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Abstract. We establish a generic theoretical tool to construct prob-
abilistic bounds for algorithms where the output is a subset of objects
from an initial pool of candidates (or more generally, a probability distri-
bution on said pool). This general device, dubbed “Occam’s hammer”,
acts as a meta layer when a probabilistic bound is already known on
the objects of the pool taken individually, and aims at controlling the
proportion of the objects in the set output not satisfying their individ-
ual bound. In this regard, it can be seen as a non-trivial generalization
of the “union bound with a prior” (“Occam’s razor”), a familiar tool
in learning theory. We give applications of this principle to randomized
classifiers (providing an interesting alternative approach to PAC-Bayes
bounds) and multiple testing (where it allows to retrieve exactly and
extend the so-called Benjamini-Yekutieli testing procedure).

1 Introduction

In this paper, we establish a generic theoretical tool allowing to construct prob-
abilistic bounds for algorithms which take as input some (random) data and
return as an output a set A of objects among a pool H of candidates (instead
of a single object h ∈ H in the classical setting). Here the “objects” could be
for example classifiers, functions, hypotheses. . . according to the setting. One
wishes to predict that each object h in the output set A satisfies a property
R(h, α) (where α is an ajustable level parameter); the purpose of the proba-
bilistic bound is to guarantee that the proportion of objects in A for which the
prediction is false does not exceed a certain value, and this with a prescribed
statistical confidence 1 − δ. Our setting also covers the more general case where
the algorithm returns a (data-dependent) probability density over H.

Such a wide scope can appear dubious in its generality at first and even seem
to border with abstract nonsense, so let us try to explain right away what is the
nature of our result, and pinpoint a particular example to fix ideas. The reason
we encompass such a general framework is that our result acts as a ’meta’ layer:
we will pose that we already have at hand a probabilistic bound for single,
fixed elements h ∈ H. Assuming the reader is acquainted with classical learning
theory, let us consider the familiar example where H is a set of classifiers and
we observe an i.i.d. labeled sample of training data as an input. For each fixed
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classifier h ∈ H, we can predict with success probability at least 1−δ the property
R(h, δ) that the generalization error of h is bounded by the training error up to
a quantity ε(δ), for example using the Chernoff bound. In the classical setting, a
learning method will return a single classifier h ∈ H. If nothing is known about
the algorithm, we have to resort to worst-case analysis, that is, obtain a uniform
bound over H; or in other terms, ensure that the probability that the predicted
properties hold for all h ∈ H is at least 1 − δ. The simplest way to achieve this
is to apply the union bound, combined with a prior Π on H (assumed to be
countable in this situation) prescribing how to distribute the failure probability
δ over H. In the folklore, this is generally referred to as Occam’s razor bound,
because the quantity − log(Π(h)), which can be interpreted as a coding length for
objects h ∈ H, appears in some explicit forms of the bound. This can be traced
back to [4] where the motivations and framework were somewhat different. The
formulation we use here seems to have first appeared explicitly in [9] .

The goal of the present work is to put forward what can be seen as an analogue
of the above “union bound with a prior” for the set output (or probability output)
case, which we call Occam’s hammer by remote analogy with the principle under-
lying Occam’s razor bound. Occam’s hammer relies on two priors: a complexity
prior similar to the razor’s (except it can be continuous) and a second prior over
the output set size or inverse output density. We believe that Occam’s hammer
is not as immediately straightforward as the classical union bound, and hope to
show that it has potential for interesting applications. For reasons of space, we
will cut to the chase and first present Occam’s hammer in an abstract setting in
the next section (the reader should keep in mind the classifiers example to have a
concrete instance at hand) then proceed to some applications in Section 3 (includ-
ing a detailed treatment of the classifiers example in Section 3.1) and a discussion
about tightness in Section 4. A natural application field is multiple testing, where
we want to accept or reject (in the classical statistical sense) hypotheses from a
pool H; this will be developed in section 3.2. The present work was motivated by
the PASCAL theoretical challenge [6] on this topic.

2 Main Result

2.1 Setting

Assume we have a pool of objects which is a measurable space (H, H) and observe
a random variable X (which can possibly represent an entire data sample) from
a probability space (X , X, P ). Our basic assumption is:

Assumption A: for every h ∈ H, and δ ∈ [0, 1], we have at hand a set B(h, δ) ∈
X such that PX∼P [X ∈ B(h, δ)] ≤ δ. We call B(h, δ) “bad event at level δ for h”.
Moreover, we assume that the function (x, h, δ) ∈ X ×H×[0, 1] �→ 1{x ∈ B(h, δ)}
is jointly measurable in its three variables (this amounts to say that the set
defined by this indicator function is measurable in the product space). Finally,
we assume that for any h ∈ H we have B(h, 0) = ∅.

It should be understood that “bad events” represent regions where a cer-
tain desired property does not hold, such as the true error being larger than the
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empirical error plus ε(δ) in the classification case. Note that this ’desirable prop-
erty’ implicitly depends on the assigned confidence level 1 − δ. We should keep
in mind that as δ decreases, the set of observations satisfying the corresponding
property grows larger, but the property itself loses significance (as is clear once
again in the generalization error bound example). Of course, the ’properties’
corresponding to δ = 0 or 1 will generally be trivial ones, i.e. B(h, 0) ≡ ∅ and
B(h, 1) ≡ X . Let us reformulate the union bound in this setting:

Proposition 2.1 (Abstract Occam’s razor). Let Π be a prior probability
distribution on H and assume (A) holds. Then

PX∼P [∃h ∈ H, X ∈ B(h, δΠ({h}))] ≤ δ. (1)

The following formulation is equivalent: for any rule taking X as an input and
returning hX ∈ H as an output (in a measurable way as a function of X), we
have

PX∼P [X ∈ B(hX , δΠ({hX}))] ≤ δ. (2)

Proof. In the first inequality we want to bound the probability of the event
⋃

h∈H
B(h, δΠ({h})) .

Since we assumed B(h, 0) = ∅ the above union can be reduced to a countable
union over the set {h ∈ H : Π({h}) > 0}. It is in particular measurable. Then,
we apply the union bound over the sets in this union. The event in the second
inequality can be written as

⋃

h∈H
({X : hX = h} ∩ B(h, δΠ({h}))) .

It is measurable by the same argument as above, and a subset of the first consid-
ered event. Finally, from the second inequality we can recover the first one by con-
sidering a rule that for any X returns an element of {h ∈ H|X ∈ B(h, δΠ({h}))}
if this set is non empty, and some arbitrary fixed h0 otherwise. It is possible to
do so in a measurable way again because the set of atoms of Π is countable. 
�

Note that Occam’s razor is obviously only interesting for atomic priors, and
therefore essentially only useful for a countable object space H.

2.2 False Prediction Rate

Let us now assume that we have an algorithm or “rule” taking X as an input
and returning as an output a subset AX ⊂ H; we assume the function (X, h) ∈
X × H �→ 1{h ∈ AX} is jointly measurable in its two variables. What we are
interested in is upper bounding the proportion of objects in AX falling in a “bad
event”. Here the word ’proportion’ refers to a volume ratio, where volumes are
measured through a reference measure Λ on (H, H). Like in Occam’s razor, we
want to allow the set level to depend on h and possibly on AX . Here is a formal
definition for this:
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Definition 2.2 (False prediction rate, FPR). Pose assumption (A). Fix a
function Δ : H × R+ → [0, 1], jointly measurable in its two parameters, called
the level function. Let Λ be a volume measure on H; we adopt the notation
|S| ≡ Λ(S) for S ∈ H. Define the false prediction rate for level function Δ as

ρΔ(X, A) =
|A ∩ {h ∈ H : X ∈ B(h, Δ(h, |A|))} |

|A| , if |A| ∈ (0, ∞); (3)

and ρΔ(X, A) = 0, if |A| = 0 or |A| = ∞.

The name false prediction rate was chosen by reference to the notion of false
discovery rate (FDR) for multiple testing (see below Section 3.2). We will drop
the index Δ to lighten notation when it is unambiguous. The pointwise false
prediction rate for a specific algorithm X �→ AX is therefore ρ(X, AX). In what
follows, we will actually upper bound the expected value EX [ρ(X, AX)] over
the drawing of X . In some cases, controlling the averaged FPR is a goal of
its own right. Furthermore, if we have a bound on EX [ρ], then we can apply
straightforwardly Markov’s inequality to obtain a confidence bound over ρ:

EX [ρ(X, AX)] ≤ γ ⇒ ρ(X, AX) ≤ γδ−1 with probability at least 1 − δ.

2.3 Warming Up: Algorithm with Constant Volume Output

To begin with, let us consider the easier case where the set ouput given by the
algorithm has a fixed size, i.e. |AX | = a is a constant instead of being random.

Proposition 2.3. Suppose assumption (A) holds and that (X, h) ∈ X × H �→
1{h ∈ AX} is jointly measurable in its two variables. Assume |AX | = Λ(AX) ≡ a
a.s. Let π be a probability density function on H with respect to the measure Λ.
Then putting Δ(h, |A|) = min(δaπ(h), 1), it holds that

EX∼P [ρ(X, AX)] ≤ δ.

Proof: Obviously, Δ is jointly measurable in its two variables, and by the com-
position rule so is the function X �→ ρ(X, AX) . We then have

EX∼P [ρ(X, AX)] = EX∼P

[
a−1|AX ∩ {h ∈ H, X ∈ B(h, Δ(h, |AX |))} |

]

≤ EX∼P [| {h ∈ H : X ∈ B(h, min(δaπ(h), 1))} |] a−1

= EX∼P

[∫

h

1{X ∈ B(h, min(δaπ(h), 1))}dΛ(h)
]

a−1

=
∫

h

PX∼P [X ∈ B(h, min(δaπ(h), 1))] dΛ(h)a−1

≤ δ

∫

h

π(h)dΛ(h) = δ. 
�

As a sanity check, consider a countable set H with Λ the counting measure, and
an algorithm returning only singletons, AX = {hX}, so that |AX | ≡ 1. Then
in this case ρ ∈ {0, 1}, and with the above choice of Δ, we get ρ(X, {h}) =
1{X ∈ B(h, δπ(h))}. Therefore, EX [ρ(X, AX)] = PX [X ∈ B(hX , δπ(hX))] ≤ δ,
i.e., we have recovered version (2) of Occam’s razor.
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2.4 General Case

The previous section might let us hope that Δ(h, |A|) = δ|A|π(h) would be
a suitable level function in the more general situation where the size |AX | is
also variable; but things get more involved. The observant reader might have
noticed that, in Proposition 2.3, the weaker assumption |AX | ≥ a a.s. is actually
sufficient to ensure the conclusion. This thefore suggests the following strategy
to deal with variable size of AX : (1) consider a discretization of sizes through
a decreasing sequence (ak) converging to zero; and a prior Γ on the elements
of the sequence; (2) apply Proposition 2.3 for all k with (ak, Γ (ak)δ) in place
of (a, δ); (3) define Δ(h, |A|) = δπ(h)akΓ (ak) whenever |A| ∈ [ak, ak−1); then
by summation over k (or, to put it differently, the union bound) it holds that
E [ρ] ≤ δ for this choice of Δ.

This is a valid approach, but we will not enter into more details concerning it;
rather, we propose what we consider to be an improved and more elegant result
below, which will additionally allow to handle the more general case where the
algorithm returns a probability density over H instead of just a subset. However,
we will require a slight strengthening of assumption (A):

Assumption A’: like assumption (A), but we additionaly require that for any
h ∈ H, B(h, δ) is a nondecreasing sequence of sets as a function of δ, i.e., B(h, δ) ⊂
B(h, δ′) for δ ≤ δ′.

The assumption of nondecreasing bad events as a function of their probability
seems quite natural and is satisfied in the applications we have in mind; in
classification for example, bounds on the true error are nonincreasing in the
parameter δ (so the set of samples where the bound is violated is nondecreasing).
We now state our main result (proof found in the appendix):

Theorem 2.4 (Occam’s hammer). Pose assumption (A’) satisfied. Let:
(i) Λ be a nonnegative reference measure on H (the volumic measure);
(ii) Π be a probability distribution on H absolutely continuous wrt Λ (the

complexity prior), and denote π = dΠ
dΛ ;

(iii) Γ be a probability distribution on (0, +∞) (the inverse density prior).
Put β(x) =

∫ x

0 udΓ (u) for x ∈ (0, +∞). Define the level function

Δ(h, u) = min(δπ(h)β(u), 1).

Then for any algorithm X �→ θX returning a probability density θX over H
with respect to Λ, and such that (X, h) �→ θX(h) is jointly measurable in its two
variables, it holds that

PX∼P,h∼ΘX

[
X ∈ B(h, Δ(h, θX(h)−1))

]
≤ δ ,

where ΘX is the distribution on H such that dΘX

dΛ = θX .

Comments: The conclusion of the above theorem is a probabilistic statement
over the joint draw of the input variable X and the object h , where the condi-
tional distribution of h given X is ΘX .
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Note that a rule returning a probability density distribution over H is more
general than a rule returning a set, as the latter case can be cast into the for-
mer by considering a constant density over the set, θA(h) = |A|−11{h ∈ A} ; in
this case the inner probability over h ∼ ΘAX is exactly the false prediction rate
ρΔ(X, AX) introduced previously. This specialization gives a maybe more intu-
itive interpretation of the inverse density prior Γ , which then actually becomes
a prior on the volume of the set output. We can thus recover the case of constant
set volume a of Proposition 2.3 by using the above specialization and taking a
Dirac distribution for the inverse density prior, Γ = δa. In particular, version
(2) of Occam’s razor is a specialization of Occam’s hammer (up to the minor
strengthening in assumption (A’)).

To compare with the “naive” strategy described earlier based on a size dis-
cretization sequence (ak), we get the following advantages: Occam’s hammer
also works with the more general case of a probability output; it avoids any dis-
cretization of the prior; finally, if even we take the discrete prior Γ =

∑
k γkδak

in
Occam’s hammer, the level function for |A| ∈ [ak, ak−1) will be proportional to
the partial sum

∑
j≤k γjaj, instead of only the term γkak in the naive approach

(remember that the higher the level function, the better, since the corresponding
’desirable property’ is more significant for higher levels).

3 Applications

3.1 Randomized Classifiers: An Alternate Look at PAC-Bayes
Bounds

Our first application is concerned with our running example, classifiers. More
precisely, assume the input variable is actually an i.i.d. sample S = (Xi, Yi)n

i=1,
and H is a set of classifiers. Let E(h) , resp. Ê(h, S) , denote the generalization,
resp. training, error. We assume that generalization and training error are mea-
surable in their respective variables, which is a tame assumption for all practical
purposes. We consider a randomized classification algorithm, consisting in select-
ing a probability density function θS on H based on the sample (again, jointly
measurable in (x, h)), then drawing a classifier at random from H using the dis-
tribution ΘS such that dΘS

dΛ = θS , where Λ is here assumed to be a reference
probability measure. For example, we could return the uniform density on the
set of classifiers AS ⊂ H having their empirical error less than a (possibly data-
dependent) threshold. Combining Occam’s Hammer with the Chernoff bound,
we obtain the following result:

Proposition 3.1. Let Λ be a probability measure over H; consider an algorithm
S �→ θS returning a probability density θS over H (wrt. Λ). Let δ ∈ (0, 1) and
k > 0 be fixed. If hS is a randomized classifier drawn according to ΘS , the
following inequality holds with probability 1− δ over the joint draw of S and hS:

D+

(
Ê(hS , S)‖E(hS)

)
≤ 1

n

(
log

(
(k + 1)δ−1) +

(
1 +

1
k

)
log+ θS(hS)

)
, (4)
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where log+ is the positive part of the logarithm; and D+(q||p) = q log q
p + (1 −

q) log 1−q
1−p if q < p and 0 otherwise.

Proof. Define the bad events B(h, δ) =
{
S : D+(Ê(h, S)‖E(h)) ≤ log δ−1

n

}
, satis-

fying assumption (A’) by Chernoff’s bound (see, e.g., [7]), including the mea-
surability assumptions of (A) by the composition rule. Choose Π = Λ , i.e.,
π ≡ 1 , and Γ the probability distribution on [0, 1] having density 1

kx−1+ 1
k , so

that β(x) = 1
k+1 min(x1+ 1

k , 1), and apply Occam’s hammer. Replacing δ by the
level function given by Occam’s hammer gives rise to the following factor:

log(min(δπ(hS)β(θS(hS)−1), 1)−1) = log+(δ−1 min((k + 1)−1θS(hS)−
k+1

k , 1)−1)

= log+(δ−1 max((k + 1)θS(hS)
k+1

k , 1))

≤ log+((k + 1)δ−1 max(θS(hS)
k+1

k , 1))

≤ log((k + 1)δ−1) + log+(θS(hS)
k+1

k )

= log((k + 1)δ−1) +
(

1 +
1
k

)
log+(θS(hS)) .


�

Comparison with PAC-Bayes bounds. The by now quite well-established
PAC-Bayes bounds ([9], see also [7] and references therein, and [5,1,10] for recent
developments) deal with a similar setting of randomized classifiers. One impor-
tant difference is that PAC-Bayes bounds are generally concerned with bounding
the averaged error Eh∼ΘS [E(h)] of the randomized procedure. Occam’s hammer,
on the other hand, bounds directly the true error of a single randomized out-
put: this is particularly relevant in practice since the information given to the
user by Occam’s hammer bound concerns precisely the classifier returned by the
rule. In other words, Proposition 3.1 appears as a pointwise version of the PAC-
Bayes bound. It is important to understand that a pointwise version is a stronger
statement, as we can recover a traditional PAC-Bayes bound as a consequence
of Proposition 3.1 (the proof is found in the appendix):

Corollary 3.2. Provided the conclusion of Proposition 3.1 holds, for any k > 0
the following holds with probability δ over the the draw of S:

D+

(
EhS∼ΘS

[
Ê(hS , S)

]∥∥∥ EhS∼ΘS [E(hS)]
)

≤ 1
n

(
log

(
(k + 1)δ−1) +

k + 1
k

KL(ΘS‖Λ) + 3.5 +
1
2k

)
,

where KL denotes the Kullback-Leibler divergence.

It is interesting to compare this to an existing version of the PAC-Bayes bound:
if we pick k = n − 1 in the above corollary, then we recover almost exactly a
tight version of the PAC-Bayes bound given in [7], Theorem 5.1 (the differences
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are: a (n − 1)−1 instead of n−1 factor in front of the KL divergence term, and
the additional trailing terms bounded by 4

n ). Hence, Proposition 3.1 proves a
stronger property than the latter cited PAC-Bayes bound (admittedly up to the
very minor loosening just mentioned).

Note that pointwise results for randomized procedures using the PAC-Bayes
approach have already appeared in recent work [1,5], using a Bernstein type
bound rather than Chernoff. It is not clear to us however whether the method-
ology developed there is precise enough to obtain a Chernoff type bound and
recover a pointwise version of [7], Theorem 5.1, which is what we do here.

At any rate, we believe the Occam’s hammer approach should turn out more
precise for pointwise results. To give some support to this claim, we note that all
existing PAC-Bayes bounds up to now structurally rely on Chernoff’s method (i.e.
using the Laplace transform) via two main ingredients: (1) the entropy extremal
inequality EP [X ] ≥ log EQ

[
eX

]
+ D(P ||Q) and (2) inequalities on the Laplace

transform of i.i.d. sums. Occam’s hammer is, in a sense, less sophisticated since it
only relies on simple set measure manipulations and contains no intrinsic exponen-
tial moment inequality argument. On the other hand, it acts as a ’meta’ layer into
which any other bound family can be plugged in. These could be bounds based on
the Laplace transform (Chernoff method) as above, or not: in the above example,
we have used Chernoff’s bound for the sake of comparison with earlier work, but
we could as well have plugged in the tighter binomial tail inversion bound (which
is the most accurate deterministic bound possible for estimating a Bernoulli pa-
rameter), and this is clearly a potential improvement for finite size training sets.
To this regard, we plan to make an extensive comparison on simulations in future
work. In classical PAC-Bayes, there is no such clear separation between the bound
and the randomization; they are intertwined in the analysis.

3.2 Multiple Testing: A Family of “Step-Up” Algorithms with
Distribution-Free FDR Control

We now change gears and switch to the context of multiple testing. H is now a set
of null hypotheses concerning the distribution P . In this section we will assume
for simplicity that H is finite and the volume measure Λ is the counting measure,
although this could be obviously extended. The goal is, based on oberved data, to
discover a subset of hypotheses which are predicted to be false (or “rejected”).
To have an example in mind, think of microarray data, where we observe a
small number of i.i.d. repetitions of a variable in very high dimension d (the
total number of genes), corresponding to the expression level of said genes, and
we want to find a set of genes having average expression level bigger than some
fixed threshold t. In this case, there is one null hypothesis h per gene, namely
that the average expression level for this gene is lower than t.

We assume that we already have at hand a family of tests T (X, h, α) of level α
for each individual h. That is, T (X, h, α) is a measurable function taking values
in {0, 1} (the value 1 corresponds to “null hypothesis rejected”) such that for all
h ∈ H, for all distributions P such that h is true, PX∼P [T (X, h, α) = 1] ≤ α . To
apply Occam’s hammer, we suppose that the family T (X, h, α) is increasing, i.e.
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α ≥ α′ ⇒ T (X, h, α) ≥ T (X, h, α′) . This is generally statisfied, as typically tests
have the form T (X, h, α) = 1{F (h, X) > φ(α)}, where F is some test statistic
and φ(α) is a nonincreasing threshold function (as, for example, in a one-sided
T-test).

For a fixed, but unknown, data distribution P , let us define

H0 = {h ∈ H : P satisfies hypothesis h}
the set of true null hypotheses, and H1 = H \ H0 its complementary. An impor-
tant and relatively recent concept in multiple testing is that of false discovery
rate (FDR) introduced in [2]. Let A : X �→ AX ⊂ H be a rule returning a set of
rejected hypotheses based on the data. The FDR of such a procedure is defined
as

FDR(A) = EX∼P

[
|AX ∩ H0|

|AX |

]
. (5)

Note that, in contrast to our notion of FPR introduced in Section 2.2, the FDR
is already an averaged quantity. A desirable goal is to design testing procedures
where it can be ensured that the FDR is controlled by some fixed level α. The
rationale behind this is that, in practice, one can afford that a small proportion
of rejected hypotheses are actually true. Before this notion was introduced, in
most cases one would instead bound the probability that at least one hypothesis
was falsely rejected: this is typically achieved using the (uniform) union bound,
known as “Bonferroni’s correction” in the multitesting literature. The hope is
that, by allowing a little more slack in the acceptable error by controlling only
the FDR, one obtains less conservative testing procedures as a counterpart. We
refer the reader to [2] for a more extended discussion on these issues.

Let us now describe how Occam’s hammer can be put to use here. Let Π be a
probability distribution over H, Γ be a probability distribution over the integer
inteval [1 . . . |H|], and β(k) =

∑
i≤k iΓ (i). Define the procedure returning the

following set of hypotheses :

A : X �→ AX =
⋃

{G ⊂ H : ∀h ∈ G, T (X, h, αΠ(h)β(|G|)) = 1} . (6)

This type of procedure is called “step-up” and can be implemented through a
simple water-emptying type algorithm. Namely, it is easy to see that if we define

Bγ = {h : T (X, h, αΠ(h)γ) = 1} , and γ(X) = sup {γ ≥ 0 : β(|Bγ |) ≥ γ} ,

then AX = Bγ(X) . The easiest way to construct this is to sort the hypotheses
h ∈ H by increasing order of their “weighted p-values”

p(h, X) = Π(h) inf {γ ≥ 0 : T (X, h, γ) = 1} ,

and to return the k(X) first hypotheses for this order, where k(X) is the largest
integer such that p(k)(X) ≤ αβ(k) ( where p(k)(X) is the k-th ordered p-value
as defined above).

We have the following property for this procedure:

Proposition 3.3. The set of hypotheses returned by the procedure defined by
(6) has its false discovery rate bounded by Π(H0)α ≤ α.



Occam’s Hammer 121

Proof. It can be checked easily that (x, h) �→ |AX |−11{h ∈ AX} is measurable
in its two variables (this is greatly simplified by the fact that H is assumed to be
finite here). Define the collection of “bad events” B(h, δ) = {X : T (X, h, δ) = 1}
if h ∈ H0, and B(h, δ) = ∅ otherwise. It is an increasing family by the assumption
on the test family. Obviously, for any G ⊂ H, and any level function Δ:

G∩{h ∈ H : X ∈ B(h, Δ(h, |G|))} = G∩H0 ∩{h ∈ H : T (X, h, Δ(h, |G|)) = 1} ;

therefore, for any G satifying

G ⊂ {h ∈ H : T (X, h, Δ(h, |G|)) = 1} , (7)

it holds that |G∩{h ∈ H : X ∈ B(h, Δ(h, |G|))} | = |G∩H0| , so that the averaged
(over the draw of X) FPR (3) for level function Δ coincides with the FDR (5).
When Δ is nondecreasing in its second parameter, it is straightforward that
the union of two sets satisfying (7) also satisfies (7), hence AX satisfies the
above condition for the level function given by Occam’s Hammer. Define the
modified prior Π̃(h) = 1{h ∈ H0}Π(H0)−1Π(h). Apply Occam’s hammer with
the reference measure Λ being the counting measure; priors Π̃ , Γ as defined
above and δ = Π(H0)α to conclude. 
�

Interestingly, the above result specialized to the case where Π is uniform on H
and Γ (i) = κ−1i−1, κ =

∑
i≤|H| i

−1 results in β(i) = κ−1i, and yields exactly
what is known as the Benjamini-Yekutieli (BY) step-up procedure [3]. Unfortu-
nately, the interest of the BY procedure is mainly theoretical, because the more
popular Benjamini-Hochberg (BH) step-up procedure [2] is generally preferred
in practice. The BH procedure is in all points similar to BY, except the above
constant κ is replaced by 1. The BH procedure was shown to result in controlled
FDR at level α if the test statistics are independent or satisfy a certain form
of positive dependency [3]. In contrast, the BY procedure is distribution-free.
Practitioners usually favor the less conservative BH, although the underlying
statistical assumption is disputable. For example, in the interesting case of mi-
croarray data analysis, it is reported that the amplification of genes during the
process can be very unequal as genes “compete” for the amount of polymerase
available. A few RNA strands can “take over” early in the RT-PCR process, and,
due to the exponential reaction, can let other strands non-amplified because of
a lack of polymerase later in the process. Such an effect creates strong statisti-
cal dependencies between individual gene amplifications, in particular negative
dependencies in the oberved expression levels.

This dicussion aside, we think there are several interesting added benefits in
retrieving the BY procedure via Occam’s hammer. First, in our opinion Occam’s
hammer sheds a totally new light on this kind of multi-testing procedure as the
proof method followed in [3] was different and very specific to the framework
and properties of statistical testing. Secondly, Occam’s hammer allows us to
generalize straightforwardly this procedure to an entire family by playing with
the prior Π and more importantly the size prior Γ . In particular, it is clear
that if something is known a priori over the expected size of the output, then
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this should be taken into account in the size prior Γ , possibly leading to a
more powerful testing procedure. Further, there is a significant hope that we
can improve the accuracy of the procedure by considering priors depending on
unknown quantities, but which can be suitably approximated in view of the
data, thereby following the general principle of “self-bounding” algorithms that
has proved to be quite powerful ([8], see also [5,1] where this idea is used as
well under a different form, called “localization”). This is certainly an exciting
direction for future developments.

4 Tightness of Occam’s Hammer Bound

It is of interest to know whether Occams’ hammer is accurate in the sense that
equality in the bound can be achieved in some (worst case) situations. A simple
argument is that Occam’s hammer is a generalization of Occam’s razor: and since
the razor is sharp [7], so is the hammer. . . This is somewhat unsatisfying since
this ignores the situation Occam’s hammer was designed for. In this section,
we address this point by imposing an (almost) arbitrary inverse density prior
ν and exhibiting an example where the bound is tight. Furthermore, in order
to represent a “realistic” situation, we want the “bad sets” B(h, α) to be of
the form {Xh > t(h, α)} where Xh is a certain real random variable associated
to h. This is consistent with situations of interest described above (confidence
intervals and hypothesis testing). We have the following result:

Proposition 4.1. Let H = [0, 1] with interval extremities identified (i.e. the
unit circumference circle). Let ν be a probability distribution on [0, 1], and α0 ∈
[0, 1] be given. Put β(x) =

∫ x

0 udν(u). Assume that β is a continuous, increasing
function. Then there exists a family of real random variables (Xh)h∈H , having
identical marginal distributions P and a random subset A ⊂ [0, 1] such that, if
t(α) is the upper α-quantile of P (i.e., P (X > t(α)) = α ), then

E(Xh)

[
| {h ∈ A and Xh > t(α0β(|A|))} |

|A|

]
= α0 .

Furthermore, P can be made equal to any arbitrary distribution without atoms.

Comments. In the proposed construction (see proof in the appendix), the FPR is
a.s. equal to α0 , and the marginal distribution of |A| is precisely ν. This example
shows that Occam’s hammer can be sharp for the type of situation it was crafted
for (set output procedures), and it reinforces the interpretation of ν as a “prior”,
since the bound is sharp precisely when the output distribution corresponds to
the chosen prior. However, this example is still not entirely satisfying because in
the above construction, we are basically oberving a single sample of (Xh) , while in
most interesting applications we have statistics based on averages of i.i.d. samples.
If we could construct an example in which (Xh) is a Gaussian process, it would be
fine, since observing an i.i.d. sample and taking the average would amount to a
variance rescaling of the original process. In the above, although we can choose
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each Xh to have a marginal Gaussian distribution, the whole family is unfortu-
nately not jointly Gaussian (inspecting the proof, it appears that for h �= h′ there
is a nonzero probability that Xh = Xh′ , as well as Xh �= Xh′ , so that (Xh, Xh′)
cannot be jointly Gaussian). Finding a good sharpness example using a Gaussian
process (the most natural candidate would be a stationary process on the circle
with some specific spectral structure) is an interesting open problem.

5 Conclusion

We hope to have shown convincingly that Occam’s hammer is a powerful and ver-
satile theoretical device. It allows an alternate, and perhaps unexpected, approach
to PAC-Bayes type bounds, as well as to multiple testing procedures. For the ap-
plication to PAC-Bayes type bounds, an interesting feature of Occam’s hammer
approach is to provide a bound that is valid for the particular classifier returned by
the randomization procedure and not just on average performance over the ran-
dom output, and the former property is stronger.Furthermore, the tightest bounds
available for a single classifier (i.e. by binomial tail inversion) can be plugged in
without further ado. For multiple testing, the fact that we retrieve exactly the BY
distribution-free multitesting procedure and extend it to a whole family shows that
Occam’s hammer has a strong potential for producing practically useful bounds
and procedures. In particular, a very interesting direction for future research is
to include in the priors knowledge about the typical behavior of the output set
size. At any rate, a significant feat of Occam’s hammer is to provide a strong first
bridging between the worlds of learning theory and multiple hypothesis testing.

Finally, we want to underline once again that, like Occam’s razor, Occam’s
hammer is a meta device that can apply on top of other bounds. This feature
is particularly nice and leads us to expect that this tool will prove to have
meaningful uses for other applications.
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A Appendix – Additional Proofs

Proof of Theorem 2.4. The proof of Occam’s hammer is in essence an inte-
gration by parts argument, where the “parts” are level sets over X × H of the
output density θX(h) . We prove a slightly more general result than announced:
let us consider a level function of the form

Δ(h, u) = min(δG(h, u), 1) ,

where G : H × R+ → R+ is a measurable function which is nondecreasing in its
second parameter, and satisfying

∫

h∈H

∫

t≥0
G(h, t)t−2dΛ(h)dt ≤ 1 .

Then the announced conclusion holds for this level function. First, note that the
function (X, h) �→ 1{X ∈ B(h, Δ(h, θX(h)−1))} is jointly measurable in its two
variables by the composition rule using the measurability assumption in (A); on
θX(h) in the statement of the theorem; and on G above. We then have

PX∼P,h∼ΘX

[
X ∈ B(h, Δ(h, θX(h)−1))

]

=
∫

(X,h)
1{X ∈ B(h, Δ(h, θX(h)−1))}θX(h)dΛ(h)dP (X)

=
∫

(X,h)
1{X ∈ B(h, Δ(h, θX(h)−1))}

∫

y>0
y−21{y ≥ θX(h)−1}dydP (X)dΛ(h)

=
∫

y>0
y−2

∫

(X,h)
1{X ∈ B(h, Δ(h, θX(h)−1))}1{θX(h)−1 ≤ y}dP (X)dΛ(h)dy

≤
∫

y>0
y−2

∫

(X,h)
1{X ∈ B(h, Δ(h, y))}dP (x)dΛ(h)dy

=
∫

y>0
y−2

∫

h

PX∼P [X ∈ B(h, min(δG(h, y), 1))] dΛ(h)dy

≤
∫ ∞

y=0

∫

h

y−2δG(h, y)dΛ(h)dy ≤ δ .

For the first inequality, we have used assumption (A’) that B(h, δ) is an increas-
ing family and the fact Δ(h, u) is a nondecreasing function in u (by assumption
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on G). In the second inequality we have used the assumption on the probability
of bad events. The other equalities are obtained using Fubini’s theorem.

Now, it is easy to check that G(h, t) = π(h)β(t) satisfies the above require-
ments, since it is obviously measurable, β is a nondecreasing function, and
∫

h∈H

∫

t≥0
π(h)β(t)t−2dΛ(h)dt =

∫

h

π(h)dΛ(h)
∫

t≥0

∫

u≥0
ut−21{u ≤ t}dΓ (u)dt

=
∫

u≥0
dΓ (u) = 1 .

Note that in a more general case, if we have a joint prior probability distribution
Γ on the product space H × R+ , and if H is a Polish space, then there exists a
regular conditional probability distribution Γ (t|h) , and the function G(h, t) =∫ t

u=0 udΓ (u|h) is measurable and has the required properties by an obvious
extension of the above argument. We opted to state our main result only in the
case of a product prior for the sake of simplicity, but this generalization might
be relevant for future applications. 
�
Proof of Corollary 3.2. Let us denote by Aδ ⊂ H×S (here S denotes the set of
samples S) the event where inequality (4) is violated; Proposition 3.1 states that
ES∼P [Ph∼ΘS [(h, S) ∈ Aδ]] ≤ δ , hence by Markov’s inequality, for any γ ∈ (0, 1)
it holds with probability 1 − δ over the drawing of S ∼ P that

Ph∼ΘS [(h, S) ∈ Aδγ ] ≤ γ .

Let us consider the above statement for (δi, γi) = (δ2−i, 2−i) , and perform the
union bound over the δi for integers i ≥ 1. Since

∑
i≥1 δi = δ, we obtain that

with probability 1 − δ over the drawing of S ∼ P , it holds that for all integers
i ≥ 0 (the case i = 0 is trivial):

Ph∼ΘS [(h, S) ∈ Aδ2−2i ] ≤ 2−i .

From now on, consider a fixed sample S such that the above is satisfied. Let us
denote

F (h, S) = nD+(Ê(h, S)‖E(hS)) − log
(
(k + 1)δ−1) −

(
1 +

1
k

)
log+ θS(h) .

By the assumption on S , for all integers i ≥ 0 : Ph∼ΘS [F (h, S) ≥ 2i log 2] ≤ 2−i ;
so that

Eh∼ΘS [F (h, S)] ≤
∫

t>0
Ph∼ΘS [F (h, S) ≥ t] dt

≤ 2 log 2
∑

i≥0

Ph∼ΘS [F (h, S) ≥ 2i log 2] ≤ 3 .

Now let us detail specific terms entering in the expectation Eh∼ΘS [F (h, S)] : we
have

EhS∼ΘS

[
D+(Ê(h, S)‖E(hS))

]
≥ D+

(
EhS∼ΘS

[
Ê(hS , S)

]∥∥∥ EhS∼ΘS [E(hS)]
)

,
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because the function D+ is convex in is two joint parameters. Finally,

EhS∼ΘS

[
log+ θS(h)

]
= EhS∼Λ

[
θS(h) log+ θS(h)

]

≤ EhS∼Λ [θS(h) log θS(h)] − min
0≤x<1

x log x

= KL(ΘS‖Λ) + e−1 .

Bounding e−1 by 1/2 and gathering the terms leads to the conclusion. 
�
Proof of Proposition 4.1. Let ν and α0 be fixed. We will construct explicitly
the family (Xh)h∈H . Now, let U be a random variable uniformly distributed
in [0, 1] and V an independent variable with distribution ν . We now define the
family (Xh) given (U, V ) the following way:

Xh =

{
g(V ) if h ∈ [U, U + α0V ] ,
Y otherwise,

where g(v) is a decreasing real function [0, 1] → [t0, +∞) , and Y is a random
variable independent of (U, V ) , and with values in (−∞, t0] . We will show that it
is possible to choose g, Y, t0 to satisfy the claim of the proposition. In the above
construction, remember that since we are working on the circle, the interval
[U, U + α0V ] should be “wrapped around” if U + α0 > 1 .

First, let us compute explicitly the upper quantile t(α) of Xh for α ≤ α0 . We
have assumed that Y < t0 a.s., so that for any h ∈ H , t ≥ t0 ,

P [Xh > t] = EV [P [Xh > t|V ]] = EV [P [g(V ) > t ; h ∈ [U, U + α0V ]|V ]]

=
∫ g−1(t)

0
α0vdν(v) = α0β(g−1(t)) .

Setting the above quantity equal to α , entails that t(α) = g(β−1(α−1
0 α)) . Now,

let us choose A = [U, U + V ] (note that due to the simplified structure of this
example, the values of U and V can be inferred by looking at the family (Xh)
alone since [U, U+α0V ] = {h : Xh ≥ t0} , hence A can really be seen as a function
of the observed data alone) . Then |A| = V , hence

t(α0β(|A|)) = g(β−1(α−1
0 α0β(V ))) = g(V ) .

This entails that we have precisely A∩{h : Xh ≥ t(α0(β(|A|)))} = [U, U +α0V ] ,
so that | {h ∈ A and Xh ≥ t(α0β(|A|)} | |A|−1 = α0 a.s. Finally, if we want a
prescribed marginal distribution P for Xh, we can take t0 as the upper α0-
quantile of P , Y a variable with distribution the conditional of P (x) given
x < t0 , and, since β is continuous increasing, we can choose g so that t(α)
matches the upper quantiles of P for α ≤ α0 . 
�


	Introduction
	Main Result
	Setting
	False Prediction Rate
	Warming Up: Algorithm with Constant Volume Output
	General Case

	Applications
	Randomized Classifiers: An Alternate Look at PAC-Bayes Bounds
	Multiple Testing: A Family of ``Step-Up'' Algorithms with Distribution-Free FDR Control

	Tightness of Occam's Hammer Bound
	Conclusion
	Appendix -- Additional Proofs


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




