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Abstract. We present data-dependent error bounds for transductive
learning based on transductive Rademacher complexity. For specific al-
gorithms we provide bounds on their Rademacher complexity based on
their “unlabeled-labeled” decomposition. This decomposition technique
applies to many current and practical graph-based algorithms. Finally,
we present a new PAC-Bayesian bound for mixtures of transductive al-
gorithms based on our Rademacher bounds.

1 Introduction

Transductive learning was already proposed and briefly studied more than thirty
years ago [19], but only lately has it been empirically recognized that transduc-
tion can often facilitate more efficient or accurate learning than the traditional
supervised learning approach (see, e.g., [8]). This recognition has motivated a
flurry of recent activity focusing on transductive learning, with many new al-
gorithms and heuristics being proposed. Nevertheless, issues such as the iden-
tification of “universally” effective learning principles for transduction remain
unresolved. Statistical learning theory provides a principled approach to attack
such questions through the study of error bounds. For example, in inductive
learning such bounds have proven instrumental in characterizing learning prin-
ciples and deriving practical algorithms.

So far, several general error bounds for transductive inference have been de-
veloped [20,6,9,12]. In this paper we continue this fruitful line of research and de-
velop tight, high probability data-dependent error bounds for transduction based
on the Rademacher complexity. Inspired by [16] (Theorem 24), our main result
in this regard is Theorem 2, offering a sufficient condition for transductive learn-
ing. While this result is syntactically similar to known inductive Rademacher
bounds (see, e.g., [3]), it is fundamentally different in the sense that the trans-
ductive Rademacher averages are taken with respect to hypothesis spaces that
can depend on the unlabeled training and test examples. This opportunity is
unavailable in the inductive setting where the hypothesis space must be fixed
before any example is observed.

Our second contribution is a technique for establishing Rademacher bounds
for specific algorithms based on their unlabeled-labeled decomposition (ULD). In
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this decomposition we present the algorithm as sgn(Kα), where K is a matrix
that depends on the unlabeled data and α is a vector that may depend on all
given information including the labeled training set. We show that many state-
of-the-art algorithms have non-trivial ULD leading to tight error bounds. In
particular, we provide such bounds for the Gaussian random field transductive
algorithm of [23], the “consistency method” of [22], the spectral graph trans-
ducer (SGT) algorithm of [15], the eigenmap algorithm of [5] and the Tikhonov
regularization algorithm of [4].

We also show a simple Monte-Carlo scheme for bounding the Rademacher
complexity of any transductive algorithm using its ULD. We demonstrate the
efficacy of this scheme for the “consistency method” of [22]. Experimental evi-
dence from [8] (Chapter 21) indicates that the SGT algorithm of [15] is amongst
the better transductive algorithms currently known. Motivated by this fact we
derived a specific error bound for this algorithm. Our final contribution is a
PAC-Bayesian bound for transductive mixture algorithms. This result, which is
stated in Theorem 3, is obtained as a consequence of Theorem 2 using the tech-
niques of [17]. This result motivates the use of ensemble methods in transduction
that are yet to be explored in this setting.

Related Work. Vapnik [20] presented the first general 0/1 loss bounds for trans-
duction. His bounds are implicit in the sense that tail probabilities are specified
in the bound as the outcome of a computational routine. Vapnik’s bounds can be
refined to include prior “beliefs” as noted in [9]. Similar implicit but somewhat
tighter bounds were developed in [6] for the 0/1 loss case. Explicit PAC-Bayesian
transductive bounds for any bounded loss function were presented in [9]. The
bounds of [1] for semi-supervised learning also hold in the transductive setting,
making them conceptually similar to some transductive PAC-Bayesian bounds.
General error bounds based on stability were developed in [12].

Effective applications of the general bounds mentioned above to particular
algorithms or “learning principles” is not automatic. In the case of the PAC-
Bayesian bounds several such successful applications are presented in terms
of appropriate “priors” that promote various structural properties of the data
[9,11,13]. Ad-hoc bounds for particular algorithms were developed in [4,21].

Error bounds based on the Rademacher complexity are a well-established
topic in induction (see [3] and references therein). The first Rademacher trans-
ductive risk bound was presented in [16]. This bound, which is a straightforward
extension of the inductive Rademacher techniques of [3], is limited to the special
case when training and test sets are of equal size. The bound presented here
overcomes this limitation.

2 Transductive Rademacher Complexity

We begin with some definitions. Consider a fixed set Sm+u = (〈xi, yi〉)m+u
i=1 of

m + u points xi in some space together with their labels yi. The learner is
provided with the (unlabeled) full-sample Xm+u = {xi}m+u

i=1 . A set consisting
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of m points is selected from Xm+u uniformly at random among all subsets of
size m. These m points together with their labels are given to the learner as
a training set. Re-numbering the points we denote the training set points by
Xm = {x1, . . . , xm} and the labeled training set by Sm = (〈xi, yi〉)m

i=1. The set
Xu

�= {xm+1, . . . , xm+u} = Xm+u \ Xm is called the test set. The learner’s goal
is to predict the labels of the test points in Xu based on Sm ∪ Xu.

This paper focuses on binary learning problems where labels y ∈ {±1}.
The learning algorithms we consider generate “soft classification” vectors h =
(h(1), . . . h(m+u)) ∈ R

m+u, where h(i) (or h(xi)) is the soft, or confidence-rated,
label of example xi given by the “hypothesis” h. For actual (binary) classification
of xi the algorithm outputs sgn(h(i)).

Based on the full-sample Xm+u the algorithm selects an hypothesis space H
of such soft classification hypotheses. Then, given the labels of training points
the algorithm selects one hypothesis from H for classification. The goal is to
minimize its test error Lu(h) �= 1

u

∑m+u
i=m+1 �(h(xi), yi) w.r.t. the 0/1 loss function

�. In this work we use also the margin loss function �γ . For a positive real γ,
�γ(y1, y2) = 0 if y1y2 ≥ γ and �γ(y1, y2) = min{1, 1 − y1y2/γ} otherwise. The
empirical (margin) error of h is L̂γ

m(h) �= 1
m

∑m
i=1 �γ(h(xi), yi). We denote by

Lγ
u(h) the test margin error.
We adapt the inductive Rademacher complexity to our transductive setting

but generalize it a bit to include “neutral” Rademacher values also.

Definition 1 (Transductive Rademacher Complexity). Let V ⊆ R
m+u

and p ∈ [0, 1/2]. Let σ = (σ1, . . . , σm+u} be a vector of i.i.d. random variables
such that

σi
�=

⎧
⎪⎨

⎪⎩

1 w.p. p;
−1 w.p. p;
0 w.p. 1 − 2p.

(1)

The Transductive Rademacher Complexity with parameter p is Rm+u(V , p) �=
( 1

m + 1
u ) · Eσ {supv∈V σ · v}.

For the case p = 1/2 and m = u the resulting transductive complexity coincides
with the standard inductive definition (see, e.g., [3]) up to the normalization fac-
tor ( 1

m + 1
u ). Whenever p < 1/2, some Rademacher variables will obtain (neutral)

zero values and reduce the complexity (see Lemma 1). We use this parameterized
version of the complexity to tighten our bounds. Notice that the transductive
complexity is an empirical quantity that does not depend on any underlying dis-
tribution. Also, the transductive complexity depends on the test points whereas
the inductive complexity only depends on the (unlabeled) training points.

The following lemma states that Rm+u(V , p) is monotone increasing with p.
The proof of the lemma is omitted and will appear in the full version. The proof
of Lemma 1 is based on the technique used in the proof of Lemma 5 in [17].

Lemma 1. For any V ⊆ R
m+u and 0 ≤ p1 < p2 ≤ 1/2, Rm+u(V , p1) <

Rm+u(V , p2).
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The statements that follow utilize the Rademacher complexity with p0
�= mu

(m+u)2 .

We abbreviate Rm+u(V) �= Rm+u(V , p0). By Lemma 1, all our bounds apply also
to Rm+u(V , p) for all p > p0.

3 Uniform Concentration Inequality for a Set of Vectors

Denote by Is
r for the set of natural numbers {r, . . . , s} (r < s). Let Z �= Zm+u

1
�=

(Z1, . . . , Zm+u) be a random permutation vector where the variable Zk, k ∈
Im+u
1 , is the kth component of a permutation of Im+u

1 that is chosen uniformly
at random. Let Zij be a perturbed permutation vector obtained by exchanging
Zi and Zj in Z. Any function f on permutations of Im+u

1 is called (m, u)-
permutation symmetric if f(Z) �= f(Z1, . . . , Zm+u) is symmetric on Z1, . . . , Zm

as well as on Zm+1, . . . , Zm+u.
The following lemma (that will be utilized in the proof of Theorem 1) presents

a concentration inequality that is a slight extension of Lemma 2 from [12]. The
argument relies on the Hoeffding-Azuma inequality for martingales (the proof
will appear in the full version). Note that a similar but weaker statement can be
extracted using the technique of [16] (Claim 2 of the proof of Theorem 24).1

Lemma 2 ([12]). Let Z be a random permutation vector over Im+u
1 . Let f(Z)

be an (m, u)-permutation symmetric function satisfying
∣
∣f(Z) − f(Zij)

∣
∣ ≤ β for

all i ∈ Im
1 , j ∈ Im+u

m+1 . Then

PZ {f(Z) − EZ {f(Z)} ≥ ε} ≤ exp
(

− ε2(m + u)
2β2mu

)

. (2)

Let V be a set of vectors in [B1, B2]m+u, B1 ≤ 0, B2 ≥ 0 and set B
�= B2 − B1,

Bmax = max(|B1|, |B2|). Consider two independent permutations of Im+u
1 , Z and

Z′ . For any v ∈ V denote by v(Z) �= (v(Z1), v(Z2), . . . , v(Zm+u)) the vector v
permuted according to Z. We use the following abbreviations for averages of
v over subsets of its components: Hk{v(Z)} �= 1

m

∑k
i=1 v(Zi), Tk{v(Z)} �=

1
u

∑m+u
i=k+1 v(Zi) (note that H stands for ‘head’ and T, for ’tail’). In the special

case where k = m we set H{v(Z)} �= Hm{v(Z)}, and T{v(Z)} �= Tm{v(Z)}.
Finally, the average component of v is denoted v̄ �= 1

m+u

∑m+u
i=1 v(i).

1 The idea in [16] is to represent a function of the permutation of m + u indices as a
function of independent random variables and use McDiarmid’s bounded difference
inequality for independent random variables. It is not hard to extend the result of [16]
for m = u to the general case of m �= u, but the resulting concentration inequality
would have a 1/(m + u) term instead of the (m+ u)/(mu) term as in our Lemma 2.
We achieve this advantage by exploiting the (m, u)-symmetry. The resulting sharper
bound is critical for obtaining converging error bounds using our techniques.
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For any v ∈ V and any permutation Z of Im+u
1 we have

T{v(Z)} = H{v(Z)} + T{v(Z)} − H{v(Z)}

≤ H{v(Z)} + sup
v∈V

[
T{v(Z)} − v̄ + v̄ − H{v(Z)}

]

= H{v(Z)} + sup
v∈V

[
T{v(Z)} − EZ′T{v(Z′)} + EZ′H{v(Z′)} − H{v(Z)}

]

≤ H{v(Z)} + EZ′ sup
v∈V

[
T{v(Z)} − T{v(Z′)} + H{v(Z′)} − H{v(Z)}

]

︸ ︷︷ ︸
�=g(Z)

.

The function g(Z) is (m, u)-permutation symmetric in Z. It can be verified
that |g(Z) − g(Zij)| ≤ B

( 1
m + 1

u

)
. Therefore, we can apply Lemma 2 with

β
�= B

( 1
m + 1

u

)
to g(Z). Since T{v(Z)} − H{v(Z)} ≤ g(Z), we obtain, with

probability of at least 1 − δ over random permutation Z of Im+u
1 , for all v ∈ V :

T{v(Z)} ≤ H{v(Z)} + EZ {g(Z)} + B

(
1
m

+
1
u

)√
2mu

m + u
ln

1
δ

= H{v(Z)} + EZ {g(Z)} + B

√

2
(

1
m

+
1
u

)

ln
1
δ
. (3)

Our goal is to bound the expectation EZ {g(Z)}. For technical convenience
we use the following definition of the Rademacher complexity with pairwise
Rademacher variables. This definition is equivalent to Def. 1 with p = mu

(m+u)2 .

Definition 2. Let v = (v(1), . . . , v(m + u)) ∈ R
m+u. Let V be a set of vectors

from R
m+u. Let σ̃ = {σ̃i}m+u

i=1 be a vector of i.i.d. random variables defined as:

σ̃i = (σ̃i,1, σ̃i,2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
− 1

m , − 1
u

)
with prob. mu

(m+u)2 ,
(
− 1

m , 1
m

)
with prob. m2

(m+u)2 ,
( 1

u , 1
m

)
with prob. mu

(m+u)2 ,
( 1

u , − 1
u

)
with prob. u2

(m+u)2 .

(4)

The “pairwise” transductive Rademacher complexity is defined to be

R̃m+u(V) �= Eσ̃

{

sup
v∈V

m+u∑

i=1

(σ̃i,1 + σ̃i,2)v(i)

}

. (5)

It is not hard to see from the definition of σ and σ̃ that Rm+u(V) = R̃m+u(V).

Lemma 3. Let Z be a random permutation of Im+u
1 . Let c0 =

√
32 ln(4e)

3 < 5.05.
Then

EZ {g(Z)} ≤ R̃m+u(V) + c0B

(
1
u

+
1
m

)
√

min(m, u). (6)

Proof: The proof of Lemma 3 is based on ideas from the proof of Lemma 3
in [3]. Let n1, n2 and n3 be the number of random variables σ̃i realizing the value
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(
− 1

m , − 1
u

)
,
(
− 1

m , 1
m

)
,
( 1

u , 1
m

)
, respectively. Set N1

�= n1 +n2 and N2
�= n2 +n3.

Note that the ni’s and Ni’s are random variables. Denote by R the distribution of
σ̃ defined by (4) and by R(N1, N2), the distribution R conditioned on the events
n1 + n2 = N1 and n2 + n3 = N2. We define

s(N1, N2)
�= Eσ̃∼R(N1,N2)

{

sup
v∈V

m+u∑

i=1

(σ̃i,1 + σ̃i,2) v(i)

}

. (7)

The rest of the proof is based on the following three claims:

Claim 1. R̃m+u(V) = EN1,N2{s(N1, N2)}.
Claim 2. EZg(Z)} = s (Eσ̃N1,Eσ̃N2).
Claim 3. s (Eσ̃N1,Eσ̃N2) − EN1,N2{s(N1, N2)} ≤ c0B

( 1
u + 1

m

)√
m.

Having established these three claims we immediately obtain

EZ {g(Z)} ≤ R̃m+u(V) + c0B

(
1
u

+
1
m

)√
m. (8)

The entire development is symmetric in m and u and, therefore, we also obtain
the same result but with

√
u instead of

√
m. By taking the minimum of (8) and

the symmetric bound (with
√

u) we establish the theorem. It remains to prove the
three claims.

Proof of Claim 1. Note that N1 and N2 are random variables whose distribu-
tion is induced by the distribution of σ̃. We have

R̃m+u(V) = EN1,N2Eσ̃∼Rad(N1,N2) sup
v∈V

m+u∑

i=1

(σ̃i,1 + σ̃i,2) v(i) = EN1,N2s(N1, N2).

Proof of Claim 2. (Sketch) By the definitions of Hk and Tk (appearing just
after Lemma 2), for any N1, N2 ∈ Im+u

1 we have

EZ,Z′ sup
v∈V

[
TN1{v(Z)} − TN2{v(Z′)} + HN2{v(Z′)} − HN1{v(Z)}

]
=

EZ,Z′ sup
v∈V

[
1
u

m+u∑

i=N1+1

v(Zi) − 1
u

m+u∑

i=N2+1

v(Z ′
i) +

1
m

N2∑

i=1

v(Z ′
i) − 1

m

N1∑

i=1

v(Zi)

]

.

(9)

The values of N1 and N2, and the distribution of Z and Z′, with respect
to which we take the expectation in (9), induce a distribution of assignments
of coefficients { 1

m , − 1
m , 1

u , − 1
u} to the components of v. For any N1, N2 and

realizations of Z and Z′, each component v(i), i ∈ Im+u
1 , is assigned to exactly

two coefficients, one for each of the two permutations (Z and Z′). Let a �=
(a1, . . . , am+u), where ai

�= (ai,1, ai,2). For any i ∈ Im+u
1 , the pair (ai,1, ai,2)

takes the values of the coefficients of v(i), where the first component is induced
by the realization Z (i.e., ai,1 is either − 1

m or 1
u ) and the second component by

the realization of Z′ (i.e., ai,2 is either 1
m or − 1

u ).
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Let A(N1, N2) be the distribution of vectors a, induced by the distribution of
Z and Z′, for particular N1, N2. Using this definition we can write

(9) = Ea∼A(N1,N2) sup
v∈V

[
m+u∑

i=1

(ai,1 + ai,2)v(i)

]

. (10)

We argue (the full proof will appear in the full version) that the distributions
R(N1, N2) and A(N1, N2) are identical. Therefore, it follows from (10) that

(9) = Eσ̃∼R(N1,N2)

{

sup
v∈V

[
m+u∑

i=1

(σ̃i,1 + σ̃i,2)v(i)

]}

= s(N1, N2). (11)

Note that Eσ̃N1 = Eσ̃{n1 + n2} = m and Eσ̃N2 = Eσ̃{n2 + n3} = m. Hence

EZ{g(Z)} = Eσ̃∼Rad(m,m)

{

sup
v∈V

[
m+u∑

i=1

(σ̃i,1 + σ̃i,2) v(i)

]}

= s (Eσ̃N1,Eσ̃N2) .

Proof of Claim 3. (Sketch) Abbreviate Q
�= 1

m + 1
u . For any 1 ≤ N1, N2, N

′
1, N

′
2

≤ m + u we have (the technical proof will appear in the full version),

|s(N1, N2) − s(N ′
1, N2)| ≤ Bmax |N1 − N ′

1| Q , (12)
|s(N1, N2) − s(N1, N

′
2)| ≤ Bmax |N2 − N ′

2| Q . (13)

We use the following Bernstein-type concentration inequality (see [10], Prob-
lem 8.3) for the Binomial random variable X ∼ Bin(p, n): PX {|X − EX | > t} <

2 exp
(
− 3t2

8np

)
. Noting that N1, N2 ∼ Bin

(
m

m+u , m + u
)
, we use (12), (13) and

the Bernstein-type inequality (applied with n
�= m + u and p

�= m
m+u ) to obtain

PN1,N2 {|s(N1, N2) − s(Eσ̃ {N1} ,Eσ̃ {N2})| ≥ ε}
≤ PN1,N2 {|s(N1, N2) − s(N1,Eσ̃N2)| + |s(N1,Eσ̃N2) − s(Eσ̃N1,Eσ̃N2)| ≥ ε}

≤ PN1,N2

{
|s(N1, N2) − s(N1,Eσ̃N2)| ≥ ε

2

}

+PN1,N2

{
|s(N1,Eσ̃N2) − s(Eσ̃N1,Eσ̃N2)| ≥ ε

2

}

≤ PN2

{
|N2 − Eσ̃N2| BmaxQ ≥ ε

2

}
+ PN1

{
|N1 − Eσ̃N1|BmaxQ ≥ ε

2

}

≤ 4 exp

(

− 3ε2

32(m + u) m
m+uB2

maxQ
2

)

= 4 exp
(

− 3ε2

32mB2
maxQ

2

)

.

Next we use the following fact (see [10], Problem 12.1): if a nonnegative ran-
dom variable X satisfies P{X > t} ≤ c · exp(−kt2), then EX ≤

√
ln(ce)/k.

Using this fact with c
�= 4 and k

�= 3/(32mQ2) we have

|EN1,N2 {s(N1, N2)} − s(Eσ̃N1,Eσ̃N2)| ≤ EN1,N2 |s(N1, N2) − s(Eσ̃N1,Eσ̃N2)|

≤
√

32 ln(4e)
3

mB2
maxQ

2. (14)

�
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By combining (3) and Lemma 3 we obtain the next concentration inequality,
which is the main result of this section.

Theorem 1. Let B1 ≤ 0, B2 ≥ 0 and V be a (possibly infinite) set of real-
valued vectors in [B1, B2]m+u. Let B

�= B2 − B1 and Bmax
�= max(|B1|, |B2|).

Let Q
�=
( 1

u + 1
m

)
. Then with probability of at least 1−δ over random permutation

Z of Im+u
1 , for all v ∈ V,

T{v(Z)} ≤ H{v(Z)} + Rm+u(V) + Bmaxc0Q
√

min(m, u) + B

√

2Q ln
1
δ
. (15)

4 Uniform Rademacher Error Bound

Our goal now is to utilize the concentration inequality of Theorem 1 to derive a
uniform error bound for all soft labelings h ∈ H of the full-sample. The idea is to
apply Theorem 1 with an appropriate instantiation of the set V so that T{v(Z)}
will correspond to the test error and H{v(Z)} to the empirical error. The fol-
lowing lemma will be used in this analysis. The lemma is an adaptation, which
accommodates the transductive Rademacher variables, of Lemma 5 from [17].
The proof is omitted (but will be provided in the full version).

Lemma 4. Let H ⊆ R
m+u be a set of vectors. Let f and g be real-valued func-

tions. Let σ = {σi}m+u
i=1 be Rademacher variables, as defined in (1). If for all

1 ≤ i ≤ m+u and any h,h′ ∈ H, |f(h(i))− f(h′(i))| ≤ |g(h(i))− g(h′(i))|, then

Eσ sup
h∈H

[
m+u∑

i=1

σif(h(i))

]

≤ Eσ sup
h∈H

[
m+u∑

i=1

σig(h(i))

]

. (16)

Let Y ∈ {±1}m+u, and denote by Y (i) the ith component of Y . For any Y

define �Y
γ (h(i)) �= �γ(h(i), Y (i)). Noting that �Y

γ satisfies the Lipschitz condition
|�Y

γ (h(i)) − �Y
γ (h′(i))| ≤ 1

γ |h(i) − h′(i)|, we apply Lemma 4 with the functions
f(h(i)) = �Y

γ (h(i)) and g(h(i)) = h(i)/γ, to get

Eσ

{

sup
h∈H

m+u∑

i=1

σi�
Y
γ (h(i))

}

≤ 1
γ
Eσ

{

sup
h∈H

m+u∑

i=1

σih(i)

}

. (17)

For any Y , define �Y
γ (h) �= (�Y

γ (h(1)), . . . , �Y
γ (h(m+u))). Taking Y to be the true

(unknown) labeling of the full-sample, we set Lγ
H = {v : v = �Y

γ (h),h ∈ H}.
It follows from (17) that Rm+u(Lγ

H) ≤ 1
γ Rm+u(H). Applying Theorem 1 with

v �= �γ(h), V �= Lγ
H, Bmax = B = 1, and using the last inequality we obtain:2

2 This bound holds for any fixed margin parameter γ. Using the technique of the proof
of Theorem 18 in [7] we can also obtain a bound that is uniform in γ.
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Theorem 2. Let H be any set of full-sample soft labelings. The choice of H can

depend on the full-sample Xm+u. Let c0 =
√

32 ln(4e)
3 < 5.05 and Q

�=
( 1

u + 1
m

)
.

For any fixed γ, with probability of at least 1 − δ over the choice of the training
set from Xm+u, for all h ∈ H,

Lu(h) ≤ Lγ
u(h) ≤ L̂γ

m(h) +
Rm+u(H)

γ
+ c0Q

√
min(m, u) +

√

2Q ln
1
δ
. (18)

5 Bounds for Unlabeled-Labeled Decompositions (ULDs)

Let r be any natural number and let K be an (m+u)×r matrix depending only
on Xm+u. Let α be an r × 1 vector that may depend on both Sm and Xu. The
soft classification output y of any transductive algorithm can be represented by

y = K · α. (19)

We refer to (19) as an unlabeled-labeled decomposition (ULD). In this section
we develop bounds on the Rademacher complexity of algorithms based on their
ULDs. We note that any transductive algorithm has a trivial ULD, for example,
by taking r = m + u, setting K to be the identity matrix and assigning α to
any desired (soft) labels. We are interested in “non-trivial” ULDs and provide
useful bounds for such decompositions.3

In a “vanilla” ULD, K is an (m+u)×(m+u) matrix and α = (α1, . . . , αm+u)
simply specifies the given labels in Sm (where αi ∈ {±1} for labeled points, and
αi = 0 otherwise). From our point of view any vanilla ULD is not trivial because
α does not encode the final classification of the algorithm. For example, the
algorithm of Zhou et al. [22] straightforwardly admits a vanilla ULD. On the
other hand, the natural (non-trivial) ULD of the algorithms of Zhu et al. [23]
and of Belkin and Niyogi [5] is not of the vanilla type. For some algorithms it
is not necessarily obvious how to find non-tirivial ULDs. Later we mention such
cases – in particular, the algorithms of Joachims [15] and of Belkin et al. [4].

We now present a bound on the transductive Rademacher complexity of any
transductive algorithm basing on their ULD. Let {λi}r

i=1 be the singular values
of K. We use the well-known fact that ‖K‖Fro =

√∑r
i=1 λ2

i , where ‖K‖Fro
�=√∑

i,j(K(i, j))2 is the Frobenius norm of K. Suppose that ‖α‖2 ≤ μ1 for some

μ1. Let H �= H(K) be the transductive hypothesis space induced by the matrix
K; that is, H is the set of all possible outputs of the algorithm corresponding to
a fixed full-sample Xm+u, all possible training/test partitions and all possible
labelings of the training set. Using the abbreviation K(i, ·) for the ith row of
K and following the proof idea of Lemma 22 in [3], we obtain (the complete
derivation will appear in the full version),
3 For the trivial decomposition where K is the identity matrix it can be shown that

the risk bound (18), combined with the forthcoming Rademacher complexity bound
(20), is greater than 1 (the proof will be provided in the full version).
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Rm+u(H) = Eσ

{

sup
h∈H

m+u∑

i=1

σih(xi)

}

= Eσ

{

sup
α:‖α‖2≤μ1

m+u∑

i=1

σi〈α, K(i, ·)〉
}

≤ μ1

√
√
√
√

m+u∑

i=1

2
mu

〈K(i, ·), K(i, ·)〉 = μ1

√
2

mu
‖K‖2

Fro = μ1

√
√
√
√ 2

mu

r∑

i=1

λ2
i , (20)

where the inequality is obtained using the Cauchy-Schwartz and Jensen in-
equalities. Using the bound (20) in conjunction with Theorem 2 we get a data-
dependent error bound for any algorithm, that can be computed once we derive
an upper bound on the maximal length of possible values of the α vector, appear-
ing in its ULD. Notice that for any vanilla ULD, μ1 =

√
m. Later on we derive a

tight μ1 for non-trivial ULDs of SGT [15] and of the “consistency method” [22].
The bound (20) is syntactically similar in form to a corresponding inductive

Rademacher bound of kernel machines [3]. However, as noted above, the fun-
damental difference is that in induction, the choice of the kernel (and therefore
H) must be data-independent in the sense that it must be selected before the
training examples are observed. In our transductive setting, K and H can be
selected based on the unlabeled full-sample.

5.1 Example: Analysis of SGT

We now exemplify the use of the ULD Rademacher bound (20) and analyze
the SGT algorithm [15]. We start with a description of a simplified version
of SGT that captures the essence of the algorithm.4 Let W be a symmetric
(m+u)× (m+u) similarity matrix of the full-sample Xm+u. The matrix W can
be built in various ways, for example, it can be a k-nearest neighbors graph. Let
D be a diagonal matrix, whose (i, i)th entry is the sum of the ith row in W . An
unnormalized Laplacian of W is L = D−W . Let τ = (τ1, . . . , τm+u) be a vector
that specifies the given labels in Sm; that is, τi ∈ {±1} for labeled points, and
τi = 0 otherwise. Let c be a fixed constant and 1 be an (m+u)×1 vector whose
entries are 1 and let C be a diagonal matrix such that C(i, i) = 1 iff example i
is in the training set (and zero otherwise). The soft classification h∗ produced
by the SGT algorithm is the solution of the following optimization problem:

min
h∈Rm+u

hT Lh + c(h − τ )T C(h − τ ) (21)

s.t. hT 1 = 0, hT h = m + u. (22)

It is shown in [15] that h∗ = Kα, where K is an (m+u)×r matrix5 whose columns
are orthonormal eigenvectors corresponding to non-zero eigenvalues of the Lapla-
cian L and α is an r×1 vector. While α depends on both the training and test sets,
the matrix K depends only on the unlabeled full-sample. Substituting h∗ = Kα
to the second constraint in (22) and using the orthonormality of the columns of
4 We omit some heuristics that are optional in SGT. Their inclusion does not affect

the error bound we derive.
5 r is the number of non-zero eigenvalues of L, after performing spectral transformations.

Joachims set the default r to 80.
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K, we get m + u = hT h = αT KT Kα = αT α. Hence, ‖α‖2 =
√

m + u and
we can take μ1 =

√
m + u. Since K is an (m + u) × r matrix with orthonormal

columns, ‖K‖2
Fro = r. Consequently, by (20) the transductive Rademacher com-

plexity of SGT is upper bounded by
√

2r
( 1

m + 1
u

)
, where r is the number of non-

zero eigenvalues of L. Notice that this bound is oblivious to the magnitude of these
eigenvalues.

5.2 Kernel ULD

If r = m + u and K is a kernel matrix (this holds if K is positive semidefinite),
then we say that the decomposition is a kernel-ULD. Let H ⊆ R

m+u be the
reproducing kernel Hilbert space (RKHS), corresponding to K. We denote by
〈·, ·〉H the inner product in H. Since K is a kernel matrix, by the reproducing
property6 of H, K(i, j) = 〈K(i, ·), K(j, ·)〉H. Suppose that the vector α satisfies√

αT Kα ≤ μ2 for some μ2. Let {λi}m+u
i=1 be the eigenvalues of K. By similar

arguments used to derive (20) we have (details will appear in the full version):

Rm+u(H) = Eσ

{

sup
h∈H

m+u∑

i=1

σih(xi)

}

= Eσ

⎧
⎨

⎩
sup

α:
√

αT Kα≤μ2

m+u∑

i,j=1

σiαjK(i, j)

⎫
⎬

⎭

≤ μ2

√
√
√
√

m+u∑

i=1

2
mu

K(i, i) = μ2

√
2 · trace(K)

mu
= μ2

√
√
√
√ 2

mu

m+u∑

i=1

λi. (23)

By defining the RKHS induced by the unnormalized Laplacian, as in [14], and
using a generalized representer theorem [18], it can be shown that the algorithm
of Belkin et al. [4] has a kernel-ULD (the details will appear in the full version).

5.3 Monte-Carlo Rademacher Bounds

We now show how to compute Monte-Carlo Rademacher bounds with high confi-
dence for any transductive algorithm using its ULD. Our empirical examination
of these bounds shows that they are tighter than the analytical bounds (20)
and (23). The technique, which is based on a simple application of Hoeffding’s
inequality, is made particularly simple for vanilla ULDs.

Let V ⊆ R
m+u be a set of vectors, σ ∈ R

m+u to be a Rademacher vector (1),
and g(σ) = supv∈V σ ·v. By Def. 1, Rm+u(V) = Eσ{g(σ)}. Let σ1, . . . , σn be an
i.i.d. sample of Rademacher vectors. We estimate Rm+u(V) with high-confidence
by applying the Hoeffding inequality on

∑n
i=1

1
ng(σi). To apply the Hoeffding

inequality we need a bound on supσ |g(σ)|, which is derived for the case where V
is all possible outputs of the algorithm (for a fixed Xm+u). Specifically, suppose
that v ∈ V is an output of the algorithm, v = Kα, and assume that ‖α‖2 ≤ μ1.
By Def. 1, for all σ, ‖σ‖2 ≤ b

�=
√

m + u
( 1

m + 1
u

)
. Using elementary linear al-

gebra we have supσ |g(σ)| ≤ sup‖σ‖2≤b, ‖α‖2≤μ1
|σKα| ≤ bμ1λmax, where λmax

6 This means that ∀h ∈ H and i ∈ Im+u
1 , h(i) = 〈K(i, ·), h〉H.
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is a maximal singular value of K. Applying the one-sided Hoeffding inequality
on n samples of g(σ) we have, for any given δ, that with probability of at least
1 − δ over the random i.i.d. choice of the vectors σ1, . . . , σn,

Rm+u(V) ≤ 1
n

n∑

i=1

sup
α:‖α‖2≤μ1

σiKα + μ1
√

m + u

(
1
m

+
1
u

)

λmax

√

2 ln 1
δ

n
. (24)

To use the bound (24), the value of supα:‖α‖2≤μ σiKα should be computed for
each randomly drawn σi. This computation is algorithm-dependent and below
we show how to compute it for the algorithm of [22].7 In cases where we can
compute the supremum exactly (as in vanilla ULDs; see below) we can also get
a lower bound using the symmetric Hoeffding inequality.

Example: Application to the CM algorithm. We start with a brief description
of the Consistency Method (CM) algorithm of [22]. The algorithm has a natural
vanilla ULD (see definition at the beginning of Sec. 5), where the matrix K
is computed as follows. Let W and D be matrices as in SGT (see Sec. 5.1).
A normalized Laplacian of W is L = D−1/2WD−1/2. Let β be a parameter
in (0, 1). Then, K

�= (1 − β)(I − βL)−1 and the output of CM is y = K · α,
where α specifies the given labels. Consequently ‖α‖2 ≤

√
m. Moreover, it

can be verified that K is a kernel matrix, and therefore, the decomposition is
a kernel-ULD. It turns out that for CM, the exact value of the supremum in
(24) can be analytically derived. The vectors α, that induce the CM hypothesis
space for a particular K, have exactly m components with values in {±1}; the
rest of the components are zeros. Let Ψ be the set of all possible such α’s.
Let t(σi) = (t1, . . . , tm+u) �= σiK ∈ R

1×(m+u) and |t(σi)| �= (|t1|, . . . , |tm+u|).
Then, for any fixed σi, supα∈Ψ σiKα is the sum of the m largest elements in
|t(σi)|. This derivation holds for any vanilla ULD.

To demonstrate the Rademacher bounds discussed in this paper we present
an empirical comparison of the bounds over two datasets (Voting, and Pima)
from the UCI repository. For each dataset we took m + u to be the size of the
dataset (435 and 768, respectively) and we took m to be 1/3 of the full-sample
size. The matrix W is the 10-nearest neighbor graph computed with the cosine
similarity metric. We applied the CM algorithm with β = 0.5. The Monte-Carlo
bounds (both upper and lower) were computed with δ = 0.05 and n = 105.

We compared the Mote-Carlo bounds with the ULD bound (20), named here
“the SVD bound”, and the kernel-ULD bound (23), named here “the eigenvalue
bound”. The graphs in Figure 1 compare these four bounds for each of the
datasets as a function of the number of non-zero eigenvalues of K (trimmed to
maximum 430 eigenvalues). Specifically, each point t on the x-axis corresponds
to bounds computed with a matrix Kt that approximates K using only the
smallest t eigenvalues of K. In both examples the lower and upper Monte-Carlo
bounds tightly “sandwich” the true Rademacher complexity. It is striking that

7 An application of this approach in induction seems to be very hard, if not impossible.
For example, in the case of RBF kernel machines we will need to optimize over
(typically) infinite-dimensional vectors in the feature space.
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Fig. 1. A comparison of transductive Rademacher bounds

the SVD bound is very close to the true Rademacher complexity. In principle,
with our simple Monte-Carlo method we can approximate the true Rademacher
complexity up to any desired accuracy (with high confidence) at the cost of
drawing sufficiently many Rademacher vectors.

6 PAC-Bayesian Bound for Transductive Mixtures

In this section we adapt part of the results of [17] to transduction. The proofs of
all results presented in this section will appear in the full version of the paper.

Let B = {hi}|B|
i=1 be a finite set of base-hypotheses. The class B can be formed

after observing the full-sample Xm+u, but before obtaining the training/test set
partition and the labels. Let q = (q1, . . . , q|B|) ∈ R

|B|. Our goal is to construct
a useful mixture hypothesis, h̃q

�=
∑|B|

i=1 qihi. We assume that q belongs to a
domain Ωg,A = {q | g(q) ≤ A}, where g : R

|B| → R is a predefined function and
A ∈ R is a constant. The domain Ωg,A and the set B induce the class B̃g,A of all
possible mixtures h̃q. Recalling that Q

�= (1/m+1/u) and c0 =
√

32 ln(4e)/3 <

5.05, we apply Theorem 2 with H �= B̃g,A and obtain that with probability of at
least 1 − δ over the training/test partition of Xm+u, for all h̃q ∈ B̃g,A,

Lu(h̃q) ≤ L̂γ
m(h̃q) +

Rm+u(B̃g,A)
γ

+ c0Q
√

min(m, u) +

√

2Q ln
1
δ
. (25)

Let Q1
�=
√

2Q (ln(1/δ) + 2 ln logs (sg̃(q)/g0)). It is straightforward to apply
the technique used in the proof of Theorem 10 in [17] and obtain the following
bound, which eliminates the dependence on A.

Corollary 1. Let g0 > 0, s > 1 and g̃(q) = s max(g(q), g0). For any (fixed) g,
with probability of at least 1 − δ over the training/test set partition, for all8 h̃q,

Lu(h̃q) ≤ L̂γ
m(h̃q) +

Rm+u(B̃g,g̃(q))
γ

+ c0Q
√

min(m, u) + Q1. (26)

8 In the bound (26) the meaning of Rm+u(B̃g,g̃(q)) is as follows. For any q let A = g̃(q)
and Rm+u(B̃g,g̃(q))

�= Rm+u(B̃g,A).
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We now instantiate Corollary 1 for g(q) being the KL-divergence and derive
a PAC-Bayesian bound. To this end, we restrict q to be a probability vector.
Let p ∈ R

|B| be a “prior” probability vector. The vector p can only depend on
the unlabeled full-sample Xm+u. For a particular prior p let g(q) �= D(q‖p) =
∑|B|

i=1 qi ln
(

qi

pi

)
. Adopting Lemma 11 of [17] to the transductive Rademacher

variables, defined in (1), we obtain the following bound.

Theorem 3. Let g0 > 0, s > 1. Let p and q be any prior and posterior dis-
tribution over B, respectively. Set g(q) �= D(q‖p) and g̃(q) �= s max(g(q), g0).
Then, with prob. of at least 1 − δ over the training/test set partition, for all h̃q,

Lu(h̃q) ≤ L̂γ
m(h̃q) +

Q

γ

√
2g̃(q) sup

h∈B
‖h‖2

2 + c0Q
√

min(m, u) + Q1. (27)

Theorem 3 is a PAC-Bayesian result, where the prior p can depend on Xm+u

and the posterior can be optimized adaptively, based also on Sm.

7 Concluding Remarks

We have studied the use of Rademacher complexity analysis in the transductive
setting. Our results include the first general Rademacher bound for soft clas-
sification algorithms, the unlabeled-labeled decomposition (ULD) technique for
bounding Rademacher complexity of any transductive algorithm and a bound
for Bayesian mixtures.

It would be nice to further improve our bounds using, for example, the local
Rademacher approach [2]. However, we believe that the main advantage of these
transductive bounds is the possibility of selecting a hypothesis space based on the
full-sample. A clever data-dependent choice of this space should provide sufficient
flexibility to achieve a low training error with low Rademacher complexity. In
our opinion this opportunity can be explored and exploited much further.

This work opens up new avenues for future research. For example, it would
be interesting to optimize the matrix K in the ULD representation explicitly (to
fit the data) under a constraint of low Rademacher complexity. Also, it would
be nice to find “low-Rademacher” approximations of particular K matrices. The
PAC-Bayesian bound for mixture algorithms motivates the development and use
of transductive mixtures, an area that has yet to be investigated.

Acknowledgement. We thank Yair Wiener for useful comments.
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