (0; 1; 0) is neutral element of disjunction):

[(0; 1; 0) ∨̃ (0; 1; 0)] ∧̃ t̃∗(C3)
Further calculation leads to:

(0; 1; 0) ∧̃ t̃∗(C3) = (0; 1; 0), not the expected t̃∗(C3)

It is obvious this is not the way to handle weights. The reason for this in-
sufficiency is that the impact of the weights is different when using conjunction
than when using disjunction (they work in a different ‘direction’, towards their
respective neutral elements). The neutral element of the one, is the absorbing
element of the other.

To solve this problem, the weights need to be propagated throughout the
calculations, i.e. the weights of the intermediate results need to be remembered
to take into account when aggregating further. For instance, in the first exam-
ple above, the result of the conjunction

(
0, t̃∗(C1)

)
∨̃w (

0, t̃∗(C2)
)

should also
have weight 0. In that case, the resulting (1; 0; 0) would, in the next step (dis-
junction), again be transformed to (0; 1; 0), leading to the final (correct!) result
t̃∗(C3). A number of rules can be imposed for the calculation of the weight of an
intermediate result:

– Constraints with weight 0 are not allowed to have any impact, so both(
0, t̃∗(C1)

)
∧̃w (

w, t̃∗(C2)
)

and
(
0, t̃∗(C1)

)
∨̃w (

w, t̃∗(C2)
)

should produce an
intermediate result with weight w.

– The importance of an intermediate result is always greater than or equal to
the greatest of weights from the arguments of the aggregation.

Remark that here, opposed to the actual impact of the weights, the rules are
the same for conjunction and disjunction. A t-conorm meets this rules and can
thus be chosen to calculate the resulting weight of an aggregation. So, both for
conjunction and disjunction: wres = u(w1, w2), where u is a t-conorm, wres is
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the weight resulting from an aggregation of arguments with respective weights
w1 and w2.

From the above, it follows that an EPTV cannot be seen separable from its
importance (indicated by a weight). Weights are propagated and the result of a
weighted aggregation of EPTVs is a new EPTV with again a weight attached to
it. Remark also that, when using an appropriate scaling of weights (max(wi) = 1)
and a t-conorm to calculate the weight of an (intermediate) result, the weight
of the final result will always be 1.
So, the extended operators (2) for weighted conjunction ∧̃w and disjunction ∨̃w

of EPTVs, presented above, must be adjusted to also calculate a weight for the
result of the aggregation, resulting finally in following operators:

∧̃w : ([0, 1] × ℘̃(I∗))2 → [0, 1] × ℘̃(I∗)
((w1, Ṽ1), (w2, Ṽ2)) �→ (u(w1, w2), g∧(w1, Ṽ1) ∧̃ g∧(w2, Ṽ2))

(3)
∨̃w : ([0, 1] × ℘̃(I∗))2 → [0, 1] × ℘̃(I∗)

((w1, Ṽ1), (w2, Ṽ2)) �→ (u(w1, w2), g∨(w1, Ṽ1) ∨̃ g∨(w2, Ṽ2))

Also an extended operator for negation can be defined:

¬̃w : [0, 1] × ℘̃(I∗) → [0, 1] × ℘̃(I∗)
(w, Ṽ ) �→ (w, ¬̃(Ṽ )) (4)

When using these operators, with propagation of the weights throughout the
calculations, the problems arising when combining disjunction and conjunction,
as presented above, are solved, as can be seen when looking back at Example
1.a):

Example 2.
[(

0, t̃∗(C1)
)

∧̃w (
0, t̃∗(C2)

)]
∨̃w (

1, t̃∗(C3)
)

≡ [u(0, 0), ((1; 0; 0) ∧̃ (1; 0; 0))] ∨̃w (
1, t̃∗(C3)

)

≡ (0, (1; 0; 0)) ∨̃w (
1, t̃∗(C3)

)

≡ (u(0, 1), ((0; 1; 0) ∨̃ t̃∗(C3)))
!≡

(
1, t̃∗(C3)

)

4 Conclusion

In flexible queries, weights can be attached to constraints to indicate user pref-
erences between the different constraints. This paper showed how weights have
their impact on the satisfaction grades for the individual selection criteria, mod-
eled by Extended Possibilistic Truth Values. The impact of the weights, modeled
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by means of modification functions based on (co)implicators, is different accord-
ing to the aggregation type (conjunction or disjunction). It has been shown that
the weights need to be propagated throughout the calculations, and that there-
fore the EPTVs cannot be viewed separately from their associated weight.
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Abstract. In [1,2] we studied various concepts of bipolar queries (cf.
Dubois and Prade [3]). We advocated the use of a fuzzified version of
the original crisp definition by Lacroix and Lavency [4]. However, the
general fuzzification proposed leaves open the choice of a representation
of logical connectives and quantifiers. In the present paper we study the
influence of the choice some representations that are popular in fuzzy
logic on matching degrees of the tuples and their resulting ordering.

1 Introduction

One of the most important dimensions of the querying flexibility is the ease
with which a user may express his or her requirements as to the data sought. In
many scenarios the easiest way is to use in a query some linguistic descriptions
such as a “young employee”, “high salary”, etc. Fuzzy logic provides effective
and efficient means to model such linguistic descriptions within queries (cf., e.g.,
[5]). Much research in this area has resulted in some extensions of such powerful
query languages like the relational algebra or SQL.

For some time there has been a growing interest in some special, nonconven-
tional forms of queries that are important from a practical point of view. This
interest dates back to a seminal work of Lacroix and Lavency [4]. Their proposal
has been recently generalized to a new broader approach. Basically, it attempts
to distinguish regular requirements the data to be retrieved should satisfy and
some preference-related requirements of a more subtle, not always obligatory,
nature. Thus the name proposed by Chomicki [6] is queries with preferences.

The original proposal of Lacroix and Lavency was quickly adopted for the
fuzzy case by Bosc and Pivert [7,8]. In 2002 Dubois and Prade [3] introduced
an equivalent concept of a bipolar query which provides for another interesting
interpretation. Thus even if bipolar queries turn out to be a special case of queries
with preferences they still are worthwhile to be distinguished due to their clear
semantics that is interesting and relevant from a practical point of view.

Lacroix and Lavency’s approach deals with crisp conditions only. We pro-
posed their direct “fuzzification” in [1]. In this paper we further analyze this
proposal taking into account various fuzzy logic based interpretations of logi-
cal connectives and quantifiers. In Section 2 we gather all necessary definitions
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of a wide array of operators most often used to model logical connectives and
quantifiers in fuzzy logic. Section 3 recalls briefly the basics of the concept of
bipolar queries. Section 4 constitutes the main contribution of this paper and
lists the properties of bipolar queries under selected combinations of the logical
connective representations. Finally Section 5 summarizes the main results and
points out the directions of a further research.

2 Preliminaries

The fuzzification of the crisp concept of bipolar queries (cf. Section 3) calls first of
all for some interpretation of logical connectives and quantifiers. We use for this
purpose t-norms, t-conorms, as well as the negation and implication operators,
as is usually done.

A t-norm operator t is used to represent the fuzzy logical connective of con-
junction and is defined as a function t : [0, 1] × [0, 1] −→ [0, 1] such that: (1)
t(x, 1) = x, ∀x, (2) x ≤ y ⇒ t(x, z) ≤ t(y, z), ∀x, y, z, (3) t(x, y) = t(y, x), ∀x, y,
and (4) t(x, t(y, z)) = t(t(x, y), z), ∀x, y, z.

In particular we will consider the following popular t-norm operators:

minimum tmin(x, y) = x ∧ y = min(x, y) (1)
product tΠ(x, y) = x · y (2)

�Lukasiewicz t-norm tW (x, y) = max(0, x + y − 1) (3)

A t-conorm operator s is used to represent the fuzzy logical connective of
disjunction and is defined as a function s : [0, 1] × [0, 1] −→ [0, 1] such that the
same conditions as for a t-norm are satisfied except for the boundary condition,
s(x, 0) = x,

Notice that s(x, 1) = 1, ∀x.
In particular we will consider the following popular t-conorm operators:

maximum smax(x, y) = x ∨ y = max(x, y) (4)
probabilistic sum sΠ(x, y) = x + y − x · y (5)

�Lukasiewicz t-conorm sW (x, y) = min(1, x + y) (6)

The negation operator n is used to represent the fuzzy logical connective of
negation and is defined as a function n : [0, 1] −→ [0, 1] such that:

n(0) = 1, n(1) = 0, x ≤ y ⇒ n(x) ≥ n(y) (7)

For our purposes a reasonable choice is here the most popular negation operator:

N(x) = 1 − x ∀x (8)

which additionally possesses the property of involution: N(N(x)) = x, ∀x.
Due to associativity, both t-norms and t-conorms are naturally generalized to

m-ary operators, i.e., instead of, e.g., t(x, t(y, z)) we will write t(x, y, z).
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We will consider combinations of the t-norms and t-conorms that together
with the negation operator N (8) form a De Morgan Triplet, i.e., such a triple
(t, s, n) of t-norm t, t-conorm s and negation n that:

n(s(x, y)) = t(n(x), n(y)) (9)

Due to involution of N , (9) is equivalent to s(x, y) = n(t(n(x), n(y))). The
triples (tmin, smax, N), (tΠ , sΠ , N) and (tW , sW , N) are the De Morgan Triplets
and will be used in what follows.

The formulae to be used to describe the fuzzy set of tuples being an answer
to a bipolar query employ the classical quantifiers. Usually they are modelled
in fuzzy logic using the inf and sup for the general and existential quantifier,
respectively. Thus, the truth values of them are:

truth(∀xA(x)) = inf
x

μA(x) (10)

truth(∃xA(x)) = sup
x

μA(x) (11)

where A denotes both a fuzzy predicate symbol and a fuzzy set being its inter-
pretation. For the finite cas, as in this paper, the min and max replace the inf
and sup.

However, a more consistent treatment of the classical quantifiers in the frame-
work of fuzzy logic may be pursued with the use of t-quantifiers and s-quantifiers
(cf., e.g., [9]). The idea of such a type of quantifiers is based on the observation
that a formula with the general (existential) quantifier may be identified with a
– possibly infinite – conjunction (disjunction):

∀xA(x) ⇔ A(a1) ∧ A(a2) ∧ . . . (12)
∃xA(x) ⇔ A(a1) ∨ A(a2) ∨ . . . (13)

where ai are constants corresponding to the elements of the universe of discourse.
In fact we are interested in the finite domains only. Thus the use of a t-norm

t (t-conorm s) to model the conjunction (disjunction) implies:

truth(∀xA(x)) = t(μA(a1), μA(a2), . . . , μA(am)) (14)
truth(∃xA(x)) = s(μA(a1), μA(a2), . . . , μA(am)) (15)

In particular for the t-norms (1)-(3) and t-conorms (4)-(6) one obtains:

∀minx A(x) = min(x1, . . . , xn) (16)

∀Πx A(x) =
n∏

i=1

xi (17)

∀W x A(x) = max(
n∑

i=1

xi − n + 1, 0) (18)
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∃maxx A(x) = max(x1, . . . , xn) (19)

∃Πx A(x) =
∑

i

xi −
∑

i<j

xi · xj +
∑

i<j<k

∏

l∈{i,j,k}
xl − . . . +

+ (−1)n+1
∏

1≤l≤n

xl (20)

∃W x A(x) = min(
∑

i

xi, 1) (21)

where x ∈ X and X = {x1, . . . , xn}. In this paper we use the symbols ∀ and ∃
with subscripts to denote both the logical symbols of the quantifiers in various
formulae and the operators defined by the above equations.

The logical connective of implication is represented by an implication operator
which is assumed to be a function i : [0, 1] −→ [0, 1] such that:

x ≤ u ⇒ i(x, y) ≥ i(u, y) ∀x, y, u (22)
y ≤ z ⇒ i(x, y) ≤ i(x, z) ∀x, y, z (23)
i(0, y) = 1 i(x, 1) = 1 i(1, 0) = 0 (24)

We will consider two most popular approaches to defining this operator with
respect to the assumed De Morgan Triplet (t, s, n). These are the so-called S-
implications and R-implications defined as follows:

R − implication: x → y = sup{z : t(x, z) ≤ y} (25)
S − implication: x → y = s(n(x), y) (26)

For both the above types of implications another property holds: i(1, x) = x ∀x.
In particular we will consider the following R-implication operators:

Gödel’s implication iR−min(x, y) =
{

1 for x ≤ y
y for x > y

(27)

Goguen’s implication iR−Π(x, y) =
{

1 for x = 0
min{1, y

x} for x �= 0 (28)

�Lukasiewicz’ implication iR−W (x, y) = min(1 − x + y, 1) (29)

and the following S-implication operators:

Kleene–Dienes’ implication iS−max(x, y) = max(1 − x, y) (30)
Reichenbach’s implication iS−Π(x, y) = 1 − x + x · y (31)

The S-implication operator iS−W is identical with iR−W as given by (29).

3 Bipolar Queries

The concept of a bipolar query has been introduced by Dubois and Prade [3] in
2002 (the roots of this concept may be traced back to earlier works of Dubois
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and Prade as well as other authors, cf., e.g., [10]). The idea is to distinguish
in a query two types of conditions: a required and a preferred one. The former
have to be unconditionally met by a tuple, while the latter are to some extent
optional and less important. However, the facultative character of the latter is
rather subtle and cannot be directly grasped with, e.g., the notion of importance
weights. A query of this type may be exemplified with:

Find a cheap house preferably near a railway station (32)

in which the required, strict condition concerns the price and the preferred con-
dition refers to the distance to a railway station.

According to our fuzzification of the Lacroix and Lavency’s approach this
query is to be interpreted as follows. A house sought has to be cheap and if
possible also near the station. The possibility of satisfying both conditions cor-
responds to the existence of a house that meets both of them. Thus if such a
house exists, then only such houses are of interest, i.e., only they belong to the
answer of the bipolar query (32). Otherwise it is enough for a house to be cheap
to belong to the answer to the query.

Such an interpretation of bipolar queries may be expressed by a logical formula
in case the conditions are crisp as in Lacroix and Lavency [4]. In case of fuzzy
conditions their formula may be adapted as we did it in [1].

We adopt the following notation: X = {xj} is a set of tuples to be queried;
C(·) and P (·) are, fuzzy in general, predicates corresponding to the required and
preferred conditions, respectively. We will identify these predicates with fuzzy
sets and C(x) and P (x) will denote their membership function values. Then the
Lacroix and Lavency’s interpretation of bipolar queries may be more formally
expressed by the following description of the set of tuples sought ([4]):

{x ∈ X : C(x) ∧ (∃y(C(y) ∧ P (y)) −→ P (x))} (33)

In [1,2] we introduced a specific fuzzy version of (33) denoting the characteris-
tic/membership function of the resulting fuzzy set of tuples as γ(C, P, x, X):

γ(C, P, x, X) = min(C(x), max(1 − max
y∈X

min(C(y), P (y)), P (x))) (34)

In this formula the (tmin, smax, N) De Morgan Triplet is used along with the
iS−max (30) implication operator and the existential quantifier ∃ modelled via
the max operator (cf. (15)).

The characteristic feature of the interpretation represented via (34) is that
the value of a matching degree, γ(C, P, x, X), for a tuple x depends not only on
x but also on the whole set of tuples X (what is appropriately accounted for by
the fourth parameter, X , of γ).

4 Alternative Interpretations

Now we will reinterpret the concepts of bipolar queries using the three De Morgan
Triplets mentioned earlier and their related implication operators.
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In Table 1 we have collected various reinterpretations of the formula (33)
obtained using the particular De Morgan Triplets, implication operators and
quantifiers corresponding to the selected t-norm (cf., (16)–(18)). These corre-
spond to the formula (34) we proposed in [1]. The subscripts of γ indicate the
De Morgan Triplet and implication operator used. For example, γΠ,S refers to
the (tΠ , sΠ , N) De Morgan Triplet and associated S-implication operator (cf.
(1)–(3), (4)-(6), (25)-(29)).

Table 1. Various reinterpretations of the concept of a bipolar query

γmin,S min(C(x),max(1 − maxy∈X min(C(y), P (y)), P (x)))

γmin,R

{
C(x) if maxy min(C(y), P (y)) ≤ P (x)
min(C(x), P (x)) otherwise

γΠ,S
C(x) · (1 − ∃Π(C(yi) · P (yi)) · (1 − P (x)) =
C(x) · (

∏
i(1 − C(yi) · P (yi)) · (1 − P (x)) + P (x))

γΠ,R

{
C(x) if ∃Π(C(yi) · P (yi)) = 0

C(x) · min( P (x)
∃Π(C(yi)·P (yi))

, 1) otherwise

γW tW (C(x), iW (∃W tW (C(y), P (y)), P (x)))

Notice that in Table 1 the consecutive rows correspond to columns label by
I, II, III, IV and V in Table 2.

Let us compare the particular interpretations of Table 1 on a simple example
given in Table 2 (in the latter table, C(y) and P (y) are denoted, due to space
limitation, as C and P ). Let us first compute the truth of ∃y C(y) ∧ P (y) for
various combinations of the logical connectives:

∃miny tmin(C(y), P (y)) = 0.8 (35)
∃Πy tΠ(C(y), P (y)) = 0.96 (36)
∃W y tW (C(y), P (y)) = 1.0 (37)

Notational remark. As the truth value of the formula ∃y C(y)∧P (y) is fixed
for a given set of tuples X and a chosen De Morgan Triplet and will be important
for our further analysis, we will denote it for brevity by ∃CP .

It may easily be noticed that various interpretations lead to different match-
ing degrees of particular tuples (i.e., values of the γ functions) as well as to
different resulting ordering of the tuples (ranking). In what follows we study
the differences between particular interpretations. We show some properties and
examples. In particular we study the effects of choosing between:

– the standard interpretation (i.e., via the max operator) and a t-norm based
interpretation of the classical quantifier ∃

– the R- and S-implications,
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Table 2. A comparison of interpretations: an example

No C P I II III IV V
rank γmin,S rank γmin,R rank γΠ,S rank γΠ,R rank γW

1 0.9 0.7 2 0.7 2 0.7 3 0.64 3 0.63 2 0.6

2 0.8 0.8 1 0.8 1 0.8 2 0.65 2 0.67 2 0.6

3 0.7 1.0 2 0.7 2 0.7 1 0.7 1 0.7 1 0.7

4 1.0 0.0 4 0.2 4 0.0 4 0.04 4 0.0 4 0.0

Property 1. For any combination of a t-norm, t-conorm and S-implication or
R-implication if there exists a tuple x such that C(x) = 1 and P (x) = 1, then
(33) y turns into C(x) ∧ P (x), where ∧ is represented by a given t-norm.

This property stems from the general characteristics of t-norms, t-conorms
and S- and R-implications. This proves that the use of all of them preserves a
basic feature of a bipolar query valid in the crisp case: if there is a tuple satisfying
both the required and preferred conditions, then only the tuples satisfying both
of them are interesting, i.e., (33) turns into a simple conjunction.

Property 2. For any combination of a t-norm, t-conorm and S-implication or
R-implication and any set of tuples X if for a tuple x ∈ X P (x) = 1, then the
formula (33) turns into C(x).

This property stems from the characteristic feature of implication. It is fairly
intuitive: if a tuple fully satisfies the preferred condition P , then its overall
matching degree is equal to its satisfaction of the condition C. On the other
hand, a rank of such a tuple depends also on the matching degrees of other
tuples of the set X .

Property 3. The use of the usual fuzzy existential quantifier ∃max, i.e., the max
operator, instead of ∃Π or ∃W : (1) yields greater or equal matching degrees, (2)
may change the resulting ordering of the tuples.

Property 3.A is because max is the smallest of all t-conorms and because
of the monotonicity of any implication and t-norm. Property 3.B is illustrated
by the following examples. We denote the matching degrees computed with the
particular existential quantifiers as γ∃max(. . .), γ∃Π (. . .) and γ∃W (. . .).

Order reversal by changing the ∃Π quantifier to the ∃max quantifier
under the De Morgan Triplet (tΠ , sΠ , N). Let us consider two tuples x, y ∈
X such that C(x) = 0.6, P (x) = 0.82 and C(y) = 0.85, P (y) = 0.4. Then,
γ∃Π

Π,S(C, P, x, X) = 0.528, γ∃Π

min,S(C, P, y, X) = 0.3, γ∃max

min,S(C, P, x, X) = 0.535,
γ∃max

min,S(C, P, y, X) = 0.544. Thus

γ∃Π

Π,S(C, P, x, X) ≥ γ∃Π

Π,S(C, P, y, X), but (38)

γ∃max

Π,S (C, P, x, X) ≤ γ∃max

Π,S (C, P, y, X) (39)
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Order reversal by changing the ∃W quantifier to the ∃max quanti-
fier under the De Morgan Triplet (tW , sW , N). Let us consider two tu-
ples x, y ∈ X such that C(x) = 1.0, P (x) = 0.5 and C(y) = 0.8, P (y) = 0.8.
Then, γ∃W

W (C, P, x, X) = 0.5, γ∃W

W (C, P, y, X) = 0.6, γ∃max

W (C, P, x, X) = 0.9,
γ∃max

W (C, P, y, X) = 0.8. Thus

γ∃W

W (C, P, x, X) ≤ γ∃W

W (C, P, y, X) but (40)

γ∃max
W (C, P, x, X) ≥ γ∃max

W (C, P, y, X) (41)

Now let us check what the effect of changing an S-implication by an R-
implication in (33) is while keeping the representation of all other elements
fixed.

Order reversal by changing the S-implication to the R-implication
under the De Morgan Triplet (tmin, smax, N). Let us assume that ∃CP =
0.5 and let us consider two tuples x, y ∈ X such that C(x) = 0.4, P (x) = 0 and
C(y) = 0.3, P (y) = 0.2. Then, γmin,S(C, P, x, X) = 0.4, γmin,S(C, P, y, X) = 0.3,
γmin,R(C, P, x, X) = 0.0, γmin,R(C, P, y, X) = 0.2. Thus

γmin,S(C, P, x, X) ≥ γmin,S(C, P, y, X) but (42)
γmin,R(C, P, x, X) ≤ γmin,R(C, P, y, X) (43)

The order reversal exemplified above makes the choice between the implication
operators an important issue.

A further analysis leads to the following observation.

Property 4. Assuming the (tmin, smax, N) De Morgan Triplet, for tuples x
verifying the conditions:

(P (x) ≥ ∃CP ) or ((P (x) ≤ ∃CP ) and (P (x) ≥ 1 − ∃CP )) (44)

it holds that

1. γmin,R(C, P, x, X) ≥ γmin,S(C, P, x, X)
2. replacing the R-implication with S-implication or vice-versa preserves the

resulting order of the tuples, i.e., for x, y verifying (44) it holds:

γmin,S(C, P, x, X) ≥ γmin,S(C, P, y, X) ⇔
γmin,R(C, P, x, X) ≥ γmin,R(C, P, y, X) (45)

The validity of this property may be easily proved as follows. In order to show
1., let us observe that for x such that P (x) ≥ ∃CP it holds:

γmin,R(C, P, x, X) = min(C(x), 1) = C(x) (46)
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because iR−min(∃CP, P (x)) = 1 due to the fact that P (X) ≥ ∃CP while

γmin,S(C, P, x, X) = min(C(x), max(1 − ∃CP, P (x))) ≤ C(x)
= γmin,R(C, P, x, X)

On the other hand, for x such that P (x) ≤ ∃CP and P (x) ≥ 1 − ∃CP it holds:

γmin,S(C, P, x, X) = γmin,R(C, P, x, X) = min(C(x), P (x)) (47)

so that 1. is trivially verified.
In order to show 2. we will consider 3 cases:

I. both (P (x) ≥ ∃CP ) and (P (y) ≥ ∃CP ),
II. both P (x) ≤ ∃CP and P (x) ≥ 1 − ∃CP as well as P (y) ≤ ∃CP and

P (y) ≥ 1 − ∃CP ,
III. P (x) ≥ ∃CP and P (y) ≤ ∃CP and P (y) ≥ 1 − ∃CP .

Case I. Then, P (x) ≥ ∃CP ≥ C(x) because ∃CP = maxy min(C(y), P (y)).
Moreover (46) holds.

Now, let us assume that the left hand side of (45) holds. It means that:

min(C(x), max(1 − ∃CP, P (x))) ≥ min(C(y), max(1 − ∃CP, P (y)))

but because P (x) ≥ C(x) and P (y) ≥ C(y) thus the above reduces to C(x) ≥
C(y), which means that γmin,R(C, P, x, X) ≥ γmin,R(C, P, y, X). The proof in
the opposite direction of ⇔ in (45) is obvious.

Case II. Then, (47) holds and thus (45) is trivially verified.

Case III. Now, due to a similar reasoning as in Case I and due to (47), the left
hand side of (45) reduces to: C(x) ≥ min(C(y), P (y)). But due to (46) and (47)
it is identical to the right hand side of (45).

Thus for the tuples x satisfying (44) their resulting order does not depend on
the choice between the S-implication and the R-implication. The troublesome
tuples may appear both for high and low values of ∃CP . However in the former
case these are less interesting tuples, i.e., such x’s that P (x) is small (more
precisely ≤ 1 − ∃CP ) while there are tuples well satisfying both C and P (as
∃CP is high). The latter case is worse and should be taken into account while
executing bipolar queries with varying logical connectives interpretations.

5 Concluding Remarks

We discuss various reinterpretations of previously studied [1,2] definition of
bipolar queries. In particular we analyze the effect of the choice of various in-
terpretations of the existential quantifiers and implication operators. The basic
conclusion is that such a choice have to be careful as it changes not only the
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values of matching degree but also the resulting ordering of the tuples. We show
also that in some special cases the formula defining bipolar queries reduces to
a simpler form under any considered interpretation of logical connectives (cf.
Properties 1 and 2).

A further research is needed to classify effects of other choices of logical con-
nectives interpretations. Moreover we plan to extend the similar analysis to the
case of the winnow operator we introduced in [2] as well as to its relation with
bipolar queries.
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5. Rosado A., Ribeiro R., Zadrożny S., Kacprzyk J.: Flexible query languages for rela-
tional databases: an overview. In Bordogna G., Psaila G., eds.: Flexible databases
supporting imprecision and uncertainty. Springer (2006) 3–53.

6. Chomicki J.: Querying with intrinsic preferences. LNCS, 2287, (2002) 34–51.
7. Bosc P., Pivert O.: Discriminated answers and databases: fuzzy sets as a unifying

expression means. In: Proc. FUZZ-IEEE’1992, San Diego, USA (1992) 745–752.
8. Bosc P., Pivert O.: An approach for a hierarchical aggregation of fuzzy predicates.

In: Proc, of FUZZ-IEEE’1992, San Francisco, USA (1993) 1231–1236.
9. Mesiar R., Thiele H.: On T-Quantifiers and S-Quantifiers. In Novak V., Perfilieva

I., eds.: Discovering the World with Fuzzy Logic. Physica-Verlag (2000) 310–326.
10. Dubois D., Prade H.: Using fuzzy sets in flexible querying: why and how? In An-

dreasen T., Christiansen H., Larsen H.L., eds.: Flexible Query Answering Systems.
Kluwer (1997) 45–60.



A Hierarchical Approach to Object Comparison

Axel Hallez and Guy De Tré
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Abstract. Comparing objects is a very general problem domain. The
way objects are compared can differ a lot, in the way objects are related
to each other as well as in the meaning that is attributed to the result of
a comparison. In this paper we develop a theoretical framework for com-
paring objects. This framework can be tailored to the specific needs of an
application through the choice of appropriate operators and evaluation
domain (i.e. the domain in which the comparison results are expressed).

1 Introduction

Object comparison is not a trivial problem by any means; several problem do-
mains that are heavily researched topics on their own have to be combined in
order to construct a comparison scheme: construction of similarity functions for
individual properties, construction of aggregation operators, dealing with pref-
erences, compensation, etc... Most of these topics have been researched quite
extensively now and although new approaches are proposed on a regular basis,
many solutions are readily available for use in applications. However, one of the
biggest problems that remains, one that cannot be automated, is to find out
which techniques are best suited for comparing objects in a particular situation,
eg. which aggregation operators to use, finding out the suitable weights for the
partial results, etc... In order to do that one has to gain a deep understanding of
both the application domain and the techniques that are available for comparing
objects. The usual practice is to find a domain expert and a technical expert
and let them work together to find out how objects compare to each other. It
would of course be much more convenient if the domain expert would be able to
work with no or less help of a technical expert. Therefor it would be handy to
have a (software) tool at hand that allows a domain expert to construct a com-
parison scheme and evaluate it. The easier this process gets, the more feasible
it becomes to test different comparison methods and to compare the results. So
we want to build a framework for the construction of comparison schema where
a developer (i.e. the domain expert) can easily specify how objects are to be
compared, without having to implement everything from scratch.

In this paper we present a theoretical foundation of a generic framework for
the construction of comparison schema. The framework is generic in several
respects. Firstly, the framework can be used for a wide range of comparison
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methods. The framework is independent of the domain in which the results of
the comparisons are expressed (i.e. the evaluation domain). It is assumed that
this domain has some properties, but apart from that any domain can be used.

Some previous publications already proposed a framework for comparing ob-
jects [1] [2]. In these publications the equals operator that is found in many
object oriented programming languages is extended to a fuzzy equals operator
that allows for non-boolean result of the comparison and also deals with fuzzy-
ness in the data. The method of comparison is similar to the one presented in
here: there is a generic comparison method and the parameters (i.e. the type of
operators and the weights of the attributes) are integrated in the source code
of the data classes using annotations. This approach has many advantages, the
main one being that it is very easy for developers to configure the comparison
method. However there are also some disadvantages. The fuzzy equality oper-
ator is very tight coupled with the object schema of the application and since
the configuration is embedded in the source code, the comparison can not be
changed at run-time.

The framework presented below is more general, since it is not tightly coupled
with the object schema of the data (in fact it is not even assumed that the data
is object oriented). The definition of the comparison scheme is external to data
scheme. This makes it possible to combine the data of the objects in ways that are
not implied by the structure of the data itself. It also allows for the comparison
to be adjusted at run-time, eg. to incorporate user preferences.

Object comparisons have many types of applications. However most of these
applications use a common scenario: one object is compared to a set of other
objects to find out which objects in this set match or are similar to the former
object, which results in a set of objects that are sufficiently similar. This process
needs to adapt to the specifics of the application: the ‘similarity’ of objects
needs to be expressed in a way that fits the purpose of the comparison, which is
discussed in section 2. The individual aspects of the object need to be compared
in an appropriate way and these separate results have to be aggregated such
that the importance of each aspect is respected. The construction of the way of
aggregation and evaluation of the object properties (i.e. the comparison scheme)
is discussed in section 3. In section 4 the limitation of the result set is discussed
and before coming to a conclusion, we present an example application.

2 The Evaluation Domain

Before starting with the construction of a comparison scheme it is necessary
to choose a domain in which the results will be expressed. It is important to
choose a domain that matches the purpose of the comparison. If for example
the purpose of the comparison is to find objects that are to some extent similar
to a given object it is perfectly acceptable to use the unit interval as a scale of
similarity [6]. If on the other hand the goal is to tell if two object descriptions
are in fact describing the same real world object (eg. if two person descriptions
are about the same person) it is more suitable to use a domain that allows for
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the explicit expression of confidence and uncertainty such as possibilistic truth
values [3] [4] [5].

In order to be usable in the framework, we will assume that the domain of
the comparison results, which we will refer to as L from now on, possesses some
properties. We will assume that an order operator ≤L for this domain L exists,
such that (L, ≤L) is a bounded lattice with 0L and 1L as lower bound and upper
bound respectively.

3 Comparison Schema

The first thing to specify in a comparison scheme is the domain of objects. This
domain will determine the properties of the objects that can be used in the
comparison. The domain of objects will be referred to as O.

A comparison scheme is constructed in a hierarchical way. Two kinds of oper-
ators are used. At the basis of the scheme lay the so called evaluation operators.
An evaluation operator is an O2 → L mapping that defines how to compare
two objects with respect to some aspect (eg. one attribute). There can be many
evaluation operators in a comparison scheme, especially if the compared objects
are complex. An evaluation operator in itself can be very complex too.

The results of the evaluation operators are then combined by aggregation
operators. An aggregation operator is a Ln → L mapping where n is a natural
number larger than 0.

The aggregation can happen in several steps, i.e. attributes that belong together
in some respect can be grouped together such that the results from the evaluation
operators on these attributes are first combined into a single result. This result in
turn can be used in a higher level aggregation. In the end all results are aggregated
into a single global comparison result for the objects that are being compared.

Note that many operators, both aggregation and evaluation operators, have
arguments that can be considered as configuration information, because they
in fact determine how the operator behaves. We consider the values of these
arguments as a part of the comparison scheme such that the operator that is
put in the scheme is ‘preconfigured’ with values for these arguments and the
only arguments that are left, are the two objects to compare in the case of an
evaluation operator or the results of the underlying operators that provide the
arguments of an aggregation operator.

Because of the very general definition of evaluation operators one can actually
consider a subtree of a comparison scheme as an evaluation operator, since the com-
bination of all operators of a subtree as described above determine a O2 → L map-
ping. As a result, there is some freedom left in the design of a comparison scheme
about what to consider as an evaluation operator. However, in general it will be
in the interest of the designer to define the evaluation operators as specialized as
possible and to refrain from putting aggregation functionality in them.

From the hierarchical nature of the comparison scheme, it follows that we can
represent the scheme by a tree where the leaf nodes of the tree correspond with
the evaluation operators and the non-leaf nodes with the aggregation operators,
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such that the result of an operator serves as an argument for its parent operator
in the tree and that the result of the root operator is the global result of the
comparison. In a formal way we define a comparison scheme as follows:

Definition 1 (Comparison Scheme). A comparison scheme with object do-
main O and evaluation domain L is a tuple (F, h, t) where:

– F is non-empty finite subset of (O2 → L) ∪ (
⋃

n∈N0
(Ln → L)).

– h is the partial order relationship on F that defines the hierarchy of the
evaluation tree, i.e. (F, h) is a tree.

– t is a total order relationship that defines the post order traversal (and thus
the order of the child nodes of non-leaf nodes) in the evaluation tree.

– A leaf node f of (F, h) is a O2 → L mapping.
– a non-leaf node f of (F, h) is a Ln → L mapping, where n is the degree (i.e.

the number of child nodes) of f in (L, h)

The set of all schema with object domain O and evaluation domain L will be
denoted as S(O,L).

A comparison scheme (F, h, t) ∈ S(O,L) is called a simple comparison scheme
if F is singleton. When F is not a singleton (F, h, t) is a composite comparison
scheme. Let (F, h, t) be a composite scheme with fr the root of the evaluation tree
(i.e. h(f, fr) ⇒ f = fr) and n the degree of fr. Then we can find n comparison
schema (Fi, hi, ti) ∈ S(O,L), i = 1...n such that (F, h, t) is the composition of
these schema with fr:

F = {fr} ∪ (
n⋃

i=1

Fi)

h = {(fr, f) | f ∈ F} ∪ (
n⋃

i=1

hi)

t = {(fi, fj) | fi ∈ Fi ∧ fj ∈ Fj ∧ i < j} ∪ {(f, fr) | f ∈ F} ∪ (
n⋃

i=1

ti)

The schema (Fi, hi, ti) are the subschema of (F, h, t). The subschema are im-
plicitly ordered by the order of their respective root operators in t.

For compactness of notation we will denote an arbitrary comparison scheme as
S with S = (FS , hS , tS). The subschema of S will be referred to as Si, i = 1, ..., n
and we will assume that the order of the subschema as implied by the order of
their root operators in tS is reflected by the indices (i.e. if the root operator of
Si is denoted as fi we assume that i ≤ j ⇔ tS(fi, fj))

The following definition of the evaluation function E(O,L) that compares two
objects using a given scheme takes advantage of the subschema.

Definition 2 (Evaluation function).

E(O,L) : S(O,L) × O2 → L

(S, o1, o2) 	→
{

fr(o1, o2) if S is simple
fr(

〈
E(O,L)(Si, o1, o2) | i = 1, ..., n

〉
) else
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with fr the root element of the evaluation tree of S and Si, i = 1, ..., n the sub-
schema of S in case of a composite scheme.

In order for this function to be computable, it is necessary that all operators,
both evaluation and aggregation operators, can be evaluated in finite time. A
potential problem is when an evaluation operator compares associated objects
in such a way that cycles can occure (i.e. it is possible that in order to compare
two objects, the evaluation operator calculates the similarity of the same pair of
objects). This problem can be dealt with by using a different comparison scheme
in the evaluation operator, in order to prevent endless recursion. For a generic
method for solving this problem we refer to [1].

4 Thresholds

When searching for similar or equal objects in a large set, it is not only important
to do the comparison in a meaningful way, it is also very important to process
the results appropriately. One aspect is the ordering of the results, in order to
present the better matches first. This can be done by applying the natural order
of L, putting larger values first. Secondly it is also important to decide which
comparison results are relevant and which are not. This can be done by specifying
a threshold value such that only matches with a result that is better or equal to
this threshold are kept and comparison results that are lower are not presented
in the result set. This means that a) the threshold has to be an element of L
and b) that there needs to be an order on L to decide whether a result is better
or equal to the threshold as required.

Several approaches to applying the threshold are possible. One can reject all
results that are below the threshold or one can accept only the result that are
larger or equal than the threshold. If (L, ≤L) is a total order, these approaches
are equivalent, but if not, it can make a significant difference.

5 Example

In this section we provide an example using the framework as described above to
illustrate its use. One of the important aspects of maintaining a customer database
(or a contacts list in general) is to avoid double entries. This means that before
new customers are added to the database some checks have to be performed to see
if the new customer already exists in the database. Although simple methods like
comparing the names can already help to a great extent (although people can have
the same name), things get complicated because of spelling errors and sometimes
legitimate differences in how things like street names are written (eg. ‘street’ can
be abbreviated to ‘str.’). A good matching procedure tries to estimate whether
differences in spelling can be attributed to spelling errors/legitimate spelling dif-
ferent or not, meaning that the entities are different.

It is not possible to draw conclusions from one attribute alone. People can
have the same name, share the same address, etc. However email addresses tend
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to be quite accurate for uniquely identifying individual people (it is rather rare
for employees to share email addresses). On the other hand people can have
several email addresses.

Since this kind of comparison deals with uncertainty, i.e. the result needs to
express how (un)certain it is whether two customer records describe the same
person or not, we will use possibilistic truth values as the evaluation domain.

Fig. 1. Graphical representation of the comparison scheme

Figure 1 is a graphical representation of the comparison scheme we can use
for this application. Note that the evaluation functions calculate how likely it is
that the attribute values they compare are equal taking into account possible mis-
takes/substitutions, rather than indicating how likely it is that the persons are the
same based on one attribute. These are the evaluation functions in the scheme:

ffirstname The first names can be compared by calculating the editing dis-
tance between them. However first names are often substituted (eg. Bill
for William) or abbreviated. This needs to be taken into account by using a
list of common substitutions.

flastname The last name too, can be compared by calculating the editing dis-
tance. Substitutions although they exist, will be applied less frequently.

femail One person can have multiple email addresses. In a professional context it
will be rather rare for people to share their email address. So if two contacts
have one or more matching email addresses it is very likely that they are the
same person. If they don’t share a common email address, it is very likely
that they are not the same person, however people can change their email
address from time to time. This function compare all of the email addresses
of one contact with all of the email addresses of the other contact and takes
the best match as a result.

fphone Since it is quite common for the people in one working place to commu-
nicate the same phone number to their contacts (eg. the secretary’s number)
a positive comparison result for the phone number is not conclusive, nor is a
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negative result, since people can have several phone numbers. This attribute
will mainly reinforce the other results.

fcommunity We will take the Belgian address format as a reference here. A Bel-
gian address consists of the street name, the number (of the building), the zip
code (a four digit number) and the name of the community. The community
name is actually redundant information, since the combination of the zip
code and the street name is unique. In this context redundant information
is very useful since we can make a decision with more confidence. However,
the region of a zip code may correspond to several community names (eg.
some communities have both a Dutch and a French name) and some names,
like the name of big city, can be used in combination with the several zip-
codes. This operator uses primarily the zipcode to match the regions of two
addresses, but uses the community name to detect wether a difference in
zipcode could be caused by a mistake. This matching is backed by list of
accepted combinations.

fstreet As with the previous attributes, it is possible for the same street name
to written in different ways that are acceptable for a human reader, due to
common abbreviations or ommitions. So again the comparison needs to take
these into account.

fnumber A house number is what it is, so the comparison needs only to take into
account possible errors.

The aggregation operator fname combines the results of the evaluation func-
tions ffirstname and flastname by conjunction to find out whether the name as
whole is equal. Three evaluation functions evaluate address attributes. The re-
sults of these are combined to find out wether two contacts have the same address
by faddress. In an ideal world, where all addresses are spelled correctly, faddress

would be a pure conjunction since all three of the comparisons need to be equal
for the addresses to be equal. In practice however, the three results will have a
different weight depending on quality of the address information.

Finally the results of fname, femail, fphone and faddress are combined by ffinal

to calculate the final result. If we assume that the purpose of the comparison is
to provide the user with a list of possible matches, this aggregation does not have
to be too strict. We can for example decide that we will confront the user with a
match on the condition that at least three of these four results exceed a certain
threshold. This can be done by taking the conjuction of the three best results.

6 Future Work

In this paper only the basics of the framework have been worked out. This leaves
a lot of work to be done on several fields. If one wants to create a framework to
be used by domain experts with little technical knowledge, much thought has to
be put in the selection of appropriate operators and the way these are presented,
so that the user can make an adequate choice.

Another aspect is the creation of an efficient comparison procedure from the
comparison scheme that the user creates. In a comparison scheme with many
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operators, not all operators will be equally efficient with respect resource con-
sumption (i.e. the time it takes a computer to evaluate the function). If one has
to evaluate all operators of a comparison scheme before it can be decided if the
result will pass the threshold, this information is not of much use, but in many
cases one can conclude that the result of an aggregation operator will not pass
the threshold without evaluating it, but by checking that one of the arguments
that are passed to it are not within a certain range. For example, the result of a
conjunction operator (based on a t-norm) will be smaller than or equal to each of
its arguments. So if one of the conjunction’s arguments does not pass the thresh-
old applied to the result, the other arguments of the conjunction do not have to
calculated in order to conclude that the final result will not pass the threshold.
This information can be used to optimize the evaluation of a comparison scheme
for time performance.

7 Conclusion

We developed a theoretical basis for creating schema for object comparison. The
separation of structure and semantics makes it a good basis for developing soft-
ware that allows for the efficient creation of comparison schema. It also allows us to
deal with topics such as optimization of comparison speed in a structural manner.
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2 Università degli Studi di Milano Bicocca

DISCO
Via Bicocca degli Arcimboldi, 8 20126 Milano (MI), Italy

pasi@disco.unimib.it

Abstract. XML has become a key technology for interoperability, pro-
viding a common data model to applications. However, diverse data mod-
eling choices may lead to heterogeneous XML structure and content. In
this paper, information retrieval and database-related techniques have
been jointly applied to effectively tolerate XML data diversity in the eval-
uation of flexible queries. Approximate structure and content matching
is supported via a straightforward extension to standard XPath syntax.
Also, we outline a query execution technique representing a first step
toward efficiently addressing structural pattern queries together with
predicate support over XML elements content.

1 Introduction

Il the last few years, the problem of modeling and querying semi-structured infor-
mation has been intensively studied by both database and information retrieval
research communities, although with a slightly different focus. Database research
mostly deals with data which do not conform to a strict database schema, i.e.
whose structure is not regular [1]. Information retrieval focuses on documents
sharing a basic logical structure, constituted by sub-components (or sections). Re-
search on semi-structured information querying also comes in two different flavors:
in the context of semi-structured databases, flexible query languages take into ac-
count the lack of a rigid schema of the database, thus allowing to enquiry both
data and the type/schema [4,8], while in the context of IRSs, modeling flexibil-
ity means mainly to take into account the possibility to refer to a non-uniform
structure of the documents when formulating queries [16]. De-facto standards for
the definition of semi-structured documents such as HTML and XML further en-
riched this picture by adding some features of hierarchical data models. Today, the
XML Infoset is widely employed as a basic data model for semi-structured infor-
mation, and is now the basic standard for representing semi-structured documents
in Information Retrieval. Also, techniques for querying and updating XML data

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 199–208, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



200 E. Damiani, S. Marrara, and G. Pasi

have been investigated and several standards like XQuery [26] and XUpdate [28]
have been proposed. Looking at the amount and diversity of XML data items,
it is possible to roughly divide them into 1) document-centric items where XML
is used for logical markup of text, 2) data-centric items where XML is used for
exchanging structured data among applications. For the sake of simplicity, in this
work we concentrate on the selection aspect of queries. Namely, we extend the idea
originally proposed by two of us in [6], and recently re-stated in a more formal gar-
ment in [9], in which fuzzy predicates are introduced into a XPath query to express
flexible selection conditions and to perform fuzzy subtree matching. In addition to
extending structural properties of flexible queries by means of fuzzy operators, we
also outline some content-based properties adopting IR features similarly to the
proposal of [16]. Our proposal includes modeling of vagueness and imprecision in
XML retrieval by means of the following features:

– index term weighting to produce ranked query results,
– specificity-oriented search for retrieving only the most relevant parts of

documents,
– use of vague predicates in query formulation to express flexible constraints

on stored data,
– structural vagueness, in order to find close matches for structural query

conditions.

The aim of the work is to set the foundations for a flexible XML selection
language, FuzzyXPath, later to be extended to a fully fledged query language1,
which implements imprecision and vagueness for both structural and content-
oriented query conditions. The paper is structured as follows: Section 2 motivates
the ideas exposed in this work and proposes a running example that will be used
in the rest of the paper, Section 3 gives details on query execution and show how
it works by means of an example and, finally, Section 4 exposes our conclusions
and outlines our future work.

1.1 Related Work

Several approaches have been proposed to introduce flexibility in semi-structured
information processing and, in particular, in XML querying. An early technique
[14] was based on fuzzy encoding of XML data trees. That method did not attempt
to define a query language; rather, it supported introducing new nodes in the XML
tree structure in order to carry out fuzzy similarity comparison of XML data trees.
This approach was later extended in [13] providing some flexibility in content com-
parison with the concept of XML data smushing. A later paper [2] proposed an ap-
proach based on XML query rewriting, supporting renaming and deletion of nodes
in the query. Hybrid techniques [25] have also been proposed, where XML data
are encoded and queries are rewritten. On the one hand, hybrid techniques can

1 Since the language name originally adopted in [6], FXPath, has recently been used
with the meaning of Functional XPath, in this work we suggest the new name
FuzzyXPath to overcome confusion.
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provide an accurate computation of the query cost; on the other hand, it is very
difficult to implement them because they require ad hoc XML data indexing. A
recent approach to this problem [20] proposes a dynamic summarization and in-
dexing method, FLUX, based on Bloom filters and B+-trees. Also, the work [12]
presents an indexing method to execute approximate queries on XML documents
taking into account approximation on both document structure and content. The
proposed indexing aims to reduce the complexity of finding approximate query pat-
terns, avoiding sequentially scanning all documents in the collection.

Another recent paper [7] proposes a fuzzy-based XML querying system that
performs approximate comparisons between XML query and data trees. This
technique supports imprecision on data via possibility distributions. However,
while the authors claim that their querying system is fully compatible with XML
querying standards since the final rewriting is performed in XQuery, their query
rewriting is based on a mediated architecture called MIEL++ that requires sev-
eral rewriting steps and is unlikely to scale well. In [22] the authors propose an
approach for approximate query answering in which, instead of working directly
on the data, they interpret the structural component of the query by exploiting
a reworking of the documents’ schemas by means of a schema matching pro-
cess. The information retrieval angle has been explored in the seminal paper
[16], which uses a probabilistic data modeling combined with some IR features
in order to query document-centric XML. Of course, several works in the liter-
ature had already addressed the problem of defining IR models for structured
documents [5,10,8,19,21,27]. They focused on two main aspects: how to index
structured documents so as to usefully exploit their structure in their formal rep-
resentation, and how to define query evaluation mechanisms that can retrieve
also document subparts. Passage retrieval is mainly concerned with identify sub-
parts of a text document as retrievable information units. Specifically, passage
retrieval aims to identify short blocks of relevant information among irrelevant
text [8,17]. In [21] a conceptual model for structured documents has been pro-
posed which supports a query language enabling to retrieve passages based on
their context as well as content. Aggregation-based approaches have also been
explored for representation and retrieval of structured documents. These ap-
proaches estimate the relevance of document subparts based on the aggregation
of estimated relevance of their content and of their structurally related parts
[3,18,15,23,11]. In order to improve the effectiveness of IRSs some considerable
efforts are being spent in trying to define new conceptual models aimed at in-
dexing and querying structured documents [3,24,18,17,27,11]. In [11] the idea
of producing a composite representation of structured documents is exploited,
enabling focusing retrieval only on some document subparts. In [18] this ba-
sic scheme is enriched by modeling uncertainty in content representation. In
[10,21,3] other approaches to representation and retrieval of structured docu-
ments are presented. Particularly, in [3] a fuzzy model for defining an indexing
mechanism is described which exploits users’ feedback to create personalized
representations of the same structured document. This model exploits the vague-
ness in the indexing process and enables the system to learn users needs at the
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indexing level. This pioneering work has been further developed in [5], which is
the starting step of this work.

2 Motivations and Running Example

Thanks to XML standards several application involving data interchange enjoy
interoperability at the level of the data model. Nonetheless, they often have to
face the lack of shared semantic models which causes different modeling choices.
In turn, these different choices cause differences in XML schemata, leading to
heterogeneous XML structure and content. Also, XML data stored in repositories
constantly evolve over time. Such evolution is a challenge, as existing applications
must continue to work with the evolved data. In our approach, flexible querying
of XML data is aimed at tolerating schema-level heterogeneity due either to
different modeling choices or to data evolution, allowing for posing the same
query to multiple, possibly heterogeneous XML document collections loosely
sharing the same semantics. For the sake of concreteness, in the remainder of
the paper we shall discuss this notion based on a practical example involving
the documents shown in Figure 1.

Both documents contain information about people working at a University. In
document (a) people is divided into several groups depending on the department

Fig. 1. Two XML documents sharing the same content but with different structure



FuzzyXPath: Using Fuzzy Logic an IR Features 203

they belong. Then each department is divided into technicians, administrative
staff and research staff. Researchers include both professors and Ph.D. stu-
dents. Inside each professoror student tag lie their respective name,surname,cv
andoffice.Thecv tag isusuallya large textblob. Indocument(b) theUniversity
is directly divided into departments, each department containing two groups of
people: employeesand students. Employees include administrativestaff and
professors.Eachprofessor’s (or student’s) personal details are enclosed in the tag
namewhich includes their name, surname, and cv.

3 FuzzyXPath

We are now ready to illustrate our approach to fuzzy XML querying in some
detail. According to the XML Infoset, XML documents can be represented as
a tree of typed nodes. XPath uses a pattern expression to identify nodes in an
XML document and retrieves portions of XML documents, namely the set of
nodes matching the pattern. Due to space constraints, in this context we focus
our attention on a subset of the XPath language informally defined as follows:
XPath*:= ε|l| ∗ |p1/p2| //p1|p[q] where p1 and p2 are XPath* expressions; ε, l, ∗
denote the empty path, a label and a wildcard, respectively; / and // stand for
child-axis and descendant-or-self-axis; and finally, q is called a qualifier. Following
[6] we extend the XPath syntax with three classes of characteristics:

– Fuzzy Subtree Matching: namely NEAR, ABOUT, BESIDES and LIKE, providing
a ranked list of retrieved information items rather than the set oriented one
typical of XPath.

– Fuzzy Predicates: specifying flexible selection conditions.
– Fuzzy Quantification: allowing the specification of linguistic quantifiers as

aggregation operators.

XPath 1.0 presents two main features that are relevant to our approach:

– Path-based selection: the user formulates a search path, in the standard form
of XPath expressions, that must be exactly matched against the structure
of the target XML documents.

– Set-oriented query result: the selection mechanism retrieves the documents
sets of nodes that exactly match the user-provided path.

XPath assumes that the user is fully aware of the target schema. This assump-
tion is in itself debatable since most XML documents exist without schemas; even
worse, it requires the user to write a different query for each variation of the tar-
get schema. In other words, XPath does not tolerate data structure or content
diversity. In order to tackle this problem, we extend XPath in order to perform
approximate queries in which the search path only provides a loose example of
the information the user is interested in.

Our approach is based on three steps (Figure 2):

1. in the first step the query is analyzed to extract its keywords, and then
these keywords are searched in an inverted file (detailed in Section 3.1).
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Fig. 2. Architecture of the approach

This operation reduces the cardinality of the document collection that will
be target of the query execution and extracts a ranked list of candidates on
the basis of the index term weights contained in the inverted file;

2. then, in order to ”easily” process the structural selection conditions, the
query is rewritten into a ranked set of queries that approximate the desired
information. The ranking of the approximate query is computed on the basis
of their distance from the user’s query. Each approximate query is computed
on the previously computed list of candidate documents by a common query
engine and the retrieved results, if any, will be ranked according to the weight
of the corresponding query’s (structure weight).

3. finally retrieved results are shown in a bi-dimensional space in which one
dimension is the content-based evaluation retrieval status value (index term
weight) and the other is the structure-based retrieval status value. The user
will choose which dimension he/she prefers to rank the results in the list of
retrieved items.

The proposed approach is based on exact tag matching; it would be interesting
to address the problem of approximate or semantics-based tag matching. To face
this issue, the use of a thesaurus/ontology is needed. At this stage of the work
we do not address this problem.
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3.1 Content Based Constraints

Most of the operating IRSs are based on indexing functions which take into ac-
count only marginally the structure of documents, being mainly based on their
consideration as a monolithic object, thus providing their overall content synthe-
sis. This allows for the retrieval of a document as a unit of information; in the
case of structured documents this retrieval criterion can be in contrast with the
real users’ needs, as relevant information could be found in just some subparts
(fragments) of a document. The work developed in [5] is the basis of the approach
presented here. This model is based on the observation that the production of an
information surrogate, i.e., a document synthesis used for representing the docu-
ment content, is strongly subjective and depends on the personal view of the inter-
preter of this information. Despite of this, most of the existing indexing functions
behave as a black box producing the same document representation to all users.
To overcome this limitation the indexing model proposed in [3] is able to diver-
sify the document representations, based on the users’ view. The proposed index-
ing model is composed of two main components: a static component, aimed at
the pre-calculation of terms occurrence information within the paragraphs (this
information has to be stored in the inverted file), i.e., the building bricks of the
documents, and an adaptive component that, based on the user’s indications com-
putes the index terms weights used by the matching mechanism. In [5] a flexi-
ble query language has been also proposed for expressing soft selection conditions
on both the documents’ structure and contents. The evaluation of these flexible
queries makes it possible to select a fuzzy subset of semi-structured documents
from a heterogeneous collection. For example, if one is interested in reading sci-
entific papers he/she may filter documents having most of the following sections:
Title, abstract, authors, text references. The linguistic quantifier most, that speci-
fies the soft constraint on the document structure allows not to disregard potential
interesting documents whose structure is not complete with respect to the speci-
fications; for example documents lacking the abstract section. Further, users can
indicate preferences on the desired sections. The two levels of soft conditions on
the structure and on the content of documents are expressed in two distinct phases
but are evaluated in a unique step so that the Retrieval Status Value reflects the
satisfaction of the global query. In the extension of the XPath query language that
we propose in this paper, in order to be able to evaluate content-based query con-
straints, an file inverted structure for organizing indexes has to be defined. Each
term in this structure should point to blocks of information, each block contain-
ing: docId (document identifier), field-Id (textual field corresponding to a leaf
node), path to reach that field in docId, n number of occurrences of that term in
that field, a normalization parameter np (or two normalization parameters: num-
ber of occurrences of the most occurring term in that field and number of total
occurrences of words in that field). When a query which specifies both structural
and content-based constraints is evaluated, we propose a first pre-processing based
on the consideration of terms specified in the query for content based constraints.
This pre-processing consists in selecting, based on the information contained in
the inverted file, only paths related to the fragments pointed by a given query term
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(i.e. those which indexed by the term) thus pruning the paths which possibly sat-
isfy the user query. Then on those selected paths the evaluation of structure-based
constraints can be performed.

3.2 Enforcement of Structure Constraints

Once the document collection has been restricted to a finite set of candidate doc-
uments by the content based analysis, the query is analyzed on the basis of its
structure. FuzzyXPath ([6]) constraints are used to indicate a degree of desired
approximation in the query structure. In this step each FuzzyXPath constraint
is used to create a set of queries that simulates the degree of approximation spec-
ified in the user query. Each of these queries is labeled by a structure weight that
indicates the distance between the original query structure and the current one.
Then, the resulting set of query structures is used to eliminate the documents
that do not match at all (not even approximately) the user query from the set of
candidate documents. Finally this set of queries is executed by a common query
engine (this time the match is computed exactly) and each retrieved result is
ranked on the basis of the structure weight of the query that produced it. For
example, for the user query:

university//department{NEAR}/professor[CV cw "Information
Retrieval"]/name

the approach follows these steps:

– We separate the path that carries the desired information (called info path)
from the path that carries the matching condition (called match path). In our
example, we obtain the info path university//department{NEAR}/profe--
ssor/name and the match path university//department{NEAR}/profe--
ssor[CV cw "Information Retrieval"].

– We identify the approximate clauses. In the example, the info path con-
tains the clause NEAR, which means that the output node set will be ranked
with respect to the number of steps from department to professor. The
matching path contains the construct cw (contains word/s) that is resolved
by means of standard retrieval procedures creating a set of candidate doc-
uments by filtering the collection’s weighted inverted file. The result of this
step is a set of candidate documents represented by their inverted file tuples
(docId, field-Id, path, dw2).

– The info path is then transformed in a set of weighted query paths. This
translates our FuzzyXPath NEAR clause into standard XPath constructs.
Again in our example we obtain the set of paths Q ={(university//de-
partment/professor/name,1), (university//department/*/professor/
name, 0.5),(university //department/*/*/professor/name, 0.34), . . . }.
In our example we compute the structure weight as w = 1/(1 + n) where
n is the number of steps between department and professor, but different
functions could be used on the basis of the desired approximation ranking.

2 Note that dw = n
np

.
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We can stop the generation of new paths in Q just by selecting a matching
threshold mt and stopping when w < mt.

– Paths ∈ Q are used to filter again the candidate documents inverted file
eliminating those documents whose path does not match any path ∈ Q.

– The match path is used to construct a set of queries Q′ where each query q′

is composed by the match path and one info path ∈ Q.
– Finally, queries belonging to Q′ are executed on the set of candidate doc-

uments identified by the filtered inverted file and results are ranked in a
bidimensional space that considers both weights w and dw.

4 Conclusions

While fostering application interoperability by providing a common data model,
XML Infoset poses unique challenges. Diverse modeling choices may cause dif-
ferences in XML schemata, leading to heterogeneous XML structure and con-
tent. In this paper, information retrieval and database-related techniques have
been jointly applied to effectively tolerate this diversity by supporting flexible
queries. Fuzzy/approximate matching is supported via a straightforward exten-
sion to standard XPath syntax. Also, our indexing technique represents a first
step toward efficiently addressing structural pattern queries jointly with pred-
icate support over textual content of XML elements. We plan to address this
issue in a future paper.
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Abstract. The theory of fuzzy sets has been applied to social choice
primarily in the contexts where one is given a set of individual fuzzy pref-
erence relations and the aim is to find a non-fuzzy choice set of winners
or best alternatives. We discuss the problem of composing multi-member
deliberative bodies starting from a set of individual fuzzy preference re-
lations. We outline methods of aggregating these relations into a measure
of how well each candidate represents each voter in terms of the latter’s
preferences. Our main goal is to show how the considerations discussed
in the context of individual non-fuzzy complete and transitive preference
relations can be extended into the domain of fuzzy preference relations.1

1 What Is a Good Representation?

If democracy is ruled by the people, representative democracy must be ruled by
representatives of the people. But not all systems in which a group of persons
declares themselves the representatives of the others, qualify as representative
ones in a deeper sense of the term. To say that a body of persons represents
a larger body of people requires that the values, tastes, opinions, attitudes of
the latter are somehow reflected in the activities of the former. In the words in
Rogowski ([Rogowski 1981], cited by [Chamberlin and Courant 1983, 719]):

A person, A, is represented in some matter by another person, B, to
the extent that B’s actions in the matter reflect what might be called
A’s ideal preferences – the choices that A would make if A were ideally
informed, ideally expert, and ideally clear about his or her own interests.

One might read this as suggesting that a representative body at its best
consists of the people itself. This guarantees the presence of every opinion held
1 An extended version of this paper will appear in New Mathematics and Natural

Computation.
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by someone among the people to be present in the representative body. But this
means that the representative body is no smaller than the body it is supposed
to represent, clearly an untractable arrangement.

Chamberlin and Courant impose the following requirements on representation
[Chamberlin and Courant 1983]. A committee member represents a voter to the
extent that:

1. the committee member “makes present” the voter’s opinions in the deliber-
ations that take place within the committee,

2. the committee member is similarly responsive to various kinds of arguments
presented in those deliberations as the voter, and

3. the committee member votes in the same way as the voter should the latter
be present in the committee.

Clearly, representation of any voter by any member of the committee is a mat-
ter of degree and can never be perfect in the sense that all three requirements
are satisfied. In fact, the degree of representation for any (member, voter)-pair
can be determined only ex post, i.e. once the committee’s term has expired.
This does not solve the problem of electing a representative committee. There
are basically two approaches to this election problem. Firstly, one may ask the
voters to vote for their favorite committee, that is, to signal their preferences
regarding all conceivable committees. The choice of the committee would then
be determined on the basis of ballots cast. This is what Chamberlin and Courant
call the preferences-over-committees approach. Secondly, the voters could vote
for their favorite representative or provide a ranking over candidates. This is the
preferences-over-candidates approach. Since representation is mainly about get-
ting one’s opinions heard in the committee proceedings rather than influencing
the outcomes of the committee decision making, the latter approach seems more
appropriate.

Given a preference profile of the voters over candidates and the size of the
committee, say k, Chamberlin and Courant’s proposal for determining the op-
timal committee composition is equivalent to the following. For each possible
committee, compute the number of individuals whose most preferred candidate
is present in the committee. Denote this number by n1. It can obviously be any
number between 0 and n, the total number of voters. Then count the number
of voters whose first or second preference candidate is present in the committee
and denote this by n2. Continue in this manner until all ranks 1, . . . , k have been
considered. Obviously, nk = n. Let now the set of all k-member committees be
Ck with elements c1, c2, . . . , cs. The value C(ci) =

∑k
j nj , for each i = 1, . . . , s is

the indicator of the representativeness of a committee: the higher the value, the
better represented are the voters. Clearly, k×n is the maximum attainable value
and is associated with a committee where each voter’s first ranked candidate is
present. Similarly, 0 is the minimum value of C(ci). This “worst possible” com-
mittee has the distinction that no voter ranks any committee member higher
than the (k + 1)-th in his or her ranking.

It turns out that if one maximizes C(ci) over all possible k-member commit-
tees, one – in a specific way to be explained shortly – maximizes the sum of
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the Borda scores of committee members. The most representative one-member
committee is one consisting of the candidate with the maximum Borda score. A
maximally representative k-member committee, on the other hand, is determined
by a modified Borda count. Define each voter’s representative as the committee
member getting the largest number of Borda points from that voter, i.e. the
member ranked highest in the voter’s ranking over candidates. Thus, each voter
has a representative in each committee. Now, let B(ci) denote the sum over
voters of the Borda points given to their representative in committee ci. The
most representative committee is then defined as c = arg maxi B(ci), i.e. the
committee where the sum of the Borda points given by each voter to his or her
representative is maximal. This is, indeed, a modified Borda count since each
voter gives only one score, viz. that of his or her representative.

Chamberlin and Courant show that the method for constructing the most rep-
resentative committee described above can be given another interpretation, i.e.
the most representative committee minimizes the number of objections raised
by the voters against various committees. By an objection they refer to a situ-
ation where, given a committee ci not including candidate x, voter j would be
better represented by a committee including x in the sense that x is preferred
by this voter to every member of ci. Now, summing the objections of all vot-
ers for each committee gives a index of misrepresentation for the committee.
Choosing the committee with the minimum index value amounts to choosing
the most representative committee. Thus, the modified Borda count yields the
misrepresentation-minimizing committee.

Monroe [Monroe 1995] outlines a similar approach to optimal representation.
Its basic concept is also the amount of misrepresentation. However, this concept
is applied to pairs consisting of committee members and voters. Consider a com-
mittee C and electorate N . For each pair (j, l) where j ∈ C and l ∈ N , let μjl be
the amount of misrepresentation related to l being represented by j. It is reason-
able to set μjl = 0 if k is top-ranked in l’s preferences. In searching for the pure
fully proportional representation Monroe embarks upon finding a set of k repre-
sentatives,each representing an equally-sized group of voters (constituency), so
that the total misrepresentation – the sum over voters of the misrepresentations
of all committee members – is minimal. He suggests a procedure which firstly
generates all possible

(
n
k

)
committees of k members. For each committee one then

assigns each voter to the representative that represents him or her best. Since
this typically leads to committees consisting of members with constituencies of
different size, one proceeds by moving voters from one constituency to another
so that eventually each constituency has equally many voters. As a criterion in
moving voters is the the difference between their misrepresentation in the source
and target constituencies: the smaller the difference, the more likely is the voter
to be transferred.

For large n and k the procedure is extremely tedious.2 Potthoff and Brams
[Potthoff and Brams 1998] suggest a simplification that essentially turns the

2 There is also some ambiguity as to how one should proceed in transferring voters
from candidates (constituencies) to another.
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committee formation problem into an integer programming problem. Let μij be
the misrepresentation value of candidate i to voter j. Define xi for i = 1, . . . , k
so that it is 1 if i is present in the committee and 0, otherwise. Furthermore, we
define xij = 1 if candidate i is assigned to voter j, that is, if i represents j in
the committee. Otherwise xij = 0. The objective function we aim at minimizing
now becomes:

z =
∑

i

∑

j

μij (1)

In other words, we minimize the sum of misrepresentations associated with the
committee members. In the spirit of Monroe, Potthoff and Brams impose the
following constraints:

∑

i

xi = k (2)

∑

i

xij = 1, ∀i (3)

n

k
xi +

∑

j

xij = 0, ∀i (4)

Condition (2) states that the committee consists on k candidates, condition
(3) says that each voter be represented by only one candidate,and condition (4)
amounts to the requirement that each committee member represents an equal
number of voters. In Monroe’s system, μij = k − 1 − bij where bij is the number
of Borda points given by j to candidate i.

2 Representation of Fuzzy Preferences

We shall now extend the idea of a fully proportional representation to the domain
of fuzzy individual preferences. We assume that the committee to be formed is a
group of candidates as in the preceding. In contrast to the preceding, however,
the voters have fuzzy preference relations over the candidates. We denote the set
of candidates by K. With m alternatives these preferences can be represented by
m×m matrices with entry (i, j) ∈ [0, 1], for i �= j and i, j = 1, . . . , m. We denote
it by rij which indicates the degree in which alternative i represented by the row
is preferred to alternative j represented by the column. In many contexts it is
plausible to assume that the fuzzy preferences are reciprocal, that is, rij = 1−rji,
for all i and j. In reciprocal fuzzy relations it is natural to interpret rij > 0.5
as indicating strict preference of i over j with the strength of the preference
reaching its maximum at rij = 1. Similarly, rij < 0.5 indicates a preference of
j over i and rij = rji = 0.5 is indifference between the two. We hasten to add
that the reciprocal fuzzy relations are by no means universally adopted by the
scholarly community (see e.g. [Barrett et al. 1990]). Very little of what is being
said in the following assumes reciprocity of the preference relations. Whenever
this assumption is made, it will be pointed out.
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2.1 Maximizing Representation

Consider now the concept of representation in the context of fuzzy individual
preference relations. Voter i’s preference relation over candidates can be pre-
sented as:

− ri
12 . . . ri

1k

ri
21 − . . . ri

2k

. . . . . . . . . . . .
ri
k1 ri

k2 . . . −

Consider now voter i and a committee ct consisting of k candidates as required.
We are now primarily interested in finding the members of ct that best represent
i. Denote the set of these representatives by B(i, ct). Several plausible ways of
finding the best representatives can be envisioned:

1. Bisum(ct) = {j ∈ ct|
∑

l rjl ≥
∑

l rql, ∀q ∈ ct},
2. Bi

min(ct) = {j ∈ ct| minl rjl ≥ minl rql, ∀l ∈ K, ∀q ∈ ct},
3. Bi

h(ct) = {j ∈ ct|h(j) ≥ h(q), ∀q ∈ ct} where h(j) = p (maxl rjl) + (1 −
p)(minl rjl),

4. Bi
cop(ct) = {j ∈ ct|cop(j) ≥ cop(q), ∀q ∈ ct} where cop(j) = |{l ∈ ct|rjl >

rlj , ∀l ∈ K}|.

The first one determines the best representatives on the basis of the sums
of the preference degrees obtained by candidates in all pairwise comparisons.
This method is very much in the spirit of the Borda count. The second method
looks at the minimum preference degree of each candidate when compared with
all others and picks the candidate with the largest minimum. It is a variant of
the min-max method in social choice theory. The third method is a version of
Hurwicz’s rule which maximizes the weighted sum of the smallest and largest
preference degrees [Milnor 1954]. The fourth method is motivated by Copeland’s
rule in social choice theory. The Copeland winner is the candidate that defeats
more candidates than any other candidate. In the setting of fuzzy preference
relation cop(j) is the number of candidates in cs that are less preferred to j than
j is preferred to them. In reciprocal preference matrices, cop(j) is simply the
number of entries larger than 0.5 on row j.

Each of these methods singles out the best representatives of each voter in any
given committee. Since each of the methods is based on a score, we can define a
ranking of candidates in accordance with those scores. From the point of view of
representation more important is, however, the ranking over committees ensuing
from these methods. The most straightforward way to accomplish this is to define
the score of committee ct as follows:

St =
∑

i∈N

∑

a∈ct

∑

j∈K

ri
aj (5)

Thus, the score of a committee is the sum of values given by voters to each
of its members. The values, in turn, are the sums of preference degrees in all
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pairwise comparisons. This method is a variation of the Borda count. The most
representative committee RCB would then be:

RCB = {ci ∈ Ck|Si ≥ Sj , ∀cj ∈ Ck} (6)

Although the Chamberlin-Courant approach is very close to the Borda count
as well, the above method is not its most plausible fuzzy counterpart. Rather than
summing the preference degrees over alternatives and voters, the Chamberlin-
Courant approach sums the Borda scores of each voter’s representative in any
given committee. First we define

ri
j =

∑

q∈K

ri
jq (7)

Then, for each committee ct we define:

Vit = maxj∈ctr
i
j (8)

This can be viewed as the value of committee ct to voter i as reflected by the
value i assigns to his or her representative in ct.

Now, the most representative committee in the sense of Chamberlin-Courant
is:

RCCC
sum =

= {cj ∈ Ck |
∑

i

Vij ≥
∑

i

Viq, ∀cq ∈ Ck, i ∈ N, j ∈ K} (9)

The RCCC
sum committee thus defined is based on the summation of preference

degrees in individual preference matrices. In analogous manner one can define
the most representative committee in the min-max sense. Let ri

j = minq∈Krjq .
Now define, for each committee ct and each voter i:

V ′
it = maxj∈ctr

i
j (10)

Then the most representative committee in the min-max sense is:

RC′CC
min =

= {cj ∈ Ck |
∑

i

V ′ij ≥
∑

i

V ′
iq , ∀cq ∈ Ck} (11)

The RC′CC
min differs from the previous committee in using the min-max calcu-

lus to determine each voter’s representative. In a way, RC′CC
min mixes two kinds

of maximands: the “utilitarian”and “Rawlsian”. The former maximizes the av-
erage utility, while the latter maximizes the utility of the worst-off individual
[Rawls 1971].

A purely Rawlsian committee can also be envisioned. This is obtained as
follows:

RCR = {cj ∈ Ck | miniV
′
ij ≥ miniV

′
iq, ∀cq ∈ Ck} (12)



Designing Representative Bodies When the Voter Preferences Are Fuzzy 217

In a similar vein, one can define the Hurwicz and Copeland committees, RCH

and RCCo, respectively. For a fixed value of pi ∈ [0, 1], let riH
j = pi(maxq rjq) +

(1 − pi)(minq rjq) and V H
it = maxj∈ctr

iH
j . The set of most representative

Hurwicz-type committees is, then:

RCH = {cj ∈ Ck |
∑

i

V H
ij ≥ V H

iq , ∀cq ∈ Ck} (13)

Note that the value pi is a voter specific measure of “optimism”, i.e. the weight
assigned to maxj ri

ij , the degree of preference assigned to each candidate in the
comparison of its weakest competitor. Intuitively speaking the exclusive empha-
sis on the strongest and weakest pairwise comparisons is somewhat questionable
in voting contexts.

To define the Copeland committee, let RCCo, in turn, is based on the voters’
value function riCo

j =| {q ∈ K | rjq > rqj} | and the value function V iCo
it =

maxj∈ctr
iCo
j . Now,

[RCCo = {cj ∈ Ck |
∑

i

V iCo
ji ≥

∑

i

V iCO
qi , ∀cq ∈ Ck} (14)

Of these four types of committees, the Rawlsian and Copeland types utilize
the least amount of the voter preference information. The former looks at the
minimal level preference of each candidate when compared with all others. The
latter uses only the order information of preference degrees. Of course, if the
aim is to economize on information usage, the very idea of resorting to fuzzy
preference degrees loses much of its appeal.

2.2 Committees with Equal-Sized Constituencies

In the preceding we focused on maximally representative committees. Now we
approach the committee design problem from the point of view of minimizing
misrepresentation, as suggested by Monroe. Again we assume that we are given,
for each voter, a matrix of fuzzy preference over all candidates. Our task is
to form a committee that minimizes the misrepresentation of voters. It will be
recalled that Monroe’s procedure has the following elements:

1. every possible committee of k members is considered,
2. for each committee, the voter set N is partitioned into k equal sized groups

(constituencies), and
3. each voter is first assigned to the candidate whose election would be accom-

panied with the smallest degree of misrepresentation to the voter.

The third stage calls typically for some adjustments, i.e. transfers of voters
from one candidate to another to obtain equal sized constituencies. With fuzzy
preference relations, the first problem to be discussed is how to measure misrep-
resentation. Consider a situation where voter i prefers one candidate, say aw,
to a maximum degree to any other candidate. This would be indicated in i’s
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preference matrix in row w so that it would then consist of straight 1’s in all
non-diagonal columns. Obviously, then

∑
j ri

wj = k − 1, j �= w, j = 1, . . . , k. A
natural measure of misrepresentation for i, if candidate av is the sole member of
the committee is miv = k − 1 −

∑
j ri

vj . In multi-member committees, the same
measure is applied to the candidate that represents i in the committee. The
best representative, in turn, can be determined as discussed in the preceding
subsection.

In the following we shall assume that the i’s best representative in ct is de-
termined as:

Bi
sum(ct) = {j ∈ ct |

∑

l

ri
jl ≥

∑

l

ri
ql, ∀q ∈ ct} = {j ∈ ct | ri

j ≥ ri
q, ∀q ∈ ct}.

(15)
Let maxj∈ct ri

j = g(i, t). The degree of misrepresentation of committee ct is
then:

Mt =
∑

i

(k − 1) − g(i, t) = n(k − 1) −
∑

i

g(i, t) (16)

However, Monroe suggests that the optimal committees be composed of can-
didates with equal-sized constituencies. This means that committees with the
minimum value of Mt are not, in general, acceptable since each committee mem-
ber is not necessarily the best representative of an equal number of voters. Hence,
voters have to be “transferred” from one candidate to another. As a criterion for
transfers Monroe suggests that those voters who suffer least from being associ-
ated with another committee member be transferred first. For example, suppose
that in committee ct voter 1’s best representative is candidate aj and voter 2’s
best representative is aj as well. If m1j − m1l > mj − m2p where al and ap are
the next best representatives of 1 and 2, respectively, then voter 2 is transferred
before voter 1. Unfortunately, Monroe does not give full details of the transfer
procedure, but, as was pointed out above, Potthoff and Brams have transformed
the procedure into an integer programming problem.

It turns out that the Potthoff-Brams procedure can be applied to the fuzzy
preference representation problem as well.3

The objective function is:

min
t

Mt = n(k − 1) −
∑

i

g(i, t) (17)

The constraints, in turn, are exactly the same as those defined by Potthoff
and Brams, i.e. (2 – (4).

3 Discussion

The problem of optimal representation under fuzzy preferences resembles the
problem of electing representative assemblies under various electoral systems. A
3 In fact, Potthof and Brams extend their analysis to several voting systems including

approval voting.



Designing Representative Bodies When the Voter Preferences Are Fuzzy 219

voter’s best representative might be one that “defeats” more contestants than
any other candidate in the sense of having larger preference degrees in its fa-
vor in pairwise contests. This would amount ranking candidates according to
their fuzzy Copeland scores. It is, however, questionable whether the notion of
defeating has the same unambiguous meaning in individual fuzzy preference re-
lations as in non-fuzzy preference tournaments, especially, if the fuzzy preference
relation is non-reciprocal. For this reason, it may make more sense to consider
the preference degrees in more detail in defining the degree of various candidates
from a voter’s point of view. The min-max calculus provides an alternative foun-
dation for such a definition. Similarly, the Hurwicz-type representation calculus
takes a closer look at the preference degrees. In our opinion, however, the sum-
type definition of representation and misrepresentation is most appropriate to
summarize the information contained in fuzzy individual preference relations. It
is in the spirit of Borda count but takes advantage of the additional information
provided by the degrees of preference.

The sum-type definition of individuals’ best representatives has an additional
advantage of fitting naturally together with the sum-type definition of a commit-
tee’s degree of presentation or misrepresentation. We emphasize, however, that
the sum-type definition of a committee’s degree of representation or misrepre-
sentation is compatible with any method used in aggregating individual fuzzy
preference relations into a measure of how well various candidates represent the
individual in question. Linear programming provides a useful tool for finding
representative committees once the misrepresentation measure is given.
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Abstract. A brief introduction to basic modifiers is given. Any modifier
with its dual and the corresponding negation form a DeMorgan triple
similar to that of t-norms, t-conorms, and negation. The lattice structure
of the unit interval with the usual partial order is similar to that of the set
of all membership functions. This structure has a certain connection to
implication, by means of the subsethood of fuzzy sets, and it is possible
to create a similar expression for modifiers as the axiom of reflexivity
is in modal logic. Also, other connections to modal logics can be found.
This motivates to develop a formal semantics to modifier logic by means
of that of modal logic. Actually, this kind of logic is so-called metalogic
concerning either true or false statements about properties of modifiers.
This version is based on graded possibility operations. Hence, semantic
tools for weakening modifiers are derived. The corresponding things for
substantiating modifiers are constructed by means of duality. Finally,
some outlines for modifier systems are considered.

Keywords: Modality, Modifier, metalogic, Semantics of Modal Logic,
Semantics of Modifier Logic, Modifier system.

1 Basic Modifiers

So-called Basic modifiers are modifiers having a certain effect from two possible
properties. A basic modifier either substantiate or weaken the concept being
its argument. For example, if the argument of a substantiating modifier is (as
usually) a membership function, say μ, then the modifier restricts μ in similar
way at every point x in the domain of the function. What this means, can be seen
in Definition 1 below. We consider basic modifiers by giving the definitions and
results as a short introduction to modifiers. We consider modifiers as operations
in the set of membership functions

I
X = {μ | μ : X −→ I} (1)

where I is the lattice ([0, 1], ≤).
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Definition 1 (Modifier). We say that a mapping M : I
X → I

X is

(i) a substantiating modifier if for any fuzzy set μ ∈ I
X ,

∀x ∈ X, M(μ(x)) ≤ μ(x), (2)

(ii) a weakening modifier if for any μ ∈ I
X ,

∀x ∈ X, μ(x) ≤ M(μ(x)), (3)

(iii) an identity modifier if for any μ ∈ I
X ,

∀x ∈ X, M(μ(x)) = μ(x). (4)

Identity modifiers are identity mappings on I
X . They are sometimes needed as

links between substantiating and weakening modifiers in some logical structures
involving modifier symbols.

Because a modifier M is a map from I
X to I

X , it has the properties of mem-
bership functions. A modifier M is associated with a fuzzy set μ by means of
composition of M and μ as follows. For any x ∈ X ,

(M ◦ μ)(x) = M(μ(x)). (5)

A given modifier we can associate with the dual modifier according to the
following

Definition 2 (Dual Modifier). Let M and M∗ be modifiers. We say that M∗

is the dual modifier associated with M , if for any fuzzy set μ ∈ I
X ,

∀x ∈ X, M∗(μ(x)) = η(M(η(μ(x)))), (6)

where η is a strong negation.

Proposition 1. If M is a substantiating modifier then its dual M∗ is a weak-
ening modifier and vice versa.

Proof. (See also [13].) Suppose μ ∈ I
X , and M is a substantiating modifier. Thus

∀x ∈ X, M(μ(x)) ≤ μ(x). We have to show that ∀x ∈ X, μ(x) = M∗(μ(x)). Let
n be a strong negation function. Thus ∀x ∈ X, M∗((x)) = η(M(η(μ(x)))).
Clearly

M(η(μ(x))) ≤ η(μ(x))

by Def.1. From this it follows by the properties of membership functions that

∀x ∈ X, η(M(η(μ(x)))) ≥ η(η(μ(x))) = μ(x),

i.e.,
M∗(μ(x)) ≥ μ(x). (7)

Conversely, the result follows in the similar way. �
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The condition

∀x ∈ X, M∗(μ(x)) = η(M(η(μ(x)))) (8)

in the previous proof says that the operators M , M∗, and η satisfy DeMor-
gan’s law. Thus dual pairs of modifiers with strong negation form classes called
DeMorgan triples of operators ([2]). Originally, a DeMorgan triple consists of
a t-norm, corresponding t-conorm, and negation, but the triples involving any
modifier, its dual, and negation have the same structure by Definitions 1, 2, and
Proposition 1.

We denote α-level set of a fuzzy set μ, as usually,

μα = {x ∈ X | μ(x) ≥ α, α ∈ I}

Thus the α-level set of M(μ) is

(M ◦ μ)α = {x ∈ X | M(μ(x)) ≥ α, α ∈ I}. (9)

It is easy to see that modifiers have following properties. Suppose M is a
substantiating modifier. Then we have

M(0X) = 0X , (10)
M∗(1X) = 1X , (11)

(M∗)∗(μ(x)) = M(μ(x)), (12)

where 0X and 1X are the constant functions 0X(x) = 0 and 1X(x) = 1 for all
x ∈ X .

The lattice structure of I gives the natural ordering to a set of modifiers,
similar to that of any set of membership functions. This is an implication of the
well known fact that the lattice properties of I can be embedded pointwise to
the lattice I

X . Hence, because I is a distributive and complete lattice, so is I
X ,

too. The partial ordering relation ”≤” involves the principle of implication. This
means that if M is a substantiating modifier then for any x ∈ X and μ ∈ I

X ,
M(μ(x)) ≤ μ(x), by Definition 1. In fuzzy set theory, this means that a fuzzy set
M(μ) is a subset of the fuzzy set μ (cf. Zadeh [16]). Hence, if we think that M is
the linguistic label of the formal modifier M , i.e., a suitable hedge corresponding
to the formal M , and μ is the linguistic interpretation of the formal fuzzy set μ,
then the statement

M(μ) → μ (13)

is an implication being true in any situation where for any x ∈ X and μ ∈ I
X ,

M(μ(x)) ≤ μ(x). This means that the statement

μ → M∗(μ) (14)

is true in some possible worlds. In the same way, we can consider that the
statement μ → M∗(μ) is true in the same possible worlds, by Definition 2 and
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Proposition 1. If we consider M to be a necessity operator and M∗ a possibility
operator, then the formula (13) represents the axiom of reflexivity in systems
where the primitive modal operator is necessity and (14) in modal systems where
the primitive modal operator is possibility.

When we consider modifiers as logical operators, we have to notice that they
are not truth-functional. This means that the truth values of modified statements
do not depend only of the truth value distributions of the primitive symbols
in one world, but also of the accessibility to other possible worlds. This is an
essential presupposition for the possibility to interpret modifiers as modalities.
We will see this in the considerations below.

2 Modifier Language

First, consider some fundamental things from history and some motivating things.
Lemmon [8], p. 20 - 21, describes Leibniz’ basic ideas for motivating the idea of
”classical modal logics”. He says: ”Leibniz’ suggestion now becomes: a sentence
is necessarily true (in this world) iff that sentence is true in all worlds alterna-
tive to this world.” See Lemmon [8], p. 20 to check the detailed analysis about
what the concept ”alternative to this world” means. Lemmon [8], p. 21, continues:
”Actually, in many connections it is intuitively simpler to think of world t as ac-
cessible from world u rather than alternative to u. This at least has the merit of
avoiding the temptation to suppose that alternativeness is a symmetric relation
between worlds – that if t is alternative to u, then u must be alternative to t. In-
deed, we shall not assume that each world is accessible from itself, or even that to
each world there is at least one accessible world: there may be accessibility-isolated
worlds. We shall find that to many such assumptions about the accessibility rela-
tion between worlds there correspond distinctive modal sentences which come out
valid precisely because we have made those assumptions. If necessity means truth
in all accessible worlds, then possibility will mean truth in some accessible world.
Thus our remarks about the vagueness of the notion of necessity, and the various
more precise accounts of it, may be repeated mutantis mutandis for the notion of
possibility.”

Traditional modal operators are actually modifiers that substantiate or weaken
statements or their parts being arguments of the operators. For example, the con-
cepts possible and necessary make indefinite (i.e. weaken) and make necessary (i.e.
substantiate) expressions associated with them, respectively. Thus modal logics
can be viewed to be logics of modifiers. We define modifiers formally by means of
relational structures, or Kripke frames, when they can be interpreted in different
ways. We restrict our consideration only to the cases where modifiers are unary
operators.

Propositional modifier language LMod is a language of graded modalities, that
can be generally defined by giving its alphabet and rules of formation of formulas
as follows.
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Definition 3. The alphabet of a language LMod consist of:

(i) propositional letters p, q, . . . (∈ Prop);
(ii) binary truth-functional connectives;
(iii) zero-placed operator ⊥ (fixes the value false);
(iv) non-truth-functional sentence operators F 1, F 2, . . . (∈ O).

Definition 4. Well-formed formulas (wff’s or formulas, for short) of a language
LMod are as follows:

(i) propositional letters p, q, . . . (∈ Prop) are formulas;
(ii) ⊥ is a formula;
(iii) if α and β are formulas, and � is any binary truth-functional connective,

then α�β is a formula;
(iv) if α is a formula, and F i ∈ O then F i(α) is a formula (i = 1, 2, . . .).

Formulas of the form α → ⊥ are usually abbreviated by ¬α.

3 Graded Possibility Based Modal Semantics

We consider a relation system

R =
k⋃

i=0

Ri (15)

of binary subrelations of a given binary relation R. It is the central part of
relational structures we are considering when constructing frames and models
for logics of graded modifiers. The relations may have any properties as relations
usually have. For example, they are reflexive, symmetric, transitive etc. The only
thing we presuppose is that the relations are at least reflexive. Then we can
generate systems being similar to aletic modal systems.

Definition 5. frame, or relational structure, is an ordered queue

F = 〈W,R0,R1,R2, . . . ,Rk〉 (16)

where W �= ∅ is a set and Ri is a binary relation, i = 1, . . . , k. Elements w of W
are points, states, or possible worlds.

A model corresponding to the frame F is an ordered queue

M = 〈W,R0,R1,R2, . . . ,Rk, V 〉 (17)

where V : Prop → P(W ) is a valuation.

For every world w ∈ W , V determines a set of those propositional letters,
which are true in w, namely the set

Pw = {p | w ∈ V (p)}. (18)
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The number of relations k may be finite or denumerably infinite.
Every possible world w is a maximal consistent set of formulas, i.e. α → β ∈ w

iff α /∈ w or β ∈ w, and α ∈ w iff α → ⊥ /∈ w, i.e. ¬α /∈ w. Thus a set of worlds
W is a set of maximal consistent sets of formulas. We can now define modifiers
by means of relations Ri (i = 0, 1, 2, . . . , k) of a Kripke frame as follows.

Definition 6. Let F = 〈W,R0,R1,R2, . . . ,Rk〉 be a frame, α a formula of
LMod, and w, t ∈ W . Then for every value of the index i = 0, 1, 2, . . . , k, Hi is
a possibility operator, (i.e., a weakening modifier) iff the condition

wRit ⇔ {Hi(α) | α ∈ t} ⊆ w (19)

holds, i.e. wRit holds iff for every formula α ∈ t, for which H i(α) ∈ w. Then
we say that Hi is a possibility operator determined by Ri. A set of relations
{R0,R1,R2, . . . ,Rk} is indicated by SR.

In the sequel, we use the name ”modifier” for the modal operators.

Definition 7. The dual H∗
i of a modifier H i is defined by the condition

H∗
i (α) ≡ ¬H i(¬α) (20)

(≡ is a symbol of metalanguage presenting equivalence relation between two
formulas.)

A set of duals of modifiers defined in Def. 6 is indicated by O
∗, i.e.

O
∗ = {H∗

0, H
∗
1, . . . , H

∗
k}. (21)

Elements of the set (21) are weakening modifiers, and we say that H∗
i is a

substantiating modifier determined by Ri.

Proposition 2. Let Ri ∈ SR, Hi ∈ O, (i = 0, 1, . . . , k), and α a formula of
LMod. Then the formula

wRit ⇔ {α | F i(α) ∈ w} ⊆ t (22)

holds.

Proof. Suppose wRit, F i(α) ∈ w, and α /∈ t. Then ¬α ∈ t, because t is maximal
consistent, and further, H i(¬α) ∈ w by (19). From this the condition ¬F i(α) ∈
w follows by Def. 7. But this is in contradiction to the supposition, because w
is maximally consistent. Thus wRit ⇒ {α | F i(α) ∈ w} ⊆ t.

In the converse case, suppose F i(α) ∈ w for all formulas α ∈ t. From this
it follows that ¬F i(α) /∈ w by maximal consistency of w, i.e. H i(¬α) /∈ w by
Def. 7, and also ¬α /∈ t by maximal consistency of t. Thus Hi(¬α) /∈ w ⇒
¬α ∈ t, from which the implication α ∈ t ⇒ Hi(α) ∈ w by contraposition. Thus
{Hi(α) | α ∈ t} ⊆ w, and thus wRit by (19). This completes the proof.
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The truth status of a formula in a given world w follows the principle, accord-
ing to which w is closed under connectives.

Definition 8. A truth value of a formula α of LMod in a given world w of a
model M = 〈W,R0,R1,R2 . . . ,Rk, V 〉 (denote |=M

w α) is defined recursively as
follows:

(i) If p ∈ Prop then |=M
w p iff V (p).

If α and β are formulas and F i ∈ O (i = 0, 1, 2, . . . , k) then

(ii) |=M
w ¬α iff �|=M

w α;
(iii) |=M

w α → β iff �|=M
w α, or |=M

w β;
(iv) |=M

w F i(α) iff for every world t, such that if wRit then |=M
t α.

A truth condition for the dual F ∗
i of the operator F i ∈ O(i = 0, 1, 2, . . . , k) can

be derived by means of Def. 8 (iv). Let α be a formula of LMod, then

(v) |=M
w F ∗

i (α) iff there exists t ∈ W , such that wRit and |=M
t α.

A line of argument for the case (v) is analogous to that for ♦ in Chellas’ book
[1] on page 7.

For every formula α in LMod and for every model M there exists a set

‖α‖M = {w ∈ W | |=M
w α}. (23)

This set is called a truth set of α in a model M.

Suppose that a frame F = 〈W,R0,R1,R2 . . . ,Rk〉 is given. We say that a
formula α in LMod is valid in F , denote |=F α iff |=M

w α holds in all models
M of F , and w ∈ W . A formula α is satisfiable in F iff |=M

w α holds in some
models M of F , and w ∈ W . A formula α is valid iff α is valin in every F , and
satisfiable iff α is satisfiable in some F . Equivalently, we can say that α is valid
iff |=M

w α holds in all models M = 〈W,R0,R1,R2 . . . ,Rk, V 〉, and w ∈ W . It
is also very often natural to use the concept ”validity of a formula α in a model
M”, denote |=M α. We say that α is valid in M iff |=M

w α holds in all w ∈ W .
Clearly, |=F α iff |=M α for every M in F , and |= α iff |=M α for every M.

Definition 9. Semantic entailment α |= β of formulas α and β in LMod is
defined by the condition

α |= β iff |= α → β. (Ent.)

Semantic entailment has a special property concerning modifier symbols. It can
be proved that the following thing holds:

H(α) |= β iff |= α → β, (EntWEAK)

where H is a weakening modifier symbol. The corresponding result for any
substantiating modifier symbol is

α |= F (β) iff |= α → β, (EntSUBST )

where F is any substantiating modifier symbol.
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4 Towards Modifier Systems

We consider here some preliminary things we need in creating modifier systems
using the semantics considered in Sec. 3. We will have different systems by
giving different properties to relations of frames F = 〈W,R0,R1,R2 . . . ,Rk〉.
Especially, we fix the relation R0 for a certain purpose. We give the property

wR0t ⇔ w = t for all w, t ∈ W (24)

to it. In this case, the equivalence

wR0t ⇔ {α | F 0(α) ∈ w} ⊆ w ⇔ {F ∗
0(α) | α ∈ t} ⊆ w (25)

follows from the formulas (19) and (22). From this it follows that for such for-
mulas α belonging to the set {α | F 0(α) ∈ w}, the condition

α ∈ w ⇔ F ∗
0(α) ∈ w (26)

holds, and thus ‖α‖M = ‖F ∗
0(α)‖M. From the corollary (v) of Def. 8 (vi) we

have the condition

(vi) |=M
w F ∗

0(α) ⇔|=M
w α

by (24), and this leads to the identity ‖α‖M = ‖F ∗
0(α)‖M. On the other hand,

from Def. 8 (iv) the condition

|=M
w F 0(α) ⇔ |=M

w α

follows by (24). From this it follows that ‖α‖M = ‖F 0(α)‖M. By means of these
identities the result

‖F ∗
0(α)‖M = ‖F 0(α)‖M. (27)

This result can be interpreted by the conclusion that the operator F 0 is its own
dual. It can be thought that the formulas α, F 0(α) and F ∗

0(α), whose truth
sets are identical, express in each world exactly same states of affairs, and, in
this point of view, they are equivalent. When we define the equivalence of two
formulas in this way, then especially from the equivalence

α ≡ F ∗
0(α) (28)

we get a result concerning the selfduality of F 0 as follows:

F 0(α)
(28)
≡ F 0(F ∗

0(α)) ≡ F 0(¬F 0(¬α)) ≡ ¬F ∗
0(F 0(¬α))

(28)
≡ ¬F 0(¬α) ≡ F ∗

0(α).

From this it also follows that the sets in (25) are idetical, i.e.

{α | F 0(α) ∈ w} = {F ∗
0(α) | α ∈ t}.
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Thus the operator F 0 is an identity operator denoted often by �.
Next, we consider some additions to the formal semantics considered above.

The purpose for this is to give some preliminary things for creating modifier
systems, i.e. for choosing a set of axiom scheme and sets of inference rules. These
additions concern mainly properties of relations of frames. All the systems use
identity operator, and thus the relation R0 existing in the frames satisfies the
condition (24) and determines an identity operator by means of considerations
above basing on (19) and (22). The validity of used axioms has been proved in
Mattila [11]. Every possible world w ∈ W mentioned in frames is closed under
modus ponens, and thus modus ponens

α → β , α �S β (MP)

appears as an inference rule in every systems. The subscript S in the symbol
�S refers to the system under consideration. In addition to this, according to
the basic semantics considered above the (semantical) rule of possibility is as
follows. Let Hi be any weakening modifier operator, then

|= Hi(α) ⇒|= α (RPSEM)

holds for all H i ∈ O
∗, and thus its syntactical counterpart

�S Hi(α) ⇒�S α (RP)

is used as a second inference rule. The duals of the rule of possibility (RPSEM)
and its syntactical counterpart (RP) are rule of substantiation

|= α ⇒|= F i(α) (RSSEM )

that holds for all F i ∈ O, and its syntactical counterpart is

�S α ⇒�S F i(α). (RS)

The rules (RSSEM ) and (RS) follow from the rules (RPSEM ) and (RP), respec-
tively, by the principle of duality. The rule (RS) is a generalization of the rule
of necessitation (RN) in usual modal logic.

5 Concluding Remarks

Modifier logics based on graded modalities are two-valued logics concerning
statements about properties and relations of modifiers where the statements
are either true or false. Hence, modifier logic can be considered to be so-called
metalogic considering things in metalevel. Hence, metalogic of basic modifiers
is not classical logic but logic of graded modal operators. This means that it is
not truth-functional, because modifier operators in modifier logic are not truth-
functional.

From the definitions and results in Section 1 concerning modifiers, it seems to
be possible to create an alternative formal semantics for aletic modal logic using
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the structure of modifiers. Some hints to this direction exist already in above
considered things.

The set of relations

SR = {R0,R1,R2, . . . ,Rk}

is naturally partially ordered by the ordering ”⊆”. If the ordering is linear, then
we have a nested queue

R0 ⊆ R1 ⊆ R2 ⊆ . . . ⊆ Rk, (29)

where it is possible that Rk = R, by 15 (or otherwise, Rk ⊂ R). If the condition
(29) holds with Rk = R, then it is quite easy to create modifier systems where all
the modifiers can be linearly ordered according to the strength of the modifier.
Actually, the strength of the modifiers of a system can be defined by means of a
nested relation system.

In any case, it is possible to create modifier systems with completeness results
similar to graded systems T, S4, or S5, if the relations are reflexive, reflexive
and symmetric, or reflexive, symmetric and transitive, respectively. In the nested
case, see for example [9] and [12].

Instead of possibility operations, it is also possible to create similar semantics
for modifiers using necessity operators, i.e., substantiating modifiers. The basic
starting point to that approach is the same as here (cf. [12]).
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Abstract. A neural network is developed to mimic a human brain. The
neural network consists of units and links that connect between units.
Various types of neural networks are categorized into two classes: (1)
back-propagation hierarchical neural network and (2) mutual-connected
neural network. Generally speaking, it is hard to fix the number of units
to build a neural network for solving problems. So the number of units
is decided on the basis of experts’ experience.

In this paper, we explain a learning method how to decide the struc-
ture of a neural network for problems. The learning method is named
structural learning. Even if we give a sufficient number of units, the op-
timal structure will be decided in the process of learning.

The objective of the paper is to explain the structural learning of
both hierarchical and mutual connecting neural networks. Both networks
obtained and showed the sufficiently good results. In the stock forecast by
a general neural network, the operation and the system cost are very large
because a lot of numbers of hidden layer units in the network are used.
This research tried the optimization of the network by the structured
learning, and evaluated the practicality. . . .

1 Introduction

A neural network is developed to mimic a human brain. The neural network
consists of units and links that connect between units. Many types of neural
networks are classified into two categories: (1) a back-propagation hierarchical
neural network and (2) a connectionist system of a neural network. Generally
speaking, it is hard to fix the number of units building a neural network for
solving some problem. So the number of units is decided on the basis of experts’
experience.

In this paper, a learning method is employed to decide the structure of a
neural network in solving a problem. The learning method is named structural
learning. Even if we give a sufficient number of units, the optimal structure will
be decided in the process of learning.

The author is working on the structural learning in 1990s. First he worked on a
hierarchical neural network. He obtained the optimal structure of the hierarchical
neural network to solve EXOR logical calculation and classification of iris.
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Recently he apply the method to solve the forecasting of the price movement
of a stock using a hierarchical neural network. Also he obtained the optimal
structure to solve portfolio problems.

Generally, a neural network spends much computation time and cost in fore-
casting the value and movement of a stock. The reason is because a neural net-
work requires exponential computation time according to the number of units in
a hidden layer in pursuing it. In the paper, the hidden layer is optimally struc-
tured by structurally learning a neural network. The results enable us to reduce
the computational time and cost as well as to understand the structure much
easily.

The objective of the paper is to explain the structural learning of both hier-
archical and mutual connecting neural networks. Both networks obtained and
showed the sufficiently good results. In the stock forecast by a general neural net-
work, the operation and the system cost are very large because a lot of numbers
of hidden layer units in the network are used. This research tried the optimization
of the network by the structured learning, and evaluated the practicality.

2 Structural Learning of Hierarchical Neural Network

Recently, the rapid development of broad-band network accelerates investment
on a stock market through inter-networks. Especially, individual investments
with small amount are widely prevailed. The survey in 2005 by Kyodo News
Service reported that the rate of individual investors is more than 30% in three
stock Exchanges in Tokyo, Osaka and Nagoya. The forecast of stock prices has
a very high demands in individual investors.

The researches on forecasting stock prices has been pursued for many years.
The methods of the forecasting can be classified into two groups; fundamental
analysis and technical analysis [4].

Fundaments mean economical basic circumstance for stocks and include eco-
nomic macro parameters and such micro indices as financial situations of individ-
ual companies. Analysis depending on such fundamentals is named fundamentals
analysis. The forecasting of each stock price can be achieved by surveying the
achievements of many individual companies that are objective to be invested
and provides an economical environment The technical analysis stands on that
all stock should be a function of a price and time. Therefore, the future of a
stock price is analyzed using moving average and stock chart.

In this paper, we build the structural learning of a neural network and employ
this model to forecast a stock price. This analysis can be classified into technical
analysis.

Generally, a neural network is built using sufficient number of units. This
redundancy makes the neural network enable to evaluate the value using huge
number of data. On the other hand, the redundancy requires to spend much
more computation time and building cost of a system. As well, the complex
structure bothers the transparency of a structure.
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In this paper, previously employing the structural learning of a neural network
and obtaining the optimal structure, it enables us to decrease the computation
time and cost keeping the precision of the forecast.

2.1 Neural Network of Stock Forecasting

Stock data are time-series data. General neural network cannot deal with a time-
series data in the sense of time-series input. It is necessary to input data in a
neural network multi-dimensionally or to construct a new structure that can
deal with time-series data well. The representative neural network to treat data
in time-series is a concurrent neural network. The recurrent neural network is
a hierarchical neural network that has feedback of some output from hidden
units to input units in order to have a time-series input, although a general
hierarchical neural network has the flow of information from input to output.
There are Elman type of feedback from hidden units to input and Jordan type
of feedback from output [3], [5].

Elman type neural of network feeds back the output from units in a hidden
layer and Jordan type of neural network the output from units in an output
layer. The information from these units is feedback to the flamed portion. The
flamed portion is named a context layer. On the case of the Eman Type of a
neural network, a unit in a hidden layer is one to one corresponding to a unit in
a context layer. Both the numbers in a hidden layer and context layer are the
same. On the case of the Jordan type of a neural network, the number of units
in the context layer is the same number of units in the output layer. Therefore,
the number of units in the context layer is constrained by the number of units
in the output layer defined by the considered problem. On the other hand, the
number of units feedback in the Jordan type of a neural network has no constraint
depending on the number of units in the output layer, the number of units in
the constraint layer can be freely determined. In this research, the Eleman type
of a neural network is employed so as to optimize the number of units in the
hidden layer by the structural learning.

2.2 Structural Learning

In the case of making a hierarchical neural network learn teaching data through
buck-propagation method, the numbers of input units and output units are
uniquely decided depending on their required and numbers of teaching input and
output, respectively. On the other hand, the number of hidden units are depend-
ing on a learning method as well as the numbers of the input units and output
units. There should be the minimal number of the hidden units for obtaining the
results. Generally, such a number is not known previously. Conventionally, the
number of units in the hidden layer is decided depending on experiences. On this
case, if we can decrease the number of units, the computation speed and system
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cost can be saved. Also, we experience that a general type of buck-propagation
method has much dependence on the initial setting and is hard to forecast an
expected value without convergence even if we select the approximately minimal
number of units.

In order to overcome such a problem, there are various trials that a structure
of a network is changed recursively and gradually to result in reaching to its
optimal structure [2], [7]. This process is named structural learning. Such trials
of structural learning can be roughly classified into two groups. One group is a
generating learning method to start from the small structure of a neural network
and expanding recursively and gradually the structure of the neural network up
to the optimal one. The other group is an eliminating learning method to start
from the sufficiently large structure of a neural network to shrink recursively and
gradually the structure of the neural network until the optimal one.

Generating Learning Method. The genetic learning method has the fol-
lowing features. On the starting stage, as the structure of a neural network is
small, it spends smaller total computation time than the eliminating learning
method. Generally, since the learned portion is frozen without being included
in the learning process. it is rather rare to stop at the local minimum. Nev-
ertheless, as the partial optimizations are repeated, an unnatural structure is
sometimes created. In the paper, we employed the eliminating learning method
for structural learning.

Eliminating Learning Method. The eliminating learning method requires
a little bit large computation time because of starting a large network. The
learning can be pursued according to the overall check of the network, it has
the possibility to find the optimal solution that the generating learning method
cannot reach.

In this research, a goodness factor proposed by Matsunaga [6] is employed in
building the optimal structure of a neural network to evaluate the effect of each
hidden units in the hidden layer and build the eliminate learning method.

Elimination of Ineffective Units by Goodness Factor. The goodness fac-
tor defines the total sum of signals propagating in forward direction as follows:

Gk
i =

∑

p

∑

j

(wk
i,jx

k
i )2 (1)

where xk
i is an output of unit i of layer k, wk

i,j is the link weight from unit i of
layer k to unit j of layer k + 1 , p is summation over whole leaning patterns.
As it is easily understood from the definition, the large value of goodness factor
produces the large influence on the whole units of level k + 1 from the unit.
Therefore, after calculating goodness factor of all units of layer k, the unit with
the smallest goodness factor is interpreted as the most useless unit in the layer
and named a bad unit.



New Perspective for Structural Learning Method of Neural Networks 235

First, the appropriate number of units in a hidden layer is provided. After
buck propagation learning gives the result lower than the error rate given, the
learning is taken to terminated and a bad unit is eliminated. When the error rate
is greater than arbitrarily defined value then initialize all link weights of a bad
unit and then re-learn the teaching patterns. Even if this procedure is executed
the result is not improved, then one unit is tacked on to the hidden layer. The
above mentioned procedure is pursued repetitively until the smallest number of
units is obtained. The structural learning is executed according the procedure.

2.3 Example of Determination of Hidden Layer by Stractural
Learning

In this sub section, an example is given to show the determination of the number
of hidden units. It illustrates and verities how the optimal number of hidden units
is determined using Goodness Factor to solve an exclusive logical OR by a neural
network. The exclusive logical OR is a kind of logical operations and known
a non-linear classification problem. It is also widely known that the minimal
structure of a neural network of an exclusive logical OR should have two units
for the hidden layer.

Table 1. Exclusive Logical OR

Input Unit 1 Input Unit 2 Output

0 0 0
0 1 1
1 0 1
1 1 0

In the experiment, we employed an initial neural network with 5 hidden units
for structural learning. Figure 1 shows the transit number of hidden units ac-
cording the structural learning. On the case of the hidden layer with one unit, the
learning is not accomplished. Even if starting the learning from the one hidden
unit, it could not terminate. So the number of hidden layer was added with one
more unit. Therefore, the hidden layer should has two units for succeeded learn-
ing. This result is coincident with the widely known result. This result shows
our structural learning method works well.

2.4 Application of Structural Learning to Stock Price Forecasting

Generally, the structural learning is to build a neural network with the minimal
number of units under the consideration of dependency of initial values. In this
research, the structural learning is employed to decide the optimal number of
units in order that the stock prices are forecasted with high precision.
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Fig. 1. Transit Number of Hidden Units in XOR Problem

The effect of the structural learning in forecasting stock prices by a neural
network is verified as follows. First, it is pursued to structural-learn a neural
network. Then, depending this procedure, the optimal number of hidden units
is determined in this experiment. After then, we compare and verify the effect
and efficiency between the neural network with the same number of hidden units
and the neural network resulted by the structural learning.

Input to a Neural Network. In this paper Plural number of stocks are
employed as an input data to a neural networkC Plural stocks are normalized.
The plural stocks can remove nose data in learning.

In this experiment, we employed a neural network with 30 units initially
and pursue structural learning with 5 input stocks that are selected by SOM.
Table 2 shows the resulted forecasting precision in order to verify the effect of
the structural learning. The learning is pursued under the same condition as in
verification.

From Table 2, in all aspects the results of the structurally learned neural
network are better than a neural network with 30 units. In the computational
time the structurally learning neural network spent only one third less than a
general neural network.

Table 2. Forecasting Precision per Stock

Number of Input Stocks 1 5

Forecast Precision (Mean)[%] 59.6 62.7
Forecast Precision (Maximum)[%] 72.5 73.5
Forecast Precision (Minimum)[%] 52.5 55.9
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Determination of Input Data. Before the verification let us discus about
input data. In this research we propose to employ plural number of stocks in-
cluding the focal stock in order that the proposed neural network model can
forecast stock prices precisely. Using the plural stocks, the neural network can
recognize the tendency of stock movements. Even if focal stock data for forecast-
ing are noisy, the forecasting does not have such an influence.

Also, the effect of plural sets of data is discussed in Appendix 2.4.
In order to select plural stocks relating the focal stock, a large number of stocks

from various industries are selected and the time-series data of their stock prices
are classified based on a SOM ( Self-Organizing Map ). It is necessary to classify
the transit of the stock price instead of classifying the stock prices themselves.
In order to do so, we normalize the time-series prices of 50 stocks as a pre-
processing.

The normalization is give the following equation:

y =
x − min

max − min
(2)

where y is a normalized stock price, x is an original stock price, min andmax are
the smallest and the largest of teaching data, respectively.

The stock prices of each of 50 stocks from January 4, 2004 to October 22, 2002
for 197 days are normalized. Figure 2 shows the result classified by SOM using
the normalized data. Figure 2 illustrates only the neighboring area adjacent to
Hitachi Ltd. [code6501]. The reason why the time-series stock prices is dated
because the variation among values measured at stock value.

Fig. 2. Classification by SOM
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Figures 2 shows that input data consists of five stocks.

– Hitachi Ltd [code6501]
– Sekisui House Ltd [code1928]
– Saizeriya Co. Ltd.[code7581]
– Squire Enix [code9620]
– TOPIX

It is necessary in time-series forecasting to input time sequence data that are
expanded to space data. In this paper, the time-series movement is realized by
giving one bundle consisting of continuous five days of each stock and stock
index as input to a neural network and also the bundle of continuous five days
regarding one day lag data. Therefore, one input consists of 35 patterns.

Verification of Structural Learning. In structural leaning of a neural net-
work for forecasting stock price, each parameter of the neural network and learn-
ing condition are defined as follows:

– The initial number of units in hidden layer: 30
– The initial linkage weight and threshold of units: randomly given within a

value within -1 to 1.
– Learning rate: 0.1
– maximum number of learning repeatF30000
– Error rate at stopping of learning: less than 0.05

The teaching data for learning of a neural network consist of 192 patterns where
one pattern has one bundle of 5 days stock prices for each of 5 stocks and stock
index out of 197 days from January 4, 2002 to October 22, 2002. In eliminating a
bad hidden unit, as all link weights are maintained from the successful learning, it
is not necessary to learn duplicated after elimination. Therefore, as the learning
is continuously pursued after learning some length, even if the number of hidden
units is 8 and all other parameters and the learning conditions are set to the
same, it is not guaranteed to successfully learn the neural network within the
given leaning time. So it is necessary to set the maximum learning time larger.

Application to Forecasting Stock Price. In the previous section, we ob-
tained the minimal number of hidden units is 8 and the number of input units
is 30. In this section we verify the efficiency and effect of forecasting stock price
by the structural learning. The same learning condition is employed but the
maximum learning time is set to 50,000. The reason is mentioned above. The
verification simulation is executed 20 times about the largest, smallest and mean
values of forecasting precision and learning time.

The verification is done using the same normalized learning data of 197 days
of each of stocks and stock index from January 4, 2002 to October 22, 2002. The
forecast of the price of Hitachi Ltd stock for 40 dealt days from October 23, 2002
to December 28, 2002. When the forecasting of price movement is coincident with
the real movement, the forecast is counted as success.

Table 3 shows the result of verification.
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Table 3. Verification Result of Forecasting Stock Movement

Number of Hidden Units 8 30

Forecast Precision (Mean) [%] 65.1 62.7
Forecast Precision (Maximum) [%] 73.5 73.5
Forecast Precision (Minimum) [%] 58.8 55.9
Learning Time (Mean)[sec] 810.6 2289.1
Learning Time (Maximum)[sec] 1025.3 2714.5
Learning Time (Minimum)[sec] 573.5 1849.1

2.5 Discussions

In structural learning of a neural network, the neural network with 30 hidden
units required 1327 seconds as mean learning time. On the other hand, the struc-
turally learned neural network with 8 hidden units can pursue the same results
in 413 seconds. So the computational time was shortened into 1/3. Regarding
the mean forecasting precision, the neural network with 30 hidden units was 63
%, on the other hand the neural network with 8 hidden units resulted in 67%.
Even if the number of hidden units decreases, the forecasting precision was not
decreasing but increasing.

Conventionally, it is required to employ a neural network with larger num-
ber of hidden units in forecasting data such as stocks using huge number of
data. Even if we employed the optimal number of hidden units after structural
leaning, it is possible to improve the forecasting in the sense of precision and
computation time. In conventional forecasting, although the redundant forecast-
ing is employed considering noise it provided too much fitting. Then the resulted
precision of forecasting was not expected good.

The computation cost decreased by eliminating redundant hidden units as
well. That is, the elimination realize the decreasing of the memory assignment
for the computation and also for the link waits. As a result the computational
cost was possible.

2.6 Conclusions

The objective of this paper is to remove redundant units from the neural network
in forecasting stock prices. The structural learning is employed to decide the op-
timal number of hidden units of the neural network and its appropriateness is
verified. As a result, it was shown in structural learning that the neural network
can successfully determined and forecast stock prices in the simulation exper-
iment using real data. The simulation showed to increase forecasting precision
and shorten the computational time with better forecasting ability.

2.7 Conclusion

In the real investment, considering a limit amount of funds for investment, it can
not invest to a large number of stocks. The solution of the portfolio selection prob-
lem shows a tendency to increase in the number of invested stocks. This problem is
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formulated by zero-one mixed integer programming problems. However, it is hard
to solve the zero-onemixed integer programming problembecause of combinatorial
nature. Therefore, it needs an efficient approximate method to solve the large–scale
zero-one mixed integer programming problem.

In this paper, we proposed the Meta-controlled Boltzmann machine, based on
a Two-layered Boltzmann machine which is proposed by J. Watada et. al [9], to
solve the portfolio selection problem which limits the number of invested stocks.
The result of numerical examples shows that we can obtain the solution with
limited number of selected stocks. Employing the Meta-controlled Boltzmann
machine, we can reach the termination within a shorter computing time.
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Abstract. With the increment of users and information on the Web,
mining processes inspired in the traditional data mining ones have been
developed. This new recent area of investigation is called Web Mining.
Within this area, we study the analysis of web log files in what is called
Web Usage Mining. Different techniques of mining to discover usage pat-
terns from web data can be applied in Web Usage Mining. We will also
study in a more detailed way applications of Fuzzy Logic in this area.
Specially, we apply fuzzy association rules to web log files, and we give
initial traces about the application of Fuzzy Logic to personalization and
user profile construction.

Keywords: Web Usage Mining, Fuzzy Logic, Fuzzy Association Rules,
Personalization, User Profiles.

1 Introduction

In the last decade, new processes to manage huge quantities of data and discover
new knowledge have been developed. Knowledge Discovery in Databases is the
area that study this pattern discovery, and its main stage is called Data Mining.
In traditional Data Mining, non explicit knowledge can be found in data, usu-
ally stored in relational databases in a structured form [Agrawal et al., 1993].
When these techniques are applied to other information sources, such as the
Web, the particularities of the data, specially the lack of structure, have implied
specific features of the processes and techniques. Two new areas are called Text
Mining and Web Mining arise to study the applications of mining techniques to
documents and Web data, respectively.

The Web grows and changes very rapidly, and its use has been extended not
only to the information searching and retrieval but also to make commercial
transactions. The competition in the e-commerce makes necessary the applica-
tion of intelligent methods to store and to examine the information of sessions
of Web users or potential customers. For this reason the user’s behavior and the
user’s objectives are elements to obtain. The knowledge about the user is used
� Corresponding author.

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 243–252, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



244 V.H. Escobar-Jeria et al.

not only to characterize to the user but also to discover generic tendencies for
marketing purposes and for the web site improvement. These data about the
users are collected from the activity of the user in the web site through log files.

The objective is to mine web server logs to find relations among users about
navigational aspects. The nature of the data in the log files and the information
to predict such as time, user age, cultural level, etc. makes Fuzzy Logic a perfect
tool to model this information. From all the techniques with Fuzzy Logic, we will
extend our study in fuzzy association rules [Delgado et al., 2003]. Concretely, we
present an application of fuzzy association rules in the area of Web Usage Mining.

In this paper, we review some of the main applications of Fuzzy Logic to
Web Mining. For this purpose, we first give a general view of the Web Mining
area, focusing on Web Usage Mining and the processes of personalization and
user profile generation. We also study different aspects of Web Mining with
Fuzzy logic applications found in the literature. Concretely, we present some
preliminary results of experiments with Fuzzy Association Rules. Finally, we
give some conclusions and future trend lines.

2 Web Mining

Through Web Mining, mining techniques are used to automatically discover and
extract information from web documents and services [Etzioni, 1996]. However,
there are some particularities of the Web information that make difficult to get
the needed information: the huge amount the data, the diversity of language, the
quality of information, the distribution of data at different platforms and finally,
one of the most important, the lack of structure in the data. These points,
specially the unstructured data and the great heterogeneity, are also the main
inconveniences of mining processes in the web.

Cooley distinguishes three forms to understand Web Mining: from the point of
view of the content, the structure and the use [Cooley et al., 1997]. Web Content
Mining is the automatic discovery of patterns from the content in Web docu-
ments [Mitra and Pal., 2002],[Chakrabati, 2000] ; Web Structure Mining consists
on studying the structures of link enter or intra documents to discover useful
patterns of link structures [Chakrabati, 2000], [Delgado et al., 2002]; and finally,
Web Usage Mining, that we will study in this article more detailed. We can define
the Web Usage Mining as the process of automatic discovery of access patterns
or use of web services, based on the user’s behavior when interact with the Web
[Delgado et al., 2003].

2.1 Web Mining and Fuzzy Logic

In all these types of Web Mining as well as in traditional Data Mining, both from
the data or from the technique point of view, optimization tools coming from Soft
Computing have been applied such as Fuzzy Logic, Genetic Algorithms, Neural
Networks and Rough Sets [Arotaritei and Mitra., 2004]. The Fuzzy Logic is able
to represent an user-oriented selection of data, giving flexibility to the system
and producing more interpretable solutions [Mitra and Pal., 2002].
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Recently, these techniques have been applied to other data areas such as doc-
ument collections [Justicia et al., 2004] and the Web. In Web Mining, the main
techniques utilized in the literature are Fuzzy Clustering and Fuzzy Association
Rules. These are the techniques that we will use too to obtain generic naviga-
tional tendencies of the user and the construction user profiles.

Fuzzy clustering algorithms such as the fuzzy c-means (FCM), with the fuzzy-
c trimmed medoids (FCTM), and fuzzy-c medians (FCLMedS) are used in
[Mitra and Pal., 2002] for Web Content and Web Usage Mining. Another ap-
plication with fuzzy clustering can be looked up in [Nasraoui et al., 1997] for
Web Usage and Web Structure Mining. The authors apply an algorithm called
CARD (Competitive Agglomeration of Relational Data) to group different ses-
sions of users. For this purpose, not only the entries in log files are considered, but
also the structure of the site and the URLs to calculate the similarity between
two users’ sessions. The objective of this application is to identify users’ sessions
from the users’ accesses to the Web site and its structure. Along with the fuzzy
clustering, one of the techniques more utilized in Web Mining is fuzzy association
rules. An application of this technique can be found in [Garofalakis et al, 1999],
where a refinement of queries from an initial group of documents retrieved from
Web is carried out. The textual transactions are constructed also with fuzzy
values. The purpose of this work is to provide the system with an ability of
reformulation of queries using mining technologies.

Other approachusing fuzzy association rules canbe found in [Wong et al., 2001],
where aproposalwithadescriptionof a systemarchitecture topredictWebaccesses
is presented. The fuzzy association rules and the generation of a fuzzy index tree
are utilized to improve the accuracy and the efficiency of predictions of access Web
paths.

At the following section, we will comment the Fuzzy Association Rules and
experiments related with this technique in the area of Web Usage Mining.

3 Web Usage Mining

This area of Web Mining analyze the web log files to obtain user navigational
patterns that can evidence user’s preferences, the on-line client’s behavior and
the future directions of improvement of the web site. The log files contain in-
formation about the connection server or the user’s identity and authentication.
This information collects the on-line user’s activities and reflects several kinds
of behavioral different patterns.

This information is used by the companies from the point of view of market-
ing, principally, where the assignment of a general profile to a user surfing in the
web site based on his/her navigational behavior can be utilized to apply diverse
measures, and to identify users with social groups. For the exploitation of dif-
ferent kinds of data, different techniques of pattern discovery can be used. The
extracted knowledge can be used to execute tasks like prediction, personalization
and improvement of the web site infrastructure.
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3.1 Web Personalization and User Profiles

The ability of a web site to process the visits in a detailed level and to guide
his/her clients or users through useful and pertinent information successfully, is
becoming one of the crucial goals for any website nowadays. One of the forms
to get this goal is through the personalization of Web.

The personalization of Web can be seen from two points of view: the com-
pany and the user. The company’s point of view is related to the marketing and
identification of demographic classes. The user’s point of view is related to nav-
igational recommendations and obtaining of information. This process can be
described as a group of actions done by the user in the navigation so that these
actions can be processed to improve the web site according to user preferences
[Mobasher, 2005]. Part of this information can be stored in what is called user
profiles [Mart́ın-Bautista et al, 2002].

User profiles can be defined as a representation of the knowledge about the
user’s interesting information. In [Mart́ın-Bautista et al, 2002] the authors pro-
pose two different types of profiles: the simple profiles, which are represented
by data extracted from documents supposedly interesting for the user; and the
extended profiles containing additional knowledge about the user such as the
age, the language level, the country, among others.

The extended profiles can be described then as a tuple of four variables. One
of them is the demographic variable, that is related to social aspects like the
user’s age range or the education level, among others. Other variable is the
identification one, that is related to the information stored in the log files from
the user server. Then, the clickstream variables which are related to the page
weights, where if one page has a zero value, this implies that the page has not
been visited. The last variable is related to the session simple profiles described
previously [Mart́ın-Bautista et al, 2002].

For the obtaining of these profiles, clustering and association rules are appli-
cable usually. Through clustering processes, an grouping of clients or data with
similar characteristics is initially obtained automatically without having a previ-
ous classification. User profiles derived from these groups can be utilized to guide
strategies of marketing according to the groups [Nasraoui et al., 1997]. The associ-
ation rules discover associations and correlations among items where the presence
of an item or a group of them in a transaction implies (with a confidence grade)
the presence of other items [Carbonell et al., 1998]. One of the most direct appli-
cations of association rules to Web Usage Mining comes from the relations among
visits of users with a certain navigational pattern to the web site.

Theprincipal inconvenience ofhandling ofprofiles in theWeb is the lackof knowl-
edge about the identity of the user. Two different situations can rise: first, the un-
registered users where users’ profile can provide evidence of identity or associating
with a social group. A general profile is then assigned to the user. Preferences stored
in the profile can be applied to the web site for the user while she/he navigates.

The second situation refers to the registered users. If a user is identified in
some way, then the web site can change according to the user’s preferences. The
system keeps the track of the user in her/his previous visits in the web site
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together with the users’ profile. This information is utilized to personalize the
site. To characterize user groups with similar behavior a clustering method can
be performed [Mart́ın-Bautista et al, 2002]. In order to have a more ample vision
of Web Usage Mining, we will see some previous works in this area.

3.2 Related Work

In [Mobasher, 2005], an overview of the process of personalization based in
Web Usage Mining is shown. Techniques of data mining such as clustering
to discover groups of users are utilized. Furthermore, association rules can be
used to find important relations among the articles the users are interested
in, based on navigational site patterns. Other different proposal is found in
[Mart́ın-Bautista et al, 2002], where the authors propose a scalable clustering
methodology, inspired in the natural immunologic system with the facility to
learn continuously and to adapt to coming new patterns.

One of the most well-know system developed for personalization can be found
in [Cooley et al., 1997]. The system called WebMiner is based on a behavior
model of user’s navigation. By the grouping of web pages references, the system
generate transactions, from which association rules are discovered. Other system
related to personalization is presented in [Cernuzzi and Molas, 2004], where a
study of Ridier’s Web site (http://www.rieder.net.py) is carried out. The log
files of the web server are stored and analyzed. From the transactions, behavioral
patterns are extracted to describe the users’ way of surfing using clustering and
association rules. In [Wong et al., 2001] the authors propose a structure for a
guided personalization and adaptation in the Web by means of user profiles and
the accesses collected through the web log files.

3.3 Fuzzy Logic and User Profiles

Sometimes, we do not have explicit information of the users in log files besides
the information got from the server. We can complete the user’s identity and
authentication through another sources or inferring the information through
techniques of mining. For example, we can infer in the education level of the
user according to her/his navigation or may be according to the information
that the users proportionate explicitly.

Therefore, when the extended user profiles are constructed, there is infor-
mation to manage related to different concepts about the user. Some of these
concepts such as the age of the user are imprecise, since the system must ap-
proximate the data if the user does not proportionate it, or the patience of
the user surfing through the site. These characteristics can be modeled by
means of linguistic labels, for example {very low, low, regular, high, very high}
[Mart́ın-Bautista et al, 2002].

4 Fuzzy Association Rules to Analyze Web Log Files

We have seen different aspects and proposals realized in the area of Web Min-
ing, principally association rules and clustering techniques. In the following, we
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study the application of fuzzy association rules to Web Usage Mining. The main
objective of this application is to search patterns through the fuzzy association
rules between the different fields in the web log file. In this way, we can obtained
relations between pages to know the page/s that the users visit starting from
and initial visited page, or the relations between the navigation time, day of the
week, etc. and the visited pages.

Before explaining the experimental stage, we give some theoretical notions
about association and fuzzy association rules and their measures, and we show
some preliminary results of an experimental example.

4.1 Association Rules and Fuzzy Association Rules

The Association Rules look for relations or affinities among of groups of items
or fields, generally in a relational database. Let I be a set of elements called
“items” and let T be a set of elements called “transactions”, each transaction
being a set of items.

Let us consider two itemsets (sets of items) I1, I2 ⊆ I, where I1 ∩ I2 = ∅.
An association rule [Agrawal et al., 1993] I1 ⇒ I2 is an implication rule mean-
ing that the apparition of itemset I 1 in a transaction implies the apparition
of itemset I 2 in the same transaction. The reciprocal does not have to happen
necessarily [Kraft et al., 2003]. I 1 and I 2 are called antecedent and consequent
of the rule, respectively. The measures more utilized to describe the relations
among antecedent and consequent of the association rules are the Support, and
the Confidence. Support is the percentage of transactions where the rule holds,
while confidence measures the strength of the rule as the percentage of transac-
tions containing I1, that contain I2.

Fuzzy Logic [Zadeh, 1975] permits the manipulation and exploitation of in-
complete data or with a grade of uncertainty, situation that is very frequent in
the data to mine [Delgado et al., 2003]. Several authors have proposed fuzzy
association rules as a generalization of association rules when data is fuzzy
or has been previously fuzzyfied [Lee and Kwang, 1997],[Au and Chan, 1998],
[Kuok et al., 1998], [Hong et al., 1999],[Delgado et al., 2003].

Fuzzy association rules can be extracted from a group of fuzzy transac-
tions by means of an algorithm of extraction such as the algorithm APrioriTID
[Agrawal et al., 1993].

A fuzzy transaction can be defined as a nonempty subset where τ̃ ⊆ I. For
every i ∈ I we note ˜τ(i) the membership degree of i in a fuzzy transaction τ̃

[Etzioni, 1996]. We note ˜τ(I0) the degree of inclusion of an itemset I0 ⊆ I in a
fuzzy transaction τ̃ , defined in (1):

τ̃ (I0) = min
i∈I

τ̃ (i) (1)

Therefore, fuzzy transactions manage imprecision and give more flexibility be-
cause they allow us to deal with intermediate values between 0 and 1 to represent
the membership degree of the items to the transaction.

For the evaluation of the performance of the association rules, we employ a
semantic approach based on the evaluation of quantified sentenced [Zadeh, 1975].
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A quantified sentence is an expression of the form ”Q of F are G” where F and G
two fuzzy subsets of a finite set X, and Q is a relative fuzzy quantifier. Relative
quantifiers are linguistic labels that can be represented by means or fuzzy sets on
[0,1], such as ”most”, ”almost”, or ”many”. This way we can define the estimated
measures of goodness of rules. We evaluate the sentences by means of the method
GD [Delgado et al., 2000], which has been shown to verify good properties with
better performance than others. The evaluation of ”Q of F are G” by means of
GD is defined in (4),

GDQ(
G

F
) =

∑

αiΔ( G
F )

(αi − αi+1)Q(
| (G ∪ F )αi |

Fαi

) (2)

Another interesting measure is the certainty factor of a fuzzy association rule
[Delgado et al., 2000]. Given a A → C , the certainty factor takes values in [1,
1]. It is positive when the dependence between A and C is positive, 0 when there
is independence and a negative value when the dependence is negative. We say
that a fuzzy association rule is strong when its certainty factor and support are
greater than two user-defined thresholds minCF and minSupp, respectively.

4.2 Experimental Example

When the users interact with the Web, they leave digital tracks (IP, agents,
cookies, etc) that the servers store automatically in a journal of accesses. This
activity is principally stored in the log files of the web server, and it is usually
completed with other sources of information such as the proxy server and the
user’s machine.

In our case, the data to analyze is a subset of log files available from the
ECML/PKDD Conference 2005 web site [ECML/PKDD 2005]. These files are
in a CSV (Comma Separated Value) format. Table 1 shows a line of one of these
log files, which is composed by 6 fields (identifier of shopping, date, IP, session,
visited page, referenced page).

Table 1. Entry line in a log file sample

Id shop Date IP

11 Tue Jan 20 19:00:132004 213.235.141.105

Session Visited Page Referenced Page

1f75ccd2afbf87dc9abccde23f3 /dt/?c=11670 http://www.shop2.cz/ls/index.php

The sample web log file used in this experiments has 6700 entries. After the
preprocessing stage, the number of entries is reduced to 6640. After the transfor-
mation of the data set in a transactional form, we can decide the fields to take
part of the rule.



250 V.H. Escobar-Jeria et al.

For example, if the user chooses the fields of date and visited pages, the
extracted knowledge can give us an idea about which pages have been more
visited at certain hours. Also, if the user selects the fields of IP and visited
pages, we could somehow identify the users that visit those pages.

In order to be able to obtain all this information from the Web log files, we ex-
tract the association rules with the algorithm APrioriTID [Agrawal et al., 1993].
Any other Apriori like algorithm can be used, although we have chosen the Apri-
oriTID for its capability of reducing the number of groups considered.

We present an example of results that we can obtain to know the page that
the users visit starting from an initial visited page. The form of the rules to
extract would be:

Initial visited page −→ Referenced page

1. dt/?c=11670 −→ http://www.shop2.cz/ls/index.php
– Support = 0.6
– Confidence = 1.0
– FC = 1.0

2. dt/?c=12397 −→ http://www.shop7.cz/akce/kat=239
– Support = 0.2
– Confidence = 1.0
– FC = 1.0

In these two rules, we can observe that rule 1 appears with a percentage of
60% and rule 2 appears with a percentage of 20%. In both cases, the confidence
and the certainty factor are 1, which means that the users visiting the page in
the antecedent also visit the page in the consequent.

5 Conclusions and Future Work

In this work, we have given a general view of the Web Mining area, focusing on
the application of Fuzzy Logic techniques to improve different processes. The
two most utilized techniques found in the literature are fuzzy association rules
and fuzzy clustering. They have been specially applied to Web Usage Mining for
the analysis of web log files.

Fuzzy Logic can be also used to model the user behavior stored in a profile,
where most of the elements are imprecise by nature. The future work will be
go further in this area principally, continuing with the development of a tool
that allows us to integrate other techniques of mining such as clustering and/or
fuzzy clustering to group log files and to extract social groups based on their
user profiles for personalization purposes.
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Abstract. In this paper, we present a methodology for designing a
Precisiated Natural Language (PNL) based deduction engine for auto-
mated Question Answering (QA) systems. QA is one type of informa-
tion retrieval system, and is regarded as the next advancement beyond
keyword-based search engines, as it requires deductive reasoning and use
of domain/background knowledge. PNL, as discussed by Zadeh, is one
representation of natural language based on constraint-centered seman-
tics, which is convenient for computing with words. We describe a hybrid
reasoning engine which supports a “multi-pipe” process flow to handle
PNL-based deduction as well as other natural language phrases that do
not match PNL protoforms. The resulting process flows in a nested form,
from the inner to the outer layers: (a) PNL-based reasoning where all
important concepts are pre-defined by fuzzy sets, (b) deduction-based
reasoning which enables responses drawn from generated/new knowl-
edge, and (c) key phrase based search when (a) and (b) are not possible.
The design allows for two levels of response accuracy improvement over
standard search, while retaining a minimum performance level of stan-
dard search capabilities.

1 Introduction

In general, a Question Answering (QA) system is a type of information retrieval
system triggered by an input query. In the particular context of this paper, QA
systems should produce direct answers/facts (rather than a ranked list of relevant
documents) for a question expressed in natural language. Accordingly, such QA
systems are regarded as the next generation search engines, since they require
capabilities for query analyzes, recognition of most relevant facts, and deducing
new facts and answers including the use of background or domain knowledge
where necessary.

Automated QA systems are broadly classified into two categories: open-domain
and restricted (or closed) domain systems. Restricted-domain QA deals with
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questions about a specific domain (e.g, telecommunications, medicine) or a lim-
ited corpus, and is considered an easier task because natural language process-
ing (NLP) systems can exploit domain-specific knowledge frequently formalized
in ontologies. Open-domain question answering must deal with virtually any top-
ics, and commonly rely on the World Wide Web (Web) as a knowledge source.
Ask.com is an example of an early attempt at open-domain QA system, and Google
and MSN (Microsoft) are also integrating question-answering capabilities in their
search engines.

Even for restricted-domain QA systems, design complexity depends on the
type and size/scale of the knowledge source, input query format, and answer
format requirements. QA system based on small, structured databases with
structured queries that simply output a list of relevant facts are the least com-
plex, and those based on large, unstructured knowledge sources with natural
language queries that require formal/composed answers are the most complex.
In this paper, we discuss a problem of intermediate complexity, i.e. a QA system
based on small, unstructured knowledge sources with natural language queries,
where a list of the most relevant facts is an acceptable answer. We introduce the
application of PNL-based reasoning for restricted-domain QA systems, which
can increase the precision of answers for key topic areas. With a focus on well-
rounded system utility, we present a hybrid (“multi-pipe”) design that allows
integration of PNL-based reasoning, deductive reasoning with natural language
phrases, and default keyword based search as a minimal response output.

Although recent QA research investigates open-domain systems since the Web
is a vast and readily available knowledge source, restricted-domain QA systems
have also been studied. Some restricted-domain QA systems also rely on data
redundancy in the Web to validate answers or use the Web as an supplemen-
tal knowledge source. For example, Chung et al. [4] studied a restricted domain
of weather forecasts for Korean cities where weather information is described
by well-defined HTML tags from a particular websites. Structured query lan-
guage (SQL) is used to query the facts of weather conditions, and the temporal
data normalizer converts temporal expressions such as today, this weekend and
now into absolute values that can be used in querying to the database. Tsur et
al. [11] presented a biographical QA system and empirical studies of machine
learning techniques (Ripper, a rule learning algorithm, and support vector ma-
chines (SVM) for biography classification). The system first attempts to answer
queries by searching a given collection of biographies, and if required informa-
tion is not found, attempts to find the answer on the Web. Ceusters et al. [3]
described a commercial QA system package for the health care domain based
on domain ontologies. It is a rule-based system where rules are derived from
expert knowledge. Benamara [2] presented the WEBCOOP system to generate
cooperative responses on the web, integrated with a knowledge base coded in
Prolog. Application example domain was restricted to tourism. Doan-Nguyen
et al. [5] discussed ways to improve precision of answers for restricted-domain
QA systems, through re-ranking of candidates proposed by generic Information
Retrieval (IR) engine, and heuristic improvements on the IR engine.
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2 Precisiated Natural Language

We investigate a novel application of Precisiated Natural Language (PNL) en-
hanced, restricted domain QA system. Vagueness and fuzziness is inherent in
natural language, and Zadeh [12] articulates that humans have a remarkable
capability to perform a wide variety of physical and mental tasks without any
measurements. Humans use perceptions which are intrinsically imprecise. Per-
ceptions partition objects into granules, with a granule being a clump of objects
drawn together by indistinguishability, similarity, proximity or function. Percep-
tions are both fuzzy and granular (referred to as f-granular), and they are difficult
for manipulation by computers. Zadeh proposed Precisiated Natural Language
(PNL) for reasoning with problems expressed in natural language. The new ap-
proaches are not necessarily intended to replace existing NLP tools, but offers
new tools for computing with f-granular information in natural language.

In PNL, the meaning of a proposition p, can be represented as a generalized
constraint on a variable. Schematically, this is represented as:

p→X isr R

In the generalized constraint expression X isr R, X is the constrained variable,
R is the constraining relation, and r is a discrete valued modal variable. The
“is” in isr is simply its natural meaning the conjugated verb “to be”. Thus,
the expression X isu R means X is usually R, and other defined modalities
include: possibilistic (r = blank); probabilistic (r = p); veristic (r = v); random
set (r = rs); fuzzy graph (r = fg); bimodal (r = bm); and Pawlak set (r = ps).
It is important to identify the constrained variable, which may also depend on
how the information will be consumed/interpreted. For example, a proposition
‘Mary is young’ can be represented in the two following forms:

p → Age(Mary) is young

and
p → Person(young) isv Mary

which answer the questions “How old is Mary?” and “Who is young?” re-
spectively. In Zadeh [14], three basic operations on generalized constraints are
proposed (conjunction, projection, and propagation). If fuzzy sets are prede-
fined, these operations can be used to calculate the precisiated implications of
propositions.

A protoform (short for “prototypical form”) is a key concept that facilitates
deduction and reasoning with PNL expressions. Simple NL expressions with a
single “to be” verb phrase (in all conjugated forms, tenses, and modalities) can
be abstracted into respective “X is A” protoform, such as “Mary is young” or
“Price of a golf ball is two dollars”. Similarly, “John is a little older than Mary”
and “Price of a golf club is much more than the price of a golf ball” can be
abstracted to a “Y is X + B” protoform, and “Some balls are blue” can be
abstracted to a “Q1 As are Bs” protoform. Furthermore, if the first two phrases
are recognized as “age(Mary) is young” and “price(golf ball) is two dollars”, they
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can be abstracted to “f(X) is A” protoform. Details about PNL protoforms can
be found in [13] and [14].

Given that a subset of NL expressions are identified according to their proto-
forms deductions can be applied as follows. Given X is A, and Y is X + B it
can be reasoned that Y is A + B, and given Q1A’s are B’s, Q2(A’s&B’s) are
C’s, it can be computed that Q3A’s are (B’s&C’s), where Q3 = Q1 • Q2, where
• is a product in fuzzy arithmetic. In general, the following computational rules
apply to the protoforms:

X is A, (X, Y ) is B → Y is C, where μC(v) = maxu(μA(u) ∧ μB(u, v))
Q1A’s are B’s, Q2(A&B)’s are C’s → Q3A’s are (B&C)’s, where (Q3 = Q1 • Q2)
X is A → g(X) is B, where μB(v) = supu(μA(u)), v = g(u)
f(X) is A → g(X) is B, where μB(v) = supu(μB(f(u))), v = g(u)

Each of the forms above can be extended with respect to different modalities
(probabilistic, usuality, bimodal interpolation, fuzzy graph interpolation, etc.).
The deduction engine is designed to operate offline (i.e. without query input) as
well as to be query-driven [14].

3 Deduction Module

The deduction module is a major part of an overall PNL-based QA system.
A corpus of text documents are processed by the information extraction (IE)
module to identify and tag each sentence as a PNL protoform (thus far X is
A, Y is X + B, QAs are Bs, f(X) is A), causal fact (a causes b), if-then
fact, procedure, or simply ‘fact’ (none of the above). Similar techniques are
applied to the input question to identify the query-type (what, where, when,
how, how much/quantity). Details regarding the precisiation process and its
semi-automated implementation in the IE module are described in [1], and the
general system design and process flow of the QA system is discussed in [8].
Modules and processes related to the deduction engine are shown in Figure 1
below. The deduction engine has access to all corpus knowledge which were
precisiated by the IE module, and represented as a collection of fact-types.

If a sentence is a PNL protoform, it will be processed according to PNL rea-
soning. Else, phrase-based deductive reasoning is applied. In the presence of an
input query, our system analyzes the query key phrases and query-type, selects a
subset of relevant facts, and (where possible) combines with background knowl-
edge to generate the most relevant answer set according to a ranking system.
If deductive reasoning and concept matching (between query and facts) yield
results with low ranking values, a search engine (e.g., Lucene [6]) is invoked for
standard keyword-based search, which provides a minimal performance level.

3.1 Offline Reasoning

The deduction module is capable of operating in both online and offline mode. In
the offline mode, where there is no user input and thus no query, the deduction
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Fig. 1. The general structure of deduction engine for the PNL-based QA system

module analyzes existing facts to see if new facts can be generated based on
PNL protoforms or phrase-based deductive reasoning. Thus far, standard logic
applied to phrases include: negation, transitivity, and chained reasoning.

– Negation: If we have If-Then rules or causal rules like “If A then B” or
“A causes B” (A → B), we can conclude that “if NOT B then NOT A”
(¬B → ¬A)

– Transitive Reasoning: If we have causal relations A → B and B → C, we
then can conclude that A → C.

– Chaining: chaining is a multi-step transitive reasoning. Given a set of causal
relations: A → B, B → C · · · E → F , we can conclude that A → F .
Semantic interpretation of chained reasoning results may sometimes appear
to be unclear or illogical, hence the deduction module supports an option to
show (explain) all intermediate results.

In addition to standard reasoning above, we also combine X is A facts with
related simple facts. For example, given the facts: (1) Carnivores eat meat. (2)
Lions are carnivores. The second fact is in X is A form but the first one is simply
a fact. The two noun subjects (or subject phrases) are treated as equivalent, and
via substitution of ‘carnivores’ by ‘lions’ in the first sentence, the deduction
module will conclude that “lions eat meat”.

As explained in [8] an application manager may provide background knowl-
edge in the forms of simple facts or abstract facts. During offline reasoning,
the QA system can also generate new knowledge by combing the facts from
a corpus content and background knowledge. For example, in a domain about
telecommunication, the background abstract facts: “wireless *yy is less secure
than wired *yy” and “wireless *zz simplifies physical installation” may be pro-
vided. The notation ‘∗yy’ and ‘∗zz’ are reserved variables, and the deduction
module searches for matches of phrase pattern surrounding the reserved words
in the corpus text. For example, if another sentence contains information about



258 Z. Qin, M. Thint, and M.M. Sufyan Beg

‘wireless router’, then new sentences “wireless router is less secure than wired
router” and “wireless router simplifies physical installation” are generated al-
though they do not explicitly appear in the corpus text.

We note that such knowledge augmentation may also generate some mean-
ingless sentences - if a phrase “wireless chat session” is found elsewhere, gen-
erated sentence “wireless chat session simplifies physical installation” does not
make sense. However, the generated knowledge are passively stored, and when
a user inputs a query, the online processing helps to filter sensible results. It
is more likely that sentences more relevant to the query will be ranked higher.
For instance, if asked, “what type of routers simplify physical installation?” The
correct answer “wireless router simplifies physical installation” will be ranked
higher than the phrase about wireless chat session.

Offline reasoning improves performance and execution time during online use.
The module operates at the phrase-level; each sentence in the corpus is segmented
into subject phrase, verb phrase, and object phrase, such that the phrase compo-
nents can be identified with the X , Y or A, B, C ... components of the PNL or
non-PNL protoforms above. Accurate recognition of matching components (e.g.
X in one subject phrase with X in another object phrase) depends on the quality
of the concept matching module for two input strings. This module removes stop
words and checks synonyms of remaining keywords (stemmed & non-stemmed)
using WordNet [7] to compare phrases at the concept (rather than string) level.
Given a query, the answer generation process flows as described below.

3.2 Query-Based Reasoning

The query is analyzed to extract its key phrases and query type (e.g. what,
where, when, how, how much). The latter is non-trivial, and requires analysis
beyond key word spotting, since “what is the cause...”, “what is the method...”,
“on what occasion...”, are actually “why”, “how”, and “when” type questions
respectively, despite the prominent “what” keyword. Similarly, other cases have
exceptions, and only cases with higher confidence (e.g. where, whereabouts, loca-
tion as indicators for ‘where’-type questions) are marked. Additional discussion
about query typing can be found in [1]. Since this query-typing is used as a
secondary factor to refine answer ranking, it is non-critical but helpful when
correctly typed, as further explained below.

From the corpus knowledge (comprising facts extracted from a specified cor-
pus), most relevant subset of facts are identified via concept matching with query
keywords. If the relevant facts are known PNL protoforms, they are passed to
the PNL-based deduction “pipe” and the deduction engine checks for associated
fuzzy set definitions. For example, a QA application for an auto sales department
may have fuzzy sets defined for “low”, “moderate”, “powerful”, “expensive”, “a
little more”, “a lot more”, etc. If fuzzy sets are defined, and the answer to a
query is in the form Y is A + B (e.g. “Horsepower of sports model is a lot more
than the horsepower of basic model”), where “Horsepower of basic model is low”
our QA system will actually add the fuzzy sets for “low” plus “a lot more” and
produce the approximate defuzzified value. If the fuzzy sets are not defined, the
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answer remains in the NL expression as “Horsepower of sports model is low
PLUS a lot more” (i.e. a lot more than “low”) which is just a linguistic interpre-
tation of Y is A+B form. In short, pre-defined fuzzy concepts enable computing
more precise responses in the PNL paradigm; otherwise the system will return
a linguistic interpretation of PNL protoforms.

As explained in [1] some “f(X)” protoforms (e.g. cost(a flat screen monitor))
can be identified from phrases like “A flat screen monitor is expensive”, and
the deduction module supports associated computations. Given the following
facts:

– A mouse is cheap.
– A computer monitor is two hundred US dollars.
– A keyboard is fifty US dollars.

If asked “what is the cost of a computer monitor plus a keyboard?” the system
returns:

This is a ‘compound’ type question (e.g. f(X) plus f(Y )). Reasoned
from sentence: ‘A computer monitor is two hundred US dollars.’ AND
‘A keyboard is fifty US dollars.’ We can obtain:
—————————————–
cost(A computer monitor) PLUS cost(A keyboard) IS (two hundred US
dollars)+(fifty US dollars)

If we ask the cost for a mouse plus a keyboard, the answer will be ‘fifty US
dollars’ PLUS ‘cheap”. The defuzzification value will be returned if ‘cheap’ is
predefined by a fuzzy set. Otherwise, only the linguistic answers as above.

3.3 Ranking of Answers

If the relevant facts (to a query) are not PNL protoforms, they could be one of
the following (as tagged by the IE module): causal fact, if-then fact, procedure, or
just “fact”. These facts are processed through the phrase-based deduction pipe,
and the deduction engine (i) generates primary rankings of facts based on the
degree of concept match with the query, (ii) attempts deductive reasoning based
on new constraints supplied in the query, and (iii) generates secondary ranking
based on the query type (if applicable). Deductive reasoning with new con-
straints include negation, transitive and chained reasoning as explained above,
to produce an answer. In many cases, multiple facts are determined to be rel-
evant to a query, as they include the same concepts/key phrases appearing in
the query. Thus, during the secondary ranking process, ranks of causal or if-then
facts are incremented for ‘why’-type question, ranks of procedure facts would be
incremented for ‘how’-type questions, and facts containing quantity terms (nu-
meric or fuzzy terms such as “few” or “most”) are incremented for how-much
type questions. Our system displays N top ranked answers, where N may be
specified by the application manager.

A basic ranking algorithm is the count of matched concepts between corpus
facts and user query. However, by offline reasoning, we can conclude some implicit
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relations between sentences and use it to re-rank the sentences. For example,
consider the sentences:

1. Up to 16 telephones can be connected to one controller.
2. Up to 6 telephones can be connected to module-Alpha on the wall.
3. The controller is the heart of Beta.

and the query “how many telephones can be connected to Beta?”. Typical key-
word based systems will rank (1) or (2) as the highest answer, but our system
detects that (3) is a X is A form and “controller” and ”the heart of Beta” is
equivalent. Therefore, a new generated fact: “Up to 16 telephones can be con-
nected to the heart of Beta” is the highest ranked answer. In some cases where
the relevant subset is sparse or the query is ill-formed, and deduction process
can not be applied. If concept match results yield low rankings then the highest
scores of a standard search engine are returned.

4 More Examples

Additional details and output samples below summarize key functionalities of
the deduction module. Given example facts:

(i) Horsepower of the basic model is about 150.
(ii) Horsepower of the sports model is a lot more than horsepower of the basic model.

and key concepts defined by fuzzy sets: ‘about 150’ is defined by a triangu-
lar fuzzy set centered on 150 with width of the fuzzy set ± 10% (i.e. ± 15 for
this example). The term ‘a lot more’ is defined by a percentage (e.g. 100%) on
the range of the reference fuzzy set ‘about 150’. Since the two facts are PNL
protoforms X is A and Y is X + B respectively, the deduction engine produces
the result Y is A + B, and the following fuzzy addition is performed:

TriFuzzy(150, 15) + 150 × 100% = TriFuzzy(300, 15)

where TriFuzzy(a, b) represents a triangular fuzzy set whose center is at a and the
width is b. The final answer is returned as “about 300” where 300 is the defuzzified
value of the composite fuzzy set. QA system built on standard search technology
cannot provide this type of response. In practice, all key concepts in a corpus are
not likely to be pre-defined with fuzzy set representation, but for a particular sub-
section(s) where the application manager expects many questions and desires to
provide detailed answers, PNL-based computing offers value-added performance.

Examples of phrase-based deductive reasoning are provided below. For exam-
ple, given two facts:

(i) If over 50 percent of customers complain about new product WRTG54, all types of

WRTG routers will be recalled.

(ii) If all types of WRTG routers are recalled, we will start new sale on TRG100 type

of router.
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If the query is: ‘Why did you start new sale of TRG100?’ The system returns
two answers:

(1) If all types of WRTG routers are recalled , we will start new sale on TRG100
type of router.
(2) If over 50 percent of customers complain about new product WRTG54 then we will
start new sale on TRG100 type of router.

If the query is: ‘Why would you not start new sale of TRG100?’. The answers are:

(3) NOT (we will start on a new sale on TRG100 type of router) IMPLIES NOT
(all types of WRTG routers are recalled).
(4) NOT (we will start on a new sale on TRG100 type of router) IMPLIES NOT (over
50 percent customers complain about new product WRTG54.
The second set of answers (3 and 4) result from the transitive implications of
facts (i) and (ii).

At this juncture, a result processor has not been implemented to ‘re-phrase’
answers in human-friendly form, but the reasoning logic is correct.

5 Summary

We presented an application of PNL-based reasoning, and in particular, dis-
cussed its role in a deduction engine for QA systems. While many NL expression
can be precisiated manually (i.e. with human interpretations of semantics), a
smaller subset is amenable to automated precisiation. As a first attempt at
(semi-)automated application of PNL-based reasoning, the input was limited
to simple NL sentences (i.e. with single verb phrase) that can be precisiated
and abstracted to PNL protoforms. PNL-based processing converts the complex
problem of NLP operations and deduction with natural language phrases into
simple substitution operations of algebraic expressions. Moreover, if associated
fuzzy concepts are pre-defined with fuzzy sets, more accurate answers (within
the constraints of f-granularity) can be computed. The limitation (in the context
of advanced search or QA applications) however, is that since only a subset of
natural language sentence forms can be precisiated in a (semi-)automated sense,
PNL-based computing cannot be used as a stand-alone solution, and must be
supplemented by standard NLP and information retrieval techniques to realize
a complete and practical system. The hybrid, multi-pipe approach described
above provides one way to implement an integrated solution. This system re-
mains under development, and further development and testing are planned
using TREC’s QA data sources [9]. Further research topics also include concept
matching, ranking algorithms, different knowledge representation schemes such
as RDF and OWL formats [10], and integration of additional NLP tools such as
entity extractors for analyzing corpus knowledge and query phrases.
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Abstract. The totality of human thoughts in a document set is mod-
eled by a polyhedron. A point represents a THOUGHT, a simplex a
CONCEPT, a connected component a COMPLETE CONCEPT, the
simplicial structure the whole IDEA. The building block is the simplex;
it represents the concept that is carried by a set of high frequency and
nearby co-occurring keywords. The simplicial structure of the keywords
provides an ”informal” formal language about human thoughts in a doc-
ument set. The model theory of this language gives the desirable model.

Keyword: granular computing, neighborhood system, rough set, topol-
ogy, simplicial complex.

1 Introduction

This is our attempt to model the human thinking in a document set. The back-
bone is concept analysis. First, the collection of concepts in a document set is
represented by a geometric structure, called simplicial complex in combinatorial
topology [7]. A simplex is simply a high frequency and nearby keywordset that
carries a concept. The collection of all these simplexes represents the structure of
these concepts. These concepts form an ”informal” formal language of the idea
in the document. A model of this language is the desirable model.

The concept defined in a document set does satisfy a conditional called Apriori
Condition. This is due to we define the concept by frequent keyword set. In
general, we may not have the structure of simplicial complex. But the set of
concepts is a granular model in the sense of [6,5].

2 Granular Computing and Models

Granulation is a natural problem-solving methodology deeply rooted in human
thinking; Human body is granulated into head, neck, and etc. The notion is intrin-
sically fuzzy, vague and imprecise. So the classical strategy Divide and Conquer
is actually Granulate and Conquer. Mathematicians idealized it into the notion
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of partitions, and developed it into a fundamental problem-solving methodology.
Nevertheless, the notion of partitions, which absolutely does not permit any over-
lapping among its granules, seems to be too restrictive for real world problems. A
more general theory seems needed; we have called it Granular Computing [22],[23].

In this paper, we will adopt the idea from topological spaces. A topological
space is often defined as a pair of objects that consists of one classical set and
one family of open sets that satisfies certain axioms. We will take this scheme
and propose to define

Definition 1. A set based granular model is defined to be a pair (U , β), where
U is the universe of discourse, called global granular space and β is a family of
subsets Xj , j ∈ J , called basic granules or elementary granules, just to be in
sync with rough set theory [16], where J is an index set.

We will illustrate the model with a set delicate examples:

Example 1. Let us assume U consists of 4 points; see the first tetrahedron in
Figure 3 below. β is organized as follows:

1. X1
4 consists of four elements {a, b, c, d}; It can be thought of as a set of

linearly independent 4 points in Euclidean space. They determined an open
tetrahedron (a open simplex of dimension 3).

2. Each one of X1
3 , X2

3 , X3
3 , and X4

3 consists of three element. Each can be
thought of as a set of open triangles (2 dimensional faces) of the tetrahedron.

3. Each one of X1
2 , X2

2 , X3
2 , X4

2 X5
2 , and X6

2 consist of two elements. Each is
a simplex of dimension 1.

4. Each one of X1
1 , X2

1 , X3
1 , and X4

1 consists of one elements. Each is a simplex
of dimension 0.

5. This collection of all these simplexes above form a simplicial complex.

Intuitively U is the data set, the universe of discourse. Each simplex represents
some basic knowledge about the data. This granular model has the power set as
its granular structure β.

We can also consider |U |= closed Tetrahedron. In this case the β is a partition:
1 open tetrahedron, 4 open triangles, 6 open segments and 4 vertices forms a par-
tition. Under this view, each open simplex (tetrahedron, triangles, open segments,
vertices) is a basic knowledge - this is a view from rough set theory. If we take the
simplicial complex view, each X’s is a granule(a combinatorial simplex). It can be
realized as an open simplex in Euclidean space, hence the combinatorial simplex
should be a basic knowledge, deriving from rough set theory.

3 The Structure of Concepts in Documents

In this section, we build the Simplicial Complex of Concepts. A concept is car-
ried by a frequent keywordset; recall the analogous term, frequent itemset in
association rules.

The major step is to convert linear-text-representations (documents) into
a simplicial-complex-representation. This simplicial-complex is quite foreign to
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computer scientists, however, it is an old notion in combinatorial topology
( cf Section 3.1). We may schematically summarize our approach as follows:
Note that =⇒ denote the ”information flow,” which not a mathematical map-
ping yet. The goal of this paper is to have a mathematical model of author’s
idea, so that =⇒ becomes a mathematical mapping

[
author′s
idea

]
=⇒

[
linear
text

]

⇓(summarize)

IDEA ≡
[

common
thoughts

]
=⇒

[
simplicial
complex

]

3.1 Combinatorial Topology

We will review a branch of mathematics, called combinatorial topology. A n-
dimensional Euclidean space is a space in which elements can be addressed using
the Cartesian product of n sets of real numbers. A unit point is a point which
coordinates are all 0 but a single 1, (0, . . . , 0, 1, 0, . . . , 0). These unit points will
be regarded as vertices. We will use them to illustrate the notion of n-simplex.

Let us examine the n-simplexes, when n = 0, 1, 2, 3. A 0-simplex Δ(v0)
consists of a vertex v0, which is a point in the Euclidean space. A 1-simplex
Δ(v0, v1) consists of two points {v0, v1}. These two points can be interpreted as
an open segment (v0, v1) in Euclidean space; note that it does not include its
end points. A 2-simplex Δ(v0, v1, v2) consists of three points {v0, v1, v2}. These
three points can be interpreted as an open triangle with vertices v0, v1, and
v2, which does not include its edges and vertices. A 3-simplex Δ(v0, v1, v2, v3)
consists of four points {v0, v1, v2, v3} that can be interpreted as an open
tetrahedron. Again, it does not includes any of its boundaries.

In general, vertices do not have to be points in Euclidean space, they can be
any kind of objects. Formally,

Definition 2. A n-simplex, denoted by Δ(v0, . . . , vn), is a set of independent
abstract vertices {v0, . . . , vn}. A q-subset of a n-simplex is called a q-face; it
is a q-simplex Δ(vj0 , . . . , vjq ) whose vertices are a subset of {v0, . . . , vn} with
cardinality q + 1.

More generally, we have ([19], pp. 108).

Definition 3. A simplicial complex C consists of a set {v} of vertices and a set
{s} of finite nonempty subsets of {v} called simplexes such that
– Any set consisting of one vertex is a simplex.
– Closed condition: Any nonempty subset of a simplex is a simplex.

Any simplex s containing exactly q + 1 vertices is called a q-simplex. We also
say that the dimension of s is q and write dim s=q. We will refer to C as a
non-closed simplicial complex, if the closed condition is not fulfilled for all its
constituting simplexes.

A simplex is said to be maximal if it is not a face of any other simplex.



266 T.Y. Lin

3.2 Topology of Linear Texts

Let us first recall the notion of Apriori condition.

Definition 4. Apriori condition: Any q-subset of a n-keywordset is a q-
keywordset for q ≤ n.

where a set containing exactly q elements is abbreviated as a q-subset. If we
regard a keyword as vertex, and a keywordset as a simplex, then the Apriori
condition is the closed condition of the simplicial complex (cf Section 3.1). With
this observation, we have the following theorem:

Theorem 1. The pair (Vtext, Stext) is an Abstract Simplicial Complex, where

1. Vtext is the set of keywords, and is regarded as a set of abstract vertices,
called keyword-vertices.

2. Stext is the set of keywordsets (associations) and is regarded as a set of
abstract simplexes, called keyword-simplexes.

This simplicial complex is called a Keyword simplicial Complex (KSC). Note
that this

• KSC is a combinatorial structure that consists, except the vertices, of ”invisible
objects” hidden in the document set; see Section 3.3.

To see its strength, let us recall a striking theorem: Using the geometry, we
can determine if two sets of documents written in different languages are similar,
even without translation.

Corollary 1. Let A and B be two document sets, where B is a translation of
A into another language then the simplicial complexes of A and the simplicial
complexes of B are isomorphic.

3.3 Hidden Semantics - “Reading Between Lines”

Let us start intuitively. Each document describes some idea in author’s mind,
which may consist of many levels and wide ranges of concepts. We will explore
some of it through high frequency keywords and keywordsets. Following the
terminology in association mining, we may also use

• an association and a keywordset are synonyms.

Roughly, association is stressed more on the semantics of a keywordset, while the
latter one is a phenomena of document set. They will be used interchangeably
throughout this paper. First, let us recall some examples.

1. The keywordset ”Wall Street” represents a concept that has nothing to do
with ”Wall” and ”Street”

2. The keywordset ”White House” represents an object that has very little to
do with ”White” and ”House.”

These examples indicate that the strength of this approach is the ability to
capture the notion that is defined implicitly by the keywordset, in plain words,

• the capability of ”reading between lines.”
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4 The Language of Concepts in Documents

The simplicial complex is a structure of concepts in the document set. For con-
cept analysis, we need a language (a set of notations) to describe concepts, which
consist of set of ”authors’ thoughts” and ”their interactions” hidden in the linear
texts; all ”interactions” are invisible in the text.

L1) IDEA is a notation to denote the totality of common thoughts or concepts
among all authors of the documents under consideration; it is the universe
of discourse.

L2) THOUGHT is a notation to denote some important basic ingredient, called
element, in IDEA.

Please note that IDEA, at this point, is not a mathematical object yet. Instead,
we merely view it as an element of an informal language. Human THOUGHT is
not a mathematical concept either. The goal here is to establish

• IDEA is a set of THOUGHTs.

So both are mathematical objects. Loosely speaking, the main goal of this paper
is to discover/construct a reasonable mathematical model for IDEA. So the
language (a set of notations) will be interpreted into a mathematical model.
This model will be the base of our concept analysis.

L3) B-concept(k), read as basic concept, is a notation to denote the MEANING
of the keyword k.

L4) I-concept(Δ), read as intermediate concept, is a notation to denote the
MEANING of a q-simplex Δ.

L5) P-concept, read as primitive concept, is a notation to denote the I-concept
of a maximal simplex.

L6) C-concept, read as complete concept is a notation to denote the MEANING
of a connected component.

So we have sufficient notations to conduct concept analysis. However, we do
not have adequate facilities in the language, such as a deductive system, etc... to
reason about these concepts and understand the interrelationships among them.
Therefore, we will set up, in Tarski’s style semantics, namely, a mathematical
model to interpret this language.

5 Polyhedrons- Latent Semantic Model

We may map Vtext as the unit points of an Euclidean space (cf Section 3.1).
By doing so, each keywordset in Stext can be interpreted as an open simplex in
Euclidean space [19].

Definition 5. The union of all these open simplexes is the Polyhedron |Stext|
of the Linear Texts.
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The Polyhedron is a closed set (due to the closed condition) in the Euclidean
space. Next, we will introduce an important notion: star(Δ) [19]. We will denote
it by S∗(Δ).

Definition 6. S∗(Δ) = ∪{ All open simplexes that have Δ as a face }.

In the case when Δ = k is a keyword, S∗(k) is an open set in |Stext|. It is
the minimal open neighborhood of k that is definable as simplexes only. It is
referred to as the basic neighborhood or basic granule of k. Consider it as the
first building block of our simplicial complex. For example, we have

Proposition 1. S∗(Δ) = ∩{S∗(ki) | ki ∈ Δ}.
S∗(Δmax) = Δ + max for a maximal simplex Δmax.

5.1 Latent Semantic Model

Now, we are ready to introduce the model: Let P = |Stext| be the polyhedron of
KSC.

Definition 7. The Latent Semantic Model consists of a KSC and its Polyhe-
dron:

– IDEA is modeled by the polyhedron P .
– a human THOUGHT is an element in IDEA. P is referred to as the Latent

Semantic Space.
– The mapping S∗ : KSC −→ P realize the interpretations, for example, a

B-concept is mapped to an open set.

With this interpretation, all language elements, such as concepts, are gran-
ules(subsets) in P . In particular,

– B-concept(k) = S∗(k)
– I-concept(Δ) = S∗(Δ) = ∩{S∗(ki) | ki ∈ Δ}
– P-concept is the I-concept of a maximal simplex.
– C-concept is a connected component.

It should be clear that the set of I-concepts forms a semigroup generated by
S∗(k) via intersections. This semigroup is a partial order set obtained using the
”inclusion” of set theory. On the other hand, the I-concept(Δ) is also a partial
order set, but this time, due to the face-relation of simplexes Δ).

Proposition 2. The collection of I-concepts has two partial orderings: One by
KSC, and another by the set inclusion in the polyhedron. Of importance, these
two partial orders do agree.

We leave it to the reader to verify that the required properties are verified by
these sets. This collection is indexed by the KSC. We so we will call it the
Knowledge Complex and denote it by β. It is far more complex than a concept
hierarchy. In particular, the pair (P, β), where β=KSC, is a granular model in
the sense of [6,5].
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6 Conclusions

In this paper, we focus on simplicial complex, which is a special form of (set
based) granular model. This is because, we use frequency as the criterion for
keywordset. If we use generalized TFIDF, then the set of simplexes may not
have the closed condition. So the resulting model is a non-closed subset of the
simplicial complex. In this case, simplical complexes are two restrictive, we need
the full blown set based granular model.

References

1. Bairamian, S. Goal Search in Relational Databases, Thesis, California State Uni-
versity at Northridge, 1989.

2. Brewer, D. C. and Nash, M. J.: “The Chinese Wall Security Policy” IEEE Sympo-
sium on Security and Privacy, Oakland, May, 1988, pp 206-214,

3. Chu, W. and Chen, Q. Neighborhood and associative query answering, Journal of
Intelligent Information Systems, 1, 355-382, 1992.

4. D. Dubois and H. Prade, “Putting rough sets and fuzzy sets together,” in: Decision
Support by Experience - Application of the Rough Sets Theory, R. Slowinski (ed.),
Kluwer Academic Publishers, 1992, 203-232.

5. T. Y. Lin, “Granular Computing II: Infrastructures for AI-Engineering.” In the
Proceedings of 2006 International Conference on Granular Computing, May 10-12,
Atlanta, Georgia, USA

6. T. Y. Lin.“Granular Computing: Examples, Intuitions and Modeling.” In: the Pro-
ceedings of 2005 IEEE International Conference on Granular Computing,” July
25-27, 2005, Beijing China, 40-44.

7. T. Y. Lin and I-Jen Chiang, “A simplicial complex, a hypergraph, structure in the
latent semantic space of document clustering”, International Journal of Approxi-
mate Reasoning, 55-80, vol 44,2005

8. T. Y. Lin, “Granular Computing: Structures, Representations, Applications and
Future Directions” in: the Proceedings of 9th International Conference, RSFDGrC
2003, Chongqing, China, May 2003, Lecture Notes on Artificial Intelligence LNAI
2639, Springer-Verlag, 16-24.

9. T. Y. Lin, “Granular Computing on Binary Relations II: Rough Set Representa-
tions and Belief Functions.” In: Rough Sets In Knowledge Discovery, A. Skowron
and L. Polkowski (eds), Springer-Uerlag, 1998, 121-140.

10. T. Y. Lin, “Granular Computing on Binary Relations I: Data Mining and Neigh-
borhood Systems.” In: Rough Sets In Knowledge Discovery, A. Skowron and L.
Polkowski (eds), Springer-Uerlag, 1998, 107-121.

11. Lin, T. Y.“Topological and Fuzzy Rough Sets,” in: Decision Support by Experience
- Application of the Rough Sets Theory, R. Slowinski (ed.), Kluwer Academic
Publishers, 1992, 287-304.

12. T. Y. Lin, K. J. Huang, Q. Liu, and W. Chen, “Rough Sets, Neighborhood Sys-
tems and Approximation,” Proceedings of the Fifth International Symposium on
Methodologies of Intelligent Systems, Selected Papers, Knoxville, Tennessee, Oc-
tober 25-27, 1990, 130-141.

13. Lin, T. Y. Chinese Wall Security Policy–An Aggressive Model, Proceedings of the
Fifth Aerospace Computer Security Application Conference, Tuscon, Arizona, Dec
1989, 282-289.



270 T.Y. Lin

14. Lin, T. Y. Neighborhood Systems and Relational Database. In: Proceedings of
1988 ACM Sixteen Annual Computer Science Conference, Februay 1988, p. 725
(abstract)

15. James Munkres, Topology (2nd Edition), PRENTICE-HALL, 2000
16. Z. Pawlak, Rough sets. Theoretical Aspects of Reasoning about Data, Kluwer

Academic Publishers, 1991
17. G. Polya, “How to Solve It”, 2nd ed., Princeton University Press, 1957, ISBN

0-691-08097-6.
18. W. Sierpinski and C. Krieger, General Topology, University of Toronto Press 1952.
19. E. Spanier. Algebric Topology. McGraw-Hill Book Company, New York, NY, 1966.
20. Zadeh, L.A., “Fuzzy sets and information granularity,” in: M. Gupta, R. Ragade,

and R. Yager (Eds.), Advances in Fuzzy Set Theory and Applications, North-
Holland, Amsterdam, 3-18, 1979.

21. Zadeh, L.A. “Towards a theory of fuzzy information granulation and its centrality
in human reasoning and fuzzy logic.” Fuzzy Sets and Systems, 1997, 19:111–127.

22. Zadeh, L. A. “Some reflections on soft computing, granular computing and their
roles in the conception, design and utilization of information/ intelligent systems,”
Soft Computing, 1998, 2, 23-25.

23. Zadeh, L. A. “Some Reflections on Information Granulation and its Centrality
in Granular Computing, Computing with Words, the Computational Theory of
Perceptions and Precisiated Natural Language.” In: Lin, Yao, Zadeh (eds), Data
Mining, Rough Sets, and Granular Computing. 2002, 3-20.



Part VI

Perception Based Data
Mining and Decision

Making



Extracting Fuzzy Linguistic Summaries Based

on Including Degree Theory and FCA

Li Zhang, Zheng Pei, and Honghua Chen

School of Mathematics & Computer, Xihua University,
Chengdu, Sichuan, 610039, China

zzllxz@yahoo.com.cn, pqyz@263.net

Abstract. In information systems (or database), generally, attribute
values of objects are numeral or symbols, from application point of view,
linguistic information or decision rules are widely used. Hence, fuzzy lin-
guistic summaries would be very desirable and human consistent. In this
paper, extracting fuzzy linguistic summaries from a continuous infor-
mation system is discussed. Due to fuzzy linguistic summaries can not
be extracted directly in the information system, fuzzy information sys-
tem is used to discretize the continuous information system, and level
cut set is used to obtain classical information system firstly. Then based
on including degree theory and formal concept analysis (FCA), simple
fuzzy linguistic summaries are extracted. To extract complex linguistic
summaries, logical conjunctions ∨, ∧ and → are used. An Example of
checking quality of sweetened full cream milk powder is also provided.

1 Introduction

As we known, in marketing prediction, information management, etc, Knowl-
edge (or rules) are represented by natural languages. On the other hand, all
information are stored by database which is also called information systems
(or formal context, etc) in formal concept analysis (FCA), and its values are
numeric or symbolic. How to extract linguistic knowledge, such as, fuzzy lin-
guistic summaries [1], from database is a problem of knowledge discovery [2].
The methodology of computing with words (CWW) proposed by Zadeh [3]-[6]
may be viewed as an attempt to harness the highly expressive power of natural
languages by developing ways of CWW or propositions drawn from a natural
language. Based on difference background, many important methods and results
have been proposed to extract linguistic summaries from numerical database
[1], [7]-[11]. In this paper, extracting fuzzy linguistic summaries are concerned
on continuous information systems. Then FCA [12] and including degree theory
[13] are used to obtain fuzzy linguistic summaries.

2 Continuous Information Systems and Its Discretization

Formally, an information system S (or called formal context in FCA) is a quater-
nion denoted as (U, A, V, f), where U = {x1, x2, · · · , xn} is a non-empty set of ob-
jects, A = {a1, a2, · · · , am} is a non-empty finite set of attributes, V =

⋃
a∈A Va

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 273–283, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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and Va is the domain of a, f : U × A → V is information function. In which
∀x ∈ U , a ∈ A, f(x, a) = fa(x). An information system can be expressed by
Table 1.

Table 1. Information systems S = (U, A,V, f)

U \ A a1 a2 · · · am−1 am

x1 fa1(x1) fa2(x1) · · · fa(m−1)(x1) fam(x1)

...
...

...
...

...
...

xn fa1(xn) fa2(xn) · · · fa(m−1)(xn) fam(xn)

As our knowledge, so called continuous information systems are such that for
some a ∈ A, |Va| = ∞ or ∀xi �= xj =⇒ fa(xi) �= fa(xj). As pointed out in rough
set and FCA, a continuous information system need to be discretized before
extracting knowledge (concept, rules, etc) [14], [15]. In this paper, our discussion
is aimed at that attributes are fuzzy linguistic variables, e.g., in checking quality
of sweetened full cream milk powder by quantities of protein, fat, lactose, etc, for
these linguistic variables, fuzzy linguistic values are high, middle, low, etc. From
this point of view, the attribute can be discretized by fuzzy linguistic values, and
called fuzzy discretization.

Formally, let attribute ai be fuzzy linguistic variable, its fuzzy linguistic values
be {v1

ai
, · · · , vri

ai
}. Generally, vi

aj
(i = 1, · · · , rj) can be generated by linguistic

hedge and atomic evaluating syntagm [16]-[18]. In real world application, the
number of fuzzy linguistic values is decided by user or experts. Due to the domain
of fuzzy linguistic variable aj be known, suppose membership functions of fuzzy
linguistic values are as follows

μvi
aj

: Vaj −→ [0, 1]. (1)

There are many methods to decide μvi
aj

[19], [20], here, suppose membership

function μvi
aj

of every vi
aj

is known. Based on (1), a continuous information
system can be transformed as follows, ∀xj ∈ U and ai ∈ A,

f ′ : U × {ai} −→ μv1
ai

× · · · × μv
ri
ai

,

(xj , ai) �→ (μv1
ai

(fai(xj)), · · · , μv
ri
ai

(fai(xj))). (2)

Hence, (U, A, V, f ′) is a fuzzy information system [21], see Table 2. When α-level
value is considered, i.e., ∀ak ∈ A,

μvi
ak

(fak
(xj)) =

{
1, if μvi

ak
(fak

(xj)) ≥ α,

0, if μvi
ak

(fak
(xj)) < α.

Then Table 2 is transformed as a classical information system (or a classical
formal context) (U, A, V, f ′

α).
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Table 2. Fuzzy information systems S = (U, A,V, f ′)

U \ A v1
a1 · · · vr1

a1 · · · v1
am

· · · vrm
am

x1 μv1
a1

(fa1(x1)) · · · μv
r1
a1

(fa1(x1)) · · · μv1
am

(fam(x1)) · · · μv
rm
am

(fam (x1))

...
...

...
...

...
...

...
...

xn μv1
a
(fa1(xn)) · · · μv

r1
a1

(fa1(xn)) · · · μv1
am

(fam(xn)) · · · μv
rm
am

(fam(xn))

3 Fuzzy Linguistic Summary

A fuzzy linguistic summary of information system consists of [1]: a) summarizer
vi

a, e.g., high-protein; b) a quantity in agreement ql′ , e.g., most of, etc; c) truth
tk′ , e.g., true. Hence, a linguistic summary can be formalized by “(ql′ x′s are vi

a)
is tk′”, in which ql′ is a fuzzy linguistic quantifier [16], [22], vi

a is fuzzy linguistic
value on U = {xi|i = 1, · · · , n}, tk′ is fuzzy truth value. e.g.,

most of (ql′) milk powder(x′s) are high − protein (vi
a) is true(tk′ ). (3)

In this paper, we always assume that Q = {q1, q2, · · · , ql}, P = {v1
a1

, · · · , vr1
a1

, · · · ,
v1

am
, · · · , vrm

am
}, for each ql′ ∈ Q, vi

a ∈ P are linguistic terms, e.g., most of, young.
For vi

a ∈ P , it is the fuzzy linguistic value on Va, i.e., μvi
a

: Va −→ [0, 1]. In this
paper, suppose each summarizer vi

a ∈ P has membership function on Va.
According to (3), extracting linguistic summaries are equal to deciding ql′ ,

vi
a and tk′ . For fuzzy linguistic quantifier ql′ ∈ Q, it expresses that how many

object xi is such that (3). Here, membership functions of ql′ ∈ Q and tk′ ∈ T
are defined as follows, respectively [10]:

1. Let R(U) = {X |X ⊆ U} be the power set of U . Define a binary relation on
R(U): X ∼ Y if and only if | X |=| Y |, where | X | is the cardinal number
of X . Obviously, “∼” is an equivalence relation on R(U). The factor set of
R(U) by ∼ is denoted by R(U) = R(U)/ ∼.

2. For each fuzzy linguistic quantifier ql′ ∈ Q, its fuzzy set is defined by

μql′ : R(U) −→ [0, 1]. (4)

3. For each fuzzy linguistic truth degree tk′ ∈ T , its fuzzy set is defined by

μtk′ : [0, 1] −→ [0, 1]. (5)

4 Extracting Simple Fuzzy Linguistic Summaries

In information processing based on information systems, including degree theory
and FCA are important tools. Including degree theory expresses soft inclusion
relation between two sets from quantity point of view [13]. FCA is used to rep-
resent relation between objects and attributes [12]. In fuzzy linguistic summary,
deciding fuzzy quantifier ql′ involves two aspects: one is objects which have fuzzy
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linguistic value (attribute) vi
a; the other is how many objects has vi

a. In this pa-
per, FCA is used to decide objects which have fuzzy linguistic value (attribute)
vi

a, then including degree theory is used to select fuzzy quantifier ql′ . Formally,
including degree theory and FCA are viewed as follows.

For a classical information system (U, A, V, f ′
α), operators ↑ and ↓ on X ⊆ U

and B ⊆ A are defined respectively [12]:

X↑ = {vi
a ∈ A|∀xj ∈ X, f ′

α(xj , v
i
a) = 1}, (6)

B↓ = {xj ∈ U |∀vi
a ∈ B, f ′

α(xj , v
i
a) = 1}. (7)

If a pair (X, B) satisfies X↑ = B and B↓ = X , then the pair (X, B) is called
as a formal concept. And X is called as the extent of the formal concept, B is
called as the intent of the formal concept.

Let U be a finite set of objects, ∀X , Y ⊆ U , D(Y/X) is called as including
degree if it satisfies [13]:

(1) 0 ≤ D(Y/X) ≤ 1;
(2) X ⊆ Y ⇒ D(Y/X) = 1;
(3) X ⊆ Y ⊆ Z ⇒ D(X/Z) ≤ D(X/Y ).

Generally, there are many forms of D(Y/X), e.g.,

D(Y/X) =
|X ∩ Y |

|X | . (8)

It is easy to prove (8) is including degrees.
Let a simple linguistic summary be “(ql′ x′s are vi

a) is tk′”, then ql′ , vi
a and

tk′ can be obtained automatically by the following steps [10],

1. In fuzzy information system (U, A, V, f ′), fixed α-level value, (U, A, V, f ′) is
transformed as a classical information system, denoted (U, A, V, f ′

α).
2. In (U, A, V, f ′

α), ∀vi
a ∈ P , obtaining (vi

a)↓. According to (7), (vi
a)↓ = {xj ∈

U |f ′
α(xj , v

i
a) = 1}.

3. According to (8), D((vi
a)↓/U) = |(vi

a)↓∩U|
|U| (vi

a ∈ P ).
4. Fixing a level (threshold) β which can be done by experts or deciders, denote

Pβ = {vi
a|D((vi

a)↓/U) ≥ β}. (9)

5. For vi
a ∈ Pβ , corresponding the fuzzy linguistic quantifier ql′ ∈ Q can be

selected such that

μql′ (N) = max{μq1(N), μq2(N), · · · , μql
(N)}, (10)

in which N = |(vi
a)↓|(vi

a ∈ Pβ). In the real world practice, maybe μql′ (N) is
not only one, in this case, one ql′ can be selected by deciders or the indexes
of linguistic terms, e.g., ql′ has a maximal index.
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Table 3. Sweetened full cream milk powder

Product\ Index protein(g/100g) fat(g/100g) sugar(g/100g)

Yili(x1) 19.8 23.40 19.74

Haixiang(x2) 20.60 24.89 17.06

Hongxing(x3) 19.72 24.14 13.97

Nate(x4) 18.52 21.20 19.84

Gongnong(x5) 20.06 21.20 17.94

Dongxing(x6) 17.09 24.10 19.86

Wondersun(x7) 19.06 21.92 19.06

Qinyong(x8) 18.62 21.18 19.50

Gucheng(x9) 18.82 20.46 19.58

Senyong(x10) 19.67 21.93 19.72

Flying crane(x11) 18.45 23.01 19.84

Mengniu(x12) 18.52 22.82 19.93

Haihe(x13) 20.52 23.35 17.98

Nanshan(x14) 19.01 22.94 19.95

Heshi(x15) 18.88 23.33 19.00

Shenguo(x16) 18.74 21.96 19.26

Nestle(x17) 18.82 24.18 19.62

Sanlu(x18) 18.98 22.96 16.69

6. Selecting a fuzzy linguistic truth degree tk′ ∈ T . From the viewpoint of
logic, the more objects satisfying statement with the quantifier, the higher
the truth degree. On the other hand, the bigger μql′ (N) is, the more objects
is satisfying the statement with the quantifier. Hence, tk′ can be selected as:

μtk′ (μql′ (N)) = max{μt1(μql′ (N)), μt2 (μql′ (N)), · · · , μtk
(μql′ (N))}. (11)

Example 1. In checking quality of sweetened full cream milk powder (noted by
CMP) (see Table 3), in this paper, only three of compositions protein,
fat and sugar are considered. Let P = {low-protein(lp), middle-protein(mp),
high-protein(hp), low-fat(lf), middle-fat(mf), high-fat(hf), low-sugar(ls),
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middle-sugar (ms), high-sugar(hs)}, Q = {many(ma), most of(mo), nearly all
of(na)}, T = {approximately true (at), true(t), very true(vt)}, their member-
ship functions be given as follows,

μlp(x)=
{

1, x ≤ 17.5;
18.5 − x, 17.5 ≤ x ≤ 18.5. μmp(x)=

⎧
⎨

⎩

x − 17.5, 17.5 ≤ x ≤ 18.5;
19.5 − x, 18.5 ≤ x ≤ 19.5.
0, otherwise

μhp(x)=
{

2
3 (x − 18.5), 18.5 ≤ x ≤ 20;
1, x ≥ 20. μlf (x)=

{
1, x ≤ 21.5;
2
3 (23 − x), 21.5 ≤ x ≤ 23;

μmf (x)=

⎧
⎨

⎩

2
3 (x − 21.5), 21.5 ≤ x ≤ 23;
2
3 (24.5 − x), 23 ≤ x ≤ 24.5;
0, otherwise

μhf (x) =
{

2
3 (x − 23), 23 ≤ x ≤ 24.5;
1, x ≥ 24.5;

μls(x)=
{

1, x ≤ 16;
1
2 (18 − x), 16 ≤ x ≤ 18. μms(x) =

⎧
⎨

⎩

1
2 (x − 16), 16 ≤ x ≤ 18;
2
3 (19.5 − x), 18 ≤ x ≤ 19.5;
0, otherwise

μhs(x)=
{

2
3 (x − 18), 18 ≤ x ≤ 19.5;
1, x ≥ 19.5; μma(x) =

{
1
3x − 2, 6 ≤ x ≤ 9;
− 1

3x + 4, 9 ≤ x ≤ 12.

μmo(x)=
{

1
2x − 5, 10 ≤ x ≤ 12;
− 1

2x + 7, 12 ≤ x ≤ 14. μna(x) =
{

1
3 (x − 13), 13 ≤ x ≤ 16;
1, x ≥ 16.

μat(x)=
{

2x, 0 ≤ x < 0.5;
2(1 − x), 0.5 ≤ x ≤ 1. μt(x) =

⎧
⎨

⎩

0, 0 ≤ x < 0.5;
10
3 (x − 0.5), 0.5 ≤ x < 0.8;
5(1 − x), 0.8 ≤ x ≤ 1.

μvt(x)=
{

0, 0 ≤ x < 0.8;
5x − 4, 0.8 ≤ x ≤ 1.

Using above membership functions, Table 3 is transformed into Table 4.
Let α = 0.3, then Table 4 is transformed into Table 5. In Table 5, ∀vi

a ∈ P ,
(vi

a)↓ can be obtained, e.g., hf↓ = {x2, x3, x6, x17}, etc. According to (8), ∀vi
a ∈

P , D((vi
a)↓/U) can be obtained, e.g., D(hf↓/U) = 2

9 , etc. Let β = 0.4, then Pβ =
{vi

a|D((vi
a)↓/U) ≥ 0.4} = {mp, hp, mf, hs}. For vi

a = mp ∈ Pβ , according to
μma, μmo, μna and (10), N = |(mp)↓| = 11, and max{μma(N), μmo(N), μna(N)}
= {0.33, 0.5, 0} = 0.5 = μmo(N). Hence the fuzzy linguistic quantifier corre-
sponding to mp is mo. According to μat, μt, μvt and (11), max{μat(μmo(N)),
μt(μmo(N)), μvt(μmo(N))} = {1, 0, 0} = 1 = μat(μmo(N)), hence, the follows
fuzzy linguistic summary about mp is obtained,

“Most of CMP are middle − protein is approximately true.”

5 Extracting Complex Fuzzy Linguistic Summaries

By using logical conjunctions, ∨, ∧ and →, complex fuzzy linguistic summaries
can be extracted. Here, complex fuzzy linguistic summaries are as follows:

( ql′ x′s are vi
ae

or vj
af

) is tk′ ; (12)
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Table 4. Fuzzy sweetened full cream milk powder

U \ A lp mp hp lf mf hf ls ms hs

x1 0 0 0.87 0 0.73 0.27 0 0 1.0

x2 0 0 1.0 0 0 1.0 0.47 0.53 0

x3 0 0 0.81 0 0.24 0.76 1.0 0 0

x4 0 0.98 0.01 1.0 0 0 0 0 1.0

x5 0 0 1.0 1.0 0 0 0.03 0.97 0

x6 1.0 0 0 0 0.27 0.73 0 0 1.0

x7 0 0.44 0.37 0.72 0.28 0 0 0.29 0.71

x8 0 0.88 0.16 1.0 0 0 0 0 1.0

x9 0 0.68 0.21 1.0 0 0 0 0 1.0

x10 0 0 0.78 0.71 0.29 0 0 0 1.0

x11 0.05 0.95 0 0 0.99 0.01 0 0 1.0

x12 0 0.98 0.01 0.12 0.88 0 0 0 1.0

x13 0 0 1.0 0 0.77 0.23 0.01 0.99 0

x14 0 0.49 0.34 0.04 0.96 0 0 0 1.0

x15 0 0.62 0.25 0 0.78 0.22 0 0.33 0.67

x16 0 0.76 0.16 0.69 0.31 0 0 0.16 0.84

x17 0 0.68 0.21 0 0.21 0.79 0 0 1.0

x18 0 0.52 0.32 0.03 0.97 0 0.66 0.35 0

( ql′ x′s are vi
ae

and vj
af

) is tk′ ; (13)

( ql′ (x′s are vi
ae

) are vj
af

) is tk′ . (14)

For fixing α-level value, corresponding the classical information system is (U, A,
V, f ′

α), ∀ae, af ∈ A, (12), (13) and (14) are obtained as follows, respectively.

1. Extracting (12) is based on logical conjunction “ ∨ ”: From logic point of
view, (12) is equal to

( ql′ x′s are (vi
ae

∨ vj
af

)) is tk′ ,
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Table 5. A classical sweetened full cream milk powder

U \ A lp mp hp lf mf hf ls ms hs

x1 0 0 1 0 1 0 0 0 1

x2 0 0 1 0 0 1 1 1 0

x3 0 0 1 0 0 1 1 0 0

x4 0 1 0 1 0 0 0 0 1

x5 0 0 1 1 0 0 0 1 0

x6 1 0 0 0 0 1 0 0 1

x7 0 1 1 1 0 0 0 0 1

x8 0 1 0 1 0 0 0 0 1

x9 0 1 0 1 0 0 0 0 1

x10 0 0 1 1 0 0 0 0 1

x11 0 1 0 0 1 0 0 0 1

x12 0 1 0 0 1 0 0 0 1

x13 0 0 1 0 1 0 0 1 0

x14 0 1 1 0 1 0 0 0 1

x15 0 1 0 0 1 0 0 1 1

x16 0 1 0 1 1 0 0 0 1

x17 0 1 0 0 0 1 0 0 1

x18 0 1 1 0 1 0 1 1 0

The parameters ql′ , (vi
ae

∨ vi
af

) and tk′ can be obtained as follows,
(a) For vi

ae
, vj

af
∈ P (vi

ae
�= vj

af
) such that D(((vi

a1
)↓ ∪ (vj

a2
)↓)/U) ≥ β, in

which, if ae = af ,

N = |(vi
ae

)↓ ∪ (vj
af

)↓|
= |((vi

ae
)↓ − ({vi

ae
, vj

af
})↓) ∪ ((vj

af
)↓ − ({vi

ae
, vj

af
})↓)|, (15)

this is called as non-intersection-union. If ae �= af ,

N = |(vi
e)

↓ ∪ (vj
af

)↓|
= |(vi

ae
)↓ ∪ (vj

af
)↓ − ({vi

ae
, vj

af
})↓|. (16)
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(b) According to (10) and (11), a fuzzy linguistic quantifier ql′ ∈ Q and a
fuzzy linguistic truth degree tk′ ∈ T can be selected.

2. Extracting (13) is based on logical “ ∧ ”: (13) is equal to

( ql′ x′s are (vi
ae

∧ vj
af

)) is tk′ ,

The parameters ql′ , (vi
ae

∧ vi
af

) and tk′ can be obtained as follows,
(a) For vi

ae
, vj

af
∈ P such that D(((vi

ae
)↓ ∩ (vj

af
)↓)/U) = D(({vi

ae
, vj

af
})↓/U)

≥ β. In which, vi
ae

�= vj
af

.
(b) A fuzzy linguistic quantifier ql′ ∈ Q and a fuzzy linguistic truth degree

tk′ ∈ T can be selected according to (10) and (11), in which,

N = |(vi
ae

)↓ ∩ (vj
af

)↓| = |({vi
ae

, vj
af

})↓|.

3. Extracting (14) is based on logical “ → ”: (14) is equal to

(ql′ x′s are (vi
ae

→ vj
af

)) is tk′ ⇐⇒ (ql′ x′s are ( vj
af

|vi
ae

)) is tk′ ,

( vj
af

|vi
ae

) means that objects which satisfy vj
af

are to satisfy vi
ae

firstly. The
parameters ql′ , vi

ae
, vi

af
and tk′ can be obtained as follows,

(a) Fixing vi
ae

∈ P , for level (threshold) β, vj
af

is such that

D((vj
af

)↓/(vi
ae

)↓) ≥ β.

(b) According to (10) and (11), ql′ ∈ Q and tk′ ∈ T can be decided, in which,

N = |(vj
af

)↓ ∩ (vi
ae

)↓| × |U |
|(vi

ae
)↓| .

Example 2. Continue Example 1, let β = 0.5,
1. For mp and hp, using (15), D((mp↓ ∪ hp↓)/U) = 14

18 ≥ 0.5, according to
(10), (11),

max{μma(N), μmo(N), μna(N)} = {0, 0, 0.33} = 0.33 = μna(N),

max{μat(μna(N)), μt(μna(N)), μvt(μna(N))} = 0.66 = μat(μna(N)).

Hence, we have complex fuzzy linguistic summary as follows
“Nearly all of CMP are middle-protein or high-protein is approximately true.”
2. For lp and hs, using (16), D((mp↓ ∪hp↓)/U) = 12

18 ≥ 0.5, according to (10),
(11), we have complex fuzzy linguistic summary as follows

max{μma(N), μmo(N), μna(N)} = {0, 1, 0} = 1 = μmo(N),

max{μat(μmo(N)), μt(μmo(N)), μvt(μmo(N))} = 0.67 = μat(μmo(N)).

“Most of CMP are low-protein or high-sugar is approximately true.”
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3. For mp and hs, D((mp↓ ∩ hs↓)/U) = 10
18 ≥ 0.5,

max{μma(N), μmo(N), μna(N)} = {0.67, 0, 0} = 0.67 = μma(N),

max{μat(μma(N)), μt(μma(N)), μvt(μma(N))}={0.67, 0.56, 0} = μat(μma(N)).

Hence, we have complex fuzzy linguistic summary as follows
“Many CMP are middle-protein and high-sugar is approximately true.”
4. For ls and hf , D(hf↓/ls↓) = 2

3 ≥ 0.5,

max{μma(N), μmo(N), μna(N)} = {0, 1, 0} = 1 = μmo(N),

max{μat(μmo(N)), μt(μmo(N)), μvt(μmo(N))} = {0, 0, 1} = μvt(μma(N)).

Hence, we have complex fuzzy linguistic summary as follows
“Most of low-sugar CMP are high-fat is very true.”

6 Conclusion

In framework of continuous information systems, based on including degree the-
ory and formal concept analysis (FCA), extracting simple and complex fuzzy
linguistic summaries are discussed, provided Example shows that the method of
extracting fuzzy linguistic summaries is useful.
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Abstract. We further extend a new approach to a linguistic summa-
rization of time series proposed in our previous works (cf. Kacprzyk,
Wilbik and Zadrożny [1,2,3,4,5]) in which we put forward the use of a
fuzzy linguistic quantifier driven aggregation of trends (partial scores)
via the traditional Zadeh calculus of linguistically quantified proposi-
tions and the Sugeno integral. Here we use for this purpose the Choquet
integral that has been widely advocated for many decision analytic and
economic problems. The results are intuitively appealing and the method
is effective and efficient.

1 Introduction

Time series data are one of the most relevant and widely occurring types of
data that play a crucial role in many cases in which variables, quantities and
parameters evolve over time. An acute need to find effective and efficient methods
for handling times series data has triggered much research, and a notable example
are here statistical methods. Recently, other methods have also been proposed
exemplified by those based on neural networks, biologically inspired paradigms,
cognitive analyses, etc.

Unfortunately, most of those traditional and new approaches are not human
consistent enough as that they do not bridge an essential gap between the human
being and the computer in that for the human being the only fully natural
means of articulation of assessments, intentions, etc. is natural language which
is strange to the “machine”. This paper is a further step in a new direction to
the analysis of time series proposed in our previous papers (Kacprzyk, Wilbik
and Zadrożny [1,2,3,4,5]). In these papers a new approach to the capturing of
the very essence of time series data has been proposed using natural language
descriptions (statements) to describe in a human consistent way how trends in
time series evolve over time, how long some types of behavior last, how rapid
changes are, how variable they are, etc.

We use the idea of Yager’s linguistic data summaries (cf. Yager [6], then ad-
vanced in Kacprzyk and Yager [7], and Kacprzyk, Yager and Zadrożny [8]).
These summaries can be exemplified by “most trends are short”, “most of long

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 284–294, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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trends are slowly increasing’, etc. To derive such linguistic summaries we pro-
posed first to use Zadeh’s classic calculus of linguistically quantified propositions
(cf. Kacprzyk, Wilbik and Zadrożny [1]). Next, new types of linguistic summaries
of trends were proposed in Kacprzyk, Wilbik and Zadrożny [2], and the use of
the Sugeno integral was proposed in Kacprzyk, Wilbik and Zadrożny [5].

In this paper, we use the Choquet integral (cf. [9] for the linguistic quantifier
driven aggregation of partial scores (trends) that is essential for our purpose. The
Choquet integral has attracted a considerable interest in many scientific communi-
ties, and for our purposes a positive experience with the Choquet integral reported
widely in the decision making and economic community is of a particular impor-
tance, and references are abundant (cf. Narukawa, Murofushi and Torra [10].

2 Temporal Data and Trend Analysis

We deal with numerical data that vary over time, and a time series is a sequence of
data measured at uniformly spaced time moments. We identify trends as linearly
increasing, stable or decreasing functions, and therefore represent given time se-
ries data as piecewise linear functions. Evidently, the intensity of an increase and
decrease (slope) matters, too. These are partial trends and a global trend concerns
the entire time span of the time series, and there also may be trends that concern
parts of the entire time span, butmore than a particularwindow taken into account
while extracting partial trends by using the Sklansky and Gonzalez [11] algorithm.

Function f is a uniform ε-approximation of a time series, or a set of points
{(xi, yi)}, if for a given, context dependent ε > 0, there holds

∀i : |f(xi) − yi| ≤ ε (1)

We employ a modification of the widely used Sklansky and Gonzalez [11]
algorithm that finds a linear uniform ε-approximation for subsets of points of
a time series. The algorithm constructs an intersection of cones starting from
point pi and including the circle of radius ε around the subsequent points pi+j ,
j = 1, 2, . . . , until the intersection of all cones starting at pi is empty. If for
pi+k the intersection is empty, then we construct a new cone starting at pi+k−1.
Figure 1 present the idea of the algorithm. The family of possible solutions is
indicated as a gray area. Clearly, many other algorithms can also be used.

To present details of the algorithm, let us denote: p_0 – a point starting the
current cone, p_1 – the last point checked in the current cone, p_2 – the next
point to be checked, Alpha_01 – a pair of angles (γ1, β1), meant as an interval
defining the current cone as in Fig. 1(a), Alpha_02 – a pair of angles of the cone
starting at p_0 and inscribing the circle of radius ε around point p_2 (cf. (γ2, β2)
in Fig. 1(a)), function read_point() reads a next point of data series, function
find() finds a pair of angles of the cone starting at the point p_0 and inscribing
the circle of radius ε around the point p_2.

The pseudocode of the procedure that extracts the trends is depicted inFigure 2.
The bounding values of Alpha_02 (γ2, β2), computed by function find(),

correspond to the slopes of two lines which: (1) are tangent to the circle of
radius ε around point p2 = (x2, y2), and (2) start at the point p0 = (x0, y0).
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y

x

β1 γ1 β2 γ2p0

•
p1•

•p2

(a) the intersection of the cones is indicated
by the dark grey area

y

x

p0

•
•

•p2

•

(b) a new cone starts in point p2

Fig. 1. An illustration of the algorithm for the uniform ε-approximation

Thus

γ2, β2 = arctg

⎛

⎝Δx · Δy ± ε

√
(Δx)2 + (Δy)2 − ε2

(Δx)2 − ε2

⎞

⎠

where Δx = x0 − x2 and Δy = y0 − y2.
The resulting ε-approximation of a group of points p_0, . . . ,p_1 is either a

single segment, chosen as, e.g., a bisector, or one that minimizes the distance
(e.g., the sum of squared errors, SSE) from the approximated points, or the
whole family of possible solutions, i.e. rays of the cone. This method is effective
and efficient as it requires only a single pass through the data.

3 Dynamic Characteristics of Trends

In our approach, while summarizing trends in time series data, we consider the
following three aspects: (1) dynamics of change, (2) duration, and (3) variability,
and by trends we mean here global trends, concerning the entire time series (or
some, probably large, part of it), not partial trends concerning a small time
span (window) in the (partial) trend extraction phase via the Sklansky and
Gonzales [11] algorithm.

3.1 Dynamics of Change

By dynamics of change we understand the speed of changes that can be described
by the slope of a line representing the trend, (cf. α in Fig. 1(a)). Thus, to quantify
dynamics of change we may use the interval of possible angles α ∈ 〈−90; 90〉.

As it might be impractical to use such a scale directly, we may use a fuzzy
(linguistic) granulation in order to meet the users’ needs and task specificity as,
for instance: quickly decreasing, decreasing, slowly decreasing, constant, slowly
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read_point(p_0);
read_point(p_1);
while(1)
{

p_2=p_1;
Alpha_02=find();
Alpha_01=Alpha_02;
do
{

Alpha_01 = Alpha_01 ∩ Alpha_02;

p_1=p_2;
read_point(p_2);
Alpha_02=find();

} while(Alpha_01 ∩ Alpha_02 �= 0);

save_found_trend();
p_0=p_1;
p_1=p_2;

}

Fig. 2. Pseudocode of the modified Sklansky
and Gonzalez [11] procedure for extracting
trends

constant

quickly
increasing

quickly
decreasing

increasing

decreasing

slowly

increasing

slowly

decreasing

Fig. 3. A visual representation of
angle granules defining the dynam-
ics of change

increasing, increasing, quickly increasing, and Fig. 3 illustrates the lines corre-
sponding to the particular linguistic terms.

In Batyrshin et al. [12,13] there are presented many methods of construct-
ing such a fuzzy granulation. The user may define a membership functions of
particular linguistic terms depending on his or her needs.

We map a single value α (or the whole interval of angles corresponding to the
gray area in Fig. 1(b)) characterizing the dynamics of change of a trend identified
using the algorithm shown as a pseudocode in Fig. 2 into a fuzzy set (linguistic
label) best matching a given angle. We can use, for instance, some measure of a
distance or similarity, cf. the book by Cross and Sudkamp [14]. Then we say that
a given trend is, e.g., “decreasing to a degree 0.8”, if μdecreasing(α) = 0.8, where
μdecreasing is the membership function of a fuzzy set representing “decreasing”
that is a best match for angle α.

3.2 Duration

Duration describes linguistically the length of a single trend, for instance a “long
trend”, described by a fuzzy set defined over a time span of time series.

3.3 Variability

Variability refers to how intensively the consecutive data vary. The following five
traditional statistical measures of variability are widely used:
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– the range (maximum – minimum);
– the interquartile range (IQR) calculated as the third quartile (the third quar-

tile is the 75th percentile) minus the first quartile (the first quartile is the
25th percentile) that may be interpreted as representing the middle 50% of
the data;

– the variance calculated as
∑

i(xi−x̄)2

n , where x̄ is the mean value;
– the standard deviation, i.e. the square root of the variance;
– the mean absolute deviation (MAD), calculated as

∑
i |xi−x̄|

n .

We measure the variability of a trend as a distance of the data points covered
by this trend from its linear uniform ε-approximation (cf. Section 2). We em-
ploy a normalized distance between a point and a family of possible solutions,
indicated as a gray cone in Fig. 1(a), and (1) makes it definitely smaller than
ε. The normalized distance equals 0 if the point lays in the gray area. In the
opposite case it is equal to the distance to the nearest point belonging to the
cone, divided by ε.

Similarly as for the dynamics of change, we find for a given value of variability
obtained as above a best matching fuzzy set (linguistic label) using, e.g., some
measure of a distance or similarity, cf. the book by Cross and Sudkamp [14].
Again the measure of variability is treated as a linguistic variable and expressed
using linguistic terms (labels) modeled by fuzzy sets defined by the user.

4 Linguistic Data Summaries

A linguistic summary is meant as a (usually short) natural language like sentence
(sentences) that subsumes the very essence of a set of data (cf. Kacprzyk and
Zadrożny [15], [15]) that is numeric and usually too large to be comprehensible
by the human being. Yager’s approach (cf. Yager [6], Kacprzyk and Yager [7],
and Kacprzyk, Yager and Zadrożny [8]) used here is:

– Y = {y1, . . . , yn} is a set of objects (records) in a database, e.g., the set of
workers;

– A = {A1, . . . , Am} is a set of attributes characterizing yi’s from Y , e.g.,
salary, age, and Aj(yi) is a value of attribute Aj for object yi.

A linguistic summary of a data set consists of:

– a summarizer P , i.e. an attribute with a linguistic value (fuzzy predicate)
defined on the domain of Aj (e.g. “low salary” for “salary”);

– a quantity in agreement Q, i.e. a linguistic quantifier (e.g. most);
– truth (validity) T of the summary, i.e. a number from [0, 1] assessing the

truth (validity) of the summary (e.g. 0.7);
– optionally, a qualifier R, i.e. another attribute with a linguistic value (fuzzy

predicate) defined on the domain of Ak determining a (fuzzy subset) of Y
(e.g. “young” for “age”).
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Thus, linguistic summaries, a simple one and one with a qualifier, may be
exemplified by, respectively:

T (most of employees earn a low salary) = 0.7 (2)
T (most of young employees earn a low salary) = 0.9 (3)

The core of a linguistic summary is a linguistically quantified proposition in
the sense of Zadeh [16] which, for both types of summaries may be written,
respectively, as:

Qy’s are P (4)

QRy’s are P (5)

and T , i.e., the truth (validity) of them may be calculated by using either orig-
inal Zadeh’s calculus of linguistically quantified propositions (cf. [16]), or other
interpretations of linguistic quantifiers, i.e., respectively:

T (Qy’s are P ) = μQ

(
1
n

n∑

i=1

μP (yi)

)
(6)

T (QRy’s are P ) = μQ

(∑n
i=1(μR(yi) ∧ μP (yi))∑n

i=1 μR(yi)

)
(7)

5 Protoforms of Linguistic Trend Summaries

As advocated by Kacprzyk and Zadrożny [15], and employed here, Zadeh’s [17]
concept of the protoform is convenient for dealing with linguistic summaries.
Basically, a protoform is some prototype (template) of a linguistically quantified
proposition. Then, the summaries mentioned above might be represented by two
types of the protoforms:

– Summaries based on frequency:
• a protoform of a short form of linguistic summaries:

Q trends are P (8)

and exemplified by “Most of trends have a large variability”,
• a protoform of an extended form of linguistic summaries:

QR trends are P (9)

and exemplified by: “Most of slowly decreasing trends have a large
variability”.

– Duration based summaries:
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• a protoform of a short form of linguistic summaries:

The trends that took Q time are P (10)

and exemplified by: “The trends that took most time have a large vari-
ability”.

• a protoform of an extended form of linguistic summaries:

R trends that took Q time are P (11)

and exemplified by: “Slowly decreasing trends that took most time have
a large variability”.

In this paper we will consider only the simple forms of the summaries.

6 Derivation of Linguistic Summaries Via the Choquet
Integral

Let X = {x1, . . . , xn} be a finite set. Then, (cf., e.g., [18]) a fuzzy measure on X
is a set function μ : P(X) −→ [0,1], where P(X) is a family of all susets of X ,
such that:

μ(∅) = 0, μ(X) = 1;
if A ⊆ B then μ(A) ≤ μ(B), ∀A, B ∈ P(X) (12)

Let μ be a fuzzy measure on X . The discrete Choquet integral of f : X −→
[0, 1], f(xi) = ai, with respect to μ is a function Cμ : [0, 1]n −→ [0, 1] such that

Cμ(a1, . . . , an) =
n∑

i=1

ai (μ(Bi) − μ(Bi+1)) (13)

where ai is the i-th smallest element from among the ai’s, and
Bi = {xki , xki+1 . . . , xkn}, assuming that xki ≤ xki+1 ≤ . . . ≤ xn.

Note that in our context we view the role of Q in (8) – (11) as a means to
attain a linguistic quantifier driven aggregation. A similar role is played by the
Choquet integral. For a similar and related point of view, see Bosc et al. [19].

The linguistic quantifier Q is still defined as in Zadeh’s calculus as a fuzzy set
in [0, 1], exemplified by (16); we assume that Q is monotone and nondecreasing:

μ(0) = 0, μ(1) = 1 (14)
x1 ≤ x2 ⇒ μQ(x1) ≤ μQ(x2) (15)

exemplified by

μQ(x) =

⎧
⎨

⎩

1 for x> 0.65
4x − 1.6 for 0.4 < x < 0.65
0 for x< 0.4

(16)
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Then, for:

◦ Simple frequency based summaries defined by (8)

T (Q trends are P ) =
n∑

i=1

αi

(
μQ

(
|Pαi |
|X |

)
− μQ

( |Pαi+1 |
|X |

))
(17)

◦ Simple duration based summaries defined by (10)

T (Trends that took Q time are P ) =

=
n∑

i=1

αi

(
μQ

(∑
j:xj∈Pαi

time(xj)
∑

j:xj∈X time(xj)

)
− μQ

(∑
j:xj∈Pαi+1

time(xj)
∑

j:xj∈X time(xj)

))

(18)

7 Example

Assume that from some data we extracted trends as in Fig. 4, e.g. via the
algorithm shown in Fig. 2, with the granulation of dynamics of change as in
Section 3.1.

dynamics of change duration variability

id (α in degrees) (time units) ([0,1])

1 25 15 0.2

2 -45 1 0.3

3 75 2 0.8

4 -40 1 0.1

5 -55 1 0.7

6 50 2 0.3

7 -52 1 0.5

8 -37 2 0.9

9 15 5 0.0

v

t

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

1

2

3

4
5

6

7

8

9

Fig. 4. Trends extracted in a tabular and graphical form

We consider the following simple frequency based trend summary:

Most (Q) of trends are decreasing (P ) (19)
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where: Q is given as in (16), and P is given as:

μP (α) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for α ≤ −65
0.066α + 4.333 for − 65 < α < −50
1 for − 50 ≤ α ≤ −40
−0.05α − 1 for − 40 < α < −20
0 for α ≥ −20

(20)

The truth value of (19) is calculated by (17):

T (Most trends are decreasing)=
n∑

i=1

αi

(
μQ

(
|Pαi |
|X |

)
−μQ

( |Pαi+1 |
|X |

))
= 0.4622

In comparison, if we use Zadeh’s calculus of linguistically quantified proposi-
tions (cf. [1,2]) we obtain: T (Most trends are decreasing) = 0.3778.

If we have the following simple duration based linguistic summary:

Trends that took most (Q) time are slowly increasing (P ) (21)

with P defined as:

μP (α) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for α ≤ 5
0.1α − 0.5 for 5 < α < 15
1 for 15 ≤ α ≤ 20
−0.05α + 2 for 20 < α < 40
0 for α ≥ 40

(22)

Then, using (18) we obtain:

T (Trends that took most time are slowly increasing) =

=
n∑

i=1

αi

(
μQ

(∑
j:xj∈Pαi

time(xj)
∑

j:xj∈X time(xj)

)
− μQ

(∑
j:xj∈Pαi+1

time(xj)
∑

j:xj∈X time(xj)

))

= 0.75

while, using Zadeh’s calculus of linguistically quantified propositions (cf. [2,3])
we obtain: T (Trends that took most time are slowly increasing) = 0.5667.

8 Concluding Remarks

We extended our approach to the linguistic summarization of time series (cf.
Kacprzyk, Wilbik and Zadrożny [1,2,3,4,5]) that linguistically describes how
trends in time series evolve over time, how long some types of behavior last,
how rapid and variable changes are, etc. We used the Choquet integral. We
show that this yields intuitively appealing results, and the method is effective
and efficient.



Linguistic Summarization of Time Series by Using the Choquet Integral 293

References

1. Kacprzyk, J., Wilbik, A., Zadrożny, S.: Linguistic summarization of trends: a fuzzy
logic based approach. In: Proceedings of the 11th International Conference Infor-
mation Processing and Management of Uncertainty in Knowledge-based Systems.
(2006) 2166–2172 Paris, France, July 2-7, 2006.

2. Kacprzyk, J., Wilbik, A., Zadrożny, S.: On some types of linguistic summaries of
time series. In: Proceedings of the 3rd International IEEE Conference “Intelligent
Systems”, IEEE Press (2006) 373–378 London, UK, September 4-6, 2006.

3. Kacprzyk, J., Wilbik, A., Zadrożny, S.: A linguistic quantifier based aggregation
for a human consistent summarization of time series. In Lawry, J., Miranda, E.,
Bugarin, A., Li, S., Gil, M.A., Grzegorzewski, P., Hryniewicz, O., eds.: Soft Meth-
ods for Integrated Uncertainty Modelling. Springer-Verlag, Berlin and Heidelberg
(2006) 186–190

4. Kacprzyk, J., Wilbik, A., Zadrożny, S.: Capturing the essence of a dynamic be-
havior of sequences of numerical data using elements of a quasi-natural language.
In: Proceedings of the “2006 IEEE International Conference on Systems, Man, and
Cybernetics”, IEEE Press (2006) 3365–3370 Taipei, Taiwan, October 8 – 11, 2006.

5. Kacprzyk, J., Wilbik, A., Zadrożny, S.: Linguistic summaries of time series via a
quantifier based aggregation using the Sugeno integral. In: Proceedings of 2006
IEEE World Congress on Computational Intelligence, IEEE Press (2006) 3610–
3616 Vancouver, BC, Canada, July 16-21, 2006.

6. Yager, R.R.: A new approach to the summarization of data. Information Sciences
28 (1982) 69–86

7. Kacprzyk, J., Yager, R.R.: Linguistic summaries of data using fuzzy logic. Inter-
national Journal of General Systems 30 (2001) 33–154

8. Kacprzyk, J., Yager, R.R., Zadrożny, S.: A fuzzy logic based approach to linguis-
tic summaries of databases. International Journal of Applied Mathematics and
Computer Science 10 (2000) 813–834

9. Narukawa, Y., Murofushi, T.: Choquet integral and Sugeno integral as aggrega-
tion function. In Torra, V., ed.: Information Fusion in Data Mining. Springer,
Heidelberg (2003) 27–39

10. Narukawa, Y., Murofushi, T., Torra, V.: Decision modelling using the Choquet
integral. Lecture Notes in Computer Science 3131 (2004) 183 – 193

11. Sklansky, J., Gonzalez, V.: Fast polygonal approximation of digitized curves. Pat-
tern Recognition 12(5) (1980) 327–331

12. Batyrshin, I.: On granular derivatives and the solution of a granular initial value
problem. International Journal Applied Mathematics and Computer Science 12(3)
(2002) 403–410

13. Batyrshin, I., Sheremetov, L.: Perception based functions in qualitative forecasting.
In Batyrshin, I., Kacprzyk, J., Sheremetov, L., Zadeh, L.A., eds.: Perception-based
Data Mining and Decision Making in Economics and Finance. Springer-Verlag,
Berlin and Heidelberg (2006)

14. Cross, V., Sudkamp, T.: Similarity and Compatibility in Fuzzy Set Theory: As-
sessment and Applications. Springer-Verlag, Heidelberg and New York (2002)

15. Kacprzyk, J., Zadrożny, S.: Linguistic database summaries and their protoforms:
toward natural language based knowledge discovery tools. Information Sciences
173 (2005) 281–304

16. Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages.
Computers and Mathematics with Applications 9 (1983) 149–184



294 J. Kacprzyk, A. Wilbik, and S. Zadrożny

17. Zadeh, L.A.: A prototype-centered approach to adding deduction capabilities to
search engines – the concept of a protoform. In: Proceedings of the Annual Meet-
ing of the North American Fuzzy Information Processing Society (NAFIPS 2002).
(2002) 523–525

18. Grabisch, M.: Fuzzy integral as a flexible and interpretable tool of aggregation.
In Bouchon-Meunier, B., ed.: Aggregation and Fusion of Imperfect Information.
Heidelberg, New York: Physica–Verlag (1998) 51–72

19. Bosc, P., Lietard, L., Pivet, O.: Quantified statements and database fuzzy queries.
In Bosc, P., Kacprzyk, J., eds.: Fuzziness in Database Management Systems.
Springer-Verlag, Berlin and Heidelberg (1995)



Visualization of Possibilistic Potentials

Matthias Steinbrecher and Rudolf Kruse

Department of Knowledge Processing and Language Engineering
Otto-von-Guericke University of Magdeburg
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Abstract. The constantly increasing capabilities of database storage
systems leads to an incremental collection of data by business organi-
zations. The research area of Data Mining has become a paramount
requirement in order to cope with the acquired information by locating
and extracting patterns from these data volumes. Possibilistic networks
comprise one prominent Data Mining technique that is capable of encod-
ing dependence and independence relations between variables as well as
dealing with imprecision. It will be argued that the learning of the net-
work structure only provides an overview of the qualitative component,
yet the more interesting information is contained inside the network pa-
rameters, namely the potential tables. In this paper we introduce a new
visualization technique that allows for a detailed inspection of the quan-
titative component of possibilistic networks.

1 Introduction

The ongoing advance in the development of database systems enables today’s
business organizations to acquire and store huge amounts of data. However, the
more data are collected, the stronger is the requirement for sophisticated ana-
lyzation methods to extract hidden patterns. The research area of Data Mining
addresses these tasks and offers intelligent data analysis techniques such as clas-
sification, prediction or concept description, just to name a few.

The latter technique of concept description tries to identify common prop-
erties of conspicuous subsets of given samples in the database. For example,
an automobile manufacturer may plan to investigate car failures by identifying
common properties that are exposed by specific subsets of cars.

Good concept descriptions should have a reasonable length, i. e., they must
not be too short in order not to be too general. Then again, long descrip-
tions are too restrictive since they constrict the database samples heavily, re-
sulting in only a few covered sample cases. Since we have to assume that the
database entries expose hundreds of attributes, it is essential to employ a fea-
ture selection approach that reduces this number to a handy subset of significant
attributes.

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 295–303, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In this paper, we assume the database entries to have nominal attributes with
one distinguished attribute designating the class of each data sample. We will
use possibilistic network induction methods to learn a dependence network from
the database samples. Further, we only draw our attention to the class attribute
and its conditioning attributes, which are its direct parents in the network.

We then show that the network structure alone does not necessarily provide us
with a detailed insight into the dependencies between the conditioning attributes
and the class attribute. Finally, a new visualization method for these potential
tables is presented and evaluated on real-world data.

The remainder of this paper is structured as follows: Section 2 presents a brief
review of possibilistic networks. In section 3, arguments for the importance of
visualizing the network parameters are produced. This will lead to a concrete
application and analysis in section 4. The paper concludes with section 5, giving
an outlook of intended further investigations.

2 Background

A database D, interpreted as a table, shall contain a certain number of tuples
(rows) th (1 ≤ h ≤ N), each of which exposes a fixed number of attributes
(columns) {A1, . . . , An} with respective domains dom(Ai) = {ai1, . . . , airi}, i. e.
|dom(Ai)| = ri. We allow D to contain multiple identical tuples which is modeled
by a weight function w : D → IN+ that assigns to each distinct tuple t ∈ D the
number of occurrences in D.

In the case of precise tuples, each cell of this table contains exactly one
attribute value, i. e. each tuple t assumes one distinct value aik for each at-
tribute Ai: ∀t ∈ D : Ai(t) = aik, i = 1, . . . , n, 1 ≤ k ≤ ri. From such a database
(or relation) a joint probability distribution can be estimated for each tuple:
∀t ∈ D : p(t) = w(t)

N . Each attribute can be seen as a random variable:

P (Ai = aik) =
|{t ∈ D | Ai(t) = aik}|

N
, i = 1, . . . , n, k = 1, . . . , ri

Imprecision now enters through the absence of some of these table entries, i. e.
there are tuples that have one or more values missing. Since we do not know the
specific value of such cells (usually designated by a ‘?’ or ‘∗’ in the dataset) we
have to take into consideration all possible values of the corresponding attribute.
Thus, the absence of a specific value of attribute A of tuple t is modeled as A(t) =
dom(A). Of course, this approach can be used as well to model partial ignorance,
i. e. we can allow the attribute A to assume any subset of dom(A). Let us consider
the imprecise database depicted in table 1. The first column shows the tuple as
it may appear in a data file, the second and third column depict the values of
the binary attributes A and B, respectively.

Formally, we allow each attribute Ai to be a random set [1], rather than a
random variable. Let Ω be the finite set of all possible precise tuples over the
Cartesian product of all attributes’ domains, i. e. Ω = ×n

i=1
dom(Ai). Then,

we can define a mapping γ : D → 2Ω that assigns to each (possibly imprecise)
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Table 1. An imprecise example table. Note, that tuples t3, t4 and t5, t6 are identical

A B γ(ti)

t1 = (a1, ∗) {a1} {b1, b2} {(a1, b1), (a1, b2)}
t2 = (a1, b2) {a1} {b2} {(a1, b2)}
t3 = (a1, b1) {a1} {b1} {(a1, b1)}
t4 = (a1, b1) {a1} {b1} {(a1, b1)}
t5 = (∗, b2) {a1, a2} {b2} {(a1, b2), (a2, b2)}
t6 = (∗, b2) {a1, a2} {b2} {(a1, b2), (a2, b2)}
t7 = (a2, b2) {a2} {b2} {(a2, b2)}
t8 = (∗, ∗) {a1, a2} {b1, b2} {(a1, b1), (a1, b2), (a2, b1), (a2, b2)}

tuple t ∈ D all (definitely precise) tuples ω ∈ Ω that are covered by t. These
sets are shown in the fourth column of table 1.

Fig. 1. The contexts induced by ta-
ble 1

With this interpretation, each tuple t∈
D can be considered a context. The ex-
ample contexts are shown in figure 1. A
precise tuple obviously only describes a
context that contains itself. Note, that due
to the presence of multiple identical tuples
(t3 ≡ t4 and t5 ≡ t6), we obtain identical
contexts as well. The degree of possibility
of any precise tuple ω ∈Ω is the probabil-
ity of the set of contexts that contain ω:

πD : Ω → [0, 1] with
πD(ω) = PD({t ∈ D | ω ∈ γ(t)})

This coincides with the one-point coverage [2] of ω under D. The probability
function PD belongs to the random set and is part of the probability space
(D, 2D, PD), where in our study each tuple t ∈ D has the same elementary
probability p(t) = 1

N . In the interpretation from [3] we can derive a possibility
measure Π from the distribution πD in the following way:

Π : 2Ω → [0, 1] with Π(E) = max
ω∈E

PD({t ∈ D | ω ∈ γ(t)})

2.1 Possibilistic Networks
Even though the database D will be much smaller than Ω in practice, we
need methods to further reduce the size of the joint possibility distribution in-
duced by D. One idea is to exploit certain independency conditions within πD

such as the possibilistic non-interactivity, which is defined as follows: Let X =
{A1, . . . , Ak}, Y = {B1, . . . , Bl} and Z = {C1, . . . , Cm} denote three disjoint
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subsets of attributes, then X and Y are conditionally possibilistically indepen-
dent given Z, if the following equation holds:

∀a1 ∈ dom(A1) : · · · ∀ak ∈ dom(Ak) :
∀b1 ∈ dom(B1) : · · · ∀bl ∈ dom(Bl) :

∀c1 ∈ dom(C1) : · · · ∀cm ∈ dom(Cm) :
Π(A1 = a1, . . . , Ak = ak, B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)

= min{Π(A1 = a1, . . . , Ak = ak | C1 = c1, . . . , Cm = cm),
Π(B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)}

(1)

where Π(· | ·) denotes the conditional possibility measure defined as follows:

Π(A1 = a1, . . . , Ak = ak | B1 = b1, . . . , Bl = bl)

= max{πD(ω) | ω ∈ Ω ∧
k∧

i=1

Ai(ω) = ai ∧
l∧

i=1

Bi(ω) = bi}
(2)

The graph nodes coincide with the attributes. Let parents(A) denote the set
of all nodes that have an edge pointing to node A. With these prerequisites we
can use a directed acyclic graph (DAG) to encode such independencies in the
following way: Given an instatiation of the attributes in parents(A), attribute A
is conditional independent of the remaining attributes. Such a DAG is said to
carry the structural or global or qualitative information of a possibilistic net-
work.

Fig. 2. A general potential table

If a network structure is given, each
attribute Ai is assigned a potential table,
i. e., the set of all conditional distribu-
tions, one for each distinct instantiation
of the attributes in parents(Ai). The gen-
eral layout of such a table is shown in fig-
ure 2. Each column (like the one shaded
in gray) corresponds to one specific par-
ent attribute instantiation Qij . Each en-
try θijk is read as

Π(Ai = aik | parents(Ai) = Qij) = θijk

These conditional distributions encode the parametrical or local or quantitative
component of the network. The usual learning task of a possibilistic network
consists of two components: a search heuristic and an evaluation measure. Ex-
amples for the former can be found in [4,5,6], examples for the latter are studied
in [7].
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3 Visualization of Potential Tables

After the learning task for a possibilistic network is completed, we are given
a DAG that is encoding the detected (in)dependencies in the above-mentioned
manner. A sample network is depicted in figure 3.

Fig. 3. A possibilistic network
example

Since we are interested in the impact that cer-
tain attribute (values) have on the class attri-
bute, we concentrate our attention on the direct
ancestors of the class node, i. e., its parent nodes.

Although such a network conveys valuable
information about the underlying data, some
important questions remain unanswered. Cut
short, it is desirable to know which combina-
tions of the conditioning attributes’ values have
what kind of impact on which class values? The
emphasized words in the last sentence mark the entities that carry much more
information about the database under consideration. We can use the potential
tables — or more specific: the class attribute’s potential table — to extract the
demanded information. Thus, the goal is to find an intuitive way of representing
a potential table graphically, incorporating the entities mentioned above.

In order to represent the entries of a potential table in a chart, we investigate
the semantics of these values a little bit further. A value θijk tells us that given
the j-th instantiation of the parent nodes of attribute Ai, then it is possible to
a degree of θijk that the attribute Ai assumes the i-th value of its domain.

In a probabilistic setting, i. e., if we dealt with Bayesian Networks [8,9], the
values θijk would designate probabilities in the following way:

P (Ai = aik | parents(Ai) = Qij) = θijk

For the next considerations, we assume the following abbreviations for the sake
of brevity: A subset of sample cases σijk is defined by the class value aik and
the instantiation of the parent attributes Qij : σijk = (Qij , aik) := (A, c). With
this interpretation, each σijk represents an association rule [10]:

If parents(Ai) = Qij then Ai = aik with confidence θijk

For each probabilistic entry θijk we would compute three different values of
evaluation measures from the domain of association rules,1 e. g.:

mx = recall(σijk), my = lift(σijk), mz = supp(σijk)

with

supp(σijk) = P (parents(Ai) = Qij , Ai = aik)

recall(σijk) =
supp(σijk)

P (Ai = aik)

lift(σijk) =
θijk

P (Ai = aik)
1 For a detailed analysis of such measures we refer to [11].
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Finally, we display each σijk as a circle of size mz and locate it at posi-
tion (mx, my) in a two-dimensional chart.

Since we intend to visualize possibilistic values, we interpret the σijk as possi-
bilistic association rules where the value of θijk represent the degree of possibility
rather than the confidence. The presented measures are transformed into their
possibilistic counterparts. Of course, we have to check whether the semantics
behind these measures remain intact. Since the definition of the conditional
possibility is symmetric, i. e., ∀A, B : Π(A | B) = Π(B | A) = Π(A, B), the def-
initions for recall, confidence and support would coincide. Therefore, we define
them as follows:

suppposs(σ) = Π(A, c) recallposs(σ) = Π(A, c)
Π(c)

confposs(σ) = Π(A, c)
Π(A) liftposs(σ) = Π(A, c)

Π(A)Π(c)

The justification for this type of definition is as follows: As the degree of
possibility for any tuple t, we assign the total probability mass of all contexts
that contain t [12]. With this interpretation, the term Π(A = a) refers to the
maximum degree of possibility of all sets of tuples, for which A(t) = a holds,
i. e., Π(A = a) = max{p(t) = w(t)

N | t ∈ Ω ∧ A(t) = a}. This probabilistic origin
allows us to look at the possibility of an event E (i. e., a set of tuples) as an
upper bound of elementary events’ probablitities contained in E [3].

4 Experiments and Evaluation

The visualization technique presented here was introduced during a data mining
project in cooperation with an automobile manufacturer. To justify the practi-
cal applicability, we intend to present real-world results. Since the underlying
datasets are highly confidential, we are not allowed to show any attribute names
or values. However, the charts will give a good insight, how suspiciuous subsets
of tuples can be identified.

The dataset under analysis contained approximately 50.000 vehicle descrip-
tions, including one class attribute designating, whether the respective car was
faulty or not. A network was learned which revealed the class attribute to have
two parent nodes, anonymized to X and Y . We then chose the three evaluation
measures to be recall, lift and support, which resulted in the chart depicted in
figure 4. Choosing these measures, a user can apply the following heuristic to
identify possible conspicuous tuples:

“Large circles in the upper right corner are promising candidate subsets of
samples that could most likely be suspicuous.”

Dark circles represent faulty vehicles, white circles non-faulty ones. In figure 4
we identify a large gray circle on the right side, labeled ‘1’. The corresponding
attribute values for X and Y belonging to this circle were identified by experts
as having a causal effect on these 800 faulty vehicles.
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Fig. 4. The circle with label ‘1’ represents 800 tuples having a large lift and recall

Fig. 5. Only faulty vehicles sets are shown. Again, the circle labeled ‘2’ represents
eye-catching tuples, that had a causal relationship with the corresponding values for
X and Y .
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Another way of looking at this dataset is by choosing different measures for
the x- and y-axis. Motivated by charts from the domain of Information Retrieval,
we assign the measures confidence and recall to the x- and y-axis, respectively.
Omitting the non-faulty circles for clarity results in the chart of figure 5.

Again, the circle marked as ‘2’ represents (the same) 800 faulty vehicles.

5 Conclusion and Future Work

In this paper, we gave a short introduction to possibilistic networks and its ability
of handling imprecise data which is becoming more and more a requirement for
industrial applications since real-world data often contains missing data. We ar-
gued further that the more interesting information is contained inside the quan-
titative part of a network, namely its potential tables. Then, a new visualization
technique was presented that is capable of displaying high-dimensional, nominal
potential tables containing possibilistic parameters. This plotting method was
evaluated in an industrial setting which produced empirical evidence that the
presented visualization method greatly enhances the exploratory data analysis
process. Since the presented visualization method aids to find concept descrip-
tions and combines identical tuples (w. r. t. a subset of attributes) it may be
promising to try to apply a modified version of this technique in the area of
Text Mining, where several documents (again, identical w. r. t. some attribute,
e. g. topic or keywords) may be grouped and displayed against other document
groups.
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Abstract. The use of unsupervised fuzzy learning methods produces a
large number of alternative classifications. This paper presents and ana-
lyzes a series of criteria to select the most suitable of these classifications.
Segmenting the clients’ portfolio is important in terms of decision-making
in marketing because it allows for the discovery of hidden profiles which
would not be detected with other methods and it establishes different
strategies for each defined segment. In the case included, classifications
have been obtained via the LAMDA algorithm. The use of these crite-
ria reduces remarkably the search space and offers a tool to marketing
experts in their decision-making.

Keywords: Fuzzy unsupervised learning, criteria for classification
selection, marketing applications.

1 Introduction

Firms that commercializa their products via other firms (“sell to other firms”) are
known as B2Bs (or business-to-business companies). One of the main challenges
for these firms is knowing and understanding the behavior of the businesses that
later sell their products. The distribution of these products is directly affected
by the interest and the performance of the points of sale or specialized shops
that sell them to the end customer.

For this reason, knowing and understanding how each point of sale behaves
is crucial to designing marketing strategies. In this sense, the use of segmenta-
tion techniques in the B2B market allows us to determine groups to which the
mentioned strategies can be directed. Segmentation in the B2B environment is
complex due to the need to consider not only the characteristics of the points of
sale but also their relationship with the end customer, the one who ultimately
opts for the product.

The use of artificial intelligence techniques in this problem will allow us to
determine groups of businesses with different profiles or behaviors. Therefore, it is
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necessary to know the variables that determine the differences between the ways
these groups act. These variables usually depend on external factors, such as geo-
graphical location, the business’ area of influence, etc., and also on internal factors,
such as the kind of management, the degree of implication by the person respon-
sible, the product display stand in the shop compared to the competitors, etc. [5].

In this paper, an unsupervised learning methodology is used for the automatic
generation of segmentations to discover profiles which would not be detected
casually. Moreover, a series of criteria for the selection of optimal segmentation
is given in order to help marketing professionals make their decisions.

This work is framed within a collaborative agreement between ESADE - Uni-
versitat Ramon Llull, the Universitat Politècnica de Catalunya, and the firm,
Textil Seu, S.A., specialized in outdoor sporting equipment and clothing.

In this study, we apply a classification technique called LAMDA (Learning
Algorithm for Multivariate Data Analysis). Among other advantages, LAMDA
allows us to work simultaneously with quantitative and qualitative variables.
In order to aggregate the information associated to each pattern, the LAMDA
algorithm introduces fuzzy hybrid connectives defined from the convex linear
interpolation between a t-norm and its dual t-conorm. Its unsupervised version
allows us to obtain a diversity of segmentations from which the marketing team
must select the most representative with respect to the posed problem.

This paper begins with the presentation of the LAMDA algorithm and the
theoretical concepts on which it is founded. We then analyze and substantiate
the criteria to select the optimum segments from among the resulting set of
segmentations of an unsupervised learning process. A real B2B case study to
which the presented techniques are applied is introduced in Section 3 of this
paper. In Section 4, the results obtained are commented on and analyzed. The
paper ends with a conclusion and proposals for future work.

2 Theoretical Framework: The LAMDA Algorithm

LAMDA is a hybrid connectives-based classification method that combines some
of the most interesting capabilities of both purely numeric and purely symbolic
algorithms. In order to do so, both employ the interpolation capabilities of logic
operators over fuzzy environments [7].

A linearly compensated hybrid connective is an interpolation between a t-
norm and its dual t-conorm (H = βT + (1 − β)T ∗). It can be noted that for
β = 1, the t-norm is obtained and, for β = 0, the t-conorm is the result. Taking
into account that the t-norms are fuzzy operators associated to an intersection
or conjunction and the t-conorms are associated to a union or disjunction, the
parameter β determines the exigency level of the classification. Obviously, we
can define λ = 1 − β as the tolerance level of a given classification.

In this work, the LAMDA algorithm is employed as a classifier. It was de-
veloped by Josep Aguilar in collaboration with a series of authors [1,2,3] as an
original technique in which the input data are the values that a set of observa-
tions exhibit for a number of descriptors. Each of these descriptors within the
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database can be either qualitative (a linguistic label) or quantitative (numerical).
The basic LAMDA operation is depicted in Figure 1:

Fig. 1. Hybrid Connectives-based Classification

MAD and GAD stand for the Marginal Adequacy Degree and Global Ade-
quacy Degree, respectively, of each individual to a given class. MAD is computed
for each descriptor, class and individual, and these partial results are aggregated
by means of the hybrid connectives H to supply the GAD of an individual to a
class. The visible structural resemblance between the LAMDA algorithm and the
Artificial Neural Networks is worth noting, especially for the RBF (Radial Base
Functions) type, as can be seen in Figure 2. LAMDA exhibits greater flexibility
than neural networks, for example, in its ability to perform either a supervised
or an unsupervised learning process indistinctly and its capability to combine
pattern recognition with a simple, non-iterative class upgrading.

Fig. 2. RBF Neural Network Architecture
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Whenever the unsupervised learning LAMDA capabilities are employed, the
first individual is always placed in a class by itself. Subsequent individuals can then
be be assigned to the already existing class(es) or a new one is created. In order
to determine when this occurs, the algorithm generates, first of all, a special class
called NIC (Non-Informative Class) which represents maximum entropy, with the
characteristic of returning the same (low) GAD for every possible individual. As
such, the decision-making process consists of comparing the GAD of the individual
to the NIC class with the GADs to every other existing class. If one of the real
classes returns the maximum GAD, the new individual will be assigned to it and
the class will be modified accordingly. But if the NIC is the one with the highest
GAD, this means that none of the existing classes are close enough to the individual
and so a new class has to be created by the LAMDA algorithm.

The generated classificationby unsupervised learningdepends, on the one hand,
on the hybrid connective employed and, on the other hand, on the selected exi-
gency or tolerance level (also on the assumed distribution for numerical descrip-
tors). Maximum exigency means that an individual will be assigned to a class only
if every descriptor points to this, whereas a minimum exigency implies that the
individual will be assigned to the class if this is indicated by at least one of the
descriptors. Any in-between exigency degree is possible, and our algorithm is able
to automatically explore these and generate every possible partition.

Additionally, the obtained results are not only a classical partition. The al-
gorithm returns the Global Adequacy Degree for every individual to each class,
that is, a fuzzy partition. These results enable marketing experts to further ex-
plore a whole set of possible solutions.

3 Selection Criteria for Classifications

The use of unsupervised learning algorithms allows suggesting segmentations
that, in principle, are not trivial. In this sense, behavioral patterns or “interes-
ting” profiles can be established by using this type of algorithm and they may
reveal new profiles not known by the experts. In an area of application such as
marketing, finding new and creative solutions is worthwhile because these allow
for the definition of new marketing strategies. However, when a large amount
of different segmentations are obtained, how do we choose the one that really
adjusts to the proposed objective? Below we define oriented criteria to help solve
this problem. A software module based on the outputs obtained by the LAMDA
algorithm but adaptable to the outputs of any unsupervised tool is being deve-
loped to interpret and decide automatically which is the best segmentation.

First Criterion: Stable Classification. The LAMDA algorithm is iterative,
that is, it processes all the individuals several times, modifying the classes
until reaching a stability in which the classification remains unalterable or
until reaching a prefixed maximum number of iterations.

The tool then discards those classifications that have not obtained said
stability. Only classifications that remain stable after the maximum number
of iterations are considered.



Selection Criteria for Fuzzy Unsupervised Learning 311

Second Criterion: Useful and Manageable Number of Classes. Based
on the interpretability and usability of the classification, it is worth inte-
resting examining segmentations which have a sufficient number of classes
to generate new knowledge, but small enough to obtain an easily inter-
pretable and usable model. Specifically, in marketing environments in which
these classifications are used to extract behavioral patterns to design market
strategies, the usual the number of classes distinguished is between 3 and 5
[5]. Designing marketing campaigns with less than 3 or more than 5 different
strategies is not very useful.

Therefore, the tool discards classifications with a number of classes lower
than a fixed minimum or higher than a fixed maximum.

Third Criterion: Balanced Classes. Cases in which one class encompasses
most of the individuals are worth avoiding. These segmentations usually do
not contribute to create new knowledge. The need for this criterion appears
in marketing problems [5]. In this environment, an unbalanced classifica-
tion supposes a classification effort that does not contribute a proportional
benefit.

In order to ensure this, the Indicator of Balanced Classes IB is defined
as the variation coefficient for the variable Y = “number of elements of each
class in a given segmentation”:

IB = CVY =
σY

Ȳ
, (1)

with

σY =

√√√√ 1
M

M∑

i=1

(Yi − Ȳ )2 and Ȳ =
1
M

M∑

i=1

Yi, (2)

where σY is the dispersion of the variable Y , M is the number of classes of
this segmentation, and Yi is the number of individuals within the class i. It
is easily observed that if a classification contains all the classes with an equal
number of individuals, this value will be zero. The tool requires that the IB

indicator does not exceed a certain KB value:

IB < KB.

Because of the fact that the number of classes within the obtained classi-
fications, i.e., the number of variable Y observations, is not fixed, we do
not recommend directly comparing the deviations obtained for each one of
the classifications. However, the variation coefficient considers the existing
proportion between averages and standard deviations, which allows us to
compare the different obtained classifications.

Fourth Criterion: Consistent Segmentation. A segmentation is conside-
red consistent when the differences between the MADs are small enough
for each class and each individual.

As explained in Section 2, in fuzzy classifications, such as those obtained
through the LAMDA algorithm, each individual belongs to each class with a
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certain degree of adequacy. The consistency indicator ensures that the global
degrees of adequacy are obtained from similar values of MADs. If we take,
for example, μijk as the MAD of the individual j on the description k of
class i, with N as the number of individuals and M as the number of classes
of certain segmentation, the Consistency Indicator is defined as follows for
each one of the obtained segmentations:

IC =

∑
i

∑
j maxk,k′ |μijk − μijk′ |

M · N . (3)

Alternativa:

IC =

∑
i

∑
j σij

M · N , (4)

where

σij =

√√√√ 1
V

V∑

k=1

(μijk − μ̄ij)2 and μ̄ij =
1
V

V∑

i=1

μijk, (5)

where V is the number of variables.
The tool requires that the consistency indicator does not exceed a certain
KC value:

IC < KC .

Fifth Criterion: Dependency on External Variables. This criterion uses
suitable external variables, called control variables, chosen by some experts,
in order to evaluate the relevance of the classifications obtained. The depen-
dency degree of a classification on a control variable is defined by means of the
value of the statistic χ2 computed via the contingency table (Table 1), where
C1...Ci...CM represent the classes of the considered segmentation, D1...Ds

...DS the values of the external variable and qis the number of observations
that take the Ds value in Ci class.

Table 1. Contingency Table

Class Descriptors or intervals Total
D1 D2 . . . DS classes

C1 q11 q12 . . . q1S M1+

. . . . . . . . . . . . . . . . . .
Ci qi1 qi2 . . . qiS Mi+

. . . . . . . . . . . . . . . . . .
CM qM1 qM2 . . . qMS MM+

Total descriptors M+1 M+2 . . . M+S N

If we take, for example, eis as the expected frequency obtained when the
variable is independent of the classification, i.e.:

eis =
Mi+ · M+s

N
(6)
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the statistic χ2 is determined through the expression:

χ2 =
N∑

i=1

S∑

s=1

(qis − eis)2

eis
(7)

For each classification, the dependency of each of the control variables with
respect to the segmentation is studied, and those classifications that have a
high dependency on these external variables will be chosen. For this reason
the statistic χ2 has to have high value.
It is important to note that this criterion can be used directly when the
control variables are qualitative. In the case of quantitative control variables,
it is advisable to discretize these previously into intervals (Ds). For each
problem, the discretization criterion will be specifically chosen [6,8].
Because the range of values of χ2 can change according to the number of
classes of the segmentation, Tschuprow’s coefficient [10] is used to calculate
the Indicator of Relation with the Control Variable:

IR =
χ2

N ·
√

M − 1 ·
√

S − 1
. (8)

where N is the number of individuals, M is the number of classes of this
segmentation and S is the number of possible control variable values, if it is
qualitative, or the number of considered intervals if it is quantitative. The
tool requires that the statistic considered exceed a predetermined KR value:

IR > KR.

4 Case Study

4.1 Introduction

The problem addressed in this paper belongs to a broader project in which
Artificial Learning techniques are applied to a field where there have been few
contributions to date: market segmentation [4].

In particular, this paper presents a preliminary study evaluating the efficiency
of the LAMDA classifier in designing segmentations for B2B environments. The
global objective is to create an application capable of identifying and classifying
points of sale which will enable appropriate marketing strategies to be defined.
This segmentation is made by using the LAMDA algorithm. In particular, the
work is based on data collected using the observations, knowledge, and expe-
rience of the sales representatives working for the outdoor sporting equipment
firm, Textil Seu, S.A. (Grifone, http://www.grifone.com), a company established
in La Seu d’Urgell for more than 25 years. Grifone works in a B2B environment.
This paper presents the preliminary results obtained from a database with in-
formation about 260 shops that distribute Grifone products.

Each of these points of sale is considered an individual and it is described by
the variables defined in Table 2:
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Table 2. Description of Variables

Type Number Description

Quantitative 2 Duration of commercial relationship
Number of full-time sales assistants

Qualitative 5 Specialist store
Geographic location
Grifone products in the display window
Thermal product display
Internet

Ordinal 10 Assessment by Grifone representatives
Level of competition
Store size
Store maintenance
Display window size
Communicative quality
Aesthetics quality
Grifone products’ importance
Price sensitivity
Promotions sensitivity

Thus, each of the points of sale is described by a vector with 17 variables, 2
of which are quantitative, 5 qualitative, and 10 qualitative ordinal.

It should be noticed that the variable, sensitivity to promotions, has not been
used in the automatic learning process. From the results obtained by the LAMDA
algorithm in its version of unsupervised learning, the criteria defined in the
previous section are applied to choose the point of sales’ optimal classification
using the variable, sensitivity to promotions, as a control variable.

4.2 Obtained Results

Parameters

Fuzzy Hybrid Connectives: only connectives with T = min have been con-
sidered [9].

Tolerance: an automatic tolerance level was fixed by employing the unsuper-
vised learning capability of LAMDA.

Maximum Variability: a 0 percent variability was chosen to ensure the sta-
bility of the obtained segmentations.

Maximum Number of Iterations: a sufficiently large number of iterations
was chosen to ensure a maximum number of stable segmentations.

Taking advantage of LAMDA’s unsupervised learning capability, 97 classifi-
cations were obtained, 65 of which reached stability before the fixed maximum
number of iterations (10). Applying the criterion of number of class manageabi-
lity, those segmentations with less than 3 classes and more than 5 were discarded,
reducing the set of classifications to 16, as shown in Table 3.
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Table 3. Final Classifications after eh First and Second Criteria

Classif. n. classes Classif. n. classes
Cl. 43 3 Cl. 55 4

Cl. 44 3 Cl. 56 4

Cl. 48 5 Cl. 57 3

Cl. 49 5 Cl. 58 4

Cl. 50 5 Cl. 59 3

Cl. 52 4 Cl. 60 3

Cl. 53 4 Cl. 62 3

Cl. 54 4 Cl. 63 3

Table 4. Applying Criterion Three

Clasification IB Discarded Clasification IB Discarded
Cl. 43 0.5603 Yes Cl. 55 0.3750 No

Cl. 44 0.4950 No Cl. 56 0.7917 Yes

Cl. 48 0.7011 Yes Cl. 57 0.4124 No

Cl. 49 0.7014 Yes Cl. 58 0.7123 Yes

Cl. 50 0.7937 Yes Cl. 59 0.4431 No

Cl. 52 0.7172 Yes Cl. 60 0.4377 No

Cl. 53 0.7243 Yes Cl. 62 0.6555 Yes

Cl. 54 0.3606 No Cl. 63 0.6568 Yes

Table 5. Applying Criterion Four and Five

Classification IC Discarded IR

Classif. 44 0.4904 No 0.0665

Classif. 54 0.4722 No 0.0466

Classif. 55 0.4598 No 0.0635

Classif. 57 0.4844 No 0.0323

Classif. 59 0.4757 No 0.5279

Classif. 60 0.4683 No 0.3634

The values shown in Table 4 are obtained by computing the index defined in
criterion three, which allows evaluating the balance between class cardinality.

As can be seen in Table 4, several segmentations have been discarded due to their
variation coefficient (IB has exceeded the maximum value previously set at 0.5).

The values shown in Table 5 are obtained by computing the rest of indexes:
The application of the fourth criterion does not discard any segmentation

(Table 5). The application of the fifth criterion leads to the selection of classifi-
cation number 59.

Next, a description of each one of the obtained segments is detailed:

Class 1: This segment with 35 points of sale includes shops with a long-standing
commercial relationship with Grifone. By and large, these shops are not
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specialists in mountain gear and competition between them is mostly in-
tense. The points of sale, located in cities or non-mountainous-populations,
are medium or large in size and count on many shop assistants. The shops
are well-maintained, they have a medium-sized window display, and their
aesthetic and communicative qualities and abilities are high.

A lot of the shops in this group have a thermal product display and usually
market their goods on the Internet, which is rather unusual for these kinds
of shops. The importance of the Grifone brand is secondary, in general, and
their clients demonstrate a mid-level sensitivity to the promotions.
In short, Class 1 might correspond to multi-sports shops, with large points
of sale not found in mountain locations.

Class 2: Most shops in this class (98 shops total) do not have a long-standing
commercial relationship with Grifone. Competitiveness is medium, they are
small or medium in size, and they have a small sales staff. Their maintenance,
esthetic quality, and communicative abilities are generally average or good,
and they have a moderately small display window.

Most of the shops in Class 2 do not display Grifone products; the impor-
tance of Grifone is minor. Almost none has a thermal product display and
grifone representatives give these shops the worst evaluation. These shops’
customers demonstrate a low or mid-level sensitivity to promotions.
It seems that, from Grifone’s point of view, Class 2 corresponds to the worst
shops, those in which its brand is placed worst.

Class 3: Shops in the third class, the most extensive with 127 shops, are usually
sector specialists, with fairly strong competition between them, and, perhaps
because of this factor, they are primarily located in mountainous populations.
The shops are not big, nor they have a lot of shop assistants, but they are
well-maintained, and have excellent aesthetic and communicative qualities.
Normally, they have Grifone clothing in the display windows, although they
usually do not usually have a thermal product display.

The importance given to the Grifone brand is usually the highest; Grifone
is often the principal product. Their clients are quite sensitive to promotions.
In Class 3 we find Grifone’s favorite clients: small-sized, elegant, and
specialists in mountain gear. In this segment, shops with a long-standing
commercial relationship with Grifone products are mixed with others with
a shorter relationship‘. The latter could potentially become “favorite shops”
and be the first possible target of a marketing campaign.

4.3 Conclusions and Future Work

In this study, an unsupervised learning methodology is employed in order to
automatically generate a set of classifications, and some criteria are proposed to
help marketing experts choose the optimal one. Decision-making can be greatly
improved this way.

Employing unsupervised learning permits the generation of hidden profiles
which could not be detected casually. Meanwhile, the new criteria introduced in
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this work drastically reduce the search for the optimal segmentation. Within the
framework of the AURA project, it is intended to fully develop the enhanced
software module and adapt it to the existing LAMDA implementation.

Further in the future, the acquired knowledge is intended to be applied to
fully automate the segmentation analysis just from the input variables.

Acknowledgments

This work has been supported in part by the AURA Project (Qualitative Rea-
soning Automatic Learning Systems: Intelligent Tools Applied to Finance and
Marketing, which is supported by the Spanish Science and Technology Ministry,
TIN2005-08873-C02).

The authors would also like to acknowledge the participation and interest of
the firm, Seu, S.A. in the AURA project.

References

1. J. C. Aguado. A Mixed Qualitative-Quantitative Self-Learning Classification Tech-
nique Applied to Situation assessment in Industrial Process Control. PhD thesis,
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Abstract. The backpropagation neural network is one of the most wi-
dely used connectionist model, especially in the solution of real life prob-
lems. The main reasons for the popularity of this model are its conceptual
simplicity and its ability to tackle a broad range of problems. But, on
the other hand, this architecture shows a well known problem for dealing
with nonstationary data. In this paper, a variation of feedforward neural
model which uses qualitative data both for feeding the network and for
back propagating the error correction is presented. The data are coded
by means of a fuzzy concept of local stability.

Keywords: Neurofuzzy modelling, data prediction.

1 Introduction

Soft computing paradigm is a useful way for tackling hard real problems. The
main ingredients in most soft computing applications are artificial neural net-
works and fuzzy logic, being this the most successful combination of intelligent
techniques [10].

An artificial neural network (ANN) is a computational model originally in-
spired in the bioelectrical networks formed in the brain. Several architectures
have been proposed and implemented for realizing this metaphor, being the
so called multilayer perceptron the best known and the one most extensively
used. The multilayer perceptron or multiperceptron consists of multiple layers
of processing units, typically interconnected in a feedforward way, what is called
a feedforward neural network. Backpropagation algorithm, on the other hand,
is the main technique for adjusting the synaptic weights of feedforward neural
networks. In this case, the neural network uses to be called a backpropagation
neural network (BNN).

The backpropagation neural network is one of the most widely used connec-
tionist model, especially for the solution of real life problems. The main reasons
for the popularity of this model are its conceptual simplicity and its ability to
tackle a broad range of problems. But this architecture shows a well known
problem for dealing with nonstationary data.

Fuzzy sets, on the other hand, are a useful way for representing imprecise
concepts from real world. Opposing to classical sets, objects (or values) can
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belong to several fuzzy sets at the same time, even if those fuzzy sets repre-
sent contradictory concepts. Fuzzy sets have been shown to be a good tool for
representing the qualitative categories describing the behavior of a dynamical
system. Standard fuzzy sets have been shown to be a successful tool for mod-
elling nonlinear systems [4], while second order fuzzy sets are a good approach
for analyzing data with high noise levels [3]. But standard fuzzy sets give an
atemporal description of world and do not represent the dynamical evolution
of those categories. Temporal and dynamical fuzzy sets have been proposed for
dealing with the dynamical nature of the world [5,9].

In this paper, a variation of feedforward neural model which uses fuzzy coded
data, both for feeding the network and for back propagating the error correction,
is presented. The coding is realized using soft dynamical fuzzy sets, in order of
improve the network efficiency when dealing with nonstationary data.

2 Backpropagation Neural Networks

A feedforward neuronal network is a system integrated by a set of simple pro-
cessing devices called nodes (neurons) organized in groups called layers, with
the information flowing from the input layer to the output layer (figure 1). The
neurons in each layer are interconnected only to the neurons of the following
layer (from input to output). The output of each neuron is used as the input to
the neurons of the next layer with which it is connected to. The output of the
i-th neuron in any layer l is given by

x
(l)
i = g

(
a
(l)
i

)
(1)

where, a
(l)
i is called the neuron activity level and describes how much the input

data influence the neuron activity. a
(l)
i is defined as

a
(l)
i =

⎛

⎝
n(l−1)∑

j=1

w
(l)
ij x

(l−1)
j

⎞

⎠ − Θ
(l)
i (2)

w
(l)
ij is the synaptic weight between the j-th neuron in layer l − 1 and the i-th

neuron in layer l; n(l−1) is the number of neurons in layer l − 1; x
(l−1)
j is the

output of the j-th neuron in layer l − 1 and Θ
(l)
i is the bias value of the i-th

neuron in layer l. The output function g(·) used in this work is given by

g(a) =
1

1 + e−Ga
(3)

being G the network gain.
The neural network training consists of adjusting the synaptic weights be-

tween the neurons, in such a way that the output of neurons in the output
layer corresponds to a certain known value associated to the input data. Several
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Fig. 1. Structure of a feedforward neural network

methods for training a feedforward neural network have been proposed, being
the backpropagation algorithm the most extensively used.

In backpropagation algorithm, the output error is computed individually for
each neuron in the output layer, and then this error is back propagated towards
the first hidden layer.

The synaptic weight w
(l)
ij that connects the jth neuron in layer l − 1 to the

i-th neuron in layer l, is iteratively updated by means of the equation

w
(l)
ij (k + 1) = w

(l)
ij (k) + Δw

(l)
ij (k) (4)

where

Δw
(l)
ij (k) = λδ

(l)
i (k)x(l−1)

j + αΔw
(l)
ij (k − 1) (5)

λ ∈ (0, 1) is the learning ratio and α ∈ (0, 1) the momentum. δ
(l)
i is the signal

error of the i-th neuron in layer l and is defined as

δ
(l)
i =

⎧
⎪⎪⎨

⎪⎪⎩

g′
(
a
(l)
i

)(
yi − x

(l)
i

)
Neurons at output layer

g′
(
a
(l)
i

)∑n(l+1)

m=1 δ
(l+1)
m w

(l+1)
mi Neurons at interior layers

(6)

The derivative for a sigmoid output function is

g′(a) = Gg(a) (1 − g(a)) (7)

A well known problem of backpropagation neural networks is its poor perfor-
mance when dealing with nonstationary data. This limitation is evident when
the behavior of the sigmoid function output is analyzed. From equation 3, can
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be observed that large activation values a lead to g(a) values very close to the
unit, whereas small values of activation lead to g(a) ≈ 0.5 (see figure 2). This
way, large input data values require small synaptic weight values at the input
layer, while small input values need large weights, making the synaptic weights
tuning a hard task. On the other hand, if the neural network output must be
a value in the same range as the input data, then the output function must be
attuned to throw values outside the range [0, 1]. A common way to solve these
problems consists on normalizing the data, but this approach requires to know
the complete range of values.

0.5
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0.8

0.9

1.0g(x)

x0 5 10 15 20

�
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Fig. 2. Output function behavior for large activation values

3 Fuzzy Local Stability

Given a crisp universe of discourse U , a fuzzy set A over U is defined as

A = {(x, μA(x)) | x ∈ U, μA : U → [0, 1]} (8)

Where μA(x) is the fixed degree of membership of x in the fuzzy set A.
But, fuzzy categories corresponding to dynamical systems states can show a

temporal evolution: The normal values for a given product price, the electric
energy demand and the solar activity level, vary along time, in some cases show-
ing some periodicity. If A corresponds to a dynamical category, it is natural to
expect that the membership value of x in the fuzzy set A will change along any
time interval T .

A dynamical fuzzy set [9] AD is defined as

AD =
{

(x, μ(x)(t)) | μ(x)(t) ∈ [0, 1], t ∈ T
}

(9)

The behavior of the main variables in many complex dynamical systems can
be described in terms of its local stability: the changes on the prices, for example,
are say to be raising or dropping. Following this metaphor, the data generated
by dynamical systems can be coded in terms of three dynamical fuzzy sets desig-
nated as Down, Stable and Up, as is shown in figure 3. Such fuzzy sets describe
the local stability of the variable, related to its previous values, and are defined
as follows:
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– The Stable fuzzy set consist of a pair of increasing-decreasing logistical
curves. The membership function for Stable fuzzy set is given by

μS(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 x ≤ ν − �

2
[

ν−�−x
�

]2
ν − � < x ≤ ν − �/2

1 − 2
[

ν−x
�

]2
ν − �/2 < x ≤ ν + �/2

2
[

ν+�−x
�

]2
ν + �/2 < x < ν + �

0 x ≥ ν + �

(10)

where μS(x) is the membership value of variable x in the Stable fuzzy set; ν
is is the modal value of Stable fuzzy set and represents the reference value for
the three fuzzy sets; � is the fuzzy set bandwidth. In this work, the modal
value is taken as the last value in the time series previous to the actual
value, while the bandwidth value is chosen proportional to the standard
deviation value over the adjacent differences on last 10 points in the time
series previous to the actual value.

ad
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Fig. 3. Fuzzy sets describing local data stability

– The Down set is chosen as a decreasing logistical curve. The corresponding
membership function is given by

μD(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 x < ν − �

1 − 2
[

ν−�−x
�

]2
ν − � ≤ x < ν − �/2

2
[

ν−x
�

]2
ν − �/2 ≤ x < ν

0 x ≥ ν

(11)

where μD(x), is the membership value of variable x in the Down fuzzy set.
– The Up set is chosen as a growing logistical curve. This set is defined by the

fuzzy membership function

μU (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 x < ν

2
[

ν−x
�

]2
ν ≤ x ≤ ν + �/2

1 − 2
[

ν+�−x
�

]2
ν + �/2 ≤ x ≤ ν + �

1 x ≥ ν + �

(12)
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where μU (x) is the membership value of variable x in the Up fuzzy set.

The fuzzy coding in this paper is based on the qualitative coding method
used in the Fuzzy Inductive Reasoning (FIR) technique [1,2]. Such coding uses a
triplet formed by a qualitative class value, a numeric membership value and an
additional qualitative function side value (see figure 3). The last quantity speci-
fies the membership function side where the corresponding quantitative value is
located on. This is a suitable description for local dynamical stability: A variable
declared as Stable with a Down tendency, can be coded as (Stable, μ, Left), for
example.

In this coding scheme, a quantitative value is treated as belonging only to the
fuzzy set where its membership value is larger. Such coding is equivalent but more
economical and readable than the usual approach of coding a quantitative value
based on its membership to several fuzzy sets. Two complementary concepts to
this representation are those of ”neighboring fuzzy sets” and ”pointing out to”.
These concepts are defined as follows:

Definition 1. Two fuzzy sets α and β are said to be ”neighboring fuzzy sets”
iff α �= β and α ∩ β �= φ, being φ the empty set. This relations is represented as
N (α, β).

Definition 2. The record r is said to ”point out to” the fuzzy set α iff: 1) r ∈ β
and N (α, β), and 2) α is located at the same side of β where r is placed on. This
relations es represented as r 	→ α.

4 Fuzzy Backpropagation Neural Networks

A fuzzy backpropagation neural networks (FBNN) uses the same structure as
that of standard feedforward neural network.

The input data for a fuzzy neural network are qualitative triplets r = (Class,
μ, Side). In order to maintain the data coherence, the neural network must
operate over the three triplet elements. The output of the i-th neuron in layer l
is given by

X
(l)
i =

(
α

(l)
i , g(a(l)

i ), Side
(l)
i

)
(13)

– The α
(l)
i value is obtained by aggregating the signals coming from the neurons

of the previous layer connected to it, l − 1. This is achieved by computing
the next indices

Iαs =
n∑

j=1

w
(l)
i,j · χj (14)

where αs ∈ {baja, estable, alza}, w
(l)
ij is the synaptic weight between the

j-th neuron in layer l − 1 and the i-th neuron in the layer l. χj is computed
by means of the following relation:
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χj =

⎧
⎪⎨

⎪⎩

g(a(l−1)
j ) X

(l−1)
j ∈ αs

1 − g(a(l−1)
j ) X

(l−1)
j ∈ β, N (beta, αs) y X

(l−1)
j 	→ αs

0 a.o.c.
(15)

α
(l)
i is chosen as the fuzzy set whose index gets the highest aggregation value.

– g(·) is the output function defined by equation 3, being

a
(l)
i = max

s
(Iαs ) − ϑ

(l)
i (16)

ϑ
(l)
i is the bias value. Since the output membership value always lies in the

range [0.5, 1.0], ϑ
(l)
i is set to 0.5 for all neurons.

– The new function side value Side
(l)
i is taken as pointing to the fuzzy set

whose counter gets the second largest value in the aggregation process.

The error propagation is made using the same process as in the standard
backpropagation algorithm, except because now the error must be computed
from quelitative data. The error signal for i-th neuron in layer l, δ

(l)
i , is defined as

δ
(l)
i =

⎧
⎪⎪⎨

⎪⎪⎩

g′
(
a
(l)
i

)
D(X(l)

i , Xi) For neurons in the output layer.

g′
(
a
(l)
i

) ∑n(l+1)

m=1 δ
(l+1)
m w

(l+1)
mi For neurons underneath the output layer.

(17)
being D(·) the soft Gower distance function, defined as

Definition 3. The soft Gower distance between two records, namely ri and rj is

D(ri, rj) =

√
1 − Gow(ri, rj)

Gow(ri, rj)
(18)

Xi is the target value for the i-th neuron in the output layer and X
(l)
i the actual

output value at the same node. Gow(ri, rj) is given by

Gow(ri, rj) =
1
3

· (1 − |μi − μj | + gc(ri, rj) + gs(ri, rj)) (19)

where

– μ is the membership value of the record r as given by the fuzzy triplet
(Class, μ, Side).

– gc(ri, rj) is defined as follows:

gc(ri, rj) =

⎧
⎨

⎩

1 ri ∈ α and rj ∈ α
0.5 ri ∈ α, rj ∈ β and N (α, β)
0 Any other case.

(20)

being α and β fuzzy sets, and φ the empty set.
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– And gs(ri, rj) is:

gs(ri, rj) =

⎧
⎨

⎩

1 ri ∈ α, rj ∈ α and S(ri) = S(rj)
0.5 ri ∈ α, rj ∈ β, N (α, β), ri 	→ β and rj 	→ α
0 Any other case.

(21)

5 Results

The performance of FBNN is compared to that of standard BNN by tackling
the following prediction problems:

– The Lorenz attractor, defined by the next differential equations system [8]:

dx(t)
dt

= σ(y − x)

dy(t)
dt

= rx − y − xz (22)

dz(t)
dt

= xy − bz

where x, y and z are state variables and r, σ and b are positive physical
parameters. Following most simulations, the parameter values used in this
work are σ = 10, r = 28 and b = 8

3 . The sampling rate is τ = 0.01. A set of
3000 records were generated by numerical integration of equations 22 using
a fourth order Runge-Kutta method. The test consist in predicting the z
component of Lorenz system. This time series was labeled as ”Lorenz 1” in
table 1.

– The time series labeled as ”Lorenz 2” in table 1 was generated by adding a
linear growing tendency and a linear increasing dispersion to the component
z of the Lorenz attractor. This series of given by the equation:

z̆k =
k(1 + zk)

100
; k = 1 . . . 3000 (23)

– A third time series was generated simulating a quadratic growing tendency
and a quadratic increasing dispersion in the z component of the Lorenz
attractor. This time series is labeled as ”Lorenz 3” in table 1, and is given
by the equation:

z̃k =
k2(1 + zk)

50000
; k = 1 . . . 3000 (24)

– The sunspots number. The data used in this work correspond to the obser-
vation range from January 1st 1947 to August 12 1956.

– Foreign currencies market. This problem is a well-known testbed for time
series prediction methods. As other financial systems, this one presents many
modeling problems [6,7]. The variables to be predicted in this study case
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are the exchange rates, related to the U.S. dollar, of the next currencies:
the Pound Sterling, the Canadian Dollar, the German Mark, the Japanese
Yen and the Swiss Franc. The data used in this problem were taken origi-
nally from the Monetary Yearbook of the Chicago Mercantile Exchange, and
published in Internet by Andreas S. Weigend (http://www.cs.colorado.
edu/∼andreas/Time-Series/Data/). This database contains 3512 records
covering the time period from June 1st, 1973 to May 21st, 1987.

As can be observed in the table, the prediction of stationary time series by the
fuzzy neuronal network is slightly better than the prediction obtained with the
standard neuronal network. On the other hand, when the stationary conditions
disappear, the performance of the fuzzy neuronal network is clearly superior.

In both cases a neuronal network with 15 input nodes, 20 nodes in the only
hidden layer, and one unit in the output layer, was used. The training parameters
for both neural networks were: gain=1, learning ratio=0.05, momentum=0.5.
BNN models used bias=1 while FBNN used bias=0.5.

Table 1. NMSE error when predicting different time series with a standard backprop-
agation neural network and a fuzzy backpropagation neural network

Neural network model

Time series standard fuzzy

Lorenz 1 0.1202752 0.0960687

Lorenz 2: linear 0.3987142 0.0933912

Lorenz 3: quadratic 0.5365449 0.0869285

Sunspots number 0.2661172 0.2782048

Pound Sterling 0.3169981 0.0972515

Canadian Dollar 0.4199859 0.1927423

German Mark 0.2506006 0.0495888

Japanese Yen 0.3608898 0.0386783

Swiss Franc 0.1830959 0.0525080

Average NMSE 0.3170246 0.1094846

6 Conclusions

A fuzzy variant on backpropagation neural network has been presented. This
model uses dynamical fuzzy sets for describing the local stability in nonstationary
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data. The performance of fuzzy backpropagation neural networks is compared
the performance of standard backpropagation neural networks. The fuzzy variant
seems to be clearly superior to the standard one.
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Abstract. In a fedbatch process the operational strategy can consist on
controling the influent substrate concentration in the reactor, by means
of the input flow manipulation. Due to the repetitive characteristic of the
Sequencing Batch Reactor processes, it opens the possibility to explore
the information generated in previous cycles to improve the process op-
eration, without having on-line sensors and/or a very precise analytical
model. In this work an iterative learning control strategy based on a fuzzy
model is proposed. It is assumed that the measurements are analytical
and only a few number of them can be obtained. So, an interpolation
technique is used to improve the control performance. Simulation results
for a phenol biodegradation process are presented.

Keywords: Fuzzy Iterative Learning Control, Biotechnological Process.

1 Introduction

The Sequencing Batch Reactor (SBR) process operates in a true batch mode
with aeration and sludge settling both occurring in the same tank. The major
difference between a SBR and a typical activated sludge system is that the SBR
tank carries out the functions of equalization, aeration and sedimentation in a
time sequence rather than in the conventional space sequence.

The SBR presents some advantages with respect to the continuous activated
sludge process. Since SBR is a batch process, the effluent can be held in the
reactor until it is treated if the influent can be stored far away. This can minimize
the deterioration of effluent quality associated with influent spikes. Also, biomass
will not be washed out of a SBR because of flow surges. In addition, settling
occurs when there is no inflow or outflow. However, the SBR systems have also
some disadvantages, generally related to a higher level of control sophistication.

Identification and real-time control of SBR processes still represent a cha-
llenging area of endeavor for control engineers. In particular, the control design
is difficult by at least two well-known factors [1]. Firstly, the processes involving
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living microorganisms exhibit large nonlinearities, strongly coupled variables and
often poorly understood dynamics. Secondly, the real-time monitoring of many
key process variables, which are needed by advanced control algorithms, is ham-
pered by the lack of reliable on-line sensors.

Different trends for the control of fedbatch biotechnological processes have
emerged, principally optimal and adaptive approaches [2]. These methods can
be applied to the SBR control, since it can be considered as a biotechnologi-
cal fedbatch process. The main drawback of the model-based optimal control
methods, which provides a theorically realizable optimum, is the assumption
of a perfectly known model. On the other hand, model-independent adaptive
controllers do not guarantee a priori optimality of the control policy results. Fi-
nally, the approach based on the concept of minimal modeling of the kinetics has
emerged, in order to fill the gap between modeling accuracy and control needs
[2]. In this approach, the optimal control of fedbatch processes can be replaced
by a common nearly optimal regulation control case. According to this, the con-
trol objective is stated in terms of a substrate concentration set point tracking
to fix the influent flow rate.

An iterative learning control (ILC) algorithm [3] allows the output-tracking
task to be carried out. The choice of an ILC technique is justified by the repet-
itive nature of the fedbatch cultures. Since ILC uses information from previous
executions of the task in order to improve the tracking performance from trial
to trial, it does not require any on-line measurement. The ILC differs from the
majority of the control methods, as it employs all the possibilities of incorpo-
ration of control information from the past process operation, such as the error
and input signals, to construct the actual control action.

The ILC control has been proposed for the control of systems that can per-
form the same task repetitively [4]. Since fedbatch reactors are permanently in
a transient regime, the tracking behaviour of the conventional ILC approach de-
teriorates as the number of off-line measurement samples decreases. The use of
ILC for discrete-time systems is a common case, but a very small time period is
needed to guarantee the algorithm convergence [5]. In this work, the measure-
ments are considered to be done by a process operator, and so it is desirable
to have a sampling period as larger as possible. The effect of a larger sampling
period on the ILC control of a SBR process was studied in [6]. The proposed
solution consists in generating an estimated output sequence in small intervals,
to reduce the tracking error between samples.

In this work, a fuzzy model of the process was developed. The learning law
is based in the fuzzy model to improve the convergence rate of the learning
algorithm, based in ideas proposed in [7] and [8]. In this work a fuzzy model of the
growth rates are coupled with a Takagi-Sugeno type fuzzy model of the process
in order to reduce de complexity of the model and reduce the computational
effort of the learning law algorithm.

The study is carried out on an analytical model of a SBR system for phenol
biodegradation, whose kinetics are characterized by the production and later
consumption of an inhibitory metabolic intermediate. The process under study
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is a pilot plant of the CIQ-UAEH [9]. From this process, an analytical model
was previously experimentally validated for fedbatch cultures [10].

2 Phenol Biodegradation Model

The mass balance equation for the various constituents of phenol biodegradation
is given by the following first order system of differential equations [10]:

Ẋ(t) = μ(t)X(t) − Qin(t)
V (t)

X(t) + d1(t)

Ṡ1(t) = −qS1(t)X(t) +
Qin(t)
V (t)

(Sin
1 − S1(t)) + d2(t)

Ṡ2(t) = vS2(t)X(t) − qS2(t)X(t) − Qin(t)
V (t)

S2(t) (1)

V̇ (t) = Qin(t) − Qout(t)
y(t) = S1(t)

where S1(t) is the phenol concentration, S2(t) is the main metabolic intermediate
concentration, X(t) is the total microbial concentration and V (t) is the volume;
μ(t) is the specific biomass growth rate, qS1(t) and qS2(t) are, respectively, the
specific consumption rate of phenol and the intermediate; vS2(t) is the specific
intermediate production rate. We consider that the reactor is a fedbatch process
and in this case Qout(t) = 0, d1(t) and d2(t) are the external disturbances.

The specific biomass growth rate is calculated by

μ(t) = μ1(t) + μ2(t) (2)

where μ1(t) is a modified Haldane type equation and μ2(t) is a Monod type [10],
i.e:

μ1(t) =
μmax1S1(t)

KS1 + S1 + S2
1/Ki1

K2

K2 + S2(t)
(3)

μ2(t) =
μmax2S2(t)
KS2 + S2(t)

K1

K1 + S1(t)
(4)

where, μmax1 is the maximus growth value due to the phenol concentration,
μmax2 is the maximus growth value due to the intermediary concentration.

The specific growth and consumption rates are correlated with the constants,
biomass to phenol Y1 and biomass to intermediate Y2 as follows:

qS1(t) =
μ1(t)
Y1

qS2(t) =
μ2(t)
Y2

. (5)

The specific production rate of intermediate is linearly correlated to the spe-
cific growth rate of biomass on phenol [10] as

vS2(t) = αμ1(t). (6)
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The parameters values are described in [10] in base to a sensitivity analysis,
the values used for simulation are given in the Table 1.

Table 1. Parameter values

Symbol Value SI units

μmax1 0.39 1/h

Y1 0.57 mg/mg

KS1 30 mg/l

Ki1 170 mg/l

K2 160 mg/l

μmax2 0.028 1/h

Y2 0.67 mg/mg

KS2 350 mg/l

K1 66 mg/l

α 1.6 mg/l

3 Fuzzy Model of Microbial Growth Rate

For developing the learning algorithm, it is needed a fuzzy model of the process.
In order to reduce the number of possible fuzzy rules a fuzzy model of the
microbial growth rate coupled with a fuzzy model of the process is proposed.
This approach allows to obtain a reduced number of rules. So, less sub-models
are required for the learning law.

There were used five membership functions to evaluate the phenol concentra-
tion μ1(t), and another five for the metabolic intermediate concentration μ2(t)
to model both growth rates. So only 25 fuzzy rules were generated.

The consequent parameters of the linear functions can be estimated by least
squares from the available data. The condition is that the consequent functions
were linear and the number of data items is much greater than the dimension
of the regression vector. A diagonal matrix Γi ∈ RN×N is formed with the
normalized membership values λi(xk) as the k-th diagonal element, where k is
in [1, N ] and N is the number of data items. A Xe matrix was formed by S1,
S2 as its columns and a column of ones to determine the parameters bi. I it is
so called the extended regressor matrix Xe = [S1, S2, 1] [11]. Another matrix
X̄ ∈ RN×nN is formed from the matrices Γi and Xe:

X̄ = [Γ1Xe, Γ2Xe, . . . , ΓnXe].
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If the parameters are defined as a vector γ, it is computed in the following way:

γ =
[
X̄T X̄

]−1
X̄T y (7)

where y is the fuzzy estimation of microbial growth rate μ1(t) or μ2(t). In this
way, γ is obtained as the vector:

γ = [aT
1 b1, a

T
2 b2, . . . , a

T
n bn].

The fuzzy estimated values of μ1(t) and μ2(t) are presented in Fig. 1 and Fig. 2
respectively. Thus, the microbial growth rate is a function of the phenol S1 and
the metabolic intermediate S2, with a linguistic interpretation.

Fig. 1. Microbial growth rate due the phenol

Once the fuzzy model of the microbial growth rate is obtained, the number of
rules of the process model will be reduced. If there is considered a Takagi-Sugeno
fuzzy inference system, the model can be represented by a fuzzy combination of
linear systems:

R(i) : If x1(t) is F
(i)
1 and · · · and xn(t) is F (i)

n , (8)

Then x(t + 1) is Ai(x(t)) + Biu(t)

where F
(i)
j is a fuzzy set, x(t) = [X(t), S1(t), S2(t), V (t)] denotes the state vector,

u(t) denotes the control input, Ai ∈ R4×4, B4×1
i are matrices that represent the

dynamic of each linear subsystem. The output y(t) is the phenol concentration.
A representative prototype of the ith rule is denoted by xi = [X i, Si

1, S
i
2, V

i]
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Fig. 2. Microbial growth rate due the metabolic intermediate

A normalized membership value can be obtained as:

x(t + 1) =
n∑

i

λi(x(t))(Aix(t) + Biu(t)). (9)

where

λi(x) =

∏n
j μFj

(xj)∑m
i

∏n
j μFj (xj)

. (10)

The matrices Ai and Bi for each rule are defined as a linearization of the
process model:

Ai =

⎛

⎜⎜⎜⎜⎜⎜⎝

μi
1 + μi

2 − Qi

V i 0 0 QiXi

(V i)2

μi
1

Y1
−Qi

V i 0 −Qi(Sin
1 −Si

1)
V i

αμi
1 − μi

2
Y2

0 −Qi

V i

QiSi
2

(V i)2

0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
(11)

Bi =

⎛

⎜⎜⎜⎜⎜⎝

−Xi

V i

(Sin
1 − Si

1)
1

V i

− Si
2

V i

1

⎞

⎟⎟⎟⎟⎟⎠
(12)
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where μi
1 and μi

2 are the fuzzy estimation of the growth rates for the prototype
of the ith rule. This allows to use a reduced number of rules to represent the
process.

4 Model Based Fuzzy ILC

The Iterative Learning Control (ILC) is a technique generating an input sequence
for a working cycle of a system, by using a learning law and the information of
the input and output sequences of the last cycle, as well as the desired output
sequence. The learning law has to assure the convergence of the output sequence
to the desired one after several working cycles.

A desired output sequence {yd(0), yd(Δt), . . . , yd(NΔt))} is imposed and it is
defined on the interval [0, T ]. The error is obtained at each point as:

ei(kΔt) = yd(kΔt) − yi(kΔt)

where {yi(0), yi(Δt), . . . , yi(NΔt))} is the output sequence of the system for
the i iteration. A commonly assumption for ILC is that the initial condition is
bounded for each working cycle. The proposed learning law is:

ui+1(kΔt) = ui(kΔt) + βi(kΔt)ei(kΔt) (13)

where {ui+1(0), ui+1(Δt), . . . , ui+1(NΔt))} is the input sequence for the next
iteration. The control gain βi(kΔt) is obtained by the fuzzy model of the process
by:

βi(kΔt) =
n∑

j=0

λj(x(kΔt))βj
i (14)

βj
i is the learning gain of the jth rule of the model in the ith iteration.
The learning gains βj

i are obtained minimizing a quadratic performance index
[12]. In the iteration i, the sequence gain is computed for the j-th rule as:

βj
i = (GT

j QGj + R)−1GT
j Q (15)

where Q and R are symmetric positive definite matrices.
Gj is obtained from the super-vector notation of the system. This notation is

in discrete time and is formulated as yj(kΔt) = Gju(kΔt), where

Gj =

⎛

⎜⎜⎜⎝

CBj 0 · · · 0
CAjBj CBj · · · 0

...
...

. . .
...

CAN−1
j Bj CAN−2

j Bj · · · CBj

⎞

⎟⎟⎟⎠ (16)

where Aj and Bj are the model matrices for the jth rule of the fuzzy system.
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5 Simulation Results

An application example was developed for the phenol biodegradation process.
The main goal was to follow a phenol concentration profile. It was assumed
that only a reduced number of analytical samples can be made. To guarantee
convergence an interpolation is needed.

As it is shown in [5], to ensure a reduced tracking error for a sampled data non
linear system, it is needed a small sample time. Due to the system measurement is
assumed to be by the way of operator analysis, the sample time can not be small.
In the other hand, a small sampling period implies that the matrices Gj(kΔt)
will be too big, and the control signal computation can requires a considerable
computational effort.

The input signal was computed with a bigger sampling period, and then a
finer input sequence was generated using a correct interpolation technique. In
[6] is shown that a good choice of the interpolation technique allows to have a
bigger sampling period for the output sequence.

The system was simulated for working cycles of 15 hours. In order to ensure
a bounded initial condition error for biomass and volume, a purge at the end
of each cycle is considered has a realistic assumption. The initial conditions of
biomass concentration and volume are X(0) = 450 mg/l ± 3% and V (0) = 1 l.
Nevertheless, it is not possible to reduce the phenol and the intermediate concen-
trations from one cycle to other. Then, both substances have to be completely
consumed at the end of each working cycle. For this reason, S1(0) = S2(0) = 0
for the first iteration and for the other iterations, S1(0) and S2(0) take the values
of the final concentration of the last working cycle.

Fig. 3. Simulation of the phenol concentration
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The signal reference is the concentration profile defined by:

yd(t) = 70
∣∣∣∣
t − 6.5

2.5

∣∣∣∣
−5

. (17)

A white noise was added to states X and S1 in order to simulate the analytical
measurement error.

The sample time was 20 minutes, so 46 values are used for each state in each
iteration. A cubic spline technique was used to interpolate the control signal in
order to have a 1.2 minutes as virtual sample time, and apply a sequence of 751
values to the process.

Fig. 4. Simulation of the metabolic intermediate

For the fuzzy process model, three membership functions were defined for
the phenol and the metabolic intermediate concentration, two functions for the
volume, the inlet flow, and the biomass concentration.

In Fig. 3, the simulation of 10 iterations are presented for the phenol concen-
tration. A good performance is presented after 10 iterations. Nevertheless, an
important tracking error is presented at the begining of the phenol concentration
profile, due to the large sampled time used.

In order to avoid an effect of bioaccumulation of intermediate, it is important
to ensure that the intermediate is completely consumed at the end of each work-
ing cycle. In Fig. 4 the simulation shows that it is consumed before 15 hours in
all iterations.
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6 Conclusion

The use of a fuzzy model whose consequents are linear systems is a good alter-
native to control a bioreactor when the measurement can not be made on-line.
The number of measurements can be reduced if an interpolation technique is
used to have an small virtual sample period with a cost in the performance.
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Abstract. In this paper we analyze two recent modelling methodologies:
one based on a database preprocessing and then, the application of the
fuzzy C-means to highlight useful characteristics used in target selection
for direct marketing which is our first study case. The second one is
based on fuzzy clustering and cubic splines in the rule consequents. Some
examples are given in order to illustrate the advantages and drawbacks
of these methods.
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1 Introduction

In control engineering, modelling and identification are important steps in the
design of control laws, supervision and fault-detection systems. When poorly
understood complex systems are considered, or there is a strong presence of in-
accurate values, or the complexity of the resulting model grows up, all these cases
are limiting factors to apply this mechanistic modelling approach. Nevertheless,
process under study can be approximated by using some general structure, used
as a general function approximator. Modelling problem then reduces to postulat-
ing an appropriate structure of the approximator, in order to correctly capture
the dynamics and the nonlinearities of the system. The identification problem
consists of estimating the model parameters. A severe drawback of this approach
is that the structure and parameters of these models usually do not have any
physical significance.
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Fuzzy modelling. Modelling approach is based on fuzzy submodels, which
describe relationships between variables by means of If-Then rules, such as:

Ri : If x1 in A1AND · · · AND xm in AmThen y = f(x, u) (1)

where Ri is the ith rule or submodel. This structure is well known as Takagi-
Sugeno-Khan fuzzy model [1]. Function f(x, u) can have different forms, as in
the two cases here analyzed: A constant value (singleton) as we have dealed in
the first method or a nonlinear function (cubic splines), as in the second method.

In the following we recall some results from the target selection for direct
marketing problem. Further details can be found in [2].

2 Target Selection from Large Database for Direct
Marketing

Target selection is an important data mining problem in direct marketing. The
main task in target selection is to determine the potential customers for a product
from a large database by identification of the customer profiles that are previ-
ously known [3]. Typically, in a marketing database, the data set contains many
empty answers, because the clients do not know these characteristics or they are
not interested. Clustering must then be applied to characterize the relations in
variables involved in the database. In order to get a model-based completion of
the data, this can be obtained in two ways: features with missing values can be
removed from the data set, or, similarly, data points corresponding to clients with
uncompleted records can be removed. These two approaches (removal of features
and removal of records) are contradictory, and hence, a trade-off between the
conservation of the features and the conservation of records is needed.

2.1 Analytical Data Exploration

Our approach (Cf. [2]) provides an analytical methodology to build the repre-
sentative matrix of the data base, by showing the principal rows (clients) and
columns (features) from a large database, and it is based on the transforma-
tion of Karhunen - Loeve, also known as Hotelling transformation. This trans-
formation is based in principal components analysis (PCA). The main
problem to be solved in this Section is on how to obtain the most representative
components of a matrix conformed by rows (clients) and columns (features). The
answers of each client for each feature is the conformation of the matrix. We will
suppose that it is normalized, since in all company databases, it is natural to
have the same units of measure.

In order to get a filtered matrix (the pre-processed matrix) let us define Xc ∈
�M×N (respectively Xf ∈ �N×M) representing the complete database of the
clients (resp. of features), as follows:

Xc =

⎡

⎢⎣
x1,c

1 · · · x1,c
N

...
. . .

...
xM,c

1 · · · xM,c
N

⎤

⎥⎦ ; Xf =

⎡

⎢⎣
x1,f

1 · · · xM,f
1

...
. . .

...
x1,f

N · · · xM,f
N

⎤

⎥⎦ (2)
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A first selection of most records (clients) retained and most features allowed are
calculated in the first stage of our algorithm.

2.2 Pre-processing the Original Database

The selection of the principal components, is solved separately by using the
eigenvalues and eigenvectors of the covariance matrix for each case (clients and
features). We then find out the associated components in the original database,
by reconstructing via the Hotelling transformation. The procedure is detailed
as follows: From equations (2), calculate the average vectors for the clients and
features:

mc =
1
N

N∑

j=1

xk,c
j , ∀ k; mf =

1
M

M∑

k=1

xk,f
j , ∀ j (3)

Also, calculate the covariance matrix for clients and features:

Cc =
1
N

N∑

j=1

xk,c
j ·

(
xk,c

j

)T

− mc · (mc)T ; (4)

Cf =
1
M

M∑

k=1

xk,f
j ·

(
xk,f

j

)T

− mf ·
(
mf

)T
(5)

Since Cc and Cf are symmetric and real, then it is always possible to find a set
of n - orthonormal eigenvalues. Let λc

j and λf
k be the eigenvalues for clients and

features respectively, where j = 1, ..., M and k = 1, ..., N . The eigenvalues are
sorted from the maximum value up to the minimum, with their corresponding
eigenvectors. By using equations (2)- (4) we can apply the Hotelling transfor-
mation for clients and features. Let Ac be a matrix whose rows, corresponding
to eigenvectors of Cc (resp. Cf ) from (4), are sorted in a way that the first
row of Ac (resp. Af ) is the eigenvector corresponds to biggest eigenvalue. The
rows of Ac and Af are orthonormal, i.e. (Ac)−1 = (Ac)T and (Af )−1 = (Af )T .
Obtaining the Hotelling transformation,

Y c = Ac (Xc − mc) ; Y f = Af
(
Xf − mf

)
(6)

for clients and features establish a new coordinates system, where the origin is
the center of the population, and therefore the elements are not correlated with
respect to the original databases (equations (2)). Another important property of
the Hotelling matrix is the reconstruction of (2) via (6). The more eigenvector
in the matrix Ac and Af are taken to reconstruct the matrices (2), the more
accurate estimation of the original characteristics is obtained.

Then, by taking only a few eigenvectors (to be defined latter) of Ac and Af

two approximated matrix are obtained and defined by:

X̂c = (Ac)T
Y c + mc; X̂f =

(
Af

)T
Y f + mf (7)
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In order to select the amount of populations of clients and features, take the
error between the approximation of the Xc and Xf . We use only the biggest
eigenvalue and their corresponding eigenvector to reconstruct the matrix Xc,
which is approximate by the matrices X̂c resp. for Xf by X̂f . Our key idea is
based on the selection of the eigenvectors (and theirs eigenvalues) within the
average value of complete eigenvalues, in order to obtain the principal compo-
nents of the most representative clients and features. By using this approach,
a natural selection of the pre-processed matrix implies to retain the principal
clients and features. Then, the amount of retained records and features retained
is automatized and consequently, it can be used to obtain different and grow-
ing accurate targets selection model of potential customers. The average value

of eigenvalues in clients and features is given by: λc
Aver = 1

N

N∑
k=1

λc
k; λf

Aver =

1
M

M∑
j=1

λf
j .

Criterion 1: selected eigenvalues. The eigenvalues are selected in such a
way that satisfy the criterion λc

Aver ≤ λc
r−1 ≤ · · · ≤ λc

2 ≤ λc
1 for the clients,

and λf
Aver ≤ λf

p−1 ≤ · · · ≤ λf
2 ≤ λf

1 for the features. Where r (resp. p) is the
amount of eigenvalues selected in clients (resp. in features). In order to keep
(w.r.t. the chosen criterion) the amount of the principal components of database
in clients (resp. features), take the greater eigenvalue λc

1, (resp. λf
1 ) with their

corresponding eigenvector, and build the matrix Ac (resp. Af ) by employing only
the first row, and set the other matrix entries to zero. Then, apply equation (6)
and (7) which gives the approximation of the principal clients and features (from
(2)) in the original database. Consider the approximation error by computing

the root-mean-squared errors as E
(c,f)
j =

√
∑M

k=1

(
X̂

k,(c,f)
j − X

k,(c,f)
j

)2

/M j =

1, · · · , N which represent the approach error between original database and the
approximated one, Ec

j for clients and Ef
j for features.

2.3 Ordering The Pre-processed Database

Criterion 2: Components That Leave the Database. In a second step, it
is necessary to sort (16) from the smaller RMSE to the greater RMSE value for
clients and features related in Criterion 1, to finally characterize the principal
components. Choose the first r values of sorted clients (resp. first p values of
sorted features). The first r (resp. p) elements have the smallest RMSE. Then,
the matrix (2) will be reduced, and with the concatenation of Xc- reduced and
Xf - reduced, we obtain a filtered matrix Xw, that we call the work matrix. In
the structure of Xw, the amount of rows (clients) are defined by m∗ = M − r,
and the amount of columns (features) defined by n∗ = N − p , and Xw ∈
�m∗×n∗

. The work matrix can be used to synthesize a learning fuzzy model.
In matrix Xw the rows (resp. the columns) are the most representative clients
(resp. features).



342 V. López Morales et al.

The resulting matrix of this descendent reordering step is assigned to the
matrix Xw

′
and it can be written in the following general form:

Xw
′

=

⎡

⎢⎣
c1∗f1∗ · · · c1∗fn∗

... · · ·
...

cm∗f1∗ · · · cm∗fn∗

⎤

⎥⎦ (8)

where m∗ and n∗ are the work matrix indexes. Finally the n∗ features must be
analyzed separately to discriminate between the two groups in the data (respon-
dents and non-respondents). This method is widely used by the experts in the
marketing and financial world, and it is called a Gain Chart. This behavior is
preferred in targeted selection, since the goal is to target as many respondents
as possible with the minimal number of evaluated clients. A gain chart is defined
by the following equation:

Gj(
k∗

m∗ ) =

k∗∑
i=1

yi

m∗∑
i=1

yi

, k∗ = 1, 2, ..., m∗, j = 1, 2, ..., n∗, (9)

where yk∗ ∈ {0, 1} is the corresponding response label.

2.4 Construction of the Fuzzy Model Using Clustering C-Means
Approach

The final goal of the former methodology is the construction of a fuzzy model
which can be obtained for each feature. Each feature model, involves all clients
from the work matrix participating on the process of learning in that model.
The process of learning, consist in identifying the rules’s parameters:

– premises using fuzzy C-means clustering
– consequents T-S type singleton, based on local least squares ap-

proach.

For the model construction, the method of fuzzy C-means clustering algorithm
(FCM) is used.

By taking a suitable fuzzyness parameter value (m ∈ (1, ∞)) we avoid the
computing of radius of the volume prototype of each cluster and then we reduce
the computational time. We apply the T-S type reasoning, and chose to estimate
the rule consequents from the available training data using a local least squares
approach (LS), [4] and [5]. Thus for a complete feature model, we have a total
of n∗ models. Each feature model contains five rules with the following singleton
model structure. Rji : If feature fj∗ is Aji then response yji = cji where Aji

are the linguistic variables i = 1, ..., 5, (index for each cluster), and j = 1, ..., n∗

(index of each feature). Then, the membership functions have a trapezoid ge-
ometry by choosing the fuzziness parameter (in our case m = 1.1). We use a
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defuzzification method of output weighted average, to test the models obtained.
The consequents are ordered automatically in rows and columns, the consequents
for the most preferred feature is the first row and the last column contain the
conclusion for the higher class.

2.5 Iterative Modelling

The reviewed algorithm proposes a direct selection of targets as:

– Data mining with the approach Hotelling’s transformation matrix, in this
step, the work matrix Xw is sorted in a descendent way.

– Ordering of feature vectors and their best clients for each feature. Then make
a Gain Chart for each feature vector.

– Construction of the model using fuzzy clustering C-means approach, for each
feature, (in our case with 5 clusters and m = 1.1), and conclusions T-S with
constant parameters .

Nevertheless, when we faced to the model identification of some dynamic plants,
it is better to use some different techniques an shown in the following section.

3 Fuzzy Modelling Via Clustering and Cubic Splines

Our second comparative methodology proposed is based on the rule base
structure proposed by T-S, where nonlinear consequents are used. The main
advantages in our approach is an important reduction on the rule-base, and con-
sequents fits in a better way the process nonlinearities since they are cubic with
linear parameters. Our modelling method is based on a fuzzy clustering algo-
rithm (G-K) in order to classify similar input/output pair data. Further details
can be found in [6].

We use classification trees automatically generated by the clustering algorithm
and eigenvector-based input partitioning, which allows us both the orientation
and the shape of the input space partitioning. By using the well known Least
Square Estimation (LSE), the parameter identification is carried out for cubic
splines. The key idea behind the use of cubic polynomials is that some standard
fuzzy control schemes can be applied in a straightforward way (inversion model
[7], LMI with bounded nonlinearities [8,9], etc).

Finally, the antecedents are defined by trapezoidal membership function, and
the consequents by cubic equations.

3.1 Gustafson-Kessel Algorithm and Knot Selection

The G-K algorithm is a derived from de basic Fuzzy C-Means (FCM), by adapt-
ing a distance norm, in order to detect clusters with an ellipsoidal geometrical
shapes in the analyzed data set [7].

Each cluster has its own norm-inducing matrix Ai, which yields the following
inner-product norm: D2

ikAi
= (zk − vi)T Ai(zk − vi). In the FCM algorithm the
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matrices Ai are then identity matrix while, in G-K algorithm the matrices Ai

employ an adaptive distance norm. This adaptive distance norm, optimizes the
cluster’s shape while its volume remains constant, i.e. |Ai| = ρi, ρi > 0, ∀i.

Using the Lagrange multiplier method, Ai reads as Ai = [ρi det (Fi)]
1/n

F−1
i ,

where Fi is the fuzzy covariance matrix of the ith cluster defined by:

Fi =
(∑N

k=1 (μik)m(zk − vi)(zk − vi)T
)

·
(∑N

k=1 (μik)m
)−1

. (10)

Cf. [10], for further details on the G-K Algorithm.

Remark 1. The eigen-structure of the cluster covariance matrix (10), provides
information about the shape and orientation of the cluster. The axes directions
are given by the unitary eigenvectors of Fi. The key idea is to take the longest
axis for each obtained cluster, and consecutive three clusters can be naturally
regrouped in a cubic spline.

A simple example

Let us consider the following nonlinear SISO system:

y = 0.0001 · sin(0.001x2) · x3 + ε, x ∈ [0, 100] (11)

where ε ∼ N(0, 25) is a normally distributed random noise, added to have a
more complex system to be modelled .

System is depicted in Figure 1 and is classified with G-K algorithm with five
clusters. Each cluster corresponds to a linear model. The slope by each model
is obtained by using the eigenvalues and the eigenvectors. The pairs (k1, k2),
(k3, k4),...,(k9, k10) are the coordinates corresponding to the eigenvalues and
their respective unitary eigenvector, c1, c2, ..., c5 are the centers of clusters.
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Fig. 1. Five local linear models using G-K algorithm

3.2 Interpolation Cubic Spline Algorithm for Consequents

By integrating the well known technics of fuzzy clustering, and a synthesis of
a cubic spline, our goal is to obtain a structure in the rule base with cubic
consequents.

The cubic splines are defined as continuous functions and fitted to the avail-
able input/output measured data system (SISO). The input/output vector Y =
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[y1, ..., yN ]T , X = [x1, ..., xN ]T , which are defined by each pair of knot: [K1
1 , K1

2 ],
[K2

1 , K2
2 ],..., [Kn−1

1 , Kn
2 ], where K1

1 = x1; K1
i+1 = ci∗3, i = 1, 2, 3, · · · ; Kj

2 =
kj∗3, j = 1, 2, 3, · · · , Kn

2 = xN .
Let us define a cubic spline for a knot sequence of cubic polynomials: x1 =

K1
1 < K1

2 < K2
1 < · · · < Kn

2 = xN . By each pair of knots [Ki
1, K

i
2] there is a

cubic spline, where Ki
1 is the initial knot for the ith cubic submodel and Ki

2 is
the final knot in the ith cubic submodel.

Algorithm 2. (Cubic Spline Approximation)Let Z = [[yKi
1
, ..., yKi

2
]T ;

[xKi
1
, ..., xKi

2
]T ] be the I/O measurement data set, and define K1

1 = x1 and
K1

2 = k6 as the initial and the final knots of the first cluster see Fig. 1. The sub-
sequent knots are defined as Ki

1 = kj and Ki
2 = kl, j = j+2; l = l+4 with initial

values j = 3, l = 6, where j is the value on the axis x for the center of cluster
(c1, c2, ..., c5), and l are the indices of the coordinates of the eigenvalues with
their respective unitary eigenvector. Then, the region of the first cubic spline
submodel is in between [x1, ..., k6], and the second one is in between [c3, ..., k12],
and son on.

By defining in a similar way the next clusters, the cubic spline model to be
synthesized has the following structure:

S(x) = sp
1a(xKi

1,2
) + sp

2b(xKi
1,2

) + s1c(xKi
1,2

) + s2d(xKi
1,2

) (12)

where xKi
1,2

is the value of x within Ki
1 and Ki

2.
Step 1. Calculate the internal coefficients:

hi = Ki
2 − Ki

1 (13)

for Ki
1 ≤ xKi

1,2
≤ Ki

2

a(xKi
1,2

) =
(
(Ki

2 − xKi
1,2

)2(xKi
1,2

− Ki
1)

)
· (hi)

−2 (14)

b(xKi
1,2

) = −
(
(Ki

2 − xKi
1,2

)(xKi
1,2

− Ki
1)

2
)

· (hi)
−2 (15)

c(xKi
1,2

) =
(
(Ki

2 − xKi
1,2

)2(2(xKi
1,2

− Ki
1) + hi)

)
· (hi)

−3 (16)

d(xKi
1,2

) =
(
(xKi

1,2
− Ki

1)
2(2(Ki

2 − xKi
1,2

) + hi)
)

· (hi)
−3 (17)

end
Step 2. Linear least squares (LLS): Since each cubic spline model is linear
in the parameters, i.e. θ = (s1, s

p
1, s2, s

p
2)

T is a linear parameter vector, then it
can be determined by applying the well known LLS.
Step 3. Cubic splines polynomials: The cubic polynomials are obtained by
(12), former equation, and by some easy algebraic manipulation.

Figure 2 shows the two cubic splines approximating system (11):
Observe that by using Algorithms G-K and 2, one gets a smoothed syn-

thesized output respect to the real system output.
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Fig. 2. Output approximation of the real system by two cubic splines

3.3 The Fuzzy Modelling Approach

By taking the knots, gravity centers and eigenvalues computed by the G-K
Algorithm, some trapezoidal membership functions are straightforwardly built.
The approach of the weighted average of the rule consequents, is well known for
the defuzifying a T-S model. One advantage by using weighted average is their
computational simplicity in the implementation.

4 Concluding Remarks

We have presented the analysis of two modelling method for fuzzy rule-based
models from system’s SISO measurements data, which provide a good accuracy
as well transparency with smoothing trends and low complexity on the resulting
rule base. Based on these results we can draw some particular conclusions.

4.1 PCA and C-Means Clustering Method

The partition (clusters) in a large database can be predefined by an expert as a
function of the available resources. By a principal component analysis (PCA), it
seems to be very useful covering the complete data space (data set partitioned
in some clusters). This approach provides us a natural method of selection in a
large database, for instance for potential customers database.

A simple methodology for data exploration is here reviewed by using the
Hotelling transformation properties. The proposed method to filter only the
most representative elements using analytical tools is a reliable and clear tech-
nique. The proposed method deals with the feature selection in a simple way but
showing some kind of robustness. Computational load of the proposed modelling
approach was verified to be light.

4.2 Clustering and Cubic Splines Consequent Method

The approach has been applied on a model of nonlinear system problem since
the cubic consequents catch the nonlinear nature of the phenomena better than
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linear consequents. The fuzzy modelling approach presented allow us to ob-
tain:Smoothed output from synthesized submodels, transparent rule-based mod-
els, and analytical consequents. A drawback in our approach, is that fuzzy linear
control techniques can not be straightforwardly used.
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l’apprentissage. 1 edn. Hermes Science, France (2003) ISBN: 2-7462-0609-9.





Part VIII

Fuzzy Possibilistic
Optimization



On Possibilistic/Fuzzy Optimization

Masahiro Inuiguchi

Department of Systems Innovation
Graduate School of Engineering Science, Osaka University
1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan

inuiguti@sys.es.osaka-u.ac.jp

Abstract. We focus on possibilistic/fuzzy optimality in the framework
of mathematical programming problem with a possibilistic objective fun-
ction. We observe the interaction between possibilistic objective function
values. Two optimality concepts, possible and necessary optimalities are
reviewed. The necessary soft optimality is investigated.

1 Introduction

Possibilistic programming treats ambiguous parameters in programming prob-
lems. Various approaches have been proposed to possibilistic programming
problems (see, for example, [1]). As stochastic programming approaches are
classified into chance constrained programming approaches, recourse problem
(two-stage problem) approaches and distribution problem approaches, possi-
bilistic programming approaches can be classified into modality constrained
programming approaches, recourse problem approaches and optimization ap-
proaches. Many of possibilistic programming approaches can be regarded as spe-
cial cases of modality constrained programming approaches. Therefore, modality
constrained programming approaches have well-investigated by many authors,
so far. Optimization approaches have more or less investigated and recourse
problem approaches have little investigated. Many overviews of possibilistic/
fuzzy programming approaches are devoted for modality programming appro-
aches which are more tractable than the others.

In this paper, we review and investigate optimization approaches. In optimiza-
tion approaches, we analyze the range of optimal solutions with respect to the
fluctuation of uncertain parameters. We restrict ourselves to linear programming
problems with ambiguous objective function coefficients. First, we observe the
induced interaction in the comparison between possibilistic objective function
values. Then, possibly and necessarily optimal solutions are defined. Possible
and necessary optimality tests are given. Finally, necessarily soft optimal solu-
tions are investigated as a relaxed concept of necessarily optimal solutions.

2 Comparison of Possibilistic Objective Function Values

In this paper, we treat the following linear programming problem with ambiguous
objective function coefficients:

maximize γTx, subject to Ax ≤ b, (1)

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 351–360, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



352 M. Inuiguchi

where A = (aij) is an m × n matrix and b = (b1, . . . , bm)T. x = (x1, . . . , xn)T is
a decision variable vector. Moreover, γ = (γ1, . . . , γn)T is a vector of ambiguous
coefficients. We assume that we know γ realizes in a bounded n-dimensional
fuzzy set Γ . Such a vector γ is said to be a possibilistic variable vector restricted
in Γ . For the sake of simplicity, the feasible region of Problem (1) is denoted
by X . The membership function μΓ of fuzzy set Γ is assumed to be upper
semi-continuous. The boundedness of fuzzy set Γ is characterized by

∀ε > 0, ∃r ∈ R; {c ∈ Rn : μΓ (c) ≥ ε} ⊂ {c ∈ Rn : ||c|| < r}. (2)

Given a solution x �= 0, by the extension principle, its objective function value
is given as a fuzzy set Y (x) having the following membership function:

μY (x)(y) = sup
c

{μΓ (c) : cTx = y}. (3)

There are various ways to compare two fuzzy numbers Z1 and Z2 For example,
based on the possibility theory, the following two indices are obtained:

POS(Z1 ≥ Z2) = sup
r1,r2

{min(μZ1(r1), μZ2(r2)) : r1 ≥ r2}, (4)

NES(Z1 ≥ Z2) = 1 − sup
r1,r2

{min(μZ1(r1), μZ2(r2)) : r1 < r2}. (5)

where μZ1 and μZ2 are membership functions of Z1 and Z2. Possibility degree
POS(Z1 ≥ Z2) shows to what extent Z1 is possibly larger than or equal to Z2.
Similarly, Necessity degree NES(Z1 ≥ Z2) shows to what extent Z1 is necessar-
ily larger than or equal to Z2. When Z1 and Z2 are closed intervals [zL

1 , zR
1 ]

and [zL
2 , zR

2 ], respectively, we have the following equivalences which show their
meanings and difference remarkably:

POS(Z1 ≥ Z2) = 1 ⇔ zR
1 ≥ zL

2 , NES(Z1 ≥ Z2) = 0 ⇔ zL
1 < zR

2 . (6)

A comparison index between two fuzzy numbers is often applied to the com-
parison of possibilistic objective function values discarding their interaction in
literature. Next example demonstrates the inadequacy caused by the desertion
of the interaction.

Example 1. Let n = 2 and Γ = [1, 2] × [−2, −1]. Namely, we consider a case
when each objective function coefficient is given by a closed interval. Consider
two feasible solutions x1 = (2, 1)T and x2 = (3, 1)T. We have Y (x1) = [0, 3] and
Y (x2) = [1, 5]. Let us apply (6) discarding the interaction between Z1 = Y (x1)
and Z2 = Y (x2). We obtain POS(Z1 ≥ Z2)= 1 which implies that the objective
function value of x1 can be larger than or equal to that of x2. On the other
hand, we have

cTx1 = 2c1 + c2 < 3c1 + c2 = cTx2, ∀c1 ∈ [1, 2], ∀c2 ∈ [−2, −1]. (7)

This insists that the objective function value of x1 can never be larger than
or equal to that of x2. Because the realized values of c1 and c2 are common
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independent of the selection of a feasible solution to Problem (1), the latter
result is correct. Therefore, the direct application of index POS(Z1 ≥ Z2) is not
adequate for the problem setting.

Similarly, from (6), we obtain NES(Z2 ≥ Z1)= 0. This implies that there
exists (c1, c2)T ∈ Γ such that the objective function value of x2 is less than that
of x1. However, this is neither true. As is shown in (7), for all (c1, c2)T ∈ Γ , the
objective function value of x2 is larger than that of x1.

Now we emphasize the reason why indices defined by (4) and (5) do not work
in Example 1. Let ζ1 and ζ2 be possibilistic variables restricted by Z1 and Z2. In
(4) and (5), it is implicitly assumed that ζ2 is independent of ζ1 and vice versa.

In Example 1, we set Z1 = Y (x1) and Z2 = Y (x2). Namely, they are possible
ranges of ζ1 = γTx1 and ζ2 = γTx2, respectively. Both ζ1 and ζ2 depend on the
possibilistic variable vector γ restricted by Γ = [1, 2]× [−2, −1]. Because of this
fact, the implicit assumption in (4) and (5) does not hold. For example, when
ζ1 = γTx1 = 0, the possible values of γ ∈ Γ are in

{(c1, c2)T ∈ R2 : 2c1 + c2 = 0, 1 ≤ c1 ≤ 2, −2 ≤ c2 ≤ −1} = {(1, −2)}.

Namely, from the information ζ1 = 0, in this case, we know that γ uniquely
takes (1, −2)T. Therefore, the value ζ2 takes is also uniquely known, i.e., ζ2 =
(1, −2)x1 = 1. Generally, when ζ1 = q, the possible range of ζ2 is given by

{3c1 + c2 : 2c1 + c2 = q, 1 ≤ c1 ≤ 2, −2 ≤ c2 ≤ −1}.

This range varies depending on ζ1-value q. Therefore, ζ2 interacts with ζ1. Sim-
ilarly, ζ1 interacts with ζ2.

Since the implicit assumption of (4) and (5) does not hold, indices defined
by (4) and (5) cannot be applied without any modification. For the comparison
between possibilistic objective function values, the following modified indices [2]
are adequate:

POS(γTx1 ≥ γTx2) = sup
c

{μΓ (c) : cTx1 ≥ cTx2}, (8)

NES(γTx1 ≥ γTx2) = 1 − sup
c

{μΓ (c) : cTx1 < cTx2}. (9)

In literature, the desertion exemplified in Example 1 often appears when pos-
sibilistic objective function values are compared. Moreover, we note that under
other interpretations of fuzzy coefficients, the discussion about the inadequacy is
not valid. For example, when a fuzzy objective function is regarded as a collec-
tion of objective functions, e.g., a collection of utility functions of many decision
makers, the above discussion does not make sense.

3 Possibly and Necessarily Optimal Solutions

We define an optimal solution set S(c) of Problem (1) with respect to γ = c by

S(c) =
{

x ∈ X : cTx = max
y∈X

cTy

}
. (10)
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Fig. 1. A possibly optimal solution Fig. 2. A necessarily optimal solution

Using S(c), we can define the following two optimal solution sets ΠS and NS
to Problem (1) when Γ is a crisp set:

ΠS =
⋃

c∈Γ

S(c), NS =
⋂

c∈Γ

S(c). (11)

x ∈ ΠS implies that there exists c ∈ Γ to which x is an optimal solution.
Namely, x ∈ ΠS can be optimal for at least one possible realization of γ, and
then, it is called a possibly optimal solution. On the other hand, x ∈ NS implies
that for all c ∈ Γ , x is optimal. Namely, x ∈ NS is always optimal for all possible
realizations of γ, and then it is called a necessarily optimal solution. We have
NS ⊆ ΠS.

Example 2. Consider Problem (1) where A and b are defined by

A =
(

3 3 0 −1 0
4 1 1 0 −1

)T

, b = (42, 24, 9, 0, 0)T, (12)

and Γ is given by

Γ = {(c1, c2)T : 3.5 ≤ 2c1 + c2 ≤ 5.5, 3.4 ≤ c1 + 2c2 ≤ 6,
−1 ≤ c1 − c2 ≤ 1.3, 1 ≤ c1 ≤ 2, 0.8 ≤ c2 ≤ 2.2}. (13)

As shown in Fig. 1, (x1, x2)T = (6, 6)T is optimal for (c1, c2)T ∈ Γ such that
3c2 ≤ 4c1, and (x1, x2)T = (2, 9)T is optimal for (c1, c2)T ∈ Γ such that 3c2 ≥
4c1. Moreover, all solutions on line segment between those solutions are optimal
for (c1, c2)T ∈ Γ such that 3c2 = 4c1. Therefore, we have infinitely many possibly
optimal solutions on the line segment. However, we have no necessarily optimal
solution.

On the other hand, we consider Γ defined by

Γ = {(c1, c2)T : c1 + c2 ≥ 3, c1 ≥ c2, c1 ≤ 2c2, c1 ≤ 2.5, c2 ≤ 2}. (14)
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In this case, as shown in Fig. 2, (x1, x2)T = (6, 6)T is optimal for all c ∈
Γ . Namely, the solution is a necessarily optimal solution. From NS ⊆ ΠS,
(x1, x2)T = (6, 6)T is also a possibly optimal solution.

As shown in Example 2, it is possible that infinitely many possibly optimal
solutions exist and that no necessarily optimal solution exists.

In order to show the need of possible and necessary optimality, we continue to
treat a case when Γ is crisp. In modality constrained programming problems [1],
various treatments of possibilistic objective functions are proposed. In crisp case,
lower and upper bounds and the center values are often optimized and the width
of the possible range of objective function values is minimized. Many approaches
may regard a complete optimal solution to the following biobjective program-
ming problem maximizing lower and upper bounds of objective function value
as the most reasonable solution, if it exists:

maximize
x∈X

(
min
c∈Γ

cTx, max
c∈Γ

cTx

)
(15)

Next example shows that, even if a complete optimal solution to Problem (15)
exists, it is not always the most reasonable solution to Problem (1).

Example 3. Consider Problem (1) with the following A and b:

A =
(

1 3 0 −1 0
1 1 1 0 −1

)T

, b = (12, 24, 9, 0, 0)T (16)

Moreover, Γ is defined by

Γ = {(c1, c2)T : 7c1 − 5c2 ≤ 4, c2 ≤ 2, −3c1 + 5c2 ≥ 2, c1 ≥ 1}. (17)

Consider (1, 1)T and (3, 3)T ∈ Γ . For all c ∈ Γ , we have (1, 1)T ≤ c ≤ (3, 3)T.
Therefore, Problem (15) becomes

maximize
x∈X

(x1 + x2, 3x1 + 3x2). (18)

As shown in Fig. 3, x0 = (6, 6)T is a complete optimal solution to Problem (15).
However, in Fig. 3, the shaded region of Γ where x0 becomes optimal is much
smaller than the other region of Γ . The possibly optimal solution set in this
problem is shown as the line segment between points (6, 6)T and (3, 9)T. Then,
x0 is even extreme in the possibly optimal solution set. From these points of
view, x0 is not necessarily the most reasonable solution.

As shown in Example 3, a complete optimal solution to Problem (15) is not
always the most reasonable solution. When a necessarily optimal solution exists,
it is the most reasonable solution since it is optimal for all possible realizations
of γ. On the other hand, a possibly optimal solution is a solution optimal for
at least one possible realization of γ, therefore, it can be regarded as a solution
with minimum rationality. To sum up, possible optimality is the minimum re-
quirement for the optimal solution to Problem (1) while necessary optimality is
the ideal.
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Fig. 3. Solution (6, 6)T in Example 3

Now let us describe possibly and necessarily optimal solutions when Γ is a
fuzzy set. In this case, both possibly optimal solution set ΠS and necessarily
optimal solution set NS become fuzzy sets define by the following membership
functions (see [3]):

μΠS(x) =

{
sup

c
{μΓ (c) : x ∈ S(c)} , if x ∈ X,

0, if x �∈ X,
(19)

μNS(x) =

{
inf
c

{1 − μΓ (c) : x �∈ S(c)} , if x ∈ X,

0, if x �∈ X.
(20)

Obviously, we have μNS(x) ≤ μΠS(x), i.e., NS ⊆ ΠS. We also obtain the
following stronger relation:

μNS(x) > 0 ⇒ μΠS(x) = 1. (21)

This comes from a relation between possibility and necessity, i.e., if an event is
somehow necessary, it should be totally possible.

An optimal solution to a linear programming problem with an objective func-
tion cTx is a feasible solution satisfying cTx ≥ cTy for all y ∈ X , in other
words, there is no feasible solution y ∈ X such that cTy > cTx. Applying (8)
and (9), for x ∈ X , we have the following properties which corresponds to the
property of the optimal solution mentioned above:

μΠS(x) = inf
y∈X

POS(γTx ≥ γTy) = 1 − sup
y∈X

NES(γTy > γTx), (22)

μNS(x) = inf
y∈X

NES(γTx ≥ γTy) = 1 − sup
y∈X

POS(γTy > γTx), (23)

where POS(γTx1 > γTx2) and NES(γTx1 > γTx2) are defined by (8) and (9)
with replacements of ‘≥’ and ‘≤’ with ‘>’ and ‘<’, respectively.
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4 Possible and Necessary Optimality Tests

Possible and necessary optimalities are fundamental criteria for the solution
selection as described earlier. It is worthwhile to calculate degrees of possible
and necessary optimalities μΠS(x) and μNS(x) for justifying the selection of a
solution x ∈ X .

Let Aj· be the j-th row of A. Using the optimality condition of the linear
programming problem, the necessary and sufficient condition for x ∈ X to be
x ∈ S(c) is given as (see [3])
(a) There exists j ∈ {1, . . . , m} such that Aj·x − bj = 0.
(b) There exists v ≥ 0 such that AT

0 v = c, where A0 is a submatrix of A
composed all rows Aj· such that Aj·x − bj = 0.

In what follows, we consider x ∈ X satisfying (a). From (b), we have

μΠS(x) = sup
v

{μΓ

(
AT

0 v
)

: v ≥ 0}, (24)

μNS(x) = inf
c

{1 − μΓ (c) : ∀v ≥ 0, AT
0 v �= c}. (25)

From the boundedness of Γ , the upper semi-continuity of μΓ and (24), μΠS(x)
can be obtained as the optimal value of

maximize h, subject to AT
0 v ∈ [Γ ]h, v ≥ 0. (26)

We consider a special case when Γ is characterized by membership function,

μΓ (c) = min
k=1,...,p

ϕ(dT
k c). (27)

where p > n and ϕ : R → [0, 1] is an upper semi-continuous non-increasing
function satisfying limr→+∞ ϕ(r) = 0. We define a pseudo-inverse of ϕ, ϕ∗ :
[0, 1] → Rn ∪ {+∞} by ϕ∗(h) = supr{r : ϕ(r) ≥ h}. Then, we have

c ∈ [Γ ]h ⇔ dT
k c ≤ ϕ∗(h), k = 1, . . . , p (28)

Hence, we obtain the optimal value of Problem (26) as ϕ(ŝ) by calculating the
optimal value ŝ of the following linear programming problem:

minimize s, subject to dT
k AT

0 v ≤ s, k = 1, . . . , p, v ≥ 0. (29)

On the other hand, from (25), we have

μNS(x) ≥ h ⇔
(
μΓ (c) > 1 − h ⇒ ∃v ≥ 0; AT

0 v = c
)
. (30)

Let (Γ )1−h = {c : μΓ (c) > 1 − h}. Then, from (30), we have

μNS(x) = sup

{
h : sup

c∈(Γ )1−h

inf
v≥0

|AT
0 v − c| ≤ 0

}

= max
{

h : max
c∈cl(Γ )1−h

min
v≥0

|AT
0 v − c| ≤ 0

}
, (31)
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where cl(Γ )1−h is the closure of (Γ )1−h. From the boundedness of (Γ )1−h and
the continuity of |AT

0 v−c|, we replaced ‘(Γ )1−h’, ‘sup’ and ‘inf’ with ‘cl(Γ )1−h’,
‘max’ and ‘min’, respectively.

Consider Γ defined by (27). We have

c ∈ cl(Γ )1−h ⇔ dT
k c ≤ ϕ̄∗(1 − h), k = 1, . . . , p, (32)

where we define ϕ̄∗ : [0, 1] → Rn ∪ {+∞} by

ϕ̄∗(h) =
{

supr{r : ϕ(r) > h}, if h < 1
−∞ if h = 1.

(33)

Since Γ is bounded, cl(Γ )1−h becomes a polytope. Let V (cl(Γ )1−h) be a set
of vertices of cl(Γ )1−h. Then any point in cl(Γ )1−h can be expressed as a
convex combination of points in V (cl(Γ )1−h). Therefore, for any Q such that
V (cl(Γ )1−h) ⊆ Q(h) ⊆ cl(Γ )1−h, we have

max
c∈cl(Γ )1−h

min
v≥0

|AT
0 v − c| ≤ 0 ⇔ max

c∈Q(h)
min
v≥0

|AT
0 v − c| ≤ 0 (34)

If there is a set mapping Q(h) = {cj(h), j = 1, . . . , u} such that V (cl(Γ )1−h)
⊆ Q(h) ⊆ cl(Γ )1−h for any h ∈ (0, 1], we have μNS(x) = minj=1,...,u hj , where
hj is the optimal value of the following linear programming problem:

maximize h, subject to AT
0 v = cj(h), v ≥ 0. (35)

We may define cj(h) of Q(h) as the c-value of an optimal solution to the
following linear programming problem with respect to Pj composed of n elements
from {1, . . . , p}:

minimize
∑

k∈Pj

sk, subject to dT
k c+sk = ϕ̄∗(1−h), sk ≥ 0, k = 1, . . . , p. (36)

We have (n
p) Pj ’s. Therefore, Q(h) is a finite set with at most u = (n

p) elements
cj(h) for each h ∈ (0, 1].

Since maximizing h is equivalent to maximizing ϕ̄∗(1 − h), introducing Prob-
lem (36) into Problem (35), we obtain the following two-phase linear program-
ming problem with a sufficiently small positive number ε:

maximize −
∑

k∈Pj

sk + εs, subject to
{

AT
0 v = c, dT

k c + sk = s,
v ≥ 0, sk ≥ 0, k = 1, 2, . . . , p

(37)

Let s(Pj) be s-value at an optimal solution to Problem (37). Then we have
μNS(x) = minj=1,2,...,u(1 − ϕ(s(Pj))).

As shown above, μNS(x) can be obtained by solving multiple linear program-
ming problems. However, it requires to solve (n

p) problems and thus, it will not
be very efficient. A more efficient method can be designed based on global opti-
mization techniques.

We have described computation methods for degrees of possible and necessary
optimalities. It is also interesting to obtain all possibly and necessarily optimal
solutions. In [4], an enumeration method for possibly optimal extreme pints is
proposed.
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5 Necessarily Soft Optimal Solution

As described before, there is no guarantee that a necessarily optimal solution
x such that μNS(x) > 0 while it is the most reasonable solution. Even if it
exists, μNS(x) is often small. This is because the requirement for the necessary
optimality is very strong.

In real world problems, suboptimal solutions are often sufficiently good. Based
on this idea, we proposed necessarily soft optimal solutions [5] in which the
optimality of necessarily optimal solutions is relaxed to the suboptimality.

Let S̃(c) be a fuzzy optimal solution set to linear programming problem with
objective function coefficients c. Its membership function can be defined by

μS̃(c)(x) =

⎧
⎨

⎩
μDif

(
max
y∈X

cTy − cTx

)
, if x ∈ X,

0, otherwise,
(38)

where μDif : R → [0, 1] is an upper semi-continuous non-increasing func-
tion. Equation (38) is based on the difference from the optimal value. We may
have a similar approach based on the ratio to the optimal value. When ∀c ∈
Γ ; maxx∈X cTx > 0, we may define

μS̃(c)(x) =

⎧
⎪⎪⎨

⎪⎪⎩

μRat

⎛

⎝ cTx

max
y∈X

cTy

⎞

⎠ , if x ∈ X,

0, otherwise,

(39)

where μRat : (−∞, 1] → [0, 1] is upper semi-continuous non-decreasing function.
Using a fuzzy optimal solution set S̃(c), a necessarily soft optimal solution

set [5] ÑS is defined by the following membership function:

μ
ÑS

(x) = inf
c

max
(
1 − μΓ (c), μS̃(c)(x)

)
, (40)

where when S̃(c) is defined by (39), we assume for all c such that μΓ (c) > 0
maxy∈X cTy > 0.

Based on the necessary soft optimality, the best solution can be an optimal
solution to the following problem:

maximize
x∈X

μ
ÑS

(x) (41)

The solution is called a best necessarily soft optimal solution.
Now let us consider a case when Γ is a crisp set. In this case, for any μDif and

μRat, Problems (41) with (38) and (39) are reduced to the following problems,
respectively:

minimize
x∈X

R(x) = max
c∈Γ, y∈X

cTy − cTx, maximize
x∈X

F (x) = min
c∈Γ

cTx

max
y∈X

cTy
. (42)
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Those problems are called a minimax regret problem and a maximin regret ratio
problem. Those problems have the following good properties:

(a) R(x) = 0 (F (x) = 1) if and only if x is a necessarily optimal solution.
(b) R(x) ≥ 0, ∀x ∈ X (F (x) ≤ 1, ∀x ∈ X).
(c) Any optimal solution is a possibly optimal solution.

From those properties, optimal solutions to those problems are regarded as pos-
sibly optimal solutions minimizing the deviation from necessary optimality.

The minimax regret problem and maximin regret ratio problem include non-
convex programs as their subproblems so that they are not very tractable. How-
ever, a solution algorithms based on a relaxation procedure has already proposed.
To solve Problem (41), we further introduce the idea of bisection method to a
solution method for (42). A solution algorithm converges a relaxation procedure
and a bisection method simultaneously has proposed (see [5,6]).

6 Concluding Remarks

In this paper, we have reviewed and investigated the optimization approach
to possibilistic/fuzzy programming problems. The formulated problems in this
approach often include nonconvex subproblems so that applications of global
optimization techniques are promising. On the other hand, by the development
of interior point method, the range of tractable problems is enlarged. Solution
methods for possibilistic/fuzzy optimization problems can also be developed by
the introduction of new solution approaches.

The author acknowledges that this work has been partially supported by the
Grant-in-Aid for Scientific Research (B) No. 17310098.
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Abstract. A simple definition of interval-valued probability measure is
given and its implications examined. Properties are discussed which al-
low for the analysis of mixtures of fuzzy, possibilistic, probabilistic, cloud,
and interval uncertainty utilizing interval-valued probability theory. It is
shown how these properties allow for optimization under uncertainty
where the uncertainty is mixed (fuzzy, possibilitic, probabilistic, clouds,
and interval ). An example of this type of optimization is given illustrat-
ing the usefulness and power of the concepts.

Keywords: Imprecise Probability, Fuzzy Set Theory, Possibility Theory,
Probability Theory, Interval Analysis, Optimization Under Uncertainty.

1 Introduction

A method for optimization under uncertainty where the problems contain a mix-
ture of two or more types of uncertainty - fuzzy, possibilistic, probabilistic, cloud,
and/or interval is developed. To solve an optimization problem containing such
a mixture, a theory for linking various methods of uncertainty representations is
outlined. This is accomplished by showing that each type of the aforementioned
uncertainty can be represented within the context of interval-valued probability.
This study extends the work of [5] and [11].

In the first section of this paper we define, in a formal way, what we call an
interval-valued probability measure as defined by Weichselberger [11]. Weich-
selberger’s definition begins with a set of probability measures and then defines
an interval probability, R−probabilities and F −probabalities, as a set function
providing upper and lower bounds on the probabilities calculated from these
measures. It will be seen that F − probabilities are simply the tightest bounds
possible for the set of all such probability measures. A discussion of how the
various forms of uncertainty representation (possibility, probability, cloud, and
interval) may be represented by such measures follows. The next section presents
how interval-valued probability measures can be constructed from upper and
lower bounding cumulative distribution functions using a result of Kolmogorov
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[3]. This construction is particularly useful since it indicates how one may go
about setting up a problem in this more general setting. In section three, the
extension principle for a function of uncertain variables represented by interval-
valued probability measures is given, and integration with respect to functions of
interval-valued probability over these measures is presented. Both of these defi-
nitions (extension and integration) will be useful in analyzing problems involving
uncertainty represented by interval-valued probability measures. The fourth sec-
tion indicates how optimization is done utilizing interval-valued probability. The
conclusions are found in the last section. Throughout this paper we will be
primarily interested in interval-valued probability defined on the Borel sets on
the real line and real-valued random variables. Much of what is contained in
sections 2 and 3 is a synopsis of [2] and [6].

2 Interval-Valued Probability Measures - Definitions and
Examples

This section begins by defining what is meant by an interval-valued probability
measure (IVPM). This generalization of a probability measure includes proba-
bility measures, possibility/necessity measures, intervals, and clouds [8]. This
set function may be thought of as a method for giving a partial representa-
tion for an unknown probability measure. Throughout, arithmetic operations
involving set functions are in terms of interval arithmetic [7] and Int[0,1] ≡
{[a, b] | 0 ≤ a ≤ b ≤ 1}.

The basic definitions from Weichselberger (with slight variation in notation)
are given next.

Definition 1. (Weichselberger [11]) Given measurable space (S, A), an interval
valued function im : A → Int[0,1] is called an R-probability if:
(a) im (A) = [a− (A) , a+ (A)] ⊆ [0, 1] with a− (A) ≤ a+ (A)
(b) ∃ a probability measure Pr on A such that ∀A ∈ A, Pr (A) ∈ im (A) .
By an R-probability field we mean the triple (S, A, im).
Given an R-probability field R = (S, A, im) the set M (R)= {Pr | Pr is a proba-
bility measure on A such that ∀A ∈ A, Pr (A) ∈ im (A)} is called the structure
of R.
An R-probability field R = (S, A, im) is called an F-probability field if ∀A ∈ A:
(a) a+ (A) = sup {Pr (A) | Pr ∈ M (R)}
(b) a− (A) = inf {Pr (A) | Pr ∈ M (R)}

It is interesting to note that if we have a measurable space (S, A) and a set
of probability measures P then defining a+ (A) = sup {Pr (A) | Pr ∈ P} and
a− (A) = inf {Pr (A) | Pr ∈ P} gives an F − probability and that P is a subset
of the structure.

The following examples show how intervals, possibility distributions, clouds
and (of course) probability measures can define R − probability fields on B, the
Borel sets on the real line.
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Example 1. (An interval defines an F-probability field): Let I = [a, b] be a non-

empty interval on the real line. On the Borel sets define a− (A) =
{

1 if I ⊆ A
0 otherwise

and

a+ (A) =
{

1 if I ∩ A 
= ∅
0 otherwise ,then im (A) = [a− (A) , a+ (A)] defines an F-

probability field R = (R, B, im). To see this simply set P be the set of all
probability measures on B such that Pr (I) = 1.

Example 2. (A probability measure is an F-probability field) Let Pr be a prob-
ability measure over (S, A). Define im (A) = [Pr (A) , Pr (A)] which is equivalent
to having total knowledge about a probability distribution over S.

The concept of a cloud was introduced by Neumaier in [8] as follows:

Definition 2. A cloud over set S is a mapping c such that:
1) ∀s ∈ S, c (s) = [n

¯
(s) , p̄ (s)] with 0 ≤n

¯
(s) ≤ p̄ (s) ≤ 1

2) (0, 1) ⊆ ∪s∈Sc (s) ⊆ [0, 1]
In addition, random variable X taking values in S is said to belong to cloud c
(written X ∈ c) iff
3) ∀α ∈ [0, 1] , Pr (n

¯
(X) ≥ α) ≤ 1 − α ≤ Pr (p̄ (X) > α)

Clouds are closely related to possibility theory. A function p : S → [0, 1] is called
a regular possibility distribution function if sup{p (x) | x ∈ S} = 1. Possibility
distribution functions (see [10]) define a possibility measure, Pos : S → [0, 1]
where Pos (A) = sup {p (x) | x ∈ A} and it’s dual necessity measure Nec (A) =
1 − Pos (Ac) (we define sup {p (x) | x ∈ ∅} = 0). We can also define a necessity
distribution function n : S → [0, 1] by setting n (x) = 1 − p (x) and observe
that Nec (A) = inf {n (x) | x ∈ Ac} (we define inf {n (x) | x ∈ ∅} = 1). In [1]
we showed that possibility distributions could be constructed which satisfy the
following consistency definition.

Definition 3. Let p : S → [0, 1] be a regular possibility distribution function
with associated possibility measure Pos and necessity measure Nec. Then p is
said to be consistent with random variable X if ∀ measurable sets A, Nec (A) ≤
Pr (X ∈ A) ≤ Pos (A).

The concept of a cloud can be stated in terms of certain pairs of consistent
possibility distributions which we show in the following proposition.

Proposition 1. (see [2], [6]) Let p̄, p
¯

be a pair of regular possibility distribution
functions over set S such that ∀s ∈ S p̄ (s)+ p

¯
(s) ≥ 1. Then the mapping

c (s) = [n
¯

(s) , p̄ (s)] where n
¯

(s) = 1−p
¯
(s) (i.e. the dual necessity distribution

function) is a cloud. In addition, if X is a random variable taking values in
S and the possibility measures associated with p̄, p

¯
are consistent with X then

X belongs to cloud c. Conversely, every cloud defines such a pair of possibility
distribution functions and their associated possibility measures are consistent
with every random variable belonging to c.
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Example 3. A cloud defines an R-probability field. Let c be a cloud over
the real line. If Pos1,Nec1, Pos2, Nec2 are the possibility measures and their
dual necessity measures relating to p̄ (s) and p

¯
(s). Define

im (A) =
[
max

{
Nec1 (A) , Nec2 (A)

}
, min

{
Pos1 (A) , Pos2 (A)

}]
.

In [9] Neumaier proved that every cloud contains a random variable X . Con-
sistency requires that Pr (X ∈ A) ∈ im (A) and thus every cloud defines an
R-probability field.

Example 4. A possibility defines an R-probability field. Let p : S →
[0, 1] be a regular possibility distribution function and let Pos be the associ-
ated possibility measure and Nec the dual necessity measure. Define im (A) =
[Nec (A) , Pos (A)]. If we define a second possibility distribution, p

¯
(x) = 1 ∀x

then the pair p,p
¯

define a cloud for which im (A) defines the R-probability.

3 Construction of IVPM from Kolmagorov-Smirnoff Statistics

In this section we construct an F − probability from upper and lower bounding
cumulative distribution functions in a manner allowing practical computation.
For example given statistical data we can construct a confidence interval for
the underlying cumulative distribution function using the Kolmogorov (see [3]).
Then using this confidence interval we can use the following development to con-
struct an interval-valued probability measure. Although the method of setting
the interval probability equal to the upper and lower bound over all probability
measures contained in the bound is quite simple (this is Weichselberger’s ap-
proach), it is not clear how to use this definition in practice. The development
that follows is more amenable to actual use.

Let Fu (x) = Pr (Xu ≤ x) and F l (x) = Pr
(
X l ≤ x

)
be two cumulative dis-

tribution functions for random variables over the Borel sets on the real line,
Xu and X l, with the property that Fu (x) ≥ F l (x) ∀x. Set M

(
Xu, X l

)
={

X | ∀x Fu (x) ≥ Pr (X ≤ x) ≥ F l (x)
}

which clearly contains Xu and X l. We
will think in terms of an unknown X ∈ M

(
Xu, X l

)
. For any Borel set A, let

Pr (A) = Pr (X ∈ A).
A way to start the construction is with probability bounds for members of

the family of sets I = {(a, b] , (−∞, a] , (a, ∞) , (−∞, ∞) , ∅ | a < b} . For I =
(−∞, b] , it is clear by definition that Pr (I) ∈

[
F l (b) , Fu (b)

]
. For I = (a, ∞) ,

Pr (I) ∈
[
1 − Fu (a) , 1 − F l (a)

]
. For I = (a, b], since I = (−∞, b] − (−∞, a]

and considering minimum and maximum probabilities in each set, Pr (I) ∈[
max

{
F l (b) − Fu (a) , 0

}
, Fu (b) − F l (a)

]
. Therefore, if the definition of Fu, F l

is extended by defining Fu (−∞) = F l (−∞) = 0 and Fu (∞) = F l (∞) = 1,
the following general definition can be made.

Definition 4. For any I ∈ I, if I 
= ∅, define im (I) = [a− (I) , a+ (I)] =
[max

{
F l (b) − Fu (a) , 0

}
, Fu (b) − F l (a)] where a and b are the left and right

endpoints of I otherwise set im (∅) = [0.0].
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Remark 1. Note that with this definition im((−∞, ∞)) = [max{
F l (∞) − Fu (−∞) , 0

}
, Fu (∞) − F l (−∞)] = [1, 1] which matches our

intuition and thus it is easy to see that Pr (I) ∈ im (I) ∀I ∈ I.

This method can be extended to include finite unions of elements of I. For
example if E = I1 ∪ I2 = (a, b] ∪ (c, d] with b < c, then consider the proba-
bilities Pr ((a, b]) + Pr ((c, d]) and 1 − {Pr ((−∞, a]) + Pr ((b, c]) + Pr ((d, ∞))}
(the probability of the sets that make up E versus one less the probability of
the intervals that make up the complement), and the minimum and maximum
probability for each case as a function of the minimum and maximum of each set.
The minimum for the first sum is max{0, F l (d)−Fu (c)}+max{0, F l (b)−Fu (a)
and the maximum is Fu (d) − F l (c) + Fu (b) − F l (a). The minimum for
the second is 1 −

(
Fu (∞) − F l (d) + Fu (c) − F l (b) + Fu (a) − F l (−∞)

)
=

F l (d) − Fu (c) + F l (b) − Fu (a) and the maximum is
1 − (max{0, F l (∞) − Fu (d)} + max{0, F l (c) − Fu (b)} + max{0, F l (a) −
Fu (−∞)}) = Fu (d) − max{0, F l (c) − Fu (b)} − F l (a) .This gives

Pr (E) ≥ max
{

F l (d) − Fu (c) + F l (b) − Fu (a)
max

(
0, F l (d) − Fu (c)

)
+ max

(
0, F l (b) − Fu (a)

) and

Pr (E) ≤ min
{

Fu (d) − max
(
0, F l (c) − Fu (b)

)
− F l (a)

Fu (d) − F l (c) + Fu (b) − F l (a)
so Pr (E) ∈ [max{0, F l (d) − Fu (c)} + max{0, F l (b) − Fu (a)},
Fu (d) − max{0, F l (c) − Fu (b)} − F l (a)] where the final line is arrived at by
noting that ∀x, y F l (x) − Fu (y) ≤ max{0, F l (x) − Fu (y)}.

Remark 2. Note the two extreme cases for E = (a, b] ∪ (c, d]. For Fu (x) =
F l (x) = F (x) ∀x, then, as expected, Pr (E) = F (d) − F (c) + F (b) − F (a) =
Pr ((a, b]) + Pr ((c, d]),that is, it is the probability measure. Moreover, for
F l (x) = 0 ∀x, Pr (E) ∈ [0, Fu (d)]. That is, it is a possibility measure for
the possibility distribution function Fu (x).

Let E = {∪K
k=1Ik | Ik ∈ I}, E is the algebra of sets generated by I. Note that

every element of E has a unique representation as a union of the minimum num-
ber of elements of I (or, stated differently, as a union of disconnected elements
of I). Note also that R ∈ E and E is closed under complements.

Assume E = ∪K
k=1Ik and Ec = ∪J

j=1Mj are the unique representations of E
and Ec in E in terms of elements of I. Then, considering minimum and maximum
possible probabilities of each interval it is clear that

Pr (E) ∈ [max{ΣK
k=1a

− (Ik) , 1 − ΣJ
j=1a

+ (Mj)},

min{ΣK
k=1a

+ (Ik) , 1 − ΣJ
j=1a

− (Mj)}].

This can be made more concise using the following result.

Proposition 2. (see [2], [6]) If E = ∪K
k=1Ik and Ec = ∪J

j=1Mj are the unique
representations of E and Ec ∈ E then ΣK

k=1a
− (Ik) ≥ 1 − ΣJ

j=1a
+ (Mj) and

ΣK
k=1a

+ (Ik) ≥ 1 − ΣJ
j=1a

− (Mj).

Next im is extended to E .
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Proposition 3. (see [2], [6]) For any E ∈ E let E = ∪K
k=1Ik and Ec = ∪J

j=1Mj

be the unique representations of E and Ec in terms of elements of I respectively.
If

im (E) =
[
ΣK

k=1a
− (Ik) , 1 − ΣJ

j=1a
− (Mj)

]

then im : E →Int[0,1] , is an extension of I to E and is well defined. In addi-
tion, im (E) = [inf{Pr (X) ∈ E | X ∈ M

(
Xu, X l

)
}, sup{Pr (X) ∈ E | X ∈

M
(
Xu, X l

)
}].

The family of sets,E , is a ring of sets generating the Borel sets B. For an arbitrary
Borel set S, it is clear that Pr (S) ∈ [sup{a− (E) | E ⊆ S, E ∈ E}, inf{a+ (F ) |
S ⊆ F, F ∈ E}] and this leads to the following proposition.

Proposition 4. (see [2], [6]) Let im :.B → [0, 1] be defined by

im (A) = [sup
{
a− (E) | E ⊆ A, E ∈ E

}
, (1)

inf
{
a+ (F ) | A ⊆ F, F ∈ E

}
] (2)

The im is an extension from E to B and is well-defined.

Proposition 5. The function im : B → Int[o,1] defines an F-probability
field on the Borel sets and im (B) = [inf{Pr (X ∈ B) | X ∈
M

(
Xu, X l

)
}, sup{Pr (X ∈ B) | X ∈ M

(
Xu, X l

)
}]. That is, M(Xu, X l) de-

fines the structure.

3.1 Interval-Valued Integration, Extension and Independence

Three key concepts needed for the application of IVPMs to mathematical pro-
graming problems, integration, extension and independence, are defined.

Definition 5. Given F-probability field R = (S, A, im) and an integrable func-
tion f : S → R we define:

∫

A

f (x) dim =

[
inf

p∈M(R)

∫

A

f (x) dp, sup
p∈M(R)

∫

A

f (x) dp

]
(3)

It is easy to see that if f is an A−measurable simple function such that f (x) ={
y x ∈ A
0 x /∈ A

with A ∈ A, then
∫

A

f (x) dim = yim (A) (4)

Further, if f is a simple function taking values {yk | k ∈ K} on an at most
countable collection of disjoint measurable sets {Ak | k ∈ K} that is, f (x) ={

yk x ∈ Ak

0 x /∈ A

∣∣∣∣ where A = ∪k∈KAk, then

∫

A

f (x) dim =
[
a−

(∫

A

f (x) dim

)
, a+

(∫

A

f (x) dim

)]
, (5)
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where

a+(
∫

A

f (x) dim) = sup {Σk∈Kyk Pr (Ak) | Pr ∈ M (R)} (6)

and

a−(
∫

A

f (x) dim) = inf {Σk∈Kyk Pr (Ak) | Pr ∈ M (R)} . (7)

Note that these can be evaluated by solving two linear programing prob-
lems since Pr ∈ M (R) implies that Σk∈K Pr (A) = 1 and Pr (∪l∈L⊂KAl) ∈
im (∪l∈L⊂KAl) so the problem may be tractable. In general, if f is an inte-
grable function and {fk} is a sequence of simple functions converging uniformly
to f , then we can determine the integral with respect to f by noting that

∫

A

f (x) dim = lim
k→∞

∫

A

fk (x) dim,

where

lim
k→∞

∫

A

fk (x) dim = [ lim
k→∞

a−(
∫

A

fk (x) dim),

lim
k→∞

a+(
∫

A

fk (x) dim)]

provided the limits exist.
.

Example 5. Consider the IVPM constructed from the interval [a, b]. Then∫
R

xdim = [a, b], i.e. the interval-valued expected value is the interval itself.

Definition 6. Let R =(S, A, im) be an F-probability field and f : S → T a
measurable function from measurable space (S, A) to measurable space (T, B).
Then the F-probability (T, B, lm) defined by lm (B) = [inf{Pr

(
f−1 (B)

)
| Pr ∈

M (R)}, sup{Pr
(
f−1 (B)

)
| Pr ∈ M (R)}] is called the extension of the R-

probability field to (T, B) .

That this defines an F − probability field is clear from our earlier observation.
In addition, it’s easy to see that this definition is equivalent to setting

lm (A) = im
(
f−1 (A)

)

which allows for evaluation using the techniques described earlier. The combi-
nation of IVPMs when the variables are independent is addressed next. The
situation when dependencies may be involved is not discussed here.

Given measurable spaces (S, A) and (T, B) and the product
space(SxT, A × B) Assume iXxY is an IVPM on A × B. Call iX and
iY defined by iX (A) = iXxY (A × T ) and iY (B) = iXxY (S × B) the marginals
of iXxY . The marginals, iX and iY , are IVPMs.
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Definition 7. Call the marginal IVPMs independent iff iXxY (AxB) =
iX (A) iY (B) ∀A, B ⊆ S.

Definition 8. Let R =(S, A, iX) and Q =(T, B, lY ) be F-probability fields rep-
resenting uncertain random variables X and Y . Define the F-probability field
(SxT, A × B,iXxY ) by

i+XxY (AxB) = sup{Pr
X

(B) Pr
Y

(B) | Pr
X

∈ M (R) , Pr
Y

∈ M (Q)},

i−XxY (AxB) = inf{Pr
X

(B) Pr
Y

(B) | Pr
X

∈ M (R) , Pr
Y

∈ M (Q)},

where (SxT, A × B) is the usual product of σ−algebra of sets.

It is clear from this definition that iXxY (AxB) ≡ iX (A) iY (B) for all A ∈ A
and B ∈ B. Thus, if several uncertain parameters in a problem are present
with the uncertainty characterized by IVPMs, and all independent, an IVPM
for the product space can be formed by multiplication and subsequently used as
an IVPM.

4 Application to Optimization

As an example of possible application of these concepts we will look at a recourse
problem. Suppose we wish to optimize f (x, a) subject to g(x, b) = 0. Assume a,
and b are vectors of independent uncertain parameters, each with an associated
IVPM. Assume the constraint can be violated at a cost so that the problem is
to solve (dropping the vector notation):

h (x, a, b) = f (x, a) − pg (x, b) ,

where p is the penalty vector.
The IVPM for the product space can be readily formed given the assumption

that the uncertainty variables are independent. In this case, the IVPM, iaxb, is
the joint distribution. The interval-valued expected value with respect to this
IVPM is: ∫

R

h (x, a, b) diaxb

To optimize over such a value requires an ordering of intervals. One such order-
ing is to use the midpoint of the interval on the principle that in the absence of
additional data, the midpoint is the best estimate for the true value. Another
possible ordering is to use risk/return multi-objective decision making. For ex-
ample, determine functions u : R2 → R and v : IntR → R2 by setting, for any
interval I = [a, b], v (I) =

(
a+b
2 , b − a

)
. Thus v gives the midpoint and width of

an interval. Then u would measure the decision makes preference for one interval
over another considering both its midpoint and width (a risk measure). Then
our optimization problem is

max
x

u

(
v

(∫

R

h (x, a, b) diaxb

))
.
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Example 6. Consider the problem

max f(x, c) = 4x1 + x2

subject to
g1(x, a1, b1) = x1 − [1, 3]x2 + 4 = 0
g2(x, a2, b2) = 2̃x1 − 5x2 + 1 = 0

0 ≤ xi ≤ 2

where 2̃ = 1/2/3/, that is, 2̃ is the triangular number with support [1, 3] and
modal value at 2. For p = (1, 1)T ,

h(x, a, b) = 3x1 + 6x2 − 2̃x1 + [1, 3]x2 − 5,

so that
∫

R

h (x, a, b)diaxb

= 3x1 − [
∫ 1

0
(α − 3)dα,

∫ 1

0
(−α − 1)dα]x1 + 6x2 + [1, 3]x2 − 5

= 3x1 − [
3
2
,
5
2
]x1 + 6x2 + [1, 3]x2 − 5

= [[
1
2
,
3
2
]x1 + [7, 9]x2 − 5.

Note that −5 will not affect the optimization. It will be taken out of the opti-
mization and then re-inserted at the end. Continuing,

v(
∫

R

h (x, a, b)diaxb) = (1, 1)x1 + (8, 2)x2.

As an example, let u(y1, y2) = y1 + y2. Then

max
xi∈[0,2]

u(v(
∫

R

h (x, a, b)diaxb)) = max
xi∈[0,2]

{2x1 + 10x2}

= 24.

5 Conclusion

The definition of an interval-valued probability measure provides a formal setting
in which various representations of uncertainty (for example intervals, probabil-
ity, possibility and clouds) can be combined. This allows solution methods for
problems containing mixed representations. Future research will focus on the
theory and applications of such measures to problems in optimization in which
uncertainty can not be fully captured by probability alone. We intend to extend
the results in [5] which provided an approximation technique for probability mea-
sures via inner and outer measures to approximation techniques for functions of
cloudy random variables.
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Abstract. Formulations for fuzzy and possibilistic optimization abound
in the literature, but few are implemented in practice. This paper inves-
tigates the theory, semantics, and efficacy of a selection of significant
fuzzy and possibilistic optimization algorithms via their application to a
well-known large-scale problem: the radiation therapy planning problem.
The algorithms are compared, critiqued, and organized with the follow-
ing objective in mind: to guide a decision maker in the selection and
implementation of a fuzzy or possibilistic optimization algorithm.

Keywords: Fuzzy, Possibilistic, Optimization, Algorithm.

1 Introduction

Since much of the decision-making in the real world depends upon constraints,
goals, and consequences of potential actions which are not explicitly known, the
field of optimization is faced with the challenge of quantifying imprecise data in
a meaningful way. The most well-developed branch of optimization under un-
certainty is stochastic programming, which utilizes probability distributions for
all uncertain data. Not all uncertainty, however, is inherently random. Some un-
certainty stems from vagueness about the quantitative meaning of a constraint
or goal (as in, “We wish for a return on investment significantly higher than
the prime rate.”) Some uncertainty stems from a lack of information about, or
ambiguity concerning, the value of a goal or constraint (as in, “the body tem-
perature which constitutes a fever is around 100 degrees Fahrenheit”). Known
respectively as fuzziness and possibility, these two forms of uncertainty require
quantitative representations which differ from their probabilistic counterparts as
well as from each other.

Fuzzy and possibility theory have made contributions to the field of optimiza-
tion under uncertainty for over 30 years. The literature contains many proposed
formulations, but few have been implemented in practice. The desired outcome
of this paper is to guide a decision maker in the selection and implementation
of a fuzzy or possibilistic optimization algorithm. Section Two introduces sev-
eral significant fuzzy and possibilistic optimization algorithms. Section Three
describes a well-known large-scale problem, the radiation therapy problem, to
which the proposed algorithms will be applied. In Section Four, the algorithms
are compared, critiqued, and organized for the ease of use for potential decision-
makers.
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2 Background

2.1 Optimization Algorithms

Vague parameter values leads to fuzzy programming. When the vagueness rep-
resents a willingness on the part of the decision-maker to bend the constraints,
fuzzy programming can also be called flexible programming. In these cases, the
decision-maker is willing to lower the feasibility requirements in order to obtain
a more satisfactory objective function value, or, in some cases, simply in order to
reach a feasible solution. Such flexible constraints are commonly referred to as
soft constraints. In the case of soft constraints, it is the inequality (or equality)
itself which is viewed to be fuzzy (i.e. Ax≤̃b). This is distinct from the case in
which the right hand side has vague value, in which case the right hand side is
viewed to be fuzzy (i.e. Ax ≤ b̃).

In a landmark paper [1], Bellman and Zadeh were the first to propose an ap-
proach to mathematical programming with fuzzy components– specifically with
soft constraints. Two notable aspects of this approach, which was later formu-
lated for computation by Zimmermann [34], are the reformulation of objective(s)
as goal(s), and the drive to maximize the α-level of the decision space.

Verdegay [30] published a formulation which yields a fuzzy solution for a fuzzy
problem with soft constraints. The optimal solution depends upon the α-level of
acceptable uncertainty, which must be specified a priori by the decision maker.

Recently, Neumaier [20],[13], modeled fuzzy right-hand sides (in contrast to
fuzzy inequalities). Neumaier seeks to minimize a surprise function, which is
inversely related to membership level associated with a particular outcome.

J.J. Buckley proposes a formulation for possibilistic linear programs in which
both the right- and left-hand sides of the constraints and the cost coefficients of
the objective function are governed by possibility distributions. Buckley’s and
Verdegay’s approaches are similar in several ways, among them the requirement
of an a priori α-level.

Tanaka, et al [26,28], also propose a formulation for possibilistic left-and right-
hand sides and cost coefficients. Reframing objective(s) as goal(s), and subtract-
ing the right-hand sides results in a single matrix which the optimization problem
seeks to make greater than zero. Tanaka, et al introduce the concept of “possibly
positive”, and the optimal solution is the one for which maximum positivity is
attained.

A fuzzy max formulation for possibilistic right and left-hand sides was intro-
duced by Tanaka, et al. [28] and by Ramik and Rimanek [22]. The maximum
operator is extended to possibilistic numbers and used to define the feasible
set of solutions in a possibilistic problem. Because the fuzzy max yields a par-
tial ordering, an acceptable α-level is sometime assigned a priori to reflect the
decision-maker’s level of optimism.

Jamison and Lodwick ([7,11]) develop a method for dealing with possibilis-
tic right hand sides that is a possibilistic generalization of the recourse models in



On Selecting an Algorithm for Fuzzy Optimization 373

stochastic optimization. Violations of constraints are allowable, at a cost deter-
mined a priori by the decision maker. They choose the utility (that is, valuation)
of a given interval of possible values to be its expected average.

A robust optimization formulation can address possibilistic parameters and
a fuzzy inequality in the same optimization problem. Robust programming sac-
rifices some performance in order to guard against excessively variable results.
Delgado, et al. [16] propose an alternative formulation for the optimization prob-
lem with fuzzy inequalities and possibilistic coefficients: they use an a priori
definition of an acceptable α-level, and a fuzzy inequality definition chosen by
the implementer.

3 Application of the Algorithms

The algorithms were evaluated via the radiation therapy planning problem, a
large, well-known application.

3.1 The Radiation Therapy Planning Problem

The use of particle beams to treat tumors is called the radiation therapy planning
(RTP) problem [5]. Beams of particles are oriented at a variety of angles and with
varying intensities to deposit radiation dose (measured as energy/unit mass)
to the tumor. The goal is to deposit a tumorcidal dose to the tumor while
minimizing damage to surrounding non-tumor tissue.

The process begins with the patient’s computed tomography (CT) scan. Each
CT image is examined to identify and contour the tumor and normal structures.
The image is subsequently vectorized into pixels. Likewise, candidate beams are
discretized into beamlets. This study is concerned with a two-dimensional image
of a head tumor at a resolution of 64 × 64 pixels, and ten beam angles, each
divided into 10 beamlets. This is potentially a 642 × 102 problem. However,
since not all pixels are in the potential paths of radiation, and not all beamlets
have the potential to deliver dose to the tumor, we set these to zero a priori and
remove them from the analysis. This corresponds to blocking the beam, which
is always done in practice.

The RTP in practice proceeds as follows. After the oncologist delineates the
tumor and critical structures, a candidate set of beam intensities are obtained by
some optimization technique or purely by human choice. These beam intensities
are used as inputs to a Federal Drug Administration (FDA) approved dose cal-
culator to produce the graphical depiction of the dose deposited at each pixel. A
histogram of the percentage of pixels receiving a particular radiation dose, called
the dose volume histogram (DVH), is one such graphical depiction. In general,
the radiation oncologist never consults the objective function value; just the final
dose distribution is viewed.

A treatment plan is the identification of a set of beam angles and weights that
provides a lethal dose to the tumor cells while sparing healthy tissue, with a
resulting dose distribution acceptable to the radiation oncologist. A dose transfer
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matrix A, specific to the patient’s geometry, represents how a unit of radiation
in beamlet j is deposited in body pixel i. The components of A are determined
by the fraction of pixel i which intersects with beamlet j, attenuated by the
distance of the pixel from the place where the beam enters the body. The dose
transfer matrix A can be divided into a matrix T which contains dose transfer
information to tumor pixels only, matrices C1 through CK which contain does
transfer information to pixel in critical organs 1 though K, and body matrix
B which contains dose transfer information for all non-tumor and non-critical-
organ pixels in the body. The variable vector x represents the beamlet intensities,
and the right hand side vector b represents the dosage requirements.

In the RTP literature, there is no agreement on what the objective function func-
tion of the RTP problem should be [10]. In this paper, the chosen objective function
is minimizing total weighted radiation. Since each element aij of the attenuation
matrixA represents radiationdelivered to bodypixel iby one unit of radiation from
beamlet j, the sumof the elements of the columnai will give the entire amount of ra-
diation delivered to the body by one unit of radiation from beamlet j. We therefore
select cj =

∑
i aij as the objective function coefficient of xj .

The crisp formulation of the RTP is

minimize cx (1)
subject to B ≤ bbody

C1 ≤ bC1

...

CK ≤ bCK

T ≤ btumor

−T ≤ −btumor. (2)

Two inequalities represent the T = btumor equality constraint. This split rep-
resentation has a natural interpretation. T ≥ btumor (which is equivalent to
−T ≤ −btumor) represents the requirement that the dose delivered to tumor
pixels is high enough to kill them. T ≤ btumor represents the requirement that
no body tissue, tumorous or otherwise, be burned.

Uncertainty might occur in four areas of the mathematical programming prob-
lem: the right-hand side, the inequality, the A matrix coefficients, and the cost
coefficients. Let us consider what each of these means in the context of the
radiation therapy problem:

– Possibilistic uncertainty in the right hand side implies uncertainty about
what levels of radiation are tumorcidal and what levels are safe for the body
and critical organs. In contrast, fuzzy uncertainty in the right-hand side
implies that a dose is safe for organs or tumorcidal to a varying degree
(indicated by the membership function.)

– Uncertainty in the inequality is always fuzzy and implies the oncologist’s
flexibility regarding the satisfaction of the dosage requirements.

– Uncertainty in coefficient aij implies uncertainty about the degree of radi-
ation beamlet j imparts to pixel i. One (possibilistic) source of this type
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of uncertainty is patient positioning and breathing 1. In addition, we have
possibilistic uncertainty in the A matrix because the attenuation matrix is a
linearization of the non-linear attenuation process. Finally, some uncertainty
in the aijs results from the fuzzy nature of the pixels themselves. Biologi-
cally, cells are not strictly tumor or non-tumor cells. Some cells take on
partial tumor characteristics, which results in a fuzzy membership function.

– Possibilistic uncertainty in cost coefficient cj implies ambiguity about the
impact of the intensity of beamlet j on the overall radiation to the body.
Fuzzy uncertainty in the cost coefficient can result from fuzzy coefficients
in the attenuation matrix, since the cost coefficients in the this study are
defined as the column sums of the attenuation matrix.

3.2 Procedure

The Radiation Therapy Planning problem, with a 64 × 64 pixel resolution and
with the radiation beam discretized into 10 beamlets, was formulated and solved
according to each of the solution methods described in Section 2. MATLAB’s
optimization toolbox was used to produce a solution, which was evaluated via a
Dose Volume Histogram. The full run of experiments are evaluated in detail in.
The conclusions drawn from these experiments follow in the next section.

4 Main Results

As we have seen, fuzzy and possibilistic optimization formulations are abundant.
The choice of formulation depends firstly upon the semantics of the problem, sec-
ondly upon the desired format of the outcome, and the lastly on the performance
of a particular algorithm. What follows are several dichotomies which should aid
a decision maker in the selection of an appropriate algorithm.

4.1 Hard or Soft Constraints

If the constraints in question are required to be met exactly as stated, the decision
maker should select a formulation that uses hard constraints, such as Tanaka’s
h-level technique, the fuzzy max technique, Neumaier’s surprise technique, or
Buckley’s technique. On the other hand, if the constraints indicate preference, are
flexible, or can be violated at a cost in order to obtain a more desirable outcome,
a formulation with soft constraints is appropriate. Methods we have examined
with soft constraints are Zimmermann’s, Verdegay’s, Jamison and Lodwick’s,
Luhandjula’s, Delgado’s, and the fuzzy robust approach. It should be noted that
in the case of hard constraints, there may not be feasible solutions in practice.

1 Ambiguity caused by patient positioning and breathing will not be non-interactive
from one body pixel to another, since the body is positioned and breathes as a whole.
Since all the fuzzy/possibilistic formulations in this study make the assumption of
non-interactivity, we have a less than ideal modeling situation.
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4.2 Fuzzy or Possibilistic Parameters

Another determinant of the appropriate formulation is the nature of the problem
parameters. If the problem contains parameters whose values are known with pre-
cision, and the uncertainty lies in the inequality, a problem with crisp parameters,
such as Zimmermann’s or Verdegay’s should be chosen. If the problem contains
parameters which are imprecise because there is not sufficient information to fully
determine their values, a model that incorporates possibilistic parameters should
be chosen, possibly from the following: Luhandjula’s technique, the fuzzymax tech-
nique, Tanaka’s h-level technique, Buckley’s technique, fuzzy robust optimization,
Jamison and Lodwick’s expected average technique, or Delgado’s technique. If,
however, the value of some parameter is not fully defined because the parameter
assumes multiple values to various degrees, the decision maker should choose a for-
mulationwith fuzzyparameters.Theonlymodel fully examined in this paperwhich
incorporates fuzzy parameters is Neumaier’s surprise approach.

4.3 Feasibility or Optimality

Model selection will also depend on the decision maker’s goal. The problem
might be to find a feasible solution (often in these cases, a crisp program is in-
feasible). In this case, the decision maker should select a model which seeks the
most feasible solution, such as Zimmermann’s technique, fuzzy robust optimiza-
tion, surprise, Tanaka’s h-level technique, or Delgado’s technique. If there is an
objective function to be optimized, the decision maker might choose to reformu-
late the objective function as an additional constraint, as in goal programming.
In this case, the problem again becomes one of finding the most feasible solu-
tion, and a formulation chosen from those listed above is advised. On the other
hand, the decision maker might desire to optimize the objective function for a
given feasibility level, choosing a model which seeks an optimal solution such
as Buckley’s, Luhandjula’s, Verdegay’s, or the fuzzy max model. The Jamison
and Lodwick approach alone among those implemented in this paper affords the
decision maker the ability to trade off between optimality and feasibility.

4.4 Fuzzy or Crisp Solution

A formulation might also be selected because a crisp solution or a fuzzy/possibi-
listic solution is desired. In general, algorithms that require α input give fuzzy
solutions, and those which do not take an α level a priori give crisp solutions.
Jamison and Lodwick differ greatly from other formulations, by providing a
crisp solution that is not given for a particular α value, but is averaged over all
α values.

The question to consider is when to defuzzify. At some point, all solutions must
become crisp, because one cannot implement a fuzzy or possibilistic solution. For
instance, in a transportation problem, the decision maker might send the order
to ship 3̃ widgets, where 3̃ is a triangular fuzzy number whose center is 3, and
whose support is [2, 4]. In the end, however, the dock-worker will load a crisp 2, a
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crisp 3, or a crisp 4 on the truck. The trade-off is generally between flexibility and
control. A decision maker who selects a formulation which yields a crisp solution
knows what solution will be implemented, for there is only one. A decision maker
who selects a formulation with a fuzzy or possibilistic solution must at some point
choose (or allow another, like the dock-worker in the example above, to choose)
a crisp instantiation of the solution to implement. Furthermore, this choice must
be made without the aid of an optimization program. Leaving the defuzzifying
to a person rather than a program grants flexibility, but relinquishes control over
the quality of the solution.

When choosing a fuzzy or crisp solution, it is important to keep the semantics
of the problem in mind. As an example, consider Verdegay’s fuzzy optimization
technique and Buckley’s possibilistic approach, in the case that b is possibilistic
and A and c are crisp. The two programs give non-crisp solutions that are cal-
culated in exactly the same way, but semantically means very different things.
It makes sense to give an a priori α level for Buckley, because it corresponds
with the decision maker’s level of comfort with risk. In Verdegay, the α level cor-
responds to the decision maker’s level of constraint satisfaction. But wouldn’t
the decision maker always wish to maximize the level of constraint satisfaction,
which corresponds to using Zimmermann’s method?

Bearing this in mind, the following formulations produce non-crisp solutions:
Verdegay’s, Buckley’s, fuzzy max, and Delgado’s. For a crisp solution, good
choices are Zimmermann’s, surprise, h-level, Luhandjula’s, Jamison and Lod-
wick’s, and fuzzy robust optimization.

4.5 Complexity and Speed

If multiple formulations fit the semantics of the problem and meet the needs of
the decision maker, efficiency may be considered a deciding factor. The following
list is a ranking, from fastest to slowest, of the techniques tested in this paper:
crisp, Verdegay’s, Zimmermann’s, Buckley’s, robust, h-level, fuzzy max, Jamison
and Lodwick’s.

5 Additional Thoughts

The focus of this paper has been the selection of a fuzzy or possibilistic optimiza-
tion algorithm. The broader question is whether a fuzzy/possibilistic formulation
is appropriate in the first place.

5.1 Optimization with Both Fuzzy and Possibilistic Parameters

What does the solution to the optimization problem with mixed fuzzy and pos-
sibilistic parameters mean?

In both the approaches covered in this section, the same α-cuts define the
level of ambiguity in the coefficients, and the level at which the decision-maker’s
requirements are satisfied. We interpret the solution to mean that for any value
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α ∈ (0, 1], we have a possibility α of obtaining a solution that satisfies the
decision maker to degree α. Using the same α value for both the possibilistic and
fuzzy components of the problem is convenient, but does not necessarily provide
a meaningful model of reality. For example, suppose α = .8. If the solution, x(.8)
is implemented, there is a .8 possibility that it will provide the decision maker
with at least .8 degree of satisfaction. On the other hand, if x(.3) is implemented,
there is a .3 possibility that it will provide the decision maker with at least .3
degree of satisfaction. It is apparent that the quality of the solution diverges
rapidly. A more useful approach might be to require a higher level of satisfaction
for a solution with a smaller possibility of attaining feasibility. For example, if
we were to accept a solution that had only .3 possibility of occurring, we might
require that it provide us with at least .9 degree of satisfaction. This is akin
to the idea of being willing to take greater risks for the possibility of greater
rewards.

5.2 Optimization Under Uncertainty vs. Crisp Optimization

In the radiation therapy problem, the solution to the problem is multiplied by
a crisp attenuation matrix to calculate delivered dose and produce the dose vol-
ume histogram. A possibilistic solution, calculated with possibilistic Â, might be
feasible–i.e. produce an acceptable dose– when multiplied by the possibilistic Â,
but be infeasible when multiplied by a crisp A. For an example of this, refer to
the Buckley implementation. Since the DVH is the tool used by radiation oncolo-
gists to judge the quality of the solution, this is a problem. To accurately display
the possibilistic solution, the DVH should be calculated using a possibilistic Â.
Even if the radiation oncologist employed a possibilistic DVH, the Federal Drug
Administration (FDA) regulates radiation levels with crisp guidelines. A possi-
bilistic solution that produces a feasible DVH based on a possibilistic attenuation
matrix might still violate FDA regulations, which are evaluated crisply. We put
forth that optimization problems whose solutions will be held to crisp standards
should be solved with crisp optimization.

An additional question that must be considered is whether or not the quality
of the solution to the fuzzy problem does not significantly surpass the quality of
its crisp counterpart. If it does, the marginal quality must be enough to outweigh
the computational inefficiency of optimization under uncertainty. In the case of
the RTP implementations in this paper, the crisp formulation produced a DVH
of quality comparable to the most successful fuzzy and possibilistic techniques
in much less time.
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Abstract. A risk-minimizing portfolio model under uncertainty is dis-
cussed. In the uncertainty model, the randomness and fuzziness are eval-
uated respectively by the probabilistic expectation and mean values with
evaluation weights and λ-mean functions. The means, variances and the
measurements of fuzziness for fuzzy numbers/fuzzy random variables are
applied in the possibility case and the necessity case, and a risk estima-
tion is derived from both random factors and fuzzy factors in the model.
By quadratic programming approach, we derive a solution of the risk-
minimizing portfolio problem. It is shown that the solution is a tangency
portfolio. A numerical example is given to illustrate our idea.

1 Introduction and Notations

The portfolio is one of the most important tools for the asset management in
finance. Portfolio models have been studied by many authors using mathematical
programming on the basis of Markowitz’s model (Steinbach 2001, Markowits
1990; Pliska 1997). When we deal with systems like financial markets, fuzzy logic
works well since the markets contain the uncertain factors which are different
from probabilistic essence and in which it is difficult to specify actual price
values exactly (Inuiguchi and Tanino 2000; Tanaka et al. 2000). In this paper,
randomness is applied to the uncertainty regarding the belief degree of frequency,
and fuzziness is applied to imprecision of data because of a lack of knowledge
regarding the current stock market. In this paper, we consider a risk-minimizing
portfolio model under uncertainty of randomness and fuzziness.

Estimation of uncertain quantities is important in decision making. To repre-
sent uncertainty in a finance model, we use fuzzy random variables which have
two kinds of uncertainties, i.e. randomness and fuzziness. Recently, (Yoshida
2004, 2006) introduced means, variances and covariance of fuzzy random vari-
ables using evaluation weights and λ-mean functions. In this paper, we estimate
fuzzy numbers/fuzzy random variables by probabilistic expectation and these
evaluations, which are characterized by a possibility-necessity weight for subjec-
tive estimation and a pessimistic-optimistic index for subjective decision. Espe-
cially we deal with evaluation weights derived from the possibility measure and
the necessity measure for numerical computation in modeling.
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In a portfolio model, we use triangle-type fuzzy numbers/fuzzy random vari-
ables for simplicity in numerical computation when we apply them to actual
models. We discuss a risk-minimizing problem for the portfolio, where the risk is
defined by both the random factors and fuzzy factors in the model. By quadratic
programming approach, we derive a solution of the risk-minimizing portfolio
problem. We show that the solution is a tangency portfolio. A numerical exam-
ple is given to illustrate our idea.

In this paper, we consider a portfolio model with a bond and n stocks, where
n is a positive integer. In the remainder of this section, we describe a bond price
process and stock price processes. We deal with a model where an investor’s
actions do not have any impact on the stock market, so-called small investors
hypothesis (Pliska 1997). Let T := {0, 1, 2, · · · , T } be the time space with an
expiration date T , and R denotes the set of all real numbers. Let (Ω, M, P ) be a
probability space, where M is a σ-field of Ω and P is a non-atomic probability
measure. Take a probability space Ω := (Rn+1)T+1 by the product of R. Let a
positive number rt be an interest rate of a bond price at time t for t = 1, 2, · · · , T ,
and put a bond price process {S0

t }T
t=0 by S0

0 = 1 and

S0
t :=

t∏

s=1

(1 + rs) for t = 1, 2, · · · , T. (1)

For an asset i = 1, 2, · · · , n, a stock price process {Si
t}T

t=0 is given by rates of
return Ri

t as follows.

Si
t := Si

t−1(1 + Ri
t) (2)

for t = 1, 2, · · · , T , where {Ri
t}T

t=1 is assumed to be a uniform integrable se-
quence of independent identically distributed real random variables with values
in [−1, ∞). Then we have

Si
t = Si

0

t∏

s=1

(1 + Ri
s) (3)

for t = 1, 2, · · · , T . In this paper, we present a portfolio model where stock price
processes Si

t take fuzzy values using fuzzy random variables, whose mathematical
notations are introduced in the next section.

2 A Portfolio Model Under Uncertainty

In this section, we introduce fuzzy numbers/fuzzy random variable and we give a
portfolio model under uncertainty. A fuzzy number is denoted by its membership
function ã : R �→ [0, 1] which is normal, upper-semicontinuous and fuzzy convex
and has a compact support (Zadeh 1965). R denotes the set of all fuzzy numbers.
In this paper, we identify fuzzy numbers with their corresponding membership
functions. The α-cut of a fuzzy number ã(∈ R) is given by ãα := {x ∈ R | ã(x) ≥
α} (α ∈ (0, 1]) and ã0 := cl{x ∈ R | ã(x) > 0}, where cl denotes the closure
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of an interval. We write the closed intervals as ãα := [ã−
α , ã+

α ] for α ∈ [0, 1]. A
fuzzy-number-valued map X̃ : Ω �→ R is called a fuzzy random variable if the
maps ω �→ X̃−

α (ω) and ω �→ X̃+
α (ω) are measurable for all α ∈ (0, 1], where

X̃α(ω) = [X̃−
α (ω), X̃+

α (ω)] = {x ∈ R | X̃(ω)(x) ≥ α} (Kwakernaak 1987; Puri
and Ralescu 1986). Next we need to introduce expectations of fuzzy random
variables in order to describe a portfolio model. A fuzzy random variable X̃ is
called integrably bounded if both ω �→ X̃−

α (ω) and ω �→ X̃+
α (ω) are integrable

for all α ∈ (0, 1]. Let X̃ be an integrably bounded fuzzy random variable. The
expectation E(X̃) of the fuzzy random variable X̃ is defined by a fuzzy number

E(X̃)(x) := sup
α∈[0,1]

min{α, 1E(X̃)α
(x)}, x ∈ R, (4)

where E(X̃)α := [
∫

Ω
X̃−

α (ω) dP (ω),
∫

Ω
X̃+

α (ω) dP (ω)] for α ∈ (0, 1] (Yager 1981,
Puri and Ralescu 1986).

Now we deal with a case when the rate of return {Ri
t}T

t=1 has some imprecision.
We define a rate of return process with imprecision {R̃i

t}T
t=0 by a sequence of

triangle-type fuzzy random variables

R̃i
t(·)(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if x < Ri
t − ci

t
x−Ri

t+ci
t

ci
t

if Ri
t − ci

t ≤ x < Ri
t

x−Ri
t−ci

t

−ci
t

if Ri
t ≤ x < Ri

t + ci
t

0 if x ≥ Ri
t + ci

t,

(5)

where ci
t is a positive number. We call ci

t a fuzzy factor for asset i at time t.
Hence we can represent R̃i

t by the sum of fuzzy numbers:

R̃i
t(ω)(·) := 1{Ri

t(ω)}(·) + ãi
t(·) (6)

for ω ∈ Ω, where 1{·} denotes the characteristic function of a singleton and ãi
t

is a fuzzy number

ãi
t(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if x < −ci
t

x+ci
t

ci
t

if − ci
t ≤ x < 0

x−ci
t

−ci
t

if 0 ≤ x < ci
t

0 if x ≥ ci
t.

(7)

For assets i = 1, 2, · · · , n, we define stock price processes {S̃i
t}T

t=0 by the rates of
return with imprecision R̃i

t as follows: S̃i
0 := Si

0 is a constant and

S̃i
t = S̃i

0

t∏

s=1

(1 + R̃i
s) (8)

for t = 1, 2, · · · , T (Yoshida et al. 2003). Hence, we deal with a portfolio with
trading strategies given by portfolio weight vectors w = (w1, w2, · · · , wn) such
that w1 + w2 + · · · wn = 1 and wi ≥ 0 (i = 1, 2, · · · , n). For the trading strategy
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w = (w1, w2, · · · , wn), the rate of return with imprecision for the portfolio is
given by

R̃t := w1R̃1
t + w2R̃2

t + · · · wnR̃n
t . (9)

This paper discusses a risk-minimizing model regarding (9) under guarantee of
rewards.

3 Mean, Variance and the Measurement of Fuzziness

There are many research results for the estimation of fuzzy numbers (Campos
and Munoz 1989; Fortemps and Roubens 1996; López-Dı́az and Gil 1998). In this
paper, we use an evaluation method of fuzzy numbers/fuzzy random variables
introduced by (Yoshida et al. 2003; Yoshida 2004, 2006) to estimate the rate of
return (9) in the portfolio. They studied an evaluation of fuzzy numbers by eval-
uation weights which are induced from fuzzy measures to evaluate a confidence
degree that a fuzzy number takes values in an interval. With respect to fuzzy
random variables, the randomness is evaluated by the probabilistic expectation
and the fuzziness is estimated by evaluation weights and the following function.
Let gλ : I �→ R be a map such that

gλ([x, y]) := λx + (1 − λ)y, [x, y] ∈ I, (10)

where λ is a constant satisfying 0 ≤ λ ≤ 1 and I denotes the set of all bounded
closed intervals. This scalarization is used for the estimation of fuzzy numbers
to give a mean value of the interval [x, y] with a weight λ, and λ is called
a pessimistic-optimistic index and indicates the pessimistic degree in decision
making (Fortemps and Roubens 1996). Then, gλ is called a λ-mean function.
Let a fuzzy number ã ∈ R. A mean value of the fuzzy number ã with respect to
λ-mean functions gλ and an evaluation weights w(α), which depends only on ã
and α, is given as follows (Yoshida 2004, 2006)

Ẽλ(ã) :=
∫ 1

0

gλ(ãα)w(α) dα

/ ∫ 1

0

w(α) dα, (11)

where ãα = [ã−
α , ã+

α ] is the α-cut of the fuzzy number ã. In (11), w(α) indicates
a confidence degree that the fuzzy number ã takes values in the interval ãα at
each level α. Hence, an evaluation weight w(α) is called the possibility evaluation
weight wP (α) and the necessity evaluation weight wN (α) induced from the fuzzy
number ã if they are given respectively by wP (α) = 1 and wN (α) = 1 − α
for α ∈ [0, 1]. Especially, for a fuzzy number ã ∈ R, the mean ẼP (ã) in the
possibility case and the mean ẼN (ã) in the necessity case are represented as
follows (Yoshida 2004, 2006):

ẼP (ã) =
∫ 1

0

gλ(ãα) dα and ẼN (ã) =
∫ 1

0

gλ(ãα) (2 − 2α) dα. (12)

The mean Ẽλ has the following natural properties regarding the linearity and
the monotonicity for the fuzzy max order.
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Lemma 1 (Yoshida 2004, 2006). Let λ ∈ [0, 1]. Let Ẽλ = ẼP or Ẽλ = ẼN . For
fuzzy numbers ã, b̃ ∈ R and real numbers θ, ζ, the following (i) – (iv) hold.

(i) Ẽλ(ã+1{θ}) = Ẽλ(ã)+θ, where 1{·} is the characteristic function of a set.
(ii) Ẽλ(ζã) = ζẼλ(ã) if ζ ≥ 0.
(iii) Ẽλ(ã + b̃) = Ẽλ(ã) + Ẽλ(b̃).
(iv) If ã � b̃, then Ẽλ(ã) ≥ Ẽλ(b̃) holds, where � is the fuzzy max order.

Next we consider measurements regarding two kinds of uncertainty, i.e. fuzziness
and randomness. Fuzziness is based on the imprecision of data and the variance
is based on the randomness, and they are given as independent concepts in this
paper. Therefore, they should be estimated in different ways. Yoshida 2006)
has studied a method to measure the size of fuzziness regarding fuzzy numbers.
Let ã ∈ R be a fuzzy number. A measurement of fuzziness F̃ (ã) of the fuzzy
number ã is given as follows: Let α ∈ [0, 1]. For an interval ãα = [ã−

α , ã+
α ], the

upper/lower measurements of fuzziness should be given by mU (ãα) := ã+
α − ã−

α

and mL(ãα) := (ã+
α − ã−

α )/2. The measurements of fuzziness are related to the
imprecision of the data, and they should be defined without the subjective index
λ. Then, for m = mU or m = mL, a measurement of fuzziness F̃ (ã) is given by

F̃ (ã) =
∫ 1

0

m(ãα)w(α) dα

/ ∫ 1

0

w(α) dα, (13)

where ãα = [ã−
α , ã+

α ] is the α-cut of the fuzzy number ã ∈ R.

Lemma 2. Let a fuzzy number ã ∈ R. Then, the measurement of fuzziness in
the possibility case and the necessity case are given as follows.

F̃P (ã) :=
∫ 1

0

mU (ãα)wP (α) dα

/ ∫ 1

0

wP (α) dα =
∫ 1

0

(ã+
α − ã−

α ) dα, (14)

F̃N (ã) :=
∫ 1

0

mN (ãα)wN (α) dα

/ ∫ 1

0

wN (α) dα =
∫ 1

0

(ã+
α − ã−

α ) (1 − α) dα.

(15)

Now we have the following natural results about the possibility fuzziness measure
F̃ (·) = F̃P (·) and the necessity fuzziness measure F̃ (·) = F̃N (·).

Lemma 3. Let F̃ = F̃P or F̃ = F̃N . For fuzzy numbers ã, b̃ ∈ R and real
numbers θ, ζ, the following (i) – (iv) hold.

(i) F̃ (ã + 1{θ}) = F̃ (ã).
(ii) F̃ (ζã) = |ζ|F̃ (ã).
(iii) F̃ (ã ± b̃) = F̃ (ã) + F̃ (b̃).
(iv) If ã ⊃ b̃, then F̃ (ã) ≥ F̃ (b̃) holds, where ⊃ implies the inclusion in the

sense of fuzzy sets.
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Let ã ∈ R be a fuzzy number and let ν ∈ [0, 1] be a parameter. For ap-
plications of the mean values and measurement of fuzziness in actual prob-
lems, we introduce a mean value and a measurement of fuzziness with a
parameter ν:

Ẽλ,ν(ã) := νẼP (ã) + (1 − ν)ẼN (ã), (16)

F̃ ν(ã) := νF̃P (ã) + (1 − ν)F̃N (ã). (17)

Then, ν is called a possibility-necessity weight, and (16) and (17) are the mean
value and the measurement of fuzziness with the possibility-necessity weight ν.

Using evaluation weights, we give means, variances and covariances regard-
ing fuzzy random variables. For the fuzzy random variable X̃, the mean of the
expectation E(X̃) is a real number

E(Ẽλ(X̃)) = E

(∫ 1

0

gλ(X̃α)w(α) dα

/ ∫ 1

0

w(α) dα

)
. (18)

Then, from Lemma 1, we obtain the following results regarding fuzzy random
variables.

Lemma 4. Let λ ∈ [0, 1]. For a fuzzy number ã ∈ R, integrable fuzzy random
variables X̃, Ỹ and an integrable real random variable Z and a nonnegative real
number ζ, the following (i) – (vi) hold.

(i) E(Ẽλ(X̃)) = Ẽλ(E(X̃)).
(ii) E(Ẽλ(ã)) = Ẽλ(ã) and E(Ẽλ(Z)) = E(Z).
(iii) E(Ẽλ(X̃ + ã)) = E(Ẽλ(X̃)) + Ẽλ(ã) and E(Ẽλ(X̃ + Z)) = E(Ẽλ(X̃)) +

E(Z).
(iv) E(Ẽλ(ζX̃)) = ζE(Ẽλ(X̃))).
(v) E(Ẽλ(X̃ + Ỹ )) = E(Ẽλ(X̃)) + E(Ẽλ(Ỹ )).
(vi) If X̃ � Ỹ almost surely, then E(Ẽλ(X̃)) ≥ E(Ẽλ(Ỹ )) holds, where � is the

fuzzy max order.

Next we introduce variances and covariances of fuzzy random variables from
the viewpoint of λ-mean functions and evaluation weights. For fuzzy random
variables X̃ and Ỹ , we define variances and covariances as follows (Yoshida
2006).

V λ(X̃) := E

(∫ 1

0

(gλ(X̃α) − E(gλ(X̃α)))2 w(α) dα

/ ∫ 1

0

w(α) dα

)
, (19)

Covλ,γ(X̃, Ỹ )

:=E

(∫ 1

0

(gλ(X̃α) − E(gλ(X̃α)))(gγ(Ỹα) − E(gγ(Ỹα)))w(α) dα

/∫ 1

0

w(α) dα

)

(20)

for λ, γ ∈ [0, 1]. We can find other approaches in (Carlsson and Fullér 2001; Feng
et al. 2001), which discuss the variance of fuzzy numbers by possibility theory.
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Hence we obtain the following natural properties about the variance V λ(·) and
covariance Covλ,γ(·, ·).

Lemma 5. Let λ, γ ∈ [0, 1]. For fuzzy numbers ã, b̃ ∈ R, integrable fuzzy random
variables X̃, Ỹ , integrable real random variables X, Y and a nonnegative real
number ζ, the following (i) – (v) hold.

(i) V λ(ã) = 0 and V λ(X) = V (X), where V (·) is the variance of real random
variables.

(ii) V λ(X̃ + ã) = V λ(X̃).
(iii) V λ(ζX̃) = ζ2V λ(X̃).
(iv) Covλ,γ(X̃, ã) = Covλ,γ(ã, X̃) = 0 and Covλ,γ(X, Y ) = Cov(X, Y ), where

Cov(·, ·) is the covariance of real random variables.
(v) Covλ,γ(X̃ + ã, Ỹ + b̃) = Covλ,γ(X̃, Ỹ ).

4 A Risk-Minimizing Model Under Uncertainty in
Portfolio

In this section, we discuss a risk-minimizing problem under uncertainty. Let the
mean, variance and covariance of the fuzzy random variables R̃i

t defined by (5)
by μ̃i

t := E(Ẽλ(R̃i
t)), (σ̃i

t)
2 := V λ(R̃i

t) and σ̃ij
t := Covλ,λ(R̃i

t, R̃
j
t ) for λ ∈ [0, 1]

and i, j = 1, 2, · · · , n. From Lemmas 4 and 5 and (6), we obtain the following
results regarding the rates of returns R̃i

t: Then

(a) μ̃i
t = μi

t + Ẽλ(ãi),
(b) (σ̃i

t)2 = (σi
t)2,

(c) σ̃ij
t = σij

t ,

where μi
t := E(Ri

t), (σi
t)2 := V (Ri

t) = E((Ri
t − μi

t)2), σ
ij
t := Cov(Ri

t, R
j
t ) =

E((Ri
t − μi

t)(R
j
t − μj

t )). For the trading strategy w = (w1, w2, · · · , wn) such that
w1 + w2 + · · ·wn = 1, from Lemmas 4 and 5 the expectation μ̃t and variance
(σ̃t)2 regarding the rate of return with imprecision for the portfolio R̃t := w1R̃1

t +
w2R̃2

t + · · · wnR̃n
t in (9) is given as follows.

μ̃t :=
n∑

i=1

wiμ̃i
t =

n∑

i=1

wi(μi
t + Ẽλ(ãi)),

(σ̃t)2 :=
n∑

i=1

(wi)2(σi
t)

2 + 2
n∑

i=1

n∑

j=i+1

wiwjσij
t =

n∑

i=1

n∑

j=1

wiwjσij
t ,

where σii
t := (σi

t)
2. Hence, to guarantee the lower bound regarding the expecta-

tion μ̃t of the rate of return for the portfolio we estimate μ̃t taking the index λ
pessimistic (λ = 1) and the necessity mean wN (α) = 1 − α (α ∈ [0, 1]):
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μ̃t =
n∑

i=1

wi(μi
t + Ẽλ(ãi

t))

≥
n∑

i=1

wi

(
μi

t − ci
t

∫ 1

0

(1 − α)(2 − 2α)dα

)

=
n∑

i=1

wi

(
μi

t − 2
3
ci
t

)

for λ ∈ [0, 1], where ãi
α = [ãi−

α , ãi+
α ] = [−ci

t(1−α), ci
t(1−α)] from (7). Therefore,

n∑

i=1

wi

(
μi

t − 2
3
ci
t

)
(21)

is the lower bound regarding the expectation (21) of the rate of return for the
portfolio. Next, in this model, we deal with the risk derived from the uncertainty
which consists of randomness and fuzziness. Since these factors are independent,
we define the risk of the portfolio by the combination of the variance (σ̃t)2 and
the measurement of fuzziness E(F̃ (R̃t)). Then, its upper bound is given by the
possibility case wP (α) = 1 (α ∈ [0, 1]):

(σ̃t)2 + (E(F̃ (R̃t)))2 =
n∑

i=1

n∑

j=1

wiwj(σij
t + F̃ (ãi

t)F̃ (ãj
t ))

≤
n∑

i=1

n∑

j=1

wiwj(σij
t + ci

tc
j
t ).

Therefore,

ρ̃ :=
n∑

i=1

n∑

j=1

wiwj(σij
t + ci

tc
j
t ) (22)

is the upper bound of the risk of randomness and fuzziness. We deal with a risk-
minimizing model with a bond. Let μ0

t = rt and c0
t = 0. For a given constant γ

which means the expected rate of return to be guaranteed for the portfolio, we
discuss the following problem.

Risk-minimizing problem (RM): Minimize the risk

ρ̃ :=
n∑

i=1

n∑

j=1

wiwj(σij
t + ci

tc
j
t ) (23)

with trading strategies w = (w0, w1, w2, · · · , wn) satisfying w0 + w1 + w2 +
· · · wn = 1 and wi ≥ 0 (i = 1, 2, · · · , n) under the condition

n∑

i=0

wi

(
μi

t − 2
3
ci
t

)
= γ. (24)
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Theorem 1. Assume Σ̃−1(μ̃ − rtm̃1) ≥ m̃0 and Σ̃−1(μ̃ − rtm̃1) 
= m̃0. Then
there exists a solution (ρ̃∗∗, μ̃∗∗) of Problem (RM), which is given by the following
(ρ̃∗∗, μ̃∗∗):

(ρ̃∗∗, μ̃∗∗) :=
(

A(rt)2 − 2Brt + C

(Art − B)2
,
Brt − C

Art − B

)
. (25)

The corresponding trading strategy w∗∗ := (w0, w∗) is given as follows.

w∗ = ζΣ̃−1(μ̃ − rtm̃1),
w0 = 1 − (w∗)Tm̃1,

(26)

with

ζ :=
1

B − Art
.

where σ̃ij := σij
t + ci

tc
j
t for i, j = 1, 2, · · · , n,

μ̃ :=

⎡

⎢⎢⎢⎣

μ1
t

μ2
t
...

μn
t

⎤

⎥⎥⎥⎦ − 2
3

⎡

⎢⎢⎢⎣

c1
t

c2
t
...

cn
t

⎤

⎥⎥⎥⎦ , Σ̃ :=

⎡

⎢⎢⎢⎣

σ̃11 σ̃12 · · · σ̃1n

σ̃21 σ̃22 · · · σ̃2n

...
...

. . .
...

σ̃n1 σ̃n2 · · · σ̃nn

⎤

⎥⎥⎥⎦ , m̃1 :=

⎡

⎢⎢⎢⎣

1
1
...
1

⎤

⎥⎥⎥⎦ ,

A := m̃1TΣ̃−1m̃1, B := m̃1TΣ̃−1μ̃ and C := μ̃TΣ̃−1μ̃.

The solution (ρ̃∗∗, μ̃∗∗) is called a tangency portfolio, and we can easily check
that (ρ̃∗∗, μ̃∗∗) maximizes the Sharpe ratio

μ̃∗∗ − rt√
ρ̃∗∗

(27)

with respect to portfolios in the efficient frontier. Tangency portfolios are widely
used in the financial market, and it is known that the Sharpe ratio is a measure
of risk-adjusted performance of a trading strategy in portfolio theory (Pliska
1997).

5 A Numerical Example

Let n = 3. Let the interest rate of the bond rt = 0.04. Take a mean and variance-
covariance matrix of rate of return and fuzzy factors. From Theorem 1 we
obtain the tangency portfolio (ρ̃∗∗, μ̃∗∗) = (0.0909028, 0.0486702) with the trad-
ing strategy w∗∗ = (w0, w1, w2, w3) = (0, 0.022250, 0.623316, 0.354434). Hence
μ̃∗∗ = 0.0486702 is the mean of the rate of return with imprecision of data
and ρ̃∗∗ = 0.0909028 is the risk given by uncertainty, which is the sum of vari-
ance and the square of the mesurement of fuzziness, for the portfolio. For the
tangency portfolio (ρ̃∗∗, μ̃∗∗), we can easily calculate that the Sharpe ratio is
μ̃∗∗−rt√

ρ̃∗∗ = 0.0287569.
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Fig. 1. Tangency portfolio

Table 1. The mean and variance-covariance matrix of rate of return and fuzzy factors

Asset i μi
t

1 0.05

2 0.07

3 0.06

(σi
t)

2, σij
t 1 2 3

1 0.40 0.03 0.02

2 0.03 0.20 −0.06

3 0.02 −0.06 0.30

Asset i ci
t

1 0.01

2 0.03

3 0.02
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Abstract. A pattern tree [1] is a tree which propagates fuzzy terms us-
ing different fuzzy aggregations. Each pattern tree represents a structure
for an output class in the sense that how the fuzzy terms aggregate to
predict such a class. Unlike decision trees, pattern trees explicitly make
use of t-norms (i.e., AND) and t-conorms (OR) to build trees, which is
essential for applications requiring rules connected with t-conorms ex-
plicitly. Pattern trees can not only obtain high accuracy rates in classifi-
cation applications, but also be robust to over-fitting. This paper further
extends pattern trees approach by assigning certain weights to different
trees, to reflect the nature that different trees may have different confi-
dences. The concept of weighted pattern trees is important as it offers an
option to trade off the complexity and performance of trees. In addition,
it enhances the semantic meaning of pattern trees. The experiments on
British Telecom (BT) customer satisfaction dataset show that weighted
pattern trees can slightly outperform pattern trees, and both of them are
slightly better than fuzzy decision trees in terms of prediction accuracy.
In addition, the experiments show that (weighted) pattern trees are ro-
bust to over-fitting. Finally, a limitation of pattern trees as revealed via
BT dataset analysis is discussed and the research direction is outlined.

1 Introduction

Most of the existing fuzzy rule induction methods including fuzzy decision trees
[9] (the extension of the classic decision tree induction method by Quinlan [6])
focus on searching for rules which only use t-norm operators [7] such as the MIN
and algebraic MIN. Disregarding of the t-conorms such as MAX and algebraic
MAX is due to the fact that any rule using t-conorms can be represented by
several rules which use t-norms only. This is certainly true and it is helpful to
simplify the rule induction process by considering t-norms only. However, it may

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 395–406, 2007.
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fail to generate important rules in which fuzzy terms are explicitly connected
with t-conorms. Research has been conducted to resolve this problem. For ex-
ample, Kóczy, Vámos and Biró [3] have proposed fuzzy signatures to model the
complex structures of data points using different aggregation operators including
MIN, MAX, and average etc. Mendis, Gedeon and Kóczy [4] have investigated
different aggregations in fuzzy signatures. Nikravesh [5] has presented evolution-
ary computation (EC) based multiple aggregator fuzzy decision trees.

Huang and Gedeon [1] have first introduced the concept of pattern trees and
proposed a novel pattern tree induction method by means of similarity mea-
sures and different aggregations. This paper extends that work to assign certain
weights to different pattern trees. As a result, it enhances the semantic meaning
of pattern trees and makes them more comprehensible for users. The experi-
ments on BT customer satisfaction dataset show that weighted pattern trees
can slightly outperform pattern trees. In addition, this paper shows that pattern
trees and weighted pattern trees perform more consistently than fuzzy decision
trees. The former are capable of generating classifiers with good generality, while
the latter can easily fall into the trap of over-fitting. In fact, weighted pattern
trees with only two or three tree levels (depth of tree) are good enough for most
experiments carried out in this paper. This provides a very transparent way to
model real world applications.

The rest of the paper is arranged as follows: Section 2 provides the definitions
for similarity, aggregations and pattern trees, and briefly outlines the pattern tree
induction method. Readers may refer to [1][2] for detailed discussion. Section
3 suggests the concept of weighted pattern trees and shows how to use them
for classification. Section 4 presents the experimental results over BT customer
satisfaction dataset. Finally, Section 5 concludes the paper and points out further
research work.

2 Definitions and Pattern Tree Induction

Let A and B be two fuzzy sets [10] defined on the universe of discourse U . The
root mean square error (RMSE) of fuzzy sets A and B can be computed as

RMSE(A, B) =

√∑m
j=1(μA(xj) − μB(xj))2

m
, (1)

where xj , j = 1, . . . , m, are the crisp values discretized in the variable domain,
and μA(xj) and μB(xj) are the fuzzy membership values of xj for A and B. The
RMSE based fuzzy set similarity can thus be defined as

S(A, B) = 1 − RMSE(A, B). (2)

The larger the value of S(A, B), the more similar A and B are. As μA(xj), μB(xj)
∈ [0, 1], 0 ≤ S(A, B) ≤ 1 holds according to (1) and (2). Note that the pattern
tree induction follows the same principle if alternative fuzzy set similarity defi-
nitions such as Jaccard are used.
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Fuzzy aggregations are logic operators applied to fuzzy membership values
or fuzzy sets. They have three sub-categories, namely t-norm, t-conorm, and
averaging operators such as weighted averaging (WA) and ordered weighted av-
eraging (OWA) [8].

Triangular norms were introduced by Schweizer and Sklar [7] to model dis-
tances in probabilistic metric spaces. In fuzzy sets theory, triangular norms (t-
norm) and triangular conorms (t-conorm) are extensively used to model logical
operators and and or. The basic t-norm and t-conorm pairs which operate on two
fuzzy membership values a and b, a, b ∈ [0, 1] are shown in Table 1. Although

Table 1. Basic t-norms and t-conorms pairs

Name t-norm t-conorm
MIN/MAX min{a, b} = a ∧ b max{a, b} = a ∨ b

Algebraic AND/OR ab a + b − ab
�Lukasiewicz max{a + b − 1, 0} min{a + b, 1}
EINSTEIN ab

2−(a+b−ab)
a+b
1+ab

the aggregations shown only apply to a pair of fuzzy values, they can apply
to multiple fuzzy values as they retain associativity. The definition of WA and
OWA are shown as follows:

Definition 1. A WA operator of dimension n is a mapping E : R
n → R,

that has an associated n-elements vector w = (w1, w2, . . . , wn)T , wi ∈ [0, 1],
1 ≤ i ≤ n, and

∑n
i=1 wi = 1 so that E(a1, . . . , an) =

∑n
j=1 wjaj.

Definition 2. An OWA operator [8] of dimension n is a mapping F : R
n → R,

that has an associated n-elements vector w = (w1, w2, . . . , wn)T , wi ∈ [0, 1],
1 ≤ i ≤ n, and

∑n
i=1 wi = 1 so that F (a1, . . . , an) =

∑n
j=1 wjbj, where bj is the

jth largest element of the collection {a1, . . . , an}.

A fundamental difference of OWA from WA aggregation is that the former does
not have a particular weight wi associated for an element, rather a weight is
associated with a particular ordered position of the element.

A pattern tree is a tree which propagates fuzzy terms using different fuzzy
aggregations. Each pattern tree represents a structure for an output class in the
sense that how the fuzzy terms aggregate to predict such a class. The output
class is located at the top as the root of this tree. The fuzzy terms of input
variables are on different levels (except the top) of the tree. They use fuzzy
aggregations to aggregate from the bottom to the top (root). Assume two fuzzy
variables A and B each have two fuzzy linguistic terms Ai and Bi, i = {1, 2},
and the task is to classify the data samples to either class X or Y . Fig. 1 shows
two example pattern trees, with one for class X and the other for Y . It can be
seen that pattern trees are built via the aggregation of fuzzy terms. For example,
the pattern tree for X is equivalent to fuzzy rule (B1 ∧ A2) ∨ A1 ⇒ X .
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Fig. 1. Two example pattern trees

For a classification application which involves several output classes, the
worked model should have as many pattern trees as the number of output classes,
with each pattern tree representing one class. When a new data sample is tested
over a pattern tree, it traverses from the bottom to the top and finishes with a
truth value, indicating a degree to which this data sample belongs to the output
class of this pattern tree. The output class with the maximal truth value is cho-
sen as the prediction class. For example, consider that a fuzzy data A1 = 0.8,
A2 = 0.2, B1 = 0, and B2 = 1 is given for classification. As the truth values of
this data over pattern trees for class X and Y are 0.8 and 0.2 respectively, X is
chosen as the output class.

The pattern tree induction method as proposed in [1][2] is briefly outlined
as follows. Readers may refer to [1][2] for detailed discussion. Without losing
generality, assume a dataset has n input variables Ai, i = 1, 2, . . . , n and one
output variable B. Further assume that input variables have m fuzzy linguistic
terms denoted as Aij , i = 1, 2, . . . , n, and j = 1, 2, . . . , m, and output variable
has k fuzzy or linguistic terms denoted as Bj , j = 1, 2, . . . , k. That is, each data
point is represented by a fuzzy membership value vector of dimension (nm + k).
The task is to build k pattern trees for the k output classes (fuzzy or linguistic
terms).

The process of building a pattern tree, say for class B0, is described as follows:

1. From fuzzy term set S = {Aij}, i = 1, 2, . . . , n, and j = 1, 2, . . . , m, choose a
fuzzy linguistic term Ai′j′ ∈ S, which has the highest similarity to the output
class B0 as the initial tree. The fuzzy term set is updated as S = S − Ai′j′ .
The exclusion of fuzzy term Ai′j′ from S is to prevent Ai′j′ from being used
more than once in the tree.

2. Try aggregating the current tree with all fuzzy linguistic terms at set S in
turn with different aggregations. Grow the current tree using the term Ai′j′

from set S and aggregation which together lead to the highest similarity.
The fuzzy term set is updated as S = S − Ai′j′ .

3. Keep applying 2 until no fuzzy term and aggregation lead to a higher simi-
larity than the current one.

The above actually presents the induction for simple pattern trees. Its extension,
the general pattern trees induction [2], considers to aggregate not only fuzzy
terms, but also other pattern trees. In general, simple pattern trees not only
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produce high prediction accuracy, but also preserve compact tree structures,
while general pattern trees can produce even better accuracy, but as a compro-
mise produce more complex tree structures. Subject to the particular demands
(comprehensibility or performance), simple pattern trees and general pattern
trees provide an highly effective methodology for real world applications.

3 Weighted Pattern Trees

The classification using pattern trees discussed in section 2 is based on the as-
sumption that all pattern trees each have the same confidence on predicting
a particular class, though it is not always the case in real world applications.
Weighted trees are introduced to resolve this problem. For each tree, the sim-
ilarity of such tree to the output class is served as a degree of confidence, to
reflect how confident to use this tree to predict such a class. For example, if
the two trees in Fig. 1 have similarities of 0.1 and 0.8 respectively, they can be
called weighted pattern trees with weights of 0.1 and 0.8. The prediction using
weighted pattern trees is the same as that using pattern trees, except that the
final truth values are multiplied by the weights of trees. As an example, let’s
revise the classification problem in section 2; consider classifying the fuzzy data
A1 = 0.8, A2 = 0.2, B1 = 0, and B2 = 1 over pattern trees (with weights of 0.1
and 0.8) in Fig. 1, its truth values over pattern trees for class X and Y change
to 0.08 and 0.16 respectively, and Y (rather than X) is therefore chosen as the
output class. This reflects the fact that, if a tree has a low weight, even an in-
put data has a high firing strength over such pattern tree, the prediction is not
confident. Note that this example is merely used to show how weighted pattern
trees work. In practice, a pattern tree with weight of 0.1 may not be trusted to
predict a class.

The concept of weighted pattern trees is important. It offers an option to
trade off the complexity and performance of pattern trees. The pattern tree
building process can stop at very compact trees, if it detects that the similarities
(weights) of such trees are already larger than a user pre-defined threshold.
In addition, it enhances the comprehensibility of pattern trees. For example
consider the construction of the pattern tree for class Y in Fig. 1, assume that
the tree growing from the primitive tree B2 ⇒ Y to B2 ∧ A2 ⇒ Y leads to
the weight increase from 0.6 to 0.8, this gradual change can be interpreted in a
comprehensible way:

IF B = B2 THEN it is possible that class = Y, (3)
IF B = B2 AND A = A2 THEN it is very possible that class = Y, (4)

if users pre-define semantic ranges of weights, say less possible: [0, 0.3), possible:
[0.3, 0.7), and very possible: [0.7, 1]. Thus, the graduate change of confidence of
pattern trees can be monitored from the pattern tree induction process. This
provides a very transparent way for fuzzy modeling.
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4 Experimental Results

In this section, different variants of pattern trees, namely simple pattern trees,
weighted simple pattern trees, pattern trees, and weighted pattern trees, are
applied to a sample customer satisfaction dataset from BT. This dataset has a
total of 26 input parameters representing ease of contact, problem understand-
ing, service quality, repair time, and overall event handling. Among the input
parameters, 6 are numerical parameters and the rest 20 are category ones, with
the number of possible values being from 2 up to 17. The output parameter
consists of 7 classes reflecting varying degrees of customer satisfaction.

The BT customer satisfaction dataset has 16698 data points in total. Let ds,
ds-odd and ds-even be the datasets which contain the whole, the odd numbered,
and the even numbered data points respectively. The number of data per class
for these three datasets are shown in Table 2, with ci, i = 0, . . . , 6 standing for
class i. As can be seen, this dataset is not well balanced as the number of data

Table 2. Number of data per class for ds, ds-odd and ds-even datasets

c0 c1 c2 c3 c4 c5 c6
ds 1895 7289 4027 382 1361 853 891
ds-odd 949 3659 1990 197 660 448 446
ds-even 946 3630 2037 185 701 405 445

per class varies significantly. The experiments of (weighted) pattern trees are
carried out in three combinations of training-test datasets, namely, odd-even,
even-odd, and ds-ds. In all experiments, a simple fuzzification method based on
three evenly distributed trapezoidal membership functions for each numerical
input parameter is used to transform the crisp values into fuzzy values. All
aggregations as listed in Table 1 are allowed and the similarity measure as shown
in (2) is used.

4.1 Prediction Accuracy and Overfitting

The prediction accuracy and rule number of the fuzzy decision trees (FDT) with
respect to the number of data points per leaf node (used as criteria to terminate
the training), over different combinations of training-test sets are shown in Fig. 2.
It reveals that in general the larger number of data points per leaf node, the more
compact of the decision trees would be, thus leading to more general trees. The
prediction accuracy of pattern trees (PT) and weighted pattern trees (WPT)
with respect to different tree levels, over different combinations of training-test
sets is shown in Fig. 3. It reveals that (simple) pattern trees maintain good
generality even their structure becomes complex.

The experiments show that weighted pattern trees and pattern trees perform
roughly the same. In fact, the former slightly outperform the latter. Table 3
shows the highest prediction accuracy of fuzzy decision trees, (weighted) sim-
ple pattern trees and (weighted) pattern trees over different combinations of
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Fig. 2. Prediction accuracy and rule number of fuzzy decision trees with different
number of data points per leaf node
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Fig. 3. Prediction accuracy of pattern trees and weighted pattern trees with different
tree levels

Table 3. Highest prediction accuracy of fuzzy decision tree, pattern trees, and weighted
pattern trees

FDT SimPT PT
no weight weight no weight weight

odd-even 50.62% 51.19% 51.45% 51.89% 51.92%
even-odd 50.47% 51.92% 52.47% 51.93% 52.37%
ds-ds 71.36% 51.82% 52.09% 51.88% 52.18%

training-test sets. Both weighted and un-weighed pattern trees can obtain higher
prediction accuracy than fuzzy decision trees in odd-even and even-odd combi-
nations. However, if considering ds-ds combination, fuzzy decision trees perform
much better. This just reflects the overfitting of fuzzy decision trees, since fuzzy
decision trees generate large differences in classification accuracy between the
odd-even, even-odd combinations and ds-ds one. The reason is that decision tree
induction considers only a portion of the whole training dataset in choosing the
branches at low levels of trees. The lack of using the whole training dataset



402 Z. Huang et al.

inevitably prevents the method finding generalized tree structures for all the
dataset. In contrast, pattern trees make use of the whole data in building each
level of the tree, which ensures the tree to keep good generality for classifications.
Therefore, even complex pattern trees do not suffer from over-fitting.

In addition, the experiments show that (weighted) pattern trees tend to con-
verge to a accuracy rate when the number of tree level becomes large. It has no
trend of overfitting. This property is essential to ensure a stable, compact and
effective fuzzy model for the problem at hand. In fact, (weighted) pattern trees
with two or three level perform very well for all conducted experiments. That
means, pattern trees which consist of maximal 23 = 8 leaf nodes can perform
well, in contrast to tens, or even hundred rules used in fuzzy decision trees. This
provides a superb solution to achieve a highly effective as well as compact fuzzy
model.

4.2 Approximate Accuracy

Section 4.1 presented the prediction accuracy of trees in a very strict way. That
is, if and only if a data is predicted exactly as its class, this prediction is counted
as a correct one. In other words, there is no distinction between “close” errors
and “gross” errors. In BT customer dataset, this distinction is necessary as it
reflects how far the prediction is away from the actual class. It is much worse
if a data of class 0 is mis-predicted to class 5 rather than to class 1. To resolve
this problem, three accuracy estimations, namely accuracy 1, accuracy 2, and
accuracy 3 are employed to estimate prediction accuracy which has no tolerance
(the same as the one used in Section 4.1), tolerance of adjacent mis-prediction,
and tolerance of mis-prediction within two closest neighbor classes in either
direction, respectively. For example in the BT dataset, the mis-prediction of a
class 0 data to class 2 is still counted as a correct prediction in the estimation
of accuracy 3, although it is not counted in either accuracy 1 or accuracy 2.

Table 4 shows the highest prediction accuracy of fuzzy decision trees, (weigh-
ted) simple pattern trees and (weighted) pattern trees over odd-even combination
of training-test sets (the results on even-odd and ds-ds combinations are simi-
lar and thus omitted). Both weighted and unweighted pattern trees can obtain
higher prediction accuracy than fuzzy decision trees in estimation of accuracy 1
and 2. In estimation of accuracy 3, weighted pattern trees perform the best, and
fuzzy decision trees outperform unweighted pattern trees. Generally, accuracy 2

Table 4. Highest prediction accuracy of fuzzy decision trees, pattern trees, and
weighted pattern trees over odd-even training-test combination

FDT SimPT PT
no weight weight no weight weight

accuracy 1 50.62% 51.19% 51.45% 51.89% 51.92%
accuracy 2 84.02% 84.08% 84.68% 84.44% 84.82%
accuracy 3 92.13% 91.74% 92.70% 91.85% 92.29%
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and 3 are consistent with accuracy 1. Pattern trees with a high value of accuracy
1 usually have high values of accuracy 2 and 3. This table also shows that both
fuzzy decision trees and pattern trees can obtain over 80% prediction accuracy
if the closest error can be tolerated.

4.3 Interpretation of Pattern Trees

Each pattern tree can be interpreted as a general rule. Considering building level
5 simple pattern trees using odd dataset, 7 simple pattern trees can be obtained,
with each representing one output class. Fig. 4 shows the tree for class 0. The
ellipses are the input parameters and the rectangle is the output class 0. Over
each branch, i and Fi, i = 0, . . ., are category values and fuzzy terms associated
with each input parameter. All aggregators as shown in Table 1 are allowed to
be used in pattern trees. For example, A AND is algebraic AND, and WA 0.84
is weighted average with weight vector w = (0.84, 0.16).

par20

par25

par6

class 0
1

WA_0.84
2 F0

1

WA_0.97
F0

F0

AND

A_AND

OWA_0.02

par21

par24

par10

Fig. 4. Pattern tree for class 0 using odd dataset

Fig. 4 roughly indicates that one example combination yielding highly satis-
fied customers are: no call re-routing, fast fault reporting time, high technician
competence, being well-informed through the repair process, and high satisfac-
tion with company/product in general. Here, we say roughly, as we use different
aggregations such as weighted average (WA), ordered weighted average (OWA),
algebraic and (A AND) etc. rather than simple AND.

These 7 pattern trees obtains an accuracy of 51.46%. In particular, the confu-
sion table is shown in Table 5, where SA and SP are number of data for actual
and predicted classes respectively.

4.4 Limitation

It is a little strange that no prediction is made to c0 for all test data. From
table 5, it can be seen that nearly all data (884 out of 946 in fact) with class 0
are mis-classified to class 1. A first intuition is to raise the weight of pattern tree
for class 0. However, this does not work; the raise does not only lead to the data
of class 0 to be classified correctly, but also lead to the majority of data of class
1 to be classified as class 0. Considering that there are 3630 data of class 1 and
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Table 5. Confusion table for pattern tree prediction using odd-even combination

Prediction
c0 c1 c2 c3 c4 c5 c6 SA

c0 0 884 51 0 3 2 6 946
c1 0 3283 309 0 10 15 13 3630
c2 0 1122 751 1 53 72 38 2037

Actual c3 0 59 94 0 6 20 6 185
c4 0 122 395 1 30 104 49 701
c5 0 50 142 0 23 120 70 405
c6 0 35 129 0 37 131 113 445
SP 0 5555 1871 2 162 464 295 8349
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Fig. 5. Fired values of first 50 data points per class in even dataset over pattern trees
constructed from odd dataset

only 946 data of class 0 in even dataset, the raise of weight for class 0 tree would
therefore cause more mis-classifications. This can be seen in Fig. 5, where the
fired values of first 50 data points per class in even dataset over pattern trees
constructed from odd dataset are shown. The real class line indicates the real
classes of the data; for example, data numbered from 0 to 49 have class 0, and
those from 50 to 99 have class 1.

The phenomena of no prediction on particular classes also occurs in fuzzy
decision trees. Considering the highest accuracy of 50.62% which fuzzy decision
trees can obtain over odd-even combination, no data is predicted to c3, c4 or
c5, due to the small fraction of data points in those classes.

Table 6. Confusion table for prediction of both fuzzy decision trees and pattern trees
using new training and test datasets

Prediction
c0 c1 SA

c0 0 884 884
Actual c1 1 3282 3283

SP 1 4166 4167
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An interesting experiment is carried out trying to improve the prediction
accuracy for class 0 in Table 5. The data of classes 0 and 1 in odd dataset are
selected as a new training dataset, and the data which are of classes 0 and 1
in even dataset and are classified as class 1 in Table 5 are selected as a new
test dataset. Both fuzzy decision trees and pattern trees are applied to the new
training data and tested over the new test data. Surprisingly, they obtain the
same highest accuracy of 78.76%. Table 6 shows the confusion table, which only
has one data predicted as class 0 (and it is wrong actually). It can be concluded
that the data of class 0 and class 1 can not be separated properly by either fuzzy
decision trees or pattern trees.

5 Conclusions

This paper further extends pattern trees approach by assigning certain weights
to different trees. The concept of weighted pattern trees is important as it not
only offers an option to trade off the complexity and performance of trees, but
also enhances the semantics of pattern trees.

The experiments on British Telecom customer satisfaction dataset show that
weighted pattern trees can slightly outperform pattern trees, and both of them
are slightly better than fuzzy decision trees in terms of prediction accuracy. In
addition, the experiments show that (weighted) pattern trees are robust to over-
fitting. In practice, weighted pattern trees with only two or three tree levels
are good enough for most experiments carried out in this paper. This of course
provides a very transparent way to model the problems at hand.

Further research on assignment of weights to pattern trees is necessary. The
current version simply makes use of similarity measures as weights. More so-
phisticated assignment may be more suitable and can therefore lead to higher
accuracy.
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Abstract. Generally, there are two main streams of theories for study-
ing uncertainties. One is probability theory and the other is fuzzy set the-
ory. One of the basic ideas of fuzzy set theory is how to define and inter-
pret membership functions. In this paper, we will study tree-structured
data mining model based on a new interpretation of fuzzy theory. In
this new theory, fuzzy labels will be used for modelling. The member-
ship function is interpreted as appropriateness degrees for using labels
to describe a fuzzy concept. Each fuzzy concept is modelled by a dis-
tribution on the appropriate fuzzy label sets. Previous work has shown
that the new model outperforms some well-known data mining models
such as Naive Bayes and Decision trees. However, the fuzzy labels used
in previous works were predefined. We are interested in study the influ-
ences on the performance by using fuzzy labels with different degrees of
overlapping. We test a series of UCI datasets and the results show that
the performance of the model increased almost monotonically with the
increase of the overlapping between fuzzy labels. For this empirical study
with the LDT model, we can conclude that more fuzziness implies better
performance.

1 Introduction

Uncertainty is a nature of our world. Generally, there are two main streams
for modelling uncertainties. One is probability theory and the other is fuzzy
set theory. Since the first paper published by Zadeh in 1965 [9], fuzzy logic has
become an important branch in artificial intelligence as well as some engineering
areas such as intelligent control. One of the basic ideas of fuzzy set theory is
how to define and interpret membership functions. There are a few different
interpretation of fuzziness [8]. In this paper, we will study tree-structured data
mining model based on a new interpretation of fuzzy theory. In this new theory,
which is referred to as Label Semantics [2], fuzzy labels will be used for modelling.
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One inherent disadvantage of classical decision trees is that the model is sensi-
tive to noise. As pointed out by Quinlan [6]: “the results of (traditional) decision
trees are categorical and so do not convey potential uncertainties in classifica-
tion. Small changes in the attribute values of a case being classified may result
in sudden and inappropriate changes to the assigned class. Missing or imprecise
information may apparently prevent a case being classified at all”. This noise
is not only due to the lack of precision or errors in measured features but is
often present in the model itself since the available features may not be suf-
ficient to provide a complete model of the system. To overcome this problem,
some probabilistic or soft decision trees were proposed. The first fuzzy decision
tree reference can be back to in 1977. Since then, There are more than forty
references on either on fuzzy tree learning or fuzzy rule learning. All these al-
gorithms highlight advantage of using fuzzy rules for classification applications
is to maintain transparency as well as a high accuracy rate. According to Olaru
and Wehenkel [3]: these fuzzy decision tree algorithms can be roughly divided
into two categories:

1. Enable the use of decision trees to manage fuzzy information in the forms of
fuzzy inputs, fuzzy classes or fuzzy rules.

2. Using fuzzy logic to improve their predictive accuracy.

Previous work by Lawry and Qin [4] has shown that the LDT model outper-
forms some well-known data mining models such as Naive Bayes and classical
decision trees such as C4.5 [7]. It also can handle fuzzy information and has
better transparency comparing to other models. However, the fuzzy labels used
in previous works were predefined under some assumptions. We are interested
in study the influences of different degrees of overlapping between neighboring
fuzzy labels.

2 Linguistic Decision Trees

Linguistic decision tree (LDT) [4] is a tree-structured classification model based
on label semantics. The information heuristics used for building the tree are
modified from Quinlan’s ID3 [5] in accordance with label semantics. The nodes
of a LDT are linguistic descriptions of variables and leaves are sets of appropriate
labels. In such decision trees, the probability estimates for branches across the
whole tree is used for classification, instead of the majority class of the single
branch into which the examples fall. Linguistic expressions such as small, medium
and large are used to learn from data and build a linguistic decision tree guided
by information based heuristics. For each branch, instead of labeling it with a
certain class (such as positive or negative in binary classification) the probability
of members of this branch belonging to a particular class is evaluated from a
given training dataset. Unlabeled data is then classified by using probability
estimation of classes across the whole decision tree.
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2.1 Introduction to Label Semantics

Label semantics is a methodology of using linguistic expressions or fuzzy labels
to describe numerical values. For a variable x into a domain of discourse Ω we
identify a finite set of fuzzy labels L = {L1, · · · , Ln} with which to label the
values of x. Then for a specific value x ∈ Ω an individual I identifies a subset of
L, denoted DI

x to stand for the description of x given by I, as the set of labels
with which it is appropriate to label x. If we allow I to vary across a population
V with prior distribution PV , then DI

x will also vary and generate a random set
denoted Dx into the power set of L denoted by S. We can view the random set
Dx as a description of the variable x in terms of the labels in L. The frequency of
occurrence of a particular label, say S, for Dx across the population then gives
a distribution on Dx referred to as a mass assignment on labels. More formally,

Definition 1 (Label Description). For x ∈ Ω the label description of x is a
random set from V into the power set of L, denoted Dx, with associated distri-
bution mx, which is referred to as mass assignment:

∀S ⊆ L, mx(S) = PV ({I ∈ V |DI
x = S}) (1)

where mx(S) is called associated mass of S and
∑

S⊆L mx(S) = 1. Intuitively
mass assignment is a distribution on appropriate label sets and mx(S) quantifies
the evidence that S is the set of appropriate labels for x.

In this framework, appropriateness degrees are used to evaluate how appropriate
a label is for describing a particular value of variable x. Simply, given a particular
value α of variable x, the appropriateness degree for labeling this value with the
label L, which is defined by fuzzy set F , is the membership value of α in F .
The reason we use the new term ‘appropriateness degrees’ is partly because it
more accurately reflects the underlying semantics and partly to highlight the

Algorithm 1. Linguistic translation
input : Given a database D = {〈x1(i), · · · , xn(i)〉|i = 1, · · · , |D|} with

associated classes C = {C1, · · · , C|C|}
output: Linguistic dataset LD
for j ← 1 to n do1

foreach xj do : Cover the universe of xj with NF trapezoidal fuzzy sets2

with 50% overlap. ;
for i ← 1 to |D| do3

foreach Data element xj(i) do ;4

Read appropriateness degrees for xj(i) from corresponding fuzzy set. ;5

Calculating corresponding mass assignments:6

LDi,j = 〈mx(i)(F
1
j ),· · · , mx(i)(F

hj

j )〉 on focal elements from
appropriateness degrees. ;

Save dataset LD where LD = {LDi,j |i = 1, · · · , |D|, j = 1, · · · , n}7
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quite distinct calculus based on this framework [2]. This definition provides a
relationship between mass assignments and appropriateness degrees.

Definition 2 (Appropriateness Degrees)

∀x ∈ Ω, ∀L ∈ L μL(x) =
∑

S⊆L:L∈S

mx(S)

Based on the underlying semantics, we can translate a set of numerical data into
a set of mass assignments on appropriate labels based on the reverse of definition
2 under the following assumptions: consonance mapping, full fuzzy covering and
50% overlapping. These assumptions are fully described in [4] and justified in
[2]. These assumptions guarantee that there is unique mapping from appropriate
degrees to mass assignments on labels. For example, given μmiddleAged(30) = 0.3
and μyoung(30) = 1 which are the memberships of being middleAged and young
given a value of 30 (a person’s age). The corresponding mass assignment is:
m30 = {young, middleAged} : 0.3, {young} : 0.7 (More details of mass assign-
ment calculations are available in [2] and [4]). Given a database, we can translate
each data element into its mass assignment representation. This process is called
linguistic translation. The pseudo-code is given in algorithm 1.

2.2 Degrees of Overlapping

Through linguistic translation, all numerical data can be represented as mass
assignments based on a predefined fuzzy discretization method. In this paper,
unless otherwise stated, we will use a percentile-based (or equal points) dis-
cretization. The idea is to cover approximately the same number of data points
for each fuzzy label. The justification for using this discretization method is
given in [4].

Basically, fuzzy discretization provides an interpretation between numerical
data and their corresponding linguistic data based on label semantics. We may
notice that different fuzzy discretization (fuzzification of a continuous universe)
may result in different linguistic data. We introduce a new parameter PT by
which to measure the degrees of overlapping between fuzzy labels. As we can
see from figure 1, given two fuzzy labels F and G, m is the distance between
the weighting centers of a fuzzy labels to the meeting point of their membership
functions. a is actually the length of the overlapping area. PT is calculated as
follows:

PT = a/2m (2)

PT = 0.5 represents 50% of overlapping between each two neighboring fuzzy
labels (e.g., figure 1-A). PT = 0 represents no overlapping at all (figure 1-C),
i.e., the labels are discrete but not fuzzy. Figure 1-B shows a situation that the
degree of overlapping is between 0 and 0.5. Figure 1-D also shows the linear
relation of parameter a and PT .
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Fig. 1. A schematic illustration of calculating the overlap parameter PT given different
degrees of overlaps

2.3 Classification

Given a database of which each instance is labeled by one of the classes: C =
{C1, · · · , C|C|}. A linguistic decision tree with S branches built from this data-
base can be defined as follows:

T = {〈B1, P (C1|B1), · · · , P (C|C||B1)〉, · · · 〈BS , P (C1|BS), · · · , P (C|C||BS)〉}

where P (Ck|B) is the probability of class Ck given a branch B. A branch B
with d nodes (i.e., the length of B is d) is defined as: B = 〈F1, · · · , Fd〉, where
d ≤ n and Fj are focal elements of attribute j. Focal elements are the appropriate
label sets with non-zero masses [2]. For example, consider the branch: 〈〈{small1},
{medium2, large2}〉, 0.3, 0.7〉. This means the probability of class C1 is 0.3 and
C2 is 0.7 given attribute 1 can only be described as small and attribute 2 can
be described as both medium and large.

Given a training set D = {x1, · · · ,xN} where each instance x has n attributes:
〈x1, · · · , xn〉. The class probability of Ck given a particular branch B is calculated
by the proportion of data covered by this branch and belonging to Ck to all the
data covered by this branch:

P (Ck|B) =

∑
i∈Dk

P (B|xi)∑
i∈D P (B|xi)

(3)

where Dk =
∑

i:xi→Ck
xi is the subset consisting of instances which belong to

class k. The probability of a branch B given x can be regarded as the proportion
of the data x covered by branch B and it is evaluated by:



412 Z. Qin and J. Lawry

P (B|x) =
d∏

j=1

mxj (Fj) (4)

where mxj (Fj) for j = 1, · · · , d are mass assignments of the single data ele-
ment xj . Now consider classifying an unlabelled instance in the form of y =
〈y1, · · · , yn〉 from the test set. First we apply linguistic translation to y based
on the fuzzy covering of the training data D. According to the Jeffrey’s rule the
probabilities of class Ck given a LDT with S branches are evaluated as follows:

P (Ck|y) =
S∑

s=1

P (Ck|Bs)P (Bs|y) (5)

where P (Ck|Bs) and P (Bs|x) are evaluated based on equations 3 and 4.

Algorithm 2. Decision Tree Learning
input : LD: Linguistic dataset obtained from Algorithm 1.
output: LDT : Linguistic Decision Tree

Set a maximum depth Mdep and a threshold probability T .1

for l ← 0 to Mdep do2

B ← ∅ when l = 03

The set of branches of LDT at depth l is Bl = {B1, · · · , B|Bl|}4

for v ← 1 to |B| do5

foreach Bv do :6

for t ← 1 to |C| do7

foreach t do Calculating conditional probabilities:8

P (Ct|Bv) =
∑

i∈Dt
P (Bv|xi)/

∑
i∈D P (Bv|xi)

if P (Ct|Bv) ≥ T then9

break (step out the loop)10

if ∃ xj: xj is free attribute then11

foreach xj do : Calculate: IG(Bv, xj) = E(Bv) − EE(Bv, xj)12

IGmax(Bv) = maxxj [IG(Bv, xj)]13

Expanding Bv with xmax where xmax is the free attribute we can14

obtain the maximum IG value IGmax.
B′

v ←
⋃

Fj∈Fj
{Bv ∪ Fj}.15

else16

exit;17

Bl+1 ←
⋃s

r=1 B′
r.18

LDT = B19

2.4 LID3 Algorithm

Linguistic ID3 (LID3) is the learning algorithm proposed for building the lin-
guistic decision tree. Similar to the ID3 algorithm [5], search is guided by an
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information based heuristic, but the information measurements of a LDT are
modified in accordance with label semantics. The measure of information de-
fined for a branch B and can be viewed as an extension of the entropy measure
used in ID3. The branch entropy of a branch B is given by

E(B) = −
|C|∑

k=1

P (Ck|B) log2(P (Ck|B)) (6)

where |C| is the number of classes. Now, given a particular branch B suppose we
want to expand it with the attribute xj . The evaluation of this attribute will be
given based on the expected entropy defined as follows:

EE(B, xj) = E[E(xj |B)] =
∑

Fj∈Fj

E(B ∪ Fj)P (Fj |B) (7)

where B∪Fj represents the new branch obtained by appending the focal element
Fj to the end of branch B. The probability of Fj given B can be calculated as
follows:

P (Fj |B) =
∑

i∈D(B ∪ Fj |xi)∑
i∈D(B|xi)

(8)

We can now define the Information Gain (IG) obtained by expanding branch B
with attribute xj as:

IG(B, xj) = E(B) − EE(B, xj) (9)

The pseudo-code of the LID3 algorithm are shown in Algorithm 2.

Table 1. Descriptions of the datasets for experiments selected from the UCI machine
learning repository [1]

Dataset Classes Size Attributes Dataset Classes Size Attributes
Balance 3 625 4 Breast-cancer 2 286 9
Ecoli 8 336 8 Glass 6 214 9
Heart-C 2 303 13 Heart-S 2 270 13
Heptitis 2 155 19 Iris 3 150 4
Liver 2 345 6 Pima 2 768 8
Wcancer 2 699 9 Wine 3 178 14

3 Experiments

In this section, we investigate the influences of overlapping degrees on the ac-
curacy by some empirical studies. First of all, we need to specify the parameter
settings for the LDT model. In the following experiments, we use 3 trapezoidal
fuzzy sets for discretization (i.e., Alg. 1 line 2: NF = 3). Probability threshold
T = 1 (Alg. 2 line 1) and we set Mdep = n in order to develop a complete LDT



414 Z. Qin and J. Lawry

0 0.1 0.2 0.3 0.4 0.5
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Overlap

Balance

A
cc

ur
ac

y

0 0.1 0.2 0.3 0.4 0.5
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Overlap

Breast Cancer

A
cc

ur
ac

y

0 0.1 0.2 0.3 0.4 0.5
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Overlap

Ecoli

A
cc

ur
ac

y

0 0.1 0.2 0.3 0.4 0.5
0.7

0.72

0.74

0.76

0.78

0.8

0.82

Overlap

Heart−Statlog

A
cc

ur
ac

y

0 0.1 0.2 0.3 0.4 0.5
0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Overlap

Liver

A
cc

ur
ac

y

0 0.1 0.2 0.3 0.4 0.5
0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

Overlap

Pima

A
cc

ur
ac

y

0 0.1 0.2 0.3 0.4 0.5
0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

Overlap

Wcancer

A
cc

ur
ac

y

0 0.1 0.2 0.3 0.4 0.5
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Overlap

Wine

A
cc

ur
ac

y

Fig. 2. Monotonically increased performance



Fuzziness and Performance: An Empirical Study with LDT 415

0 0.1 0.2 0.3 0.4 0.5
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

Overlap

Glass

A
cc

ur
ac

y

0 0.1 0.2 0.3 0.4 0.5
0.7

0.72

0.74

0.76

0.78

0.8

0.82

Overlap

Heart−C

A
cc

ur
ac

y

0 0.1 0.2 0.3 0.4 0.5
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Overlap

Heptitis

A
cc

ur
ac

y

0 0.1 0.2 0.3 0.4 0.5
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Overlap

Iris

A
cc

ur
ac

y

Fig. 3. More overlapping does not guarantee the better performance for these datasets

(the growth of LDT will be stopped if all attributes have been used, see Alg 2
line 11). These settings are justified in [4]. We tested 12 datasets taken from UCI
[1] machine learning repository. For each experiment, the dataset is partitioned
into two parts that the data belonging to the same class are evenly split. One
part of the data is for training and the other for test. We will randomly do the
split for 10 times and the average results with standard deviation will be calcu-
lated. This is referred to as 50-50 split experiments [4]. The experimental results
on the given data sets are shown in figures 2 and 3, respectively.

As we can see from these figures, the performance of 8 of the 12 datesets
are roughly monotonic increased with the increase of PT . It implies that more
fuzziness tends to increase the robustness of the LDT model and get better
performance. However, from the results in figure 3, we can tell that more over-
lapping does not guarantee the better performance. For some datasets, 30% of
overlapping maybe is enough. More overlapping would not be necessary and it
may give worse results sometime. From all the results, we can see that LDTs with
fuzzy labels generally outperform the ones with discrete labels (where PT = 0).
Therefore, in summary, for the case of LDT model, we can say that fuzziness
will bring greater performance. The increase is almost monotonically. But the
optimal overlapping degrees are depends on the dataset you tested.
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4 Conclusions

In this paper, we extended the previous work on linguistic decision trees to study
the influences on performance by using fuzzy labels with different degrees of
overlapping. We tested the LDT model on a series of UCI datasets and the results
show that the performance increased almost monotonically with the increase of
the overlapping between fuzzy labels. For this empirical study with the LDT
model, we can conclude that more fuzziness does imply better performance.
However, the optimal overlapping degrees are depends on datasets.
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Abstract. We analyze differences between BL–algebras and MV –
algebras. The study has application in mathematical fuzzy logic as the
Lindenbaum algebras of Lukasiewicz logic or Hájek’s BL–logics are MV –
algebras or BL–algebras, respectively. We focus on possible generaliza-
tions of Boolean elements of a general BL–algebra L; we prove that an
element x ∈ L is Boolean iff x ∨ x∗ = 1. L is called semi–Boolean if,
for all x ∈ L, x∗ is Boolean. We prove that an MV –algebra L is semi–
Boolean iff L is a Boolean algebra. A BL–algebra L is semi–Boolean iff
L is a SBL–algebra. A BL–algebra L is called hyper–Archimedean if,
for all x ∈ L, there is an n ≥ 1 such that xn is Boolean. We prove that
hyper–Archimedean BL–algebras are MV –algebras. We discuss briefly
the applications of our results in mathematical fuzzy logic.

Keywords: Mathematical fuzzy logic, BL–algrebra, MV –algebra.

1 Introduction and Preliminaries

The present study is part of a more extensive project to analyse differences
between BL–algberas and MV –algebras (cf. [5,7,8,9,10]). Such studies have
direct applications in mathematical fuzzy logic. Indeed, the Lindenbaum al-
gebras of Pavelka–Lukasiewicz logic or Hájek’s BL–logics are MV -algebras or
BL–algebras, respectively. MV-algebras are known to be Hájek’s BL–algebras
satisfying double negation law, for details, see e.g. [4,6].

In previous studies of the project it was proved e.g. (see [7]) that there are
no other locally finite BL–algebras than locally finite MV –algebras, in [9] we
demonstated that, for any BL–algebra L, a subset MV (L) = {x∗ | x ∈ L} is the
largest MV–subalgebra of L. Then we established several such properties Φ of a
BL–algebra L that L has a property Φ if, and only if the corresponding MV(L)
has the property Φ. Such propties Φ are for example local, semilocal, quasi–local,
perfect, quasi–perfect, bipartite and strongly bipartite, for some of these results,
see [2,3], too. Recently, in [5] we demonstrated that states on a BL–algebra L
are completely determined by states on the corresponding MV (L).

In this paper we focus our concentration on possible generalizations of boo-
lean elements of a general BL–algebra. To this end let us recall some basic facts
that we will use later. For a start, recall that simple examples of BL–algebras
are t–algebras 〈[0, 1], ∧, ∨, �t, →t, 0, 1〉, where ∧, ∨ are min, max, respectively,
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on the real unit interval [0, 1] and �t is a continuous t–norm, whereas →t is
the corresponding residuum, i.e. x �t y ≤ z iff x ≤ y →t z. The most known
t–algebras are the following

Gödel algebra: x �t y = min{x, y}, x →t y =
{

1 if x ≤ y
y otherwise

Product algebra: x �t y = xy, x →t y =
{

1 if x ≤ y
y/x otherwise

Lukasiewicz algebra: x �t y = max{0, x + y − 1}, x →t y = min{1, 1 − x + y}.

These three examples are fundamental as any BL–algebra on the real unit
interval [0, 1] can be constructed from them. Moreover, any BL–algebra is, up
to isomorphism, a subdirect product of linear BL–algebras, where linear means
that the order relation ≤ is a total order (for details, see [4]).

In general, a BL–algebra is an algebra L = 〈L, ∧, ∨, �, →,0,1〉 with four
binary operations ∧, ∨, �, → and two different constants 0, 1 such that, for each
x, y, z ∈ L, by setting x ≤ y iff x ∧ y = x hold:

〈L, ∧, ∨,0,1〉 is a distributive lattice with universal bounds 0 and 1, (1)
� is an associative, commutative and isotone operation and x � 1 = x, (2)

x � y ≤ z iff x ≤ y → z, (3)
x ∧ y = x � (x → y), (4)

(x → y) ∨ (y → x) = 1. (5)

In the following text we use the following well–known properties (cf. [6,10]),
where x, y, z are elements of a BL–algebra.

x → (y → z) = (x � y) → z = y → (x → z), (6)

in particular, for z = 0 and by setting x∗ = x → 0 we get

x → y∗ = (x � y)∗ = y → x∗, (7)
x � x∗ = 0,0∗ = 1,1∗ = 0, (8)

if x ≤ y then y∗ ≤ x∗, (9)
x ≤ x∗∗, (10)

x∗ = x∗∗∗, (11)
(x ∨ y)∗ = x∗ ∧ y∗ (12)

x ∨ y = [(x → y) → y] ∧ [(y → x) → x], (13)

x �
∨

i∈Γ

yi =
∨

i∈Γ

(x � yi) and
∨

i∈Γ

yi → x =
∧

i∈Γ

(yi → x), (14)

where Γ is a finite set of indices. Moreover, for all n ≥ 1, set xn =
n times︷ ︸︸ ︷

x � · · · � x.
Then

xn ≤ x, (15)
(x ∨ x∗)n = xn ∨ (x∗)n. (16)
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A BL–algebra L is called local if, for each element x ∈ L, xn = 0 for some n ≥ 1
or (x∗)m = 0 for some m ≥ 1; if such integers exist, then the smallest n and m
are denoted by ord(x) = n and ord(x∗) = m. The case x ∈ L, xn > 0 for all
n ≥ 1 is denoted by ord(x) = ∞.

An MV–algebra is a BL–algebra L such that x = x∗∗ for all x ∈ L. The best
known example of MV –algebras is Lukasiewicz algebra. In an MV –algebra L, a
binary operation ⊕ is defined by x⊕y = (x∗�y∗)∗. Moreover, in an MV –algebra
L, for all x, y ∈ L, x � y ≤ x ∧ y ≤ x, y ≤ x ∨ y ≤ x ⊕ y and

x∗ → y = x ⊕ y, (17)
(x ∧ y)∗ = x∗ ∨ y∗, (18)

(x ∧ y) ⊕ z = (x ⊕ z) ∧ (y ⊕ z). (19)

In [9], we proved that, given a BL–algebra L, a subset MV (L) = {x∗ | x ∈ L}
of L generates an MV –algebra by stipulating x∗ ⊕ y∗ = x∗∗ → y∗, which is
equivalent to the following

x∗ ⊕ y∗ = (x∗∗ � y)∗ = (y � x∗∗)∗ = y → x∗∗∗ = y → x∗ = (x � y)∗. (20)

Moreover, MV (L) is the largest MV –subalgebra of L. In MV (L), the operations
�, → and ∗ coincide with those of L and the order relation ≤ in MV (L) is that
of L.

A BL–algebra is called locally finite if its arbitrary non unit element is of finite
order, i.e. if ord(x) < ∞ for all x < 1. Locally finite BL–algebras, however, are
MV –algebras and isomorphic to subalgebras of Lukasiewicz algebra.

A SBL–algebra is a BL–algebra L verifying, for all x, y ∈ L, an equation
(x�y)∗ = x∗ ∨y∗. Gödel algebra and Product algebra are SBL–algebras. Gödel
algebra is also an example of a G–algebra, a BL–algebra with idempotent product
�. All G–algebras a known to be SBL–algebras. In [9] we characterized SBL–
algebras by showing that a BL–algebra L is a SBL–algebra iff MV (L) is a
Boolean algebra.

2 Hyper–Archimedean BL–Algebras

Let L be an MV –algebra. For readers comfort, let us recall [1] that a subset

B(L) = {x ∈ L | x � x = x}

is the largest subalgbera of L which is at the same time a Boolean algebra. Since
0,1 ∈ B(L), B(L) is not empty; in B(L), � = ∧ and ⊕ = ∨. Now consider a
Boolean element x ∈ L, that is

x � x = x. (21)

Then x ∧ x∗ = x � (x → x∗) = x � (x → (x → 0) = x � (x � x)∗ = x � x∗ = 0.
Thus,

x ∧ x∗ = 0. (22)
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Moreover, if (22) holds then 1 = (x ∧ x∗)∗ = x∗ ∨ x∗∗, i.e.,

x ∨ x∗ = 1. (23)

Conversely, if (23) holds then 0 = (x ∨ x∗)∗ = x∗ ∧ x∗∗. Hence (22) and (23) are
equivalent conditions. Now, (23) holds iff 1 = (x∗ → x) → x iff x∗ → x ≤ x iff
x ⊕ x ≤ x iff

x ⊕ x = x. (24)

Moreover, if (23) holds then x = x � 1 = x � (x ∨ x∗) = (x � x) ∨ (x � x∗) =
(x�x)∨0 = x�x, so (23) implies (21). We have seen a proof for the well–known
fact that equations (21) – (24) are all equivalent conditions in MV –algebras.

Next consider a general BL–algebra L. Then the conditions (21) – (24) are
no longer equivalent. For example, (24) is possible only in an MV –algebra and
(21) holds in all G–algebras but does not, in general, imply (23). Moreover, in
G–algebras (23) imply (22) but not vice versa. Since MV (L) is an MV –algebra
and B(MV (L)) ⊆ MV (L) ⊆ L, it is evident that the Boolean elements of L are
precisely those elements x ∈ L such that (21) and

x = x∗∗ (25)

hold. Trivially, if x is a Boolean element of L, then x∗ and xn, n ≥ 1 are Boolean,
too. Moreover, B(L) = B(MV (L)). Thus, to analyze Boolean elements of L it
is enough to focus on the idempotent elements of the corresponding MV (L).

Now we give another characterization for Boolean elements of a general BL–
algebra. The result is known while the proof is new and relies on properties of
MV (L).

Proposition 1. An element x of a BL-algebra L is Boolean iff (23) holds.

Proof. If x is Boolean then, by (25), x ∈ MV (L) and in MV (L) the conditions
(21) and (23) are equivalent. Conversely, assume 1 = x ∨ x∗. Then

1 = (x → x∗) → x∗ (26)

and

1 = (x∗ → x) → x (27)

By (26), (x � x)∗ = x → x∗ ≤ x∗. Since x � x ≤ x we have x∗ ≤ (x � x)∗.
Therefore x∗ = (x � x)∗, and so

x∗ = x∗ ⊕ x∗, (28)

i.e. x∗ is a Boolean element of MV (L). Moreover, by (27), x∗ → x ≤ x and as
x � x∗ = 0 ≤ x, we have x ≤ x∗ → x. Therefore

x∗ → x = x. (29)
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Now, by (29), x∗∗ ≤ x = x∗ → x iff x∗∗�x∗ ≤ x which holds true as x∗∗�x∗ = 0.
We conclude that (25) holds. Then we reason x � x = x∗∗ � x∗∗ = (x∗ ⊕ x∗)∗ =
x∗∗ = x, thus (21), too, holds for x. The proof is complete.

If x, y ∈ L are Boolean elements of L, then it is easy to see that x � y is
Boolean, too, while the converse does not, in general, hold. We have, however,
the following result.

Proposition 2. If x� y is a Boolean element of a BL-algebra L and x∨ y = 1,
then x and y are Boolean, too.

Proof. Since x∨ y = 1, we have (x → y) → y = 1, thus (x → y) ≤ y. By the fact
that y ≤ x → y we conclude

y = x → y and x = y → x, (30)

where the second equation in proved in a symmetric manner. Moreover,

x ∧ y = x � (x → y) = x � y. (31)

Since x � y is Boolean, x � y = (x � y)∗∗ = (x∗ ⊕ y∗)∗ = x∗∗ � y∗∗. Thus,
x∗∗ ≤ y∗∗ → x � y ≤ y∗∗ → x ≤ y → x = x. Similarly y∗∗ ≤ y. We conclude

y∗∗ = y, x∗∗ = x. (32)

Therefore x, y ∈ MV (L) and 1 = x ∨ y ≤ x ⊕ y, hence

x ⊕ y = 1. (33)

Moreover, x � y ∈ MV (L) and

(x � y)∗ → x = (x � y) ⊕ x = (x ∧ y) ⊕ x = (x ⊕ x) ∧ (y ⊕ x) = x ⊕ x,

that is

(x � y)∗ → x = x ⊕ x. (34)

Since x � y is Boolean, (x � y) ∨ (x � y)∗ = 1. Then

x = 1 → x

= [(x � y) ∨ (x � y)∗] → x

= [(x � y) → x] ∧ [(x � y)∗ → x]
= 1 ∧ (x ⊕ x)
= x ⊕ x.

In a similar manner we show that y ⊕ y = y, too. We conclude that x, y are
Boolean. The proof is complete.

Our aim is to study various possible generalizations of Boolean elements of a
general BL–algebra. Thus, first we set the following
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Definition 1. A BL–algebra L is called semi–Boolean if, for all x ∈ L, x∗ is
Boolean.

Then L is semi–Boolean iff for all x ∈ L, x∗ ∨ x∗∗ = 1 iff MV (L) is a Boolean
algebra. The following result is obvious.

Proposition 3. An MV–algebra L is semi–Boolean iff L is a Boolean algebra.
A BL–algebra L is semi–Boolean iff L is a SBL–algebra.

Thus, semi–Boolean BL–algebras are well–known structures. Cavaccini and Let-
tieri [1] call an MV –algebra L hyper–Archimedean if

∀x ∈ L : ∃m ≥ 1 such that x ∧ (mx)∗ = 0, or equivalently, x ∧ (x∗)m = 0.(35)

Notice that, in MV –algebras, (35) holds iff x∗∗ ∧ [(x∗)m]∗∗ = 0, which in turn
holds iff x∗ ∨ [(x∗)m]∗ = 1 and, since the complement operation ∗ is involutive,
hyper–Archimedean MV –algebras are such that

∀x ∈ L : ∃m ≥ 1 such that x ∨ (xm)∗ = 1. (36)

We generalize the concept of Cavaccini and Lettieri by setting the following

Definition 2. A BL–algebra L is called hyper–Archimedean if (36) holds.

Proposition 4. A BL–algebra L is hyper–Archimedean iff for all x ∈ L, there
is an n ≥ 1 such that xn is Boolean.

Proof. Assume xn is Boolean. Then 1 = xn ∨(xn)∗ ≤ x∨(xn)∗ ≤ 1 for some n ≥
1. Thus, L is hyper–Archimedean. Conversely, assume x ∈ L and, for some n ≥
1, x ∨ (xn)∗ = 1. Then

1 = 1 � 1 = [x ∨ (xn)∗] � [x ∨ (xn)∗]
= {x � [x ∨ (xn)∗]} ∨ {(xn)∗ � [x ∨ (xn)∗]}
= x2 ∨ [x � (xn)∗] ∨ [(xn)∗ � x] ∨ [(xn)∗ � (xn)∗]
≤ x2 ∨ (xn)∗ ≤ 1.

Hence x2 ∨ (xn)∗ = 1. In a similar manner we realize that 1 = 1 � 1 = [x2 ∨
(xn)∗] � [x ∨ (xn)∗] ≤ x3 ∨ (xn)∗ = 1 and, more generally, xn ∨ (xn)∗ = 1. Thus,
xn is Boolean. The proof is complete.

Proposition 5. A BL–algebra L is hyper–Archimedean and local iff L is a lo-
cally finite MV-algebra.

Proof. Locally finite BL–algebras are trivially local. They are hyper–Archi-
medean, too, as ord(x) < ∞ for all x < 1, i.e. xn = 0 ∈ B(L). Conversely,
let L be a hyper–Archimedean and local BL–algebra. Assume x ∈ L is such on
element that ord(x) = ∞. Since L is hyper–Archimedean, there is m ≥ 1 with
xm ∨ (xm)∗ = 1, where (xm)∗ is of finite order (as ord(xm) = ∞ and L is local),
say [(xm)∗]p = 0 for some finite p ≥ 1. We realize that 1 = 1p = [xm ∨(xm)∗]p =
(xm)p ∨ [(xm)∗]p = xm+p ∨ 0 = xm+p ≤ x. Thus, x = 1 and so L is a locally
finite MV –algebra. The proof is complete.
We are now ready to prove the main results of this study.
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Theorem 1. Hyper–Archimedean BL–algebras are MV-algebras.

Proof. Since any BL–algebra is a isomorphic to a subalgebra of a direct product
Πi∈Γ Li, where each Li, i ∈ Γ , is linear and, therefore, local BL–algebra, it is
evident that L is hyper–Archimedean iff each Li, i ∈ Γ , is hyper–Archimedean.
By 5, each Li, i ∈ Γ , is a locally finite MV –algebra, i.e. for each xi ∈ Li, i ∈
Γ, x∗∗

i = xi. Therefore x∗∗ = x for any x ∈ L, and the proof is complete.

Corollary 1. Hyper–Archimedean BL–algebras are, up ito isomorphism, subdi-
rect products of Lukasiewicz algebras.

3 Conclusion

We have studied Boolean elements of a general BL–algebra L and given a new
proof to the fact that x ∈ L is Boolean iff x ∨ x∗ = 1. To show its usefulness,
we utilized in this and many other prooves the MV (L) construction. Semi–
Boolean BL–algebras are simple generalizations of Boolean algebras; such alge-
bras are, however, precisely SBL–algebras. We introduced hyper–Archimedean
BL–algebras and proved that L is hyper–Achimedean iff for all x ∈ L, xn is
Boolean for some finite n ≥ 1. Alter all, it turns out that hyper–Archimedean
BL–algebras are MV –algebras and isomorphic to subalgebras of direct products
of Lukasiewicz algebras.

Our results have direct applications in mathematical fuzzy logic whose Lin-
denbaum algebras are BL–algebras; for example if we wish that any sentence,
after a finite repetition, should behave as a Boolean sentence, then we have to
approve that all sentences in our logic satisfy the double negation law, too.
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1 Introduction

The classical Hahn-Banach Theorem can be stated as in [1] or [2]:

Theorem 1 (Real case). Let M be a subspace of the real vector space E and
p a sublinear functional on E, i.e. p(x+ y) ≤ p(x)+ p(y) and p(αx) = αp(x) for
all x, y ∈ E and α ≥ 0, and f a real-valued linear functional on M such that for
all x ∈ M , f(x) ≤ p(x). Then there exists a linear functional g on E, extending
f (so f(x) = g(x) on M) such that g(x) ≤ p(x) for all x ∈ E.

Theorem 2 (Complex case). Let M be a subspace of the complex vector space
E and p a functional on E such that p(x) ≥ 0, p(x + y) ≤ p(x) + p(y), p(αx) =
|α|p(x) for all x, y ∈ E and α ∈ C, and f is a linear functional on M such
that for all x ∈ M , |f(x)| ≤ p(x). Then there exists a linear functional g on E,
extending f such that |g(x)| ≤ p(x) for all x ∈ E.

We’ll use these results to prove counterparts for the fuzzy case. The Axiom of
Choice is required for the proof of these two theorems, and so is inherent in our
results as well.

The idea for this fuzzy version was mooted some eight years ago by J. Chad-
wick in one of our seminars at Rhodes University. The first author of this paper
discussed it afterwards at one of the Linz Seminars on Fuzzy Set Theory. In
view of the appearence of [8] it is perhaps appropriate to publish this version
and compare it with the result in that paper.

We also had another look at Warren’s relationship between neighbourhoods
and open sets [10], and in this connection we attached an appendix.

2 Preliminaries

We require the following preliminaries. Throughout this section E will denote
a vector space over K where K is R or C and (L, ≤, 0L, 1L) a complete lattice
with binary meet being order preserving.
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A L-subset μ on E (i.e. μ ∈ LE) is convex if μ(θx + (1 − θ)y) ≥ μ(x) ∧ μ(y)
whenever x, y ∈ E and 0 ≤ θ ≤ 1. μ is called balanced (circled) if μ(θx) ≥ μ(x)
whenever x ∈ E, θ ∈ K, |θ| ≤ 1.

Note 1. (i) μ balanced ⇒ μ(−x) = μ(x) for all x.
(ii) μ balanced ⇒ μ(0) = supx∈E μ(x).

For μ ∈ LE, t ∈ K and x ∈ E tμ(x) = μ(x
t ) for t �= 0 If t = 0:

tμ(x) =
{

0 if x �= 0
supμ if x = 0.

Note 2. (i) The definition 2 comes from defining tμ as the Zadeh image oper-
ator of g : E −→ E where g is given by g(x) = tx:

g→[μ](y) =
{∨

{μ(x) : g(x) = y}
0 if g(x) �= y

=
{∨

{μ(x) : tx = y}
0 if tx �= y

=

⎧
⎨

⎩

μ(y
t ) for t �= 0

0 for t = 0 and y �= 0∨
μ(x) for t = 0 and y = 0.

(ii) μ convex ⇒ tμ convex for t �= 0:- tμ(θx + (1 − θ)y) = μ(1
t θx + 1

t (1 − θ)y) ≥
μ(x

t ) ∧ μ(y
t ) = tμ(x) ∧ tμ(y).

(iii) It is easy to see that s(tμ) = t(sμ) = (st)μ for all s, t ∈ K and that μ1 ≤ μ2

⇒ tμ1 ≤ tμ2 for all t ∈ K.
(iv) If μ is balanced, t1

t2
μ(x) = μ( t2

t1
x) ≥ μ(x) if | t2

t1
| ≤ 1. So t1μ ≥ t2μ if

0 < |t2| ≤ |t1|.
(v) μ balanced ⇔ tμ ≤ μ whenever |t| ≤ 1.

μ ∈ LE is absorbing if supt>0 tμ = 1E (i.e. supt>0 tμ(x) = 1L) i.e. Given any
x ∈ E and α ∈ L\{1L}, then there exists a t > 0 such that (tμ)(x) > α, i.e.
μ(x

t ) > α.

Note 3. (i) μ balanced and absorbing ⇒ supt>0 tμ(x) = μ(0) = 1L

(ii) μ absorbing/balanced/convex ⇒ μα and μα absorbing/balanced/convex
where μα = {x ∈ E : μ(x) ≥ α}, μα = {x ∈ E : μ(x) > α}, α ∈ L,
the so-called weak and strong α-cuts of μ respectively.

If (E, ‖ . ‖) is a normed space and B is the unit ball (open/closed) then B
is convex, balanced and absorbing in the classical sense and the XB ∈ LE (the
characteristic function of B, i.e. XB(x) = 1L on B and 0L off B) has the same
properties (as defined above).

Furthermore, if x ∈ E, x �= 0 then there exists t > 0 such that x �∈ tB (i.e.
XB(x

t ) = 0). This condition distinguishes a norm from a semi-norm.
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We therefore define:
[[6]] A convex, balanced and absorbing ρ ∈ LE is called a L-seminorm on E.

If in addition inft>0 tρ(x) = 0L, for all x �= 0, ρ is called a L-norm. (E, ρ) is
called an L-normed (L-seminormed) space.

We can now define a L-topology on (E, ρ) by means of the following:
The basic neighbourhoods of 0 (the zero vector of E) are the L-subsets tρ

where t > 0. A L-subset σ is called a neighbourhood of 0 if there exists a t > 0
such that tρ ≤ σ.

The collection of all neighbourhoods of 0 is denoted by N (0).

Proposition 1. (a) σ(0) > 0L for all σ ∈ N (0)
(b) σ ∈ N (0) and σ ≤ μ ⇒ μ ∈ N (0)
(c) σ1, σ2 ∈ N (0) ⇒ σ1 ∧ σ2 ∈ N (0)
(d) tρ ∈ N (0) for each t > 0 (in fact for each t ∈ K, t �= 0)
(e) σ ∈ N (0) ⇒ σ is absorbing
(f) If σ ∈ N (0), then there exists a convex σ∗ ∈ N (0) such that σ∗ ≤ σ.

Proof. (a) σ(0) ≥ tρ(0) = ρ(0) = supx∈E ρ(x) > 0L.
(b) Obvious.
(c) We have t1, t2 > 0 such that t1ρ ≤ σ1 and t2ρ ≤ σ2. Thus t1ρ∧t2ρ ≤ σ1 ∧σ2.

If t2 ≤ t1, by Note 2 (iv), t2ρ ≤ σ1 ∧ σ2 and so σ1 ∧ σ2 ≤ N (0).
(d) Obvious. The remark in parentheses follows for t ∈ R\{0} since ρ being

balanced, ρ(−x) = ρ(x). If t ∈ C\{0} then by Note 2 (iv), rρ ≤ tρ for
0 < r ≤ |t|, and so tρ ∈ N (0).

(e) There exists a t1 > 0 such that t1ρ ≤ σ. So supt>0 tt1ρ ≤ supt>0 tσ, or
1L = sups>0 sρ ≤ supt>0 tσ. Thus sup tσ = 1L.

(f) We have tρ ≤ σ for a t > 0. ρ is convex, and hence tρ is convex by Note 2
(ii).

One can define neighbourhoods of an arbitrary point x ∈ E by translation:
Given x ∈ E and μ ∈ LE , then x+μ ∈ LE is defined as (x+μ)(y) = μ(y −x)

for all y ∈ E. (cf. X[a+x,b+x](y) = X[a,b](y − x)). The neighbourhoods of x are
defined as the sets of the form x + σ where σ ∈ N (0). The collection of all the
neighbourhoods of x is denoted by N (x).

Theorem 3. (cf. Appendix) The family N (x) has the following properties:

(i) μ ∈ N (x) ⇒ μ(x) > 0L

(ii) μ, ν ∈ N (x) ⇒ μ ∧ ν ∈ N (x)
(iii) μ = x + σ ∈ N (x) and μ ≤ x + ν ⇒ x + ν ∈ N (x)
(iv) If μ ∈ N (x), then there exists a ω ∈ N (x), ω ≤ μ such that if ω(y) > 0L,

then ω ∈ N (y).

Proof. (i) μ = x+σ where σ ∈ N (0). So μ(y) = (x+σ)(y) = σ(y −x) and thus
μ(x) = σ(0) > 0L by Proposition 1 (a).

(ii) μ(y) = (x + σ1)(y) = σ1(y − x) and ν(y) = σ2(y − x) with σ1, σ2 ∈ N (0).
Thus μ ∧ ν(y) = σ1(y − x) ∧ σ2(y − x) = σ3(y − x) where σ3 ∈ N (0) by
Proposition 1 (c) which is equal to (x + σ3)(y).
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(iii) x + σ ≤ x + ν ⇒ ν ∈ N (0) by Proposition 1 (b). Thus x + ν ∈ N (x).
(iv) μ = x+σ and there exists a t > 0 such that tρ ≤ σ. So x+ tρ ≤ μ. If ω(y) =

(x + tρ)(y) > 0L, then tρ(y − x) > 0L, or y + tρ(x) > 0L (ρ(−x) = ρ(x))
and is a neighbourhood of y.

(cf. Appendix) A linear map T : (E1, ρ1) −→ (E2, ρ2) between two L-(semi)
normed spaces is L-continuous on E iff μ ∈ N (Tx0) ⇒ T←[μ] = μ ◦ T ∈ N (x0),
for every x0 ∈ E1.

Theorem 4. A linear map T : (E1, ρ1) −→ (E2, ρ2) is L-continuous on E1 iff
μ ∈ N (0) in E2 ⇒ T←[μ] = μ ◦ T ∈ N (0) in E1.

Proof. Let μ ∈ N (Tx0) in E2. So μ = Tx0 + σ where σ ∈ N (0) in E2. Then
μ◦T (x) = (Tx0+σ)(Tx) = σ(Tx−Tx0) = σ◦T (x−x0) = ν(x−x0) = x0+ν(x)
where ν = σ ◦ T ∈ N (0) in E1 by the assumption. Thus μ ◦ T = T←[μ] is a
neighbourhood on x0 in E1.

3 The Real Case

Now let X be the characteristic function of [−1, 1] on R, i.e. on [−1, 1], X (r) = 1L.
Then X is a L-norm on R. This L-norm will be used on R in the sequel.

Notation

(1) E∗ will denote the set of all L-continuous linear functionals from (E, ρ) into
(R, X ) where E is a vector space over R.

(2) For σ ∈ N (0), put σ0 = supp σ. Since σ is absorbing (Proposition 1 (e), σ0

is absorbing, and if σ is convex (balanced) so is σ0 (Note 3 (ii)).

Proposition 2. Let f : E −→ R be linear. Then f ∈ E∗ iff there exists σ ∈
N (0) in E such that |f(x)| ≤ 1 for all x ∈ σ0.

Proof. ⇒: f ∈ E∗. Now X is a (basic) neighbourhood of 0 in R and so σ =
f←[X ] ∈ N (0) in E. If x ∈ σ0, σ(x) > 0L, i.e. f←[X ](x) = X (f(x)) > 0L,
so |f(x)| ≤ 1.

⇐: Assume that |f(x)| ≤ 1 for x ∈ σ0 where σ ∈ N (0). Then σ(x) ≤ X (f(x)) for
all x ∈ E. Let μ be a neighbourhood of 0 in (R, X ). Choose t1 > 0 such that
t1X ≤ μ and t2 > 0 such that t2ρ ≤ σ. Then for x ∈ E, t1t2ρ(x) ≤ t1σ(x) =
σ( x

t1
) ≤ X (f( x

t1
)) = X ( 1

t1
f(x)) = t1X (f(x)) ≤ μ(f(x)) = f←[μ](x). Hence

t1t2ρ ≤ f←[μ], so f←[μ] ∈ N (0). Thus f is L-continuous by Theorem 4.

Corollary 1. E∗ is a vector space.

Proof. Let f, g ∈ E∗. Choose σf , σg ∈ N (0) such that |f(x)| ≤ 1 on σ0
f , |g(x)| ≤

1 on σ0
g . Put σ = 1

2σf ∧ 1
2σg. So σ ∈ N (0) (Proposition 1). Now x ∈ σ0 ⇒

1
2σf (x) ∧ 1

2σg(x) > 0L ⇒ 1
2σf (x) > 0L and 1

2σg(x) > 0L ⇒ σf (2x) > 0L and
σg(2x) > 0L ⇒ |f(2x)| ≤ 1 and |g(2x)| ≤ 1 ⇒ |(f + g)(x)| ≤ 1. So by the
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preceeding Proposition, f + g ∈ E∗. Likewise we can show that f ∈ E∗, r real
⇒ rf ∈ E∗:

The case r = 0 is trivially true. So for r �= 0, put σ = 1
r σf . Then by Proposition

1 (d), σ ∈ N (0). Then x ∈ σ0 ⇒ 1
r σf (x) > 0L ⇒ σf (rx) > 0L ⇒ |f(rx)| ≤ 1 ⇒

|rf(x)| ≤ 1 ⇒ rf ∈ E∗.

If (E, ρ) is a L-(semi) normed space and M is a linear subspace of E, then
(M, ρ|M ) is a L-(semi) normed subspace of (E, ρ). The neighbourhoods of 0 in
(M, ρ|M ) are σ|M where σ is a neigbourhood of 0 in (E, ρ). Note that (σ|M )0 =
{m ∈ M : σ(m) > 0L} = M ∩ σ0. M∗ has the obvious meaning.

Theorem 5 (Hahn-Banach - Real case). Let (E, ρ) be a L-seminormed
space over R, M a linear subspace of E and f ∈ M∗. Then there exists a g ∈ E∗

such that g(m) = f(m) for m ∈ M .

Proof. Since f ∈ M∗, there exists a neighbourhood ζ on 0 in (M, ρ) such that
|f(m)| ≤ 1 for all m ∈ ζ0. Now there exists a neighbourhood μ of 0 in E
such that ζ = μ|M . By Proposition 1 (f) there exists a convex σ ∈ N (0) such
that σ ≤ μ. So |f(m)| ≤ 1 for all m ∈ (σ|M )0 = M ∩ σ0. We can assume
σ is balanced (or if necessary, replace σ by σ ∧ (−σ). −σ(x) = σ(−x) as per
Definition 2). The convexity and absorption properties are retained - the latter
because in a frame arbitrary suprema distribute over finite infima. The set σ0

is convex, balanced and absorbing (Note 3). Thus the Minkowski functional
(“gauge”) p(x) = inf{t > 0 : x ∈ tσ0} defines a sublinear functional on E as in
Theorem 1 (See e.g. [7] or [10]) Now f(m) ≤ p(m) for all m ∈ M , p(m) < 1 ⇒
m ∈ M ∩σ0 ⇒ |f(m)| ≤ 1. Now for any m ∈ M , θ > 0, p( m

p(m)+θ ) = p(m)
p(m)+θ < 1.

So |f( p(m)
p(m)+θ )| ≤ 1 or |f(m)| ≤ p(m)+θ. Since θ > 0 is arbitrary, |f(m)| ≤ p(m),

hence f(m) ≤ p(m). Apply the classical result Theorem 1 and we obtain a g
defined on E such that g(x) ≤ p(x) for all x ∈ E and g(m) = f(m) for all
m ∈ M . If x ∈ σ0 then p(x) ≤ 1, so g(x) ≤ 1. Also, since σ0 is balanced,
g(−x) = −g(x) ≤ 1. Thus |g(x)| ≤ 1 on σ0. It folows that g ∈ E∗.

4 The Complex Case

Consider now a vector space E over C with E∗ the set of all L-continuous linear
functionals from (E, ρ) into (C, X ) where X is the characteristic function of
B = {z ∈ C : |z| ≤ 1}, i.e.

X (z) =
{

1L on B
0L off B

This is a L-norm on C. Proposition 2 is also valid for this E∗ as is Corollary 1
(f ∈ E∗, k ∈ C ⇒ kf ∈ E∗ follows again from Proposition 1 (d)).

Theorem 5 then has a counterpart for this case. In the corresponding proof
we need σ balanced as well. If not, replace it first with σ∗ = σ ∧ (−σ). Then for
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θ real and |θ| ≤ 1, σ∗(θx) ≥ σ∗(x). Then put σ̃(θx) = σ∗(|θ|x) for θ complex.
Then σ̃(θx) ≥ σ∗(x) = σ̃(x) (for |θ| ≤ 1).

The convexity and absorption properties are carried over from σ to σ̃. Then
p(x) = inf{t > 0 : x ∈ tσ0} defines a sublinear functional on E (see [7] or [9]) of
the type as in Theorem 2 which can be applied to get:

Theorem 6 (Hahn-Banach - Complex case). Let (E, ρ) be a L-seminormed
space over C, M a linear subspace of E and f ∈ M∗. Then there exists a g ∈ E∗

such that g(m) = f(m) for m ∈ M .

5 Comparison with an Earlier Version

In [8] the following result was proved:

Theorem 7. Let E be a vector space over R, let ρ be L-seminorm on E and
M a linear subspace of E. If f is a linear functional on M such that ρ ≤ XBf

where XBf
is the characteristic function of Bf = {x ∈ M : |f(x)| ≤ 1}, then

there exists a linear functional g on E such that

(1) f(x) = g(x) for all x ∈ M
(2) ρ ≤ XBg where Bg = {x ∈ E : |g(x)| ≤ 1}.

Apart from the fact that Theorem 5 is valid for the general L-valued case and
7 not, a comparison between these two fuzzy Hahn-Banach theorems in the case
of L = I is in order.

The conditions in Theorem 5 and 7 are respectively:

A: f ∈ M∗, i.e. there exists a σ ∈ NE(0) such that for all x ∈ σ0|M , |f(x)| ≤ 1.

B: On M , ρ ≤ XBf
where Bf = {x ∈ M : |f(x)| ≤ 1}.

Now B ⇒ A:
The L-seminorm ρ is a neighbourhood on 0. Since ρ ≤ XBf

on M , for all
x ∈ σ0|M = ρ0|M , |f(x)| ≤ 1. So f ∈ M∗.

On the other hand A implies :
There exists t > 0 such that tρ ≤ σ and so on M we have tρ ≤ XBf

.

So Theorem 5 has as corollary:

Corollary 2. If (E, ρ) is a L-seminormed space and M a linear subspace of E
such that B holds then there exists a g ∈ E∗ such that for all x ∈ M , g(x) = f(x).

This is exactly the statement of Theorem 7 in view of the comments above.

6 Appendix

In order to clarify the relationships between neighbourhoods and open sets, we
supply the following. The work by Warren [10] is often quoted in this regard,
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but his requirement that a neighbourhood n(x) of a point x should contain an
open set g such that g(x) = n(x), seems to be superfluous (cf. also [3] where a
neighbourhood without this condition was called an s-neighbourhood). We dis-
pense here with Greek letters for L-subsets in order to emphasize the similarity
with the classical (crisp) case.

The Definition of a L-Topology Starting with Neighbourhoods
A space X is called a L-topological space if for every x ∈ X there exists a

non-empty family Nx of L-subsets of X called neighbourhoods of x satisfying the
following axioms:

(i) U ∈ Nx ⇒ U(x) > 0L

(ii) U, V ∈ Nx ⇒ U ∧ V ∈ Nx

(iii) U ∈ Nx, U ≤ V ⇒ V ∈ Nx

(iv) If U ∈ Nx then there exists a W ∈ Nx, W ≤ U such that if W (y) > 0L then
W ∈ Ny.

The family N = {Nx : x ∈ X} is called the neighbourhood system on X .
A non-zero L-subset A of a L-topological space X is open if A(x) > 0L and

there exists a V ∈ Nx such that V ≤ A. (Or we say A is open iff x is an interior
point of A for all A(x) > 0L ).

We also take 0X to be open (0X(x) = 0L for all x ∈ X). The collection of all
the open subsets of X is called the L-topology on X (generated by Nx).

Proposition 3. An open set A is a neighbourhood of x iff A(x) > 0L.

Proof. Follows from Axiom (iii) of neighbourhoods.

Theorem 8. If X is a L-topological space, then

(i) 1X and 0X are open (1X(x) = 1L for all x ∈ X).
(ii) If A and B are open then so is A ∧ B.

(iii) If Ai is open for each i ∈ I, then so is
∨

i Ai.

Proof. (ii) follows from Axiom (ii) if neighbourhoods.
(iii) follows from Axiom (iii) of neighbourhood.

Proposition 4. Every U ∈ Nx contains an open set A such that A(x) > 0L.

Proof. Follows from Axiom (iv) if neighbourhoods.

The Definition of a L-Topology Starting with Open Sets
A space X is called a L-topological space if there exists a non-empty family τ

of L-subsets of X (i.e. τ ⊂ LX) satisfying

(i) 1X and 0X are members of τ .
(ii) U, V ∈ τ ⇒ U ∧ V ∈ τ .
(iii) Ui ∈ τ , i ∈ I ⇒

∨
i Ui ∈ τ .

τ is called the L-topology on X and the members of τ are called the open sets.
A neighbourhood of a point x ∈ X is any L-subset Nx which contains an A ∈ τ

such that A(x) > 0L.
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Proposition 5. An open set A is a neighbourhood of x iff A(x) > 0L.

Theorem 9. If X is a L-topological space and x ∈ X, then

(i) U is a neighbourhood of x ⇒ U(x) > 0L.
(ii) U and V neighbourhoods of x ⇒ U ∧ V is a neighbourhood of x.

(iii) U a neighbourhood of x and U ≤ V ⇒ V is a neighbourhood of x.
(iv) If U is a neighbourhood of x, then there exists a set W ≤ U such that W

is a neighbourhood of x and which is a neighbourhood of y for every y such
that W (y) > 0L.

Proof. Follows from above.

The Continuity of Maps Between L-Topological Spaces

A map f : (X, τ1)−→(Y, τ2) between two L-topological spaces is L-continuous
iff for every A ∈ τ2, f←[A] ∈ τ1 where f←[A](x) = Af(x).

Theorem 10 (Characterization of L-continuity). For a map f : (X, τ1)−→
(Y, τ2) between two L-topological spaces. the following statements are equivalent:

(1) f is L-continuous on X (as per definition).
(2) B closed in (Y, τ2) ⇒ f←[B] closed in (X, τ1).
(3) f→[clXA] ≤ clY (f→[A]) for all A ∈ LX.
(4) For every x ∈ X and for every neighbourhood Nf(x) of f(x) in Y , f←[Nf(x)]

is a neighbourhood on x in X.
(5) For every x ∈ X and for every neighbourhood Nf(x) in Y , there exists a

neighbourhood Nx of x in X such that f→[Nx] ≤ Nf(x).

Proof
(1) ⇔ (2): Follows from f←[1Y − A](x) = (1Y − A)f(x) = 1X − f←[A]f(x).

(1) ⇒ (4): Nf(x) contains an A ∈ τ2 such that A(f(x)) > 0L. So f←[Nf(x)](x)
= Nf(x)f(x) ≥ Af(x) = f←[A](x). By (1), f←[A](x) ∈ τ1 and is
greater than 0L. So by definition f←[Nf(x)](x) is a neighbourhood
of x.

(4) ⇒ (5): Let Nx = f←[Nf(x)] of (4). Then f→[Nx] = f→[f←[Nf(x)]] ≤ Nf(x).

(5) ⇒ (4): We have f→[Nx] ≤ Nf(x). Then Nx ≤ f←[f→[Nx]] ≤ f←[Nf(x)]
and hence f←[Nf(x)] is a neighbourhood on x.

(4) ⇒ (1): Since A ∈ τ2 is a neighbourhood for each y ∈ Y for which A(y) >
0L, f←[A](x) = Af(x) is a neighbourhood for each x for which
A(f(x)) > 0L. Thus f←[A] ∈ τ1.
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(2) ⇒ (3): clY (f→[A]) is closed in Y and so by (2) f←[clY f→[A]] is closed in X.
Now A ≤ f←[f→[A]] ≤ f←[clY f→[A]]. So clXA ≤ f←[clY f→[A]]
and hence f→[clXA] ≤ clY f→[A].

(3) ⇒ (2): Let W be closed in Y . Then by (3) f→[clXf←[W ]]
≤ clY [f→[f←[W ]] ≤ clY W = W . Hence clXf←[W ] ≤ f←[W ]. there-
fore f←[W ] is closed.
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Abstract. From logic and algebra point of view, Computing with words
is discussed in this paper. By analyzing the semantically ordering relation
of linguistic variable Truth, orderings on linguistic hedges H and atomic
evaluating syntagm Tr = {true, false} are obtained, respectively. Let H
be finite chain, then Lukasiewicz product algebra of T = H ×Tr of Truth
is obtained, and term-set T (X) of Truth is embedded into an algebra Γ
of type Δ = {∨, ∧,′ , →L}. In some cases, Γ can be applied in linguistic
decision directly, also as truth domain of logic statements. Different with
other truth domain, here truth values are linguistic terms rather than
numerals (or symbolic).

1 Introduction

As it is well known, humans employ words in computing and reasoning, arriving
at conclusions expressed as words from premises expressed in a natural language
or having the form of mental perceptions. The methodology of computing with
words (CWW ) proposed by Zadeh may be viewed as an attempt to harness the
highly expressive power of natural languages by developing ways of CWW or
propositions drawn from a natural language[1], [2]. From the point of view of
fuzzy logic in broader sense (FLB), Novák, et al have proposed the evaluating
linguistic predications, the pairs “nominal syntagm-antonym”, and the theory of
linguistic quantifiers, and developed a theory of natural human reasoning [3]-[5].
In a special fuzzy theory of evaluating syntagms T EV , a truth value assigned
to a formula is in L, where L = [0, 1] with the usual Lukasiewicz operators of
conjunction ⊗, disjunction ⊕, implication → and negation ¬. In practical cases,
however, a linguistic truth value assigned to a formula (or decision), such as, true,
very false, completely true, little false, more or less true, etc., seems to comply
with the intuition. The other work about CWW can be found in [6]-[14].

2 Preliminaries

There are special expressions of natural language, which characterize sizes,
distances, etc. In general, they characterize a position on an ordered scale. These
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special expressions of natural language are called evaluating syntagms [3]-[5].
Among them, simple evaluating syntagms are expressions of the form

〈linguistic hedge〉〈atomic evaluating syntagm〉.

In which, atomic evaluating syntagm, such as small, big, usually forms pairs of
antonyms, i.e., the pairs

〈nominal adjective〉〈antonym〉.

There are a lot of pairs of antonyms, for example young-old, ugly-nice, stupid-
clever. When completed by the middle term, such as small-medium-big, etc.,
they form the so called basic linguistic trichotomy [4]. Here, we notice that
linguistic truth values, false and true, are also atomic evaluating syntagm. In fact,
pairfalse-true can be understood by 0, 1 ∈ R, respectively, i.e., We always regard

�
(false) (true)0 1

Fig. 1. false-true—-position on an ordered scale

that there exists ordering on atomic evaluating syntagm (or term-set T (X) of
linguistic variable X), the ordering is also call the semantically ordering relation
[11]-[13], i.e., true>false, very true>true>more or less true. In this paper, atomic
evaluating syntagm of Truthis denoted by poset

(Tr, >) = {{true, false}, >}. (1)

If there is no danger of misunderstanding, (Tr, >) is denoted by Tr simply.
Zadeh has always emphasized two most important characteristics of linguistic

variables [15]. The first is the context-independent meaning of linguistic hedges
and connectives, whereas the meaning of atomic evaluating syntagms is context-
dependent. The second is the universality of their structure. Most linguistic
variables possess the same basic structure in the sense that their respective lin-
guistic values have the same expressions except for atomic evaluating syntagms.
Linguistic hedges are decomposed into two classes [3]-[5], one is the linguistic
hedges with narrowing effect (such as, very, highly, more, etc). The other is the
linguistic hedges with widening effect (such as, more or less, roughly, little, etc).
The set of linguistic hedges is

H = {h−k, · · · , h−1, h0, h1, · · · , hk}. (2)

Where, {h1, · · · , hk} is the linguistic hedges with narrowing effect, {h−k, · · · ,
h−1} is the linguistic hedges with widening effect, {h0} is called central. Semantic
properties of linguistic hedges can be obtained as follows [11]-[13]:

1. Being similar to atomic evaluating syntagms, linguistic terms possesses an
intuitive meaning which can be expressed also by a semantically ordering
relation, e.g., very true>more or less true;
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2. linguistic hedges are modifiers or intensifiers and they have their degrees of
modification and hence we can compare two hedges, e.g., very>more or less;

3. linguistic hedges have the so-called semantic heredity, which stems from the
following observation: each linguistic hedge modifies merely a little the mean-
ing of linguistic terms. That is, changing the meaning of a term, it preserves
the original essential meaning of this term. Hence, ∀hi ∈ H , hitrue>hifalse.

About semantic heredity of linguistic hedges, “linguistic hedge preserves the orig-
inal essential meaning of this term” is only one case. Another case is that some
linguistic hedges completely change the original essential meaning of a term, i.e.,
some linguistic hedges express the meaning of antonyms of the term, e.g., lit-
tle true expresses the meaning of false with degree, little false expresses the
meaning of true with degree. From logic point of view, there are some linguistic
hedges (H−, for short) that are similar to logic operator Not, if Not true is
equal to false (or Not false is equal to true), then for h ∈ H−, htrue=hNot
false(or hfalse=hNot true) is similar to ¬¬a = a in logic system. Hence, for
h ∈ H−, h true>h false can not be always obtained, and ∃hi ∈ H\H− such
that hi true and h false (h ∈ H−) are incomparable, the situation can be ob-
served in Chinese especially , and coincides with intuition. In this paper, our
studies focus on the case of H .

3 The Algebra Structure of Term-Set T (X) of Truth

Let linguistic hedges with widening effect as H−, i.e.,

H− = {h−k, h−(k−1), · · · , h−1}. (3)

and narrowing effect as H+, i.e.,

H+ = {h1, h2, · · · , hk}. (4)

h0 such that h0true=true and h0false=false, denotes H = H− ∪ {h0} ∪ H+.

Definition 1. ∀hi, hj ∈ H (i, j ∈ {−k, · · · , k}),

hi ≥ hj ⇐⇒ hitrue ≥ hjtrue. (5)

Where, hitrue ≥ hjtrue is decided by the semantically ordering relation of hitrue
and hjtrue.

Example 1. [11] Let the set of linguistic hedges be H = {very, more, h0, ap-
proximately, possibly, more or less, little}. According to the semantically
ordering relation, very true > more true > h0true > more or less true >
little true, or more true > h0true > approximately true > little true, or
more true > h0true > possibly true > little true can be obtained. more or
less true, approximately true and possibly true are incomparable. Hence,
very > more > h0 > more or less > little, more > h0 > approximately
> little, more > h0 > possibly > little. more or less , approximately and
possibly are incomparable.
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Obviously, by using (5), (H, ≥) is a poset. (H, ≥) is still denoted by H if there is
no danger of misunderstanding. Let linguistic hedges O and I such that ∀h ∈ H ,
Otrue< htrue< Itrue.

Example 2. Continue Example 1, H = {very, more, h0, approximately, pos-
sibly, more or less, little} ∪ {O, I} is a complete lattice (see Fig.2)

�

�

� � �

�

�

�

�

������

������������

������

O

little

approximately possibly more or less

h0

more

I

very

Fig. 2. Lattice of H

Linguistic hedges H and atomic evaluating syntagms Tr = {true, false} are
foundation to construct term-set T of Truth.

Lemma 1. Let H be finite chain. T = H × Tr = {(h, c)|h ∈ H, c ∈ Tr} such
that ∀(h1, c1), (h2, c2) ∈ T , (h1, c1) ≤ (h2, c2) if and only if h1 ≤h h2 and c1 ≤c

c2, then (T, ≤) is a lattice. Where, ≤h and ≤c are ordering on H and Tr,
respectively.

Example 3. Let H = {I, very, more, h0, possibly, little, O} and Tr = {true,
false}, T = H × Tr (see Fig. 3)

In Example 3, we notice that the ordering of {(h, false)|h ∈ H} doesn’t coincide
with intuition. The problem will be modified by follows.

Lemma 2. [14] For chain T− = H × {false}, Let V : T− −→ T− be a bijective
mapping such that ∀(h1, false), (h2, false) ∈ T−, V ((h1,false)) ≤v V ((h2, false))
if and only if (h1, false) ≥ (h2, false) in T , then (V (T−), ≤v) is a chain, and is
called the dual of T−.

Theorem 1. ∀(h, c) ∈ (T, ≤), define

f : T −→ T,

f((h, c)) =
{

(h, c), if c = true,
V ((h, c)), if c = false. (6)
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(O, false)

(little,false)

(possibly, false)

(h0, false)

(more,false)

(very, false)

(I , false)

(O, true)

(little,true)

(possibly, true)

(h0, true)

(more,true)

(very, true)

(I , true)

Fig. 3. Lattice of T = H × Tr

and ∀(hj , ci), (hk, cs) ∈ f(T ),

(hj , ci) ∨f (hk, cs) = f(f−1((hj , ci)) ∨ f−1((hk, cs))), (7)
(hj , ci) ∧f (hk, cs) = f(f−1((hj , ci)) ∧ f−1((hk, cs))), (8)

then (f(T ), ∨f , ∧f ) is a lattice, denoted by (T ′, ≤f ), and (T ′, ≤f) is called lattice
of term-set T of Truth. Mapping V is decided by Lemma 2.

Example 4. Continue Example 3, according to Lemma 2 and Theorem 1, Fig. 3
can be modified by Fig. 4
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(I , false)

(very,false)

(more, false)

(h0, false)

(possibly,false)

(little, false)

(O, false)

(O, true)

(little,true)

(possibly, true)

(h0, true)

(more,true)

(very, true)

(I , true)

Fig. 4. Lattice of (T ′, ≤f )

4 The Algebra Structure of (T ′, ≤f)

In this Section, (T ′, ≤f) is embedded into an algebra of type Δ={∨, ∧,′ , →L}.

Lemma 3. [3] (Lukasiewicz algebra on finite chains) Let L={ai|i=1, 2, · · · , n}.
For any 1 ≤ j, k ≤ n, define

aj ∨ ak = amax{j,k}, aj ∧ ak = amin{j,k}, (9)
(aj)′ = an−j+1, aj →L ak = amin{n,n−j+k}, (10)

then (L, ∨, ∧,′ , →L, a1, an) is a Lukasiewicz algebra on finite chains.
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In this paper, H and Tr are finite chains, respectively. Based on (9) and (10),
the set of linguistic hedge H and Tr can be embedded into Lukasiewicz algebra
on finite chains, respectively, still denoted by H and Tr.

Theorem 2. ∀(hj , ci), (hk, cs) ∈ (T, ≤), define

(hj , ci)′ = (hn−j+1, c2−i+1), (hj , ci) ∨ (hk, cs) = (hmax{j,k}, cmax{i,s}),
(hj , ci) ∧ (hk, cs) = (hmin{j,k}, cmin{i,s}),

(hj , ci) →L (hk, cs) = (hmin{n,n−j+k}, cmin{2,2−i+s}),

then (T, ∨, ∧,′ , →L, (h1, false ), (hn, true)) is Lukasiewicz product algebra.

Theorem 3. ∀(hj , ci), (hk, cs) ∈ (T ′, ≤f), define

(hj , ci) ∨L (hk, cs) = f(f−1((hj , ci)) ∨ f−1((hk, cs))), (11)
(hj , ci) ∧L (hk, cs) = f(f−1((hj , ci)) ∧ f−1((hk, cs))), (12)

(hj , ci)′ = f((f−1((hj , ci)))′), (13)
(hj , ci) →L (hk, cs) = f(f−1((hj , ci)) →L f−1((hk, cs))), (14)

then Γ = (T ′, ∨, ∧,′ , →L, (hn, false), (hn, true)) is an algebra of type Δ =
{∨, ∧,′ , →L}. In which (hn, false) and (hn, true) are its the least and the greatest
elements, respectively. f is decided by (6).

Example 5. Continue Example 4, where I, v, m, h0, p, l, O, standing for I, very,
more, h0, possibly, little and O, t and f standing for true, false, we can obtain
→L of Γ (only (h,true) →L (h,false) and (h,true) →L (h,false), see Table 1

Table 1. →L of Γ

→L (O, f) (l, f) (p, f) (h0, f) (m,f) (v, f) (I, f)

(O, t) (O, f) (O, f) (O, f) (O, f) (O, f) (O, f) (O, f)
(l, t) (l, f) (O, f) (O, f) (O, f) (O, f) (O, f) (O, f)
(p, t) (p, f) (l, f) (O, f) (O, f) (O, f) (O, f) (O, f)
(h0, t) (h0, f) (p, f) (l, f) (O, f) (O, f) (O, f) (O, f)
(m, t) (m,f) (h0, f) (p, f) (l, f) (O, f) (O, f) (O, f)
(v, t) (v, f) (m, f) (h0, f) (p, f) (l, f) (O, f) (O, f)
(I, t) (I, f) (v, f) (m, f) (h0, f) (p, f) (l, f) (O, f)

5 Reasoning by Directly Handling Linguistic Values of
Truth

Normally, a basic element of human knowledge consists of two components: a
vague sentence and a truth (belief) degree which is also expressed in linguistic
terms. An elementary vague sentences can be expressed by p(x; u), where x is
a variable, u is a vague concept, and p(.; .) is a linguistic analog of classical
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predicate. An assertion means a pair A = (p(x; u), (h, c)), where p(x; u) is a
vague sentence and (h, c) is a linguistic truth value. A knowledge base means a
finite set K of assertions. From the given knowledge base, new assertions can be
deduced by using inference rule. Let (h, c) is a linguistic value of truth, linguistic
hedges H is finite chain, according to the natural semantic of linguistic sentence,
the rule of moving hedges h can be obtained [12]

RT1 :
(p(x; hu), c)

(p(x; u), (h, c))
, RT1′ :

(p(x; u), (h, c))
(p(x; hu), c)

. (15)

Based on rule (15), form (is(Mary; veryattracive), true), we deduce (is (Mary;
attracive), (very, true)), this coincide with our intuition. From propositional
calculus point of view, the rules of moving hedges h for ∧, ∨ and → can be
obtained

R1 :
(p(x; h1u), c1) and (q(y; h2v), c2)
(p(x; u) ∧ q(y, v), (h1, c1) ∧ (h2, c2))

, (16)

R2 :
(p(x; h1u), c1) or (q(y; h2v), c2)
(p(x; u) ∨ q(y, v), (h1, c1) ∨ (h2, c2))

, (17)

R3 :
(p(x; h1u), c1) → (q(y; h2v), c2)

(p(x; u) → q(y, v), (h1, c1) → (h2, c2)))
, (18)

R4 :
(p(x, u) → q(y, v), (h1, c1)), (p(x, u), (h2, c2))

(q(y, v), (h1, c1) ⊗ (h2, c2))
, (19)

R5 :
(p(x, u), (h1, c1)) → (q(y, v), (h2, c2)), (p(x, u), (h3, c3))

(q(y, v), (h4, c4))
. (20)

Where, operator “⊗” is the lukasiewicz conjunction, i.e., ∀hi, hj ∈ H , hi ⊗hj =
h1∨(i+j−n). In (20), (h4, c4) = ((h1, c1) → (h2, c2))⊗(h3, c3), and (20)is extension
of (19). Here, ∀(h1, c1), (h2, c2) ∈ T = H × Tr,

(h1, c1) ⊗ (h2, c2) = (h1 ⊗ h2, c1 ⊗ c2), (21)

and ∀(h1, c1), (h2, c2) ∈ Γ ,

(h1, c1) ⊗ (h2, c2) = f(f−1((h1, c1)) ⊗ f−((h2, c2))). (22)

Example 6. Suppose the following linguistic sentences:

i) If a student studies very hard is true and his university is high-ranking is
more true , then he will be a good employee is true .

ii) The university where Robert studies is high-ranking is little false.
iii) Robert studies hard is possibly true.

The question: how about will Robert be a good employee?
By formalizing, i)- iii) can be rewritten by follows:

iv) (studies(x; very hard), true) ∧ (is(Univ(x); high-ranking), (more, true))
→(employee(x; good), (h0, true))).
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v) (is(Univ(Robert); high-ranking), (little, false)).
vi) (studyies(Robert; hard), (possibly, true)).

Based on knowledge base iv)- vi) and inference rules (15)-(20), we build deduc-
tion as follows:

1. ((studying(x; hard), (very, true))∧ (is(Univ(x); high-ranking), (more, true)))
→ (employee(x; good), (h0, true)), (by iv) and (15))

2. (studying(x; hard) ∧ is(Univ(x); high-ranking), (very, true) ∧ (more, true))
→ (employee(x; good), (h0, true)), (by 1 and (16))

3. ((studying(x; hard) ∧ is(Univ(x); high-ranking))→ employee(x; good), ((very,
true) ∧ (more, true)) → (h0, true)), (by 2 and (18))

4. is(Univ(Robert); high-ranking), (little, false)), (by v))
5. (studying(Robert; hard), (possibly, true)) (by vi))
6. (studying(Robert; hard) ∧ is(Univ(Robert); high-ranking), (possibly, true) ∧

(little, false)), (by 4, 5 and (16))
7. ((studying(Robert; hard) ∧ is(Univ(Robert); high-ranking))→ employee

(Robert; good), ((very, true) ∧ (more, true)) → (h0, true)), ( Robert standing
for x of 3 )

8. (employee(Robert; good), ((very, true) ∧ (more, true)) → (h0, true)) ⊗ ((pos-
sibly, true) ∧ (little, false))). (by 6, 7 and (19))

According to Example 4, we obtain

(very, true) ∧ (more, true) = (more, true), (23)
((very, true) ∧ (more, true)) → (h0, true)

= (more, true) → (h0, true) = (very, true), (24)
(possibly, true) ∧ (little, false) = (more, false), (25)

(very, true) ⊗ (more, false) = (very, false). (26)

Hence, the conclusion is (employee(Robert; good), (very, false)), i.e., Robert will
be a good employee is very false.

6 Conclusion

In this paper, by analyzing the semantically ordering relation of Truth, orderings
on linguistic hedges H and atomic evaluating syntagm Tr = {true, false} are
obtained, respectively. Assuming linguistic hedges H is finite chain, Lukasiewicz
product algebra of T = H ×Tr of Truth is obtained, and term-set T (X) of Truth
is embedded into an algebra Γ of type Δ = {∨, ∧,′ , →L}. By using Lukasiewicz
conjunction “ ⊗ ”, Γ can be used to obtain linguistic decision truth.
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Abstract. Let G be any subgroup of the group of Möbius transfor-
mations and F a set of stabilizers and their intersections. Taking a
fuzzy subgroup of G given by means of stabilizers of G as the map-
ping A : G −→ F , we examine the behaviour of the meet operation ∧
in F .

Keywords: Fixed points and multipliers of Möbius transformations,
conjugation, stabilizers, fuzzy subgroups, meet operation.

1 Preliminaries

We refer to [3] for the concepts of complex analysis.
Let us denote by C the complex plane and by Ĉ the extended complex plane.

A Möbius transformation is a mapping g : Ĉ −→ Ĉ for which

g(z) =
az + b

cz + d
a, b, c, d ∈ C, ad − bc �= 0

and g(− d
c ) = ∞, g(∞) = a

c . Möbius transformations form a group denoted by
M . Two transformations g1 and g2 in M are conjugate if g1 = ψg2ψ

−1 for some
ψ ∈ M . In the same way two groups G1 and G2 of Möbius transformations are
conjugate if G1 = ψG2ψ

−1. A point z is said to be a fixed point of g ∈ M if
g(z) = z. It is known that any g ∈ M \ {id} has either one fixed point or two
fixed points in Ĉ. Let G be a subgroup of M . The set Gz = {g ∈ G | g(z) = z}
is a stabilizer of G at z ∈ Ĉ. Any stabilizer Gz equipped with the composition
forms a group.

In [1] and [3], it is presented how to conjugate a Möbius transformation to the
standard form: Suppose g ∈ M \ {id} has two fixed points α and β or only one
fixed point α. In both cases g may be conjugated by any ψ ∈ M with ψ(α) = ∞,
ψ(β) = 0 and ψ(g(β)) = 1 if g(β) �= β. If g has one fixed point α, we choose any
β �= α in C. This conjugation yields

(ψgψ−1)(∞) = ∞,

(ψgψ−1)(0) =
{

0 if g(β) = β
1 if g(β) �= β

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 445–450, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Now it is possible to conjugate any Möbius transformation g �= id to the
standard form: There is a Möbius transformation ψ satisfying

(ψgψ−1)(z) = m1(z) = z + 1 if the only fixed point of g is α,

(ψgψ−1)(z) = mk(z) = kz for some k ∈ C, k �= 0, 1 if α and β

are the two fixed points of g.

In the latter case the number k is independent on the choice of ψ.
The above conjugation gives rise to classify Möbius transformations according

to the standard forms: Let g ∈ M \ {id}. Then

g is parabolic iff g is conjugate to m1,
g is loxodromic iff g is conjugate to mk, |k| �= 1,
g is elliptic iff g is conjugate to mk, |k| = 1, k �= 1.

It follows that g is parabolic iff it has one fixed point and g is loxodromic or
elliptic iff it has two fixed points. Further, conjugate transformations are always
of the same type. We may share loxodromic transformations g into the two parts:
If g(D) = D for the upper-half plane or the unit disk D ⊂ Ĉ (more general some
upper-half plane or disk), then g is hyperbolic. Otherwise g is strictly loxodromic.

Suppose g ∈ M has two distinct fixed points α and β. Then the multiplier of
loxodromic or elliptic transformations g is defined as the cross-ratio

k(g) = (g(z), z, α, β)

which holds for every z ∈ Ĉ\{α, β}. If g is parabolic, we set k(g) = 1. Moreover,
k = k(g) in the standard forms. The multipliers are invariant in conjugation.

The following concepts can be found from [4]: Let (P, ≤) be a partially ordered
set and A a nonempty set. Then a mapping A : A −→ P is a P -(fuzzy)set on
A. If G = (G, ·) is a group, then a P -set on G, A : G −→ P is said to be a
P -(fuzzy) subgroup of G .

2 Möbius Transformations Applied to Fuzzy Subgroups
with Meet Operation

The following proposition is presented and proved in [2]. The starting point to
the proof was the results in [4] and [5]:

Proposition 1. Let G be a subgroup of the group of Möbius transformations
and let Gz = {g ∈ G | g(z) = z} be a stabilizer of G at z ∈ Ĉ. If F is a set of
stabilizers of G and their intersections, and F = (F , ≤) is a partially ordered
set under p ≤ q iff p ⊇ q (p, q ∈ F ), then A : G −→ F , as a F -subgroup of G,
is

A (g) =
⋂

(Gz | g ∈ Gz}

Denote by Fg (resp. Fh) the set of fixed points of g (resp. h). Defining the meet
operation ∧ as the infimum, we get
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Proposition 2. Let G be a subgroup of the group of Möbius transformations
and g, h ∈ G.

1. If Fg = Fh, then
A (gh) = A (g) ∧ A (h),

except in the case where gh = id, g �= id and h �= id implies

A (gh) > A (g) ∧ A (h).

2. Let Fg �= Fh. If g and h share a fixed point there are three different cases: If
g has one fixed point and h two fixed points, then

A (gh) > A (g) ∧ A (h).

If both g and h have two fixed points but only one of them is common to g
and h, then

A (gh) ≥ A (g) ∧ A (h).

The case where g = id and h �= id implies

A (gh) = A (g) ∧ A (h).

3. Suppose that g and h have no common fixed point. Then

A (gh) > A (g) ∧ A (h).

Proof. Recall that
A (g) =

⋂
(Gz | g ∈ Gz}.

Assume g and h have both one fixed point α being common to them and let
gh �= id. Conjugating with a suitable ψ ∈ M , ψ(α) = ∞, we obtain matrix
representations for ψgψ−1 and ψhψ−1 corresponding to the standard form z �→
z + 1 and the transformation z �→ z + b, b �= 0, −1 (gh �= id implies b �= −1).
Using matrix representations, we get

ψ(gh)ψ−1 =
(

1 1
0 1

) (
1 b
0 1

)
=

(
1 b + 1
0 1

)
,

ψ(hg)ψ−1 =
(

1 b
0 1

) (
1 1
0 1

)
=

(
1 b + 1
0 1

)
.

Now (ψ(gh)ψ−1)(z) = (ψ(hg)ψ−1)(z) = z + b + 1 with one fixed point ∞ (b �=
-1). It follows that gh (resp. hg) has the only one fixed point α. Then

A (gh) = Gα = Gα ∧ Gα = A (g) ∧ A (h).

Suppose g and h have two common fixed points α and β. If gh �= id, then

A (gh) = Gα ∩ Gβ = (Gα ∩ Gβ) ∧ (Gα ∩ Gβ) = A (g) ∧ A (h).



448 P. Kukkurainen

If g = h = id, we obtain

A (gh) = A (id) = (id, ·) = (id, ·) ∧ (id, ·) = A (g) ∧ A (h).

Let gh = id, g �= id and h �= id. Then g = h−1 meaning that g and h have the
same fixed points. Therefore A (g) = A (g−1) = A (h) giving

A (gh) = A (id) = (id, ·) > A (g) = A (g) ∧ A (h)

This proves (i).

Assume g has one fixed point α and h has two fixed points α and β, β �= α.
We choose a suitable ψ ∈ M with ψ(α) = ∞, ψ(β) = 0 and ψ(g(β)) = 1 if
g(β) �= β. Conjugation with ψ leads to matrix representations for ψgψ−1 and
ψhψ−1 corresponding to the standard forms z �→ z + 1 and z �→ kz for some
k �= 0, 1. We conclude

ψgψ−1 =
(

1 1
0 1

)
and ψhψ−1 =

(
k 0
0 1

)
,

ψ(gh)ψ−1 =
(

1 1
0 1

) (
k 0
0 1

)
=

(
k 1
0 1

)
,

ψ(hg)ψ−1 =
(

k 0
0 1

) (
1 1
0 1

)
=

(
k k
0 1

)
.

In the former case, (ψ(gh)ψ−1)(z) = kz + 1 with two distinct fixed points ∞
and 1

1−k (k �= 1). In the latter case, ψ(hg)ψ−1(z) = kz + k with fixed points ∞
and k

1−k . This means that gh has distinct fixed points α and ψ−1( 1
1−k ) = β1

and hg has fixed points α and ψ−1( k
1−k ) = β2. Since k �= 1 and so 1

1−k < ∞,
then β1 �= α (also β2 �= α). Therefore

A (gh) = Gα ∩ Gβ1 > Gα = Gα ∧ (Gα ∩ Gβ) = A (g) ∧ A (h).

Correspondingly,
A (hg) > A (g) ∧ A (h).

Suppose g and h have two fixed points but one common fixed point α. Let
g(α) = α, g(β1) = β1, h(α) = α and h(β2) = β2, β1 �= β2, α �= β1, β2. By
conjugation, we obtain again

(ψgψ−1)(z) = k1z (k1 �= 0, 1) with fixed points ψ(α) = ∞, ψ(β1) = 0,

(ψhψ−1)(z) = k2z + β − k2β (k2 �= 0, 1)with fixed points ψ(α) = ∞, ψ(β2) = β.

Then

ψ(gh)ψ−1 =
(

k1 0
0 1

)(
k2 β − k2β
0 1

)
=

(
k1k2 k1β − k1k2β

0 1

)
,

ψ(hg)ψ−1 =
(

k2 β − k2β
0 1

) (
k1 0
0 1

)
=

(
k1k2 β − k2β

0 1

)
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leading to
(ψ(gh)ψ−1)(z) = (k1k2)z + k1β − k1k2β

with two distinct fixed points ∞ and k1k2β−k1β
k1k2−1 if k1k2 �= 1 and one fixed point

∞ if k1k2 = 1, and

(ψ(hg)ψ−1)(z) = (k1k2)z + β − k2β

with two fixed points ∞ and k2β−β
k1k2−1 , if k1k2 �= 1 and one fixed point ∞ if

k1k2 = 1.
Then gh has two distinct fixed points α and ψ−1(k1k2β−k1β

k1k2−1 ) = β3 or only one
fixed point α. Also, hg has fixed points α and ψ−1( k2β−β

k1k2−1 ) = β4 or only fixed
point α. In every case, (Gα ∩Gβ1) and (Gα ∩Gβ2) have only two common lower
bounds Gα and G. Because Gα ≥ G, the infimum of (Gα ∩Gβ1) and (Gα ∩Gβ2)
is Gα. Therefore

A (gh) = Gα ∩ Gβ3 ≥ Gα = (Gα ∩ Gβ1) ∧ (Gα ∩ Gβ2) = A (g) ∧ A (h),

where the equality holds for if gh has only one fixed point α.
If g = id and h �= id, then gh = h and we obtain

A (gh) = A (h) = (id, ·) ∧ A (h) = A (g) ∧ A (h).

Also (ii) is proved.

Finally, assume that g and h have no common fixed points. This implies that G is
the only common lower bound of A (g) and A (h) and therefore A (g)∧ A (h) =
G. The infimum G /∈ F but G ∈ F ∪{G} = F1 which contains F . Also, (F1, ≤)
is a partially ordered set having the same order as F . On the other hand, gh
has at most two fixed points zi, i = 1, 2. Consequently

A (gh) = ∩Gzi > G = A (g) ∧ A (h).

The equality is impossible in any case because both g and h belong to G but
they have not the (common) fixed points zi of gh.
This proves (iii).

Example 1. Consider parabolic transformations g(z) = 2z
z+2 and h(z) = 3z

z+3

both having the fixed point 0. Trivially, gh = 6z
5z+6 is also parabolic with the same

fixed point 0. Then

A (gh) = G0 = G0 ∧ G0 = A (g) ∧ A (h).

Observe that the consideration of Möbius transformations in Proposition 2 occurs
pairwise. It is shown in [4] that in general any group G = (G, ·) and a lattice-
valued fuzzy group A : G −→ L satisfy

A (x · y) = A (x) ∧ A (y) for all x and y ∈ G
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iff
A (z) = I for every z ∈ G

where I is the supremum of L. In this paper it means that G is a trivial group
(id, ·) (although F is not a lattice).

As stated at the rest of the proof of Proposition 2 the whole group G does not
belong to F which is not therefore a lattice. However, it is the infimum of the
complete lattice F ∪ {G} or it may be the infimum of some pair of elements in
F . The following example illustrates this situation:

Example 2. Let g(z) = −z with the fixed points 0, ∞ and h(z) = 1
z with the

fixed points −1, 1. Then (gh)(z) = − 1
z with the fixed points −i, i.

A (g) = G0 ∩ G∞ ⊂ G,

A (h) = G−1 ∩ G1 ⊂ G.

As conclusion, G is the only common lower bound of A (g) and A (h). Although
G /∈ F , it is the infimum of them. This yields

A (gh) = G−i ∩ Gi > G = A (g) ∧ A (h).
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5. B. Ŝeŝelja and A. Tepavĉeviĉ: On a construction on codes by P -fuzzy sets.
Zb.Rad.Priod.-Mat., Vol.20,pp.71-80,1990.



A Method for Automatic Membership Function

Estimation Based on Fuzzy Measures

Grzegorz Nieradka and Bohdan Butkiewicz

Warsaw University of Technology, Institute of Electronic Systems,
Nowowiejska 15/19, 00 - 665 Warsaw, Poland
nieradka@ise.pw.edu.pl, bb@ise.pw.edu.pl

Abstract. Estimation of membership function is one of the most impor-
tant problems in the application of fuzzy sets. This paper presents one
of approaches to this problem. A method for estimation of membership
function is proposed, based on fuzzy measures: fuzzy entropy and fuzzy
index. Examples of generating membership function in the field of image
processing are shown.The method presented in this paper can be used
in other fields of computer sciences, where statistical data are available.

1 Introduction

Proper choosing of membership function’s shape and values is usually not an
easy task. There are many methods proposed in the literature also in the image
processing field [14]. Some methods adopt an approach based on transformation
from a probability distribution to a possibility distribution [3]. Sometimes statis-
tical data describing an image are clustered by C-means algorithm. Membership
functions of pixels’ brightness are chosen based on these clusters [2]. A method
based on optimization objective function is presented in [4]. The application of
measures of the fuzzy set such as specificity or consistency is also proposed in [7].
The authors of this paper propose objective function related to entropy measure.

The most similar solution this our proposition is described in [5], but there are
numerous discrepancies between the two approaches. Whereas both the works
pertain the idea of maximization of entropy, only this paper refers to the measure
of entropy other than the idea of probability of fuzzy event as described in [5].
Moreover, this work offers another measure, namely fuzzy index, added for the
more exact description of available data image.

In this paper the authors proposed a novel method in which calculated mem-
bership function is utilized for modeling linguistic commands used for image
processing. Some examples, where such commands are applied prove to be suc-
cessful approach.

2 Membership Function

The shape of S-function is commonly used for the representation of the degree
of brightness or whiteness of pixels in grey levels images. This S-function was
originally introduced by Zadeh [17].

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 451–460, 2007.
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For flexibility another definition of S-function was proposed [6]:

S (x; a, b, c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x ≤ a
(x−a)2

(b−a)(c−a) , a < x ≤ b

1 − (x−c)2

(c−b)(c−a) , b < x ≤ c

1, x ≥ c

(1)

where x is a variable, and a, b and c are parameters determining the shape of
S-function. In this definition b can be any point between a and c. Some examples
of possible shapes of this S-function are shown in the Fig. 1

Fig. 1. Different shapes of S-function depend on a, b and c parameters. Lines denoting
parameters: dashed line a = 0, b = 63.5, c = 127.5; solid line a = 0, b = 127.5, c = 255;
dotted line a = 127.5, b = 191, c = 255

3 Fuzzy Measures

In the literature many fuzzy measures have been proposed [8] [13] as well as
measures of fuzzines [15]. This paper incorporates two measures of fuzzy set
namely a fuzzy entropy [1] and index of fuzzines introduced by Kaufmann [10].

3.1 Fuzzy Entropy

Many definitions of fuzzy entropy [15] [1] exist in the literature. For the purpose
of this work authors employ definition of total entropy [1] [16] which is described
as follows.

Let I be a set with randomly occuring events {x1, x2, . . . , xn} in an exper-
iment, and {p1, p2, . . . , pn} are respective probabilities of events. Fuzzyfication
of set I induces two kinds of uncertainties. Total entropy of the set F , being
fuzzified set I, consists of two parts. The first part of total entropy is a mea-
sure deduced from ”random” nature of the experiment. Expected value of this
uncertainty is computed as Shannon entropy:

H (p1, p2, . . . , pn) = −
n∑

i=1

pi log (pi) (2)
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The second uncertainty arises from the fuzzines of the fuzzy set F related to the
ordinary set. This amount of ambiguity is given by:

S (μi) = −μi log (μi) − (1 − μi) log (1 − μi) (3)

The statistical average m of the ambiguity for the whole set is given by equation
(4):

m (μ, p1, p2, . . . , pn) =
n∑

i=1

piS (μi) (4)

Therefore, the total entropy of the set F is expressed as follows:

Htotal = H (p1, p2, . . . , pn) + m (μ, p1, p2, . . . , pn) (5)

3.2 Index of Fuzziness

Let X be universum of discourse and P power set of X . Kaufmann introduced
the index of fuzzines γ of fuzzy set A ⊆ P :

γ (A) =
2
nk

× d (A, Anear) (6)

where d is a suitable metric on the universum X , k is positive number and
n number of supporting points. Anear is the nearest crisp set to A defined as
follows:

μnear
A (x) =

{
1 if μA (x) ≥ 0.5
0 if μA (x) ≤ 0.5 (7)

Using Minkowski’s q-norm as a metric, and putting k = 1
q , the index of fuzzines

can be defined as:

γ (A) =
2

n
1
q

{
∑

i

|μA (xi) − [1 − μAnear (xi)]|q
} 1

q

(8)

In this paper the linear version of this index is used, so the exponential q = 1

γ (A) =
2
n

∑

i

|μA (xi) − μA (xi)| (9)

where μA (xi) is complement of set A and μA (xi) = 1 − μA (xi). The difference
between the set and nearest ordinal set can be calculated:

γ (A) =
2
n

∑

i

[min {μA (xi) , 1 − μA (xi)}] (10)

Obviously, for an image O of size M × N with L levels of grey pixels’ brightness
g, and with the histogram h (g) of the image O, linear index of fuzzines can be
given by:

γlinear (O) =
2

MN

L−1∑

g=0

h (g) · min [μO (g) , μ̄O (g)] (11)

where: μ̄O is complement of O and μO = 1 − μO (g)
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4 Algorithm of Membership Function Calculation

For estimation of membership function the authors used the measures described
above as objective functions for a maximization problem. We would like to find
a function which maximizes the information about an image. This condition is
reformulated into entropy principle. Taking into consideration that entropy is
the measure of information, hence the function which has the maximum entropy
is the most informative. However, there still exits need to find a function which
describes the fuzzy set in the best way. For this purpose the authors used the
index of fuzzines. The result is the function which has the biggest value of index
of fuzzines.

Therefore, the problem was reformulated into looking for the function which
is optimal with regards to total entropy (5) and index of fuzzines (11).

The objective is find the parameters a, b and c of function (1) describing
the shape of function, which fulfils conditions of the maximum entropy as well
as maximum value of index of fuzzines. This issue is defined as a two criteria
problem. The first criterium is founding the set of parameters aEopt, bEopt, cEopt

for which the total entropy (5) has the maximal value.

Htotal max [S (aEopt, bEopt, cEopt)] = max
a,b,c

{Htotal [S (a, b, c)] : 0 ≤ a, b, c ≤ L}
(12)

The second criterium is founding the set of parameters aγopt, bγopt, cγopt for which
the value of the index of fuzzines (11) has the biggest value.

γlinear max [S (aγopt, bγopt, cγopt)] = max
a,b,c

{γ [S (a, b, c)] : 0 ≤ a, b, c ≤ L} (13)

After solving eq. (12) and eq. (13) there are two sets of parameters. The S-
function described by the average values of the parameters has been chosen as
solution.

aopt = aEopt+aγopt

2

bopt = bEopt+bγopt

2

copt = cEopt+cγopt

2

(14)

It is assume that S-function (1) described by set of parameters’ values given by
(14) is the one which is the most informative and describes the fuzzy set in the
best way.

Calculations for finding the set of optimal parameters (14) are performed
using well known optimization algorithm Particle Swarm Optimization (in short
PSO), which is well described in the literature [12] [11].

5 Examples of the Algorithm Results

Figures Fig. 2 . . . Fig. 6 present the shapes of membership functions which were
computed by this algorithm. Five different images with different histograms were
chosen for illustration.
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Fig. 2. The original image ”Lena” (on the left) and histogram with determined mem-
bership function (on the right). Significance of lines: dotted – maximum index of
fuzzines; dashed – maximum fuzzy entropy; solid – average between maximum entropy
and maximum fuzzy index.

Fig. 3. The image ”Peppers” (on the left) and histogram with determined membership
functions (on the right). Significance of lines: as in the Fig. 2.

Fig. 4. Image ”Lena” with very bad contrast (on the left) and histogram with deter-
mined membership functions (on the right). Significance of lines: as in the Fig. 2.
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Fig. 5. Image ”Lena” which is too bright (on the left) and histogram with determined
membership functions (in the right). Significance of lines: as in the Fig. 2.

Fig. 6. Image ”Lena” which is too dark (on the left) and histogram with determined
membership functions (on the right). Significance of lines: as in the Fig. 2.

6 Linguistic Modifiers for Image Enhancement

For image with estimated membership function linguistic modifiers can be used.
The effect of application of different modifiers was measured by Mean Squared
Error (MSE) (15) calculated as follows:

MSE =

M1∑
i=1

M2∑
j=1

|O (i, j) − O′ (i, j)|2

M1 · M2
(15)

where 1 ≤ i ≤ M1, 1 ≤ j ≤ M2 and M1 and M2 are respectively heights and
widths of the original image O and modified image O′ expressed in pixel values.
In the presented figures and the tables, there is shown modifiers influence on
image.
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6.1 Modifier ”Increase Contrast”

For modifier ”increase contrast” is applied well known operator of intensification
INT (A) of fuzzy set [9]:

μINT (A) (x) =

{
2 [μA (x)]2 ∀x : μA (x) < 0.5
1 − 2

[
1 − (μA (x))2

]
∀x : μA (x) ≥ 0.5

(16)

That application of this operator give the good result as is shown in the Fig.7

Fig. 7. Illustration of using ”increase contrast” linguistic modifier. The image ”Lena”
after modification (on the left) and histogram of the modified image (on the right).
The original image presented in the Fig. 4 has bad contrast.

Table 1. Influence of ”increase contrast” hedge on the MSE error

Image MSE
”Lena” image with bad contrast 1095.5

After using linguistic hedge 78.7620

6.2 Modifier ”Brighter”

As a representation of linguistic modifier ”brighter” the operator of dilation of
fuzzy set was chosen. Originally dilation DIL (A) of fuzzy set is defined as [9]:

μDIL(A) (x) = [μA (x)]0.5 ∀x ∈ X (17)

In this example for better result another power in eq.(17) was chosen. Following
equation is used in this example:

μDIL(A) (x) = [μA (x)]0.25 ∀x ∈ X (18)

The linguistic modifier ”brighter” as is given by eq.( 18) was used for image with
bad dark colors which is presented in the Fig. 6. Application of this modifier gives
a very good results. Enhanced image is shown in the Fig. 8. Comparison of MSE
error is given in the Tab. 2.
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Fig. 8. Illustration of using ”brighter” linguistic hedge. Image ”Lena” after brightening
(on the left) and histogram of modified image (on the right). Image with bad bright
color before modification is presented in Fig. 6.

Table 2. Influence of ”brighter” modifier at the MSE error

Image MSE
”Lena” image with bad bright colors 4261.7

After using linguistic hedge ”brighter” 350.5

6.3 Modifier ”Darker”

As a linguistic modifier ”darker” concentration of fuzzy set was employed. Orig-
inally dilation CON (A) of fuzzy set is defined as [9]:

μCON(A) (x) = [μA (x)]2 ∀x ∈ X (19)

Image ”Lena” after darkering Histogram of image ”Lena” after darkering

Fig. 9. Illustration of using ”darker” linguistic modifier. Image ”Lena” after modi-
fication (on the left) and histogram (on the right). Image with bad bright colors as
presented in Fig. 5.
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However, here the power equal 1.5 for better result is applied in this case. The
modifier given by eq.(19) with power 1.5, is utilized to image with bad white
colors, as is shown in the Fig. 5. The result after application of this modifier is
shown in the Fig. 9. Comparison of MSE errors is given in the Tab. 3

Table 3. Influence of ”darker” hedge at the MSE error

Image MSE
”Lena” image with bad dark colors 5419.0

After using linguistic hedge ”darker” 505.2

7 Conclusion

Fuzzy set theory has been successful applied to many tasks in image processing
as image filtering or pattern recognition. However, for each usage of fuzzy sets
not only in image processing but generally, it is needed to know the membership
function’s shape and values.

This paper presents the method dealing problem of determination member-
ship function. The well known S-function is used for representing pixels’ values
which belong to the set of bright pixel. The methodology for choosing parame-
ters of S-function in reasonable way is proposed basing on fuzzy measures. The
chosen function is one which compromises the conditions of information and
good fuzzines.

The new application area namely, the linguistic modifiers of image is outlined.
The way of modelling natural language is shown with the good effects of using
linguistic modifiers in image enhancement.
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Abstract. We study finite residuated lattices with up to 11 elements.
We present an algorithm for generating all non-isomorphic finite residu-
ated lattices with a given number of elements. Furthermore, we analyze
selected properties of all the lattices generated by our algorithm and
present summarizing statistics.

1 Introduction and Preliminaries

Problem Setting. Residuated lattices and particular subclasses of residuated lat-
tices distinguished by identities play a key role in fuzzy logic in both the wide and
narrow sense [2,4,6,7,9,12,14,16]. In particular, residuated lattices are considered
as structures of truth degrees, i.e., scales of truth degrees equipped with truth
functions of (fuzzy) logical connectives. Most common choice of a residuated
lattice is a structure defined on the real unit interval [0, 1] with multiplication
given by a left-continuous t-norm, see [4,9].

In general, non-comparable truth degrees might be of interest for both theo-
retical and practical reasons (we omit details) which leads us beyond the scope
of linearly ordered residuated lattices. Moreover, “small” lattices play an im-
portant role. Namely, according to Miller’s 7±2 phenomenon well known from
psychology [15], humans are able to assign degrees in a consistent manner pro-
vided the scale of degrees contains up to 7±2 elements. With more than 7±2
elements, the assignments become inconsistent. Another argument supporting
the importance of finite residuated lattices comes from computational consider-
ations. While using [0, 1] is satisfactory in many cases, quite a lot of problems
leads to infinite structures if [0, 1] is used (consider just the simple fact that the
set of all fuzzy sets in a finite universe is uncountable when [0, 1] is used as a
set of truth degrees). Quite often, a natural solution, which is computationally
tractable, consists in considering a finite residuated lattice.

These facts bring us to finite residuated lattices with a reasonably small num-
ber of elements (7±2, perhaps a bit more). Surprisingly, little has been done in
� Supported by grant No. 1ET101370417 of GA AV ČR, by grant No. 201/05/0079

of the Czech Science Foundation, and by institutional support, research plan MSM
6198959214.
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a systematic study in this field. An interesting exception is [1] which studies t-
norms on finite chains. This paper is a continuation of [3] where we investigated
properties of all non-isomorphic finite lattices up to eleven elements. In this
paper, we focus on fundamental questions related to finite residuated lattices.
For instance, how many non-isomorphic residuated lattices (MTL-algebras, BL-
algebras, . . . ) with n elements are there? Can we generate the structures in an
efficient way? Which properties of finite residuated lattices are frequent for small
lattices? Our paper answers several questions of this type.

Preliminaries. Recall that a residuated lattice is an algebra L = 〈L, ∧, ∨, ⊗, →,
0, 1〉 where 〈L, ∧, ∨, 0, 1〉 is a bounded lattice, 〈L, ⊗, 1〉 is a commutative monoid,
and ⊗ and → satisfy a ⊗ b ≤ c iff a ≤ b → c for each a, b, c ∈ L (so-called
adjointness). More details about residuated lattices and their role in fuzzy logic
can be found in [2,6,7,9].

2 Generation of Finite Residuated Lattices

In this section we briefly describe a way to generate residuated lattices of a given
size. Given a finite lattice L = 〈L, ∧, ∨, 0, 1〉, we describe an algorithm which
generates all pairs 〈⊗, →〉 of adjoint operations on L. Thus, in order to generate
all n-element residuated lattices, it suffices to generate all n-element lattices and
then to generate all the adjoint pairs. Efficient algorithms for generating finite
lattices are available, see [3,11].

Let L = 〈L, ∧, ∨, 0, 1〉 be a finite lattice. By definition of a residuated lat-
tice, we are looking for all couples 〈⊗, →〉 of operations such that 〈L, ⊗, 1〉 is a
commutative monoid, and ⊗ and → satisfy adjointness. Note that not all finite
lattices admit adjoint operations ⊗ and →. The algorithm which will be de-
scribed later in this section generates only ⊗ (multiplication, truth function of
“fuzzy conjunction”) and tests a condition which is equivalent to the existence
of → (residuum, truth function of “fuzzy implication”) satisfying adjointness
with ⊗. Namely, we will take advantage of the following assertion:

Theorem 1. Let L = 〈L, ∧, ∨, 0, 1〉 be a finite lattice, 〈L, ⊗, 1〉 be a commutative
monoid such that ⊗ is monotone w.r.t. ≤. The the following are equivalent:

(i) there exists (unique) → satisfying adjointness w.r.t. ⊗;
(ii) for each a, b, c ∈ L: a ⊗ (b ∨ c) = (a ⊗ b) ∨ (a ⊗ c);
(iii) → given by a → b =

∨
{c ∈ L | a ⊗ c ≤ b} satisfies adjointness w.r.t. ⊗.

Proof. Follows from finiteness of L and properties of residuated lattices [2]. We
omit the proof due to the limited scope of this paper. 
�

Due to Theorem 1, it suffices to generate all monotone, commutative, and asso-
ciative operations ⊗ which are neutral with respect to 1 (greatest element of L)
and satisfy condition (ii) of Theorem 1. If ⊗ satisfies all these conditions, we can
use (iii) to compute the residuum → of ⊗.

The basic idea of our algorithm is that we systematically go through all can-
didates ⊗ which may satisfy assumptions of Theorem 1 and (ii). Multiplication
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⊗ 0 a1 a2 · · · an−2 1

0 0 0 0 · · · 0 0
a1 0 a1

a2 0 a2

...
...

...
an−2 0 an−2

1 0 a1 a2 · · · an−2 1

procedure fill (i, j):
if (1)–(3) not satisfied :

return
if j ≥ n − 1:

set i to i + 1
set j to i

if i ≥ n − 1:
store ⊗
return

for each b ∈ Bounds(i, j):
set ai ⊗ aj to b
call fill (i, j + 1)

set ai ⊗ aj to “undefined”

Fig. 1. Initial assignment of truth degrees to a table for ⊗ and procedure fill

is a binary operation on L. For the sake of simplicity, assume |L| = n and denote
the truth degrees by L = {0 = a0, a1, a2, . . . , an−2, an−1 = 1}. We assume that
our indexing extends the lattice order, i.e. that ai ≤ aj implies i ≤ j. Since
for |L| = n, there are nn2

distinct binary operations, we cannot generate all
such operations before checking the desired properties. Namely, nn2

is a large
number even for small n. Instead, we take advantage of some of the properties
to generate only reasonably small subclass of binary operations.

The task to find a multiplication can be seen as a task to fill a table as the
one in Fig. 1 (left) by truth degrees. A table entry given by row i and column j
represents value ai ⊗aj . Since ⊗ needs to be commutative, we can focus only on
the upper triangle of the table (including the diagonal). Moreover, some truth
degrees in the table can be fixed because from properties of residuated lattices
we have

a ⊗ 0 = 0 ⊗ a = 0, a ⊗ 1 = 1 ⊗ a = a.

The other entries in the table can take any values from L−{1}. Fortunately, we
need not go through all possible assignments of degrees from L − {1} to blank
entries in the table from Fig. 1 (left). We can restrict the set of possible values
for each table entry using the following well-known fact:

Theorem 2. Let L be a residuated lattice. Then, for each a, b ∈ L,

(i) a ⊗ b ≤ a ∧ b;
(ii)

∨
{c ⊗ d | c, d ∈ L such that c ≤ a and d ≤ b} ≤ a ⊗ b. 
�

As we can see, Theorem 2 provides us with upper and lower bounds for the results
of multiplications. In more detail, for each a, b ∈ L, the upper bound is given by
(i). The lower bound can be computed using (ii) before each new assignment.
Since we assign truth degrees to the table one by one, for a considered pair
a, b ∈ L of truth degrees we can take all c, d ∈ L such that (i) the value c ⊗ d is
already assigned, and (ii) c ≤ a and d ≤ b. Then we can compute supremum of
values c ⊗ d of all such truth degrees which is then the lower bound of a ⊗ b.
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A table for ⊗ is filled from its top-left corner to its bottom-right corner. Table
entries are traversed in the following order: a1 ⊗ a1, a1 ⊗ a2, . . . , a1 ⊗ an−3,
a1 ⊗ an−2, a2 ⊗ a2, a2 ⊗ a3, . . . , an−2 ⊗ an−2. For each new entry being added to
the table we check several conditions to see that ⊗ represents a “candidate” for
multiplication. Namely, for each a, b, c ∈ L we check

a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c, (1)
a ⊗ (b ∨ c) = (a ⊗ b) ∨ (a ⊗ c), (2)
a ≤ b implies a ⊗ c ≤ b ⊗ c, (3)

provided that the expressions (1)–(3) make sense (recall that we deal with a
partial operation ⊗ which is being constructed, i.e., some values of x ⊗ y may
not be defined). If the currently assigned value of ai ⊗ aj violates the conditions
above, then we go back and set ai ⊗ aj to another value.

Otherwise we move to the next blank position in the table and compute possible
values of the multiplication result given by Theorem 2. In more detail, for truth
degrees ai and aj (i.e., degrees corresponding to position given by indices i and j
in the table) we consider a set Bounds(i, j) ⊆ L which is an interval

Bounds(i, j) = [b, ai ∧ aj ]
where

b =
∨

{amin(k,l) ⊗ amax(k,l) | (k = i and al ≺ aj) or (ak ≺ ai and l = j)}
where am ≺ an denotes that am is covered by an, i.e. am ≤ an and am ≤ c ≤ an

implies am = c or an = c. Then we go through all the values in Bounds(i, j)
and set them as the results of ai ⊗ aj . Then we check (1)–(3) for ai ⊗ aj and
the process continues as described above. We finish if we fill the whole table
with values satisfying (1)–(3). As we have seen, the algorithm for generating
⊗ can be described as a recursive procedure which accepts two parameters:
indices of the row and column of table Fig. 1 (left). The procedure is described
in Fig. 1 (right). Note that a preliminary version of this method, which was less
efficient, was described in [13].

Due to the limited scope of this paper, we postpone proof of soundness of the
procedure to a full version of this paper.

3 Properties of Generated Residuated Lattices

In this section we present basic characteristics of finite residuated lattices
generated by our procedure. We have used our procedure to generate all non-
isomorphic residuated lattices with up to 11 elements. Prior to that, we generated
all non-isomorphic lattices up to 11 elements, see [3] and studied their properties,
see also [11] for a related approach.

We first focus on the numbers of n-element residuated lattices. Table 1 con-
tains a basic summary. Columns of the table correspond to sizes of lattices
(numbers of their elements). The first row contains numbers of non-isomorphic
residuated lattices. The second row contains numbers of non-isomorphic linearly
ordered residuated lattices (i.e., lattices with every pair of elements comparable).
Note that [1] contains an error since it says that the number for |L| = 8 is 2368.
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Table 1. Numbers of non-isomorphic finite residuated lattices up to 11 elements

1 2 3 4 5 6 7 8 9 10 11

residuated lattices 1 1 2 7 27 142 839 5803 45466 406783 4134207

linear res. lattices 1 1 2 6 22 94 451 2386 13775 86417 590489

lattices 1 1 1 2 5 15 53 222 1078 5994 37622

res. lattice reducts 1 1 1 2 3 7 18 61 239 1125 6137

We can read from the table that small residuated lattices tend to be linear: for
|L| = 5, 22 residuated lattices out of 27 are linear. On the other hand, with
growing sizes of |L|, the portion of linear residuated lattices is going down: for
|L| = 11, only one seventh of all the residuated lattices are linear.

Another interesting thing is the relationship between (numbers of) residuated
lattices and (numbers of) their distinct lattice reducts. Recall that if L =
〈L, ∧, ∨, ⊗, →, 0, 1〉 is a residuated lattice, its reduct 〈L, ∧, ∨, 0, 1〉 resulting by
omitting ⊗ and → is a lattice. Thus, we may ask how many n-element lattices
are reducts of n-element residuated lattices. This is shown in the last two rows
of Table 1. The last but one row shows numbers of non-isomorphic n-element lat-
tices [3,11]. The last row contains numbers of pairwise distinct non-isomorphic
lattice reducts of all non-isomorphic residuated lattices. For instance, the values
in column corresponding to |L| = 11 mean: there are 37622 non-isomorphic lat-
tices but only 6137 of them can be equipped with ⊗ and → to form a residuated
lattice. An interesting observation here is that even if the number of residuated
lattices rapidly grows with growing |L|, the number of their lattice reducts com-
pared to the number of all lattices (of that size) is going down. This means that
with growing |L|, the average number of residuated lattices with the same lattice
part is going up. For instance, for |L| = 8 the average number of residuated lattices
sharing the same lattice part is approximately 95 while for |L| = 11 it is 673.

The values in Table 1 may suggest that most residuated lattices can be found
on n-element chains. This is so for smaller residuated lattices but it is no longer
true for large lattices. For instance, if we consider |L| = 11, we can depict the
numbers of residuated lattices according to their width and height as in Table 2
(see appendices). The rows and columns in Table 2 represent heights and widths

Table 2. Numbers of 11-element residuated lattices with given heights and widths

1 2 3 4 5 6 7 8

4 0 0 0 0 0 0 0 1

5 0 0 0 23 80 64 1883 0

6 0 0 684 38480 31280 10470 0 0

7 0 2539 113275 127288 35771 0 0 0

8 0 141182 428416 122677 0 0 0 0

9 0 825240 402523 0 0 0 0 0

10 0 1261842 0 0 0 0 0 0

11 590489 0 0 0 0 0 0 0
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Table 3. Numbers of 11-element lattices with given heights and widths

1 2 3 4 5 6 7 8 9

3 0 0 0 0 0 0 0 0 1

4 0 0 0 0 123 159 72 15 0

5 0 0 83 2212 3294 1138 126 0 0

6 0 0 2295 8464 4387 518 0 0 0

7 0 164 4413 5339 973 0 0 0 0

8 0 374 2133 805 0 0 0 0 0

9 0 217 280 0 0 0 0 0 0

10 0 36 0 0 0 0 0 0 0

11 1 0 0 0 0 0 0 0 0

Table 4. Numbers of 11-element lattice reducts with given heights and widths

1 2 3 4 5 6 7 8

4 0 0 0 0 0 0 0 1

5 0 0 0 21 75 50 13 0

6 0 0 157 860 546 86 0 0

7 0 43 1021 1308 257 0 0 0

8 0 179 865 323 0 0 0 0

9 0 141 161 0 0 0 0 0

10 0 29 0 0 0 0 0 0

11 1 0 0 0 0 0 0 0

Table 5. Average characteristics of reducts (legend: ht/wd = avg. height/width of
lattices, at = avg. number of (co)atoms, ir/pr = avg. number of irreducible/prime
elements, mc/ma = avg. number of maximal chains/antichains

1 2 3 4 5 6 7 8 9 10 11

ht 1.00 2.00 3.00 3.50 4.33 4.86 5.44 5.87 6.31 6.68 7.01

wd 1.00 1.00 1.00 1.50 1.67 2.00 2.33 2.67 3.02 3.37 3.71

at 0.00 1.00 1.00 1.50 1.33 1.71 1.89 2.10 2.23 2.38 2.50

ir 1.00 2.00 3.00 3.50 4.33 5.00 5.83 6.48 7.20 7.85 8.49

pr 1.00 2.00 3.00 3.50 4.33 4.43 4.44 4.33 4.11 3.88 3.66

mc 1.00 1.00 1.00 1.50 1.67 2.14 2.56 3.13 3.65 4.27 4.95

ma 1.00 2.00 3.00 3.50 4.33 5.00 5.67 6.48 7.38 8.47 9.76

of residuated lattices, respectively. By a height (or width) of a residuated lattice
we mean the length of the longest maximal chain (or antichain) contained in its
lattice part. The table entries represent numbers of distinct residuated lattices
with the dimensions given by the corresponding rows and columns. Table 2 shows
that most residuated lattices are defined on “high and thin lattices” but in case
of |L| = 11, the most frequent residuated lattices are those with width 2 (see
second column of Table 2). Let us mention that the distribution of all lattices and
all lattice reducts according to their dimensions is quite different from that of
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Table 6. Numbers of residuated lattices satisfying selected properties

1 2 3 4 5 6 7 8 9 10 11

all res. lattices 1 1 2 7 27 142 839 5803 45466 406783 4134207

modular 1 1 2 7 27 138 775 4953 34833 269744 2303013

distributive 1 1 2 7 27 137 748 4655 31519 233186 1879285

(Π1) identity 1 1 1 4 9 51 290 2125 18165 182390 2096717

prelinear 1 1 2 7 23 100 469 2482 14256 89254 608250

(Π2) identity 1 1 1 3 8 31 156 913 6208 48054 421028

strict 1 1 1 3 7 28 142 842 5804 45473 403000

(WNM) identity 1 1 2 5 11 31 82 253 819 3064 13225

divisible 1 1 2 5 10 23 49 111 245 547 1196

involutive 1 1 1 3 3 13 17 86 185 779 2475

idempotent 1 1 1 2 3 5 8 15 26 47 80

Table 7. Numbers of selected algebras

1 2 3 4 5 6 7 8 9 10 11

all res. lattices 1 1 2 7 27 142 839 5803 45466 406783 4134207

MTL-algebras 1 1 2 7 23 100 469 2482 14256 89254 608250

SMTL-algebras 1 1 1 3 7 24 100 472 2483 14263 89254

WNM-algebras 1 1 2 5 9 22 43 98 198 418 842

BL-algebras 1 1 2 5 9 20 38 81 161 327 645

SBL-algebras 1 1 1 3 5 10 20 41 82 166 327

IMTL-algebras 1 1 1 3 3 8 12 36 62 172 339

Heyting algebras 1 1 1 2 3 5 8 15 26 47 80

G-algebras 1 1 1 2 2 3 3 5 6 8 8

NM-algebras 1 1 1 2 1 2 1 5 4 4 3

MV-algebras 1 1 1 2 1 2 1 3 2 2 1

Π-algebras 1 1 0 1 0 0 0 1 0 0 0

ΠMTL-algebras 1 1 0 1 0 0 0 1 0 0 0

residuated lattices. Table 3 and Table 4 show the same characteristics as Table 2
for all 11-element lattices and all lattice reducts of 11-element residuated lattices,
respectively. Here we can see that the numbers of lattices follow, more or less, a
normal distribution (most of them have average width and height).

Table 5 shows average characteristics of the lattice reducts of residuated lat-
tices. The rows of the table correspond to properties (see the legend in Table 5,
for the notions involved we refer to [8]), the columns correspond to sizes of
lattices. Table entries are the average values.

We now turn our attention to residuated lattices satisfying additional condi-
tions. We consider the following properties of residuated lattices expressible by
identities (see [2,4,5,8,9]):

(MOD) a ≤ c implies a ∨ (b ∧ c) = (a ∨ b) ∧ c (modularity)
(DIS) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (distributivity)
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(MTL) (a → b) ∨ (b → a) = 1 (prelinearity)
(Π1) (c → 0) → 0 ≤ ((a ⊗ c) → (b ⊗ c)) → (a → b) (Π1-property)
(Π2) a ∧ (a → 0) = 0 (Π2-property)

(STR) (a ⊗ b) → 0 = (a → 0) ∨ (b → 0) (strictness)
(WNM) ((a ⊗ b) → 0) ∨ ((a ∧ b) → (a ⊗ b)) = 1 (weak nilpotent minimum)

(DIV) a ∧ b = a ⊗ (a → b) (divisibility)
(INV) a = (a → 0) → 0 (involution)
(IDM) a = a ⊗ a (idempotency)

Table 6 contains numbers of residuated lattices satisfying these conditions.
Table 7 summarizes numbers of algebras (particular residuated lattices) which

Table 8. Average numbers of idempotent and involutive elements in selected algebras

1 2 3 4 5 6 7 8 9 10 11

all res. lattices 1.00 2.00 2.50 3.00 3.19 3.32 3.37 3.37 3.30 3.18 3.01
1.00 2.00 2.50 3.14 3.37 3.79 4.07 4.39 4.68 4.98 5.26

MTL-algebras 1.00 2.00 2.50 3.00 3.17 3.42 3.58 3.74 3.87 3.97 4.01
1.00 2.00 2.50 3.14 3.30 3.71 3.97 4.26 4.51 4.77 5.03

BL-algebras 1.00 2.00 2.50 3.20 3.67 4.25 4.74 5.31 5.80 6.33 6.82
1.00 2.00 2.50 3.00 2.78 3.10 2.89 3.14 3.02 3.03 2.97

G-algebras 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00
1.00 2.00 2.00 3.00 2.00 2.67 2.00 3.60 2.33 2.50 2.00

MV-algebras 1.00 2.00 2.00 3.00 2.00 3.00 2.00 4.67 3.00 3.00 2.00
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00

Table 9. Groups of algebras sharing the same properties
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605431 ×
105952 × ×

1551 × ×
617 × × × ×
603 × ×
593 × ×
36 × × × × × ×
27 × × ×
18 × × × ×
10 × × × ×
4 × × × × × × × × × × ×
3 × × × × × ×
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Table 10. Groups of algebras sharing the same properties (detail)
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145596 × ×
105952 × × × × ×
92801 ×
39691 × × ×
14040 ×
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6413 × × ×
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617 × × × × × ×
603 × × × × ×
593 × × × ×
543 × ×
444 × × ×
442 × × × ×
355 × ×
265 × × × × ×
227 × × ×
221 × × × ×
146 × × × × ×
76 × × × × × × ×
73 × × × × × ×
38 × × × ×
36 × × × × × × × ×
27 × × × × ×
18 × × × × × ×
10 × × × × × ×
6 × × × × ×
4 × × × × × × × × × ×
3 × × × × × × ×

are defined by a combination of the above-mentioned properties. The tables show
that BL-algebras are very rare among residuated lattices up to 11 elements.
The situation for MTL-algebras is better but still, only 15% of all 11-element
residuated lattices are MTL-algebras. An observation which may be surprising
is that (Π1) is far more frequent a property than prelinearity (for |L| ≤ 11).

Table 8 shows average numbers of idempotent (upper value in each table en-
try) and involutive (lower value in each table entry) elements of selected algebras.
Here an interesting thing is that the average values for MTL-algebras are ap-
proximately the same as for all residuated lattices whereas the average values for
BL-algebras are sort of opposite (MTL-algebras have more involutive elements
than the idempotent ones in average while BL-algebras have more idempotent
than the involutive ones).

Table 6 and Table 7 show the numbers of residuated lattices having each
property but do not show, e.g., how many divisible lattices are idempotent.
Such information can be found in Table 9 and in more detail in Table 10. Here,
the columns denote properties considered in Table 6 and Table 7, the left-most
column contains numbers of residuated lattices with given combination of proper-
ties. Each row of the tables represents one combination of properties (properties
which are present are marked by “×”). Let us note that some combinations of
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properties are rare and some of them can be found only in larger structures.
Just for illustration, the least residuated lattice which satisfies only (MOD) and
(Π2) from all the considered properties has 9 elements.

4 Conclusion and Future Research

We have presented a method for generation of finite residuated lattices up to
a given size. The generated residuated lattices were used for a preliminary ex-
ploration of their quantitative properties. We have focused mainly on the ex-
ploration of numbers of various algebras (BL-algebras, MTL-algebras, . . . ). A
database of generated structures can be found at:

http://vychodil.inf.upol.cz/res/devel/finresl/.

In our future work we will focus of the following topics:
– incremental algorithms that reuse previously generated structures;
– exploration of further properties of the generated residuated lattices;
– generation of structures with hedges and independent negations [5,10,17].
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12. Höhle U.: On the fundamentals of fuzzy set theory. J. Math. Anal. Appl. 201(1996),

786–826.
13. Kure M.: Computer-aided study of finite posets. UP Olomouc (MSc. thesis), 2004.
14. Klir G. J., Yuan B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice

Hall, 1995.
15. Miller G. T.: The magical number seven, plus or minus two: some limits on our

capacity for processing information. The Psychological Review 63(1956), 81–97.
16. Pavelka J.: On fuzzy logic I, II, III. Z. Math. Logik Grundlagen Math. 25(1979),

45–52, 119–134, 447–464.
17. Vychodil V.: Truth-depressing hedges and BL-logic. Fuzzy Sets and Systems

157(15)(2006), 2074–2090.

http://vychodil.inf.upol.cz/res/devel/finresl/


On Proofs and Rule of Multiplication in Fuzzy

Attribute Logic�

Radim Belohlavek1,2 and Vilem Vychodil2

1 Dept. Systems Science and Industrial Engineering, Binghamton University—SUNY
Binghamton, NY 13902, USA
rbelohla@binghamton.edu

2 Dept. Computer Science, Palacky University, Olomouc
Tomkova 40, CZ-779 00 Olomouc, Czech Republic

vilem.vychodil@upol.cz

Abstract. The paper develops fuzzy attribute logic, i.e. a logic for rea-
soning about formulas of the form A ⇒ B where A and B are fuzzy
sets of attributes. A formula A ⇒ B represents a dependency which
is true in a data table with fuzzy attributes iff each object having all
attributes from A has also all attributes from B, membership degrees
in A and B playing a role of thresholds. We study axiomatic systems
of fuzzy attribute logic which result by adding a single deduction rule,
called a rule of multiplication, to an ordinary system of deduction rules
complete w.r.t. bivalent semantics, i.e. to well-known Armstrong axioms.
In this paper, we concentrate on the rule of multiplication and its role
in fuzzy attribute logic. We show some advantageous properties of the
rule of multiplication. In addition, we show that these properties enable
us to reduce selected problems concerning proofs in fuzzy attribute logic
to the corresponding problems in the ordinary case. As an example, we
discuss the problem of normalization of proofs and present, in the set-
ting of fuzzy attribute logic, a counterpart to a well-known theorem from
database theory saying that each proof can be transformed to a so-called
RAP-sequence.

1 Introduction

If-then rules in their various variants are perhaps the most common way to
express our knowledge. Usually, if-then rules are extracted from data to bring up
a new knowledge about the data or are formulated by a user/expert to represent
a constraint on the data. If-then rules of the form A ⇒ B, where A and B are
collections of attributes, have been used in data mining and in databases. In
data mining, rules A ⇒ B are called association rules or attribute implications,
and have the following basic meaning: If an object has all attributes from A
then it has all attributes from B. This gives a rise to the first semantics. The
rules A ⇒ B are interpreted in tables with crisp attributes, i.e., with rows
corresponding to objects, columns corresponding to “yes-or-no” attributes, and
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table entries containing 1 or 0 indicating whether an object does or does not
have an attribute. The goal then is to extract “all interesting rules” from data.
In databases, rules A ⇒ B are called functional dependencies, see [17] for a
comprehensive overview, and have the following meaning: If any two objects
(items, rows) of a database table agree in their values on all attributes from A
then they agree on all attributes from B. This gives a rise to the second semantics
in which rules A ⇒ B are interpreted in database tables.

The two ways of interpreting rules A ⇒ B are closely connected. Namely,
semantic entailment coincides for both of them. This entailment can also be
captured syntactically. This goes back to Armstrong [1] who introduced a set of
inference rules, a modified version of which became known as Armstrong axioms.
Armstrong axioms are very well known to be complete w.r.t. database semantics
and, due to the above-mentioned connection, also to the other semantics. This
means that a rule A ⇒ B is provable (using Armstrong axioms) from a set T of
rules if and only if A ⇒ B semantically follows from T .

In a series of papers, see e.g. [3,4,5,7,8,9,10] and also an overview paper [6],
we started to develop the above-described issues from the point of view of fuzzy
logic (note that the first attempt is [18]). We introduced fuzzy attribute impli-
cations, i.e., our counterparts to the ordinary if-then rules A ⇒ B described
above. Among other issues, we studied two types of semantics, the first one
given by tables with fuzzy attributes and the second one given by ranked tables
over domains with similarities. We proved that these types of semantics have
the same semantic entailment. In [4], we introduced a logical calculus, called
fuzzy attribute logic, for reasoning with fuzzy attribute implications. We proved
its syntactico-semantical completeness, both in the ordinary style (“provable =
semantically entailed”) and in the graded style (“degree of provability = de-
gree of semantical entailment”). In [5], we presented further results on fuzzy
attribute logic. For our present purpose, the most important result of [5] is an
invention of a single deduction rule, called a rule of multiplication, which has
the following property: Adding the rule of multiplication to an ordinary system
of Armstrong axioms (Armstrong axioms are, in fact, deduction rules) yields a
syntactico-semantically complete system for reasoning with fuzzy attribute im-
plications. The main aim of the present paper is to focus in more detail on the
rule of multiplication and its role in fuzzy attribute logic. As emphasized in [5],
the rule of multiplication allows one to consider fuzzy attribute logic as consist-
ing of a system of “ordinary Armstrong rules” plus a single “fuzzy rule” (which
is the rule of multiplication). We will show that in addition to this role which
is more or less an aesthetic one, the rule of multiplication has also its practical
role. Among other things, its properties allow us to almost automatically transfer
results known from the ordinary case. As an example, we focus on the problem
of normalization of proofs and present, in the setting of fuzzy attribute logic,
a counterpart to a well-known theorem from database theory saying that each
proof can be transformed to a RAP-sequence.

The paper is organized as follows. Section 2 surveys preliminaries from fuzzy
sets and fuzzy logic. Fuzzy attribute logic and its completeness is presented
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in Section 3. Section 4 deals with the rule of multiplication and related issues.
Section 5 presents conclusions.

2 Preliminaries

This section surveys preliminaries from fuzzy sets and fuzzy logic. Further details
can be found, e.g., in [2,14,16]. As a structure of truth degrees, i.e., a set of truth
degrees equipped with truth functions of logical connectives, we use complete
residuated lattices with a truth-stressing hedge (shortly, a hedge) [14,15], i.e.,
algebras L = 〈L, ∧, ∨, ⊗, →, ∗, 0, 1〉 such that 〈L, ∧, ∨, 0, 1〉 is a complete lattice
with 0 and 1 being the least and greatest element of L, respectively; 〈L, ⊗, 1〉 is a
commutative monoid (i.e., ⊗ is commutative, associative, and a ⊗ 1 = 1 ⊗ a = a
for each a ∈ L); ⊗ and → satisfy a ⊗ b ≤ c iff a ≤ b → c for each a, b, c ∈ L
(adjointness property); hedge ∗ satisfies 1∗ = 1, a∗ ≤ a, (a → b)∗ ≤ a∗ → b∗,
a∗∗ = a∗ for each a, b ∈ L. Elements a of L are called truth degrees. ⊗ and →
are (truth functions of) “fuzzy conjunction” and “fuzzy implication”. Hedge ∗

is a (truth function of) logical connective “very true”, see [14,15].
A favorite choice of L is a structure with L = [0, 1] or a subchain of [0, 1],

equipped with well-known pairs of ⊗ (t-norms or restrictions of t-norms) and
the corresponding → (residuum to ⊗).

Two boundary cases of (truth-stressing) hedges are (i) identity, i.e., a∗ = a
(a ∈ L); (ii) globalization [19]: 1∗ = 1 and a∗ = 0 for a < 1. A special case
of a complete residuated lattice with hedge is the two-element Boolean algebra
〈{0, 1}, ∧, ∨, ⊗, →, ∗, 0, 1〉, denoted by 2, which is the structure of truth degrees
of classical logic. That is, the operations ∧, ∨, ⊗, → of 2 are the truth functions
(interpretations) of the corresponding logical connectives of the classical logic
and 0∗ = 0, 1∗ = 1. Note that if we prove an assertion for general L, then, in
particular, we obtain a “crisp version” of this assertion for L being 2.

Having L, we define usual notions of an L-set (fuzzy set), L-relation (fuzzy
relation), etc. LU denotes the collection of all L-sets in U . Given A, B ∈ LU , we
define a subsethood degree

S(A, B) =
∧

u∈U

(
A(u) → B(u)

)
, (1)

which generalizes the classical subsethood relation ⊆. S(A, B) represents a de-
gree to which A is a subset of B. In particular, we write A ⊆ B iff S(A, B) = 1.
As a consequence, A ⊆ B iff A(u) ≤ B(u) for each u ∈ U .

3 Fuzzy Attribute Logic and Its Completeness

We now introduce basic concepts of fuzzy attribute logic (FAL). Suppose Y is
a finite set of attributes. A (fuzzy) attribute implication (over attributes Y ),
shortly FAI, is an expression A ⇒ B, where A, B ∈ LY (A and B are fuzzy sets
of attributes). Fuzzy attribute implications are the basic formulas of FAL.

The next step is the semantics of FAL given by interpreting FAIs in data tables
with fuzzy attributes. The intended meaning of A ⇒ B is: “if it is (very) true that
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Table 1. Data table with fuzzy attributes

I y1 y2 y3 y4 y5 y6

x1 1.0 1.0 0.0 1.0 1.0 0.2
x2 1.0 0.4 0.3 0.8 0.5 1.0
x3 0.2 0.9 0.7 0.5 1.0 0.6
x4 1.0 1.0 0.8 1.0 1.0 0.5

X = {x1, . . . , x4}

Y = {y1, . . . , y6}

an object has all attributes from A, then it has also all attributes from B” with the
logical connectives being given by L. A data table with fuzzy attributes can be seen
as a triplet 〈X, Y, I〉 where X is a set of objects, Y is a finite set of attributes (the
same as above in the definition of a fuzzy attribute implication), and I ∈ LX×Y

is a binary L-relation between X and Y assigning to each object x ∈ X and each
attribute y ∈ Y a degree I(x, y) to which x has y. 〈X, Y, I〉 can be thought of as
a table with rows and columns corresponding to objects x ∈ X and attributes
y ∈ Y , respectively, and table entries containing degrees I(x, y), see Tab. 1. A row
of a table 〈X, Y, I〉 corresponding to an object x ∈ X can be seen as a fuzzy set
Ix of attributes to which an attribute y ∈ Y belongs to a degree Ix(y) = I(x, y).
Forgetting now for a while about the data table, any fuzzy set M ∈ LY can be
seen as a fuzzy set of attributes of some object with M(y) being a degree to which
the object has attribute y. For a fuzzy set M ∈ LY of attributes, we define a degree
||A ⇒ B||M ∈ L to which A ⇒ B is true in M by

||A ⇒ B||M = S(A, M)∗ → S(B, M). (2)

It is easily seen that if M is a fuzzy set of attributes of some object x then
||A ⇒ B||M is the degree to which “if it is (very) true that x has all attributes
from A then x has all attributes from B”. For a system M of L-sets in Y , define
a degree ||A ⇒ B||M to which A ⇒ B is true in (each M from) M by

||A ⇒ B||M =
∧

M∈M ||A ⇒ B||M . (3)

Finally, given a data table 〈X, Y, I〉 and putting M = {Ix | x ∈ X}, ||A ⇒ B||M
is a degree to which it is true that A ⇒ B is true in each row of table 〈X, Y, I〉,
i.e., a degree to which “for each object x ∈ X : if it is (very) true that x has all
attributes from A, then x has all attributes from B”. This degree is denoted by
||A ⇒ B||〈X,Y,I〉 and is called a degree to which A ⇒ B is true in data table
〈X, Y, I〉.
Remark 1. (1) For a fuzzy attribute implication A ⇒ B, both A and B are fuzzy
sets of attributes. Particularly, both A and B can be crisp (i.e., A(y) ∈ {0, 1} and
B(y) ∈ {0, 1} for each y ∈ Y ). Ordinary attribute implications (association rules,
functional dependencies) are thus a special case of fuzzy attribute implications.

(2) For a fuzzy attribute implication A ⇒ B, degrees A(y) ∈ L and B(y) ∈ L
can be seen as thresholds. This is best seen when ∗ is globalization, i.e., 1∗ = 1
and a∗ = 0 for a < 1. Since for a, b ∈ L we have a ≤ b iff a → b = 1, we have

(a → b)∗ =
{

1 iff a ≤ b,
0 iff a �≤ b.
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Therefore, ||A ⇒ B||〈X,Y,I〉 = 1 means that a proposition “for each object x ∈ X :
if for each attribute y ∈ Y , x has y in degree greater than or equal to (a threshold)
A(y), then for each y ∈ Y , x has y in degree at least B(y)” has a truth degree
1 (is fully true). In general, ||A ⇒ B||〈X,Y,I〉 is a truth degree of the latter
proposition. As a particular example, if A(y) = a for y ∈ YA ⊆ Y (and A(y) = 0
for y �∈ YA) B(y) = b for y ∈ YB ⊆ Y (and B(y) = 0 for y �∈ YB), the proposition
says “for each object x ∈ X : if x has all attributes from YA in degree at least a,
then x has all attributes from YB in degree at least b”, etc. That is, having A and
B fuzzy sets allows for a rich expressibility of relationships between attributes
which is why we want A and B to be fuzzy sets in general.

We are now coming to the concept of semantic entailment. For simplicity, we
consider ordinary sets of FAIs as theories in FAL, i.e., a theory in FAL is a set
T of FAIs. Note that more generally, one can consider fuzzy sets of FAIs which
is more in the spirit of fuzzy logic, see [5,10]. For a theory T , the set Mod(T ) of
all models of T is defined by

Mod(T ) = {M ∈ LY | for each A ⇒ B ∈ T : ||A ⇒ B||M = 1}.

Therefore, M ∈ Mod(T ) means that each A ⇒ B from T is fully true in M .
Then, a degree ||A ⇒ B||T ∈ L to which A ⇒ B semantically follows from a set
T of attribute implications is defined by

||A ⇒ B||T =
∧

M∈Mod(T ) ||A ⇒ B||M .

That is, ||A ⇒ B||T can be seen as a truth degree of “A ⇒ B is true in each
model of T ”.

Consider now the following system of deduction rules:

(Ax) infer A ∪ B ⇒ A,
(Cut) from A ⇒ B and B ∪ C ⇒ D infer A ∪ C ⇒ D,
(Mul) from A ⇒ B infer c∗ ⊗ A ⇒ c∗ ⊗ B,

for each A, B, C, D ∈ LY , and c ∈ L. Rules (Ax)–(Mul) are to be understood as
usual deduction rules: having FAIs which are of the form of FAIs in the input
part (the part preceding “infer”) of a rule, a rule allows us to infer (in one
step) the corresponding fuzzy attribute implication in the output part (the part
following “infer”) of a rule. (Ax) is a nullary rule (axiom) which says that each
A ∪ B ⇒ A (A, B ∈ LY ), i.e., each C ⇒ D with D ⊆ C, can be inferred in one
step.

As usual, a FAI A ⇒ B is called provable from a set T of fuzzy attribute
implications using a set R of deduction rules, written T �R A ⇒ B, if there is a
sequence ϕ1, . . . , ϕn of fuzzy attribute implications such that ϕn is A ⇒ B and
for each ϕi we either have ϕi ∈ T or ϕi is inferred (in one step) from some of the
preceding formulas (i.e., ϕ1, . . . , ϕi−1) using some deduction rule from R. If R
consists of (Ax)–(Mul), we say just “provable . . . ” instead of “provable . . . using
R” and write just T � A ⇒ B instead of T �R A ⇒ B. The following theorem
was proved in [5].
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Theorem 1 (completeness). Let L and Y be finite. Let T be a set of fuzzy
attribute implications. Then

T � A ⇒ B iff ||A ⇒ B||T = 1.
��

Therefore, A ⇒ B is provable from T iff A ⇒ B semantically follows from T in
degree 1.

4 Properties and Role of the Rule of Multiplication

Rule (Mul) is called a rule of multiplication. System (Ax)–(Mul) improves a
previously known complete system presented in [4]. Namely, the system in [4]
consists of the following deduction rules:

(Ax’) infer A ⇒ S(B, A) ⊗ B,
(Wea’) from A ⇒ B infer A ∪ C ⇒ B,
(Cut’) from A ⇒ e ⊗ B and B ∪ C ⇒ D infer A ∪ C ⇒ e∗ ⊗ D

for each A, B, C, D ∈ LY , and e ∈ L.
Comparing (Ax)–(Mul) to (Ax’)–(Cut’), we can see the following distinction.

(Ax)–(Mul) results by directly taking two ordinary Armstrong rules, namely
(Ax) and (Cut), and by adding a new “fuzzy rule”, namely (Mul). In more
detail, rules “infer A ∪ B ⇒ A” and “from A ⇒ B and B ∪ C ⇒ D infer
A ∪ C ⇒ D” with A, B, C, D being ordinary sets of attributes are well-known
ordinary Armstrong rules, see e.g. [17]. Therefore, (Ax) and (Cut) are just these
rules with sets replaced by fuzzy sets. Rule (Mul) is a new rule. In the ordinary
setting, (Mul) is trivial since it reads “from A ⇒ B infer A ⇒ B” when c = 1 and
“from A ⇒ B infer ∅ ⇒ ∅” when c = 0 (this is easily seen because the only hedge
∗ in the ordinary setting is the identity mapping). On the other hand, (Ax’)–
(Cut’) result by modifying ordinary rules. For instance, (Cut’) results from the
above ordinary rule “from A ⇒ B and B ∪ C ⇒ D infer A ∪ C ⇒ D” (with
A, B, C, D being ordinary sets) by replacing sets by fuzzy sets and by inserting
multiplication by truth degrees e and e∗.

The first apparent advantage of system (Ax)–(Mul) is thus aesthetic. System
(Ax)–(Mul) can be seen as having two parts, the “ordinary one” consisting of
ordinary rules (Ax) and (Cut), and the “fuzzy one” consisting of (Mul). Intu-
itively, it therefore keeps separated the “ordinary” and the “fuzzy part” with the
rule of multiplication “taking care of fuzziness”. We are now going to show that
there are practical advantages of keeping the ordinary and fuzzy rules separated
as well.

The first example is an easily observable fact mentioned already in [5] that
if ∗ is globalization, (Mul) can be omitted. Namely, for c = 1, (Mul) becomes
“from A ⇒ B infer A ⇒ B” which does not yield anything new. For c < 1,
(Mul) becomes “from A ⇒ B infer ∅ ⇒ ∅” but ∅ ⇒ ∅ can be inferred using (Ax)
and so (Mul) can be omitted. In the rest of our paper, we are concerned with
properties of the rule of multiplication related to the structure of proofs in FAL.
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Let us say that (Mul) commutes (backwards) with a rule (R) of the form “from
A1 ⇒ B1, . . . , An ⇒ Bn infer A ⇒ B” if any FAI C ⇒ D which results by first
inferring A ⇒ B from A1 ⇒ B1, . . . , An ⇒ Bn, using (R) and then inferring
C ⇒ D from A ⇒ B using (Mul) can be obtained by first inferring C1 ⇒ D1,
. . . , Cn ⇒ Dn, from A1 ⇒ B1, . . . , An ⇒ Bn, using (Mul), respectively, and
then inferring C ⇒ D from C1 ⇒ D1, . . . , Cn ⇒ Dn, using (R).

A practical meaning of commutativity of (Mul) with (R) is that in proofs,
one can change the order of rules (Mul) and (R) from “first (R), then (Mul)” to
“first (Mul), then (R)”.

Lemma 1 (commutativity of (Mul)). (Mul) commutes with both (Ax) and
(Cut).

Proof. Commutativity with (Ax): Let c∗ ⊗ (A ∪ B) ⇒ c∗ ⊗ A result by first
inferring A∪B ⇒ A by (Ax) and then inferring c∗ ⊗ (A∪B) ⇒ c∗ ⊗A from A∪
B ⇒ A by (Mul). In this case, c∗⊗(A∪B) ⇒ c∗⊗A can be obtained by applying
(Mul) 0-times (i.e., not applying at all) and then inferring c∗⊗ (A∪B) ⇒ c∗ ⊗A
by (Ax) since c∗ ⊗ (A∪B) = (c∗ ⊗A)∪ (c∗ ⊗B) and thus, c∗ ⊗ (A∪B) ⇒ c∗ ⊗A
is of the form C ∪ D ⇒ C.

Commutativity with (Cut): Let c∗ ⊗ (A∪C) ⇒ c∗ ⊗D result by first inferring
A∪C ⇒ D from A ⇒ B and B∪C ⇒ D, and then inferring c∗⊗(A∪C) ⇒ c∗⊗D
from A ∪ C ⇒ D by (Mul). Then, one can first infer c∗ ⊗ A ⇒ c∗ ⊗ B and
c∗ ⊗ (B ∪ C) ⇒ c∗ ⊗ D from A ⇒ B and B ∪ C ⇒ D by (Mul), respectively.
Since c∗⊗(B∪C) = (c∗⊗B)∪(c∗⊗C), and c∗⊗(A∪C) = (c∗⊗A)∪(c∗⊗C), one
can infer c∗⊗ (A∪C) ⇒ c∗ ⊗D from c∗⊗A ⇒ c∗⊗B and c∗⊗ (B ∪C) ⇒ c∗⊗D
using (Cut). ��

Another property of (Mul) is the following one.

Lemma 2 (idempotency of (Mul)). Two (or more) consecutive inferences
by (Mul) can be replaced by a single inference by (Mul).

Proof. Suppose we start with A ⇒ B, apply (Mul) to infer c∗ ⊗A ⇒ c∗ ⊗B and
then apply (Mul) again to infer d∗ ⊗ c∗ ⊗ A ⇒ d∗ ⊗ c∗ ⊗ B. Then, the assertion
follows by observing that d∗ ⊗ c∗ = (d∗ ⊗ c∗)∗. Indeed, d∗ ⊗ c∗ ⊗A ⇒ d∗ ⊗ c∗ ⊗B
is then of the form a∗ ⊗ A ⇒ a∗ ⊗ B, with a = d∗ ⊗ c∗. It remains to prove
d∗ ⊗ c∗ = (d∗ ⊗ c∗)∗. “≥” follows directly from subdiagonality of ∗, i.e., from
b∗ ≤ b. “≤” is equivalent to d∗ ≤ c∗ → (d∗ ⊗ c∗)∗ which is true. To see this,
observe that d∗ ≤ c∗ → (d∗ ⊗ c∗) from which we get

d∗ = d∗∗ ≤ (c∗ → (d∗ ⊗ c∗))∗ ≤ c∗∗ → (d∗ ⊗ c∗)∗ = c∗ → (d∗ ⊗ c∗)∗.

��

The above-observed commutativity of (Mul) has the following consequence.

Theorem 2 (normal form of proofs in FAL). If A ⇒ B is provable from T
using (Ax)–(Mul), then there exists a proof A1 ⇒ B1, . . . , An ⇒ Bn of A ⇒ B
from T using (Ax)–(Mul) and integers 1 ≤ k ≤ l ≤ n such that
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1. for i = 1, . . . , k, we have Ai ⇒ Bi ∈ T ,
2. for i = k+1, . . . , l, Ai ⇒ Bi results by application of (Mul) to some Aj ⇒ Bj

with 1 ≤ j ≤ k,
3. for i = l+1, . . . , n, Ai ⇒ Bi results by application of (Ax) or (Cut) to some

Aj ⇒ Bj’s with 1 ≤ j < i.

Proof. The proof follows by induction from Lemma 1 and Lemma 2, we omit
details. ��

According to Theorem2, each proof from T in FAL can be transformed to a proof
which starts by formulas from T , continues by applications of (Mul) to these
formulas, and then by applications of (Ax) and (Cut) to preceding formulas.
Therefore, the part of the proof which uses “ordinary rules” (Ax) and (Cut) is
separated from the part which uses “fuzzy rule” (Mul).

Another way of formulating Theorem2 is the following. Denote

T ∗ = {c∗ ⊗ A ⇒ c∗ ⊗ B | A ⇒ B ∈ T, c ∈ L}.

Then we have

Theorem 3 (provable from T =provable from T ∗ using ordinary rules).
A ⇒ B is provable from T using (Ax)–(Mul) iff A ⇒ B is provable from T ∗

using ordinary rules (Ax) and (Cut).

Proof. Easy consequence of Theorem2 and definitions. ��

As an application of the presented results, we now present an analogy of a well-
known theorem from relational databases saying that each proof of a functional
dependence can be transformed into a RAP-sequence. Due to lack of space, we
omit discussion on ramifications of this theorem and refer to [17]. Consider the
following deduction rules:

(Ref) infer A ⇒ A,
(Acc) from A ⇒ B ∪ C and C ⇒ D ∪ E infer A ⇒ B ∪ C ∪ D,
(Pro) from A ⇒ B ∪ C infer A ⇒ B,

for each A, B, C, D, E ∈ LY . The rules result from the well-known ordinary rules
of reflexivity, accumulation, and projectivity by replacing sets with fuzzy sets,
see [17]. An MRAP-sequence for A ⇒ B from T is a proof of A ⇒ B from T
using (Mul), (Ref), (Acc), (Pro), such that

1. the proof starts with FAIs from T ,
2. continues with FAIs which result by application of (Mul) to formulas from 1.,
3. continues with A ⇒ A,
4. continues with formulas which result by application of (Acc) to formulas

from 1., 2., and 3.,
5. ends with application of (Pro) which results in A ⇒ B, the last member of

the proof.
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Theorem 4 (MRAP-sequence theorem). If A ⇒ B follows from T in de-
gree 1, then there exists an MRAP-sequence for A ⇒ B from T .

Proof. Sketch: If A ⇒ B follows from T in degree 1, then there exists a proof
of A ⇒ B from T by Theorem1. According to Theorem2, this proof can be
transformed into a normal form described in Theorem2. The transformed proof
starts with a sequence A1 ⇒ B1, . . . , Al ⇒ Bl which satisfies conditions 1. and 2.
of an MRAP-sequence (formulas from T and formulas resulting by application of
(Mul)) and continues with a sequence Al+1 ⇒ Bl+1, . . . , in which only (Ax) and
(Cut) are used. It can be shown that the latter sequence can be transformed into
a sequence which uses only rules (Ref), (Acc), and (Pro). Since these rules are
just “ordinary rules” with ordinary sets replaced by fuzzy sets, one can repeat
the ordinary proof, verbatim, see e.g. [17, Theorem 4.2]), showing that sequence
Al+1 ⇒ Bl+1, . . . , can be transformed into a sequence starting with A ⇒ A,
continuing by applications of (Acc), and ending with an application of (Pro)
which yields A ⇒ B. Altogether, this gives an MRAP-sequence for A ⇒ B. ��

5 Concluding Remarks

We showed properties of the rule of multiplication in FAL related to the struc-
ture of proofs. Proofs in FAL are both of theoretical and practical interest (for
instance, proofs are used in algorithms testing redundancy of a set of FAIs, see
e.g. [9]). As an application of the properties, we presented theorems concerning
normal forms of proofs in FAL. The main benefit of our approach is that sep-
arating a system for FAL into an “ordinary part” and a “fuzzy part”, which is
represented by the rule of multiplication, enables us to use automatically results
known from the ordinary case (from the theory of relational databases, formal
concept analysis, etc.). Due to the existing relationship to database interpreta-
tion of FAIs described above, our results apply to reasoning about functional
dependencies in fuzzy setting as well, see e.g. [7] and [11] for comparison of some
approaches.

Other issues which we did not present due to the limited scope and issues for
further research include

– further properties of the rule of multiplication,
– rule of multiplication in Pavelka-style FAL, see [10],
– further study of the possibility to automatically convey ordinary results to

fuzzy setting,
– this includes a more rigorous treatment of issues like the relationship between

ordinary deduction rules and their counterparts resulting by replacing sets
by fuzzy sets (this was described more or less intuitively in our paper due to
lack of space),

– as a long-term goal, a further study of data dependencies in a fuzzy setting.
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Abstract. In this contribution, we will recall graded fuzzy rules intro-
duced in [5] and explain the difference from the classical fuzzy rules.
Moreover, properties of formulae, which are used to formalize the graded
fuzzy rules, will be recalled.

1 Introduction

Let us consider knowledge-based systems of the following two forms:

DisK : C1 OR . . . OR Ck,
ConK : C1 AND . . . AND Ck,

where AND (OR) relates to conjunction (disjunction), and Ci, i = 1, . . . , k, are
linguistic expressions. These expressions can have different character. The clos-
est to the practice are knowledge-based systems embodying pieces of knowledge
about some complex object or physical system in concern. This system is as-
sumed to be utterable as an relational dependence between two universes of the
discourse in the special unified form DisK or ConK, where in each Ci, the par-
ticular piece of knowledge from the input space is joined with the one from the
output space. Since the very beginning [23], the three distinct approaches (dual
in some sense) to integration of such pieces of knowledge were pushed ahead:

Dis : (x ∈ A1 and y ∈ B1) OR . . . OR (x ∈ Ak and y ∈ Bk),
Con1 : (x ∈ A1 or y ∈ B1) AND . . . AND (x ∈ Ak or y ∈ Bk),
Con2 : (If x ∈ A1 then y ∈ B1) AND . . . AND (If x ∈ Ak then y ∈ Bk),

where “x ∈ A” is in the sense of [11], and (or) relates to strong conjunction (strong
disjunction). In this special case, each elementary part Ci will be called fuzzy rule.

A collection of fuzzy rules incorporates the vagueness of Ai, Bi that comes in
degrees and the interpretation of the connectives can carry these degrees in ap-
propriate way. In addition, there may exist a certain amount of dubiousness over
the particular fuzzy rules. This is reflected by introducing certain degrees that
equip the respective rules. A collection of graded fuzzy rules can be visualized in
the spirit of [18] (using the same notation as for evaluated formulae)

GDis : f1�/(x ∈ A1 and y∈B1) OR . . . OR fk�/(x ∈ Ak and y ∈ Bk),
GCon1 : f1�/(x ∈ A1 or y∈B1) AND . . . AND fk�/(x ∈ Ak or y ∈ Bk),
GCon2 : f1�/(If x∈A1 then y ∈ B1) AND . . . AND fk�/(If x∈Ak then y ∈ Bk),
GCon3 : f1�/(If x∈A1 then y ∈ B1) AND . . . AND fk�/(If x ∈ Ak then y ∈ Bk),

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 481–490, 2007.
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where the particular graded rule f�/A means “A is valid at most to the degree
f”, analogously, f�/A reads as “A is valid at least to the degree f”, and the
degrees f1, . . . , fk belong to some structure for the truth values.

In this contribution, we are going to present appropriate formalization of GDis,
GCon1–3 inside a suitable logic, i.e. formulae that fits to the interpretation of
the collection of graded fuzzy rules. Then, we will recall the formalization of
Dis, Con1–2 and compare them with the formalization of GDis, GCon1–3. In the
last part we will concentrate on properties of an approximate reasoning over the
collection of graded fuzzy rules using an appropriate rule of inference.

2 Background Logic

A suitable logical system should incorporates strong conjunction &, lattice con-
junction ∧, implication → having the properties specified by schemata of the
axioms of MTL, involutive negation ∼, i.e. satisfying the following formula:

(N1) (∼∼ ϕ) ↔ ϕ,

and the truth constant 0̄. In such a system, the following derived connectives
can be introduced

¬ϕ ≡df ϕ → 0̄ negation
ϕ∇ψ ≡df ∼ ((∼ ϕ)&(∼ ψ)) strong disjunction

ϕ ⇒ ψ ≡df (∼ ϕ)∇ψ S-implication
ϕ ∨ ψ ≡df [(ϕ → ψ) → ψ] ∧ [(ψ → ϕ) → ϕ] disjunction
ϕ ↔ ψ ≡df (ϕ → ψ)&(ψ → ϕ) equivalence

Since MTL contains most of these connectives and schemata of the axioms, it
is a good starting point for the additional extension by an involutive negation
resulting as SMTL� (introduced in [10]) to which we will assign the role of the
background logic. This extension is analogous to the one presented in [9].

2.1 Syntax and Semantics

We will work with the multi-sorted predicate logic MTL�∀. It includes the
language J with sorts s1, . . . , sn, a non-empty set of predicates of any type, a set
of object constants, object variables xi, yi, zi, . . . of the sorts si, i = 1, . . . , n, a
set of connectives {∧, &, →, �}, truth constants 0̄ and 1̄ ≡df 0̄ → 0̄, quantifiers
∀, ∃ and does not include functional symbols. Terms are object variables and
object constants.

MTL�∀ consists of the axioms of MTL� for connectives together with the
axioms on quantifiers. The deduction rules are modus ponens, generalization
rule and �-necessitation. For the details we refer to [8].

Let us extend the language J of MTL∀ by the new unary connective ∼, which
will have the highest priority, and the set of axioms of MTL∀ by (N1) and

(N2) � (ϕ → ψ) → �((∼ ψ) → (∼ ϕ)).
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The resulting extension will be denoted by SMTL�∀. As above, definable connec-
tives are {¬, ∇, ⇒, ∨, ↔}. The above extension within the propositional MTL�
will be denoted by SMTL�. Terms and formulae are build in the usual way.

Interpretation of the connectives {∧, &, →} is given by the corresponding
operations {∩, ∗, →∗}, and the constant 0̄ is interpreted as 0, which together
form an MTL-algebra L = 〈L, ∩, ∪, ∗, →∗, 0, 1〉. Moreover, the interpretation of
∼ will be denoted by ′ defined as x′ = 1 − x for all x ∈ L. Recall that the truth
function for � is the following

�(x) =
{

1, if x = 1;
0, otherwise.

An L-structure for the language J is of the form

M = 〈(Di)for si , (rP )P−predicate, (mc)c−constant〉,

where D1, . . . , Dn are non-empty sets of objects, rP is an L-fuzzy relation of the
respective type and mc belongs to Di provided that c is of the type si.

In analogy with the construction of [9] for SBL�, the completeness of SMTL�
can be shown (see Theorem 3.7 in [10]) and afterwards extended to SMTL�∀ as
in [8] (see Theorem 7 for the completeness of MTL∀).

Lemma 1. In SMTL�, the following formulae are provable:

(ϕ ⇒ ψ) ↔ (∼ ψ ⇒∼ ϕ), (1)
(ϕ ⇒ ψ) ↔∼ (ϕ& ∼ ψ), (2)

(¬ϕ) → (∼ ϕ), (3)
∼ (ϕ ∧ ψ) ↔ (∼ ψ∨ ∼ ϕ), (4)
∼ (ϕ ∨ ψ) ↔ (∼ ψ∧ ∼ ϕ), (5)

((ϕ&ψ) → χ) → (∼ χ → (ϕ ⇒∼ ψ)), (6)
ψ → (ϕ ⇒∼ (ϕ →∼ ψ)), (7)
ψ → ((ϕ →∼ ψ) ⇒∼ ϕ), (8)

(ϕ ∨ ψ) → (ϕ∇ψ). (9)

Moreover, in SMTL� the following is derived inference rule:

(CP )
ϕ → ψ

∼ ψ →∼ ϕ

2.2 Formulae as Graded Theorems

In the following, we will prove so called graded theorems (for the first time
introduced in [12] as stated in [2]). It means that instead of the usual formulation
“If � ϕ then � ψ”, we are going to find n ∈ N for which � ϕn → ψ.

Whenever we do know � ϕn → ψ and � ϕ then we can derive � ψ easily,
however, it is not such a simple case when we proceed the other way round.
Hence, the formula � ϕn → ψ is more general and it can be read as
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“Formula ψ is valid at least to the degree of ϕn.”

Of course the previous free reading relates to the notion of truth degrees of ϕ
and ψ in the particular model.

Notice that the existence of n follows from the deduction theorem (Theo-
rem 2.2.18 in [13]) and the general method of its estimation is related to the
concrete proof (or proofs) – the way of using ϕ as an assumption.

3 Logical Insight to Graded Fuzzy Rules

The notion of gradual rule has been introduced in [7] and [6]. Their authors
distinguish between gradual rules, certainty rules and their mixture. The gradu-
alness is connected with the properties of implication, certainty with the strong
disjunction, and the rules are not equipped with additional truth value as it is
in our case. The rules specified by the authors of [7,6] are special cases of our
graded rules. We simply take all values fi = 0 (where 0 is associated to the
truth constant for the falsity in a structure of truth values) and modify Ai, Bi

by means of involutive negation in GCon1, 2.
In this work, we interpret GDis and GCon1, 2 by formulae of predicate fuzzy

logic. The weight f is obtained from the latter as well. For example, let us
consider a rule

R ≡ (x ∈ A) and (y ∈ B),

which will be interpreted by a formula A(x)&B(y). Moreover, we can suppose its
verity to be supported by examples D = {(ci, di)| i ∈ I}, where (ci, di) are some
object constants of the corresponding language. To each data from D is assigned
a weight that impacts the value f in which R is satisfied. We may assume that
the weight ωi of (ci, di) is given as a truth value of A(ci)&B(di). Note that ωi

need not be produced necessarily on the basis of definable formula. The final
value f of R is produced on the basis of knowledge about the data set D with
respect to the structure of R. In this example, we take f = maxi∈I ωi and we
obtain the graded rule 〈at most 〉f/R.

3.1 Formalization of Graded Fuzzy Rules

First, let us recall special formulae (known as normal forms introduced by Per-
filieva in [19]), which we will use to formalize collection of graded fuzzy rules.

Conventions 1. For the sake of brevity, let us denote

[x1, . . . , xn] by x̄
{R1, . . . , Rn} by R̄

(R1(x1, y1)& · · · &Rn(xn, yn)) by R(x̄, ȳ)

Analogous shortenings we use for any other binary predicate or variable. More-
over, let us suppose n > 1, p ∈ N such that 1 ≤ p ≤ n−1, and x̄p = [x1, . . . , xp],
ȳp = [xp+1, . . . , xn], d̄i = [ci1 , . . . , cip ], and ēi = [cip+1 , . . . , cin ].
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Definition 1. Let k ∈ N and Ik = {1, . . . , k} and let the language Jk be an
extension of J(SMTL�∀) by

(a) a finite set of n-tuples of object constants {c̄i = [ci1 , . . . , cin ] | i ∈ Ik}, where
each cij is of the sort sj for all j = 1, . . . , n,

(b) binary predicate symbols R1, . . . , Rn, each Ri of the type 〈si, si〉,
(c) and an n-ary predicate F of the type 〈s1, . . . , sn〉.

We define the following formulae

DNFF,k(x̄) ≡df

∨

i∈Ik

(R(c̄i, x̄)&F (c̄i)), (10)

CNF1
F,k(x̄) ≡df

∧

i∈Ik

(R(x̄, c̄i)∇F (c̄i)), (11)

CNF2
F,k(x̄) ≡df

∧

i∈Ik

(R(x̄, c̄i) → F (c̄i)), (12)

CNF3
F,k(x̄) ≡df

∧

i∈Ik

(R(x̄, c̄i) ⇒ F (c̄i)), (13)

CNF4
F,k(x̄) ≡df

∧

i∈Ik

(F (c̄i) → (R(x̄p, d̄i) → R(ȳp, ēi)). (14)

Let x̄ consist of all free variables of ϕ and ψ, and moreover, ȳ be substitutable
for x̄ in ϕ and ψ. We define the following formulae:

ExtR̄ ϕ ≡df (∀x̄, ȳ)[(R(x̄, ȳ)&ϕ(x̄)) → ϕ(ȳ)] R̄-extensionality
ϕ ⊆ ψ ≡df (∀x̄)(ϕ(x̄) → ψ(x̄)) inclusion
ϕ ≈ ψ ≡df (∀x̄)(ϕ(x̄) ↔ ψ(x̄)) bi-inclusion

TransR ≡df (∀x, y, z)[(Rxy&Ryz) → Rxz] transitivity

Let us assume n = 2. Then a partial knowledge formalized by (10) can be inter-
preted as a collection of k graded fuzzy rules GDis, where x ∈ Ai is formalized
by R1(ci1 , x1), y ∈ Bi by R2(ci2 , x2), and the degree fi by F (ci1 , ci2). Moreover,
the part “at most to the degree” is realized using & in DNF. Indeed, since & is
in residuated lattice interpreted by ∗, the latter immediately follows from the
inequality x ∗ y ≤ y for all x, y from the respective support. Hence, the truth
value of the i’th disjunct in DNF will never exceed the truth value associated to
F (ci1 , ci2) for an arbitrary M-valuation of the object variables.

Analogously, the formula (12) formalizes GCon2, where x ∈ Ai is now formal-
ized by R1(x1, ci1), y ∈ Bi by R2(x2, ci2), and the degree fi by F (ci1 , ci2). The
part “at least to the degree” is connected with → in CNF1. Observe that in any
residuated lattice → is interpreted by →∗ and the inequality y ≤ x →∗ y holds
for all x, y. Therefore, the truth value of the i’th conjunct in CNF1 will never
fall under the truth value associated to F (ci1 , ci2). Above, we have spoken about
the gradualness only w.r.t. fuzzy rules and it needs to be pointed out that on the
level of syntax, we deal with (10) and (12), i.e. the formulae in the usual sense.

In any residuated lattice also x →∗ y ≤ x is valid, hence, (14) formalizes
GCon3. The remaining formula (11) formalizes GCon1 and (13) formalizes GCon2.
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In fact (11) and (13) become equivalent whenever assume different R’s in these
formulae, moreover, they are dual to (10) by means of ∼, and (10) dual to (12) for
the extensional F by means of adjunction property but they are not equivalent
in general. Because of this fact, we will omit the detailed study of (11) and (13)
in the rest of this paper, and we leave it as an exercise to the reader.

Let me add the last comment relating to (14). One may be surprised that
there are a good reasons to study this formula. They follow from the study of
the “greatest” and “smallest” R̄ such that F is extensional w.r.t. R̄. A brief
introduction is contained in [4].

3.2 Formalization of Fuzzy Rules and Its Relationship to Graded
Fuzzy Rules

Let us now explain, how are fuzzy rules related to their graded variants. Because
of the equivalence explained above, we will focus only on Dis and Con2. First,
let us recall formulae interpreting these fuzzy rules in SMTL�∀.

Definition 2. Under the assumptions of Definition 1, we define the following
formulae

DNFk(x̄) ≡df

∨

i∈Ik

(R(d̄i, x̄p)&R(ȳp, ēi)), (15)

CNFk(x̄) ≡df

∧

i∈Ik

(R(x̄p, d̄i) → R(ȳp, ēi)). (16)

Note that (10) becomes equivalent to (15) simply by taking F (x̄) ≡df 1̄. Taking
into the consideration (14), we have immediate relationship by taking again
F (x̄) ≡df 1̄. In the case of (12), the situation is more complicated. Each R(ȳp, ēi)
needs to be lifted by F (c̄i) as follows

�
∧

i∈Ik

(R(x̄, c̄i) → F (c̄i) ↔
∧

i∈Ik

(R(x̄p, d̄i) → (R(ȳp, ēi)) → F (c̄i)),

where the formula on the righthand-side is in the form of CNF2
k. Unfortunately,

it is not possible to proceed other way round to receive (12). If ¬ would satisfy
the law of double negation then we could have taken F (x̄) ≡df 0̄ to receive
one-to-one correspondence between (12) and (16).

4 Graded Fuzzy Rules in Practise

4.1 Logical Approximation

In this subsection, we will take the results from [19], weaken the requirements
and reformulate these results in accordance with a methodology manifested in
[2], i.e. in the form of graded theorems. These results are in the scope of the
logical approximation, which is a theory aiming at studying properties of a class
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of formulae in an simplified form relating to some initial formula. There, the
significant role is played by a formula of the form ε → (ϕ ↔ ϕS) called condi-
tional equivalence (graded theorem of the special form). We may interpret it as
a lower bounded or graded equivalence between the given formula ϕ and its sim-
plified version ϕS . As pointed in [19], if we consider a standard model then the
conditional equivalence expresses a precision of approximation of “ϕ” by “ϕS”.

Theorem 1. Let Ck denote (∀x̄)
∨

i∈Ik
(R(x̄, c̄i)&R(c̄i, x̄)). Then the following

is provable in SMTL�∀:

TransR̄ → ExtR̄ DNFF,k, (17)

TransR̄ → ExtR̄ CNF2
F,k, (18)

ExtR̄ F → DNFF,k ⊆ F, (19)

ExtR̄ F → F ⊆ CNF2
F,k, (20)

ExtR̄ F&Ck → DNFF,k ≈ F, (21)

ExtR̄ F&Ck → CNF2
F,k ≈ F. (22)

The transitivity of R̄ implies the extensionality of DNF as well as CNF2, see
(17), (18). Additionally, the extensionality of F bounds the degree of inclusion
of DNFF,k in F and F in CNF2

F,k. Formulae (21)–(22) show that the truth value
of F ≈ D(C)NFF,k is determined by choice of c̄i and R̄ in a particular model, as
it can be seen from Ck.

4.2 Approximate Inference

Approximate inference rule is often considered as a basis for dealing with fuzzy
rules and a non-precise input knowledge. A generalized rule of modus ponens
as a particular case of compositional rule of inference in the global concept of
many-valued logics has been introduced by L. Zadeh in [23]. The analysis of
logical aspects of Zadeh’s compositional rules of inference was done by P. Hájek
in [13] or V. Novák in [16,17,18] (for evaluated syntax). From the other works
let us mention e.g. [20,21]. Inference rules were also intensively studied from
the algebraical point of view as special operations called compositions (see, e.g.,
[14]).

In the sequel, we will assume JFC = Jk ∪ {A∗}, where A∗ is a predicate of
the type 〈s1, . . . , sp〉. Then, we define

B∗
DNF(ȳp) ≡df (∃ x̄p)(A∗(x̄p)& DNFF,k(x̄)), (23)

B∗
CNF2(ȳp) ≡df (∀ x̄p)(A∗(x̄p) → CNF2

F,k(x̄)), (24)

which define B∗
DNF and B∗

CNF2 from A∗ using the Zadeh’s compositional rule of
inference and Bandler-Kouhout’s product (BK-product [1]), respectively. Since
BK-product can be viewed as a dual to Zadeh’s composition, and moreover,
CNF2

F,k is dual to DNFF,k, we conclude that also B∗
CNF2 is in a certain sense

dual to B∗
DNF.
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Approximate inferences based on (23) and (24) can be visualized as inference
rules of the following forms

(DE)
A∗, DNFF,k

B∗
DNF

and (AB)
A∗, B∗

CNF2

CNF2
F,k

.

Here, F represents an ideal situation that can be expressed as DNFF and CNF2
F .

Later, we will see that for the extensional F , we can prove F → CNF2
F and

DNFF → F . At this point, we can formulate the following problem: Find B∗

such that

(a)

A∗&B∗ → F,

A∗&B∗ → CNF2
F ,

and there exists no B′ :
(B∗ → B′)&(A∗&B′ → CNF2

F ),

(b)

F → (A∗ → B∗),
DNFF → (A∗ → B∗),
and there exists no B′ :
(DNFF → (A∗ → B′))&(B′ → B∗),

B′ is different from B∗. In fact, the formulae B∗
CNF2 and B∗

DNF are solutions
to the problem (a) and (b), respectively. Since we deal with the extensional F
then the first formulae in (a) and (b) can be proved easily. The second ones are
obvious by adjunction, and the last requirements are fulfilled by observing

(B∗
CNF2 → B′)&(A∗&B′ → CNF2

F ) → (B∗
CNF2 ↔ B′),

(DNFF → (A∗ → B′))&(B′ → B∗
DNF) → (B∗

DNF ↔ B′).

In the sequel, we select the most interesting formulae from [5] that show proper-
ties of approximate reasoning with the graded fuzzy rules formalized by DNFF,k

and CNF2
F,k. In this source the proofs of the following statements can be found.

Proposition 1. In SMTL�∀, the following is provable:

Ck&(∃x̄p)(A∗(x̄p))2 → B∗
CNF2(ȳp) ⊆ B∗

DNF(ȳp), (25)

(ExtR̄ F )2 → B∗
DNF(ȳp) ⊆ B∗

CNF2(ȳp), (26)

Ck&(∃x̄p)(A∗(x̄p))2&(ExtR̄ F )2 → B∗
DNF(ȳp) ≈ B∗

CNF2(ȳp), (27)

for arbitrary p ∈ N, 1 ≤ p < n.

As one would expect from the relationship between D(C)NF and F , it is not
completely true that B∗

DNF ⊆ B∗
CNF2 (formula (26)) nor B∗

CNF2 ⊆ B∗
DNF (25).

From (26), it follows that the extensionality is essential to prove B∗
DNF(ȳp) ≈

B∗
CNF2(ȳp).
Now, we will investigate a relationship between the precise value of F and

conclusion B∗ of the inferences based on the approximate description.
Theorem 2. Let P1 ≡df ExtR̄ F&Ck and P2 ≡df (ExtR̄ F )3&Ck&A∗(x̄p). Then
SMTL�∀ prove

P1 → F (x̄) ⊆ (A∗(x̄p) → B∗
DNF(ȳp)), (28)

P1 → (A∗(x̄p)&B∗
CNF2(ȳp)) ⊆ F (x̄), (29)

P2 → [F (x̄) ↔ B∗
DNF(ȳp)], (30)

P2 → [F (x̄) ↔ B∗
CNF2(ȳp)]. (31)
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Since F represents some real situation that is to be approximately described by
approximating formulae, we wish to know the relationship w.r.t. B∗

D(C)NF that
has been investigated in the above lemma. From P1,2 it follows that besides ex-
tensionality we need an appropriate partition, i.e. the distribution of input and
output fuzzy sets associated to R̄(c̄, x̄), R̄(x̄, c̄), that lead to the indistinguisha-
bility between B∗

D(C)NF and F .

Theorem 3. Let us denote [cip+1 , . . . , cin ] by d̄ip and let

Disj(R) ≡df (∀x̄p)
∧

i�=j

¬[R(x̄p, c̄ip)&R(x̄p, c̄jp)],

L1 ≡df [R(c̄ip , x̄p) ⊆ A∗(x̄p)]&(∃ x̄p)R2(c̄ip , x̄p),

L2 ≡df [R(x̄p, c̄ip) ⊆ A∗(x̄p)]&(∃ x̄p)R2(x̄p, c̄ip),
L3 ≡df [A∗(x̄p) ⊆ R(c̄ip , x̄p)]&Disj(R),
L4 ≡df [A∗(x̄p) ⊆ R(x̄p, c̄ip)]&Disj(R).

Then SMTL�∀ prove

L1 → [R(d̄ip , ȳp)&F (c̄i)] ⊆ B∗
DNF(ȳp), (32)

L2 → B∗
CNF2(ȳp) ⊆ [R(ȳp, d̄ip) → F (c̄i)], (33)

L3 → B∗
DNF(ȳp) ⊆ [R(d̄ip , ȳp)&F (c̄i)], (34)

L4 → [R(ȳp, d̄ip) → F (c̄i)] ⊆ B∗
CNF2(ȳp). (35)

In order to understand the proved relationships (32)–(35), it is worth to pay
attention to the following formulae:

(∃ x̄p)R2(c̄ip , x̄p), (∃ x̄p)R2(x̄p, c̄ip), (36)
∧

i�=j

¬[R(c̄ip , x̄p)&R(c̄jp , x̄p)],
∧

i�=j

¬[R(x̄p, c̄ip)&R(x̄p, c̄jp)]. (37)

Let 〈{R̃j}j∈J , {ci}i∈I〉 be a model for 〈{Rj}j∈J , {c̄i}i∈I〉, where j ∈ {1, . . . , n}.
Then each formula in (36) determines the height of a fuzzy set describing “very
close” neighborhood of ci being a subset of R̃(ci, x) or R̃(x, ci) that represents
this neighborhood. And formula (37) says how much R̃i(ci, x) is disjoint from
all the others R̃j(cj , x) (analogously for R̃i(x, ci)).
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Abstract. The procedure of evaluating the results of a clustering algo-
rithm is know under the term cluster validity. In general terms, cluster
validity criteria can be classified in three categories: internal, external
and relative. In this work we focus on the external criteria, which evalu-
ate the results of a clustering algorithm based on a pre-specified structure
S, that pertains to the data but which is independent of it. Usually S is a
crisp partition (i.e. the data labels), and the most common approach for
external validation of fuzzy partitions is to apply measures defined for
crisp partitions to fuzzy partitions, using crisp partitions derived (hard-
ened) from them. In this paper we discuss fuzzy generalizations of two
well known crisp external measures, which are able to assess the qual-
ity of a partition U without the hardening of U . We also define a new
external validity measure, that we call DNC index, useful for comparing
a fuzzy U to a crisp S. Numerical examples based on four real world
data sets are given, demonstrating the higher reliability of the DNC
index.

Keywords: Data mining, Fuzzy Clustering, Fuzzy validity index,
External Validity Criteria, Fuzzy Rand Index, Partition Assessment,
DNC index.

1 Introduction

In pattern recognition fuzzy models and algorithms have been widely studied
and applied [1,2,3]. In particular one of the major techniques in pattern recogni-
tion is fuzzy clustering, that attracts attention because it has been successful in
a variety of substantive areas [4,5,6,7] including image recognition, signal pro-
cessing, business, health, aerospace, and so on. In the fuzzy approach partitions
are not really created: elements are associated to each group, with a degree of
membership. The result yielded by this algorithm is thus not a simple partition-
ing (which can, however, still be achieved by assigning each pattern to the group
with which it has a higher numerical affinity, for example), but more detailed
information on the relations between the patterns and groups.

Even though the clustering methods are viewed as completely unsupervised,
this perception is not completely valid. The majority of algorithms has some
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parameters to be set before they starts in order to define the clusters in which
a data set can be partitioned. Specifically, the objective function, that is to
be selected in advance, predefines the shape of the clusters one is interested in
finding in the data set. Often the number of clusters is to be set before a clus-
tering algorithm starts. For this reason, given a data set, clustering algorithms
will produce as many different partitions as you have time to generate. It is
necessary to validate the clustering result. Validation approaches provide an ob-
jective measurement of a clustering result and its optimal value is often used to
indicate the best possible choice for the values of parameters in the clustering
algorithm.

There are three approaches for the evaluation of partitions quality [8]: (i)
external criteria; (ii) internal criteria; (iii) relative criteria. Details on validation
criteria are given in section 2.

In this paper we focus on the external criteria for validation of fuzzy partitions.
Generally the most common approach is to apply measures defined for crisp
partitions to fuzzy partitions, using crisp partitions derived (hardened) from
them. The main weakness of this approach is that a pattern with degrees of
membership which generate uncertainty for its recognition (consider for example,
in a partition with two cluster, a pattern with a degree of membership u1 = 0.501
and u2 = 0.499 respectively with cluster 1 and 2), will be evaluated in the
same way of an other pattern that has a certain recognition (e.g. u1 = 0.999
and u2 = 0.001). This way the information obtained by the fuzzy algorithm
is lost. In order to work around this limitation, in section 4 we present the
fuzzy generalization of the two most effective external indices. However in our
experiments fuzzy external criteria demonstrate to be too much sensitive to the
degree of fuzziness of the partition to be assessed. For this reason, in section 4,
we introduce a new external criteria based on fuzzy logic, we call DNC index. In
section 5 real world applications are studied, demonstrating the higher reliability
of the DNC index. Finally section 6 gives our conclusions.

2 Clustering and Validation Criteria

In clustering (also known as exploratory data analysis), a set of patterns, usually
vectors in a multi-dimensional space, are organized into coherent and contrasted
groups, such as that patterns in the same group are similar in some sense and
patterns in different groups are dissimilar in the same sense. Given a data set
of n patterns X = {x1, ...,xj , ...,xn}, the purpose of any clustering technique
is to evolve a partition matrix U(X) of the given data set X so as to find a
number, say R, of clusters ({U1, ..., UR}). The partition matrix U(X) of size
R × n may be represented as U = [ukj ], k = 1, .., R and j = 1, ..., n, where ukj

is the membership of pattern xj to cluster Uk. In crisp partitioning of the data,
the following condition holds: ukj = 1 if xj ∈ Uk, otherwise ukj = 0. In the
case of fuzzy clustering, the purpose is to evolve an appropriate partition matrix
U = [ukj ] where ukj ∈ [0, 1], such that ukj denotes the degree of membership of
the j-th pattern to the k-th cluster.
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The procedure of evaluating the results of a clustering algorithm is know
under the term cluster validity. In general terms, cluster validity criteria can
be classified in three categories: internal, external and relative. Relative indices
are used to decide which of two partitions, U(X) or V (X), is a ”better choice”,
where better is defined by the measure that is being used. Internal criteria assess
the goodness of fit between an algorithmically obtained crisp partition U(X)
and the input data using only the data themselves, usually in the form of the
distance matrix D(X) = [{δ(xi, xj)}]n×n of the data. External criteria are those
that match the structure of a partition U(X) computed with X to a partition
S = {S1, ..., SC} of X that pertains to the data but which is independent of it.
C is the number of classes. For example, every crisply labeled data set comes
with a crisp partition S of X . When a measure is a function of (S,U(X)), it
is called an external criterion. Milligan and Cooper [9] have studied at least 30
external indices for measuring agreement between two partitions in clustering
analysis with different number of clusters, and they recommended two statistical
criteria, the adjusted Rand index [10] and the Fowlkes-Mallow measure [11], as
the indices of choice. More details and fuzzy generalization of these indices are
in section 3.

3 External Measures for Cluster Validation

In this section, we discuss methods suitable for quantitative evaluation of the
clustering results based on a pre-specified structure, known as external cluster
validity methods. These methods give an indication of the quality of the resulting
partitioning and thus they can only be considered as a tool at the disposal of
the experts in order to evaluate the clustering results.

The recognition accuracy and error are widely used as external criteria to as-
sess the quality of partitions, due to their intuitive meaning and the low compu-
tational cost. The recognition accuracy, also known as recognition rate, measures
the number of matches between pairs in U and S, i.e. the number of the patterns
that are in a cluster of U(X) that is associated with the real class of S, while the
recognition error measures the number of mismatches, i.e. the number of wrong
assignments.

3.1 Crisp Statistical Indices

In this subsection we present the adjusted Rand index [10], a more sensitive
generalization of the Rand index [12], and the Fowlkes - Mallow index [11]. These
validation methods are statistically oriented, and require assumptions about the
distribution. In cluster validity the basic hypothesis is to test whether the point
of a data set are randomly structured or not.

The Rand indices are based on counting the number of pairwise
co-assignments of data items. As a generalization of the Rand Index,the ad-
justed Rand index additionally introduces a statistically induced normalization
in order to yield values close to 0 for random partitions. This normalization re-
moves the bias of the Rand Index with respect to different number of clusters
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and gives a wider range of values that adjusted Rand index can take on, thus
increasing the sensitivity of the index. Let N(U, S) = N = [nlk] = UST , where
nlk be the number of patterns that are in both class sl and cluster uk. Let nl.

and n.k be the number of patterns in class sl and cluster uk respectively. The
notations are illustrated in Table 3.1.

Table 1. Notation for the contingency table for comparing two partitions

Class Cluster U1 U2 ... UR Sums

S1 n11 n12 ... n1R n1.

S2 n21 n22 ... n2R n2.

... ... ... ... ... ...
SC nC1 nC2 ... nCR nC.

Sums n.1 n.2 ... n.R n.. = n

Under the generalized hypergeometric model, it can be shown that:

ΥR(U, S) =
∑

lk

(
nlk
2

)
−

[∑
l

(
nl.
2

)∑
k

(
n.k
2

)]
/

(
n
2

)

1
2

[∑
l

(
nl.
2

)
+

∑
k

(
n.k
2

)]
−

[∑
l

(
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2

) ∑
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(
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2

)]
/

(
n
2

) (1)

The Adjusted Rand Index returns values in the interval [∼ 0, 1] and is to be
maximized. The expected value of two partitions picked at random is 0. The
Fowlkes-Mallows index is the geometric mean of two probabilities: the probability
that two randomly chosen observations are in the same cluster given that they are
in the same group, and the probability that two randomly chosen observations
are in the same group given that they are in the same cluster. Hence a Fowlkes-
Mallows index near 1 means that the clusters are good estimates of the groups.
To compute the Fowlkes-Mallows index we use the contingency table of the
groups and the clusters, as shown in Table 3.1. Then the Fowlkes-Mallows index
is given by

ΥFM =

∑
l,k

(
nij
2

)

√∑
i,j

(
nij
2

) ∑
i,j

(
nij
2

) (2)

If we define the number T,P and Q:

T =
∑

lk

(
nlk
2

)
, P =

∑
k

(
n.k
2

)
, Q =

∑
l

(
nl.
2

)
(3)

the adjusted Rand index and the Fowlkes-Mallows index could be re-written in
a more compact form as follows:

ΥR(U, S) =
T − (P Q)

n(n−1)/2
1
2 (P+Q)− (P Q)

n(n−1)/2

ΥF M (U, S) = T√
PQ (4)
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3.2 Fuzzy Generalization of the Adjusted Rand Index and the
Fowlkes-Mallow Index

Fuzzy generalization of the two crisp indices presented in the previous subsection
were proposed in [13] and [2]. When the partition matrix U(X) is fuzzy, we
could define a fuzzy contingency matrix, Mf (U, S) = Mf = [mf,lk] = UST ,
where entries are no longer counts of matches and mismatches between pairs
in X × X ; rather, mf,lk is now interpreted as the similarity between the fuzzy
cluster whose membership values are the i-th row of U and the fuzzy cluster
whose membership values are the j-th row of S (which is the j columns of ST ).
Using the fuzzy contingency matrix Mf (U, S) the numbers T,P and Q can be
defined as follows :

Tf =
(∑

lk
m2

f,lk

)
− n; Pf =

(∑
k
m2

f,.k

)
− n; Qf =

(∑
l
m2

f,l.

)
− n (5)

Using Tf , Pf and Qf it is possible to make a direct extension of the adjusted
Rand index and the Fowlkes-Mallow index:

ΥR,f (U, S) =
Tf− (Pf Qf )

n(n−1)/2

1
2 (Pf +Qf )− (Pf Qf )

n(n−1)/2

ΥFM,f (U, S) = Tf√
Pf Qf

(6)

Note that 0 ≤ ΥFM,f ≤ 1 while ΥR,f could be less than 0. ΥR,f cannot be used to
compare two truly fuzzy partitions because the implication ΥR,f = 1 ⇒ U = S is
one way; in particular, ΥR,f (U, U) �= 1 if U is a fuzzy partition, so its usefulness
lies in validation of a fuzzy U against a crisp S. The same statement can be
done for ΥFM,f . The question is when might this happen? Often, because S is
usually just the crisp partition builded using labels of the data, and most of the
data sets publicity available are labeled. To compare two truly fuzzy partitions,
Back and Hussain [13] propose a measure that they call the MC index for this
job.

4 DNC Index: A New Fuzzy Validation Index

We say that two degree of membership are close when their distance is below a
certain threshold we called α. Intuitively, we say that the assignment of a pattern
to a real class is uncertain when the pattern’s highest degree of membership is
close to the one of an other cluster, we say that its assignment to a real class is
uncertain. Here we propose an index that take into account this uncertainty that
characterize true fuzzy partitions. To measure how much a pattern is confident
to be assigned to a cluster we define the degree of confidence (Δj). Given a
crisp o fuzzy vector of degrees of membership uj = {u1j, u2j, ..., uRj} and a, b ∈
{1, 2, ..., R} : uaj > ubj > uOj , with O = {1, 2, ..., R} ∩ {a, b}, we define the
degree of confidence (Δj) of the j-th pattern (xj) as

Δj = (uaj − ubj) (7)
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Fig. 1. Fuzzy sets: good (match), bad (mismatch) and uncertainty (confidence degree
lower than α)

To take into account if the pattern xj is in a cluster associated with the real
group or not, we define the degree of accuracy (Aj) as follows:

Aj =
{

Δj if xj is in a cluster associated with its real group
−Δj otherwise

(8)

Note that 0 ≤ Δj ≤ 1 and −1 ≤ Aj ≤ 1∀j by definitions (7) and (8). As
shown in figure 1 using Aj we define three fuzzy sets, good(Aj), bad(Aj) and
uncertainty(Aj) as follows:

good(Aj ) =

⎧
⎪⎨

⎪⎩

1 Aj ≥ α

A2
j /α 0 < Aj < α

0 Aj ≤ 0
bad(Aj ) =

⎧
⎪⎨

⎪⎩

1 Aj ≤ −α√
Aj/α −α < Aj < 0

0 Aj ≥ 0

uncertainty(Aj ) =

⎧
⎨

⎩
0

∣∣∣Aj

∣∣∣ ≥ α∣∣∣Aj

∣∣∣
∣∣∣Aj

∣∣∣ < α

(9)

In the definition of good and bad we wanted to emphasize the loss of certainty
of a corrected classification through an elevation to the square and the increase
of the certainty of a misclassification with the square root.

Next we define the accuracy index Ia and the uncertainty index Iu as fol-
lows

Ia =
∑

j (good(Aj)−bad(Aj))
n Iu =

∑
j uncertainty(Aj)

n
(10)

Note that Iu = 1 when |Aj | = 0 ∀j, while Iu = 0 when |Aj | > α ∀j. Ac-
curacy index measures how accurate the partition U is respect to the parti-
tion S taking into account the uncertainty in pattern assignment when U is
fuzzy. Uncertainty index measures the average uncertainty in pattern assign-
ment.

Finally we define the DNC index (ΥDNC) as

[h]ΥDNC = Ia × (1 − Iu). (11)

It is easy to show that: ΥDNC = 1 ⇒ Uh = S ; −1 ≤ ΥDNC ≤ 1∀(U, S) ;
Iu = 1 ⇒ ΥDNC = 0 ; Ia = 0 ⇒ ΥDNC = 0 ; ΥDNC = −1 ⇒ U and S are
completely different. Where Uh is a partition hardened from a fuzzy U . However
the DNC index can be used also with a crisp U without significant loss. It is
useful to compare results obtained with both fuzzy and crisp algorithms.
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Table 2. Main characteristics of data sets

Data sets Patterns Classes

Iris 150 3

wine data set 178 3

Wisconsin Breast Cancer 683 2

Pima Indians diabetes 768 2

5 Numerical Examples

The two fundamental questions that need to be addressed in any typical clus-
tering scenario are: (i) how many clusters are actually present in the data, and
(ii) how real is the clustering itself. Here we answer to the first question as-
suming that number of clusters present in the data is equal to the number of
classes. In this section we studied the external criteria to answer to the second
question. In order to study the performance of the external indices introduced
in previous sections we applied the most famous fuzzy clustering algorithm, the
Fuzzy C-Means (FCM) [2], on four benchmark data sets: the Iris data set, the
wine data set, the Wisconsin Breast Cancer data set, the Pima Indians diabetes
data set. The data sets were obtained from the University of California machine-
learning database [14], and their main characteristics are reported in Table 5.
FCM uses the principles of fuzzy sets to partition a data set into a fixed num-
ber, R, of clusters; thereby providing the appropriate R × n partition matrix.
In our analysis we used the Euclidean metric as distance measure and fixed the
number of clusters R equal to the number of classes C. To get partitions with
different degrees of fuzziness we let the weighting exponent of the FCM model
(also known as the fuzzyfier, m) vary in range (1.0,10.0]. The role of the weight-
ing exponent m was studied for cluster validation indices in [15], where authors
discovers that it affects the quality and reliability of the internal indices they
studied. They also shown that the higher is the value of m the higher is the par-
tition entropy (i.e. the fuzziness). Our experiments shows that also reliability of
external validation indices, both crisp and fuzzy, is affected by this parameter.
In particular we see that crisp indices do not consider fuzziness (as expected
because they work on hardened partitions) and vice versa fuzzy generalizations
are so much related to fuzziness that practically they measure only the grade of
the fuzziness. Table 5 lists the outputs of: entropy index, recognition rate, ad-
justed Rand index ΥR , Fowlkes-Mallow index ΥFM , fuzzy adjusted Rand index
ΥR,f , fuzzy Fowlkes-Mallow index ΥFM,f , and DNC index ΥDNC with confidence
level α = {0.01; 0.05; 0.10}, applied to the Iris data for 19 values of m ranging
from 1.01 to 10.0. Crisp indices (recognition rate, ΥR and ΥFM ) have higher
(i.e. better) values with higher values of m, vice versa their fuzzy generalization
have better values with lower values of m. This means that partition obtained
with values of m suggested by crisp indices, have entropy values close to the
maximum (1.099), so clusters are significantly overlapped and practically indis-
tinguishable. On the other hand partitions suggested by fuzzy indices are close
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Table 3. Iris data set, values with m varying between (1,10.0]: Partition entropy,
recognition rate, adjusted Rand index, Fowlkes-Mallow index, fuzzy adjusted Rand
index, fuzzy Fowlkes-Mallow index, and DNC index with α = {0.01; 0.05; 0.10}

m U Recogni- ΥR ΥF M ΥR,f ΥF M,f ΥDNC
entropy tion rate α = 0.10 α = 0.05 α = 0.01

1.01 0.015 0.893 0.693 0.796 0.877 0.816 0.777 0.780 0.787
1.2 0.038 0.893 0.693 0.796 0.877 0.816 0.776 0.777 0.787
1.4 0.104 0.886 0.678 0.786 0.874 0.810 0.773 0.773 0.773
1.6 0.192 0.886 0.678 0.786 0.862 0.791 0.772 0.772 0.773
1.8 0.293 0.893 0.696 0.797 0.840 0.757 0.775 0.777 0.787
2.0 0.396 0.893 0.696 0.797 0.812 0.715 0.773 0.783 0.787
2.2 0.491 0.893 0.696 0.797 0.783 0.670 0.771 0.786 0.787
2.4 0.577 0.900 0.715 0.809 0.755 0.627 0.768 0.784 0.798
2.6 0.650 0.900 0.715 0.809 0.728 0.588 0.763 0.783 0.800
2.8 0.713 0.900 0.715 0.809 0.706 0.553 0.759 0.782 0.800
3.0 0.765 0.900 0.715 0.809 0.687 0.523 0.756 0.781 0.799
3.5 0.862 0.906 0.733 0.822 0.649 0.466 0.747 0.776 0.800
4.0 0.925 0.906 0.733 0.822 0.624 0.428 0.732 0.768 0.804
5.0 0.996 0.900 0.717 0.811 0.595 0.384 0.696 0.757 0.799
6.0 1.032 0.913 0.754 0.835 0.580 0.361 0.651 0.743 0.803
7.0 1.052 0.913 0.754 0.835 0.572 0.348 0.591 0.723 0.806
8.0 1.064 0.913 0.754 0.835 0.567 0.341 0.522 0.697 0.808
9.0 1.072 0.920 0.773 0.848 0.563 0.336 0.480 0.67 0.808
10.0 1.078 0.926 0.791 0.860 0.561 0.332 0.402 0.642 0.805

Table 4. Values of m and entropy for optimal partitions chosen by each index

Data Recogni- ΥR ΥF M ΥR,f ΥF M,f ΥDNC
set tion rate α = 0.10 α = 0.05 α = 0.01

m

Cancer 7.8-10.0 7.8-10.0 7.8-10.0 1.01 1.01 1.1 1.2 5.8
Wine 8.2-10.0 8.3-10.0 8.3-10.0 1.01 1.01 1.1 1.3 8.0

Diabetes 1.01 2.0 1.1 1.01 1.01 1.1 1.1 2.0

Partition Entropy
Cancer 0.668-0.679 0.668-0.679 0.668-0.679 0.0161 0.0161 0.034 0.057 0.644
Wine 1.06-1.07 1.06-1.07 1.06-1.07 0.0142 0.0142 0.038 0.067 1.056

Diabetes 0.021 0.297 0.021 0.021 0.021 0.021 0.021 0.021

to the minimum entropy (0), so these partitions are much more crisp than fuzzy.
The DNC index offers three different results, according to the confidence level α.
The most reliable, obtained with α = 0.05, is m = 2.2 that it is close to m = 2
that is by far the most common choice for this data set because it assures good
accuracy with low uncertainty.

Applying FCM to other data sets with m varying in the range (1, 10] and
computing the indices, we obtained the results summarized in Table 5 and plot-
ted in Figures 2a, 2b and 2c. We had a confirm that DNC is more reliable than
other indices, because their results seems to be not related to the data itself.
This can be explained by the fact that classical fuzzy indices measure how much
U is similar to S, therefore being S crisp they reward the ”crispest” partition.
Crisp indices, on the other hand, often reward ”fuzziest” partition, with entropy
close to the maximum, that means that the algorithm is not finding distinct
cluster structure. Figure 2c shows that DNC index has different curves depend-
ing on the data sets and the value chosen for α. With this data sets seems that
optimal value for α is in the range [0.01, 0.05], because when α = 0.10 results
are comparable to other fuzzy index. For diabetes data optimal values of m are
very low for all indices because this data set has a significant class overlap which
causes a base of uncertainty.
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01 2 3 4 5 6 7 8 9 10
m

Cancer − adjusted Rand Index
Cancer − Fowlkes−Mallow index
Wine − adjusted Rand Index
Wine − Fowlkes−Mallow index
Diabetes − adjusted Rand Index
Diabetes − Fowlkes−Mallow index

(a)

01 2 3 4 5 6 7 8 9 10
m

Cancer − Fuzzy adjusted Rand Index
Cancer − Fuzzy Fowlkes−Mallow index
Wine − Fuzzy adjusted Rand Index
Wine − Fuzzy Fowlkes−Mallow index
Diabetes − Fuzzy adjusted Rand Index
Diabetes − Fuzzy Fowlkes−Mallow index

(b)

10 20 30 40 50 60 70 80 90
m

Cancer − alpha = 0.05
Cancer − alpha = 0.01
Cancer − alpha = 0.10
Wine − alpha = 0.05
Wine − alpha = 0.01
Wine − alpha = 0.10
Diabetes − alpha = 0.05
Diabetes − alpha = 0.01
Diabetes − alpha = 0.10

(c)

Fig. 2. (a) Crisp external indices values with m ranging from 1.01 to 10.;(b) Fuzzy
external indices values with m ranging from 1.01 to 10.;(c) DNC index values with m
ranging from 1.01 to 10 and α = 0.05; 0.01; 0.10
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6 Conclusion

External cluster validity is one of the most important issues in cluster analysis.
It aims at the evaluation of clustering results based on a-priori information and
the selection of the scheme that best fits the underlying data. External clus-
ter validity indices are used in unsupervised learning to assess performances of
partitioning algorithms and in partially or fully supervised learning to tune al-
gorithms’ parameters. In fuzzy methods often crisp indices are used with the
loss of the knowledge stored in fuzzy degree of memberships. In this paper we
analyzed the reliability of fuzzy generalization of two well regarded crisp external
indices: the fuzzy adjusted Rand index and the fuzzy Fowlkes-Mallow index. In
our numerical examples these two indices reward as best partition the ”crispest”
available, in other words they measure only the uncertainty and always suggest
to do not use fuzzy logic. Vice versa when we apply the original crisp indices they
measure only the accuracy and do not care about fuzziness, as obvious because
they work with hardened partitions. For this reason they often reward partitions
without distinct cluster structure. In order to improve these weaknesses we pro-
pose a new fuzzy external index, we called DNC index, for validation of fuzzy
partitions, that takes into account both accuracy and uncertainty. In real world
application the DNC index demonstrated to be more reliable than others.
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Abstract. The paper introduces the so-called coherence index of a con-
junctive radial fuzzy system. The index can be treated as a measure of
consistency of knowledge stored in the rule base of the system. Conjunc-
tive fuzzy systems are the systems which employ fuzzy conjunctions for
combination of antecedents (IF parts) with consequents (THEN parts) in
theirs IF-THEN rules. Radial fuzzy systems are the systems which em-
ploy radial functions for representation of membership functions of incor-
porated fuzzy sets; and exhibiting the radial shape preservation property.
Due to this property an effective mathematical analysis of these systems
can be carried out.

1 Introduction

In area of fuzzy computing the concept of fuzzy system plays the key role.
Standard architecture of fuzzy systems, consisting of four building blocks of -
fuzzifier, rule base, inference engine and deffuzifier, is notoriously well known
[1], [2]. Mathematically, a fuzzy system perform a function from an input space
(typically Rn) to an output space (typically R), which corresponds to standard
MISO configuration.

The computation of a fuzzy system is mainly affected by the knowledge stored
in the rule base of the system. A rule base is canonically formed by a set of
m ∈ N linguistic IF-THEN rules, and mathematically represents a fuzzy rela-
tion on input/output space. From the theory of fuzzy systems it is known that
mathematical representation of rule bases admits two main approaches - con-
junctive and implicative. [3], [4].

Under conjunctive approach antecedents of rules (IF parts) are combined with
corresponding consequents (THEN parts) by a fuzzy conjunction; and individ-
ual rules are then combined by a fuzzy disjunction. Contrary to conjunctive
systems, in implicative systems antecedents are combined with consequents by
genuine fuzzy implications [1], [5] and individual rules are combined by a fuzzy
conjunction.

In connection with fuzzy systems, several theoretical concepts are studied. One
of them is the concept of consistency of knowledge stored in the rule base. This
question was addressed by several authors [7], [8]. One of the most important
works is the paper by Dubois, Prade and Ughetto [9]. In the paper the authors

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 502–512, 2007.
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stress that the question of coherence1 has good meaning for implicative systems
and can be seen as the requirement for normality of fuzzy set which is issued
from inference engine, for an arbitrary input to the system. A presence of an
non-normal output, i.e., if the fuzzy set undergoing a defuzzification process is
not normal, indicates the presence of contradictory rules in the rule base. In the
paper there are stated several sufficient conditions for testing the coherence of
implicative fuzzy systems.

Concerning conjunctive systems, the question of coherence as formulated for
implicative ones has no good meaning, because the rule base is constructed as a
list of prototypical points of input/output relation the rule base represents. These
prototypes are given by individual rules and an interpolation is performed be-
tween the prototypes due to the inference process. However, taking output fuzzy
set as a possibilistic distribution of possible crisp action it is reasonable to re-
quire the distribution to be unimodal. Unfortunately, as we will see, the strict
unimodality cannot be generally reached so we have to adopt the concept of par-
tial unimodality which is measured by the so-called coherence (or unimodality)
index. This index is a number from interval [0, 1], which is the higher the more
unimodal the output fuzzy set is. The equality to 1 indicates strict unimodality.

In the paper we introduce the index mathematically and we present its lower
bound which indicates the extent of coherence of knowledge stored in the sys-
tem. The index will be stated for class of radial conjunctive fuzzy systems. Radial
fuzzy systems forms broad class of fuzzy systems. It was shown that for implica-
tive fuzzy systems the question of coherence as presented in [9] can be solved
effectively [10]. So this paper can be seen as extension of former research on
radial fuzzy systems.

2 Radial Conjunctive Fuzzy Systems

This section reviews the concept of radial conjunctive fuzzy systems. We present
computational model of these systems. We start by conjunctive systems, then
we present radial systems, and finally a fusion of both concepts.

2.1 Conjunctive Fuzzy Systems

In conjunctive fuzzy systems antecedents of rules are combined with correspond-
ing consequents by a fuzzy conjunction (t-norm). Individual rules are then com-
bined by a fuzzy disjunction (t-conorm). The most common choice is to employ
the maximum t-conorm.

Formally, the antecedent of the j-th rule in a conjunctive system (but in
implicative too) is given as

Aj(x) = Aj1(x1) � · · · � Ajn(xn), (1)

1 From now on we use term coherence instead of term consistency to follow the ter-
minology introduced in paper [9].
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where Aji are one-dimensional fuzzy sets, � is a t-norm and x ∈ Rn, x =
(x1, . . . , xn). Fuzzy relation Rj representing the j-th rule has then form

Rj(x, y) = Aj(x) � Bj(y) = Aj1(x1) � · · · � Ajn(xn) � Bj(y), (2)

where Bj forms the consequent set of the j-th rule. As mentioned, whole rule
base is constructed by emploing a fuzzy disjunction:

RB(x, y) =
∨

j

Rj(x, y) =
∨

j

Aj(x) � Bj(y). (3)

Concerning the most common choice of singleton fuzzifier and CRI inference
engine [1], [2] the output fuzzy set from the engine is obtained as

B′(y) = RB(x, y), (4)

where x is the actual input into to the system. Expressing the above formula in
more details we get the following. Denoting

B′
j(y) = Rj(x, y) = Aj(x) � Bj(y) (5)

and employing maximum as fuzzy disjunction we get formula (3) in form

B′(y) = max
j

{B′
j(y)} = max

j
{Aj(x) � Bj(y)}, (6)

which is the most common computational model of conjunctive fuzzy systems.
In this model an output fuzzy set from the inference engine is obtained as the
maximum from clipped consequents fuzzy sets. The actual crisp output is then
determined on the basis of selected defuzzification method.

2.2 Radial Fuzzy Systems

Radial fuzzy systems employ radial functions for representation of membership
functions of one-dimensional fuzzy sets; and the combination of these radial
fuzzy sets given by the selected t-norm, preserves the radial shape. This shape
preservation property is called the radial property [12].

Radial functions are well known in the area of RBF neural networks [11].
Generally, a radial function f has form f(x) = Φ(||x − a||), where a ∈ Rn is the
central point of function, || · || is a norm in Rn space and Φ is usually monotonic
function from R+

0 to R. Well known example of radial functions are Gaussians
curves.

In radial fuzzy systems it is required that both antecedent and consequent
fuzzy sets are specified by radial functions in the following form:

Aji = act

(∣∣∣∣
xi − aji

bji

∣∣∣∣

)
, Bj = act

(
max{0, |y − cj | − sj}

dj

)
, (7)

where aj , cj ∈ R are central points, bj , dj ∈ R+, i.e., bj, dj > 0 are (width)
scaling parameters and sj ∈ R+

0 , i.e., sj ≥ 0 is Bj ’s core (kernel) length driving
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parameter. The act function is a monotonic function from R+
0 to [0, 1] such

that act(0) = 1 and generally can occur in two versions: 1) Either it is strictly
decreasing on its domain and limz→∞ act(z) = 0 or 2) there exists z0 > 0 such
that act is strictly decreasing on [0, z0] and act(z) = 0 for z ∈ [z0, ∞).

The other requirement on radial fuzzy systems is the presence of the radial
property. The property reflects the preservation of radial shape of one-dimensional
fuzzy sets after their combination by the selected t-norm in antecedents of rules,
equation (1). The next formula states the property mathematically:

act

(∣∣∣∣
x1 − aj1

bj1

∣∣∣∣

)
� · · · � act

(∣∣∣∣
xn − ajn

bjn

∣∣∣∣

)
= act(||x − aj ||bj ), (8)

where x = (x1, . . . , xn), x ∈ Rn, bj = (bj1, . . . , bjn), bj ∈ Rn
+ and || · ||bj

is a
scaled norm in Rn space. Employing the radial property, the general formula (1)
has form

Aj(x) = act(||x − aj ||bj
). (9)

Inspecting the above formulas we see that antecedents in radial systems pre-
serve theirs radial shape which is determined by employed act function. Actually,
due to formula (9) an antecedent is represented by a multi-dimensional radial
function in Rn space with central point aj . The property is not trvial because if
the shape (act function) of one-dimensional fuzzy sets is selected together with
the concrete t-norm � then the form of antecedent is determined (the right part
of formula (9)) and need not to be expressible as a multi-dimensional radial fuzzy
set of the same shape.

The question of which shapes and t-norms can be combined in order to radial
property holds is solved in paper [12]. As a by product it is shown that scaled
norms arising in representation of antecedents are scaled �p norm. That is, the
norm has form ||u||b = (

∑
i |ui/bi|p)1/p, where b ∈ Rn

+, p ∈ [1, +∞] are param-
eters. The most common norms are scaled Euclidean (p = 2) and scaled cubic
(p = +∞) norms .

2.3 Radial Conjunctive Fuzzy Systems

Radial conjunctive fuzzy systems are obtained by fusion of concepts of radial
and conjunctive fuzzy systems. Let us go into details. Concerning the j-th IF-
THEN rule of such a system we get by equations (2), (9) and (7) the following
representation:

Rj(x, y) = act(||x − aj ||bj
) � act

(
max{0, |y − cj | − sj}

dj

)
, (10)

B′
j(y) = Rj(x, y) = hj(x) � act

(
max{0, |y − cj | − sj}

dj

)
. (11)

Clearly, for height hj of B′
j clipped set we have

hj(x) = Aj(x) = act(||x − aj ||bj ). (12)
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The output fuzzy set from a radial conjunctive fuzzy system is then given by
formula (6) as

B′(y) = max
j

{B′
j(y)} = max

j
{hj(x) � Bj(y)}, (13)

where x is the actual input into the radial fuzzy system.
To finish the specification of presented computational model, an appropriate

defuzzification method [1] should be selected so that a crisp output could be
specified on the basis of engine’s output set B′. From the point of view of the
research presented in this paper specific defuzzification is not important because
we are only interested in properties (namely unimodality) of B′ set. So we do
not address this question in more details.

3 Coherence of Radial Conjunctive Fuzzy Systems

In this section we introduce coherence index of a radial conjunctive fuzzy system.
This index measures the extent of coherence of knowledge stored in the rule base
of such the system.

Let us consider the following well known example. There is a fuzzy system
performing a navigation of a car. Its rule base consists of two following rules:

R1 : IF an obstacle is in front of you THEN go left ,
R2 : IF an obstacle is in front of you THEN go right .

We can easily see that rules in the above rule base are incoherent. Actually, the
incoherence is caused by the fact that two rules with identical antecedents have
different consequents. Generally, incoherence of knowledge is caused by the fact
that similar preconditions have (highly) different conclusions [13]. The question
is how to detect such incoherence in a rule base formally.

The above example helps. Expressing lingustic terms go left, go right by fuzzy
sets and making the standard inference the output will be ”camel” like multi-
modal fuzzy set. Using some of common defuzzification methods the crisp output
point will be located at the point of local minima of multimodal output fuzzy
set. And, this output would navigate the car to crash into the obstacle.

As the membership function of an output fuzzy set can be seen as the possi-
bilistic distribution on an output space, it is highly desirable to this distribution
be unimodal, because then output is naturally taken from points making the
peak of the distribution.

In the above sense we will treat mathematically coherence of rule bases of
conjunctive systems. That is, we say that conjunctive system is coherent if an
output fuzzy set is unimodal for arbitrary input. Unfortunately, as we will se
later, this strict specification is untenable. So we introduced coherence index
which measures the extent of unimodality of output fuzzy set. And, we say that
the system is the more coherent the higher value has the index.

In the following sections, we report the process which led us to mathematical
specification of the index and we investigate some of its properties. As coherence
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index is related to unimodality of output fuzzy set, we start the process by solving
the question of when two clipped radial fuzzy sets combined by maximum yields
an unimodal fuzzy set. Then we extent the problem on m > 2 fuzzy sets.

3.1 Static Unimodality

Let us consider two clipped radial fuzzy sets and theirs union given by maximum.
Then the following theorem applies:

Theorem 1. Let B′
1, B

′
2 be two clipped radial fuzzy sets with fixed heights

h1,2 ∈ [0, 1]

B′
1(y) = h1 � act

(∣∣∣∣
max{0, |y − c1| − s1}

d1

∣∣∣∣

)
, (14)

B′
2(y) = h1 � act

(∣∣∣∣
max{0, |y − c2| − s2}

d2

∣∣∣∣

)
, (15)

where c1 ≤ c2 (other parameters given as in radial fuzzy systems). Let

B′(y) = max{B′
1(y), B′

2(y)},

CS = |c1 − c2| − (s1 + s2).

If

– CS ≤ 0 then B′ is unimodal,
– if CS > 0 and h1 ≥ h2 then B′ is unimodal iff B′

1(c2 − s2) ≥ h2,
– if CS > 0 and h1 ≤ h2 then B′ is unimodal iff B′

2(c1 + s1) ≥ h1.

The above theorem gives us algorithm for checking unimodality of maximum
of two clipped radial fuzzy sets on basis of setting of their parameters. We call
this algorithm as strict unimodality test. Note that the theorem is stated as
equivalence.

In the case of m > 2 rules, we are able to test the unimodality of maximum of
m clipped radial fuzzy sets on the basis of verifications of pairwise unimodalities.

Theorem 2. Let B′
1, . . . , B

′
m be clipped radial fuzzy sets with fixed heights

h1, . . . , hm ∈ [0, 1], i.e., for j = 1, . . . , m,

B′
j(y) = hj � act

(∣∣∣∣
max{0, |y − cj | − sj}

dj

∣∣∣∣

)
. (16)

If functions Bjk(y) = max{B′
j(y), B′

k(y)} are unimodal for all pairs j, k ∈
{1, . . .m}, then also function B′(y) = max{B′

1(y), . . . , B′
m(y)} is unimodal.

The above theorem gives us the sufficient condition for maximum of m ∈ N
clipped radial fuzzy sets be unimodal. The theorem can be used independently
from the fact how the clipped fuzzy sets were obtained. However, our research is
aimed on the case when the sets are generated during a computation of a radial
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conjunctive fuzzy system. In this case, we can check if output of fuzzy system
is unimodal for the given concrete input x, because the input, by formula (12),
generates fixed values of heights hj . But, we would like to say something more
for the case of varying input and so varying heights, i.e., we would like to transfer
from static to dynamic case of hj(x), x ∈ Rn. This question makes the topic of
the consequent research.

Unfortunately, it can be shown that even for the simplest case of m = 2 rules
with a reasonable setting of parameters c1 �= c2, s1 = s2 = 0 there always exists
an input making output fuzzy set B′(y) = max{B′

1(y), B′
2(y)} multimodal. This

input x= equalizes heights, i.e., h1(x=) = h2(x=) and individual coordinates
are specified according to formula

x=
i = (a1ib2i + a2ib1i)/(b1i + b2i). (17)

From this reason we switched from dichotomic notion of unimodality to a
measure of unimodality by coherence index ci which is a number from interval
[0, 1] with ci = 1 iff output fuzzy set is unimodal. The question is how to specify
the index mathematically.

3.2 Pairwise Incoherence / Coherence Index

In order to mathematically specify the index of coherence we set up natural
requirements on how this index should behave in some important cases. We have
found out that it is advantanegous to introduce the dual notion of incoherence
index inci by formula

inci = 1 − ci. (18)

Hence the incoherence index is again number from interval [0, 1] and inci = 0 iff
output fuzzy set is multimodal (i.e., when ci = 1).

The following list presents requriments stated on incoherence index of maxi-
mum of two clipped radial fuzzy sets:

(1) If one of heights is zero, then incoherence is also zero (output is unimodal).
(2) If one of heights is one, then the results depends on the value of other height

linearly
(3) If h1 = h2 and both heights are increasing, then incoherence is increasing

(unimodality is decreasing).
(4) If only one of heights is varying (increasing or decreasing) and the other is

constant, then incoherence is decreasing (unimodality is increasing).
(5) The wider is the spread between centers of consequents the higher is inco-

herence (the higher is multimodality and the less is unimodality).
(6) The wider are fuzzy sets (their supports - if applicable) the less is incoherence

(the less is multimodality and the higher is unimodality).

On the basis of these requirements we have introduced the following specifi-
cation of index of incoherence (multimodality):
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Definition 1. Let B′
j , B

′
k be two clipped radial fuzzy sets obtained by computa-

tion of a conjunctive radial fuzzy system on the basis of actual input x. Then
their (pairwise) incoherence index is computed according to formula

incijk(x) = (1 − UMCHjk(x)) · Kjk · Hjk(x), (19)

where

UMCHij(x) ∈ {0, 1} = strict unimodality test, (20)

K ∈ (0, 1) = act

(
− dj + dk

max{0, |cj − ck| − (sj + sk)}

)
, (21)

Hjk(x) ∈ [0, 1] =
√

min{hj(x), hk(x)} · (1 − |hj(x) − hk(x)|). (22)

Let us discuss the index. The index is given by the product of three terms.
Term UMCHjk ∈ {0, 1} presents the strict unimodality test. The test is

based on the procedure presented by Theorem 1. That is, if the output fuzzy
set B′(y) = max{B′

j(y), B′
k(y)} is unimodal then UMCHjk = 1, term (1 −

UMCHjk) = 0 and consequentially incijk(x) = 0. So incoherence is minimal and
coherence maximal. If B′(y) is multimodal then UMCHjk = 0, (1−UMCHjk) =
1 and the value of incijk(x) depends on values of other the two terms.

The specification of other two terms Kjk and Hjk(x) is directly induced by
the presented requirements. The main difference between both terms is that Kjk

is constant with respect to an input x and Hjk(x) varies with it. Let us discuss
the requirements (for the sake of simplicity we omit argument x):

(1) Hjk = 0 due to the minimum term.
(2) Hjk =

√
min{1, hk} · hk = hk.

(3) Hjk =
√

min{hj, hj} =
√

hj .
(4) Let hj be constant and hk ≥ hj increasing , then min{hj, hk} = hj is

constant and the second term of Hjk is decreasing due to the increas-
ing difference |hj − hk|; let hj be constant, and hk ≤ hj decreasing, then
min{hj , hk} = hk is also decreasing and the second term Hjk is decreasing
due to the increasing difference |hj − hk|.

(5) This is assured by employment of |cj − ck| term in Kjk term; if |cj − ck|
is increasing, the fraction is decreasing and Kjk is increasing due to the
properties of act function.

(6) This is assured by employment of dj + dk term in Kjk term; if dj + dk

is increasing, the fraction is increasing and Kjk is decreasing due to the
properties of act function.

We see that our mathematical specification of incoherence index is in accor-
dance with the list of requirements stated above.

Summarizing the work we have done we can state the following. We have
introduced incoherence index of a pair of two fuzzy sets generated by a radial
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conjunctive fuzzy system for fixed input x. The index has value 0 if output is
unimodal otherwise it takes value from interval (0, 1]. Dually, index of coherence
ci = 1− inci has value 1 if output is unimodal and otherwise it takes values from
interval [0, 1). However, still we are in static case. The next section transfers us
to dynamic case where we present the main theorem of the paper.

4 Dynamic Unimodality Theorem

The value of incoherence/coherence index resides on specification of parameters
of the system as well as on the actual value of input. The input drives heights of
clipped fuzzy sets. The crucial question is what happens if the input freely moves
through the whole input space. How incoherence is varying? By the following
theorem we show that we can identify an upper bound of incoherence index.

Theorem 3. Let the incoherence index of two rules j, k of a radial conjunctive
fuzzy system be defined as above. Then for any input x ∈ Rn the following
inequality holds:

incijk(x) ≤ Kjk ·
√

act(||aj − ak||2bM ), (23)

where 2bM = (2bM1, . . . , 2bMn), bMi = max{bji, bki}, i = 1, . . . , n .

Due to the lack of space we present the theorem without a proof. We only
remark that the proof highly resides on the radial property and that is why we
are working with radial conjunctive fuzzy systems (radial C-FSs).

The theorem gives us an upper bound of incoherence index of two rules of
a radial C-FS. Clearly, the bound immediately determines a lower bound of
coherence index:

cijk(x) ≥ 1 − Kjk ·
√

act(||aj − ak||2bM ). (24)

Let us denote the lower bound by CIjk, i.e., CIjk =
√

act(||aj − ak||2bM ).
Till now we have worked with two rules. Now we transfer to general case of

m > 2 rules in the rule base. Firstly we define so-called coherence matrix of a
radial C-FS as follows:

Definition 2. Coherence matrix WCI of a radial C-FS is the symmetric matrix
defined as WCI(j, k) = CIjk, i.e.,

WCI(j, k) =

⎡

⎢⎢⎢⎣

1 CI12 . . . CI1m

CI21 1 . . . CI2m

... 1 . . .
...

CIm1 CIm2 . . . 1

⎤

⎥⎥⎥⎦ .

Each cell of WCI gives the lower bound of coherence index of corresponding pair
of rules. The minimal element of coherence matrix we call the (overall) coherence
index of a radial conjunctive fuzzy system.
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Definition 3. Let WCI be the coherence matrix of a radial C-FS, then the (over-
all) coherence index of this system is given as

CICFS = ||WCI ||min = min
jk

{WCI(j, k)}. (25)

Hence the coherence index of a radial C-FS is given as the minimum from lower
bounds of pairwise coherences of individual rules. Apparently, if for all j, k,
WCI(j, k) = 1, then also CICFS = 1 and the system is coherent, which is in
accordance with Theorem 2.

5 Conclusions

In the paper we have introduced index of coherence of a radial conjuctive fuzzy
system. The index is primarily computed pairwisely for pairs of rules and we stated
the lower bound for such a pairwise index with respect to arbitrary input to the
system. All pairwise lower bounds form so-called coherence matrix of the system
and their minimum then states the (overall) coherence index of a radial conjunc-
tive fuzzy system. Dual notion of incoherence index was introduced as well.

The value of index can be seen as a measure of coherence (consistency) of
knowledge stored in the rule base of a radial conjunctive fuzzy system. Actually,
the greater the index is the more unimodal are output fuzzy sets from the system
and defuzzification process is more natural.

In the future research we aim on an incorporation of the notion of coherence
(as presented) in the area of radial basis neural networks. This is a tentative
research direction because radial C-FSs are computationally almost equivalent
to RBF neural networks. So (under slight reconsiderations) the presented in-
dex can be used as a measure of coherence (or quality) of learned knowledge
and consequently it could be used for discrimination between different learning
algorithms.

Concerning practical applications, we plan to use the index for qualitative
analysis of neuro-fuzzy classifiers employed in EEG spectrograms signals analy-
sis, which is related to detection of micro-sleeps episodes during car driving [14].
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5. P. Hájek, Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, 1998.
6. E. P. Klement, R. Mesiar, and A. Pap. Triangular Norms. Kluwer Academic

Publishers, Dordrecht, 2000.
7. K. S. Leung and Y. T. So, “Consistency Checking for Fuzzy Expert Systems,”

International Journal of Approximate Reasoning, vol. 9, pp. 263–282, 1993.
8. S. Viaene, G. Wets, and J. Vanthienen, “A synthesis of fuzzy rule-based system

verification,” Fuzzy Sets and Systems, vol. 113, no. 2, pp. 253–265, 2000.
9. D. Dubois, H. Prade, and L. Ughetto, “Checking the Coherence and Redundancy

of Fuzzy Knowledge Bases,” IEEE Transactions on Fuzzy Systems, vol. 5, no. 3,
pp. 398–417, 1997.

10. D. Coufal, “Coherence of Radial Implicative Fuzzy Systems,” in IEEE Interna-
tional Conference on Fuzzy Systems, FUZZ-IEEE 2006, Vancouver, Canada 2006,
2006, pp. 903–970.

11. S. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Edition. Upper
Saddle River: Prentice Hall, 1998.

12. D. Coufal, “Representation of Continuous Archimedean Radial Fuzzy Systems,”
in International Fuzzy Systems Association World Congress IFSA 2005, Beijing,
China 2005, 2005, pp. 1174–1179.

13. D. Driankov, H. Hellendoorn, and M. Reinfrank, An Introduction to Fuzzy Control.
Berlin Heidelberg: Springer-Verlag, 1993.

14. M. Novák - Ed., Neurodynamic and Neuroinformatics Studies (Second book on
Micro-Sleeps). Neural Network World - monographs edition, Prague, 2005.



Topology in Fuzzy Class Theory: Basic Notions
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Abstract. In the formal and fully graded setting of Fuzzy Class Theory
(or higher-order fuzzy logic) we make an initial investigation into basic
notions of fuzzy topology. In particular we study graded notions of fuzzy
topology regarded as a fuzzy system of open or closed fuzzy sets and
as a fuzzy system of fuzzy neighborhoods. We show their basic graded
properties and mutual relationships provable in Fuzzy Class Theory and
give some links to the traditional notions of fuzzy topology.

1 Introduction

Fuzzy topology is among the fundamental disciplines of fuzzy mathematics whose
development was stimulated from the very beginning of the invention of fuzzy
sets [1]. Following the role of topology in classical mathematics, fuzzy topology
should capture the notions of openness, neighborhood, closure, etc., within the
setting of fuzzy set theory. The paper [2] by Höhle and Šostak, which is contained
in the special issue of Fuzzy Sets and Systems (1995) on fuzzy topology, mentions
and classifies a number of conceptual frameworks (lattice-, model-, and category-
theoretical) that have arisen during past decades. A detailed and up-to-date
exposition of many-valued and fuzzy topologies, mostly based on a categorical
viewpoint, is contained in the monograph [3] by Höhle.

This paper follows the footsteps of Ying’s attempt [4] to establish fuzzy topol-
ogy as a non-elementary theory over many-valued logic. We make initial steps
towards understanding fuzzy topology as an axiomatic higher-order theory over
Hájek-style [5] formal fuzzy logic, following the methodology for formal fuzzy
mathematics described in [6]. According to the classification proposed in [2],
the models of our theory are closest to “L-fuzzy topologies as characteristic
morphisms”. However, the apparatus of Fuzzy Class Theory, employed in this
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and the Institutional Research Plan AV0Z10300504.
�� The work of the second author was supported by grant No. B100300502 of GA AV ČR

and grant No. 1M0572 of MŠMT ČR.
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paper, makes our notions and the way in which they can be studied quite dis-
tinct from (and in some aspects more general than) other approaches to fuzzy
topology.

The paper is organized as follows: Section 2 gives a brief exposition of Fuzzy
Class Theory and the definitions needed in the paper. Section 3 studies the
graded notion of fuzzy topology regarded as a fuzzy system of open (or closed)
fuzzy sets. Section 4 then studies graded fuzzy topologies regarded as fuzzy
systems of fuzzy neighborhoods.

2 Preliminaries

Fuzzy Class Theory FCT, introduced in [7], is an axiomatization of Zadeh’s
notion of fuzzy set in formal fuzzy logic. Here we use its variant defined over
IMTL� [8], the logic of all left-continuous t-norms whose residual negation is
involutive (we shall call them IMTL t-norms; the most important example is
the �Lukasiewicz t-norm x ∗ y =df max(0, x + y − 1)).

Remark 1. We have the following reasons for choosing IMTL� for the ground
logic: the logic MTL� [8] of all left-continuous t-norms is arguably [9] the weakest
fuzzy logic with good inferential properties for fully graded fuzzy mathematics in
the framework of formal fuzzy logic [6]. IMTL� extends it with the law of double
negation, which is in fuzzy topology needed for the correspondence between open
and closed fuzzy sets. A generalization of fuzzy topology to the logic MTL� (with
independent systems of open and closed fuzzy sets) will be the subject of some
future paper.

We assume the reader’s familiarity with IMTL�; for details on this logic see [8].
Here we only recapitulate its standard [0, 1] semantics:

& . . . a left-continuous t-norm ∗ with involutive residual negation
→ . . . the residuum ⇒ of ∗, defined as x ⇒ y =df sup{z | z ∗ x ≤ y}

∧, ∨ . . . min, max
¬ . . . x ⇒ 0; in IMTL� it is involutive, due to the axiom ¬¬ϕ → ϕ
∨ . . . the t-conorm dual to ∗ (since ϕ ∨ ψ is defined as ¬(¬ϕ & ¬ψ))
↔ . . . the bi-residuum: min(x ⇒ y, y ⇒ x)
	 . . . 	x = 1 − sgn(1 − x)

∀, ∃ . . . inf, sup; by involutiveness, (∃x)¬ϕ ↔ ¬(∀x)ϕ

Definition 1. Fuzzy Class Theory FCT is a formal theory over multi-sorted
first-order fuzzy logic (in this paper, IMTL�), with the sorts of variables for

– atomic objects (lowercase letters x, y, . . . )
– fuzzy classes of atomic objects (uppercase letters A, B, . . . )
– fuzzy classes of fuzzy classes of atomic objects (Greek letters τ, σ, . . . )
– fuzzy classes of the third order (calligraphic letters A, B, . . . )
– etc., in general for fuzzy classes of the n-th order (X(n), Y (n), . . . )
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Table 1. Abbreviations used in the formulae of FCT

Ax ≡df x ∈ A
x1 . . . xk =df 〈x1, . . . , xk〉

x /∈ A ≡df ¬(x ∈ A), and similarly for other predicates
(∀x ∈ A)ϕ ≡df (∀x)(x ∈ A → ϕ)
(∃x ∈ A)ϕ ≡df (∃x)(x ∈ A & ϕ)

(∀x, y ∈ A)ϕ ≡df (∀x ∈ A)(∀y ∈ A)ϕ, similarly for ∃
{x ∈ A | ϕ} =df {x | x ∈ A & ϕ}

{t(x1, . . . , xk) | ϕ} =df {z | z = t(x1, . . . , xk) & ϕ}
ϕn ≡df ϕ & . . . & ϕ (n times)

Besides the crisp identity predicate =, the language of FCT contains:

– the membership predicate ∈ between objects of successive sorts
– class terms {x | ϕ}, for any formula ϕ and any variable x of any order
– symbols 〈x1, . . . , xk〉 for k-tuples of individuals x1, . . . , xk of any order

FCT has the following axioms (for all formulae ϕ and variables of all orders):

– the logical axioms of multi-sorted first-order logic IMTL�
– the axioms of crisp identity: (i) x = x, (ii) x = y → (ϕ(x) → ϕ(y)),

(iii) 〈x1, . . . , xk〉 = 〈y1, . . . , yk〉 → x1 = y1 & . . . & xk = yk

– the comprehension axioms: y ∈ {x | ϕ(x)} ↔ ϕ(y)
– the extensionality axioms: (∀x)	(x ∈ A ↔ x ∈ B) → A = B

Remark 2. Notice that in FCT, fuzzy sets are rendered as a primitive notion
rather than modeled by membership functions. In order to capture this distinc-
tion, fuzzy sets are in FCT called fuzzy classes; the name fuzzy set is reserved
for membership functions in the models of the theory.

The models of FCT are systems of fuzzy sets of all orders over a fixed crisp
universe of discourse, with truth degrees taking values in an IMTL�-chain (e.g.,
the interval [0, 1] equipped with an IMTL t-norm). Thus all theorems on fuzzy
classes provable in FCT are true statements about L-valued fuzzy sets, for any
IMTL�-chain L. Notice however that the theorems of FCT have to be derived
from its axioms by the rules of the fuzzy logic IMTL� rather than classical
Boolean logic. For details on proving theorems of FCT see [10] or [11].

Convention 2.1 In formulae of FCT, we employ usual abbreviations known
from classical mathematics, including those listed in Table 1. Usual rules of
precedence apply to the connectives of IMTL�. Furthermore we define standard
defined notions of FCT, summarized in Table 2, for all orders of fuzzy classes.

Remark 3. Notice that in FCT, not only the membership predicate ∈, but all
defined notions are in general fuzzy (unless they are defined as provably crisp).
FCT thus presents a fully graded approach to fuzzy mathematics. The impor-
tance of full gradedness in fuzzy mathematics is explained in [10,12,13]: its main
merit lies in that it allows inferring relevant information even when a property of
fuzzy sets is not fully satisfied. Fuzzy topology has a long tradition of attempting
full gradedness, cf. graded definitions and theorems e.g. in [3,4].
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Table 2. Defined notions of FCT

∅ =df {x | 0} empty class
V =df {x | 1} universal class

KerA =df {x | 
Ax} kernel
αA =df {x | α & Ax} α-resize
−A =df {x | ¬Ax} complement

A ∩ B =df {x | Ax & Bx} (strong) intersection
A ∪ B =df {x | Ax ∨ Bx} (strong) union
A × B =df {xy | Ax & By} Cartesian product⋃

τ =df {x | (∃A ∈ τ)(x ∈ A)} class union⋂
τ =df {x | (∀A ∈ τ)(x ∈ A)} class intersection

Pow(A) =df {X | X ⊆ A} power class
Crisp(A) ≡df (∀x)
(Ax ∨ ¬Ax) crispness

ExtE A ≡df (∀x, y)(Exy & Ax → Ay) E-extensionality
A ⊆ B ≡df (∀x)(Ax → Bx) inclusion
A � B ≡df (A ⊆ B) & (B ⊆ A) (strong) bi-inclusion

Remark 4. It should be noted that fully graded theories have some peculiar
features in which they differ from both classical mathematics and traditional
fuzzy mathematics. A detailed account of the unusual features of fully graded
theories is given in [14]; some of them can also be found in [10] (available online).
Here we only briefly stress the main features of graded mathematics:

– Since ϕ → ϕ & ϕ is not a generally valid law of fuzzy logic, premises may
occur several times in theorems. A typical graded theorem has the form
ϕk1

1 & . . . & ϕkn
n → ψ, where ϕk abbreviates ϕ & . . . & ϕ (k times, where ϕ0

is 1). The multiplicity ki of the premise ϕi shows how strongly it influences
(the lower bound for) the truth of ψ (when only partially true), and depends
on how many times the premise is used in the derivation of ψ from ϕ1, . . . , ϕk.
The exponent k in ϕk can also take the conventional value “	”, where ϕ�

is understood as 	ϕ (recall that ϕ� → ϕn for all n).
– If a complex notion Φ is defined as a conjunction ϕ1 & . . .&ϕn, then the con-

juncts ϕi will get different multiplicities in different theorems. It is therefore
appropriate to parameterize Φ by the multiplicities of the components ϕi

and define it as Φk1,...,kn ≡df ϕk1
1 & . . .&ϕkn

n . (All graded topological notions
in the following sections will be defined in this way.) We can write just Φk

instead of Φk1,...,kn if ki = k for all i, and just Φ if ki = 1 for all i.

The following defined predicates will be employed in the next sections.

Definition 2. We define the following (graded) unary predicates:

∪-closedness: uc(τ) ≡df (∀A, B ∈ τ )(A ∪ B ∈ τ)
∩-closedness: ic(τ) ≡df (∀A, B ∈ τ )(A ∩ B ∈ τ)⋃

-closedness: Uc(τ) ≡df (∀ν ⊆ τ)
(⋃

ν ∈ τ
)

⋂
-closedness: Ic(τ) ≡df (∀ν ⊆ τ)

(⋂
ν ∈ τ

)

⊆-upperness: Upper(τ) ≡df (∀A, B)(A ⊆ B & A ∈ τ → B ∈ τ)
being a filter: Filterv,e,u,i(τ) ≡df (V ∈ τ)v & (∅ /∈ τ)e & Upperu(τ) & ici(τ)
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3 Topology as a System of Open (Closed) Fuzzy Classes

In classical mathematics, topology can be introduced in several equivalent
ways—by open sets, closed sets, neighborhoods, closure, etc. In FCT, however,
these approaches yield different concepts. In this paper, we make an initial in-
vestigation into two of them, namely the system of open (or closed) classes (in
this section) and the system of neighborhoods (in Sect. 4). Due to the limited
size of this paper we present only some of the initial results and have to omit all
proofs.

The fuzzification of the concept of open (closed) fuzzy topology presented in
Def. 3 follows the methodology sketched in [15, §5] and formally elaborated in
[7, §7], i.e., reinterpreting the formulae of the classical definition in fuzzy logic.1

Definition 3. We define an (open) (e, v, i, u)–fuzzy topology and a closed
(e, v, u, i)–fuzzy topology respectively by the predicates

OTope,v,i,u(τ) ≡df (∅ ∈ τ)e & (V ∈ τ)v & ici(τ) & Ucu(τ)
CTope,v,u,i(σ) ≡df (∅ ∈ σ)e & (V ∈ σ)v & ucu(σ) & Ici(σ)

(see Remark 4 for the meaning of the parameters e, v, u, i).

Note that this concept of topology is graded, i.e., the predicate OTope,v,i,u de-
termines the degree to which τ is an open (e, v, i, u)–fuzzy topology.

Example 1. Let ∗ be an IMTL t-norm and ⇒ its residuum. The ∗-based Zadeh
models of open (1, 1, 	, 	)–fuzzy topology, i.e., of the predicate

OTop1,1,�,�(τ) ≡ ∅ ∈ τ & V ∈ τ & 	 ic(τ) & 	Uc(τ)

are functions τ : [0, 1]V → [0, 1] satisfying the following conditions:

(i) τ(A) ∗ τ(B) ≤ τ(A ∩ B) for every A, B ∈ [0, 1]V

(ii)
∧

A∈[0,1]V
(ν(A) ⇒ τ(A)) ≤ τ (

⋃
ν) for every ν : [0, 1]V → [0, 1]

where (A ∩ B)(x) = A(x) ∗ B(x) and (
⋃

ν) (x) =
∨

A∈[0,1]V
(ν(A) ∗ A(x)). Since

both (i) and (ii) are crisp, the degree to which τ is a (1, 1, 	, 	)-fuzzy topology
equals τ(∅) ∗ τ(V). These models cover fuzzy topologies studied under the name
“L-fuzzy topologies of Höhle type” [2].

In IMTL�, open and closed topologies are interdefinable:

Definition 4. Let τc =df {A | −A ∈ τ}.
1 The requirement that both ∅ and the ground set be open can meaningfully be rein-

terpreted in fuzzy logic in several ways; here we restrict ourselves to the weakest one,
requiring openness just for the two classes ∅ and V. Stronger notions of topology
(e.g., stratified topology [3] with the condition αV ∈ τ for all truth degrees α) will
be studied in subsequent papers.
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Theorem 1. FCT proves: OTop(τ) ↔ CTop(τc), CTop(σ) ↔ OTop(σc).

Definition 5. Given a class of classes τ , we define the interior and closure in τ
as follows:

Intτ (A) =df

⋃
{B ∈ τ | B ⊆ A}

Clτ (A) =df

⋂
{B ∈ τc | A ⊆ B}

Theorem 2. It is provable in FCT:

1. Intτ (A) ⊆ A
2. A ⊆ B → Intτ (A) ⊆ Intτ (B)
3. A ∈ τ → Intτ (A) � A
4. Intτ (A ∩ B) ∩ Intτ (A ∩ B) ⊆ Intτ (A) ∩ Intτ (B)

Theorem 3 (OTop and the interior operator). It is provable in FCT:

1. OTop0,0,0,1(τ) → Intτ (A) ∈ τ
2. OTop0,0,0,1(τ) → Intτ (Intτ (A)) � Intτ (A)
3. OTop0,0,1,0(τ) → Intτ (A) ∩ Intτ (B) ⊆ Intτ (A ∩ B)
4. OTop0,1,0,0(τ) → Intτ (V) � V

Since Clτ (A) = − Intτ (−A) is provable in FCT, the next two theorems are just
dual counterparts of Th. 2 and 3.

Theorem 4. It is provable in FCT:

1. A ⊆ Clτ (A)
2. A ⊆ B → Clτ (A) ⊆ Clτ (B)
3. A ∈ τc → Clτ (A) � A
4. Clτ (A) ∪ Clτ (B) ⊆ Clτ (A ∪ B) ∪ Clτ (A ∪ B)

Theorem 5 (OTop and the closure operator). It is provable in FCT:

1. OTop0,0,0,1(τ) → Clτ (A) ∈ τc

2. OTop0,0,0,1(τ) → Clτ (Clτ (A)) � Clτ (A)
3. OTop0,0,1,0(τ) → Clτ (A ∪ B) ⊆ Clτ (A) ∪ Clτ (B)
4. OTop0,1,0,0(τ) → Clτ (∅) � ∅

Definition 6. A predicate expressing that A is a neighborhood of x in τ is
defined as

Nbτ (x, A) ≡df (∃B ∈ τ)(B ⊆ A & x ∈ B)

The system of all neighborhoods of x will be denoted by νx =df {A | Nbτ (x, A)}.

Theorem 6 (OTop and neighborhoods). It is provable in FCT:

1. x ∈
⋂

νx

2. Nbτ (x, A) ↔ x ∈ Intτ (A)
3. OTop(τ) → Filter(νx) & (∀A ∈ νx)(∃B ∈ νx)(B ⊆ A & (∀y ∈ B)Nbτ (y, B))
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In general, the system of all open fuzzy topologies is not closed under arbitrary
intersections. Nevertheless, the system of all open 	–fuzzy topologies is at least
closed under crisp intersections, which allows introducing the notion of open
fuzzy topology generated by a subbase of fuzzy classes:

Theorem 7. Let X be a fuzzy class of the third order. Then FCT proves:

Crisp(X ) & (∀τ ∈ X )
(
	OTop(τ)

)
→ 	 OTop

(⋂
X

)

Definition 7. Let σ be a fuzzy class of fuzzy classes. Then we define

τσ =df

⋂
{τ ′ | 	(OTop(τ ′) & σ ⊆ τ ′)}

By Th. 7, FCT proves that 	 OTop(τσ), and obviously also that τσ is the least
open 	–fuzzy topology containing σ.

Example 2. Interval open fuzzy topology. Let ≤ be a crisp dense ordering (e.g.,
of real or rational numbers). The fuzzy properties of being an upper resp. lower
class in ≤ are defined by the predicates

Upper≤(A) ≡df (∀p, q)(p ≤ q & Ap → Aq)
Lower≤(A) ≡df (∀p, q)(p ≥ q & Bp → Bq)

Fuzzy intervals [A, B] in ≤ can be defined [16] as intersections A∩B of two fuzzy
classes A, B, where 	Upper≤(A) & 	 Lower≤(B). An open fuzzy interval can
be defined by the following fuzzy predicate:2

Op([A, B]) ≡df 	(Upper≤(A)) & (∀p)(Ap → (∃q < p)Aq) &

	(Lower≤(B)) & (∀p)(Bp → (∃q > p)Bq)

By Th. 7, the fuzzy system σ = {[A, B] | Op([A, B])} of open fuzzy intervals
generates an open fuzzy topology τσ—the interval open fuzzy topology of ≤. It
can be shown that σ itself is ∩-closed; since furthermore ∩ distributes over

⋃
,

FCT proves that τσ = {
⋃

ν | ν ⊆ σ} (just like in the crisp interval topology).

4 Topology Given by a Neighborhood Relation

The following definition of fuzzy topology is an internalization in fuzzy logic of
the conditions required from the system of neighborhoods.3

2 Observe that it generalizes the notion of crisp open interval, by the requirement of
the appropriate left- or right- continuity of the characteristic function of the interval.

3 The first condition only determines the type of the neighborhood predicate (i.e., that
it is a relation between points and classes), therefore its full validity is required.
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Definition 8. We define a neighborhood (i, j, k, l)–fuzzy topology by the
predicate

NTopi,j,k,l(Nb) ≡df 	(Nb ⊆ V × KerPow(V)) &

((∀x, A)(Nb(x, A) → x ∈ A))i &

((∀x, A, B)(Nb(x, A) & A ⊆ B → Nb(x, B)))j &

((∀x, A, B)(Nb(x, A) & Nb(x, B) → Nb(x, A ∩ B)))k &

((∀x, A)(Nb(x, A) → (∃B ⊆ A)(Nb(x, B) & (∀y ∈ B)Nb(y, B)))l

Definition 9. Let 	(Nb ⊆ V × KerPow(V)). Then we define (as usual) the
system of Nb-open classes:

τNb =df {A | (∀x ∈ A)Nb(x, A)}

It can be shown that even if Nb is a neighborhood fuzzy topology to degree one,
τNb still need not be an open fuzzy topology (in particular, it need not be closed
under arbitrary unions). Only the following holds:

Theorem 8. FCT proves: 	NTop(Nb) → (∀σ ⊆ τNb) (
⋃

(σ ∩ σ) ∈ τNb).

This motivates a modified notion of open fuzzy topology:

Definition 10. We define the following predicates:

U2c(τ) ≡df (∀σ ⊆ τ)
(⋃

(σ ∩ σ) ∈ τ
)

O2Tope,v,i,u(τ) ≡df (∅ ∈ τ)e & (V ∈ τ)v & ici(τ) & U2cu(τ)

Theorem 9. FCT proves:

(∃x, A)Nb(x, A) & NTop1,3,1,1(Nb) → O2Top(τNb) & (Nb(x, A) ↔ NbτNb(x, A))

Thus, a “sufficiently monotone” non-empty neighborhood topology determines
a corresponding open “topology” which is closed under the operation

⋃
(σ ∩ σ)

rather than under usual unions
⋃

σ. Such systems are met quite often in fully
graded fuzzy topology:

Example 3. It is well-known from traditional fuzzy mathematics that the system
of fuzzy sets fully extensional w.r.t. a fuzzy relation R is closed under unions of
arbitrary crisp systems of fuzzy sets and under min-intersections of crisp pairs
of fuzzy sets (i.e., it forms a fuzzy topology in the traditional, non-graded sense
of [17]). In the graded framework of FCT it can be proved that the fuzzy system
of R-extensional classes {A | ExtR A} is closed under

⋃
(σ ∩ σ) (but not under

arbitrary fuzzy unions), and provided R ⊆ R∩R (which holds e.g. if R is crisp),
it satisfies O2Top.

Both OTop and O2Top topologies are closed under crisp unions, which leads to
a further generalization of the notion of open fuzzy topology:
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Definition 11. We define the following predicates:

U�c(τ) ≡df (∀σ ⊆ τ )
(
Crisp(σ) →

⋃
σ ∈ τ

)

O�Tope,v,i,u(τ) ≡df (∅ ∈ τ)e & (V ∈ τ)v & ici(τ) & U�cu(τ)

The models of O�Top are among frequently studied fuzzy topological struc-
tures called “L-fuzzy topologies of Šostak-type” according to the classification
proposed in [2].

The definition of the interior operator needs to be modified to have good
properties in neighborhood fuzzy topologies:

Int′τNb
(A) =df

⋃
{B | 	(B ∈ τNb & B ⊆ A)}

Theorem 10. It is provable in FCT:

1. NTop0,1,0,0(Nb) → 	(Int′τNb
(A) ∈ τNb)

2. A ⊆ B → Int′τNb
(A) ⊆ Int′τNb

(B)
3. 	(A ∈ τNb) → Int′τNb

(A) = A

Theorem 11 (NTop and interior operator). It is provable in FCT:

1. 	(V ∈ τNb) → Int′τNb
(V) = V

2. Int′τNb
(A) ⊆ A

3. NTop0,1,0,0(Nb) → Int′τNb
(Int′τNb

(A)) = Int′τNb
(A)

4. NTop0,0,1,0(Nb) → Int′τNb
(A) ∩ Int′τNb

(B) ⊆ Int′τNb
(A ∩ B)

5. Int′τNb
(A ∩ B) ∩ Int′τNb

(A ∩ B) ⊆ Int′τNb
(A) ∩ Int′τNb

(B)

The following theorem guarantees that neighborhoods defined from a (sufficiently
union-closed) open fuzzy topology are exactly the neighborhoods in the sense of
predicate NTop.

Theorem 12 (OTop and NTop). It is provable in FCT:

OTop1,1,1,2(τ) → NTop(Nbτ ) & (A ∈ τ ↔ (∀x ∈ A)Nbτ (x, A))

Example 4. Interval neighborhood fuzzy topology. The (fuzzy) system of open
fuzzy intervals of Example 2 allows introducing the interval neighborhood fuzzy
topology w.r.t. a crisp dense ordering ≤, by taking

Nb(x, X) ≡df (∃A, B)	 (Op([A, B]) & [A, B] ⊆ X & x ∈ [A, B])

Then it can be shown that FCT proves 	NTop(Nb), and in virtue of Th. 9,
	O2Top(τNb) and Nb = NbτNb . Notice, however, that the interval open topology
of Example 2 differs from the interval neighborhood topology introduced here,
since in the latter all classes open to degree 1 are crisp.
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5 Conclusions

We have introduced two notions of fuzzy topology in the graded framework of
Fuzzy Class Theory and investigated their basic properties; where appropriate,
we gave links to similar notions of fuzzy topology studied previously in tradi-
tional fuzzy mathematics. Most of our notions generalize usual concepts of fuzzy
topology by allowing full gradedness of all defined predicates and functions.
Proofs of the graded theorems, though omitted here due to the limited space,
are rather simple and show the strength of the apparatus of higher-order fuzzy
logic in fuzzy topology. The results open a wide area of fully graded topological
theory and show the possibility of the investigation of more advanced graded
topological notions by means of Fuzzy Class Theory.
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Abstract. A genuine fuzzy approach to fuzzy mathematics consists in
constructing axiomatic theories over suitable systems of formal fuzzy
logic. The features of formal fuzzy logics (esp. the invalidity of the law of
contraction) entail certain differences in form between theories axioma-
tized in fuzzy logic and usual theories known from classical mathemat-
ics. This paper summarizes the most important differences and presents
guidelines for constructing new theories, defining new notions, and prov-
ing new theorems in formal fuzzy mathematics.

Keywords: Formal fuzzy logic, axiomatic theories, the law of contrac-
tion, fuzzy mathematics, graded properties.

1 Introduction

As argued in [1], a genuine fuzzy approach to fuzzy mathematics consists in
constructing axiomatic theories over suitable systems of formal fuzzy logic. There
are numerous reasons supporting this thesis, let us name just a few: under this
approach, there is a strong analogy with classical mathematics; most notions
are naturally graded; the connection with real-valued analysis is loosened; a
consistent methodology for introducing fuzzy counterparts of crisp notions is
provided; hidden crispness can easily be avoided; etc.

The features of formal fuzzy logics (esp. the invalidity in general of the contrac-
tion law, see Sect. 2) enforce a specific approach to building axiomatic theories
over such logics. Some of the usual practices of classical as well as traditional
fuzzy mathematics cease to be useful and need to be adjusted when working in
formal fuzzy logic. Examples of such traditional practices are the placement of
preconditions in definitions rather than theorems, defining compound notions as
conjunctions of several conditions, etc. Furthermore, the properties of the under-
lying logic entail certain differences in the form as well as strength of theorems
that can be proved in theories over formal fuzzy logic as compared to theorems
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of traditional fuzzy mathematics. In particular, they allow studying graded no-
tions and properties, mostly overlooked by traditional fuzzy mathematics (where
usually just the predicate ∈ is fuzzified).

This paper summarizes the most important differences between theories of
classical mathematics or traditional fuzzy mathematics (e.g., [2,3,4]) on the one
hand and those axiomatized in formal fuzzy logic (e.g., [5,6,7]) on the other hand,
and presents guidelines for introducing new defined notions and formulating
meaningful theorems in formal fuzzy mathematics.

2 Features of Formal Fuzzy Logics

Many systems of formal fuzzy logic emerged in the last decades. Here we survey
their common features relevant to our needs.

Let us start at the propositional level. Formal fuzzy logics share the syntax
of classical Boolean logic, only there are usually two different conjunctions—the
residuated (strong) one & and the minimum (weak) one ∧. Although there is
a bunch of formal fuzzy logics described in the literature, the deductively well-
behaved ones [8] contain some common basic propositional laws (axioms). The
shared axioms form the logic MTL [9], the logic of left-continuous t-norms (i.e.,
the set of truth values is the interval [0, 1], a left-continuous t-norm interprets
&, and its residuum interprets implication). In order to enhance its expressive
power, one usually adds one more propositional unary connective � with the
standard semantics �x = 1 if x = 1 and �x = 0 otherwise. The logic MTL with
the connective � will be denoted by MTL� further on.

It can be argued [8] that formal fuzzy logics suitable for axiomatizing mathe-
matical theories extend the logic MTL�; following [8], we shall call them deduc-
tive fuzzy logics. The most prominent examples of such logics are �Lukasiewicz
logic, Hájek’s BL, involutive MTL, product logic, the logic �LΠ, etc. (all of them
with �). The main distinction between classical logic and deductive fuzzy logics
is the invalidity in general of the law of contraction (ϕ & ϕ) ↔ ϕ in the latter.
Non-contractivity has a huge impact on the axiomatic mathematical theories
over deductive fuzzy logics: see Sect. 6–8 for details.

Propositional fuzzy logic is not expressive enough to support mathematical
theories; at least first-order fuzzy logic is needed for fuzzy mathematics. For a
recent survey of first-order fuzzy logics see [10]; for higher-order fuzzy logics see
[11,12,13]. Unless stated otherwise, our background fuzzy logic is supposed to
be the first-order logic MTL�.1

Axiomatic mathematical theories are given by a set of formulae, called the
axioms of the theory. The theorems of a theory are proved by formal deductions

1 First-order MTL� retains the completeness w.r.t. semantics based on left-continuous
t-norms (although this is, in general, not the case of stronger fuzzy logics like BL or
�Lukasiewicz). This allows us to transfer some results of traditional fuzzy mathematics
proven for all left-continuous t-norms automatically into MTL�. However, these re-
sults are usually much weaker than those achievable directly in the axiomatic theory
(see Sect. 3 and 5 for more details).
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from its axioms by the deduction rules of the underlying formal fuzzy logic. For
details on axiomatic theories over fuzzy logics see [14].

Further on, we shall adopt the following useful conventions for formulae of
formal fuzzy logic:

Convention 21. In order to save some parentheses, we assume that → and ↔
have less priority than other binary connectives, and that unary connectives have
the highest priority. A chain of implications ϕ1 → ϕ2, . . . , ϕn−1 → ϕn will be
written as ϕ1 −→ ϕ2 −→ · · · −→ ϕn, and similarly for the equivalence connective.

3 Graded Notions

Traditional fuzzy set theory fuzzifies (at least) the membership predicate: the
membership degree Ax of an element x in a set A can take intermediate val-
ues between 1 and 0. Fuzzy sets are identified with their membership functions
x �→ Ax; their properties thus can be studied by means of usual methods of clas-
sical mathematics (which uses the laws of classical Boolean logic for reasoning),
since membership functions are after all crisp objects of real-valued or lattice-
valued analysis. Traditional properties of fuzzy sets are therefore bivalent : they
either hold or not (e.g., a fuzzy relation either is or is not reflexive).

Only some properties of fuzzy sets are sometimes considered graded (i.e., with
truth values in [0, 1] or a lattice L) rather than bivalent (i.e., either true or false):
most often the graded inclusion predicate A ⊆gr B defined as infx(Ax ⇒ Bx),
where ⇒ is a suitable fuzzy implication (compare it with the non-graded inclu-
sion of fuzzy sets, defined by the condition Ax ≤ Bx for all x).

Formal fuzzy mathematics, on the other hand, uses formal fuzzy logic rather
than classical Boolean logic for reasoning about fuzzy sets or other fuzzy notions,
and therefore all formulae take truth values in L; thus all defined notions and
all statements in general are graded and can be just partially true (unless they
are defined as provably crisp).

Consequently, even such properties of fuzzy relations as reflexivity, which in
traditional fuzzy mathematics is usually defined as bivalent (by requiring that
Rxx = 1 for all x), are in formal fuzzy logic graded (defined as the truth value
in L of the formula (∀x)Rxx, i.e., infx Rxx). In principle, all properties in formal
fuzzy logic are of a similar kind as the property of height of a fuzzy set, which
even in traditional fuzzy mathematics naturally takes values in L.

Graded properties of fuzzy relations have for the first time been systemat-
ically studied in Gottwald’s monograph [15], and more recently elaborated in
Gottwald’s [16] and Bělohlávek’s [17]. Graded notions also have a long tradi-
tion in fuzzy topology, see e.g. [18]. The graded approach is important for sev-
eral reasons. First, graded notions generalize the traditional (non-graded) ones,
as the latter are definable (by means of �) in terms of the former, but not
vice versa. Second, graded notions are more informative—they allow inferring
relevant information even when traditional notions are simply false (see Sect. 5).
Third, graded notions take the idea of fuzziness seriously, as there is no reason
to assume that properties of fuzzy sets should only be crisp. Moreover, graded
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notions can easily be handled within the framework of formal fuzzy logic, so
their gradedness does not present too much additional difficulty.

4 Natural Fuzzification of Classical Notions

One of the main motivations of formal fuzzy logic is the generalization of classical
logic to non-crisp predicates: thus it is natural to fuzzify classical mathemati-
cal notions just by re-interpreting them in a suitable formal fuzzy logic. This
methodology has been foreshadowed already in Höhle’s 1987 paper [19, §5]:

“It is the opinion of the author that from a mathematical viewpoint
the important feature of fuzzy set theory is the replacement of the two-
valued logic by a multiple-valued logic. [. . . I]t is now clear how we can
find for every mathematical notion its ‘fuzzy counterpart’. Since every
mathematical notion can be written as a formula in a formal language,
we have only to internalize, i.e. to interpret these expressions by the
given multiple-valued logic.”

Much later the principle was formalized in [11, §7], and proposed as an important
guideline for formal fuzzy mathematics in [1].

Nevertheless, although an important guideline, the method cannot be applied
mechanically, as some classically equivalent definitions may no longer be equiv-
alent in the (weaker than classical) fuzzy logic. In some cases, one can select the
most suitable version of the definition, by the criteria of fruitfulness, applicabil-
ity, and the practice of traditional fuzzy mathematics. In other cases, a notion of
classical mathematics splits into several meaningful fuzzy notions. This can be
exemplified by the notion of equality of fuzzy sets. Besides the crisp identity = of
fuzzy sets, at least two graded notions of natural fuzzy equality are defined and
used in the literature (e.g., the first one is used in [17] and the second one in [16]):

A ≈ B ≡df (∀x)[(Ax → Bx) & (Bx → Ax)] (1)
A � B ≡df (∀x)(Ax → Bx) & (∀x)(Bx → Ax) (2)

These notions are not equivalent (even in rather strong fuzzy logics, e.g., �Luka-
siewicz), as shown by the following counter-example:

Example 1. Let A, B be interpreted in a model over the standard MV-algebra
(see [14]) by the following assignment of truth values: Aa = Bb = 1 and Ab =
Ba = 0.5 for some individuals a and b, and Ax = Bx = 0 otherwise. Then the
truth value of A ≈ B is 0.5, while the truth value of A � B is 0.

Notice that in traditional fuzzy mathematics these two notions of graded equality
coincide, since �(A ≈ B) ←→ �(A � B) ←→ A = B (see Prop. 2 in Sect. 8).

5 Theorems in the Form of Provable Implications

The general gradedness of all notions in formal fuzzy logic allows proving more
general theorems that are not available for non-graded notions in traditional
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fuzzy mathematics. A typical non-graded theorem of traditional fuzzy mathe-
matics has the following form:

If some (non-graded) assumption is true (i.e., fully true),
then some (non-graded) conclusion is (fully) true.

With graded notions we can formulate and prove much stronger theorems of the
following form:

The more some (graded) assumption is true (even if partially),
the more some (graded) conclusion is true (i.e., at least as true as the
assumption).

The latter can be expressed in formal fuzzy logic by means of implication ϕ → ψ,
where ϕ is the formula which expresses the assumption and ψ is the formula which
expresses the conclusion. In deductive fuzzy logics, if ϕ → ψ is provable, then the
truth value of ψ is at least as large as the truth value of ϕ in any model. Provable
implications thus express exactly the graded theorems of the above form. Since the
full truth of χ is expressed by �χ, the former non-graded theorem of traditional
fuzzy mathematics is expressed by the formula �ϕ → �ψ. The graded theorem
ϕ → ψ is generally stronger than the non-graded theorem �ϕ → �ψ, since the
latter is an immediate consequence of the former in MTL�, but not vice versa.

Example 2. If we set Ixy =

{
1 if x = y

0 otherwise, then:

– Traditional fuzzy mathematics proves that if a fuzzy relation R is reflexive
(in the traditional sense), then I is a fuzzy subset of R; i.e., if Rxx = 1 for
each x, then Ixy ≤ Rxy for each x, y.

– In formal fuzzy logic we can easily prove that the more a fuzzy relation R is
reflexive (in the graded sense), the more I is a fuzzy subset of R; in symbols,
(∀x)Rxx → (∀xy)(Ixy → Rxy). Thus for any left-continuous t-norm T we
get infx Rxx ≤ infx,y

−→
T (Ixy, Rxy).

Notice that the latter result is indeed more general than the former one: if R is
0.999-reflexive, the traditional theorem asserts nothing (as R is not reflexive in
the traditional sense), while the graded theorem ensures that I is a fuzzy subset
of R at least to degree 0.999. (Much more complex examples of this kind can be
found in [5].)

By the above considerations, it is preferable to prove theorems in the form
of implication ϕ → ψ, rather than traditional non-graded theorems, which in
formal fuzzy logic can be formalized as �ϕ → �ψ.

6 Exponents

As stressed in Sect. 2, the law of contraction (ϕ & ϕ) ↔ ϕ is not generally valid
in deductive fuzzy logics. Therefore, repeated occurrences of a premise ϕi in a
theorem of the form

ϕ1 & . . . & ϕn → ψ (3)
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cannot be contracted into a single occurrence, as usual in classical mathematics.
For convenience, the k occurrences of ϕi in (3) can be written as ϕk

i . Thus a
typical form of a graded theorem is actually

ϕk1
1 & . . . & ϕkn

n → ψ (4)

Semantically, since the truth value of ϕ & ϕ is in general smaller than ϕ in
usual fuzzy logics, the larger the exponent ki in (4) is, the truer ϕi must be to
ensure a large truth degree of the conclusion ψ. In other words, the conclusion
of a theorem depends more on the truth degree of the premises with larger
exponents than on those with smaller exponents.

Syntactically, the exponent ki in a theorem of the form (4) expresses how many
times the premise ϕi was used in an MTL-proof of ψ. This can be seen from
the proof of the Local Deduction Theorem for propositional MTL (see [20]), or
from the following proposition which justifies proving a conjunction by proving
the conjuncts separately:

Proposition 1. Propositional fuzzy logic MTL proves (see [9]):

[(ϕ1 → ψ1) & (ϕ2 → ψ2)] → [(ϕ1 & ϕ2) → (ψ1 & ψ2)] (5)
[(ϕ → ψ1) & (ϕ → ψ2)] → [ϕ → (ψ1 ∧ ψ2)] (6)

Thus if we can prove

ϕk1
1 & . . . & ϕkn

n → ψ1 and ϕl1
1 & . . . & ϕln

n → ψ2 (7)

then we also have

ϕk1+l1
1 & . . . & ϕkn+ln

n → ψ1 & ψ2 (8)

ϕ
max(k1,l1)
1 & . . . & ϕmax(kn,ln)

n → ψ1 ∧ ψ2 (9)

Notice two different ways of “counting the premises” based on whether we prove
conjunction or min-conjunction of conclusions.

Since ϕk → ψ is weaker for larger k, one should actually find a counter-
example against ϕk−1 → ψ whenever one proves a theorem of the form ϕk → ψ,
to show that it cannot be strengthened. This may, however, be quite difficult for
more complex theorems. Also if the exponents in a theorem grow too large, it
may in some cases be preferable to weaken the theorem and use �ϕ as a premise
instead of ϕk (for k � 0).

7 Preconditions and Compound Notions

The fact that assumptions get variable exponents in theorems leads to two im-
portant guidelines for defining new notions in formal fuzzy mathematics.

In classical mathematics, definitions often have preconditions under which the
defined notions are meaningful (e.g., “let R be an ordering”). In formal fuzzy
mathematics, such preconditions are in general fuzzy (the notion of ordering is
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graded). In proofs of graded theorems, such preconditions will be used various
numbers of times, and so they will get various exponents.

A notion defined with a fuzzy precondition is therefore of little interest, since
only such graded properties are provable about the notion that use the precon-
dition at most once; more complex properties will need the precondition several
times. Thus it is better to state the definition of the notion without the precondi-
tion, and add the precondition with the required multiplicity in a theorem of the
form (4). Only such preconditions ϕ can meaningfully be required in definitions
that provably satisfy (ϕ&ϕ) ↔ ϕ and so they do not acquire differing exponents
in theorems. (In particular, crisp preconditions satisfy the latter and therefore
can meaningfully be used in definitions.)

A similar effect of variable exponents can be seen in notions defined as con-
junctions of two or more conditions. We exemplify the effect on the notions of
fuzzy preordering and similarity.

Example 3. In traditional fuzzy mathematics we say that a fuzzy relation R is a
preordering iff R is reflexive and transitive (where R is transitive iff Rxy∗Ryz ≤
Rxz for all x, y, z and reflexive iff Rxx = 1 for all x); it is a similarity iff it is
reflexive, transitive, and symmetric (where R is symmetric iff Rxy ≤ Ryx for
all x, y). In formal fuzzy logic, graded reflexivity, symmetry, and transitivity are
defined by the following formulae:

Refl R ≡df (∀x)Rxx (10)
SymR ≡df (∀xy)(Rxy → Ryx) (11)

TransR ≡df (∀xyz)(Rxy & Ryz → Rxz) (12)

The traditional notions of preordering and similarity are then expressed by the
formulae �Refl R & � TransR and �Refl R & � SymR & �TransR, respec-
tively. The definition of graded preordering or similarity first needs to distinguish
which conjunction is used between the conjuncts ReflR, SymR, TransR. (Notice
that in the traditional definition it is immaterial which one is used, since both
conjunctions are 1-true under the same conditions.) The default choice is the
strong conjunction &, since it allows using all conjuncts in proofs, while ∧ only
allows using any one of them (see [13]). Nevertheless, the definitions

PreordR ≡df ReflR & TransR (13)
SimR ≡df ReflR & SymR & TransR (14)

still allow using each of the conjuncts just once in the proofs. However (cf.
Sect. 6), the assumptions Refl R, SymR, or TransR are needed variable times
in proofs of various theorems, and thus get variable exponents, independent of
each other. Thus, rather than defining preorders and similarities by (13)–(14),
it is more meaningful to define parameterized notions of (r, t)-preorders and
(r, s, t)-similarities as follows:

Preordr,t R ≡df Reflr R & Transt R (15)
Simr,s,t R ≡df Reflr R & Syms R & Transt R (16)
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Typical graded theorems on fuzzy preorders or similarities then have the form
Preordr,t R → ϕ resp. Simr,s,t R → ϕ (for some r, s, t), and thus they are actually
theorems on (r, t)-preorders and (r, s, t)-similarities. Recall from Sect. 6 that
the parameters measure the strictness of requiring a large truth value of the
respective conjunct; thus (2, 5)-preorders are more sensitive to imperfections in
transitivity than in reflexivity, while (10, 1)-preorders are much more sensitive
to flaws in reflexivity than transitivity.

8 Equivalences and Bounds

Many theorems of traditional fuzzy logic have the form of equivalence between
two conditions, which in formal fuzzy logic is expressed by a formula of the form
�ϕ ↔ �ψ. The graded version of such a theorem, ϕ ↔ ψ, is sometimes provable
in formal fuzzy logic; if so, it expresses the fact that the truth degree of ϕ equals
the truth degree of ψ. (Observe that again the traditional non-graded version of
the theorem, which expresses only the fact that ϕ is 1-true iff ψ is 1-true, follows
immediately from the graded version.)

Often, however, the graded version of a theorem �ϕ ↔ �ψ is more com-
plicated than the simple equivalence ϕ ↔ ψ. It can be exemplified by the
relationship between the two notions of graded equality (1)–(2) (for a proof,
see [5]):

Proposition 2. The following theorems are provable in first order MTL:

1. A ≈2 B −→ A � B −→ A ≈ B
2. �(A ≈ B) ←→ �(A � B) ←→ A = B

Observe that the first statement says that the truth value of A � B is bounded
by the truth values of A ≈2 B (a lower bound) and A ≈ B (an upper bound). In
traditional non-graded fuzzy mathematics both notions coincide, since they are
1-true under the same conditions, as shown by the second statement of Prop. 2.

The situation that a theorem �ϕ ↔ �ψ has a graded version of the form
ϕn −→ ψm −→ ϕk for some n ≥ m ≥ k occurs regularly under some conditions:

Theorem 1. Let ϕ and ψ be formulae of the first-order logic MTL (i.e., they
contain no �) such that �ϕ ↔ �ψ is provable in a theory T over (first-order)
MTL�. Then there exist n, m such that ϕn → ψ and ψm → ϕ are provable in T .

Proof. Follows directly from the �–Deduction Theorem and Local Deduction
Theorem for the first-order logic MTL� resp. MTL (see [10]). If ϕ, ψ are not
closed formulae (to which the Deduction Theorems apply), first replace free
variables by new constant symbols, which is harmless for provability in T . ��

Corollary 1. Under the conditions of Th. 1, we get the following mutual esti-
mates for the truth degrees of ϕ and ψ (for m, n from Th. 1):

ϕm·n −→ ψm −→ ϕ (17)
ψm·n −→ ϕn −→ ψ (18)
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It is worth noting that graded theorems of this form have occurred in the tradi-
tional fuzzy literature, see e.g. [21, L.16].

We conclude this section by an illustrative example which can be viewed
as a graded generalization of (a certain variant of) the well-known Valverde
representation theorem for preorders (see [22] for its non-graded version).

Proposition 3. [23] The following graded characterizations are provable in
first-order MTL:

Refl R ↔ (∀xy)[(∀z)(Rzx → Rzy) → Rxy] (19)
TransR ↔ (∀xy)[Rxy → (∀z)(Rzx → Rzy)] (20)

Recall from [9] that the following implications are provable in first-order MTL:

((∀u)(ψ & χ))2 −→ (∀u)ψ & (∀u)χ −→ (∀u)(ψ & χ), (21)

and it cannot be improved as the converse implication (∀u)(ψ & χ) → (∀u)ψ &
(∀u)χ does not generally hold in fuzzy logics. As Preordr,t R ≡df Reflr R &
Transt R, we obtain just the following graded variant of Valverde representation:

Corollary 2. [5] Define ϕ(R) as (∀xy)[Rxy ↔ (∀z)(Rzx → Rzy)]. Then

ϕ2(R) −→ Preord1,1 R −→ ϕ(R), (22)

i.e., ϕ2(R) and ϕ(R) give respectively the lower and upper bounds for the truth
value of Preord1,1 R. Considering only 1-truth of both conditions, we get a non-
graded characterization �PreordR ↔ � ϕ(R).

9 Conclusion

As can be seen from the previous sections, in that part of fuzzy mathematics
that can be formalized in formal fuzzy logic the apparatus of the latter allows
deriving more general (graded) theorems than traditional methods. In order to
utilize the strength of the apparatus to the full extent, however, the guidelines
sketched in this paper have to be observed, namely:

– Defining new notions graded (§3), by formulae analogical to definitions in
classical mathematics (§4); parameterizing definitions of compound notions
by (variable) exponents and giving preconditions with variable exponents in
theorems rather than definitions (§7)

– Proving theorems in the form of fuzzy implication (§5) rather than crisp
consequence of fully true premises, using the laws of formal fuzzy logic (§2)
and counting the exponents of premises properly (§6)

This leads to stronger, even though sometimes more complicated (§8) theorems
than traditional methods. Failing to respect these unusual features when building
graded fuzzy theories would unnecessarily weaken the theorems obtained.
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Abstract. This work presents a new method to compare two Temporal
Fuzzy Chains (TFCs). The TFCs comparison is used to compare the tem-
poral evolution of two dynamical systems (TFCs). Firstly, the two TFCs
that represent the two DSs are obtained. After that, the two obtained
TFCs are compared, so the similarity of the two TFCs is obtained. This
“similarity” is done by using linguistic labels.

1 Introduction

Dynamical Systems [1], from now on DS, are systems that changes over time,
understanding system as a set of elements with some relations between them. We
have worked with MISO DSs (Multiple In, Simple Out). The values of the system
variables at a time ti depend on the values of variables in times ti−1, . . . , t1. DSs
verify the continuity feature, i.e., the variable evolution is continued in time, at
a time ti+1 the variable value vti+1 is similar to the variable value vti at a time
ti. We suppose this hypothesis when we define the TFCs [2].

DSs are modelled by using different traditional techniques [1]. They are mod-
elled to explain and to predict its behavior, and to analyze its dynamical prop-
erties. There are some previous works that propose the use of the fuzzy logic to
model DSs, for example [3,4,5]. TFCs are used to represent the evolution of the
DS. TFCs simulate the DS behavior by using the input variables. In this work,
we use the TFCs to compare the dynamism between to DSs. For this purpose,
the TFC of the two DSs are induced, and later on, the two obtained models
are compared to obtain their differences. The aim of this work is to present a
method to compare TFCs that represent two DSs. We use linguistic labels to
show the similarity between TFCs during consecutive time intervals all through
the time. This comparison is more comprehensible by using linguistic labels.

The remainder of the paper is organized as follows. Section 2 presents an in-
troduction to TFCs. Afterwards, the proposed method is shown. A real example
of the behavior of the algorithm is explained (Section 4). Finally, the obtained
conclusions are given.
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Fig. 1. Ordered set of labels SAj

2 An Introduction to the TFCs

2.1 Some Previous Concepts

A time series is a sequence of data that is ordered in the time. A DS could be
represented by using a time series E. Each example E = {e1 . . . en} of the time
series contains the variables values in a time, being ei = (xi

1 . . . xi
m, si, ti), where

xi
j ∈ Xj , si ∈ S and ti is the time when ei occurs. An ordered set of labels is defined

for each input variable Xj (Figure 1). Its structure is SAj = {SA1
j . . . SA

ij

j }. An
ordered set of labels SC = {SC1 . . . SCiy } is defined for the output variable. The
superindex i is the position of the label in these sets, ij = |SAj | and iy = |SC|.
The order of the labels is based on the defuzzification method named mean of
maximum (MOM) [6]. These sets of labels are defined a priori.

TFCs work with linguistic variables, named continuous linguistic variables
(from now on variables), with some restrictions over its domain. These variables
can take values from an ordered set of labels. Linguistic labels of the variables,
or simply labels, are defined before the TFC is obtained. Xj is a continuous
linguistic variable if it has associated a semantic to each SAi

j defined by itself
that verifies: (1) Each label SAi

j is defined over an ordered domain; (2) The
labels defined on Xj are sorted by means of the MOM [6]; (3) The sum of the
membership grade of a value x to all labels defined in a continuous variable must
be 1,

∑
SAi

j∈SAj
μSAi

j
(x) = 1.

These variables take a linguistic interval as value. A linguistic interval LIc
j,p,

from now on interval, is a sequence of c consecutive labels defined on SAj that
begins in the label p. It is represented as LIc

j,p = {SAp
j . . . SA

p+(c−1)
j }, where

SAj = {SA1
j . . . SA

ij

j } is an ordered set of ij labels for the input variable Xj , p
is the position in SAj of the first label of the interval and c is the labels number
of the interval. Its membership function is the sum of the membership grade of
aj to each label of the interval (Equation 1 with z ∈ [p..c − 1]).

μLIc
j,p

(aj) =
∑

SAz
j εLIc

j,p

μSAz
j
(aj) (1)

Fig. 2. A linguistic interval
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An ordered set of m labels is a sequence of m intervals defined over m variables,
and it is represented as SLIm = {LIc1

1,p1
, . . . LIcm

m,pm
}. The membership grade of

a SLIm is calculated applying a t-norm between the membership grade of SLIm

intervals (Equation 2).

μSLIm(ei) = ∗(μ
LI

cj
j,pj

(xi
j)) (2)

where ei = (xi
1 . . . xi

m, si, ti) is an example of E, jε[1..m] and * is a t-norm.

2.2 An Introduction to the TFCs

We suggest embodying the DS temporal side by making use of the TFCs. Infor-
mally, a TFC is a collection of linguistic states related to each other by means of
linguistic transitions. A linguistic state represents a set of consecutive examples
in time with a similar behavior, that is, the output variables take the same value
for all of them. A linguistic transition is used to relate two consecutive linguistic
states: it establishes the necessary conditions that must take place in the system
inputs to cause a change in the system output behavior for it to enter into the
next linguistic state. The change of state is described in a linguistic way by using
fuzzy linguistic values.

A linguistic state i, or simply state, is defined a tuple stai =< Ai
m, SEi >

where Ai
m is the SLIm of the state i corresponding to the m input variables, and

SEi is the output of the state i corresponding to the output variable. A linguis-
tic transition i, or simply transition, is a tuple transi =< T i

m, STi > where T i
m

is the SLIm of the transition i, and STi is the output label of the transition i. A
TFC is a tuple CHAIN =< STA, TRANS > where STA = {sta1 . . . stans} is
an ordered set of ns states, and TRANS = {trans1 . . . transns−1} is an ordered
set of ns − 1 transitions. The transition i represents the conditions to change
from stai to stai+1.

Algorithm 1. TFCs inference process
cur ← 1
for i = 1 to |E| do

if μAcur
m

(ei) > μTcur
m

(ei) then
s ← SEcur

else
s ← STcur

cur ← cur + 1
end if

end for

To reproduce the behavior of the DS the TFCs inference method is offered
(Algorithm 1). In this algorithm, cur indicates the current state and transition,
E is the set of examples, ei is the example i of E and s is the output label. The
algorithm uses a set of examples E as input, and it is based in the definition of
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the current state stacur. stacur indicates the state in that the DS is in, and it
is used to calculate the output for this time. The inference method begins by
selecting sta1 as the first current state. After that, it is calculated μAcur

m
(ei) and

μT cur
m

(ei), if μAcur
m

(ei) is greater than μT cur
m

(ei) then the obtained output is the
label output label SEcur (corresponding to stacur), and there is not change of
state. In other case, if μAcur

m
(ei) is less or equal than μT cur

m
(ei), then there is a

change of state, the obtained output label is STcur (corresponding to transcur),
and the new current state is the next state to stacur, i.e., stacur+1. This process
is repeated for each example in E.

Algorithm 2. Proposed method
1. Defining the phases.
2. Generating the TFCs.
3. Comparing the TFCs.

3 Proposed Method

Algorithm 2 describes the proposed method. As you can see, it consists in three
phases. In the first phase, the phases of the studied DS are defined. This is done
because the human movements are our usual research application line (human
walk, shot putting,...), and the biomechanics study of the movement is made by
means of phases. For this reason, the presented algorithm defines a set of phases
to study the DS. This is not a limitation of the algorithm, if anybody does not
want an study by phases, it must define one single phase.

The two TFCs of the two studied DSs are induced in the next phase of the
algorithm. To do that, it is used the algorithm presented in [2]. We must to add
a temporal component to indicate the state duration. This suppose a change in
the original algorithm (presented in [2]), to add the calculation of the duration
of all the states that have been united to obtain the final state in the second
phase of the algorithm [2]. To do that, it is used the temporal component ti of
each example ei used to obtain the state.

Finally, in the last phase of the algorithm, the comparison of the DSs is made
by using the Algorithm 3.

The main idea of Algorithm 3 consists of comparing twoTFCs throughout the
time. The two TFCs begins in its first state, and it is compared the present state
of both TFCs for every time. The current state of each TFC is changed to the
following state when the comparison time, denoted by t in the algorithm, is less
than the duration of the current state added to the all previous states duration
(this is controlled by using the t0 and t1 for CDT0 and CDT1 respecti-vely).
The comparison time t is initialized to 0 and it is incremented with the constant
inc. The indexes i0 and i1 are used to control the current states of TFC0 and
TFC1. The list named phases is used to handle the phases in the algorithm, for
example, if phases = [0, 0.6, 1.0, 1.2] then, the DS has three phases, the first one
begins in the time 0 and it finishes in 0.6, the second phases begins in 0.6 and
finished in 1.0, and the last one stays from 1.0 to 1.2.
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Algorithm 3. Comparison of TFCs

inc ← CTE {CTE indicates the increment of the time}
phases ← [0 . . . tmax] {phases contains the defined phases. It is a lists with the
principle and the end values of each one of the phases. It begins in 0 and it finishes
with the maximum possible value of the variable time.}
s ← 1 {s indicates the phase by which the algorithm goes}
t ← phases[0] {t indicates the comparison time}
i0 ← 1 {i0 points at the current state in which the CDT0 is being compared}
t0 ← Duration of the first state of CDT0 {t0 takes the value of the duration of the
first state of CDT0}
i1 ← 1 {i1 points at the current state in which the CDT1 is being compared}
t1 ← Duration of the first state of CDT1 {t1 takes the value of the duration of the
first state of CDT1}
Pphase ← ∅ {Pphase is a list containing the values of the similarity of the current
phase}
Ptotal ← ∅ {Ptotal is a list of list. Each list will contain the similarity of each one of
the phases. If there are n phases, will be composed by n lists}
while t < tmax do

{It controls if it has been arrived at a phase end, and changes to the following
one}
if t ≥ phases(s) then

Ptotal ← Ptotal + Pphase {Add the lists Pphase to the list of lists Ptotal}
s ← s + 1 {Make the change of phase}
Pphase ← ∅ {the list Pphase it is initialized to ∅ due to the phase change}

end if
{It controls if a change of state is due to do in CDT0}
if t ≥ t0 then

i0 ← i0 + 1 {The current state is the following}
t0 ← t0+ State duration i0 of CDT0 {The duration of the state is incremented}

end if
{It controls if a change of state is due to do in CDT1}
if t ≥ t1 then

i1 ← i1 + 1 {The current state is the following}
t1 ← t1+ State duration i1 of CDT1

end if
p ← Similarity(TFC0(i0), TFC1(i1)) {It calculates the similarity of the current
states of CDT0 and CDT1}
Pphase ← Pphase + p {Adds the obtained similarity to Pphase}
t ← t + inc {Increments the time with inc}

end while
Ptotal ← Ptotal + Pphase

This first part of the algorithm obtains a list called Ptotal formed by lists con-
taining the numerical values of the similarity for each one of the compared times
in each one of the phases, that is, a list of Ptotal has the similarities of each com-
pared time for a phase. For example, if phases = [0, 0.6, 1.0, 1.2] and inc = 0.05,
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then Ptotal will be formed by 3 lists, the first one contains 12 elements (0.6/0.05),
the second one has 8 elements (0.4/0.05) and the last one contains 4 elements
(0.2/0.05), i.e., Ptotal = [ [p0, p0.05, p0.1 . . . p0.6], [p0.65, p0.7, p0.75 . . . p1.0], [p1.05,
p1.1, p1.1, p1.15, p1.2] ] where pn represents the similarity in the time n.

To finish this section, we explain how to obtain the similarity of two states. Al-
gorithm 3 uses the function Similarity(TFC0(i0), TFC1(i1)) to do this, where
TFC0 and TFC1 are the states to compare. Both states have the same variables,
with the same ordered set of labels defined over on them. Equation 3 calculates
the similarity between two states, where ⊗ is a t-norm, PSLIm is the similar-
ity between the SLIm of the states to compare, and PLoutput is the similarity
between the output labels of the states.

⊗ (PSLIm , PLoutput) (3)

Equation 4 is used to calculate PSLIm .

⊗
(
S(LIf1

j,p1
, LIf2

j,p2
)
)

(4)

where ⊗ is a t-norm and S(LIf1

j,p1
, LIf2

j,p2
) calculates the similarity between two

intervals (Equation 5).

S(LIf1

j,p1
, LIf2

j,p2
) = 1 −

∣∣∣∣∣
MOM(LIf1

j,p1
) − MOM(LIf2

j,p2
)

Maxj − Minj

∣∣∣∣∣ (5)

where MOM(Ifj

j,pj
) is the Mean of the Maximum (MOM) [6], Minj and Maxj

are the minimum and maximum value of the support of Xj.
Equation 6 is used to compare the output labels (PLoutput), being A and B

labels.

R(A, B) = 1 −
∣∣∣∣

MOM(A) − M(B)
MOM(SCiy ) − MOM(SC1)

∣∣∣∣ (6)

To describe the obtained output in a linguistic way, the similarity value ρi

is calculated for each phase i defined in the beginning of the algorithm. To do
that, Equation 7 is used for each one of the Ptotal components, where P i

total is
the component i of Ptotal, |P i

total| is the element number of P i
total and P i,j

total is
the value in the position j of P i

total.

ρi =

∑|P i
total |

j=1 P i,j
total

|P i
total|

(7)

Finally, a ordered set of labels called similarities is defined, and the label
with more membership grade to each similarity value ρi is calculated, this label
is considered the similarity for each one of the phases.

4 An Example of Proposed Method

This section presents an example of the behavior of the proposed method. Two
DSs corresponding at two jumps with feet together are used in order to prove the
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Fig. 3. Data graphs

presented algorithms. Jumps with feet together consist in to jump the greater
possible distance without previous race. To study the jumps, we consider four
input variables and one output variable. The input variables correspond to the
hip angle (HA variable), the elbow angle (EA variable), the shoulder angle (SA
variable), and the knee angle (KA variable), whereas for the output variable we
use the ankle angle (AA variable). A sample every 0.005 seconds are obtained in
the data capture, that is, 200 samples per second, and a manual digitalization is
done. Data correspond to students men of the Faculty of sciences of sport of the
Universidad de Castilla-La Mancha. The duration of the two compared jumps
are 1.02 seconds (Figure 3). We need an ordered set of labels for each variable

Table 1. Ordered set of linguistic labels used in the proof

Name a b c d
V N 0 0 0.15 0.18
N 0.15 0.18 0.29 0.32

FN 0.29 0.32 0.43 0.46
NR 0.43 0.46 0.57 0.60
FP 0.57 0.60 0.71 0.74
P 0.71 0.74 0.85 0.88

V P 0.85 0.88 1.00 1.00
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Fig. 4. Temporal Fuzzy Chain 0

Fig. 5. Temporal Fuzzy Chain 1

of the system to induce the TFCs [2], these sets are named SA1, SA2, SA3,
SA4 and SC for the variables HA, EA, SA, KA and AA respectively. Each one
contains 7 trapezoidal labels, its name and normalized support is shown in the
Table 1, being V N very negative, N negative, FN few negative, NR norm, FP
few positive, P positive and V P very positive.

Now, we define the phases of the studied DS (Section 3). Each phase has a
duration of 0.2 second except the last one that has a duration between the time
0.8 to the time 1.02, i.e., phases = [0, 0.2, 0.4, 0.6, 0.8, 1.02]. The increment of
the time, inc in the algorithm 3, is assigned to the value 0.005 that matches with
the time interval of capture of samples, that is, inc = 0.005. The t-norm uses
is the “minimum” for the Equations 3 and 4.

The induction method [2] obtains the two TFCs (Figures 4 and 5) by using
the input data.

A set of 5 linguistic labels called similarities is defined to calculate the sim-
ilarity of each section. Its labels are trapezoidal, and Table 2 shows the values
that define each linguistic label. By using similarities for each phase we obtain
the following results:
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Table 2. similarities Set of labels

Name a b c d
NOTHING 0 0 0.10 0.15

LITTLE 0.10 0.15 0.35 0.40
MEDIUM 0.35 0.40 0.60 0.65

MUCH 0.60 0.65 0.85 0.90
EQUAL 0.85 0.90 1.00 1.00

Phase 1: The two TFCs look like “MUCH”, with a membership grade 0.76.
Phase 2: Its membership grade is 0.93, and its similarity is “EQUAL”
Phase 3: The similarity is “MUCH” (membership grade 0.78).
Phase 4: Its membership grade is 0.76, and its similarity is “MUCH”
Phase 5: The two TFCs look like “MUCH”, with a membership grade 0.70.

To finish this section, we want to emphasize that, by using the similarity
values and the set similarities, it is possible to be described linguistically
[7] [8] [9] the similarities of the two TFCs as follows:

The jumps of the first student (TFC1) and the second student (TFC2)
look like MUCH in the phase 1, are EQUAL in the second phase and
they have MUCH similar in the phases 3, 4 and 5.

We one to emphasize that the present method allows to automate the obtain-
ing of text in natural language.

5 Conclusions

A new method to compare two DSs is presented. This method is based in to
compare two TFCs, that model two DSs. In addition, this comparison can be
offered of a linguistic way, as we show in Section 4.

We believe that is a good tool to compare DSs linguistically. This method can
be used, for example, in automatic sport trainers, or in detection of pathologies
(for example, in the human walk). Also, it could be used in other fields, like in
economic systems.

As future works, we have thought the use of our method in a concrete practical
application to prove its efficiency, its adaptations and improvements to that
practical application.
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Abstract. T-norm properties for left-continuous, increasing [0, 1]2 →
[0, 1] functions can be fully described in terms of contour lines. For a
left-continuous t-norm T , the rotation-invariance property comes down
to the continuity of its contour line C0. However, contour lines are inade-
quate to investigate the geometrical structure of these rotation-invariant
t-norms. Enforced with the companion and zooms it is possible to totally
reconstruct T by means of its contour line C0 and its β-zoom, with β
the unique fixpoint of C0.

Keywords: Rotation-invariant t-norm, contour line, companion, zoom,
associativity.

1 Introduction

Originally, triangular norms were introduced in order to generalize the triangle
inequality towards probabilistic metric spaces [15]. Nowadays, they are widely
used in fuzzy set theory.

Definition 1. A triangular norm or t-norm T is an associative, commutative,
increasing [0, 1]2 → [0, 1] function that has neutral element 1.

So far only the class of continuous t-norms has been fully characterized (see
e.g. [8]). In particular, this class comprises the three prototypical t-norms: the
minimum operator TM(x, y) = min(x, y), the algebraic product TP(x, y) = x y
and the �Lukasiewicz t-norm TL(x, y) = max(x + y − 1, 0).

A t-norm T is called left-continuous if all its partial functions T (x, •) (and
hence also T (•, x)) are left-continuous [8]. In most studies dealing with t-norms,
it is required that the t-norms in question should be left-continuous. In monoidal
t-norm based logic (MTL logic) for example, where the implication is defined as
the residuum of the conjunction, left-continuous t-norms ensure the definability
of the t-norm-based residual implicator [2].

The rotation-invariance of a left-continuous t-norm T is equivalent with the
continuity and with the involutivity of its contour line C0 that determines the
intersection of T with the plane containing its domain [0, 1]2. In particular, this
contour line coincides with the residual negator of T and, therefore, rotation-
invariant t-norms are of great interest to people working on involutive monoidal
t-norm based logic (IMTL logic) [1,10] and fuzzy type theory [14].

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 543–552, 2007.
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2 Tools

Studying the structure of a (left-continuous) increasing [0, 1]2 → [0, 1] function T ,
it is often worthwhile to observe this function from a different point of view. We
present here three functions that describe T in an alternative way. They will
prove to be indispensable for the decomposition and construction of rotation-
invariant t-norms.

2.1 Contour Lines

Contour lines of an increasing [0, 1]2 → [0, 1] function T are defined as the upper,
lower, right or left limits of its horizontal cuts, i.e. the intersections of its graph
by planes parallel to the domain [0, 1]2. Although there are four different types
of contour lines, those determined by the upper limits of the horizontal cuts are
of particular interest for the study of rotation-invariant t-norms [12].

Definition 2. [11] Let a ∈ [0, 1]. The contour line Ca of an increasing [0, 1]2 →
[0, 1] function T is the [0, 1] → [0, 1] function defined by

Ca(x) = sup{t ∈ [0, 1] | T (x, t) ≤ a} . (1)

For a left-continuous t-norm T , the contour line Ca equals the partial function
IT (•, a) of the residual implicator IT (see e.g. [4]). In particular, the contour line
C0 coincides with the residual negator NT , defined by NT = IT (•, 0). Contour
lines of a continuous t-norm T are also called level functions [9].

Property 1. [11,12] A contour line Ca, with a ∈ [0, 1], of an increasing [0, 1]2 →
[0, 1] function T satisfies the following properties:

1. Ca is decreasing.
2. Ca ≤ Cb, for every b ∈ [a, 1].
3. If T is left-continuous, then Ca is left-continuous.

The greatest merit of contour lines is that they can be used to express all t-
norm properties in an alternative way. Further on, this will allow us to provide
a geometrical interpretation of the associativity property. Dealing with contour
lines of the type Ca the left-continuity of T is required.

Theorem 1. [11] For a left-continuous, increasing [0, 1]2 → [0, 1] function T
having absorbing element 0 the following characterizations hold:

1. T has neutral element e ∈ ]0, 1] if and only if e ≤ Ca(x) ⇔ x ≤ a and
Ca(e) = a hold for every (x, a) ∈ [0, 1]2.

2. T is commutative if and only if Ca(x) < y ⇔ Ca(y) < x holds for every
(x, y, a) ∈ [0, 1]3.

3. T is associative if and only if Ca(T (x, y)) = CCa(x)(y) holds for every
(x, y, a) ∈ [0, 1]3.
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The characterization of the commutativity of T comes down to the id-
orthosymmetry of its contour lines [13]. Taking into account the tight corre-
spondence between contour lines and the residual implicator of a left-continuous
t-norm T , the above theorem expresses the associativity of T by means of
the portation law (i.e. IT (T (x, y), z) = IT (x, IT (y, z)), for every (x, y, z) ∈
[0, 1]3) [5].

Corollary 1. [12] For a left-continuous t-norm T it holds for every (x, y, z, a) ∈
[0, 1]4 that

T (x, y) ≤ Ca(z) ⇔ T (x, z) ≤ Ca(y) . (2)

Jenei [7] has recently shown that, for a commutative, left-continuous, increasing
[0, 1]2 → [0, 1] function T that has absorbing element 0, Eq. (2) is equivalent
with the associativity of T . Note that for his characterization the commutativity
of T is required, this in contrast to our characterization in Theorem 1. His result
can also be easily retrieved from the last two characterizations in Theorem 1.

2.2 The Companion

A second useful tool to study an increasing [0, 1]2 → [0, 1] function T is its
companion Q.

Definition 3. [12] The companion Q of an increasing [0, 1]2 → [0, 1] function
T is the [0, 1]2 → [0, 1] function defined by

Q(x, y) = sup{t ∈ [0, 1] | Ct(x) ≤ y} .

The following properties provide better insight into the geometrical structure
of Q.

Property 2. [13] The companion Q of an increasing [0, 1]2 → [0, 1] function T
satisfies the following properties:

1. Q is increasing in both arguments.
2. Q(x, y) = inf{T (x, u) | u ∈ ]y, 1]}, with inf ∅ = 1.
3. T (x, y) ≤ Q(x, y), for every (x, y) ∈ [0, 1]2.
4. Q(x, •) is right-continuous for every x ∈ [0, 1].
5. If T has neutral element 1, then Q(x, y) ≤ TM(x, y), for every (x, y) ∈

[0, 1] × [0, 1[.

The second property allows to straightforwardly construct the graph of Q (i.e.
{(x, y, Q(x, y)) | (x, y) ∈ [0, 1]2}) from the graph of T (i.e. {(x, y, T (x, y)) |
(x, y) ∈ [0, 1]2}). It suffices to convert the partial functions T (x, •) into right-
continuous functions and to replace the set {(x, 1, x) | x ∈ [0, 1]} by {(x, 1, 1) |
x ∈ [0, 1]} as Q(x, 1) = 1 must hold for every x ∈ [0, 1]. Clearly, Q(x, y) = T (x, y)
whenever T (x, •) is right-continuous in y ∈ [0, 1[. Every left-continuous increasing
binary function T that has absorbing element 0 is totally determined by its
companion Q. Note also that Q(x, 1) = 1 and Q(1, x) = x prevent Q from being
commutative.
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2.3 Zooms

Finally, every increasing [0, 1]2 → [0, 1] function T is trivially described by its
associated set of (a, b)-zooms.

Definition 4. Let T be an increasing [0, 1]2 → [0, 1] function and take (a, b) ∈
[0, 1]2 such that a < b and T (b, b) ≤ b. Consider an [a, b] → [0, 1] isomorphism σ.
The (a, b)-zoom T (a,b) of T is the [0, 1]2 → [0, 1] function defined by

T (a,b)(x, y) = σ
[
max

(
a, T (σ−1[x], σ−1[y])

)]
.

If b = 1 we simply talk about the a-zoom T a of T .
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Fig. 1. The ( 1
4 , 3

4 )-zoom of TL

The graph of T (a,b) is determined by rescaling the set {(x, y, T (x, y)) | (x, y) ∈
[a, b]2 ∧ a < T (x, y)} (zoom in) into the unit cube (zoom out). Figure 1 illustrates
this procedure for the �Lukasiewicz t-norm TL, with a = 1

4 , b = 3
4 and σ = ς,

where ς is the linear rescaling of [a, b] into [0, 1] (i.e. ς(x) = (x − a)/(b − a),
for every x ∈ [a, b]). In our examples we will always use this linear rescaling
function.

Whenever T (b, b) ≤ a, the function T (a,b) is trivially constant: T (a,b)(x, y) = a,
for every (x, y) ∈ [0, 1]2. For b = 1 the boundary condition T (1, 1) ≤ 1 is
always true such that the a-zoom of T is defined for every a < 1. Note that
T 0 = Tσ−1 , where Tσ−1 denotes the σ−1-transform of T (i.e. Tσ−1(x, y) :=
σ[T (σ−1[x], σ−1[y])]).

Since the (a, b)-zoom T (a,b) of an arbitrary increasing function T is totally
determined by T |[a,b]2, its contour lines and companion can be computed from
the contour lines and companion of T . In case T (a,b) has neutral element 1, we
obtain a straightforward relationship between its contour lines and those of the
original function T .

Property 3. Consider an increasing [0, 1]2 → [0, 1] function T . Take (a, b) ∈
[0, 1]2, such that a < b and T (b, b) ≤ b. Let σ be an arbitrary [a, b] → [0, 1]
isomorphism. If the (a, b)-zoom T (a,b) has contour lines C

(a,b)
d and companion

Q(a,b) then the following properties hold:
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1. T (a,b) is increasing in both arguments.
2. Q(a,b)(x, y) = σ[Q(σ−1[x], σ−1[y])], for every (x, y) ∈ [0, 1]2 s.t. C

(a,b)
0 (x) ≤

y < 1.
3. If T is left-continuous, then T (a,b) is left-continuous.
4. C

(a,b)
d (x) = σ[Cσ−1 [d](σ−1[x])] holds if

(a) b = 1, T (1, a) ≤ a and (x, d) ∈ [0, 1]2;
(b) T (a,b) has neutral element 1 and (x, d) ∈ [0, 1]2 s.t. d < x.

5. If T is associative and max(T (a, b), T (b, a)) ≤ a, then T (a,b) is also associa-
tive.

In accordance to Definition 4 we will usually denote the contour lines of T a(=
T (a,1)) as Ca(= C(a,1)) and its companion as Qa(= Q(a,1)). Zooms are extremely
suited to study an increasing function T that satisfies T ≤ TM. The restrictions
T (b, b) ≤ b (Definition 4), T (1, a) ≤ a and max(T (a, b), T (b, a)) ≤ a (Property 3)
then trivially hold.

Definition 5. [6] A t-subnorm T is an associative, commutative, increasing
[0, 1]2 → [0, 1] function that satisfies T ≤ TM.

Clearly, all t-norms are t-subnorms. Due to its boundary condition we can con-
struct all (a, b)-zooms (a < b) of every t-subnorm. Moreover, all these (a, b)-
zooms are t-subnorms ass well.

Corollary 2. Consider (a, b) ∈ [0, 1]2 such that a < b. Then the (a, b)-zoom of
a t-subnorm is a t-subnorm and the a-zoom of a t-norm is a t-norm.

The (1
4 , 3

4 )-zoom in Fig. 1 is a t-subnorm but not a t-norm. No (a, b)-zoom, with
b < 1, of the �Lukasiewicz t-norm TL can be a t-norm. The latter follows from the
observation that T (a,b) has neutral element 1 whenever T (x, b) = T (b, x) = x,
for every x ∈ ]a, b]. Dealing with TL this only occurs for b = 1. Otherwise, every
(a, b)-zoom of the minimum operator TM equals TM itself.

3 Rotation-Invariant T-Norms

3.1 A Continuous Contour Line

Definition 6. [5] Let N be an involutive negator ( i.e. an involutive decreasing
[0, 1] → [0, 1] function). An increasing [0, 1]2 → [0, 1] function T is called ro-
tation invariant w.r.t. an involutive negator N if for every (x, y, z) ∈ [0, 1]3 it
holds that

T (x, y) ≤ z ⇔ T (y, zN) ≤ xN . (3)

This property was first described by Fodor [3]. Jenei [5] emphasized its geomet-
rical interpretation by referring to it as the rotation-invariance of T w.r.t. N .
Recently, Jenei [7] used Eq. (2) to define the (algebraical) rotation invariance
property. However, as pointed out before, Eq. (2) merely expresses the associa-
tivity of T . As will be shown later on, a geometrical notion of rotation can be
attributed to Eq. (3) but in general not to Eq. (2)
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Theorem 2. [12] For a left-continuous t-norm T , the following assertions are
equivalent:
1. Ca is continuous.
2. Ca is involutive on [a, 1].
3. T (x, y) = Ca(CCa(x)(y)), for every (x, y) ∈ [0, 1]2 s.t. Ca(x) < y.
4. T (x, y) ≤ z ⇔ T (x, Ca(z)) ≤ Ca(y), for every (x, y, z) ∈ [a, 1]3.
5. Q(x, y) < Ca(z) ⇔ Q(x, z) < Ca(y), for every (x, y, z) ∈ [a, 1] × [a, 1[2.

The third assertion can be seen as an adjustment of the portation law. The fourth
and fifth assertion are closely related to Eq. (2). If a = 0 then the additional
restriction C0(x) < y in assertion 3 can be omitted. Furthermore, taking into
account that C0 = NT , one can then recognize in assertion 4 the rotation-
invariance of T w.r.t. its residual negator NT . Jenei has proven that every t-
norm T that is rotation-invariant w.r.t. an involutive negator N is necessarily
left-continuous and NT = N [5]. Therefore, it becomes superfluous to mention
the negator N explicitly. For a left-continuous t-norm T , its rotation-invariance
is also equivalent with the continuity of its contour line C0 (Theorem 2). Herein
lies the true meaning of the rotation-invariance property. We briefly call a t-norm
rotation invariant if it is left-continuous and has a continuous contour line C0.
Note that the continuity of C0 does not necessarily imply the left-continuity
of T [12].
Theorem 3. Consider a left-continuous t-norm T and take a ∈ [0, 1] such that
a < α := inf{t ∈ [0, 1] | Ca(t) = a}. Then the following assertions are equivalent:
1. Ca is continuous on ]a, 1].
2. Ca is involutive on ]a, α[.
3. Ca(]a, α[) =]a, α[.
4. T (a,α) is a rotation-invariant t-norm.

In particular, if Ca is continuous then α = 1.
To better comprehend the structure of t-norms that have a (partially) continuous
contour line Ca we thus need to focus first on the structure of rotation-invariant
t-norms. Studying these t-norms, Jenei provided a real breakthrough by intro-
ducing his rotation and rotation-annihilation construction [6]. Unfortunately, his
decompositions and constructions were not able to describe all rotation-invariant
t-norms [12,13]. The �Lukasiewicz t-norm TL, for example, did not fit into his
framework. We will present an alternative approach.

3.2 Decomposition Revisited

Let T be a rotation-invariant t-norm and β be the unique fixpoint of C0. As
depicted in Fig. 2, we partition area D = {(x, y) ∈ [0, 1]2 | C0(x) < y} into four
parts:

DI = {(x, y) ∈ ]β, 1]2 | Cβ(x) < y} ,

DII = {(x, y) ∈ ]0, β]× ]β, 1] | C0(x) < y} ,

DIII = {(x, y) ∈ ]β, 1]× ]0, β] | C0(x) < y} ,

DIV = {(x, y) ∈ ]β, 1[2| y ≤ Cβ(x)} .
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IV
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0

1

C (x)0

C (x)b

Fig. 2. The partition D = DI ∪ DII ∪ DIII ∪ DIV

Due to the left-continuity of T it is obvious that T (x, y) = 0 holds for every
(x, y) �∈ D.

Theorem 4. [12] Consider a rotation-invariant t-norm T . Let σ be an arbitrary
[β, 1] → [0, 1] isomorphism with β the fixpoint of C0. Then there exists a left-
continuous t-norm T̂ (with contour lines Ĉa) such that

T (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ−1
[
T̂ (σ[x], σ[y])

]
, if (x, y) ∈ DI ,

C0

(
σ−1

[
Ĉσ[C0(x)](σ[y])

])
, if (x, y) ∈ DII ,

C0

(
σ−1

[
Ĉσ[C0(y)](σ[x])

])
, if (x, y) ∈ DIII ,

0, if (x, y) �∈ D .

(4)

In particular, T̂ = T β.

Note that the isomorphism σ is used to compute the β-zoom T β of T . Geo-
metrically, T |DI is a rescaled version of T β|Dβ , where Dβ = {(x, y) ∈ [0, 1]2 |
0 < T β(x, y)}. T |DII is obtained by rotating T |DI 120 degrees to the left around
the axis {(x, y, z) ∈ [0, 1]2 | y = x ∧ z = 1 − x}. Similarly, rotating T |DI

120 degrees to the right around this axis determines T |DIII . As illustrated in
[12], these rotations sometimes have to be reshaped to fit into the areas DII and
DIII, respectively. The contour lines C0 and Cβ cause this reshaping. Solely the
continuity of the contour line C0 is responsible for the existence of the geomet-
rical (transformed) rotations. T-norms such as the minimum operator TM that
do not have a continuous contour line do not have such geometrical symme-
tries. Therefore, only Eq. (3) and not Eq. (2) (see [7]) can be understood as the
rotation-invariance property.

If T β has no zero divisors, then DIV is empty and Eq. (4) totally determines T .
These particular t-norms have also been (alternatively) described by Jenei [6].



550 K.C. Maes and B. De Baets

Figure 3 depicts the decomposition of the nilpotent minimum TnM (T nM(x, y) =
0 whenever x + y ≤ 1 and TnM(x, y) = min(x, y) elsewhere). The bold black
lines in the figures indicate the partition D = DI ∪ DII ∪ DIII (for the nilpotent
minimum DIV = ∅).
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Fig. 3. Decomposition of the nilpotent minimum TnM

As illustrated in [12], T |DIV is in general not uniquely determined by C0 and
T β. Examining numerous examples, we noticed that the filling-in of area DIV is
uniquely fixed whenever both C0 and Cβ are continuous. Invoking Theorem 3
we can generalize our decomposition from [12] in the following way.

Theorem 5. Consider a rotation-invariant t-norm T for which Cβ is continu-
ous on ]β, 1], with β the unique fixpoint of C0. Let σ be an arbitrary [β, 1] → [0, 1]
isomorphism. Then there exists a left-continuous t-norm T̂ (with contour lines
Ĉa and companion Q̂) such that Ĉ0 is continuous on ]0, 1] and

T (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ−1
[
T̂ (σ[x], σ[y])

]
, if (x, y) ∈ DI ,

C0

(
σ−1

[
Ĉσ[C0(x)](σ[y])

])
, if (x, y) ∈ DII ,

C0

(
σ−1

[
Ĉσ[C0(y)](σ[x])

])
, if (x, y) ∈ DIII ,

C0

(
σ−1

[
Q̂(Ĉ0(σ[x]), Ĉ0(σ[y]))

])
, if (x, y) ∈ DIV ,

0, if (x, y) �∈ D .

(5)

In particular, T̂ = T β and Q̂ must be commutative on [0, α̂[2, with α̂ = inf{t ∈
[0, 1] | Ĉ0(t) = 0}.

Geometrically, the filling-in of area DIV is obtained by rotating T |DI∩[β,σ−1(α̂)]2

180 degrees to the front around the axis {(x, y, z) ∈ [0, 1]3 | x + y = β +
σ−1[α̂] ∧ z = β}. In case Cβ is continuous it holds that α̂ = 1 and the latter
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comes down to a 180 degree front-rotation of T |DI around the axis {(x, y, z) ∈
[0, 1]3 | x + y = β + 1 ∧ z = β}. Again, the contour lines C0 and Cβ can cause
some additional reshaping.

Figure 4 depicts the decomposition of the Jenei t-norm T J
1/4 and the �Lukasie-

wicz t-norm TL. T J
1/4 can be created from the nilpotent minimum by lowering its

values on [14 , 3
4 ]2 in such a way that its (1

4 , 3
4 )-zoom equals TL. The bold black

lines in the figures indicate the partition D = DI ∪ DII ∪ DIII ∪ DIV.
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Fig. 4. Decomposition of the Jenei t-norm T J
1/4 and the �Lukasiewicz t-norm TL

The geometrical symmetries of a rotation-invariant t-norm T establish in fact
its associativity. In this respect Eq. (5) can also be used to construct rotation-
invariant t-norms. Inspired by the geometrical interpretation of Eq. (5), we have
called this construction the triple rotation method [13]. As the construction of
t-norms falls outside the scope of this paper, we will not go into detail here.
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Abstract. With an exponent-type membership function serving as con-
duct fuzzy value, the author builds a model in fuzzy reversed posynomial
geometric programming with its dual programming developed. In the ap-
plication process of fuzzy reversed posynomial geometric programming ,
he consequently discovers that the former can be changed into a convex
parameter geometric programming with respect to α,β. Therefore, he can
get many nice properties like fuzzy posynomial geometric programming.
Besides,he advances a dual theory and algorithm in fuzzy reversed posyn-
omial geometric programming. And finally he uses numerical examples
to testify the built model and its method effectively.

1 Introduction

In 1987, the author extended a classical posynomial geometric programming
(PGP) into a fuzzy PGP by using a fuzzy valued-set theory [1,2], and built a
fuzzy dual theory and a strong one [2] in 1989 and 1993, respectively. So far,
this model with the method has already got the extensive application [3,4,5,6].
In this paper, he first gives out some basic concept in PGP, discusses properties
and dual theorem in fuzzy reversed posynomial GP (FRPGP), and advances
an exponent-type membership function, which is fitter for the determination of
fuzzy reversed GP than the membership function mentioned in Paper [2], playing
an important role in convexification of nonconvex FRPGP. Finally he constructs
numerical examples.

2 FRPGP and Its Dual Form

We call

(P̃ ) m̃in g̃0(x)
s.t. g̃i(x) � 1(1 � i � p′),

g̃i(x) � 1, (p′ + 1 � i � p), x > 0

an FRPGP, where g̃i(x) =
∑Ji

k=1 ṽik(x)(0 � i � p) are fuzzy posynomials of x,

ṽik(x) =

⎧
⎪⎪⎨

⎪⎪⎩

c̃ik

m∏
l=1

xγ̃ikl

l , (1 � k � Ji; 0 � i � p′),

c̃ik

m∏
l=1

x−γ̃ikl

l , (1 � k � Ji; p′ + 1 � i � p),
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and coefficients c̃ik > 0 and exponents γ̃ikl may be freely fixed in the closed
interval [c−ik, c+

ik](c−ik < c+
ik, c−ik, c+

ik) and [γ̃−
ikl, γ̃

+
ikl](γ

−
ikl < γ+

ikl) and degree of
accomplishment [2] is determined by

c̃ik(cik) =

⎧
⎪⎨

⎪⎩

0, if cik < c−ik,(
cik−c−

ik

c+
ik
−c−

ik

)r

, if c−ik � cik � c+
ik,

1, if cik > c+
ik,

(1)

γ̃ikl(γikl) =

⎧
⎪⎨

⎪⎩

0, if γikl < γ−
ikl,(

γikl−γ−
ikl

γ+
ikl−γ−

ikl

)r

, if γ−
ikl � γikl � γ+

ikl,

1, if γikl > γ+
ikl,

(2)

respectively. Here c−ik, c+
ik; γ−

ikl, γ
+
ikl is left and right endpoints in the intervals,

and they and r are arbitrary rational numbers.
For each item ṽik(x) (0 � k � Ji; p′ + 1 � i � p) in the reversed inequality

g̃i(x)�1, xl acts as an exponent in the item by −γ̃ikl instead of by γ̃ikl, where
symbol ‘�’, or ‘ �’denotes the fuzzified version of �, or � and has the linguistic
interpretation “essentially smaller than or equal”, or “essentially larger than or
equal”, and m̃in is an extension of min operation.

If Ã0 = {x|g̃0(x) � Z0, x > 0} is a fuzzy object set, Z0 is an expectation value
of g̃0(x), then its membership function is defined by

Ã0(x) =

{
1, if ḡ0(x) � Z0

e−
1

d0

(
ḡ0(x)−Z0

)
, if Z0 < ḡ0(x) � Z0 + d0.

(3)

If Ã1
i = {x|g̃i(x) � 1, x > 0}, Ã2

i = {x|g̃i(x) � 1, x > 0} are fuzzy feasible
solution sets, the membership functions of constraints g̃i(x) defined by

Ãi(x) =

{
1, if ḡi(x) � 1

e
− 1

di

(
ḡi(x)−1

)
, if 1 < ḡi(x) � 1 + di, at 1 � i � p′

(4)

Ãi(x) =

{
0, if ḡi(x) � 1

e
− 1

di

(
1−ḡi(x)

)
, if 1 < ḡi(x) � 1 + di, at p′ + 1 � i � p

(5)

respectively, di � 0(0 � i � p) is a flexible index of i-th fuzzy function g̃i(x).
If we define m̃in g̃0(x) ← g̃0(x) � Z0, Z0 might have to be written down as a

minimizing goal in order to consider g̃0(x) as an upper bound, then (P̃ ) can be
rewritten down as

{
g̃0(x) � Z0,
g̃i(x) � 1, (1 � i � p′), g̃i(x) � 1, (p′ + 1 � i � p), x > 0.

(6)

Definition 1. Let Ã0(x) be a fuzzy object function defined on X ⊂ Rm and
Ã1

i (x), Ã2
i (x) is a fuzzy feasible solution set defined on X ⊂ Rm. We call Ỹ =

Ã0 ∩ Ã1 ∩ Ã2 = Ã0 ∩
⋂

1�i≤p′
Ã1

i ∩
⋂

p′+1�i�p

Ã2
i a fuzzy decision for (P̃ ), satisfying

Ỹ (x) = Ã0(x) ∧ min
1�i≤p′

Ã1
i (x) ∧ min

p′+1�i�p
Ã2

i (x), x > 0, (7)
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calling a point x∗ a fuzzy optimal solution to (P̃ ), satisfying

Ỹ (x∗) = max
x>0

{Ỹ (x) = min{Ã0(x), min
1�i�p′

Ã1
i (x), min

p′+1�i�p
Ã2

i (x)}}. (8)

Suppose Ã0 is a fuzzy optimal point set of g̃0(x), calling (8) an FRPGP for g̃0(x)
with respect to Ỹ .

Here we only involve discussing the equal level for both constraint and optimal-
ization of x∗. In particular, x∗ is a solution to classical GP (P ) at Y (x∗) = 1.

Theorem 1. If Ãi(x), B̃i(·), c̃ik and γ̃ikl(1 � k � Ji, 0 � i � p, 1 � l � m) are
all fuzzy continuous and strictly monotonous function (CSMF), the maximizing
of Ỹ (x) is equivalent to

(P̄ ) max α (9)

s.t. Ã0(x) = {
J0∑

k=1

c̃−1
0k (β)

m∏

l=1

x
γ̃−1
0kl

(β)

l }/(B̃−1
0 (α)) � 1,

Ã1
i (x) = {

Ji∑

k=1

c̃−1
ik (β)

m∏

l=1

x
γ̃−1

ikl(β)

l }/(B̃−1
i (α)) � 1, (1 � i � p′), (10)

Ã2
i (x) = {

Ji∑

k=1

c̃−1
ik (β)

m∏

l=1

x
γ̃−1

ikl(β)

l }/(B̃−1
i (α)) � 1, (p′ + 1 � i � p),

x > 0, α, β ∈ [0, 1].

where B̃−1
i (α)(0 � i � p) from (1)-(3) are defined as

B̃−1
0 (α) = Z0 − d0 log α; B̃−1

i (α) =
{

1 − di log α, (1 � i � p′),
1 − di log(1 − α), (p′ + 1 � i � p).

Proof. Substituting (1)(2)(3)(4)(5) into (9), when Ã0(x) = Z0 −d0, and Ãi(x) =
1 + di, after some rearrangements [2], then (9) arrive at

Ỹ (x)= Ã0(x) ∧ min
1�i≤p′

Ã1
i (x)∧ min

p′+1�i�p
Ã2

i (x) = exp{−(ḡ0(x) − Z0)/d0} ∧

min
1�i�p′

exp{(ḡi(x) − 1)/di} ∧ min
p′+1�i�p

{1 − exp{−(ḡi(x) − 1)/di

=exp
{

−

J0∑
k=1

c̃−1
0k (β)

m∏
l=1

x
γ̃−1
0kl

l (β)−Z0

d0

}
∧ min

1�i�p′
exp

{
−

Ji∑
k=1

c̃−1
ik (β)

m∏
l=1

x
γ̃−1

ikl(β)

l −1

di

}

∧ min
p′+1�i�p

{
exp

{
−

1 −
Ji∑

k=1

c̃−1
ik (β)

m∏
l=1

x
γ̃−1

ikl (β)

l

di

}}
.

The maximization decision of (P̃ ) can be turned into a solution to x such
that max

x>0
{Ỹ (x)}. Introducing a new variable α, let α = Ỹ (x), then max

x>0
α and

Ỹ (x) � α. When 0 � i � p′, we have
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exp
{
−(

Ji∑

k=1

c̃−1
ik (β)

m∏

l=1

x
γ̃−1

ikl
(β)

l − bi)/di

}
� α (11)

⇐⇒ ḡi(x) =
Ji∑

k=1

c̃−1
ik (β)

m∏

l=1

x
γ̃−1

ikl(β)

l � bi − di log α. (12)

It is equivalent to ḡi(x)/(bi − di log α) � 1 because bi − di log α > 0 is obvious

larger than zero for α ∈ [0, 1], where bi =
{

Z0, when (i = 0),
1, when (1 � i � p′); when

p′ + 1 � i � p, we have

exp
{
−(1 −

Ji∑

k=1

c̃−1
ik (β)

m∏

l=1

x
γ̃−1

ikl(β)

l )/di

}
� α

⇐⇒ ḡi(x) =
Ji∑

k=1

c̃−1
ik (β)

m∏

l=1

x
γ̃−1

ikl (β)

l � 1 + di log α. (13)

It is equivalent to ḡi(x)/(1 + di log α) � 1, here 1 + di log α > 0 is supposed
to represent the sign inequality.

If converse B̃−1
i (α)(0 � i � p) in (12) (13) is written down as

B̃−1
i (α) =

{
bi − di log α, (0 � i � p′),
1 + di log α, (p′ + 1 � i � p),

then (10) is got. It is obvious that they are greater than 0 for α ∈ [0, 1].
Therefore, the maximizing of Ỹ (x) is equivalent to the truth of (9)-(10).

Theorem 2. Suppose (x∗
1, x

∗
2, . . . , x

∗
m; α, β)T to be an optimal solution to (9)-

(10), then (x∗
1, x

∗
2, . . . , x

∗
m)T is a fuzzy optimal solution to (P̃ ).

Proof. Obviously it is easy to prove.

Theorem 3. Suppose that fuzzy-valued functions Ãi = B̃i◦ φ̃i are CSMF, where
B̃i and φ̃i = c̃ik ◦ γ̃ikl(1 � k � Ji, 0 � i � p, 1 � l � m) are CSMF. A dual
programming of (P̃ ) is

(D̃) m̃axd̃′(w) = (ã0k/w00)w00
p′∏

i=0

Ji∏
k=1

(c̃ik/ãikwik)wik

×
p∏

i=p′+1

Ji∏
k=1

(c̃ik/ãikwik)−wik

p′∏
i=1

wwi0
i0

p∏
i=p′+1

w−wi0
i0

s.t. w00 =
J0∑

k=1

w0k =1, Γ̃ ′Tw=0, w � 0,

where w = (w00, w01, . . . , w0J0 , wp1, . . . , wpJp)T is a J ′−dimensional fuzzy vari-
able vector (J ′ = 1 + J0 + · · · + Jp), and wi0 = wi1 + wi2 + · · · + wiJi(1 � i � p)
is the sum of each set of dual variables corresponding to an objective function
g̃0(x)(i = 0) or constraints function g̃∗i (x)(g̃∗i (x) = g̃i(x) − 1)(1 < i � p); −wik

and −wi0 denote a reversed direction inequality g̃i(x)�1 corresponding to factors
( c̃ik

wik
)−wik and w−wi0

i0 in the upper-right-corner exponent. Γ̃ ′ represents a fuzzy
exponent matrix (σiγ̃ikl), i = 0, . . . , p; k = 1, . . . , Ji; l = 1, . . . , m; σi = 1, i =
1, . . . , p′; σi = −1, i = p′ + 1, . . . , p.
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Proof. From Theorem 1, (P̃ ) is turned into (9)-(10).
Similarly, as to the proof in Theorem 4.1 in [2], we deduce the dual program-

ming of (P̄ ) as follows:

(D̄) max (−α/w̄00)w̄00
p′∏

i=0

Ji∏
k=1

(c̃−1
ik (β)/B̃−1

i (α)w̄ik)w̄ik

×
p∏

i=p′+1

Ji∏
k=1

(c̃−1
ik (β)/B̃−1

i (α)w̄ik)−w̄ik

p′∏
i=1

w̄w̄i0
i0

p∏
i=p′+1

w̄−w̄i0
i0

s.t. w̄00 =
J0∑

k=1

w̄0k = 1, Γ̄ ′Tw̄ = 0, α, β ∈ [0, 1], w̄ � 0,

where w̄ = (w, α, β), and Γ̄ ′ = (σiγ̄ikl(β)), i = 0, . . . , p; k = 1, . . . , Ji; l =
1, . . . , m; σi = 1, i = 1, . . . , p′; σi = −1, i = p′ + 1, . . . , p.

Again, (D̄), (D̃) denotes dual programming of(P̄ ), (P̃ ), respectively, therefore,
the theorem holds by transitivity of an equivalence relation.

3 Properties of Prime FRPGP

Definition 2. Let Ỹ be a fuzzy set defined on E ⊂ 
m, (6) is called a problem
of FRPGP in g̃0(x) with respect to Ỹ . If E ⊂ 
m is a convex set, and −g̃i(x)(0 �
i � p′) and g̃i(x)(p′ + 1 � i � p) are fuzzy (or strongly fuzzy) convex functions
[2] with respect to Ã0 and Ãi, respectively, (6) is called a problem of fuzzy (or
strongly fuzzy) convex reversed PGP with respect to g̃0(x).

Theorem 4. The FRPGP (P̃ ) is a convex fuzzy set, that is, equivalent to the
same with (6), while the fact that (6) is a convex fuzzy set equivalent that (6) is
a convex reversed PGP for any α, β ∈ [0, 1].

Proof. Because of (6) equivalence to (P̃ ), then (6), a convex fuzzy set, is equiv-
alent that (P̃ ) is convex fuzzy set obviously.

Because of Yα,β = {x̄|Ỹ (x̄) � α}, and ∀x̄1, x̄2 ∈ Yα,β and ∀α, β ∈ [0, 1]
in the event of Ỹ being a convex fuzzy set, there is Ỹ (λx̄1 + (1 − λ)x̄2) �
Ỹ (x̄1)

∧
Ỹ (x̄2) � α, that is, λx̄1 + (1 − λ)x̄2 ∈ Yα,β , where x̄ = x(α, β), x̄1 =

x1(α, β), x̄2 = x2(α, β). Therefore Yα,β is a convex set, such that Ȳ is convex
reversed PGP.

Whereas, if ∀α, β ∈ [0, 1], then Yα,β is a convex set. ∀ x̄1, x̄2 ∈ E, if let
α = Ỹ (x̄1)

∧
Ỹ (x̄2), then Ỹ (x̄1) � α, Ỹ (x̄2) � α, therefore x̄1, x̄2 ∈ Yα,β . From

the convexity of Yα,β , such that λx̄1 +(1−λ)x̄2 ∈ Yα,β for any λ ∈ [0, 1], that is,
Ỹ (λx̄1 + (1 − λ)x̄2) = Ỹ (x̄1)

∧
Ỹ (x̄2). It is known by the definition of a convex

fuzzy set that Ỹ is a convex fuzzy set and so is (6).

Generally, a reversed PGP is non-convex, so is the deformed substitution by
xi = eyi. Therefore, it does not keep nice properties [7] as a PGP. But we find
that many results can be obtained in an FRPGP like a fuzzy PGP after fuzzy
GP is nonfuzzified by adopting the membership function (3)-(5) mentioned in
the paper.
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Theorem 5. If B̃i is
{

a non-creasing function of CSMF for 1 � i � p′;
a non-decreasing function of CSMF for p′ + 1 � i � p;

for all i ∈ (0, p), c̃ik and γ̃ikl(1 � k � Ji, 0 � i � p, 1 � l � m) are CSMF, then
FRPGP (P̃ ) can be turned into a convex FRPGP.

Proof. Because (P̃ ) can be changed into (P̄ ) by Formal (1)-(5), with gi(x̄) =
Ji∑

k=1

c̃−1
ik (β)

m∏
l=1

x
γ̃−1

ikl
(β)

l /B̃−1
i (α) in (P̄ ), and if writing fik(x̄)=

m∏
l=1

x
γ̃−1

ikl
(β)

l /B̃−1
i (α),

then gi(x̄) =
Ji∑

k=1

c̃−1
ik (β)fik(x̄). Again because c̃−1

ik (β) � 0, we might as well

suppose fik(x̄) to nondecrease, so does gi(x̄). Therefore for all x1, x2 ∈ X, λ, β ∈
[0, 1], we have gi[λx̄1 + (1 − λ)x̄2] � λgi(x̄1) + (1 − λ)gi(x̄2), such that as for
nondecrease of B̃i, we get

B̃i

(
gi(λx̄1 + (1 − λ)x̄2)

)
� B̃i

(
λgi(x̄1) + (1 − λ)gi(x̄2)

)

� max{B̃i

(
gi(x̄1)

)
, B̃i

(
gi(x̄2)

)
}.

Therefore, Ãi(x̄) = B̃i(gi(x̄)) is a quasi-convex function valued on [0,1], such
that gi(x̄) is a fuzzy convex function for Ãi(x̄), hence (P̄ ) is a convex reversed
PGP with respect to x. The theorem holds from arbitrarily of α, β in [0,1].

Theorem 6. Let Ãi(0 � i � p) be a CSMF. Then the fuzzy local minimum
solution (LMS) to (P̃ ) is also its fuzzy global minimum solution (GMS).

Proof. From Theorem 5, we know (P̃ ) is fuzzy convex, then, ∀α, β ∈ [0, 1],

Ỹ (x̄) = Ã0(x̄) ∧
(
∧1�i≤p′ Ã1

i (x̄)
)

∧
(
∧p′+1�i�pÃ

2
i (x̄)

)

is a convex fuzzy valued function [2]. Therefore, the LMS of Ỹ (x̄) is its GMS.

Corollary 1. Let Ãi(0 � i � p) be a CSMF. Then the strictly fuzzy LMS to
(P̃ ) is its strictly fuzzy GMS.

Corollary 2. Let (P̃ ) be a strongly convex FRPGP. Then any fuzzy LMS to
(P̃ ) is its unique fuzzy GMS.

Theorem 7. Let Ãi(0 � i � p) be a CSMF. Then any fuzzy LMS to (P̃ ) is its
fuzzy GMS.

The theorem and corollaries above can be easily proved by means of [2].

4 Dual Theorem of the FRPGP

Definition 3. If x > 0, such that the groups of condition
V (g̃i(x) < 1) = 1, (1 � i � p′), V (g̃i(x) > 1) = 1, (p′ + 1 � i � p),

or V (g̃i(x) � 1) = 1, (1 � i � p′)V (g̃i(x) � 1) = 1, (p′ + 1 � i � p)
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holds, then we call them fuzzy super-consistence or fuzzy consistence in the
FRPGP (P̃ ), respectively, where v(g̃i(x)̃ � 1) denotes a possibility degree of
g̃i(x)�̃1 with

v(g̃i(x)�̃1) = sup
x,y|x�̃y

min{μg̃i(x), μ1(y)}(1 � i � p),

here �̃ denotes one of operators <, �, > and �.

Lemma 1. Let B̃i(0 � i � p) and φ̃i = c̃ik ◦ γ̃ikl(1 � k � Ji, 0 � i � p, 1 � l �
m) be CSMF. Then to any fuzzy feasible solution x and feasible solution w to
prime FRPGP (P̃ ) and its dual program (D̃), respectively, we have

g̃0(x) � g̃0(x)
p′∏

i=1

(g̃i(x))wi0
p∏

i=p′+1

(g̃i(x))−wi0 � d̃′(w) (14)

and

g̃0(x) = d̃′(w) (15)

iff

wik =
{

ṽ0k(x)/g̃0(x), (i = 0; 1 � k � J0)
wi0ṽik(x), (i �= 0; 1 � k � Ji).

(16)

Proof. Since x denotes a fuzzy feasible solution to (P̃ ), then x̄ is a feasible one
to (P̄ ), that is, for B̃i, c̃ik and γ̃ikl, gi(x̄) = gi(x′)/B̃−1

i (α) � 1(0 � i � p′), and
g′i(x̄) = B̃−1

i (α)/gi(x′) ≤ 1(p′ + 1 � i � p). Again, w̄i0 � 0, hence g0(x̄) �

g0(x̄)
p′∏

i=1

(gi(x̄))w̄i0
p∏

i=p′+1

(g′i(x̄))w̄i0 . And because gi(x̄) =
Ji∑

k=1

vik(x̄), gi
′(x̄) =

1/gi(x̄), from the ordinary geometric inequality, then (gi(x̄))w̄i0 �
Ji∏

k=1

(
vik(x̄)
w̄ik

)w̄ik

w̄w̄i0
i0 (0 � i � p′), whereas there must exist α, β ∈ [0, 1] for the feasible solution

x̄ and w̄ to (P̄ ) and (D̄), respectively, such that w̄00 = 1 and Γ̄ ′Tw̄ = 0, then

− α ≥ (−α)
p′∏

i=0

(gi(x̄))w̄ik

p∏

i=p′+1

(g′i(x̄))w̄ik ≥ d̄′(w̄), (17)

where vik(x̄) = vik(x′)/B̃−1
i (α), w̄ = w(α, β). Therefore, g0(x̄) � d′(w̄) =

B̃−1
0 (α)d̄′(w̄)/(−α), and

g0(x̄) = d̄′(w̄) (18)

iff

w̄ik =
{

v00(x′)/(−α), (i = 0; k = 0, α �= 0)
w̄i0vik(x′), (0 � i � p; 1 � k � Ji)

(19)

holds. Since (14)−(16) holds in the light of arbitration of α, β in [0, 1], and (17)⇔
(14), (18)⇔ (15), (19)⇔ (16), hence the lemma holds.
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Theorem 8. (The first dual theorem) Let the FRPGP (P̃ ) be fuzzy super-
consistence with fuzzy optimal solution x∗ existing. Then there must exist a La-
grange multiplier μ∗ = (μ∗

1, μ
∗
2, . . . , μ

∗
p′ , μ∗

p′+1, . . . , μ
∗
p)T � 0, and CSMF Ãi(0 �

i � p), such that

∇g̃0(x∗) +
p′∑

i=1

μ∗
i ∇g̃i(x∗) +

p∑
i=p′+1

μ∗
i ∇(−g̃i(x∗)) = 0, (20)

μ∗
i (g̃i(x∗) − 1) = 0, (1 � i � p), (21)

while w∗ defined by

w∗
ik =

{
ṽ0k(x∗)/g̃0(x∗), (i = 0; 1 � k � J0)
μ∗

i ṽik(x∗)/g̃0(x∗), (i �= 0; 1 � k � Ji)
(22)

is an optimal solution to dual program (D̃), and the optimal value of these two
programs is equality, i.e.,

g̃0(x∗) = d̃′(w∗). (23)

Proof. As for all the CSMFÃi(0 � i � p), (P̃ ) fuzzy super-consistence hav-
ing a fuzzy optimal solution x∗ is equivalent to (P̄ ) being super-consistent
with optimal solution x̄∗ for all α, β ∈ [0, 1]. Again, because (P̄ ) is convex
with respect to x for α, β, satisfying the Slater condition, there exists an op-
timal parametric solution x̄∗. Therefore, there exists a Lagrange multiplier μ∗ =
(μ∗

1, μ
∗
2, . . . , μ

∗
p′ , μ∗

p′+1, . . . , μ
∗
p)

T � 0 from Theorem 1.6.3 in [7], such that

∇g0(x̄∗) +
p′∑

i=1

μ∗
i ∇gi(x̄∗) +

p∑
i=p′+1

μ∗
i ∇(−gi(x̄∗)) = 0, (24)

μ∗
i (gi(x̄∗) − 1) = 0 (1 � i � p), (25)

while w̄∗
ik defined by

w̄∗
ik =

{
v00(x′∗)/(−α) (i = 0; k = 0, α �= 0)
μ∗

i vik(x′∗)/g0(x̄∗) (1 � k � Ji; 0 � i � p) (26)

is an optimal parametric solution to dual program (D̄), where x̄∗ = x∗(α, β), x′∗

= x∗(β), and there exists the determined α, β ∈ [0, 1], such that

g0(x̄∗) = d(w̄)B̃−1
i (α)/(−α) = d′(w̄∗). (27)

Again, (24)−(27) hold by the arbitrariness of α, β in [0,1], then (20)−(23)
hold. It follows that the theorem holds.

Corollary 3. Let a general FRPGP be (P̃I) and its dual programming be (D̃S).
If, to the CSMF Ãi(0 � i � p), (P̃I) is fuzzy super-consistence, with fuzzy
constraint infimum [2] MP̃I

> 0, there must exist a Lagrange multiplier μ∗ =
(μ∗

1, μ
∗
2, . . . , μ

∗
p′ , μ∗

p′+1, . . . , μ
∗
p)T � 0, such that (17)-(19) hold, and w∗ is an

optimal solution to a dual program (D̃S) with MP̃I
= d̃′(w∗).



Fuzzy Reversed Posynomial Geometric Programming and Its Dual Form 561

Proof. Because (P̃ ) has a minimum in Theorem 8, correspondingly (P̃I) has
a constrained minimum which must be positive. Therefore the theorem holds,
which is proved in the same way of Theorem 6.

All of the above conclusions assume that there exists a fuzzy optimal solution
to FRPGP (P̃ ). When is a fuzzy optimal one obtained in (P̃ )?

Theorem 9. (The second dual theorem) Let (P̃ ) be fuzzily consistent and (D̃)
have a feasible solution with components being positive. Then to CSMF Ãi =
B̃i ◦ φ̃i, where φ̃i = c̃ik ◦ γ̃ikl(1 � k � Ji, 0 � i � p, 1 � l � m), there exists a
fuzzy optimal solution in (P̃ ).

Proof. For CSMF Ãi(0 � i � p), (P̃ ) can be changed into a convex GP (P̄ ),
while the dual form of (P̄ ) is (D̄). Because (P̃ ) is fuzzy consistency ⇔ (P̄ )
consistency; again, the constraint condition of (D̃) is equivalent to that of (D̄),
namely, (D̃) contains a feasible solution with components being positive ⇔ (D̄)
has a parameter feasible solution with components being positive, we can get a
reformed prime programming of (P̄ ) by replacing xl = ezl(1 � l � m). It also
consists with point range {zk} existing and satisfying

Gi(z̄k) � 1(1 � i � p′), G−1
i (z̄k) � 1(p′ + 1 � i � p),

such that limk→∞ G0(z̄k) = MP̄ , in similar way of the Theorem 1.8.1 in [7].
Accordingly there must exist α, β ∈ [0, 1], and then

Gi(z̄∗) =

⎧
⎪⎪⎨

⎪⎪⎩

Ji∑
k=1

c̃−1
ik (β)/B̃−1

i (α)
m∏

l=1

x
∗γ̃−1

ikl(β)

l =
{

= MP̄ , (i = 0),
� 1, (1 � i � p′),

Ji∑
k=1

c̃−1
ik (β)/B̃−1

i (α)
m∏

l=1

x
∗−γ̃−1

ikl(β)

l � 1, (p′ + 1 � i � p),

where z̄∗l = z∗l (α, β) is a limit point of zk
l = zk

l (α, β), x̄∗
l = x∗

l (α, β) is a limit
point of xk

l = xk
l (α, β), that is, x̄∗

l (1 � l � m) is an optimal solution to (P̄ ).

5 Numerical Examples

Example 1. Find an FRPGP

m̃in g0(x) = 2x1 + 3x2

s.t. g1(x) = x2
1 + x2

2 � 1, x1, x2 > 0. (28)

Solution 1. The classical GP in (28) is non-convex. Given x1 = eu, x2 = ev, its
deformed programming

min 2eu + 3ev

s.t. e2u + e2v � 1

is nonconvex [7]. This prevents much perfect relations from fuzzy PGP, such
that difficulties appear in the solution to FRPGP. We might as well take d0 =
1,d1 = 1/2 for the sake of convenience and let g0(x) = d(w) = 3. Then (28) can
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be turned into a determined reversed PGP, its dual solution is w̄00 = 1, w̄01 =
0, w̄02 = 1, w̄11 = 0, w̄12 = 1/2, α = 0.7575 ∈ (0.60653, 1]. By means of (16),
then (x1, x2, α) = (0, 2/3, 0.7575) is an optimal solution to prime problem (28);
the optimal value of prime problem is equal to its dual optimal value 2.

Let us consider the reformed prime parameter programming as

min(−α)

s.t.
2eu + 3ev

3 − log α
� 1,

e2u + e2v

1 + 2 logα
� 1,

1 + 2 log α > 0, α ∈ (0, 1).

(0, −1, 0.7575),(−1, 0, 0.7575) and (−1/2, −1/2, 0.7575) are selected for points
(u, v, α), respectively. Therefore, it can be changed into a convex one with respect
to u, v and α. This outcome differs from a classical GP.

Example 2. If we use membership functions Ã0(x) = (1 + exp{2x1 + 3x2 −
3})−1, Ã1(x) = (1 + exp{−(x2

1 + x2
2 − 1) − 1/2})−1, (28) is solved again.

When α = (1+ e0.5−4/9)−1 ≈ 0.486(∈ (1+ e0.5)−1, 1]) is chosen, the optimal
solution is the same as the one to Example 1.

6 Conclusion

This paper changes an FRPGP into a convex parameter GP with respect to
α,β, so that the result of the FRPGP differs from that in the reversed PGP.
Meanwhile, policymakers in application decide an optimal distribution scheme
with respect to α,β in terms of an objective value, which leaves flexible room for
them to decide in.

This research is supported by the National Natural Science Foundation of
China and by the Foundation of Guangzhou University.

References

1. Cao, B.Y.: Solution and theory of question for a kind of fuzzy positive geometric
program. Proc. of 2nd IFSA Congress, Tokyo, Vol.1(1987) 205-208

2. Cao, B.Y.: Fuzzy geometric programming (I). Fuzzy Sets and Systems 53(1993)
135-153

3. Cao, B.Y.: Fuzzy geometric programming optimum seeking of scheme for waste
water disposal in power plant. Proc. of FUZZY-IEEE/IFES’ 95, Yokohama 793-798

4. Cao, B.Y.: Fuzzy geometric programming optimum seeking in power supply radius
of transformer substation. IEEE Int. Fuzzy Systems Conference Proceedings, Korea.
3(1999) 1749-1753

5. Mandal, N.K., Roy, T.K., Maiti, M.: Multi-objective fuzzy inventory model with
three constraints: A geometric programming approach. Fuzzy Sets and Systems
150(2005) 87-106

6. Liu, S.T.: Fuzzy geometric programming approach to a fuzzy machining economics
model. Int. J. Prod. Res., Vol.42,no.16(2004) 3253-3269

7. Wu, F., Yuan, Y.Y.: Geometric programming. Mathematics in Practice and Theory
2(1987) 68-77



Posynomial Fuzzy Relation Geometric

Programming

Ji-hui Yang1 and Bing-yuan Cao2

1 Department of Mathematics, Shantou University
Guangdong, ZIP 515063, P.R.China

yangjihui@163.com
2 School of Mathematics and Information Science, Guangzhou University,

Guangdong, ZIP 510006, P.R.China
caobingy@163.com

Abstract. In this paper, the concept and type of posynomial fuzzy rela-
tion geometric programming is introduced, some basic theories of posyn-
omial fuzzy relation geometric programming is presented, and then a
solution procedure is expatiated to solving such a programming based
on structure of feasible region. And finally, two practical examples are
given for illustration purpose.
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mial fuzzy relation geometric programming, Dual theory, Difficult degree,
Optimal solution.

1 Introduction

Fuzzy optimization is an important branch of fuzzy mathematics, although it is
not accurate to say its specific happening time of the subject branch. However, it
is can be sure that its seeds should be as long as the initial era of fuzzy set theory.
1965, The fuzzy set theory was introduced for the first time by Prof.Zadeh, it is
the direct starting point of fuzzy set theory father to achieve optimal control to
complex systems. This is, in essence, an optimization problem, of course, that
time has not yet formed the systemic fuzzy optimization theory. 1970, Bellman
and Zadeh clearly given the general solution of fuzzy optimization problems in
the literature[1], it became popular after 1970s and were used mainly by re-
searchers in information, engineering and decision-making. The advantages of
applying fuzzy optimization model to solving practical problems as follows: on
the one hand, it can avoid rigidity and stiffness arising from conventional op-
timization model deal with some practical optimization problems, on the other
hand, it can also efficiently reduce information loss arising from the conventional
optimization model operation to data. So fuzzy optimization theory has good
development prospect. This paper presents an optimization model as posyno-
mial fuzzy relation geometric programming, let us first review some content of
conventional optimization before discussing the model.

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 563–572, 2007.
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Conventional optimization problem can be denoted as follows:

min f(x)
s. t. x ∈ S.

(1)

where S is subset in n dimension space Rn, f(x) is real function on S, f(x) is
called the objective function of optimization (1), S is called feasible region of
(1). S can be given by a variety of ways, such as direct statements, by linear
or non-linear equations, by linear or nonlinear inequalities, by linear or nonlin-
ear equations and inequalities, and so on. Function that can form S is called
constraint function, different types of optimization can be formed by combining
the different objective and constraint functions. For instance, linear objective
function and linear constraint functions is called linear programming, secondary
objective function and linear constraint functions is called quadratic program-
ming, if the objective and constraint functions have the following shape:

fk(x) =
Lk∑

l=1

fkl(x) =
Lk∑

l=1

ckl

n∏

j=1

x
γjkl

j (0 ≤ k ≤ p) (2)

then such optimization is called geometric programming. Where function fk(x)(0
≤ k ≤ p) is called posynomial function, f0(x) is objective function, fk(x)(1 ≤
k ≤ p) is constraint functions, respectively. In particular, fkl(x) is call monomial
function of x, coefficient ckl > 0, variable x = (x1, x2, · · ·, xn)T > 0, exponent
γjkl (1 ≤ l ≤ Lk, 0 ≤ k ≤ p, 1 ≤ j ≤ n) is arbitrary real number.

E. Sanchez, a famous French scholars, who presented fuzzy relation equations
theory when he studied the questions coming from medical diagnosis in 1976[2],
this is an inverse problem to fuzzy comprehensive evaluation, fuzzy relation
equations play an important role in the fuzzy set theory and application, the
successful application has been done in control, medicine, agriculture and other
related fields[3].

The research of optimization problem with fuzzy relation equations constraint
happened in eighties of the last century, but the main research direction is focus
on the linear programming with fuzzy relation equations constraint[4][5]. S. C.
Fang, an American scholar, who originally presented non-linear programming
with fuzzy relation equations constraint in 2001, and then he gave a genetic
algorithm procedure for solving such an optimization problem[6]. However, af-
ter all, genetic algorithms are a heuristic method, to a large extent, the quality
to optimal solution depend on the characteristic of the objective function. Ge-
netic algorithms can easy run into local minimum solution for solving a large
class constraint optimization problem with non-linear objective function, more-
over, genetic algorithms can only get approximate optimal solution when it solve
some optimization problems that conventional optimization algorithms can easy
obtain the optimal solution, all those show that there is many insurmountable
weaknesses about genetic algorithms in solving the above optimization. It should
be said that up to now we still have not found a universally valid algorithm for
solving non-linear programming with fuzzy relation equations constraint. Most
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scholars who work in field of optimization believe it is very difficult and not
necessary to trying to find a effective algorithm that fit all nonlinear program-
ming, it is a good studying nonlinear programming method that proposed suit-
able algorithm based on specific type of the function. For example, the lemke
algorithm is proposed to solving quadratic programming problem, the dual algo-
rithm is proposed to solving geometric programming problem. These algorithms
are playing an important role in solving practical problems. In this paper, we
present posynomial geometric programming with fuzzy relation equations con-
straint, it is called “ posynomial fuzzy relation geometric programming”, and
then some relevant definitions and algorithms are given to solving posynomial
fuzzy relation geometric programming. The reason we raise this issue to a special
discussion is: posynomial function has always been considered as a important and
most widely used function in real living, it includes not only all linear function,
but also the important polynomial function. The issue of many field can be good
characterized by such a function. Just like geometric programming have solved
a lot of practical problems at that time, we believe the same posynomial fuzzy
geometric programming will also solve a lot of practical problems.

2 Definition of Posynomial Fuzzy Relation Geometric
Programming

Definition 2.1. We call
A◦x = b (3)

a fuzzy relation equation, where, x = (x1, x2, ..., xn)T , 0 ≤ xj ≤ 1(1 ≤ j ≤
n) is n dimension fuzzy vector, A = [aij ], 0 ≤ aij ≤ 1 is m × n dimension fuzzy
matrix, b = (b1, b2, ..., bm)T , 0 ≤ bi ≤ 1(1 ≤ i ≤ m) is m dimension fuzzy vector,
matrix compose operation “ ◦ ” is ∨ − ∧ operator, that is,

n∨

j=1

(xj ∧ aij) = bi (1 ≤ i ≤ m)

.
Definition 2.2. We call the following optimization model

min f(x)
s.t A ◦ x = b, (4)

0 ≤ xj ≤ 1(1 ≤ j ≤ n),
posynomial fuzzy relation geometric programming, where f(x) is posynomial
function of x the same as (2), that is,

f(x) =
L∑

l=1

fl(x) =
L∑

l=1

cl

n∏

j=1

x
γjl

j (5)

where, each fl(x) is called a monomial function of x, coefficient cl > 0, variable
x = (x1, x2, · · ·, xn)T > 0, exponent γjl (0 ≤ l ≤ L, 1 ≤ j ≤ n) is arbitrary real
number.
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In practical problems, the coefficients and exponents of objective function are
sometimes difficult to accurately given. Under the circumstances, these param-
eters can often be expressed by Fuzzification method. It is a simple approach
to using fuzzy numbers to denote these parameters that can not be accurately
determined. By and large, the optimal value of the objective function should be
fuzzy when the parameters are fuzzy, we call such an optimization as posynomial
fuzzy relation geometric programming with fuzzy objective. The corresponding
definition (4) is called a posynomial fuzzy relation geometric programming with
clear objective.

To facilitate the description, suppose that 1 ≥ b1 > b2 > ... > bm > 0.
On the general situation, we can rank bi(1 ≤ i ≤ m) from large to small, the
corresponding component of x, the corresponding row of A, the corresponding
every term of f(x) can be adjusted based on the ranking of bi(1 ≤ i ≤ m).

3 Structure of Solution Set on Fuzzy Relation Equations

Since the feasible region of optimization problem (4) is solution set to (3). Solving
Equation (3) is very important to optimize (4). Next, we make some summarizer
to solution set structure of Equation (3).

Definition 3.1. If there exists a solution in Equation (3), it is called compati-
ble[7].

Suppose X(A, b) = {x = (x1, x2, ..., xn)T ∈ Rn|A ◦ x = b, 0 ≤ xj ≤ 1} is
the solution set of Equation (3). We define ∀x1, x2 ∈ X(A, b), x1 ≤ x2 ⇔ x1

j ≤
x2

j (1 ≤ j ≤ n), such a definition “ ≤ ” is a partial order relation on X(A, b).

Definition 3.2. If ∃x̂ ∈ X(A, b), such that x ≤ x̂, ∀x ∈ X(A, b), then x̂ is
called a maximal solution to Equation (3). If ∃x̆ ∈ X(A, b), such that x̆ ≤ x,
∀x ∈ X(A, b), then x̆ is called a minimal solution to Equation (3). And if
∃x̆ ∈ X(A, b), such that x ≤ x̆, then x = x̆, x̆ is called a minimum solution
to Equation (3).let

x̂j = ∧{bi|bi < aij} (1 ≤ i ≤ m), 1 ≤ j ≤ n, (6)

suppose that {∧Ø = 1}.
If x̂ = (x̂1, x̂2, ..., x̂n) is a solution to Equation (3), we can easily prove that

x̂ must be a maximal solution to one. For a maximal solution to Equation (3),
we have the following lemma:

Lemma 3.1. A ◦ x = b is compatible if and only if there exists a maximal solu-
tion x̂.
Proof: The sufficiency is evident. Now we prove necessity.

If x is a solution to A ◦x = b, and
n∨

j=1

(aij ∧xj) = bi(1 ≤ i ≤ m) then ∀i, j, there

is aij ∧xj ≤ bi. Let i be fixed, and when aij ≤ bi, then 0 ≤ xj ≤ 1, when aij > bi,
then 0 ≤ xj ≤ bi. According to {∧Ø = 1}, we have xj ≤ ∧{bi|bi < aij} = x̂j ,
that is x ≤ x̂.
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Step forward. Suppose that bi < aij , since x̂j = ∧{bi|bi < aij} ≤ bi, then
aij ∧ x̂j ≤ bi, suppose that bi ≥ aij , then aij ∧ x̂j ≤ aij ≤ bi, so we have
n∨

j=1

(aij ∧ x̂j) ≤ bi, that is, A ◦ x̂ ≤ b. Since x ≤ x̂, then b = A ◦ x ≤ A ◦ x̂ ≤ b.

Hence, A ◦ x̂ = b, and x̂ is a maximal solution, the proof is complete.

Corollary 3.1. If X(A, b) �= Ø, then x̂ ∈ X(A, b)[8].
If a minimal solution exists in Equation (3), then solution set of (3) can be

easily confirmed. However, that is not necessarily the case. The minimal solution
does not often exist in Equation (3). Even under the situation of X(A, b) �= Ø, we
have not found an effective method to confirm whether X(A, b) have minimum
solution at present, which makes solution of Equation (3) more complicated. In
order to discuss the question conveniently, the paper always assumes that every
solution to Equation (3) contains a minimum solution that is less than or equal
to it, and the number of minimum solution is finite[9]. If we denote all minimum
solution to Equation (3) by X̆(A, b), then solution set of Equation (3) can be
denoted as follows.

X(A, b) =
⋃

x̆∈X̆(A,b)

{x|x̆ ≤ x ≤ x̂, x ∈ Rn}. (7)

We can clearly see by Formula (7), solution set structure of Equation (3) can
be ascertained by X̆(A, b), solving X̆(A, b) means X(A, b) is known. Although
X(A, b) is not convex set, it is composed of union of several n-dimensional sup-
rectangular solid with every sup-rectangular solid being a closed convex set.

4 Solving Method on Posynomial Fuzzy Relation
Geometric Programming with Clear Objective

Suppose that solution set of the fuzzy relation equations X(A, b) is gained
through conservative path method[10]. Without lost of generality, assume that
cardinal number of X̆(A, b) is | X̆(A, b) |= p, now let x̆k ∈ X̆(A, b)(1 ≤ k ≤ p),
and then the p conventional geometric programming can be stated as follows:

GPk min f(x)
s.t x̆j

k ≤ xj ≤ x̂j(1 ≤ j ≤ n), (8)
Let xk∗(1 ≤ k ≤ p) is optimal solution of optimization GPk, take

x� ∈ {xl∗ | f(xl∗) = min{f(xk∗)(1 ≤ k ≤ p)}} (9)
then x� is a optimal solution to Optimization (4).

Definition 4.1. If X(A, b) �= ∅, then Optimization (4) is said to super-
compatible.

Definition 4.2. DD = L+ n − 1 is said to difficult degree of posynomial fuzzy
relation geometric programming.
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Numerical D reflected the extent of the difficulties in solving posynomial
fuzzy relation geometric programming (4). When D = 0, the dual programming
of posynomial geometric programming (8) has only one solution, this is the
simplest case, when D = 1, the dual programming is equivalent to a single
variable function optimization problems, it can be solved using the method of
linear search, in general, if the value of D became more large, the solving optimal
solutions of (8) is more difficult[11].

The following give an algorithm procedure to posynomial fuzzy relation geo-
metric programming with clear objective:

Algorithm 4.1.
Step 1. According to the order of components of b from large to small, b is

rearranged, and A, x and f(x) are adjusted corresponding to changed b.
Step 2. By Formula (6), solve x̂. If x̂ is not a solution to Equation (3), then

turn to Step 7. Otherwise, turn to Step 3.
Step 3. Solving X̆(A, b) by conservative path method.
Step 4.Solving the optimal solution xk∗(1 ≤ k ≤ p) of (8) by conventional

geometric programming algorithm.
Step 5. Solving optimal solution x∗ of the Optimization (4) by (9).
Step 6. Print f(x∗), stop.
Step 7. Print “have no solution”, stop.

5 Solving Method on Posynomial Fuzzy Relation
Geometric Programming with Fuzzy Objective

Definition 5.1. Fuzzy set Ã is called a fuzzy number on real number field R,
if satisfied:

1)∃x0 ∈ R, suffice to Ã(x0) = 1;
2)∀λ ∈ [0, 1], Ãλ = {x|Ã(x) ≥ λ} = [AL

λ , AR
λ ] is a close interval.

Suppose that F (R) denotes all fuzzy number on R.
If the coefficients and exponents of objective function are fuzzy in posynomial

fuzzy geometric Optimization (4), then objective value should also be fuzzy, the
Optimization (4) has become posynomial fuzzy relation geometric programming
with fuzzy objective. Suppose that coefficient cl and exponent γjl are denoted by
fuzzy number C̃l, Γ̃jl, respectively, and let μ

C̃l
, μ

Γ̃jl
denote Membership Func-

tion of C̃l, Γ̃jl, respectively, then (4) can be denoted as follows:

min f̃(x) =
L∑

l=1

C̃l

n∏
j=1

x
Γ̃jl

j

s.t A ◦ x = b, (10)
0 ≤ xj ≤ 1(1 ≤ j ≤ n),

where objective function f̃(x) is fuzzy number.
The α−cut set of C̃l and Γ̃jl is denoted by [(C̃l)L

α, (C̃l)U
α ] and [(Γ̃jl)L

α, (Γ̃jl)U
α ],

let cl ∈ S(C̃l), γjl ∈ S(Γ̃jl), where S(C̃l) and S(Γ̃jl) is support set of fuzzy
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set μ
C̃l

and μ
Γ̃jl

, respectively. According to extension principle [12], we can
definition

μ
f̃(x)

(y) = sup
cl,γjl

min{μ
C̃l

(cl), μΓ̃jl
(γjl) | ∀ l, j, y = f(cl, γjl)},

in order to solving μ
f̃(x)

(y), suppose that

μU
˜f(x)α

= max{ f(cl, γjl) | (C̃l)L
α ≤ cl ≤ (C̃l)U

α , (Γ̃jl)L
α ≤ γjl ≤ (Γ̃jl)U

α },

μL
˜f(x)α

= max{ f(cl, γjl) | (C̃l)L
α ≤ cl ≤ (C̃l)U

α , (Γ̃jl)L
α ≤ γjl ≤ (Γ̃jl)U

α },

then two level programming can be gained as follows:

(U)

max
(C̃l)

L
α ≤ cl ≤ (C̃l)

U
α ,

(Γ̃jl)
L
α ≤ γjl ≤ (Γ̃jl)

U
α ,

∀ l, j

min
L∑

l=1

cl

n∏
j=1

x
γjl

j

s.t A ◦ x = b, (11)
0 ≤ xj ≤ 1(1 ≤ j ≤ n),

(L)

min
(C̃l)

L
α ≤ cl ≤ (C̃l)

U
α ,

(Γ̃jl)
L
α ≤ γjl ≤ (Γ̃jl)

U
α ,

∀ l, j

min
L∑

l=1

cl

n∏
j=1

x
γjl

j

s.t A ◦ x = b, (12)
0 ≤ xj ≤ 1(1 ≤ j ≤ n),

Optimization (11) and (12) are posynomial fuzzy relation geometric program-
ming with clear objective and parameter α the same as (4), when 0 < α1 < α2 ≤
1, there is

μL
˜f(x)α1

≥ μL
˜f(x)α2

, μU
˜f(x)α1

≤ μU
˜f(x)α2

,

if α take every value in [0,1], according to decompose theorem of fuzzy set, the
Membership Function f̃(x)can be gotten[12].

μ
f̃(x)

(y) =

⎧
⎪⎪⎨

⎪⎪⎩

L(y), μL
˜f(x)α0

≤ y ≤ μL
˜f(x)α1

1, μL
˜f(x)α1

≤ y ≤ μU
˜f(x)α1

R(y), μU
˜f(x)α1

≤ y ≤ μU
˜f(x)α0

where, L(y) is non-decreasing function on y, R(y) is non-increasing function
on y, if take finite value of α, for example, α take

0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
then a better approximation to μ

f̃(x)
can be gained. In practical problems, the

approximate result can often be good utilized. The following give an algorithm
procedure to posynomial fuzzy relation geometric programming with fuzzy ob-
jective as follows:

Algorithm 5.1.
Step 1. According to the order of components of b from large to small, b is

rearranged, and A, x and f(x) are adjusted corresponding to changed b.
Step 2. By Formula (6), solve x̂. If x̂ is not a solution to Equation (3), then

turn to Step 6. Otherwise, turn to Step 3.
Step 3. Solving X̆(A, b) by conservative path method.
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Step 4. Solving optimal solution x∗ of Optimization model (11) and (12) by
conventional geometric programming.

Step 5. Print f(x∗), stop.
Step 6. Print “have no solution”, stop.

6 Numerical Example

Example 1: Solving
min f(x) = 3x−0.5

1 x−0.2
2 + 4x1x

−0.4
3 x2

4 + x1x2x3x4

s.t A ◦ x = b,
0 ≤ xj ≤ 1, (1 ≤ j ≤ 4)

where A =

⎛

⎜⎜⎜⎜⎝

0.3 0.2 0.7 0.8
0.5 0.4 0.4 0.9
0.7 0.3 0.2 0.7
0.9 0.6 0.1 0.2
0.8 0.5 0.6 0.4

⎞

⎟⎟⎟⎟⎠
, b = (0.7, 0.4, 0.4, 0.3, 0.6)T .

Notes: If xj = 0, we can definition 1
xj

= ∞.

Solving: According to (3), x̂ = (0.3, 0.3, 1, 0.4)T can be gotten, it is easy to
confirm A ◦ x̂ = b, then x̂ is maximal solution of A ◦ x = b. Two solutions of
fuzzy relation equation can be obtained by conservative path method, the two
solutions are

x̆ = (0.3, 0, 0.7, 0.4)T and x̆ = (0, 0.3, 0.7, 0.4)T ,
The solution set of fuzzy relation equation is

S = (0.3, [0, 0.3], [0.7, 1], 0.4)∪ ([0, 0.3], 0.3, [0.7, 1], 0.4).
Then two conventional posynomial geometric programming can be formulated
as follows:

GP1 min f(x) = 3 · 0.3−0.5x−0.2
2 + 0.192x−0.4

3 + 0.12x2x3

s.t 10
3 x2 ≤ 1,
0.7x−1

3 ≤ 1,
x3 ≤ 1,

GP2 min f(x) = 3 · 0.3−0.2x−0.5
1 + 0.64x1x

−0.4
3 + 0.12x1x3

s.t 10
3 x1 ≤ 1,
0.7x−1

3 ≤ 1,
x3 ≤ 1,

the optimal solutions of conventional geometric programming GP1 and GP2 are
(0.3, 0.3, 1, 0.4) and (0.3, 0.3, 1, 0.4), respectively, the optimal values are 7.19 and
7.19, respectively. It is easy to see, min{7.19, 7.19} = 7.19, therefore, the optimal
solution is (0.3, 0.3, 1, 0.4), and the optimal value is 7.19.

Example 2: Soving
min f̃(x) = (1.2, 1.4, 1.6)x(0.5,0.6,0.7)

1 x2
2 + (0.8, 1.0, 1.2)x−0.5

3 x−2
4

s.t A ◦ x = b,
0 ≤ xj ≤ 1, (1 ≤ j ≤ 4)

where A, b is the same as Example 1.
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The following two bilevel programming can be formulated by Optimization
model (11) and (12):

(U)

max
1.2 + 0.2α ≤ c1 ≤ 1.6 − 0.2α,
0.8 + 0.2α ≤ c2 ≤ 1.2 − 0.2α,
0.5 + 0.1α ≤ γ11 ≤ 0.7 − 0.1α

min c1x
γ11
1 x2

2 + c2x
−0.5
3 x−2

4

s.t A ◦ x = b,
0 ≤ xj ≤ 1(1 ≤ j ≤ 4),

(L)

min
1.2 + 0.2α ≤ c1 ≤ 1.6 − 0.2α,
0.8 + 0.2α ≤ c2 ≤ 1.2 − 0.2α,
0.5 + 0.1α ≤ γ11 ≤ 0.7 − 0.1α

min c1x
γ11
1 x2

2 + c2x
−0.5
3 x−2

4

s.t A ◦ x = b,
0 ≤ xj ≤ 1(1 ≤ j ≤ 4),

Using the Algorithm 5.1 discussed in previous section, we can solve the above
two bilevel posynomial fuzzy relation geometric programming with parameter
α, the optimal solution of (U) and (L) can be denoted by

7.5 − 1.25α and 5.0 + 1.25α,
respectively. That is

˜f(x)α = [5.0 + 1.25α, 7.5 − 1.25α] (0 ≤ α ≤ 1)
Corresponding fuzzy set can be gotten from the decomposition theorem as fol-
lows:

μ
f̃(x)

(y) = (5.0, 6.25, 7.5).
This is a triangular fuzzy numbers, the function image and diagram of different
α-level value can be depicted as follows:

�

�

�
�
�
�
�

�
�
�
�
�

μ
f̃(x)

y

1

o
5.0 6.25 7.5

The range of optimal solution with different α-level value

α 0 0.2 0.4 0.6 0.8 1.0

Optimal Solutions Range [5.0,7.5] [5.25,7.25] [5.5,7.0] [5.75,6.75] [6.0,6.5] 6.25

7 Conclusion

So far, we have researched posynomial fuzzy relation geometric programming as
(4). When the objective function are clear numbers, we transform the posyno-
mial fuzzy relation geometric programming problem into a conventional geomet-
ric programming, and then we get the optimal solution. When the exponents
and coefficients of objective function are fuzzy numbers, the paper develops a
method that is able to find the membership function of the fuzzy objective op-
timal value. The idea is based on Zadeh’s extension principle to transform the
posynomial fuzzy relation geometric programming problem into a pair of bilevel
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mathematical programming. Based on duality theory and a simple algorithm,
the pair of bilevel mathematical programming is transformed into a pair of con-
ventional geometric programming. Solving the pair of geometric programming
produces the upper bound and lower bound of the optimal value at specific α
level. At last, membership function of objective function optimal value is gotten.
Of course, the algorithms are not effective to all posynomial fuzzy relation geo-
metric programming problems(PFRGPs), when the problem scale is very large,
at present, there is no an effective numerical algorithms that suit to all PFRGPs,
how to looking for a simple and effective procedure which can solve such a special
programming is always an worthy attention problem.
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Abstract. Comparing the similarity between two fuzzy sets (FSs) is
needed in many applications. The focus herein is linguistic approximation
using type-1 (T1) FSs, i.e. associating a T1 FS A with a linguistic label
from a vocabulary. Because each label is represented by an T1 FS Bi,
there is a need to compare the similarity of A and Bi to find the Bi

most similar to A. In this paper, a vector similarity measure (VSM)
is proposed for T1 FSs, whose two elements measure the similarity in
shape and proximity, respectively. A comparative study shows that the
VSM gives best results. Additionally, the VSM can be easily extended
to interval type-2 FSs.

1 Introduction

Fuzzy sets (FSs), which handle uncertainties in a natural way, have been used
in numerous applications. The application of particular interest in this paper is
the linguistic approximation problem [1,2] using type-1 (T1) FSs 1, i.e. we have
a system whose inputs are linguistic labels modeled by T1 FSs, and after some
operations it outputs another T1 FS A, and, we want to map A to a linguistic
label in a vocabulary so that it can be understood linguistically. Because each
label in the vocabulary is represented by a T1 FS Bi, there is a need to compare
the similarity of A and Bi to find the Bi most similar to A.

Many similarity measures for T1 FSs have been introduced. According to Cross
and Sudkamp [4], they can be classified into four categories: (1) Set-Theoretic
Measures, (2) Proximity-Based Measures, (3) Logic-Based Measures, and
(4) Fuzzy-Valued Measures. Two similarity measures proposed particularly for
the linguistic approximation problem are Bonissone’s method [1,2] and Wenstøp’s
method [8]. In this paper, a vector similarity measure (VSM) for T1 FSs is pro-
posed. It is simpler than either of these two methods, and has better performance
on T1 FSs. Additionally, it can be easily extended to interval T2 FSs [9].

The rest of this paper is organized as follows: Section 2 reviews Bonissone’s
method and Wenstøp’s method for linguistic approximation using T1 FSs.
1 In this paper we call the original FSs introduced by Zadeh [10] in 1965 T1 FSs to

distinguish them from their extension, type-2 FSs, which were also introduced by
Zadeh [11] in 1975 to model more uncertainties.

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 575–583, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Section 3 proposes a VSM for the linguistic approximation problem. Section 4
compares the VSM with Bonissone’s method and Wenstøp’s method. Section 5
draws conclusions. Proofs of the theorems are given in Appendix A.

2 Existing Similarity Measures for Linguistic
Approximation

The literature on similarity measures for T1 FSs is quite extensive [4]. Two simi-
larity measures, Bonissone’s method and Wenstøp’s method, which are proposed
particularly for linguistic approximation, will be reviewed in this section.

2.1 Bonissone’s Linguistic Approximation Distance Measure

As mentioned in the Introduction, Bonissone’s [1, 2] linguistic approximation
distance measure was proposed to identify the linguistic label Bi which most
closely resembles a given FS A.

The first step of Bonissone’s method eliminates from further consideration
those linguistic labels determined to be very far away from A. For a given T1 FS
A, the distances between A and Bi, d1(A, Bi), are computed to identify M Bi

that are close to A (according to some tolerance parameter). Bonissone [2] first
computed four T1 FS features, centroid, cardinality, fuzziness and skewness, for
A and Bi, and then defined d1(A, Bi) as the weighted Euclidean distance between
the two four-dimensional points [(p1

A, p2
A, p3

A, p4
A)T and (p1

Bi
, p2

Bi
, p3

Bi
, p4

Bi
)T ]

represented by the values of the four features for each T1 FS, i.e.,

d1(A, Bi) =

⎡

⎣
4∑

j=1

w2
j (pj

A − pj
Bi

)2

⎤

⎦
1/2

. (1)

The weights2 wj (j = 1, 2, 3, 4) have to be pre-specified.
After pre-screening linguistic labels far away from A, Bonissone’s second step

uses the modified Bhattacharya distance [6] to discriminate between the M lin-
guistic labels close to A, i.e.,

d2(A, Bk) =

[
1 −

∫

X

(
μA(x)μBk

(x)
card(A) · card(Bk)

)1/2

dx

]1/2

k = 1, . . . , M (2)

The linguistic label corresponding to the smallest d2(A, Bk) is considered most
similar to A.

2.2 Wenstøp’s Linguistic Approximation Method

Wenstøp [8], who considered the same problem as Bonissone, states: “a linguistic
approximation routine is a function from the set of fuzzy subsets to a set of
2 We show w2

j in (1), because this is the way the equation is stated in [2].
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linguistic values.” Wenstøp used two parameters of a T1 FS, its imprecision
(cardinality) and its location (centroid). The imprecision (p1) was defined as the
sum of membership values, whereas the location (p2) was defined as the center
of gravity. He then computed

dW (A, Bi) =
[
(p1

A − p1
Bi

)2 + (p2
A − p2

Bi
)2

]1/2
i = 1, . . . , N (3)

and chose Bi with the smallest d
W

(A, Bi) as the one most similar to A. Observe
that Wenstøp’s method is a simplified version of Bonissone’s first step.

3 The VSM for T1 FSs

In this section a VSM for T1 FSs is proposed. Four desirable properties a simi-
larity measure should possess are introduced first.

3.1 Four Desirable Properties of a Similarity Measure

The following four properties are proposed for a reasonable similarity measure
for T1 FSs.

1) The similarity between two T1 FSs is 1 if and only if they are exactly the
same.

2) If two T1 FSs intersect, there should be some similarity between them.
3) If two T1 FSs become more distant from each other, similarity between them

should decrease.
4) The similarity between two T1 FSs should be a constant regardless of the

order in which they are compared, i.e. s(A, B) = s(B, A).

Next a VSM which possesses these properties is proposed.

3.2 The VSM for T1 FSs

When the similarity of two T1 FSs A and B are compared, it is necessary to
compare their shapes as well as proximity; hence, a VSM, sv(A, B), with two
components is proposed,

sv(A, B) = (s1(A, B), s2(A, B))T
, (4)

where s1(A, B) ∈ [0, 1] is a similarity measure on the shapes of A and B, and
s2(A, B) ∈ [0, 1] is a similarity measure on the proximity of A and B. To define
sv(A, B), s1(A, B) and s2(A, B) must first be defined.

3.3 Definition of s1(A, B)

Because the proximity of A and B is considered in s2(A, B), when computing
s1(A, B) A and B are “aligned” so that their shapes can be compared. A rea-
sonable alignment method is to move one or both of A and B so that their
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centroids, c(A) and c(B), coincide (see Fig. 1). The two T1 FSs can be moved
to any location as long as c(A) and c(B) coincide; this will not affect the value
of s1(A, B). In this paper B is moved to A and called B′, as shown in Fig. 1.

Once the two T1 FSs are “aligned,” s1(A, B) is computed by Jaccard’s unpa-
rameterized ratio model of similarity 3 [5]:

s1(A, B) =
card(A ∩ B′)
card(A ∪ B′)

=

∫
X

min(μA(x), μB′ (x))dx∫
X max(μA(x), μB′ (x))dx

. (5)

Observe that s1(A, B) is a set-theoretic measure [4].

Theorem 1. (a) 0 ≤ s1(A, B) ≤ 1; (b) s1(A, B) = 1 ⇔ A = B′; and, (c)
s1(A, B) = s1(B, A).

Proof: See Appendix A.1. �

A B B

( )c A ( )c B

Fig. 1. An example of the VSM for T1 FSs. c(A) and c(B) are the centroids of A and
B, respectively. B′ is obtained by moving B so that c(B) coincides with c(A). Note
that the shaded region can also be obtained by moving c(A) to c(B).

3.4 Definition of s2(A, B)

s2(A, B) measures the proximity of A and B, and is defined as

s2(A, B) ≡ h(d(A, B)) (6)

where d(A, B) = |c(A) − c(B)| is the Euclidean distance between the centers
of the centroids of A and B (see Fig. 1), and h can be any function satisfying:
(1) lim

x→∞h(x) = 0; (2) h(x) = 1 if and only if x = 0; and, (3) h(x) decreases
monotonically as x increases.

Theorem 2. s2(A, B) ∈ [0, 1], and s2(A, B) = 1 if and only if c(A) = c(B).

Proof: Theorem 2 is obvious from (6) and the above constraints on h(x). �
An example of s2(A, B) is

s2(A, B) = e−rd(A,B), (7)

3 It is called coefficient of similarity by Sneath in [7]. The term index of communality
has also been used [4].
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where r is a positive constant. s2(A, B) is chosen as an exponential function
because we believe the similarity between two FSs should decrease rapidly as
the distance between them increases.

3.5 On Converting sv(A, B) to a Scalar Similarity Measure ss(A, B)

sv(A, B) enables us to separately quantify the similarity of two features, shape
and proximity. In linguistic approximation sv(A, Bi) (i = 1, 2, . . . , N) need to be
ranked to find the Bi most similar to A. This can be achieved by first converting
the vector sv(A, Bi) to a scalar similarity measure ss(A, Bi) and then ranking
ss(A, Bi) (i = 1, 2, . . . , N).

In this paper, the scalar similarity between two T1 FSs A and B is computed
as the product of their similarities in shape and proximity 4, i.e.

ss(A, B) = s1(A, B) × s2(A, B) (8)

Properties of ss(A, B) include:

Theorem 3. (a) A = B ⇔ ss(A, B) = 1; (b) ss(A, B) > 0; (c) ss(A, B) >
ss(A, C) if B and C have the same shape and C is further away from A than B
is; and, (d) ss(A, B) = ss(B, A).

Proof: See Appendix A.2. �
Theorem 3 shows that ss(A, B) satisfies the four properties stated in Section 3.1.

4 Comparisons

4.1 Comparison with Bonissone’s Linguistic Approximation
Distance Measure

Both sv(A, B) and Bonissone’s method consider the shapes and proximity of A
and B. The main differences between them are:

(1) sv(A, B) is a one-step method, whereas Bonissone’s method is a two-step
method.

(2) sv(A, B) considers two features of A and B (shape and proximity). In Bonis-
sone’s first step, four features (centroid, cardinality, fuzziness and skewness)
are considered, and in his second step, only one feature is considered (the
modified Bhattacharya distance).

(3) sv(A, B) measures the similarity between A and B, i.e. a larger sv(A, B)
means A and B are more similar. On the other hand, Bonissone’s method
measures the distance (or difference) between A and B, i.e. a larger d2(A, B)
means A and B are less similar.

4 Recently, Bonissone, et al. [3] defined a similarity measure as a weighted minimum of
several sub-similarity measures. Although similar to our idea, their objective is quite
different from our objective; hence, their similarity measure is not used in this paper.
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4.2 Comparison with Wenstøp’s Linguistic Approximation Method

Wenstøp’s linguistic approximation method is quite similar to the VSM method
in that both of them use the centroid and cardinality. The differences are:

(1) The VSM computes the similarity between two T1 FSs, whereas Wenstøp’s
method computes the difference between two T1 FSs.

(2) The VSM first aligns A and B and then computes the cardinalities of A∩B
and A ∪ B, whereas Wenstøp’s method computes cardinalities of A and B
directly.

(3) The VSM can be used for T1 FSs of any shapes, whereas, as shown in
[8], the two parameters in Wenstøp’s method are insufficient criteria for
satisfactory linguistic approximation. As a further refinement, he includes
other characteristics of FSs, e.g. non-normality, multi-modality, fuzziness
and dilation [8].

4.3 Examples

For T1 FSs shown in Fig. 2, the results of Bonissone’s linguistic approximation
distance measure, Wenstøp’s linguistic approximation measure and the VSM
are shown in Table 1. The domain of x was discretized into 201 equally-spaced
points in all three methods, and r ≡ 4/|X | (|X | is the length of the support
of A ∪ B) in the VSM [see (7)]. Note that all Bk (k = 1, 2, 3, 4) are assumed
to survive Bonissone’s first step, hence (2) was used to compute Bonissone’s
distance measure. Observe that all methods indicate B2 is more similar to A
than is B1, which seems reasonable. When B3 and B4 are considered, Bonissone’s
measure indicates that they have the same similarity to A 5, and Wenstøp’s
measure indicates that B4 is more similar to A than B3 is. Both results seem
counter-intuitive, because B3 should be more similar to A than B4 is, as indicated
by the VSMs.

Table 1. Comparisons of similarity measures for T1 FSs A and Bk (k = 1, . . . , 4)
shown in Fig. 2

Measure k = 1 k = 2 k = 3 k = 4

d2(A, Bk) 0.2472 0.1617 1 1

dW (A, Bk) 28.5679 16.6650 38.6805 37.5736

ss(A, Bk) 0.6368 0.7208 0.0086 0.0013

5 If one FS must be chosen from Bk (k = 1, 2, 3, 4) so that it is most similar to A, then
B3 and B4 may be removed during Bonissone’s first step because they are too far
away from A; however, if only B3 and B4 are available and one of them must be chosen
so that it is more similar to A, Bonissone’s method will have a problem because both
B3 and B4 survive in the first step, and in the second step d2(A, B3) = d2(A, B4).
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A

2B
1B

( )x

x
0 2 104 93 14 1615

3B
4B

1

17 20 21 24

Fig. 2. T1 FSs used in the comparative study

5 Conclusions

A vector similarity measure for T1 FSs has been proposed in this paper. It is
easy to understand, and its two components enable us to consider the similarity
between shapes and proximity separately and explicitly. The VSM is simpler than
two existing linguistic approximation methods, and yet a comparative study
showed that it has better performance. Additionally, the VSM can be easily
extended to interval T2 FSs [9].
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A Proof of Theorems

A.1 Proof of Theorem 1

Proof of (a). Because

0 ≤ min(μA(x), μB′(x)) ≤ max(μA(x), μB′ (x)) (9)

it follows that

0 ≤
∫

X

min(μA(x), μB′ (x))dx ≤
∫

X

max(μA(x), μB′ (x))dx (10)

Consequently,

s1(A, B) =

∫
X min(μA(x), μB′ (x))dx∫
X

max(μA(x), μB′ (x))dx
∈ [0, 1]. (11)

Proof of (b). A = B′ means μA(x) = μB′(x). Substituting these two equations
into (5),

s1(A, B) =

∫
X μA(x)dx∫
X

μA(x)dx
= 1, (12)

which proves the necessity of Theorem 1(b).
To prove the sufficiency of the result, observe that s1(A, B) = 1 means

∫

X

min(μA(x), μB′(x))dx =
∫

X

max(μA(x), μB′ (x))dx (13)

(13) holds if and only if

μA(x) = μB′(x) ∀x ∈ X. (14)

(14) means A = B′.

Proof of (c). s1(A, B) = s1(B, A) is obvious because the min and max opera-
tors in (5) do not concern the order of μA(x) and μB′(x), i.e. min(μA(x), μB′(x))
= min(μB′(x), μA(x)) and max(μA(x), μB′ (x)) = max(μB′(x), μA(x)). �

A.2 Proof of Theorem 3

Proof of (a). Sufficiency: A = B means s1(A, B) = 1 and s2(A, B) = 1; hence,
ss(A, B) = 1.

Necessity: ss(A, B) = 1 if and only if s1(A, B) = 1 and s2(A, B) = 1.
s1(A, B) = 1 means the shapes of A and B are the same, and s2(A, B) = 1
means the distance between A and B is zero. Consequently, A = B.
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Proof of (b). Observe that s1(A, B) > 0 and s2(A, B) > 0. Consequently,
ss(A, B) > 0.

Proof of (c). B and C have the same shape means

s1(A, B) = s1(A, C). (15)

C is further away from A than B means

s2(A, B) > s2(A, C). (16)

Hence,

s1(A, B) × s2(A, B) > s1(A, C) × s2(A, C), (17)

i.e. ss(A, B) > ss(A, C).

Proof of (d). Because neither s1(A, B) nor s2(A, B) concern the order of A and
B, i.e. s1(A, B) = s1(B, A) and s2(A, B) = s2(B, A), it follows that ss(A, B) =
ss(B, A). �
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Abstract. The type-2 fuzzy sets was extended of original fuzzy sets
and there are many researches related to type-2 fuzzy sets and fuzzy
logic systems (FLS), recently. The paper deals with the approximate
presentation of type-2 fuzzy sets and operations by using triangulated
irregular networks (TIN). TIN usually used to represent approximate 3-D
surfaces with applications in computer graphics. By using TINs and half-
edge structure, authors proposed representation and operations of type-2
fuzzy sets based on this approach. Some results compared with original
approaches are shown to confirm the approach be good and correctly.

Keywords: type-2 fuzzy sets, TIN, Delaunay algorithm.

1 Introduction

The type-2 fuzzy sets was introduced by L. Zadeh as an extension of ordinary
fuzzy sets. So the concept of type-2 fuzzy sets is also extended from type-1
fuzzy sets. If A is a type-1 fuzzy set and membership grade of x ∈ X in A is
μA(x), which is a crisp number in [0, 1]. A type-2 fuzzy set in X is Ã, and the
membership grade of x ∈ X in Ã is μÃ(x), which is a type-1 fuzzy set in [0, 1].
The elements of the domain of μÃ(x) are called primary memberships of x in Ã
and the memberships of the primary memberships in μÃ(x) are called secondary
memberships of x in Ã.

Recenly, there are many researches and applications related to type-2 fuzzy
sets becase of the advandcing in uncertainty management. Karnik et al [3] have
studied practical algorithms of operations on type-2 fuzzy sets as union, intersec-
tion, complement. Karnik and Mendel[4] proposed the method of type-reduction
of type-2 fuzzy sets based on centroid defuzzification. J. Mendel and R.John [7]
have developed new representation of type-2 fuzzy sets based on embedded type-
2 fuzzy sets. This representation obtains the design of type-2 fuzzy logic system
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is easy to use and understand. Mendel [8] proposed some practical algorithms in
implementing and storing data to speed-up the computing rate of type-2 fuzzy
logic system. Coupland et al [9-10] proposed representation type-1 and interval
type-2 fuzzy sets and fuzzy logic system by using 2-D computational geometry,
the approach is better in computing than analytic approaches. TIN is a method
of representation of curved surface in 3-D space with many applications in com-
puter graphics and simulation. Many approaches [11-13] are use to generate TIN
from set of points based Delaunay algorithms.

The paper deals with the new representation of type-2 fuzzy sets using TIN.
The membership grades of type-2 fuzzy sets being 3-D surfaces are discreted into
triangular faces with planar equations. Size of triangle is difference depending
on slope of the surface. Authors proposed practical algorithms to implement
operations on type-2 fuzzy sets by building computational geometry algorithms
on TIN. The result is shown and tested for robustness of the approach.

2 Background

2.1 Type-2 Fuzzy Sets and Operations

A type-2 fuzzy set in X is Ã, and the membership grade of x ∈ X in A is μÃ(x, u), u
∈ Jx ⊆ [0, 1], which is a type-1 fuzzy set in [0, 1]. The elements of the domain of
μÃ(x, u) are called primary memberships of x in Ã and the memberships of the
primary memberships in μÃ(x, u) are called secondary memberships of x in Ã.

Definition 1. A type − 2 fuzzy set, denoted Ã, is characterized by a type-2
membership function μÃ(x, u) where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), μÃ(x, u))|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (1)

or
Ã =

∫

x∈X

∫

u∈Jx

μÃ(x, u))/(x, u), Jx ⊆ [0, 1] (2)

in which 0 ≤ μÃ(x, u) ≤ 1.

At each value of x, say x = x′, the 2-D plane whose axes are u and μÃ(x′, u) is
called a vertical slice of μÃ(x, u). A secondary membership function is a vertical
slice of μÃ(x, u). It is μÃ(x = x′, u) for x ∈ X and ∀u ∈ Jx′ ⊆ [0, 1], ie.,

μÃ(x = x′, u) ≡ μÃ(x′) =
∫

u∈Jx′

fx′(u)/u, Jx′ ⊆ [0, 1] (3)

in which 0 ≤ fx′(u) ≤ 1.
Theoric operations of type-2 fuzzy ses as union, intersection and complement is

mentioned in [2]. Karnik et al [3] proposed algorithms to compute join (� - union),
meet(�-intersection) and negation (¬-complement) of type-2 fuzzy sets. Type-2
fuzzy sets are called an interval type-2 fuzzy sets if the secondary membership
function fx′(u) = 1 ∀u ∈ Jx.
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2.2 TIN and Delaunay Triangulation

A topographic surface σ is the image of a real bivariate function f defined over
a domain D in the Euclidean plane, as

σ =
{
(x, u, f(x, u))

∣∣(x, u) ∈ D
}

(4)

A polyhedral model is the image of a piecewise-line function f being described
on a partition of D into polygonal regions {T1, ..., Tk} and the image of f over
each region Ti(i = 1, ..., k) is a planar patch. If all of Tis (i = 1, .., k) are triangles
then the polyhedral model is called a Triangulated Irregular Network (TIN).
Hence, σ may be represented approximately by a TIN, as

σ=̃
k∑

i=1

{
(x, u, fi(x, u))

∣∣(x, u) ∈ Ti

}
,

k⋃

i=1

Ti ≡ D (5)

where fis (i = 1, ..., k) are planar equations.
The Delaunay triangulation of a set V of points in IR2 is a subdivision of the

convex hull of V into triangles having their vertices at points of V , and such that
triangles are as much aquiangular as possible. More formally, a triangulation τ
of V is a Delaunay triangulation if and only if, for any triangle t of τ , the
circumcircle of t does not contain any point of V in its interior. This property
is called the empty circle property of the Delaunay triangulation.

The usual input for two-dimensional mesh generation is not merely a set of
vertices. Most theoretical treatments of meshing take as their input a planar
straight line graph (PSLG). A PSLG is a set of vertices and segments that
satisfies two constraints. First, for each segment contained in a PSLG, the PSLG
must also contain the two vertices that serve as endpoints for that segment.
Second, segments are permitted to intersect only at their endpoints.

The constrained Delaunay triangulation (CDT) of a PSLG X is similar
to the Delaunay triangulation, but every input segment appears as an edge of
the triangulation. An edge or triangle is said to be constrained Delaunay if it
satisfies the following two conditions. First, its vertices are visible to each other.
Here, visibility is deemed to be obstructed if a segment of X lies between two
vertices. Second, there exists a circle that passes through the vertices of the edge
or triangle in question, and the circle contains no vertices of X that are visible
from the interior of the edge or triangle.

3 Approximate Representation of Type-2 Fuzzy Sets

Extending the concept of interval type-2 sets of upper MF and lower MF, we
define a membeship grade of type-2 fuzzy sets by dividing it into subsets: upper
(lower) surface and normal surface as follows:

Definition 2 (Upper, lower and normal surface of T2FS). ÃT is called
a sub-set of type-2 fuzzy set Ã, is defined as follows:

ÃT =
∫

x∈X

[ ∫

u∈Jk
x

fx(u)/u
]
/x (6)
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Fig. 1. (a) A planar straight line graph. (b) Delaunay triangulation of the vertices of
the PSLG. (c) Constrained Delaunay triangulation of the PSLG.

Upper surface (ÃUS), lower surface (ÃLS) and normal surface (ÃNS) are sub-
sets of Ã in which Jk

x of (6) is J+
x , J−

x , J∗
x , respectively, at vertical-slice x = x′

are computed as J+
x′ ⊆ [u∗+

x , 1], J−
x′ ⊆ [0, u∗−

x ] and J∗
x′ ⊆ [u∗−

x , u∗+
x ] which u∗+

x′ =
sup{u|μÃ(x′, u) = 1}, u∗−

x′ = inf{u|μÃ(x′, u) = 1}.

So a type-2 fuzzy set Ã is re-written as Ã = ÃUS ∪ ÃNS ∪ ÃLS or μÃ(x, u) =
μÃUS

(x, u) ∪ μÃNS
(x, u) ∪ μÃLS

(x, u). Fig. 2 is an example of type-2 fuzzy set
with three subsets: upper surface, normal surface and lower surface.

Fig. 2. Example of surfaces of type-2 fuzzy sets

A proximate representation of type-2 fuzzy sets is proposed by using a TIN
to represent the 3-d membership grade, is expressed as the following theorem.

Theorem 1 (Approxiamate Theorem). Let Ã be type-2 fuzzy set with mem-
bership grade μÃ(x, u) in domain D(x, u). A TIN MÃ represent approximately
Ã with membership grade μM

Ã
(x, u), satisfying:

‖μÃ(x, u) − μM
Ã

(x, u)‖ < ε, ∀(x, u) ∈ D. (7)

Proof. If membership grade of type-2 fuzzy sets only use triangular and trapezoid
MF, then MÃ represent faithfully Ã satisfying (7). We prove the theorem with
non-linear membership grades.

Let D∗(x, z) ⊆ D(x, z) so that μÃ(x, u) is continuous. We prove (7) is true
with ∀(x, u) in D∗ with T ∗ is a TIN representing Ã. Union of T ∗s is a TIN
satisfying constrained Delaunay that represent approximately Ã.

Let Tk is a TIN that represent Ã in D∗. Suppose that ∃(xk, uk) ∈ D∗(x, u) so
that dk = |μÃ(xk, uk) − μM

Ã
(xk, uk)| ≥ ε.
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We modify T by inserting new vertices and arranging triangular faces, as follows:

1. Find the triangle tj(j = ¯1, Nk), Nk is number of triangles, of Tk that (xk, uk)
is in tj .

2. Partitioning the tj into sub-triangles depending on position (xk, uk) on tj .
+ If (xk, uk) lies on edge ek of tj . Partitioning tj , ti be adjacent triangle
sharing the edge ek with tj , into four sub-triangles(Fig. 3a).
+ If (xk, uk) is in tj . Partitioning tj into three sub-triangles as Fig. 3b.

3. Verifying new triangles satisfying Delaunay. Operation may be re-arrange
triangles by using flip operation of two adjacent triangles.

Fig. 3. Partitioning the tj triangle

After number of the limited steps implementing above algorithm, dk < ε,
because of the continuous of μÃ(x, u) in D∗.

Definition 3. A base-line of a TIN representing a type-2 fuzzy set is a polyline
vi(i = 1, .., N) satisfying vi.u = 0 and vivi+1 is a edge of triangle of TIN.

Fig.4 is the TIN that represent approximately of Gaussian type-2 fuzzy sets
with ε = 0.1. The primary MF is a Gaussian with fixed deviation and mean
mk ∈ [m1, m2] and the secondary MF is a triangular MF. The dask-line is a
base-line of TIN.

Fig. 4. Example of representation of a type-2 Gaussian fuzzy sets

4 Operations of TIN

4.1 Data

Data storing a TIN includes vertices, indices of faces and relations of them. Data
of vertices is a list of 3-d vectors with x, y and z components. Indices of faces
are three indices of vertices of triangle.
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Relations between vertices and faces is used to speed up algorithms on TIN
such as searching or computing algorithms. In [13], authors used the half −edge
data structure to store relation between a vertex and neighbouring vertices or
faces. A half-edge includes the end point and the adjacent face being on right of
edge. List of half-edges of a vertex is arranged clockwise based coordinate of the
end point. Fig. 5 shows the storing list of half-egdes of a vertex.

Fig. 5. List of half-edges of a vertex

4.2 Algorithms Computing on TIN

The section introduces some algorithms operating on TIN such as: algorithm com-
puting intersection of two TINs or algorithm computing minimum or maximum
of two TINs. Algorithm computing intersection is to create a polyline being inter-
section of two TINs and the polyline is a break-line of TINs. Algorithm computing
maximum/minimum is to generate new TIN T0 from two TINs T1, T2 satisfying
∀(x, u)|μT0(x, u) = min(μT1(x, u), μT2(x, u)) or μT0(x, u) = max(μT1 (x, u), μT2

(x, u)). The following is the detailed descriptions of algorithms.

Algorithm 1 (Algorithm computing intersection)
Input: T1, T2 are two TIN representing two type-2 fuzzy sets. Outputs is T1, T2

being modified with some new vertices and edges on intersection polylines.

1. Computing L1, L2 are base-lines of T1, T2, respectively.
2. Find v∗k(k = 1, .., M) are the intersection points of L1, L2.
3. If M = 0 or set of intersection points is empty then return.
4. For each v∗k(k = 1, ..., M)

v∗ ← v∗k. Init queue Qk.
While not find v∗

(a) v ← v∗. Insert v into queue Qk.
(b) Insert v into each of T1, T2, become vT1 , vT2 .
(c) Find adjacent triangle t∗1, t

∗
2 of vT1andvT2 , respectively, so that t∗1, t

∗
2 are

intersected by a segment in t∗1 and t∗2.
(d) If existing new v∗ point so that vv∗ is a intersecting segment of t∗1 and

t∗2 then
v ← v∗

Come back step a).
Else

Come back step 2).
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Algorithm 2 (Algorithm computing maximum/minimum)
Input: T1, T2 are two TIN representing two type-2 fuzzy sets. Output is T0

being a result of minimum/maximum operation.

1. Computing intersection of T1, T2 (call algorithm computing intersection).
2. Init queue Q.
3. for each triangle t of T1 or T2.

(a) With maximum algorithm:
if t is triangle of T1(T2) and be upper than T2(T1) then push t into Q.

(b) With minimum algorithm:
if t is triangle of T1(T2) and be lower than T2(T1) then push t into Q.

(c) Generating TIN from triangles in Q.

Algorithm 3 (Join, Meet Operation)
Input: Ã, B̃ are two type-2 fuzzy sets with TINs TÃ, TB̃. Output is C̃ being

result of join (meet) operation.

1. Computing result of upper surface as follows (Call algorithm 3):
TC̃US

= max(TÃUS
, TB̃US

) (for join operation).
TC̃US

= min(TÃUS
, TB̃US

) (for meet operation).
2. Computing result of lower surface as follows (Call algorithm 3):

TC̃LS
= max(TÃLS

, TB̃LS
) (for join operation).

TC̃LS
= min(TÃLS

, TB̃LS
) (for meet operation).

3. Computing TC̃NS
from TC̃US

and TC̃US
.

5 Applications

This section introduces some applications of new representation of type-2 fuzzy
sets using TIN such as computing meet, join, negation operations.

5.1 Join Operation and Meet Operation Under Min

Based-on theoric join and meet operation, we proposed algorithms to compute
result of operations by using algorithms on TIN. Algorithm for join or meet under
min operator use algorithms computing intersection and algorithm computing
min/max of 2 TINs in section 4.2.

Fig. 6. Example of two fuzzy sets for operations

Fig. 6 is two type-2 fuzzy sets with primary MF is Gaussian and secondary
MF is triangular MF. Fig. 7 (Fig. 8) is the result of algorithm for computing
join operation (meet operation under min).
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Fig. 7. Meet operation under min

Fig. 8. Join operation

Algorithm 4 (Meet operation under product)
Input: Ã, B̃ are two type-2 fuzzy sets. Output is C̃ being result of meet oper-

ation under product.

1. Call D̃ is a clone of B̃.
2. For each vertices v1k of TUS, v2k of TLS of D̃.

Computing y-component of vk as follows:
v1k.y = μT

ÃUS
(v1k.x, v1k.u) ∗ μT

B̃US
(v1k.x, v1k.u)

v2k.y = μT
ÃLS

(v2k.x, v2k.u) ∗ μT
B̃LS

(v2k.x, v2k.u)

3. For each triangle tk of TUS or TLS of D̃.

(a) t ← tk
(b) Computing G being the gravity of t.
(c) dy = μT

ÃUS
(G.x, G.u) ∗ μT

B̃US
(G.x, G.u) or dy = μT

ÃLS
(G.x, G.u) ∗ μT

B̃LS

(G.x, G.u)
(d) If | G.y − dy | > ε Then

- Insert G into TUS (or TLS if tk in TLS), t1, t2, t3 are three new
sub-triangles. And set to G.y = dy.

- Set t ← t1, t ← t2, t ← t3 and come back step a).

Algorithm 5 (Negation Operation)
Input: Ã is a type-2 fuzzy set. Output is result of negation operation.

1. For each vetex vk of TUS or TLS of B̃.
vk.y = 1.0 − vk.y

2. Set T ′
US ← TLS, T ′

LS ← TUS.
3. Set B̃ = {T ′

US , TNS, T ′
LS}.
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Fig. 9. Negation operation

5.2 Meet Operation Under Product

5.3 Negation Operation

5.4 Performance

The new approach uses memory and computations less than previous approaches.
If the TIN has N vertices, M faces then it takes N*12 bytes for vertices, M*6
bytes for faces and M*6 for relations between vertices and faces. For examples,
triangular or tapezoid takes about 720 bytes with N ∼= M ∼= 30. Gaussian mem-
bership grades take about 200 vertices and 300 faces with accuracy ε = 0.01, i.e
6000 bytes. Beside, the memoty using for traditional approach takes about 100
000 bytes with step is 0.01 and x takes value in [0, 10].

We also tested the performace of algorithms with different membership grades.
We implemented operations in 1000 times for each operation and sumaried run-
time (in ms )in table 1.

Table 1. The run-time of operations

Join Meet(min) Meet(product) Negation

Triangular-Triangular 1 1 1 1
Gaussian - Triangular 474 290 312 1
Interval Gaussian 114 86 91 1

6 Conclusion

The paper introduces the new approach to represent a type-2 fuzzy sets using tri-
angular irreular network. TIN has used to represent 3-D surfaces by partitioning
domain D into sub-triangle satisfying Delaunay or constrained Delaunay. So we
use this representation for membership grades of type-2 fuzzy sets being 3-D sur-
faces. W also proposed approach using half-edge to operate TIN with real-time.
Based-on this result, we developed new computations to implement operations
of type-2 fuzzy sets such as join, meet, negation. These operations is the base to
develop computings for type-2 fuzzy logic system.

The next goals is to continue improving geometry algorithms descrease com-
putational time. The second is to apply computings for developping type-2 fuzzy
logic system using geometry algorithms.



On Approximate Representation of Type-2 Fuzzy Sets 593

References

1. L.A. Zadeh (1975), The concept of linguistic variable and its application to ap-
proximate reasoning, J.Inform. Sci. 8: 199 - 249.

2. M. Mizumoto, K. Tanaka (1976) Some properties of fuzzy sets of type-2, J. Inform.
and Control 31: 312 34.

3. N. Karnik, J.M. Mendel(2001), Operations on Type-2 Fuzzy Sets, Fuzzy Sets and
Systems, vol. 122: 327-348.

4. N. Karnik, J.M. Mendel(2001). Centroid of a type-2 fuzzy set, Information Sciences,
132 : 195-220.

5. N.N Karmil, J.M. Mendel, Q. Liang (1999) Type-2 Fuzzy Logic Systems, IEEE
Trans. on Fuzzy Systems, Vol.7, No.6, : 643-658.

6. Q. Liang, J.M. Mendel (2000) Interval Type-2 Fuzzy Logic Systems: Theory and
Design, IEEE Trans. on Fuzzy Systems, Vol.8, No.5, 635-650.

7. J.M Mendel, R.B. John (2002) Type-2 Fuzzy Sets Made Simple, Fuzzy Sets and
Systems, vol. 10, no.2, 117-127.

8. Jerry M. Mendel (2004) On Computing the Centroid of a Symmetrical Interval
Type-2 Fuzzy Set, Proc. Conf. on Information Processing and Management of
Uncertainty in Knowledge-Based Systems (IPMU), Perugia, Italy, July 4-9.

9. S. Coupland, R. John (2004) Fuzzy Logic and Computational Geometry, In 5th
International Conference on Recent Advances in Soft Computing, 3 - 8.

10. S. Coupland, R. John (2006) Geometric Type-1 and Type-2 Fuzzy Logic Systems,
Accepted for publication in IEEE Transactions on Fuzzy Systems.

11. J. R. Shewchuck (2002) Delaunay Refinement Algorithms for Triangular Mesh
Generation, Computational Geometry: Theory and Applications 22(1-3):21-74.

12. J. Ruppert (1995) A Delaunay refinement algorithm for Quality 2-Dimensional
Mesh Generation, Journal of Algorithms 18(3): 548-585.

13. L.T. Ngo, L.T.Pham (2005) Approach in Generating 3-D Digital Terrain Model
based on Refinement Delaunay Algorithm (in Vietnamese), Proc. of Symposium
in IT, 248-258.



Hybrid Control for an Autonomous Wheeled

Mobile Robot Under Perturbed Torques

Leslie Astudillo1, Oscar Castillo1, Luis T. Aguilar2, and Ricardo Mart́ınez1

1 Department of Computer Science, Tijuana Institute of Technology, Tijuana, México
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Abstract. This paper focuses on the control of wheeled mobile robot
under bounded torque disturbances. Hybrid tracking controller for the
mobile robot was developed by considering its kinematic model and
Euler-Lagrange dynamics. The procedure consist in minimizing the sta-
bilization error of the kinematic model through genetic algorithm ap-
proach while attenuation to perturbed torques is made through type-2
Fuzzy Logic Control (FLC) via backstepping methodology. Type-2 fuzzy
logic is proposed to synthesize the controller for the overall system which
is claimed to be a robust tool for related applications. The theoretical
results are illustrated through computer simulations of the closed-loop
system.

1 Introduction

Mobile robots have attracted considerable interest in the robotics and control
research community, because they posses nonholonomic properties caused by
nonintegrable differential constraints. The motion of a nonholonomic mechanical
systems [2] is constrained by its own kinematics, so the control laws are not
derivable in a straightforward manner (Brockett condition [3]).

Fuzzy logic control [18] has been recognized for its effectiveness in the control
of wheeled mobile robots in order to perform missions in uncertain environments
where robustness properties must be considered in the control design (see e.g.,
[4,7,8,14], and the references therein). In parallel with studies devoted to in-
telligent control of wheeled mobile robots, there has recently been a growing
interest in the robustification of the method motivated by attractive features of
the type-2 FLC illustrated in [15]. In particular, the result in [8] shows a reac-
tive control architecture for autonomous mobile robots that is based on type-2
FLC to implement the basic navigation behaviors and the coordination between
these behaviors to produce a type-2 hierarchical FLC whose result show how the
type-2 FLCs can deal in real-time with the uncertainties facing mobile robots
in changing and dynamic unstructured environments and that they resulted in
good real time control responses that had outperformed the type-1 FLCs.
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In this paper is introduced a type-2 fuzzy logic controller to force the wheeled
mobile robot to follow a desired trajectory in spite of the existence of unknown
but bounded disturbances. Currently, many research papers consider only the
kinematic model (steering system) to solve the tracking control problem, where
the velocity, used as input control, is assumed to be supplied by the mobile
robot whose dynamic of the actuators is neglected (see e.g., [11,13,16,17], and
references therein). However, real prototype mobile robots have actuated wheels
whose slip rate, rolling, inertia moments, and mass distribution contribute to
the forces exerted on the structure of the vehicle thus affecting the accuracy
and full manoeuvrability of the robot. Motivated by this, the vehicle dynamics,
represented by the Euler-Lagrange equations, is considered to convert a steering
system into control inputs for the actual vehicle ([5,6]).

Roughly speaking, the strategy of the type-2 fuzzy logic controller constructed
is to drive the kinematic model to a desired trajectory in finite-time taking into
account that torque is the real input. Backstepping methodology has long been
recognized as a tool for solving the tracking control problem for mobile robots,
including both kinematic and Euler-Lagrange models [6]. The backstepping ap-
proach consists of two steps: 1) finding the velocities that stabilize the kinematic
model and 2) finding a control law such that ensure the converge of real velocities
to those values.

In this case, a type-2 membership functions were considered for the error
based on Mamdani reasoning approach. In particular, triangle- and trapezoid-
shaped membership functions were used in the control design, with three fuzzy
partitions and nine fuzzy rules.

This paper is organized as follows: Section 2 presents the problem statement and
thekinematic anddynamicmodel of theunicyclemobile robot. Section3 introduces
the fuzzy logic control system using a Mamdani-type model where the wheel input
torques, linear velocity, and angular velocity will be considered as linguistic vari-
ables. Section 4 provides a simulation study of the unicycle mobile robot using the
controller described in Section 3. Finally, Section 5 presents the conclusions.

2 Problem Statement

In this paper, a perturbed unicycle mobile robot is considered as a case study. A
unicycle mobile robot is an autonomous, wheeled vehicle capable of performing
missions in fixed or uncertain environments.The robot body is symmetrical around
the perpendicular axis and the center of mass is at the geometric center of the body.
It has two driving wheels fixed to the axis that passes through C and one passive
orientable wheel that is placed in front of the axis and normal to it. The two fixed
wheels are controlled independently by motors, and the passive wheel prevents the
robot from tipping over as it moves on a plane. In what follows, it is assumed that
the motion of passive wheel can be ignored in the dynamics of the mobile robot
represented by the following set of equations [10]:
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M(q)v̇ + C(q, q̇)v + Dv = τ + p(t) (1)

q̇ =

⎡

⎢⎣
cos θ 0
sin θ 0

0 1

⎤

⎥⎦

︸ ︷︷ ︸
S(q)

[
ν

ω

]

︸︷︷︸
v

(2)

where q = (x, y, θ)T is the vector of the configuration coordinates; v = (ν, ω)T is
the vector of velocities; τ = (τ1, τ2) is the vector of torques applied to the wheels
of the robot; p(t) is the 2 × 1 uniformly bounded disturbance vector; M(q) is
a 2 × 2 positive-definite inertia matrix; C(q, q̇)v is the vector of centripetal and
Coriolis forces; and D is a 2 × 2 diagonal positive-definite matrix. Equation
(2) represents the kinematics of the system, where (x, y) is the position in the
X −Y (world) reference frame; θ is the angle between the heading direction and
the x-axis; ν and ω are the linear and angular velocities, respectively; and τ1

and τ2 denote the torques of the right and left wheel, respectively (see Fig. 1).
Furthermore, the system (1)-(2) has the following nonholonomic constraint:

ẏ cos θ − ẋ sin θ = 0, (3)

which corresponds to a no-slip wheel condition preventing the robot from moving
sideways [12]. The system (2) fails to meet Brockett’s necessary condition for
feedback stabilization [3] which implies that no continuous static state-feedback
controller exists such that globally stabilizes the closed-loop system around the
equilibrium point.

The control objective is established formally as follows: design a fuzzy logic
controller τ such that the posture q(t) reach a reference continuously differen-
tiable, bounded trajectory and orientation qd(t) ∈ IR3, that is

lim
t→∞ ‖qd(t) − q(t)‖ = 0, (4)

while attenuating external disturbances.

3 Type-2 Fuzzy Control Design

This section will illustrate the framework to achieve stabilization of a unicycle
mobile robot around a desired path. A systematic procedure is given based on
the backstepping approach.

The system (1)-(2) is in cascade interconnection; that is, the kinematic sub-
system (2) is controlled only indirectly through the velocity vector v (see Fig. 2).
Stabilizing control laws for systems in such a hierarchical form can be designed
using the method of backstepping [9], consisting in two steps:



Hybrid Control for a Wheeled Mobile Robot 597

θ
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τ1

τ2

Fig. 1. Wheeled mobile robot

– Find the ideal velocity vector vr = v such that the kinematic system (2) be
asymptotically stable, then

– Enforce τ by using FLC such that

lim
t→ts

‖vr(t) − v(t)‖ = 0 (5)

be achieved in finite-time (ts < ∞).

In (5), it is considered that real mobile robots have actuated wheels, so the
control input is τ that must be designed to stabilize the system (1) without
destabilizing the system (2) by forcing v → vr in finite-time. Roughly speaking,
if (5) is satisfied in infinite time (ts = ∞) then vr will be different from v along
t < ∞, consequently the mobile robot will be neither positioned nor oriented
at the desired point. Figure 2 illustrates the feedback connection which involves
the fuzzy controller.

- -
vd

S(qd)
∫

Te(·) vr S(q)
∫v qτ

Fig. 2. Closed-loop system for the wheeled mobile robot
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3.1 Finding the Velocity Vector vr

In this subsection is summarized the procedure given in [6] and [10] to derive vr.
To begin with, suppose that the reference trajectory qd(t) satisfies

q̇d =

⎛

⎜⎝
cos θd 0
sin θd 0

0 1

⎞

⎟⎠

(
v1d

v2d

)
(6)

where θd(t) is the desired orientation, and v1d(t) and v2d(t) denote the linear
and angular desired velocities, respectively. In the robot’s local frame, the error
coordinates can be defined as

⎛

⎜⎝
e1

e2

e3

⎞

⎟⎠ =

⎛

⎜⎝
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞

⎟⎠

︸ ︷︷ ︸
Te(θ)

⎛

⎜⎝
xd − x

yd − y

θd − θ

⎞

⎟⎠ , (7)

where (xd(t), yd(t)) is the desired position in the world X −Y coordinate system,
e1 and e2 are the coordinates of the position error vector, and e3 is the orientation
error. The associated tracking error model

⎛

⎜⎝
ė1

ė2

ė3

⎞

⎟⎠ =

⎛

⎜⎝
v2e2 − v1 + vd1 cos e3

−v2e1 + vd1 sin e3

vd2 − v2

⎞

⎟⎠ (8)

which is in terms of the corresponding real and desired velocities is then obtained
by differentiating (7) with respect to time. Let us recall the result given in [6]
for the kinematic model stabilization (2) involving the tracking error model (7)
and desired velocities (vd ∈ IR2).

Theorem 1 ([6]). Let the tracking error equations (8) be driven by the control
law

vr1 = vd1 cos e3 + k1e1

vr2 = vd2 + vd1k2e2 + k3 sin e3

(9)

where k1, k2, and k3 are strictly positive constants. If v1 = vr1 and v2 = vr2 in
(2), then the origin of the closed-loop system [(8)-(9)] is asymptotically stable.

Genetic algorithms are adopted for tuning the kinematic control (9) where it is
required to find the gains ki (i = 1, 2, 3) such that the error e ∈ IR3 be minimized.
The minimization of the performance index



Hybrid Control for a Wheeled Mobile Robot 599

…. …. ….
1 8 9 16 17 24

k1 k2 k3

Fig. 3. Binary chromosome for gain selection

I(e) =

√√√√ 1
n

n∑

i=1

(|e1(i)| + |e2(i)| + |e3(i)|) (10)

was considered to obtain an objective criterion in the selection of the gains ki

(i = 1, 2, 3).
The genetic algorithm was codified with a chromosome of 24 bits in total, eight

bits for each of the gains. Figure 3 shows the binary chromosome representa-
tion of the individuals in the population. Different experiments were performed,
changing the parameters of the genetic algorithm and the best results were ob-
tained by comparing the corresponding simulations. Changing the crossover rate
and number of points used did not affect the results. Also, changing the mutation
rate did not affect the optimal results. The advantage of using the genetic algo-
rithm to find the gains is that time-consuming manual search of these parameters
was avoided.

3.2 Velocity Fuzzy Control Synthesis

In this subsection is derived a fuzzy logic controller designed to force the real
velocities of the mobile robot (1)-(2) to match those required in equations (9)
of theorem 1 in order to satisfy the control objective (4). Toward this end,
the Mamdani Fuzzy model is adopted where the fuzzy rules are presented as
a mapping from the linear and angular velocity errors, named linguistic input
variables,

eν = vr1 − v1 (11)

eω = vr2 − v2 (12)

to the required torque (τ1, τ2), named linguistic output variables. The member-
ship functions, depicted in Fig. 4, are shaped like triangles and trapezoids with
three fuzzy partitions denoted as negative (N), zero (Z), and positive (P). The
nine fuzzy rules are:

R1 : if eν is Z and eω is Z then τ1 is Z and τ2 is Z,
R2 : if eν is Z and eω is P then τ1 is Z and τ2 is P,
R3 : if eν is Z and eω is N then τ1 is Z and τ2 is N,
R4 : if eν is P and eω is P then τ1 is P and τ2 is P,
R5 : if eν is P and eω is N then τ1 is P and τ2 is N,
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R6 : if eν is P and eω is Z then τ1 is P and τ2 is Z,
R7 : if eν is N and eω is N then τ1 is N and τ2 is N,
R8 : if eν is N and eω is P then τ1 is N and τ2 is P,
R9 : if eν is N and eω is Z then τ1 is N and τ2 is Z.

The Centroid of Area

zCOA =

∫
Z

μA(z)zdz∫
Z μA(z)dz

(13)

was used as the defuzzification method, where μA(z) is the aggregated output of
membership function, and

∫
denotes the union of (z, μ(z)) pairs. Figure 5 shows

the input-output curves.
It should be pointed out that a fuzzy logic system (FLS) described using at

least one type-2 fuzzy set is called a type-2 FLS. Type-1 FLSs are unable to
directly handle rule uncertainties, because they use type-1 fuzzy sets that are
certain. On the other hand, type-2 FLSs, are very useful in circumstances where
it is difficult to determine an exact, and measurement uncertainties [15]. It is
known that type-2 fuzzy set let us to model and to minimize the effects of un-
certainties in rule-based FLS. Unfortunately, type-2 fuzzy sets are more difficult
to use and understand that type-1 fuzzy sets; hence, their use is not widespread
yet. Similar to a type-1 FLS, a type-2 FLS includes type-2 fuzzyfier, rule-base,
inference engine and substitutes the defuzzifier by the output processor. The
output processor includes a type-reducer and a type-2 defuzzyfier ; it generates
a type-1 fuzzy set output (from the type reducer) or a crisp number (from the
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Fig. 4. a) Fuzzy membership functions of the input variables (eν , eω), and b) fuzzy
membership functions of output variables (τ1, τ2)
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Fig. 5. Graphs of the input-output surfaces

defuzzyfier). A type-2 FLS is again characterized by if-then rules, but its an-
tecedent of consequent sets are now type-2. Type-2 FLSs, can be used when the
circumstances are too uncertain to determine exact membership grades.

4 Simulation Results

In this section, we evaluate, through computer simulation performed in mat-

lab
� and simulink

�, the ability of the proposed controller to stabilize the
unicycle mobile robot, defined by (1), (2). The following matrix values

M(q) =
[

0.3749 −0.0202
−0.0202 0.3739

]
, C(q, q̇) =

[
0 0.1350θ̇

−0.1350θ̇ 0

]
, D =

[
10 0
0 10

]

were taken from [5]. In the simulations, the trajectory

vd(t) =
{

vd1(t) = 0.25 − 0.25 cos(2πt
5 )

vd2(t) = 0 (14)

was chosen in terms of its corresponding desired linear vd1 and angular velocities
vd2, subject to the initial conditions q(0) = (0.1, 0.1, 0)T and v(0) = 0 ∈ IR2.
The gains ki (i = 1, 2, 3) of the kinematic model (9) were tuned by using genetic
algorithm approach resulting in k1 = 43, k2 = 493, and k3 = 195.

Figure 6 shows the posture errors, X − Y path, velocity errors, and input
torques for the closed-loop system for the FLC presented in Section 3 under a
periodic disturbance torque defined as

pi(t) = 10 cos(t) i = 1, 2.

It should be noted that the horizontal and vertical displacements are brought
to zero in 0.5 s and 1.0 s, respectively, while the orientation converge at t = 1.2
s. The controller brings the velocity errors to zero at ts = 0.25 s. Figure 6
also demonstrates the fast switching of the input control. Clearly, the proposed
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Fig. 6. Stabilization of the perturbed mobile robot

controller achieves regulation of the velocity errors in finite-time thus satisfying
the control objective while the position and orientation errors remain stable, in
spite of the external disturbances.

5 Conclusions

This paper addressed the problem of tracking control around a desired posi-
tion and orientation, taking into account the dynamics of the wheeled mobile
robots. The proposed solution is based on the backstepping approach, with an
internal loop governed by a Mamdani-based fuzzy logic controller (FLC). In par-
ticular, attention have been focused in the Type-2 FLC design forcing the real
velocities towards the values required to achieve the control objective while the
disturbances forces were attenuated. Two inputs (the linear and angular velocity
errors) and two outputs (the torques) were used to create nine if-then fuzzy
rules, resulting in minimal software complexity. Genetic algorithm were used for
tuning the kinematic control thus minimizing the tracking error. We pointed out
that FLC does not require information of the parameters of the Euler-Lagrange
equation (masses, inertias, damping, etc.), thus avoiding an extra work on its
identification. Capabilities of the derived type-2 fuzzy logic controller are il-
lustrated by simulations. A comparative study of the proposed approach with
type-1 fuzzy logic controller has been given in [1].
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Abstract. The combination of Soft Computing techniques allows the
improvement of intelligent systems with different hybrid approaches. In
this work we consider two parts of a Modular Neural Network for image
recognition, where a Type-2 Fuzzy Inference System (FIS 2) makes a
great difference. The first FIS 2 is used for feature extraction in training
data, and the second one to find the ideal parameters for the integration
method of the modular neural network. Once again Fuzzy Logic is shown
to be a tool that can help improve the results of a neural system, when
facilitating the representation of the human perception.

1 Methods for Image Recognition

At the moment, many methods for image recognition are available. But most
of them include a phase of feature extraction or another type of preprocessing
closely related to the type of image to recognize[1][2][3][4][5][6]. The method
proposed in this work can be applied to any type of images, because the prepro-
cessing phase does not need specific data about the type of image[7][8][9]. Even
if the method was not designed only for face recognition, we have made the tests
with the ORL face database [10] composed of 400 images of size 112x92. There
are 40 persons, with 10 images of each person. The images are taken at differ-
ent times, lighting and facial expressions. The faces are in up-right position of
frontal view, with slight left-right rotation. To explain the proposed steps of the
method, we need to separate it them in two phases: the training phase in Fig.1
and the recognition phase in Fig.2.

2 Type-2 Fuzzy Inference System as Edges Detector

In previous work we presented an efficient Fuzzy Inference System for edges
detection, in order to use the output image like input data for modular neural
networks [11]. In the proposed technique, it is necessary to apply Sobel opera-
tors to the original images, and then use a Type-2 Fuzzy Inference System to

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 604–612, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Steps in Training Phase

Fig. 2. Steps in Recognition Phase

generate the vector of edges that would serve as input data in a neural network.
Type-2 Fuzzy Logic enables us to handle uncertainties in decision making and
recognition in a more convenient way and for this reason was proposed [12][13].
For the Type-2 Fuzzy Inference System, 3 inputs are required, 2 of them are
the gradients with respect to x-axis and y-axis, calculated with (1) and y-axis,
calculated with (2), which we call DH and DV respectively. The Sobel edges
detector uses a pair of 3x3 convolution masks, one estimating the gradient in the
x-direction (columns) and the other estimating the gradient in the y-direction
(rows).

Sobelx =

⎡

⎣
−1 0 1
−2 0 2
−1 0 1

⎤

⎦ (1)

Sobely =

⎡

⎣
1 2 1
0 0 0

−1 −2 −1

⎤

⎦ (2)

where Sobelx y Sobely are the Sobel Operators throughout x-axis and y-axis.
If we define I as the source image, gx and gy are two images, which at each
point contain the horizontal and vertical derivative approximations, the latter
are computed as (3) and (4).

gx =
3∑

i=1

3∑

j=1

(Sobelx,i,j) ∗ Ir+i−2,c+j−2 (3)

gy =
3∑

i=1

3∑

j=1

(Sobely,i,j) ∗ Ir+i−2,c+j−2 (4)
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where gx and gy are the gradients along axis-x and axis-y, and * represents the
convolution operator. The other input is a filter that calculates when applying
a mask by convolution to the original image. The low-pass filter hMF of (5)
allow us to detect image pixels belonging to regions of the input were the mean
gray level is lower. These regions are proportionally affected more by noise, but
we suppose it is uniformly distributed over the whole image. The goal here is to
design a system, which makes it easier to include edges in low contrast regions,
but which does not favor false edges by effect of noise[14].

hMF =
1
25

∗

⎡

⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤

⎥⎥⎥⎥⎦
(5)

The inference rules and membership function parameters allow us to calculate a
gray value between -4.5 and 1.5 for each pixel, as shown in Fig.3, where the most
negative values corresponds to the dark tone in the edges of the image. Then if
we see the rules, only when the increment value of the inputs DH and DV are
low the output is HIGH or clear (the background), in the rest of rules the output
is LOW or dark (the edges). The complete set of fuzzy rules is given as follows [15]:

1. If (DH is LOW) and (DV is LOW) then (EDGES is HIGH) (1)
2. If (DH is MEDIUM) and (DV is MEDIUM) then (EDGES is LOW) (1)
3. If (DH is HIGH) and (DV is HIGH) then (EDGES is LOW) (1)
4. If (M is LOW) and (DV is MEDIUM) then (EDGES is LOW) (1)
5. If (M is LOW) and (DH is MEDIUM) then (EDGES is LOW) (1)

−200 0 200 400
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0.5

1 LOW MEDIUM HIGH

M

−200 0 200 400 600
0

0.5

1 LOW MEDIUMHIGH

DH
−200 0 200 400 600

0

0.5
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DV

−6 −4 −2 0 2
0

0.5

1 LOW HIGH

EDGES

Fig. 3. Membership Functions for the Type-2 FIS Edges Detector

Then the inputs for Type-2 FIS are: DH = gx, DV = gy, M = hMF ∗ I,
where ∗ is the convolution operator, and the output is a column vector contains
the values of the image edges, and we can represent that in graphics shown
in Fig.4. The Edges Image is smaller than the original because the result of
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Fig. 4. Inputs and output in the Type-2 FIS for Edges Detection

the convolution operation is a central matrix where the convolution has a value.
Then in our example, each image with dimension 112x92 was reduced to 108x88.

The edges detector allow us to ignore the background color. We can see in this
database of faces, different tones present for the same or another person. Then we
eliminate a possible influence of a bad classificationby the neural network,without
losing detail in the image. Another advantage of edges detector is that the values
can be normalized to a homogenous value range, independently the light, contrast
or background tone in each image. In the examples in Fig.5, all the edges images
have a minimum value of -3.8 and a maximum value of 0.84. In particular for neural
network training, we find these values to make the training faster: the mean of the
values is near 0 and the standard deviation is near 1 for all the images.

Fig. 5. Examples of Edges Detection with the Type-2 FIS method

3 The Modular Structure

The design of the Modular Neuronal Network consists of 3 monolithic feedfor-
ward neural networks [16], each one trained with a supervised method with the
first 7 samples of the 40 images. Then the edges vector column was accumulated
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Fig. 6. Input: 7 samples for each person

Fig. 7. Target: 7 identity matrix with dimension 40, for each sample

until the number of samples to build the input matrix for the neural networks as
it is in Fig.6. Once the complete matrix of images was divided in 3 parts, each
module was trained with the corresponding part, with some rows of overlapping.

The target to the supervised training method consist of one identity matrix for
each sample, building one matrix with dimensions 40x(40 ∗ numberofsamples),
as shown in Fig.7.

Each Monolithic Neural Network [17] has the same structure and was trained
under the same conditions, like we can see in the next code segment:

layer1=200; layer2=200; layer3=number_of_subjects;
net=newff(minmax(p),[layer1,layer2,layer3],
{’tansig’,’tansig’,’logsig’},’traingdx’);
net.trainParam.goal=1e-5;
net.trainParam.epochs=1000;

The average number of epochs to meet the goal in each module was 240, and
the time for training was 160 seconds.

4 Simulation Results

A program was developed in Matlab that simulates each module with the 400
images of the ORL database, building a matrix with the results of the simulation
of each module, as it is shown in Fig.8. These matrices are stored in the file
”mod.mat” to be analyzed later for the combination of results.

We can observe that in the columns corresponding to the training data, the
position with a value near one corresponds the image selected correctly. However
in the columns that correspond to the test data this doesn’t always happens,
reason why it is very important to have a good combination method to be able
to recognize more images.



Type-2 Fuzzy Logic for Improving Modular Neural Networks 609

Fig. 8. Scheme of the simulation matrices of the 3 modules

4.1 Type-2 Fuzzy Inference System to Determine Fuzzy Densities

According to exhaustive tests made in the simulation matrices, we know that
recognition of the images that were used for the training of the neural networks is
of 100%. Therefore the interest is focused on the recognition of the samples that
do not belong to the training set, is to say samples 8,9 and 10. The parameters
that will be inferred with the Type-2 Fuzzy Inference System are the Fuzzy
Densities for the Sugeno Fuzzy Integral, a value between 0 and 1 for each module,
which determines the rate for each module. The parameter lambda, according to
the theory of fuzzy measures depends on the values of the fuzzy densities, and
is calculated by searching for the roots of a polynomial [18].

4.2 Inputs and Outputs for the Type-2 Fuzzy Inference System

After the simulation of an image in the Neural Network, the simulation value
is the only known parameter to make a decision, then to determine the fuzzy
density for each module this is the unique available information. For this reason
we analyze the values in many simulations in the matrix and decide that each
input to the Type-2 FIS corresponds to the maximum value of each column
corresponding to the simulation of each module for each of the 400 images. The
process to recognize each one of the images is shown in Fig.9.

Each output corresponds to one fuzzy density, to be applied for each module to
perform the fusion of results later with the Fuzzy Sugeno Integral approach. The
inference rules find fuzzy densities near 1whendemaximumvalue in the simulation
is between 0.5 and 1, and near 0 when the maximum value in the simulation is near
0. The fuzzy rules are shown below and membership functions in Fig.10 [15].
1. If (max1 is LOW) then (d1 is LOW) (1)
2. If (max2 is LOW) then (d2 is LOW) (1)
3. If (max3 is LOW) then (d3 is LOW) (1)
4. If (max1 is MEDIUM) then (d1 is HIGH) (1)
5. If (max2 is MEDIUM) then (d2 is HIGH) (1)
6. If (max3 is MEDIUM) then (d3 is HIGH) (1)
7. If (max1 is HIGH) then (d1 is HIGH) (1)
8. If (max2 is HIGH) then (d2 is HIGH) (1)
9. If (max3 is HIGH) then (d3 is HIGH) (1)
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Fig. 9. Phases of the Hybrid Type-2 FIS/Modular Neural Network pattern recognition
method
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Fig. 10. Membership functions for the Type-2 FIS to find fuzzy densities

Although the rules are very simple, they allows to model the fuzziness in evalu-
ating the modules when the simulation results don’t reach the maximum value 1.
However some of the images don’t reach a sufficient value in the simulation of the
three modules, in these cases, there are not enough information to select an image
in the phase of combination of the modules, and the image is wrongly selected.

4.3 Results

In order to measure in an objective form the final results, we developed a method
of random permutation, which rearranges the samples of each person before the
training. Once a permutation is made, the modular neural networks are trained
and combined four times to obtain the sufficient information to validate the
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Table 1. Summary of the simulation results with the hybrid approach

Permutation Train 1 Train 2 Train 3 Train 4 Average Maximum
1 92.75 % 95.00 % 92.20 % 93.25 % 93.30 % 95.00 %

2 96.50 % 95.25 % 94.25 % 95.50 % 95.37 % 96.50 %

3 91.50 % 92.00 % 93.75 % 95.25 % 93.12 % 95.25 %

4 94.50 % 94.50 % 93.25 % 94.00 % 94.06 % 94.50 %

5 93.75 % 93.50 % 94.00 % 96.00 % 94.31 % 96.00 %

94.04 % 96.50 %

results. We show in Table 1 the summary of simulation results for each of the
modules and the average and maximum results of the modular network (after
fusion or combination of the results).

5 Conclusions

We have shown in this paper that the combination of Soft Computing techniques
allows the improvement of intelligent systems with different hybrid approaches.
In this work we considered two parts of a Modular Neural Network for image
recognition, where a Type-2 Fuzzy Inference System (FIS 2) help us improves
the performance results in image recognition. The first FIS 2 was used for feature
extraction in training data, and the second one to find the ideal parameters for
the integration method of the modular neural network. Once again Fuzzy Logic
is shown to be a tool that can help improve the results of a neural system, when
facilitating the representation of the human perception. In this case, the hybrid
fuzzy neural approach can be considered a good alternative for improving the
performance of the modular neural model.
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Abstract. The evaluation is a process that analyzes elements to achieve
different objectives such as quality inspection, design, marketing ex-
ploitation and other fields in industrial companies. In many of these
fields the items, products, designs, etc., are evaluated according to the
knowledge acquired via human senses (sight, taste, touch, smell and hear-
ing), in such cases, the process is called Sensory Evaluation. In this type
of evaluation process, an important problem arises as it is the modelling
and management of uncertain knowledge, because the information ac-
quired by our senses throughout human perceptions involves uncertainty,
vagueness and imprecision.

The sensory evaluation of Olive oil plays a relevant role for the qual-
ity and properties of the commercialized product. In this contribution,
we shall present a new evaluation model for Olive oil sensory evaluation
based on a decision analysis scheme that will use the Fuzzy Linguistic
Approach to facilitate the modelling and managing of the uncertainty
and vagueness of the information acquired through the human percep-
tions in the sensory evaluation process.

Keywords: Decision Analysis, Sensory Evaluation, Linguistic variables.

1 Introduction

The evaluation is a complex cognitive process that involves different mecha-
nisms in which it is necessary to define the elements to evaluate, fix the eval-
uation framework, gather the information and obtain an evaluation assessment
by means of an evaluation process. The aim of any evaluation process is to ob-
tain information about the worth of an item (product, service, material, etc.),
a complete description about different aspects, indicators, criteria in order to
improve it or to compare with other items to know which ones are the best. The
information gathered in this kind of processes is usually provided by a group of
individuals, called panel of experts, where each expert expresses their opinions
about the item according to their knowledge and their own perceptions.

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 615–624, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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This contribution is focused on Sensory Evaluation processes [5,12,13] that
is an evaluation discipline whose information, provided by the panel of experts,
is perceived by the human senses of sight, smell, taste, touch and hearing. A
suitable mathematical formulation is not easy in this type of problems because
human perceptions are subjective and not objective, therefore the assessments
provided by the individuals are vague and uncertain. In such a case, linguistic
descriptors are direct provided by the experts to express their knowledge about
the evaluated element. The Fuzzy Linguistic Approach [15] provides a systematic
way to represent linguistic variables in an evaluation procedure.

In decision theory before making a decision is carried out a decision analysis
approach that allows people to make decisions more consistently, i.e., it helps
people to deal with difficult decisions. The decision analysis is a suitable approach
for evaluation processes because it helps to analyze the alternatives, aspects,
indicators of the element/s under study that it is the objective of the evaluation
processes.

Nowadays, the quality of the olive oil plays a key role in its production and
final price. The evaluation of the quality of the olive oil is not an easy task
and is usually accomplished by olive oil Tasting Panel, which will evaluate, by
means of their perceptions acquired via their senses, the features that describe
the samples of olive oil. The aim of this contribution is to propose a linguistic
sensory evaluation model based on a decision analysis scheme that uses the Fuzzy
Linguistic Approach and the 2-tuple fuzzy representation model [6] to represent
the experts’ assessments.

This paper is structured as follows, in Section 2 we present and review in short
the necessary concepts and processes to develop the linguistic sensory evaluation.
In Section 3 we present our proposal of linguistic sensory evaluation model, and
in Section 4 we expound an application of this evaluation model. Finally, this
paper is concluded in Section 5.

2 Background

Our evaluation model is based on the scheme of the Decision Analysis that we
present in this section. Moreover,we shall make a brief review of the Fuzzy Linguis-
tic Approach and the Linguistic 2-tuple representation model that will be used to
facilitate the computation of the linguistic information in the evaluation process.

2.1 Decision Analysis Steps

The Decision Analysis is a discipline, which belongs to Decision Making Theory,
whose purpose is to help the decision makers to reach a consistent decision in
a decision making problem. Here, we model the evaluation process as a Multi-
Expert Decision Making (MEDM) problem. A classical decision analysis scheme
is composed by the following phases (see figure 1):

– Identify decision and objectives.
– Identify alternatives.
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– Model: For example, a decision problem is modelled as a MEDM [7] model
that deals with a type of information.

– Gathering information: decision makers provide their information.
– Rating alternatives: This phase is also known as ”aggregation phase” [11]

due to the fact in this phase, the individual preferences are aggregated in
order to obtain a collective value for each alternative.

– Choosing best alternatives: or ”exploitation phase” [11] selects the solution
from the set of alternatives applying a choice degree [1,10] to the collective
values computed in the previous phase.

– Sensitive analysis: in this step the information obtained is analyzed in order
to know if it is good enough to make a decision, or otherwise, to go back to
initial phases to improve the quantity or/and the quality of the information
obtained.

– Make a decision.

Identify Decision
and Objectives

Identify
alternatives

Model
Gathering
information

Rating
alternatives

Choosing best
alternatives

Sensitive
analysis

If further analysis
needed?

Make a
decision

No

Fig. 1. Decision Analysis Scheme

The application of the decision analysis to an evaluation process does not
imply the eight phases. The essential phases regarding an evaluation problem
are dashed in a rectangle of the Fig. 1.

2.2 Fuzzy Linguistic Approach

Although we usually work in quantitative settings where the information is ex-
pressed by numerical values, sometimes we shall need to describe activities of the
real world that cannot be assessed in a quantitative form, but rather in a qualita-
tive one, i.e., with vague or imprecise knowledge. In that case, a better approach
may be to use linguistic assessments instead of numerical values. The variables
which participate in these problems are assessed by means of linguistic terms [15].
The fuzzy linguistic approach represents qualitative aspects as linguistic values
by means of linguistic variables [15]. We have to choose the appropriate linguis-
tic descriptors for the term set and their semantics. In order to accomplish this
objective, an important aspect to analyze is the “granularity of uncertainty”, i.e.,
the level of discrimination among different counts of uncertainty. The universe of
the discourse over which the term set is defined can be arbitrary, in this paper we
shall use linguistic term sets in the interval [0, 1]. In [2] the use of term sets with
an odd cardinal was studied, representing the mid term by an assessment of “ap-
proximately 0.5”, with the rest of the terms being placed symmetrically around it
and with typical values of cardinality, such as 7 or 9.
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One possibility of generating the linguistic term set consists of directly sup-
plying the term set by considering all terms distributed on a scale on which total
order is defined [14]. For example, a set of seven terms S, could be given as:

S ={s0 : none, s1 : verylow , s2 : low , s3 : medium, s4 : high, s5 : veryhigh , s6 : perfect}

In these cases, it is required that in the linguistic term set there exist:

1. A negation operator Neg(si) = sj such that j = g-i (g+1 is the cardinality).
2. A max operator: max(si, sj) = si if si ≥ sj.
3. A min operator: min(si, sj) = si if si ≤ sj

The semantics of the terms is given by fuzzy numbers. A computationally
efficient way to characterize a fuzzy number is to use a representation based on
parameters of its membership function [2]. The linguistic assessments given by
the users are just approximate ones, some authors consider that linear trape-
zoidal membership functions are good enough to capture the vagueness of those
linguistic assessments. The parametric representation is achieved by the 4-tuple
(a, b, d, c), where b and d indicate the interval in which the membership value
is 1, with a and c indicating the left and right limits of the definition domain
of the trapezoidal membership function [2]. A particular case of this type of
representation are the linguistic assessments whose membership functions are
triangular, i.e., b = d, then we represent this type of membership functions by a
3-tuple (a, b, c). An example may be the following:

P = (.83, 1, 1) V H = (.67, .83, 1) H = (.5, .67, .83) M = (.33, .5, .67)
L = (.17, .33, .5) V L = (0, .17, .33) N = (0, 0, .17),

The use of linguistic variables implies processes of computing with words
such as their fusion, aggregation, comparison, etc. To perform these computa-
tions there are different models in the literature, such as, the semantic one [3],
the symbolic one [4] or the 2-tuple representation model [6]. In the following
subsection we shall review the 2-tuple model due to the fact, that it will be the
computational model used in our evaluation proposal.

2.3 The 2-Tuple Fuzzy Linguistic Representation Model

This model has been presented in [6] and has showed itself as useful to deal with
evaluation problems similar to the one we are facing in this paper [9].

This linguistic model takes as basis the symbolic aggregation model [4] and
in addition defines the concept of Symbolic Translation and uses it to represent
the linguistic information by means of a pair of values called linguistic 2-tuple,
(s, α), where s is a linguistic term and α is a numeric value representing the
symbolic translation.

Definition 1. Let β be the result of an aggregation of the indexes of a set
of labels assessed in a linguistic term set S = {s0, ..., sg}, i.e., the result of a
symbolic aggregation operation. β ∈ [0, g], being g + 1 the cardinality of S. Let
i = round(β) and α = β − i be two values, such that, i ∈ [0, g] and α ∈ [−.5, .5)
then α is called a Symbolic Translation.
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Definition 2 [6]. Let S = {s0, ..., sg} be a linguistic term set and β ∈ [0, g] a
value supporting the result of a symbolic aggregation operation, then the 2-tuple
that expresses the equivalent information to β is obtained with the following
function:

Δ : [0, g] −→ S × [−0.5, 0.5)

Δ(β) =
{

si i = round(β)
α = β − i α ∈ [−.5, .5) (1)

where round is the usual round operation, si has the closest index label to ”β”
and ”α” is the value of the symbolic translation.

Proposition 1 [6]. Let S = {s0, ..., sg} be a linguistic term set and (si, α)
be a 2-tuple. There is a Δ−1 function, such that, from a 2-tuple it returns its
equivalent numerical value β ∈ [0, g] ⊂ R.

Proof. It is trivial, we consider the following function:

Δ−1 : S × [−.5, .5) −→ [0, g] (2)

Δ−1(si, α) = i + α = β

Remark 1: From definitions 2 and 3 and from proposition 1, it is obvious that
the conversion of a linguistic term into a linguistic 2-tuple consist of adding a
value 0 as symbolic translation: si ∈ S =⇒ (si, 0)

This representation model has associated a computational model that was
presented in [6].

3 Linguistic Sensory Evaluation Model Based on Decision
Analysis

We must keep in mind that the information provided by the experts in sensory
evaluation has been perceived by the senses of sight, touch, smell, taste and hear-
ing, and therefore, those requirements are subjective and involves uncertainty,
vagueness and imprecision.

Our aim is to propose a Sensory Evaluation model based on the linguistic
decision analysis whose mathematical formalism will be the linguistic 2-tuple
model in order to obtain accurate and reliable evaluation results. This proposal
consists of the following evaluation phases that are graphically showed in Fig.2.

– Identify Evaluated Objects. This phase is problem-dependent and each prob-
lem identifies its objects of interest.

– Model: this phase defines the evaluation framework that establishes the eval-
uation context in which the information is assessed and the problem solved.

– Gathering information: the experts express their sensory knowledge about
the objects by means of linguistic assessments.

– Rating objects: we propose to use of the 2-tuple computational model to
obtain a rate for every object.
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– Evaluation results: it consists of analyzing the results obtained in the previ-
ous phase with the purpose of achieving the evaluation process. These results
can be used in different ways, such as:

• To learn which element is better considered by the experts.
• To know which features are better in the evaluated element.
• To identify which aspects of an element should be improve in order to

enhance its quality.
• Etc.

Identify Evaluated Model (Evaluation Framework):

Semantics
Descriptors

Problem Structure

Linguistic Domain

Linguistic Preferences

Computing Model
2−tuple

Evaluation
ResultsInformation

Gathering 

Objects

Rating Objects

Fig. 2. A Linguistic Sensory Evaluation Scheme based on decision analysis

In the following subsections we shall present in further detail the main phases
of our sensory evaluation model.

3.1 Model

This phase models the evaluation problem defining its evaluation framework,
such that, the problem structure is defined and the linguistic descriptors and
semantics that will be used by the experts to provide the information about the
sensory features of the evaluated objects are chosen.

First of all, we must analyze which sensory features will be evaluated that
depend on the evaluated object and which linguistic term set will be used to
assess those features. The linguistic term set will be chosen according to:

1. The accuracy of the evaluations: since our senses could recognize and assess
some features better than others, the granularity of the linguistic term set
must be chosen according to the accuracy of our perceptions.

2. The experience of the experts: Some of the senses need to be trained. There-
fore, the granularity of the linguistic term set used by an expert should be
also chosen according to the expert’s experience.

In this contribution we deal with an evaluation framework such that the dif-
ferent experts provide their sensory perceptions about item features by means of
a linguistic label assessed in a fixed term set according to the above conditions.

3.2 Gathering Information

Due to the fact that the linguistic decision analysis we propose is based on
the MEDM problems. The experts provide their knowledge by means of utility
vectors that contain a linguistic assessment for each evaluated feature.



A Fuzzy Model for Olive Oil Sensory Evaluation 621

{e1, ..., en}, group of experts
O = {o1, ...., om}, set of evaluated objects
F = {f1, ...., fh}, set of evaluated features for each object
S = {s0, ...., sg}, Linguistic term set
ei provides his/her preferences in S by means of a utility vector:

Ui = {ui
11, ...., u

i
1h, ui

21, ..., u
i
2h, ..., ui

m1, ..., u
i
mh}

where ui
jk ∈ S is the assessment provided to the feature fk of the object oj by

the expert ei. Consequently in the gathering process every expert ei will provide
his/her utility vector Ui expressed by linguistic labels in the linguistic term set S
fixed in the evaluation framework.

3.3 Rating Objects

In this phase the linguistic utility vectors provided by the experts will be used
in processes of Computing with Words in order to rate each evaluated object.
To do so, the information gathered will be aggregated.

This proposal will use the linguistic 2-tuple computational model, to operate
with the uncertain information provided by the experts it must be remarked
that several aggregation operators have been introduced for this computational
model [6]. The rating process of this proposal consists of two steps:

1. Computing collective evaluations for each feature: in the gathering process
each expert, ei provides his/her preferences for every feature fk of the ob-
ject oj by means of a utility assessment , ui

jk. Then, the rating process in
first place will compute a collective value for each feature, ujk, using an
aggregation operator, AG, on the assessments provided by the experts:

ujk = AG1(u1
jk, ...., un

jk) (3)

2. Computing a collective evaluation for each object : the final aim of the rating
process is to obtain a global evaluation, uj , of each evaluated object accord-
ing to all the experts and features that take part in the evaluation process.
To do so, this process will aggregate the collective features values ujk for
each object, oj :

uj = AG2(uj1, ...., ujh) (4)

The aggregation operators, AG1 and AG2, will depend on each evaluation
problem taking into account if all experts or features are equally important
or there are experts or features more important than the others.
The collective evaluation obtained will be the score obtained by the evaluated
object in the sensory evaluation problem.
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Table 1. Olive Oil Tasting Panel’s utility vectors for the feature sweetness

e1 e2 e3 e4 e5 e6 e7 e8

o1 s4 s2 s5 s3 s4 s5 s2 s7

o2 s4 s3 s4 s2 s2 s4 s5 s3

o3 s3 s3 s5 s4 s3 s2 s4 s2

o4 s5 s4 s4 s5 s6 s3 s7 s3

4 Evaluating Sweetness of Olive Oil

The quality of the olive oil plays a key role in its production and final price.
This quality depends on several aspects such as the condition of olives when
enter the factory, the extraction processes and their sedimentation, or their
storage.

The evaluation of the quality of the olive oil is usually accomplished by a
testing panel that evaluate the features that describe the samples of olive oil, by
means of their perceptions acquired via their senses.

The combination of smell and taste is known as flavor and defines the
organoleptic properties of the olive oil. These properties, with acidity grade
of the olive oil, are essential to obtain their quality. While it is easy to ob-
tain the acidity grade of a sample of olive oil by means of chemical processes,
the organoleptic properties need to be evaluated by a Tasting Panel that uses
their perceptions to catch different aspects of its flavor such as fruity, bitter,
pungent, etc.

Here, we shall show a simple example of how to evaluate four samples of olive
oil, in order to find out the values of the organoleptic property of sweetness.
These values can be used in order to decide which batches should be mixed to
obtain a given flavor.

4.1 Evaluation Framework

An Olive oil Tasting Panel of eight connoisseurs E = {e1, ..., e8} will evaluate the
sensory feature F = {sweetness} of four samples of Olive Oil O = {o1, ...., o4}.
To do so, a linguistic term set S of nine terms is chosen according to conditions
presented in subsection 3.1 to assess the sweetness. Its syntax and semantics are
the following ones:

s8 :V ery sweet : (.88, 1, 1) s7 : Rather sweet : (.75, .88, 1) s6 : Sweet : (.62, .75, .88)
s5 :A bit sweet : (.5, .62, .75) s4 : Average : (.38, .5, .62) s3 :A bit bitter : (.25, .38, .5)
s2 :Bitter : (.12, .25, .38) s1 : Rather bitter : (0, .12, .25) s0 : Very bitter : (0, 0, .12)

4.2 Gathering Process

The preferences of our Tasting Panel for sweetness are showed in Table 1.
Now, we shall transform their preferences into 2-tuple representation model

(Table 2) to manage easily this information.
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Table 2. Olive Oil Tasting Panel’s utility vectors for the feature sweetness over the
2-tuple representation model

e1 e2 e3 e4 e5 e6 e7 e8

o1 (s3, 0) (s3, 0) (s6, 0) (s4, 0) (s6, 0) (s6, 0) (s4, 0) (s7, 0)
o2 (s4, 0) (s3, 0) (s4, 0) (s2, 0) (s2, 0) (s4, 0) (s5, 0) (s3, 0)
o3 (s3, 0) (s3, 0) (s5, 0) (s4, 0) (s3, 0) (s3, 0) (s4, 0) (s2, 0)
o4 (s4, 0) (s3, 0) (s4, 0) (s4, 0) (s5, 0) (s3, 0) (s7, 0) (s3, 0)

4.3 Rating Objects

In this phase we shall carry out the following steps:

1. Computing collective values for each feature: In order to simplify the exam-
ple we have considered that all the experts are equally important. Therefore,
we have used the arithmetic mean for 2-tuples [6] for aggregating the infor-
mation provided by the experts (Table 3) obtaining a collective value for
sweetness for each sample according to all the connoisseurs:

Table 3. Olive Oil Tasting Panel’s collective utility vector for the sweetness

o1 o2 o3 o4

(s5 = A b sw, −.125) (s3 = A b bit, .375) (s3 = A b bit, .375) (s4 = Av, .25)

2. Computing a collective evaluation for each object: In this example the ob-
jective is to obtain the evaluation of the organoleptic feature. So it is not
necessary to obtain a global evaluation of each olive batch according to the
property analyzed. However, it is important to point out that if it would be
necessary to obtain this global evaluation value we should use an aggregation
method able to manage linguistic information assessed in different linguistic
term sets as the methods showed in [7,8].

4.4 Evaluation Results

The purpose of this evaluation process was to find out the values of different sam-
ples of olive oil regarding their sweetness property . If we analyze the aforesaid
results (Table 3), the sample o1 obtains the highest score for it.

5 Concluding Remarks

When we face a sensory evaluation problem we must realize that we are going to
work with knowledge that has been acquired via the human senses sight, taste,
touch, smell and hearing. This knowledge is better expressed using words instead
of numbers.
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In this contribution, we have presented a sensory evaluation model based on
the linguistic decision analysis and the 2-tuple computational model.

Finally we have applied this model to a specific sensory evaluation problem,
the evaluation of olive oil.
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Abstract. We propose to adapt an interval-based index structure, Rela-
tional Interval trees, to support the process of determining the structure
of an unknown chemical compound. Important information for retrieving
relevant substructures that make up a compound can only be described
in an imprecise way, resulting in interval-based values specifying chemi-
cal shifts. The access method was implemented on top of a commercial
database system and evaluated experimentally. The results of these ex-
periments show that Relational Interval trees are an efficient way of
indexing data needed for structure elucidation.

1 Introduction

Elucidation is the process of determining the chemical structure of an unknown
substance. This plays an important role in chemistry and biochemistry (e.g.
in such areas as pharmaceutical research, development of technical synthesis,
or quality control), since many characteristics of a compound can be identi-
fied by analyzing its structure. Consequently, many different systems have been
developed for structure elucidation: NMRAnalyst [2], SIGNATURE [1], and
CHEMICS [3] just to name a few. We are going to have a closer look at Spec-
Solv, developed by Will et al. [9], which is based on Nuclear Magnetic Resonance
(NMR) spectroscopy (more details on this later). One step in the elucidation pro-
cess of SpecSolv involves filtering a database of about 700,000 identified substruc-
tures for possible candidates from which to construct the complete compound.
Substructures are matched with a compound by comparing the location of peaks
in spectrograms. Due to the nature of the NMR method, peaks in a compound
may be shifted when compared to the peaks of a substructure leading to an im-
precise description of the peak locations. Nevertheless, we are able to determine
limits of these shifts, thus describing intervals in which a compound’s peak must
lie to match with one of a substructure. We show how an interval-based index
structure devised for relational database management systems (RDBMSs), the
Relational Interval (RI) tree, can be adapted and employed for speeding up this
filtering step. A prototype was implemented on top of a commercial DBMS and
compared to the technique used by SpecSolv before.

The remainder of this paper is structured as follows. The following section
gives a brief introduction to NMR spectroscopy, while Section 3 formalizes the
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problem we are trying to solve. Section 4 briefly reviews the technique that is
currently used. In Section 5 we introduce RI-trees and show how they can be
adapted to indexing chemical data. The results of our experiments and their
interpretation can be found in Section 6. We conclude the paper with a short
summary and an outlook.

2 NMR Spectroscopy and SpecSolv

Atomic nuclei (e.g. those of 1H and 13C) resonate at a characteristic frequency
when exposed to a magnetic field. Depending on the bonds that an atom forms
with neighboring atoms in a compound, it resonates at slightly different fre-
quencies (this is called the chemical shift). During spectroscopy all the different
resonating frequencies of a compound are measured. The results of this measure-
ment can be plotted as peaks at certain frequencies (see Figure 1). These signals
or peaks can then be assigned to atoms or atom groups, gaining knowledge
about a compound’s structure. The intensity of a signal indicates the number of
certain groups that can be found in a molecule. (For an introduction to NMR
spectroscopy see [8].)

Fig. 1. NMR spectroscopy result

In the SpecSolv system the most important signals are those for single carbon
atoms (C) and groups consisting of a single carbon and a single/two/three hydro-
gen atoms (CH, CH2, and CH3, respectively). After obtaining the chemical shifts
of an (unknown) substance these are matched to those of known substructures
to determine possible building blocks for the unknown, investigated molecule.

Here we focus on filtering out substructures that cannot possibly be contained
in the investigated molecule. This filtering is very important: feeding all 700,000
substructures in the database into SpecSolv for a full structural analysis can eas-
ily result in a run time of several months for structure elucidation. The filtering
step speeds this up considerably; we turn an intractable problem into a feasible
one.
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3 Formalization of the Problem

The peak frequencies of the investigated molecule are stored in four multisets
(one for each CHx group): MC , MCH , MCH2 , and MCH3 , so the search for
matching substructures is done four times: a substructure is matched for each
CHx group. As already mentioned, the intensity of a peak indicates the number of
groups with a certain shift. Therefore certain frequencies may show up multiple
times. We denote the frequency of the k-th peak in the multiset MCHx by p

MCHx

k

with x ∈ {0, 1, 2, 3}.
For each substructure in the database we know the exact chemical formula and

the exact structure. The characteristics of a known substructure j in terms of the
CHx groups it contains are also described by four multisets: Sj

C , Sj
CH , Sj

CH2
, and

Sj
CH3

. Rather than peak data these multisets contain intervals which describe
the range of possible frequencies where peaks can appear for this substructure.
As already mentioned, depending on how a substructure is embedded into a

molecule, it can have different chemical shifts. I
Sj

CHx
m denotes the m-th interval

of the multiset Sj
CHx

(with x ∈ {0, 1, 2, 3}). Each interval in turn is described by

its lower bound l
Sj

CHx
m and its upper bound u

Sj
CHx

m .
Formally speaking, the filtering step boils down to a bipartite matching be-

tween the peaks of the investigated molecule and the intervals describing the

known substructures. An interval I
Sj

CHx
m matches a peak p

MCHx

k , denoted by

I
Sj

CHx
m

.= p
MCHx

k , if l
Sj

CHx
m ≤ p

MCHx

k ≤ u
Sj

CHx
m . A substructure j may be a candi-

date (may be contained in an unknown molecule), if

∀I
Sj

CHx
m ∈ Sj

CHx
: ∃p

MCHx

k ∈ MCHx : I
Sj

CHx
m

.= p
MCHx

k

In addition to this, no two intervals may be matched to the same peak, i.e.

∀I
Sj

CHx
m , I

Sj
CHx

n ∈ Sj
CHx

with m �= n : I
Sj

CHx
m

.= p
MCHx

k ∧ I
Sj

CHx
n

.= p
MCHx

l ⇒ k �= l

Only if both of the above conditions are satisfied for all CHx groups of a
substructure, then it is a candidate. Otherwise, this substructure cannot possibly
be found in the investigated molecule and is filtered out.

4 State of the Art

Implementing the bipartite matching as described in Section 3 directly on a
RDBMS in SQL is very awkward and slow. Database administrators at BASF,
where SpecSolv is being used, have come up with the following filtering step
before checking the bipartite matching after retrieving the relevant information
from the database.

In this filtering step the intervals of a substructure are described with the help
of a bit vector, each bit representing a fixed interval in the domain of frequency
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Table 1. Fixed intervals for bit vectors

Group Bit 1 Bit 2 Bit 3 Bit 4 Group Bit 1 Bit 2 Bit 3

C [0,60) [60,90) [90,186) [186,∞) CH2 [0,56) [56,90) [90,∞)
CH [0,63) [63,90) [90,145) [145,∞) CH3 [0,5) [5,45) [45,∞)

ranges. Table 1 gives an overview of the fixed intervals (the groups C and CH
use 4 bits, the groups CH2 and CH3 use 3 bits1)

Whenever an interval I
Sj

CHx
m intersects with one of the fixed intervals of group

CHx, the bit for this fixed interval will be set to 1. We proceed likewise for the
peak frequencies of the investigated molecule. The bits for all intervals in which
peaks can be found are set to 1. During querying the bit vector entries of all
substructures are scanned and if the bit vectors of the intervals form a subset of
the query molecule bit vectors (i.e. all bits in a substructure bit vector are also
set in the query bit vector), then we retrieve this entry for checking the bipartite
matching. The bit vector index described above is basically a signature file using
superimposed coding [7].

Although this technique speeds up the retrieval, we still have to scan through
all 700,000 entries and compare their bit vectors to the query bit vector. As we
will see later in the section on experimental evaluation, we can do better by
employing an index structure made specifically for interval-based data.

5 Relational Interval Trees

We are now going to present an alternative to the bit vector index: the relational
interval tree (or RI-tree) by Kriegel et al. [4]. It is based on the interval tree by
Edelsbrunner [6]. For better understandability we are first going to give a brief
introduction to interval trees, which are an efficient way of managing intervals
in main memory.

5.1 Interval Trees

An interval tree T consists of a primary and a secondary structure. The primary
structure divides up a (discrete) set of points, which w.l.o.g. we denote by Y =
{y1, y2, . . . , y2n−1}. Note that the set Y is totally ordered. T is a binary tree
with the following properties:

1. The root w of T has a discriminant d(w) = 2(n−1) and pointers to two lists
L(w) and R(w) that store the (left) lower bounds and (right) upper bounds,
respectively, of all intervals which contain d(w). The lists L and R make up
the secondary structure of the interval tree.

1 There are additional bits used for describing other chemical properties of the sub-
structures. However, they are unrelated to the bipartite matching, so we are not
going to look at them here.
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2. The left subtree of w contains all intervals whose upper bound is smaller
than d(w), while the right subtree contains all those whose lower bound is
greater than d(w). The left subtree is responsible for managing the subset
y1, y2, . . . , y2(n−1)−1 while the right subtree manages the other half y2(n−1)+1,
y2(n−1)+2, . . . , y2n−1. This continues recursively until a subtree manages only
a single point. Each node in a subtree also has a discriminant which splits
the managed subset in half.

3. Every node of the primary structure is either active or inactive. A node is
active if its secondary structure (the lists L and R) are non-empty or if its
subtree contains active nodes. Otherwise a node is inactive. We only store
information on active nodes in the data structure, as the primary structure of
the tree can be computed (the discriminants follow a very regular structure).

8
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1 3 5 7 9 11 13 15

L R

L

L

L

L

L

R

R

R

R

R

5
6
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2 4

1 3 9 11

1213

1515

Fig. 2. Example of an interval tree

Figure 2 shows an example of an interval tree for the set Y = {1, 2, . . . , 15} into
which the intervals [1,3], [2,4], [5,8], [6,14], [7,10], [9,11], [12,13], and [15,15] have
been inserted. The square boxes show active nodes, which have been labeled with
their discriminant (inactive nodes are represented by circles). The secondary lists
L and R are sorted (L ascending and R descending) for optimizing the search.
When sorting the lists, the corresponding ends of the intervals have to be linked
with each other so that they can be reconstructed.

Insertion of Intervals. In order to insert an interval [s, e], we have to find the
top-most node j whose discriminant is contained in the interval, i.e. s ≤ d(j) ≤ e.
We start the insertion procedure at the root w of the interval tree and work our
way downwards. For each node i we encounter we do the following:

1. Check if s ≤ d(i) ≤ e. If this is the case, we insert s into L(i) and e into R(i)
and we stop.
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2. If e < d(i), then choose the left subtree of i as new current node i. Go to 1.
3. If d(i) < s, then choose the right subtree of i as new current node i. Go to 1.

During the insertion all nodes, i.e. active and inactive nodes, are relevant.
An insertion may result in nodes changing from an inactive state to an active
one.

Deletion of Intervals. Deleting an interval is very simple: we just remove its
end points from the L and R lists of the node where it is stored. If the secondary
lists of a node are empty afterwards (and all its descendants are inactive), this
node changes from an active state to an inactive one. This may also result in
some of the ancestor nodes of this node changing from an active state to an
inactive one.

Searching for Intervals. Here we look at point queries (also called stabbing
queries), which are relevant for our application. This means, that we query with
a search value v ∈ Y , and we want to find all intervals which contain this value.
Basically, we traverse the tree from the root w until we find a node i for which
d(i) = v or until we reach an (active) leaf node.

Let i denote the current node; we start the search at the root node w:

1. If d(i) = v, then output all intervals in the lists L(i) and R(i) and stop the
search.

2. If v < d(i), then output all intervals stored at node i for which the lower
bound in L(i) is smaller than v. If i has an active left subtree, continue the
search there (go to 1.), otherwise stop the search.

3. If d(i) < v, then output all intervals stored at node i for which the upper
bound in R(i) is greater than v. If i has an active right subtree, continue the
search there (go to 1.), otherwise stop the search.

5.2 Adapting Interval Trees to an RDBMS

Now we are going to have a look at how to implement an interval tree in a
relational schema (see also [4]). Since the primary structure of a tree can be
computed, we only need to store active nodes in the RDBMS. Obviously we need
a relation in which to store the intervals, this is done via the relation Intervals
shown in Figure 3(a). This table contains the lower and upper bounds of an
interval, a key to identify the interval, and the number of the node where the
interval is stored. In addition to this we create two indexes on the tableIntervals:
Lindex and Rindex (see Figure 3(b)). These two indexes represent the secondary
structure of an interval tree and contain the L and R lists of all nodes.

Insertion and Deletion of Intervals. Before inserting an interval into the
database, we have to compute the number of the node where it should be stored.
Figure 4 shows the insertion algorithm (root is the number of the root node and
is equal to 2(n−1)). After computing the node number, an interval can be inserted
into the relation Intervals. For deleting an interval we simply delete it from the
relation Intervals.
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CREATE TABLE Intervals (
node integer,
id integer primary key,
lower integer,
upper integer);

(a)

CREATE INDEX Lindex
ON TABLE Intervals(node, lower);

CREATE INDEX Rindex
ON TABLE Intervals(node, upper);

(b)

Fig. 3. Relational schema for an interval tree

int findNode(int lower, int upper, int root)
int node = root;
for(step = node/2; step >= 1; step /=2) {

if(upper < node) { node -= step; }
else if (node < lower) { node += step;}
else break;

}
return node;

Fig. 4. Insertion algorithm

Searching for Intervals. When given a point query with the value v, instead
of scanning the L and R lists immediately (corresponding to Lindex and Rindex
in the relational schema), we traverse down the tree by computing the relevant
node numbers noting whether the L, R, or both lists have to be scanned. The
node numbers are inserted into two (transient) relations called leftNodes and
rightNodes, respectively. These two relations are then used during querying (see
Figure 5).

SELECT id
FROM leftNodes l, Intervals i, rightNodes r
WHERE (i.node = l.node AND i.upper >= v)
OR (i.node = r.node AND i.lower <= v);

Fig. 5. SQL query

5.3 Using RI-Trees to Index Molecules

We now need to integrate RI-trees into our querying schema for finding substruc-
tures of molecules. As there are four different types of intervals, depending on the
CHx group we look at, we allocate a table for each of these groups (see Figure 6(a)).
In addition to the interval id, we need an id identifying the substructure an inter-
val belongs to.2 Also, RI-trees are only suited for integers, while the intervals we
want to index are bounded by real numbers. Therefore we round the lower bounds
of each interval to the next smaller integer and the upper bounds to the next larger

2 As a substructure can have more than one interval, we have a composite key.



632 S. Helmer

integer. In doing so, we are on the safe side, i.e. we will not lose any qualifying inter-
vals (but may introduce some more false positives). The attribute noVal denotes
the number of intervals for a substructure. This is needed later during querying
to find out if all intervals have matched with a query peak.

CREATE TABLE CH_x (
node integer,
subid integer,
intid integer,
lower integer,
upper integer
noVal integer,
primary key
(subid,intid));

(a)

SELECT c.subid
FROM CH_x c, leftPeaks l, rightPeaks r
WHERE ((c.node = l.node AND c.upper >= l.v)

OR (c.node = r.node AND c.lower <= r.v))
AND n.subid = c.subid
GROUP BY c.subid
HAVING COUNT(*) >= c.noVal;

(b)

Fig. 6. Managing molecule substructures with RI-trees

We can check that each interval matches with at least one peak in SQL (see
Figure 6(b)). The relations leftPeaks and rightPeaks contain the relevant node
numbers when traversing down the tree and values for all the peaks of the query
molecule. The main problem with this SQL query is that we cannot guarantee
that all intervals match with different peaks. This is done outside of the SQL in
a C-program using a standard algorithm for determining bipartite matching [5].

6 Experimental Evaluation

The RI-tree index for the substructures was realized on top of an IBM DB2
UDB database system running on a Linux machine. The boundaries of the in-
tervals were rounded, the data was loaded into the tables, and the statistics were
updated by running the runstats command. We used seven different queries,
ranging from small to large molecules (containing from 4 to 43 peaks), to test
the index. Each query was formulated in three different ways: an SQL query us-
ing the indexes (and a C-program to do the bipartite matching), the bit vector
approach as described in Section 4 (with the bit vector comparison built into
a user-defined function), and a pure SQL query without indexes (that was not
able to do the actual bipartite matching) as a reference.

For each of the queries we investigated its runtime (in seconds) and its filtering
capabilities (in the number of substructures returned by the query). The results
for the run time can be found in Table 2(a), those for the answer set cardinality
can be found in Table 2(b).

Let us first turn to the runtime results. Except for one case (the query with
four peaks) the bit vector approach is the fastest. Basically it scans the whole
table comparing the bit vectors of the substructures with the query bit vector.
The comparison can be done using very fast bit vector operations. Furthermore,
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Table 2. Experimental results

Query # of peaks RI-tree bit vector pure SQL

1 4 390.0s 483.7s 2373.7s

2 14 1302.3s 703.1s 2634.7s

3 22 1558.1s 729.6s 2503.5.s

4 30 1886.7s 734.1s 2670.0s

5 33 2117.6s 745.0s 2858.3s

6 38 2394.9s 772.6s 3034.5s

7 43 2498.2s 781.7s 3651.0s

(a) Runtime

Query RI-tree bit vector pure SQL

1 416 18,349 520

2 2156 213,136 2713

3 9395 255,931 12,564

4 13,225 324,508 17,836

5 30,144 372,376 41,477

6 44,003 476,153 55,864

7 53,929 495,430 66,961

(b) Result set cardinality

these comparisons are not influenced by the number of peaks in the query. The
slight increase in runtime is due to the growing cardinality of the result set
that has to be returned. The runtime of the RI-tree and pure SQL queries also
increases with larger query molecules. For the pure SQL query this is also mostly
due to the growing result set cardinality. The disproportionate increase for the
RI-trees can be explained by the higher number of tuples that have to be joined,
which makes the join operations costlier. Nevertheless, the RI-tree index is still
faster than the pure SQL query. At first glance the bit vector approach seems
to be the clear winner. However, it filters very badly for large molecules as we
will see in a moment.

In terms of the filtering capabilities the RI-tree index is the clear winner (see
Table 2(b)). It always returns the smallest number of candidate substructures.
While the differences between the RI-tree index and the pure SQL approach are
not very large (RI-trees return about 25% fewer substructures), the differences
between RI-trees and the bit vector approach are tremendous. Remember that
the database contains about 700,000 substructures which means that with query
5 and upwards more than half of the substructures in the database are returned.
This is clearly unacceptable, since the next step, doing the actual structure
elucidation, is an NP-complete problem. Keeping the input small is absolutely
crucial to the runtime of the SpecSolv algorithm.

7 Conclusion and Outlook

An important application depending on chemical databases is structure eluci-
dation, i.e. determining the structure of an unknown molecule. This is relevant
for identifying chemical properties of molecules. The process of elucidation in-
volves imprecise data in the form of chemical shifts, which can be described by
intervals. We proposed to adapt a Relational Interval tree to index this data to
be able to efficiently filter out substructures that cannot possibly be found in
the investigated molecule. We implemented an RI-tree on top of a commercial
DBMS and demonstrated experimentally that it shows the best overall behavior
when compared to a bit vector approach and pure SQL queries. Unlike other
specialized index structures, RI-trees do not need to be integrated into the core
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engine of a DBMS to work, which usually is not possible to do for users of
DBMSs.

One of our next goals will be to improve this index structure even further.
Since molecular databases for structure elucidation are relatively static (data in
the database is rarely changed; the only updates that happen from time to time
are insertions of new substructures), it may pay off to materialize even more
information in the index, e.g. about other properties of the substructures, or to
buffer data intelligently in main memory for faster retrieval.
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susana@fi.upm.es,wiratna@gmail.com

Abstract. RoboCupSoccer domain has several leagues which varies in
the rule of play such as specification of players, number of players, field
size, and time length. Nevertheless, each RoboCup league is a variant of
a soccer league and therefore they are based on some basic rules of soc-
cer. A layered design of agents system presented in [1] shows a modular
approach to build control for a team of robots participating in RoboCup-
Soccer E-League. Based on this design, we propose a generalized archi-
tecture offering flexibility to switch between leagues and programming
language while maintaining Prolog as cognitive layer. Prolog is a per-
fect tool to design strategies for soccer players using simple rules close
to human reasoning. Sometimes this reasoning needs to deal with un-
certainty, fuzziness or incompleteness of the information. In these cases
it is useful Fuzzy Prolog [11,8,10,9]. In this paper we propose to use a
combination of Prolog (that is crisp) and Fuzzy Prolog to implement the
cognitive layer in RoboCupSoccer, which has the advantage of incorpo-
rating as conventional logic as fuzzy logic in this layer. A prototype of
a team based on this architecture has been build for RoboCup Soccer
Simulator, and we show that this approach provides a convenient way of
incorporating a team strategy in high level (human-like) manner, where
technical details are encapsulated and fuzzy information is represented.

Keywords: Logic Programming, Constraint Logic Programming Im-
plementation, Fuzzy Reasoning, Prolog Application, RoboCupSoccer,
Cognitive Layer.

1 Introduction

The idea of robot playing soccer has been developed since early 90s [7]. Soccer
environment is a dynamically changing environment which requires individual
skill as well as team skill and therefore is an interesting research field on Artificial
Intelligence and robotics. Prolog is a programming language that represent logic
reasoning. Is is a perfect tool to represent human reasoning, so it seems to be
a good choice for implementing the cognitive layer of soccer players that is a
simulation of human behaviour related to this game. For example, applying the
rule “if the goal keeper is not at the goal then kick to ball”. But many of the
most important decisions that are made by soccer players deal with non-crisp
issues. They are related to fuzziness (e.g. “if other player of my team is FAR
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from me then don’t pass him/her the ball”), uncertainty (e.g. “if I CAN get the
goal then kick the ball”), or incompleteness (e.g. “if I cannot see the position
of a player, by default I’m not going to pass him the ball”). Fuzzy Prolog is
an attempt to introduce fuzzy reasoning into logic programming that also deals
with uncertainty and incompleteness. It is aimed of this proposal to combine the
advantages of these different types of programming and to show how to handle
this combination.

There are many works that have been done on this research area related to
RoboCup [1,6,5] and to Fuzzy Prolog [11,8,10,9]. This work is the continuation
of the research line of the project [2].

The rest of the paper is organized as follow. Next section gives brief overview
on RoboCupSoccer and section 3 describes Fuzzy Prolog. Section 4 and 5 talks
about our approach and its evaluation. Section 6 concludes this paper and men-
tions some further works.

2 RoboCupSoccer

RoboCup is an international annual event promoting research on Artificial In-
telligence, robotics, and related field. The original motivation of RoboCup is
RoboCupSoccer. As the nature of soccer game, autonomous robots participat-
ing in RoboCupSoccer should have individual ability such as moving and kicking
the ball, cooperative ability such as coordinating with teammates, and of course,
the ability to deal with dynamic environment.

RoboCupSoccer consists of several leagues, providing test beds for various
research scale: Simulation League, Small Size Robot League (F-180), Middle
Size Robot League (f-2000), Four-Legged Robot League, Humanoid League, E-
League and RoboCup Commentator Exhibition.

Our work is part of a joint research project [2] on RoboCupSoccer E-League
with the National University of Comahue (Argentina). However as a preliminary
work, we employ RoboCupSoccer Simulation League for the sake of simplicity.

3 Fuzzy Prolog

The Ciao Prolog System offers a complete Prolog system supporting ISO-Prolog.
Its modular design allows restriction and extension of the language both syntac-
tically and semantically. The Ciao Prolog Development System provides many
libraries including a constraint logic programming system and interfaces to some
programming languages. In Ciao Prolog terminology, a library is implemented as
either a module or a package. Fuzzy Prolog described in [11] and [8,9] is imple-
mented as the package “fuzzy.pl”, a syntactic extension of the CLP(R) system
in the Ciao Prolog System. This is a continuous variant of Fuzzy Prolog.

We use in this work the discrete variant of Fuzzy Prolog that is implemented
using CLP(FD) as described in [10]. It offers an implementation of a Fuzzy Pro-
log system with discrete (versus continuous) truth values. The next subsection
summarizes the basic formal concepts that are described by the semantics of this
language.
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3.1 Discrete Fuzzy Prolog Language

The set of continuous subintervals on [0,1] is denoted by E([0, 1]). The Borel
Algebra, B([0, 1]), is the power set of E([0, 1]). We talk about discrete instead of
continuous interval when it is compound by a finite set of elements included in
the corresponding continuous interval. The set of discrete subintervals on [0,1]
is denoted by Ed([0, 1]). We call Bd([0, 1]) the Discrete Borel Algebra over the
interval [0,1] for representing the set of finite unions of discrete subintervals
on [0,1].

As defined in [10], truth values in discrete Fuzzy Prolog are elements of Dis-
crete Borel Algebra over the interval [0,1]. Fuzzy sets are defined by functions
of the form A : X → Bd([0, 1]). The Fuzzy Prolog system with Borel Algebra as
in [11] and [8,9] is often referred as continuous Fuzzy Prolog system. Figure 1
illustrate the difference between Borel Algebra and Discrete Borel Algebra.

Notice that the truth value representation of Fuzzy Prolog and discrete Fuzzy
Prolog is very general (union of intervals of real numbers) and it can seem to
be little intuitive. The applications of this generality are disscussed in [11] and
[8,9]. Simple truth values (as a unique interval or a plain real number) can be
more adequate to be used in RoboCup game. These simple values are particular
cases of the general framework.

Fig. 1. Truth Value: Borel Algebra versus Discrete Borel Algebra [10]

Definition 1 (discrete-interval). A discrete-interval [X1, XN ]ε is a finite set
of values, {X1, X2, . . . , XN−1, XN}, 0 ≤ X1 ≤ XN ≤ 1 such that ∃ 0 < ε < 1.
Xi = Xi−1 + ε, i ∈ {2..N}.

As indicated in the definition, the set of values of a discrete-interval depends
on the choice of ε. Smaller ε value represents more precision. For example, an
interval [0.3, 0.5]0.1 with ε = 0.1 is a finite set {0.3, 0.4, 0.5} while the interval
[0.30, 0.50]0.01 with ε = 0.01 is a finite set {0.30, 0.31, 0.32,. . . , 0.48, 0.49, 0.50}.

Therefore we denote the algebras Ed([0, 1]) and Bd([0, 1]) incorporating the
granularity to the notation substituting d by the particular ε (e.g. B0.1([0, 1])).
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Definition 2 (discrete-aggregation). Discrete-aggregation (in fuzzy sets) is
the application of a numeric discrete-aggregation operator (or discrete-
aggregation) of type f : [0, 1]n → [0, 1]. If it satisfies f(0, . . . , 0) = 0 and
f(1, . . . , 1) = 1, and in addition it is monotonic.

Notice that the operator is only monotonic by definition, not continuous (that
is why it is called “discrete”).

Definition 3 (discrete-interval-aggregation). Given a discrete-aggregation
f : [0, 1]n → [0, 1], a discrete-interval-aggregation F : Eε([0, 1])n → Eε([0, 1]) is
defined as follows:

F ([xl
1, x

u
1 ]ε, . . . , [xl

n, xu
n]ε) = [f(xl

1, . . . , x
l
n), f(xu

1 , . . . , xu
n)]ε

where 0 < ε < 1.

Intuitively we can say that F provide a discrete-interval from the aggregation of
n discrete-intervals.

Definition 4 (discrete-union-aggregation). Given a discrete-interval-
aggregation F : Eε([0, 1])n → Eε([0, 1]) defined over discrete-intervals, a discrete-
union-aggregation F : Bε([0, 1])n → Bε([0, 1]) is defined over union of
discrete-intervals as follows:

F(B1, . . . , Bn) = ∪{F (E1ε, . . . , Enε)|Eiε ∈ Bi}.

The alphabet of the fuzzy language consists of variables, constants, function
symbols, and predicate symbols. A term is defined inductively as follows:

1. A variable is a term.
2. A constant is a term.
3. If f is an n-ary function symbol and t1, . . . , tn are terms then f(t1, . . . , tn)

is a term.

An atom or atomic formula is defined as the following:
If p is an n-ary predicate symbol and t1, . . . , tn are terms, then p(t1, . . . , tn) is
an atom.
A fuzzy program is a finite set of fuzzy facts and fuzzy clauses. Information is
obtained from the fuzzy program through a fuzzy query.

Definition 5 (fuzzy fact). If A is an atom, A ← v is a fuzzy fact, where v, a
truth value, is an element in Bε([0, 1]) and 0 < ε < 1.

Definition 6 (fuzzy clause). Let A, B1, . . . , Bn be atoms, A ←F B1, . . . , Bn

is a fuzzy clause where F is a discrete-interval-aggregation operator of truth
values in Bε([0, 1]), 0 < ε < 1, and F induces a discrete-union-aggregation as by
definition 4.

Definition 7 (fuzzy query). A fuzzy query is a tuple v ← A? where A is an
atom, and v is a variable (possibly instantiated) that represents a truth value in
Bε([0, 1]), where 0 < ε < 1.
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3.2 Discrete Fuzzy Prolog Syntax

Constraint Logic Programming, CLP, is one of the most promising extensions
of Logic Programming from the implementation point of view. There are many
Prolog systems that implement it [4]. One of the most popular extensions is
CLP(FD), Constraint Logic Programming over Finite Domains. It is related to
constrain the set of possible values of the variables for efficiency. So, the possible
values can be obtained according to a set of constraints that should be satisfied
by each variable. In Ciao Prolog, CLP(FD) works on integer domain. We use
it to represent the set of truth values of a fuzzy variable by a set of integer
numbers. Therefore, given the ε as in definition 1, truth value is interpreted as
a finite union of discrete subintervals on [0, 1]ε. Hence, the discrete subinterval
is a set of integers.

The interval [X1, XN ]1/k is interpreted for CLP(FD) as the discrete interval
[X1 ∗ K ∗ 10, XN ∗ K ∗ 10]1

For example, the interval [0.4, 0.6]0.01 is interpreted as the set {400, 401,
402,. . . , 598, 599, 600} while [0.4, 0.6]0.1 is interpreted as the set {40, 41,. . . , 59,
60}. Table 1 shows the syntax for fuzzy facts. We use 0.1, 0.01, etc for simplicity,
but any other value (e.g. 0.2, 0.34, . . . ) can be used also.

Table 1. Discrete Fuzzy Prolog syntax for fuzzy fact

Fuzzy Fact Discrete Fuzzy Prolog Syntax
p(john) ← 0.70 p(john,70) ::∼.

p(peter) ← [0.40, 0.60]0.01 p(peter,V) ::∼ { V in 400 .. 600}.

p(joan) ← p(joan,V) ::∼ { V in 20 .. 50}.
[0.20, 0.50]0.1 ∪ [0.80, 1]0.1 p(joan,V) ::∼ { V in 80 .. 100}.

The fuzzy clause is defined as Head ::∼ Aggregator Body. For example, the
syntax for fuzzy clause
slow dash (Distance, Power) ←min

near(Distance),
low dash power(Power)

is in discrete Fuzzy Prolog
slow dash (Distance,Power,V) ::∼ min

near(Distance,V1),
dash power(Power,V2).

In Fuzzy Prolog syntax, the query is formulated as an atom A with v, the
truth value, as additional parameter. The fuzzy query is defined similar with
the ones in continuous Fuzzy Prolog. For example, the syntax for the fuzzy
query that consults if running slowly is a good option taking into account the
distance that the player want to cover and the power of his/her dash v ←
slow dash(Distance, Power)? is written in Fuzzy Prolog:
?−slow dash(Distance,Power,V).
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The value of V is obtained from the aggregation (using the operator min) of
the truth values V 1 and V 2. The value of V in Fuzzy Prolog with CLP(FD)
ranges (values or intervals) between 0 and 100, 0 and 1000, ... (depending on
the precision of the program and representing the corresponding truth values
between 0 and 1 obtained dividing by 100, 1000, ... respectively). As CLP(FD)
supports labeling, V could be instantiated to one or more values satisfying
the constraints. This is the reason why discrete Fuzzy Prolog is more useful for
this application than the continuous variant, because it provides constructive
answers as values instead of providing constraints (as in the continuous variant).

Note that when more precision is needed, a suitable ε in the definition 1 could
be chosen, which results in a larger set of integer between 0 and 1 for truth
values.

Fig. 2. Generic System Architecture

4 Architecture and Implementation Details

Based on agent system architecture proposed by [1], we propose a generic system
architecture for RoboCup offering flexibility on choice of programming language
and minimal modification to switch between leagues. This architecture is shown
in figure 2. Prolog is proposed for cognitive layer, and in our work we use Fuzzy
Prolog for implementing the cognitive layer. The system architecture of our
implementation for RoboCupSoccer Simulation League is shown in figure 3. As
it can be seen in the figures and as it is going to be described in this section, the
generic architecture is customized in our implementation for Simulation League.

4.1 Low Level Communication Layer

As the name suggests, this is the lowest layer of our architecture. This layer
includes all hardwares and softwares provided by the league. The robots, infrared
transmitter, video camera, communication network, and vision systems belong
to this layer. Different leagues in RoboCupSoccer are represented by different
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Fig. 3. System Architecture for RoboCup Soccer Server

Low Level Communication Layer. E-League has the robots, Doraemon vision
package, and communication server as part of this layer, whereas Simulation
League has only The RoboCup Soccer Simulator as part of this layer.

4.2 Logical Communication Layer

This layer acts as the interface between low level communication layer and the
upper layers. It is intended to hide physical structure of the environment from
the upper layer. As long as the interface of the services offered by this layer
remain unchanged, then the rest of the upper layer can also remain unchanged
[1]. Basic services that should be offered for E-league are:

– Reading the packets generated by video server.
– Establishing communication with the communication server.
– Continuous sensing for the referee decision.

In our implementation for Simulation League, this layer is represented by a Java
library called Atan [3] which provides following services :

– Connection to the simulation server via UDP.
– Side conversion to support the internal representation of the state of the

world.
– Parsing of the output string from simulation server.
– Generation of a command string that can be understood by the simulation

server.

4.3 Sensorial/Effectorial Layer

This layer serves as a bridging layer between logical communication layer and
cognitive layer. It translates visual information into the representation needed
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by cognitive layer, and also translates output from cognitive layer into basic
action to be performed by the robots. In our implementation for Simulation
League which use Prolog programs as cognitive layer and Java library as logi-
cal communication layer, this means translating visual information into prolog
predicates and interpreting prolog query result. Let us show an example of the
java translation code used when a player see a ball:

public void infoSeeBall
(double distance, double direction) {

infobuf.
append("distance").
append(PrologConnection.ATOM_SPLITTER).
append("ball").
append(PrologConnection.ATOM_SPLITTER).
append(distance).
append(PrologConnection.FACT_SPLITTER).
append("direction").
append(PrologConnection.ATOM_SPLITTER).
append("ball").
append(PrologConnection.ATOM_SPLITTER).
append(direction).
append(PrologConnection.FACT_SPLITTER);

}

If the player see a ball in distance x and direction y, then this information is trans-
lated into prolog predicates as distance(ball,x) and direction(ball,y).

4.4 Cognitive Layer

Cognitive layer is where the strategy is implemented. It is the highest level layer.
Our work is focused in this layer where we employ The Ciao Prolog System [4],
and in particulas the Fuzzy Prolog library, to do reasoning over provided infor-
mation. Our approach is providing the capability of handling fuzzy, uncertain
and incomplete information to the cognitive layer. This information is very close
to the human reasoning, so this framework is improving the human-like control
of this layer. A strategy can be easily implemented on this layer without having
to put effort on low level technical details more related to the machine than to
the human mind.

5 Evaluation

For testing our architecture (Figure 3) we have implemented a prototype using
Ciao Prolog and its library that provide Fuzzy Prolog, a Java interface programs
to connect to the Atan library and a RoboCupSoccer Simulator.

Some simple scenarios have been prepared for observation on difference be-
tween fuzzy and crisp approach on similar strategy.

For example, if the strategy is implemented as a prolog program, the program
with crisp strategy takes only the best action and fails when there is none. The
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program with fuzzy strategy proposes the almost best action when there is no
best action.

The program with crisp strategy (using classical prolog) looks like the
following:

get command (Info,Command) :-
update info(Info),
best command(Command).

And the fuzzy approach for similar strategy:

get command (Info,Command) :-
update info(Info), !,
best command(Command,100).

get command ( ,Command) :-
best command(Command,V),
V . > . 80.

The strategy is coded into the predicate best command/2. For example, to
determine the next action when a player has the ball (it is close to him) the
best command/2 predicate decide if shooting the ball or dribble to goal or pass
the ball to a teammate. Below is the code of the first choice:

best_command(Command,V) ::~ min
play_mode(play_on),
\+ player_role(goalie),
ball_in_possesion(V1),
goal_position(Dist,Dir),
good_to_shoot(Dist,Dir,V2),
shoot(Dist,Dir,Command).

best_command(Command,V) ::~ min
...
dribble(Dist,Dir,Command).

best_command(Command,V) ::~ min
...
pass_to_teammate(Command).

In the above example there are many fuzzy concepts. Depending on the dis-
tance to the goal position the player will evaluate if it is a good for shooting to
goal. In case it is, he will do it. Otherwise, he will evaluate if his possesion of the
ball is save enaugh (no players of the other team are close to the ball). If not,
he will dribble with the ball to skip the danger. Finally, if the player is not close
to shoot to goal and is is not possible to dribble and then shoot to goal, then he
will pass the ball to another player of his team.

This is only an example for representing the necesity of using fuzzy rules and
fuzzy concepts in soccer control.

The evaluation includes power calculation using set of rules, rule based deci-
sion, and team play. Fuzzy rules enable fuzzy control implementation for power
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calculation. In rule based decision, there are certain cases where fuzzy approach
offers better solution than crisp approach. These small differences in power cal-
culation and decision leads to a slight better performance of fuzzy approach on
team play with respect to the crisp approach. However, fuzzy approach requires
more processing time than crisp approach and this could lead to poor perfor-
mance if it is not managed properly. We will evaluate the efficiency of the two
approaches (crisp and fuzzy, Prolog and Fuzzy Prolog) in further work.

We have realized that none of the two alternatives (crisp versus fuzzy) are
good for all scenarios. Indeed, it seems that a combination of fuzzy reasoning
with crisp predicates could be the perfect combination and this is a promising
result because Fuzzy Prolog [9] is able to deal with this combination.

6 Conclusion

We choose RoboCupSoccer domain as our case problem to employs Fuzzy Prolog
system (an approach to incorporate fuzzy reasoning into logic programming).
This work is an initial step toward series of research in this area.

On the other side, we believe that logic programming is a perfect environment
for dealing with the cognitive layer at RoboCupSoccer league as it is in general
to implement cognitive and control issues in robotics.

Our goal is to provide a framework to employ Prolog in general and Fuzzy Pro-
log in particular for RoboCupSoccer. A generic architecture for RoboCupSoccer
is given, with flexibility in changing leagues and programming languages while
maintaining a combination of Prolog and Fuzzy Prolog as cognitive layer. For
the implementation, we apply the framework to work on the RoboCup Soccer
Simulator, by implementing a prototype player with Fuzzy Prolog as cognitive
layer and adapting properly the sensorial/effectorial layer. Considering time and
technical constraints, we choose the discrete Fuzzy Prolog system over the con-
tinuous approach, for this application, providing constructive answers as values
(instead of constraints) is translated into more efficiency for the strategy (mea-
surements will be studied in further work).

We observe that the fuzzy program is slower than crisp program for several
reasons:

– Fuzzy program needs to be translated into CLP(FD)
– Instead of failing immediately when a predicate in a body clause is not

satisfied, the evaluation in a fuzzy rule continues and the truth values are
aggregated with the truth value 0.

– When there is no best action to be done, fuzzy program attempts to find an
alternative action.

Therefore, the fuzzy program should be designed carefully by taking into account
the different procedural semantic between a crisp prolog program and a Fuzzy
Prolog program.

This work establishes a preliminary groundwork towards a series of research
on employing Fuzzy Prolog in RoboCupSoccer E-League. The results of this
work are:
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– A prototype of discrete Fuzzy Prolog system, implemented as dfuzzy pack-
age in Ciao Prolog.

– A framework to employ Fuzzy Prolog in RoboCup Soccer, including a pro-
totype of cognitive layer for RoboCup Soccer.

– A prototype of player client as application of the framework for the RoboCup
Soccer Simulator League (sensorial/effectorial layer).

– Simple scenarios to demonstrate the utility of fuzzy reasoning for soccer
players control.

There is room for improvement of this work. With regards to the cognitive
layer, more advanced strategy and various proper aggregation operator can be
applied, using either continuous or discrete Fuzzy Prolog system. We intend
to distinguish at the players control, when is it better to use fuzzy reasoning
(Fuzzy Prolog), and when is it faster to use crisp reasoning (Prolog). Our fu-
ture work is to improve and employ the cognitive layer for RoboCup Soccer
E-League. Another possible work in this research area is to use Fuzzy Prolog as
cognitive layer in different RoboCup domain, for example in RoboCup Rescue
or RoboCup@Home.
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11. S.Guadarrama, S.Muñoz, and C.Vaucheret. Fuzzy prolog: A new approach using
soft constraints propagation. Fuzzy Sets and Systems, 144(1):127150, 2004.



An Approach to Theory of Fuzzy Discrete

Signals

Bohdan S. Butkiewicz

Warsaw University of Technology, Warsaw, Poland,
bb@ise.pw.edu.pl

http://www.ise.pw.edu.pl/~bb/index.html

Abstract. The paper presents an approach to description of fuzzy dis-
crete functions and Fourier transform of such functions taking in consid-
eration their uncertainty. Conventional approach to uncertainty employs
probabilistic description. Here, fuzzy logic theory is applied to describe this
uncertainty. A definition of transform, called later Discrete Fuzzy Fourier
Transform and definition of Inverse Discrete Fuzzy Fourier Transform are
proposed. Some properties of such transformations and examples of appli-
cations and comparison with conventional approach are shown.

1 Introduction

Discrete signals play an important part in the theory of many branches of science.
Such signals contain fuzziness included in the function itself or in the parameters.
For example sampled and quantified signal contains fuzziness itself because exact
value of a sample is unknown after quantization process. Such situation occurs
also in image transformations by optical systems. Original image is crisp but
image on the photographic plate is blurred. Dubois and Prade [8] call this type of
ill-known functions fuzzifying functions. Fuzzifying functions have been studied
by Sugeno [12] under the name of fuzzy correspondences. These concepts of fuzzy
function is mathematically equivalent to fuzzy relation. Conventional approach
in such cases of imprecise data uses probability description.

Very often there are no possibility to gather many experimental data and
information about situation concerning similar circumstances, occurrences or
phenomena. Moreover, we use sometimes our intuition to build the model of
phenomenon. For such kind of data, fuzzy description is more justifiable then
probabilistic description.

In the paper, an approach based on uncertainty description using fuzzy logic
is proposed. Uncertainty can be introduced in two ways. Function can be treated
as function of discrete crisp variables and fuzzy parameters or fuzziness can be
included in the function itself not in the parameters.

The idea of fuzzyapproach to signal processingwasproposedbyKosko [9], buthe
considered signals as crisp with random impulsive noise similarly as in conventional
approach. Only during signal processing fuzzy algorithms was used. The concept
leads to fuzzy filtering. The concept of fuzzy filters and other fuzzy techniques was
developed also by other researchers especially for image processing [1],[10].
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The name of fuzzy transform was used also in [11]. However the approach is
quite different. It is based on discrete partition of time space on intervals and
fuzzy description by membership functions (called basic functions) defined on
each interval. It can be used also for description of fuzzy discrete signal.

Notions of fuzzy signal, fuzzy Fourier transform and fuzzy correlation pro-
posed by the author are based on the concept of norms and scalar products
as in conventional definitions to preserve similar properties. The first approach
to analog fuzzy signals and fuzzy Fourier transform was published by author
in [2]. After the definition was enlarged also on fuzzifying functions [3]. Two-
dimensional fuzzy Fourier transform and fuzzy convolution were proposed in [4]
and [6] with application to image processing.

In this paper an approach to discrete fuzzy function is proposed.

2 Concept of Fuzzy Discrete Signal

In theoretical conventional approach the space of discrete signals is defined as
follows.

Definition 1. (Class l2) Discrete function x[n] of integer argument n belongs
to the class l2(n1, n2) where integers n1, n2 ∈ (−∞, ∞) if, and only if the sum

Ex =
n2∑

n=n1

|x[n]|2 (1)

is finite.

The value Ex represents energy of signal x[n] and l2 is called class of discrete
signals with finite energy. Square root of Ex plays role of a norm in the space
l2, ‖ x[n] ‖=

√
Ex.

This conventional definition can be enlarged for fuzzy discrete signals in fol-
lowing way.

Definition 2. (Class l2f ) Fuzzy discrete function x[n, α] where n is integer and
α is a fuzzy argument, being a fuzzy normal set or vector of fuzzy arguments,
belongs to the class l2f (n1, n2) where n1, n2 ∈ (−∞, ∞) are integers if, and only
if, for any a ∈ supp(α) the sum

Ex(α) =
n2∑

n=n1

|x[n, a]|2 (2)

is finite.

It will be shown that
√

Ex(α) is a norm ‖x[n, α]‖ of x[n, α] in l2f . It satisfies the
axioms:

(1) ‖x[n, α]‖ ≥ 0 for all x ∈ l2f
(2) ‖x[n, α]‖ = 0 ⇔ x[n, α] = 0, i.e. all x[n, a] = 0 where a ∈ supp(α)
(3) ‖λx[n, α]‖ = |λ|‖x[n, α]‖ where λ is real constant
(4) ‖x1[n, α] + x2[n, β]‖2 ≤ ‖x1[n, α]‖ + ‖x2[n, β]‖
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The first three properties are obvious. The triangle inequality (4) is proved using
inequality for functions in conventional space lp(n1, n2)

{
n2∑

n=n1

(x[n] + y[n])p}1/p ≤ {
n2∑

n=n1

(x[n]]p}1/p + {
n2∑

n=n1

(y[n])pdt}1/p

where p ≥ 1. The inequality is applied for any a ∈ supp(α) and b ∈ supp(β)

Example 1 (Fuzzy discrete signal). Let function takes fuzzy values x[n] = 2k +
α where k = −4, −3, ..., 4 and α is fuzzy number described by membership
functions of trapezoidal shape trapeze(−1.5, −0.5, 0.5, 1.5). Signal x[n] is shown
in the Fig. 1 (left).

Example 2 (Fuzzy linguistic signal). In one of his papers [6] the author intro-
duced a concept of linguistic signal. It is a discrete fuzzy function x[n, α] taking
discrete values xl[n] where for any discrete level l is attached a linguistic term vl.
Let discrete levels xl for any n can take only one of l = 1, ..., 9 different linguistic
values vl called NV, NL,..., PV. Let uncertainty of each value xl[n] is described
by the similar fuzzy set α with membership function μα(a) with trapezoidal
shape. The linguistic signal corresponding to fuzzy signal from Example 1 is
presented in the Fig. 1 (right).
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Fig. 1. Example of discrete fuzzy signal (left) and linguistic signal (right)

Such situation occurs in practice where analog-digital (A/D) converter can
introduce an error, for example the value of last bit is not sure.

3 Concept of Fuzzy Discrete Fourier Transform

In conventional approach Fourier transform of discrete set of real or complex
numbers x[n], n ∈ Z (integers) is defined as follows

X(f) =
∞∑

n=−∞
x[n] e−i2πnf (3)
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For practical reasons a finite-length sequence x[n] is obviously needed, n = 0, ...,
N − 1. The transform is periodic. Moreover, X(f) is evaluated at an arbitrary
number M of uniformly-spaced frequencies fm across one period fm = m/M ,
m = 0, ..., M − 1. Hence, discrete Fourier transform is calculated as following

X [m] =
N−1∑

n=0

x[n] e−i2πnm/M (4)

In Discrete Fourier Transform (DFT) procedures used for calculation the number
M = N is assumed. Thus follow definition is used

X [m] =
N−1∑

n=0

x[n] e−i2πnm/N (5)

Inverse transform has a form

x[n] =
1
N

N−1∑

m=0

X [m] e−i2πnm/N (6)

Sometimes in (5) and (6) the term
√

N is used for symmetry.
Fuzzy approach, proposed here, is quite different. Firstly it can be noticed that

fuzziness is very often included in the function itself not in the parameters. There-
fore, the parameter α in x[n, α] will be omitted for generality. Next, the concept
of discrete pseudo α-level curves is introduced. The term ”discrete curves” is used
here for simplicity and understand as series of values x[n] for n = 0, ..., N − 1.

Definition 3. (Discrete pseudo α-level curves) Let value of fuzzifying function
x[n] of crisp discrete integer variable n for any n ∈ (−∞, ∞) is a fuzzy number
(convex normal fuzzy set). Let μx(x[n]) be membership function of x[n]. Let for
any α ∈ (0, 1) the equation μx(y[n]) = α has two and only two solutions y[n] =
x∓

α [n] and y[n] = x±
α [n], and only one solution y[n] = x[n] for α = 1. The

solutions x∓
α [n] x±

α [n], will be called pseudo α-level curves of the x[n].

This concept is something similar to α-level curves x−
α (t) x+

α (t) introduced by
Dubois and Prade [8] and after in [5]. However, here functions are discrete and
the order of the x∓

α [n] x±
α [n] can change with n and they may do not fulfill

inequality as x−
α [n] ≤ x+

α [n]. Sometimes x∓
α [n] can be grater than x±

α [n]. For
instance, such situation occurs for fuzzy function Π(t) cos(2πf0t) where Π(t) is
crisp function with rectangular shape and f0 is fuzzy number with membership
function with triangular shape μf0(f) = triangle(0.9, 1, 1.1).

Definition 4. (Discrete Fuzzy Fourier Transform) Let value of discrete fuzzi-
fying function x[n] of crisp integer variable n for any n ∈ [0, N − 1] is a fuzzy
number (convex normal fuzzy set). Let pseudo α-level curves x±

α [n] x∓
α [n] of the

x[n], are continuous with respect to α and for α → 1 limit x∓
1 [n] → x[n] and

x±
1 [n] → x[n]. Let all the pseudo α-level curves, α ∈ (0, 1], fulfill condition (1).

Then, it is possible to introduce two conventional sums
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X∓
α [m] =

N−1∑

n=0

x∓
α [n] e−i2πnm/N (7)

X±
α [m] =

N−1∑

n=0

x±
α [n] e−i2πnm/N (8)

which will be called pseudo α-level curves of DFuzFT. The set X[m] of all
pseudo α-level curves, α ∈ (0, 1], will be called Discrete Fuzzy Fourier Trans-
form (DFuzFT) and written in the form of sum

X[m] =
N−1∑

n=0

x[n] e−i2πnm/N (9)

Definition 5. (Inverse Discrete Fuzzy Fourier Transform) Let X∓
α [m] and

X±
α [m] be pseudo α-level curves describing DFuzFT X[m]. Then set of sums

x∓
α [n] =

1
N

N−1∑

m=0

X∓
α [m] ei2πnm/N (10)

x±
α [n] =

1
N

N−1∑

m=0

X±
α [m] ei2πnm/N (11)

for all values α ∈ (0, 1] will be called Inverse Discrete Fuzzy Fourier Transform
(IDFuzFT) and write in the form of sum

x[n] =
1
N

N−1∑

m=0

X[m] ei2πnm/N (12)

If α is a parameter with membership function μα(a) and supp(α) = [a1, a2], then
fuzzy signal can be written in the form of union

x[n] =
∫

μα(a)/x[n] (13)

Let and both transforms DFuzFT and IDFuzFT exist. Transformation x∓
α [n] ⇔

X∓
α [m] is one to one. Thus, X∓

α [m] conserves the same α-level as x∓
α [n]. There-

fore, DFuzFT can be written in the form of union

X[m] =
∫

μα(a)/X [m] (14)

Now arise a question what membership function has DFuzFT? Real value of
membership can be found as set of all values

X−
α ([m]) = min(X∓

α [m], X±
α [m]) (15)

X+
α ([m]) = max(X∓

α [m], X±
α [m]) (16)
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Sometimes it will be useful to obtain crisp result for transform. It is possible
to find weighted average of X[m]

X[m] =

∫ a2

a1
μα(a)X [m, a]da
∫ a2

a1
μα(a)da

(17)

It will be called Discrete Fourier Transform of Fuzzy Function (DFTFF).

Comments. One remark must be added. Both operations of transformation,
i.e. DFuzFT and DFTFF, are not fuzzy itself. They are only performed on fuzzy
functions. The name ”fuzzy Fourier” is used to accentuate that result of DFuzFT
is fuzzy function in contradiction to DFTFF where result is crisp function.

4 Some Properties of Discrete Fuzzy Fourier Transform

It can be shown that many properties of DFuzFT are similar as for conventional
DFT. Let X[m] be DFuzFT of x[n] written as x[n] ↔ X[m]. For instance consider
shift, addition, and modulation property.

Shift. Let x[n] ↔ X[m] then

x[n − k] ↔ X[m]ei2πkm/N (18)

Proof. Any x∓
α [n] is crisp. Therefore, from conventional shift property it follows

x∓
α [n − k] ↔ X [m]∓α ei2πkm/N . Similarly for x±

α [n]. Thus, (18) is true.

Addition. Let x[n] ↔ X[m] and y[n] ↔ Y[m] then

x[n] + y[n] ↔ X[m] + Y[m] (19)

Proof. It was shown in [8] that sum of α-level curves conserves α-level. Of course,
it is true also for discrete case. Then sum x∓

α [n]+y∓
α [n] has also the same pseudo

α-level. Thus (19) is true.

Modulation. Let x[n] ↔ X[m] then

x[n] cos(2πk/N) ↔ 1
2
(X[m − k] + X[m + k]) (20)

Proof. From conventional modulation property it follows that x∓
α [n]ei2πnk/N ↔

X∓
α [m − k]. Similarly for x±

α [n]. Thus, from Euler formula eiϑ = cosϑ + isinϑ it
follows that (20) is true.

It is known that Parseval’s theorem play an important part in signal theory. Here
we start from Carleman’s formulation [7] of Parseval’s theorem. The theorem can
be proved also for discrete signals.
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Theorem 1 (discrete Carleman). If the sum

N−1∑

n=0

|x[n]|2 (21)

is finite then following sum with discrete Fourier transforms of x[n]

1
N

N−1∑

m=0

|X [m]|2 (22)

is finite and they are equals

N−1∑

n=0

|x[n]|2 =
1
N

N−1∑

m=0

|X [m]|2 (23)

Fuzzy version of this theorem is presented below.

Theorem 2 (fuzzy signal energy). Let x[n] belongs to l2f and X[m] be discrete
fuzzy Fourier transform of x[n]. Then

N−1∑

n=0

|x∓
α [n]|2 =

1
N

N−1∑

m=0

|X∓
α [m]|2 (24)

and
N−1∑

n=0

|x±
α [n]|2 =

1
N

N−1∑

m=0

|X±
α [m]|2 (25)

It will be written as
N−1∑

n=0

|x[n]|2 =
1
N

N−1∑

m=0

|X[m]|2 (26)

Proof. Functions x∓
α [n], x±

α [n] and their Fourier transforms X∓
α [m], X±

α [m] are
crisp. Assumption of the theorem assures that x∓

α [n] and x±
α [n] belong to class l2.

Thus, conventional theorem can be applied to these functions for any a ∈ supp(α).
Therefore, the equality (26) is consistent.

It must be noted that equivalence (26) concerns fuzzy functions. Such definition
of signal energy leads to concept of fuzzy energy. Of course, crisp value of energy
can be obtain as weighted average

Ex =

∫ a2

a1
μα(a)

∑N−1
n=0 |x[n, a]|2da

∫ a2

a1
μα(a)da

(27)

Example 3 (DFuzFT). Let vector of values equals x[n]=[-2 -3 -2 -1 0 -2 -4 -2 0 1
3 2 5 2 0 1 0 -2 -3 -5 -2 -1 0 0 1 3 1 3 2 1 3 1 0 ], but this values are not certain.
Let uncertainty of x[n] is described by the set of membership functions μx(x[n])
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Fig. 2. Example of discrete fuzzy signal (left) and its membership function (right)

(Fig. 2). The sets (7) (8) of all pseudo α-level curves for DFuzFT were calculated.
The result, three series of points X−

0 [m], X+
0 [m] found using (16)(16) and X1[m],

was shown in the Fig. 3 (left) as dashed and continuous lines, for DFuzFT with
α = 0 and 1. Of course, such result can be presented in similar way as in the Fig.
2 with rectangles showing possible changes of spectrum X [m]. Here lines are used
for simplicity. In the Fig. 4 conventional FFT and DFTFF are compared.
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Discrete Fuzzy Fourier Transform, Example 2
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Fig. 3. Example 2. Discrete fuzzy Fourier transform (left). Solid line shows X1[m]
where α = 1, dashed lines show X−

α [m] and X+
α [m] for α = 0. Comparison of X1[m]

and conventional FFT (right), X1[m] - solid line, FFT - points.

Remark. Example 2 shows that values of X1[m] are identical with the result
obtained by conventional FFT, see Fig. 3 (right). However, the idea of DFuzFT
can be enlarged on the cases where the values of x1[n] are not unique. It is a
case when membership functions of x[n] have for example trapezoidal shapes. In
such cases the value x1[n] and X1[m] are not unique. Therefore, DFuzFT concept
must not be trivial extension of the FFT procedure. Such modification of the
DFuzFT concept does not shown in this paper. The author in [6] presents one
of possible solution proposed for such discrete fuzzy functions, called linguistic
signals, where a concept of linguistic Fourier transform is introduced. In this
case fuzzy signal as well as its Fourier transform have linguistic forms.
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Fig. 4. Example 2. Comparison of DFTFF and conventional FFT, DFTFF - points,
FFT - solid line.

5 Conclusions

In the paper new approach to Fourier transform is proposed based on fuzzy logic.
It was shown that fuzzy transforms contain information about uncertainty. It is
not the case in the conventional probabilistic approach where expected values
are used. This information can be obtained in sufficiently easy way using con-
ventional discrete Fourier transform. Effective numerical procedure can be build
using popular programming tools as FFT. New definitions were introduced using
concept of norms, i.e. in such a way to conserve general properties of conven-
tional continuous and discrete Fourier transforms. It was shown that principal
properties as shift, addition, modulation and many others, and also Parseval’s
theorem can be generalized for fuzzy case. Crisp result for transform (DFTFF)
can be obtained also using average mean or other defuzzification procedure.
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Abstract. In this paper a general approach to combinatorial optimiza-
tion problems with fuzzy weights is discussed. The results, valid for the
interval-valued problems, are extended to the fuzzy-valued ones by ex-
ploiting the very recent notion of a gradual number. Some methods for
determining the exact degrees of possible and necessary optimality and
the possibility distributions of deviations of solutions and elements are
proposed. The introduced notions are illustrated by practical examples.

1 Introduction

In a combinatorial optimization problem we are given a finite set of elements E
and a weight we is associated with each element e ∈ E. We seek an object
composed of the elements of E whose total weight is minimal or maximal. In
this case the solutions and elements can be divided into two groups: optimal
and non-optimal ones. One may also evaluate the optimality from the point of
view of a deviation, that describes how far a solution (an element) is from being
optimal. In this paper, we consider the case in which the element weights are
ill-known and they are modeled by means of intervals or fuzzy intervals. In the
interval-valued case solutions and elements form three groups: those that are
optimal for sure (necessarily optimal), those that are not optimal for sure and
those, whose optimality is unknown (possibly optimal). Now, to each solution
and element an interval of possible deviations from optimum may be associated.
In the fuzzy-valued case the notions of optimality can be extended and every
solution (element) can be characterized by degrees of possible and necessary
optimality and a possibility distribution of its deviation.

There exists a wide class of combinatorial optimization problems for which the
characterization of optimality of solutions and elements can be efficiently done in
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the interval model. In this paper we extend these results to the fuzzy-valued case
by exploiting a very recent notion of a gradual number, which provides a new out-
look on fuzzy intervals. This allows to apply interval methods to problems with
fuzzy weights. In consequence, we propose some methods for determining the
exact degrees of possible and necessary optimality and the possibility distribu-
tions of deviations of solutions and elements for some fuzzy-valued combinatorial
optimization problems.

2 Preliminaries

Let E = {e1, . . . , en} be a finite ground set and let Φ ⊆ 2E be a set of subsets
of E called the set of the feasible solutions. In a deterministic case, for every
element e ∈ E there is given a nonnegative real weight we. A combinatorial
optimization problem P with a linear objective function consists in finding a
feasible solution X ∈ Φ whose total weight is minimal, namely:

P : F ∗ = min
X∈Φ

F (X) = min
X∈Φ

∑

e∈X

we. (1)

Formulation (1) encompasses a large variety of deterministic combinatorial opti-
mization problems, for instance shortest path, minimum spanning tree, minimum
assignment, 0-1 knapsack etc. Some of them are polynomially solvable while the
other ones are NP-hard. For a wide review we refer the reader to [11].

A solution that minimizes (1) is said to be optimal. We also call an element
e ∈ E optimal if it is a part of an optimal solution. Thus, in the deterministic
case, the set of solutions Φ and the set of elements E can be divided into two
groups: the optimal and non-optimal ones. In the case when solution X ∈ Φ or
element f ∈ E are not optimal, a natural question arises: how far they are from
optimality. One can define a deviation δX of solution X in the following way:

δX = F (X) − F ∗ =
∑

e∈X

we − min
X∈Φ

∑

e∈X

we.

Similarly, a deviation δf of element f is defined as follows:

δf = F ∗
f − F ∗ = min

X∈Φf

∑

e∈X

we − min
X∈Φ

∑

e∈X

we,

where Φf ⊆ Φ is the set of all solutions containing f . In other words, deviation δX

(resp. δf ) describes how far solution X (resp. element f) is from being optimal.
Obviously, solution X (element f) is optimal if and only if δX = 0 (δf = 0).

3 Interval-Valued Combinatorial Optimization Problem

Suppose that the values of the element weights are not precisely known, but they
are known to belong to intervals We = [w−

e , w+
e ], e ∈ E. It means that the actual
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value of a weight will take some value within an interval, but it is not possible
to predict at present which one. A configuration is a precise instantiation of
the weights of each element www = (we)e∈E , we ∈ We. Thus, every configuration
expresses a realization of the weights which may occur. We denote by Γ the set
of all configurations, i.e. Γ = ×e∈E [w−

e , w+
e ]. We use we(www) to denote the weight

of element e ∈ E in a specified configuration www ∈ Γ .
Among the configurations of Γ we distinguish the extreme ones, which belong

to ×e∈E{w−
e , w+

e }. Let A be a given subset of the element set E. In extreme
configuration www+

A all elements e ∈ A have weights w+
e and all the remaining

elements have weights w−
e . Similarly, in extreme configuration www−

A all elements
e ∈ A have weights w−

e and all the remaining elements have weights w+
e . These

extreme configurations will play a crucial role in further considerations.
For a given solution X ∈ Φ, we define its weight under a fixed configuration

www ∈ Γ as F (X,www) =
∑

e∈X we(www). We will denote by F ∗(www) the value of the
weight of an optimal solution under www ∈ Γ , that is

F ∗(www) = min
X∈Φ

F (X,www). (2)

Notice that if configuration www is fixed, then (2) is problem P . Hence the opti-
mality of a given solution or element now depends on configuration www and the
following characterization can be provided: a solution X ∈ Φ (element f ∈ E)
is said to be possibly optimal if there exists a weight configuration www ∈ Γ for
which it is optimal; a solution X (element f) is said to be necessarily optimal if
it is optimal for all weights configurations www ∈ Γ .

As in the deterministic case, we can obtain an additional information about
the optimality of a given solution or element using the concept of a deviation.
Denote by δX(www) and δf (www) a deviation of solution X , element f , in configuration
www. We can now define the widest interval ΔX = [δ−X , δ+

X ] of possible values of
deviations of solution X in the following way:

δ−X = min
www∈Γ

δX(www) and δ+
X = max

www∈Γ
δX(www). (3)

In the same way, we define the widest interval Δf = [δ−f , δ+
f ] of possible values

of deviation of element f . Intervals ΔX and Δf measure how far X and f are
from being possibly (resp. necessarily) optimal. It is clear that solution X is
possibly optimal if and only if δ−X = 0 and it is necessarily optimal if and only if
δ+
X = 0. The same relations hold for elements. The following proposition shows

the crucial role of the extreme configurations:

Proposition 1. The maximum and minimum of δX(www) and δf (www) over all con-
figurations www ∈ Γ are attained in extreme configurations from set ×e∈E{w−

e , w+
e }.

Moreover, the following equalities hold for every solution X:

δ−X = δX(www−
X) = F (X,www−

X) − F ∗(www−
X), (4)

δ+
X = δX(www+

X) = F (X,www+
X) − F ∗(www+

X). (5)
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Proof. The fact that the minimum and maximum are attained in extreme con-
figurations follows from the results obtained in [10] and the property that func-
tions δX(www) and δf (www) are locally monotonic with respect to each variable
we ∈ [w−

e , w+
e ], e ∈ E. In order to prove (4) suppose that www is a configura-

tion that minimizes δX(www) and denote by X∗ the optimal solution in config-
uration www−

X . It holds δ−X(www) = F (X,www) − F ∗(www) ≥ F (X,www) − F (X∗,www) ≥
F (X,www−

X) − F ∗(X∗,www−
X) = F (X,www−

X) − F ∗(www−
X). Hence, configuration www−

X also
minimizes δX(www). The proof of equality (5) is similar. ��

From Proposition 1 it follows that if problem P is polynomially solvable, then in-
terval ΔX for a given solution X can be computed in polynomial time. Hence, the
possible and necessary optimality of X can be characterized in polynomial time as
well. Contrary to the optimality of solutions, there is no an easy characterization
of the optimality of the elements. We know that configurationwww that minimizes or
maximizes δf (www) is an extreme one, but it may be hard to compute (observe that
there are up to 2n extreme configurations). The complexity of computing interval
Δf , for a given element f ∈ E, strongly depends on a particular problem P and it
may be NP-hard even if P is polynomially solvable. For instance, for Shortest

Path, determining a configuration that minimizes δf (www) is strongly NP-hard [1],
but determining a configuration that maximizes δf (www) is polynomially solvable in
acyclic digraphs [7].

4 Fuzzy-Valued Combinatorial Optimization Problem

In this section we extend the notion of a deviation of a solution and element to
the more general fuzzy case. In consequence, we also generalize the notions of
possible and necessary optimality of solutions and elements. In order to compute
the fuzzy deviations we apply a recent concept of a gradual number [8].

4.1 Gradual Numbers and Fuzzy Intervals

The classical intervals model uncertainty in a Boolean way: a value in the interval
is possible; a value outside is impossible. The idea of fuzziness is to move from
the Boolean way to a gradual one. Hence fuzziness makes the boundaries of
the interval softer and thus making uncertainty gradual. In order to model the
essence of graduality without uncertainty the concept of a gradual number has
been recently proposed. Following the notation of [8] a gradual real number (or
gradual number for short) r̃ is defined by an assignment function Ar̃ from (0, 1]
to IR. It can be seen as a number parametrized by a value of λ ∈ (0, 1].

Making use of the notion of a gradual number, one can describe a fuzzy interval
W̃ by an ordered pair of two gradual numbers [w̃−, w̃+], where w̃− is a gradual
lower bound of W̃ and w̃+ is a gradual upper bound of W̃ . In order to ensure
the well known shape of a fuzzy interval, w̃− and w̃+ must satisfy the following
properties: Aw̃− is an increasing function; Aw̃+ is a decreasing function and
Aw̃−(1) ≤ Aw̃+(1). In this paper we will additionally assume that the assignment
functions of gradual numbers are continuous and their domains are extended
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Fig. 1. The left and right bounds of fuzzy interval W̃ (in bold)

to interval [0, 1]. In consequence, the corresponding membership functions of
fuzzy intervals are continuous and have a compact support. Observe that a fuzzy
interval can be now viewed as an interval of gradual numbers bounded by w̃−

and w̃+ (see Fig. 1). For a deeper discussion on gradual numbers and their
relationships with fuzzy intervals, we refer the reader to [4,5,8].

The classical arithmetic operations on gradual numbers are defined by op-
erations on their assignment functions. Let r̃ and s̃ be two gradual numbers.
The sum of r̃ and s̃ is defined by summing their assignment functions, that is
Ar̃+s̃(λ) = Ar̃(λ) + As̃(λ) for all λ ∈ (0, 1]. The subtraction, maximum and
minimum of gradual numbers can be defined in a similar manner. Observe that
the minimum and maximum operations on gradual numbers are not selective,
that is in general case max(Ar̃ , As̃) �= Ar̃ or As̃. There are subintervals of (0, 1]
where max(Ar̃, As̃) = Ar̃ and it is As̃ in the complementary subinterval. It is
worth pointing out that most algebraic properties of real numbers are preserved
for gradual real numbers, contrary to the case of fuzzy intervals.

A concept of a fuzzy interval of the L-R type (see, e.g. [2]) is very popular and
convenient in applications. A fuzzy interval of the L-R type is a fuzzy set in the
space of real numbers, whose membership function is of the following form:

μW̃ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 for x ∈ [w−, w+],
L

(
w−−x

αW

)
for x ≤ w−,

R
(

x−w+

βW

)
for x ≥ w+,

where L and R are continuous non-increasing functions, defined on [0, +∞),
strictly decreasing to zero in those subintervals of the interval [0, +∞) in which
they are positive, and fulfilling the conditions L(0) = R(0) = 1. The parameters
αW and βW are non-negative real numbers. A special case of a fuzzy interval is a
triangular fuzzy interval in which L(x) = R(x) = max{0, 1 − x} and w− = w+.
It is denoted by triple (w, αW , βW ). A fuzzy interval W̃ of the L-R type can be
described by an ordered pair of gradual numbers [w̃−, w̃+] with the following
assignment functions:

Aw̃−(λ) = w− − L−1(λ)αW and Aw̃+(λ) = w+ + R−1(λ)βW , (6)

where L−1 (similarly R−1) denotes the inverse function to L in this part of its
domain in which it is positive.
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4.2 A Possibilistic Formulation of the Problem

Assume that the element weights are ill-known, uncontrollable and unrelated
parameters we, e ∈ E, with fuzzy sets of more or less possible values. We say
that the assertion of the form “we is W̃e”, where W̃e is a fuzzy interval associated
with we, generates the possibility distribution of we with respect to the formula
Π(we = x) = μW̃e

(x). For the interpretation of the possibility distribution we
refer the reader to [2]. A configuration www = (we)e∈E represents a state of the
world, where we = we for every e ∈ E. The joint possibility distribution over all
configurations is as follows:

π(www) = Π(∧e∈E(we = we)) = min
e∈E

Π(we = we) = min
e∈E

μW̃e
(we).

We can now fuzzyfy intervals ΔX and Δf obtaining fuzzy intervals Δ̃X and Δ̃f ,
whose membership functions express the possibility distributions for deviations
δX and δf . This can be done in the following way:

μΔ̃X
(δ) = Π(δX = δ) = sup

{www : δX (www)=δ}
π(www),

μΔ̃f
(δ) = Π(δf = δ) = sup

{www : δf (www)=δ}
π(www).

Having the possibility distribution for Δ̃X we can calculate the possibility and
necessity of an event δX ∈ [δ−, δ+] in the following way:

Π(δX ∈ [δ−, δ+]) = sup
δ∈[δ−,δ+]

μΔ̃X
(δ),

N(δX ∈ [δ−, δ+]) = 1 − Π(δX /∈ [δ−, δ+]) = 1 − sup
δ/∈[δ−,δ+]

μΔ̃X
(δ).

The same formulae hold for an element deviation δf . Considering the particular
event δX = 0 we can compute the degrees of possible and necessary optimality
of solution X in the following way:

Π(X is optimal) = Π(δX = 0) = μΔ̃X
(0), (7)

N(X is optimal) = N(δX = 0) = 1 − Π(δX > 0) = 1 − sup
δ>0

μΔ̃X
(δ). (8)

In the same way we define the degrees of possible and necessary optimality of
element f , using Δ̃f .

4.3 Application of Gradual Numbers to Computing Δ̃X and Δ̃f

In this section we show that the concept of a gradual number allows to extend
naturally all the results from Section 3 to the fuzzy-valued case. In consequence
we obtain methods for computing the fuzzy deviations Δ̃X and Δ̃f . We start
with introducing the notion of a fuzzy configuration, which is a vector (w̃̃w̃w)e∈E
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of gradual numbers specified for the weight of every element e ∈ E. Now, the
gradual weight of a solution X ∈ Φ under a fuzzy configuration w̃ww is F̃ (X,w̃ww) =∑

e∈X w̃e(w̃ww) and F̃ ∗(w̃ww) = minX∈Φ F̃ (X,w̃ww). Hence δ̃X(w̃ww) = F̃ (X,w̃ww) − F̃ ∗(w̃ww)
and δ̃f (w̃ww) = F̃ ∗

f (w̃̃w̃w) − F̃ ∗(w̃ww) = minX∈Φf

∑
e∈X w̃e(w̃ww) − F̃ ∗(w̃ww). Observe, that

δ̃X(w̃ww) and δ̃f (w̃ww) are now gradual numbers and they are computed by means of
operations of the sum, the subtraction and the minimum in the space of gradual
numbers.

Suppose now that for every weight we, e ∈ E, there is given a fuzzy in-
terval W̃e = [w̃−

e , w̃+
e ], where w̃−

e is a gradual lower bound and w̃+
e is a grad-

ual upper bound of W̃e. Now the fuzzy deviations are fuzzy intervals which
can be also described by pairs of gradual numbers, namely Δ̃X = [δ̃−X , δ̃+

X ] and
Δ̃f = [δ̃−f , δ̃+

f ].
In order to apply the interval methods, given in Section 3, to the fuzzy interval

computations, we need to extend extreme configurations to the fuzzy extreme
ones. Let A ⊆ E be a given subset of elements. In the fuzzy extreme configuration
w̃ww+

A all elements e ∈ A have gradual weights w̃+
e and all the remaining ones have

gradual weights w̃−
e . Similarly, in the fuzzy fuzzy extreme configuration w̃ww−

A all
elements e ∈ A have gradual weights w̃−

e and all the remaining ones have gradual
weights w̃+

e . Now w̃e(w̃ww+
A) and w̃e(w̃ww−

A) are gradual weights in fuzzy extreme
configurations w̃ww+

A and w̃ww−
A, respectively. A fuzzy counterpart of Proposition 1 is

the following one:

Proposition 2. The following equalities hold:

δ̃−X = min
w̃ww∈×e∈E{w̃−

e ,w̃+
e }

δ̃X(w̃ww) = δ̃X(w̃ww−
X), δ̃+

X = max
w̃ww∈×e∈E{w̃−

e ,w̃+
e }

δ̃X(w̃ww) = δ̃X(w̃ww+
X),

δ̃−f = min
w̃ww∈×e∈E{w̃−

e ,w̃+
e }

δ̃f (w̃ww), δ̃+
f = max

w̃ww∈×e∈E{w̃−
e ,w̃+

e }
δ̃f (w̃ww),

Proof. The proof that the minimum and maximum are attained in fuzzy extreme
configurations follows from [8] and the fact that functions δX and δf are locally
monotonic with respect to each variable. The proof that w̃ww−

X (w̃ww+
X) minimizes

(maximizes) δ̃X(w̃ww) follows from the existence of a link between the interval
model and the fuzzy one. Observe that W̃e = [w̃−

e , w̃+
e ] = [Aw̃−

e
(λ), Aw̃+

e
(λ)] for

λ ∈ [0, 1]. Hence, from Proposition 1 we conclude that for every fixed λ the
maximum and minimum are attained either at Aw̃−

e
(λ) or Aw̃+

e
(λ). ��

Notice that, similarly to the interval-valued case, we can identify the fuzzy
extreme configurations that minimize and maximize the fuzzy deviation for a
solution but it may be a hard task for an element.

Computing Δ̃X. From Proposition 2, we immediately obtain algorithms for
determining the gradual lower and upper bounds of fuzzy interval Δ̃X for a
given solution X ∈ Φ. Algorithm 1 is the one for determining the gradual lower
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Algorithm 1. Determining the gradual lower bound of Δ̃X

Input: Solution X ∈ Φ, fuzzy weights W̃e = [w̃−
e , w̃+

e ], e ∈ E.
Output: The gradual lower bound δ̃−

X of Δ̃X .
foreach e ∈ E do1

if e ∈ X then w̃e(w̃ww
−
X) ← w̃−

e else w̃e(w̃ww
−
X) ← w̃+

e2

end3

F̃ (X,w̃ww−
X) ←

∑
e∈X w̃e(w̃ww

−
X) /* the sum of gradual numbers */4

Compute F̃ ∗(w̃ww−
X) by solving minX∈Φ F̃ (X,w̃ww−

X) = minX∈Φ

∑
e∈X w̃e(w̃ww

−
X)5

δ̃−
X ← F̃ (X,w̃ww−

X) − F̃ ∗(w̃ww−
X) /* the subtraction of gradual numbers */6

return δ̃−
X7

bound δ̃−X (an algorithm for the gradual upper bound δ̃+
X is similar). A key

line in Algorithm 1 is line 1, in which we compute the value of F̃ ∗(w̃ww−
X). This

is a gradual number expressing the fuzzy value of the weight of an optimal
solution in fuzzy configurationw̃ww−

X . From the technical point of view, F̃ ∗(w̃ww−
X)

is a function from [0, 1] to IR and it can be obtained by solving a parametric
version of the combinatorial optimization problem P . Recall that in a parametric
problem every element weight is specified as a function w(λ), λ ∈ IR, and we
wish to compute function F ∗(λ), so that F ∗(λ) is the weight of an optimal
solution if the element weights are set to w(λ). In our case the weights are given
as the assignment functionsAw̃e(w̃ww−

X)(λ) for all e ∈ E. In particular, if we apply
fuzzy intervals of the L-R type, then we can use assignment functions of the
form (6). In order to compute the value of F̃ ∗(w̃ww−

X) some known methods for
solving parametric problems with linearly varying weights can be applied (see
e.g. [6,12,13]). These algorithms can be directly applied if the fuzzy intervals are
trapezoidal or triangular ones (their shape functions are linear). They can be
also applied if the fuzzy intervals are of the L-L type (their right and left shape
functions are the same) since function L can be then easily linearized. From the
knowledge of fuzzy deviation Δ̃X , we can also obtain the degrees of possibility
and necessity that a given solution X is optimal (see (7) and (8)).

Let us illustrate our algorithms by an example. Consider Shortest Path

problem shown in Fig. 2. The arc weights are given as triangular fuzzy intervals:
W̃a1 = (2, 2, 2), W̃a2 = (2, 1, 4), W̃a3 = (6, 2, 1), W̃a4 = (2, 1, 4), W̃a5 = (1, 1, 1).
We wish to compute the fuzzy deviation for the path composed of arcs a1 and
a3, that is Δ̃{a1,a3}. In Fig. 2a the fuzzy configuration w̃ww−

{a1,a3} and in Fig. 2b
the fuzzy configuration w̃ww+

{a1,a3} are shown. Observe, that these configurations
induce two parametric shortest path problems in which the parametric weights
are computed by means of formula (6). Solving the parametric problems we
obtain the gradual numbers F̃ ∗(w̃ww−

{a1,a3}) and F̃ ∗(w̃ww+
{a1,a3}). Comparing them to

F̃ ({a1, a3}, w̃ww−
{a1,a3}) and F̃ ({a1, a3}, w̃ww+

{a1,a3}) we obtain the gradual lower and
the gradual upper bounds of Δ̃{a1,a3} (see Fig. 2c).

We can see that Π({a1, a3} is optimal) = 4/7 and N({a1, a3} is optimal) = 0.
We can obtain also an additional information, for instance Π(δ{a1,a3} ≤ 1 3

5 ) = 4/5.
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Fig. 2. An example of fuzzy-valued Shortest Path Problem

Computing Δ̃f for Some Practical Problems. Contrary to the optimality
of solutions, there is no an easy characterization of the optimality of the elements
and the computational complexity of determining Δ̃f for a given element f ∈ E
strongly depends on a particular problem P .

Recall that δ̃f (w̃ww) = F̃ ∗
f (w̃̃w̃w)−F̃ ∗(w̃ww) and we wish to determine δ̃−f and δ̃+

f , that
is the gradual numbers that minimize and maximize δ̃f (w̃ww). While computing
these gradual bounds for a given element f ∈ E two problems arises. The first
one is computing the extreme configurations that minimize and maximize δ̃f(w̃ww).
It turns out that the problem of computing the proper extreme configurations
is strongly NP-hard for some well-known, polynomially solvable problems like
Shortest Path, Minimum Assignment and Minimum Cut. These problems
remain strongly NP-hard even in the interval-valued case. The second problem
is computing a gradual minimum over all solutions that contain element f , that
is the value of F̃ ∗

f (w̃̃w̃w).
In this section we briefly present some particular problems for which Δ̃f can

be efficiently determined. The first problem is Minimum Spanning Tree. Given
is an undirected graph G = (V, E) with edge weights specified as fuzzy intervals.
Set Φ consists of all spanning trees of G. We wish to determine interval Δ̃f

(more precisely the possibility distribution μΔ̃f
(x)) for a given edge f ∈ E. The

following proposition immediately follows from the result obtained in [9]:

Proposition 3. The fuzzy configuration w̃ww−
{f} minimizes and the fuzzy configu-

ration w̃ww+
{f} maximizes gradual deviation δ̃f (w̃̃w̃w).

Applying the parametric approach proposed in [6] we can compute the values of
F̃ ∗(w̃ww−

{f}) and F̃ ∗(w̃ww+
{f}). Applying a slightly modified parametric approach we

can also compute F̃ ∗
f (w̃ww−

{f}) and F̃ ∗
f (w̃ww+

{f}). In consequence we obtain δ̃−f and δ̃+
f

for the problem.
The second problem for which Δ̃f can be efficiently computed is

Shortest Path when the input graph is restricted to be edge series-parallel
digraph (see [14] for a description of this class of graphs). In this problem there
is given an edge series parallel digraph G = (V, A) with two distinguished nodes
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s and t and arc weights specified as fuzzy intervals. Set Φ consists of all paths
from s to t in G. Denote by Pred(f) the set of all arcs that precede arc f and
by Succ(f) the set of all arcs that succeed arc f on a path from s to t in G. The
following proposition is a consequence of the results from [3]:

Proposition 4. The fuzzy configuration w̃ww−
{Pred(f)∪{f}∪Succ(f)} minimizes and

the fuzzy configuration w̃ww+
{Pred(f)∪{f}∪Succ(f)}) maximizes gradual deviation

δ̃f (w̃̃w̃w).

Applying a parametric approach proposed in [12] we can compute the value of
F̃ ∗(w̃ww), where w̃ww is one of the two fuzzy configurations specified in Proposition 4.
The value of F̃ ∗

f (w̃ww) for arc f = (k, l) can be computed using the fact that
F̃ ∗

f (w̃ww) = F̃ ∗
s−k(w̃ww) + w̃f (w̃ww) + F̃ ∗

l−t(w̃ww), where F̃ ∗
s−k(w̃ww) is the gradual weight of a

shortest path from s to k and F̃ ∗
l−t(w̃ww) is the gradual weight of a shortest path

from l to t in configuration w̃̃w̃w. Both gradual numbers can be also computed by
means of the parametric approach proposed in [12].
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Abstract. The typical fuzzy classifier consists of rules each one describ-
ing one of the classes. This paper presents a new fuzzy classifier with
probabilistic IF-THEN rules. A learning algorithm based on the gradi-
ent descent method is proposed to identify the probabilistic IF-THEN
rules from the training data set. This new fuzzy classifier is finally ap-
plied to the well-known Wisconsin breast cancer classification problem,
and a compact, interpretable and accurate probabilistic IF-THEN rule
base is achieved.

1 Introduction

Fuzzy production rules can deal with the imprecise knowledge and uncertainty
information and strengthen the knowledge representation power. However, how
to get proper fuzzy rules is still the most important task for a fuzzy model. There
are mainly two approaches to tackle this problem. One is directly summarizing
the operators’ or experts’ experiences and translating their knowledge into fuzzy
rules. The knowledge acquisition and verification process, however, are difficult
and time-consuming. Another approach is obtaining fuzzy rules through machine
learning, with which automatically generate or extract knowledge from sample
cases or examples.

We focus on the problem of obtaining a compact and accurate fuzzy rule-
based classification system from the observation data. Typical fuzzy classifiers
consist of interpretable if-then rules with fuzzy antecedents and class labels in
the consequent part. The antecedents (if-parts) of the rules partition the in-
put space into a number of fuzzy regions by fuzzy sets, while the consequents
(then-parts) describe the output of the classifier in these regions. In order to
determine the fuzzy model automatically, many different techniques have been
presented. [1] constructed a self-adaptive neuro-fuzzy classification system, this
system is capable of self-adapting and self-organizing its internal structure to
acquire a parsimonious rule-base for interpreting the embedded knowledge of a
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system from the given training data set. [2] discussed the GA-fuzzy modelling
from the observation data. In this model, First fuzzy clustering is applied to
obtain a compact initial rule-based model. Then this model is optimized by a
real-coded GA subjected to constraints that maintain the semantic properties
of the rules. A special designed fuzzy-genetic classification system is applied to
the Wisconsin breast cancer data [3]. In order to reduce the complexity of the
fuzzy model and achieve a compact and interpretable fuzzy classification system,
much work based on fuzzy clustering algorithms is tried to initialize the fuzzy
model. [4] presented a fuzzy relation-based classifier trained by fuzzy c-mean
clustering. However, the obtained membership values have to be projected onto
the input variables and approximated by parameterized membership functions
that deteriorates the performance of the classifier. To avoid the projection error
and maintain the interpretability of the model, the Gath-Geva (GG) clustering
algorithm [5] is proposed to identify the fuzzy model. Since GG clustering al-
gorithm doesn’t utilize the class labels, [6] proposed a modified GG clustering
algorithm to identify the fuzzy classification system.

In this paper we mainly solve the identification problem of fuzzy classification
rules from data. But the proposed fuzzy classification rule is different from the
classical fuzzy rule. This kind of fuzzy classification rule is similar to that in [6],
and is a generalization of that in [15]. That is, the consequent of each fuzzy rule is
defined as the probabilities that a given rule represents all classes. The novelty
of this new model is that one rule can represent more than one classes with
different probabilities. Hence, the same antecedent (fuzzy subregion in the input
domain) can infer different classes with different class conditional probabilities.
The decision strategy of this new classification system is the Bayes decision rule.
According to this kind of decision rule, an objective function based on posterior
probabilities of classes given the predictive features is defined, and a gradient-
based method is proposed to optimize the parameters in the proposed fuzzy
model and improve the classification accuracy.

The paper is organized as follows. Section 2 presents new fuzzy classification
rules and its reasoning process. Section 3 describes the identification process
based on gradient descent method. Section 4 is our test results in the well-known
Wisconsin breast cancer data set. The final section offers the conclusions.

2 Structure of the Fuzzy Rule-Based Classifier

The identification of a classifier system means the construction of a model that
predicts the class yk = {c1, c2, . . . , cC} to which pattern xk = [x1k, x2k, . . . , xnk]
should be assigned. The classic approach for this problem C classes is based on
Bayes’ rule. The probability of making an error when classifying an example xk

is minimized by Bayes’ decision rule of assigning it to the class with the largest
a posteriori probability:

x is assigned to ci ⇐⇒ p(ci | x) ≥ p(cj | x) ∀j �= i. (1)
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2.1 Classical Fuzzy Classifier

Fuzzy classification is a decision process based on the fuzzy logic. Fuzzy classifi-
cation system consists of classification rules. This system determines a mapping
from a given input to an output representing the class, and each rule represents
a local mapping from a given input to an output.

Taking into account a classification problem which has n decision variables
(attributes or features) Xi, i = 1, 2, . . . , n and one class variable y. Assume Ui

is the universe of discourse of variable Xi, then the classical fuzzy classification
system consists of C fuzzy if-then rules of the forms:

If (X1 is Ar1) and (X2 is Ar2) . . . and (Xn is Arn)
then y is cr with certainty factor αr; (2)

where Aij is the fuzzy set of Uj and cr ∈ {c1, c2, . . . , cC} is the class label. The
parameter αr is the certainty factor which means how certain the relationship
between the antecedent and the consequent of this rule is. Furthermore, the
certainty factor is within the range of [0, 1].

When taking into account the certainty factor of each rule, given a case which
has n attribute values (x1, x2, . . . , xn), the reasoning method is described as
follows:

1. calculate the degree of activation of each rule. For each rule R(r) (see (2)),
Ar1(x1), Ar2(x2), . . ., Arn(xn) are the membership degrees in the antecedent
propositions. Assume that the and connective is modelled by the product
operator allowing for the interaction between the propositions in the an-
tecedent, hence, the degree of activation of the ith rule is calculated as:

wr(x) = αr

n∏

k=1

Ark(xk). (3)

2. Determine the output. The output of the classical fuzzy classifier is deter-
mined by the winner takes all strategy, i.e.,

ŷ = ci∗ , i∗ = argmax1≤i≤Cwi(x). (4)

Though any type of membership functions (e.g., the triangle-shaped, trapezoid-
shaped and bell-shaped) can be used for fuzzy sets, we employ the gauss-shaped
fuzzy sets Arj, with the following membership function:

Arj(xj) = exp

[
−1

2

(
xj − aj

r

σj
r

)2
]

, (5)

where aj
r represents the center and σj

r stands for the variance of the Gaussian func-
tion. The use of Gaussian function allows for the compaction formulation of (3),

wr(x) = αrAr(x)

= αr exp
(

−1
2
(x − ar)T (Fr)−1(x − ar)

)
, (6)



Fuzzy Classifier with Probabilistic IF-THEN Rules 669

where ar denotes the center of the rth multivariate Gaussian and Fr stands for
a diagonal matrix that contains the variances (σj

r)
2.

If we assume that the class conditional probability in the classical fuzzy clas-
sifier is defined as follows,

p(cr | x) =
wr(x)

∑C
i=1 wi(x)

, (7)

then the classical fuzzy classifier is a special case of Bayes classifier.

2.2 Fuzzy Classifier with Conditional Probabilities

In most situation, the Bayes rule is adopted to make classification decision. In
this paper, we propose a new fuzzy classifier. This new fuzzy classifier consists
of m fuzzy classification rule, each fuzzy rule can represents more than one class
with different probabilities. That is, the ith fuzzy classification rule has the form
as follows,

If (X1 is Ar1) and (X2 is Ar2) . . . and (Xn is Arn)
then y is c1 with p(c1 | Rr) . . . y is cC with p(cC | Rr) (8)

satisfying

0 ≤ p(ci | Rr) ≤ 1,

m∑

i=1

p(ci | Rr) = 1.

The above formulation shows that the same antecedent can infer different
classes with different probabilities. In the classical fuzzy model, the same an-
tecedent can just infer one definite class with some degree of certainty. So we
can think the new fuzzy model is an extended fuzzy classifier. This fuzzy model
is actual a mixture of classical fuzzy classifiers since the Bayes decision rule in
new fuzzy classifier is defined as follows,

p(cr | x) =
m∑

i=1

p(Ri | x)p(cr | Ri), (9)

where

p(Ri | x) =
Ai(x)∑m
i=1 Ai(x)

(10)

In the reference [6], authors assign a weight to the fuzzy rule defined as (8)
and present an identification method from data based on fuzzy clustering. In
our proposed fuzzy classifier structure, the weight assigned to each fuzzy rule is
deleted, or fixed as constant one, since we think the fuzzy rule with conditional
probabilities has enough represent ability and has well transparency.

The remaining paper focuses on the identification method of new fuzzy classi-
fier from data. In general, the number m of fuzzy rules is predefined. Hence, the
parameters required to be identified are the mean and covariance of each gaus-
sian membership function in the antecedent of each fuzzy rule, and conditional
probabilities associated with each fuzzy rule. We adopt gradient-based method
to work out the parameter identification.
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3 Identification of Fuzzy Classifier

Assume that the training data set D consists of N training cases [xj; yj] =
[x1j , x2j , . . ., xnj ; yj ], where yj ∈ {c1, c2 . . . , cC}, j = 1, . . . , N . The object to
identify the parameters in the fuzzy classifier is to find the parameters to best
model the data set. Since we make the classification decision by maximizing
posteriori class probability, the notion of “best” means that maximizing the
objection function

Q(D) =
N∏

j=1

p(yj | xj). (11)

We view Q(D) as the function of the parameters in the fuzzy classifier. In
fact, it turns out to be easies to maximize the log-function lnQ(D). Since two
functions are monotonically related, maximizing one is equivalent to the other.
By Jensen inequality, we have

ln Q(D) ≥
N∑

j=1

n∑

i=1

μij ln P (yj |Ri) (12)

= H(D), (13)

where

μij =
Ai(xj)∑m
i=1 Ai(xj)

. (14)

Since log-function lnQ(D) is lower bounded by function H(D), we can max-
imize H(D). In fact, this maximization problem is a constrained optimization
problem. That is, for every i, we must have that

∑m
h=1 p(ch|Ri) = 1. Introducing

Lagrange multipliers for these constraints, we conclude that our solutions must
satisfy the following formulas,

∂

∂p(ck|Ri)

(
H(D) + λ

(
m∑

h=1

p(ch|Ri) − 1

))
= 0, (15)

for all i, k.
Hence we have the following formula,

p(ck|Ri) =

∑
j:yj=ck

μij

N∑
j=1

μij

, (16)

for all i, k.
In order to determine the shapes of fuzzy sets in the antecedent of each fuzzy

rule, we adopt the gradient-based method to resolve this problem.
By the Eq. (12) and Eq. (14), we can view H(D) as the function of the

parameter vector w which consists of the centers ak
r and the widths σk

r of the
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fuzzy subsets Ark. This reduces the maximizing H(D) problem to one of finding
a maximum of a multivariate nonlinear function. Algorithms for solving this
problem typically take a small steps on the surface whose “coordinates” are the
parameters of the function and whose “height” is the value of the function, trying
to get to the “highest” point on the surface.

The simplest of this approach, and the one we use, is gradient descent (also
known as “hill-climbing”). At each point w, it computes ∇w, the partial deriva-
tives vector with respect to the centers and the widths of the fuzzy subsets. The
algorithm then take a small step in the direction of the gradient. Naively, this
would be to the point w+α∇w, where α is a step-size parameter. The algorithm
terminates when a local maximum is reached, that is, when the gradient is zero.

The partial derivative with respect to the parameter ak
r can be obtained as

follows,

∂H(D)
∂ak

r

=

N∑

j=1

xkj − ak
r

(σk
r )2

μrk

[
ln p(yj | Rr) −

m∑

h=1

μhj ln p(yj | Rh)

]
(17)

Similarly, we can obtain the partial derivative with respect to the parameter σk
r ,

∂H(D)
∂σk

r

=

N∑

j=1

(xkj − ak
r )2

(σk
r )3

μrk

[
ln p(yj | Rr) −

m∑

h=1

μhj ln p(yj | Rh)

]
(18)

We can now summarize the above discussion in the form of a basic algorithm
for learning the fuzzy classifier with conditional probabilities from the training
data set. For sake of clarity, we show this basic algorithm in the Fig. 1.

In order to initialize the parameters of the fuzzy classifier, we generate a
random matrix U such that

0 < μrj < 1,
m∑

r=1

urj = 1, r = 1, . . . , m, j = 1, . . . , N (19)

then we use the following formulas to estimate the initial mean values and widths
of gaussian membership functions in the fuzzy classifier,

ak
r =

∑N
j=1 μrjxkj

∑N
j=1 μrj

, (20)

(σk
r )2 =

∑N
j=1 μrj(xkj − ak

r)2
∑N

j=1 μrj

. (21)
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function F-Algorithm(F, D) returns an optimized fuzzy classifier
inputs: F, a fuzzy classifier with parameters w = (ak

r , σk
r )

D, a set of training examples

repeat until Δw ≈ 0
for each class ck and the rth rule

compute probability p(ck | Rr) in F according to the Eq. (16)

for each variable X̃k, the ith rule
compute ∂H(D)

∂ak
r

according to the Eq. (17)

compute ∂H(D)
∂σk

r
according to the Eq. (18)

ak
r ← ak

r + α∂H(D)
∂ak

r

σk
r ← σk

r + α∂H(D)
∂σk

r

Δw = ( ∂H(D)
∂ak

r
, ∂H(D)

∂σk
r

)

w = (ak
r , σk

r )
return F

Fig. 1. A basic algorithm

4 Performance Evaluation

In order to examine the performance of the fuzzy classifier one well-known mul-
tidimensional classification benchmark problem is presented in this section. The
studied Wisconsin breast cancer data comes from the UCI Repository of Machine
Learning Database (http://www.ics.uci.edu).

The performance of the obtained classifier measured by 10–fold cross valida-
tion. The data is divided into ten sub-sets of cases that have similar size and class
distributions. Each sub-set is left out once, while the other nine are applied for
the construction of the classifier which is subsequently validated for the unseen
cases in the left-out sub-set.

Wisconsin breast cancer data is widely used to test the effectiveness of clas-
sification and rule extraction algorithms. The data samples are taken from fine
needle aspirates from human breast tissue. The aim of the classification is to
distinguish between benign and malignant cancers based on the available nine
measurements: X1 clump thickness, X2 uniformity of cell size, X3 uniformity of
cell shape, X4 marginal adhesion, X5 single epithelial cell size, X6 bare nuclei,
X7 bland chromatin, X8 normal nuclei, and X9 mitosis. The measurements are
assigned an integer value between 1 and 10, with 1 being the closest to benign
and 10 the most anaplastic. Associated with each sample is its class label, which
is either benign or malignant. The original database contains 699 instances how-
ever 16 of these are omitted because these are incomplete, which is common
with other studies. The class distribution is 65.5% benign and 34.5% malignant,
respectively.
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Table 1. The classification results of the fuzzy classifier constructed for the Wisconsin
breast cancer problem

Number of rules Min Acc. Max Acc. Mean Acc.

m = 2 95.59% 100% 97.16%
m = 3 98.53% 100% 98.56%

Partial previous work on the classification problem for the Wisconsin breast
cancer is listed in the reference [6]. The advanced version of C4.5 gives misclassi-
fication of 5.26% on 10-fold cross validation (94.74% correct classification) with
tree size 25±0.5 [7]. [8] use the decision tree to initialize the fuzzy classifier and
GAs to improve the classification accuracy. In this method, the decision tree is
used for the selection of the relevant attributes and effective initial partitioning
of the input domains of the fuzzy system. The classification accuracy of this
fuzzy system with two rules on the Wisconsin breast cancer data is 96.87%.
[9] developed a constrained-syntax genetic programming system for discovering
classification rules in the Wisconsin breast cancer data, the classification accu-
racy is compatible with the advanced version of C4.5 [7]. [10] combined neuro-
fuzzy techniques with interactive strategies for rule pruning to obtain a fuzzy
classifier. An initial rule-base was made by applying two sets for each input,
resulting in 29 = 512 rules which was reduced to 135 by deleting the non-firing
rules. A heuristic data-driven learning method was applied instead of gradient
descent learning, which is not applicable for triangular membership functions.
Semantic properties were taken into account by constraining the search space.
The final fuzzy classifier could be reduced to two rules with 5-6 features only,
with a misclassification of 4.94% on 10-fold validation (95.06% classification ac-
curacy). Rule-generating methods that combine GA and fuzzy logic were also
applied to this problem [3]. In this method the number of rules to be generated
needs to be determined a priori. This method constructs a fuzzy model that has
four membership functions and one rule with an additional else part. [11] devel-
oped a fuzzy classification system with FeatureSelector and modified threshold
accepting to test the Wisconsin breast cancer data. This classification system
can reduce the dimension of the feature space in classification problems of high
dimensions without sacrificing the classification power considerably. [12] also de-
veloped a fuzzy classifier with the ability of feature selection based on fuzzy
entropy measure. The application of this system in the Wisconsin breast cancer
data shows that this method can reduce the dimensionality of the problem. [13]
has generated similar compact classifier by a two-step rule extraction from a
feedforward neural network trained on preprocessed data. [14] presented a hy-
brid system combining the numerical and linguistical knowledge representation
to deal with the medical diagnosis. This model is a hierarchical integration of
an incremental learning fuzzy neural network and a linguistic model, i.e., fuzzy
expert system, optimized via the genetic algorithm.
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Fig. 2. The convergence of the objective function trained by gradient-based method
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Fig. 3. The convergence of the classification accuracy trained by gradient-based
method

In Table 1, we list the experimental results on the Wisconsin breast cancer
database by using the fuzzy classifier with conditional probabilities. This table
shows that our fuzzy classifier can achieve very high accuracy with simple model
structure. The fuzzy classifier with 2 fuzzy classification rules achieves 97.16%
mean accuracy, and the fuzzy classifier with 3 fuzzy classification rules achieves
98.56% mean accuracy. In this experiment, the learning rate α = 0.001 and
iteration number is 1000.

Figure 2 illustrates the changing trend of the objective function H(D) of the
Wisconsin breast cancer data in one of cross-validation phase. Figure 3 illus-
trates the corresponding classification accuracy of the fuzzy system. These two
figures show that optimizing the objective function can improve the classification
accuracy, and the objective function and classification accuracy reach the local
maxima almost at the same time very quickly.
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5 Conclusions

In this paper we provide a gradient-based method to identify a new fuzzy clas-
sification system from observation data. This fuzzy classifier consists of rules
each one represents more than one class with different conditional probabilities.
And this fuzzy classifier can be represented as a mixture model of classical fuzzy
classifiers. For the identification of the proposed fuzzy classifier a gradient-based
method has been worked out by optimizing an objective function based on the
posterior probabilities of classes given the predictive features.

In the proposed identification method, an alternating optimization process
is adopted. The conditional class probabilities associated with each fuzzy rule
is calculated from the training data and parameters of the fuzzy sets in the
antecedents, and the gradient of the parameters of the fuzzy sets in the fuzzy
model is computed out from the training data and class conditional probabilities.
Moreover, the computation involved in the optimization is easy and direct.

A compact and interpretable fuzzy classifier is achieved by applying the pro-
posed method to the well-known Wisconsin breast cancer data. The test results
show that this fuzzy classification system has strong power of knowledge repre-
sentation and the gradient-based identification method is very effective.
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Abstract. Generally, as for Genetic Algorithms (GAs), it is not always
optimal search efficiency, because genetic parameters (crossover rate, mu-
tation rate and so on) are fixed. For this problem, we have already pro-
posed Fuzzy Adaptive Search Method for GA (FASGA) that is able to
tune the genetic parameters according to the search stage by the fuzzy
reasoning. On the other hand, in order to improve the solution quality
of GA, Parallel Genetic Algorithm (PGA) based on the local evolution
in plural sub-populations (islands) and the migration of individuals be-
tween islands has been researched.

In this research, Fuzzy Adaptive Search method for Parallel GA
(FASPGA) combined FASGA with PGA is proposed. Moreover as the
improvement method for FASPGA, Diversity Measure based Fuzzy
Adaptive Search method for Parallel GA (DM-FASPGA) is also pro-
posed. Computer simulation was carried out to confirm the efficiency of
the proposed method and the simulation results are also reported in this
paper.

1 Introduction

Some tools for monitoring the exploitation/exploration relationship (EER) [1]
have been proposed in order to avoid the premature convergence problem and im-
prove GA performance [2,3]. These tools include modified selection and crossover
operators and the optimization of parameter setting. Some of these tools are
based on the fuzzy logic based techniques [4,5,6]. In our laboratory, we have al-
ready proposed Fuzzy Adaptive Search method for Genetic Algorithm (FASGA)
and for Genetic Programming (FASGP) [7,8]. FASGA and FASGP are able to
realize the efficient search by describing of fuzzy rules to tune GA and GP pa-
rameters (crossover rate, mutation rate and so on) based on the maximum and
average fitness values according to the search stage. In other words, the GA
parameters are not fixed and varying with the search stage. So FASGA has a
quick search ability to obtain the best solution than GAs. But FASGA has not
very good performance to obtain the higher quality solution, because it could
not avoid the premature convergence and fall in the local solution completely.

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 677–687, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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On the other hand, some GAs in parallel methods were already proposed as
the effective method for finding high quality solutions [9,10,11,12,13]. In parallel
methods, the total population is divided into independent subpopulations called
islands. There are three kinds of distribution models: 1) master-slave model;
2) coarse-grained model (island model); 3) fine-grained model (cellular model).
In this research, we use the island model for avoiding to propagation of local
optimum solutions in whole population and obtaining high quality solution. After
a predetermined number of generations (the migration interval), some genes
are moved to the another island at a predetermined migration rate (defined as
the number of genes migrating per migration event). In this paper, GA based
on parallel methods is called Parallel Genetic Algorithm (PGA). Because the
existence of islands and the operation of migration, the variety of solutions is
kept in PGA and higher quality solutions are able to be obtained than GAs.
However, PGA has also the disadvantage itself. It is that PGA is not always
effective in using parallel processing because the migration rate of PGA is a
constant. In fact, the migration of individuals is not necessarily performed only
in case of necessity. To overcome this problem, many researchers have proposed
the solved method, such as, a distributed genetic algorithm with the randomized
migration rate [14], a parallel genetic algorithm with the distributed environment
scheme [15].

Therefore, we have already proposed Fuzzy Adaptive Search method for Par-
allel Genetic Algorithm (FASPGA) combined FASGA with PGA. FASPGA is
a genetic algorithm in parallel method with both the quick search and high-
quality solutions ability. In this method, parameters tuned by fuzzy rules are
not only the crossover rate and mutation rate but also the migration rate. So an
efficient migration can be realized in FASPGA. We has proved that FASPGA
has better performance than PGA and FASGA in [16,17,18]. In this research, we
have adopted the phenotypic parameters, maximum and average fitness as the
inputs of fuzzy rules, but it could be considered that it is not enough to describe
the search stage. Therefore, as an improvement method for FASPGA, Diversity
Measure based Fuzzy Adaptive Search method for Parallel GA (DM-FASPGA)
is also proposed in this paper. In this method, we introduce the genotypic pa-
rameters, such as the hamming distance, into the fuzzy rule. As combining with
phenotype parameters, there are many combinations as the input of fuzzy rules.
For finding out optimum combination, many simulations are executed in this
research. The results of simulations are also reported in this paper.

2 FASPGA

We have already proposed Fuzzy Adaptive Search method for Parallel Genetic
Algorithm (FASPGA) combined FASGA with quick search ability and Island
model Parallel GA with high-quality solutions ability in this research. General
concept of FASPGA is introduced in this section.
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2.1 Migration in FASPGA

In fact, the migration is an operation that some individuals are selected to move
from one island to another. By the migration, the better individuals could be
spread in all population quickly, and enhance the precision of the solution. The
migration of individuals from one island to another is controlled by these pa-
rameters: (a) a migration rate; (b) a migration interval; and (c) the topology
that defines the connections between islands. In FASPGA, the migration rate is
tuned by the fuzzy rule and we just use the random ring model for the topology.

To our knowledge, it is difficult to decide the migration rate properly, but
it affects the performance of FASPGA directly. Generally, the individuals of
migration are almost the best individuals of each subpopulation. So if the mi-
gration rate is larger, it is more advantage to spread the advance individuals to
all population and accelerate convergence. However, at the same time it causes
the decrease of population diversity and is the disadvantage to explore different
regions of the search space.

Generally, the migration rate is a constant in PGA. In the other words, the
size of individuals migrated are fixed for each island, regardless of the island with
the delayed evolutionary condition or with the advanced evolutionary condition.
It is obviously disadvantages to convergence of PGA as spreading of individuals
in island with the delayed evolutionary condition.

Therefore, for FASPGA proposed in this paper, the migration rate is not con-
stant and is tuned in a range by fuzzy rule according to states of each island. So
by the migration, some individuals in the island with the advanced evolutionary
condition are easy to be spread to whole population. On the contrary, some in-
dividuals in the island with the delayed evolutionary condition are difficult to be
spread to whole population. In there, the fuzzy rule plays a good role in guiding
the evolutional direction for improving the search efficiency.

We used the roulette wheel selection as the selection method to select mi-
gration individuals in FASPGA. Probability of the roulette wheel selection for
selecting individuals with high fitness value is used high in the sender island and
low in the receiver island as shown in the following equations. In these equation,
p means the populations size of island.

IndividualSelectionProbabilityinSenderIsland :
fi∑p
i=0 fi

(1)

IndividualSelectionProbabilityinReceiverIsland :
fmj − fj∑p

j=1(fmj − fj)
(2)

2.2 Fuzzy Reasoning of FASPGA

In FASPGA, the crossover rate rci , the mutation rate rmi and the migration rate
rei of each island are not fixed (i : island number) and are tuned by the fuzzy rule.
The IF part of the membership function is same as FASGA. It is composed of the
average fitness value fai and the difference between the maximum and average
fitness value (fmi-fai). But, FASPGA adds a parameter called the migration
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rate in THEN part. The result of output is calculated by the weighted average
based on the firing strength. The fuzzy rule and membership functions in IF
part and singletons in THEN part are shown in [18].

2.3 Algorithm Flow of FASPGA

At first, an initial population is generated in random. Then the fitness value of
each individual is calculated. Next, the initial population is divided into n sub-
populations (islands). After the selection by using the roulette wheel selection
method, the average fitness value fai and the maximum fitness value fmi are
calculated in each island (i = 1, 2, ..., n). By estimating a progress degree of
the evolution with the average fitness value fai and the difference between the
maximum and average fitness value (fmi-fai), the migration rate rei in each
island are decided by fuzzy rule. The migration rate rei is larger, the size of
individuals of migration is larger. And the migration is executed with the random
ring model. After the operation of migration and before the operation of crossover
and mutation, the average fitness value fai and the maximum fitness value fmi

of each island are calculated one more time. Because the fuzzy rule depends
on current average fitness value fai and difference between the maximum and
average fitness value (fmi-fai) to tune crossover rate rci and mutation rate rmi .
Finally, the terminate condition is checked. If it is contented then terminate the
evolution, else return to the operation of selection, and execute once more in the
same step. We can regard the flow of FASPGA as putting FASGA algorithm
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applying to each island. The algorithm flowchart of FASPGA proposed in this
paper is shown in Fig. 1. Tuning processes of the crossover rate rci , the mutation
rate rmi and the migration rate rei in each island by the fuzzy reasoning are
executed inside the dotted line area.

3 DM-FASPGA

For FASPGA, it was confirmed the better search efficiency and higher solution
quality than GA and PGA in the multi-peaks function. But as for the single peak
function, FASPGA was not confirmed the better than PGA, perhaps because
the diversity measure by the phenotypic distance is not efficient for the fitness
evaluation in the function with small change of curvature. Therefore, in this
paper, we propose an improvement method for FASPGA; Diversity Measure
based Fuzzy Adaptive Search method for Parallel Genetic Algorithms (DM-
FASPGA). The fuzzy reasoning in DM-FASPGA is almost same to FASPGA
except the point of using the diversity measure.

3.1 Diversity Measure

There are many kinds of the diversity measure methods proposed by the other
researchers [1,6]. Before introduce of the diversity measure methods used in this
research, we must explain the following of calculations for the diversity measure
executed in an island, not in whole population.

At first, a genotypic diversity measure method based on the Hamming Dis-
tances (HD) of the chromosomes between the individual and one individual with
average fitness is adopted. Its definition is

HD =
∑n

k=1 d(Iave, Ik)
n − 1

(3)

where Iave shows a chromosome with the closest fitness to average one in the
island, Ik shows any one chromosome in the island and d(Iave, Ik) means the
hamming distance between Iave and Ik. The n means the population size in the
island. The range of HD is from 0 to the chromosome’s length. If HD is lower,
it means more individuals converge on an individual with the average fitness.
On the contrary, if HD is higher, it means more individuals diverge from an
individual with the average fitness. There are several variant definitions for the
hamming distance shown as follows.

HD II =
∑n

k=1 d(Ibest, Ik)
n − 1

(4)

HD III =
HD I − min{d(Iave, Ik)}

max{d(Iave, Ik)} − min{d(Iave, Ik)} (5)

HD IV =
HD II − min{d(Ibest, Ik)}

max{d(Ibest, Ik)} − min{d(Ibest, Ik)} (6)

where Ibest shows a chromosome with the closest fitness to best one.



682 Y. Maeda and Q. Li

In the previous section, we introduced FASPGA that adopt the Average Fit-
ness (AF) and the Different Fitness between the best fitness and average fitness
(DF), which both are the phenotypic diversity measures. These are shown as in
Equations (7) and (8).

AF = fIave (7)
DF = fIbest

− fIave (8)

where fIbest
and fIave show the best fitness and average fitness value in the

island. If DF is samller, it means more individuals converge. On the contrary, if
DF is larger, it means more individuals diverge.

There are also several variant definitions for the phenotypic diversity shown
as follows.

DF II = fIave − fImin (9)

DF III =
∑n

k=1(fIave − fIk
)

n − 1
(10)

DF IV =
∑n

k=1(fIbest
− fIk

)
n − 1

(11)

where fIk
show the fitness value of any individual in the island.

At last, we introduce a Relative Phenotypic diversity measure (RP) defined
as following. RP values belong to the interval [0,1]. If the value of RP is near to
0, it means the population is convergence and in early search stage, whereas if it
is near to 1, it means that the population is divergence and in final search stage.

RP =
fIbest

fIave

(12)

3.2 Fuzzy Reasoning of DM-FASPGA

In this method, the inputs of the fuzzy rule are PD and GD, which the meaning of
the linguistic terms PD and GD are Phenotypic Diversity measure and Genotypic
Diversity measure. The outputs of the fuzzy rule are same to FASPGA composed
of the crossover rate rc, the mutation rate rm and the migration rate re. Fig.2
shows the fuzzy rule, membership functions and singletons of DM-FASPGA. The
algorithm flow of DM-FASPGA is same to FASPGA.

4 Simulation

To confirm the efficiency of DM-FASPGA proposed in this paper, the computer
simulation was executed as compared with PGA. In this simulation, we still
used the Rastrigin function and Rosenbrock function as the test function and
the elitist strategy is same to FASPGA. In this section, we will introduce the
parameters setting. The results and remarks are also reported.
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4.1 Test Function

In this simulation, we used the Rastrigin and Rosenbrock function as a test
function to confirm the efficiency of methods proposed in this paper. Here we
briefly describe each of them.

The Rastrigin Function is a typical non-linear multimodal function. It is a
n-dimensional function with multiple peaks as shown in Equation (13), which
has lattice-shaped semi-optimum solutions around an optimum solution, and
has no dependence between design parameters. This function is a fairly difficult
problem due to its large search space and its large number of local minima.

Rosenbrock’s function, also known as Banana function, is a classic optimiza-
tion problem. It is a single peak function as shown in Equation (14) and has
dependence between design parameters. The global optimum is inside along,
narrow, parabolic shaped flat valley. The valley is trivial, but the convergence
to the global optimum is difficult and hence this problem has been repeatedly
used in the performance evaluation of optimization algorithms.

FRastr(x) = 10n +
n∑

i=1

{x2
i − 10 cos(2πxi)} (13)

(−5.12 ≤ xi < 5.12)
min(FRastr(x)) = F (0, 0, . . . , 0) = 0

FRosen(x) =
n−1∑

i=1

{100(xi+1 − x2
i )

2 + (1 − xi)2} (14)

(−2.048 ≤ xi < 2.048)
min(FRosen(x)) = F (1, 1, . . . , 1) = 0

4.2 Parameters Setting

In this simulation, we execute the optimization simulations using Rastrigin and
Rosecbrock function with 20 variables by the binary coding. The result of sim-
ulations based on maximum fitness value is disscussed in this section. All of the

Table 1. Parameters setting

GA Parameters PGA FASPGA

Generations 1000 1000
Chromosome Length 200(L) 200
Total Population Size 500 500

Island Size 10 10
Selection Method Roulette Wheel Roulette Wheel
Crossover Rate 0.6 (Single Point)Tuned by Fuzzy Rule
Mutation Rate 1/L Tuned by Fuzzy Rule
Migration Rate 0.5 Tuned by Fuzzy Rule

Migration Interval 5 (generations) Checking Everytime

Table 2. Inputs of Fuzzy Rule

Simulation Inputs of Fuzzy Rule Coding

PP1 AF DF
PP2 AF DF II
PP3 AF DF III
PP4 AF DF IV
PG1 RP HD Binary
PG2 RP HD II
PG3 RP HD III
PG4 RP HD IV
PG5 AF HD

Gray-PG1 RP HD
Gray-PG2 RP HD II
Gray-PG3 RP HD III Gray
Gray-PG4 RP HD IV
Gray-PG5 AF HD
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figures in this paper display the maximum fitness on the y-axis, and generations
on the x-axis. For the convenience of writing computer programs, we increase
one minus sign before the test function like as fRastr(x) = − FRastr(x). The
optimum solution value is 0.

Here we introduce how to decide the value of parameters of membership func-
tions. At first, an initial population of individuals is produced in random. The
population size and island size are decided based on the parameter setting. Next
we calculate the average fitness fai and the difference between the maximum
fitness and the average fitness (fmi − fai) and so on.

In this computer simulation, the parameter setting is shown in Table 1. The
inputs of the fuzzy rule of DM-FASPGA are shown in Table 2. The way to
decide the membership functions is same to FASPGA and parameters of the
membership functions in Fig. 2 were omitted for want of space.

4.3 Simulation Results and Remarks

In this simulation, we compared the simulation results of DM-FASPGA with PGA
based on the maximum fitness value. In order to obtain stable results, all of the
simulation results are shown in the average value in 10 times. Fig. 3 to Fig. 7 show
the simulation results excuted by Rastrigin function. Fig. 4 to Fig. 8 are shown the
simulation results excuted by Rosenbrock function.

By Fig. 3 to 7, we could confirm that PGA has almost the worst performacne,
as the Rastrigin function is test function. However, in the Fig. 5, we could find
that PGA has better performance than PG2 in Rastrigin function. By Fig. 4 to 8,
we could confirm that FASPGA has almost better performance than PGA. And
it was observed that the total performance of Gray-PG has the best in both
Rastrigin and Rosenbrock function. Totally, PP1, PG1 and Gray-PG5 displayed
the best performance in case of Rastrigin function, but almost these parameters
performed the worst or bad behavior in Rosenbrock function.

From the above-mentioned results, we could find some rules for diversity mea-
sure. When the change of curvature of the test function is big, such as Rastrigin
function, the phenotypic diversity measure (such as AF, DF) will display good
performance than the genotypic diversity measure. On the contrary, when the
change of curvature of the test function is small, such as Rosenbrock function,
the genotypic diversity measure (such as HD) will display good performance than
the phenotypic diversity measure. As this reason, we consider that the change of
curvature is bigger, the phenotype distance is bigger, then phenotypic diversity
measure is useful to tune genetic parameters by fuzzy reasoning. On the other
hand, the change of curvature is smaller, the phenotype distance is smaller, then
the phenotypic diversity measure is unutilizable to tune genetic parameters by
fuzzy reasoning. But, in this time, the genotypic diversity measure is useful to
tune genetic parameters by fuzzy reasoning.

In addition, we confirmed that when the inputs of the fuzzy rule include
the genotypic diversity measure, the gray coding will show the better perfor-
mance. As this reason, we consider that the genotypic diversity measure defines
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Fig. 3. Simulation (PP in Rastrigin)
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Fig. 4. Simulation (PP in Rosenbrock)
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Fig. 5. Simulation (PG in Rastrigin)
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Fig. 6. Simulation (PG in Rosenbrock)
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Fig. 7. Simulation (Gray-PG in Rastri-
gin)
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Fig. 8. Simulation (Gray-PG in Rosen-
brock)

the distance in the bit string, and the genotypic distance of gray coding cor-
respond to the phenotypic distance, so gray coding is useful for the evolution
of solution, when the inputs of the fuzzy rule include the genotypic diversity
measure.
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5 Conclusions

In this paper, we proposed the Fuzzy Adaptive Search method for Parallel Ge-
netic Algorithm (FASPGA) combined FASGA with a quick search ability and
Island model Parallel GA with a high-quality solutions ability. By using the
fuzzy reasoning to tune the genetic parameters, FASPGA displayed a good per-
formance in Rastrigin function. However, FASPGA also displayed a bad per-
formance in Rosenbrock function. To improve the performance of FASPGA, we
proposed the Diversity Measure based Fuzzy Adaptive Search method for Par-
allel Genetic Algorithms (DM-FASPGA). A lots of combinations were adopted
as the inputs of the fuzzy rule in this paper and the computer simulation was
also excuted. From the simulation results, we confirmed that Hamming Distance
(HD) and Relative Phenotypic diversity (RP) were the best combination.

About the research plan for the future, we would like to introduce another
geneotypic diversity measure into the inputs of the fuzzy rule. To confirm the
usefulness of the proposed method, the application of the FASPGA method in
motion learning experiment of robot manipulator is also considered.
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1 Area de tecnoloǵıas de Información y Comunicaciones,
Universidad Alfonso X El Sabio, Spain

bmal@uax.es
2 Intelligent Control Group, Universidad Politécnica de Madrid, Spain
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Abstract. This paper deals with the design of a fuzzy (FC) based on
pole assignment method for the control of a robotic system. The main
idea is to design a supervisory fuzzy controller capable to adjust the
controller parameters in order to obtain the desired axes positions un-
der variationes of the robot parameters and payload variations. The be-
haviour of the closed loop fuzzy system controlled by the fuzzy controller
is identical to the linear system whose state transition matrix is the de-
sired one.

The main objective of this paper is the use of the affine Takagi-
Sugeno (T-S) fuzzy model to represent both the controlled system and
the fuzzy controller taking into consideration the effect of the constant
term [1]. Most of the research works analyzed the T-S model assuming
that the non-linear system is linearized with respect to the origin in each
IF-THEN rule, which means that the consequent part of each rule is
a linear function with zero constant term. This will in turn reduce the
accuracy of approximating non-linear systems.

1 Introduction

In the advanced control of robotic manipulators, it is important for manipulators
to track trajectories in a wide range of work place [5], [6], [7], [8]. If speed and
accuracy is required, the control using conventional methods is difficult to realize
because of the high nonlinearity of the robot system.

Up to now, the fuzzy controller has been the most successful application field
for fuzzy logic. Many applications show that the fuzzy controllers yield results
superior to those obtained by the conventional control algorithms.

In the past, the design of controllers based on a linearized model of real control
systems. In many cases a good response of complex and highly non-linear real
process is difficult to obtain by applying conventional control techniques which
often employ linear mathematical models of the process. One reason for this lack
of a satisfactory performance is the fact that linearization of a non-linear system
might be valid only as an approximation to the real system around a determined
operating point.

However, fuzzy controllers are basically non-linear, and effective enough to
provide the desired non-linear control actions by carefully adjusting their
parameters.

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 688–697, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In this paper, the non-linear system is represented by affine T-S model, where
the consequent part of each rule represents an affine model of the original system
in a certain operating point. The final fuzzy system can be obtained by blending
of these affine models. The control is carried out based on the fuzzy model via the
so-called parallel distributed compensation scheme . The idea is that for each
local affine model, an affine linear feedback control is designed. the resulting
overall controller, which is also a non-linear one, is again a blending of each
individual affine linear controller.

In this study, a design of a pole assignment fuzzy control is presented based
on T-S model taking into account the effect of the constant term in both the
fuzzy system and controller.

2 Modelling of Robot Manipulators

The robot under study is characterized by having six rotational joints driven by
hydraulic actuators(motors for the first joint and the robot wrist, and cylinders
for other axes).

The main problem in controlling such processes is the nonlinearity. This makes
it very difficult the use of conventional control techniques to implement the
control job.

In this paper, the robot which is a highly non-linear system is represented
by affine T-S model, where the consequent part of each rule represents an affine
model of the original system in a certain operating point. The final fuzzy system
can be obtained by blending of these affine models. The control is carried out
based on the fuzzy model via the so-called parallel distributed compensation
scheme. The idea is that for each local affine model, an affine linear feedback
control is designed. the resulting overall controller, which is also a non-linear
one, is again a blending of each individual affine linear controller.

The behaviour of the robot depends upon the robot working conditions, in
particular the axes positions and the payload which are considered as the premise
part of the fuzzy rule [5], [6], [7], [8].

The suggested fuzzy control considers every axis as a system whose control
variables has to be tuned. It is necessary to establish differences between the
first axis, which implies a rotation in the horizontal plane, and the axes 2,3
and 4, which imply rotations in the vertical plane. In the case of the latter
two axes, which drive the robot wrist, it is not necessary to adjust the control
parameters in real time, and they are automatically adjusted when the robot
payload changes. for the latter two axes, due to the short length of the driven
links and the robot kinematic configuration, their angular position doesnot have
a significant amount of influence on their dynamic behaviour, which is mainly
determined by the payload.

We should mention that not all the robot joints will influence the dynamic
behaviour. The first axis position does not influence the others.

The angular values of the vertical joints that are placed behined the joint we
are considering along the robot kinematic chain, and which influence the dynamic
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Fig. 1. Scheme for the fuzzy input variable for axes 2, 3 and 4

behaviour, can be combined in one fuzzy variable. Denoting the angular value
for the joint j by θj , the effective angular value θia to be considered as a fuzzy
input variable for axes 2, 3 and 4 is:

θia =
i∑

j=2

θj , i = 2, 3, 4

Similarly, considering one particular axis, the angular axis, the angular values
of the vertical joints that ar placed in front of it, as well as the robot payload,
can be combined in the other fuzzy input variable, namely the effective moment
of inertia from the considered axis Ji. This can be represented as:

Ji = f(θj>i, Mj>i, M)

Where

– Ji represents the effective moment of inertia from axis i
– θj>i represents the angular values of the axes after i
– Mj>i represents the mass of the link j including its actuator
– M represents the mass of payload.

Figure 1 shows the scheme for the fuzzy input variable for axes 2, 3 and 4.

3 Takagi and Sugeno’s Fuzzy Model

The continuous fuzzy dynamic model proposed by Takagi and Sugeno is de-
scribed by fuzzy IF-THEN rules [9], [10], where the consequent part is an
affine input-output relation. The main feature of this model is to express the
local dynamics of each fuzzy implication by an affine model. The final fuzzy
system is resulted from blending of the affine linear system models.

The IF-THEN rules are as follows:

R(i1······in) : If x is M i1
1 and ẋ is M i2

2 and . . . and x (n−1 ) is M in
n

then ẋ = a(i1...in)
o + A(i1...in)x + B(i1...in)u (1)

where M i1
1 (i1 = 1, 2, . . . , r1) are fuzzy sets for x, M i2

2 (i2 = 1, 2, . . . , r2) are
fuzzy sets for ẋ and M in

n (in = 1, 2, . . . , rn) are fuzzy sets for x(n−1). x(t) is the
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Fig. 2. Feedback Fuzzy control system

state vector, u(t) is the input vector. Therefore the whole fuzzy system consists
of r1.r2. . . . rn rules. The expression for A(i1...in) is

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 1
−a

(i1...in)
1 −a

(i1...in)
2 . . . −a

(i1...in)
n−1 −a

(i1...in)
n

⎤

⎥⎥⎥⎥⎥⎥⎦
, a(i1...in)

0 =

⎡

⎢⎢⎢⎣

0
...
0

a
(i1...in)
0

⎤

⎥⎥⎥⎦ ,

xT =
[
x ẋ . . . x(n−1)

]

The final output of the fuzzy system can be represented as

ẋ = a0(x) + A(x)x + B(x)u(x)

4 Fuzzy Controller Based on Pole Assignment Method

Let us consider the problem of designing a FC using the pole assignment method
[1], [2]. The fuzzy model is described by T-S model [9]. Figure 2 represents the
fuzzy control system.

Let the (i1 . . . in)th rule of T-S fuzzy model be represented by:

S(i1...in) : If x is M i1
1 and ẋ is M i2

2 and . . . and x (n−1 ) is M in
n

then ẋ = a(i1...in)
o + A(i1...in)x + B(i1...in)u (2)

where the membership functions are given by μ
M

i1
1

(x), μ
M

i2
2

(ẋ) and

μMin
n

(x(n−1)), respectively as shown in figure 3.
The (j1 . . . jn)th fuzzy controller rule is:

C(j1...jn) : If x is N j1
1 and ẋ is N j2

2 and . . . and x (n−1 ) is N jn
n

then u = r − [k(j1...jn)
o + K(j1...jn)x] (3)

where N j1
1 (j1 = 1, 2, . . . , s1) are fuzzy sets for x, N j2

2 (j2 = 1, 2, . . . , s2) are
fuzzy sets for ẋ and N jn

n (jn = 1, 2, . . . , sn) are fuzzy sets for x(n−1) as shown in
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Fig. 3. Membership functions of the
fuzzy system

Fig. 4. Membership functions of the fuzzy
controller

figure 4. h(j1...jn) = k0
(j1...jn) + K(j1...jn)x is r-dimensional feedback vector, the

reference input vector and r is r-dimensional and K(j1...jn) is r×n matrix. The
fuzzy controller will be

u = r − h(x) (4)

Substituting (3) in (2), we get the feedback system.

SC(i1...in,j1...jn) : If x is (M i1
1 and N j1

1 ) and ẋ is (M i2
2 and N j2

2 ) . . . and x (n−1 )

is (M in
n and N jn

n )

then ẋ = a0
(i1...in) + A(i1...in)x + B(i1...in)

(
r − [k0

(j1...jn) + K(j1...jn)x]
)

(5)

Suppose that we choose k0
(j1...jn) such that

a0
(i1...in) − Bi1...ink0

j1...jn = 0 (6)

then (5) will be:

SC(i1...in,j1...jn) : If x is (M i1
1 and N j1

1 ) and ẋ is (M i2
2 and N j2

2 ) . . . and x (n−1 )

is (M in
n and N jn

n )

then ẋ = A(i1...in)x + B(i1...in)r − B(i1...in)K(j1...jn)x (7)

Then the final output of the fuzzy closed loop system is

ẋ =
∑ r1

i1=1...
∑ rn

in=1
∑ s1

j1=1...
∑ sn

jn=1 w(i1...in,j1...jn)(x)A(i1...in)x
∑ r1

i1=1...
∑ rn

in=1
∑ s1

j1=1...
∑ sn

jn=1 w(i1...in,j1...jn)(x)
−

∑ r1
i1=1...

∑rn
in=1

∑s1
j1=1...

∑ sn
jn=1 w(i1...in,j1...jn)(x)B(i1...in)K(j1...jn)x

∑ r1
i1=1...

∑ rn
in=1

∑ s1
j1=1...

∑ sn
jn=1 w(i1...in,j1...jn)(x)

(8)
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where the elements (k(j1...jn)
i1 k

(j1...jn)
i2 . . . k

(j1...jn)
in ) of the feedback vector

h(j1...jn) = k0
(j1...jn)+K(j1...jn)x are computed from the following matrix, where

its eigen values are the desired closed loop poles:

A(i1...in) − B(i1...in)K(j1...jn) (9)

and the constant term k0
(j1...jn) can be calculated from (6)

The behaviour of the fuzzy system represented by (2) and controlled by fuzzy
controller in (3) is the same as the linear system which contains the desired
closed loop poles (9).

The fuzzy controller implemented in this paper is the one shown in (3) mod-
ified by introducing the condition given by (6) which can be written as,

ũ(x) = r −
∑s1

j1=1 . . .
∑sn

jn=1 w(j1...jn)(x)K(j1...jn)x
∑s1

j1=1 . . .
∑sn

jn=1 w(j1...jn)(x)
(10)

with

− K(j1...jn)x = −
[
k

(j1...jn)
i1 . . . k

(j1...jn)
in

]

⎡

⎢⎢⎢⎣

x
ẋ
...

x(n−1)

⎤

⎥⎥⎥⎦ (11)

It can be also written in another form,

ũ(j1...jn)(x) =

⎡

⎢⎢⎣

ũ
(j1...jn)
1 (x)

...
ũ

(j1...jn)
r (x)

⎤

⎥⎥⎦ = r − K(j1...jn)x

ũ
(j1...jn)
i (x) = r −

[
k

(j1...jn)
i1 . . . k

(j1...jn)
in

]

⎡

⎢⎢⎢⎣

x
ẋ
...

x(n−1)

⎤

⎥⎥⎥⎦ (12)

5 Fuzzy Control of Robotic System

The definition of the fuzzy input is shown in table 1. The input fuzzy variable
which represent the axis position is linearized in three operating points. The
moment of inertia is linearized in three operating points [4]. The results were
obtained from several tens of experiments of the real system [3]. The system has
been approximated in each operating point by a linearized mathematical model
looking for a suitable model that coincide with the non-linear system. A fuzzy
controller is designed which meets the requirements of small overshoot in the
transient response and a well damped oscilations with no steady state error.

Firstly, a T-S affine fuzzy model is used to represent the controlled process.
The applied T-S model used to represent the robotic system has been modified
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Table 1. Input fuzzy variables

Variable Universe Label

θ1a [−180◦, 180◦] {M}
θ2a [0◦, 115◦] {S M B}
θ3a [−120◦, 90◦] {S M B}
θ4a [−240◦, 90◦] {S M B}
J1 [7392, 56729] {S M B}
J2 [5000, 51540] {S M B}
J3 [1500, 18564] {S M B}
J4 [140, 5093] {S M B}

in its premise part with respect to the original one explained in section 3. This
modification has been made due to the nature of the robotic system. As it will be
seen that the premise part of each rule of the T-S model of the robot depends on
both the axis position and the moment of inertia, instead of a certain variable and
its derivatives as the original one. The consequent part is an affine model which
represents the linearized model obtained from the identification of the nonlinear
system in a certain operating point, which coincides with the consequent part
of th original T-S model. In the original T-S model as in the modified one, the
consequent part of each rule depends on the weight of the membership functions
of the premise part. In order to simplify the simulation, it is assumed that the
membership functions of the fuzzy controller are the same as those of the fuzzy
system.

R11 : If
(
θia is M1

1

)
and ( Ji is M1

2 ) then

θ̈(t) = −77.4θ̇(t) − 3947.5θ(t) + 6615000u(t)

C11 : If
(
θia is M1

1

)
and( Ji is M1

2 ) then

u(t) = r − [k1
o + K1θ(t) + K2θ̇(t)]

R12 : If
(
θia is M1

1

)
and ( Ji is M2

2 ) then

θ̈(t) = −43.8θ̇(t) − 3276.4θ(t) + 4839100u(t)

C12 : If
(
θia is M1

1

)
and( Ji is M2

2 ) then

u(t) = r − [k1
o + K1θ(t) + K2θ̇(t)]

R13 : If
(
θia is M1

1

)
and ( Ji is M3

2 ) then

θ̈(t) = −49.2θ̇(t) − 1754.5θ(t) + 2496452u(t)

C13 : If
(
θia is M1

1

)
and( Ji is M3

2 ) then

u(t) = r − [k1
o + K1θ(t) + K2θ̇(t)]

R21 : If
(
θia is M2

1

)
and ( Ji is M1

2 ) then

θ̈(t) = −74.4θ̇(t) − 3452.4θ(t) + 5952500u(t)
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C21 : If
(
θia is M2

1

)
and( Ji is M1

2 ) then

u(t) = r − [k1
o + K1θ(t) + K2θ̇(t)]

R22 : If
(
θia is M2

1

)
and ( Ji is M2

2 ) then

θ̈(t) = −41.7θ̇(t) − 3007.6θ(t) + 1.65 + 4590700u(t)

C22 : If
(
θia is M2

1

)
and( Ji is M2

2 ) then

u(t) = r − [k1
o + K1θ(t) + K2θ̇(t)]

R23 : If
(
θia is M2

1

)
and ( Ji is M3

2 ) then

θ̈(t) = −51.1θ̇(t) − 1832.8θ(t) + 3.3 + 2647176u(t)

C23 : If
(
θia is M2

1

)
and( Ji is M3

2 ) then

u(t) = r − [k1
o + K1θ(t) + K2θ̇(t)]

R31 : If
(
θia is M3

1

)
and ( Ji is M1

2 ) then

θ̈(t) = −74.1θ̇(t) − 3540.3θ(t) + 6399500u(t)

C31 : If
(
θia is M3

1

)
and( Ji is M1

2 ) then

u(t) = r − [k1
o + K1θ(t) + K2θ̇(t)]

R32 : If
(
θia is M3

1

)
and ( Ji is M2

2 ) then

θ̈(t) = −33.4θ̇(t) − 2379θ(t) + 11.71 + 3964700u(t)

C32 : If
(
θia is M3

1

)
and( Ji is M2

2 ) then

u(t) = r − [k1
o + K1θ(t) + K2θ̇(t)]

R33 : If
(
θia is M3

1

)
and ( Ji is M3

2 ) then

θ̈(t) = −50.7θ̇(t) − 1777.6θ(t) + 23.43 + 2813090u(t)

C33 : If
(
θia is M3

1

)
and( J is M3

2 ) then

u(t) = r − [k1
o + K1θ(t) + K2θ̇(t)]

Using the pole asignment design method explained above and by choosing the
desired closed loop poles, the feedback controller parameters given by the feed-
back vector K(j1...jn) can be calcualted from (9) and the constant parameters
k0

(j1...jn) can be determined from (6). Thus the controller parameters are:

k1
0 = 0, k1

11 = 0.013, k2
11 = 0.015

k1
0 = 0, k1

12 = 0.16, k2
12 = 0.019

k1
0 = 0, k1

13 = 0.13, k2
13 = 0.018

k1
0 = 0, k1

21 = 0.22, k2
21 = 0.03

k1
0 = .00054, k1

22 = 0.33, k2
22 = 0.03
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k1
0 = 0.0018, k1

23 = 0.68, k2
23 = 0.04

k1
0 = 0, k1

31 = 1.28, k2
31 = 0.05

k1
0 = 0.0049, k1

32 = 1.18, k2
32 = 0.048

k1
0 = 0.0132, k1

33 = 1.25, k2
33 = 0.05

The initial condition applied are: θ20 = 69◦, θ3 = −60◦, θ4 = −10◦, J20 =
13.3 Kgm2. The transient response of axis 2 using the proposed fuzzy controller
is shown in figure 5.

Fig. 5. Transient Response of of axis 2 using the proposed fuzzy controller

6 Conclusion

The paper presented the design of a fuzzy controller for the control of a robotic
system represented by the affine T-S fuzzy model. The robot system has been
linearized in various operating points in each fuzzy rule. A fuzzy controller has
been designed based on pole assignment method. The main advantage of using
the pole assignment method is that behaviour of the closed loop fuzzy system
controlled by the suggested fuzzy controller is identical to the linear system
whose closed loop poles are the desired ones and that the fuzzy controller de-
signed with the pole assignment method guarantees the stability of the controlled
system.

The results obtained in this paper have shown that the proposed controller
is capale to deal with the nonlinearities of the robot and the changing of its
parameters.
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Av. España No. 1680, Valparáıso, Chile
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Abstract. In this paper we introduce a collaboration framework for
hyperheuristics to solve hard strip packing problems. We have designed
a genetic based hyperheuristic to cooperate with a hill-climbing based
hyperheuristic. Both of them use the most recently proposed low-level
heuristics in the literature. REVAC, which has recently been proposed
for tuning [18], has been used to find the best operators parameter val-
ues. The results obtained are very encouraging and have improved the
results from both the single heuristics and the single hyperheuristics’
tests. Thus, we conclude that the collaboration among hyperheuristics is
a good way to solve hard strip packing problems.

Keywords: Hyperheuristic, Strip Packing, Heuristic Search, Meta-
heuristics, Parameter Control.

1 Introduction

In this paper we focus our attention on methods to solve the two-dimensional
strip packing problem, where a set of rectangles (objects) must be positioned on
a container (a rectangular space area). This container has a fixed width dimen-
sion and a variable height size. The goal is, when possible, to introduce all the
objects into the container without overlapping, using a minimum height dimen-
sion for the container. Many approaches have been proposed in the literature.
In our understanding a more complete revision has been presented in E. Hop-
per’s Thesis [10]. However, in the last few years the interest in this subject has
increased, as has the interest in the number of research papers presenting new
approaches and improvements to the existing strategies. These approaches are, in
general, single heuristics or heuristics incorporated into metaheuristics methods.
Recently, the concept of hyperheuristics has been introduced and tested success-
fully in different problems, [6]. The key idea is to tackle problems using various
low-level heuristics and develop a framework that controls the applications of
the heuristics. Using this framework, the time consuming task of designing an
algorithm with special components for a specific algorithm is reduced. This kind
of approach is useful to obtain a good solution for a problem in a reasonable

� Partially Supported by the Fondecyt Project 106377.

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 698–707, 2007.
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amount of time. It emphasizes a trade-off between the quality of the solution
and the invested time for designing the algorithm. Our goal is to show that the
cooperation between hyperheuristics can be applied to solve Strip Packing Prob-
lems providing effective solutions in a time efficient manner. Our collaborative
approach is compared to other approaches using well known benchmarks. This
paper is organized as follows: First we present an overview of methods based
on heuristics to solve the strip packing problem, which are included in our hy-
perheuristics approach. Next we introduce our framework. We will then present
the results obtained using the benchmarks. Finally, our conclusions and future
trends in this research area are presented.

2 Heuristics Based Methods

In this section, we present a revision of the most recently published heuristics
for strip packing problems. Lesh et al. in [14], [15] concentrate their research
on improving BLD heuristic. This heuristic is inspired in Baker’s work [3]. He
introduced Bottom-Left heuristics, which orders the objects according to their
area. The objects are then located on the most bottom left coordinate possible.
Hopper [11] presented BLD which is an improved strategy of BL, where the
objects are ordered using various criteria (height, width, perimeter, area) and the
algorithm selects the best result obtained. Lesh. et al’s. call their new heuristics
BLD∗. In BLD∗ the objects are randomly ordered according to the Kendall-
tau distance from all of the possible fixed orders. This strategy is called Bubble
Search, [15] and can be applied to any constructive algorithm as a GRASP
algorithm in order to do dynamic ordering. The key of the algorithm is the
order of the objects to be placed. In their approach they also include the rotation
capability. The results reported indicate that the top-right corner is the most
suitable decision, and the most effective order is from their minimal length.
Finally, Lesh et al. concluded that the method using Bubble search is the best for
solving the most known benchmarks, including Hopper benchmarks. However,
in 2006 Bortfeldt [4] introduced a Genetic Algorithm called SPGAL and claimed
that it obtained the best results known in the literature. The algorithm generates
an initial population using a BFDH∗ heuristic which is an improvement on the
BFDH heuristic initially proposed in [17]. This heuristic works as follows: The
objects are oriented such that their width is no lower than their height, and
they are ordered from highest to lowest. Each object is packed in a rectangular
sub-area of the container in the bottom left corner. The width of the sub-area
is given by the container, and the height is given by the first object packed in
this sub-area. In some cases when it is possible to include the current object to
be placed on some sub-areas, it is positioned in the sub-area having the least
available area. In other cases the algorithm opens a new sub-area above the
existing sub-areas positioning the current object in the bottom left corner as the
first object of this sub-area. As we mentioned before BFDH∗ seeks to improve
this heuristic by doing the following: It allows object rotations, so that when
the algorithm searches to include the current object into a sub-area it tests both
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orientations and selects the best. Prior to creating a new sub-area the algorithm
searches the holes produced to the right of the sub-areas, dividing the available
holes on guillotinable holes. It then tries to include the larger object in the hole
farthest left of the available area.

Zhang et al. [20] propose the heuristic HR, introducing a recursive algorithm
which locates the objects on the bottom left corner. When the first object is
positioned in the container it identifies the two remaining areas. It recursively
continues placing objects from the largest area to the smallest area. The algo-
rithm gives priority to the objects with largest areas. The authors claim that
their algorithm quickly obtains the best results on Hopper’s benchmarks.

It seems that the key idea is to find a good order of the objects for any
positioning heuristic. In [19] they present a genetic algorithm and a simulated
annealing algorithm, both of which try to find the best order for the objects to
be placed in the container using the BLF strategy. For our hyperheuristics we
have selected HR, BF , BLF , BFDH∗ as the low-level heuristics, because they
are shown to be individually competitive. However, some small adaptations are
required for the heuristics designed for guillotinable problems.

3 Collaborative Framework

From the analysis of the four low-level heuristics we can remark the following:

– Performance changes according to the order of the list of the objects, their
rotation, and their location (i.e. right or left on the floor).

– The data structure required to obtain a good implementation code is not
always the same for all of these heuristics.

Taking into account these remarks we have designed two hyperheuristic ap-
proaches which allow us to include a good individual implementation for each
heuristic when considering them as black boxes. They communicate following
a protocol for both interchanging and cooperation of the current state of the
search. Our representation for both hyperheuristic approaches includes the fol-
lowing components: Heuristic H , Number of objects to be placed using H , nH .
The type of ordering of the list of the nH objects assigned, and finally if H must
consider the objects rotated or no. In this paper, we are interested in evaluating
a cooperation between a Hill-climbing based hyperheuristic (H-SP) and a genetic
inspired hyperheuristic (G-SP). In the following section we briefly describe H-SP.

3.1 The Hill-Climbing Based Hyperheuristic: H-SP

In a previous research, we proposed H-SP [2] which is a hyperheuristic based on
a Hill-climbing method that has shown encouraging results. In H-SP an opera-
tion is accepted only if it can obtain a new pre-solution equal to or better than
the current one. The moves that we have defined are: Add, Delete and Replace
Heuristics. In the beginning, all of them have the same probability value to be
applied. The hyperheuristic initializes its representation considering each heuris-
tic once. It assigns nH = n

4 number of objects to be placed for each heuristic,



Collaboration Between Hyperheuristics to Solve Strip-Packing Problems 701

where n is the total number of objects to be placed. Both, the order of the list
and the rotation option are set using the best known strategies reported for the
heuristic. It is a very simple hyperheuristic implementation that was able to find
quite good solutions quickly.

3.2 The Genetic Inspired Hyperheuristic: G-SP

Here we propose a new hyperheuristic which is based on genetic algorithms.
There is some genetic inspired hyperheuristic in the literature to solve combi-
natorial problems, [8], [7], [9]. However, in most of the cases, they use a repre-
sentation that just corresponds to a simple sequence of low-level heuristics to be
applied.

Representation. In our approach, we have defined a representation that is able
to manage and to exploit more information. We have divided the low-level heuris-
tics according to their functionality. Thus, we distinguish among greedy, ordering
and rotation heuristics. This kind of representation allows the algorithm to have
a wider combination between low-level heuristics. The chromosome has also in-
cluded the number of objects to be positioned using each low-level heuristics
combination. The chromosome structure is shown in figure 1. In this chromo-
some we can identify that the algorithm must use the first greedy heuristic using
the second ordering heuristic applying the fourth rotation heuristic to locate the
first five objects. Note that the chromosome does not have a fixed size.

Fig. 1. Chromosome Structure

Specialized Genetic Operators. The algorithm has four operators. One re-
combination operator and three mutation-like operators.

– Recombination Operator: Cross-OP In our approach the recombination op-
erator is a one-point crossover. The cross-point is selected such that a cut
inside on the gen single structure is forbidden. It takes two parents to gener-
ate two offsprings. This operator must do a post-crossing procedure in order
to respect the number of objects to be placed by each individual. Either the
lack of or the excess of the number of objects is distributed evenly among
the genes in the chromosome structure. The goal of this operator, in our
approach, is to explore the search space of the low-level heuristics.

– Asexual Operators: Each operator has a special rôle.
• Add-OP: The algorithm randomly selects a heuristic from the represen-

tation of a selected chromosome. A new heuristic is included after the
selected heuristic. The new heuristic is required to position n1 of the
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objects previously assigned to the selected heuristic and it is randomly
selected. The key idea of this operation is to include new heuristics in
a different step of the algorithm in order to obtain better cooperation
among them.

• Delete-OP: The algorithm randomly selects a heuristic from the selected
chromosome. The heuristic is then deleted and the number of objects
previously assigned to be located by it are added to the objects of the
previous heuristic. The idea here is to allow the algorithm to discard
some heuristics that are not helping the algorithm obtain better results.

• Replace-OP: The algorithm randomly selects both a heuristic to be re-
placed and the heuristic to be included. The new heuristic included in-
herits the number of objects to be placed. The other components of its
representation are randomly generated. The idea of this operation is to
give more exploration capability to the algorithm.

Evaluation Function and Selection. Our approach uses the traditional fit-
ness function for strip-packing [11], which is to minimize the container’s height
used. It is supposed that the container’s width is fixed. A minimization Roulette
Wheel selection is implemented in order to increase the probability of choosing
an individual with low height values.

Parameters Values. Each operator has its own probability to be applied. In
order to find the better values for the operator’s probability values, we have im-
plemented the very recently proposed approach [18], named REVAC, for tuning.
REVAC is a genetic algorithm that uses some statistical properties to determine
the better parameter values and also to discard some genetic operators which,
with a statistical significance, do not really improve the algorithm to be tuned.
It is based on the shannon entropy to measure the diversity of solutions. The
method has shown to be effective, but it is a time consuming task for finding
the better values by evaluating many runs of the all the problem instances. For
this, we have selected the most difficult instances that really seem to require the
investment in this additional computational effort. The operator’s parameter
values are reported in the Tests section.

3.3 Framework H-SP/G-SP

Because H-SP is able to quickly find quite good solutions, our cooperation is
implemented in the initial population generation for G-SP. G-SP receives a set
of chromosomes from the pre-solutions found by H-SP. In our approach, both
algorithms use the same low-level heuristics, thus the chromosome migration is
easy to be integrated in G-SP. This kind of cooperation maintains both, the
properties and the concepts of the hyperheuristics, as it is easy to implement
and does not require specific hard domain knowledge. Our goal is to evalu-
ate if we can improve the results obtained by their single versions using this
framework.
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4 Tests

We have done two kinds of tests. The first one is to compare the results ob-
tained using single low-level heuristics with our hyperheuristics approaches. We
report the quality of the solution found and the percentage used of each single
low-level heuristics in the hyperheuristics. The second test compares H-SP, G-
SP and H-SP/G-SP with the better reported results from the state of the art
strip-packing. Both tests use the Hopper’s instances [11] for problems C1, . . . , C7

as benchmarks.

4.1 Hardware

The hardware platform for the experiments was a PC Pentium IV Dual Core,
3.4Ghz with 512 MB RAM under the Mandriva 2006 operating system. The
algorithm has been implemented in C++.

4.2 Comparison with Low-Level Heuristics

First of all we have used REVAC to obtain the better parameter values for our ap-
proaches. As we mentioned before, REVAC is a time consuming algorithm. To de-
termine our parameter values, we have selected the six hardest instances from the
21 problem instances. The running time for instance has been fixed to 30 seconds
(3 minutes for each instance set). The number of iterations done by REVAC, as it
has been recommended by the authors, was 1000 iterations. Thus, the calibration
required was around 48 hours. After tuning, REVAC has determined the follow-
ing parameter values for each operator probability: 0.640, 0.803, 0.722, 0.493,
for Cross-OP, Add-OP, Delete-OP, Replace-OP, respectively. According to these
results, we can conclude that the four operators are significant for G-SP. Note
that the lower probability values are for the operators which have made more
exploration of the search space: Cross-OP and Replace-OP, as we can expect.

In order to obtain significant results, each hyperheuristic has been executed
10 times for each problem category with various initial populations. We limit
the running time to 60 seconds. In H-SP/G-SP, these 60 seconds are distributed
over 20 seconds for H-SP to generate the 10 individuals of the population, and
the remaining 40 seconds for G-SP to obtain a near-optimal solution.

Gap to the Solution: Table 1 shows the percentage from both the optimal
solution to the best solution found (gap % = (bestfound−opt)

opt ) and the average for
each single heuristic and for the hyperheuristics H-SP and G-SP.

The quality of the solution found by the single heuristic has been strongly
improved using our framework. Furthermore, the hyperheuristic allows both a
division of the task and cooperation among the heuristics for positioning of the
objects.

Low-level Heuristics Runs: In table 2, we report the percentage of the num-
ber of times that each heuristic has been applied for each type of problem in our
hyperheuristic collaborative framework for the best heuristics combination.
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Table 1. Gap to the solution for: low-level heuristics, hyperheuristics and collaborative
approach

Algorithms BLF HR BFDH∗ BF H-SP G-SP H-SP/G-SP

C1 6.6 6.6 6.6 5 0.0 0.0 0.0
C2 13.3 8.8 8.8 8.8 3.22 4.00 2.67
C3 11.1 6.6 6.6 6.6 2.22 3.89 1.56
C4 4.4 3.8 3.8 3.3 1.72 1.94 1.72
C5 2.6 2.6 2.6 2.6 1.15 1.63 1.15
C6 3.1 2.7 2.7 2.5 1.33 1.86 1.36
C7 2.6 2.6 2.6 2.2 1.17 1.67 1.28

Average 6.24 4.81 4.81 4.42 1.54 2.14 1.39

Table 2. Average use of low-level heuristics in the collaborative approach

Heuristic C1 C2 C3 C4 C5 C6 C7 Average

BLF 22.45 32.80 26.00 43.47 44.29 34.97 43.63 35.37
HR 21.84 25.73 28.13 16.43 12.74 14.33 7.38 18.08

BFDH∗ 2.08 21.20 2.65 1.87 7.60 1.39 0.64 5.35
BF 53.62 20.27 43.22 38.23 35.37 49.31 48.34 41.19

Fig. 2. Percentage of low-level heuristics used for the single hyperheuristics: left H-SP,
right G-SP

This table can be interpreted as the number of the objects (in percentage)
that each heuristic is located on the floor. We can appreciate that each problem
requires a different combination of the low-level heuristics. This is the advantage
of the implicit natural adaptation of the hyperheuristic framework. A more de-
tailed comparison of the use of the low-level heuristics is shown in figure 2 and 3.
Both figures show that BFDH∗ tends to be less applied as the size of the prob-
lem increases. While BLF shows the exact contrary behaviour. A pattern can
not be identified for both BF and HR heuristics. Note however that BF has been
used more frequently than HR. In addition, HR is more useful in solving smaller
problem categories. Thus, the application percentage of the low-level heuristics
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Fig. 3. Percentage of low-level heuristics used for the collaborative framework

Table 3. Gap to the solution for: state-of-the-art algorithms, H-SP, G-SP and for the
collaborative approach

Category

Average % of Gaps C1 C2 C3 C4 C5 C6 C7 Average

GA + BLF, [11] 4 7 5 3 4 4 5 4.57
SA + BLF, [11] 4 6 5 3 3 3 4 4

Iori, [12] 1.59 2.08 2.15 4.75 3.92 4.00 - 3.98*
HR, [20] 8.33 4.45 6.67 2.22 1.85 2.5 1.8 3.97

SPGAL-R, [5] 1.7 0.0 2.2 0.0 0.0 0.3 0.3 0.6
SPGAL, [4] 1.59 2.08 3.16 2.70 1.46 1.64 1.23 1.98
BLD*, [13] - - - - 2 2.4 - 2.2*

R-GRASP, [1] 0.0 0.0 1.08 1.64 1.10 0.83 1.23 0.84
Martello B&B, [16] 0.0 0.0 2.15 - - - - 0.71*

H-SP 0.0 3.22 2.22 1.72 1.15 1.33 1.17 1.54
G-SP 0.0 4.00 3.89 1.94 1.63 1.86 1.67 2.14

H-SP/G-SP 0.0 2.67 1.56 1.72 1.15 1.36 1.28 1.39

depends on the problem instance to be solved. Furthermore, the algorithm is
able to self-adapt to the problem at hand.

4.3 Comparison with State-of-the-Art Algorithms

Table 3 summarizes the best results found in the literature [12], [11], [20],
[4,5], [1], [16], [13,14] and the results obtained by our single and collaborative
hyperheuristics for the Hopper’s instances. Results show that the hyperheuris-
tics give good quality solutions and even better solutions than various problem-
made algorithms (meta heuristics and heuristics) except for the SPGAL-R and
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R-GRASP algorithms that present the best solutions. These algorithms are es-
pecially designed for these benchmarks. The above demonstrates that our ap-
proaches are very competitive ones. Note that the values for HR in this section
are not the same as in the previous section. In the previous tests, we have fixed
the running time to be 60 seconds. Here the results are the best reported for this
technique without imposing any time constraint.

5 Conclusions

Our research allows us to conclude that using a collaborative hyperheuristic
approach we can improve the performance of both the single heuristics and the
single hyperheuristics with regard to the results obtained in the literature. This
indicates that both the single and the collaborative framework are very promising
approaches in solving hard strip packing problems. Both G-SP and H-SP/G-SP
have the following characteristics: flexibles, cheap and easy to be implemented
and at the same time are able to obtain quite good solutions. Moreover, the
hyperheuristics are able to adapt themselves to the problem by selecting the best
combination of the low-level heuristics. We note that the selection of suitable
low-level heuristics is a major task when designing hyperheuristics. In order to
obtain competitive state-of-the-art solutions, we require selecting efficient low-
level heuristics. The key idea is to allow cooperation among them improving
their single behaviours.

References

1. R. Alvarez-Valdes, F. Parre no, and J.M. Tamarit. Reactive grasp for the strip
packing problem. Proceedings Metaheuristic Conference MIC, 1, 2005.

2. I. Araya, M-C. Riff, and B. Neveu. Towards an efficient hyperheuristic for strip-
packing problems. Proceedings of the 7th EU-Meeting, Málaga, Spain, 2006.

3. B.S. Baker, E.G. Coffman, and R.L. Rivest. Orthogonal packings in two dimen-
sions. SIAM Journal on Computing, 9:846–855, 1980.

4. A. Bortfeldt. A genetic algorithm for the two-dimensional strip packing problem
with rectangular pieces. European Journal of Operational Research, 172:814–837,
2006.

5. A. Bortfeldt and H. Gehring. New large benchmarks for the two-dimensional strip

packing problem with rectangular pieces. IEEE Proceedings of the 39th Hawaii
International Conference on Systems Sciences, page 30.2, 2006.

6. E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg. Hyper-
heuristics: an emerging direction in modern search technology. Handbook of Meta-
heuristics, 16:457–474, 2003.

7. P. Cowling, G. Kendall, and L. Han. An adaptive length chromosome hyperheuris-
tic genetic algorithm for a trainer scheduling problem. Proceedings SEAL, 2002.

8. P. Cowling, G. Kendall, and L. Han. An investigation of a hyperheuristic genetic
algorithm applied to a trainer scheduling problem. Proceedings CEC, 2002.

9. L. Han and G. Kendall. Guided operators for a hyper-heuristic genetic algorithm.
Proceedings of AI-2003: Advances in Artificial Intelligence. The 16th Australian
Conference on Artificial Intelligence, pages 807–820, 2003.



Collaboration Between Hyperheuristics to Solve Strip-Packing Problems 707

10. E. Hopper. Two-Dimensional Packing Utilising Evolutionary Algorithms and other
Meta-Heuristic Methods. PhD. Thesis Cardiff University, 2000.

11. E. Hopper and B.C.H. Turton. An empirical investigation on metaheuristic and
heuristic algorithms for a 2d packing problem. European Journal of Operational
Research, 128:34–57, 2001.

12. M. Iori, S. Martello, and M. Monaci. Metaheuristic algorithms for the strip packing
problem, pages 159–179. Kluwer Academic Publishers, 2003.

13. N. Lesh, J. Marks, A. Mc. Mahon, and M. Mitzenmacher. Exhaustive approaches
to 2d rectangular perfect packings. Information Processing Letters, 90:7–14, 2004.

14. N. Lesh, J. Marks, A. Mc. Mahon, and M. Mitzenmacher. New heuristic and inter-
active approaches to 2d rectangular strip packing. ACM Journal of Experimental
Algorithmics, 10:1–18, 2005.

15. N. Lesh and M. Mitzenmacher. Bubble search: A simple heuristic for improv-
ing priority-based greedy algorithms. Information Processing Letters, 97:161–169,
2006.

16. S. Martello, M. Monaci, and D. Vigo. An exact approach to the strip-packing
problem. INFORMS Journal of Computing, 15:310–319, 2003.

17. C. Mumford-Valenzuela, J. Vick, and P.Y. Wang. Heuristics for large strip pack-
ing problems with guillotine patterns:An empirical study, pages 501–522. Kluwer
Academic Publishers, 2003.

18. V. Nannen and A.E. Eiben. Relevance estimation and value calibration of evolu-
tionary algorithm parameters. Proceedings of Joint International Conference for
Artificial Intelligence (IJCAI), 2006.

19. A. Soke and Z. Bingul. Hybrid genetic algorithm and simulated annealing for two-
dimensional non-guillotine rectangular packing problems. Engineering Applications
of Artificial Intelligence, 19:557–567, 2006.

20. D. Zhang, Y. Kang, and A. Deng. A new heuristic recursive algorithm for the strip
rectangular packing problem. Computers and Operations Research, 33:2209–2217,
2006.





Part XIII

Neural Networks and
Control



Discrete-Time Recurrent High Order Neural

Observer for Induction Motors

Edgar N. Sanchez1, Alma Y. Alanis2, and Alexander G. Loukianov2

1 CINVESTAV, Unidad Guadalajara, on sabbatical leave at CUCEI,
Universidad de Guadalajara, Mexico

2 CINVESTAV, Unidad Guadalajara, Apartado Postal 31-438, Plaza La Luna,
Guadalajara, Jalisco, C.P. 45091, Mexico

sanchez@gdl.cinvestav.mx

Abstract. A nonlinear discrete-time neural observer for the state es-
timation of a discrete-time induction motor model, in presence of ex-
ternal and internal uncertainties is presented. The observer is based on
a discrete-time recurrent high order neural network (RHONN) trained
with an extended Kalman filter (EKF)-based algorithm. This observer
estimates the state of the unknown discrete-time nonlinear system, us-
ing a parallel configuration. The paper also includes the stability proof
on the basis of the Lyapunov approach. To illustrate the applicability
simulation results are included.

1 Introduction

Induction motors are widely used in industrial applications due to their relia-
bility, simpler construction and reduced cost with respect, for example, to d.c.
motors. On the other hand its model is much more complicated than other
machines. Moreover, uncertainties such as load torque and rotor resistance are
usually unknown and may have a large degree of variations [4], [8].

Literature in induction motors control is extensive and includes field oriented
controller, VSC sliding mode controller, passivity-based controllers, and more
recently dynamic feedback linearization method. Most of these methods assume
that all the states are available and all motor parameters are known; addition-
ally those works were developed for continuous-time systems ([4] and references
therein).

Due to the assumption of system state complete accessibility, the state estima-
tion problem has received much attention by many authors, who have obtained
many interesting results in different directions. Most of the existing results need
the use of a special nonlinear transformation [9] or a linearization technique [2],
[5]; such approaches can be considered as a relatively simple method to construct
nonlinear observers. However, they do not consider uncertainties. Other kind of
observers which have a good performance even in presence of model and distur-
bance uncertainties, are called robust; their design process is too complex [8].

All the approaches mentioned above need the previous knowledge of the plant
dynamics. Recently, other kind of observer has emerged: neural observers [6], [8],

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 711–721, 2007.
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[10], [12]. For linear unknown systems, observer design has been widely investi-
gated [12]. Instead of if nonlinear systems are considered, there are few results.
Besides, most of the exiting results were developed for continuous-time systems;
the nonlinear discrete-time case have not been discussed to the same degree.

In this paper, we consider a class of MIMO discrete-time nonlinear system, for
which we develop a Luenberger-like observer [10]; then this observer is applied to
a discrete-time induction motor model [7]. This observer is based on a recurrent
high order neural network (RHONN) [13], which estimates the state vector of
the unknown plant dynamics. It deals with the so-called mixed uncertainties (the
presence of simultaneous external and internal uncertainties) [10]. The learning
algorithm for the RHONN is based on an extended Kalman filter (EKF) ([11]
and references therein). This paper also includes the respective stability analysis,
on the basis of the Lyapunov approach, for the neural observer trained with
the EKF.

2 Preliminaries

2.1 Stability Definitions

Through this paper, we use k as the step sampling, k ∈ 0 ∪ Z
+ , |•| as the

absolute value and, ‖•‖ as the Euclidian norm for vectors and as any adequate
norm for matrices. Consider a MIMO nonlinear system

χ (k + 1) = F (χ (k) , u (k)) (1)

where χ ∈ �n, u ∈ �m and F ∈ �n × �m → �n is nonlinear function.

Definition 1. The system (1) is said to be forced, or to have input. In contrast
the system described by an equation without explicit presence of an input u,
that is

χ (k + 1) = F (χ (k))

is said to be unforced. It can be obtained after selecting the input u as a feedback
function of the state

u (k) = ξ (χ (k)) (2)

Such substitution eliminates u:

χ (k + 1) = F (χ (k) , ξ (χ (k))) (3)

and yields an unforced system (3).

Definition 2. The solution of (1) − (2) is semiglobally uniformly ultimately
bounded (SGUUB), if for any Ω, a compact subset of �n and all χ (k0) ∈ Ω,
there exists an ε > 0 and a number N (ε, χ (k0)) such that ‖χ (k)‖ < ε for all
k ≥ k0 + N .
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In other words, the solution of (1) is said to be SGUUB if, for any a priory
given (arbitrarily large) bounded set Ω and any a priory given (arbitrarily small)
set Ω0, which contains (0, 0) as an interior point, there exists a control (2), such
that every trajectory of the closed loop system starting from Ω enters the set
Ω0 = {χ (k) | ‖χ (k)‖ < ε}, in a finite time and remains in it thereafter.

Theorem 1 [1]. Let V (χ (k)) be a Lyapunov function for the discrete-time system
(1), which satisfies the following properties:

γ1 (‖χ (k)‖) ≤ V (χ (k)) ≤ γ2 (‖χ (k)‖)
V (χ (k + 1)) − V (χ (k)) = ΔV (χ (k)) ≤ −γ3 (‖χ (k)‖) + γ3 (ζ)

where ζ is a positive constant, γ1 (•) and γ2 (•) are strictly increasing functions,
and γ3 (•) is a continuous, nondecreasing function. Thus if

ΔV (χ) < 0 for ‖χ (k)‖ > ζ

then χ (k) is uniformly ultimately bounded, i.e. there is a time instant kT , such
that ‖χ (k)‖ < ζ, ∀ k < kT .

Definition 3. A subset S ∈ �n is bounded if there is r > 0 such that ‖χ‖ ≤ r
for all χ ∈ S .

2.2 Discrete-Time Recurrent High Order Neural Networks

Consider the following discrete-time recurrent high order neural network
(RHONN):

xi(k + 1) = w�
i zi(x(k), u(k)), i = 1, · · · , n (4)

where xi (i = 1, 2, · · · , n) is the state of the ith neuron, Li is the respective
number of higer-order connections, {I1, I2, · · · , ILi} is a collection of non-ordered
subsets of {1, 2, · · · , n}, n is the state dimension, wi (i = 1, 2, · · · , n) is the
respective on-line adapted weight vector, and zi(x(k), u(k)) is given by

zi(x(k), u(k)) =

⎡

⎢⎢⎢⎣

zi1

zi2
...

ziLi

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

Πj∈I1y
dij(1)
ij

Πj∈I2y
dij(2)
ij

...
Πj∈ILi

y
dij(Li)
ij

⎤

⎥⎥⎥⎥⎦
(5)

with dji(k) being a nonnegative integers, and yi is defined as follows:

yi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

yi1
...

yi1

yin+1

...
yin+m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

S(x1)
...

S(xn)
u1

...
um

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)
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In (6), u = [u1, u2, . . . , um]� is the input vector to the neural network, and S(•)
is defined by

S(x) =
1

1 + exp(−βx)
(7)

Consider the problem to approximate the general discrete-time nonlinear system
(1), by the following discrete-time RHONN [13]:

χi (k + 1) = w∗�
i zi (x(k), u(k)) + εzi , i = 1, · · · , n (8)

where χi is the ith plant state, εzi is a bounded approximation error, which
can be reduced by increasing the number of the adjustable weights [13]. Assume
that there exists ideal weights vector w∗

i such that ‖εzi‖ can be minimized on
a compact set Ωzi ⊂ �Li The ideal weight vector w∗

i is an artificial quantity
required for analytical purpose [13]. In general, it is assumed that this vector
exists and is constant but unknown. Let us define its estimate as wi and the
estimation error as

w̃i (k) = w∗
i − wi (k) (9)

The estimate wi is used for stability analysis which will be discussed later. Since
w∗

i is constant, then w̃i (k + 1) − w̃i (k) = wi (k + 1) − wi (k), ∀k ∈ 0 ∪ Z
+.

2.3 The EKF Training Algorithm

It is known, that Kalman filtering (KF) estimates the state of a linear system
with additive state and output white noises [2], [14]. For KF-based neural net-
work training, the network weights become the states to be estimated. In this
case the error between the neural network output and the measured plant out-
put can be considered as additive white noise. Due to the fact that the neural
network mapping is nonlinear, an EKF-type is required (see [11] and references
therein). The training goal is to find the optimal weight values which minimize
the prediction error. In this paper, we use a EKF-based training algorithm des-
cribed by

wi (k + 1) = wi (k) + ηiKi (k) ei (k) (10)
Ki (k) = Pi (k)Hi (k)Mi (k)

Pi (k + 1) = Pi (k) − Ki (k)H�
i (k)Pi (k) + Qi (k) , i = 1, · · · , n

with

Mi (k) =
[
Ri (k) + H�

i (k)Pi (k)Hi (k)
]−1

(11)
ei (k) = y (k) − ŷ (k) (12)

where e (k) ∈ �p is the observation error and Pi (k) ∈ �Li×Li is the weight
estimation error covariance matrix at step k, wi ∈ �Li is the weight (state)
vector, Li is the respective number of neural network weights, y ∈ �p is the
plant output, ŷ ∈ �p is the NN output, n is the number of states, Ki ∈ �Li×p

is the Kalman gain matrix, Qi ∈ �Li×Li is the NN weight estimation noise
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covariance matrix, Ri ∈ �p×p is the error noise covariance, and Hi ∈ �Li×p is
a matrix, in which each entry (H

ij
) is the derivative of the i-th neural output

with respect to ij-th neural network weight, (wij ), given as follows:

H
ij

(k) =
[

∂x
i
(k)

∂wij (k)

]�
(13)

where i = 1, ..., n and j = 1, ..., Li. Usually Pi and Qi are initialized as dia-
gonal matrices, with entries Pi (0) and Qi (0), respectively. It is important to
remark that Hi (k) , Ki (k) and Pi (k) for the EKF are bounded; for a detailed
explanation of this fact see [14].

3 Discrete-Time Neural Observers

In this section, we consider to estimate the state of a discrete-time nonlinear
system, which is assumed to be observable, given by

x (k + 1) = F (x (k) , u (k)) + d (k)
y (k) = Cx (k) (14)

where x ∈ �n is the state vector of the system, u (k) ∈ �m is the input vector,
y (k) ∈ �p is the output vector, C ∈ �p×n is a known output matrix, d (k) ∈ �n

is a disturbance vector and F (•) is a smooth vector field and Fi (•) its entries;
hence (14) can be rewritten as:

x (k) =
[
x1 (k) . . . xi (k) . . . xn (k)

]�

d (k) =
[
d1 (k) . . . di (k) . . . dn (k)

]�

xi (k + 1) = Fi (x (k) , u (k)) + di (k) , i = 1, · · · , n

y (k) = Cx (k) (15)

For system (15) , we propose a Luenberger neural observer (RHONO) with the
following structure:

x̂ (k) =
[
x̂1 (k) . . . x̂i (k) . . . x̂n (k)

]�

x̂i(k + 1) = w�
i zi(x̂(k), u(k)) + Lie (k)

ŷ (k) = Cx̂ (k) , i = 1, · · · , n (16)

with Li ∈ �p, wi and zi as in (4); the weight vectors are updated on-line with a
decoupled EKF (10) − (13) and the output error is defined by

e (k) = y (k) − ŷ (k) (17)

and the state estimation error as:

x̃ (k) = x (k) − x̂ (k) (18)
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Then the dynamic of (18) can be expressed as

x̃i (k + 1) = xi (k + 1) − x̂i (k + 1)
= w∗�

i zi (x(k), u(k)) + εzi + di (k) − w�
i zi(x̂(k), u(k)) − Lie (k)

= w̃i (k) zi (x(k), u(k)) + εzi + di (k) − Lie (k) (19)

Considering (16) and (17)

e (k) = Cx̃ (k) (20)

Then (12) can be rewritten as

x̃i (k + 1) = w̃i (k) zi (x(k), u(k)) + ε′zi
− LiCx̃ (k) (21)

with ε′zi
= εzi + di (k) . On the other hand the dynamics of (11) is

w̃i (k + 1) = w∗
i − wi (k + 1) = w̃i (k) − ηiKi (k) e (k) (22)

Considering (10) − (22), we establish the main result as the following theorem.

Theorem 2. For the system (15), the RHONO (16) trained with the EKF-based
algorithm (10) , ensures that the output error (17) and the estimation error
(18) are semiglobally uniformly ultimately bounded (SGUUB); moreover, the
RHONO weights remain bounded.

Proof: Consider first the Lyapunov function candidate

Vi (k) = w̃i (k)Pi (k) w̃i (k) + x̃i (k)Pi (k) x̃i (k)

Then
ΔVi (k) = V (k + 1) − V (k) (23)

Using (9) and (10) in (23)

ΔVi (k) = [w̃i (k) − ηiKi (k) e (k)]T [Ai (k)] [w̃i (k) − ηiKi (k) e (k)]

+ [f (k) − LiCx̃ (k)]T [Ai (k)] [f (k) − LiCx̃ (k)]
−w̃i (k)Pi (k) w̃i (k) − x̃i (k)Pi (k) x̃i (k) (24)

with Ai (k) = Pi (k) − Di (k) + Qi Di (k) = Ki (k)H�
i (k)Pi (k) and f (k) =

w̃i (k) zi (x(k), u(k)) + ε′zi
, (24) can be expressed as

ΔVi (k) = w̃T
i (k)Pi (k) w̃i (k) − w̃T

i (k) [Bi (k)] w̃i (k)
+η2x̃T (k)CT KT [Ai (k)] Ki (k)Cx̃ (k) + fT (k) [Ai (k)] f (k)
+x̃T (k)CT LT

i [Ai (k)] LiCx̃ (k) − w̃T
i (k)Pi (k) w̃i (k)

−x̃T
i (k)Pi (k) x̃i (k)

≤ ‖x̃ (k)‖2 ‖ηKiC‖2 ‖Ai (k)‖ − ‖x̃ (k)‖2 ‖LiC‖2 ‖Ai (k)‖
− ‖x̃ (k)‖2

Pi (k) − ‖w̃i (k)‖2 ‖Bi (k)‖ +
∣∣ε′zi

∣∣2 ‖Ai (k)‖
+2 ‖w̃i (k)‖ ‖zi (x(k), u(k))‖

∣∣ε′zi

∣∣ ‖Ai (k)‖
+ ‖w̃i (k)‖2 ‖zi (x(k), u(k))‖2 ‖Ai (k)‖
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with Bi (k) = Di (k) − Qi

ΔVi (k) ≤ − ‖x̃ (k)‖2 Ei (k) − ‖w̃i (k)‖2 Fi (k) +
∣∣ε′zi

∣∣2 ‖Ai (k)‖ + 2Gi (k)

where

Ei (k) = Pi (k) − ‖ηKiC‖2 ‖Ai (k)‖ − ‖LiC‖2 ‖Ai (k)‖
Fi (k) = ‖Bi (k)‖ − ‖zi (x(k), u(k))‖2 ‖Ai (k)‖
Gi (k) = ‖w∗

i − wi max‖ ‖zi (x(k), u(k))‖
∣∣ε′zi

∣∣ ‖Ai (k)‖

Then ΔVi (k) ≤ 0 when

‖x̃ (k)‖ >

√∣∣ε′zi

∣∣2 ‖Ai (k)‖ + 2Gi (k)
Ei (k)

≡ κ1

or

‖w̃i (k)‖ >

√∣∣ε′zi

∣∣2 ‖Ai (k)‖ + 2Gi (k)
Fi (k)

≡ κ2

Therefore the solution of (21) and (22) is stable. Hence, the estimation error and
the RHONO weights are SGUUB [3]. Considering (16) and (12) it is easy too
see that the output error has an algebraic relation with x̃ (k) for that reason if
x̃ (k) is bounded e (k) is bounded too.

e (k) = Cx̃ (k)
‖e (k)‖ = ‖C‖ ‖x̃ (k)‖

�

4 Induction Motor Application

4.1 Discrete-Time Model

The six-order discrete-time induction motor model in the stator fixed reference
frame (α, β) under the assumptions of equal mutual inductances and linear mag-
netic circuit is given by [7]

ω (k + 1) = ω (k) +
μ

α
(1 − α) −

(
T

J

)
TL (k)M

(
iβ (k)ψα (k) − iα (k)ψβ (k)

)

ψα (k + 1) = cos (npθ (k + 1)) ρ1 (k) − sin (npθ (k + 1)) ρ2 (k) (25)
ψβ (k + 1) = sin (npθ (k + 1)) ρ1 (k) + cos (npθ (k + 1)) ρ2 (k)

iα (k + 1) = ϕα (k) +
T

σ
uα (k)

iβ (k + 1) = ϕβ (k) +
T

σ
uβ (k)

θ (k + 1) = θ (k) + ω (k)T +
μ

α

[
T − (1 − a)

α

]

×M
(
iβ (k)ψα (k) − iα (k)ψβ (k)

)
− TL (k)

J
T 2
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with

ρ1 (k) = a
(
cos (npθ (k))ψα (k) + sin (npθ (k))ψβ (k)

)

+b
(
cos (npθ (k)) iα (k) + sin (npθ (k)) iβ (k)

)

ρ2 (k) = a
(
cos (npθ (k))ψα (k) − sin (npθ (k))ψβ (k)

)

+b
(
cos (npθ (k)) iα (k) − sin (npθ (k)) iβ (k)

)

ϕα (k) = iα (k) + αβTψα (k) + npβTω (k)ψα (k) − γT iα (k)
ϕβ (k) = iβ (k) + αβTψβ (k) + npβTω (k)ψβ (k) − γT iβ (k)

where b = (1 − a)M, α = Rr

Lr
, γ = M2Rr

σL2
r

+ Rs

σ , σ = Ls− M2

Lr
, β = M

σLr
, a = e−αT ,

μ = Mnp

JLr
with Ls, Lr and M are the stator, rotor and mutual inductance,

respectively; Rs and Rr are the stator and rotor resistances, respectively; np is
the number of pole pairs;ω represents the angular speed; iα and iβ represent the
currents in the α and β phases, respectively; ψα and ψβ represent the fluxes in
the α and β phases, respectively and θ is the rotor angular displacement.

4.2 Simulation Results

In this section we apply the above developed scheme to estimate the state of
a three-phase induction motor (25). Simulations are performed for the system
(25), using the following parameters: Rs = 14Ω; Ls = 400mH ; M = 377mH ;
Rr = 10.1Ω; Lr = 412.8mH ; np = 2; J = 0.01Kgm2; T = 0.001s. To estimate
the state of system (25) we use the RHONO (16) with n = 6 trained with the
EKF (10) .

x̂1 (k + 1) = w11 (k)S (x̂1 (k)) + w12 (k)S (x̂1)S (x̂3 (k)) x̂4 (k)
+w13 (k)S (x̂1)S (x̂2 (k)) x̂5 (k)

x̂2 (k + 1) = w21 (k)S (x̂1 (k))S (x̂3 (k)) + w22 (k) x̂5 (k)
x̂3 (k + 1) = w31 (k)S (x̂1 (k))S (x̂2 (k)) + w32 (k) x̂4 (k)
x̂4 (k + 1) = w41 (k)S (x̂2 (k)) + w42 (k)S (x̂3 (k)) + w43 (k)S (x̂4 (k))

+w44 (k)uα (k)
x̂5 (k + 1) = w51 (k)S (x̂2 (k)) + w52 (k)S (x̂3 (k)) + w53 (k)S (x̂5 (k))

+w54 (k)uβ (k)
x̂6 (k + 1) = w61 (k)S (x̂2 (k)) + w62 (k)S (x̂3 (k)) + w63 (k)S (x̂6 (k))

where x̂1 estimates the angular speed ω; x̂2 and x̂3 estimate the fluxes ψα and
ψβ , respectively; x̂4 and x̂5 estimate the currents iα and iβ , respectively; finally
x̂6 estimates the angular displacement θ. The inputs uα and uβ are selected as
chirp functions.

The training is performed on-line, using a parallel configuration. All the
NN states are initialized randomly. The covariances matrices are initialized as
diagonals, and the nonzero elements are: Pi (0) = 10000; Qi (0) = 500 and
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Fig. 1. Motor states and its estimates
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Fig. 2. External disturbance (load torque) and parametric variation (rotor resistance)

Ri (0) = 10000, (i = 1, · · · , 6), respectively. Simulation results are presented as:
Fig.1 displays the time evolution of the estimated states x̂i (k), (i = 1, · · · , 6),
respectively., and Fig. 2 portrays the load torque applied as an external distur-
bance and the parametric variation introduced in the rotor resistance (Rr) as
a variation of 1 Ohm per second.

Remark 1. The purpose of this paper is to develop a discrete-time nonlinear
observer for a class of MIMO nonlinear systems in discrete-time, by means of the
use of the EKF as the neural network learning algorithm without the knowledge
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of a nominal plant model; this approach is validated by the simulation results
presented above.

Remark 2. Even if the EKF is not an easy learning algorithm, it presents
an excellent performance and has proven to be reliable and practical for many
applications over the past ten years ([11] and references therein).

5 Conclusions

A RHONN is used to design a Luenberger-like observer for a class of MIMO
discrete-time nonlinear system; this observer is trained with an EKF-based al-
gorithm, which is implemented on-line as a parallel configuration. The bound-
edness of the output and estimation errors is established on the basis of the
Lyapunov approach. Simulation results shows the effectiveness of the proposed
RHONO, as applied to a discrete-time induction motor model.

Acknowledgement. The authors thank the support of CONACYT Mexico,
through Projects 39866Y and 39811Y.
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Abstract. Typically the response of a multilayered perceptron (MLP)
network on points which are far away from the boundary of its training
data is not very reliable. When test data points are far away from the
boundary of its training data, the network should not make any decision
on these points. We propose a training scheme for MLPs which tries
to achieve this. Our methodology trains a composite network consisting
of two subnetworks : a mapping network and a vigilance network. The
mapping network learns the usual input-output relation present in the
data and the vigilance network learns a decision boundary and decides
on which points the mapping network should respond. Though here we
propose the methodology for multilayered perceptrons, the philosophy is
quite general and can be used with other learning machines also.

1 Introduction

Multilayered perceptrons (MLP) are widely used to realize nonlinear mappings
between input-output training data. It is known that MLPs can generalize on
unknown data with reasonable accuracy. In [3] we demonstrated that the gener-
alization capability of MLPs is generally over estimated and they can generalize
well only on test points which are in the vicinity of the training data. The output
of an MLP for points which lie far away from the boundary of its training sample
is never reliable. This fact though known is seldom considered while training or
using neural networks. An user who gets a trained neural network may (usually
will) not have the training data with him (her), thus it is not possible for the
user to know about the domain in which the network can perform meaningful
generalizations. Some experiments reported in [3] clearly demonstrate that for
classification problems, a trained MLP can produce very high response for a test
point which is far away from the boundary of the training data. And in most
cases such responses are useless. Ideally, a trained network must not respond to
test points which lie far away from its training sample. We call this kind of gen-
eralization as “strict generalization”. In [3] we proposed a scheme which does so
only for classification problems. Also the method in [3] depends on a technique

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 722–731, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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to generate additional training points to detect the boundary of the training
data. This method of generating new points becomes computationally expensive
for reasonably high dimensional data. In this paper we address the same prob-
lem but with a different methodology which do not have the limitations of the
method in [3]. This method is well suited for function approximation problems
also and it does not require generation of additional points as in [3].

Our method involves building a composite network consisting of two subnet-
works, each for a different task: (a) to learn the input-output mapping present
in the training set, and (b) to learn the boundary of the training set. The
composite network not only performs the main task of function approxima-
tion/classification, but also it learns a decision boundary as in classification
problems. We call the first network which learns the input-output mapping as
the mapping network and the other network which learns the decision bound-
ary as the vigilance network. We propose a novel method to train the vigilance
network which does not require generation of additional points as in [3], but
it involves decomposing the training sample into small subsets, and making the
vigilance net learn the boundary of such sets. The vigilance network is then com-
bined with a mapping network to realize strict generalization for both function
approximation (FA) and classification tasks.
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Fig. 1. (a)Plot of 3-Peaks (b)The points in 3-Peaks used for training

2 The Motivation

Let us consider the function:

y = 0.2e−(x−50
10 )2

+ 0.4e−(x−25
5 )2

+ 0.4e−(x−75
5 )2

. (1)

We call this function as 3-Peaks. Fig. 1(a) depicts the function 3-Peaks. We
sample a few points from the function in eq. (1) to train an MLP. Intentionally
we sample points in such a manner that there remains a gap in the input space.
Figure 1(b) shows the sampled points, we call this set of points as PT1. The MLP
trained with these sampled points are tested on a data set which contains 1000
equispaced points generated in [0,100]. Figure 2 shows the generalization done on
the test data by four MLPs trained with different initializations. From Fig. 1(b)
it is clear that the interval [40, 60] is not represented by any training data, so
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the MLP is not expected to perform well over this interval. Figure 2 shows some
queer generalizations. Specially the generalization shown in Fig. 2(b).

When training data are collected from a live process then there may remain
areas in the input space which are not well represented by the training data or are
not at all represented by the training data. For test points which lie in those areas,
ideally, an MLP should not respond at all. But an MLP, as shown in Fig.2, will
always produce some output. We device a mechanism here which can take care of
this problem.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

(a) (b)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

(c) (d)

Fig. 2. Generalization an ordinary MLP trained with PT1 for 4 different initializations

3 Training Scheme

Let T = {(xxx1, yyy1), (xxx2, yyy2), . . . , (xxxN , yyyN )} be our training set with N training
samples where xxxi ∈ �s be an input vector and yyyi ∈ �t be the corresponding
output vector. Let X = {xxx1,xxx2, . . . ,xxxN} be the set of input vectors in the
training set T and Y = {yyy1, yyy2, . . . , yyyN} be the set of output vectors in T . The
task here is to learn the unknown input-output mapping that exists between
xxx and yyy. An ordinary MLP trained with conventional backpropagation or any
other method can accomplish the task with a reasonable accuracy for almost all
kinds of data. But we have an additional objective. We want to train an MLP
in such a manner that it does not respond to test points which are away from
the “boundary” of X . This can be realized if we can make the MLP learn the
boundary of X along with the input-output mapping between xxx and yyy. Thus,
we want our network to learn a decision boundary as in case of classification
problems. To realize this we use two networks. The first one is an usual MLP
which learns the input-output mapping, we call this as the mapping network.
The second network is called the vigilance net which decides whether the MLP
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should respond to a point or not. The final output for a test point is obtained
by suitably combining the outputs of both networks.

3.1 Training the Vigilance Network with Receptive Fields Around
Data Points

We call the vigilance network as the receptive field vigilance network (RVN),
because it uses Gaussian receptive fields around clusters of data points.

We can assume that the input vectors of the training set X can be divided into
a number of hyperspherical clusters Xi, i = 1, 2, . . . , n, such that ∪n

i=1Xi = X
and Xi ∩Xj = φ, ∀i, j; i �= j. Such a decomposition into hyperspherical clusters
can be done using any conventional clustering algorithm like the k-means [4], or
the Fuzzy c-means [2]. The vigilance net is trained in such a manner that it can
detect whether a test point falls in any of these clusters or not.

This RVN is a three layered network. It has s nodes in the input layer (if
X ⊂ �s), k nodes in the hidden layer and one node in the output layer. Each
node in the hidden layer has two parameters μμμi ∈ �s and σi ∈ � associated with
it. For a input vector xxx, the ith hidden node computes

zi = exp

(
−||xxx − μμμi||2

σ2
i

)
, ∀i = 1, 2, . . . , k. (2)

The single output node in the third layer aggregates the outputs of the k hidden
nodes to give a single response. Let b be the output of the third layer node :

b = max
i=1,2,...,k

{zi}. (3)

Each node in the hidden layer represents a cluster in the data set X . The
parameters μμμi and σi are decided using the FCM algorithm. If we decide k as
the number of hidden nodes then, we find out k clusters from X and denote
μμμi, i = 1, 2, . . . , k as the ith cluster center. FCM produces a set of centroids
VVV = {vvv1, vvv2, . . . , vvvk}, and a partition matrix U = [uij ]k×N , where uij denotes
the degree to which xxxj belongs to the ith cluster and vvvi is the centroid of the ith

cluster. Here we take μμμi = vvvi. The fuzzy partition matrix obtained from FCM
can be hardened using the maximum membership rule [2]. In other words, we can
consider that a point xxxi ∈ X belongs to cluster c, 1 ≤ c ≤ k, if uci = maxj{uji}.

So, the clustering output can be used to partition X into k disjoint sets
X1, X2, . . . , Xk. The σi is chosen as :

σi = max
xxxj∈Xi

{||xxxj − μμμi||}, ∀i = 1, 2, . . . , k. (4)

For a test point xxx ∈ �s each hidden node in the vigilance network gives
an output related to the distance of xxx from the cluster center that the node
represents. Thus, if a test point lies in or around the boundary of the cluster
that a hidden node represents, then the output of that hidden node will be high.
Therefore, for a test point xxx ∈ �s, if b takes a high value then we conclude
that xxx lies within or around some cluster of X ; otherwise, it lies far from all k
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clusters of X . So, b can be used as an indicator of whether xxx lies in or around
the boundary of X .

The structure of the RVN is similar to a Radial Basis Function (RBF) network
but its function is quite different from that of an RBF.

3.2 The Composite Network

Another network is trained along with the vigilance network. This second net-
work is an ordinary MLP, which is trained with the points in X along with
its associated output, i.e., with T . This network is called the mapping network
(maps input to output). The vigilance network and the mapping network are
combined together to a composite network which makes the final decision. De-
noting the trained vigilance network as Nv and the mapping network as Nm,
the final trained network N is represented by the tuple N = (Nm, Nv). If the
output dimension of the data is t, then the composite network will have t + 1
output nodes. The first t output nodes correspond to the output of the mapping
network (Nm) and the (t + 1)th node corresponds to the output of the vigilance
network (Nv). We call the output of Nv as the boundary indicator component
(BIC)(please refer to Fig. 3). A test point is fed to the composite network, and
if the BIC gives a value greater than a threshold th, then the output of the test
point corresponds to the output of the remaining t nodes. If the BIC bears a
value lower than th, the network infers that the point is away from the boundary
of the training set and hence the net may not produce a correct output (deci-
sion) for it. The threshold th is generally user defined. In our simulations we use
th = e−1. The reason for such a choice is that in case of our vigilance network, σi

is the largest distance of a training point that belongs to the cluster associated
with the ith receptive field. So, it is reasonable to assume that the receptive field
of a node is extended up to a distance equal to its σ or a little beyond that.

N Nv

Vigilance Network

BIC

Mapping Network

m

Fig. 3. The composite network N = (Nm, Nv)
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Based on this idea we choose th equal to the response of a node at a distance σ,
which is equal to e−1.

4 Simulation Results

We use two function approximation and two classification data sets for demon-
strating the effectiveness of our network. The function approximation data sets
are 3-Peaks and Boston-Housing. For the data set 3-Peaks we can show the gen-
eralization properties pictorially and conclude that our network does a good job.
But, for the real life data set, Boston-Housing, such a pictorial representation
is not possible as this data set is in high dimension. For this data set we define
some measures which help us to evaluate the performance of our network. Let
T = {(xxxi, yyyi) : i = 1, 2, . . . , N} be the training set and X = {xxxi : i = 1, 2, . . . , N}
be the input vectors of the training set T . Let XTe = {xxx′

i : i = 1, 2, . . . , M} be
the input vectors of the test set. A trained composite network N = (Nm, Nv),
will either respond to a test point xxx′

i or will not respond to it. Thus, the set
XTe can be partitioned into two disjoint sets XA

Te and XR
Te. XA

Te contains the
points for which the composite network produces a response and XR

Te includes
the points for which the composite network does not produce any response. Now,
for each test point x′

i we define a function Δ as:

Δ(xxx′
i) = min

xxxj∈X
||xxx′

i − xxxj ||. (5)

Hence, Δ(xxx′
i) represents the distance of xxx′

i from its nearest neighbor in X . Let
μΔA and μΔR respectively denote the mean Δ for points which are accepted by
the vigilance network (i.e., points in XA

Te) and the points which are rejected by
the vigilance network (i.e., points in XR

Te) respectively. Thus,

μΔA =
1

|XA
Te|

∑

xxx′
i∈XA

T e

Δ(xxx′
i), (6)

and
μΔR =

1
|XR

Te|
∑

xxx′
i∈XR

T e

Δ(xxx′
i). (7)

For a test set XTe if μΔA < μΔR then it is reasonable to assume that the
network serves the intended purpose. Because μΔA < μΔR implies that the
points for which the composite network responds are more close to the training
data than those for which the network does not respond.

3-Peaks: The 3-Peaks data set has been discussed in Section 2. We sample 80
points uniformly from the interval [0,100]-[40,60] and call them PT1. We test the
generalization capabilities of trained networks on a test set of 1000 equispaced
points generated in the interval [0,100].

As PT1 does not contain any point in the interval [40,60] (refer Fig. 1(b)), an
ordinary MLP is not expected to produce meaningful response for test points
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which lie in the interval [40,60]. In Fig. 2 we have already shown that this is
indeed the case.

A composite network NP1 = (NPm1, NPv1) trained with PT1 produces bet-
ter generalizations. Figure 4 shows the generalizations of 4 different composite
networks. Figure 4 reveals that the composite networks do not respond to test
points which fall in the area not represented in the training set. Note, the re-
sponse is plotted only when BIC ≥ 0.368.
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Fig. 4. Generalizations produced by NP1 = (NPm1, NPv1), (using RVN) when trained
with PT1 for various initializations(the large dots denotes the training points)

Boston-Housing: Boston-Housing data set [1] contains 506 samples in 13 di-
mension and it contains only one output. We use a normalized version of this data
set. We divide each input feature and the output by the respective maximum value
so that they lie between 0 and 1. For Boston-Housing data, we create a random
training-test partition so that the the training and test set contains equal number
of data points. We train 10 different composite networks with different initializa-
tions. For each run we use a mapping network with 10 hidden nodes and a RVN
with 10 receptive fields. Table 1 shows the results on the test sets for this data set.
In Table 1, column 2 shows the number of points for which the composite network
makes a decision, while column 3 gives the number of cases for which the network
refuses to produce an output. Comparing column 4 with column 5 we see that for
all cases μΔA is significantly lower than μΔR, indicating that the points for which
the network makes predictions are in the vicinity of the training points. Columns
6 and 7 show the mean test error (the absolute deviation of the network response
from the true output) for accepted and the rejected points. Comparing columns
6 and 7, we find that in all cases the network rejects those points which produces
more error. Note that, the composite network does not respond to the rejected
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points (the points in XR
Te), but in column 7 of Table 1 we report the deviations

of the outputs of the mapping network for the rejected points ignoring the values
of the BIC produced by the vigilance network. It is not expected that a trained
network will produce good results for test points which are away from the training
set, and comparing columns 6 and 7 we see that this is true for all the runs with
Boston-Housing data.

Table 1. Run statistics for Boston-Housing on 50% Training-Test partition

Run No. |XA
Te| |XR

Te| μΔA μΔR Mean Test error Mean test error
for accepted points for rejected points

1 245 8 0.155 0.324 0.090 0.149

2 246 7 0.152 0.369 0.092 0.212

3 249 4 0.158 0.395 0.068 0.386

4 245 8 0.153 0.439 0.078 0.187

5 251 2 0.152 0.280 0.068 0.304

6 246 7 0.157 0.330 0.115 0.140

7 243 10 0.160 0.317 0.098 0.397

8 246 7 0.158 0.454 0.445 0.602

9 247 6 0.161 0.425 0.438 0.585

10 248 5 0.158 0.246 0.153 0.219

To validate that in average μΔA < μΔR, we perform another experiment. In
this experiment, we use all 506 points as training examples and test the networks
with 1000 additional points generated in the 10% inflated hyperbox containing
the training data. Here too we train 10 different networks and test with differ-
ent test sets each containing 1000 points. Table 2 shows the results for the 10
networks. From columns 2 and 3 of Table 2 we see that the number of points
rejected is much more than the number of points accepted by the composite
network. This is due to the fact that the input vectors are 13 dimensional, and
we have only 506 training points. So, the training points occupy only a small

Table 2. Run statistics for Boston-Housing on artificially generated test data

Run No. |XA
Te| |XR

Te| μΔA μΔR

1 86 914 0.810 1.242

2 155 845 0.862 1.243

3 103 897 0.804 1.242

4 135 865 0.864 1.230

5 108 892 0.818 1.231

6 88 912 0.799 1.233

7 56 944 0.812 1.218

8 143 857 0.873 1.235

9 118 882 0.796 1.241

10 139 861 0.851 1.233
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part of the total hyperbox bounded by the data. And most of the artificially
generated points fall outside the boundary of the training sample. The scenario
was different in case of Table 1 as there it is expected that the test points follow
the same probability distribution as that of the training points, hence in Table 1
only a few points got rejected. Comparing columns 4 and 5 of Table 2 we see
that for all cases μΔA < μΔR, which shows that the networks respond only to
points which are in the vicinity of the training points. As in this case the test
data are artificially generated, we cannot measure the deviation of the network
output from the true output.

4.1 Results on Classification

We report results on two classification data sets : Breast Cancer [1] and Wine [1].
Tables 3 and 4 summarize the run statistics of 10 networks trained and tested
for Wine and Breast-Cancer data respectively. For both these data sets we used
equal number of points in the training and test sets. Also we used 10 hidden
nodes in the mapping network and 10 receptive fields in the RVN. Tables 3 and
4 clearly show that for all networks μΔR is significantly greater than μΔA.

Table 3. Run statistics for Wine

Run No. |XA
Te| |XR

Te| μΔA μΔR

1 86 3 0.390 0.560

2 87 2 0.388 0.733

3 87 2 0.387 0.814

4 87 2 0.398 0.618

5 84 5 0.377 0.606

6 87 2 0.406 0.767

7 88 1 0.391 0.912

8 88 1 0.402 0.781

9 82 7 0.394 0.723

10 88 1 0.399 0.912

Table 4. Run statistics for Breast-Cancer

Run No. |XA
Te| |XR

Te| μΔA μΔR

1 341 1 2.160 8.307

2 341 1 1.999 5.916

3 341 1 2.054 9.165

4 340 2 2.016 7.083

5 337 5 2.081 8.517

6 334 8 2.016 7.058

7 338 4 1.923 7.854

8 341 1 2.131 5.916

9 341 1 2.083 9.165

10 338 4 2.119 6.730



Strict Generalization in Multilayered Perceptron Networks 731

5 Conclusion

We proposed a training scheme for MLPs which can equip an MLP with the
property of strict generalization. Our method uses a composite network that
judiciously integrates two subnetworks, a mapping network and a vigilance net-
work. The simulation results demonstrate that our training scheme serves the
purpose quite satisfactorily both for function approximation and classification
tasks. The basic philosophy of vigilance network is quite general in nature and
can be used with other machine learning tools like radial basis function networks.
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Abstract. This paper proposes the application of fault-tolerant control
(FTC) using weighted fuzzy predictive control. The FTC approach is
based on two steps, fault detection and isolation (FDI) and fault ac-
commodation. Fault detection is performed by a model-based approach
using fuzzy modeling. Fault isolation uses a fuzzy decision making ap-
proach. The model of the isolated fault is used in fault accommoda-
tion with a model predictive control (MPC) scheme. This paper uses a
weighted fuzzy predictive control scheme, where fuzzy goals and fuzzy
constraints are described in a fuzzy objective function. The criteria (goals
or constraints) have an associated weight factor, which are chosen by the
decision-maker. Two faults were simulated in a three tank benchmark
and the respective fuzzy models were identified. The fuzzy FTC scheme
proposed in this paper was able to accommodate the simulated faults.

1 Introduction

With the increase of technical processes complexity, safety and reliability be-
come important system requirements. Considering that industrial processes are
more and more complex, the probability of occurring a fault increases. Thus,
control systems must include automatic supervision of process control to detect
and isolate faults as early as possible, and to tolerate some component malfunc-
tions. FTC can be performed by passive methods or by active methods. Passive
methods use robust control techniques to ensure that a closed-loop system re-
mains insensitive to certain faults. In active methods, a new control system is
redesigned by using the desired properties of performance and robustness in the
system without faults. Fault accommodation involves the detection and isolation
of faults, and taking appropriate control actions that eliminate or reduce the ef-
fect of faults and maintains the control. The use of MPC to deal with the fault
accommodation is relatively natural and straightforward, considering the repre-
sentation of both faults and control objectives [6]. The use of fuzzy goals and

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 732–742, 2007.
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fuzzy constraints in MPC provides ways of representing and dealing with flexible
or soft criteria. The optimal trade-off amongst fuzzy goals and fuzzy constraints
is determined by maximizing simultaneously the satisfaction of the optimization
objectives and the constraints [12]. In [7] a method for satisfying the problem
constraints and the goals is proposed, where preference for different constraints
and goals can be specified by the decision maker. This paper proposes the uses
of weights in the fuzzy MPC scheme to optimize the control performance when
a fault occurs.

The FDI approach presented in this paper uses one fuzzy model representing
the normal state of the system and one fuzzy model for each fault that can occur
in a given system. The faults are detected and isolated based on these fuzzy
models. A fuzzy decision making approach is used to isolate the faults. When
a fault is isolated, fault accommodation is performed by using the respective
faulty model. This paper proposes a fault tolerant control scheme, where the
faulty model is used in a fuzzy MPC scheme. A simulation of a three tank
benchmark is used in this paper to illustrate the advantages of the proposed
approach, and to obtain two faults in the system behavior.

This paper is organized as follows. Next section presents a brief overview of
fault detection and isolation, and fault tolerant control. Fuzzy predictive control
is presented in Section 3. The architecture for fault tolerant control is described
in Section 4. The application example is presented in Section 5 and finally some
conclusions are drawn in Section 6.

2 Fault Tolerant Control

A system that includes the capacity of detecting, isolating and identifying faults
is called a fault detection and isolation system [2]. During the years, many re-
search has been carried out using analytical approaches and model-based ap-
proaches. The idea is to generate signals that reflect inconsistencies between
normal and faulty system operation and detect and isolate the faults.

The use of FDI in fault tolerant control is very important in the active way
of achieving fault-tolerance, by detecting and isolating the faults. After the fault
indication by FDI, the system can then be reconfigured or restructured. In some
cases, a pre-calculated controller will be activated or the parameters of the con-
troller will be changed according to the real time diagnostic provided by FDI.
The active fault tolerant control approach uses the FDI information to make
the on-line controller reconfiguration or model selection. Another possible ap-
proach is to use all the information given by FDI to improve the ability of on-line
controller reconfiguration.

When MPC is used in FTC, some faults can be validated by modifying the
constraints in the MPC problem definition. The use of MPC with internal model
modification is used also to accommodate the faults behavior. The use of MPC
increases the degree of fault tolerance under certain conditions, when the fault
is not detected [6]. Thus, MPC in fault tolerant control provides a suitable im-
plementation architecture and increases the system capability to accommodate
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the faults. Fault accommodation yields taking appropriate control actions that
eliminate or reduce the effect of the faults and maintains the control.

A fuzzy logic approach in FTC is used in [5] where Takagi-Sugeno (TS) fuzzy
models are used in fault tolerant control of non-linear systems. This paper pro-
poses a fuzzy MPC scheme to perform fault accommodation.

3 Fuzzy Predictive Control

3.1 Classical Objective Functions

In predictive control of multivariable systems, the output values ŷ(k + i), i =
1, . . . , Hp, depend on the states of the process at the current time k and on the
future control signals u(k + j), j = 1, . . . , Hc, where Hc is the control horizon.
For multivariable systems the objective function can be represented by J =
eT Re + ΔuT QΔu, where the first term accounts for the minimization of the
output errors, the second term represents the minimization of the control effort,
and R and Q are weighting matrices. Note that these parameters have two
functions: they normalize the different outputs and inputs of the system and
weight the importance of the two different terms in the objective function over
the time steps.

3.2 Fuzzy Objective Functions

When fuzzy criteria is used in the objective function, the criteria has some flexi-
bility that can be exploited for improving the optimization objective. Predictive
control using fuzzy goals and fuzzy constraints can be defined as a fuzzy decision
making problem [11]. Using a process model, a fuzzy decision making algorithm
selects the control actions that best meet the specifications. Hence, a control
strategy can be obtained that is able to push the process closer to the con-
straints, and that is able to force the process to a better performance, based on
the goals and the constraints set by the operator together with the known con-
ditions provided by the system’s designers. The resulting optimization problem
is a multistage decision making problem. Multistage decision making has been
applied to control by several authors [4].

3.3 Weight Selection in Fuzzy Aggregation

Weighted aggregation has been used quite extensively especially in fuzzy deci-
sion making, where the weights are used to represent the relative importance
that the decision maker attaches to different decision criteria. Almost always
an averaging operator has been used for the weighted aggregation, such as the
generalized means, fuzzy integrals or the ordered weighted average (OWA) oper-
ators. Weighted aggregation of fuzzy sets by using t-norms has been considered
first by Yager in [13]. He proposed to modify the membership functions with the
associated weight factors before the fuzzy aggregation. The weighted aggrega-
tion is then the aggregation of the modified membership functions. A generalized
form of this idea leads to the weighted aggregation function.
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Fig. 1. Fault detection and isolation scheme

The weight factors represent the relative importance of various constraints
and objectives with respect to one another. The general assumption is that the
higher is the weight of a particular constraint, the larger is its importance on
the aggregation result. Hence, final optimization result will be closer to the more
important constraints. If the objective is more important, the constraints will
be relaxed to a larger degree in order to increase the objective function. In this
paper, a heuristic is used to select the weight factors, as described in [7], and is
summarized as follows:

1. Initialize all the weight factors to one, and evaluate the control performance
using the corresponding objective function.

2. Decrease each of the T̃ weight factors to 0.5 one by one. Evaluate the perfor-
mance, and order the criteria, where the first is the one that improved the
performance of the system most.
When the number of criteria T̃ is very high, a simplification can be made. In
this case, reduce simultaneously a certain criterion for the entire prediction
horizon Hp. The number of iterations is then reduced from T̃ = T ×Hp to T .
Thus, instead of evaluating each weight associated with the criterion ζij , the
same weight is assumed for the criterion ζj , i.e. the criterion is considered
constant for the entire prediction horizon.

3. For each criterion, ζij or ζj depending on the choice in Step 2, reduce the
weight factor to 0.25 and check if the control performance is better. If this
is the case, reduce further the weight to 0.125. The weight that yields the
best performance is chosen as the weight factor for that criterion.

4. When all the criteria have been evaluated, the best combination of weights
is determined, and should be used for the system.

4 Architecture for Fault Tolerant Control

This paper uses a simple architecture for fault tolerant control [8]. This approach
is based on two steps: the first performs fault detection and isolation, and the
second performs fault accommodation.
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4.1 Fault Detection and Isolation

The fault detection and isolation approach is presented in Fig. 1. In the presented
FDI approach, the multidimensional input u, enters both the process and a
model (observer) in normal operation. The vector of residuals ε is defined as,
ε = y − ŷ, where y is the output of the system and ŷ is the output of the
model in normal operation. When any component of ε is bigger than a certain
threshold, the system detects faults. In this case, n observers (models), one
for each fault, are activated, and n vectors of residuals are computed. Each
residual i, with i = 1, . . . , n, is computed as, εFi = y − ŷFi , where ŷFi is the
output of the observer for the fault i. The residuals εF1 , . . . , εFn are evaluated,
and the fault or faults detected are the outputs of the FDI system. The fault
isolation is performed by evaluating fuzzy decision factors, which are built based
on residuals. The fuzzy fault isolation used in this paper is based on FDM [10].
In this approach, a membership function μεij is derived for each residual εij .
Note that this method to derive membership functions is common in various
fuzzy approaches [9].

The m membership functions μεi1 , . . . , μεim must be aggregated using a con-
junction operator, which assures that a fault is isolated only when all the residu-
als εij are close to zero. The aggregation can be given by γi = t(μεi1 , . . . , μεim),
where t is a triangular norm, as e.g. the minimum operator. An example of γi

for two outputs is shown in [10]. Let γi(k) ∈ [0, 1], i = 1, . . . , n, be called a fuzzy
decision factor. These values are computed at each time instant k. A vector of
fuzzy decision factors can be computed as Γ (k) = [γ1(k) γ2(k) · · · γn(k)],
i.e., one fuzzy decision factor for each fault. A fuzzy decision factor γi(k) is high
only if all the residuals are close to zero.

In order to isolate a fault i, the value of γi(k) must be higher than a threshold
R, which must be close to one. Note that the threshold T is equal for all the
faults, because the fuzzy decision factors are already normalized in the interval
[0, 1]. The threshold is obtained experimentally and defines the regions of fault
and no fault. In practice, the definition of this value revealed to be relatively
easy, and a value around R = 0.7 isolated the faults properly. This value can
suffer a slight change in others processes. Note that several γi(k) can be above
the threshold at a certain time k. Therefore, a fault i is isolated only when
the remaining faults are below R. However, even if only one fault is above the
threshold at a certain time instant, this can occur due to noise or model errors.
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Fig. 3. Flowsheet of the three tank benchmark process

Therefore, our approach considers that a fault i ∈ {1, . . . , n} is only isolated
when γi is above the threshold R and the remaining γl decision factors are
below the same threshold for tk consecutive time instants. The fuzzy isolation
scheme used in this paper is presented in [10].

4.2 Fuzzy Fault Tolerant Control

The FTC structure proposed in this paper is shown in Fig. 2. FTC uses a multiple
model selection approach, where a fuzzy model for the process running in normal
operation and one model for each one of the faults are used.

In MPC, the user can specify requirements like minimal energy use or fast
control by changing the cost function. This feature is very useful in FTC, be-
cause it allows different control specification for faulty models, in order to have
minimal losses when the system is working in a faulty mode. Furthermore, the
control action can take into account a time interval (prediction horizon). Also
the receding horizon principle allows at each time instant to assess the situation
by taking into account any change in the fault status to apply the best con-
trol action. The use of nonlinear models results in a non-convex optimization
problem. In this case, iterative optimization techniques are usually considered.
However, these methods have generally high computational costs and converge
often to local minima. By discretizing the control actions, the efficient B&B al-
gorithm can be used to search the discrete space for the best solution. This has
proven to give better results than iterative optimization techniques [9].

5 Application Example

5.1 Description of the System

The process used in this paper is a benchmark which presents the transport of
fluids behavior in chemical processes. Many of the faults of chemical processes
occur in the level of transport of fluids and raw materials; leaks, clogs, valve
blockages and sensor faults are only a few of them. Figure 3 presents the flowsheet
of the used benchmark process [3]. It consists of three tanks, R1, R2 and R3
connected with flow paths which serve to supply water from the reservoir R0,
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Table 1. VAF of fuzzy models with faults and without faults (in %)

Without Faults
Outputs faults F1 F4

h1 99.8 99.8 99.8
h2 99.8 99.8 98.5
h3 99.9 93.7 68.6

P1 and P2 are pumps driven with DC motors with permanent magnet. There
are two configurations to active flow paths available. In the first one, flow is
generated by varying the angular speed of the pump P1. In the second case,
pump P2 works at constant speed. Flow is then varied by manipulating the
valve V5. There is one servo-valve V5 in the plant, driven by a DC motor.
Valves V1 and V2 are on-off while V3 and V4 are manual valves. The purpose
of the valve V3 is mainly to implement a real fault, i.e. a leakage of the tank R1.
The capacity of the reservoir R0 is much larger than the capacity of the tanks,
so that its level is practically constant during operation [1].

5.2 FDI Results

The faults considered in this paper are: F1, leak in R1 with 50% of intensity,
and F4 clog in branch containing V 4, both with 50% of intensity. This fault
description is presented in [3]. In order to measure modeling accuracy, this paper
uses the Variance Accounted For (VAF). The identification data used to build
the three tank system model in normal operation contains 2000 samples. The
same number of samples was used to identify each fault used in the simulation. A
fuzzy model was identified for the model in normal operation. The model inputs
when the system is in normal operation and when the system is with faults are:
w1, speed of rotation of pump P1, and S5, position of the valve V5. The model
outputs are: h1 level in the tank R1, h2 level in the tank R2, and h3 level in the
tank R3.

The accuracy of the identified fuzzy models,with or without faults is pre-
sented in Table 1. In general, the fuzzy models present good accuracy when
the system is with or without faults. The FDI step is made considering the
scheme presented in [10]. Fault F1 occurs at 50 s and fault F4 at 90 s. The
two faults F1 and F4 are correctly detected and isolated. The fault isolation
time is determined when the residuals are close to zero. The detection of both
faults is made in the first instant (time instant 51s, when the fault F1 occurs,
and time instant 91, when the fault F4 occurs). The isolation time of fault F1,
is 52 s, i.e. only one time instant after the detection time. Fault F4 is isolated
2 s after the detection time.

5.3 FTC Results

The fault accommodation is made considering the two controlled variables of
the three tank benchmark test: the level in the tank R1, h1, and the level in the
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Table 2. Normalized errors using classical objective functions and weighted fuzzy
objective functions (Faults F1 and F4)

F1 F4

Classical Rh1 Rh3 eh1 eh3 Rh1 Rh3 eh1 eh3

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Fuzzy w1 w3 eh1 eh3 w1 w3 eh1 eh3

Step 1 1.0 1.0 1.01 0.27 1.0 1.0 0.18 2.54
Step 2 1.0 0.5 0.9 0.29 1.0 0.5 0.13 2.53
Step 3 0.5 1.0 1.37 0.19 0.5 1.0 0.16 2.54
Step 4 1.0 0.25 1.06 0.24 1.0 0.25 0.18 2.54
Step 5 0.25 0.5 1.37 0.29 0.25 1.0 0.18 2.54
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Fig. 4. Fault F1 accommodation. Solid - fault with weighted accommodation, dash-
dotted - fault without accommodation.

tank R3, h3. From the possible aggregation methods presented in [7] the best
results were obtained with Yager’s t-norm. In this paper, the Yager’s t-norm
is also used to accommodate the faults. The sum squared error (SSE) is used
to evaluate the control performance. Table 2 presents the fault accommodation
results with classical, fuzzy and weighted fuzzy objective functions. The heuristic
to select the weight factors, which is presented in Section 3.3, is used. The Steps
in Table 2 follow the order of this heuristic. Considering the fault F1, the error
using the weights Rh1 = Rh3 = 1.0 of classical objective function is taken as
1 (100%), and it serves as the normalization to be compared with the other
errors. The absolute error values obtained are eh1 = 43.2 × 10−5 m for the level
in the tank R1 and eh3 = 0.26 × 10−5 m the level in the tank R3. The best
result of fault F1 accommodation is obtained at Step 2 when the fuzzy weighted
approach is used. The use of weights in fuzzy objective functions decrease the
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Fig. 5. Fault F4 accommodation. Solid - fault with weighted accommodation, dash-
dotted - fault without accommodation.

errors of the two controlled variables h1 and h3. The accommodation results
for fault F4 are also presented in Table 2. The absolute error values using the
weights Rh1 = Rh3 = 1.0 of classical objective function are eh1 = 8.1 × 10−5 m
for the level in the tank R1 and eh3 = 0.67×10−5 m for the level in the tank R3.
The weights combination used in Step 2 leads to smaller errors in the level of
tank R1. The error eh3 is larger when the fuzzy controller is used, but the error
eh1 is much smaller. As the error eh3 was 10 times smaller than eh1, the fuzzy
controller elegantly improve the overall performance of the controlled system.
Recall that fault F1 was simulated to start 50 seconds after the beginning of
the trajectory. The simulation results at Step 2 in Table 2 and without fault
accommodation are depicted in Fig. 4. The fuzzy FTC scheme proposed in this
paper was able to detect, isolate and accommodate correctly the fault F1. The
behavior of fault F1 can be observed in all the controlled variables (level h1
and level h3). Note that when fault F1 is isolated the fuzzy model in normal
operation is substituted by the fuzzy model considering that fault F1 is active.
This faulty fuzzy model is used in the weighted fuzzy MPC scheme to derive the
proper control actions. When fault F1 is active, the MPC controller still presents
good performance for the two controlled variables. The level of the tank R1, h1,
presents small oscillations. Figure 5 presents the results obtained with weighted
fuzzy objective functions (Step 2 in Table 2) and without fault accommodation.
The proposed FTC approach was also able to detect, isolate and accommodate
correctly the fault F4. The behavior of fault F4 can be observed in the controlled
variables, level h1 and level h3. The controlled output level h3 presents small
oscillations. The proposed FTC scheme presents good performance when applied
to the faults considered in this paper.
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6 Conclusions

This paper presents the application of a weighted fuzzy FTC scheme to accom-
modate several faults in a three tank benchmark system. The FTC approach
is based on two steps: fault detection and isolation, and fault accommodation.
In the first step the FDI scheme is based on fuzzy models for both normal
operation and for faulty operation, and on a fuzzy decision making approach.
Fault isolation is performed by evaluating fuzzy decision factors that are built
based on residuals. In the second step, the fault accommodation is made us-
ing weighted fuzzy MPC. Fault accommodation show that the performance of
fuzzy predictive controllers can be improved by weighting the control objectives
and the constraints. To achieve this, a weighted extension of Yager t-norm is
used for the aggregation. This operator can model the simultaneous satisfaction
of the goals and the constraints, while taking the difference in the importance
into account. An algorithm is used for selecting the weights affecting the fuzzy
goals and the fuzzy constraints. The application of this approach to a three tank
benchmark system shown its ability to detect, isolate and accommodate two
faults.

Future research will consider the extension of the proposed FTC scheme to a
larger number of faults with different intensities.
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Abstract. In this paper, synchronization in coupled arrays of Cellular
Neural Networks (CNN ) is presented. In particular, synchronization of
chaotic neural networks is obtained from complex systems theory. We
consider two complex networks composed by second-order 3 × 4 CNN
array, and a CNN with delay, the information interactions are defined
via coupling law through of the first state of each cell. We impose the
dynamics of a master cell to multiple slave cells of a complex network.
We obtain synchronization in the complex network when the CNN’s cells
are globally coupled.

Keywords: Synchronization, Cellular Neural Networks (CNNs), Chaos,
Complex Systems.

1 Introduction

Complex network structures have been observed in physics, biology, economics,
ecology, electronics, and computer science. In particular, Cellular Neural Net-
works (CNNs) constitute an important example in such cases. CNN is a non-
linear system defined by coupling only identical simple dynamical systems called
cells (Chua 1998). CNN has broad applications in image and video signal pro-
cessing, robotic and biological visions (Werblin et al., 1994), etc.

On the other hand, recently chaotic and hyperchaotic synchronization has be-
come a field of active research, see e.g. (Pecora and Carroll 1990;Nijmeijer and Ma-
reels 1997; Fradkov et al., 1998; Cruz-Hernández and Nijmeijer 1999; 2000; Sira-
Ramı́rez and Cruz-Hernández 2000; 2001; Pikovsky et al., 2001; Cruz-Hernández
2004; López-Mancilla and Cruz-Hernández 2005a; 2005b; Aguilar-Bustos and
Cruz-Henández 2006) and references therein. However, some applications of great
interest require extend this synchronization to synchronizing multiple oscillators
that compose complex dynamical networks, see e.g. (Pogromsky et al. 2001; Wang
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and Chen 2002; Wang 2002; Posadas-Castillo et al. 2005; 2006b; 2006c; 2007) with
the objective to make a common task, achieve collective behavior, etc.

Natural and artificial systems, many times, are composed by thousands of
unities (cells), where we can know (or not) their individual behaviors. For ex-
ample, the neurons and another brain’s neurocells, components of an electronic
circuit, the ants that conform an anthill, or a set of pages web of the network
connected through link.

The main goal of this paper is to synchronize the dynamics of multiple chaotic
neural networks (as cells) operating in different dynamics including chaotic mo-
tion, that conform a complex dynamical network. This objective is achieved by
appealing to results from complex systems theory (Wang and Chen 2002; Wang
2002). We show that the adopted approach is indeed suitable to synchronize
multiple chaotic neural networks. In particular, we will arrange the cells that
composed the dynamical complex network in a topology of global coupling.

This paper is arranged as follows: In Section 2, we give a brief review on
chaos synchronization of dynamical networks, synchronization conditions, and
globally coupled networks. In Section 3, we apply this approach to synchronize
multiple chaotic neural networks by using two illustrative examples, reported in
(Posadas-Castillo et al., 2006a) for two cells; a second-order 3 × 4 CNN array
and a CNN with delay. Finally, in Section 4, we give some concluding remarks.

2 Brief Review on Synchronization of Dynamical
Networks

2.1 Complex Dynamical Networks

As in (Posadas-Castillo et al., 2006b; 2006c; 2007), we consider a complex dy-
namical network composes of N identical cells, linearly and diffusively coupled
through the first state variable of each cell. In this dynamical network, each cell
constitutes a n-dimensional dynamical system, described as follows

ẋi = f(xi) + ui, i = 1, 2, . . . , N, (1)

where xi = (xi1, xi2, . . . , xin)T ∈ R
n are the state variables of the cell or

node i, ui = ui1 ∈ R is the input signal of the cell i, and is defined by

ui1 = c

N∑

j=1

aijΓxj , i = 1, 2, . . . , N, (2)

the positive constant c represents the coupling strength of (1), and Γ ∈ R
n×n

is a constant 0-1 matrix linking coupled state variables. For simplicity, assume
that Γ = diag (r1, r2, . . . , rn) is a diagonal matrix with ri = 1 for a particular i
and rj = 0 for j �= i. This means that two coupled cells are linked through their
i − th state variables. Whereas, A = (aij) ∈ R

N×N is the coupling matrix,
which represents the coupling configuration of the dynamical network. If there is
a connection between cell i and cell j, then aij = 1; otherwise, aij = 0 for i �= j.
The diagonal elements of coupling matrix A are defined as
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aii = −
N∑

j=1, j �=i

aij = −
N∑

j=1, j �=i

aji, i = 1, 2, . . . , N. (3)

If the degree of cell i is di, then

aii = −di, i = 1, 2, . . . , N. (4)

Besides, suppose that the dynamical network (1) is connected in the sense that
there are no isolated clusters. Then, the coupling matrix A is a symmetric irre-
ducible matrix. In this case, zero is an eigenvalue of A with multiplicity 1 and
all the other eigenvalues of A are strictly negative (Wang and Chen 2002; Wang
2002).

An isolated cell has a single input ui1 and single output yi1; this output can
be defined as yi1 = gi(xi), with gi(·) a nonlinear function of the state vector.
Nevertheless, in many cases, the output signal of interest coincides with one of
the state variables. In this work, we consider as output of interest to yi1 = xi1,
i.e. the first state of each cell i.

Synchronization state of cells in complex systems, can be characterized by
the nonzero eigenvalues of the coupling matrix A. The dynamical network (1)
is said to achieve (asymptotically) synchronization, if (Wang 2002):

x1(t) = x2(t) = · · · = xN (t), as t → ∞. (5)

The diffusive coupling condition (3) guarantees that the synchronization state is
a solution, s(t) ∈ R

n, of an isolated cell, that is

ṡ(t) = f (s(t)) , (6)

where s(t) can be an equilibrium point, a periodic orbit, or a chaotic attractor.
Thus, stability of the synchronization state,

x1(t) = x2(t) = · · · = xN (t) = s(t), (7)

of dynamical network (1) is determined by the dynamics of an isolated cell.

2.2 Synchronization

Theorem 1 (Wang and Chen 2002; Wang 2002). Consider the dynamical net-
work (1). Let

0 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λN (8)

be the eigenvalues of its coupling matrix A. Suppose that there exists an n × n
diagonal matrix D > 0 and two constants d̄ < 0 and τ > 0, such that

[Df(s(t)) + dΓ ]T D + D [Df(s(t)) + dΓ ] ≤ −τIn (9)

for all d ≤ d̄, where In ∈ R
n×n is an unit matrix. If, moreover,

cλ2 ≤ d̄, (10)

then, the synchronization state (7) of dynamical network (1) is exponentially
stable.
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Fig. 1. Network of identical cells globally coupled

Since λ2 < 0 and d̄ < 0, inequality (10) is equivalent to

c ≥
∣∣∣∣

d̄

λ2

∣∣∣∣ . (11)

A small value of λ2 corresponds to a large value of |λ2|, which implies that dy-
namical network (1) can synchronize with a small coupling strength c. Therefore,
synchronizability of dynamical network (1) with respect to a specific coupling
configuration can be characterized by the second-largest eigenvalue of the corre-
sponding coupling matrix A.

2.3 Globally Coupled Networks

The coupling configurations commonly studied in synchronization of complex
networks are the so-called: globally coupled networks, nearest-neighbor coupled
networks, and star coupled networks. In this work, we consider only complex
networks of identical cells globally coupled.

The globally coupled configuration means that any two different cells are
connected directly, this is shown in Figure 1 for N = 6. The corresponding
coupling matrix is

Agc=

⎡

⎢⎢⎢⎢⎢⎣

−N + 1 1 1 · · · 1
1 −N + 11 · · · 1
...

. . . . . .. . .
...

1 1 1 · · · 1
1 1 1 · · ·−N + 1

⎤

⎥⎥⎥⎥⎥⎦
, (12)

this matrix has a single eigenvalue at 0 and all the others equal to −N . Hence,
the second largest eigenvalue λ2gc = −N decreases to −∞ as N → ∞,

lim
N→∞

λ2gc = −∞. (13)
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Fig. 2. Isolated cell: input uij , threshold zij , state xij ∈ R
x, and output yij for a

two-dimensional CNN

3 Synchronization of Chaotic Neural Networks: Examples

In this section, we present two illustrative examples of synchronization of mul-
tiple chaotic neural networks, to this purpose, let us first briefly give a suitable
material on CNN.

Definition (CNN). A CNN is any spatial arrangement of locally coupled
cells, where each cell is a dynamical system which has an input, and a state
evolving according to some prescribed dynamical laws (Chua 1998).
In three-dimensional lattice CNN architecture, mathematically each cell Cijk at
location (i, j, k) is a dynamical system whose states evolve according to some pre-
scribed state equations, whose dynamics are coupled only among the neigh-
boring cells lying within some prescribed sphere of influence Sijk, centered at
(i, j, k). In two-dimensional case, using a double subscript, the variables for an
isolated cell are: input uij (t) ∈ R

u, threshold zij (t) ∈ R
z, state xij (t) ∈ R

x,
and output yij (t) ∈ R

y. A CNN cell is said to be isolated if it is not coupled to
any other cell (Figure 2).

In this work, we assume that all isolated cells Cij are identical, and that for
simplicity we have that zij (t) is a constant scalar. Besides, we assume that for
any xij (t0) at t = t0, any threshold zij (t), and any input uij (t), the state of
each isolated cell Cij is assumed to evolve for all t ≥ t0 as a nonautonomous set
of ordinary differential equations

ẋij = f (xij , zij , uij) , i = 1, 2, . . . , M ; j = 1, 2, . . . , N,

yij = gij (xij) ,

where gij (·) is a nonlinear function of the state. However, in many cases the
output of interest often coincides with the state, yij (t) = xij (t).

The standard CNN equations used most widely in the literature, proposed
in (Chua and Yang 1988) for a M × N CNN array

ẋij = −xij + zij +
∑

kl∈Sij(r)

akl ykl +
∑

kl∈Sij(r)

bkl ukl, i = 1, 2, . . . , M ; j = 1, 2, . . . , N,

(14)

yij = f (xij) , (15)
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Fig. 3. Projection of the chaotic attractor of 3 × 4 CNN onto the (x1, x2) plane

where Sij (r) is the sphere of influence of radius r;
∑

kl∈Sij(r) akl ykl and∑
kl∈Sij(r) bkl ukl are the local coupling, and

f (xij) =
1
2

(|xij + 1| − |xij − 1|) =

⎧
⎨

⎩

1, xij ≥ 1
xij , |xij | < 1
−1, xij ≤ −1

For the particular case where M = 3 and N = 4, the Eqs. (14)-(15) assume
the simpler form 3 × 4 CNN array

ẋ1 = −x1 + a00f (x1) + a01f (x2) + b00u1 (t) , (16)
ẋ2 = −x2 + a0,−1f (x1) + a00f (x2) + b00u2 (t) ,

y1 = f (x1) ,

y2 = f (x2) .

Example 1 (Chua 1998). Consider the second-order nonautonomous CNN. If
a00 = 2, a0,−1 = −a0,1 = 1.2, b00 = 1, u1 (t) = 4.04 sin

(
π
2 t

)
, and u2 (t) = 0; then

Eq. (16) becomes

ẋ1 = −x1 + 2f (x1) − 1.2f (x2) + 4.04 sin
(π

2
t
)

, (17)

ẋ2 = −x2 + 1.2f (x1) + 2f (x2) ,

with nonlinear function

f (x) =
1
2

(|x + 1| − |x − 1|) =

⎧
⎨

⎩

1, x ≥ 1
x, |x| < 1

−1, x ≤ −1
(18)

Figure 3 shows a projection of the chaotic attractor of 3 × 4 CNN (17)-
(18). The waveforms of (x1 (t) , x2 (t)) corresponding to the (x1 (0) , x2 (0)) =
(0.1, −0.1).



Synchronization in Arrays of Chaotic Neural Networks 749

The complex network of N CNN’s designed in this work, takes the following
form,

ẋi1 = −xi1 + 2f (xi1) − 1.2f (xi2) + 4.04 sin
(π

2
t
)

+ ui1, (19)

ẋi2 = −xi2 + 1.2f (xi1) + 2f (xi2) ,

f(xi1) =
1
2

(|xi1 + 1| − |xi1 − 1|) ,

f(xi2) =
1
2

(|xi2 + 1| − |xi2 − 1|) ,

ui1 = c
N∑

j=1

aijxj1, i = 1, 2, . . . , N.

In particular, we consider N = 5, i.e. we have 5 cells constituting the complex
network to be synchronized.

Case 1. All the cells have chaotic behavior, the coupling matrix (12) is given by

Agc =

⎡

⎢⎢⎢⎢⎣

−4 1 1 1 1
1 −4 1 1 1
1 1 −4 1 1
1 1 1 −4 1
1 1 1 1 −4

⎤

⎥⎥⎥⎥⎦
, (20)

the corresponding eigenvalues are λ1 = λ2 = λ3 = λ4 = −5, λ5 = 0, with a
coupling value c = 500 obtained from (11), with initial conditions: x11(0) = 0.1,
x21(0) = 0.21, x31(0) = 0.31, x41(0) = 0.4, and x51(0) = 0.5. With these values
the Theorem 1 guarantees synchronization of the complex network. Figure 4
shows synchronization of first state of the five cells, xi1(t), i = 1, 2, . . . , 5. Also,
is shown the collective behavior of the cells in the complex network, through
phase portrait of x11 versus x12.

Case 2. An isolated cell (master cell) with chaotic behavior, and the rest of the
cells have periodic behavior, in this case the coupling matrix (12) is given by

Agc =

⎡

⎢⎢⎢⎢⎣

0 0 0 0 0
1 −4 1 1 1
1 1 −4 1 1
1 1 1 −4 1
1 1 1 1 −4

⎤

⎥⎥⎥⎥⎦
, (21)

the corresponding eigenvalues are λ1 = λ2 = λ3 = −5, λ4 = −1, and λ5 = 0, with
a coupling value c = 500, with initial conditions: x11(0) = 0.1, x21(0) = 0.21,
x31(0) = 0.31, x41(0) = 0.4, and x51(0) = 0.5. With these values the Theorem 1
guarantees synchronization of the complex network. Figure 5 illustrates synchro-
nization of first state of the five cells, xi1(t), i = 1, 2, . . . , 5. Also, is shown the
collective behavior of the cells in the complex network, through phase portrait
of x11 versus x12.
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Fig. 4. Synchronization of first state of the five cells, xi1(t), i = 1, 2, . . . , 5, and the
behavior of the complex network projected onto the (x11, x12)-plane
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Fig. 5. Synchronization of first state of the five cells, xi1(t), i = 1, 2, . . . , 5, and the
behavior of the complex network projected onto the (x11, x12)-plane

Remark: We mention that for the second state of the five cells of the com-
plex network (xi2(t), i = 1, 2, . . . , 5) is not possible to obtain exact synchro-
nization. Nevertheless, the corresponding synchronization errors, i.e. ei (t) =
xi (t) − xi+1 (t), i = 1, 2, . . . , 4 remain bounded.

Example 2. Time-delay oscillators represent examples of high-dimensional
chaos generators. Now, the system considered is a equation for each cell in Cel-
lular Neural Networks with delay (Lu et al., 1998), as follows,

ẋ (t) = 0.001x (t) − 3.8 (|xτ + 1| − |xτ − 1|) + 2.85
(∣∣∣∣xτ +

4
3

∣∣∣∣ −
∣∣∣∣xτ − 4

3

∣∣∣∣

)
(22)
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Fig. 6. Phase space dynamics for the Cellular Networks with delay projected onto the
(x, xτ ) plane

where xτ = x (t − τ). Its solution is infinite-dimensional, with initial condition
as any continuous function defined on the closed interval [−τ, 0]. By considering
τ = 1 and initial condition as a constant function equal to 0.5 on [−1, 0], and
initial state x (0) = −1. Figure 6 shows a projection of the chaotic attractor of
the cellular neural network with delay in the (x, xτ )-plane.

The complex network of N CNN’s designed in this example, takes the follow-
ing form,

ẋi (t)=0.001xi (t)−3.8 (|xτi + 1| − |xτi − 1|)+2.85
(∣∣∣∣xτi +

4
3

∣∣∣∣ −
∣∣∣∣xτi − 4

3

∣∣∣∣

)
+ui,

(23)
for i = 1, 2, . . . , 5, and with the state xτi = xi (t − τ), and input defined by

ui = c
N∑

j=1

aijxj1. (24)

We consider in particular N = 5, i.e. we have 5 cells composing the complex
network. For this case all the cells in the complex network have chaotic behavior,
the coupling matrix (12) is given by

Agc =

⎡

⎢⎢⎢⎢⎣

−4 1 1 1 1
1 −4 1 1 1
1 1 −4 1 1
1 1 1 −4 1
1 1 1 1 −4

⎤

⎥⎥⎥⎥⎦
, (25)

the corresponding eigenvalues are λ1 = λ2 = λ3 = −5, λ4 = −1, and λ5 = 0, with
a coupling value c = 1 obtained from (11), with initial conditions: x11(0) = −1,
x21(0) = −1.1, x31(0) = −1.2, x41(0) = 1, and x51(0) = 1.1. With these values
the Theorem 1 guarantees synchronization of the complex network. Figure 7
shows that the synchronization of first state of the five cells, xi2(t), i = 1, 2, . . . , 5.
Also, is shown the collective behavior of the cells in the complex network, through
phase portrait of x11 versus x12.
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Fig. 7. Synchronization of state of the five cells, xi1(t), i = 1, 2, . . . , 5, and the behavior
of the complex network projected onto the (x11, x12)-plane

4 Concluding Remarks

In this paper, we have presented synchronization in coupled arrays of Cellular
Neural Networks. The synchronization of chaotic neural networks was achieved
by using results from complex systems theory. We applied this approach to
synchronize multiple chaotic neural networks, through two illustrative exam-
ples, reported in (Posadas-Castillo et al., 2006a) for two cells. In particular, we
achieved synchronization considered cells in a complex dynamical network by
using a topology of global coupling. In conclusion, we have shown that synchro-
nization of complex networks of chaotic CNNs is possible from this viewpoint.

In a forthcoming work we will be concerned with a physical implementation
of networks of CNN with electronic circuits, and the synchronization of large
chaotic neural networks and possible applications, in particular in communica-
tions and image processing.
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Automático de México, Cuernavaca Morelos, México.
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Abstract. In the process of compound multi-agent negotiation a num-
ber of agents concurrently negotiate with one or more counterparts in
order to satisfy the individual preferences that lead to the collective
maximization of the overall utility function imposed on the compound
service. In order to perform this task the overall utility function has to be
decomposed into individual single-service utility functions. This problem
is not trivial, especially in compound multi-agent negotiations involving
more complex aggregation patters of negotiated issues. In this paper we
propose an approach for derivation of the individual utility functions
based of the principles of fuzzy set projection. We also propose a way of
modifying the initially generated utility functions in the case where the
agreement was not reached with those functions, what allows for reaching
an agreement in repeated negotiation.

1 Introduction

In automated negotiations a decision maker needs the specification of prefer-
ences. Its preferences are typically encoded by an utility function that assigns
to each potential alternative agreement a level of satisfaction gained from con-
suming a product or service. The aim of the negotiation is to find an agreement
maximizing the utilities of the negotiating parties [9] [14]. The notion of utility
has also widely been used in multi-agent negotiations that involve a number of
software agents negotiating on behalf of their users [2] [8] [10] [11] [15]. A number
of real-world applications including e-commerce, e-business, planning, resource
allocation, scheduling [12] have explored the agent-based negotiations. Recently
the automated negotiations has been applied in Web service compositions, es-
pecially the negotiations of quality-of-service (QoS) of compound services [3]. A
compound service may consist of different atomic services composed according to
the various composition patterns. An example of a composition pattern is shown
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Fig. 1. Example of a composition pattern

in Figure 1. The negotiation of QoS typically involves a number of different at-
tributes (negotiation issues) such as price, time, availability etc. The different
negotiation issues of the compound service involve different types of aggregation
of the attributes negotiated for the atomic services such as sum, max and sum
or min.

The negotiation agents have beliefs about their preferences and desired out-
comes, represented by the utility functions. Typically the user provides directly
the utility function to an agent or the utility function is derived through the pro-
cess of preference elicitation [14]. However, in compound negotiations a number
of agents need to negotiate simultaneously with their counterparts representing
the atomic services, and the user provides the overall utility function specifying
preferences for the compound service. This means that the user is interested in
the end-to-end QoS of the compound service and therefore she can only specify
the overall preferences rather than the individual utility functions corresponding
to the atomic services. However, the individual agents have to know these utility
functions, in order to negotiate the atomic services. Therefore, the individual
utility functions have to be derived from the overall utility function specified for
the compound service.

In our negotiation scenario, this task is performed by a coordinating agent.
The coordinator decomposes the overall utility function into the single-service
utility functions and assigns these functions to the individual agents (Figure 2).
After the negotiation agents have been provided with the utility functions they
negotiate with the agents representing atomic services, in order to find the best
compound service according to the individual utilities. If no agreement is found
the whole process of assigning individual utility and negotiation is repeated with
updated utility functions.

In this paper we focus on decomposition of the overall utility function corre-
sponding to a compound service into individual utility functions corresponding
to atomic services that form the compound service. However, the initially de-
composed utility functions may not result in agreement and therefore we also
propose ways of updating them, so the agreement can be reached in repeated
negotiations.

The problem of utility decomposition is weakly related to the problem of pref-
erence elicitation [14]. However the elicitation usually focuses on obtaining the
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Fig. 2. Example of composition pattern with the aggregation of attribute values

utility function from the user and in our case we have to extract the single-service
utility functions from the overall utility function that collectively correspond to
the overall utility function.

The problem of bundling in combinatorial auctions [5], where the utilities are
specified over the possible bundles of atomic services, is also different from the
problem of utility decomposition. In our problem the user does not know in ad-
vance the atomic services involved and their composition (bundling) patterns.
Therefore our utility decomposition may be regarded as an inverse problem in
relation to bundling in combinatorial auctions. This problem has received a very
little attention in the literature so far. In [19] a specific solution for decomposing
time/utility function in utility accrual scheduling of the ”distributable threads”
in real-time distributed systems is presented. There is a similarity to our prob-
lem of utility decomposition, however it considers only one type of attribute
(execution time) and the decomposition is tailored to the specific requirements
of a different application. The authors present five decomposition techniques
that are specific to different classes of utility accrual scheduling algorithms. In
our problem we consider multiple QoS attributes and more complex aggregation
patterns required in Web service compositions.

In this paper we propose an approach for the extraction of individual utility
functions from the overall utility based on the concept of fuzzy set projection.
Moreover, because the initial utility function may be too tolerant we also pro-
pose ways of modifying the initial function so the agreement can be reached in
repeated negotiations. The approach is presented in the context of multi-agent
negotiation of compound services consisting of different composition patters in
which the agent coordinating the negotiation assigns the single-service utility
functions to the individual negotiation agents. Due to space limits but without
loosing generality we focus on a selected QoS attribute, namely price. Section 2
introduces the idea of generating the initial utility function as a fuzzy projection.
In section 3 we show how to obtain the fuzzy projection of the overall utility func-
tion. In the fourth section we describe the way of modifying the initial utility
function for the repeated negotiations. The fifth section describes the simula-
tion of multi-agent system that was used to validate the approach. In the sixth
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section we present the results and finally in the section 7 we present the conclu-
sions and the future work.

2 Single-Service Utility as Fuzzy Projection

The utility theory plays an important role in modelling and solving multi-
attribute decision-making problems including negotiation [13][18]. It provides
a general framework for assessing, comparing and ordering alternative solutions
based on their utility values. The relationship between elements of utility theory
and fuzzy set theory has been investigated in the literature (e.g. [4][6][16][17])
and incorporated in the framework of agent-based negotiation [10].

In general, a utility function encodes the preferences used in decision making,
representing a level of satisfaction with different alternatives. On the other hand,
the membership function of a fuzzy set can be regarded a fuzzy constraint [1]
assigning a level of satisfaction to each alternative into an interval [0, 1]. There-
fore the possible utilities can be considered in the terms of a fuzzy set, with
the utility function corresponding to the membership function [4][6][10][16][17].
Considering the fuzzy set theoretical framework the utility set can be defined as
follows:

U = {(a, u(a)) | a ∈ D} Pow(U) =
∑

a∈D

u(a)

where U is the utility set with a utility function u defined over the space of
alternatives D. The utility set U2 = {(a, u2(a))|a ∈ D} can be regarded as more
tolerant than utility set U1 = {(a, u2(a))|a ∈ D} if the U2 contains U1:

U1 ⊂ U2 ⇒ ∀a ∈ D | u1(a) < u2(a)

Now we describe the specification of preferences imposed on the compound ser-
vice and give the definition of fuzzy set projection which will be used to derive
the single-service utility function. The space of potential solutions (agreements)
S is defined in the following way:

S = S1 × S2 × · · · × Sn

where the set Si is a set of potential attribute values corresponding to the i-th
atomic service. The overall utility function of the compound service requester is
defined over the space S in the following way:

f : S → [0, 1] (1)
f (s1, s2, . . . , sn) = u(O(s1, s2, . . . , sn))

where the function u is the single-attribute utility function imposing the prefer-
ences of the service requester on the aggregate value of an attribute O(s1, s2, . . . ,
sn) and the operator O constitutes the aggregation of the values of attributes
si corresponding to the atomic services (in the case of price it is sum

∑n
i=1 si).

We have to determine the utility function for each negotiation agent negotiating
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with the atomic service. This single-service utility function must be extracted
from the overall utility function imposed on the compound service. If we can
estimate values of the attribute that can be potentially obtained from all the
atomic services except Ai then we can easily construct the single-service utility
function needed for potential negotiation with the agent Ai. This utility function
can be obtained by fixing all the values of attribute in the formula 1 except the
one corresponding to the agent Ai:

ui(a)=f(s0
1, s

0
2, . . . , s

0
i−1, a, s0

i+1, . . . , s
0
n)=u(O(s0

1, s
0
2, . . . , s

0
i−1, a, s0

i+1, . . . , s
0
n))

The sequence of the fixed values s0
1, s

0
2, . . . , s

0
i−1, s

0
i+1, . . . , s

0
n corresponds to the

sequence of estimated values of attributes. Let us consider the set of all utility
sets U obtained as the intersections of the function f with n − 1-dimensional
subspace (all values of attributes were fixed except one in the position i):

U = {Uc̄ : Uc̄ = {(a, uc̄(a)) | a ∈ Si} | c̄ = (s1, s2, . . . , si−1, si+1, . . . , sn)
, uc̄(a) = f(s1, s2, . . . , si−1, a, si+1, . . . , sn)} (2)

Assuming that the space of all possible intersections C has the following form:

C = S1 × S2, × . . . , ×Si−1 × Si × · · · × Sn

we can derive the most tolerant utility set by calculating the fuzzy union P of
all possible utility sets obtained by different intersections. This fuzzy set P will
be called the projection of the overall utility set onto the subspace Si:

P =
⋃

c̄∈C

Uc̄ = {(a, maxc̄∈Cuc̄(a)) | a ∈ Si}

The set P is the smallest set containing all the intersections Uc̄:

∀c̄ ∈ C | Uc̄ ⊆ P ⇔ ∀c̄ ∈ C ∀a ∈ Si | uc̄(a) < maxc̄∈Cuc(a)

The projection P is the smallest utility set that is more tolerant than any utility
set Uc obtained by the intersection c. Therefore projection my be proposed as
the most tolerant single-service utility set. Such a highly tolerant utility set is
safe because it gives high chance of reaching an agreement with the individual
utility function. However, the overall preferences may not be satisfied or the
overall utility value may small, and therefore it has to be modified into less
tolerant utility function so the agreement satisfying the overall preferences of
bothe parties may be reached in one of the next renegotiations.

3 The Projection Function as the Boundary Function

In this section we propose how to derive the single-service utility function in a
form of projection from the compound service utility function. We show that the
boundary function that can be obtained very easily is equal to the projection
function.
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In the next theorem we will state that the boundary function is equal to the
projection function (the proof will be presented in another paper).

Let us assume that the point c̄0(a) is the border point of the space Ci (c̄0(a) ∈
Ci) reduced by the subspace Si: Ci = S1 × S2 × · · · × Si−1 × Si+1 × · · · × Sn

c̄0(a)= (0, 0, . . . , 0, a 0, . . . , 0)
1, 2, i−1, i, i+1, n

where a is any point in the set Si. The border function uc̄0(a) is obtained by
mapping the border point c̄0(a) by the overall utility function:

uc̄0(a) = f(c̄0(a))= f(0, 0, . . . , 0, a 0, . . . , 0)
1, 2, i−1, i, i+1, n

The projection is obtained by the use of fuzzy disjunction of all the cut functions
uc̄(a) = f(c̄(a)) (where c̄ = (s1, s2, . . . , si−1, si+1, . . . , sn) is any point in Ci) in
a following way:

up(a) = maxc̄∈Ciuc̄(a)

Theorem 1. The border function uc̄0 is equal to the projection up:

∀a ∈ Si | uc̄0(a) = up(a)

4 The Modification of Initial Utility Function for
Repeated Negotiations

The initial utility function obtained in the form of fuzzy projection of the overall
utility function may be too tolerant. It means that the negotiation may end with
an agreement (satisfying the preferences of both parties in terms of the utilities
of individual agents) but the overall preferences of the client side may not be
satisfied. This means that the negotiation has to be repeated with modified (less
tolerant) utility functions. We propose two methods for the modification of the
initial utility function: the constant shift and bisection algorithm.

4.1 The Constant Shift

One way to modify the utility function corresponding to the client agent is
to shift it into the direction of the client’s best position (left in the case of
price attribute). In the terms of fuzzy arithmetic, this shift corresponds to the
fuzzy subtraction. If the initial utility function is treated as a fuzzy number
(fuzzy preferred alternative) we subtract a crisp number from it, what results
in the shift left along the x-axis. After this operation we obtain more restrictive
(less tolerant) utility function and the negotiation is repeated with the modified
utility function. When after the negotiation the overall client’s preferences are
still not satisfied then the process of modification and negotiation is repeated
multiple times until the agreement satisfying preferences of both parties is met.
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The negotiation shift is determined as a percentage of the maximal shift. If the
maximal number of repeated negotiations is set to n then the partial shift (for
one negotiation) is the 1

n of the maximal shift sm. The maximal shift sm is
determined as the distance between the last negotiation result ōk (in the k-th
repeated negotiation) and the lowest indifference curve Iε of the client’s overall
utility function:

Iε = {x̄ | u(x̄) = ε}
where the ε is a value close to 0.

sm = d(Iε, ōk) = minx̄∈Iεd(x̄, ōk)

where the d function is the Euclidean distance. After each repeated k-th negoti-
ation the value of sm is updated using new value of negotiation outcome ōk. If
there are n − k remaining negotiations then the partial shift is calculated in the
following way:

sp =
1

n − k
sm =

1
n − k

minx̄∈Iεd(x̄, ōk)

4.2 The Bisection Algorithm

If the utility function is too tolerant (shifted too far right in the case of price
attribute) then the resulting negotiation may give solution satisfying the prefer-
ences of the opponent but not satisfying our preferences. If the utility function
is too restrictive (shifted too far left in the case of price attribute) than there
will be no solution satisfying the preferences of our opponent. The task is to
find some middle point (not too large and too small shift) that would lead to
the solution satisfying the preferences of both negotiation parties. If we know
that the solution (optimal shift os) lies in an interval os ∈ [a, b] then we can ap-
ply the bisection algorithm to determine it. The algorithm starts by evaluating
the midpoint (a+b)

2 - the utility is shifted by the midpoint and the negotiation
is performed. Then depending on the negotiation result one of the subintervals
[a, (a+b)

2 ], [ (a+b)
2 , b] is chosen. If the shift was too far than the second interval

is chosen and if the shift was too close than the first interval is chosen. The
procedure is then repeated with the new interval as often as needed to locate
the solution.

5 Simulation of a Multi-agent System

In order to validate the proposed approach we simulate the multi-agent sys-
tem consisting of some number of client-agents that are coordinated by the
coordinator-agent and a number of provider-agents. Each client-agent may ne-
gotiate with some number of candidates (provider-agents) representing the one
type of atomic service. In our case each of 3 client agents looking for atomic ser-
vices of different types negotiates with 3 candidates (provider-agents) as shown in
Figure 1. First the coordinator agent assigns the initial utility functions to all ne-
gotiation agents. The negotiation agents negotiate with all potential candidates
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representing atomic services. Next, they forward the results to the coordinator
agent that checks if the overall preferences are satisfied. When the overall prefer-
ences are not satisfied the coordinator agent assigns to the negotiation agents the
modified utility function and all the negotiations are repeated. This procedure is
repeated until the agreement is found. Since, each negotiation agents has three
options (three potential partners providing the atomic service) and there are
three components negotiated by the corresponding negotiation agents, there are
27 possible contracts (3×3×3 = 27). The coordinator chooses one contract that
maximizes the overall utility. The agents negotiate using the positional bargain-
ing, e.g. the agents start at their best positions according to the utility functions
and concede in the utility spaces until the offers of the client-agents exceed the
last offers of the provider-agents. The agents concede according the the nego-
tiation strategy described by the β parameter indicating the level of convexity
or concavity of the concession curve [7]. During the simulation the preferences
of the client-agents are updated and the negotiation strategy does not change.
The preferences of the provider-agents are randomly chosen (according to the
uniform distribution) in the beginning and do not change during the simulation.
However, the negotiation strategy is changing after each encounter, e.g. it is
randomly chosen after each negotiation (according to the uniform distribution).

6 Results and Discussion

The simulation was run 100 times for each of 9 client negotiation strategies
(β ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.66, 2.5, 5.0}). For each strategy the average util-
ity gain was calculated over the 100 experiments. The average number of nego-
tiations needed to reach agreement and the percentage of successful encounters
were calculated.

The negotiation pay-off was calculated as the difference between the utility
of negotiation outcome and the utility of the Nash equilibrium point (the point
maximizing the product of utilities of both negotiation parties). From the Figures
3 and 4 we can see that the bisection algorithm gives better results in term of
pay-off than the constant shift algorithm. That is because the first approach

Fig. 3. The firs approach: constant shift. A) average pay-off over 100 experiments with
the standard deviation of this value for different negotiation strategies used by the
client-agents. B) average number of negotiations needed to reach agreement in one
simulation averaged over 100 experiments for different negotiation strategies. C) the
percentage of successful simulations for different negotiation strategies.
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Fig. 4. The second approach: bisection. A, B and C show the results according to Fig
above.

start with tolerant utility function and changes it gradually into more and more
restrictive utility function. The algorithm stops as soon as any solution is found
(alternative satisfying preferences of both parties). Therefore this algorithm does
not result in high pay-off. The bisection algorithm gives better pay-offs because
it always looks for the solution in the middle of divided interval what gives higher
chance of reaching good utilities. Although, usually the bisection algorithm gives
the solution faster than the constant shift algorithm in the Figure 4 the average
number of negotiations is higher than in the case of constant shift (Figure 3). The
reason for that is the failed encounters also contribute to the overall average value
of number of negotiations. The bisection algorithm stopped after 50 repeated
negotiations when no solution was found and this value increased the average
number of negotiations.

7 Conclusions and Future Work

The extraction of the single-service utility function from the overall preferences
imposed on the compound service is an important task of compound multi-agent
negotiation. We propose to use fuzzy projection of the overall utility function
as the initial single-service utility function or the reference utility function. We
also propose two alternative approaches for the modification of the initial utility
function, namely the constant shift algorithm and the bisection algorithm. Both
algorithms give good solutions. However, the results of the bisection algorithm
are better in terms of the negotiation pay-off. In the future work we will consider
different ways of modyfing the utility function based on fuzzy arithmetic.
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Abstract. This paper presents a theory called conditional Dempster-
Shafer theory (CDS) for uncertain knowledge updating. In this theory,
a priori knowledge about the value attained by an uncertain variable is
modeled by a fuzzy measure and the evidence about the underlying un-
certain variable is modeled by the Dempster-Shafer belief measure. Two
operations in CDS are discussed in this paper, the conditioned combina-
tion rule and conditioning rule, which deal with evidence combining and
knowledge updating, respectively. We show that conditioned combina-
tion rule and conditioning rule in CDS satisfy the property of Bayesian
parallel combination.

1 Introduction

A unified framework to model the knowledge about an uncertain variable is
the class of monotonic nonadditive measures called fuzzy measures[13,16] which
have properties very suitable for representation and management of uncertain
information. When we compile the knowledge about an uncertain variable, we
assume the real knowledge can be approximated by a fuzzy measure since of
insufficient analysis, that is, we use a fuzzy measure to model a priori knowledge.
When new evidence about the uncertain variable is available, we should update
the knowledge about the underlying uncertain variable from a priori knowledge.

We focus on the knowledge updating problem in evidence theory involving a
priori knowledge in this paper. Mathematical theory of evidence was first in-
troduced by Dempster in the 1960s [4], and later extended by Shafer [10]. This
theory, which allows to represent both imprecision and uncertainty, appears as
a more flexible and general approach than the Bayesian one. One of its advan-
tages is its ability to consider not only single (or individual) values of the uncer-
tain variable, but also unions of values. Applications were developed in image
processing [1,15], signal detection [2], target identification [3], remote sensing
classification [7], multiple-attribute decision making [18], and some intelligent
� Corresponding author.
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systems [5,6,20]. Other important contributions to Dempster-Shafer theory of
evidence are its fuzzy versions [17,19] and its variation–the transferable belief
model [11,12].

In this paper we assume that a priori knowledge about the uncertain variable
is modeled by a fuzzy measure, and the evidence is modeled by the Dempster-
Shafer belief measure. We propose two rules called the rule of conditioned
Dempster-Shafer combination and the conditioning rule. One is used as the ev-
idence combining rule, the other is used as the knowledge updating rule. When
two or more pieces of evidence are available, all available bodies of evidence are
first combined by using the rule of conditioned Dempster-Shafer combination,
then a priori knowledge is updated by using the conditioning rule. The final up-
dated knowledge can be represented by a conditional fuzzy measure conditioned
on the combined evidence. One important property of these two rules is that the
Möbius inversion formula of the updated fuzzy measure satisfies the property of
Bayesian parallel combination.

In fact, the work in this paper is a generalization of R. Mahler’s work [8,9]
where a priori knowledge and evidence about the uncertain variable are all mod-
eled by the Dempster-Shafer belief measures. Since there exists different types of
uncertainties, such as randomness, lack of specificity, and imprecision, we adopt a
more general framework—fuzzy measure to represent a priori information about
the uncertain variable [14]. It is possible to construct a more general theory to
deal with the problem of knowledge updating wherein both a priori knowledge
and evidence are modeled by lower (upper) previsions. At present time, however,
this is not the case: the theory presented in this paper is adopted because of its
intriguing Bayesian-like behavior.

The paper is organized as follows. Section 2 describes some basic elements from
conventional Dempster-Shafer theory and fuzzy measure. Section 3 presents con-
ditional Dempster-Shafer (CDS) theory, in which the conditioned combination
rule and conditoning rule are discussed in detail. Section 4 shows that the con-
ditioned combination rule and the conditioning rule in CDS satisfy the property
of Bayesian parallel combination. The last section is our conclusions.

2 Theory of Evidence and Fuzzy Measure

In this section we introduce some preliminary ideas of conventional Dempster-
Shafer theory of evidence [4,10] and fuzzy measure [13] needed in this paper.

2.1 Dempster-Shafer Theory of Evidence

In Dempster-Shafer theory of evidence, one piece of evidence concerning the
value of an uncertain variable is represented by so called “body of evidence”
which is a normalized random set Σ having the form of

Σ =
∑

S⊆U

mΣ(S)S,
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such that mΣ(∅) = 0, mΣ(S) ≥ 0 and
∑

S⊆U mΣ(S) = 1. Here, the “focal”
subset S of finite universe U such that mΣ(S) > 0 represents the hypothesis
that the value of the underlying variable is in S. The corresponding “mass”
mΣ(S) > 0 is the confidence which attributes exactly to S but to no smaller
subset of S.

The belief measure βΣ(·) and commonality measure δΣ(·) associated with Σ
are

βΣ(S) �
∑

E⊆S

mΣ(E), δΣ(S) �
∑

E⊇S

mΣ(E).

The plausibility measure associated with Σ is defined by PlΣ(S) = 1 − βΣ(Sc).
If Γ is another body of evidence then Σ and Γ can be fused into a combined

body of evidence Σ ∗Γ using the Dempster-Shafer rule of combination. That is,
Σ ∗ Γ =

∑
E⊆U mΣ∗Γ (E)E. Here, for any E �= ∅,

mΣ∗Γ (E) =
∑

S∩T=E mΣ(S)mΓ (T )
1 − K

with
K =

∑

S∩T=∅
mΣ(S)mΓ (T ),

where K is a normalization constant, called conflict because it measures the
degree of conflict between Σ and Γ . K = 0 corresponds to the absence of conflict
between Σ and Γ , whereas K = 1 implies the complete contradiction between
Σ and Γ .

2.2 Fuzzy Measure

Assume V is a variable which attains its value in the space U . In situations in
which the exact value of the variable V is unknown, the best we can do is to try
to formulate the knowledge about V in a useful mathematical structure—fuzzy
measure[16]. One useful feature of this measure is to represent in a unified way
different types of characterizations of uncertainty.

Formally a fuzzy measure f on a space U is a mapping from subsets of U into
the unit interval f : 2U → [0, 1] satisfying the following conditions:

f(∅) = 0, f(U) = 1, f(A) ≤ f(B), if A ⊂ B ⊂ U.

Within the framework of using the fuzzy measures to represent information
about an uncertain variable, f(E) can be interpreted as a measure associated
with our belief that the value of V is contained in the subset E.

It is noticeable that we can get another measure νf associated with fuzzy
measure f using the Möbius inversion formulas,

νf (S) =
∑

T⊆S

(−1)#(S−T )f(T ), (1)
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for all S ⊆ U , where, for all X ⊆ U , #X denotes the number of elements in X .
So the fuzzy measure can be recovered from νf :

f(S) =
∑

T⊆S

νf (T ). (2)

If f is a probability measure on U then the Möbius transform νf ({u}) =
f({u}) for all u ∈ U and νf (S) = 0 for all S ⊆ U such that #S > 1.

It is easy to verify that both belief and plausibility measures associated with
a piece of evidence are fuzzy measures, but a commonality measure isn’t a fuzzy
measure. So, for a piece of evidence Σ on U , we have νβΣ (S) = mΣ(S) for all
S ⊆ U .

The conditional fuzzy measure of S ⊆ U conditioned on T ⊆ U is defined as
follows:

f(S | T ) =
f(S ∩ T )

f(T )
(3)

provided that f(T ) �= 0; and f(S | T ) = 0 otherwise.

3 Combining and Conditioning in the Conditional
Dempster-Shafer

In this paper, a fuzzy measure f is used to model a priori knowledge about the
value of the uncertain variable. When two or more bodies of evidence about the
underlying uncertain variable are available, they should be fused using some rule
of combination with respect to a priori knowledge. In this section, conditional
Dempster-Shafer theory (CDS) is developed. In subsection 3.1, the pure algebraic
definition of conditioned combination in CDS is introduced. In subsection 3.2,
the conditioning rule in CDS is proposed and analyzed.

3.1 Combining in CDS

In subsection 2.1, we denote a Dempster-Shafer body of evidence Γ as a formal
weighted sum Γ =

∑
mΓ (S)S, where mΓ (S) ≥ 0 is the “mass” allocated to

the subset S. In CDS discussed in this subsection, for a formal weighted sum
B =

∑
BSS, BS is allowed to be a real number. When B is a piece of evidence,

we have BS = mB(S) for any S ⊆ U . This algebraic notation has been employed
by Mahler[8].

In this subsection, the conditioned combination rule in CDS is proposed. Using
the conditioned combination rule defined in this subsection, when any two bodies
of evidence B and C are available, we can achieve a fused evidence B ∗f C with
respect to a priori knowledge representable by a fuzzy measure f on U .

Definition 1. a) Let R[U ] denote the vector space generated over the real num-
bers R by the subsets of U . That is, it consists of the vectors of the form
B =

∑
S⊆U BSS for BS ∈ R and where the collection {S} for S ⊆ U is as-

sumed to be a set of basic vectors linearly independent over R.
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b) Let f be a fuzzy measure over U . Then R[U ; f ] denotes the subspace of
R[U ] generated by all of subsets S ⊆ U such that f(S) > 0.

According to the above definition, we know that the set of all pieces of evidence
on U is a subset of R[U ]. Now we are in a position to define the conditioned
combination rule in CDS.

Definition 2 (Conditioned Combination Rule). Let f be a fuzzy measure
over U and B, C ∈ R[U ] where B =

∑
S⊆U BSS and also C =

∑
T⊆U CT T . Then

a) The conditioned agreement of B, C with respect to f is defined by

αf (B, C) �
∑

S,T⊆U

BSCT αf (S, T )

where

αf (S, T ) � f(S ∩ T )
f(S)f(T )

provided that f(S) �= 0 �= f(T ); and αf (S, T ) = 0 otherwise.
b) The conditioned product of B, C ∈ R[U ] with respect to f is defined by

B ·f C �
∑

S,T⊆U

BSCT αf (S, T )(S ∩ T ).

c) The conditioned Dempster-Shafer combination of B, C with respect to f is
defined by

B ∗f C � B ·f C
αf (B, C)

whenever αf (B, C) �= 0.

If fuzzy measure f(S) = 1 for all non-null subsets S ⊆ U , both B and C
are two pieces of evidence, then CDS combination degenerates to the con-
ventional Dempster-Shafer combination. Furthermore, if fuzzy measure f is a
Dempster-Shafer belief measure then CDS reduces to CDS combination dis-
cussed by Mahler[8]. The combination rule presented here considers not only
all available evidence but also a priori knowledge, we may anticipate that this
feature augments the representation power of CDS.

Since B ∗f C is in R[U ], it can be written as a linear combination of the basic
vectors of R[U ]. That is, B ∗f C =

∑
E⊆U (B ∗f C)EE where

(B ∗f C)E =
∑

S∩T=E

BSCT
αf (S, T )
αf (B, C)

.

So CDS combination has the same general form as the conventional Dempster-
Shafer combination, differing only in that conditioned agreement is redefined so
as to reflect the influence of a priori knowledge. Especially, when both B and C
are two bodies of evidence, then B ∗f C is also a body of evidence.
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3.2 Conditioning in CDS

When CDS is applied to knowledge updating, a priori knowledge represented
by a fuzzy measure f should be updated based on the evidence B at hand. In
this subsection, a conditioning rule in CDS is introduced, which carries out this
knowledge updating process. The basic idea to introduce this updating rule is
to define the posterior fuzzy measure conditioned on the body of evidence B.

For purpose of simplicity, in what follows, we assume that f(S) �= 0 for all
∅ �= S ⊆ U .

Proposition 1 (Conditioning Rule). Let B be a body of evidence on U . Then
f(S|B) is a fuzzy measure for the subset S ⊆ U , where f(S|B) =

∑
E⊆U f(S |

E)BE.

Proof. It is clear that f(∅|B) = 0, and f(U |B) = 1 since of the following
assumption,f(E) �= 0 for all ∅ �= E ⊆ U . For any S ⊆ T ⊆ U , we have

f(S|B) =
∑

E⊆U

f(E ∩ S)BE

f(E)
≤

∑

E⊆U

f(E ∩ T )BE

f(E)
= f(T |B).

So the result follows. �
Notice that the (conditional) fuzzy measure, f(S|B) =

∑
E⊆U f(S|E)BE , is a

weighted summation of posterior fuzzy measures of S conditioned on all constant
subsets of U , and the weights are the “mass” of the evidence B. In addition, we
have f(S | B) = αf (B, f(S)S).

It is very easy to verify that if fuzzy measure f is a probability measure
then posterior fuzzy measure f(·|B) conditioned on a piece of evidence B is
still a probability measure. We can also verify that if fuzzy measure f is a belief
(plausibility) measure then posterior fuzzy measure f(·|B) conditioned on a piece
of evidence B is still a belief (plausibility) measure.

Especially, when fuzzy measure f over U degenerates to a plausibility measure
such that for any non-null subset E ⊆ U , f(E) = 1, then CDS conditioning rule
is consistent with conventional evidence theory.

Corollary 1. Let f over U be a plausibility measure such that for any non-null
subset E ⊆ U , f(E) = 1, and Σ be a body of evidence on U , then

f(S | Σ) = PlΣ(S) (4)

for any S ⊆ U .

Usually the total ignorance is modeled by a fuzzy measure such that for any
non-null subset E ⊆ U , f(E) = 1. The above conclusion shows that when
one’s prior knowledge is in total ignorance, the information represented by new
evidence is totally consistent with the updated knowledge. So we can say that
the conventional evidence theory is a special CDS where one’s beliefs on a priori
knowledge is in total ignorance.
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4 Property of Bayesian Parallel Combination in CDS

We have shown that CDS combination rule has some Bayesian-like behavior
in previous section. That is, the updated knowledge can be regarded as the
conditional fuzzy measure given the evidence. Moreover, we show that CDS
combination rule and conditioning rule has the property of Bayesian parallel
combination. To see the Bayesian parallel combination in probability theory,
assume the following strong independence assumption: events R, R

′
are condi-

tionally independent in the sense that p(R, R
′ |u) = p(R|u)p(R

′ |u) for all u ∈ U .
Then Bayes’ rule allows us to write the posterior distribution p(u|R, R

′
) in terms

of the posterior distributions p(u|R) and p(u|R′
) as follows:

p(u|R, R
′
) =

p(u|R)p(u|R′
)p(u)−1

∑
v∈U p(v|R)p(v|R′)p(v)−1

.

In CDS, when two bodies of evidence B and C are available, the final updated
knowledge is represented by a conditional fuzzy measure f(· | B ∗f C). One may
ask that what relation exists between f(· | B ∗f C), f(· | B) and f(· | C).

In order to illustrate the property of Bayesian parallel combination in CDS,
we discuss the relation between νf (· | B ∗f C), νf (· | B) and νf (· | C), where
νf (· | B ∗f C), νf (· | B) and νf (· | C) are the möbius transforms of f(· | B ∗f C),
f(· | B) and f(· | C), respectively. The property of Bayesian parallel combination
in CDS is shown in Theorem 1. Before proving this theorem, we first introduce
a new basis {eS} for the vector space R[U ; f ].

Definition 3. Let f be a fuzzy measure for the subsets of U . For each S ⊆ U ,
an element eS ∈ R[U ; f ] is defined by

eS �
∑

T⊆S

(−1)#(S−T )f(T )T.

The following proposition shows that the non-vanishing elements of the collection
{eS} form a basis for the vector space R[U ; f ].

Proposition 2. a) The non-vanishing elements of the collection {eS} form a set
of orthogonal idempotents for the multiplication operator ’·f ’.(That is, eX ·f eY =
δX,Y eX for all X, Y ⊆ U . Here, δX,Y is a Kronecker delta: δX,Y = 1 if X = Y
and δX,Y = 0 otherwise.) Moreover, this collection spans the subspace R[U ; f ].

b) αf (eX , eY ) = δX,Y νf (X) for all X, Y ⊆ U .
c) Let S ⊆ U . If f(S) = 0 then αf (S, eT ) = 0. If f(S) �= 0 then

αf (S, eT ) =
νf (T )
f(S)

(if T ⊆ S),

αf (S, eT ) = 0 (otherwise).
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Proof. a) Note that the vector space R[U ] is just the semigroup algebra over the
real numbers R induced by the semigroup operator ‘·f0 ’, where f0(S) = 1 for all
S ⊆ U (here, f0 isn’t a fuzzy measure since f(∅) = 1). Abbreviate:

dS �
∑

T⊆S

(−1)#(S−T )T.

We find that the dS form a system of orthogonal idempotents under the operator
‘·f0 ’. Furthermore, the dS span the vector space R[U ]. Next, define the map
ζf : R[U ] → R[U ; f ] by

ζf :
∑

S⊆U

BSS →
∑

S⊆U

BSf(S)S.

Then ζf is a surjective homomorphism of R−algebra. Clearly, it is surjective.
As for the fact that it is a homomorphism, it is enough to prove this for the
generators of R[U ]. Assume that f(S) �= 0 �= f(T ). Then

ζf (S ·f0 T ) = f(S ∩ T )S ∩ T

= αf (S, T )f(S)f(T )S ∩ T

= f(S)f(T )S ·f T = ζf (S) ·f ζf (T ).

Consequently,

eX ·f eY = ζf (dX ·f0 dY ) = δX,Y ζf (dX) = δX,Y eX

as desired. To prove that the eX span R[U ; f ] note that for any S ⊆ U the
Möbius inversion formula gives S =

∑
T⊆S dT . Therefore,

f(S)S = ζf (S) =
∑

X⊆S

ζf (dX) =
∑

X⊆S

eX .

b) From part a) we know that

αf (eX , eY ) = δX,Y tr(eX) = δX,Y

∑

E⊆X

(−1)#(X−E)f(E)

= δX,Y νf (X)

where tr(
∑

S⊆U BSS) �
∑

S⊆U BS and where the rightmost equation results
from the Möbius inversion formula for fuzzy measure f .

c) From the proof for Part b) we know that f(S)S =
∑

E⊆S eE . Thus

f(S)αf (S, eT ) =
∑

E⊆S

αf (eE , eT ) =
∑

E⊆S

δE,T νf (E).

If T is not a subset of S then the last quantity vanishes; otherwise it is equal to
νf (T ). If we assume that f(S) �= 0 then the result follows. �
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Proposition 3. Let B, C ∈ R[U ]. Then

αf (B ·f C, eS) = αf (B, eS)αf (C, eS)νf (S)−1,

for νf (S) �= 0.

Proof. It is enough to prove

αf (X ·f Y, eS) = αf (X, eS)αf (Y, eS)νf (S)−1

for all X, Y ⊆ U . Note that if f(X) = 0 or f(Y ) = 0 then both sides of this
equation vanish identically. So, we may assume that f(X) �= 0 and f(Y ) �= 0.
Hence

αf (X ·f Y, eS) = αf (X, Y )αf (X ∩ Y, eS)

=
f(X ∩ Y )
f(X)f(Y )

αf (X ∩ Y, eS).

From Proposition 2, we know that αf (X∩Y, eS) = f(X∩Y )−1νf (S) if S ⊆ X∩Y
and f(X ∩ Y ) �= 0 and that αf (X ∩ Y, eS) = 0 otherwise. The same is true for
αf (X, eS) and αf (Y, eS). So, we may assume that S ⊆ X ∩Y and f(X ∩Y ) �= 0.
Thus we get

αf (X ·f Y, eS) = f(X)−1f(Y )−1νf (S)
= f(X)−1νf (S)f(Y )−1νf (S)νf (S)−1

= αf (X, eS)αf (Y, eS)νf (S)−1
.

�

Theorem 1. Let B, C ∈ R[U ]. Then

νf (S | B ∗f C) =
νf (S | B)νf(S | C)νf (S)−1

∑
T⊆U νf (T | B)νf(T | C)νf (T )−1

for νf (S) �= 0 and νf (S | B ∗f C) = 0 otherwise.

Proof. Notice that for any body of evidence B, the conditional fuzzy measure
f(S|B) = αf (B, f(S)S) =

∑
T⊆S αf (B, eT ), that is, αf (B, eS) is the Möbius

transform of f(S|B), or νf (S | B) = αf (B, eS). So this theorem follows immedi-
ately from Proposition 3. In other words, we can say that the combination rule
and conditioning rule in CDS satisfy the property of Bayesian parallel combina-
tion. �
Notice that if f is a probability measure then we have the following corollary.

Corollary 2. Assume f be a probability measure and B, C be two bodies of evi-
dence, then

f({u}|B ∗f C) =
f({u}|B)f({u}|C)f({u})−1

∑
v∈U f({v}|B)f({v}|C)f({v})−1

.
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5 Conclusions

When evaluating the value of an uncertain variable, all available evidence should
be fused as well as a priori knowledge about the value of the uncertain variable.
In this paper, we assume that a priori knowledge about the uncertain variable
can be modeled by a fuzzy measure—a unified framework to model different
kinds of uncertain information. Under this assumption, we present a theory
of knowledge updating called conditional Dempster-Shafer (CDS) which is a
generalization of conventional evidence theory.

Based on CDS theory, a generalized evidence combination method and a con-
ditioning rule involving a priori knowledge are introduced. This combination
rule in CDS is called the conditioned combination rule. When Two or more
bodies of evidence are available, they are first fused by conditioned combination
rule, then a priori knowledge is updated by conditioning rule based on fused
evidence. We show that these two rules satisfy the property of Bayesian parallel
combination. In addition, the posterior knowledge achieved from CDS can be
represented by a conditional fuzzy measure, this process is similar to the process
of the probabilistic knowledge updating.
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15. F. Tupin, I. Bloch, and H. Mâıtre, A first step toward automatic interpretation
of sar images using evidential fusion of several structure detectors, IEEE Trans.
Geoscience and Remote Sensing 37(3) (1999) 1327–1343.

16. R. R. Yager, Uncertainty representation using fuzzy measures, IEEE Trans. Sys-
tems Man and Cybernetics–Part B: Cybernetics 32(1) (2002) 13–20.

17. R. R. Yager and D. P. Filev, Including probabilistic uncertainty in fuzzy logic
controller modeling using Dempster-Shafer theory, IEEE Trans. Systems Man and
Cybernetics 25(8) (1995) 1221–1230.

18. J. Yang and M. G. Singh, An evidential reasoning approach for multiple-attribute
decision making with uncertainty, IEEE Trans. Systems Man and Cybernetics
24(1) (1994) 1–18.

19. J. Yen, Generalizing the Dempster-Shafer theory to fuzzy sets, IEEE Trans.
Systems Man and Cybernetics 20(3) (1990) 559–570.

20. L. M. Zouhal and T. Denœx, An evidence-theoretic k-NN rule with parameter
optimization, IEEE Trans. Systems Man and Cybernetics–Part C: Applications
and Reviews 28(2) (1998) 263–271.



Ant Colony Optimization Applied to Feature

Selection in Fuzzy Classifiers

Susana M. Vieira1, João M.C. Sousa1, and Thomas A. Runkler2

1 Center of Intelligent Systems, IDMEC
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Abstract. In practice, classifiers are often build based on data or heuris-
tic information. The number of potential features is usually large. One
of the most important tasks in classification systems is to identify the
most relevant features, because less relevant features can be interpreted
as noise that reduces the classification accuracy, even for fuzzy classifiers
which are somehow robust to noise. This paper proposes an ant colony
optimization (ACO) algorithm for the feature selection problem. The
goal is to find the set of features that reveals the best classification accu-
racy for a fuzzy classifier. The performance of the method is compared
to other features selection methods based on tree search methods.

1 Introduction

Real-world data analysis, data mining, classification and modeling problems usu-
ally involve a large number of candidate inputs or features. Sometimes the num-
ber of features is too large, making the problem computationally unfeasible or
simply uncomprehensible. Feature selection has been an active research area in
data mining, pattern recognition and statistics communities for many years [9].
The main idea of feature selection is to choose a subset of input variables by
eliminating features that contribute with little or no information. The methods
found in the literature can generally be divided into two main groups: model-free
and model-based methods. Model–free methods use the available data only and
are based on statistical tests, properties of functions, etc. These methods do not
need to develop models to find significant inputs. The methods discussed in this
paper belong to the group of model-based methods. Models with different sets of
features are compared and the model that minimizes the model output error is
selected. Often exhaustive methods are used where all subsets of variables must
be tested. Decision tree search methods, with the proper branch conditions, limit
the search space to the best performed branches, but do not guarantee to find
the global best solution [10].
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Nature inspired algorithms like ant colony optimization have been successfully
applied to a large number of difficult combinatorial problems like quadratic as-
signment, traveling salesman problems, routing in telecommunication networks,
or scheduling, [6]. Ant colony optimization is particularly attractive for feature
selection since no reliable heuristic is available for finding the optimal feature
subset, so it is expectable that the ants discover good feature combinations as
they proceed through the search space. Recently, nature inspired algorithms have
been used to select features [1,7,12].

This paper proposes an ant based feature selection approach for fuzzy classi-
fiers. The method is compared to other feature selection methods, namely two
decision tree search approaches: top–down and bottom–up [10]. Our goal is to
obtain simpler and more comprehensible fuzzy models for classification. The pa-
per is organized as follows. Fuzzy classification is briefly described in Section 2.
Section 3 presents the procedure of structure identification based on decision
tree methods. The ant feature selection algorithm is described in section 4. A
brief description of the application example, the experiments, and their respec-
tive results are presented and commented in Section 5. Finally, some conclusions
are drawn in Section 6.

2 Fuzzy Classification

We use a fuzzy classifier, more precisely a fuzzy rule based classifier, as it provides
a transparent model and a linguistic interpretation in the form of rules[13].
The fuzzy rule based models used in this paper are Takagi-Sugeno (TS) fuzzy
models,which are presented in the next section.

2.1 Takagi-Sugeno Fuzzy Models

Takagi-Sugeno (TS) fuzzy models [15], consist of fuzzy rules where each rule
describes a local input-output relation, typically in an affine form. Usually TS
fuzzy models are represented by multi–input single–output (MISO) models. How-
ever, when multi–input multi–output (MIMO) models are necessary (like in the
present work), they can be obtained as a collection of MISO models without lack
of generality [13]. The affine form of a TS MISO model is given by:

Ri : If x1 is Ai1and . . .and xn is Ainthen yi = ai1x1 + . . . + ainxn + bi , (1)

where i = 1, . . . , K, K denotes the number of rules in the rule base, Ri is
the ith rule, x = [x1, . . . , xn]T is the antecedent vector, n is the number of
states, Ai1, . . . , Ain are fuzzy sets defined in the antecedent space, yi is the
output variable for rule i, ai is a parameter vector and bi is a scalar offset.
The consequents of the affine TS model are hyperplanes in the product space
of the inputs and the output. The model output, y, can then be computed by
aggregating the individual rule contributions: y =

∑K
i=1 βiyi/

∑K
i=1 βi, where βi

is the degree of activation of the ith rule, which is defined as: βi =
∏n

j=1 μAij (xj),
and μAij (xj) : R → [0, 1] is the membership function of the fuzzy set Aij in the
antecedent of Ri.
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2.2 Identification

Firstly, the structure of the model must be identified. In this step, the signif-
icant features x of the model must be chosen. This is a very important step,
especially for real-world problems. This task can be performed using the algo-
rithms described in Section 3 and in Section 4. The number of variables must
be small enough for the sake of simplicity, but with the sufficient number of
variables to achieve the desired model accuracy. To identify the model, the re-
gression matrix X and an output vector y are constructed from the available
data: XT = [x1, . . . ,xN ], yT = [y1, . . . , yN ]. Here N � n is the number of sam-
ples used for identification. The number of rules K, the antecedent fuzzy sets
Aij , and the consequent parameters ai and bi are determined by means of fuzzy
clustering in the space of the input and output variables. Hence, the data set Z
to be clustered is composed from X and y:

Z = [X,y]T . (2)

Given the data Z and the number of clusters K, several fuzzy clustering algo-
rithms can be used. This paper uses the fuzzy c-means (FCM) [3] clustering
algorithm to compute the fuzzy partition matrix U. The fuzzy sets in the an-
tecedent of the rules are obtained from the partition matrix U, whose ikth
element μik ∈ [0, 1] is the membership degree of the data object zk in cluster
i. One-dimensional fuzzy sets Aij are obtained from the multidimensional fuzzy
sets defined point-wise in the ith row of the partition matrix by projections onto
the space of the input variables xj :

μAij (xjk) = projNn+1
j (μik), (3)

where proj is the point-wise projection operator [8]. The point-wise defined fuzzy
sets Aij are approximated by suitable parametric functions in order to compute
μAij (xj) for any value of xj . The consequent parameters for each rule are ob-
tained as a weighted ordinary least-square estimate. Let θT

i =
[
aT

i ; bi

]
, let Xe

denote the matrix [X;1] and let Wi denote a diagonal matrix in having the
degree of activation, βi(xk), as its kth diagonal element. Assuming that the
columns of Xe are linearly independent and βi(xk) > 0 for 1 ≤ k ≤ N , the
weighted least-squares solution of y = Xeθ + ε becomes

θi =
[
XT

e WiXe

]−1
XT

e Wiy . (4)

The second step to identify a model consists of the estimation of the param-
eters of the model. The number of rules K, the antecedent fuzzy sets Aij , and
the consequent parameters ai and bi are determined in this step, by means of
fuzzy clustering in the product space of the input and output variables [2].

The number of fuzzy rules (or clusters) that best suits the data must be de-
termined for classification. For that purpose the following criterion, as proposed
in [14], is used to determine the number of clusters:

S(c) =
N∑

k=1

c∑

i=1

(μik)m(‖ xk − vi ‖2 − ‖ vi − x̄ ‖2), (5)
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where N is the number of data to be clustered, c is the number of clusters (c ≥ 2),
xk is the kth data point (usually vector), x̄ is the mean value for the inputs, vi

the center of the ith cluster, μik is the grade of the kth data point belonging to ith

cluster and m is an adjustable weight. The parameter m has a great importance
in this criterion. The bigger the m the bigger the optimum number of clusters.
Therefore, this value is normally around 2. The number of clusters c is increased
from two up to the number that gives the minimum value for S(c). Note that
this minimum can be local. However, this procedure diminishes the number of
rules and consequently the complexity of the fuzzy model. At each iteration, the
number of clusters are determined using the fuzzy c-means algorithm and the
process stops when S(c) increases from one iteration to the next one. The first
term of the right-hand side of (5) is the variance of the data in a cluster and the
second term is the variance of the clusters themselves. The optimal clustering
achieved is the one that minimizes the variance in each cluster and maximizes
the variance between clusters.

The performance criterion used to evaluate the fuzzy rule based classification
model is based on misclassifications:

MSp =
(n − mis)

n
× 100%, (6)

where n is the number of used samples and mis the number of misclassifications.

3 Decision Tree Methods

3.1 Bottom-Up Approach

The bottom-up approach described in this paper follows the principle of the
regularity criterion (RC) approach [14], which is also a bottom-up approach.
However, a more recent algorithm that minimizes the computational time with
similar performance is used here [10]. The bottom-up approach starts with the
most relevant feature(s) and successively adds the most relevant and removes
the most irrelevant feature(s).

By using two groups of data, A and B, two fuzzy models are built, one for each
group, starting with only one feature. At this stage, a fuzzy model is built for
each of the n features in consideration. The models are evaluated using the RC
performance criterion. The criterion is computed for each model at this stage,
and the feature that minimizes the performance criterion is selected as the best
one. The one(s) that maximizes the criterion is rejected and is not included
in the next stage. At the next stage, the feature already selected is fixed, i.e.,
it belongs to the model structure. The other feature candidates, excluding the
rejected feature(s) in the prior stage, are added to the previous fuzzy model
one at a time. When this second stage finishes, the fuzzy model has two fea-
tures. The second feature is chosen as the one that minimizes the value of the
chosen performance criterion, and as before, the feature(s) that maximizes the
value of the criterion is rejected. This procedure is repeated until the value of the
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Algorithm 1. Bottom–up approach
Cluster the data using fuzzy c-means with two initial clusters;
Increase the number of clusters until S(c) in (5) reach its minimum;
Divide the data set into two groups A and B;
For each input in the input vector that does not belong to the inputs of the model:
repeat

Build two models, one using data group A and other using data group B;
Compute the PC;
Select the input with the lowest value of PC as a new input of the model;
Discard the input with the largest PC;

until PC increases or the end of the input vector is reached.
Select the final inputs;
Using the number of clusters given from (5) and the inputs selected using the
proposed approach, build a fuzzy model using a fuzzy clustering algorithm.

performance criterion increases. At this stage, one should have all the relevant
features for the considered classification output. In a generic case, using the RC
as proposed in [14], the maximum number of iterations is n× (n+1)/2, where n
is the number of possible features. The number of iterations using the bottom-
up approach decreases. For an odd number of features the maximum number
of iterations is (n + 1)2/4 and for an even number of features the maximum
number of iterations is n × (n + 2)/4. Thus, the number of iterations reduces
significantly, and then the computational time is also reduced. Assuming that
input and output data are collected from a given system, the selection of inputs
using this methodology generally entails the algorithm described in Algorithm 1.

Summarizing, the bottom–up approach presented in Algorithm 1 differs from
the RC algorithm proposed in [14] because it is possible to exclude one or more
variables. This is an advantage, as it allows the reduction of the number of
iterations per stage. In some cases, it allows even the reduction of the number
of stages, reducing also the computational time.

3.2 Top-Down Approach

Another approach proposed to select the input variables is the top-down (TD)
approach. This approach begins with all the input variables, and removes the
one(s) with the worst performance at each stage. This approach was proposed
in [10]. The identification data is divided into two groups, A and B, as in the
bottom–up approach.

Again, one model is built for each group A and B using all the variables. The
proposed approach begins, at stage 0, by using all the variables. The perfor-
mance criterion (PC) is computed. This is considered as the value to decrease at
the following stages. Then, at stage 1, n fuzzy models are obtained, where each
one of them is identified without one of the variables used at stage 0. The values
of the chosen PC, for each of the n models, are compared to the value obtained
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Algorithm 2. Top–down approach

Cluster the data using fuzzy c-means with two initial clusters;
Increase the number of clusters until S(c) in (5) reach its minimum;
Divide the data set into two groups A and B;
i = 0, where i is the stage number;
repeat

if Stage is zero then
Build a model using all the input variables;
m = n; where n is the number of initial inputs

else
i = i + 2;
Build a model using the input variables not discarded at the previous stage;

end if
Compute PCi;
for j = 1 to m do

Build two models, for groups A and B, using all the inputs except input j;
Compute PCi+1,j

if PCi+1,j < PCi then
Discard the input j not used in modeling;

end if
end for
m = m − p, where p is the number of discarded inputs;

until (no input is discarded) OR (model has only one input) OR (PCi > PCi−2)
Using the number of clusters given from (5) and the inputs selected by the
proposed approach, build a fuzzy model using a fuzzy clustering algorithm.

at stage 0. For each new value that is smaller, the corresponding input xi is
removed from the vector of inputs. At the next stage, a fuzzy model is identified
using only the inputs that have not been discarded at stage 1. The value of the
chosen performance criterion is computed, and is used as reference for the next
stage. The fuzzy model obtained at stage 2 has n − p inputs, where n is the
number of initial inputs and p is the number of inputs removed at stage 1. The
presented procedure is repeated until the value of the performance criterion is
not decreased by excluding any input. Thus, the inputs considered at stage 2
are the ones that are used in the final model. The top-down approach proposed
in this paper is described in Algorithm 2.

This algorithm differs from the bottom–up approach, as it obtains at each
stage multivariable fuzzy models, begins with the full feature vector, and discards
one or more inputs at each stage. This is a clear advantage, which allows the
reduction of the number of iterations per stage. Further, in some cases, it can
even reduce the number of stages, and consequently the computational time can
be reduced when compared to the BU approach. On the other hand, as the
TD approach uses much more inputs to build each model from the beginning,
and the identification of each model can be computationally intensive. This is
especially critical when the number of inputs is large.
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4 Ant Feature Selection

Ant algorithms were first proposed by Dorigo et al. [5] as a multi-agent ap-
proach to difficult combinatorial optimization problems like the traveling sales-
man problem and the quadratic assignment problem. There is currently a lot
of ongoing activity in the scientific community to extend/apply ant-based algo-
rithms to many different discrete optimization problems [4]. Recent applications
cover problems like vehicle routing, sequential ordering, graph coloring, routing
in communications networks, and so on. Ant algorithms were inspired by the
observation of real ant colonies. Ants are social insects, that is, insects that live
in colonies and whose behavior is directed more to the survival of the colony as
a whole than to that of a single individual component of the colony.

The Ant Colony Optimization (ACO) methodology [6] is an optimization
method suited to find minimum cost paths in optimization problems described
by graphs. Consider a problem with n nodes and a colony of g ants. Initially,
the g ants are randomly placed in g different nodes. The probability that an ant
k in node i chooses node j as the next node to visit is given by

pk
ij(t) =

⎧
⎨

⎩

τij
α·ηij

β

n∑
r /∈Γ

τir
α·ηir

β
, if j /∈ Γ

0, otherwise
(7)

where τij and ηij are the entries of the pheromone concentration matrix τ and
heuristic function matrix η respectively, for the path (i, j). The pheromone ma-
trix values are limited to [τmin, τmax], with τmin = 0 and τmax = 1. Γ is the
tabu list, which acts as the memory of the ants and contains all the trails that
the ants have already passed and cannot be chosen again. The parameters α and
β measure the relative importance of trail pheromone and heuristic knowledge,
respectively.

After a complete tour, when all the g ants have visited all the n nodes, the
pheromone concentration in the trails is updated by

τij(t + 1) = τij(t) × (1 − ρ) + Δτq
ij (8)

where ρ ∈ [0, 1] is the pheromone evaporation coefficient and Δτq
ij are phero-

mones deposited on the trails (i, j) followed by ant q that found the best solution
f q(s) for this tour:

Δτq
ij =

{ 1
fq(s) if arc (i, j) is used by the ant q

0 otherwise
(9)

The algorithm runs tmax times.
In this paper, an Ant Feature Selection (AFS) algorithm is proposed. Our goal

is to assign n features to a subset of the total set of available features. The main
objective is to have the best possible classification accuracy, i.e., to minimize the
classification error:

Emin = |yest − y| (10)
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Algorithm 3. Ant Feature Selection
/*Initialization*/
n dimension of the subset of features
for every feature i do

τi(0) = τ0

end for
for k = 1 to m do

Place ant k on a randomly chosen feature
end for
Let L+ be the best feature set found from beginning and E+ its error;
/*Main Loop*/
for t = 1 to tmax do

for k = 1 to m do
Build feature set Lk(t) by applying n − 1 times the following step:
Choose the next feature j with probability

pk
ij(t) =

[τij(t)]α·[ηij ]β∑
l∈Jk

i
[τil(t)]α·[ηil]β

Where i is the current feature
end for
for k = 1 to m do

Compute the fuzzy model using the feature set Lk(t) produced by ant k
Compute the error Ek(t)

end for
if an improved feature set is found then

update L+ and E+

end if
for every feature i do

Update pheromone trails by applying the rule:
τij(t) ← (1 − ρ) · τij(t) + Δτij(t)

end for
end for

where yest is the classification result. After completion of an iteration, each
ant k lays a quantity of pheromone Δτk

ij(t) on each used feature. The value
Δτk

ij(t) depends on how well the ant has performed. At iteration t, the deposited
pheromone is given by:

Δτk
ij(t) =

{
Q/Ek(t), if feature i ∈ Lk(t)
0, if feature i /∈ Lk(t) (11)

where Lk(t) is the set of features produced by ant k at iteration t, Ek(t) is the
error of the feature set, and Q is a parameter. The pheromone concentration in
the features is updated by

τij(t + 1) = τij(t) × (1 − ρ) + Δτij(t) (12)

where Δτij(t) =
∑m

k=1 Δτk
ij(t) and m is the number of ants. The transition rule,

that is, the probability for ant k to use feature i while building its tth feature
set, is given by
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pk
ij(t) =

[τij(t)]α · [ηij ]β∑
l∈Jk

i
[τil(t)]α · [ηil]β

(13)

where α and β control the relative weight of each feature between the pheromone
concentration τij(t), and the heuristic ηij = 1/Eij .

Table 1. Values of parameters used in the experiments

α β ρ m Q τ tmax n

2 1 0.1 2 10 0.5 100 2, 4 or 11

5 Application

The proposed ant feature selection (AFS) algorithm is applied to a wine classifi-
cation data set, which is obtained from the repository of University of California
at Irvine [11]. The results are compared to decision tree methods for feature
selection as described in Section 3. The classification data used in this paper
contains the chemical analysis of 178 wines grown in the same region in Italy
but derived from three different cultivars. Thirteen continuous attributes are
available for classification: alcohol, malic acid, ash, alcalinity of ash, magnesium,
total phenols, flavanoids, nonflavanoids phenols, proanthocyanism, color inten-
sity, hue, OD280/OD315 of dilluted wines and proline.

The features are selected using decision tree search methods or the AFS al-
gorithm. The parameters used in the AFS algorithm are given in Table 1. The
selected features are used to build fuzzy rule based models for classification.

First, both top-down and bottom-up approaches were applied to the database.
The best number of features using these approaches are 11 and 4 features, re-
spectively. Afterwards, AFS was applied using the same number of features. The
results are shown in Table 2. This table shows also the results using AFS with
only 2 features.

The features selected by the AFS algorithm are similar to the ones selected
with both decision tree search approaches. Even so, the AFS has a smaller vari-
ability in results than the bottom-up approach, which means that the bottom-up
approach is much more dependent on the performance criterion than AFS.

The main advantage of the ant based feature selection algorithm is the search
in a much wider space of features subset. In the bottom-up approach, after
choosing the best first feature, the following features subsets will always include
this feature. This can be a disadvantage, because when this feature is combined
with other features, it may turn out not to be the best feature, while in the AFS
algorithm this is never the case. Further, AFS can achieve good classification
rates even with a small number of features, see Table 2 when AFS is applied with
only two features. This can be a very important characteristic for classification
problems in very large data sets.
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Table 2. Correct classification percentage of the wine classification using the bottom-
up, top-down and ant feature selection approaches

#11 features #4 features #2 features

Methods Top–down AFS Bottom–up AFS AFS

Best 100 100 100 100 100
Average 99.9 99.8 96.7 99.3 97.7
Worst 99.4 97.7 92.7 97.7 89.8

6 Conclusions

This paper proposed an ant feature selection algorithm and compared it with
tree search methods for feature selection. All three algorithms were used to se-
lect a subset of features that was then used as inputs of a Takagi–Sugeno fuzzy
rule based classifier. We compared the performance of the three feature selec-
tion algorithms, when applied to the wine classification data set. The ant based
feature selection algorithm yielded the best classification rate for low number of
features. The top-down approach method was able to produced slightly better
results only when a very high number of features was used.

In the near future we are planing to develop an enhanced algorithm to de-
termine automatically the optimal number of features, and apply the proposed
feature selection algorithm to classification problems in very large data sets.
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Abstract. This paper presents the comparison results on the perfor-
mance of the Artificial Bee Colony (ABC) algorithm for constrained op-
timization problems. The ABC algorithm has been firstly proposed for
unconstrained optimization problems and showed that it has superior
performance on these kind of problems. In this paper, the ABC algo-
rithm has been extended for solving constrained optimization problems
and applied to a set of constrained problems .

1 Introduction

Constrained Optimization problems are encountered in numerous applications.
Structural optimization, engineering design, VLSI design, economics, allocation
and location problems are just a few of the scientific fields in which CO problems
are frequently met [1]. The considered problem is reformulated so as to take the
form of optimizing two functions, the objective function and the constraint vio-
lation function [2]. General constrained optimization problem is to find x so as to

minimize f(x), x = (x1, . . . , xn) ∈ R
n

where x ∈ F ∈ S. The objective function f is defined on the search space S ⊆ R
n

and the set F ⊆ S defines the feasible region. Usually, the search space S is de-
fined as a n-dimensional rectangle in �n (domains of variables defined by their
lower and upper bounds):

l(i) ≤ x(i) ≤ u(i), 1 ≤ i ≤ n

whereas the feasible region F ⊆ S is defined by a set of m additional constraints
(m ≥ 0):

gj(x) ≤ 0, for j = 1, . . . , q

hj(x) = 0, for j = q + 1, . . . , m.

P. Melin et al. (Eds.): IFSA 2007, LNAI 4529, pp. 789–798, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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At any point x ∈ F, the constraints gk that satisfy gk(x) = 0 are called
the active constraints at x. By extension, equality constraints hj are also called
active at all points of S [3].

Different deterministic as well as stochastic algorithms have been developed
for tackling constrained optimization problems. Deterministic approaches such as
Feasible Direction and Generalized Gradient Descent make strong assumptions
on the continuity and differentiability of the objective function [4,5]. Therefore
their applicability is limited since these characteristics are rarely met in prob-
lems that arise in real life applications. On the other hand, stochastic optimiza-
tion algorithms such as Genetic Algorithms, Evolution Strategies, Evolution-
ary Programming and Particle Swarm Optimization (PSO) do not make such
assumptions and they have been successfully applied for tackling constrained
optimization problems during the past few years [6,7,8,9,16].

Karaboga has described an Artificial Bee Colony (ABC) algorithm based on
the foraging behaviour of honey bees for numerical optimization problems [11].
Karaboga and Basturk have compared the performance of the ABC algorithm
with those of other well-known modern heuristic algorithms such as Genetic Al-
gorithm (GA), Differential Evolution (DE), Particle Swarm Optimization (PSO)
on unconstrained problems [12]. In this work, ABC algorithm is extended for
solving constrained optimization (CO) problems. Extension of the algorithm de-
pends on replacing the selection mechanism of the simple ABC algorithm with
Deb’s [13] selection mechanism in order to cope with the constraints. The per-
formance of the algorithm has been tested on 13 well-known constrained opti-
mization problems taken from the literature and compared with Particle Swarm
Optimization (PSO) and Differential Evolution (DE) [14]. The Particle Swarm
Optimization (PSO) algorithm was introduced by Eberhart and Kennedy in
1995 [15]. PSO is a population based stochastic optimization technique and well
adapted to the optimization of nonlinear functions in multidimensional space. It
models the social behaviour of bird flocking or fish schooling. The DE algorithm
is also a population based algorithm using crossover, mutation and selection
operators. Although DE uses crossover and mutation operators as in GA, the
main operation is based on the differences of randomly sampled pairs of solu-
tions in the population. Paper is organized as follows. In Section II, the ABC
algorithm and the ABC algorithm adapted for solving constrained optimization
problems are introduced. In Section III, a benchmark of 13 constrained func-
tions are tested. Results of the comparison with the PSO and DE algorithms are
presented and discussed. Finally, a conclusion is provided.

2 Artificial Bee Colony Algorithm

2.1 The ABC Algorithm Used for Unconstrained Optimization
Problems

In ABC algorithm [11,12], the colony of artificial bees consists of three groups
of bees: employed bees, onlookers and scouts. First half of the colony consists
of the employed artificial bees and the second half includes the onlookers. For
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every food source, there is only one employed bee. In other words, the number
of employed bees is equal to the number of food sources around the hive. The
employed bee whose the food source has been abandoned by the bees becomes
a scout.

In ABC algorithm, the position of a food source represents a possible solution
to the optimization problem and the nectar amount of a food source corresponds
to the quality (fitness) of the associated solution. The number of the employed
bees or the onlooker bees is equal to the number of solutions in the population.
At the first step, the ABC generates a randomly distributed initial population
P (G = 0) of SN solutions (food source positions), where SN denotes the size of
population. Each solution xi (i = 1, 2, ..., SN) is a D-dimensional vector. Here,
D is the number of optimization parameters. After initialization, the population
of the positions (solutions) is subjected to repeated cycles, C = 1, 2, ..., MCN , of
the search processes of the employed bees, the onlooker bees and scout bees. An
employed bee produces a modification on the position (solution) in her memory
depending on the local information (visual information) and tests the nectar
amount (fitness value) of the new source (new solution). Provided that the nectar
amount of the new one is higher than that of the previous one, the bee memorizes
the new position and forgets the old one. Otherwise she keeps the position of
the previous one in her memory. After all employed bees complete the search
process, they share the nectar information of the food sources and their position
information with the onlooker bees on the dance area. An onlooker bee evaluates
the nectar information taken from all employed bees and chooses a food source
with a probability related to its nectar amount. As in the case of the employed
bee, she produces a modification on the position in her memory and checks the
nectar amount of the candidate source. Providing that its nectar is higher than
that of the previous one, the bee memorizes the new position and forgets the old
one.

An artificial onlooker bee chooses a food source depending on the probability
value associated with that food source, pi , calculated by the following expression
(1):

pi =
fiti

SN∑
n=1

fitn

(1)

where fiti is the fitness value of the solution i which is proportional to the nec-
tar amount of the food source in the position i and SN is the number of food
sources which is equal to the number of employed bees (BN).

In order to produce a candidate food position from the old one in memory,
the ABC uses the following expression (2):

vij = xij + φij(xij − xkj) (2)



792 D. Karaboga and B. Basturk

where k ∈ {1, 2,..., SN} and j ∈ {1, 2,..., D} are randomly chosen indexes. Al-
though k is determined randomly, it has to be different from i. φi,j is a random
number between [-1, 1]. It controls the production of neighbour food sources
around xi,j and represents the comparison of two food positions visually by a
bee. As can be seen from (2), as the difference between the parameters of the
xi,j and xk,j decreases, the perturbation on the position xi,j gets decrease, too.
Thus, as the search approaches to the optimum solution in the search space, the
step length is adaptively reduced.

If a parameter value produced by this operation exceeds its predetermined
limit, the parameter can be set to an acceptable value. In this work, the value
of the parameter exceeding its limit is set to its limit value.

The food source of which the nectar is abandoned by the bees is replaced
with a new food source by the scouts. In ABC, this is simulated by producing
a position randomly and replacing it with the abandoned one. In ABC, pro-
viding that a position can not be improved further through a predetermined
number of cycles, then that food source is assumed to be abandoned. The value
of predetermined number of cycles is an important control parameter of the ABC
algorithm, which is called “limit” for abandonment. Assume that the abandoned
source is xi and j ∈ {1, 2,..., D} , then the scout discovers a new food source to
be replaced with xi. This operation can be defined as in (3)

xj
i = xj

min + rand(0, 1)(xj
max − xj

min) (3)

After each candidate source position vi,j is produced and then evaluated by
the artificial bee, its performance is compared with that of its old one. If the
new food has an equal or better nectar than the old source, it is replaced with
the old one in the memory. Otherwise, the old one is retained in the memory. In
other words, a greedy selection mechanism is employed as the selection operation
between the old and the candidate one.

It is clear from the above explanation that there are four control parameters
used in the ABC: The number of food sources which is equal to the number of
employed or onlooker bees (SN), the value of limit, the maximum cycle number
(MCN).

Detailed pseudo-code of the ABC algorithm is given below:
1: Initialize the population of solutions xi,j , i = 1 . . . SN, j = 1 . . .D
2: Evaluate the population
3: cycle=1
4: repeat
5: Produce new solutions υi,j for the employed bees by using (2) and evaluate

them
6: Apply the greedy selection process
7: Calculate the probability values Pi,j for the solutions xi,j by (1)
8: Produce the new solutions υi,j for the onlookers from the solutions xi,j

selected depending on Pi,j and evaluate them
9: Apply the greedy selection process
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10: Determine the abandoned solution for the scout, if exists, and replace it
with a new randomly produced solution xi,jby (3)

11: Memorize the best solution achieved so far
12: cycle=cycle+1
13: until cycle=MCN

2.2 The ABC Algorithm Used for Constrained Optimization
Problems

In order to adapt the ABC algorithm for solving constrained optimization prob-
lems, we adopted Deb’s constrained handling method [13] instead of the selec-
tion process (greedy selection) of the ABC algorithm described in the previous
section since Deb’s method consists of very simple three heuristic rules. Deb’s
method uses a tournament selection operator, where two solutions are compared
at a time, and the following criteria are always enforced: 1) Any feasible solu-
tion is preferred to any infeasible solution, 2) Among two feasible solutions, the
one having better objective function value is preferred, 3) Among two infeasible
solutions, the one having smaller constraint violation is preferred.

Because initialization with feasible solutions is very time consuming process
and in some cases it is impossible to produce a feasible solution randomly, the
ABC algorithm does not consider the initial population to be feasible. Structure
of the algorithm already directs the solutions to feasible region in running process
due to the Deb’s rules employed instead of greedy selection. Scout production
process of the algorithm provides a diversity mechanism that allows new and
probably infeasible individuals to be in the population.

In order to produce a candidate food position from the old one in memory,
the adapted ABC algorithm uses the following expression:

υj =
{

xij + φij(xij − xkj) , if Rj < MR
xij , otherwise (4)

where k ∈ {1, 2,..., SN} is randomly chosen index. Although k is determined
randomly, it has to be different from i. Rj is randomly chosen real number in
the range [0,1] and j ∈ {1, 2,..., D}. MR, modification rate, is a control parameter
that controls whether the parameter xij will be modified or not. In the version
of the ABC algorithm proposed for constrained optimization problems, artificial
scouts are produced at a predetermined period of cycles for discovering new
food sources randomly. This period is another control parameter called scout
production period (SPP ) of the algorithm. At each SPP cycle, it is controlled
if there is an abandoned food source or not. If there is, a scout production process
is carried out.

Pseudo-code of the ABC algorithm proposed for solving constrained problems
is given below:
1: Initialize the population of solutions xi,j , i = 1 . . . SN, j = 1 . . .D
2: Evaluate the population
3: cycle=1
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4: repeat
5: Produce new solutions υi,j for the employed bees by using (4) and evaluate

them
6: Apply selection process based on Deb’s method
7: Calculate the probability values Pi,j for the solutions xi,j by (1)
8: Produce the new solutions υi,j for the onlookers from the solutions xi,j

selected depending on Pi,j and evaluate them
9: Apply selection process based on Deb’s method

10: Determine the abandoned solution for the scout, if exists, and replace it
with a new randomly produced solution xi,jby (3)

11: Memorize the best solution achieved so far
12: cycle=cycle+1
13: until cycle=MCN

3 Experimental Study and Discussion

In order to evaluate the performance of the ABC algorithm, we used a set of
13 benchmark problems can be found in [16]. This set includes various forms of
objective function such as linear, nonlinear and quadratic. The performance of
the ABC algorithm is compared with that of the differential evolution (DE) and
particle swarm optimization (PSO) algorithms.

3.1 Settings

PSO employs Deb’s rules for constraint handling. The swarm size is 50 and the
generation number is 7000. Hence, PSO performs 350 000 objective function
evaluations. Cognitive and social components are both set to 1. Inertia weight
is uniform random real number in the range [0.5,1]. All equality constraints are
converted into inequality constraints, |hj | ≤ ε with ε=0.001 [16].

In DE, F is a real constant which affects the differential variation between
two solutions and set to 0.5 in our experiments. Value of crossover rate, which
controls the change of the diversity of the population, is chosen to be 0.9 as
recommended in [17]. Population size is 40 , maximum generation number is
6000 and it uses Deb’s rules.

In ABC, the value of modification rate (MR) is 0.8, colony size (2 ∗SN) is 40
and the maximum cycle number (MCN) is 6000. So, the total objective function
evaluation number is 240 000 as in DE. The value of limit” is equal to SN x D
where D is the dimension of the problem and SPP is also SNxD. Experiments
were repeated 30 times each starting from a random population with different
seeds.

3.2 Results and Discussion

The results of the experiments for the ABC algorithm are given in Table 1.
Comparative results of the best, mean and worst solutions of the investigated
algorithms are presented in Table 2, Table 4 and Table 3, respectively.
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Table 1. Statistical Results Obtained by the ABC algorithm for 13 test functions over
30 independent runs using 240.000 objective function evaluations

Problem Optimal Best Mean Worst Std. Dev.
g01 -15.000 -15.000 -15.000 -15.000 0.000

g02 0.803619 0.803598 0.792412 0.749797 0.012

g03 1.000 1.000 1.000 1.000 0.000

g04 -30665.539 -30665.539 -30665.539 -30665.539 0.000

g05 5126.498 5126.484 5185.714 5438.387 75.358

g06 -6961.814 -6961.814 -6961.813 -6961.805 0.002

g07 24.306 24.330 24.473 25.190 0.186

g08 0.095825 0.095825 0.095825 0.095825 0.000

g09 680.63 680.634 680.640 680.653 0.004

g10 7049.25 7053.904 7224.407 7604.132 133.870

g11 0.75 0.750 0.750 0.750 0.000

g12 1.000 1.000 1.000 1.000 0.000

g13 0.053950 0.760 0.968 1.000 0.055

Table 2. The Best Solutions Obtained by DE, PSO and ABC algorithms for 13 test
functions over 30 independent runs. – Means That No Feasible Solutions Were Found.
Na = Not Available.

P Optimal PSO [16] DE ABC
g01 -15.000 15.000 -15.000 -15.000

g02 0.803619 0.669158 0.472 0.803598

g03 1.000 0.993930 1.000 1.000

g04 -30665.539 -30665.539 -30665.539 -30665.539

g05 5126.498 5126.484 5126.484 5126.484

g06 -6961.814 -6161.814 -6954.434 -6961.814

g07 24.306 24.370153 24.306 24.330

g08 0.095825 0.095825 0.095825 0.095825

g09 680.63 680.630 680.630 680.634

g10 7049.25 7049.381 7049.248 7053.904

g11 0.75 0.749 0.752 0.750

g12 1.000 1.000 1.00 1.000

g13 0.053950 0.085655 0.385 0.760

As seen from Table 2, the ABC algorithm has found the global minimum
of the seven of thirteen problems (g01, g03, g04, g06, g08, g11, g12) through
240 000 cycles. On five functions (g02, g04, g05, g07, g10), the ABC algorithm
produced results quite close to the global optima. On one problem, g13, the ABC
algorithm could not find the optima in the specified maximum number of cycles.

As seen from Table 2, PSO algorithm is better than ABC on three problems
(g09,g10,g13) while the ABC algorithm shows better performance than PSO on
four problems (g02, g03, g07, g12). Compared to DE, it is better than ABC on
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Table 3. The Worst Solutions Obtained by DE, PSO and ABC algorithms for 13 test
functions over 30 runs. – Means That No Feasible Solutions Were Found. Na = Not
Available.

P Optimal PSO [16] DE ABC
g01 -15.000 -13.000 -11.828 -15.000

g02 0.803619 0.299426 0.472 0.749797

g03 1.000 0.464 1.000 1.000

g04 -30665.539 -30665.539 -30665.539 -30665.539

g05 5126.498 5249.825 5534.610 5438.387

g06 -6961.814 -6961.814 -6954.434 -6961.805

g07 24.306 56.055 24.330 25.190

g08 0.095825 0.095825 0.095825 0.095825

g09 680.63 680.631 680.631 680.653

g10 7049.25 7894.812 9264.886 7604.132

g11 0.75 0.749 1 0.750

g12 1.000 0.994 1.000 1.000

g13 0.053950 1.793361 0.990 1.000

Table 4. The Mean Solutions Results Obtained by DE, PSO and ABC algorithms for
13 test functions over 30 independent runs and total success numbers of algorithms. A
Result In Boldface Indicates A Better Result Or That The Global Optimum (Or Best
Known Solution) Was Reached. – Means That No Feasible Solutions Were Found.

P Optimal PSO [16] DE ABC
g01 -15.000 -14.710 -14.555 -15.000
g02 0.803619 0.419960 0.665 0.792412
g03 1.000 0.764813 1.000 1.000
g04 -30665.539 -30665.539 -30665.539 -30665.539
g05 5126.498 5135.973 5264.270 5185.714

g06 -6961.814 -6961.814 − -6961.813

g07 24.306 32.407 24.310 24.473

g08 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.630 680.630 680.640

g10 7049.25 7205.5 7147.334 7224.407

g11 0.75 0.749 0.901 0.750
g12 1.000 0.998875 1.000 1.000
g13 0.053950 0.569358 0.872 0.968

four functions (g07, g09, g10, g13) as the ABC algorithm is better than DE on
three problems (g02, g06, g11) with respect to the best results.

From the worst results given in Table 3, PSO is better than ABC on three
problems (g05, g06, g09) while ABC outperforms PSO on eight problems (g01,
g02, g03, g07, g10, g11, g12, g13). DE show better performance on two problems
with respect to the ABC algorithm on three problems (g07, g09,g13) while ABC
is better on six problems (g01, g02, g05, g06, g10, g11).
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Similarly, with respect to the mean solutions in Table 4, PSO shows better
performance with respect to the ABC algorithm on five problems (g05, g06, g09,
g10, g13) and ABC algorithm is better than PSO on six problems (g01, g02, g03,
g07, g11, g12). DE has better performance than ABC on four problems (g07,
g09, g10, g13) while ABC is better than DE on five problems (g01, g02, g05,
g06, g11).

From the mean results presented in Table 4, it can be concluded that the
ABC algorithm performs better than DE and PSO.

Consequently, the ABC algorithm using Deb’s rules can not find the optimum
solution for g05, g10 and g13 for each run. g05 and g13 are nonlinear problems
and the value of ρ (ρ = |F| / |S|, F:Feasible Space, S:Search Space) for g05 and
g13 is %0.000. Also, these problems have nonlinear equality constraints. g10 is
linear and the value of ρ is %0.0020 for this problem. However, g10 has no linear
equality and nonlinear equality constraints. Therefore, it is not possible to make
any generalization for the ABC algorithm such that it is better or not for a
specific set of problems. In other words, it is not clear what characteristics of
the test problems make it difficult for ABC.

4 Conclusion

A modified version of the ABC algorithm for constrained optimization problems
has been introduced and its performance has been compared with that of the
state-of-art algorithms. It has been concluded that the ABC algorithm can be
efficiently used for solving constrained optimization problems. The performance
of the ABC algorithm can be also tested for real engineering problems existing
in the literature and compared with that of other algorithms. Also, the effect of
constraint handling methods on the performance of the ABC algorithm can be
investigated in future works.
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Abstract. The distributed optimization paradigm based on Ant Colony
Optimization (ACO) is a new management technique that uses the
pheromone matrix to exchange information between the different subsys-
tems to be optimized in the supply-chain. This paper proposes the use
of the hybrid algorithm Beam-ACO, that fuses Beam-Search and ACO,
to implement the same management concept. The Beam-ACO algorithm
is used here to optimize the supplying, the distributer and the logistic
agents of the supply-chain. Further, this paper implements the concept in
a software platform that allows the pheromone matrix exchange through
the different agents, using the TCP/IP protocol and data base systems.
The results show that the distributed optimization paradigm can still
be applied on supply chains where the different agents are optimized by
different algorithms and that the use of the Beam-ACO in the supplying
agent improves the local and the global results of the supply chain.

1 Introduction

In order to keep their competitiveness in the global market, companies are chang-
ing their organization into supply-chains, allowing them to react faster on de-
mand changes and to increase their flexibility. Supply-chains are complex and
organized structures of independent companies, decentralized and concentrated
on their own interests, working collectively in order to satisfy the end customer.
Supply-chain management is the way to supervise the flow of products and infor-
mation as they move in the supply-chain. Its goal is to optimize the supply-chain
in order to increase the profit margin of the end product, by giving exactly what
the costumer wants, and to keep low production and distribution costs. Due to
the stochastic nature and high level of complexity of a supply-chain, its man-
agement is a very difficult and complex process that can only be achieved by
advanced planning systems. These systems use mostly deterministic algorithms
and are based on centralized optimization, in which each agent optimizes its
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own problem without considering the other agents involved. A new concept for
distributed optimization, where each of the different companies within the sup-
ply chain exchange information in order to achieve the global optimum of the
supply-chain, was introduced in [9,7]. This is obtained by using the ant colony
optimization (ACO) algorithm to optimize each intervenient in the supply-chain
and by exchanging the pheromone matrix between them. The exchange of the
pheromone matrix can be done in a synchronous or asynchronous manner.

In this paper, this concept is extended by the implementation of the re-
cently proposed optimization algorithm called Beam-ACO [1]. This algorithm
has proven to be the state-of-the-art optimization algorithm for several job-shop
problems. Therefore, the use of this algorithm instead of standard ACO can
improve the global performance of the supply chain. Moreover, it is also impor-
tant to test whether the distributed optimization paradigm could still be applied
through the use of different optimization algorithms by the different partners.
The paper also proposes the software platform for supply-chain management
to be deployed on the different agents. Each system is an agent of the supply
chain and the platform uses the TCP/IP protocol to exchange the information
between the several agents involved in the supply-chain. Each agent is equipped
with a database that contains all the information necessary for the optimization
process. The platform framework is implemented in C#.

The outline of the paper is as follows. Section 2 introduces the supply chain
model and describes the optimization problems that each agent has to solve.
ACO and Beam-ACO implementations for each agent in the supply chain is pre-
sented in Section 3. In Section 4, the developed software platform to implement
the distributed optimization concept is described. Section 5 presents the simu-
lation results and some final remarks and future research directions are drawn
in Section 6.

2 Supply-Chain Management

A supply chain can be defined as a coordinated system of organizations, people,
activities, information and resources involved in moving a product or service
in physical or virtual manner from supplier to customer [10]. The supply-chain
model defined in this work is composed by a logistic, a distribution and two sup-
pliers agents [8]. The management of such a system involves the control of the
materials’ flow and information through the several stages of production, trans-
portation and distribution along a supply-chain, with the purpose of maintain-
ing low stocks without lowering the level of service guaranteed to the customer,
which is defined in this case to deliver the products at the correct date.

2.1 Logistic System

The logistic system receives every day new orders requested by different clients,
where an order oj is a set of different types of components in certain quantities,
with a certain due date dj . The different components and their quantities are
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purchased from external suppliers, that deliver the components to the cross-
docking centers after a certain period of time. The logistic process task is a
scheduling problem that consists of observing the list of n orders and the list of
components, and decides which orders are delivered at completion date Cj .

The difference between the completion date and the due date is called the
tardiness Tj = Cj − dj . The objective is to match the completion date with the
due date, i.e. to have for all orders Tj = 0. This decision step is done once per day.
Two disturbances may influence the system: the fact that suppliers service may
not be respected; and the fact that some clients ask for desired delivery dates
not compatible to supplier services. The optimization objective is to minimize
the cost function given by

fL =

∑
j∈O Tj + |Od

ND|
|O0

D| + ε
(1)

where
∑

j∈O Tj accounts for the minimization of the tardiness of the set of
released orders O; |Od

ND| is the cardinality of subset Od
ND and refers to the min-

imization of the number of orders that are not delivered and are already delayed;
|O0

D| + ε is the cardinality of subset O0
D and accounts for the maximization of

the number of orders delivered at the correct date. ε is a small constant that
avoids the division by zero when no orders are delivered at the correct date. This
problem can be formally described by a disjunctive graph G = {V, A}, where
the vertices V represent the n orders waiting to be released.

2.2 Supplying System

The supplying sub-system is a network of p different manufacturers, each one
producing independently its own subset of components Cp ⊂ C, requested by
the logistic sub-system. Each supplier is independent and therefore it optimizes
its own problem called the local supplier problem. However, for the logistic sys-
tem this one single entity. From this point of view, the optimization to solve is
different and is called global supplying problem.

Local Supplier Problem. The optimization problem of each p supplier can be
modeled as a single machine scheduling problem [4]. There is one machine that
has to produce all the components c on the waiting list, minimizing the total
tardiness, which is defined as in the logistic system:

fSp =
∑

c∈Cp

Tc (2)

Global Supplying Problem. The global supplying problem is modeled as
an open job shop problem (OSP) [4]. There are p number of machines, where
a machine corresponds to a supplier. In this problem, each machine can only
produce certain types of jobs Cp. The objective is to minimize the total tardiness:

fS =
∑

c∈C=C1∪,...,∪Cp

Tc (3)
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2.3 Distribution System

After the scheduling method has decided which orders will be delivered, a distri-
bution company will pick-up the assigned components and deliver them to the
different clients. There is a direct correspondence between clients and orders,
but clients are described in this case by their geographical location. In general, a
distribution problem consists of determining how many trucks are necessary to
transport the orders and which sequence should be followed in order to minimize
the transportation costs. We consider here two constraints: the maximum load
capacity Q and the maximum travel distance R of each truck. This distribution
problem can be modeled as a Vehicle Routing Problem (VRP)[2]. In this case,
the cost function to be minimized is the distance traveled by all the vehicles

fD =
m∑

i=0

m∑

j=0

v∑

l=1

dijxijl (4)

where xijl = {0, 1} indicates if the vehicle l traveled the distance di,j from client
i to j: if yes, xijl = 1; if not xijl = 0. The problem can be represented by a
disjunctive graph G = {V, A}, where the vertices V represent the location of the
clients and the arcs A are associated with the traveling distance dij between the
vertices.

3 Optimization Algorithms

The ant colony optimization algorithm [3] is an optimization method fitted to
find the minimum cost in graph optimization problems, especially when these
costs are dynamic. This meta-heuristic is inspired on ant colonies behavior while
foraging for food, in particular their ability to find the closest path between the
food and the nest. In nature, this behavior is explained by pheromone concentra-
tion on the traveled paths, which expresses the colonies experience on finding the
shortest path. In this section, we introduce the standard ACO and the Beam-
ACO algorithms and its implementation to optimize the different agents of the
supply chain.

3.1 Ant Colony Optimization

Consider a problem of n nodes and a colony of g ants. Initially the ants depart
from the initial node, considered to be the ant colony nest, and move to another
node by choosing in a probabilistic way. The probability that a k ant in node i
chooses node j is given by

pij =
{ τα

ij ·ηβ
ij∑ n

r /∈Γ τα
ij ·ηβ

ij

, if j /∈ Γ

0 , otherwise
(5)

where τij and ηij are the pheromone concentration matrix τ and the heuristic
function matrix η respectively, for the path (i, j). The values of the pheromone



Beam-ACO Distributed Optimization Applied to SCM 803

matrix are limited to the interval [τmin, τmax], where τmin and τmax correspond
to zero and one respectively. Γ is the tabu list and it acts has the ants memory,
keeping the list of the nodes that the ants have already passed and can not
be chosen again. The α and β parameters measure the relative importance of
the pheromone trail and the heuristic function respectively. Matrices τij and ηij

are normalized to the interval [0,1], which allows to better judge their relative
weight in choosing the next node through parameters α and β. If α < β, then the
pheromone matrix will have a greater relative weight than the heuristic. After a
complete tour, when all the g ants have visited all the n nodes, the pheromone
concentration in the trails is updated by

τij(t + g × n) = τij(t) × (1 − ρ) + Δτq
ij (6)

where ρ ∈ [0, 1] simulates the evaporation phenomenon of the pheromone, and
Δτq

ij are pheromone deposited by ant q that found the best solution, along trail
i, j, in a given iteration.

Δτq
ij =

{ 1
fq(s) , if arc (i, j) is used by ant q

0 , otherwise
(7)

ACO in the Logistic Problem. In the scheduling problem of the logistic
system, the orders waiting to be delivered are the nodes of the graph, and the
role of the ants is to find the minimum cost path connecting the orders that
should be delivered. We consider that each ant is traveling with a bag with
the available stocks and is distributing the stocks between the orders that it is
visiting. It only visits orders whose components it is able to deliver. In this way,
the ACO only builds feasible solutions. When the stocks’ bag is empty or the
remaining components are not enough to deliver any missing order, the search
for this ant is finished. In this case, the number of visited nodes may not be the
same from one ant to another, while for the VRP the number of nodes to visit
is fixed and equal to the number of clients to visit [2]. The heuristic function
η is the order’s lateness, as proposed in [6]: if an order has already a positive
lateness, the ant will feel a stronger attraction to visit it, because the order
is already delayed. We define the heuristic function as an exponential function
in the interval [0, 1] where the value 0 is for the order that has the minimum
lateness Lmin and 1 is for the most delayed order Lmax [6]. The objective is
that the orders already delayed attract ants much more than the orders not yet
delayed:

ηj =
e

Lj−Lmin

Lmax−Lmin − 1
e − 1

(8)

Notice that in this case the heuristic information is only order dependent, there-
fore ηj = ηij . The pheromone trails τij are also restricted to the interval [0, 1],
therefore α < β will indicate a higher relative weight of the pheromones trail.
The Tabu list is the list of orders already delivered by the ant and also the orders
which is not possible to visit, due to lack of stocks. The objective function to
minimize by each ant k is fk

L defined in (1).
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3.2 Beam-ACO

Beam-ACO optimization method was introduced in [1]. This method hybridizes
the deterministic method Beam Search (BS) with ACO meta-heuristic. BS is a
tree search method initially used to solve scheduling problems but was adapted
to other problems of combinatorial optimization. This algorithm derives from
branch and bound algorithms [4]. The central idea of BS is to extend a set of
partial solutions up to kext, called beam extension, from a given set B, called
Beam. Each set of obtained solutions is then kept in the set Bext, in case they
are incomplete solutions and can yet be further extended, or in the set Bc, in
case they are complete solutions and cannot be further extended. At the end
of each step, the algorithm selects up to kbw solutions, called beam width, from
the set Bext creating a new set B. This selection is made through the use of a
lower bound, which determines the minimum objective function value for any
complete solution that can be built from a partial solution. Set B contains an
empty partial solution at the beginning of the algorithm. The node choice made
by BS is deterministic and is based on a cost function.

Beam-ACO in the Local Supplying Problem. To apply the Beam-ACO
to the local supplier problem, which is a single machine problem, is necessary to
define a lower bound. In this case, the chosen lower bound is:

LB(sp
t ) = max{

∑

ci∈sp
t

Tci + Tcj∈N(sp
t ):cjlast operation} (9)

where ci corresponds to a component that belongs to the partial solution sp
t , cj

corresponds to a component in the neighborhood N(sp
t ) and is ordered so that

is the last one to be produced from the neighborhood.

Beam-ACO in the Global Supplying Problem. The global supplying prob-
lem is an open-shop problem [5]. Since the Beam-ACO was originally applied to
this type of problems, [1]. The chosen lower bound was the one proposed in that
paper and is described as:

LB(sp
t ) = max{X, Y } (10)

where

X = max
Jj∈J

{tec(oJj , sp
t ) +

∑

o∈J+
jt

p(o)} (11)

Y = max
Mi∈M

{tec(oMi , sp
t ) +

∑

o∈M+
it

p(o)} (12)

J+
j is the set of operations still to be processed from job Jj , and M+

i is the set
of operations from machine Mi still to be processed. The variable tec (earliest
completion time), is the time that takes for machine Mi or job Jj of the partial
solution to be completed.
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Beam-ACO in the Distribution Problem. The distribution problem is
modeled as a VRP problem. Two lower bounds were defined to apply the Beam-
ACO to the distribution problem. The first bound is defined as:

LBD(sp
t ) = wsp

t
+

∑

i:i∈sp
t

∑

j:j∈N(sp
t )

Dij (13)

where wsp
t

corresponds to the distance already traveled by the partial solution
and

∑
i:i∈sp

t

∑
j:j∈N(sp

t ) Dij corresponds to the sum of the distances from the
current node to the feasible neighborhood and the distances between the nodes
of the feasible neighborhood. The second bound is defined as:

LBη(sp
t ) = wsp

t
+

∑

i:i∈sp
t

∑

j:j∈N(sp
t )

1/ηij (14)

where
∑

i:i∈sp
t

∑
j:j∈N(sp

t ) 1/ηij corresponds to the sum of the inverse heuristic
from the current node to the feasible neighborhood and between the nodes of
the feasible neighborhood.

3.3 Distributed Optimization

The distributed optimization paradigm considers that there are several prob-
lems running in parallel, instead of only one problem. However, if each problem
is being optimized by an ACO algorithm, the same principle can be applied to ex-
change information. This section introduces the implementation of this concept
to the distributed optimization paradigm for supply chain management. Each
subsystem of the supply chain can be optimized through a pheromone matrix, a
matrix that indicates the weights on arcs connecting different nodes. However,
the different optimization problems can be described in similar graphs, and there-
fore, different entities from different problems may be represented by the same
nodes and arcs. In this way, it is very easy to exchange the pheromone matrix
between different problems. Each colony is solving its problem autonomously
taking into consideration relevant information of the colonies that are solving
different problems. This is valid for ACO or Beam-ACO algorithms.

For the presented supply chain model, management is done at two distinct
moments in time. First, the suppliers decide about their own scheduling policy,
that may be influenced or not by the logistic system before it receives the new
components at the cross-docking center - this is called the supplying-logistic
problem. Then, the logistic process has to decide which orders to deliver after
it receives the new components, under the influence or not of the distribution
system - this is called the logistic-distribution problem. For more details see [7,5].

4 Software Platform

The development of an optimization software applied to supply-chain manage-
ment introduces many challenges. The most important is the information man-
agement, that deals with the information that will be exchanged between the
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Fig. 1. Information exchange

several systems of the supply-chain and how each of them handle that informa-
tion. The platform is divided into three major parts: the database, the optimiza-
tion method and the communications section. The optimization method can be
implemented in any language. The platform itself was implemented in C#, and
manages the information between the optimization algorithm, the database and
the communications. Through the use of a database, each system can obtain or
modify the required information it needs. There are three ways to establish a link
to a database: ODBC, OLeDB and SQL. From these three methods, the OLeDB
was chosen. As the information that each agent requires for its optimization is
different and has different relations, it is necessary to create one data base for
each type of agent. For communication between computers, the TCP/IP proto-
col is used. This protocol enable communication via internet, allowing the agents
to be in different locations. The information necessary to transport between each
of the agents can be seen on Fig. 1.

5 Results

This section compares the centralized optimization and the distributed opti-
mization methods. The results of the Beam-ACO approach are compared to the
traditional ACO using two different supply-chain instances. The instances are
composed by one logistic, one distributor and two suppliers. Each instance is de-
scribed as (A, B, C, D), where A is the average number of orders that enter the
system every day; B is the number of different types of components produced by
the suppliers; C is the average number of different types of components existing
in each order; and D is the maximum quantity of each type of component per
order, as described in [7]. Instances (5, 5, 3, 10) and (10, 10, 2, 30) were used. The
following tests were executed 20 times for the period between day 1 and day 60.
These results were obtained on PC computers using Intel Pentium 4 processors
at 3.0 GHz and 1 GB of RAM, running Windows XP.

The parameters used in ACO are: α = 0.5, β = 0.2, ρ = 0.2, number of ants is
equal to half of the number of nodes and the total number of iterations is equal
to 200. The parameters for Beam-ACO are the following: maximum number of
iterations is 20, the number of ants is 1, kbw = 10 and kext is equal to the number
of nodes that the ant can still travel for a given iteration: t ≤ max{1, |O|/20},
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where |O| is the number of nodes. The remaining parameters for Beam-ACO are
the same as for ACO. Recall that the instance used for simulation is composed by
one logistic, one distributor and two supplier systems. The simulation is running
for 60 days.

5.1 Results for the Logistic System Using ACO

Table 1 presents the results of the cost function obtained for the tested 60 days
in the logistic system. The centralized, distributed synchronous and distributed
asynchronous optimizations are compared. The first four lines contain the av-
erage, standard deviation, minimum and maximum values of the cost function.
The improvement obtained using the distributed optimization is presented in the
last two lines. It can be observed that the improvement is remarkable for this
system; in fact the cost function is almost reduced to half of the value obtained
using centralized optimization. This means that much more orders are getting
to the clients at the desired date.

Table 1. Cost function results of the logistic for the three variations of supply-chain
optimization

Optimization centralized synchronous asynchronous

Average 10.09 5.38 5.26
Standard deviation 0.00 0.02 0.16
Minimum 10.09 5.38 5.04
Maximum 10.09 5.43 5.43

Improvement from centralized 46.7% 47.9%
Improvement from synchronous 2.4%

Similar simulations were implemented in the distribution and in both supplier
systems. The improvement in the suppliers were very minor (about 0.012% at
most). The distribution system had a slight increase in the cost function of
0.15%. This means that the large improvement of about 48% in the logistic
system results in a very slight decrease of performance in the distribution system.
Thus, it is clear that the distributed optimization improves significantly the
performance of the management of the supply chain.

5.2 Results for Beam-ACO

The distributed optimization using the synchronous method was also tested us-
ing the Beam-ACO algorithm. The conditions of the simulations are the same as
the ones used for ACO. The obtained results are presented in Table 2, where μ
is the average of the 20 runs, σ is the standard deviation and t is the computa-
tional time in seconds. The results are presented for the four separated systems:
Supplier 1, Supplier 2, Logistic and Distribution. By analyzing Table 2 it be-
comes clear that the Beam-ACO is always slightly worse (less than 1%) than
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Table 2. Comparison of optimization results using the algorithms Beam-ACO and
ACO

Supplier #1 Supplier #2 Logistic Distribution
ACOBeam-ACOACOBeam-ACO ACO Beam-ACOACOBeam-ACO

(5,5,3,10)
μ 2.13 2.15 1.94 1.94 6.63 6.66 286.5 299.1
σ 0 0 0 0 0.002 0.000 2.257 0.074

t(s)0.009 0.005 0.009 0.005 13.493 1.491 1.005 0.109

(10,10,2,30)
μ 3.36 3.38 4.02 4.12 11.70 11.73 514.2 536.3
σ 0 0 0.004 0.000 0.000 0.003 2.52 0.341

t(s)0.038 0.003 0.049 0.004 2.29 0.14 14.45 0.341

ACO in terms of cost function. This is a very small value, and can be largely
compensated with the computational costs. Note that for the logistic system,
which is the more complex system, the Beam-ACO is 9 times faster than ACO.
Therefore, in real systems where the complex can be very big, the computational
efficiency of Beam-ACO can be an added value.

6 Conclusions

This paper proposes the use of the hybrid algorithm Beam-ACO, that fuses
Beam-Search and ACO, to optimize a supply-chain in a distributed way. The
proposed concept was implemented in a distributed software platform, which
allows to exchange the pheromone matrix between the different agents, using the
TCP/IP protocol and data base systems. The obtained results show that the use
of the Beam-ACO in the supply chain decreases slightly the performance (less
than 1%) but reduces drastically the computational time needed to compute
a solution. Future work will implement the proposed system in more complex
instances, which will be closer to real life situations.
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Abstract. A cultural algorithm, together with a set of new operators
for the timetabling problem(TP), is proposed in this paper. The new
operators extract information about the problem during the evolutionary
process, and they are combined with some previously proposed operators,
in order to improve the performance of the algorithm. The proposed
algorithm is tested with a benchmark of 20 instances, and compared
with respect to three other algorithms: two evolutionary algorithms and
a simulated annealing algorithm which won an international competition
on TP.

1 Introduction

The timetabling problem (TP) is a combinatorial problem that can be viewed
as an optimzation task. It consists of assigning schedules to several workers
or students, which also require some resources. In order to make a feasible
timetable, a set of hard constraints must be satisfied(most of them technical
constraints); moreover, a good timetable must satisfy some soft constraints (fre-
quently, comfort-related constraints), and if all soft constraints are met, we can
consider the solution as optimal. This NP-hard problem presents several vari-
ants, such as the employee, exam and university timetabling problems. In 2002,
the Metaheuristics Network organized a competition on the University Course
Timetabling Problem (UCTP), and published a set of instances of the prob-
lem, in order to make easier the comparisons of different algorithms. Cultural
algorithms [11] are a particular class of evolutionary algorithm that use domain
knowledge extracted during the evolutionary process in order to improve the per-
formance of the search engine (i.e. the evolutionary algorithm) adopted. What we
explore in this paper is the use of a combination of knowledge extracted during
the evolutionary search with some knowledge that is inserted a priori because
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it is normally known to be useful when solving combinatorial problems. The
main hypothesis in this regard was that the incorporation of knowledge into an
evolutionary algorithm would increase its performance as to make it competitive
with other approaches whose computational cost is significantly higher. Several
heuristics have been used for different types of timetabling problems [9], [13],
[3], [8], [15], [10]. Note however, that this paper presents the first attempt (to
the authors’ best knowledge) to use cultural algorithms to solve TPs.

The proposed approach is compared with respect to an evolutionary algorithm
with specialized crossover operators [9], a recently published memetic algorithm
[13], and a simulated annealing approach [8] that won the competition of the
Metaheuristics Network, in all the test cases proposed for that competition. The
obtained results indicate that the proposed approach is a viable alternative for
solving, efficiently TPs.

The remainder of this paper is organized as follows: in Section 2 a brief de-
scription of the statement of the problem is provided. Section 3 contains an intro-
duction to cultural algorithms which includes a description of their main compo-
nents and the main motivation to use them. Section 4 contains the details of the
proposed approach to solve university course timetabling problems using a cul-
tural algorithm. As part of this section, a description of the representation of so-
lutions adopted in this work is included, as well as the mechanisms implemented to
add domain knowledge to the evolutionary algorithm both before and during the
search process. Section 5 provides a comparative study. Finally, Section 6 presents
the general conclusions and some possible paths for future research.

2 Problem Statement

The variant of the problem tackled here was proposed by Ben Paechter for the
International Timetabling Competition organized by the Metaheuristics Network
[10]. It is referred to in the following as the University Course Timetabling
Problem (UCTP). Lecture must be scheduled in 45 timeslots (5 days of 9 hours
each) and a number of rooms, with varying facilities and student capacities, so
that the following hard constraints are satisfied:

– H1 : lectures having students in common cannot take place at the same time;
– H2 : lectures must take place in a room suitable for them in terms of facilities

and student capacity; and
– H3 : no two lectures can take place at the same time in the same room.

We consider as well the following soft constraints:

– S1 : students should not have to attend lectures in the last timeslot of the
day;

– S2 : they should not attend more than two lectures in a row; and
– S3 : they should not have a single lecture in any given day.

A timetable in which all lectures have been assigned to a timeslot and a room
so that no hard constraints are violated, is said to be feasible. The aim of the
problem is to find a feasible solution with minimal soft constraint violations.
The corresponding mathematical model is detailed in [16].



812 C. Soza et al.

3 Cultural Algorithms

Cultural algorithms were developed by Reynolds [11] as a complement to the
metaphor used by evolutionary algorithms, which had focused mainly on genetic
and natural selection concepts. Cultural algorithms are based on some theories
originated in sociology and archaeology which try to model cultural evolution (see
for example [4]). Such theories indicate that cultural evolution can be seen as an
inheritance process operating at two levels: (1) a micro-evolutionary level, which
consists of the genetic material that an offspring inherits from its parents, and
(2) a macro-evolutionary level, which consists of the knowledge acquired by indi-
viduals through generations. This knowledge, once encoded and stored, is used to
guide the behavior of the individuals that belong to a certain population.

Culture can be seen as a set of ideological phenomena shared by a population
[12]. Through these phenomena, an individual can interpret its experiences and
decide its behavior. In these models, it can be clearly appreciated the part of the
system that is shared by the population: the knowledge, acquired by members
of a society, but encoded in such a way that such knowledge can be accessed by
every other member of the society. And then there is an individual part, which
consists of the interpretation of such knowledge encoded in the form of symbols.
This interpretation will produce new behaviors as a consequence of the assimi-
lation of the corresponding knowledge acquired, combined with the information
encoded in the ancestors’ genes. Reynolds [11] attempts to capture this dou-
ble inheritance phenomenon through his proposal of cultural algorithms. The
main goal of such algorithms is to increase the learning or convergence rates of
an evolutionary algorithm such that the system can respond better to a wide
variety of problems [6]. Cultural algorithms operate in two spaces. First, there
is the population space, which consists of (as in all evolutionary algorithms) a
set of individuals. Each individual has a set of independent features that are
used to determine its fitness. Through time, such individuals can be replaced by
some of their descendants, which are obtained through the application of a set
of operators from the population. The second space is the belief space, which
is where the knowledge, acquired by individuals through generations, is stored.
The information contained in this space must be accessible to each individual, so
that they can use it to modify their behavior. In order to join the two spaces, it
is necessary to provide a communication link, which dictates the rules regarding
the type of information that must be exchanged between the two spaces. Most of
the steps of a cultural algorithm correspond with the steps of a traditional evo-
lutionary algorithm. The main difference lies in the fact that cultural algorithms
use a belief space. At each generation the belief space is updated and it incorpo-
rates the individual experiences of a select group of members of the population
by applying an accept function. On the order hand, the variation operators (such
as recombination or mutation) are modified by an influence function. This func-
tion applies some pressure such that the children resulting from the variation
operators can exibit behaviors closer to the diserable ones and father away from
the undiserable ones, according to the information stored in the belief space.
These two functions (accept and influence) constitute the communication link
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between the population space and the belief space. The implementation details
for these functions in the current proposal are given in the next section. In [11],
it is proposed the use of genetic algorithms to model the micro-evolutionary pro-
cess, and Version Spaces to model the macro-evolutionary process of a cultural
algorithm. This sort of algorithm was called the Version Space guided Genetic
Algorithm (VGA). The main idea behind this approach is to preserve beliefs that
are socially accepted and discard (or prune) unacceptable beliefs. Therefore, if
a cultural algorithm for global optimization is applied, the acceptable beliefs
can be seen as constraints that direct the population at the micro-evolutionary
level. In genetic algorithms’ theory, there is an expression, called schema the-
orem that represents a bound on the speed at which the best schemata of the
population are propagated. Reynolds[11] provided a brief discussion regarding
how the belief space could affect the schema theorem. His conclusion was that,
by adding a belief space to an evolutionary algorithm, the performance of such
algorithm can be improved by increasing its convergence rate. That constitutes
the main motivation to use cultural algorithms. Despite the lack of a formal
mathematical proof of this efficiency improvement, there is empirical evidence
of such performance gains reported in the literature (see for example [1,2]).

4 Proposed Approach

The approach proposed in this paper uses, in its population space, a population
based on the evolutionary algorithm originally proposed in [9]. A pseudo-code
with the main steps of the proposed cultural algorithm is shown in Algorithm 1..
In our algorithm, we have considered three types of knowledge: situational, nor-
mative and domain knowledge. Also, we are using five variation operators: two of
them use the cultural knowledge (cultural mutation and repair) while the other
three are designed to add the exploration component of the algorithm (inter-
change, sequencing and simple mutation). It is worth mentioning that only one
of the exploration operators is applied to each individual.
Representation: The representation adopted to encode the solutions plays a
very important role when applying an evolutionary computation technique [14].
In this case, a matrix representation was adopted, where columns represent slots
of time, and rows represent rooms for the events. This encoding was chosen
because it can represent any feasible timetable, and is easier to analyze the
violation of some hard constraints, considering only one column at a time.
Exploration Operators: Theexplorationoperators are those thatallow tomain-
tain diversity of the population. They are listed next. The sequencing operator is
similar to the one in [8], and its intention is to generate a large change in the indi-
vidual since it interchanges two timeslots (this operator is the most destructive one
used here). The interchange operator of [9], interchanges two events, and its pur-
pose is to modify the individuals when the problems have in their feasible solutions
the same number of places available and events to assign. The simple mutation op-
erator changes the place of an event, and it is useful when the problems have more
places availabe in their feasible solutions (without considering the last periods of
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Algorithm 1. Pseudo-code of the cultural algorithm adopted
Generate s random schedules (initial population)
Compute the fitness of each individual in the initial population
Initialize the belief space (copying the best individual to the situational belief space
and create the normative matrix)
repeat

for each individual in current population do
Apply cultural mutation operator
switch (operator)

case Interchange: Apply Interchange Operator
case Sequencing: Apply Sequencing Operator
case SimpleMutation: Apply Simple Mutation Operator

end switch
Apply repair operator (with domain knowledge)

end for
Selection proccess
Update the belief space (with the individuals accepted)

until the end condition is satisfied

the day) than events to assign. The last two operators make use of the matching
algorithm [7] to increase their rate of success.

Parameter Control for the Application of Exploration Operators

The parameter control is a process, concurrent to the search of solutions, that
allows values of the parameters to change during this process [5]. We use a
mechanism of parameter control in order to select the exploration operator (in-
terchange, sequencing or simple mutation) to apply during the mutation pro-
cess, using a roulette wheel and based on the success rate of each operator. This
mechanism consists of updating the probability of each operator to be applied,
following some simple rules. If the application of the operator number i results
on an improvement of the fitness of the generated individual (with respect to his
parent) (fcur < fprev), the update of the probabilities is made as follows:

operator[i] = operator[i] + Δvariation

where operator[] is the array that contains the probabilities of the operators to
be applied, Δvariation = fprev−fcur

fprev+fcur
, and ∀j ∈ {1, . . . , NumOper} and i �= j,

operator[j] = operator[j]− Δvariation
NumOper−1 , with NumOper = 3 in this case, because

we have three operators.
When an operator i is applied and the present solution gets worse (fcur >

fprev); the updating of the probabilities is made as follows:

operator[i] = operator[i] − Δvariation ∗ α

where α = PresentT ime
TotalT ime , and ∀j ∈ {1, . . . , NumOper} and i �= j, operator[j] =

operator[j] + Δvariation∗α
NumOper−1 .
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The goal of incorporating the α factor is to mantain controlled the level
of decrement, with the objective of not dusturbing those operators whose de-
creasing ranks are much greater, like the sequencing operator. Initially, the
3 operators in competition start with the same probability of being chosen:
∀i ∈ {1, . . . , NumOper}, operator[i] = 1/CantOper. In order to assure that all
operators always have a probability �= 0 of being chosen, all values in operator[]
remain between MinProb = 0.1 and MaxProb = 0.8.
Mutation Operators with Cultural Influence: The operator begins select-
ing an event E and a position (r, t) to move it. This is done through different
types of cultural influence.
Situational Influence: With the situational influence each individual tries to
follow a leader. Such a leader is the best individual found, and is stored in
the situational belief space. The key idea is that the individual to be mutated
becomes more similar to the leader after the mutation process. The mutation
operator randomly selects an event E from the leader, and tries to inherit its
position (r, t) to the individual.

The situational belief space is updated at each generation. If the best individ-
ual of the current generation is better than the leader in the situational belief
space, then the leader is replaced by that individual.
Normative Influence: This type of influence is more complex. At each generation,
the above average individuals are selected. The idea is to influence the individual
to be mutated to inherit some of their characteristics. Before describing the
procedure, we need the following definitions:

Definition 4.1 We define a ranking of events as the set of all the events ordered
by the number of events with shared students among them. Thus, the event most
connected with other events is the first in the ranking.

Definition 4.2 Given a population P (g) of the generation g and the set Sg

composed by the best s individuals of the generation g, we define M , where each
element Mij is the timeslot assigned to the event i in the individual j which
belongs to Sg.

The operator proceeds as follows. The room r is fixed. The event is chosen from
the ranking of events using a roulette wheel procedure which is biased to the
most interconnected events. The new timeslot in the same room r is randomly
selected from the matrix M , thus the most common timeslot t of the event E
in M has the biggest probability of being selected. The hardest event to be
assigned, from the constraints point of view, is the event that shares students
with the largest number of events. The matrix M is updated at each generation
g, after the selection of the set Sg (the above average individuals). Once an event
E and the position (r, t) have been selected (by any of the cultural influences
mentioned), the process of mutation continues as shown in Algorithm 2.. First
of all, the operator identifies the current position (rE , tE) of the event E in the
individual to be mutated. If the new position selected (r, t) is empty and if it is
feasible to place E there (from the hard constraints point of view), the current
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Algorithm 2. mutation(E, (r, t)) procedure, which implements mutation after
the influence of cultural selection
1: mutation finished = FALSE
2: identify the position (rE, tE) of the event E in the chromosome
3: while mutation finished �= TRUE or maxtries < 1000 do
4: if the position (r, t) of the chromosome is empty then
5: try to move the event E from (rE, tE) to (r, t), satisfying the hard constraints
6: else
7: try a swapping move of the event Em in (r, t)
8: end if
9: if the position of E was changed then

10: mutation finished = TRUE
11: end if
12: end while

position of event E is modified to (r, t). In case another event Em is in (r, t), the
operator makes swapping moves to change Em to another position, in order to
release (r, t).
Domain Knowledge: Our algorithm makes a post-processing procedure which
uses the domain knowledge to modify individuals. In the timetabling problem,
it is known that the best solution does not include events in the last timeslots
of each day, thus the purpose of the repair operator is to try to move the events
located in the last timeslots to the earliest ones, always satisfying the hard
constraints.

5 Comparison of Results

The Cultural Algorithm (CA) is compared with respect to 3 different approaches:
a Simulated Annealing (SA) that was the winner of the competition [8], a recent
version of a Memetic Algorithm (MA) [13] and the Evolutionary Algorithm (EA)
in which this work is based [9]. These references were chosen because they are
representative of the state-of-the-art and very competitive on the timetabling
problem. The comparison with another EA shows the improvement obtained
with the incorporation of culture. The SA approach still presents the best re-
sults, but we compare results with it even when it is not an evolutionary algo-
rithm. The benchmark adopted to make the tests and comparisons are the 20
instances of UCTP from the timetabling competition [10]. Those problems are
characterized for being of varied difficulty, they consider the individual satisfac-
tion of the students (which allows to consider them individually, not in classes
nor groups), and have at least one solution that fulfills both types of restrictions.
The proposed approach was implemented in the C++ programming language
and was compiled using the GNU g++ compiler in the operating system Debian
3.1. Also, the matching algorithm found in the LEDA library [7] was used.

The cultural algorithm was executed 360 s, as was indicated for the
bechmarking program of the competition, for our system configuration.
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5.1 Cultural Algorithm and Evolutionary Algorithm

The graphs of Figure 1 show the best (right) and the worst case (left) of im-
provement of CA with respect to EA, in the 20 instances considered. The worst
case and the best behavior consider a significant improvement in the first stages
which is reflected directly in the final result, in which the cultural algorithm
has better results. These graphs show that the incorporation of culture tends to
accelerate the convergence of the algorithm and to improve the results.

Fig. 1. Comparison in time: left the worst case, right the best one

5.2 Cultural Algorithm and Other Algorithms

Table 1 shows the results obtained by each algorithm in the 20 problem in-
stances(PI). Table 2 shows a summary of the obtained results emphasizing that
the CA improves all the results of EA. The results of the CA are very close in
quality from those of MA. Finally, SA is still the most robust approach to solve
timetabling problems.

5.3 Adaptation on Operators Application Rate

The incorporation of a mechanism to control the parameters of the cultural al-
gorithm, during the selection of the operator to use, resulted on an improvement
on the performance of every instance of the benchmark. The graphs of Figure 2
show two representative instances of UCTP. One of them is the instance number
20 (left) where 350 events in 400 places are considered; in such a case the simple
mutation operator resulted useful because an important factor was the number

Table 1. Comparison of results

PI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EA 288 260 322 679 557 532 430 305 283 311 328 350 420 469 400 302 521 254 550 424

CA 140 123 149 330 306 171 159 133 101 147 120 187 233 267 204 102 311 100 296 159

MA 104 91 126 189 212 90 127 94 78 113 90 138 185 187 120 74 182 75 224 60

SA 45 25 65 115 102 13 44 29 17 61 44 107 78 52 24 22 86 31 44 7
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Table 2. Summary of results for all instances

Algorithm EA CA MA SA

Average 399,25 186,9 127,95 50,55

Std. Desviation 119,46 76,58 50,72 32,39

Fig. 2. Operators’ rate of application: left instance 20, right instance 09

of free places to assign events. On the other hand, instance number 09 (right)
has less options to schedule an event, while it has 440 events and just 440 places;
in this case, the interchange operator was more useful.

6 Conclusions and Future Work

In this paper, we propose the use of domain knowledge, both a priori and ex-
tracted during the search, to improve the performance of an evolutionary algo-
rithm when solving timetabling problems. The executed experiments provided
very encouraging results.

As a future work it would be very interesting to analyze the mechanisms of
the simulated annealing method, in order to incorporate them in an evolutionary
algorithm or a cultural algorithm. Also, the development of a classification of
instances, is a very interesting topic to research, mainly to better understand
the performance of different algorithms on different instances.
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Abstract. Agents control has a broad spectrum of applications in
computer science, communications and robotics. This paper focuses on
formation of mobile agents, that is, configuration of points in the plane
without kinematic restrictions of motion. Several goal formation strate-
gies may be of interest. This paper summarizes control systems for
achieving three basic formation structures, namely, absolute positioning
with order, absolute positioning without order, and relative positioning
with order. Mainly, the paper is devoted to describe each of the above
schemes as well as control systems to deal with. Two of the control sys-
tems have been already reported in the literature and the remaining
one is an original contribution of the paper. The control law proposed
is based in the concept of associative memories. Also, simulations are
presented to validate the expected behavior.

Keywords. Agents, Control Systems, Stability.

1 Introduction

Although the word agent has a number of meanings, in the modern technology
jargon, the underlying concept deals with an entity having the following features:
autonomy, adaptability and mobility [1]. Software agents differ from conventional
software in that they are autonomous and learn from interaction; software agents
act as an assistant to the user rather than a tool. Hardware agents are abstract
points or physical bodies with autonomy of motion and sensory capabilities to
learn from the interaction with the environment. Because the real motion of the
hardware agents, they are also called mobile agents.

Hardware agents appear in several applications in robotics where the physical
configuration or formation of the agents is of interest. The control of collaborative
robotic agents to reach and maintain a desired formation is a recent issue in the
control and robotics communities [2,3,4].

For the purpose of this paper, an agent is a point in the Cartesian plane with
no kinematic constraints of motion [5]. Consider n agents denoted by z1, · · · , zn.
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The configuration of agent i is described by zi = [xi yi]T ∈ �2 and the corre-
sponding dynamics is żi = ui where

ui =
[
uxi

uyi

]

is the control input whose meaning is the agent velocity vector in the Cartesian
plane of motion.

The position of all agents gives the group configuration denoted by

z =

⎡

⎢⎢⎢⎣

z1

z2

...
zn

⎤

⎥⎥⎥⎦ ∈ �2n

and the corresponding model of n agents can be written as

ż = u (1)

where u is the control input vector:

u =

⎡

⎢⎢⎢⎣

u1

u2

...
un

⎤

⎥⎥⎥⎦ ∈ �2n.

In the context of modern control theory, (1) represents the state equation,
thus in order to complete the system description it remains to specify the output
equation —in general, a nonlinear function of the state vector z—. For the agents
model, the output equation arises from the control problem statement and may
depend on assumptions about the sensory capabilities of the agents, for instance,
to determine the relative displacement or absolute placement of some or all of
them. These constraints may derive in a hard control problem to resolve.

Formation of agents may be classified in three basic schemes: absolute posi-
tioning with order, absolute positioning without order, and relative positioning
with order. The remaining of this paper is devoted to describe each of the above
schemes as well as control systems to deal with. Two of the control systems
have been already reported in the literature and the remaining one is an original
contribution of this work.

2 Absolute Positioning with Order

The formation of n agents in absolute positioning with order requires the speci-
fication of n desired position z∗

1, · · · , z∗
n stacked in the vector z∗ as

z∗ =

⎡

⎢⎢⎢⎣

z∗
1

z∗
2
...

z∗
n

⎤

⎥⎥⎥⎦ ∈ �2n.
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The formation objective is that each agent, says zi, reaches asymptotically
the desired absolute position z∗

i . In other terms, the formation objective is

lim
t→∞z(t) = z∗(t).

In general, z∗ may be time varying. Without limitation in sensory and commu-
nication capability among the agents, that is, each agent may known its absolute
location, this is an easy control problem. For this situation, let us define the po-
sitioning error vector as z̃ = z∗ − z. A simple control system is given by the
control law [6]

u = ż∗ + k(z̃) (2)

where k(z̃) is any function such k(0) = 0 and z̃T k(z̃) is a globally positive
definite function.

The closed–loop dynamics is obtained by substituting the control law (2) into
the agents model (1). This leads to

ż = ż∗ + k(z̃)

which can be rewritten as
˙̃z = −k(z̃). (3)

Since by assumption k(z̃) satisfies k(0) = 0 and z̃T k(z̃) is a globally positive
definite function, then z̃ = 0 is the unique equilibrium of the closed–loop system.
The stability of this equilibrium can be analyzed by the following Lyapunov
function candidate

V (z̃) =
1
2
z̃T z̃

whose time derivative along the trajectories of the closed–loop system (3) is

V̇ (z̃) = −z̃T k(z̃).

In virtue that V̇ (z̃) is a globally negative definite function, then the Lya-
punov’s direct method, see e.g. [7], ensures that the equilibrium z̃ = 0 is globally
asymptotically stable. Hence, z̃(t) → 0 as t → ∞ which means that the agents
formation is achieved.

3 Absolute Positioning Without Order

As in the absolute positioning with order a desired position vector z∗ is given.
However, no specific desired position is associated to any agent. The formation
objective is that the agents reach desired positions regardless the order.

More formally, define the set Ψ as the permutations of n agents in n at a time.
This set has n! elements of dimension 2n. The formation objective is to achieve

lim
t→∞ dist (z(t), Ψ) = 0 (4)
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where dist (z(t), Ψ) denotes the smallest distance from z to any point in the
set Ψ .

As a contribution of this paper, a control law is proposed based in the concept
of associative memories [8,9]. The rational behind this idea is that each element
of the set Ψ be seen as a pattern stored into the associative memory. Once a
disturbed pattern —initial agents formation— is presented at the associative
memory, the corresponding true pattern is recovered —the agents reach one of
the formation options in Ψ—. This means that the formation objective (4) is
achieved.

Based in above arguments, this paper proposes the control law

u = −Az + Wf(z) + b (5)

where A, W ∈ �2n×2n with A > 0, b ∈ �2n, and f(z) ∈ �2n is defined compo-
nentwisely by

f(z) = tanh(z) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tanh(x1)
tanh(y1)
tanh(x2)
tanh(y2)

...
tanh(xn)
tanh(yn)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The first step in the design is to select the matrices A and W and vector b in
such a way that

−Ax + Wf(x) + b = 0 ∀ x ∈ Ψ. (6)

In general the design is a hard algebraic problem to be solved analytically.
However several iterative learning procedures —training or learning rules— are
available [8,9]. This issue is out of the scope of this paper. Assuming that the
design was performed according to (6), then the closed–loop system dynamics
obtained by substituting the control law (5) into the agents model (1) yields

ż = −Az + Wf(z) + b. (7)

This is a nonlinear autonomous system which matches the structure of the
well–known Hopfield’s neural network [8].

It is worth noticing that in virtue of (6), the elements of Ψ are equilibria of
(7). However other spurious equilibria may exist, some of them may be asymp-
totically stable. Therefore, a sufficient condition to ensure the formation control
objective (4) in a local sense is by proving that all equilibria in the set Ψ are
asymptotically stable. This implies that the agents will reach a desired formation
provided that the initial configuration is sufficiently close of the desired one.

One approach to address the stability analysis is by invoking the Lyapunov’s
first method [7]. A sufficient condition reported by [10] to determine weather
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an equilibrium z∗ ∈ Ψ is locally exponentially stable is by testing the positive
definiteness of the matrix

A − WG(z∗) > 0 (8)

where

G(z∗) =

⎡

⎢⎢⎢⎣

sech2(x∗
1) 0 · · · 0

0 sech2(y∗
1) · · · 0

...
...

. . .
...

0 0 · · · sech2(y∗
n)

⎤

⎥⎥⎥⎦ .

Thus, a simple test to show that an equilibrium z∗ ∈ Ψ is asymptotically
stable is by corroborating that the 2n eigenvalues of the symmetric part of
A − WG(z∗) are positives.

4 Relative Positioning with Order

The formation objective of relative positioning with order is that regardless of
the absolute position of any agent, the set of agents pursues a desired geometric
form. It is assumed that each agent knows the relative displacement of the next
agent in the order, i.e. zi−zi+1 for i = 1, · · · , n−1 and zn−z1, but the absolute
location of each agent zi cannot be neither measured nor computed.

A geometric shape may be specified by formation functions or formation con-
straints [11,12] in terms of the relative displacement or distances between each
agent. Let us define the desired relative location between agents i and i + 1 by
Δi ∈ �2. For analysis purposes and without loss of generality, choose an ar-
bitrary set of n points z∗

1, z
∗
2, · · · , z∗

n ∈ �2 satisfying the formation constraint,
that is

Δi = z∗
i+1 − z∗

i

for i = 1, · · · , n − 1 and Δn = z∗
1 − z∗

n.
The formation control of agents under relative positioning with order keeping

invariance to translation attempts to guide the agents to reach a desired geomet-
ric form with arbitrary unspecified translation. More specifically, the formation
objective is to achieve

lim
t→∞ [z(t) − z∗ − Tξ] = 0 (9)

for any ξ ∈ �2 where matrix T ∈ �2n×2 is given by

T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
1 0
0 1
...

...
1 0
0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)
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A solution to this formation control of agents is the cyclic pursuit method
proposed in [5]. The corresponding control law can be written as

u = kA [z − z∗] (11)

where k > 0 is a control gain, and A ∈ �2n×2n is defined by

A =

⎡

⎢⎢⎢⎢⎢⎣

−1 0 1 0 0 0 · · · 0 0
0 −1 0 1 0 0 · · · 0 0
...

...
...

...
...

... · · ·
...

...
1 0 0 0 0 0 · · · −1 0
0 1 0 0 0 0 · · · 0 −1

⎤

⎥⎥⎥⎥⎥⎦
.

It is important to observe that for implementation purpose, the control law
(11) produces the control actions

ui = k [zi+1 − zi] − k
[
z∗

i+1 − z∗
i

]
,

= k [zi+1 − zi] − kΔi,

for i = 1, · · · , n− 1 and un = z1 −zn −Δn. We emphasize that implementation
of the control law needs only information about the relative location between
each agent and the next one in the order, as well as the formation constraints
Δi, but information about absolute —actual or desired— configuration of the
agents is unnecessary.

It is worth noticing that matrix A is negative semidefinite but a singular one
whose null space N (A) is given by

N (A) =
{
Tξ, ∀ ξ ∈ �2

}
.

The closed–loop dynamics is obtained by plugging the control law (11) into
the agents model (1); this leads to

ż = kA [z − z∗] . (12)

Since A is singular, then above equation has an infinity number of equilibria
given by {

z∗ + Tξ, ∀ ξ ∈ �2
}

. (13)

The behavior of the closed–loop system (12), which is an autonomous one,
can be studied by invoking the LaSalle’s invariance principle [7]. To this end,
consider the following nonnegative differentiable function

V (z) =
1
2

‖z − z∗‖2
.

Its time derivative along the trajectories of the closed–loop system (12) yields

V̇ (z) = k [z − z∗]T A [z − z∗] (14)
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which satisfies V̇ (z) ≤ 0 for all z ∈ �2n in virtue that k > 0 and A is a nega-
tive semidefinite matrix. This is a first requirement of the LaSalle’s invariance
principle. Then, it follows that the system trajectory z(t) tend to the largest
invariant set contained in the following domain:

{
z ∈ �2n : V̇ (z) = 0

}
.

But from (14) it results that this domain is equivalent to
{
z ∈ �2n : A [z − z∗] = 0

}

which is exactly the equilibria set (13). This is an invariant set, and therefore
the largest invariant one; thus, the LaSalle’s invariance principle ensures that
the system trajectories tend to the equilibria set, so the control objective (9) is
attained.

5 Simulations

This section presents numerical simulations to demonstrate the control system
performance for the “absolute positioning without order” formation structure.
Three agents are considered and there is no numbering of the desired locations
for each one. The control law has the structure (5) with A = I ∈ �6×6 and the
desired absolute locations for the agents are

z∗
1 =

[
−10
10

]
; z∗

2 =
[
10
10

]
; z∗

3 =
[

10
−5

]
.

The set Ψ of permutations has n! = 6 elements of dimension 2n = 6, that is

Ψ =

⎧
⎨

⎩

⎡

⎣
z∗

1

z∗
2

z∗
3

⎤

⎦ ,

⎡

⎣
z∗

1

z∗
3

z∗
2

⎤

⎦ ,

⎡

⎣
z∗

2

z∗
1

z∗
3

⎤

⎦ ,

⎡

⎣
z∗

2

z∗
3

z∗
1

⎤

⎦ ,

⎡

⎣
z∗

3

z∗
1

z∗
2

⎤

⎦ ,

⎡

⎣
z∗

3

z∗
2

z∗
1

⎤

⎦

⎫
⎬

⎭ ,

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎢⎢⎢⎣

−10
10
10
10
10
−5

⎤

⎥⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎢⎣

−10
10
10
−5
10
10

⎤

⎥⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎢⎣

10
10

−10
10
10
−5

⎤

⎥⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎢⎣

10
10
10
−5
−10
10

⎤

⎥⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎢⎣

10
−5
−10
10
10
10

⎤

⎥⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎢⎣

10
−5
10
10

−10
10

⎤

⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

After tedious but straightforward substitutions, it can be shown that the
elements of Ψ satisfy the equilibria matching condition (7) and the asymptotic
stability condition (8) with the following selection of W and b:

W =

⎡

⎢⎢⎢⎢⎢⎢⎣

−991.0 1.0 −1001.0 1.0 −1001.0 1.0
−998.5 8.5 −998.5 1.0 −998.5 1.0
−1001.0 1.0 −991.0 1.0 −1001.0 1.0
−998.5 1.0 −998.5 8.5 −998.5 1.0
−1001.0 1.0 −1001.0 1.0 −991.0 1.0
−991.0 −6.5 −991.0 −6.5 −991.0 1.0

⎤

⎥⎥⎥⎥⎥⎥⎦
; b =

⎡

⎢⎢⎢⎢⎢⎢⎣

1000
1000
1000
1000
1000
1000

⎤

⎥⎥⎥⎥⎥⎥⎦
.



On Control for Agents Formation 827

−15 −10 −5 −2 0 2 5 10 15
−10

−5

−2
0
2

5

10

15

x [m]

y 
[m

]

Fig. 1. Simulation where z1(0) = [2 − 2]T , z2(0) = [−2 2]T , z3(0) = [2 2]T
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Fig. 2. Simulation where z1(0) = [2 2]T , z2(0) = [2 − 2]T , z3(0) = [−2 2]T

Figures 1 and 2 illustrate the system behavior, each figure represents simu-
lations for the system where the agents start form two different initial configu-
rations and reaches asymptotically the desired formation regardless the order.
In both cases, the control objective is achieved, that is, the agents tend to the
desired formation.
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6 Conclusions

The control for agents formation has applications in several fields such as in
communications, robotics, and computer sciences. Several agent formations ob-
jective can be defined, each one leading to a specific formulation of a control
problem. This paper summarized three basic agent formations and introduced
a control law inspired from associative memories for dealing with the absolute
positioning without order.

In order to illustrate the expected behavior for the proposed controller, sim-
ulations are presented showing that the control objective is achieved.
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Maŕın, N. 162
Markov, Svetoslav 13
Marrara, Stefania 199
Mart́ın-Bautista, Maŕıa J. 243
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Sá da Costa, J.M.G. 732
Sánchez, Daniel 243
Sánchez, Germán 307
Sánchez, Mónica 307
Sanchez, Edgar N. 711
Sari Wiguna, Wiratna 635
Sergiadis, George D. 86, 104
Silva, Carlos A. 799
Soto C., R. 318
Sousa, João M.C. 732, 778, 799
Soza, Carlos 810
Steinbrecher, Matthias 295
Straccia, Umberto 125
Sufyan Beg, M.M. 253
Szmidt, Eulalia 76

Tang, Yongchuan 666, 767
Teisseire, Maguelonne 145
Thanh Ngo, Long 584
Thint, Marcus 253
Turunen, Esko 419

Untiedt, Elizabeth 371

Verstraete, Jörg 155
Vieira, Susana M. 778
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