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Abstract. We present a framework for margin based active learning of linear
separators. We instantiate it for a few important cases, some of which have been
previously considered in the literature. We analyze the effectiveness of our frame-
work both in the realizable case and in a specific noisy setting related to the Tsy-
bakov small noise condition.

1 Introduction

There has recently been substantial interest in using unlabeled data together with la-
beled data for machine learning. The motivation is that unlabeled data can often be
much cheaper and more plentiful than labeled data, and so if useful information can be
extracted from it that reduces dependence on labeled examples, this can be a significant
benefit.

There are currently two settings that have been considered to incorporate unlabeled
data in the learning process. The first one is the so-called Semi-supervised Learn-
ing [3,5], where, in addition to a set of labeled examples drawn at random from the
underlying data distribution, the learning algorithm can also use a (usually larger) set of
unlabeled examples from the same distribution. In this setting, unlabeled data becomes
informative under additional assumptions and beliefs about the learning problem. Ex-
amples of such assumptions are the one used by Transductive SVM (namely, that the
target function should cut through low density regions of the space), or by Co-training
(namely, that the target should be self-consistent in some way). Unlabeled data is then
potentially useful in this setting because it allows one to reduce search space from the
whole set of hypotheses, down to the set of a-priori reasonable with respect to the un-
derlying distribution.

The second setting, an increasingly popular one for the past few years, is Active
Learning [2,6,8]. Here, the learning algorithm has both the capability of drawing ran-
dom unlabeled examples from the underlying distribution and that of asking for the
labels of any of these examples, and the hope is that a good classifier can be learned
with significantly fewer labels by actively directing the queries to informative examples.
As opposed to the Semi-supervised learning setting, and similarly to the classical super-
vised learning settings (PAC and Statistical Learning Theory settings) the only prior be-
lief about the learning problem in the Active Learning setting is that the target function
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(or a good approximation of it) belongs to a given concept class. Luckily, it turns out
that for simple concept classes such as linear separators on the line one can achieve an
exponential improvement (over the usual supervised learning setting) in the labeled data
sample complexity, under no additional assumptions about the learning problem [2,6].1

In general, however, for more complicated concept classes, the speed-ups achievable in
the active learning setting depend on the match between the distribution over example-
label pairs and the hypothesis class, and therefore on the target hypothesis in the class.
Furthermore, there are simple examples where active learning does not help at all, even
if there in the realizable case (see, for example, [8]). Recent interesting work of Das-
gupta [8] gives a nice generic characterization of the sample complexity aspect of active
learning in the realizable case.

A few variants and restrictions of the general active learning setting have also been
considered lately. For instance the Query by Committee analysis [10] assumes realiz-
ability (i.e., there exists a perfect classifier in a known set) and a correct Bayesian prior
on the set of hypotheses [10]. The analysis of the active Perceptron algorithm described
in [9] relies on an even stronger assumption, of known and fixed distribution.

In the general active learning setting, for the realizable case, Cohen, Atlas and Ladner
have introduced in [6] a generic active learning algorithm. This algorithm is a sequential
algorithm that keeps track of two spaces — the current version space Hi, defined as the
set of hypotheses in H consistent with all labels revealed so far, and the current region
of uncertainty Ri, defined as the set of all x in the instance space X , for which there
exists a pair of hypotheses in Hi that disagrees on x. In round i, the algorithm picks
a random unlabeled example from Ri and queries it, eliminating all hypotheses in Hi

inconsistent with the received label. The algorithm then eliminates those x ∈ Ri on
which all surviving hypotheses agree, and recurses.This algorithm was later analyzed
and generalized to the non-realizable case in [2], and it was shown that in certain cases
it does provide a significant improvement in the sample complexity.

In this paper we analyze a generic margin based active learning algorithm for learn-
ing linear separators and instantiate it for a few important cases, some of which have
been previously considered in the literature. Specifically, the generic procedure we an-
alyze is presented in Figure 1. To simplify calculation, we will present and analyze a
few modifications of the algorithm as well.

Our Contributions: We present and analyze a framework for margin based active
learning and also instantiate it for a few important cases. Specifically:

– We point out that in order to obtain a significant improvement in the labeled data
sample complexity we have to use a strategy which is more aggressive than the one
proposed by Cohen, Atlas and Ladner in [6] and later analyzed in [2]. We point
out that this is true even in the special case when the data instances are drawn uni-
formly from the the unit ball in Rd, and when the labels are consistent with a linear
separator going through the origin. Indeed, in order to obtain a truly exponential
improvement, and to be able to learn with only Õ

(
d log

( 1
ε

))
labeled examples, we

need, in each iteration, to sample our examples from a subregion carefully chosen,

1 For this simple concept class one can achieve a pure exponential improvement [6] in the real-
izable case, while in the agnostic case the improvement depends upon the noise rate [2].
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and not from the entire region of uncertainty, which would imply a labeled data

sample complexity of Õ
(
d

3
2 log

( 1
ε

))
.

– We show that our algorithm and argument extend to the non-realizable case. A spe-
cific case we analyze here is again the setting where the data instances are drawn
uniformly from the the unit ball in Rd, and a linear classifier w∗ is the Bayes clas-
sifier. We additionally assume that our data satisfies the popular Tsybakov small
noise condition along the decision boundary [14]. We consider both a simple ver-
sion which leads to exponential improvement similar to the item 1 above, and a
setting where we get only a polynomial improvement in the sample complexity,
and where this is provably the best we can do [4].

– We analyze a “large margin” setting and show how active learning can dramatically
improve (the supervised learning) sample complexity; the bounds we obtain here
do not depend on the dimensionality d.

– We provide a general and unified analysis of our main algorithm – Algorithm 1.

Structure of this paper: For clarity, we start by analyzing in Section 3 the special case
where the data instances are drawn uniformly from the the unit ball in Rd, and when
the labels are consistent with a linear separator w∗ going through the origin. We then
analyze the noisy setting in Section 4, and give dimension independent bounds in a large
margin setting in Section 5. We present our generic Margin Based learning algorithm
and analysis in Section 6 and finish with a discussion and in Section 7.

2 Definitions and Notation

Consider the problem of predicting a binary label y based on its corresponding input
vector x. As in the standard machine learning formulation, we assume that the data
points (x, y) are drawn from an unknown underlying distribution P over X × Y ; X
is called the instance space and Y is the label space. In this paper we assume that
Y = {±1}.

Our goal is to find a classifier f with the property that its expected true loss of err(f)
is as small as possible. Here we assume err(f) = E(x,y)∼P [�(f(x), y)], where we use
E(x,y)∼P to denote the expectation with respect to the true (but unknown) underlying
distribution P . Throughout the paper, without loss of generality, we assume that f(x) is
a real-valued function, which induces a classification rule 2I(f(x) ≥ 0)−1, where I(·)
is the set indicator function. The decision at f(x) = 0 is not important in our analysis.
We consider in the following the classification error loss, defined as �(f(x), y) = 1 if
f(x)y ≤ 0 and �(f(x), y) = 0 otherwise. We denote by d(f, g) the probability that the
two classifiers f and g predict differently on an example coming at random from P .
Furthermore, for α ∈ [0, 1] we denote by B (f, α) the set {g | d(f, g) ≤ α}.

In this paper, we are interested in linear classifiers of the form f(x) = w · x, where
w is the weight vector which we need to learn from training data. We are interested
in using active learning (selective sampling) algorithms to improve the performance of
linear classification methods under various assumptions. In particular, we are interested
in margin based selective sampling algorithms which have been widely used in practical
applications (see e.g. [13]). A general version of the type of algorithm we analyze here
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Input: unlabeled data set U = {x1, x2, . . . , }
a learning algorithm A that learns a weight vector from labeled data
a sequence of sample sizes 0 < m̃1 < m̃2 < . . . < m̃s = m̃s+1

a sequence of cut-off values bk > 0 (k = 1, . . . , s)
Output: classifier ŵs.
Label data points x1, . . . , xm̃1 by a human expert
iterate k = 1, . . . , s

use A to learn weight vector ŵk from the first m̃k labeled samples.
for j = m̃k + 1, . . . , m̃k+1

if |ŵk · xj | > bk then let yj = sign(ŵk · xj)
else label data point xj by a human expert

end for
end iterate

Fig. 1. Margin-based Active Learning

is described in Figure 1. Specific choices for the learning algorithm A, sample sizes
mk, and cut-off values bk depends on various assumptions we will make about the data,
which we will investigate in details in the following sections.

3 The Realizable Case Under the Uniform Distribution

We consider here a commonly studied setting in the active learning literature [7,8,9].
Specifically, we assume that the data instances are drawn uniformly from the the unit
ball in Rd, and that the labels are consistent with a linear separator w∗ going through
the origin (that is P (w∗ · xy ≤ 0) = 0). We assume that ‖w∗‖2 = 1. It is worth noting
that even in this seemingly simple looking scenario, there exists an Ω

( 1
ε

(
d + log 1

δ

))

lower bound on the PAC learning sample complexity [12].
We start by informally presenting why active learning is in principle possible, at

least when d is constant. We show it is not difficult to improve the labeled data sample

complexity from Õ
(

d
ε

)
to Õ

(
d

3
2 log

( 1
ε

))
. Specifically, let us consider Procedure 1,

where A is a learning algorithm for finding a linear classifier consistent with the training
data. Assume that in each iteration k, A finds a linear separator ŵk , ‖ŵk‖2 = 1 which
is consistent with the first m̃k labeled examples. We want to ensure that err(ŵk) ≤
1
2k (with large probability), which (by standard VC bounds) requires a sample of size
m̃k = Õ

(
2kd

)
; note that this implies we need to add in each iteration about mk =

m̃k+1 − m̃k = Õ
(
2kd

)
new labeled examples. The desired result will follow if we can

show that by choosing appropriate bk, we only need to ask the human expert to label
Õ(d3/2) out of the mk = Õ

(
2kd

)
data points and ensure that all mk data points are

correctly labeled (i.e. the examples labeled automatically are in fact correctly labeled).
Note that given our assumption about the data distribution the error rate of any

given separator w is err(w) = θ(w,w∗)
π , where θ(w, w∗) = arccos(w · w∗). There-

fore err(ŵk) ≤ 2−k implies that ‖ŵk − w∗‖2 ≤ 2−kπ. This implies we can safely
label all the points with |ŵk · x| ≥ 2−kπ because w∗ and ŵk predict the same on those
examples. The probability of x such that |ŵk ·x| ≤ 2−kπ is Õ(2−k

√
d) because in high
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dimensions, the 1-dimensional projection of uniform random variables in the unit ball
is approximately a Gaussian variable with variance 1/d. Therefore if we let bk = 2−kπ
in the k-th iteration, and draw mk+1 − mk = Õ

(
2kd

)
new examples to achieve an

error rate of 2−(k+1) for ŵk+1, the expected number of human labels needed is at most
Õ(d

3
2 ). This essentially implies the desired result. For a high probability statement, we

can use Procedure 2, which is a modification of Procedure 1.

Input: allowed error rate ε, probab. of failure δ, a sampling oracle for PX , a labeling oracle
a sequence of sample sizes mk > 0, k ∈ Z+; a sequence of cut-off values bk > 0, k ∈ Z+

Output: weight vector ŵs of error at most ε with probability 1 − δ
Draw m1 examples from PX , label them and put into a working set W (1).
iterate k = 1, . . . , s

find a hypothesis ŵk (‖ŵk‖2 = 1) consistent with all labeled examples in W (k).
let W (k + 1) = W (k).
until mk+1 additional data points are labeled, draw sample x from PX

if |ŵk · x| ≥ bk, reject x
otherwise, ask for label of x, and put into W (k + 1)

end iterate

Fig. 2. Margin-based Active Learning (separable case)

Note that we can apply our favorite algorithm for finding a consistent linear sepa-
rator (e.g., SVM for the realizable case, linear programming, etc.) at each iteration of
Procedure 2, and the overall procedure is computationally efficient.

Theorem 1. There exists a constant C, s. t. for any ε, δ > 0, using Procedure 2 with
bk = π

2k−1 and mk = Cd
1
2

(
d ln d + ln k

δ

)
, after s = �log2

1
ε � iterations, we find a

separator of error at most ε with probability 1 − δ.

Proof. The proof is a rigorous version of the informal one given earlier. We prove by
induction on k that at the k’th iteration, with probability 1 − δ(1− 1/(k + 1)), we have
err(ŵ) ≤ 2−k for all separators ŵ consistent with data in the set W (k); in particular,
err(ŵk) ≤ 2−k.

For k = 1, according to Theorem 7 in Appendix A, we only need m1 = O(d +
ln(1/δ)) examples to obtain the desired result. In particular, we have err(ŵ1) ≤ 1/2
with probability 1 − δ/2. Assume now the claim is true for k − 1. Then at the k-th
iteration, we can let S1 = {x : |ŵk−1 · x| ≤ bk−1} and S2 = {x : |ŵk−1 · x| > bk−1}.
Using the notation err(w|S) = Prx((w · x)(w∗ · x) < 0|x ∈ S), for all ŵ we have:

err(ŵ) = err(ŵ|S1) Pr(S1) + err(ŵ|S2) Pr(S2).

Consider an arbitrary ŵ consistent with the data in W (k − 1). By induction hypothesis,
we know that with probability at least 1 − δ(1 − 1/k), both ŵk−1 and ŵ have errors
at most 21−k (because both are consistent with W (k − 1)). As discussed earlier, this
implies that ‖ŵk−1 − w∗‖2 ≤ 21−kπ and ‖ŵ − w∗‖2 ≤ 21−kπ. So, ∀x ∈ S2, we have
(ŵk−1 · x)(ŵ · x) > 0 and (ŵk−1 · x)(w∗ · x) > 0. This implies that err(ŵ|S2) =
0. Now using the estimate provided in Lemma 4 with γ1 = bk−1 and γ2 = 0, we
obtain Prx(S1) ≤ bk−1

√
4d/π. Therefore err(ŵ) ≤ 22−k

√
4πd · err(ŵ|S1), for all ŵ
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consistent with W (k − 1). Now, since we are labeling mk data points in S1 at iteration
k−1, it follows from Theorem 7 that we can find C s. t. with probability 1−δ/(k2+k),
for all ŵ consistent with the data in W (k), err(ŵ|S1), the error of ŵ on S1, is no more
than 1/(4

√
4πd). That is we have err(ŵ) ≤ 2−k with probability 1 − δ((1 − 1/k) +

1/(k2 + k)) = 1 − δ(1 − 1/(k + 1)) for all ŵ consistent with W (k), and in particular
err(ŵk) ≤ 2−k, as desired. 
�

The choice of rejection region in Theorem 1 essentially follows the idea in [6]. It was
suggested there that one should not sample from a region (S2 in the proof) in which all
classifiers in the current version space (in our case, classifiers consistent with the labeled
examples in W (k)) predict the same label. A more general version, with theoretical
analysis, was considered in [2]. Here we have used a more a refined VC-bound for the
realizable case, e.g., Theorem 7, to get a better bound. However, the strategy of choosing
bk in Theorem 1 (thus the idea of [6]) is not optimal. This can be seen from the proof,
in which we showed err(ŵs|S2) = 0. If we enlarge S2 (using a smaller bk), we can still
ensure that err(ŵs|S2) is small; furthermore, Pr(S1) becomes smaller, which allows us
to use fewer labeled examples to achieve the same reduction in error. Therefore in order
to show that we can achieve an improvement from Õ

(
d
ε

)
to Õ

(
d log

( 1
ε

))
as in [9], we

need a more aggressive strategy. Specifically, at round k we set as margin parameter

bk = Õ
(

log (k)
2k

√
d

)
, and in consequence use fewer examples to transition between rounds.

In order to prove correctness we need to refine the analysis as follows:

Theorem 2. There exists a constant C s. t. for d ≥ 4, and for any ε, δ > 0, ε <
1/4, using Procedure 2 with mk = C

√
ln(1 + k)

(
d ln(1 + ln k) + ln k

δ

)
and bk =

21−kπd−1/2
√

5 + ln(1 + k), after s = �log2
1
ε � − 2 iterations, we find a separator of

error ≤ ε with probability 1 − δ.

Proof. As in Theorem 1, we prove by induction on k that at the k’s iteration, for k ≤ s,
with probability at least 1 − δ(1 − 1/(k + 1)), we err(ŵ) ≤ 2−k−2 for all choices of ŵ
consistent with data in the working set W (k); in particular err(ŵk) ≤ 2−k−2.

For k = 1, according to Theorem 7, we only need mk = O(d + ln(1/δ)) examples
to obtain the desired result; in particular, we have err(ŵ1) ≤ 2−k−2 with probability
1−δ/(k+1). Assume now the claim is true for k−1 (k > 1). Then at the k-th iteration,
we can let S1 = {x : |ŵk−1 · x| ≤ bk−1} and S2 = {x : |ŵk−1 · x| > bk−1}. Consider
an arbitrary ŵ consistent with the data in W (k − 1). By induction hypothesis, we know
that with probability 1 − δ(1 − 1/k), both ŵk−1 and ŵ have errors at most 2−k−1,
implying θ(ŵk−1, w

∗) ≤ 2−k−1π and θ(ŵ, w∗) ≤ 2−k−1π. Therefore θ(ŵ, ŵk−1) ≤
2−kπ. Let β̃ = 2−kπ and using cos β̃/ sin β̃ ≤ 1/β̃ and sin β̃ ≤ β̃ it is easy to verify

that bk−1 ≥ 2 sin β̃d−1/2

√

5 + ln
(

1 +
√

ln max(1, cos β̃/ sin β̃)
)

. By Lemma 7, we

have both

Prx [(ŵk−1 · x)(ŵ · x) < 0, x ∈ S2] ≤ sin β̃

e5 cos β̃
≤

√
2β̃

e5 and

Prx [(ŵk−1 · x)(w∗ · x) < 0, x ∈ S2] ≤ sin β̃

e5 cos β̃
≤

√
2β̃

e5 .
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Taking the sum, we obtain Prx [(ŵ · x)(w∗ · x) < 0, x ∈ S2] ≤ 2
√

2β̃
e5 ≤ 2−(k+3). Us-

ing now Lemma 4 we get that for all ŵ consistent with the data in W (k − 1) we have:

err(ŵ) ≤err(ŵ|S1) Pr(S1) + 2−(k+3) ≤ err(ŵk|S1)bk−1
√

4d/π + 2−(k+3)

≤2−(k+2)
(
err(ŵ|S1)16

√
4π

√
5 + ln(1 + k) + 1/2

)
.

Since we are labelling mk points in S1 at iteration k−1, we know from Theorem 7 that
∃C s. t. with probability 1− δ/(k + k2) we have err(ŵk|S1)16

√
4π

√
5 + ln(1 + k) ≤

0.5 for all ŵ consistent with W (k); so, with probability 1−δ((1−1/k)+1/(k+k2)) =
1 − δ(1 − 1/(k + 1)), we have err(ŵ) ≤ 2−k−2 for all ŵ consistent with W (k). 
�

The bound in Theorem 2 is generally better than the one in Theorem 1 due to the
improved dependency on d in mk. However, mk depends on

√
ln k ln ln k, for k ≤

�log2
1
ε � − 2. Therefore when d  ln k(ln ln k)2, Theorem 1 offers a better bound.

Note that the strategy used in Theorem 2 is more aggressive than the strategy used in
the selective sampling algorithm of [2,6]. Indeed, we do not sample from the entire
region of uncertainty – but we sample just from a subregion carefully chosen. This
helps us to get rid of the undesired d1/2. Clearly, our analysis also holds with very small
modifications when the input distribution comes from a high dimensional Gaussian.

4 The Non-realizable Case Under the Uniform Distribution

We show that a result similar to Theorem 2 can be obtained even for non-separable
problems. The non-realizable (noisy) case for active learning in the context of classi-
fication was recently explored in [2,4]. We consider here a model which is related to
the simple one-dimensional problem in [4], which assumes that the data satisfy the in-
creasingly popular Tsybakov small noise condition along the decision boundary[14].
We first consider a simple version which still leads to exponential convergence similar
to Theorem 2. Specifically, we still assume that the data instances are drawn uniformly
from the the unit ball in Rd, and a linear classifier w∗ is the Bayes classifier. However,
we do not assume that the Bayes error is zero. We consider the following low noise
condition: there exists a known parameter β > 0 such that:

PX(|P (Y = 1|X) − P (Y = −1|X)| ≥ 4β) = 1.

In supervised learning, such a condition can lead to fast convergence rates. As we will
show in this section, the condition can also be used to quantify the effectiveness of
active-learning. The key point is that this assumption implies the stability condition
required for active learning:

β min
(
1, 4θ(w,w∗)

π

)1/(1−α)
≤ err(w) − err(w∗) (1)

with α = 0. We analyze here a more general setting with α ∈ [0, 1). As mentioned
already, the one dimensional setting was examined in [4]. We call err(w) − err(w∗)
the excess error of w. In this setting, Procedure 2 needs to be slightly modified, as in
Figure 3.
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Input: allowed error rate ε, probab. of failure δ, a sampling oracle for PX , and a labeling oracle
a sequence of sample sizes mk > 0, k ∈ Z+; a sequence of cut-off values bk > 0, k ∈ Z+

a sequence of hypothesis space radii rk > 0, k ∈ Z+;
a sequence of precision values εk > 0, k ∈ Z+

Output: weight vector ŵs of excess error at most ε with probability 1 − δ
Pick random ŵ0: ‖ŵ0‖2 = 1.
Draw m1 examples from PX , label them and put into a working set W .
iterate k = 1, . . . , s

find ŵk ∈ B(ŵk−1, rk) (‖ŵk‖2 = 1) to approximately minimize training error:∑
(x,y)∈W I(ŵk · xy) ≤ minw∈B(ŵk−1 ,rk)

∑
(x,y)∈W I(w · xy) + mkεk.

clear the working set W
until mk+1 additional data points are labeled, draw sample x from PX

if |ŵk · x| ≥ bk, reject x
otherwise, ask for label of x, and put into W

end iterate

Fig. 3. Margin-based Active Learning (non-separable case)

Theorem 3. Let d ≥ 4. Assume there exists a weight vector w∗ s. t. the stability con-
dition (1) holds. Then there exists a constant C, s. t. for any ε, δ > 0, ε < β/8, us-
ing Procedure 3 with bk = 2−(1−α)kπd−1/2

√
5 + αk ln 2 − ln β + ln(2 + k), rk =

2−(1−α)k−2π for k > 1, r1 = π, εk = 2−α(k−1)−4β/
√

5 + αk ln 2 − ln β + ln(1+k),
and mk = Cε−2

k

(
d + ln k

δ

)
, after s = �log2(β/ε)� iterations, we find a separator with

excess error ≤ ε with probability 1 − δ.

Proof. The proof is similar to that of Theorem 2. We prove by induction on k that after
k ≤ s iterations, err(ŵk) − err(w∗) ≤ 2−kβ with probability 1 − δ(1 − 1/(k + 1)).

For k = 1, according to Theorem 8, we only need mk = β−2O(d + ln(k/δ)) exam-
ples to obtain ŵ1 with excess error 2−kβ with probability 1−δ/(k+1). Assume now the
claim is true for k − 1 (k ≥ 2). Then at the k-th iteration, we can let S1 = {x : |ŵk−1 ·
x| ≤ bk−1} and S2 = {x : |ŵk−1 · x| > bk−1}. By induction hypothesis, we know that
with probability at least 1−δ(1−1/k), ŵk−1 has excess errors at most 2−k+1β, imply-
ing θ(ŵk−1, w

∗) ≤ 2−(1−α)(k−1)π/4. By assumption, θ(ŵk−1, ŵk) ≤ 2−(1−α)k−2π.
Let β̃ = 2−(1−α)k−2π and using cos β̃/ sin β̃ ≤ 1/β̃ and sin β̃ ≤ β̃, it is easy to verify

that bk−1 ≥ 2 sin β̃d−1/2

√

5 + αk ln 2 − ln β + ln
(

1 +
√

ln(cos β̃/ sin β̃)
)

. From

Lemma 7, we have both
Prx [(ŵk−1 · x)(ŵk · x) < 0, x ∈ S2] ≤ sin β̃

e5β−12αk cos β̃
≤

√
2β̃β

2αke5 and

Prx [(ŵk−1 · x)(w∗ · x) < 0, x ∈ S2] ≤ sin β̃

e5β−12αk cos β̃
≤

√
2β̃β

2αke5 .

Taking the sum, we obtain Prx [(ŵk · x)(w∗ · x) < 0, x ∈ S2] ≤ 2
√

2β̃β
2αke5 ≤ 2−(k+1)β.

Therefore we have (using Lemma 4):

err(ŵk) − err(w∗) ≤(err(ŵk|S1) − err(w∗|S1)) Pr(S1) + 2−(k+1)β

≤(err(ŵk|S1) − err(w∗|S1))bk−1
√

4d/π + 2−(k+1)β

≤2−kβ
(
(err(ŵk|S1) − err(w∗|S1))

√
π/(4εk) + 1/2

)
.
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By Theorem 7, we can choose C s. t. with mk samples, we obtain err(ŵk|S1) −
err(w∗|S1) ≤ 2εk/

√
π with probability 1−δ/(k+k2). Therefore err(ŵk)−err(w∗) ≤

2−kβ with probability 1 − δ((1 − 1/k) + 1/(k + k2)) = 1 − δ(1 − 1/(k + 1)). 
�

If α = 0, then we can achieve exponential convergence similar to Theorem 2, even for
noisy problems. However, for α ∈ (0, 1), we must label

∑
k mk = O(ε−2α ln(1/ε)(d+

ln(s/δ)) examples2 to achieve an error rate of ε That is, we only get a polynomial
improvement compared to the batch learning case (with sample complexity between
O(ε−2) and O(ε−1)). In general, one cannot improve such polynomial behavior – see
[4] for some simple one-dimensional examples.

Note: Instead of rejecting x when |ŵk · x| ≥ bk, we can add them to W using the
automatic labels from ŵk. We can then remove the requirement ŵk ∈ B(ŵk−1, rk)
(thus removing the parameters rk). The resulting procedure will have the same con-
vergence behavior as Theorem 3 because the probability of making error by ŵk when
|ŵk · x| ≥ bk is no more than 2−(k+2)β.

5 Dimension Independent Bounds

Although we showed that active learning can improve sample complexity, the bounds
depend on the dimensionality d. In many practical problems, such dependency can be
removed if the classifier can separate the data with large margin. We consider the fol-
lowing simple case, with x drawn from a d-dimensional Gaussian with bounded total
variance: x ∼ N(0, Σ), Σ = diag(σ2

1 , . . . , σ
2
d) and σ1 ≥ · · · ≥ σd > 0. Note that

Ex‖x‖2
2 =

∑
j σ2

j . The Gaussian assumption can also be replaced by other similar
assumptions such as uniform distribution in an ellipsoid. We employ the Gaussian as-
sumption for computational simplicity. We assume further that the label is consistent
with a weight vector w∗ with ‖w∗‖2 = 1. However, if we do not impose any restric-
tions on w∗, then it is not possible to learn w∗ without the d-dependence. A standard
assumption that becomes popular in recent years is to assume that w∗ achieves a good
margin distribution. In particular, we may impose the following margin distribution
condition ∀γ > 0:

Px(|w∗ · x| ≤ γ) ≤ 2γ√
2πσ

(2)

Condition (2) says that the probability of small margin is small. Since the projection
w∗ · x is normal with variance σ2 =

∑

j

σ2
j (w∗

j )2, the margin condition (2) can be

replaced by

‖w∗‖Σ ≥ σ (3)

where ‖ξ‖Σ =
√∑

j ξ2
j σ2

j , which says that the variance of x projected to w∗ is at least

σ. This condition restricts the hypothesis space containing w∗ so that we may develop
a learning bound that is independent of d. Although one can explicitly impose a margin
constraint based on (3), for simplicity, we shall consider a different method here that

2 We are ignoring dependence on β here.
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approximates w∗ with a vector in a small dimensional space. Lemma 1 shows that it is

possible. For w, w′ ∈ Rd, we define θΣ(w, w′) = arccos
∑

j σ2
j wjw′

j

‖w‖Σ‖w′‖Σ
.

Lemma 1. If w∗ with ‖w∗‖2 = 1 satisfies (3) and let w∗[k] = [w∗
1 , . . . , w∗

k, 0, . . . , 0],
then sin θΣ(w∗, w∗[k]) ≤ σk+1/σ.

Proof. By assumption, we have:

sin(θΣ(w∗, w∗[k]))2 =
∑d

j=k+1 σj(w∗
j )2

∑
d
j=1 σ2

j (w∗
j )2

≤ σ2
k+1

∑d
j=k+1(w∗

j )2
∑

d
j=1 σ2

j (w∗
j )2

≤ σ2
k+1

∑
j(w

∗
j )2

∑
j σ2

j (w∗
j )2 =

(σk+1/σ)2, as desired. 
�
Note that the error of classifier w is given by err(w) = θΣ(w,w∗)

π . Therefore Lemma 1
shows that under the margin distribution condition (2), it is possible to approximate w∗

using a low dimensional w∗[k] with small error. We can now prove that:

Theorem 4. Assume that the true separator w∗ with ‖w∗‖2 = 1 satisfies (3). There
exists C s. t. ∀ε, δ > 0, ε < 1/8, using Procedure 4 with bk = 21−kπ

√
5 + ln(1 + k),

b0 = 0, dk = inf{� : sin(2−(k+4)e−b2k−1/2π ≥ σ�+1/σ}, rk = 2−kπ for k > 1, r1 =
π, εk = 2−5/

√
5 + ln(1 + k), and mk = Cε−2

k

(
dk + ln k

δ

)
, after s = �log2

( 1
ε

)
� − 2

iterations, we find a separator with excess error ≤ ε with probability 1 − δ.

Proof. We prove by induction on k that after k ≤ s iterations, err(ŵk) − err(w∗) ≤
2−(k+2) with probability 1 − δ(1 − 1/(k + 1)). Note that by Lemma 1, the choice of
dk ensures that θΣ(w∗, w∗[dk]) ≤ 2−(k+3)π, and thus err(w∗[dk]) ≤ 2−(k+3).

For k = 1, according to Theorem 7, we only need mk = O(dk + ln(k/δ)) examples
to obtain ŵ1 ∈ H[dk] with excess error 2−(k+2) with probability 1−δ/(k+1). Assume
now the claim is true for k − 1 (k ≥ 2). Then at the k-th iteration, we can let S1 =
{x : |ŵk−1 · x| ≤ bk−1} and S2 = {x : |ŵk−1 · x| > bk−1}. By induction hypothesis,
we know that with probability at least 1 − δ(1 − 1/k), ŵk−1 has excess errors at most
2−(k+1), implying θ(ŵk−1, w

∗) ≤ 2−(k+1)π. By assumption, θ(ŵk−1, ŵk) ≤ 2−kπ.
Let β̃ = 2−kπ and use cos β̃/ sin β̃ ≤ 1/β̃ and sin β̃ ≤ β̃, it is easy to verify that the

following inequality holds bk−1 ≥
√

2 sin β̃

√

5 + ln
(

1 +
√

ln(cos β̃/ sin β̃)
)

.

Let P = Prx [(ŵk−1 · x)(ŵk · x) < 0, x ∈ S2], and let (ξ1, ξ2) ∼ N(0, I2×2) and
θ = θΣ(ŵk, ŵk−1). By Lemma 3, we have

P =2 Pr
x

[ξ1 ≤ 0, ξ1 cos(θ) + ξ2 sin(θ) ≥ bk−1]

≤2 Pr
x

[
ξ1 ≤ 0, ξ1 + ξ2 sin(β̃)/ cos(β̃) ≥ bk−1/ cos(β̃)

]

≤ sin β̃

cos β̃

(
1 +

√
ln(cos(β̃)/ sin(β̃))

)
e−b2k−1/(2 sin(β̃)2) ≤

√
2β̃

e5 .

Similarly, we also have Prx [(ŵk−1 · x)(w∗ · x) < 0, x ∈ S2] ≤
√

2β̃
e5 . This implies that

Prx [(ŵk · x)(w∗ · x) < 0, x ∈ S2] ≤ 2
√

2β̃
e5 ≤ 2−(k+3). Now using Lemma 2, we have

err(ŵk) ≤err(ŵk|S1) Pr(S1) + 2−(k+3) ≤ err(ŵk|S1)bk−1/
√

2π + 2−(k+3)

≤2−(k+2)
(
err(ŵk|S1)8

√
5 + ln(1 + k) + 1/2

)
.



Margin Based Active Learning 45

Our choice of dk ensures that err(w∗[dk]|S1) ≤ 2−6/
√

5 + ln k. From Theorem 8,
we know it is possible to choose a constant C such that with mk samples we have
err(ŵk|S1)8

√
5 + ln(1 + k) ≤ 0.5 with probability 1 − δ/(k + k2). Hence err(ŵk) ≤

2−k−2 with probability 1 − δ((1 − 1/k) + 1/(k + k2)) = 1 − δ(1 − 1/(k + 1)). 
�

Input: allowed error rate ε, probab. of failure δ, a sampling oracle for PX , and a labeling oracle
Σ = diag(σ2

1 , . . . , σ2
d), a sequence of sample sizes mk > 0, k ∈ Z+

a sequence of cut-off values bk > 0, k ∈ Z+ and one of hypothesis space radii rk > 0, k ∈ Z+

a sequence of hypothesis space dimensions dk > 0, k ∈ Z+

a sequence precision values εk > 0, k ∈ Z+.
Output: weight vector ŵs of excess error at most ε with probability 1 − δ
Pick random ŵ0: ‖ŵ0‖Σ = 1.
Draw m1 examples from PX , label them and put into a working set W .
iterate k = 1, . . . , s

find ŵk ∈ H[dk] (‖ŵk‖Σ = 1, ‖ŵk − ŵk−1‖Σ ≤ 2(1 − cos(rk))) such that∑
(x,y)∈W I(ŵk · xy) ≤ mkεk,

where H[dk] = {w ∈ Rd : wdk+1 = · · · = wd = 0}
clear the working set W
until mk+1 additional data points are labeled, draw sample x from PX

if |ŵk · x| ≥ bk, reject x
otherwise, ask for label of x, and put into W

end iterate

Fig. 4. Margin-based Active Learning (with low-dimensional approximation)

Using a more refined ratio VC-bound, one can easily improve the choice of mk =
Cε−2

k (dk +ln(k/δ)) to mk = Cε−1
k (dk ln ε−1+ln(k/δ) in Theorem 4. In Algorithm 4,

instead of putting constraint of ŵk using rk, one can also use ŵk−1 to label data x and
put them into the working set W such that |ŵk−1 · x| ≥ bk−1, which introduces error at
most 2−(k+3). One may then train a ŵk using labeled data in W without the constraint
‖ŵk − ŵk−1‖Σ ≤ 2(1 − cos(rk)); the results will be similar.

The sample complexity of Procedure 4 depends on dk which is determined by the
decay of σk instead of d. In particular we can consider a few possible decays with
d = ∞:

– Assume σk ≤ O(2−βk) with constant β > 0, which is the eigenvalue decaying
behavior for exponential kernels. In this case dk is O(k/β). Therefore we only
need mk = O(k2 ln k) examples at each iteration k.

– Assume σk ≤ O(k−β) with constant β > 0, which is the eigenvalue decaying
behavior for spline kernels. In this case dk is O(2k/β). Therefore we need mk =
Õ(2k/β) examples at each iteration k. The total samples needed to achieve accuracy
ε is Õ(ε−1/β). Note that when β > 1, we achieve faster than O(1/ε).

– When the total variation is bounded:
∑

j σ2
j ≤ 1, which means that ‖x‖2 is bounded

on average (corresponding to standard large margin kernel methods with bounded
‖x‖2), then σk ≤ 1/

√
k. Therefore we can take dk = O(22k) and mk = Õ(22k).

The total sample size needed to achieve accuracy ε is Õ(ε−2). The constant will
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depend on the margin σ/
√∑

j σ2
j but independent of the dimensionality d which

is infinity.

6 A General Analysis for Margin Based Active Learning

We show here a general bound for Algorithm 1 based on assumptions about the algo-
rithm A, the sample sizes mk, and the thresholds bk. This is a more abstract version of
the same underlying idea used in proving the results presented earlier in the paper.

Theorem 5. Consider Algorithm 1. Let A be empirical risk minimization algorithm
with respect to the hypothesis space H and assume that given ε, δ > 0, with m ≥
M(H, ε, δ) samples, we have distribution free uniform convergence bound. I.e.:

P
[
supw∈H

∣
∣EI(w · xy ≤ 0) − 1

m

∑m
i=1 I(w · xiyi ≤ 0)

∣
∣ ≤ ε

]
≥ 1 − δ. (4)

Let δ ∈ (0, 1) be the probability of failure. Assume that we ensure that at each stage k:

– Choose margin threshold bk−1 such that with probability 1 − 0.5δ/(k + k2), ∃ŵ∗:
P ((ŵk−1 · x)(ŵ∗ · x) ≤ 0, |ŵk−1 · x| > bk−1) ≤ 2−(k+2) and P (ŵ∗ · xy ≤ 0) ≤
infw∈H err(w) + 2−(k+2).

– Take mk = m̃k − m̃k−1 = M(H, 2−(k+3), 0.5δ/(k + k2)).

Then after s iterations, err(ŵs) ≤ infw∈H err(w)+2−s with probability at least 1− δ.

Proof Sketch: By the assumption on mk, with probability 1 − δ/(k + k2), we have:
err(ŵk) ≤ P (ŵk · xy ≤ 0, x ∈ S1) + P ((ŵk · x)(ŵ∗ · x) ≤ 0, x ∈ S2) + P (ŵ∗ · xy ≤
0, x ∈ S2) ≤ P (ŵk ·xy ≤ 0, x ∈ S1)+P ((ŵk ·x)(ŵk−1 ·x) ≤ 0, x ∈ S2)+P (ŵ∗ ·xy ≤
0, x ∈ S2)+2−(k+2) ≤ P (ŵ∗ ·xy ≤ 0, x ∈ S1)+P ((ŵ∗ ·x)(ŵk−1 ·x) ≤ 0, x ∈ S2)+
P (ŵ∗ ·xy ≤ 0, x ∈ S2)+2 ·2−(k+2) ≤ err(ŵ∗)+3 ·2−(k+2) ≤ infw∈H err(w)+2−k.


�

In order to obtain a robust active learning algorithm that does not depend on the underly-
ing data generation assumptions, one can estimate M(H, ε, δ) using sample complexity
bounds. For example, we have used standard bounds such as Theorem 8 in earlier sec-
tions. A similar approach is taken in [2]. One can also replace (4) with a ratio uniform
convergence bound such similar to the realizable case VC bound in Theorem 7. For
some problems, this may lead to improvements.

In principle, it is also possible to estimate bk using theoretical analysis. We only
need to find bk such that when ŵk · x > bk, no weight vector w can disagree with
ŵk with probability more than 2−(k+3) if err(w) is within 2−k of the optimal value.
However, the computation is more complicated, and requires that we know the under-
lying distribution of x. Note that in the theorems proved in earlier sections, we were
able to estimate bk because specific distributions of x were considered. Without such
knowledge, practitioners often pick bk by heuristics. Picking the right bk is necessary
for achieving good performance in our analysis. One practical solution is to perturb ŵk

(e.g. using bootstrap samples) and find bk such that the perturbed vectors agrees with
ŵk with large probability when ŵk · x > bk. Another possibility is to use a procedure
that tests for the best bk. This is relatively easy to do for realizable problems, as shown
in Figure 5. We can then prove that:
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Theorem 6. Consider Algorithm 5. Let A be the empirical risk minimization algo-
rithm with respect to the hypothesis space H, and assume that ∀ε, δ > 0, with m ≥
M(H, ε, δ) samples we have distribution free uniform convergence bound: i.e. with
probability 1 − δ, ∀w ∈ H, we have both

EI(w · xy ≤ 0) ≤ 2
m

∑m
i=1 I(w · xiyi ≤ 0) + ε and

1
m

∑m
i=1 I(w · xiyi ≤ 0) ≤ 2EI(w · xy ≤ 0) + ε.

Let N(ε, δ) be a distribution free convergence bound for the binary random variables
ξ ∈ {0, 1}: i. e. for m ≥ N(ε, δ) with probability 1 − δ we have both

Eξ ≤ 1.5
m

∑m
i=1 ξi + ε and 1

m

∑m
i=1 ξi ≤ 1.5Eξ + ε.

Let mk = M(H, 2−(k+5), 0.5δ/(k+k2)), nk = N(2−(k+3), 0.25δ/(�k(k+k2))), and
εk = 2−(k+1). Assume also we take bk,�k

s.t. P (ŵk−1 · x ≥ bk,�k
) ≤ 2−(k+5).

If infw∈H I(w ·xy ≤ 0) = 0, then after s iterations, with probability 1− δ, we have:

– At each iteration k ≤ s, before the for loop over q stops: ∀ŵ∗ ∈ H such that
P (ŵ∗·xy ≤ 0) > 2−(k+6): P ((ŵk−1 ·x)(ŵ∗ ·x) ≤ 0, |ŵk−1·x| > bk,q) > 2−(k+6).

– The final error is err(ŵs) ≤ 2−s.

We omit the proof here due to lack of space. Note that Theorem 6 implies that we only
need to label a portion of data, with margins bk,qk

, where qk is the smallest q such that
∃ŵ∗ ∈ H with P (ŵ∗ · xy ≤ 0) ≤ 2−(k+6) and P ((ŵk−1 · x)(ŵ∗ · x) ≤ 0, |ŵk−1 · x| >
bk,q) ≤ 2−(k+6). It does not require us to estimate bk as in earlier theorems. However, it
requires an extra nk labeled data at each iteration to select the optimal margin bk,q . This
penalty is usually small because the testing sample size nk is often significantly smaller
than mk. For example, for d dimensional linear classifiers consider earlier, mk needs to

Input: a learning algorithm A that learns a weight vector from labeled data
a sequence of training sample sizes m1, . . . , ms;
a sequence of validation sample sizes n1, . . . , ns and one of acceptance thresholds ε1, . . . , εs

a sequence of cut-off points {−1 = bk,0 < bk,1 < · · · < bk,�k
} (k = 1, . . . , s)

Output: classifier ŵs

label data points x1, . . . , xm1 by a human expert and use A to learn weight vector ŵ1.
iterate k = 2, . . . , s

generate and label nk samples (x′
1, y

′
1), . . . , (x′

nk
, y′

nk
)

generate mk samples xj with labels yj = sign(ŵk−1 · xj) (j = 1, . . . , mk)
for q = 1, . . . , �k

label yj by a human expert if |ŵk−1 · xj | ∈ (bk,q−1, bk,q] (j = 1, . . . , mk)
use A to learn weight vector ŵk from examples (xj , yj) (j = 1, . . . , mk)
if (error of ŵk on (x′

j , y
′
j) (j = 1, . . . , nk) is less than εk) break

end for
end iterate

Fig. 5. Margin-based Active Learning with Testing
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depend on d but nk can be d-independent. Therefore it is possible to achieve significant
improvement with this testing procedure. Its advantage is that we can choose bk based
on data, and thus the procedure can be applied to distributions that are not uniform.

7 Discussion and Open Problems

While our procedure is computationally efficient in the realizable case, it remains an
open problem to make it efficient in the general case. It is conceivable that for some
special cases (e.g. the marginal distribution over the instance space is uniform, as in
section 4) one could use the recent results of Kalai et. al. for Agnostically Learning
Halfspaces [11]. In fact, it would be interesting to derive precise bounds for the more
general of class of log-concave distributions.

Acknowledgements. We thank Alina Beygelzimer, Sanjoy Dasgupta, Adam Kalai, and
John Langford for a number of useful discussions. Part of this work was done while the
first author was visiting Yahoo! Research.
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A Useful Facts

We state here two standard Sample Complexity bounds [1] and a few useful probability
bounds for standard normal variable.

Theorem 7. Let H be a set of functions from X to {−1, 1} with finite VC-dimension
V ≥ 1. Let P be an arbitrary, but fixed probability distribution over X × {−1, 1}. For
any ε, δ > 0, if we draw a sample from P of size N(ε, δ) = 1

ε

(
4V log

( 1
ε

)
+ 2 log

( 2
δ

))
,

then with probability 1−δ, all hypotheses with error ≥ ε are inconsistent with the data.

Theorem 8. Let H be a set of functions from X to {−1, 1} with finite VC-dimension
V ≥ 1. Let P be an arbitrary, but fixed probability distribution over X×{−1, 1}. There
exists a universal constant C, such that for any ε, δ > 0, if we draw a sample ((xi, yi))i

from P of size N = N(ε, δ) = C
ε2

(
V + log

( 1
δ

))
, then with probability 1 − δ, for all

h ∈ H , we have
∣
∣
∣ 1
N

∑N
i=1 I(h(xi) �= yi) − E(X,Y )I(h(X) �= Y )

∣
∣
∣ ≤ ε.

Lemma 2. Assume x = [x1, x2] ∼ N(0, I2×2), then any given γ1, γ2 ≥ 0, we have
Prx((x1, x2) ∈ [0, γ1] × [γ2, 1]) ≤ γ1

2
√

2π
e−γ2

2/2.

Lemma 3. Assume x = [x1, x2] ∼ N(0, I2×2). For any given γ, β > 0, the following

holds: Prx(x1 ≤ 0, x1 + βx2 ≥ γ) ≤ β
2

(
1 +

√
− ln [min(1, β)]

)
e−γ2/(2β2).

B Probability Estimation in High Dimensional Ball

Consider x = [x1, . . . , xd] ∼ Px uniformly distributed on unit ball in Rd. Let A be an
arbitrary set in R2; we are interested in estimating the probability Prx((x1, x2) ∈ A).
Let Vd be the volume of d-dimensional ball; we know Vd = πd/2/Γ (1+ d/2) where Γ
is the Gamma-function. In particular Vd−2/Vd = d/(2π). It follows:

Pr
x

((x1, x2) ∈ A) =
Vd−2

Vd

∫

(x1,x2)∈A

(1 − x2
1 − x2

2)
(d−2)/2dx1dx2 =

d

2π

∫

(x1,x2)∈A

(1 − x2
1 − x2

2)
(d−2)/2dx1dx2 ≤ d

2π

∫

(x1,x2)∈A

e−(d−2)(x2
1+x2

2)/2dx1dx2.

where we use the inequality (1 − z) ≤ e−z .

Lemma 4. Let d ≥ 2 and let x = [x1, . . . , xd] be uniformly distributed in the d-
dimensional unit ball. Given γ1 ∈ [0, 1], γ2 ∈ [0, 1], we have:

Prx((x1, x2) ∈ [0, γ1] × [γ2, 1]) ≤ γ1
√

d
2
√

π
e−(d−2)γ2

2/2.

Proof. Let A = [0, γ1] × [γ2, 1]. We have
Prx((x1, x2)∈A) ≤ d

2π

∫

(x1,x2)∈A

e−(d−2)(x2
1+x2

2)/2dx1dx2 ≤ γ1d
2π

∫

x2∈[γ2,1]
e−(d−2)x2

2/2dx2

≤ γ1d
2π e−(d−2)γ2

2/2
∫

x∈[0,1−γ2)
e−(d−2)x2/2dx ≤ γ1d

2π e−(d−2)γ2
2/2 min

[
1 − γ2,

√
π

2(d−2)

]
.

Note that when d ≥ 2, min(1,
√

π/(2(d − 2))) ≤
√

π/d. 
�
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Lemma 5. Assume x = [x1, . . . , xd] is uniformly distributed in the d-dimensional unit
ball. Given γ1 ∈ [0, 1], we have Prx(x1 ≥ γ1) ≤ 1

2e−dγ2
1/2.

Proof. Let A = [γ1, 1] × [−1, 1]. Using a polar coordinate transform, we have:
Prx((x1, x2) ∈ A) = d

2π

∫
(x1,x2)∈A

(1 − x2
1 − x2

2)
(d−2)/2dx1dx2 =

d
2π

∫
(r,r cos θ)∈[0,1]×[γ1,1](1 − r2)

d−2
2 rdrdθ = 1

2π

∫
(r,r cos θ)∈[0,1]×[γ1,1] dθd(1 − r2)

d
2

≤ 1
2π

∫
(r,θ)∈[γ1,1]×[−π/2,π/2] dθd(1 − r2)d/2 = 0.5(1 − γ2

1)d/2 ≤ 1
2e−dγ2

1/2. 
�

Lemma 6. Let d ≥ 4 and let x = [x1, . . . , xd] be uniformly distributed in the d-
dimensional unit ball. Given γ, β > 0, we have:

Prx(x1 ≤ 0, x1 + βx2 ≥ γ) ≤ β
2 (1 +

√
− lnmin(1, β))e−dγ2/(4β2).

Proof. Let α = β
√

−2d−1 ln min(1, β), we have:
Prx(x1 ≤ 0, x1 + βx2 ≥ γ)

≤ Prx(x1 ≤ −α, x1 + βx2 ≥ γ) + Prx(x1 ∈ [−α, 0], x1 + βx2 ≥ γ)
≤ Prx(x1 ≤ −α, x2 ≥ (α + γ)/β) + Prx(x1 ∈ [−α, 0], x2 ≥ γ/β)
≤ 1

2 Prx(x2 ≥ (α + γ)/β) + Prx(x1 ∈ [0, α], x2 ≥ γ/β)
≤ 1

4e−d(α+γ)2/(2β2) + α
√

d
2
√

π
e−dγ2/(4β2)

≤
[

1
4e

− dα2

2β2 + α
√

d
2
√

π

]
e
− dγ2

4β2 =
[

min(1,β)
4 + β

√
−2 ln min(1,β)

2
√

π

]
e
−dγ2

4β2 . 
�

Lemma 7. Let u and w be two unit vectors in Rd, and assume that θ(u, w) ≤ β̃ < π/2.
Let d ≥ 4 and let x = [x1, . . . , xd] be uniformly distributed in the d-dimensional unit

ball. Consider C > 0, let γ = 2 sin β̃√
d

√

ln C + ln
(

1 +
√

ln max(1, cos β̃/ sin β̃)
)

.

Then Prx [(u · x)(w · x) < 0, |w · x| ≥ γ] ≤ sin β̃

C cos β̃
.

Proof. We rewrite the desired probability as 2 Prx [w · x ≥ γ, u · x < 0] . W.l.g., let
u = (1, 0, 0, ..., 0) and w = (cos(θ), sin(θ), 0, 0, ..., 0). For x = [x1, x2, ..., xd] we
have u·x = x1 and w·x = cos(θ)x1+sin(θ)x2. Using this representation and Lemma 6,
we obtain Prx [w · x ≥ γ, u · x < 0] = Prx[cos(θ)x1 + sin(θ)x2 ≥ γ, x1 < 0] ≤
Prx

[
x1 + sin(β̃)

cos(β̃)
x2 ≥ γ

cos(β̃)
, x1 < 0

]
≤ sin β̃

2 cos β̃

(
1 +

√
ln max(1, cos β̃

sin β̃

)
e
− dγ2

4 sin2 β̃ =
sin β̃

2 cos β̃
C−1, as desired. 
�
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