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Abstract. In the present paper, we study the problem of aggregation
under the squared loss in the model of regression with deterministic
design. We obtain sharp oracle inequalities for convex aggregates defined
via exponential weights, under general assumptions on the distribution
of errors and on the functions to aggregate. We show how these results
can be applied to derive a sparsity oracle inequality.

1 Introduction

Consider the regression model

Yi = f(xi) + ξi, i = 1, . . . , n, (1)

where x1, . . . , xn are given elements of a set X , f : X → R is an unknown
function, and ξi are i.i.d. zero-mean random variables on a probability space
(Ω, F , P ) where Ω ⊆ R. The problem is to estimate the function f from the
data Dn = ((x1, Y1), . . . , (xn, Yn)).

Let (Λ, A) be a probability space and denote by PΛ the set of all probability
measures defined on (Λ, A). Assume that we are given a family {fλ, λ ∈ Λ}
of functions fλ : X → R such that the mapping λ �→ fλ is measurable, R

being equipped with the Borel σ-field. Functions fλ can be viewed either as
weak learners or as some preliminary estimators of f based on a training sample
independent of Y � (Y1, . . . , Yn) and considered as frozen.

We study the problem of aggregation of functions in {fλ, λ ∈ Λ} under the
squared loss. Specifically, we construct an estimator f̂n based on the data Dn

and called aggregate such that the expected value of its squared error

‖f̂n − f‖2
n � 1

n

n∑

i=1

(
f̂n(xi) − f(xi)

)2

is approximately as small as the oracle value infλ∈Λ ‖f − fλ‖2
n.

In this paper we consider aggregates that are mixtures of functions fλ with
exponential weights. For a measure π from PΛ and for β > 0 we set

f̂n(x) �
∫

Λ

θλ(β, π,Y)fλ(x)π(dλ), x ∈ X , (2)
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with

θλ(β, π,Y) =
exp

{
− n‖Y − fλ‖2

n/β
}

∫
Λ exp

{
− n‖Y − fw‖2

n/β
}
π(dw)

(3)

where ‖Y − fλ‖2
n � 1

n

∑n
i=1

(
Yi − fλ(xi)

)2 and we assume that π is such that
the integral in (2) is finite.

Note that f̂n depends on two tuning parameters: the prior measure π and the
“temperature” parameter β. They have to be selected in a suitable way.

Using the Bayesian terminology, π(·) is a prior distribution and f̂n is the
posterior mean of fλ in a “phantom” model Yi = fλ(xi) + ξ′i, where ξ′i are iid
normally distributed with mean 0 and variance β/2.

The idea of mixing with exponential weights has been discussed by many
authors apparently since 1970-ies (see [27] for a nice overview of the subject).
Most of the work focused on the important particular case where the set of esti-
mators is finite, i.e., w.l.o.g. Λ = {1, . . . , M}, and the distribution π is uniform
on Λ. Procedures of the type (2)–(3) with general sets Λ and priors π came
into consideration quite recently [9,8,3,29,30,1,2,25], partly in connection to the
PAC-Bayesian approach. For finite Λ, procedures (2)–(3) were independently in-
troduced for prediction of deterministic individual sequences with expert advice.
Representative work and references can be found in [24,17,11]; in this framework
the results are proved for cumulative loss and no assumption is made on the
statistical nature of the data, whereas the observations Yi are supposed to be
uniformly bounded by a known constant. This is not the case for the regression
model that we consider here.

We mention also related work on cumulative exponential weighting methods:
there the aggregate is defined as the average n−1 ∑n

k=1 f̂k. For regression models
with random design, such procedures are introduced and analyzed in [8], [9]
and [26]. In particular, [8] and [9] establish a sharp oracle inequality, i.e., an
inequality with leading constant 1. This result is further refined in [3] and [13].
In addition, [13] derives sharp oracle inequalities not only for the squared loss
but also for general loss functions. However, these techniques are not helpful in
the framework that we consider here, because the averaging device cannot be
meaningfully adapted to models with non-identically distributed observations.

Aggregate f̂n can be computed on-line. This, in particular, motivated its use
for on-line prediction with finite Λ. Papers [13], [14] point out that f̂n and its
averaged version can be obtained as a special case of mirror descent algorithms
that were considered earlier in deterministic minimization. Finally, [10] estab-
lishes an interesting link between the results for cumulative risks proved in the
theory of prediction of deterministic sequences and generalization error bounds
for the aggregates in the stochastic i.i.d. case.

In this paper we establish sharp oracle inequalities for the aggregate f̂n under
the squared loss, i.e., oracle inequalities with leading constant 1 and optimal rate
of the remainder term. For a particular case, such an inequality has been pio-
neered in [16]. The result of [16] is proved for a finite set Λ and Gaussian errors.
It makes use of Stein’s unbiased risk formula, and gives a very precise constant
in the remainder term of the inequality. The inequalities that we prove below are
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valid for general Λ and arbitrary functions fλ satisfying some mild conditions.
Furthermore, we treat non-Gaussian errors. We introduce new techniques of the
proof based on dummy randomization which allows us to obtain the result for
“n-divisible” distributions of errors ξi. We then apply the Skorokhod embedding
to cover the class of all symmetric error distributions with finite exponential
moments. Finally, we consider the case where fλ is a linear combination of M
known functions with the vector of weights λ ∈ R

M . For this case, as a conse-
quence of our main result we obtain a sparsity oracle inequality (SOI). We refer
to [22] where the notion of SOI is introduced in a general context. Examples of
SOI are proved in [15,5,4,6,23]. In particular, [5] deals with the regression model
with fixed design that we consider here and proves approximate SOI for BIC
type and Lasso type aggregates. We show that the aggregate with exponential
weights satisfies a sharp SOI, i.e., a SOI with leading constant 1.

2 Risk Bounds for n-Divisible Distributions of Errors

The assumptions that we need to derive our main result concern essentially the
probability distribution of the i.i.d. errors ξi.
(A) There exist i.i.d. random variables ζ1, . . . , ζn defined on an enlargement of

the probability space (Ω, F , P ) such that:
(A1) the random variable ξ1 + ζ1 has the same distribution as (1 + 1/n)ξ1,
(A2) the vectors ζ = (ζ1, . . . , ζn) and ξ = (ξ1, . . . , ξn) are independent.

Note that (A) is an assumption on the distribution of ξ1. If ξ1 satisfies (A1),
then we will say that its distribution is n-divisible. We defer to Section 4 the
discussion about how rich is the class of n-divisible distributions.

Hereafter, we will write for brevity θλ instead of θλ(β, π,Y). Denote by P ′
Λ

the set of all the measures μ ∈ PΛ such that λ �→ fλ(x) is integrable w.r.t. μ
for x ∈ {x1, . . . , xn}. Clearly P ′

Λ is a convex subset of PΛ. For any measure
μ ∈ P ′

Λ we define

f̄μ(xi) =
∫

Λ

fλ(xi)μ(dλ), i = 1, . . . , n.

We denote by θ ·π the probability measure A �→
∫

A θλ π(dλ) defined on A. With
the above notation, we have f̂n = f̄θ·π.

We will need one more assumption. Let Lζ : R → R ∪ {∞} be the moment
generating function of the random variable ζ1, i.e., Lζ(t) = E(etζ1), t ∈ R.
(B) There exist a functional Ψβ : P ′

Λ × P ′
Λ → R and a real number β0 > 0

such that⎧
⎪⎪⎨

⎪⎪⎩

e(‖f−f̄μ′‖2
n−‖f−f̄μ‖2

n)/β
∏n

i=1 Lζ

(
2(f̄μ(xi)−f̄μ′ (xi))

β

)
≤ Ψβ(μ, μ′),

μ �→ Ψβ(μ, μ′) is concave and continuous in the total
variation norm for any μ′ ∈ P ′

Λ,

Ψβ(μ, μ) = 1, (4)

for any β ≥ β0.
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Simple sufficient conditions for this assumption to hold in particular cases are
given in Section 4.

The next theorem presents a “PAC-Bayesian” type bound.

Theorem 1. Let π be an element of PΛ such that θ · π ∈ P ′
Λ for all Y ∈ R

n

and β > 0. If assumptions (A) and (B) are fulfilled, then the aggregate f̂n defined
by (2) with β ≥ β0 satisfies the oracle inequality

E
(
‖f̂n − f‖2

n

)
≤

∫
‖fλ − f‖2

n p(dλ) +
β K(p, π)

n + 1
, ∀ p ∈ PΛ, (5)

where K(p, π) stands for the Kullback-Leibler divergence between p and π.

Proof. Define the mapping H : P ′
Λ → R

n by

Hμ = (f̄μ(x1) − f(x1), . . . , f̄μ(xn) − f(xn))�, μ ∈ P ′
Λ.

For brevity, we will write

hλ = Hδλ
= (fλ(x1) − f(x1), . . . , fλ(xn) − f(xn))�, λ ∈ Λ,

where δλ is the Dirac measure at λ (that is δλ(A) = 1l(λ ∈ A) for any A ∈ A
where 1l(·) denotes the indicator function).

Since E(ξi) = 0, assumption (A1) implies that E(ζi) = 0 for i = 1, . . . , n. On
the other hand, (A2) implies that ζ is independent of θλ. Therefore, we have

E
(
‖f̄θ·π − f‖2

n

)
= βE log exp

{‖f̄θ·π − f‖2
n − 2ζ�Hθ·π
β

}
= S + S1

where

S = −βE log
∫

Λ

θλ exp
{

− ‖fλ − f‖2
n − 2ζ�hλ

β

}
π(dλ),

S1 = βE log
∫

Λ

θλ exp
{‖f̄θ·π − f‖2

n − ‖fλ − f‖2
n + 2ζ�(hλ − Hθ·π)

β

}
π(dλ).

The definition of θλ yields

S = −βE log
∫

Λ

exp
{

− n‖Y − fλ‖2
n + ‖fλ − f‖2

n − 2ζ�hλ

β

}
π(dλ)

+ βE log
∫

Λ

exp
{

− n‖Y − fλ‖2
n

β

}
π(dλ). (6)

Since ‖Y − fλ‖2
n = ‖ξ‖2

n − 2n−1ξ�hλ + ‖fλ − f‖2
n, we get

S = −βE log
∫

Λ

exp
{

− (n + 1)‖fλ − f‖2
n − 2(ξ + ζ)�hλ

β

}
π(dλ)

+ βE log
∫

Λ

exp
{

− n‖f − fλ‖2
n − 2ξ�hλ

β

}
π(dλ)

= βE log
∫

Λ

e−nρ(λ)π(dλ) − βE log
∫

Λ

e−(n+1)ρ(λ)π(dλ), (7)
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where we used the notation ρ(λ) = (‖f −fλ‖2
n −2n−1ξ�hλ)/β and the fact that

ξ+ζ can be replaced by (1+1/n)ξ inside the expectation. The Hölder inequality
implies that

∫
Λ e−nρ(λ)π(dλ) ≤ (

∫
Λ e−(n+1)ρ(λ)π(dλ))

n
n+1 . Therefore,

S ≤ − β

n + 1
E log

∫

Λ

e−(n+1)ρ(λ) π(dλ). (8)

Assume now that p ∈ PΛ is absolutely continuous with respect to π. Denote
by φ the corresponding Radon-Nikodym derivative and by Λ+ the support of p.
Using the concavity of the logarithm and Jensen’s inequality we get

−E log
∫

Λ

e−(n+1)ρ(λ)π(dλ) ≤ −E log
∫

Λ+

e−(n+1)ρ(λ)π(dλ)

= −E log
∫

Λ+

e−(n+1)ρ(λ)φ−1(λ) p(dλ)

≤ (n + 1)E
∫

Λ+

ρ(λ) p(dλ) +
∫

Λ+

log φ(λ) p(dλ).

Noticing that the last integral here equals to K(p, π) and combining the resulting
inequality with (8) we obtain

S ≤ βE

∫

Λ

ρ(λ) p(dλ) +
β K(p, π)

n + 1
.

Since E(ξi) = 0 for every i = 1, . . . , n, we have βE(ρ(λ)) = ‖fλ −f‖2
n, and using

the Fubini theorem we find

S ≤
∫

Λ

‖fλ − f‖2
n p(dλ) +

β K(p, π)
n + 1

. (9)

Note that this inequality also holds in the case where p is not absolutely contin-
uous with respect to π, since in this case K(p, π) = ∞.

To complete the proof, it remains to show that S1 ≤ 0. Let Eξ(·) denote the
conditional expectation E(·|ξ). By the concavity of the logarithm,

S1 ≤ βE log
∫

Λ

θλEξ exp
{‖f̄θ·π − f‖2

n − ‖fλ − f‖2
n + 2ζ�(hλ − Hθ·π)

β

}
π(dλ).

Since fλ = f̄δλ
and ζ is independent of θλ, the last expectation on the right hand

side of this inequality is bounded from above by Ψβ(δλ, θ ·π). Now, the fact that
S1 ≤ 0 follows from the concavity and continuity of the functional Ψβ(·, θ · π),
Jensen’s inequality and the equality Ψβ(θ · π, θ · π) = 1.

Remark. Another way to read the result of Theorem 1 is that, if the probabilistic
“phantom” Gaussian error model is used to construct f̂n, with variance taken
larger than a certain threshold value, then the Bayesian posterior mean under
the true model is close in expectation to the best prediction, even when the true
data generating distribution does not have Gaussian errors, but errors of more
general type.
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3 Model Selection with Finite or Countable Λ

Consider now the particular case where Λ is countable. W.l.o.g. we suppose that
Λ = {1, 2, . . .}, {fλ, λ ∈ Λ} = {fj}∞j=1 and we set πj � π(λ = j). As a corollary
of Theorem 1 we get the following sharp oracle inequalities for model selection
type aggregation.

Theorem 2. Assume that π is an element of PΛ such that θ · π ∈ P ′
Λ for

all Y ∈ R
n and β > 0. Let assumptions (A) and (B) be fulfilled and let Λ be

countable. Then for any β ≥ β0 the aggregate f̂n satisfies the inequality

E
(
‖f̂n − f‖2

n

)
≤ inf

j≥1

(
‖fj − f‖2

n +
β log π−1

j

n + 1

)
.

In particular, if πj = 1/M , j = 1, . . . , M , we have

E
(
‖f̂n − f‖2

n

)
≤ min

j=1,...,M
‖fj − f‖2

n +
β log M

n + 1
. (10)

Proof. For a fixed integer j0 ≥ 1 we apply Theorem 1 with p being the Dirac
measure: p(λ = j) = 1l(j = j0), j ≥ 1. This gives

E
(
‖f̂n − f‖2

n

)
≤ ‖fj0 − f‖2

n +
β log π−1

j0

n + 1
.

Since this inequality holds for every j0, we obtain the first inequality of the
proposition. The second inequality is an obvious consequence of the first one.

Remark. The rate of convergence (log M)/n obtained in (10) is optimal rate of
model selection type aggregation when the errors ξi are Gaussian [21,5].

4 Checking Assumptions (A) and (B)

In this section we give some sufficient conditions for assumptions (A) and (B).
Denote by Dn the set of all probability distributions of ξ1 satisfying assumption
(A1). First, it is easy to see that all zero-mean Gaussian or double-exponential
distributions belong to Dn. Furthermore, Dn contains all stable distributions.
However, since non-Gaussian stable distributions do not have second order mo-
ments, they do not satisfy (4). One can also check that the convolution of
two distributions from Dn belongs to Dn. Finally, note that the intersection
D = ∩n≥1Dn is included in the set of all infinitely divisible distributions and is
called the L-class (see [19], Theorem 3.6, p. 102).

However, some basic distributions such as the uniform or the Bernoulli dis-
tribution do not belong to Dn. To show this, let us recall that the characteristic
function of the uniform on [−a, a] distribution is given by ϕ(t) = sin(at)/(πat).
For this function, ϕ((n + 1)t)/ϕ(nt) is equal to infinity at the points where
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sin(nat) vanishes (unless n = 1). Therefore, it cannot be a characteristic func-
tion. Similar argument shows that the centered Bernoulli and centered binomial
distributions do not belong to Dn.

We now discuss two important cases of Theorem 1 where the errors ξi are
either Gaussian or double exponential.

Proposition 1. Assume that supλ∈Λ ‖f − fλ‖n ≤ L < ∞. If the random vari-
ables ξi are i.i.d. Gaussian N (0, σ2), σ2 > 0, then for every β ≥ (4+2/n)σ2+2L2

the aggregate f̂n satisfies inequality (5).

Proof. If ξi ∼ N (0, σ2), assumption (A) is fulfilled with random variables ζi hav-
ing the Gaussian distribution N (0, (2n+1)σ2/n2). Using the Laplace transform
of the Gaussian distribution we get Lζ(u) = exp(σ2u2(2n+1)/(2n2)). Therefore,
take

Ψβ(μ, μ′) = exp
(

‖f − f̄μ′‖2
n − ‖f − f̄μ‖2

n

β
+

2σ2(2n + 1)‖f̄μ − f̄μ′‖2
n

nβ2

)
.

This functional satisfies Ψβ(μ, μ) = 1, and it is not hard to see that the mapping
μ �→ Ψβ(μ, μ′) is continuous in the total variation norm. Finally, this mapping
is concave for every β ≥ (4 + 2/n)σ2 + 2 supλ ‖f − fλ‖2

n by virtue of Lemma 3
in the Appendix. Therefore, assumption (B) is fulfilled and the desired result
follows from Theorem 1.

Assume now that ξi are distributed with the double exponential density

fξ(x) =
1√
2σ2

e−
√

2|x|/σ, x ∈ R.

Aggregation under this assumption is discussed in [28] where it is recommended
to modify the shape of the aggregate in order to match the shape of the distri-
bution of the errors. The next proposition shows that sharp risk bounds can be
obtained without modifying the algorithm.

Proposition 2. Assume that supλ∈Λ ‖f − fλ‖n ≤ L < ∞ and supi,λ |fλ(xi)| ≤
L̄ < ∞. Let the random variables ξi be i.i.d. double exponential with variance
σ2 > 0. Then for any β larger than

max
((

8 +
4
n

)
σ2 + 2L2, 4σ

(
1 +

1
n

)
L̄

)

the aggregate f̂n satisfies inequality (5).

Proof. We apply Theorem 1. The characteristic function of the double exponen-
tial density is ϕ(t) = 2/(2+ σ2t2). Solving ϕ(t)ϕζ(t) = ϕ((n + 1)t/n) we get the
characteristic function ϕζ of ζ1. The corresponding Laplace transform Lζ in this
case is Lζ(t) = ϕζ(−it), which yields

Lζ(t) = 1 +
(2n + 1)σ2t2

2n2 − (n + 1)2σ2t2
.
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Therefore
log Lζ(t) ≤ (2n + 1)(σt/n)2, |t| ≤ n

(n + 1)σ
.

We now use this inequality to check assumption (B). For all μ, μ′ ∈ PΛ we have

2
∣∣f̄μ(xi) − f̄μ′(xi)

∣∣/β ≤ 4L̄/β, i = 1, . . . , n.

Therefore, for β > 4σ
(
1 + 1/n

)
L̄ we get

log Lζ

(
2
∣∣f̄μ(xi) − f̄μ′(xi)

∣∣/β

)
≤ 4σ2(2n + 1)(f̄μ(xi) − f̄μ′(xi))2

nβ2 .

Thus, we get the functional Ψβ of the same form as in the proof of Proposition 1,
with the only difference that σ2 is now replaced by 2σ2. Therefore, it suffices to
repeat the reasoning of the proof of Proposition 1 to complete the proof.

5 Risk Bounds for General Distributions of Errors

As discussed above, assumption (A) restricts the application of Theorem 1 to mod-
els with “n-divisible” errors. We now show that this limitation can be dropped.
Recall that the main idea of the proof of Theorem 1 consists in an artificial intro-
duction of the dummy random vector ζ independent of ξ. However, the indepen-
dence property is too strong as compared to what we really need in the proof of
Theorem 1. Below we come to a weaker condition invoking a version of Skorokhod
embedding (a detailed survey on this subject can be found in [18]).

For simplicity we assume that the errors ξi are symmetric, i.e., P (ξi > a) =
P (ξi < −a) for all a ∈ R. The argument can be adapted to the asymmetric case
as well, but we do not discuss it here.

We now describe a version of Skorokhod’s construction that will be used below,
cf. [20, Proposition II.3.8].

Lemma 1. Let ξ1, . . . , ξn be i.i.d. symmetric random variables on (Ω, F , P ).
Then there exist i.i.d. random variables ζ1, . . . , ζn defined on an enlargement of
the probability space (Ω, F , P ) such that

(a) ξ + ζ has the same distribution as (1 + 1/n)ξ.
(b) E(ζi|ξi) = 0, i = 1, . . . , n,
(c) for any λ > 0 and for any i = 1, . . . , n, we have

E(eλζi |ξi) ≤ e(λξi)2(n+1)/n2
.

Proof. Define ζi as a random variable such that, given ξi, it takes values ξi/n or
−2ξi−ξi/n with conditional probabilities P (ζi = ξi/n|ξi) = (2n+1)/(2n+2) and
P (ζi = −2ξi − ξi/n|ξi) = 1/(2n + 2). Then properties (a) and (b) are straight-
forward. Property (c) follows from the relation

E(eλζi |ξi) = e
λξi
n

(
1 +

1
2n + 2

(
e−2λξi(1+1/n) − 1

))

and Lemma 2 in the Appendix with x = λξi/n and α = 2n + 2.
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We now state the main result of this section.

Theorem 3. Fix some α > 0 and assume that supλ∈Λ ‖f − fλ‖n ≤ L for a
finite constant L. If the errors ξi are symmetric and have a finite second moment
E(ξ2

i ), then for any β ≥ 4(1 + 1/n)α + 2L2 we have

E
(
‖f̂n − f‖2

n

)
≤

∫

Λ

‖fλ − f‖2
n p(dλ) +

β K(p, π)
n + 1

+ Rn, ∀ p ∈ PΛ, (11)

where the residual term Rn is given by

Rn = E∗
(

sup
λ∈Λ

n∑

i=1

4(n + 1)(ξ2
i − α)(fλ(xi) − f̄θ·π(xi))2

n2β

)

and E∗ denotes expectation with respect to the outer probability P ∗.

Proof. In view of Lemma 1(b) the conditional expectation of random variable
ζi given θλ vanishes. Therefore, with the notation of the proof of Theorem 1,
we get E(‖f̂n − f‖2

n) = S + S1. Using Lemma 1(a) and acting exactly as in the
proof of Theorem 1 we get that S is bounded as in (9). Finally, as shown in the
proof of Theorem 1 the term S1 satisfies

S1 ≤ βE log
∫

Λ

θλEξ exp
{‖f̄θ·π − f‖2

n − ‖fλ − f‖2
n + 2ζ�(hλ − Hθ·π)

β

}
π(dλ).

According to Lemma 1(c),

Eξ

(
e2ζT (hλ−Hθ·π)/β

)
≤ exp

{ n∑

i=1

4(n + 1)(fλ(xi) − f̄θ·π(xi))2ξ2
i

n2β2

}
.

Therefore, S1 ≤ S2 + Rn, where

S2 = βE log
∫

Λ

θλexp
(4α(n + 1)‖fλ − f̄θ·π‖2

n

nβ2 −‖f − fλ‖2
n − ‖f − f̄θ·π‖2

n

β

)
π(dλ).

Finally, we apply Lemma 3 with s2 = 4α(n + 1) and Jensen’s inequality to get
that S2 ≤ 0.

Corollary 1. Let the assumptions of Theorem 3 be satisfied and let |ξi| ≤ B

almost surely where B is a finite constant. Then the aggregate f̂n satisfies in-
equality (5) for any β ≥ 4B2(1 + 1/n) + 2L2.

Proof. It suffices to note that for α = B2 we get Rn ≤ 0.

Corollary 2. Let the assumptions of Theorem 3 be satisfied and suppose that
E(et|ξi|κ) ≤ B for some finite constants t > 0, κ > 0, B > 0. Then for any
n ≥ e2/κ and any β ≥ 4(1 + 1/n)(2(logn)/t)1/κ + 2L2 we have

E
(
‖f̂n − f‖2

n

)
≤

∫

Λ

‖fλ − f‖2
n p(dλ) +

β K(p, π)
n + 1

(12)

+
16BL2(n + 1)(2 logn)2/κ

n2β t2/κ
, ∀ p ∈ PΛ.
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In particular, if Λ = {1, . . . , M} and π is the uniform measure on Λ we get

E
(
‖f̂n − f‖2

n

)
≤ min

j=1,...,M
‖fj − f‖2

n +
β log M

n + 1
(13)

+
16BL2(n + 1)(2 log n)2/κ

n2β t2/κ
.

Proof. Set α = (2(log n)/t)1/κ and note that

Rn ≤ 4(n + 1)
n2β

sup
λ∈Λ,μ∈P′

Λ

‖fλ − f̄μ‖2
n

n∑

i=1

E(ξ2
i − α)+ ≤ 16L2(n + 1)

nβ
E(ξ2

1 − α)+

where a+ = max(0, a). For any x ≥ (2/(tκ))1/κ the function x2e−txκ

is decreas-
ing. Therefore, for any n ≥ e2/κ we have x2e−txκ ≤ α2e−tακ

= α2/n2, as soon
as x ≥ α. Hence, E(ξ2

1 − α)+ ≤ Bα2/n2 and the desired inequality follows.

Remark. Corollary 2 shows that if the tails of the errors have exponential decay
and β is of the order (log n)1/κ which minimizes the remainder term, then the
rate of convergence in the oracle inequality (13) is of the order (log n)

1
κ (log M)/n.

In the case κ = 1, comparing our result with the risk bound obtained in [13]
for averaged algorithm in random design regression, we see that an extra log n
multiplier appears. We conjecture that this deterioration is due to the technique
of the proof and probably can be removed.

6 Sparsity Oracle Inequality

Let φ1, . . . , φM be some functions from X to R. Consider the case where Λ ⊆ R
M

and fλ =
∑

j λjφj , λ = (λ1, . . . , λM ). For λ ∈ R
M denote by J(λ) the set of indi-

ces j such that λj �= 0, and set M(λ) � Card(J(λ)). For any τ > 0, 0 < L0 ≤ ∞,
define the probability densities

q0(t) =
3

2(1 + |t|)4 , ∀t ∈ R,

q(λ) =
1
C0

M∏

j=1

τ−1 q0
(
λj/τ

)
1l(‖λ‖ ≤ L0), ∀λ ∈ R

M ,

where C0 = C0(τ, M, L0) is the normalizing constant and ‖λ‖ stands for the
Euclidean norm of λ ∈ R

M .
Sparsity oracle inequalities (SOI) are oracle inequalities bounding the risk in

terms of the sparsity index M(λ) or similar characteristics. The next theorem
provides a general tool to derive SOI from the “PAC-Bayesian” bound (5). Note
that in this theorem f̂n is not necessarily defined by (2). It can be any procedure
satisfying (5).
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Theorem 4. Let f̂n satisfy (5) with π(dλ) = q(λ) dλ and τ ≤ δL0/
√

M where
0 < L0 ≤ ∞, 0 < δ < 1. Assume that Λ contains the ball {λ ∈ R

M : ‖λ‖ ≤ L0}.
Then for all λ∗ such that ‖λ∗‖ ≤ (1 − δ)L0 we have

E
(
‖f̂n − f‖2

n

)
≤ ‖fλ∗ − f‖2

n +
4β

n + 1

∑

j∈J(λ∗)

log(1 + τ−1|λ∗
j |) + R(M, τ, L0, δ),

where the residual term is

R(M, τ, L0, δ) = τ2e2τ3M5/2(δL0)−3
M∑

j=1

‖φj‖2
n +

2βτ3M5/2

(n + 1)δ3L3
0

for L0 < ∞ and R(M, τ, ∞, δ) = τ2 ∑M
j=1 ‖φj‖2

n.

Proof. We apply Theorem 1 with p(dλ) = C−1
λ∗ q(λ − λ∗)1l(‖λ − λ∗‖ ≤ δL0) dλ,

where Cλ∗ is the normalizing constant. Using the symmetry of q and the fact
that fλ − fλ∗ = fλ−λ∗ = −fλ∗−λ we get

∫

Λ

〈fλ∗ − f, fλ − fλ∗〉n p(dλ) = C−1
λ∗

∫

‖w‖≤δL0

〈fλ∗ − f, fw〉n q(w) dw = 0.

Therefore
∫

Λ ‖fλ − f‖2
n p(dλ) = ‖fλ∗ − f‖2

n +
∫

Λ ‖fλ − fλ∗‖2
n p(dλ). On the other

hand, bounding the indicator 1l(‖λ− λ∗‖ ≤ δL0) by one and using the identities∫
R

q0(t) dt =
∫

R
t2q0(t) dt = 1, we obtain

∫

Λ

‖fλ − fλ∗‖2
n p(dλ) ≤ 1

C0Cλ∗

M∑

j=1

‖φj‖2
n

∫

R

w2
j

τ
q0

(wj

τ

)
dwj =

τ2 ∑M
j=1 ‖φj‖2

n

C0Cλ∗
.

Since 1 − x ≥ e−2x for all x ∈ [0, 1/2], we get

Cλ∗C0 =
1

τM

∫

‖λ‖≤δL0

{ M∏

j=1

q0

(λj

τ

)}
dλ ≥ 1

τM

M∏

j=1

{∫

|λj |≤ δL0√
M

q0

(λj

τ

)
dλj

}

=
( ∫ δL0/τ

√
M

0

3dt

(1 + t)4

)M

=
(

1 − 1
(1 + δL0τ−1M−1/2)3

)M

≥ exp
(

− 2M

(1 + δL0τ−1M−1/2)3
)

≥ exp(−2τ3M5/2(δL0)−3).

On the other hand, in view of the inequality 1 + |λj/τ | ≤ (1 + |λ∗
j/τ |)(1 + |λj −

λ∗
j |/τ) the Kullback-Leibler divergence between p and π is bounded as follows:

K(p, π) =
∫

RM

log
(

C−1
λ∗ q(λ − λ∗)

q(λ)

)
p(dλ) ≤ 4

M∑

j=1

log(1 + |τ−1λ∗
j |) − log Cλ∗ .

Easy computation yields C0 ≤ 1. Therefore Cλ∗ ≥ C0Cλ∗ ≥ exp(− 2τ3M5/2

(δL0)3 ) and
the desired result follows.

We now discuss a consequence of the obtained inequality in the case where the
errors are Gaussian. Let us denote by Φ the Gram matrix associated to the family
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(φj)j=1,...,M , i.e., M ×M matrix with entries Φj,j′ = n−1 ∑n
i=1 φj(xi)φj′ (xi) for

every j, j′ ∈ {1, . . . , M}. We denote by λmax(Φ) the maximal eigenvalue of Φ. In
what follows, for every x > 0, we write log+ x = (log x)+.

Corollary 3. Let f̂n be defined by (2) with π(dλ) = q(λ) dλ and let τ = δL0
M

√
n

with 0 < L0 < ∞, 0 < δ < 1. Let ξi be i.i.d. Gaussian N (0, σ2) with σ2 > 0,
λmax(Φ) ≤ K2, ‖f‖n ≤ L̄ and let β ≥ (4 + 2n−1)σ2 + 2L2 with L = L̄ + L0K.
Then for all λ∗ ∈ R

M such that ‖λ∗‖ ≤ (1 − δ)L0 we have

E
[
‖f̂n − f‖2

n

]
≤ ‖fλ∗ − f‖2

n +
4β

n + 1

[
M(λ∗)

(
1+ log+

{M
√

n

δL0

})
+

∑

J(λ∗)

log+ |λ∗
j |

]

+
C

nM1/2 min(M1/2, n3/2)
,

where C is a positive constant independent of n, M and λ∗.

Proof. We apply Theorem 4 with Λ = {λ ∈ R
M : ‖λ‖ ≤ L0}. We need to check

that f̂n satisfies (5). This is indeed the case in view of Proposition 1 and the
inequalities ‖fλ − f‖n ≤ ‖f‖n +

√
λ�Φλ ≤ L̄ + K‖λ‖ ≤ L. Thus we have

E
(
‖f̂n − f‖2

n

)
≤ ‖fλ∗ − f‖2

n +
4β

n + 1

∑

j∈J(λ∗)

log(1 + τ−1|λ∗
j |) + R(M, τ, L0, δ),

with R(M, τ, L0, δ) as in Theorem 4. One easily checks that log(1 + τ−1|λ∗
j |) ≤

1 + log+(τ−1|λ∗
j |) ≤ 1 + log+(τ−1) + log+(|λ∗

j |). Hence, the desired inequality
follows from

R(M, τ, L0, δ) = (δL0)2

M2n e2M−3n−3/2M5/2 ∑M
j=1 ‖φj‖2

n + 2βM5/2

(n+1)M3n3/2

≤ (δL0)2MK2e2

M2n + 2β
(n+1)M1/2n3/2 ≤ C

nM1/2 min(M1/2,n3/2) .

Remark. The result of Corollary 3 can be compared with the SOI obtained for
other procedures [5,6,7]. These papers impose heavy restrictions on the Gram ma-
trix Φ either in terms of the coherence introduced in [12] or analogous local charac-
teristics. Our result is not of that kind: we need only that the maximal eigenvalue
of Φ were bounded. On the other hand, we assume that the oracle vector λ∗ be-
longs to a ball of radius < L0 in �2 with known L0. This assumption is not very
restrictive in the sense that the �2 constraint is weaker than the �1 constraint that
is frequently imposed. Moreover, the structure of our oracle inequality is such that
we can consider slowly growing L0, without seriously damaging the result.
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A Appendix

Lemma 2. For any x ∈ R and any α > 0, x + log
(
1 + 1

α

(
e−xα − 1

))
≤ x2α

2 .

Proof. On the interval (−∞, 0], the function x �→ x + log
(
1 + 1

α (e−xα − 1)
)

is
increasing, therefore it is bounded by its value at 0, that is by 0. For positive
values of x, we combine the inequalities e−y ≤ 1 − y + y2/2 (with y = xα) and
log(1 + y) ≤ y (with y = 1 + 1

α (e−xα − 1)).

Lemma 3. For any β ≥ s2/n + 2 supλ∈Λ ‖f − fλ‖2
n and for every μ′ ∈ P ′

Λ, the
function

μ �→ exp
(s2‖f̄μ′ − f̄μ‖2

n

nβ2 − ‖f − f̄μ‖2
n

β

)

is concave.

Proof. Consider first the case where Card(Λ) = m < ∞. Then every element of
PΛ can be viewed as a vector from R

m. Set

Q(μ) = (1 − γ)‖f − fμ‖2
n + 2γ〈f − fμ, f − fμ′〉n

= (1 − γ)μT HT
n Hnμ + 2γμT HT

n Hnμ′,

where γ = s2/(nβ) and Hn is the n×m matrix with entries (f(xi)−fλ(xi))/
√

n.
The statement of the lemma is equivalent to the concavity of e−Q(μ)/β as a func-
tion of μ ∈ PΛ, which holds if and only if the matrix β∇2Q(μ)−∇Q(μ)∇Q(μ)T

is positive-semidefinite. Simple algebra shows that ∇2Q(μ) = 2(1−γ)HT
n Hn and

∇Q(μ) = 2HT
n [(1 − γ)Hnμ + γHnμ′]. Therefore, ∇Q(μ)∇Q(μ)T = HT

n MHn,
where M = 4Hnμ̃μ̃T HT

n with μ̃ = (1 − γ)μ + γμ′. Under our assumptions, β is
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larger than s2/n, ensuring thus that μ̃ ∈ PΛ. Clearly, M is a symmetric and
positive-semidefinite matrix. Moreover,

λmax(M) ≤ Tr(M) = 4‖Hnμ̃‖2 =
4
n

n∑

i=1

( ∑

λ∈Λ

μ̃λ(f − fλ)(xi)
)2

≤ 4
n

n∑

i=1

∑

λ∈Λ

μ̃λ(f(xi) − fλ(xi))2 = 4
∑

λ∈Λ

μ̃λ‖f − fλ‖2
n

≤ 4 max
λ∈Λ

‖f − fλ‖2
n

where λmax(M) is the largest eigenvalue of M and Tr(M) is its trace. This
estimate yields the matrix inequality

∇Q(μ)∇Q(μ)T ≤ 4 max
λ∈Λ

‖f − fλ‖2
n HT

n Hn.

Hence, the function e−Q(μ)/β is concave as soon as 4 maxλ∈Λ ‖f −fλ‖2
n ≤ 2β(1−

γ). The last inequality holds for every β ≥ n−1s2 + 2 maxλ∈Λ ‖f − fλ‖2
n.

The general case can be reduced to the case of finite Λ as follows. The con-
cavity of the functional G(μ) = exp

(
s2‖f̄μ′−f̄μ‖2

n

nβ2 − ‖f−f̄μ‖2
n

β

)
is equivalent to the

validity of the inequality

G
(μ + μ̃

2

)
≥ G(μ) + G(μ̃)

2
, ∀ μ, μ̃ ∈ P ′

Λ. (14)

Fix now arbitrary μ, μ̃ ∈ P ′
Λ. Take Λ̃ = {1, 2, 3} and consider the set of functions

{f̃λ, λ ∈ Λ̃} = {f̄μ, f̄μ̃, f̄μ′}. Since Λ̃ is finite, P ′
Λ̃

= PΛ̃. According to the first
part of the proof, the functional

G̃(ν) = exp
(

s2‖f̄μ′ − ¯̃fν‖2
n

nβ2 − ‖f − ¯̃fν‖2
n

β

)
, ν ∈ PΛ̃,

is concave on PΛ̃ as soon as β ≥ s2/n + 2 maxλ∈Λ̃ ‖f − f̃λ‖2
n, and therefore for

every β ≥ s2/n + 2 supλ∈Λ ‖f − fλ‖2
n as well. (Indeed, by Jensen’s inequality for

any measure μ ∈ P ′
Λ we have ‖f−f̄μ‖2

n ≤
∫

‖f−fλ‖2
nμ(dλ) ≤ supλ∈Λ ‖f−fλ‖2

n.)
This leads to

G̃
(ν + ν̃

2

)
≥ G̃(ν) + G̃(ν̃)

2
, ∀ ν, ν̃ ∈ PΛ̃.

Taking here the Dirac measures ν and ν̃ defined by ν(λ = j) = 1l(j = 1) and
ν̃(λ = j) = 1l(j = 2), j = 1, 2, 3, we arrive at (14). This completes the proof of
the lemma.
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