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Abstract. We consider the stability of k-means clustering problems.
Clustering stability is a common heuristics used to determine the num-
ber of clusters in a wide variety of clustering applications. We continue
the theoretical analysis of clustering stability by establishing a complete
characterization of clustering stability in terms of the number of optimal
solutions to the clustering optimization problem. Our results complement
earlier work of Ben-David, von Luxburg and Pál, by settling the main
problem left open there. Our analysis shows that, for probability distri-
butions with finite support, the stability of k-means clusterings depends
solely on the number of optimal solutions to the underlying optimization
problem for the data distribution. These results challenge the common
belief and practice that view stability as an indicator of the validity, or
meaningfulness, of the choice of a clustering algorithm and number of
clusters.

1 Introduction

Clustering is one of the most widely used techniques for exploratory data analy-
sis. Across all disciplines, from social sciences over biology to computer science,
people try to get a first intuition about their data by identifying meaningful
groups among the data points. Despite this popularity of clustering, distress-
ingly little is known about theoretical properties of clustering [11]. In particular,
two central issues, the problem of assessing the meaningfulness of a certain clus-
ter structure found in the data and the problem of choosing k—the number of
clusters—which best fits a given data set are basically unsolved.

A common approach to provide answers to these questions has been the no-
tion of clustering stability. The intuitive idea behind that method is that if we
repeatedly sample data points and apply the clustering algorithm, then a “good”
algorithm should produce clusterings that do not vary much from one sample
to another. In other words, the algorithm is stable with respect to input ran-
domization. In particular, stability is viewed as an indication whether the model
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proposed by some algorithm fits the data or not. For example, if our data con-
tains three “true” clusters, but we use a clustering algorithm which looks for
four clusters, the algorithm wrongly needs to split one of the clusters into two
clusters. Which of the three true clusters are split might change from sample to
sample, and thus the result will not be very stable. Based on such intuitive con-
siderations, stability is being widely used in practical applications as a heuristics
for tuning parameters of clustering algorithms, like the number of clusters, or
various stopping criteria, see for example [7], [4], [5], [6].

Aiming to provide theoretical foundations to such applications of stability,
Ben-David et al. [3] have set forward formal definitions for stability and some
related clustering notions and used this framework to embark on mathemati-
cal analysis of stability. Their results challenge these heuristics by showing that
stability is determined by the structure of the set of optimal solutions to the
risk minimization objective. They postulate that stability is fully determined
by the number of distinct clusterings that minimize the risk objective function.
They show that the existence of a unique minimizer implies stability. As for
the reverse implication, they show that if the probability distribution generat-
ing the data has multiple minimizing clusterings, and is symmetric with respect
to these clusterings then it is unstable. They conjecture that their symmetry
condition is not necessary, and that the mere existence of multiple minimizers
already implies instability. The main result in this paper is proving this con-
jecture for k-means clustering over finite-support probability distributions. We
believe that our proofs, and therefore our main result, can be generalized to
other risk minimization clustering problems.

These results indicate that, contrary to common belief and practice, stability
may not reflect the validity or meaningfulness of the choice of the number of
clusters. Instead, the parameters it measures are rather independent of clustering
parameters. Our results reduce the problem of stability estimation to concrete
geometric properties of the data distribution.

Using our characterization of stability, one can readily construct many ex-
ample data distributions in which bad choices of the number of clusters result
in stability while, on the other hand, domain partitions reflecting the true basic
structure of a data set result in instability. As an illustration of these phenomena,
consider the following simple data probability distribution P over the unit inter-
val: For some large enough N , the support of P consists of 2N equally weighted
points, N of which are equally spaced over the sub-interval A = [0, 2a] and N
points are equally spaced over the sub-interval B = [1 − a, 1], where a < 1/3.
First, let us consider k, the number of target centers, to be 2. It is not hard to
see that for some value of a < 1/3 two partitions, one having the points in A as
one cluster and the points in B as its second cluster, and the other having as one
cluster only the points in some sub-interval [0, 2a − ε] and the remaining points
as its second cluster, must have the same 2-means cost. It follows from our result
that although 2 is the ’right’ number of clusters for this distribution, the choice
of k = 2 induces instability (note that the value of ε and a remain practically
unchanged for all large enough N). On the other hand, if one considers, for the
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same value of a, k = 3, 3-means will have a unique minimizing solution (having
the points in the intervals [0, a], [a, 2a] and [1 − a, 1] as its clusters) and there-
fore be stable, leading the common heuristics to the conclusion that 3 is a good
choice as the number of clusters for our data distributions (and, in particular,
a better choice than 2). Note that, in this example, the data distribution is not
symmetric, therefore, its instability for 2-means could not be detected by the
previously known stability analysis.

The question of the practical value of stability as a clustering evaluation
paradigm is intriguing and complex, we shall discuss it some more (without
claiming to resolve it) in the Conclusion (Section 6 below).

The term “stability” is used for a variety of meanings in the clustering lit-
erature, not all of which are equivalent to our use of the term. In particular,
note that the recent work of Rakhlin et al [10], considers a different notion of
stability (examining the effect of replacing a small fraction of a clustering sam-
ple, as opposed to considering a pair of independent samples, as we do here).
They investigate the relative size of a sub-sample that may be replaced without
resulting in a big change of the sample clustering and show a bound to that size.
Smaller sub-samples are proven to have small effect on the resulting clustering,
and for larger fractions, they show an example of “instability”.

Here, we analyze the expected distance between clusterings resulting form
two independent samples. We define stability as having this expected distance
converge to zero as the sample sizes grow to infinity.

Our main result is Theorem 4, in which we state that the existence of multiple
optimal-cost clusterings implies instability. We formally state it in Section 3.
Since its proof is lengthy, we first outline it, in Section 4. The technical lemmas
are stated formally, and some of them are proved in Section 5. Proofs of the rest
of the lemmas can be found in the extended version [1] available online. Section
2 is devoted to setting the ground in terms of definitions notation and basic
observations.

2 Definitions

In the rest of the paper we use the following standard notation. We consider
a data space X endowed with probability measure P . A finite multi-set S =
{x1, x2, . . . , xm} of X is called a sample. When relevant, we shall assume that
samples are drawn i.i.d from (X, P ). We denote by Ŝ the uniform probability
distribution over the sample S.

A clustering C of a set X is a finite partition C, of X (namely, an equivalence
relation over X with a finite number of equivalence classes). The equivalence
classes of a clustering are called clusters. We introduce the notation x ∼C y
whenever x and y lie in the same cluster of C, and x �C y otherwise. If the
clustering is clear from the context we drop the subscript and simply write
x ∼ y or x � y.

A function A, that for any given finite sample S ⊂ X computes a clustering
of X , is called a clustering algorithm (in spite of the word ’algorithm’, we ignore
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any computability considerations). Note that this definition differs slightly from
some common usage of “clustering algorithms” in which it is assumed that the
algorithm outputs only a partition of the input sample.

In order to define the stability of a clustering algorithm we wish to measure
by how much two clusterings differ. Given a probability distribution P over X ,
we define the P -Hamming clustering distance between two clusterings C and D

as
dP (C, D) = Pr

x∼P
y∼P

[(x ∼C y) ⊕ (x ∼D y)] ,

where ⊕ denotes the logical XOR operation. In other words, dP (C, D) is the P -
probability of drawing a pair of points on which the equivalence relation defined
by C differs from the one defined by D. Other definitions of clustering distance
may also be used, see [3] and [8]. However, the Hamming clustering distance is
conceptually the simplest, universal, and easy to work with. For a probability
distribution P with a finite support, the Hamming distance has the additional
property that two clusterings have zero distance if and only if they induce the
same partitions of the support of P . We shall thus treat clusterings with zero
Hamming clustering distance as equal.

The central notion of this paper is instability:

Definition 1 (Instability). The instability of a clustering algorithm A with
respect to a sample size m and a probability distribution P is

Instability(A, P, m) = E

S1∼P m

S2∼P m

dP (A(S1), A(S2)).

The instability of A with respect to P is

Instability(A, P ) = lim
m→∞ Instability(A, P, m).

We say that an algorithm A is stable on P , if Instability(A, P ) = 0, otherwise
we say that A is unstable.

A large class of clustering problems aim to choose the clustering by minimizing
some risk function. We call these clustering optimization problems.

Definition 2 (Risk Minimization Clustering Problems)

– A clustering risk minimization problem is a quadruple (X, L, P, R), where
X is some domain set, L is a set of legal clusterings of X, P is a set of
probability distributions over X, and R : P × L → R+

1 is an objective
function (or risk) that the clustering algorithm aims to minimize.

– An instance of the risk minimizing problem is a concrete probability distri-
bution P from P. The optimal cost opt(P ) for an instance P , is defined as
opt(P ) = infC∈L R(P, C).

1 We denote by R+ the set of non-negative real numbers, and by R++ the set of
positive real numbers.
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– For a sample S ⊆ X, we call R(Ŝ, C) the empirical risk of C with respect to
the sample S.

– A risk-minimizing (or R-minimizing) clustering algorithm is an algorithm
that for any sample S, has R(Ŝ, A(S)) = opt(Ŝ). For all practical purposes
this requirement defines A uniquely. We shall therefore refer to the risk-
minimizing algorithm.

Given a probability distribution P over some Euclidean space X ⊆ R
d and a

clustering C of X with clusters C1, C2, . . . , Ck, let c1, c2, . . . , ck be the P -centers
of mass of the clusters Ci. Namely, ci = Ex∼P [x|x ∈ Ci], and, for every x ∈ X ,
let cx denote the center of mass of the class to which x belongs. The k-means
risk R is defined as

R(P, C) = E

x∼P
‖x − cx‖2

2 . (1)

In many cases, risk minimizing algorithms converge to the true risk as sample
sizes grow to infinity. For the case of k-mean and k-medians on bounded subset
of R

d with the Euclidean metric, such convergence was proved by Pollard [9],
and uniform, finite-sample rates of convergence were shown in [2].

Definition 3 (Uniform Convergence). Let P be a probability distribution.
The risk function R converges uniformly if for any positive ε and δ, there exists
sample size m0 such that for all m > m0

Pr
S∼P m

[
∀C ∈ S |R(Ŝ, C) − R(P, C)| < ε

]
> 1 − δ .2

3 Stability of Risk Optimizing Clustering Algorithms

Informally speaking, our main claim is that the stability of the risk minimizing
algorithm with a uniformly converging risk function is fully determined by the
number of risk optimal clusterings. More concretely, a risk-minimizing algorithm
is stable on an input data distribution P , if and only if P has a unique risk
minimizing clustering. We prove such a result for the k-means clustering problem

The first step towards such a characterization follows from Pollard [9]. He
proves that the existence of a unique k-means minimizing clustering (for a P ’s
with bounded support over Euclidean spaces) implies stability. Ben-David et al,
[3] extended this result to a wider class of clustering problems.

As for the reverse implication, [3] shows that if P has multiple risk-minimizing
clusterings, and is symmetric with respect to these clusterings, then it is unsta-
ble. Where symmetry is defined as an isometry g : X → X of the underly-
ing metric space (X, �) which preserves P (that is, for any measurable set A,
Prx∼P [x ∈ A] = Prx∼P [g(x) ∈ A]), and the clustering distance and the risk
function are invariant under g. Note that the k-means risk function and the

2 Here m0 can also depend on P , and not only on ε and δ. The uniform convergence
bound proved in [2] is a stronger in this sense, since it expresses m0 as a function of
ε and δ only and holds for any P .
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Hamming clustering distance are invariant under any such symmetry. See [3] for
details.

Ben-David et al [3] conjecture that symmetry is not a necessary condition.
Namely, that the mere existence of multiple risk-minimizing clusterings suffices
for instability. In this paper we prove that this conjecture holds for k-means
clustering over finite-support probability distributions.

Theorem 4. Let P be a probability distribution over the Euclidean space R
d with

a finite support. Then, the k-means risk-minimizing algorithm is stable on P if
and only if there exist unique clustering minimizing the k-means risk function
R(P, ·).

The next section outlines the proof. In Section 5 we follow that outline with
precise statements of the needed technical lemmas and some proofs. Some of the
proofs are omitted and can be found in the extended version [1] available online.

4 Proof Outline

A finite-support probability distribution may be viewed as a vector of weights.
Similarly, any finite sample over such a domain can be also described by a similar
relative frequency vector. We view the clustering problem as a function from
such vectors to partitions of the domain set. Loosely speaking, having multiple
optimal clusterings for some input distribution, P , say, C1, C2, . . .Ch, we consider
the decision function that assigns each sample-representing vector to the index
i ∈ {1, . . . h} of its optimal solution. (Note that due to the uniform convergence
property, for large enough samples, with high probability, these sample based
partitions are among the actual input optimal clusterings.) We analyze this
decision function and show that, for large enough sample sizes, none of its values
is obtained with probability 1. This implies instability, since having two different
partitions, each with non-zero probability, implies a non-zero expectation of the
distance between sample-generated clustering solutions.

To allow a more detailed discussion we need some further notation.
Let F = {x1, x2, . . . , xn} be the support of P with P ({xi}) = μi > 0 for all

i = 1, 2, . . . , n and μ1 + μ2 + · · · + μn = 1. Let

μ = (μ1, μ2, . . . , μn).

If n ≤ k or k ≤ 1 there is a trivial unique minimizer. Hence we assume that
n > k ≥ 2.

For a sample S of size m, we denote the number of occurrences of the point
xi in S by mi, and use wi = mi/m to denote the empirical frequency (weight) of
the point xi in the sample. The sample is completely determined by the vector
of weights

w = (w1, w2, . . . , wn) .

Since the support of P is finite, there are only finitely many partitions of F .
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A partition, C, is called optimal if its risk, R(P, C) equals opt(P ). A partition
is called empirically optimal for a sample S, if its empirical risk, R(Ŝ, C) equals
opt(Ŝ). We shall freely replace Ŝ with its weight vector w, in particular, we
overload the notation and write R(w, C) = R(Ŝ, C).

Consider a pair of distinct optimal partitions C and D. For weights w con-
sider the empirical risk, R(w, C), of the partition C on a sample with weights
w. Likewise, consider the empirical risk R(w, D). The k-means risk minimizing
algorithm “prefers” C over D when R(w, C) < R(w, D). We consider the set of
weights

Q = {w ∈ R
n
++ | R(w, C) < R(w, D)} ,

where, R++ denotes the set of (strictly) positive real numbers. We allow Q to
contain weight vectors w having arbitrary positive sum of weights, w1 + w2 +
· · · + wn, not necessarily equal to one. Due to the homogeneity of the k-means
risk as a function of the weights, weight vectors of arbitrary total weight can be
rescaled to probability weights without effecting the risk preference between two
clusterings (for details see the proof Lemma 13). This relaxation simplifies the
analysis.

Step 1: We analyze the set Q in a small neighborhood of μ. In Lemma 12, we
show that Q contains an open cone T with peak at μ. The proof of the
Lemma consists of several smaller steps.
(a) We first define the function f : R

n → R, f(w) = R(w, D)−R(w, C).
In this notation Q = {w | f(w) > 0}. Note the important fact that
f(μ) = 0. We analyze the behavior of f near μ.

(b) From Observation 5 it follows that R(w, C) is a rational function of
w. Then, in Lemma 6, we compute the Taylor expansion of R(w, C)
at the point μ.

(c) In Lemma 10 we show that the first non-zero term in the Taylor ex-
pansion of f attains both positive and negative values, and thus f
itself attains both positive and negative values arbitrarily close to μ.

(d) We show that, since f is rational and hence analytic in the neighbor-
hood of μ, it follows that Q contains a cone T whose peak is at μ.

Step 2: Consider the hyperplane

H = {w ∈ R
n | w1 + w2 + · · · + wn = 1}

in which the weights actually lie. In Lemma 13 we show that Q ∩ H
contains an (n − 1)-dimensional open cone Y .

Step 3: The distribution of the random vector w describing the sample is a
multinomial distribution with m trials. From central limit theorem it
follows that as the sample size m approaches infinity the probability
distribution of w can be approximated by a multivariate Gaussian dis-
tribution lying in H . The Gaussian distribution concentrates near its
mean value μ as the sample size increases. The shape of Q near μ de-
termines the probability that the algorithm prefers partition C over D.
Formally, in Lemma 14 we show that limm→∞ Pr[w ∈ Y ] > 0; hence
limm→∞ Pr[w ∈ Q] > 0.
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Step 4: For sufficiently large sample sizes the partition of F output by the algo-
rithm is, with high probability, one of the optimal partitions. From the
previous step it follows that with non-zero probability any optimal par-
tition has lower empirical risk than any other optimal partition. Hence,
there exist at least two optimal partitions of F , such that each of them
is empirically optimal for a sample with non-zero probability. These
two partitions cause instability of the algorithm. A precise argument is
presented in Lemma 15.

5 The Technical Lemmas

Observation 5 (Explicit Risk Formula). For a partition C and a weight
vector w,

R(w, C) =
k∑

i=1

∑
xt∈Ci

wt

∥∥∥∥∥∥∥∥
xt −

∑
xs∈Ci

wsxs

∑
xs∈Ci

ws

∥∥∥∥∥∥∥∥

2

2

, (2)

where C1, C2, . . . , Ck are the clusters of C. Therefore R(w, C) is a rational func-
tion of w.

Proof. This is just a rewriting of the definition of the k-means cost function for
the case of a finite domain. We use weighted sums expressions for the expecta-
tions and

ci =

∑
xs∈Ci

wsxs∑
xs∈Ci

ws

to calculate the centers of mass of the clusters. �
Lemma 6 (Derivatives of f). Let C be a partition of the support of P . The
first two derivatives of the risk function R(w, C) with respect to w at μ are as
follows.

1. The gradient is

(∇R(μ, C))p =
∂R(w, C)

∂wp

∣∣∣∣
w=μ

= ‖c� − xp‖2
2 ,

assuming that xp lies in the cluster C�.
2. The (p, q)-th entry of the Hessian matrix

(
∇2R(μ)

)
p,q

=
∂2R(w, C)
∂wp∂wq

∣∣∣∣
w=μ

equals to

−2
(c� − xp)T (c� − xq)∑

xs∈C�

μs

if xp, xq lie in a common cluster C�, and is zero otherwise.
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Here, c1, c2, . . . , ck are the optimal centers ci =
(∑

xs∈Ci
μsxs

)
/

(∑
xs∈Ci

μs

)
,

and C1, C2, . . . , Ck ⊆ F are the clusters of C.

Proof. Straightforward but long calculation, starting with formula (2). See the
extended version paper [1] available online. �

Lemma 7 (Weights of Clusters). Let C and D be two partitions of F . Con-
sider the weights μ assigned to points in F . Then, either for every point in F
the weight of its cluster in C is the same as the weight of its cluster in D. Or,
there are two points in F , such that the weight of the cluster of the first point in
C is strictly larger than in D, and the weight of the cluster of the second point
in C is strictly smaller than in D.

Proof. For any point xt ∈ F let at =
∑

xs∈Ci
μs be the weight of the clus-

ter Ci in which xt lies in the partition C. Likewise, let bt =
∑

xs∈Dj
μs be

the weight of the cluster Dj in which xt lies in the clustering D. Consider
the two sums

∑n
t=1

μt

at
and

∑n
t=1

μt

bt
. It easy to see that the sums are equal,∑n

t=1
μt

at
=

∑k
i=1

∑
xt∈Ci

μt

at
= k =

∑k
i=1

∑
xt∈Di

μt

bt
=

∑n
t=1

μt

bt
. Either all the

corresponding summands μt/at and μt/bt in the two sums are equal and hence
at = bt for all t. Or, there exist points xt and xs such that μt/at < μt/bt and
μs/as > μs/bs, and hence at > bt and as < bs. �

Lemma 8 (No Ties). Let C be an optimal partition and let c1, c2, . . . , ck be the
centers of mass of the clusters of C computed with respect to the weight vector μ.
Then, for a point x of the support lying in a cluster Ci of C, the center of mass
ci is strictly closer to x than any other center.

Proof. Suppose that the distance ‖cj − x‖2, j �= i, is smaller or equal to the
distance ‖ci − x‖. Then, we claim that moving the point x to the cluster Cj

decreases the risk. After the move of x, recompute the center of Ci. As a result
the risk strictly decreases. Then recompute the center of mass of Cj , the risk
decreases even more. �

Lemma 9 (Hessian determines Clustering). For partitions C, D of the sup-
port of P , the following holds. If the Hesse matrices of the risk functions R(w, C)
and R(w, D), respectively, coincide at μ, then C = D.

Proof. For sake of brevity, let

Ap,q :=
∂2R(w, C)
∂wp∂wq

∣∣∣∣
w=μ

.

It suffices to show that centers c1, c2, . . . , ck of partition C are uniquely deter-
mined by matrix A. To this end, we view A as the adjacency matrix of a graph
G with nodes x1, x2, . . . , xn, where nodes xp, xq are connected by an edge if and
only if Ap,q �= 0. Let K1, K2, . . . , K� be the connected components of G. Note
that there is an edge between xp and xq only if p and q belong to the same cluster
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in C. Thus, the connected components of G represent a refinement of partition
C. Consider a fixed cluster Cj in C with center cj . Recall that

cj =
∑

xi∈Cj

μixi . (3)

Let K ⊆ Cj be any connected component of G that is contained in Cj and
define, for sake of brevity, μ(K) :=

∑
xi∈C μi and K ′ = Cj \ K. We claim that

cj =
1

μ(K)

∑
xi∈K

μixi , (4)

that is, cj is determined by any component K ⊆ Cj . Since this is obvious for
K = Cj , we assume that K � Cj . We can rewrite (3) as

0 =

( ∑
xi∈K

μi(xi − cj)

)
+

⎛
⎝ ∑

xi′∈K′

μi′(xi′ − cj)

⎞
⎠ . (5)

Pick any pair i, i′ such that xi ∈ K and xi′ ∈ K ′. Since xi and xi′ are not
neighbors in G, Ai,i′ = 0, which means that xi − cj is orthogonal to xi′ − cj .
Thus the vector represented by the first sum in (5) is orthogonal on the vector
represented by the second sum. It follows that both sums yield zero, respectively.
Rewriting this for the first sum, we obtain (4). �
Lemma 10 (Indefinitness). Let C and D be any two optimal partitions. Let
f(w) = R(w, D)−R(w, C). Consider the Taylor expansion of f around μ. Then,
∇f(μ) �= 0 or the Hessian, ∇2f(μ), is indefinite.3

Proof. We denote by C1, C2, . . . , Ck ⊆ F the clusters of C and by D1, D2, . . . ,
Dk ⊆ F the clusters of D. We denote by c1, c2, . . . , ck the optimal centers for
C, and by d1, d2, . . . , dk the optimal centers for D. That is, the center ci is the
center of mass of Ci, and dj is the center of mass of Dj .

Consider the Taylor expansion of f at μ. Lemma 9 implies that the Hessian,
∇2f(μ), is not zero. Assuming ∇f(μ) = 0 i.e. ∇R(μ, C) = ∇R(μ, D), we need to
show that ∇2f(μ) is indefinite.

For any point xp ∈ F we define three numbers ep, ap and bp as follows. Suppose
xp ∈ C� and xp ∈ D�′ . The first part of the Lemma 6 and ∇R(μ, C) = ∇R(μ, D)
imply that the distance between xp and c� equals to the distance between xp

and d�′ ; denote this distance by ep. Denote by ap the weight of the cluster C�,
that is, ap =

∑
xt∈C�

μt. Likewise, let bp be the weight of the cluster D�′ , that
is, bp =

∑
xt∈D�′ μt.

Consider the diagonal entries of Hessian matrix of f . Using the notation we
had just introduced, by the second part of the Lemma 6 the (p, p)-th entry is

(∇2f(μ))p,p =
(

∂2R(w, D)
∂w2

p

− ∂2R(w, C)
∂w2

p

) ∣∣∣∣
w=μ

= 2e2
p

(
1
ap

− 1
bp

)
.

3 A matrix is indefinite if it is neither positively semi-definite, nor negatively semi-
definite.
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We claim that if ep = 0, then ap = bp. Let xp ∈ C� ∩D�′ , and suppose without
loss of generality that ap > bp. Since ep = 0 it is xp = c� = d�′ . Since ap > bp

there is another point xq that causes the decrease of the weight the cluster C�.
Formally, xq ∈ C�, xq �∈ D�′ , but xq ∈ D�′′ . This means that in D the point xq

is closest to both d�′ and d�′′ . By Lemma 8, a tie can not happen in an optimal
partition, which is a contradiction.

By Lemma 7, either (a) for all indices p, ap = bp, or (b) there are indices i, j
such that ai > bi and aj < bj. In the subcase (a), all the diagonal entries of
Hessian matrix are zero. Since the Hessian matrix is non-zero, there must exist
a non-zero entry off the diagonal making the matrix is indefinite. In the subcase
(b), the above claim implies that the indices i, j for which ai > bi and aj < bj

are such that ei, ej > 0. Hence, the (i, i)-th diagonal entry of the Hessian matrix
is negative, and the (j, j)-the diagonal entry of the Hessian matrix is positive.
Therefore the Hessian matrix is indefinite. �

Corollary 11. There exists arbitrarily small δ ∈ R
n, f(μ + δ) > 0 (and simi-

larly, there exists arbitrarily small δ′, f(μ + δ′) < 0).

Proof. Consider the Taylor expansion of f at μ and its lowest order term T (x−μ).
that does not vanish (according to Lemma 10, either the gradient or the Hessian).
Since T can take values of positive and of negative sign (obvious for the gradient,
and obvious from Lemma 10 for the Hessian), we can pick a vector x = μ + δ
such that T (x − μ) = T (δ) > 0. Since T is homogeneous in δ, T (λδ) > 0 for
every λ > 0. If λ is chosen sufficiently small, then f(μ + λδ) has the same sign
as T (λδ). The considerations for negative sign are symmetric. �

Lemma 12 (Existence of a Positive Open Cone). There exist positive real
numbers ε and δ, and a unit vector u ∈ R

n such that the open cone

T =
{

w ∈ R
n
++

∣∣∣∣ 0 < ‖w − μ‖2 < ε,
uT (w − μ)
‖w − μ‖2

> 1 − δ

}

is contained in Q, the set of weights for which R(w, C) < R(w, D).

Proof. Let h be the order of the first non-zero term in the Taylor expansion
of f(μ + u) around μ (as a multi-variate polynomial in u). Using Corollary 11,
pick a vector u so that f(μ + u) > 0 and, for some η > 0, for every v in the
η-ball around u, that term of the Taylor expansion of f(μ + u) dominates the
higher order terms. The existence of such a ball follows from the smoothness
properties of f . Note that this domination holds as well for any f(μ + λv) such
that 0 < λ ≤ 1.

Let δ be the supremum, over the vectors v in the η-ball, of the expression
1 − (uT v)/‖v‖2. (That is, 1 − δ is the infimum of the cosines of the angles
between u and v’s varying over the η-ball.) And let ε = η.

For the vectors v, by the Taylor expansion formula, λv, sign(f(μ + λv)) =
sign(f(μ+v)) = sign(f(μ+u)) > 0. Hence, all the points of the form w = μ+λv
contain the cone sought. �
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Lemma 13 (Existence of a Positive Open Cone II). There exists positive
real numbers ε, δ and a unit vector u ∈ R

n with sum of coordinates, u1 + u2 +
· · · + un, equal to zero, such that the (n − 1)-dimensional open cone

Y =
{

w ∈ H ∩ R
n
++

∣∣∣∣ 0 < ‖w − μ‖2 < ε,
uT (w − μ)
‖w − μ‖2

> 1 − δ

}

is contained in Q ∩ H.

Proof. We use the projection φ : R
n
++ → H , φ(w) = w/(w1 + w2 + · · · + wn).

Note that for the k-means cost function, for every clustering C and every positive
constant λ, R(λw, C) = λR(w, C). It follows that the projection φ does not affect
the sign of f . That is, sign(f(w)) = sign(f(φ(w))). Therefore Q∩H = φ(Q) ⊂ Q.
The projection φ(T ) clearly contains an (n − 1)-dimensional open cone Y of the
form as stated in the Lemma. More precisely, there exists positive numbers ε, δ
and unit vector u (the direction of the axis of the cone), such that the cone

Y := Yε,δ,u =
{

w ∈ H ∩ R
n
++

∣∣∣∣ 0 < ‖w − μ‖2 < ε,
uT (w − μ)
‖w − μ‖2

> 1 − δ

}

is contained in φ(T ). Since the cone Y lies in H , the direction of the axis, u, can
be picked in such way that the sum of its coordinates u1 + u2 + · · · + un is zero.
Since T ⊆ Q, we get Y ⊂ φ(T ) ⊂ φ(Q) = Q ∩ H . �

Lemma 14 (Instability). Let C and D be distinct optimal partitions. Let Q
be the set of weights where the k-means clustering algorithm prefers C over D.
Then, limm→∞ Pr [w ∈ Q] > 0.

Proof. Let Y ⊂ (Q ∩ H) be an (n − 1)-dimensional open cone (as implied by
lemma 13) lying in the hyperplane H defined by the equation w1+w2+· · ·+wn =
1. We show that,

lim
m→∞Pr [w ∈ Y ] > 0 ,

which implies the claim.
We have

Pr[w ∈ Y ] = Pr
[
uT (w − μ)
‖w − μ‖2

> 1 − δ, 0 < ‖w − μ‖2 < ε

]

= Pr
[
uT (

√
m(w − μ))√

m‖w − μ‖2
> 1 − δ, 0 <

√
m‖w − μ‖2 < ε

√
m

]
.

By the central limit theorem
√

m(w − μ) weakly converges to a normally dis-
tributed random variable Z ∼ N(0, Σ), where Σ is the covariance matrix.4 In
particular this means that there is a sequence {ζm}∞m=1, ζm → 0, such that

4 Σ = diag(μ1, μ2, . . . , μn) − μμT , the rank of Σ is n − 1, and its rows (or columns)
span the (n − 1)-dimensional vector space {u ∈ R

n | u1 + u2 + · · · + un = 0}.
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∣∣∣∣∣Pr
[
uT (

√
m(w − μ))√

m‖w − μ‖2
> 1 − δ, 0 <

√
m‖w − μ‖2 < ε

√
m

]

− Pr
[

uT Z

‖Z‖2
> 1 − δ, 0 < ‖Z‖2 < ε

√
m

] ∣∣∣∣∣ < ζm

Consequently, we can bound the probability Pr[w ∈ Y ] as

Pr[w ∈ Y ] ≥ Pr
[

uT Z

‖Z‖2
> 1 − δ, 0 < ‖Z‖2 < ε

√
m

]
− ζm

≥ 1 − Pr
[

uT Z

‖Z‖2
< 1 − δ

]
− Pr

[
‖Z‖2 ≥ ε

√
m

]
− Pr [‖Z‖2 = 0] − ζm .

Take the limit m → ∞. The last three terms in the last expression vanish. Since
u has sum of its coordinates zero and Z ∼ N(0, Σ) is normally distributed, the
term limm→∞ Pr

[
uT Z
‖Z‖2

< 1 − δ
]

lies in (0, 1). �

Lemma 15 (Multiple Optimal Partitions). If there are at least two optimal
partitions of the support F , then the k-means algorithm is unstable.

Proof. Let C1, C2, . . . , Ch, h ≥ 2, be the optimal partitions. Suppose that

lim
m→∞Pr[A(S) = Ci] = πi ,

where by the event A(S) = Ci we mean that the k-means algorithm on the
sample S outputs the partition Ci of the support.

Claim: Each number πi is strictly less than one.
Proof of the Claim:

Pr
S∼P m

[A(S) = Ci] ≤ Pr

⎡
⎣R(w, Ci) ≤ min

�=1,2,...,h
� 	=i

R(w, C�)

⎤
⎦

≤ Pr[R(w, Ci) ≤ R(w, Cj)]
= 1 − Pr[R(w, Ci) > R(w, Cj)]

Taking limit m → ∞ on both sides of the inequality and applying Lemma 14,
limm→∞ Pr[R(w, Ci) > R(w, Cj)] > 0 the claim follows.

Since k-means is risk converging, as sample size increases with probability
approaching one, A(S) outputs an optimal partition, and hence π1 + π2 + · · · +
πh = 1 . Necessarily at least two numbers πi, πj are strictly positive. That is, the
algorithm outputs two different partitions Ci, Cj with non-zero probability for
arbitrarily large sample size. The algorithm will be switching between these two
partitions. Formally, Instability(A, P ) ≥ dP (Ci, Cj)πiπj is strictly positive. �
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6 Conclusions and Discussion

Stability reflects a relation between clustering algorithms and the data sets (or
data generating probability distributions) they are applied to. Stability is com-
monly viewed as a necessary condition for the suitability of the clustering algo-
rithm, and its parameter setting, to the input data, as well as to the meaning-
fulness of the clustering the algorithm outputs. As such, stability is often used
for model selection purposes, in particular for choosing the number of clusters
for a given data. While a lot of published work demonstrates the success of this
approach, the stability paradigm is mainly a heuristic and is not supported by
clear theoretical guarantees. We embarked on the task of providing theoretical
analysis of clustering stability. The results of Ben-David el al [3] and this paper
challenge the common interpretation of stability described above. We show that
the stability of risk-minimizing clustering algorithms over data generating distri-
butions is just an indicator of weather the objective function (the risk) that the
algorithm is set to minimize has one or more optimal solutions over the given in-
put. This characterization is orthogonal to the issues of model selection to which
stability is commonly applied. Based on our characterization, it is fairly simple to
come up with examples of data sets (or data generating distributions) for which
a ’wrong’ choice of the number of clusters results in stability, whereas a ’correct’
number of clusters results in instability (as well as examples for any of the other
combinations of ’wrong/correct number of clusters’ and ’stable/unstable’). The
results of this paper apply to k-means over finite domains, but we believe that
they are extendable to wider classes of clustering tasks.

How can that be? How can a paradigm that works in many practical appli-
cations be doomed to failure when analyzed theoretically? The answers should
probably reside in the differences between what is actually done in practice and
what our theory analyzes. The first suspect in that domain is the fact that, while
in practice every stability procedure is based on some finite sample, our defini-
tion of stability refers to the limit behavior, as sample sizes grow to infinity. In
fact, it should be pretty clear that, for any reasonable clustering risk function,
an overwhelming majority of realistic data sets should have a unique optimal
clustering solution. It is unlikely that for a real data set two different partitions
will result in exactly the same k-means cost. It therefore follows that for large
enough samples, these differences in the costs of solutions will be detected by the
samples and the k means clustering will stabilize. On the other hand, sufficiently
small samples may fail to detect small cost differences, and therefore look stable.
It may very well be the case that the practical success will breakdown if stability
tests would take into account larger and larger samples. If that is the case, it is a
rather unusual occasion where working with larger samples obscures the ’truth’
rather than crystalizes it.

At this point, this is just a speculation. The most obvious open questions that
we see ahead is determining whether this is indeed the case by coming up with
a useful non-asymptotic characterization of stability. Can our work be extended
to predicting the behavior of stability over finite sample sizes?
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Other natural questions to answered include extending the results of this
paper to arbitrary probability distributions (doing away with our finite support
assumption), as well as extending our analysis to other risk-minimizing clustering
tasks.
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